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Preface

The 1st and 2nd International Conferences on Functional Imaging and Modelling
of the Heart (FIMH) were held in Helsinki, Finland, in November 2001, and in
Lyon, France, in June 2003. These meetings were born through a fruitful scien-
tific collaboration between France and Finland that outreached to other groups
and led to the start of this biennial event. The FIMH conference was the first
attempt to agglutinate researchers from several complementary but often iso-
lated fields: cardiac imaging, signal and image processing, applied mathematics
and physics, biomedical engineering and computer science, cardiology, radiol-
ogy, biology, and physiology. In the first two editions, the conference received
an enthusiastic acceptance by experts of all these communities. FIMH was origi-
nally started as a European event and has increasingly attracted more and more
people from the US and Asia.

This edition of FIMH received the largest number of submissions so far with
a result of 47 papers being accepted as either oral presentations or posters.
There were a number of submissions from non-EU institutions which confirms
the growing interest in this series of meetings. All papers were reviewed by up
to four reviewers. The accepted contributions were organized into 8 oral sessions
and 3 poster sessions complemented by a number of invited talks. This year we
tried to allocate as many papers as possible as oral presentations to facilitate
more active participation and to stimulate multidisciplinary discussions. Papers
were organized around several tracks: anatomical modelling of the heart, elec-
trophysiology, electro- and magnetography, modelling of the cardiac mechanics
and function, cardiac motion estimation, and also a miscellaneous section. The
order of presentation in these proceedings follows that of presentation at the
conference.

For the communities related to this conference, it would be impossible to over-
look ongoing international efforts such as Cardiome!, which tackles the fields of
cardiac imaging, and multiscale modelling and simulation of the heart. Cardiome
is the first, and possibly currently the most advanced, effort within the Phys-
iome? initiative that is sponsored by the International Union for Physiological
Sciences (IUPS). Also related to Physiome is the UK-sponsored project Inte-
grative Biology®, a key part of which relates to projects on the heart. All these
efforts aim at developing a vision for computational physiology where knowledge
and understanding at every length and temporal scale of the different organic
systems of the human body can be integrated through computational models.
We believe that FIMH will contribute to several key challenges within Cardiome

! http://www.cardiome.org/
2 http://www.physiome.org/
3 http://www.integrativebiology.ox.ac.uk/
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and, therefore, be of importance to the overall objectives of the Physiome and
Integrative Biology projects.

Another important ingredient of FIMH 2005 was the participation of the
European Commission through the organization of a satellite workshop entitled
Towards Virtual Physiological Human: Multilevel Modelling and Simulation of
the Human Anatomy and Physiology. This half-day workshop, jointly organized
by the Directorate-General Information Society and Media in collaboration with
the Institute for Prospective Technological Studies (IPTS), further motivated
the conference by presenting progress to date, providing a wider perspective on
modelling and simulation, and allowing the exchange of ideas about this exciting
topic.

Finally, we would like to take the opportunity to thank all the authors for
the outstanding cort ributions to FIMH, and the Program Committee and
additional reviewers for their invaluable efforts in a timely review process. Last
but not least, we would like to express our gratitude to all the sponsoring and
organizing institutions for their support of this conference.

We hope that the attendees enjoyed the atmosphere and program of the con-
ference and we hope to see you again at FIMH 2007.

June 2005 Alejandro F. Frangi
Petia Radeva

Andres Santos

Monica Hernandez
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Multi-surface Cardiac Modelling, Segmentation,
and Tracking

Jens von Berg and Cristian Lorenz

Philips Research Laboratories, Sector Technical Systems,
Rontgenstr. 24-26, 22335 Hamburg, Germany
Jens.von.Berg@philips.com

Abstract. Multi-slice computed tomography image series are a valu-
able source of information to extract shape and motion parameters of the
heart. We present a method how to segment and label all main chambers
(both ventricles and atria) and connected vessels (arteries and main vein
trunks) from such images and to track their movement over the cardiac
cycle. A framework is presented to construct a multi—surface triangular
model enclosing all blood—filled cavities and the main myocardium as well
as to adapt this model to unseen images, and to propagate it from phase
to phase. While model construction still requires a reasonable amount of
user interaction, adaptation is mostly automated, and propagation works
fully automatically. The adaptation method by deformable surface mod-
els requires a set of landmarks to be manually located for one of the
cardiac phases for model initialisation.

1 Introduction

The aim of our work is a comprehensive model of the geometry of the human
heart contraction as well as its inter—individual variations. Such a model in-
troducing a priori knowledge about typical properties of a beating heart will
be highly beneficial in the whole chain of image—based cardiac diagnostics, as
well as in many cardiac treatment procedures. The model covers landmarks, the
coronary tree, and the surfaces of the large vessels [1]. The latter is the subject
of the work reported here. The most valuable and practically unique source of
information for the modelling process are cardiac images from clinical practice.
In this paper the use of multi-slice computed tomography (MSCT) images is
reported that have a voxel size of about 0.5 mm in each direction and a tempo-
ral resolution of 10 volumes per cardiac cycle. Mostly, cardiac MRI were used
previously for this purpose [2,3,4,5,6]. MSCT may provide even better insight
into the morphology of the human heart [7]. Extracting the relevant informa-
tion from these images is hardly feasible without a priori knowledge [8]. Many
approaches to cardiac segmentation were based on manually segmented images,
which is a good means to both tune parameters by automated supervised learn-
ing, and to finally prove their performance in comparison to human expertise.
However, manually segmenting an MSCT series means delineating each object

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 1-11, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 J. von Berg and C. Lorenz

of interest in about two thousand images. This dilemma led us to a bootstrap
approach with a consecutive refinement of the model during successive analysis
of new images.

2 Model Construction

The model covers the blood pool of both the left and the right heart. The blood
pools of the ventricles should be distinguishable from those of the atria. All at-
tached vessels should also be modelled, i.e. the aorta, the pulmonary artery, the
vena cava, and the pulmonary vein trunks. As it is clearly visible, and diagnos-
tically relevant, also the left myocardium should be represented in the model.
Including adjacent volumetric entities required a surface modelling scheme be-
yond two—dimensional manifolds. In the discrete case with triangular faces this
means that there are faces with more than three neighbours wherever multiple
surfaces share an edge. In order to enable multi-scale / multi-resolution ap-
proaches or to just find an ideal trade—off between accuracy and complexity, a
multi-resolution representation of the surface discretisation was desired.

The initial step was the construction of single basic shapes like spheres (atria),
tubes (attached vessels), and opened ellipsoids (ventricles). Each one modelled
an anatomical entity. These shapes were then positioned in the training image
and adapted to the corresponding entities. A re-sampling closed this step to get
a defined level of granularity. The third step was the most important one that
combines the single basic two—dimensional manifolds to form the multi-surface
model. The method used in this third step is explained in some detail below.
In the resulting model, each face should be assigned a label that indicates the
anatomical structure it belongs to. This information was derived by storing which
of the initial basic shapes a face originates from. The basic shapes were left atrium
ay, left ventricle endocardium (inner part v;), left ventricle epicardium (outer part
Vo), aorta a, vena cava superior vs, vena cava inferior vy, right atrium a.., right
ventricle vy, pulmonary artery a, (right branch only), and the pulmonary vein
trunks (v1, ve, U3, v4,) that drain into the left atrium.

2.1 Building a Multi-surface Model

The combination step was made by successive application of a handful of basic
operations on surface meshes, starting with the basic meshes. There are volu-
metric set operations that consider the enclosed volume of two meshes, apply
the union (U) or the difference (\) operation on them, and yield the resulting
surface mesh. A similar approach but with implicit surface models was proposed
in [9]. Each of the present operations was defined as B x B — B, where m € B
is a two—dimensional manifold mesh. As a further constraint on theses opera-
tions, the intersection line between both meshes had to be closed polygons. This
required open basic meshes to fully overlap with their neighbours (e.g. ventricle
with atrium). The join operator (¢) was defined as B x B — M, where m € M
may be a non-two—dimensional manifold mesh. The join operator just unites
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Fig. 1. A basic (a), some intermediate (b to d), the final (e), and a derived (f) sub mesh,
all seen from left anterior. a: left atrium a;, b: left blood pool p;, c: left myocardium a1,

e: whole heart h, f: blood pool of the left ventricle only p,,. The colour-coding denotes
face labels. All shown meshes are just subsets of the complete multi-surface model A

both sets of faces and unifies corresponding faces that occur in both meshes.
The unary operator ¢; (M — M) removes all edges smaller than given by pa-
rameter [ and preserves the triangles’ labels. It was needed to replace auxiliary
triangles created by volumetric set operations. The left blood pool p; € B was
build by

pr=c¢ (v1Uvg UusUvgUa; Uo; Ua). (1)

In order to construct the complete multi-surface model h, first the intermediate
meshes a; and as were constructed by

a1 = ¢ (vo \ 1) (2)
az = c; (voUpr), (3)

where a; now exactly enclosed the left myocardium. The complete left heart
model h; was built by ~
hl = aj ¢ ag, (4)

and the right blood pool was built by
pr = ci(a, Uvp, Uap Uvp Uwg) \ ar. (5)
Left and right part were fused to
h=h;op,. (6)

In Figure 1 some basic, intermediate, and the final mesh h are rendered from
the same viewing position. The edge size was set to range between 2.5 mm and



4 J. von Berg and C. Lorenz

5 mm. Also other sub meshes than those required to build the final mesh may
be constructed, for instance the blood pool of the left ventricle excluding the left
atrium by

Pu; = Vi \ a1 (7)

3 Model Adaptation

For adaptation of the multi-surface model to a cardiac CT image, a shape—
constrained deformable surface model approach was followed as previously de-
scribed in [10,4]. The model with given vertex positions v taken from a training
image both served for the initialisation of the initial mesh v and as constraint
during its adaptation to v ™. The number of triangles remained unchanged in
this process.

3.1 Affine Pre-registration

In order to pose the initial mesh into the image as accurately as possible, 25
anatomical landmarks were manually located both for the image the model was
built from and for each target image [1]. These landmarks are mainly centre
locations of chambers, valves, and ostia. A point—based affine registration [11]
was applied on the two sets of landmarks. The resulting affine matrix A and
translation vector t were then used to pre-register the initial mesh by v9 =
AV +t.

3.2 Model Deformation

In the optimisation scheme the vertex positions of the triangular surface mesh
were the parameters to be varied. Mesh deformation was done by minimizing
the energy term

E = Eemt + OlEz'nt. (8)

The external energy FE.,; drives the mesh towards the surface points obtained
in a surface detection step. The internal energy Fj;,; restricts the flexibility by
maintaining the vertex configuration of a shape model. The parameter o weights
the influence of both terms. A fixed number n of such minimisation steps is
performed on the mesh. The different components of the deformation algorithm
are described below.

Surface Detection. Surface detection was carried out for each triangle barycen-
tre x;. Within a sampling grid of points cy, defined in a local co-ordinate system,
that point ¢; is chosen that maximizes the objective function

Ei = argmaxkzil’m’l {Fl(xi —+ Mick) - 6 Hck||2} . (9)
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M; is a rotational matrix that rotates the z—axis of the local co—ordinate
system to the triangle surface normal n; and

X; = x5 + M;¢6; (10)

is the new surface point for x;. The parameter § controls the trade—off between
feature strength and distance. The sampling grid

ck =G, =(0,0,ke):k=—1,...,1 (11)

was used, that results in (2! + 1) equidistant sampling points along the triangle
surface normal.

Feature Function. The feature function

{ _nltVI(X) !]maz(‘]?na;,"l‘HVI(x)H) . Imzn < I(X) < Imaz

Fi(x) = eIV I (12)

otherwise

was used that projects the image gradient VI(x) onto the face normal n; and
damps its value so that surface points with image gradients stronger than g,,.. do
not give higher response. The restriction to a dedicated intensity range may make
the feature function more specific and thus makes adaptation less vulnerable to
adjacent false attractors (see below).

External Energy. The external energy
Bt = Y wi (evi&)” w; = max {0, Fi(xi + Mi&) 8 [&[* ) (13)

drives each triangle barycentre x; towards the detected surface point X;. ey is
the unit vector in the direction of the image gradient at the surface point X;.
Since only the projection onto ey is penalized, this allows the triangle centre to
locally slide along an iso—contour. This method proved to be superior to direct
attraction by the candidate in [10] in case of intermediate false attractions.

Internal Energy. The internal energy

znt = Z Z - vk - SR(Vj - Vk))2 (14)

J keEN(j)

preserves shape similarity of all mesh vertices v; to the model vertices ¥;. N (j) is
the set of neighbours of vertex j. The neighbouring vertices are those connected
by a single triangle edge. The scaling factor s and the rotational matrix R
are determined by a closed—form point—based registration method based on a
singular value decomposition [11] prior to calculation of (14).

Optimisation. As only interdependences between neighbour vertices exist (14)
and the energy terms are of a quadratic form, the conjugate gradient method
[12] could be used for minimisation of (8) with a sparsely filled matrix.
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Multi-surface Parameterisation. The labels assigned to each face of the
multi—surface model may be used to parameterise interfaces between different
anatomical entities specifically. However, dedicated parameter tuning was re-
stricted to the epicardium border towards the lung parenchyma that differs in
its appearance significantly from the other surfaces that enclose the blood pool.
Thus, gme: was set to 60 % here instead of 120 % elsewhere. and the in-
tensity range (Inin - - * Imaz) Was adjusted to 350 - - - 800 HU instead of 1000 HU

and up. The other parameters were globally set to « =0 =1, e =1 mm, [ = 10.

4  Surface Tracking

In order to capture tissue trajectories one has to find corresponding tissue land-
marks in images from different cardiac phases. This was mainly done previously
either by non-linear registration [13] or by active appearance models [14]. With
some modifications that rather belong to the second category and that are ex-
plained below, the adaptation method presented above was also applied for a
surface tracking approach that utilizes point correspondence.

Surface detection is carried out following equation (9). In order for a surface
point not only to be attracted along the surface normal, a sampling grid is used
that extends into all direction. A multi-icosahedron grid

Ck=1~~375GI = {(07070)7P27P47P8} (15)

was used where each P, is a set of 12 icosahedron surface points with a radius
of ne mm around the origin of the local coordinate system. Individual feature
functions are required for each surface point in this case to take the local image
properties into account. The feature function

B 2041
D ohe g (I (x+Misyk) — Qi,k)2

Fi(x) (16)

that replaces (12) thus evaluates similarity of local appearance samples to the
once learnt model g;. The linear sampling grid sy = Gr, from equation (11) is
taken. It is applied at each sample point. The external energy is calculated by

Begr = Y & (17)

instead of (13), and the internal energy is taken from (14).

In order to demonstrate the general feasibility of surface tracking with de-
formable models and appearance models a simple test study was carried out. A
cylindrical surface mesh was posed into a cardiac CT image to roughly fit the
left myocardium. The image appearance g was learnt and the mesh was rotated
around its main axis by r = £ 75, £5,+7, and £5 afterwards in a number of tri-
als. An adaptation with n = 80 iterations was performed for each rotation angle.
Up to r = £7% the mesh successfully recovered the initial position. This simple
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test showed that the tracking method has a remarkable capture range, and that
with the rotationally symmetric shape model, appearance alone is sufficient as
driving force.

The propagation through all cardiac phases started with a phase to which
the shape model was adapted successfully. From the image of this phase 1 the
appearance g, was learnt at positions given by vi. This shape vy was used as
initial mesh and further on v? = vP ;. The same holds for the shape model
V; = vit ;. This was repeated until all phases were processed. For each phase
the initial appearance model g; was used.

5 Results

5.1 Model Construction

A multi-surface mesh with a total number of about 7,000 vertices and 13,000
triangle faces was constructed with edge lengths ranging between 2.5 mm and
5 mm. Its shape is shown in Figure 1. The basic meshes this model was con-
structed from, were adapted to the anatomical entities of the end—diastolic phase
of the training image. The resulting multi-surface model was then adapted to a
set of five other cardiac MSCT images from different hospitals but all acquired
with a Philips MX8000 IDT 16-line CT scanner. The images were contrast—
enhanced as they were acquired for the purpose of coronary assessment.

5.2  Pre-registration

The affine pre-registration led to a mean (4 standard deviation) residual land-
mark distance of 7.5 + 4.3 mm, 7.0 £ 3.3 mm, 83 + 3.5 mm, 5.6 + 2.6 mm,
and 13.0 & 12.1 mm for the five images. The latter resulted in an unaccept-
able pre-registration, both visually and with respect to the subsequent adapta-
tion result. An alternative rigid registration with an isotropic scale parameter

Fig. 2. Left: Pre-registration (dark mesh) and subsequent automatic adaptation (light

mesh) of the multi-surface model to an unseen image. The arrow marks a local mis—
adaptation. Right: Mean end-diastolic model of the five patients with colour—coded
standard deviation (dark:0.8 mm, light:7.8 mm)
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(13.0 £ 14.4 mm) resulted in an acceptable pre-registration for further process-
ing. A typical affine pre-registered model is shown in Figure 2 in comparison to
the automatic deformable adaptation based on this pre-registration.

5.3 Adaptation

The adaptation by model-based deformation significantly improved on the re-
sults of the affine pre-registration (Figure 2). Automatic adaptation with n = 10
iterations took about 15 seconds on a 2.6 GHz PC including real-time surface
rendering. The majority of surface parts could be considered well-adapted. The
reasons for remaining local mis—adaptations were mainly adaptations to false
attractors e.g. of the epicardium mesh to the endocardium (see Figure 2) or to
coronaries, and of the aorta mesh to the vena cava. Using the methods described
in [15] manual corrections that survive subsequent automatic adaptation steps
could be applied to these mis—adapted parts.

5.4  Calculating a Mean Model

The resulting individualized models were mutually registered (rigid plus isotropic
scale) using a procrustes analysis of their corresponding anatomical landmarks.
A mean model of the five subjects was calculated (Fig. 2).

5.5  Surface Tracking

The surface tracking method was applied to the training image sequence. The
initial mesh v; was the one that resulted from model construction and that was
fit to the end—diastolic phase image of the training sequence. Each propagation
step v;_1 — v; was done with n = 12 iterations. Propagation was done for all
nine images of subsequent phases and back to the initial image with v = vi2.
This allows for a comparison of the round-trip adaptation result vi? with the
initial mesh v;. The mean (4 standard deviation) distance of corresponding
vertices between both was 1.44+0.7 mm. The meshes are shown in Figure 3. The
mean distance of all corresponding vertices in all phases between the forward
(vi—1 — v;) and the backward (v;;1 — v;) propagation was 2.1 + 1.3 mm. The
propagation from the initial mesh (vy — v;) differs from forward propagation by

Fig. 3. Result of the consistency test: Initial mesh (white) and result of a round-trip
adaptation (black) to the end—diastolic initial image
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Fig. 4. Left: Trajectories of each vertex through the cardiac cycle. For visibility reasons
they were scaled down by a factor 4 with respect to their initial (end—diastolic) vertex
position. Centre: end—diastolic mesh. Right: end—systolic mesh

1.6 £ 1.0 mm and from backward propagation by 1.5 + 0.9 mm. A visualisation
of the moving model by a surface rendering loop gives a very natural impression
of contraction (ventricles), parallel displacement (valve plane), and rather stable
parts (atria). Figure 4 tries to show the results in a printed form.

6 Discussion

A method was presented that enables a widely automated construction of a
multi-surface triangular mesh of cardiac chambers and vessels, mostly automatic
adaptation to individual MSCT images, and automatic propagation of such an
individualized model through the cardiac phases. For model construction a set of
single basic shapes was adapted each to its anatomical entity. The multi—surface
model resulted from their automatic combination. Some anatomical landmarks
were manually located in order to pre-register this model to an unseen image by
either affine or rigid registration. The subsequent deformation to fit the image
boundaries was mainly gradient—based. All parameters were set explicitly during
an explorative test phase resulting in a small knowledge base. Some individual
surfaces of the model were parameterised specifically, which was well supported
by the anatomical labels given in the multi—surface model. The surface tracking
however used individual grey value profiles for each surface location learnt from
the initial phase’s mesh. This method was chosen in order to closely approximate
the real tissue trajectories. Due to the large data volume (up to two thousand
slices for a cardiac cycle) and the difficulties in manually finding reliable trajec-
tories there was no high quality expert data available for validation. We were
able to perform a capture range test and a consistency test of the method with
good results. Also the animated visualisation gave a realistic impression. Only
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the rotational component and the twist of the left ventricle seemed to be under-
estimated, which we suppose to be due to the too rigid regularisation in (14).
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Abstract. The relationships among vascular geometry, hemodynamics,
and plaque development in coronary arteries are not yet well under-
stood. This in-vivo study was based on the observation that plaque fre-
quently develops at the inner curvature of a vessel, presumably due to
a relatively lower wall shear stress. We have shown that circumferential
plaque distribution depends on the vessel curvature in the majority of
vessels. Consequently, we studied the correlation of plaque distribution
and hemodynamics in a set of 48 vessel segments reconstructed by 3-D
fusion of intravascular ultrasound and x-ray angiography. The inverse
relationship between local wall shear stress and plaque thickness was sig-
nificantly more pronounced (p<0.025) in vessel cross sections exhibiting
compensatory enlargement (positive remodeling) without luminal nar-
rowing than when the full spectrum of vessel stenosis severity was con-
sidered. Our findings confirmed that relatively lower wall shear stress is
associated with increased plaque development.

1 Introduction

Coronary atherosclerosis starts at a young age and is a major cause of death
in developed countries. As shown in Fig. 1(a)—(c), the intimal layer (mid gray)
thickens as plaque develops. However, the lumen (light gray) initially remains
unchanged due to compensatory enlargement as part of a remodeling process
that causes the media (dark gray) to grow outward. Luminal narrowing forming
an angiographically visible stenosis generally occurs after the plaque area ex-
ceeds about 40% of the cross-sectional vessel area [1]. Intravascular ultrasound

* Supported in part by the National Institutes of Health, grant R01 HL63373.
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Fig. 1. Development of atherosclerotic plaque: (a) vessel without any stenosis; (b) com-

(@

pensatory enlargement; (c) luminal narrowing; (d) IVUS image with (1) catheter, (2) lu-
men/plaque, and (3) media/adventitia borders

(IVUS) is able to visualize plaque development, as shown in Fig. 1(d). Previ-
ous studies have linked plaque development with low wall shear stress [2]. Thus,
the identification of areas of initially low wall shear stress and evaluation of the
plaque distribution is of major interest, especially given the capabilities of IVUS
to image plaque. As is typical for coronary IVUS studies, all subjects imaged
had clinically indicated coronary catheterization. It is imprudent to perform
IVUS imaging in patients with healthy or minimally diseased coronary vessels.
Consequently, the enrolled subjects invariably suffered from advanced coronary
artery disease. As such, the relationships we observed were between an already
substantially altered coronary morphology and the related altered hemodynamic
shear stress conditions. It has been shown that luminal narrowing deminishes
the inverse relationship between plaque thickness and wall shear stress [3]. In
addition to this phenomenon, we were also interested in the notion that hemo-
dynamic shear stress plays a role in the onset of coronary disease. In contrast
to wall shear stress, vascular geometry (curvature) is not changed by the course
of the disease and thus can serve as a surrogate of the hemodynamic conditions
prior to atherosclerotic disease development. Therefore, the relationship between
vessel curvature and plaque distribution was studied as well as the relationship
between wall shear stress and plaque distribution with special consideration of
vascular remodeling.

2 Methods

2.1  Multi-modality Fusion

We have developed a comprehensive system that generates geometrically cor-
rect 3-D and/or 4-D (i.e., 3-D+time) reconstructions of coronary arteries and
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Fig. 2. Processing of the data as outlined in Section 2.1

computes corresponding quantitative indices of coronary lumen and wall mor-
phology. The reconstructions serve as input for hemodynamic analyses and allow
for interactive visualization [4,5,6]. A flowchart outlining the system is given in
Fig. 2. In brief, the vessel geometry is obtained from biplane (or a pair of single-
plane) x-ray angiographic projections, whereas the cross-sectional information is
retrieved from IVUS. Thus, the resulting model accurately reflects the curvature
and torsion of the vessel as well as any accumulated plaque. The angiography
and IVUS data are retrospectively ECG-gated and segmented. Fusion leads to
the 3-D/4-D plain model representing both the lumen and the vessel wall. The
model consists of the lumen/plaque and media/adventitia contours oriented rel-
ative to the IVUS catheter. After tetrahedral meshing, this model is suitable for
hemodynamic analyses. Following resampling orthogonal to the vessel centerline,
morphologic analyses are performed. The quantitative results annotate the re-
sampled contour model, which is subsequently used for visualization and further
analyses. Our system utilizes conventional PC hardware and widely available
software tools. Standardized storage formats for parameters and contour lists
have been adopted to ensure proper interfacing between our fusion system and
commercially available analysis software packages and to enhance data sharing
and collaboration.

2.2  Segmentation of IVUS Image Data

While many components of the fusion system perform to full satisfaction, several
challenges remain. One of them is the segmentation of the IVUS data. It is well



Analysis of the Interdependencies Among Plaque Development 15

known that IVUS images contain artifacts from various sources, thus requiring
the design of cost functions that incorporate a-priori knowlegde of regional and
border properties to robustly determine the optimum contours. The cost function
employed in our graph-based IVUS segmentation method combines three major
groups of features: (a) image data terms such as edge detectors and intensity
patterns; (b) physics-based terms that distinguish different tissue types based on
their Rayleigh distribution patterns [7,8]; and (c) border probabilities based on
expert tracings. A scoring system is employed to evaluate these feature classes
in each image to be analyzed, and the borders are found using a multiresolution
approach that mimics human vision [9)].

2.3 Morphologic and Hemodynamic Indices

The reconstructed vascular model provides 3-D locations for 72 circumferential
vertices on both lumen/plaque and media/adventitia contours, radially oriented
with respect to the vessel centerline. This allows a straightforward determination
of the plaque thickness at each location, as well as volumetric measurements over
any given subsegment of the vessel [10]. In order to determine local curvature
magnitude and direction, Frenet-based computational geometry was employed.
To distinguish between locations of “inner” vs. “outer” curvature on the circum-
ference of the vessel, a new scheme was introduced that weights the curvature
magnitude by an index of the circumferential position of each element [11]. Blood
flow through the coronary arteries was simulated using computational fluid dy-
namics (CFD) methodology. Tetrahedral meshing of the lumen using commer-
cially available meshing software provides an unstructured grid for simulations
with U?RANS, a CFD software developed at The University of Iowa [12]. Posi-
tive and negative wall shear stress values are determined at each circumferential
lumen location and mapped onto the 3-D model.

2.4  Classification of Circumferential Regions

Each of the 72 circumferential locations in each vessel cross section was catego-
rized with respect to its relative plaque thickness (above or below average for
this cross section), its location relative to the local vessel curvature (inner or
outer curvature), and its wall shear stress (above or below cross-sectional av-
erage). In this way, eight different “regions” resulted. A ninth “neutral” region
included those areas of curvature magnitude below a certain threshold that were
eliminated from further analysis to avoid distortion of the results by noise. The
following two studies correlate independently plaque distribution with curvature
and wall shear stress.

3 Studies and Results

3.1 Plaque Distribution in Relation to Vessel Curvature

To verify the observation that plaque accumulation in curved vessels is bi-
ased towards the inner bend of the curvature rather than the outer bend of
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Fig. 3. Plaque thickness vs. curvature: (a)(i) angiogram of a left anterior descending
artery with the IVUS catheter inserted, (ii) lumen and adventitia borders from fusion,
(iii) plaque-thickness annotation, (iv) curvature-index annotation, (v) after classifica-
tion into regions, with the branch segment removed from analysis; (b) results from 60
analyzed vessels, by curvature threshold and vessel, with rpc>0.5 indicating that our
guiding hypothesis was satisfied for all (12), at least half (>6), at least one (>1), or
none (=0) of the curvature thresholds

the curvature, the relative amount rpc of regions where inner curvature co-
incides with above-average plaque accumulation, or outer curvature coincides
with below-average plaque accumulation, was determined in a set of 60 vessels.
Preliminary results in 37 vessels and methodology were reported in [11]. The
ratio rpc represents a “plaque/curvature index” with a value rpe>0.5 indi-
cating that more plaque has accumulated along the inner curvature as com-
pared to the outer curvature, thus supporting the hypothesis. As an exam-
ple, Fig. 3(a)(iii) shows a color-coded plaque-thickness distribution in a geo-
metrically correct 3-D representation, with red indicating high and blue indi-
cating low plaque thickness, normalized over the entire vessel segment. As de-
scribed above, a curvature index was determined for each circumferential loca-
tion on the contour. Fig. 3(a)(iv) shows the color-coded curvature-index distri-
bution, with red indicating inner curvature and blue indicating outer curvature.
Four regions were defined, as depicted in Fig. 3(a)(v): Rq; (red), R4, (magenta),
Ry; (yellow), and Ry, (blue). These regions represent pairs distinguishing cir-
cumferentially considered “above-average” plaque thickness (a) from “below-
average” plaque thickness (b), coinciding with either “inner curvature” (i) or



Analysis of the Interdependencies Among Plaque Development 17

“outer curvature” (o) of the vessel wall. Thus, the plaque/curvature index was
defined as

_ ||Rai + Rbo”
HRai + Rbo + Rao + sz”

(1)

rpc

Impact of Curvature Threshold and Vessel Type. The results are de-
picted in Fig. 3(b). Twelve different threshold values were empirically selected
ranging from 2.31 to 22.94°/cm, resulting in 10.1-77.8% of circumferential lo-
cations being assigned to the neutral region R, (green). The chart shows that
the average rpc over all 60 vessels increases steadily with increase of the cur-
vature threshold. Thus, the more regions of low curvature are included into R,,,
and therefore increasing the proportion of higher curvature regions included in
the calculation of rpc, the more the hypothesis was supported. The increase

1.0
g
&us u’—’/
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(c)

Fig. 4. (a) IVUS frame of an untreated vessel segment with slight stenosis; (b) the
same vessel after stent placement at a location with heavy disease; (¢) the hypothesis
rpc>0.5 is only satisfied after exclusion of the stented segment, thus including segments
with lesser disease only, as compared to the results over the entire vessel
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in standard deviation of rpc prompted us to categorize the results by vessel.
While almost two thirds of the vessels satisfied rpc>0.5 for all thresholds, the
hypothesis was more strongly supported in left anterior descending (LAD) ar-
teries (87% for all or at least half of the thresholds). Since the right coronary
(RCA) and left circumflex (LCX) arteries have higher tortuosity than the LAD,
the less supportive results may be caused by the more complex flow patterns
that can no longer be explained by the curved-tube model.

Impact of Interventions. Stenting may have a substantial impact on the out-
come of the plaque/curvature index rpc. In several of the vessels analyzed, a
below-threshold value of rpe (rpe<0.5) was determined when all segments were
included and only branch locations were excluded. After also excluding known
regions of intervention and stenting, rpc>0.5 was reached, frequently showing
the increase of rpc with the increase in curvature threshold (Fig. 4). This con-
tradicts our initial findings reported in [11] that stenting does not significantly
affect the plaque/curvature index rpc and indicates that substantial disease and
stenting may have a distorting impact on the relation between vessel geometry
and plaque distribution.

3.2 Plaque Distribution in Relation to Wall Shear Stress

While disease progression and stenting impact the curvature/plaque relationship
to some extent, an even more substantial effect can be expected on the wall shear
stress distribution. The distribution is substantially altered when the limits of
positive remodeling are reached [3]. Thus, the vessel subsegments for which the
area stenosis is between 10% and 40% are of specific interest (the compensatory-
enlargement range identified by Glagov et al. [1]). Consequently, we concentrated
on whether and how significantly the correlation improves once vessel segments
of certain properties are excluded from the analysis. In this way, indirect evidence
of which local conditions favor the underlying hypothesis of below-average wall
shear stress inducing above-average plaque thickness was sought.

Grouping of Vessels and Segments by Disease Severity. 48 vessels (a sub-
set of Section 3.1, since some parameters were not available for vessels received
from collaborating sites) were analyzed. The data was smoothed with a moving
45°-wedge over 5 frames to limit the impact of local noise. The analyses were
performed in 4 increasingly restrictive subsets of data. First, the relative amount
rpw of elements for which circumferentially above-average plaque thickness co-
incides with below-average wall shear stress (and vice versa) was determined
for each vessel segment — similar to the plaque-thickness/curvature study. By
replacing “inner curvature” (i) with “lower-than-average wall shear stress” (1)
and “outer curvature” (o) with “higher-than-average wall shear stress” (h) in
Eq. (1),
B | Rai + Ryn||

[ Rar + Ron + Ran + Rul|

(2)

TPW
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Fig. 5. Example for the definition of the sets: Vessel 1 shows only minor disease,
whereas Vessel 2 is subject to advanced atherosclerosis; both form Set #1. For Vessel 1,
all subsegments are retained when proceeding to Set #2, whereas two subsegments of
Vessel 2 were discarded due to calcifications. All subsegments outside the 10-40% area
stenosis range are removed from Set #2 to create Set #2a, thus discarding 1 subseg-
ment from Vessel 1 and 2 subsegments from Vessel 2. Only Vessel 1 proceeds from
Set #2 to Set #3, since less than 35% of Vessel 2 are within the 10-40% area stenosis
range. For Vessel 1, (in analogy to the step from Set #2 to Set #2a) the center segment
is discarded from Set #3 to Set #3a
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results as definition for the plaque/wall-shear-stress index. This step created
Set #1. Next, all vessel subsegments that included vessel branching areas, stents,
or regions of dense calcification were excluded, forming Set #2. Within Set #2,
percent-area stenosis was determined for each frame following Glagov’s def-
inition, which does not require the presence of a normal reference segment
(plaque+wall area over cross-sectional vessel area) [1]. Set #3 consisted of all
such vessles from Set #2 for which the percent-area stenosis was in the range of
10-40% in at least 35% of the non-excluded vessel segments. Set #3 consisted
of 31 vessels satisfying this criterion. In each vessel, the segments of Sets #2
and #3 that were within the 10-40% range of area stenosis formed Subsets #2a
and #3a. An illustration for the definition of these sets is shown in Fig. 5.

Hypothesis Test. If the hypothesis is correct and observable in regions where
severe luminal narrowing is not present, the vessels in Subsets #2a and #3a
should provide higher rpy ratios than the corresponding vessels in Sets #2
and #3. Therefore, we determined factors gpy quantifying the change gpy (2 =
’I“pw{ga}/’l"pw{g} for all vessels and gpw{s} = TPW{3a}/TPW{3} for vessels with
the minimum of 35% of frames within the 10-40% area-stenosis range. Note
that the gpy ;) represent the differences in hypothesis validity. Consequently,
gpw {}>1 suggests a case for which the hypothesis is more strongly supported
in those segments of vessel x with compensatory enlargement as compared to
those with lumen narrowing. The analysis rationale is to determine: (1) whether
applying the hypothesis test on the subset of segments defined in Set #2a (10—
40% stenosis) increases the validity of the hypothesis compared to the Set #2;
and, (2) whether applying the hypothesis test on Set #3a (10-40% stenosis in
vessels with >35% of the wall within this range) increases the hypothesis validity
compared to the Set #3 (>35% of the wall within the 10-40% stenosis range).

Changes in Hypothesis Validity. The results can be summarized in the fol-
lowing table (gpw ;3 >1.01 “increase” and gpy (,}<0.99 “decrease”):

gprwi{z} >1.01 <1.01

>0.99 <0.99 *

Sets #2a/#2|n=48| 25 3 16 4 |R=0.61, p>0.75
#3a/#3| 31| 19 3 7 2|R=0.92, p<0.025

where for the vessels marked with x, either all or none of the frames were within
the 10-40% area-stenosis range, therefore g Pw {«} Was considered undefined, and
these vessels were excluded from the R and p calculations. Evidently, hypothesis
validity improves and becomes statistically significant in Set #3 vs. Set #2, thus
confirming our assumption. A notable cluster of 12 vessels in Set #3, having
35-63% of frames in the 10-40% area-stenosis range, shows an average 10.2%
increase in hypothesis validity which is highly significant (R=0.96, p<0.001).
This can be explained, in part, by the minimization of statistical noise with an
even distribution of frames within vs. outside of the 10-40% area-stenosis range.
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4 Discussion and Conclusions

Plaque development depends on the wall shear stress distribution, which in turn
depends on the vessel geometry. The presented study demonstrated in-vivo that
plaque distribution correlates with vessel curvature, and also correlates with wall
shear stress in early stages of atherosclerosis. The analysis of a direct relationship
between curvature and shear stress is ongoing. We have shown that, in the
majority of vessels, plaque tends to form at the inner curvature of the vessel wall.
These findings suggest that low wall shear stress, which is typically associated
with inner vessel curvature locations, likely contributes to the initial formation
of atherosclerotic plaque in the early stages of the disease in human coronary
arteries. However, the wall shear stress distribution is altered in the later stages
of atherosclerosis, when positive remodeling can no longer compensate for the
disease and the lumen narrows. We have demonstrated that the hypothesis of
above-average plaque thickness being associated with below-average wall shear
stress is more strongly supported in the early stages of disease progression.
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Abstract. A novel approach to automated segmentation of X-ray Left Ventricu-
lar (LV) angiograms is proposed, based on Active Appearance Models (AAMs)
and dynamic programming (DP). Due to combined modeling of the end-
diastolic (ED) and end-systolic (ES) phase, existing correlations in shape and
texture representation are exploited, resulting in a better segmentation in the ES
phase. The intrinsic over-constraining by the model is compensated by a DP al-
gorithm, in which also cardiac contraction motion features are incorporated. An
elaborate evaluation of the algorithm, based on 70 paired ED-ES images, shows
success rates of 100% for ED and 99% for ES, with average border positioning
errors of 0.68 mm and 1.45 mm respectively. Calculated volumes were accurate
and unbiased, proving the high clinical potential of our method.

1 Introduction

X-ray LV angiography is a widely applied modality for the assessment of cardiac
function. In both the end-diastolic (ED) and end-systolic (ES) image frame endocar-
dial contours are drawn around the LV manually, from which the ventricle volume in
ED and ES can be estimated [1]. In addition, relevant clinical parameters such as re-
gional wall motion and Ejection Fraction (EF) can be quantified.

Currently, several packages are available that assist the cardiologists in manually
drawing contours in LV angiograms. However, due to poor image quality, drawing
contours by hand is difficult, time-consuming and prone to inter- and intra-observer
variability. When an expert examines an X-ray image sequence, he also inspects
neighboring frames around ED and ES, to decide on correct boundary locations. This
way, knowledge about contraction dynamics is used to improve the segmentation ac-
curacy. The goal of this work is to automate the contour detection process by integrat-
ing prior knowledge about cardiac shape, appearance and motion. We aim to achieve
this with the following contributions:

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 23 -32, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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A Multi-View AAM [2, 3] is employed in which statistical information of dif-

ferent views of the same object is modeled simultaneously. The existing correla-

tion in shape and texture between ED and ES is exploited. The more reliable LV

information present in the ED images supports the segmentation of the fre-

quently poorly defined LV in the ES images.

e To prevent the model from locking in on local minima, we propose a novel,
controlled gradient descent optimization, in which a limited number of model
parameters is updated at a time. This greatly improves convergence robustness.

e Dynamic Programming is applied to compensate for over-constraining by the
model and thus to attain better local border delineation. Full use of all available
priors is achieved by constructing a cost function from both image features and
contraction motion features.

e An elaborate evaluation of clinical efficiency of the algorithm is described

based on 70 ED-ES image pairs. To our knowledge, this is the largest evaluation

of an automated segmentation method for clinically realistic X-ray LV an-
giograms.

2 Segmentation Method

2.1 Multi-view Active Appearance Models

Active Appearance Models, introduced by Cootes [4, 5], are an extension of the well-
established Active Shape Models [6], and integrate knowledge about object shape and
image texture variability into the segmentation. An AAM is built by warping a com-
plete image patch around the training shapes to the average shape. After intensity
normalization to zero mean and unit variance, the shape-normalized intensity average
and principal components are computed. A subsequent combined Principal Compo-
nent Analysis (PCA) on the shape and intensity model parameters yields a set of
components that simultaneously capture shape and texture variability. AAM matching
is based on minimizing the difference between model intensities and the target image.
This enables a rapid search for the correct model location, while utilizing pre-
calculated derivative images for optimizing the parameters. AAMs are described in
detail in [5], and an elaborate overview of medical applications is given in [7].

Typically, AAMs are applied to segmentation of single image sets, whereas in car-
diac imaging, often multiple acquisitions are acquired within one patient examination,
where images may depict different geometrical or functional features of the heart.
Different time frames from an angiographic image sequence are examples of such in-
terrelated views. Multi-View AAMs exploit existing shape- and intensity correlations
between different images of the same heart. Potentially, this increases robustness and
enforces segmentation consistency between views, yielding a better segmentation.

The Multi-View model is constructed by aligning the training shapes for different
views separately, and concatenating the aligned shape vectors x; for each of the N
views. A shape vector for N frames is defined as:

x =[x 0" ) (M
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By applying a PCA on the sample covariance matrix of the combined shapes, a
shape model is computed for all frames simultaneously. The principal model compo-
nents represent shape variations, which are intrinsically coupled for all views. For the
intensity model, the same applies: an image patch is warped on the average shape for
view i and sampled into an intensity vector g;, the intensity vectors for each single
frame are normalized to zero mean and unit variance, and concatenated:

g=(¢l gl gl) @

Analogous to the conventional AAMs, a PCA is applied to the sample covariance
matrices of the concatenated intensity sample vectors. Subsequently, each training
sample is expressed as a set of shape and appearance coefficients. A combined model
is computed from the combined shape-intensity sample vectors. In the combined
model, the shape and appearance of both views are strongly interrelated.

Like in all AAMs, estimation of the gradient matrices for computing parameter up-
dates during image matching is performed by applying perturbations on the model
and pose parameters, and measuring their effect on the residual images. In Multi-
View AAMSs, a disturbance in an individual model parameter yields residual images
in all views simultaneously. The pose parameters however, are perturbed for each
view separately to accommodate for trivial differences in object pose in each view,
whereas the shape and intensity gradients are correlated for all views. During match-
ing, the pose transformation for each view is also applied separately, whereas the
model coefficients intrinsically influence multiple frames at once.

Multi-View AAMs have been successfully applied to segmentation of long-axis
cardiac MR views and a pilot study on left ventricular angiograms was performed [2].
This pilot study revealed two limiting factors that needed to be addressed to make the
method suitable for clinical application: sensitivity to local minima, and over-
constraining of the model towards the trained data. In addition, this study showed that
the exact location of the LV border can only be determined based on motion features.
In the next sections, solutions to these problems are proposed.

2.2 Controlled Gradient Descent

The conventional AAM matching strategy occasionally shows difficulties in conver-
ging to the true contour positions. The gradient descent [8] in regular AAM segmenta-
tion minimizes the difference between model and true LV representation. When the
model is initialized far away from the actual LV position or with a largely different
scale or orientation, the model will lock in on its direct surroundings, matching to the
closest local minimum. To overcome this, we developed a more controlled gradient
descent, updating only a limited number of directions at a time. First all parameter
updates corresponding to the specific modes of variation, are sorted to descending
magnitude and the largest single parameter update is executed. If this lowers the error
criterion, the proposed update is accepted, new model and pose parameters are calcu-
lated and a new parameter update vector is determined and ordered in the next itera-
tion. In case an update proposal does not lower the error criterion, the number of up-
dated model parameters is incremented in the next attempt. With this strategy, a large
decrease of the error criterion is achieved based on one or a few parameters at a time.



26 E. Oost et al.

2.3 Contour Refinement Using Dynamic Programming

The power of the AAM algorithm is that it is still able to come to an acceptable global
segmentation in an environment with vaguely defined features. The model freedom to
deform however, is limited by the modes of variation derived from the training data
set. Therefore, a shape that slightly deviates from a model-generated LV contour
should also be considered as valid, and a refinement of the contour is desirable. In
previous work [3] an AAM contour refinement was done by applying a second AAM,
in which only image intensities close to the contour were incorporated. This approach
slightly improved the segmentation, but being statistically trained, it still intrinsically
over-constrained the contours towards the training data.

To allow for more shape flexibility we have used a locally selective DP, in which
the cost function is constructed from image and motion features, to mimic the experts
routine of including knowledge of contraction dynamics. DP is well-established for
contour detection in X-ray angiography [9]. Typically, angiographic DP searches for
an optimal contour path through a cost matrix, where the cost function is based on a
mix of first and second order image derivatives. In addition, we integrate features
from a subtraction image (ES image minus ED image), from which contraction in-
formation can be extracted (Figure 1). The cost matrix C is defined as:

Cli, j)= BlenGy (i, )+ (1= )11 (G, 7))+ (1= BleaGa i j)+ (1= 2 )12 i, ) 3)
where C(i, j) is the cost of element in row i and column j, B is the weighing factor be-
tween the costs in the true image data and the costs in the subtraction image, G, @i, })

and G, (i, j) are the gradients of both images, Tj(i, j) and T, (i, j) are the second or-

der derivatives and o, and a, are weighing factors between the first and second order
derivatives for the true image data and the subtraction image respectively. The polar-
ity of edges in the subtraction image is defined differently for ED and ES, making the
cost function locally selective for each phase. In ED the area outside the contour
should be dark and the area inside the contour should be light. For ES this edge polar-
ity is opposite. The use of these directed edges is only possible, since the Multi-View
AAM already produces a reliable global segmentation in each frame.

3 C(linical Evaluation

To determine the clinical utility of our approach and to assess whether Multi-View
AAM segmentation results are comparable to manual segmentation results produced
by experts, experiments were executed using a data set of 70 paired ED-ES images
from infarct patients. This data was used to train 14 leave-five-out Multi-View
AAMs. All models were constructed retaining 100 % shape variability and 95 % in-
tensity variability.

Automatically determined ED volume, ES volume and EF were compared with
corresponding values derived from manual contours. Volumes were calculated using
the area-length volume estimate [1]. Linear regression was used to determine relation-
ships between manually traced and computer determined values. A two-tailed paired
samples t-test was applied to volume measurements from manual and automatic con-
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ia)

Fig. 1. Additional information can be extracted from the subtraction image (c): ES (b) minus
ED (a). This example shows that the subtraction image contributes to a better definition of the
mitral valve area for both ED and ES. Furthermore, the diagonal shadow is removed

tours to investigate systematic errors. A p-value smaller than 0.05 was considered
significant. In addition, point to curve errors were determined, and similar to [10] we
used the following equations to calculate contour errors and area errors respectively:

2 yer, 1ap (6 y)®ap (x, y)} @)

zx,yeRE ap (x’ y)

Ec=

5
E ‘Zx,yeRE 4D (x’ y)_Zx,yeRE aP(xv y)‘ )
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with

_JLGey)eRp g _[Lbey)eRp
ap(x.y)= {O, otherwise ap )= 0, otherwise

in which R, is the region within the automatically drawn contour, Ry, is the region
within the manually drawn contour, R is the region of evaluation and @ denotes the
logical exclusive OR operator.

The performance of our algorithms was tested by comparing obtained results with
the manual contours that were used to train the 14 AAMs (expert #1 contours). Using
the leave-five-out setup, none of the tested image pairs was included in the model
used for segmentation. To asses the clinical relevance, calculated contours were com-
pared with manually drawn contours of three experts. Furthermore we determined the
state of automation that can be achieved, by comparing a fully automatic method with
a semi-automatic approach in which for both ED and ES the endpoints of the aortic
valve and the apex are predefined by a user. In the fully automatic method the model
was initialized in the image center, with average scale and orientation. The benefit of
the controlled gradient descent was tested by comparing it with regular AAM results.

The difficulty in interpreting LV angiograms results in a large inter- (and intra-)
observer variability. For example, differences in ES volume estimation by different
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experts can amount to over 80 % and average ES point to curve differences can
amount to 10 to 15 mm. Consequently, defining a notion of success for an automatic
LV segmentation algorithm is difficult. To decide on success or failure, we have cho-
sen not to look at quantitative numbers only, but to use them as a reference while
scoring the segmentations visually.

4 Results

4.1 Semi-automatic Segmentation

The semi automatic algorithm yielded borders that agreed closely to the manual ex-
pert contours. The success rate of the algorithm is 100 % for ED and 99 % (1 outlier)
for ES. After removal of the image pair with this partial failure, both ED and ES con-
tour errors, calculated areas and calculated volumes were, to our knowledge, better
then any previously reported method. Figure 2 displays representative examples of
obtained contours, proving that accurate segmentation is also feasible in images with
acquisition artifacts.

Fig. 2. Successful matches for ED (left column) and ES (right column) generated with the
semi-automatic algorithm. Black dotted lines denote the manual contour, white dotted lines rep-
resent the semi-automatic contours. Semi-automatic contours correspond closely with manual
contours, also when for example contrast is low (upper row)
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Table 1. Point-to-curve distances (PtC), contour errors (Ec), area errors (E,) and volume
errors (Ey) for ED and ES. Six comparisons are displayed: semi-automatic model vs. expert #1,
semi-automatic model vs. expert #2, semi-automatic model vs. expert #3, expert #2 vs. expert
#1, expert #3 vs. expert #1 and expert #3 vs. Expert #2

ED PtC [mm] Ec [%] E4 [%] Ey [%]
semi vs #1 0.68 +£0.37 4.13+£1.90 1.90 + 1.71 3.50 +3.45
semi vs #2 0.74 £0.26 5.56 +2.97 2.01 +£2.43 3.81+3.23
semi vs #3 0.72 +0.27 5.24+2.07 2.39+1.93 4.04 £3.83
#2 vs #1 0.57+£0.20 4.37+2.37 2.13+2.54 3.36 +3.04
#3 vs #1 0.59 £0.28 427 +1.80 2.03 +1.65 3.34+2.27
#3 vs #2 0.72 +£0.39 5.21+3.36 246 £2.98 3.87+£3.26

ES PtC [mm] Ec [%] E4 [%] Ey [%]
semi vs #1 1.45+0.76 12.8 + 6.30 6.42 +5.36 13.5+11.7
semi vs #2 213+ 1.73 26.4 +274 21.0+28.1 38.3 +56.0
semi vs #3 1.77£1.29 20.8 +18.9 14.0 £ 18.9 31.4+49.7
#2 vs #1 1.23 £0.63 14.3 £ 8.64 11.6 £9.31 155+ 11.6
#3 vs #1 1.05 £ 0.69 11.1 £7.26 7.31£7.48 11.7 £ 10.9
#3 vs #2 1.25 £ 1.06 14.0+13.0 9.37+13.2 10.9 £ 16.5
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Fig. 3. Volume regression plots for ED, ES and EF for the semi-automatic algorithm

Table 2. Comparison of semi-automatic contours with 3 experts and comparing the experts
mutually: relative ED volume and ES volume errors and the absolute ejection fraction error

ED error [%]

ES error [%]

EF error [%]

semi vs #1
semi vs #2
semi vs #3
#2 vs #1
#3 vs #1
#3 vs #2

-1.56
-0.86
0.30
-0.70
-1.85
-1.15

-0.88
12.79
9.54
-12.11
-9.45
3.03

-1.20
-6.20
-4.26
4.95
2.98
-1.96




30 E. Oost et al.

Border positioning errors were generally small. Average point to curve errors were
0.68 £ 0.37 mm for ED and 1.45 + 0.76 mm for ES. All quantitative results (model vs.
expert #1) are summarized in Table 1, together with a comparison of automatically
generated contours with expert #2 and expert #3 and a mutual comparison of all three
experts. For the mutual comparison of experts, only 43 samples of the original 70
paired ED-ES data were available.

Excellent correlation between volumes based on manual and semi-automatic con-
tours was achieved, as shown in Figure 3. In a paired samples t-test differences be-
tween manually and semi-automatically calculated ED volume, ES volume and ejec-
tion fraction were found statistically insignificant (p=0.13, p=0.76 and p=0.15
respectively). Table 2 gives an overview of errors in ED volume, ES volume and EF.
The semi-automatic algorithm compared to expert #1 gives the overall best results.
Especially the differences in calculated ES volume and EF were remarkably small,
smaller than any of the inter-expert differences. This indicates that the method per-
formed within limits of inter-observer variability.

4.2 Fully Automatic Segmentation

The success rate of the fully automatic algorithm was 91 % for ED and 83 % for ES. 6
complete failures were observed, in which both ED and ES segmentation diverged,
and 6 partial failures in which only ES segmentation failed. After removing these
failures, point to curve errors were 0.79 + 0.43 for ED and 1.55 + 0.66 for ES, which
is comparable to the semi-automatic results.

Linear regression is acceptable for ED (y = 0.93x + 6.88, R* = 0.99), ES (y = 0.90x
+4.55, R = 0.96) and EF (y = 0.84x + 9.46, R? = 0.82). Only ED volume comparison
between manual and automatic contours was statistically significant, according to a t-
test (p=0.03). Differences in ES volume and ejection fraction were found statistically
insignificant (p=0.33 and p=0.72 respectively).

4.3 Controlled Gradient Descent versus Standard AAM

To determine the effect of the controlled gradient descent, experiments were repeated
while using a regular Multi-View AAM instead of the proposed gradient descent.
When applying a regular Multi-View AAM in semi-automatic segmentation, per-
formance and accuracy remained similar. Large difference in performance however
occurred when applying a regular Multi-View AAM in fully automatic segmentation.
The number of failures amounted to 40 % in ED and 50 % in ES segmentation:
substantially worse than the controlled gradient descent matching. With a success rate
of 91 % for ED and 83 % for ES the controlled gradient descent showed to be far
more robust in evading local minima and converging to the desired solution.

5 Discussion and Conclusions

The semi-automatic algorithm shows a high success rate of 100 % for ED and 99 %
for ES. The only failure occurred when the ES image showed an extremely slim and
elongated shape. The results are based on the same data set as in [2]. Results have im-
proved significantly compared to [2], in which a combined success rate of 87 % for
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both ED and ES was reported. Correlation between manually determined LV volumes
and semi-automatically calculated LV volumes was good and, to our knowledge, bet-
ter than any previously reported method. Especially the ES results have improved sig-
nificantly, which can be mainly attributed to the combined modeling of the ED and
ES phase. The correlation values shown in Figure 3 are, to our knowledge, the best
values reported until now. However, correlation values (R* = {0.99; 0.95; 0.84}) do
not match inter-observer correlations (R* = {0.99; 0.98; 0.93}). Due to a lack of im-
age information, ES volumes are generally underestimated slightly. When using this
method in daily clinical practice, a cardiologist will need to redraw about 20 % of the
ES contour. This will increase both the ES segmentation quality and the EF calcula-
tion accuracy. To put this number in perspective, based on the similar conditions, ex-
pert #1 would on average redraw 14 % of an ES contour drawn by expert #2 and 12 %
of an ES contour drawn by expert #3.

Quantitative evaluation results of the semi-automatic algorithm proved to be within
boundaries of inter-observer variability. The average difference and standard devia-
tion in comparing the semi-automatic method with expert #1 contours (the expert who
produced the training contours) were comparable to values obtained when comparing
different experts (Table 1 and Table 2). The ability to mimic expert drawing behavior
is evident in Table 2. Differences between the semi-automatic algorithm and expert
#1 are generally smaller then differences between experts.

Both the amount of failures and the quantitative results for the fully automatic al-
gorithm were not as good as the semi-automatic approach. The major difficulty in
fully automatic segmentation is the location of the three landmark points; upper aortic
valve point, lower aortic valve point and apex. Errors for these landmarks are 3.8 mm,
4.1 mm and 3.0 mm respectively for ED and 4.4 mm, 3.8 mm and 6.2 mm for ES.
These errors strongly influence the volume estimates from the area-length method.
Still the fully automatic algorithm provided acceptable segmentation results. After
removal of failures, quantitative results were comparable to results of the semi-
automatic algorithm.

The benefit of controlled gradient descent became evident when large adjustments
of model and pose parameters were necessary, mainly when automatic initialization
was applied. The success rate improved from 50-60% for the conventional matching
to 80-90% for the controlled gradient descent. It proved to be a suitable approach in
which the model deformation is directed by the modes of variation that most typically
describe the object of interest. The controlled gradient descent approach has proven to
evade local minima by converging in smaller and more controlled steps.

The method is fast (1-2 seconds per case) and needs minimal user input: setting 6
seed points manually produces the ED and ES contours. Quantitative results demon-
strate that the semi-automatic algorithm is robust and accurate, even when acquisition
artifacts were present, such as poor contrast, overlapping diaphragm or strong shad-
ows in the image.

Also, our method outperforms other recently published methods. Suzuki’s neural
edge detector [10], trained on 12 ED and 12 ES images, achieved average contour er-
rors Ec of 6.2 % and 17.1 % for ED and ES respectively and average area errors E4 of
4.2 % and 11.6 % for ED and ES respectively. The semi-automatic approach pre-
sented in this paper needs a similar amount of user interaction and produces E¢ values
of 4.1 % and 12.8 % and E, values of 1.9 % and 6.4 %, comparing favorably to
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Suzuki’s results on all indices. Moreover, more than five times as much data was used
our evaluation.

In conclusion, a new algorithm for semi-automatic segmentation of the left ventri-
cle in X-ray LV angiograms is presented. The method is a combination of a Multi-
View Active Appearance Model and a locally selective dynamic programming ap-
proach and exploits knowledge about LV shape, image texture and contraction dy-
namics. The algorithm is capable of mimicking clinical expert drawing behavior and
therefore provides excellent results. Local border accuracy is improved by a model-
initialized dynamic programming step in which both image information and knowl-
edge of contraction dynamics was integrated in the cost function. Furthermore, the
robustness in fully automatic segmentation improved substantially by introducing a
controlled gradient descent approach in updating the model parameters.
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Abstract. In this paper, a new technique (SPASM) based on a 3D-
ASM is presented for automatic segmentation of cardiac MRI image data
sets consisting of multiple planes with different orientations, and with
large undersampled regions. SPASM was applied to sparsely sampled
and radially oriented cardiac LV image data.

Performance of SPASM has been compared to results from other
methods reported in literature. The accuracy of SPASM is comparable
to these other methods, but SPASM uses considerably less image data.

1 Introduction

Nowadays, cardiac MRI and CT are increasingly used for cardiac functional
analysis in daily clinical practice. Both modalities yield dynamic 3D image data
sets. With CT, images are acquired in an axial orientation and for cardiac anal-
ysis, usually short-axis (SA) views are reconstructed from the axial image data.
With MRI, images can be acquired in any spatial orientation. Commonly used
orientations are short-axis and long-axis (LA) views (2-chamber and 4-chamber),
and radial stacks. The SA acquisitions consist of a full stack of typically 8 to
12 (parallel) slices covering the heart from apex to base. However, there is an
ongoing debate on potential improvement of functional measurements by using
LA views or radially scanned long-axis (RAD) image slices, since they appear
to give better volume quantification due to better definition of the apex and
base [1].

For quantitative analysis of cardiac function, typically a cardiologist or radiol-
ogist manually segments the images. After segmentation, measurements of global
and regional functional parameters can be performed, such as wall thickening
or wall thinning, LV volume and Ejection Fraction (EF). Due to the increasing
amount of data, the amount of work for manually delineating the image data
has become prohibitively large, and automated segmentation is highly desired.

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 33-43, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Recent work has shown that integration of prior knowledge into medical
image segmentation methods is essential for robust performance. Many recent
methods utilize a statistical shape model, and the seminal work of Cootes [2, 3]
on 2D Active Shape Models (ASMs)- and Active Appearance Models (AAMs)
has inspired the development of 3D ASMs [4, 5], 3D AAMs [6], 3D Spherical
Harmonics (SPHARM) [7], 3D Statistical Deformation Models (SDMs) [8,9, 10,
11] and 3D medial representations (m-reps) [12]. However, all these statistical
models are only applicable to densely sampled 3D volume data, because the
modeling mechanism is either based on a dense volumetric registration [6, 8,9,
10, 11] or the matching mechanism is based on a dense set of updates along
the model surface [4,5,12]. Therefore they typically assume a near isotropic
resolution and parallel image planes. The main goal of this work is to avoid the
need for these requirements on data sampling by developing a 3D active shape
model that:

— is applicable to sparsely sampled data sets without making assumptions
about voxel isotropy or parallel slices.
— is extensible to other modalities without retraining the shape model

To accomplish this, we present a 3D-Active Shape Model (3D-ASM) of the
cardiac left ventricle (LV). The underlying statistical shape model was based on
a 3D atlas that was constructed using non-rigid registration [9, 13]. Matching
of the model to sparse, arbitrarily oriented image data is accomplished through
a deformable mesh that enables propagation of image updates over the model
surface. Independence of a trained gray level model is achieved through a Takagi-
Sugeno Fuzzy Inference System (TSFIS) [14] for determining iterative model
updates based on relative intensity differences [4].

2 Background

Active Shape Models were introduced by Cootes et al. [2,15] and consist of a
statistical shape model (often referred to as Point Distribution Model (PDM))
and a matching algorithm. The PDM is trained from a population of typical
examples of the target shape, and models shape variability as a linear combina-
tion of a mean shape, i.e. a mean set of (pseudo-)landmarks, and a number of
eigenvariations. For an elaborate introduction to ASMs, the reader is referred
to [2,15,16].

2.1 Atlas Construction

A critical issue to achieve extension of PDMs to three and more dimensions is
point correspondence: the landmarks have to be placed in a consistent way over a
large database of training shapes, otherwise an incorrect parameterization of the
object class would result. The methodology employed to automatically achieve
this point correspondence of the heart was described in detail in [9]. The general
layout of the method is to align all the images of the training set to a mean at-
las (Fig. 1). The transformations are a concatenation of a global rigid registration
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Fig. 1. Atlas construction, a set of final global (7y) and local (7;) transformations can
take any sample shape of the training set, to the atlas coordinate system. On the left,
there is landmark propagation. Once the final global and local transformations are
obtained, they are inverted and used to propagate any number of arbitrarily sampled
landmarks on the atlas, to the coordinate system of the original samples

with nine degrees of freedom (translation, rotation, and anisotropic scaling) and a
local transformation using non-rigid registration. After registration of all samples
to the mean shape, the transformations are inverted to propagate a topologically
fixed point set on the atlas surface to the coordinate system of each training shape.
While it is still necessary to manually segment each training image, this technique
reliefs from manual landmark definition. The method can easily be set to build ei-
ther 1- or 2-chamber models; in this work we have used a 1-chamber model. To
build the statistical shape model, the auto-landmarked shapes are aligned using
Procrustes alignment [17]. Principal Component Analysis (PCA) can then be per-
formed on the remaining differences, which are solely shape related.

2.2 Matching Algorithm

The model described above was extended with a matching algorithm to apply
it to image segmentation. A key design criterion behind this matching approach
was applicability to data acquired with arbitrary image slice orientations, from
different modalities (MR and CT), and even to sparsely sampled data with
arbitrary image slice orientations. This implies that:

— only 2D image data may be used for updating the 3D model, to ensure
applicability to arbitrarily oriented sparse data

— generation of update points is performed based on relative intensity differ-
ence to remove the dependence on training-based gray-level models.

To accomplish this, the landmark points are embedded in a surface triangu-
lar mesh. During the matching, this mesh is intersected by the image planes,
generating 2D contours spanned by the intersections of the mesh triangles. To
remove dependencies on image orientation or limited resolution, model update
information is represented by 2D point-displacement vectors. The 2D update
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vectors located at the intersections of the mesh with the image slices are first
propagated to the nodes of the mesh, and projected onto the local surface nor-
mals. Scaling, rotation, and translation differences between the current state of
the model and the point cloud representing the candidate updates are eliminated
by alignment. The current model state is aligned with the candidate model state
(i.e., current model state with nodes displaced by the update vectors inferred
from image information) using the Iterative Closest Point algorithm [18]. Suc-
cessively, the parameter vector b controlling model deformation is calculated.
An adjustment to b with respect to the previous iteration is computed, using
both the candidate model state, &,,+1, and the current model state, x,,

bpi1 =bp + Ab=b, + 7 (&1 — x,,) (1)

with x,, representing the aligned current state of the mesh, and b,, representing the
parameter vector describing the current shape of the model within the statistical
bounds. The vector &,,41 is the proposed model shape for the next iteration, and

by,+1 its shape parameter vector before statistical constraints have been applied.

2.3 Update Propagation to Undersampled Surface Regions

In densely sampled data, a 3D data volume can be reconstructed that enables
generation of a 3D update in each model landmark. However, in sparsely sam-
pled data containing large undersampled regions, a (dense) 3D data volume
cannot be reconstructed: interpolation between sparse image slices with differ-
ent orientations (e.g., a radial stack of cardiac LA views) is non-trivial, if at
all possible. In void locations, no information can be extracted from the image
data to contribute to a new model instance. However, for the calculation of new
model parameters, updates for the complete landmark set are required: setting
updates of zero displacement would fixate the nodes to their current position,
thus preventing proper model deformation.

Paulsen et al. [19] applied Gaussian smoothing of a mesh surface in combina-
tion with a Markov Random Field for restoration of point correspondences for an
ear canal ASM. During the deformation of a mesh to presegmented shapes of ear
canals and projection of the mesh nodes on the target shape, swapping of mesh
vertices could occur. Instead of the training stage, we apply a similar method
to the matching stage of SPASM. To overcome large void areas without update
information, we propose a node propagation mechanism that distributes the up-
dates from non-void update locations towards the void regions (see Fig. 2(a)).
This mesh update propagation is weighted with the geodesic distance to the
origin of the update using a Gaussian kernel (see Fig 2(b)):

_llz—w)?

w(z) =e 22 (2)

where w(z) is the weight at the location of the receiving node in the mesh z, w
is the source node, ||z — w|| is the geodesic distance to the origin of the update,
o is the width of the kernel. Therefore, if multiple paths exist from source node
to receiving node, only the shortest path is used. Thus, a receiving node accepts
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(a) (b)

Fig. 2. (a) Propagation of single model updates at the intersection with an image
plane (solid line). Propagation from the update sources surrounded with a circle is
illustrated here. From a source, an update vector originates (short arrow). Updates are
first propagated (longer solid arrows) to the nearest nodes in the mesh (marked with
squares). Updates are further propagated to adjacent nodes weighted with a Gaussian
kernel. Secondary updates (dotted lines) and tertiary updates (dashed lines) are also
shown. (b) Gaussian propagation with o = 4mm (right) of two model updates (left)

propagated updates from any source only once. To avoid propagation updates
over the entire surface, propagation is stopped when the geodesic distance ex-
ceeds a fixed threshold (x = 30). After all propagations stopped, a pruning of all
node updates is performed. Each node has a list of weighted contributions from
source nodes, and a list of weights that were used to calculate each contribution.
A total update per node is computed by summing over all contributions and
normalizing with the sum of the weights.

2.4 Edge Detection Using Fuzzy Inference

The mesh structure combined with the update propagation enables applications
to sparsely and arbitrarily oriented data. To apply the model to different modal-
ities without retraining, the matching algorithm should not employ any trained
intensity model to generate the updates. Instead, we have developed an update
mechanism based on a Takagi-Sugeno Fuzzy Inference System (TSFIS) [14],
which uses Fuzzy C-Means clustering (FCM) on the gray values of a 3D vol-
ume patch surrounding the current instance of the model (see Fig. 3(c)). This
approach has been described in detail in [4], and can be summarized as follows:

1. Input
For each intersection point between the mesh and each of the 2D images, an
image patch, centered in this point, is considered. Patch size was selected
such that multiple tissues were included in the patch.
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2. Sectorization
To overcome possible inhomogeneities in the gray value distributions due to
surface coil effects, the ventricle shape is divided in multiple sectors. Patches
are pooled following this sectorization, enabling application of different rule
sets for different anatomical sectors the LV.
3. Fuzzification
To locate tissue transitions, gray values are classified per sector based on
relative intensity differences between blood, myocardium and air using stan-
dard Fuzzy C-Means (FCM) [20] clustering. In this work, the classes in the
FCM are bright, dark, and medium bright, representing blood pool, air and
myocardium respectively.
4. Inference of model updates
For each pixel, three fuzzy membership degrees (FMDs) result from fuzzy
clustering, above. Based on the FMDs, a mesh update is inferred as follows:
(a) defuzzification for each pixel
if (gray value is bright) then pixel is blood pool
if (gray value is medium) then pixel is myocardium
if (gray value is dark) then pixel is air
However, pixels are only classified if they clearly belong to one tissue class.
If a pixel does not reach a preset minimum membership degree for any
tissue class (see Table 1), it is not classified and not considered for inference.
(b) transition inference
endocardial border: from outside to inside, find the first transition from
myocardium to blood pool
epicardial border:
a at the septum
from inside to outside, first transition from myocardium to blood pool
b at the lung, anterior and posterior wall
from inside to outside, first transition from myocardium to another
tissue

(a) (b) (c)

Fig. 3. (a) Radial cardiac image stack. (b) Radial slice acquired with the Turbo Field
Echo (TFE) protocol. (c) Classified set of image patches. (A=LV blood pool, B=RV
blood pool, C=myocardium, D=air, E=outside image patches)
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Table 1. Parameters of the SPASM and their values

Defuzzification [21] ASM

Air cut-off proport. (See [4]) -0.20 |Modes of variation 60
Blood pool mem.ship thresh. 0.20 |Max variation per mode 20
Myocardium mem.ship thresh. 0.05 Propagation

Air mem.ship thresh. 0.50 |Gauss. kern. width o (Eq. (2)) 8mm

3 Experimental Setup

3.1 Test Data and Protocol

To test the performance of the sparse data model, a group of 15 volunteers was
scanned with a Philips Gyroscan NT5 (1.5T) scanner, using the Steady State
Free Procession (SSFP) and the Turbo Field Echo (TFE) protocols. For all
scans and protocols, the QBody coil was used. A number of acquisitions with
different slice orientations were performed during breath hold in end expiration.
First, SA images were acquired, yielding a stack of typically 10-12 parallel image
slices. Next, a radial scan was performed comprising four LA image slices, with
inter-slice angle of 45° (see Fig. 3(a)). To avoid breathing-induced slice shifts,
every slice was acquired with the TFE protocol, acquiring all four slices in the
same breath hold. Image slices had a 2562 matrix and covered a field-of-view of
300 — 400mm, slice thickness and slice gap for the SA acquisitions were 8mm
and 2mm respectively. For the RAD TFE acquisitions, the slice thickness was
8mm. LV contours were manually drawn in all data sets. The manual contours
in the radial stack were used to compensate for slice shifts in the SA volume
due to differences in inspiration level. To assess inter-observer variability with
respect to manual delineation, contours on all subjects were drawn by two ob-
servers.

3.2 Matching

Initialization of the model in the target data set was performed manually. Initial
pose and scale were calculated from manual delineations on the image data from
the SA acquisition. Due to the rotational symmetry of the model with respect
to the long-axis and the sectorization, special attention was paid to initialize
the model such that the myocardial sectors corresponded to the approximately
correct anatomical location in the image data.

Parameter settings for the membership thresholds for the FIS used to define
model updates at locations where the model is intersected by image planes were
taken from previous work [21]. Best settings for the propagation parameters were
determined in an exhaustive search on a computer cluster with 50 processors,
using point-to-surface (P2S) error measures of the final state of the model with
respect to manual segmentation as criterion for evaluation. The optimal settings
for the parameters are listed in Table 1.
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3.3 Quantitative Evaluation

To quantify the performance of the SPASM on the sparse radial image data,
point-to-surface (P2S) error measurements were performed (see Fig. 5. Manually
delineated surfaces in the SA image data were selected as gold standard. In
addition, a comparison was performed between volumes of the final model states
and volumes derived from the manual segmentations on the SA acquisition data.

(a) (b) (c) ()

Fig. 4. Final segmentation result of one of the subjects in the test population. (a-d)
Result shown on slice 1 through 4, respectively

Fig. 5. Point-to-surface error measurement. Distances are measured from points on
the automatic surface (solid) to the manually segmented surface (mesh). Note that the
largest errors are made at the apical region

4 Results

Results from the tuning of the update propagation parameters are shown in Ta-
ble 1. Results from the P2S evaluations between the final model instance and

! These are the best obtained results by Lotjénen et al [11] with a 4-chamber ASM
based on a probabilistic atlas. Other models were built using normalized mutual
information, landmark probability distribution, PCA, and ICA.

2 Mitchell et al. compute errors of the automatic segmentation results slightly different
than in this work. Mitchell et al compute (2D) distances in the image slices along lines
perpendicular to the centerline between automatic and manual segmented contours.
This does not guarantee shortest point-to-curve or point-to-surface distances, and
may thus overestimate errors with respect to the method used in this paper and by
Lotjonen et al.
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Table 2. Point-to-surface distances measured per subject between manual and au-
tomatic surfaces in mm, averaged over the total population (14 subjects). Maximum
distances are maximum distances per subject averaged over the total population.(all
values are average + standard deviation in mm)

Average Maximum
endocard epicard endocard epicard
Inter observer 1.27 £0.30 1.14 +0.29 4.34 £ 0.88 3.93 + 0.79
Lotjonen et al. (aut. ref.) [11]1 2.01 &+ 0.31 2.77 4+ 0.49 n.a. n.a.
Mitchell et al. [6]2 2.75 4+ 0.86 2.63 &+ 0.76 n.a. n.a.
Kaus et al. [5] 2.28 £0.93 2.62 £ 0.75 13.82 12.35
SPASM 2.24 £0.54 2.83 £0.78 11.1 £2.54 15.7 + 5.06

Table 3. Volume regression numbers. Volumes were calculated per subject (14 sub-
jects), separately for endocardial volume and epicardial volume. Volume calculated
from SA reconstruction was taken as the reference volume (ground truth)

Correlation coefficient (R)

endocardium epicardium
Manual volume (radial image slices) 0.74 0.71
Automatic volume 0.78 0.74

manual segmentations in SA views are presented in Table 2. Correlation coef-
ficients between manual volumes from SA views and automatic volumes from
the final model instance are shown in Table 3. For comparison, the correlation
coefficients between manually segmented volumes from SA views and from RAD
views are presented in Table 3 as well. In the results, one subject was excluded
due to a mismatch for almost all the runs in the tuning process on this subject.
A final segmentation result of one of the subjects is shown on all four slices in
Figure 4. Matching for Ny, = 100 iterations took 727 + 134 seconds (mini-
mal 522 seconds, maximal 915 seconds) on a 2.8 GHz Xeon computer machine
running Linux Redhat 9.

5 Discussion and Conclusion

In this paper SPASM is presented, a new technique based on a 3D-ASM, that is
able to automatically segment cardiac MRI image data sets consisting of multiple
planes with different orientations, and having large undersampled regions.

Because SPASM does not include a statistical gray level model, it is poten-
tially applicable to both MRI and CT data sets without fully retraining the
intensity model. For segmentation, it does not require image slices with equal
orientations as present in the training data. SPASM was applied to radially ori-
ented cardiac LV image data, which contains undersampled regions with larger
sampling density at the apex than at the base.
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Performance of SPASM was evaluated against manual delineations on an SA
data set of the same subjects. In the SA data set, the heart can be displaced
between different slice acquisitions, due to different breath hold levels. Although
this displacement is minimized by acquisition during end expiration, correction
of slice positions was necessary.

The maximum errors presented in Table 2 are mainly observed at the apical
regions (see Fig. 5). This is due to the closed apex in SPASM, while the manual
segmentation at the apex is open.

Performance of SPASM has been compared to results from other methods
reported in literature [6,11,5] (see Table 2). The accuracy of SPASM is com-
parable to these other methods. However, SPASM is the only method that can
be applied to a set of arbitrarily oriented and sparsely sampled image slices: it
was applied to only four image slices, whereas the other models required a stack
of 8-12 parallel slices, yielding comparable accuracy. Segmentation errors of all
methods are substantially larger than the inter-observer variability (see Table
2). This may be caused by too rigid statistical constraints on the allowed defor-
mation of statistical shape models in general. Further evaluation of SPASM is
ongoing with respect to the minimally required sampling density, different com-
binations of LA and SA image slice orientations, and the sensitivity of the final
segmentation results to model initialization.
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Abstract. A geometrical model of the human heart is of interest in
many fields of biophysics. The myocardium contains the electrical sources
responsible for the generation of the body-surface ECG. An accurate
geometric knowledge of these sources is crucial when dealing with the
electrocardiographic forward and inverse problem. We developed a semi-
automatic approach for segmenting the myocardium in order to deal with
the electrocardiographic problem. The approach can be divided into two
main steps. The first step extracts the atrial and ventricular blood masses
by employing Active Appearance Models (AAM). The ventricular blood
masses are segmented automatically after providing the positions of the
apex cordis and the base of the heart. Due to the complex geometry of the
atria the segmentation process of the atrial blood masses requires more
information. We divided, therefore, the left and the right atrium into
three divisions of appearance: the base of the heart, the lower pulmonary
veins from its first up to the last appearance in the image stack, and the
upper pulmonary veins. After successful extraction of the blood masses
the second step involves morphologically-based operations in order to ex-
tract the myocardium either directly by detecting the myocardium in the
volume block, or by reconstructing the myocardium using mean model
information, in case the algorithm fails to detect the myocardium.

1 Introduction

Atrial and ventricular surface activation time imaging from body-surface ECG
mapping data [8,5,7] may become a diagnostically powerful clinical tool for
assessing cardiac arrhythmias. This cardiac source imaging technique aims to
provide information in a noninvasive manner about the spread of electrical exci-
tation in order to assist the cardiologist in developing strategies for the treatment
of cardiac arrhythmias. Common cardiac arrhythmias, such as atrioventricular
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reentrant tachycardia, atrioventricular nodal reentrant tachycardia, or atrial fib-
rillation, can, in many cases, be traced back to accessory pathways, atrial or
ventricular foci, e.g., from the pulmonary veins [6, 1], and reentrant circuits [13].
Identifying the site of origin of the ectopic focus or the location of an acces-
sory pathway provides the essential information for treatment strategies, such
as catheter ablation [9].

Activation time imaging from three-dimensional anatomical and body-surface
ECG mapping data enables noninvasive imaging of the electrical excitation in the
heart [12]. The method yields solutions to the electrocardiographic inverse prob-
lem and is based on an electrodynamic model of the patient’s volume conductor
and heart. The volume conductor considers a model of the electrodynamically
most relevant compartments including chest, lungs, atrial and ventricular my-
ocardium, and blood masses. A model of the heart comprises separate models
for the atria and ventricles since whole heart models still resist a technical im-
plementation with regard to the electrodynamic inverse problem. The crucial
point of an atrial and ventricular model is their geometry. Geometric distances
between the cardiac sources and the chest strongly influence the electrodynamic-
based model and, therefore, the overall model error. The complex geometry of
the atria is given by the orifices of the pulmonary veins, orifices of superior and
inferior vena cava, tricuspid and mitral annuli, and right and left appendages,
and this makes it more difficult, compared to the ventricle, to generate a geomet-
rical model. It is clear that any technique that is capable of generating an atrial
model will succeed also for the ventricle. Consequently, we decided to extract
the ventricular blood masses using the same technique as used for the atrial
blood masses, although especially the myocardium of the left ventricle could
be segmented in a direct way. The reason for this decision was to get a con-
sistent way for cardiac modeling and for incorporating the proposed technique
into a segmentation pipeline with little user interaction. The main problem of
constructing a realistic heart model is that the myocardium can hardly be seg-
mented in volume data (especially the atria are a big challenge) because of the
low sensitivity and resolution even for state-of-the-art medical imaging modal-
ities like MRI and CT. We employed AAM for the extraction of blood masses
and we use morphological operations to reconstruct the myocardial structure
directly, in case the myocardium can be detected in the volume data, or in an
indirect way, using a priori knowledge, otherwise.

The paper is organized as follows: Section 2 describes the segmentation ap-
proach and the implemented algorithms. Results of geometrical models of the
atrial and ventricular myocardium are presented in section 3. The two steps of
the approach are discussed in section 4, and finally, we summarize in section 5.

2 Methods

Our goal when developing this segmentation approach was to get a consistent
way for cardiac modeling and for incorporating the proposed technique into a
segmentation pipeline with little user interaction. We employed AAM for the
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extraction of blood masses because this model based technique is able to gen-
erate reliable results when segmenting the cardiac blood masses. The use of
morphological operations provides a fast method for myocardium reconstruc-
tion, in case the myocardium is detectable, or estimation otherwise, and enables
an easy implementation in a semiautomatic segmentation pipeline.

2.1 Blood Mass Extraction Using Active Appearance Models

In the year 1991 Craw and Cameron published one of the first appearance mod-
eling approaches [4]. They wrapped faces to a reference shape before doing a
Principal Component Analysis (PCA). In 1994 Cootes et al. introduced Statis-
tical Models of shape and texture [2]. In 1998 Active Appearance Models were
introduced [3] and since this introduction a lot of enhancements were done. For
more information http://www.isbe.man.ac.at/~bim/ should be picked up.

Objects in images are represented using shapes. A shape can be described by a
set of n points. Statistical methods can be applied when using shapes and, there-
fore, it is possible to analyze the shape differences and shape changes. Shapes
can be inserted into an input or training image by searching for corresponding
landmarks. Normally a human expert annotates the training sets by hand. Good
landmarks are points of high curvature or junctions. Intermediate points can be
used to define the boundary more precisely. The vector for representing a shape
can formally be defined as

T = (xlv'n,wnaylw"vyn)T' (1)

If there are s training examples, then s vectors are generated by the human ex-
pert. Before applying statistical analysis on these vectors it has to be guaranteed
that all shapes are in the same coordinate-frame. Therefore all shapes are aligned
in a way, that the sum of distances of each shape to the mean (D = Y |z; —T|?)is
minimized. An appearance model can represent shape and texture changes learnt
in the training sets. The shape of an object is represented as a vector x and the
texture as a vector g:

Tz =T+ QscC (2)
g=7+Qqyc (3)

where the parameter ¢ controls shape and texture. T is the mean shape, g is the
mean texture and (s, @, are matrices describing the modes of variation (shape
and texture) learnt from the training set. Generally, an AAM seeks to minimize
the difference between an unseen image and one created by the appearance
model.

For creating the AAM we integrated the AAM-API' available at
http://www.imm.dtu.dk/~aam/ into our Medical Segmentation Toolkit (MST)
framework. The MST framework is developed using C++ and includes some

! Copyright (c) 2000-2003 Mikkel B. Stegmann, mbs@imm.dtu.dk; This software is
freely available for non-commercial use such as research and education.
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Fig. 1. Training set, annotated using 66 landmark points, of a blood mass from the
right ventricle

different standard frameworks like the DCMTK framework for handling medi-
cal images (http://dicom.offs.de/dcmtk.php.en), ITK (http://www.itk.org/) for
some segmentation methods, and Qt (http://www.trolltech.com/) for creating
user interfaces. This toolkit enables to combine different segmentation techniques
for each compartment and offers the creation of defined compartment pipelines.

When constructing a realistic cardiac model of a patient the main problem
is that the myocardium can only be detected at limited locations in the volume
conductor. The only structure which can be seen with sufficient accuracy are the
blood masses. But also the blood masses have a big variation in shape and tex-
ture. Because of this reason a segmentation approach for this task needs a-priori
information for successful and almost error-free extraction of the searched blood
masses. Model based approaches like the AAM seem, therefore, to be a good
choice for solving this segmentation problem. When trying to segment the atrial
and ventricular blood masses from different patients the structures vary in shape
and texture. With the help of AAM it is possible to figure out which are plau-
sible variations and which are not. A new data set can, therefore, be segmented
by finding the best plausible match between the model and image data.

The appearance model represents both the shape and texture variability seen
in a training set. The training set consists of labelled images, where key land-
mark points are marked on each example object. We used 96 different training
sets for establishing the right and left ventricular blood mass AAM. Every image
set was annotated using 66 annotation points. 33 points were used to describe
the left /right ventricular blood mass and 33 points were used to define the peri-
cardium. Figure 1 shows an example of a training set for right ventricular blood
mass extraction AAM. The pericardium (whole heart contour) is annotated be-
cause this makes it easier to initial locate the desired structure, a manner that
was used for each AAM. After the preparation of the ventricular data sets, the
training procedure - the processing of the principal component analysis - yielded
55 main components for the right ventricular blood mass and 56 main compo-
nents for the left ventricular blood mass.

As already mentioned above, the atria show a more complex geometry and,
therefore, more information is needed for the segmentation process of the atrial
blood masses. In order to simplify the segmentation process we decided to divide
the atria into three divisions of appearance: the base of the heart up to the left
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upper (LUPV) and the left lower (LLPV) pulmonary vein, the LUPV and the
LLPYV from its first up to its last appearance in the image stack, and from this
position up to the right lower (RLPV) and upper (RUPV) pulmonary vein. We
created one training set for each division. All together, we prepared 193 training
sets for atrial blood mass extraction and each atrial blood mass was annotated
by 66 annotation points. 33 annotation points were used to define the left/right
atrial blood mass and the resting 33 annotation points were used to describe the
pericardium. The creation of the appearance models yielded 56 main components
for the first atrial division, 58 main components for the second division and 51
main components for the third defined atrial division. The main components of
our AAMs were defined to include 97% of all shape and texture variations.

Blood Mass Search Procedure. When extracting the ventricular blood
masses the user has to provide the position of the apex cordis and the base
of the heart in the associated volume block. After this, the AAM approach for
the left and the right ventricular blood masses is initialized and then yields the
desired segmentation of the ventricular blood masses by applying the fitting
procedure until convergence.

The segmentation procedure for the atrial blood masses can be described this
way. First initial parameters have to be set: the base of the heart, the end of the
first division of appearance and the end of the second division of appearance in
the volume block have to be marked. Then the AAM need to be initialized and
that means to locate the desired structures in principal. After this process the
model fit approach starts and operates until the search process converges.

These steps have to be repeated for each image between the given parameter
range in the volume block to extract the ventricular blood masses as well as the
atrial blood masses. Because the AAM ranges are defined by the given parame-
ters the associated AAM are used in order to extract the desired structures.

2.2  Myocardium Reconstruction/Estimation Using Morphological
Operations

After blood mass extraction using the technique described in section 2.1 the
labelset should be smoothed by appropriate tools. Figure 2 shows a triangula-
tion, created by a marching cubes algorithm, of the extracted labelsets of the
atrial blood masses. The extracted blood masses are the basic input for the
myocardium modeling procedure. The atrial and ventricular myocardium is
constructed directly, in case the myocardium can be detected by the algorithm
in the volume data, or artificially otherwise by applying appropriate voxel ma-
nipulations. The method adds label voxels in the outward normal direction until
the user defined wall thickness is reached. Due to given facts in human beings
the atrial wall thickness is between 3 to 5mm, the right ventricular myocardium
between 6 to 8mm and the left ventricular myocardium between 8 to 12mm. The
necessary input parameters for the algorithm are the minimum wall thickness,
the mean wall thickness, and the maximum wall thickness. The approach uses op-
erations of mathematical morphology. In principal the dilation operation is used.
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Fig. 2. Left panel shows the triangulated blood masses of the left atrium, and the right
panel shows the triangulated blood masses of the right atrium

Fig. 3. On each boundary voxel of the endocardium, a virtual circle with a predefined
radius rolls around the endocardium in order to reconstruct the atrial myocardium

The algorithm uses virtual circles as structuring elements with a radius range
from the defined minimum wall thickness up to a maximum wall thickness. These
circles roll around the blood mass boundary in order to reconstruct the myocar-
dial structure. If the algorithm is able to determine the myocardium by probing
all voxels to be element of a user defined gray value range inside the virtual
circles (minimum up to maximum wall thickness) then the myocardial structure
can be reconstructed directly. If the myocardial structure can not be detected
the mean model information is used to reconstruct the myocardial structure.
The mean model is a user defined parameter that describes the myocardium
to have a standard wall thickness of 5mm for the left/right atrial myocardium,
7mm for the right ventricular myocardium and 10mm for the left ventricular
myocardium, as an example for one possible parameter set.

The situation of estimation occurs predominantly when reconstructing the
atrial myocardium because the atrial myocardium is almost always invisible due
to its low sensitivity in the image data. This approach processes the volume
stack sequentially in z direction without taking adjacent slides into account. For
this reason this approach is a 2D version. In spite of the fact that this 2D version
of the algorithm yields good results, the marching cubes algorithm can produce
holes, especially when the segmentation of the blood masses differs too much
between adjacent images or labelsets within the volumestack. Such a variation
may occur because of the choosen image modalities (4mm slice thickness) and
possible artefacts especially caused by motion. Although a slice thickness of 1mm
is possible with new scanners such an image modality setting needs a lot of time
that is not available when using the approach in a clinical application nowadays.
To overcome this problem, the adjusted variant, the 3D variant, takes one slide
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Fig. 4. Segmented ventricles and atria triangulated - for visualization - using a march-
ing cubes algorithm

above and one slide below the initial labelset slide into account. As a main step
of the 3D variant the adjacent slides are similarified by the algorithm [10]. To
similarify the adjacent sets reduces the likeliness of holes when triangulating the
labelset using a standard marching cubes algorithm. Because for the estima-
tion of the electrical spread in the human heart a functional model and not an
anatomical one is needed, model variations caused by similarify and smoothing
operations influence the inverse solver less than having non existing structures
(e.g., holes) in the model caused by above described possible situations.

3 Results

The segmented labelset is triangulated with a standard marching cubes algo-
rithm followed by a remeshing process guaranteeing quality standards (equilat-
erality of triangles) that qualify for a FEM/BEM formulation used for dealing
with the electrocardiographic problem. Our main problem is to get a model
of the volumeconductor, on the one hand, in a very fast and efficient way to
enable the estimation of the electrical excitation in a clinical application, and,
on the other hand, to keep the model error as small as possible to get reliable
results when trying to solve the inverse problem - and that means to find the
pathological pathway in a non invasively way.

We tested our approach using volume data from eight different patients [12].
The segmentation of the left and the right ventricular blood mass needed p = 148
seconds. The segmentation of the right and the left atrial blood masses needed
u = 167 seconds. The reconstruction process of the myocardial structure by
using the blood masses as the main input source, needs about p = 5 seconds.
For the reconstruction approach we used a Dual Pentium Xeon workstation with
a clock frequency of 2.8 GHz and 2 GByte main memory (RAM).

Figure 4 shows a triangulated and remeshed ventricular and atrial my-
ocardium model that qualifies for estimating the spread of electrical excitation
in the patients volume conductor. Figure 5 shows a ventricular model of a female
patient and the atrium with its blood masses.

To decide if the method qualifies, or with other words, if the model represents
the for the estimation relevant parameters preferably close, the segmentation
result of the blood masses were compared with the blood masses extracted by two
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Fig. 5. Left: Reconstructed myocardium of the left and the right ventricle; Right:
Atrium with blood masses

different human experts. The correlation coefficient, that was used to measure
similarity, resulted in the correlation coefficient range from 0.912 to 0.931. The
models of the human experts qualified as well as the automatically extracted
models for the estimation of the electrical spread in the human heart.

4 Discussion

We presented a semiautomatic segmentation approach that allows to reconstruct
the myocardial structure of the ventricles and the atria even if the myocardium
can not be detected in the volume data. The indirect reconstruction/estimation
of the myocardial structure enables the creation of a semiautomatic segmentation
approach, because the main input for the myocardium extraction, the blood
masses, can be seen clearly in the volume data, even if there are artefacts. This
fact reduces the necessary user input and the mending process dramatically. Due
to the possibility that the myocardium can be reconstructed using the blood
masses, or the endocardial structure, the contribution to the model error will
be sufficiently small. It is clear that it is important to have only a very small
model error when trying to estimate the spread of electrical excitation in the
human heart. Note that not only the segmentation task causes a model error.
Also the quality of the ECG signal, the positions of the electrodes and other
interferences cause an increase of the mean model error. So it is important to
hold all these sources of errors down because only if the sum of all errors is low
the mean model error has an acceptable value.

It seems to be imperative, when trying to reconstruct the myocardium, to
extract the blood masses primary and then to use an indirect technique using
the blood masses as a-priori information for the myocardial extraction. The
reason for this strategy was that the myocardium can be detected only at limited
locations in the medical image data. This myocardium visibility problem occurs
because of low image resolutions, artefacts (caused by motion of the patient
and/or the heartbeat) and image modality settings. Our cine gated short axis
scan image data were acquired using a slice thickness of 4mm. This slice thickness
requires an indirect myocardium extraction approach because the thickness of
the atrial myocardium is about 4mm and, therefore, it is almost always invisible
in the image data. Although it is possible to generate slides with a thickness



52 B. Pfeifer et al.

of 1mm with modern scanners, the acquisition time increases. When using the
4mm slice thickness the MRI procedure can be finished in an acceptable time
span (about 30 to 45 min). The MRI procedure consists of the preparation of the
patient and the acquisition of the axial and the cine-gated short-axis scan. The
cardiologist usually starts with the electrophysiology study (EPS) after a two
hour intermission. During this break the whole volume conductor model has to be
generated in order to enable the non invasive imaging of cardiac electrophysiology
(NICE) [11] approach in the catheter laboratory.

5 Summary

The usage of AAM allow the extraction of ventricular and atrial blood masses in
a very efficient way, which means that the run time behavior and the quality of
the labelsets are in an excellent ratio. Only the annotation or rather the learning
procedure of the appearance models need a lot of experience and time. The
extraction result of the appearance models, the blood masses of the ventricles
and the atria, can be directly used as input by the myocardium extractor. This
technique allows to reconstruct the myocardium directly, when the structure can
be detected in the volume data, or indirectly by using a-priori information, when
the myocardium can not be identified in the volume data. The big advantage of
this step is that only a few parameters have to be set and that the algorithm
reconstructs the desired structure in a very efficient way.

The approach yields ventricular and atrial models that qualify, according
to our experience, for cardiac source imaging. Thanks to the reduction of user
interaction, the fast structure detection and the fast reconstruction of the cardiac
model, this approach can be used in clinical applications.

The cardiac models were implemented many times in the construction of the
patient’s volume conductor model needed for solving the electrocardiographic in-
verse problem. The construction of this volume conductor segmentation pipeline
coupled with our inverse solver can provide essential information to the cardi-
ologist, in order to develop treatment strategies like catheter ablation. To get
such information in a non invasive manner can help reducing costs, time, and it
also reduces the remaining risk for the patient that arises during every invasive
treatment.

The combination of AAM and morphological operators allows to create a
segmentation pipeline with little user interaction and to reconstruct the desired
structure even if not detectable in the volume data.
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Abstract. This paper describes a method for automatic contour de-
tection in long-axis cardiac MRI using an adaptive virtual exploring
robot. The robot is a simulated trained virtual autonomous tri-cycle
that is initially positioned in a binary representation of the left ventricle
(LV) and finds the contours during navigation through the ventricle. The
method incorporates global and local prior shape knowledge of the LV
in order to adapt the navigational parameters. Together with kinematic
constraints, the robot is able to avoid concave regions such as papillary
muscles and navigate through narrow corridors such as the apex. Valida-
tion was performed on in-vivo multiphase long-axis cardiac MRI images
of 11 subjects. Results showed good correlation between the quantita-
tive parameters, computed from manual and automatic segmentation:
for end-diastolic volume (EDV) r=0.91, for end-systolic volume (ESV)
r=0.93, ejection fraction (EF) r=0.77, and LV mass (LVM) r=0.80.

1 Introduction

Over the last decade cardiovascular MRI imaging has become the clinical stan-
dard for the functional assessment of the human cardiovascular system. A typical
MRI study consists of a large amount of data and, therefore, automated analysis
of acquired data is desirable in the daily clinical practice.

For modelling and extracting myocardium borders a large number of tech-
niques have already been proposed. For example, Active Contour Model (ACM)
is a deformable contour, which is widely employed for tracing the cardiac bor-
ders [1]. Deformation is governed by the internal and external energies. The inter-
nal energy assures the contour’s smoothness imposing constraints on its shape.
The external energy attracts the contour to the object’s boundaries. ACM comes
short in segmentation of long-axis cardiac images. The contour has to be rigid
enough to prevent its deformation outside the myocardial borders, where the
boundaries are not well defined (e.g. boundary between the myocardium and
papillary muscles or liver), and it must be flexible enough to provide reliable
segmentation of regions with high curvature (apex). A technique, based on Ac-
tive Appearance Models (AAM) [2] overcomes the aforementioned drawbacks of

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 54-64, 2005.
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ACM by incorporating knowledge about the myocardial boundaries. This knowl-
edge is formalized in terms of the statistical properties of the average heart’s
shape and appearance (gray-level representation) as well as the main modes of
variation found in a training set. The AAM model placed in a new image is
deformed to minimize the difference between the model and object of interest
within the image. The deformation is restricted to variations found in the train-
ing set. AAM’s were used for extraction of the cardiac borders at end-diastole
and end-systole and showed good correlation between automatically delineated
and expert contours [3]. However AAM’s can be successfully used to match an
object with the statistically plausible shape, while it fails to recognize the object
of interest that shows large deviation from shapes in the training set.

An novel method for myocardial border detection based on a virtual explor-
ing robot was introduced in [4]. The robot is represented as a tricycle with
a steering front wheel. It can automatically navigate through an environment
(myocardium). Using the frontal and lateral range sensors the robot is able to
detect the coordinates of obstacles (myocardial borders) and to plan a safe path
towards the target avoiding these obstacles. The robot was used for short-axis
contour extraction in MRI data sets and showed promising results.

In this paper we propose a new system for automatic delineation of long-axis
contours for both two- and four-chamber orientations using a modified version
of the robot. The navigational environment is constructed with an improved seg-
mentation procedure based on both intensity and spatial information to reduce
misclassification of pixels. The path planning is made more robust allowing the
navigation in narrow regions with high curvature. The robot is made adaptive
with respect to its length, speed and maximum turning angle, depending on the
local LV geometry.

2 Methods

The global outline of the system is as follows. The multiphase images in two- or
four-chamber view are automatically segmented by fitting finite gaussian mix-
ture into the combined image histogram and applying spatial regularization in
terms of Markov Random Field (MRF). The classified pixels are subsequently
recombined to yield binary images consisting of the allowed navigational space
or obstacles. For each binary image the initial start position and orientation for
the robot as well as the target are determined. The navigational environment
along with the robot’s initial position and orientation provides the input for the
next step. The myocardium is divided into four different segments. The robot is
initialized once at the segment boundaries and cruises through the navigational
environment until the end of the segment is reached. Depending on the local LV
geometry the robot adapts its navigational parameters to prevent from getting
stuck and to avoid concave regions such as the papillary muscles, collect informa-
tion about the endocardial (endo) and epicardial (epi) boundary points. Finally,
the detected edge segments are used to reconstruct the endo- and epi-contours.
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2.1 Creation of Navigational Environment

The robot is designed to navigate through a binary environment. Therefore, the
gray-level images must be converted into binary images consisting of allowed
navigational space (myocardium) and obstacle (blood pool and air).

To automatically segment the image, the pixels are grouped into classes by
modelling the pixel intensity distributions with three gaussian mixtures using
Expectation-Maximization (EM) [5, 6] with greedy search heuristics [7]. During
the expectation step the pixels are assigned to a class with the highest conditional
probability based on previous estimates of the distribution parameters. In the
maximization step the distribution parameters are updated to maximize the
log-likelihood. These two steps are repeated until convergence.

With the estimated pixel intensity distributions the images can be segmented
into blood, myocardium and air. However statistical segmentation based only
on the pixel intensity may lead to misclassification due to the presence of noise.
Therefore, the context of the pixel’s neighborhood is taken into account and pixel
intensity information is augmented with spatial regularization using MRF [8].
The amount of spatial regularization is limited to 8-connected neighborhood and
pairwise interaction between two neighboring pixels. The spatial mixture model
yields the final classification of the image and is schematically represented in Fig. 1.

Fig. 1. Creation of navigational environment: (A) input image; (B) probability density
maps for air (top), myocardium (middle), blood (bottom); (C) statistical segmenta-
tion with spatial regularization; (D) navigational environment - white corresponds to
obstacle space, black - to allowed navigational space

2.2  Estimation of Initial Navigational Parameters

For the autonomous navigation in the allowed space the robot needs the starting
position, starting orientation, and target. Based on the assumption that the
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LV resembles a truncated ellipse at end-diastole, fitting an ellipse [9] into the
myocardium gives a good approximation of the spatial orientation of the LV.
Using the elliptic model the important anatomical landmarks can be localized
and division of the heart into four non-overlapping segments can be done (Fig.2).
The apex is located by finding the intersection point between the long axis of
the ellipse and myocardium and yields the end point of the apical segments.
The boundary between the basal and midventricular segments is put at the
intersection of the myocardium with the line that is parallel to the ellipse short-
axis and passes though the ellipse focal point, thus serves as the starting point
for the robot navigation. The target is located in the ellipse center and the start
orientations are the direction of the tangent line of the closest point on the
ellipse. From the starting position the robot cruises through the allowed space,
bounces from the endocardial LV border in attempt to reach the target and
proceeds further until the end of the segments. It is initialized in each segment
and navigates twice towards the mitral valve points and twice to the apex.

Fig. 2. Division of the LV into four segments. Segments 1 and 2 cover to the basal
part, while segments 3 and 4 represent the midventricular and apical parts

2.3 Adaptive Robot Navigation

The robot is a tricycle with a front steering wheel as is illustrated in Fig.3A. The
position and orientation of the robot are characterized by p(x, y, ), where z and
y are the coordinates of the front wheel, 8 is the orientation of the robot with
respect to the x-axis of the coordinate system, [ is the length between the front
and rear wheel axis, ¢ is the orientation of the front wheel. The robot moves
with a constant speed v. Its motion obeys the following kinematics equations:

i = vcos(¢p) cos(0); 1§ = vcos(p)sin(d); 6 = %sin(d)) (1)

The robot is subject to the non-holonomic constraints: it can only move along
a direction perpendicular to its rear wheel axis and its maximum front wheel
angle is upper bounded.

To navigate through the allowed space towards the target the robot is
equipped with range sensors of a limited length (Fig.3B). The frontal sensors
have their origin at the front wheel and cast rays at the different angles with
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Fig. 3. The virtual mobile robot as a tricycle with the steering front wheel (A);
Mounted frontal and lateral sensors (B); Navigational corridors corresponding to the
different orientation of the front wheel (C); Robot navigation (D and E)

respect to the robot axis - a line connecting the front wheel and the middle point
of the rear wheel axis. These sensors are primarily used to scan the environment
in the vicinity of the current robot position, to detect the obstacles and to plan
further movements towards the target. The lateral sensors, which are mounted
on the left and right sides of the robot and perpendicular to the robot axis, are
intended for inner and outer myocardial border detection.

The concept of the pre-computed corridors turns the robot navigation into a
computationally efficient procedure. Depending on the orientation of the front
wheel and using the kinematic equations (1) a trajectory of the robot or a cor-
ridor can be calculated. Provided that the corridor has a limited width the
distances to its boundary for each range sensors can be computed and saved
(Fig.3C). This procedure is repeated for each orientation of the front wheel.
These pre-calculated distances are used during the navigation of the robot. While
navigating, the robot scans the surrounding environment before moving forward.
The range sensors give the information about the distances to the obstacle at
the current robot’s positions. These distances are compared to the ones of the
pre-computed corridors and a decision about the corridor safety is made. The
corridor is assumed to be safe if the distances to the obstacle at the current
positions are bigger than the distances to the pre-computed corridor boundaries
for each range sensor. Among possible safe corridors the one leading closest to
the target is taken [4].

This approach to path planning was successfully applied for myocardial bor-
der delineation in short-axis images and is not robust enough for contour detec-
tion in the long-axis views. The LV geometry in two- and four-chamber projec-
tions comnsists of the regions with the variable myocardial width thickness and
high curvature. Moreover, the information obtained from the discrete sensory
system is not sufficient to reconstruct a precise topological structure of the al-
lowed navigational space for such regions. This situation is illustrated in Fig.3D.
From the initial position, marked as one, the robot moves to position two fol-
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lowing the ”closest safe corridor” strategy. However, being in position two the
robot cannot enter the narrowing region in front of it without bumping into the
obstacle and, therefore, cannot advance forward.

To solve the problem mentioned above the navigational strategy has been
modified to assure its robustness in two- and four-chamber views. The basic idea
is to find the safest path with a ”look-ahead” procedure. The robot is allowed
to explore the surroundings by advancing a number of steps in forward direc-
tion from its current position and choosing the longest and safest path leading
closest to the target. After such a path has been found, the robot advances one
step ahead. Fig.3E shows the path planning procedure using the ”look-ahead”
strategy. From position one the robot moves forward to position two, from which
a safe move to position three is guaranteed due to better path planning. There-
fore, the navigation through highly curved regions with the variable myocardial
thickness is made more robust.

To account for the complex LV shape in two- and four-chamber views, the
robot’s navigational parameters are made regionally dependent. Three different
regions, namely basal, midventricular, and apical, are commonly addressed in the
medical literature and their geometric properties can be summarized as follows:

— Apical: high curvature with significantly changing myocardial thickness;

— Midventricular: low curvature with concave regions such as the papillary
muscles;

— Basal: medium curvature of a constant myocardial thickness.

We exploit this knowledge to deduce estimates for the navigational parameters:

Apical: The robot has to be highly mobile, which is guaranteed by its short
length and slow speed.

Midventricular: The robot is made long and fast enough to avoid the concave
regions.

Basal: The robot has a medium velocity and is made long enough to stop at
the mitral valve points without a possibility of turning around.

The robustness of the robot navigation with respect to the navigational pa-
rameters has been tested in a pilot study performed on a dataset acquired from
several subjects. The initial guesses for the parameters were chosen by taking
into account the aforementioned considerations and analyzing the global geomet-
ric properties such as the size and maximal curvature of each cardiac segment.
The final parameters, shown in Tab.1, were derived from the initial guesses by
brute-force optimization.

Having been safely initialized inside the allowed navigational space, the robot
autonomously explores the structure of the each myocardial segment. In attempt
to reach the target, which set in the middle of the LV cavity, the robot bounces
from the obstacle, formed by the LV blood pool, and proceeds further along
the endocardial border. As the target is located inside the obstacle space and
could not be possibly reached, the robot eventually arrives to the end of the
segment and stops. During the trip the robot uses the lateral sensors to detect
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Table 1. Robot’s navigational parameters

Parameter Basal Segment Midventricular Segment Apical Segment

Speed (mm/step) 4.17 6.59 2.78

Length (mm) 13.9 13.9 6.95

Number of corridors 15 21 19

Sensor length endo (mm) 6.95 2.78 6.95
Max steps looked ahead 1 2 2

the presence or absence of the myocardial borders (i.e.the transactions between
the allowed navigational space and obstacle), and memories the coordinates of
the candidate border points. This navigational procedure is repeated for all four
segments, resulting in complete exploration of the left ventricle in a two- or
four-chamber view.

2.4 Contour Reconstruction

The final step in automated contour detection is collecting the contour segments
found by the robot and merge those together in a single contour. Reconstruc-
tion of the endo-contour is relatively straightforward. The papillary muscles are
already removed due to the kinematic constraints of the robot and short lat-
eral sensors used for endo-cardiac border detection. Therefore, connecting the
detected points is sufficient to reconstruct the endo-contour. Reconstruction of
the epi-contour is more challenging (Fig.4). Firstly, the outliers (falsely detected
boundaries) has to be removed. To achieve this, goal prior knowledge about the
myocardial thickness is used. The reconstructed endo-contour provides the ref-
erence to approximate the wall thickness. The distance between each epicardial
candidate point and the reference is measured. All points, for which the calcu-
lated wall thickness is larger than a predefined threshold of 30mm, are deleted.
Secondly, an additional step is required to approximate possibly missing seg-
ments caused by the absence of the myocardial border in the regions where the

Fig. 4. Reconstruction of endo- and epi-contours (left). Prior knowledge about the
myocardial wall thickness is used to remove outliers (A). The missing segments (B) are
interpolated using non-uniform cubic splines. Reconstructed contours (right)
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heart is adjacent to the organs with the same grey-level intensities (i.e. liver).
To restore the missing information interpolation using the non-uniform cubic
splines [10] is performed.

3 Results

In-vivo cardiac long-axis images were obtained at Leiden University Medical
Center from 11 subjects using a Philips Gyroscan Intera 1.5T MRI scanner.
Balanced-FFE protocol with prospective VCG and respiratory triggering was
utilized to acquire breath-hold cardiac images in two-chamber and four-chamber
views. Thirty phases provided the complete coverage of the cardiac cycle result-
ing in a total of 660 cardiac datasets. The field of view and slice thickness were
equal to 350 mm and 8 mm, respectively. The reconstruction matrix of 256x256
was used. The total acquisition time did not exceed 10 minutes.
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Fig. 5. Results of the statistical comparison between global LV function for manually
and automatically segmented images

To assess the algorithm’s performance the global LV function was computed
for manually and automatically segmented images using commonly used area-
length methods. The CMR measurements from two- and four-chamber views
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Fig. 6. Automatically detected myocardial endocardial (red) and epicardial (green)
boundaries for two- (left) and four-chamber (right) view images

were polled together. The regression analysis was used to estimate the strength
and direction of a linear relationship between manual and automatic measure-
ments and graphically summarized in Fig.5. The paired t-test revealed statisti-
cally indistinguishable differences at 5% significance level between the manual
and automatic segmentation for all parameters (two-chamber: EDV p=0.26; ESV
p=0.09; EF p=0.1; four-chamber: EDV p=0.17; ESV p=0.34; LVM p=0.16) but
two-chamber LVM (p=0.01) and four-chamber EF (p=0.04). The results of au-
tomatic segmentation are shown in Fig.6.

4 Discussion and Conclusions

Creation of the navigational environment required the classification of the in-
put image into three profoundly distinct classes: air, blood, and myocardium.
Although this assumption may not be necessary true for cardiac images where
other anatomical structures, such as myocardial fat, are present. Nevertheless,
due to the use of EM algorithm with greedy search heuristics this requirement
can be easily incorporated by adding one extra class into the statistical segmen-
tation scheme. However decision about the number of distinguishable classes
presented in input images remains a challenging problem.

To take into account the complex LV geometry, three different sets of the
navigational parameters were utilized depending on the LV region. However, the
requirements for the robot navigation in the basal and midventricular regions can
be combined together, resulting in only two sets of the navigational parameters.
Further simplification of our method may be achieved by letting the robot nav-
igate in only two segments (i.e. posterior and anterior myocardial walls starting
from the mitral points towards the apex). Implementation of the aforementioned
improvements would require accurate tracing of the mitral points in all phases
because of the prominent cardiac contraction.

A better path planning procedure based on the ”look-ahead” strategy re-
sulted in a more robust navigation of the robot. A number of different paths
is tried to determine the safest route, before the robot advances only one step
forward. This results in increased computational demands and a slightly lower
performance. An alternative approach would involve the map-based navigation
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using the simulated topological maps of the navigational environment [11]. In this
case the neighborhood around the robot’s current positions would be matched
against templates of the environment from the database and the precalculated
path for the chosen template can be undertaken. However, it remains debatable
whether the map-based navigation will be more computationally efficient.

Our validation study was carried out only on a group of healthy subjects.
Some assumptions (i.e. the predefined myocardial wall thickness in the contour
reconstruction phase) may not be valid for abnormal hypertrophic hearts. Hence,
further validation of our method in patients is desirable.

In this paper an unorthodox method for the myocardial border detection in
long-axis views using the adaptive exploring robot was presented. Using this
approach a reliable and consistent segmentation of the myocardial boundary
can be achieved. A clinical validation on a group of healthy subjects showed
good agreement between the global LV function computed from manually and
automatically segmented images.
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Abstract. Plaque analysis in IVUS planes needs accurate intima and
adventitia models. Large variety in adventitia descriptors difficulties its
detection and motivates using a classification strategy for selecting points
on the structure. Whatever the set of descriptors used, the selection stage
suffers from fake responses due to noise and uncompleted true curves.
In order to smooth background noise while strengthening responses, we
apply a restricted anisotropic filter that homogenizes grey levels along
the image significant structures. Candidate points are extracted by means
of a simple semi supervised adaptive classification of the filtered image
response to edge and calcium detectors. The final model is obtained
by interpolating the former line segments with an anisotropic contour
closing technique based on functional extension principles.

1 Introduction

IVUS clinical interest feeds development of image processing techniques address-
ing detection of arterial structures [1], [2], such as lumen/intima segmentation or
plaque characterization. However, although adventitia modelling is crucial for a
reliable plaque quantification, the topic has been hardly approached. Regardless
of low quality in IVUS images, adventitia detection adds the difficulty of a large
variety of descriptors, which include image edges points of maximum variance
(calcium) and tissue region segmentation. Deterministic strategies presented in
previous works on adventitia detection exclusively basing on contour extraction
are not reliable enough and need of either manual intervention [6] or laborious
special treatment of sequences [7]. We argue that a robust adventitia segmenting
algorithm should rely on learning strategies.

In this paper we address adventitia detection in two stages: a statistical ex-
traction of points laying on the adventitia and a deterministic recovery of a
closed model of the extracted points. At the first step, we define the quantities
that best characterize the adventitia, that is, in the framework of classification,
we should determine the optimal feature space of image descriptors. In such rep-
resentation space, the adventitia should lie on a region isolated from other image

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 65-74, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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structures response, so that the problem of point selection reduces to determin-
ing the borders of such regions. Within this framework, there are several point
selection strategies. On one side, we have statistical approaches [13] searching
for a criterion to discriminate the target object representation in the feature
space. On the other side, we apply a deterministic criterion of image smoothness
to choose pixels achieving extreme values of the functions (filters) that deter-
mine the feature space. Still, even in this case, thresholding values should take
into account the probability distribution of the image response to the describing
filters. Therefore, whatever the decision criterion we adopt, the selection step
nature is essentially statistical. Because the selected set of points is prone to
be unconnected, contour completion is a compulsory second step. Usual tech-
niques rely on deterministic principles: active models (parametric [4], geodesic
[5] or region-based [14]) solve an energy minimizing problem and contour closing
techniques [8] base on interpolation/functional extension methods.

The deterministic-statistical strategy for adventitia detection we propose is
the following. For a better handling of the classifying problem, our feature space
reduce to adventitia and calcium detectors, the latter to discard sectors with
ambiguous information. In order to enhance significant structures while remov-
ing noise and texture response, we use a Restricted Anisotropic Diffusion [9]
(RAD). For adventitia points selection, we search for the feature space partition
(thresholds) achieving the best classification rate for a training set. For segment
closing we suggest using an Anisotropic Contour Closing (ACC) [8] that bases
on image local geometry for curve segment interpolation. Parametric B-spline
snakes yield the final compact explicit model.

The topics are presented as follows. In Section 2 we thoroughly describe the
way adventitia points are selected. Explanations about the main detection steps
are given in Section 3. Section 4 is devoted to validation of the method and
Section 5 to conclusions and further research.

2 A Deterministic Statistical Strategy

There are two main points in the segmentation process:

2.1 Statistical Selection of Adventitia Points

Since in an IVUS plane, the adventitia is a circular-wise structure (fig.1 (a)), we
work in polar coordinates (see Section 3.1 for details). Let AdvPol(i,j) denote
images in polar form (fig.1 (b)) with radius ¢ = 1,..., R4z, and angle j =
1,...,360. The selection stage summarizes in the next steps:

Set of Descriptors. The feature space for adventitia detection we propose
reduces to the following two characteristics:

1. Horizontal Edges (X)
Since in the coordinate system chosen (fig. 1(b)), the adventitia layer is an
horizontal dark line, horizontal edges constitute our main descriptor (see fig.
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Fig. 1. IVUS images in cartesian (a) and polar (b) coordinates

2). Edges are computed by convolving the image with the y-partial derivative
of a 2 dimensional gaussian kernel of variance p:

X =ey(i,j) = gy * AdvPol for g,(z,y) = —ﬁe*(w%yz)/@*p%
Although intima and adventitia correspond to negative edges (fig.2), with a
suitable (intima removing) strategy [10], this detector achieves optimal ac-
curacy in the absence of calcium. Because at angles of calcium the adventitia
does not appear and the detection is misled towards the intima, we discard
those sectors. We base on calcium outstanding brightness to detect it by
means of:

2. Radial Standard Deviation (Y")
Striking brightness corresponds to an outlier of the pixel gray value in the
radial distribution. We measure it by means of the difference between the
pixel gray value and the radial mean. For each pixel (i, ), we define it as:

o(i,j) = (AdvPol(i, j) = v(j))*
where v(j) is the radial (i.e. column-wise) mean of the polar image:

1 i=Rmax

V(i) =5 > AdvPol(i, 5)
max —1

Point clouds in fig. 2(b) show the feature space corresponding to the images in
fig. 2(a). Adventitia corresponds to large negative X values an a small Y negative
range, while calcium yields in the extreme positive values of the pair (X,Y).

Statistical Thresholding. In a classification framework, determining the
threshold values of the pair (X,Y’) that characterize each structure reduces to
finding a partition of the feature space separating adventitia and calcium from
other vessel structures. Supervised techniques learn regions enclosing most of the
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Fig. 2. Feature Space of Vessel Structures: X and Y responses, (a), and (X,Y) plane,(b)

training set, while ’ad-hoc’ unsupervised clustering bases on the class instances
structure given in a particular image. Although classical strategies exclusively
follow either a supervised or an unsupervised approach, we adopt an adaptive
criterion since mixed approaches [3] have proven to work better in IVUS images.

Because, in the feature space proposed, points of calcium correspond to ex-
treme values, a supervised approach based on the Mahalanobis distance would
work fine. However, by their spatial distribution, we have further reduced the
decision criterion to choosing the threshold for Y values achieving the best com-
promise between true and fake classifications. On the other hand, if we consider
all training images as a whole, adventitia points response presents a within class
variability significant enough as to discard a fixed supervised criterion. By us-
ing a gaussian mixture [13] to model the training set density function, we have
a misclassification error of 47.09% of fake detections for a test set. An unsu-
pervised clustering is not sensible either since low dimensionality of the feature
space introduces an overlapping between adventitia and other structures. What
we propose is using an image sensitive classification based on searching for ra-
dial outliers in X negative values. That is, the thresholding value corresponds
to the 5/6% percentile of the X values along each angle (columuns in the polar
image). This simple image adaptive criterion drops misclassification to 42.18%
false positives corresponding to points on the intima layer.

2.2 A Restricted Diffusion Determined by Image Geometry

In order to smooth textures and strengthen response to the describing functions
given in (2.1), we evolve the polar image under the following structure preserving
filtering:
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Fig. 3. RAD smoothing for calcium (1st row) and adventitia (2nd row)

Restricted Anisotropic Diffusion (RAD). Most filtering techniques based
on image gray level modification [11] use the heat diffusion equation:

u(z,y,t) = div(JVu)

The time dependent function w is the family of smoothed images and J
is a 2-dimensional metric (i.e. an ellipse) that locally describes the way gray
levels distribute. The diffusion tensor J is thoroughly described by means of its
eigenvectors (&, n = &1) and eigenvalues (A1, A2). If the latter ones are strictly
positive, gray values spread on the whole image plane and the family u converges
to a constant image. On the other side if we degenerate J (i.e. we admit null
eigenvalues), then the final image [9] is a collection of curves of uniform gray level.
Smoothing effects depend on the suitable choice of the eigenvector of positive
eigenvalue. Let us consider a metric J with eigenvalues \; = 1 and A\ = 0, and
¢ the eigenvector of minimum eigenvalue of the Structure Tensor [12]. If wug is
the image to be denoised, then the Restricted Heat Diffusion we suggest is given
by:

uy = div(JVu) with u(z,y,0) = uo(z,y) (1)

Figure 3 illustrates the way restricted diffusion works. Around the image
significant structures (calcium in fig.3(a)), & represents the tangent space to a
closed model of such structures. Meanwhile at noisy areas (textured tissue in
fig.3(d)), it is an irregular vector with random orientation. The result is that
gray levels homogenize along image regular level sets and solutions to (1) con-
verge to a smooth image that enhances the main features of the original image,
in the sense that their response to standard detectors is uniform. Figure 3 shows
the improvement of calcium (first row) and edges (second row) responses after
applying RAD. Background spurious edges due to noise in fig.3(e) have been
removed, in a similar fashion a gaussian smoothing would do, while edges cor-
responding to the vessel adventitia and calcium are continuous closed curves in
the RAD images of fig.3(c),(f).
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(d)

Fig. 4. Straighten adventitia layer procedure

Anisotropic Contour Closing (ACC). Heat diffusion has also the property
of smoothly extending a function defined on a curve in the plane, provided
that boundary conditions are changed to Dirichlet [15]. By using restricted heat
operators this property can be used to complete unconnected contours [8] as
follows. Let v be the set of points to connect, X, its characteristic function (a
mask) and define J as in RAD, then the extension process given by:

u; = div(JVu) with Ujy = Ug (2)

converges to a closed model of 7. Intuitively, we are integrating the vector field &,
that is, we are interpolating the unconnected curve segments along it. This fact
not only ensures convergence to a closed model, but also yields closures more
accurate than other interpolating techniques (such as geodesic snakes [5]).

3 Adventitia Modelling Steps

The characterization strategy of Section 2 serves to model the adventitia layer
in the following three step procedure.

3.1 Polar Coordinates Origin

Polar coordinates with a fixed origin at the center of the cartesian image present
two main artifacts produced by cardiac movement and the artery geometry. In
cartesian coordinates, heart movement induces a translation followed by a rota-
tion. This motion converts into an angular translation (rotation) and a radial
dynamic wave (translation). The latter is a main artifact for the set of descrip-
tors given in Section 2.1 and it is removed by taking as origin of coordinates
the mass center of the image (fig. 4(a)). In such coordinates, the adventitia still
presents a slight static wavy shape because image mass centers do not coin-
cide with geometric centers. We correct this deformation by means of a set of
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points extracted using the strategy described in Section 2. The impact of noise
is minimized by considering the average of the energy e, in the sequence tem-
poral direction (fig. 4(b)). In order to endow further continuity to the extracted
edges, we use the statistical distribution of their position in angular sectors of
the cartesian image. For each sector we only consider edge points within the
central percentile computed for a given number of frames (fig. 4(c¢)). The mass
center of the cartesian transform of the former radial values serves as geometric
center of the adventitia layer and is the origin of our polar transform. Fig. 4 (d)
shows the final polar coordinates.

3.2 Adventitia Selection

The classification of the filtered images given by RAD yields a calcium and ad-
ventitia masks. Small structures in the adventitia image are removed by applying
a length filtering, so that only segments of length above the 75% percentile are
kept. In order to remove intima points, we consider that an edge connected com-
ponent is on the adventitia layer if it corresponds to an edge of maximum radius
in a longitudinal cut of the sequence.

3.3  Adventitia Closing

We split interpolation of the selected curve segments into computation of an

implicit closed representation and explicit encoding with parametric B-splines.
For adventitia completion we will use ACC with the Structure Tensor defining

the vector £ computed over the edge map used in the selection step. In order to

obtain models as accurate as possible, the vector £ is weighted by the coherence

of the Structure Tensor:

()\1 + )\2)2

COh =
(A1 — A2)?

where A\; > Ao are the eigenvalues of the tensor. At regions where £ is a contin-
uous vector, Ag is closed to zero, so coh is maximum, meanwhile, at noisy areas,
since ¢ is randomly oriented, A\; compares to A2 and coh ~ 0. In this manner we
avoid wrong interpolations at side branches and sensor shadows sectors.

The final model discards angles presenting response to calcium and uses B-
splines to smoothly interpolate the adventitia at side branches and calcium sectors.

4 Results

Objective quantitative validation of the method has been based on the following
assessment protocol. A total number of 3300 frames extracted from 9 different
patients, including 4 sequences with calcium, have been analyzed. The measures
used to quantify accuracy of the automated detections are the mean and maxi-
mum distance error (in mm) and area differences (in percentages) between our
model and an expert manual segmentation. The sequences have been manually
segmented by 3 different physicians every 10 frames in order to analyze inter-
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observer variation. Figure 5 shows adventitia snake models for soft plaque (fig.5
(a), (d)), calcium (fig.5 (b), (e)) and at a side branch (fig.5 (c), (f)).

(d) (f)

Fig. 5. Segmentations (a), (b), (c¢) for different plaque (d), (e) and at a side branch (f)
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4.1 Statistical Measurements

Figure 6 shows whisker boxes for mean distance absolute errors and inter-
observer variations for soft plaque (1st row) and calcium segments (2nd row).
They summarize the statistics for each patient and for the total population at
the last box on the right. An analysis of the whisker boxes reflects robustness
of segmentations: the smaller the boxes are, the more reliable the method is.
First note that, lack of reliable information at large angular sectors, significantly
increases errors variability in calcified segments (fig.6(c), (d)), especially for man-
ual segmentations, due to the subjectivity of manually traced curves. Still, our
strategy is highly stable as, in most cases, graphics present a smaller variability
than manual models. Only subject 5 has a large variability, but, comparing, with
manual errors (fig.6(b)), we observe that this subject is also the one presenting
the largest box. Average relative and absolute errors in distances and percent-
age of area difference for the total number of patients (excluding the outlier
case 5) are summarized in table 1. Mean distances compare to inter-observer
variability and maximums, although above it, are less than 1% of the vessel
radius.

Table 1. Statistics on Errors

Max. Dist. (mm) Mean Dist. (mm) Area Dif.
Abs. Error |Rel. Error (%)| Abs. Error |Rel. Error (%) (%)
INT-OBS.|0.560 + 0.326| 0.5 +£0.28 ]0.284 + 0.222| 0.247 £+ 0.203 | 8.294 + 3.914
AUT. 0.655 +0.349| 0.619£+0.4 [0.273 £0.131| 0.243 £ 0.120 |10.287 4 4.369

5 Conclusions

Using an integrated approach of statistic classification and anisotropic filtering
to detect the adventitia layer presented in this paper is a new trend in medical
imaging with a straightforward clinical application to plaque area and vessel
diameter measurements. The strategy proposed combines statistical classifica-
tion and deterministic energy based techniques into a two step algorithm. On a
first stage, a set of adventitia and calcium descriptors are proposed as a feature
space. A supervised analysis of such 2-dimensional space serves to determine
those regions enclosing target points. Feature extraction is optimized by apply-
ing a response regulating restricted diffusion operator to polar IVUS images.
The second step involves computation of a closed model of the selected curve
segments. An anisotropic contour closing is used for obtaining an implicit rep-
resentation that captures all geometric features.

Statistics show that automated errors are comparable to inter-observer vari-
ability as far as adventitia can be detected by means of the proposed descriptors.
Since accuracy exclusively relies on such features, our future research will focus
on adding some a priori knowledge on vessel tissue.
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Abstract. A procedure for helping the professional in electrophysiology
in performing catheter ablation as a definitive treatment of certain types
of arrythmia is presented here. This procedure uses trajectory planning
techniques that have been developed in the robotics field. Starting off
from signals obtained in an electrophysiological study of a patient, an
electrical model of the heart with zones of different propagation proper-
ties is generated. Trajectory planning techniques are used to obtain the
qualitative behavior of the heart under different types of arrythmia. A
good point for ablation is computed as one that interrupts the trajectory
that is sustaining the arrythmia.

1 Introduction

The upheavals of the heart rate are cause of 50% of the cardiac related deaths
[1]. In addition, most of them are produced by sudden death. There are more
than 300,000 sudden deaths per year only in the US and 90% are caused by car-
diac arrhythmia. Cardiac arrhythmia is any alteration of the heart rate including
changes of the cardiac characteristics or inadequate variations of the heart fre-
quency. Unfortunatly, the available therapeutic arsenal for cardiac arrhythmia
is still relatively limited [2].

The evidence that arrhythmia needs an anatomo-electrophysiological substra-
tum (forced conduction circuits) for its maintenance motivated the development
of catheter ablation techniques. This is the only form of definitive treatment.
Its advantages are efficiency, safeness, practically null mortality, low cost and
almost absence of counterindications [3].

Notwithstanding, this technique has several fundamental limitations. The
location of isthmuses or zones of forced conduction requires a long time electro-
physiological study (EPS) that has to be performed by an experienced profes-
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sional. The success of the treatment depends on the electrophysiologist’s skills.
In some cases, the EEF stimulation to find these zones can represent a potential
danger for the patient’s life. On the other hand, presently there is no tool in the
market that locates the optimal place for performing ablation.

The research presented here is motivated by this necessity and aims to the im-
provement of the conventional cardiac arrythmia treatments by catheter ablation.

This paper presents the outline of a new procedure for estimation of cardiac
activation trajectories and location of the optimal point for ablation in a virtual
map previously developed and adjusted from EPS signals.

2 Frame of Application: Electrophysiological Studies

Electrophysiological studies are carried out in a cardiac catheterization labora-
tory. They are based in obtaining intracavitary electrograms, with the purpose
of studying its cardiac activation sequence in basal conditions, during different
arrhythmias as a response to a programmed heart stimulation. The indications
for the accomplishment of these studies are in a constant evolution [4].

The general procedure consists of introducing electrocatheters through the
vessels of the leg and carry them to the heart. The guidance is accomplished
by means of fluoroscopic control. An electrocatheter registers the electrical im-
pulses of the heart allowing to obtain a map of the electrical conduction
system.

The correspondence of cardiac signals is the technique by which the signals
gathered from the multiple locations of the heart are drawn as a function of time
in an integrated way [5]. It requires the determination of the local activation time
for each electrode and the creation of activation maps providing space models of
the activation sequence. It is used to unveil the arrythmia mechanisms, its prog-
nosis and to delimit the structures implied in its maintenance with the purpose
of eliminating it (or at least modifying it) by ablation. Therefore, this technique
tries to locate the origin of the arrhythmia, i.e. the point that has the precocious
electrical activity. Recent advances in this field are new correspondence systems
that do not need fluoroscopy to guide catheters [2].

The treatment of cardiac arrhythmias has evolved quickly during the last
decade [6]. At the beginning of eighties, the development of invasive electro-
physiology techniques as ablation revolutionized the treatment of many types of
arrythmia. Ablation consists of producing a controlled injury in the vital zone
for the initiation and/or the maintenance of the arrhythmia. The objective is
to burn fibers and consequently suppress the electrical conduction in that zone.
The controlled injury produces that an essential part of the electrical circuit
responsible for the maintenance of the arrhythmia is eliminated and this avoids
the initiation and/or the sustainment of it. The injury area produced, depends
on the size of the electrode, the time and power of application, and the type
of tissue. The development of these techniques allowed to introduce the only
really curative treatment for many types of arrythmia. This has been one of the
greatest electrophysiology advances.
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The application of this treatment could be greatly improved with the aid of a
tool able to locate the circuits without inducing a tachycardia. This tool should
also minimize the registration time and locate the best point for ablation avoiding
the detection of false places that are not essential part of the circuit. A computer
tool supporting these features would be very valuable for the electrophysiologist
and would make this treatment more reliable, simple, efficient and economic,
with a minimal risk for the patient.

3 Hypothesis

The proposed hypothesis is that a model based on cardiac potential maps can
be developed, where different conduction properties are given to distinct zones
according to signals obtained in conventional EPS. Using this model, it is possible
to apply trajectory planning ideas developed in the field of robotics [7] in order to,
first elaborate a procedure that simulates the feasible propagation pathways from
one point to another on the surface model; and second, search for the optimal
point that would interrupt some specific trajectories. This point is selected by
establishing previous conditions according to the mechanisms that originate or
maintain the arrhythmia and also, according to the morphological characteristics
of the involved conduction areas.

4 Methodology and Implementation

In order to validate the hypothesis, the following steps are proposed:

— Development of a basic cardiac conduction model running on a PC that
integrates cardiac geometry information about origin, characteristics and
propagation of the associated electrical signal from EPS.

— Development of a procedure to locate the forced conduction circuits in the
model under certain given propagation conditions. The procedure would ex-
ploit the type of arrhythmia represented by the model and would apply
trajectory planning techniques.

— Development of a procedure to search the points that interrupt the trajec-
tories fulfilling the pre-established specifications.

In order to obtain this purpose, recent results about data processing, exper-
imental modelling and system identification will be applied. These techniques
will be combined with trajectory planning methods from the field of robotics
and theoretical advances in heart electrophysiology.

A software tool called SCIRun/BioPSE 8] is being tested for the development
of the models and simulation of the conduction features. SCIRun/BioPSE is a
shareware (MIT license) scientific program, developed by The Scientific Com-
puting and Imaging Institute (SCI Institute) of the University of Utah, that
allows a modular and interactive development, error debugging and execution
of scientific computations on a great scale. By using this computational tool,
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a data flow programming model is designed and tested by simulation. Geomet-
ric, mathematical and bioelectrical information are integrated in the model that
also allows for automatic parameter adjustment, contour conditions, as well as
fitting the discretization level necessary to obtain a suitable numerical solution.
By comparison with the “off-line” procedures that are usually employed for this
type of simulations, SCIRun allows an interactive handling of the design and
simulation phases. Also, it avoids the excessive use of memory, that is one of
the problems of data flow standard implementations, and improves the the com-
putacional efficiency. In addition it allows the visualization of scalar, vectorial
and tensor fields. This tool has being used to solve medical problems related to
bioelectric fields and has been selected as a suitable tool for our purpose.

5 Basic Conduction Model

The purpose is the development of a base whose elements will be basic maps
of propagation. Each map will be generated on a 3D geometric heart model
(elaborated by means of the finite elements method) and a tensor of parameters
is associated to each cell of the model. This tensor would gathers, at least, the
three electrical properties of cardiac fibers:

— Automatism or the capacity to generate impulses that can propagate through
the tissues. Sinus node cells and also atrio-ventricular ones are fundamentally
automatic.

— Excitability or the capacity that has any cardiac cell to respond to an effec-
tive impulse. Contractile cells only respond to propagated impulses from an
automatic structure. Once excited, every cell requires of a time to recover
its excitability (refractory period).

— Conductivity or the capacity to propagate the impulses. This propagation
takes place by an electrical phenomenon that crosses the cellular membrane
and all the cardiac structures. The normal speed of conduction varies for
the different cardiac structures (atrium, 1-2 m/s; atrio-ventricular node,
0.05 m/s; Purkinje system, 1.5-4 m/s; ventricle, 0.3 m/s).

These properties will be assigned to a tensor according to the signals gathered
from EEF. Starting off from these signals is possible to build a map of cardiac
potentials and relate the characteristics of this map to the properties associated
to the tensors at each cell of the model.

In [9] a three-dimensional atlas of the human heart is given. It is based on the
image data obtained by tomography, accessible magnetic resonance and cryosec-
tion in the Visible Human Project. This heart atlas offers great possibilities for
analysis using computer vision techniques. The underlying cardiac model has
been complemented with the addition of a temporal dimension for simulation of
the excitation. For this purpose, an algorithm based on second generation of cel-
lular automata has been implemented. It is adapted to the kinetic of the cardiac
tissue excitation. This system demonstrates to be a right method for visualizing
and researching the cardiac excitation.
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During the last years, the resolution of the inverse problem in the field of
cardiology has acquired a greater importance [10]. This problem consists of ob-
taining the bioelectrical image projection. The projection of the electrocardio-
graphic image (ECG) uses an applied inverse solution to the electrical voltages
registered in the surface of the thorax, and/or the actual characteristics of the
cardiac source that produces the surface distributions.

6 Location of the Circuits

Our proposal here is to apply the trajectory planning techniques used in robotics
to solve this step. Trajectory speed is making reference to a path associated to
a kinematic profile.

The theoretical formalization of the planning problem has been widely stud-
ied by Latombe [7]. Many particular planners are found in the literature, for
example those implemented by Farvejon and Tournassoud [11] or Kondo [12].

Most of the abovementioned results are applicable to static environments
because the traditional algorithms for movement planning in deformable spaces
are designed to work in spaces where the obstacles are rigid. This restriction
is important because it limits the complexity of the model. A widely accepted
method is that of L. Kavraki et al. [13]. There are also studies of movement
planning for dynamic environments [14], but in order to validate our hypothesis
a simpler model is preferred. The methodology will be later improved by using
deformable space models.

A plan is a set of actions that allows an agent (in our case it will be a
stimulus) to go from an initial state to a final state. Thus, the plan will be
defined by searching trajectories or propagation paths in the cardiac map. The
basic elements to formulate the plan will be the states (e.g. stimulus position,
initial state), and the operators. The following elements are considered to be
given:

— States:
e position (X,Y, Z) of the cell in the map,
e propagation tensor associated to each cell.
— Operators (or actions):
e Movement to some neighboring cell: X +1, Y +1, Z7+1
e Propagation conditions determined according to the type of arrhythmia
subject of study.

Initial considerations are:

— A stimulus will be modeled as a point and a tail (with time-varying properties
depending on the refractory time).
— A static environment with known obstacles (nonconduction zones).

If a set of cells or a road-map, free of obstacles, obtained previously by means
of Voronoi diagrams is considered, an approximate diagram derived from the first
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one can be used. This auxiliary diagram considers a maximum distance to the
obstacles corresponding to the limitations given by the sensors (catheter).
Applying potential field techniques [7] the following analogy could be made:

— The stimulus is a particle with electrical charge.

— The free space is considered a potential field.

The obstacles have an electrical charge of the same sign than the stimulus.
The goal has an electrical charge of opposed sign to the stimulus.

The differential potential field, U, is constructed adding the goal field Uy,
and the obstacles field, U,:

U(g) = Uyq) +>_ Uslq)

From this differential potential field, U, an artificial force field, F' is obtained
as:
F=-VU(q)

Once derived the force field, the stimulus movement is based on the local
force. A robust scheme is obtained and it has implicit a plan for any point of the
space. The potential functions of the goal (parabolic attractor), center (parabolic
repulsor) and obstacles (exponential potential barriers) has to be modeled. Later,
the potential for each point of the free space can be computed and the forces
are obtained by potencial derivation. The main advantages of this technique are
the following:

— Trajectories can be generated from the force field in real time.
— Generated trajectories are smooth.
— It allows direct connection of the planning phase with the control phase.

7 Location of the Interruption Point

After obtaining the plan, a procedure for searching spheres of radius R that inter-
rupt the abnormal circuits of propagation is developed. Criteria to decide their
location will be previously established by an electrophysiologist and implemented
on the computer in order to be automatically detected or even interactively se-
lected. Certain fundamental premises are considered in order to formulate the
problem:

— The spheres must have a minimum surface.

— The natural propagation path cannot be interrupted under any circum-
stances.

— Particular conditions for each type of arrhythmia are teaken into account.

An algorithm to estimate the risk of a wrong or false interruption will be
implemented in order to avoid bystanders or local minima. The algorithm evalu-
ates the convenience of one greater sphere in a place strategically better placed.
Strategies used in the trajectory planning can also be applied to avoid tramps,
as backtracking or wall pursuit (in our case, null conduction zones pursuit), and
SO on.



Trajectory Planning Applied to the Estimation 81

8 Study Case

Let consider the simple 2D heart model with an accesory pathway depicted
in figure 1 that represent a patient suffering Wolff-Parkinson-White Syndrome
(WPW). Certain properties as automatism, excitability, conductivity and speed
are given to each cell and are also graphically shown in figure 1.
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Fig. 1. Simple 2D model of a patient with WPW and properties assigned to each cell
in the model

WPW is a form of supraventricular tachycardia characterized by the presence
of extra pathways called accessory pathways in addition to the normal conduc-
tion ones. This is graphically shown in figure 2. The impulses travel through
the extra pathway (shortcut) as well as through the normal AV-HIS Purkinje
system.

The simulation of the propagation during only one beat in the model permits
to observe that stimulus travels through different pathways, as can be checked
in figure 3.

Points A and B represent places where two impulses collide so that they
cannot continue the propagation in that direction. In that case they do not travel
around the heart in a circular pattern. The collision at point B will generate a
signal characterized by the delta wave in the ECG. The most the ventricle is
depolarized by the accessory pathway, the greater delta wave is.

However, when multiple beats are simulated, the cell with high automatism
capacity in the left ventricule of the model (see figure 1) could originate an
impulse. If the neighboring cells are capable of responding to this impulse then
it could occur the situation depicted at left in figure 4. Stimulous could travel
very quickly through the heart in a circular pattern, causing the heart to beat
unusually fast. Sinus node (SN) is inhibited and the circular pattern is sustained.
Under such circumstances, a re-entry tachycardia is observed in the ECG.

Determining the optimal place for ablation is easy in this case. At right in
figure 4 it can be seen the precocious activity that has been generated in point B.
Nevertheless, eliminating this point is not the solution because after some time,
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Fig. 2. Propagation in a WPW patient
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Fig. 4. Propagation in a re-entry tachycardia in a WPW patient and searching for the

place for ablation

it could appear another pulse generator point in the ventricule and cause another
re-entry tachycardia. This could be easily checked by simulation of the model
but changing automatism properties of a contiguous cell to point B and changing
cell B speed properties to zero. The elimination of other cells of the circuit will
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modify the trajectory but not open the circuit. Therefore, the candidate places
for ablation are points A and C. Point A is not a good alternative, because it
would interrupt the normal propagation pathway. As a consequence, point C'is
the best candidate.

Finally, it is convenient to remark that the models used here are very simple
and the conclusions obtained are very promising and good from a qualitative
point of view. However, more detailed models have to be developed and tested for
a precise prediction of arrythmia mechanisms and for the reliable determination
of ablation points. Speeds and accuracy in the location will depend on some
factors (i.e. complexity of the model, software and hardware implementation,
other systems involved, etc.).

9 Conclusions

Some deficiencies and lacks in the therapeutic arsenal used for conventional
procedures of definitive treatment of patients with cardiac arrhythmias have
been detected and exposed here. The essential steps to develop a procedure
that carries out a significant contribution to the progress and the qualitative
improvement of catheter ablation treatments have been studied and reported.
The specific techniques to be used at each of the steps previously mentioned have
been described. Also, a tool to be used for the implementation of the procedure,
according to our criteria has been selected.

Finally, a simple example of a simulated model of a heart suffering Wolff-
Parkinson-White Syndrome (WPW) has been studied using the proposed method-
ology. Properties as automatism, excitability, conductivity and speed are given
to the model. Using this model, some propagation trajectories that validates the
behavior of a WPW patient have been obtained and the optimal suggested point
to apply the radiofrequency ablation has been computed.

The preliminary results obtained are quite promising, at least from a qual-
itative point of view, although more detailed models have to be developed and
tested for prediction of particular arrhythmia mechanisms and for the consistent
determination of ablation points. The validation of all the established hypothe-
ses in this formal proposal strongly depends on the multidisciplinar cooperation
between the medical and the engineering teams.

The final goal is to integrate the new procedure in the same computers that
are used now for catheter mapping and make interactive use of it during the
interventions.
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We developed a 3D computer graphic model of functional anatomy of the
human heart. The model provides visually correct anatomical and functional
detail suitable for medical education. We reconstructed 3D surface models of
the human heart based on segmentation obtained from the Visible Human
image datasets. We developed a fiber based muscle action model specially
adapted for the myocardium. Each muscle fiber is equipped with contractile and
elastic elements and is used as a local shape deformation guide. The timing of
fiber contraction activation is driven by patient specific action potential
excitation patterns. As a first step we have visualized the function of a healthy
heart. We are now planning to visualize a range of cardiac conditions and
dysfunctions.

1 Anatomic Model

The reconstruction of a 3D surface model of the human heart was based on the
Visible Human Project datasets [1]. Segmentation was extracted from the axial
anatomical cross-section images of the Visible Male and Female datasets in the
thoracic region (see figure 1). A male and female heart models were reconstructed.
The male model, coming from a 39 year old healthy person, was used to visualize the
function of a healthy heart. The female heart model, coming from a 59 year old
person with enlarged heart, will be used for the visualization of heart failure.

Fig. 1. Axial anatomical cross-section images from the Visible Male (left) and Visible Female
(right)

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 85-91, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 2. Views of the reconstructed 3D female heart model

At every stage of development particular attention was paid to the functionality of
each part of the model. This was done to facilitate the integration of the graphic
model into the functional model.

The surface model includes detailed inner and outer wall structures on all four
chambers and valves. Also structures such as the trabeculae carneae, the papillary
muscles and all the main cardiac veins, arteries and fatty tissue have been modeled
(see figure 2).

2 Mechanical Contraction

We developed a fiber based muscle action model specially adapted for the human
heart myocardium [2]. In our model a muscle is represented by a set of fibers, which
run through the muscle body.

Each fiber is equipped with contractile and elastic elements connected in parallel
[3] (see figure 3). Each fiber line acts as a local shape deformation guide for the
surrounding muscle tissue. By activating each fiber we can accurately specify the
level of contraction and volume preservation of a muscle.

The modeled fibers in and around the ventricles were made to follow approximate
heart muscle fiber orientation data obtained from diffusion tensor MRI [4] (see figure 4).

F F

L AAAA—

elastic

Fig. 3. Muscle action model with parallel contractile and elastic elements
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Fig. 4. Muscle fiber orientation in both ventricles

Fig. 5. Muscle fiber orientation mapped onto the 3D model
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Fig. 6. Graph of the inner volume of left ventricle during a normal heartbeat cycle

Fiber orientations were geometrically mapped onto the inner and outer surfaces of
the ventricle models. Thus the surface of each ventricle was equipped with the fiber
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based deformation system (see figure 5). Fiber orientation in the atria was derived
from anatomical morphology studies [5] and by cadaveric observation.

The mechanical model was equipped with an inner volume calculation algorithm.
An experimental relationship between the amount of fiber contraction and the inner
volume in a heart chamber (i.e. the left ventricle) was derived as follows: the amount
of fiber contraction was step increased and the resulting inner chamber volume was
simultaneously calculated. By reversing this experimentally derived relationship a
simple volume graph such as the one in figure 6 was used to determine the amount of
mechanical contraction during a complete heartbeat cycle (see figure 7).

Fig. 7. Wall thickness in the left ventricle in end diastole &4 (left) and end systole & (right)

The ventricular wall thickness was calculated by locally approximating the
chamber in question (i.e. the left ventricle in figure 7) with the shape of a spherical
membrane with thick walls. In this case, the law of Laplace (see equation 1) relates
the inner and outer pressures p; and p, and radii r; and r, with the membrane stress
T[3]:

T=piri = pory | (1 +1). (1)
T = h(o). )

The inner pressure was made to follow a pressure graph of a normal heartbeat
cycle while the outer pressure was kept constant and approximately equal to the
atmospheric pressure. Equation (1) was combined with an experimentally acquired
stress (T)/strain (h(o)) function of cardiac muscle [3] (see equation 2). The wall
thickness was calculated by combining equations (1) and (2) and solving for A.

All four main valves (bi-cuspid, tri-cuspid, aortic and pulmonary) were modeled.
Fiber based rigging enabled their opening and closing function, synchronized with the
heartbeat cycle (see figure 8).

Cardiac vessels (coronary arteries and veins) were subjected to forced
displacement by the underlying muscle contraction, while their volumes were kept
constant (see figure 9).
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Fig. 8. Left ventricle in cross-section and bi-cuspid (mitral) valve during diastole (left) and
systole (right)

Fig. 9. Cardiac vessels during heartbeat from end diastole left to end systole right

3 Electrical Excitation

The timing of fiber activation can be driven by manually designed contraction/time
graphs. All movement in atria, ventricles and valves can be independently driven by
such graphs. By modifying the contraction/time graphs we can visualize normal heart
beat as well as various arrhythmic conditions.

Patient specific action potential maps were also used to drive the timing of the
mechanical model. In figure 10, electrical propagation maps were acquired using the
Ensite catheter (from Endocardial Solutions Inc.) inside a patient's right atrium.

In a cardiac cell mechanical contraction occurs after the cell has been electrically
stimulated. Each peak of electrical stimulation is followed by a single contraction
peak with an approximate delay of 150 ms (see figure 11).

The above mentioned patient specific maps were geometrically projected onto the
3D surface of our modeled atrium (see figure 12). The mechanical contraction of the
right atrium was activated by patient specific electrical data. Muscle contraction at
each point on the atrium peaked approximately 100-150 ms after the arrival of
maximum action potential on the same point.
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Fig. 10. Patient right atrium geometry with recorded electrical activation pattern
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+30
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Fig. 11. Graph of action potential and contraction in a single cardiac cell (contraction graph out
of scale)

Fig. 12. 3D heart model right atrium with mapped electrical activation pattern

4 Conclusion and Future Work

A heart function visualization model was developed. A fiber based muscle action
model was combined with inner volume/time and pressure/time graphs in order to
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achieve a visually correct contraction cycle. Manually derived and patient specific
electrical data were used to activate the model. As a first step we visualized the
function of a healthy heartbeat in 4 dimensions. As a further step we are planning to
visualize a range of cardiac conditions and dysfunctions such as myocardial
infarction, atrial fibrillation, bradycardia, tachycardia, the sick sinus syndrome, valve
dysfunction, etc. Also the transition between arrhythmic and normal cycles will be
addressed. This research is supported by a SMART Exceptional Award grant from the
Department of Trade and Industry, UK.

References

1. Visible Human Project. National Library of medicine, Bethesda, Maryland USA
(http://www.nlm.nih.gov)

2. Hurmusiadis, V., Barrick, S., Briscoe, C.: Visualization of Muscle Function for Medical
Education. Medicine Meets Virtual Reality 12, IOS Press (2004)

3. Fung, Y. C.: Biomechanics: Mechanical Properties of Living Tissues. 2Ns edn. Springer-
Verlag, New York (1993)

4. Zhukov, L., Barr, A.H.: Heart-Muscle Fiber Reconstruction from Diffusion Tensor MRI.
Proceedings of Visualization, IEEE, Vis03 (2003)

5. Ho, S.Y., Anderson, R.H., Sanchez-Quintana, D.: Atrial Structure and Fibres: Morphologic
Bases of Atrial Conduction. Cardiovascular Research 54, Elsevier (2002)



Artificial Enlargement of a Training Set for Statistical
Shape Models: Application to Cardiac Images

J. Lotjonen', K. Antila', E. Lamminmiki®, J. Koikkalainen?, M. Lilja2, and T. Cootes3

! VTT Information Technology, P.O.B. 1206, FIN-33101 Tampere, Finland
{Jyrki.Lotjonen@vtt.fi}
2 Laboratory of Biomedical Engineering, Helsinki University of Technology,
P.O.B. 2200, FIN-02015 HUT, Finland
3 Division of Imaging Science and Biomedical Engineering, University of Manchester, U.K

Abstract. Different methods were evaluated to enlarge artificially a training set
which is used to build a statistical shape model. In this work, the shape model
was built from MR data of 25 subjects and it consisted of ventricles, atria and
epicardium. The method adding smooth non-rigid deformations to original train-
ing set examples produced the best results. The results indicated also that artificial
deformation modes model better an unseen object than an equal number of stan-
dard PCA modes generated from original data.

1 Introduction

Segmentation is known to be one of the most difficult problems in image analysis.
Several reasons explain the difficulty, such as noise in images, image inhomogenities,
partial volume effect, complex and cluttered scenes and low visibility of edges between
objects. Deformable model-based methods provide one approach to overcome partially
the problem. In these methods, an a priori model is non-rigidly registered to the object
of interest in the image by optimizing a cost function. To find the optimal non-rigid
transformation is an ill-posed problem; hence some form of constraints are required.
One possibility is to use physical-based models, such as viscous fluid or elastic models
[1,2]. Statistical shape models is another option. In these methods, an a priori model
is allowed to deform only in a way consistent with the information captured from a
training set.

The most popular approach for modeling the shape changes is the point distribution
model, also referred to as active shape model (ASM) [3]. It defines a mean model and
its typical deformation modes on the basis of a training set using principal component
analysis (PCA). The deformation modes are the eigenvectors of the covariance matrix
determined for corresponding points in different examples of the training set.

Statistical shape models suffer from two commonly known problems especially in
medical applications. First, building a statistical shape model is laborious as the point
correspondences need to be defined between the training set examples. However, au-
tomatic procedures have been recently proposed to overcome this problem [4,5, 6].
Second, as the building process is time consuming and enough data are not always
available, only a small set of examples are often used to construct the model. Since the

A'F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 92-101, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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maximum number of deformation modes can not exceed the number of examples in
the training set minus one, the eigenvectors obtained span only a small subspace which
can not represent the full range of shape variation present in real medical objects. For
example, 10 — 30 subjects have been used to construct a 3D statistical shape model of
the brain and heart [5, 7, 8, 9]. As reported in [9], the size of the training set was consid-
ered to be the most important reason for a relatively high segmentation error. This work
concentrates on the modeling of the heart.

The segmentation accuracy depends on the ability 1) of the model to represent an
unseen object, and 2) of the segmentation algorithm to define correctly the model pa-
rameters. This work concentrates on the first point. The objectives of this work are
two-fold:

— To define an appropriate method for enlarging the training set artificially and effi-
ciently.

— To estimate the relation between the size of the training set and the ability of the
model to represent an unseen object, as applied to cardiac data.

The latter objective is closely related to commonly known bias-variance trade-off.
In other words, if the number of the deformation modes is too small, the model is over-
constrained. However, choosing too many deformation modes based on a large training
set leads to overfitting.

2  Methods

2.1  Statistical Shape Models

In statistical shape models, new examples of the shape, x = [z, ... ,xn]T, that are
specific to the studied object, are generated using a linear combination

x = % + ®b, (1)
where X = [Z1,...,Z,]7 is a reference shape, typically a mean shape constructed from
a training set, ® = [y, . .., @] is @ matrix consisting of the modes of shape variation,
¢i,and b = [by,...,b,]7T is a weight vector.

In ASM [3], the object is represented by a point set. The training set is first affinely
aligned, and the mean shape is calculated:

1 N
izﬁzxi, )

where N is the size of the training set. Next, PCA is applied to the variations of the
training set, i.e., the eigenvectors and eigenvalues of the covariance matrix

Eziz(xi—i)(xi—i)T 3)
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are calculated. The eigenvectors of the covariance matrix describe the ways in which
the shapes vary, and the corresponding eigenvalues explain the variance of the data
projected onto each eigenvector.

If the number of points in a training set example is denoted by P and the dimen-
sionality by D (D = 2in 2D and D = 3 in 3D), the maximum number of deformation
modes is min(N — 1, D - P).

The model instance x’ representing an unseen object x is

x =%+ &b/, )

where the weights b’ are computed from

b =& ' (x —x). 3)

In this work, we model five objects: 2 atria, 2 ventricles and epicardium. Contours of
these objects are catenated to one vector, i.e. X; = (241, ¥i1, Ti2, .., Yip) in 2D, i.e. each
mode contained deformations for all objects.

2.2 Materials

Our dataset consisted of cardiac short- and long-axis magnetic resonance images ac-
quired from 25 healthy subjects. The mean shape and its variation were modeled as
described in detail in [9]. The procedure is shortly summarized.

The atria, ventricles and epicardium were manually segmented by fitting a triangu-
lated surface model simultaneously to the short- and long-axis images. Thereafter, one
subject was considered as a reference volume to which all other subjects were aligned
using translation, rotation and isotropic scaling. The normalized mutual information
(NMI) was used as a similarity measure. Segmented volumes, where each object was
represented by one gray-scale value, were used in registration. Next, the reference vol-
ume was non-rigidly registered to the aligned volumes using a non-rigid registration
based on a deformation sphere technique [10]. In the deformation sphere technique,
smooth deformations are applied to voxels inside a sphere in such a way that the NMI
is maximized. The location of the sphere is randomly chosen from the surfaces of ven-
tricles, atria and epicardium, and it is varied during the iteration.

The nodes of the triangulated surface model of the reference subject, obtained from
the manual segmentation, were considered as semi-landmarks. Semi-landmarks were
used because only a few anatomical landmarks can be located from the heart in the MR
images. Propagating the semi-landmarks, using the non-rigid transformations defined
above, a set of corresponding semi-landmarks was achieved for each training set sub-
ject. The mean shape and its variance was then computed by applying Egs. 2 and 3. In
addition, the mean gray-scale short- and long-axis volumes were computed.

To reduce the bias of the mean shape towards the selected reference subject, and to
give a better a priori estimate in the non-rigid registration, the preceding procedure was
repeated by using the mean shape as a reference model.

In this work, two datasets were used: 1) a set of 2D contours from one long-axis
image of each subject (Fig. la), and 2) a set of 3D triangulated surfaces from each
subject (Fig. 1b). The number of data points was P = 219 in 2D and P = 2086 in
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(a) (b)

Fig. 1. A set of a) 2D contours and b) 3D surfaces of atria, ventricles and epicardium from one
subject

3D. The number of deformation modes to represent any arbitrary contour or surface is
D-P =2-219 =438 or 3-2086 = 6258, respectively. Because the number of subjects
is N = 24 (24 instead of 25 because of cross-validation) in this work, the maximum
number of deformation modes is, however, 23 (N — 1 < D - P) for the standard PCA.

2.3  Techniques to Increase the Size of Training Set

Techniques to enlarge artificially the training set have been widely studied [11, 12, 13,
14, 15]. Next, the techniques tested in this work are summarized.

The values in parentheses in the text below are related to user-defined parameters
and indicate the values that produced the lowest mean point-to-point error (Section 2.4).
These values were used in Section 3.

Standard PCA. The procedure described in Section 2.1 was followed producing N —1
deformation modes.

PCA & FEM. Cootes et al. [11] combined the standard PCA and finite element method
(FEM) in shape modeling. FEMs take an instance of a shape and treat it as if it was made
of flexible material. Modal analysis gives a set of linear deformations of the shape, such
as bend, shear and pinch, equivalent to the modes of vibration of the original shape.
These modes can be used in shape modeling:

X =X; + Qill, (6)

where x; is an example of shape (as in Eq. 2), €2, is a matrix consisting of eigenvectors
computed for the stiffness matrix of the shape 7, and u is a weight vector (as b in Eq. 1).
The deformation modes are the eigenvectors of the matrix

N
S=%+ a(% ZQZ—AZ-Q;?F), (7
i=1
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where 3 is the covariance matrix from Eq. 3, « is a user defined weight (o = 0.5), N
is the number of chosen example shapes, A is an inverse matrix of the diagonal matrix
consisting of eigenvalues of the stiffness matrix. The procedure produces D - P defor-
mation modes.

Adaptive Focus. In the standard PCA method, each point has an equal weight in com-
puting the covariance matrix. Shen and Davatzikos [12, 13] proposed a method called
adaptive focus where objects having a low spatial variance or objects with a high confi-
dence were spatially scaled in order to increase the variance. Due to scaling, the de-
formations of the scaled object became more emphasized and better represented in
the most important deformation modes (high eigenvalues because of high variance).
In this work, each object was scaled separately in the co-ordinate system of the refer-
ence model (the scaling factor 2). The procedure produces (O + 1) N — 1 deformation
modes where O is the number of objects (O = 5) and N is the size of the training set.
The factor O + 1 is used instead of O because the original examples are also included
in addition to scaled ones.

Non-rigid Scaling. In this approach, the adaptive focus technique was extended to
non-rigid but smooth deformations. The contours were scaled inside of a deformation
sphere. The scaling factor, s = s(z, vy, z), of a point (x,y, z) is computed from

9 (z—ca)?+(y—cy)?+(z—cz)?
- 2 —
& 4 &

1.0 —e2

s(x,y,2) = S+1, (8)
where (cz, ¢y, c;) and r are the location and the radius of the sphere (r = 50 mm),
respectively, and S is the user specified scaling factor (S = 1). The sphere is randomly
located to L locations on the contours (L = 100), and the original contour points are
deformed at each location. The origin during the scaling is in the center of the sphere.
The number of deformation modes produced is (L + 1) N — 1.

Non-rigid Movement. Another strategy, very similar to the non-rigid scaling technique,
was also tested. The displacement vector, v(z,y, z), for any point inside the sphere is
computed from

_gr—en)?+(y—cy)?+(z—cz)?
r2 —e

1.0 —e2

v(z,y,2) = \Z €))
where V is a random vector and other parameters as in Eq. 8. The length of the vector
V was chosen from a uniform distribution ([0 25] mm).

Fourier. The approach adopted in this work is closely related to the hierarchical method
proposed in [14] where the data were divided into different frequency and spatial lo-
cation bands using wavelets, and PCA was performed for each band separately. In this
work, the data were decomposed only in frequency bands. The deviations of the training
set examples from the mean were transformed into the frequency space using Fourier
transformation and the data were band-pass filtered into B (B = 18) separate frequency
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bands. New artificial training set examples were then generated by restoring each band
separately into the shape space with inverse Fourier transformation. This procedure pro-
duces (B + 1)N — 1 deformation modes, when also original examples are included in
the training set.

Noising. In this approach, Gaussian noise is added to each point which makes data less
correlated. The displacement of a point was chosen from a uniform distribution ([—2 2]
mm) in each direction. From each training set example, L (L = 100) noisy contours
were generated leading to (L + 1)N — 1 deformation modes. Alternatively, the data
could be made more uncorrelated by replacing the covariance matrix 3 by ¥ + ol,
where « is a weight factor and I a unit matrix.

24 Evaluation

As mentioned above, the segmentation accuracy does not depend only on the model
properties but also details of the optimization method and image characteristics affect
the result. In addition, normally no real gold standard exists for evaluating the accuracy
of the segmentation. The automatic segmentation result is usually compared with the
manual one which is commonly known to contain errors. Warfield et al. [16] recently
proposed a solution to this problem. In our work, two methods were used in evaluation:
1) the model was fitted directly to a training set example using Eq. 5 (model-to-shape
fit), and 2) the model was fitted iteratively to image data (model-to-image fit). The
former method measures the ability of the model to represent an unseen object while
the latter method includes all error sources in segmentation.

Two error measures are defined. Point-to-point (PP) error is computed as an average
Euclidean distance between the corresponding points in x” and x (Eq. 4). The PP error
can not normally be used in segmentation, because the point correspondences are not
known. Therefore, point-to-curve/surface (PCS) error is defined: 1) search the shortest
Euclidean distance from each point of x’ to the contour or surface defined by x, and 2)
take an average of these distances. In other words, the PCS error omits the error in the
tangential direction of the contour or surface, and produces lower values than the PP
error. Both PP and PCS errors were used to measure the model-to-shape fit while only
the PCS error was used with the model-to-image fit.

Cross-validation was used: each training set example was once regarded as a target,
the shape model was built using the remaining training set, and the target was repre-
sented by the shape model.

3 Results

Model-to-Shape Fit. The 2D PP error (in [mm]) for different techniques is represented
in Fig. 2. A non-parametric Wilcoxon Signed Ranks Test was used to detect statisti-
cally significant differences between the shape models when the number of deforma-
tion modes was 23. Statistical significance was considered to be obtained for p-value
p < 0.01. The non-rigid movement technique produced the best result: as compared
with the non-rigid scaling (p < 0.01) and with the other methods (p < 0.0001). This
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Fig. 3. The 3D PP error in function of deformation modes for the non-rigid movement technique.
Table shows segmentation error and the corresponding NMI value for the standard PCA and
non-rigid movement technique (NRM) with different number of deformation modes

indicates that partly artificially generated modes perform better than the modes derived
from the original training set using the standard PCA. The curves show also that the PP
error decreases very slowly after 100 — 150 modes. In addition, the noising technique
is clearly the worst approach. Fig. 3 shows the corresponding curve for the non-rigid
movement technique as applied to 3D surfaces.

Model-to-Image Fit. Preliminary 3D segmentation results are also provided. The fol-
lowing method was used to optimize the weights of the deformation modes. For each
data point (P = 2086), two gray scale profiles normal to the surface were generated:
one from the mean short-axis and one from the mean long-axis data sets. The NMI was
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Fig. 4. Segmentation result superimposed on MR slices of one subject. A short-axis view showing
the result for a) the standard PCA (PCS error 1.95 mm), b) the non-rigid movement technique
(PCS error 1.80 mm, 250 modes) and ¢) manual segmentation. The images d), e) and f) show the
corresponding results in a long-axis view

maximized between the profiles from the model and the profiles from same locations
in the target data. All points from all profiles and from the both data sets were used in
computing the NML. In this work, the length of the profile was 21 points and the data
sets were quantized to 32 gray values. Conjugate gradient method was used to optimize
the weights of the deformation modes.

The segmentation results have been shown in Fig.3. No statistically significant dif-
ferences were found between PCS values. However, when the NMI values were com-
pared, the artificial modes were found superior compared with the standard PCA (p <
0.00001) and 100 or 250 artificial modes produced better results than 23 artificial modes
(p < 0.00001). The improvement in NMI but not in the segmentation error indicates
the existence of errors in our manual segmentation results used as a gold standard. The
difference in the NMI values between 100 and 250 modes was not statistical significant.
The segmentation result of one subject is visualized in Fig. 4.

The 3-D segmentation errors of cardiac structures, produced by automatic tools not
based on the PCA-based approaches, have been recently reported to be around 2 — 3
mm [9, 17]. The PCS error was about 55 % and 46 % of the PP error with our 2D and
3D data, respectively. This means that 23 deformation modes (3.6 mm PP error) have
enough degrees of freedom to reach 1.7 mm PCS error. As our segmentation results
indicated, the real segmentation error is higher: the PCS error was 2.09 mm for 23
modes defined by the non-rigid movement technique. For 250 modes, the PCS error
was 2.04 mm while the minimum PCS error, due to limited degrees of freedom in the
model, is only 0.7 mm (46 % of about 1.5 mm for 250 modes in Fig. 3).
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4 Discussion

Different techniques to increase artificially the number of deformation modes were
studied. The technique based on non-rigid movements produced the best results, also
in statistical sense. The advantages of the method were that 1) the PP error decreased
fastest as the size of the training set was increased, and 2) the PP error was lower than
using the standard PCA with an equal number of modes. The latter point indicates that
the standard PCA restricts the shape space too much if the training set is small, and
introducing artificial variation improves the generality of the model. On the other hand,
the artificially enlarged training set has also drawbacks. The model may become phys-
ically implausible and unrealistic segmentation results can be produced for low-quality
and complex image data. In addition, statistical shape models can be used to detect dif-
ferent abnormalities from images if the training set is defined from healthy volunteers.
With artificial training set this property is lost.

In order to avoid overfitting of the model, a common habit is to select only modes
that explain, for example, 99 % of the variance in the training set. The more L-shaped
the error curve is (Figs. 2 and 3), the easier the selection of the optimal number of
modes is. The optimal number of modes is attained in the cross-section of vertical and
horizontal parts of the L-curve because the error decrease per an added mode is small
after that point [18]. In our cardiac cases, the cross-section point was approximately at
130 modes in 2D and at 250 modes in 3D as the non-rigid movement technique was
used. In other words, the model does not improve considerably by adding more data to
the training set after these limits. Although these limits have been derived from a partly
artificially generated training set, we believe that the shape of curves for real data would
be approximately similar, and the limits computed from artificial data provide a rough
estimate of the optimal size of the training set also for real data.

The results indicated that although the model with extended training set is capable to
represent more accurately unseen objects, the segmentation accuracy does not improve
equally. Two reasons explain the relatively small improvement in the segmentation ac-
curacy: 1) a local maximum of NMI has been found because the conjugate gradient
method is not a global optimization technique, and 2) the manual segmentation used as
a gold standard contains errors. The relative contribution of these error sources should
be studied in future.
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Abstract. Domain knowledge about the geometrical properties of cardiac
structures is an important ingredient for the segmentation of those structures in
medical images or for the simulation of cardiac physiology. So far, a strong
focus was put on the left ventricle due to its importance for the general pumping
performance of the heart and related functional indices. However, other cardiac
structures are of similar importance, e.g. the coronary arteries with respect to
diagnosis and treatment of arteriosclerosis or the left atrium with respect to the
treatment of atrial fibrillation. In this paper we describe the generation of a
comprehensive geometric cardiac model including the four cardiac chambers
and the trunks of the connected vasculature, as well as the coronary arteries and
a set of cardiac landmarks. A mean geometric model has been built. A general
process to add inter-individual and temporal variability is proposed and will be
added in a second stage.

1 Introduction

The use of cardiac domain knowledge in terms of geometrical models of the heart has
been reported in many articles (see [1] for a review). The main focus so far, was on
the left ventricle and the related cardiac function and wall motion analysis. Recently,
motion analysis has also been performed on the right ventricle [2] and atrium [18] and
modeling approaches started to include both ventricles [3-8] or even all 4 cardiac
chambers [9,17]. Other publications deal with the geometrical properties of the
coronary arteries [10-12]. In clinical practice, two trends are currently gaining
importance. First of all there is a strong trend towards automation. Limited budgets in
terms of money and time call for “zero-click” procedures for cardiac analysis such as
functional values or coronary artery assessment. A comprehensive image based
cardiac diagnosis session, revealing all important parameters and producing all
relevant image renderings needs to be finished in about 10 to 15 min. The second
trend is about accomplishing a synoptic representation of the cardiac aspects of the
patient: How is the stenosed coronary artery related to the damaged myocardial
tissue? Does the wall motion artifact support the myocardial perfusion findings? A
key issue arising from both trends is the extensive use of cardiac domain knowledge
i.e. the use of cardiac models. A third trend actually comes from the scientific desire
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to understand and simulate the heart from first principles. Here, in the end, we need to
include all relevant structures and the related properties into one model: The coronary
arteries supplying the myocardium with oxygen, the myocardium contracting and
performing a pump-action, the resulting blood flow in turn supplies oxygenated blood
to the coronary arteries. Each of the three trends benefits from or even requires a
comprehensive representation of all important cardiac structures in one model. In this
paper the generation of such a comprehensive geometric heart model is described.

In addition to the information about shape and appearance of the object itself (as
e.g. used in a model based segmentation approach), the model can provide
information for proper initialization of position and pose of the object, e.g. by use of
geometrical relations between the object of interest and other cardiac structures. For
example the position of either manually marked or automatically detected landmarks
can be used to estimate an initial spatial transformation to place the cardiac model
into the image space. The landmarks used for the procedure must be part of the
comprehensive model but they need not be part of the object of interest. Another
possibility is a sequence of segmentation or adaptation procedures, each one being
initialized with the result of the previous one. The result of an adaptation of a surface
model to the left ventricle of the heart can be used to initialize the segmentation of the
coronary arteries by transforming the coronary artery model into the image space and
thereby restricting the search space for the subsequent coronary artery segmentation.

2 A Multi-component Model

The generation of a multi-component model raises several issues:

e The combination of geometrical information form several sources
In our case, the mean geometrical model for the coronary arteries was taken
from the literature [13,14], the cardiac surfaces and cardiac landmarks originate
from multi-slice CT data which provides high resolution data of the complete
heart (but with limited temporal resolution) and we intend to improve the
motion model using cardiac MRI data which provides a better temporal but
anisotropic spatial resolution and covers usually only the left and right
ventricles. The information from all these sources needs to be combined.

e The representation of consistent variability, avoiding conflicting
deformation of the individual structures
The geometrical information provided by a comprehensive multi-object model
may contain geometric entities of different representation. Some surfaces are
perhaps represented as triangular meshes, others as spline surface patches,
others may be represented using implicit functions. In addition to the surfaces,
there may be vessel representations using centerlines and radius values etc. In
this case, where we have different geometric parameterizations, the standard
Eigen-value decomposition of the covariance matrix of the shape samples [15]
cannot be used any longer. In addition, the available geometry samples may
contain different sub-sets of the object set contained in the projected model. We
think that this aspect calls for a distinct representation of the shape geometries
and their variability. More specifically we propose to generate a mean
comprehensive geometry model and separate deformation models, dealing with
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inter-individual deformation and temporal deformation and defining each full-
space deformations.

o The representation of the topological, geometrical, anatomical, and
physiological relations between sub-structures
For higher levels of reasoning and user interaction, a complex anatomical model
needs to be augmented with information beyond pure geometry. Anatomical
nomenclature and its associated relations and hierarchies will e.g. help to
display processing results adequately to the clinical user or to request user input,
or to inhibit penetration or intersection of certain structures by other structures,
during model adaptation.

3 General Structure of the Model

The model includes a definition of a set of cardiac landmarks and their mean
locations, the mean geometry of the coronary arteries (centerlines and radii), the mean
surfaces of the four cardiac chambers, and the connected vascular trunks, i.e. trunks of
the vena cava, the pulmonary arteries, the pulmonary veins and the aorta. The mean
geometries correspond to the end-diastolic cardiac phase. In addition to the mean
geometries the model will be extended to include typical deformation patterns for
inter-individual deformation and for temporal deformation. The deformation patterns
are expressed as smooth full space transformations, independent of the geometric
structures. All geometric entities feature an anatomical label. A nomenclature table
allows the lookup of the respective anatomical name of the structure. Relation tables
provide information about the relation of anatomical items. Currently the relations "is-
part-of", "is-child-of", and "is-connected-to" are covered. To facilitate user interaction
pictograms can be added to the model. Currently a pictogram of the coronary arteries
derived from the one proposed by the American Heart Association (AHA) [16] is
provided. The model is intended to support mainly image processing applications. In
order to do so, the pure information (e.g. geometries, variability, meta-information)
covered by the model is associated with application independent model related
functionality. It covers basic individualization functionality (e.g. landmark based
model deformation or model to image registration), meta-information related
functionality (e.g. retrieve a list of related structures for a given structure of interest),
and basic user interaction (e.g. rendering of image data together with geometric
entities or pictogram based user-input). The model related functionality has been
implemented in Java, model persistence is achieved by serialization of the model
object entities to XML files.

4 Model Generation

4.1 The Coronary Artery Model

As the basis for the coronary artery model we used measurements from J. T. Dodge et
al. about the location [13] and diameters [14] of human coronary arteries as
reconstructed from bi-planar angiograms. In addition to the publicized values, J. T.
Dodge kindly made available an updated and enlarged list of values. Dodge
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distinguishes 32 coronary artery segments. Each segment is trisected in a proximal,
mid, and distal section and the center-point of each section is measured, giving in
total 96 points defining the coronary artery tree. Basis for the measurements are 37
patients, categorized into three coronary supply types: right dominant, balanced and
left dominant. The original point data is given in a spherical coordinate system. Based
on this data, we constructed a coronary artery tree model. Since the point set provided
by Dodge does not include the start and end point of each segment, we recovered the
branching points by linear extrapolation and intersection with the parent segments. An
interesting result of the measurements performed by Dodge, is the consistency of
coronary artery location across the three supply types. The main property that differs
depending on the supply type, is the tree topology, i.e. the connectivity between
coronary artery segments. As a result, the arteries at the lower "back-side" of the heart
are sometimes fed by right coronary artery and sometimes by the left circumflex
coronary artery, but they stay mainly in place. Figure 1 shows a rendering of the
resulting coronary artery model and the corresponding pictogram derived from the
one recommended by the AHA [16]. The model was evaluated on multi-slice CT
angiography (MSCTA) images [12]. The evaluation was restricted to the three main
coronary arteries (left anterior descending, circumflex, and right coronary artery)
being manually drawn in the images. The smaller branches could not be imaged with
the necessary constant visibility over patient samples and were therefore left out. It
could be shown that using an affine adaptation scheme, a mean residual distance
between adapted model and sample lines of 2.7 mm could be achieved [12].

Fig. 1. Left: Coronary artery model, derived from the Measurements of Dodge et al. [13,14].
Right: Pictogram adopted from the AHA recommendation [16] using a coherent color scheme.
The whitish colored coronary artery segments of the pictogram depict the variable portion
depending on the supply type

4.2 Adding Landmarks to the Model

Cardiac landmarks are usually not of direct interest in cardiac diagnosis or treatment
planning. However, they can serve as reference points that can be used to register
image-data to image-data or model to image-data. Landmark positions may originate
from user input or from automated detection algorithms. We defined a set of 25
landmarks (see figure 2). The landmarks were manually defined in 20 end-diastolic
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cardiac CTA datasets in order to create a mean landmark model. In addition to the
landmarks, the three main coronary arteries were defined in the CTA datasets, in
order to allow a registration between landmark model and coronary artery model. In
order to calculate mean landmark positions, the landmark sets need to be transformed
into a common reference coordinate system. We performed a Procrustes analysis [15]
to find the optimal transformations for all shape samples given the allowed
transformation class (similarity transformation). In order to transform the mean
landmark model into the coordinate system of the coronary artery model, the
transformations resulting from the Procrustes analysis are applied to the manually
delineated coronary artery centerlines of the samples. By a subsequent match of the
resulting bunch of coronary arteries to the coronary artery model, and applying the
resulting transformation to the landmark model, we achieve a combined coronary
artery and landmark model (Fig. 2).
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Fig. 2. Cardiac landmarks. The landmark set includes the overall center of the heart, the center-
points of the four cardiac chambers, the four valve centers, apex, center of left anterior, left
posterior, and right anterior papillary muscle, center points of left and right atrial appendage,
left and right coronary ostium, bifurcation point of left anterior descending and circumflex
coronary artery, the four ostia of the pulmonary veins, ostia of vena cava superior and inferior,
and the ostium of the coronary sinus

Figures a-d: Some landmark examples, (a) center left ventricle, (b) aortic valve, (c) apex, (d)
onset of vena cava superior. Figure (e) shows the error ellipsoids (directional std. deviation)
centered at the landmark positions with the registered coronary artery model

4.3 Adding Cardiac Surfaces to the Model

With cardiac surfaces we mean the endo- and epicardium of the cardiac chambers and
the walls of the connected vascular trunks. On the basis of state of the art 3D image
material such as CT or MRI images, endo- and epicardium can often only be
distinguised for the left ventricle. Therefore, for the time being, the right ventricle and
the left and right atria are modeled with one surface each, representing endo- and
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epicardium. The following structures are included in the model: Left and right
ventricle, left and right atrium, trunks of vena cava superior, vena cava inferior,
pulmonary artery, pulmonary veins, and aorta. The surfaces are represented as a set of
connected triangular meshes. A labeling scheme allows identifying for each triangle
the corresponding cardiac structure.

The standard procedure to generate an anatomical surface model starts with the
(usually interactive) segmentation and labeling of a learning set of data. In a second
step either a mean label image is generated [3] and subsequently triangulated, or one
label image is triangulated and the resulting mesh is adapted to the other label images
[19]. For the generation of our cardiac surface model we tried to circumvent the
necessity of a set of segmented datasets and chose for a bootstrap method working
directly on un-processed 3D images. The main reason for this choice is to avoid the
extremely time consuming procedure of manual or semi-automated segmentation of
all the required cardiac structures. Our method makes use of available mesh
generation and manipulation functionality [20] as well as active surface adaptation
procedures for 3D image segmentation [21]. The procedure is somewhat similar to the
one described in [19], but circumvents the use of labeled images. It consists of four
main steps:

1. All cardiac structures of interest are independently interactively segmented in
one high-quality, "normal" CTA image (root image). The segmentation is
performed using an active shape procedure [21] starting from a simple, e.g.
ellipsoidal or tubular shape. The segmentation of the individual structures is
iteratively improved until a sufficient segmentation quality is reached. Each
iteration consists of an automatic active surface based surface to image
adaptation and a subsequent interactive correction at locations of insufficient
match. The interactive corrections are mesh deformation operations working on
an adjustable influence range [20]. The result of this step is a set of closed
surfaces, each resembling one cardiac structure, i.e. one for the left ventricle, one
for the left atrium etc.

2. Next, the set of surfaces from part one are merged to create one connected and
labeled surface mesh. It requires the successive application of a handful of basic
operations on surface meshes such as volumetric operations (union or difference
operation applied to two closed surfaces), intersection and cut operations, and
mesh refinement operations (e.g. in order to remove small triangles or to change
the resolution of the triangulation) [22]. As long as the structures that need to be
merged are overlapping, the merging operation can be performed automatically,
given a set of closed surfaces and the desired triangle size. In case of non-
overlapping structures that still need to be connected, some handcrafting is
required. The result of this step is one connected and labeled mesh covering all
input structures. The mesh resembles the shape of the structures as given in the
input image.

3. Then, the mesh resulting from part two is adapted to a learning set of images. For
initialization, a similarity transformation is applied to the vertices of the mesh
resulting from part two. The transformation is estimated [23] on the basis of a set
of cardiac landmarks defined in the root image and the image under
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consideration. After initialization the mesh is semi-automatically adapted to the
image similarly to the procedure in part two. The active surface method used
during the adaptation procedure contains a shape term that minimizes triangle
edge ratio differences between the model shape and the adapted shape. This leads
to a predominant conservation of point correspondences [19]. The result of this
step is a learning set of corresponding sample meshes.

4. Finally, based on the learning set of corresponding meshes from part three, a
mean model and deformation modes can be extracted. The averaging can either
be performed in the coordinate system of the landmark model or in a coordinate
system resulting from a Procrustes analysis. According to our experience, the
landmark based registration scheme works sufficiently well, a rigorous analysis
of the influence of the registration scheme needs still to be performed.

The procedure described above is clearly biased by the selection of the root image. In
order to reduce the influence, steps three and four may be iterated, similar to an
iterative Procrustes procedures. The approximate time consumption of the above
procedure is as follows. Step one requires about 5 min per structure. For all structures
of the cardiac surface model this sums up to about one hour. The merging of
structures in part two works largely automatically for nicely overlapping structures.
Together with the remaining handcrafting step two requires again about one hour. The
mesh adaptation to the set of learning samples in step three requires about 5 min. for
the landmark definition and another 10 min. for the semi-automated adaptation
procedure, summing up to 15 min. per learning sample. Thus, the construction of a
model from 20 samples requires about 7 hours.

() (b)

Fig. 3. (a) Triangular meshes representing the cardiac surfaces. (b) Registered surface and
coronary artery model
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4.4 Adding Variability to the Model

As pointed out in section 2, we follow the idea of separating the representation of
(mean) shape and the representation of deformation. The advantage of this approach
is firstly that it intrinsically enables a coherent deformation of the model, independent
of the representation and parameterization of the geometry of the model parts.
Secondly, it allows using deformation fields that originate from other sources, e.g.
from elastic registration procedures or from tagged or phase contrast MRI images.
The approach is related to methods that use elastic registration during the model
construction or adaptation phase [24-26]. In order to realize this approach we need a
common scheme to represent deformation. The steps to achieve this are sketched as
follows. We assume that a deformation measurement consists of a set of deformation

(a) (b)

Fig. 4. Result of the adaptation of the cardiac surface model to a multi-phase CTA dataset. (a)
depicts the end-diastolic and (b) the end-systolic heart phase. Based on the motion of the mesh
vertices a full-space deformation field as been interpolated using a thin-plate-spline approach,
depicted by the blue grid-lines

vectors in a given coordinate system. This could be a set of corresponding vertices of
a surface mesh propagated through a time series of images, or corresponding tag-line
crossings of a tagged MRI image series, or the motion of a grid of control points
derived from an elastic registration. In a first step the deformation vectors are
transformed into the model coordinate system based on the registration of a sub-set of
geometrical model-items that can be delineated in the source images (e.g. a set of
cardiac landmarks). In the second step a smooth deformation field is interpolated from
the (potentially sparse) input vectors, e.g. by a thin-plate-spline (TPS) interpolation
approach [27], resulting in a smooth full space deformation field. In a third step, the
deformation field now defined everywhere is sampled in a standardized way, e.g. on a
Cartesian grid. Based on the representation resulting from step three, the deformation
fields can be averaged or further statistically analyzed. Figure 4 shows a deformation



110 C. Lorenz and J. von Berg

derived from surface tracking through the cardiac cycle. The end-diastolic (4a) and
end-systolic (4b) shape of the cardiac surface model as adapted to a multi-phase
cardiac CTA image is shown. The blue grid-lines visible in the images indicate the
spatial deformation as derived from a TPS interpolation.

5 Conclusions and Future Work

The generation of a comprehensive geometrical model of the human heart has been
described. Currently available is a mean model of the cardiac structures comprising
the surfaces of the cardiac chambers and trunks of the connected vasculature, the
coronary arteries and a set of 25 landmarks. The model is based on published data on
the coronary arteries and on 20 multi-slice CT datasets. We advocate a distinct
representation of the mean model geometry and model variability. A scheme to
represent and add inter-individual and temporal variability to the model has been
proposed. Current activities focus on enlarging the set of learning samples and on
motion field extraction based on multi-phase cardiac CT and cine cardiac MRI image
data. The next step will be the model application in the context of automated
detection, segmentation and tracking of cardiac structures.
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Abstract. For the analysis of shape variations of the heart and the cardiac
motion in a clinical environment it is necessary to segment a large amount of
data in order to be able to build statistically significant models. Therefore it has
been the aim of this project to find and develop methods that allow the creation
of a fully automatic segmentation pipeline for the segmentation of endocardium
and myocardium in ECG-triggered MRI images. For this purpose a combination
of a number of image processing techniques, from the fields of segmentation,
modeling and image registration have been used and extended to create a
segmentation pipeline that reduces the need for supplementary manual
correction of the segmented labels to a minimum.

1 Introduction

The analysis of shape and shape variations of organs and anatomical structures in
general has become an important field of medical image processing. Detailed shape
analysis gives the possibility to identify typical variations among healthy individuals
in order to be able to distinguish them from pathological variations and improve the
early diagnosis of diseases, which result in pathological variations of shape. Since the
heart is a dynamic organ, not only the analysis of the cardiac shape, but also the
analysis of the cardiac motion is a major topic in medical image analysis. For this
purpose, the heart has to be segmented not only at one particular time, but during one
cardiac cycle, which is typically consisting of 15-20 images using ECG-triggered
MRI images. Due to the fact that such large amounts of data are needed in order to
perform analysis of shape and shape variations, it has been the objective of this
project to develop a pipeline that is providing methods, which allow fully automated
and at the same time robust and effective segmentation of cardiac MRI-images.

In the last decade, deformable models [1] emerged as a well established method for
medical image segmentation. Beside of parametric deformable models [1] also known
as “snakes”, introduced by Kass and Terzopoulos, geometric deformable models
based on level sets [2, 3] became one of the most used methods in medical
segmentation pipelines. The fact, that geometric deformable models can easily handle
topological changes and are easily expandable from two to three dimensions made
them a frequent choice for a number of extensions to the geometric deformable
models originally introduced by Sethian and Osher [2, 3].

One characteristic of deformable models is that the segmentation process has to be
started by providing an initial surface, which will be deformed and adapted to the
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image data by minimizing an energy functional. One possibility to generate such an
initial surface, which is ideally already a good approximation of the structure to be
segmented is to use user defined seed points and take them as a basis for e.g. fast
marching segmentation [4]. The disadvantage of using these methods is, that they
need user interaction to set the seed points and the resulting initial surface is very
dependent on the location of the seed points. Therefore a better solution is to use a
pre-defined initial surface to start the level set segmentation. One possibility to fulfill
this task is to create a common shape template the from a number of segmented data
sets by using principal component analysis [5]. The term common shape template is
used, since we are only using the mean shape for initialization and not to guide the
segmentation process, where the whole common shape model — including the
principal components — would be used.

Having an initial surface, this surface has to be positioned - ideally - as near as
possible to the boundaries of the structure to be segmented. For this purpose a
registration of the dataset to be segmented, with the common shape template has to be
performed. This can be done by registering the individual dataset and an atlas,
containing the common shape template and a grayscale image that has once been
aligned to the common shape template. A good choice for performing this task is to
use mutual information metric [6].

For the segmentation of the whole cardiac cycle the segmented label from one
point in time of the cardiac cycle can be used as initial template for the next point in
time. The initial template for the myocardium segmentation is generated by creating
distance maps of the segmented endocardium to produce initial templates for the
myocardium. The final myocardium segmentation is again performed using level set
segmentation.

Summing up, the objective of this project was to generate a pipeline for automatic
segmentation of the endocardium and myocardium for a whole cardiac cycle, by using
a common shape template for the initialization of the segmentation. For this purpose
two main tasks had to be fulfilled

1. Building a common shape template of the four chambers of the heart in order to
initialize the segmentation process.

2. Generating a segmentation pipeline that uses this template for initialization and
succeeds in automatically generating labels of the cardiac endocardium and
myocardium, which need no or minimal manual correction.

2 Methods

2.1 Geodesic Snakes/Geometric Deformable Models

Although parametric deformable models are quite intuitive to implement, they are
also having some weaknesses, which are partially limiting the usability of this type of
models: Firstly, realizing topologically adaptive parametric models, means to do some
major modifications of the parametric deformable models, since any change in
topology need new parameterization. During the evolution of a contour in the
segmentation process, interfaces may change connectivity and split, thereby
undergoing a topological transformation which is often very difficult to follow using
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traditional approaches. Moreover adapting parametric models to 3 or 4 dimensions is
a very challenging task and requires computationally expensive methods [7].

In order to overcome these problems, geometric deformable models have been
introduced in the field of image analysis by Caselles and Malladi [8, 9]. They are
based on curve evolution theory and level set methods [4].

Being more independent from initialization than parametric deformable models,
level sets are also designed to handle problems in which the evolving interfaces can
develop sharp corners and cusps and change topology. Hence in order to provide a
method, which is on the one hand capable of handling topological changes and on the
other hand allow the usage of statistical shape models to guide the segmentation
process in the future, geometric deformable models have been preferred to parametric
deformable models in the course of this project.

In this project geometric deformable models have been used in two different
concepts: Boundary driven geometric deformable models for the endocardium
segmentation and region-competition snakes for myocardium segmentation.

Boundary-Driven Geometric Deformable Models. As posted in [10], geometric
deformable models are defined as the zero level set of an implicit function ¢, defined
on the entire image. The evolution of the surface is defined via partial differential
equation on the implicit function ¢. Following the approach used by Caselles et al. [9]
we are using the following formula

% = c()(x+V,)|V(9)|+ BV (P)-V(9)) . M

B(V(P)-V(¢))is the projection of an attractive force vector to the surface. P is the
gradient of a potential field, given as

P(x,y,2) =|(V(G, *1(x,y,2)))|- 2

B denotes the strength of the attractive force and «k is the curvature dependent
speed. c(x) is the stopping term based on the image gradient and Vj is a constant.

The curvature dependent stopping term adds some robustness concerning leakage
through object boundaries and prevents the evolving contour from leaking through
small gaps.

Region-Competition Snakes. In contrast to boundary driven snakes, geometric
deformable models can also be governed by local probabilities that determine if the
snake is inside or outside of the structure to be segmented. In this implementation of
geometric deformable models, the propagation term is controlled in a way, that it
shrinks, when the boundary encloses parts of the background and grows, when the
boundary is inside the wanted regions [11].

In our implementation, based on the itkTresholdSegmentationLevelSetImageFilter
of the Insight Segmentation and Registration Toolkit (ITK) [12] a speed term (feature
image) with positive values inside an intensity window (between a low and high
threshold) and negative values outside that intensity window is constructed. The
evolving level set front will lock onto regions that are at the edges of the intensity
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window. In detail the feature image is calculated as follows (L...lower threshold,
U...upper threshold).

f(x):{g(x)_]“ ifg(x)<(U_L.)/2+L . 5
U-g) otherwise

In our application the thresholds can be calculated by calculating the mean grey
value and standard deviation of the pixels, which are at the position of the template
image in the original grayscale image. The thresholds are set by taking the mean grey
value of the template region + 1 standard deviation.

Furthermore, a Laplacian calculation on the image to the threshold-based speed
term can be added. The Laplacian term causes the evolving surface to be more
strongly attracted to image edges.

Identically to boundary driven snakes, an additional curvature based smoothing term
adds robustness concerning leakage through object boundaries.

2.2 Model Building

Signed Distance Maps. For the purpose of building models of already segmented
label data, we were choosing distance maps as a representation of shape following the
approach of Leventon et al. [5]. A curve C which should be represented is embedded
as the zero level set of a higher dimensional surface u, whose height is sampled at
regular intervals. Each sample encodes the distance to the nearest point on the curve,
with negative values inside the curve. The unsigned surface u is defined as

ju(] = min]c(@) . @)

Distance maps have the property, that the gradient magnitude of the image is
constant across the image and equal to one. The direction of the gradient is equal to
the outward normal of the nearest point on the curve C. From any point x in space the
nearest point on the curve can be computed by

x—u(x)Vu(x). 5)

A distance map provides the propagation of the boundary information without loss
of fidelity and the redundancy of information over a region in space provides stability
in many types of computation.

Alignment of Distance Maps. In order to rigidly align the distance map
representations of the individual labels, we were using mutual information (MI)
independently introduced by Viola and Wells [6].

Given two variables U and V, mutual information is defined as

MI(U,V) = HU)+H(V)-H(U,V). (6)

Already applied to a wide range of applications for multi modality registration, MI
turned out to be also very useful for the global alignment of distance functions and
provided very reasonable results for the alignment of our signed distance maps.
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Principal Component Analysis on Signed Distance Maps. Having a training set of
signed distance maps, Principal Component Analysis can be used to derive a shape
model [13]. A mean surface can be computed by taking the mean of the signed
distance functions. The matrix of eigen-vectors and the diagonal matrix of
corresponding eigen-values is computed from the co-variance matrix using Single
Value Decomposition.

An estimate of a novel shape, u, can be represented by k principal components in a
k-dimensional vector of coefficients, o :

a= -4, ©

Uy is a matrix consisting of the first k columns of the matrix of eigen-vectors U,
which is used to project a surface into the eigen-space. Given the coefficients &, an
estimate of the shape u is reconstructed from Uy and # :

u=U,a+u. 8)

Since distance transforms do not form a linear vector space, u will in general not
be a true distance function. However, the surfaces still have the properties of
smoothness and local dependence, which is sufficient for our purposes [5].

2.3 Model to Image Registration

In order to register the common shape template to a new image, we are also using
mutual information by rigidly aligning the grey-scale image, on whose segmented
label data all other label data sets have been registered, and the image to be
segmented.

For this purpose a multi-resolution registration approach has been used. This
means that the images are registered in an iterative process, using different resolutions
of the images. This fact adds robustness to the registration process and increases
speed and accuracy.

3 Results

In the course of this project, we have been developing a C++ software-pipeline for
fully automatic segmentation of 4D heart MRI datasets. This pipeline is implementing
the methods described above, by using and extending some of the functionality of the
Insight Segmentation and Registration Toolkit (ITK) and the Visualization Toolkit
(VTK) [14].

As a first step we had to create a common shape template out of 10 segmented
heart datasets. Since we also wanted to have the possibility to segment the four
chambers of the heart separately, we have not only been creating a common shape
template of the whole endocardium, but also of each chamber of the heart. For this
purpose we created distance maps of the datasets, and rigidly aligned them by using
mutual information. Fig. 2 is showing the results of the registration of the whole
endocardium and of the left ventricle each with 5 datasets.
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Fig. 1. Result of the rigid alignment of 5 labeled heart datasets. Left: Registered endocardium,
Right: Registered left ventricles

Of course rigid alignment does not provide perfect correspondence, however, for
the task of building a model/template to initialize the segmentation process and using
signed distance maps, which are robust to slight misalignment as a representation of
shape, we did not necessarily need perfect correspondence.

Using the methods described in section 2.2 we were calculating the common shape
template and its principal components. Note, that the main variations of the model
represented by the principal components are not involved in the segmentation process
up to now, however, this might be part of our future work. Moreover, at this point of
time the principal components are an additional important criterion to evaluate the
validity of the model for our purposes. Fig. 2 is showing the common shape templates
of the 4 chambers of the heart.

Fig. 2. Common shape templates of the four heart chambers. Top row: left atrium (left), right
atrium (right), bottom row: left ventricle (left), right ventricle (right)
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Having these initial templates the image to be segmented has been registered to the
grayscale image containing the label data on which the distance maps have been
registered, using mutual information. Another possibility would have been to directly
register the new image to the distance map of the common shape template, however, in
this case, the results turned out to be less robust and less correct, than in the first case.

The active geodesic level set segmentation process itself is started by using the
common shape templates as initial templates and setting predefined parameters for the
level set algorithm. As stopping criteria a threshold for the amount of change of the
zero level set between two segmentation iterations has been used. Additionally a
maximum number of iterations has been set. Due to the fact, that the segmentation is
initialized very near to the object boundaries, the propagation scaling (~balloon force)
can be set rather low. This brings the advantage that leaking through boundaries is
less likely and the geometric deformable model is guided by the advection force,
pulling the contour to edges in the image and the curvature term, preventing the
contour from leaking and resulting in more robust convergence.

Fig. 3 is showing the initial templates and the results of endocardium segmentation.
Note that the borders between atria and ventricles have not been manually corrected.

Fig. 3. Endocardium segmentation. Comparison of initial state and segmentation result of a
endocardium segmentation in 2D (first two images) and 3D (third and fourth image)

Fig. 4. Example for a template of the myocardium segmentation of the left ventricle generated
via distance maps (left) and the final segmentation result for the left ventricle myocardium

(right)
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For the segmentation of the cardiac cycle, the segmentation results of the initial
point in time have been used as initial templates [15]. For this purpose, the same
transformation as for the first image has to be applied to the whole dataset of the
cardiac cycle. An initial template for the myocardium segmentation can be generated
by thresholding a signed distance map of the endocardium labels, for each chamber.
Using this as an initial template, the thresholds for the region-competition snakes are
computed by calculating the mean grey value of the pixels covered by the label. The
thresholds are set by adding +1 standard deviation to this mean value.

In this work the correctness of the segmentation has been evaluated for two
different heart datasets: One dataset of the ten datasets, which have been used for the
model building process (1) and one new dataset (2). In order to evaluate the
correctness of the segmentation for the datasets, the generated labels have been
compared with the labels after manual correction of the segmentation results,
considering this as the gold standard. For endocardium and myocardium segmentation
a similarity index for three different points in time of the cardiac cycle has been

calculated by using
= M . 9)
|4 +|B]

A and B are the non-zero pixels in the first and second input images. Operator

represents the size of a set and M represents the intersection of two sets.
Table 1 is showing the results for the similarity indexes:

Table 2 is showing the undirected Hausdorff distances, comparing the
automatically segmented endocardium and the manually corrected labels.

Table 1. Similarity indexes for automatic segmentation results and manually corrected
segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the ECG)

000 ms 060 ms 110 ms
Heart 1 | Heart 2 | Heart 1 | Heart 2 | Heart 1 | Heart 2
Endocardium 0.980 0.992 0.970 0.980 0.971 0.976
Left ventricle 0.991 0.991 0.998 0.992 0.998 0.976
Right Ventricle 0.946 0.988 0.933 0.976 0.927 0.918

Similarity index

Left atrium 0.975 0.984 0.988 0.976 0.979 0.930
Right atrium 0.986 0.990 0.989 0.961 0.948 0.953
Myocardium 0.950 0.964 0.952 0.958 0.940 0.936

Table 2. Hausdorff distances in mm between automatic segmentation results and manually
corrected segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the
ECG)

Hausdorff 000 ms 060 ms 110 ms
distance Heart 1 | Heart2 | Heart 1 | Heart 2 | Heart 1 | Heart 2
Endocardium 2.3 2.0 2.7 2.5 2.7 2.5
Myocardium 5.1 4.8 5.3 5.2 5.8 6.1
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4 Discussion

Using mutual information to register the distance maps of the individual labels and
the grayscale images to the atlas resulted in a precise rigid alignment and provided
very satisfying results. Calculating a mean model resulted in a meaningful and
feasible common shape template, which proved to be an adequate tool for the
initialization of the level set segmentation process. Using geodesic level sets for the
segmentation of the endocardium turned out to be an adequate choice and resulted in
good segmentation results compared to the gold standard. Note that no manual
correction has been performed between the segmentation of the different phases of the
cardiac cycle. Performing minimal manual correction - especially the correction of the
valve plane level - after segmenting the first point in time of the cardiac cycle would
of course mean another improvement of the segmentation results.

The usage of ITK and VTK to implement the segmentation pipeline turned out to be
an adequate choice for programming the software pipeline.

A detailed and comprehensive evaluation of the presented pipeline and an
extension of the pipeline, which is using a modified template created out of more
datasets and using other forms of shape representation in order to implement
knowledge about shape variations in the segmentation process itself is currently under
development.
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Abstract. Segmentation of the fetal heart can facilitate the 3D assessment of the
cardiac function and structure. Ultrasound acquisition typically results in drop-
out artifacts of the chamber walls. This paper presents a level set deformable
model to simultaneously segment all four cardiac chambers using region based
information. The segmented boundaries are automatically penalized from
intersecting at walls with signal dropout. Root mean square errors of the
perpendicular distances between the algorithm’s delineation and manual
tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D.
The ejection fraction was determined from the 3D dataset. Future work will
include further testing on additional datasets and validation on a phantom.

1 Introduction

Congenital heart disease affects about 8 in every 1000 births [1] and its signs can be
diagnosed with prenatal echocardiography [2]. As with the adult heart, functional
volume estimation of the left ventricle provides quantitative information about the
state of the myocardium. However, in the fetus the blood flow in both sides of the
heart is allowed to mix and so both ventricles are important for clinical assessment.
One important application of fetal cardiac segmentation is for measurement of the
absolute size of the chambers. This can be used for evaluation of the function of the
heart, compromised either by cardiac malformations or by non-cardiac diseases such
as immuno-haemolysis. In this condition the maternal immune system can kill fetal
blood cells and so the fetal heart grows larger to compensate.

The prenatal heart has very thin chamber boundaries particularly in the areas
consisting of the atrial septum, the membranous segment of the ventricular septum,
and the valvular leaflets. Often the resolution of the ultrasound beam perpendicular to
its axis is insufficient to resolve these structures and so these walls suffer from signal
dropout and appear as holes in the endocardium. These dropouts can also be
misleading for clinical diagnosis since the fetal heart contains septal holes which
normally close at birth. Artefacts such as these complicate the automated functional
volume quantification of each chamber for determining useful cardiac indices such as
ejection fraction. In some cases it is difficult for fetal cardiologists to manually trace
the endocardiac structures because of the missing image greyscale information.

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 123 -132, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Automated volume quantification in fetal cardiology is relatively new since it is
difficult to acquire datasets without significant shadowing. Fetal body and cardiac
motion artefacts are most noticeable when using slice-reconstruction 3D methods.
Recent advances in volumetric acquisition have allowed the fetal heart to be imaged
in 3D with considerably reduced motion artifacts [3], [4].

In the past Navaux and co-authors have published their work on segmentation of
the 2D fetal heart by classification via neural networks [5], [6]. There has been
relatively little use of deformable models to segment fetal cardiac data — only two
papers in the literature currently exist: Lassige et al [7] used a level set snake to
measure the size of the septal defects in echocardiographic images. This snake had a
constant speed term that frequently overshot boundaries. In 2003 Dindoyal and co-
workers presented an explicit 2D Gradient Vector Flow (GVF) snake algorithm with
rigid body motion constraints to segment and track ventricles in 2D motion-gated
fetal cardiac data [8]. Recently Esh-Broder et al [3] have collected over 20 3D fetal
heart datasets. In this study the ejection fraction was estimated from the manual
segmentation as well as comparison of both left and right ventricular volumes.

Section 2 outlines the proposed method to automatically segment the fetal cardiac
chambers of two echocardiographic datasets after placement of manual seed points;
one dataset was acquired from conventional 2D ultrasound slices and the other by
Live 3D. The next section presents a selection of the images segmented with manual
tracings for comparison as well as measurement of the accuracy. We then conclude
the work and present further directions for study.

2 Method

2.1 Data Acquisition

3D acquisition of the fetal heart by serial slices was carried out by an online motion
gated method pioneered in our group [9] using paired Acuson scanners (25 frames per
second and a square pixel spacing of 0.26mm). True 3D acquisition of the fetal heart
was performed with the Live 3D ultrasound scanner from Phillips [4]. This imaging
system is capable of capturing about 24 volumes per second and can output a
resampled cubic voxel resolution of 1.47mm’ for the penetration depth required.
Although the 2D images from the paired scanners were stacked in 3D with motion
gating, there was parts of the volume with noticeable motion artifacts that caused
misalignment between slices. For this reason the volume dataset from the Acuson
scanners was treated as separate 2D images. The Live 3D dataset did not suffer from
this problem due to the volumetric acquisition method. Motion gating was
unnecessary for this dataset since it was acquired with the probe kept immobile during
no apparent fetal body movement.

2.2 Level Set Deformable Model

The level set method is defined implicitly compared to many adaptations of the snake
model first introduced by Kass in 1988 [10] which track explicit markers. Level set
methods can behave like the explicit case by chopping the level set function at the
zero level (refer to Fig. 1). These implicit models have attractive properties in image
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segmentation such as automatic interpolation of the propagating front for irregular
shaped boundaries and the ability to handle topological changes with ease.

Level set
function

T
5 Image
s plane

Fig. 1. Illustration of the level set function and zero levels for a 2D image

The generic level set equation for image processing can be written in the form
p=F|Vg|. (1)

where ¢ is the level set function and F is a problem dependent speed function.
The level set used in this paper was solved using a first order iterative scheme
because of its low computational complexity

¢n+l = ¢n +ANF¢H . (2)

where 7 is the iteration number and AN is the timestep. Upwind differencing schemes
were used where appropriate to maintain numerical stability around the propagating
front as well as a small timestep. A form of narrow banding was used to speed up the
level set propagation and to prevent nucleation of new fronts. The front is tracked on
each iteration and its intersection with the edge of the narrow band can be predicted.
When this occurs a new band is grown from the current zero level front by isotropic
diffusion.

The front was manually initialized as a circle or sphere in each chamber. Each
chamber contained a different snake which was stored in separate memory space to
the others. This was implemented to prevent the level set merging of neighboring
fronts. The distance transform for each snake was defined as a cone with negative
values inside the front and positive elsewhere. This can be computed very quickly for
such simple geometry in a single pass by computing the distance between voxel
positions from the radius of the front. For non primitive initializations it may be
necessary to use more general efficient distance transforms such as chamfering. The
usual criterion of normalizing the distance transform was enforced.

Sarti et al 2002 [11] developed a level set algorithm with mean curvature and edge
flow diffusion properties to segment datasets with missing boundaries. In this paper a
new term was added to this evolution equation proposed by Sarti to incorporate region
growing based on local deviations from the interior and exterior regions using the
image part of the Mumford Shar (MS) functional. This term is useful in images
without clear boundaries [12]. In the implementation proposed here the MS force is
heavily penalized by curvature and inter-snake collision detection to reduce inter-
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chamber leakage. This is shown in equation (3) where Sarti’s geometric model for
boundary completion is enclosed in curly braces.

\%
p= agv[—‘”}ﬂwg)-(w) Ve

9|

+(Al1-uT -Al1-uT )exp _Kv.{ﬁ} (1-&)|ve] .

9|

Where g = (I+| VGF I)'I is an edge detector that returns a value between 0 and 1,
with G denoting Gaussian filtering and F is the image. In the implementation for this
paper image prefiltering to reduce noise was unnecessary for the volumetric data
since the images were already at very low spatial resolution, but was necessary for the
2D sliced data due to the high speckle content.

In equation (3) ¢ is the level set function, [ is the current voxel intensity under
investigation. 4; and g, are the means of the internal and outside regions of the dataset
defined by the level set front. £is a function that tests if any of the enclosed regions
from individual snakes overlap. If there is overlap & returns 1 and O otherwise. fis a
function to penalize edge advection in the presence of local edges and is defined as f =
exp(-¥I VGF ). In Sarti’s original formulation f is a unitary constant. The factors ¢,
Y, A1, A2, K are empirically determined weighting coefficients for the respective terms.

In Sarti’s equation the first term is standard mean curvature flow weighted by an
edge stopping coefficient. It serves to regularize the curve where the data is sparse
and propagation can be further reduced by the presence of edges. The advection term
drives the front towards image edges that have been defined from a pre-computed
edge diffusion field. The main weakness of this term is the presence of many edges at
various strengths as is often found in sonography. Edge flow by advection is heavily
dependent on the quality of the edgemap and so may fail to propagate the front
towards the edges sufficiently to overcome the mean curvature flow.

The proposed term aims to provide some expansion or contraction forces
dependent on the local tissue type in the absence of a strong edge field, e.g. when the
front is in homogeneous regions. Unlike the constant advection term in Lassige’s
algorithm [7] this force can propagate the front in either direction according to the
position of the boundaries and so would be less prone to overshoot. The MS factor
models the foreground and background of the image and tries to minimize its energy
by separating these two regions. The foreground was estimated from a small
circle/sphere placed inside the chamber prior to evolution and the background was
assumed to be the remainder of the dataset. Since the appropriate 4; and A, could
potentially vary significantly between datasets, the images were normalized to reduce
the dependence on these coefficients.

The exponential factor contains a second mean curvature component and its
presence is mostly required where there is extensive shadowing to the chamber. The
collision detection component is heavily penalizing and tends to stop two intersecting
fronts immediately upon contact so that a steady wall is formed where the two
interfaces meet. Although open valves cause blood from atria and ventricles to mix
cardiac function in clinical use is measured by treating each chamber in isolation.

3)
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From preliminary experiments it was discovered that for the collision to occur at the
right place (where part of the chamber wall has suffered signal dropout due to the
beam resolution); the two snakes should be started from as close to the centers of their
respective chambers as possible. This prevents one snake from invading the adjacent
chamber due to its arrival at the missing boundary first.

3 Results and Discussion

Fig. 2 illustrates the effect of the added term to Sarti’s equation. Without the presence
of a clear edgemap from the data Sarti’s snake fails to propagate appreciably towards
the desired boundary. To overcome this restriction we used the bidirectional MS term
in conjunction with Sarti’s algorithm which yielded a closer segmentation to the
expert’s delineation. We used manual expert tracings by a fetal cardiologist as a gold
standard. Full interactive segmentation of the images proved to be both challenging
and tedious in particular for areas with partial volume artifacts of the papillary
muscles and the missing atrial septum.

Fig. 2. Segmentation by the algorithm proposed in this paper (left) and segmentation by Sarti’s
algorithm (middle). The white contours are automatically generated and grey denotes manual
tracings. Atria appear at the top of the image and ventricles at the bottom. The right image
shows the edgemap

Fig. 3. Effect of the collision penalization term (enabled in /eft image and disabled in right
image)
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Fig. 3 shows the effect of the collision penalization term. The left image shows the
atrial boundary reconstructed at approximately the location of the true boundary and
the right image illustrates overgrowth of the fronts.

Fig. 4. Segmentation results of the algorithm on the 2D slice data (white) superimposed on
manual tracings (grey)
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Fig. 5. 3D segmentation on the Phillips Live 3D data (only central slices are shown for clarity).
Space varies horizontally and time vertically in this figure. White contours were generated by
the algorithm and grey ones are manual tracings

The algorithm was applied to 32 2D images from the Acuson scanner and a 3D
dataset from the Phillips Live 3D scanner. Inter-operator variability of manual
segmentation was not measured for comparison with the automated delination in this
paper. It was assumed that the repeatability of manual tracing to within an error of 2
voxels would be sufficient for clinical use. To access the accuracy of the algorithm
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root mean square (rms) errors were computed from point-wise distances between the
automatic boundaries and the manual tracings. The segmentation results in 2D can be
seen in Fig. 4 and 3D analysis is displayed in Fig. 5.

Frequency analysis of the rms errors is shown in the bar charts in Fig. 6. The rms
errors are within 7 pixels (<2mm) in 2D for the chambers excluding the right atrium.
In Fig. 6 the scale was truncated to empathize the distribution of 2D rms errors
excluding outliers of the right atrium. The outliers stretch out to 15 pixels. Fig. 4
shows several examples where the snake is attracted to regions of echo enhancement
in the ultrasound image above the right atrium. The algorithm appears to be
influenced by strong intensity inhomogeneity artifacts and this pulls the contour away
from the desired endocardiac boundaries.

Root mean sguare (rms) errors for Root mean square (rms) error for 30
20 segmentation segmentation
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Fig. 6. Top row: rms errors of segmentation for each chamber. Bottom left: sensitivity analysis
of the weighting coefficients in the 3D segmentation. Bottom middle: example volume
rendering of segmented Live 3D dataset (during ventricular diastole and atrial systole, posterior
view). Bottom right: volume-time curves for all frames

In 3D the rms errors were between 1-2 voxels (4.5mm). The graphs show that the
spread of rms errors is greater in the 2D case although the overall errors from the 3D
algorithm are larger when expressed in mm units. We attribute the cause of this to the
lower spatial resolution in direct volumetric acquisition which increases the partial
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volume effect. Strong echo enhancement effects would further increase the spatial
rms errors but these were absent in this dataset.

In many of the 2D segmented images the front stopped short of the desired
boundary and this shows up in the high rms errors (refer to Fig. 6). Whilst high
curvature penalization was partially responsible, premature stopping of the level set
front was also due to contributions from the type of image forces used. The MS term
models unchanging mean intensities both inside and outside of a small sphere or
circular seed placed inside the chamber. If the mean was updated as the snake evolved
the front could come to rest closer to the boundary. The edge flow term requires a
diffusion equation to be applied to an edge map and so broadens edges. The Gaussian
prefiltering used a large kernel of width 9 pixels and this could contribute to the edge
broadening.

To assess the dependence of the segmentation on the weighting coefficients, these
parameters were varied independently within a range of 50-140% of their appropriate
values for this application. The test was arbitrarily run on the 1* frame of the Live 3D
dataset and for this range of parameter values, rms errors in the segmentation
remained below 3.5 voxels for all chambers. Fig. 6. shows that the MS region term is
most strongly affected by choice of weighting coefficients.

The left and right ventricular ejection fractions were computed as 61% and 59%
respectively from the automatic segmentation (frames 0 and 6 were identified as the
necessary cardiac time points to perform this calculation). These values are
comparable to the ranges found in a study by Esh-Broder [3] (57.5£14.6% and
54+11.2% respectively), who also measured a non-significant variation between the
left and right ventricles. A volume-time graph of all four cardiac chambers is shown
in Fig. 6 as well as a volume rendering of the level set front.

4 Conclusion

To our knowledge this is the first time non manual segmentation techniques have
been applied on 3D prenatal heart data to measure volumes and cardiac indices. The
automated method provides a segmentation that is far quicker and more repeatable
than manual tracings; but has problems in delineating fine intra-cavity structures and
is strongly affected by enhancement of echogenic regions. The 2D data appears to be
easier to automatically segment than the new Live 3D possibly due to the smaller
pixel size which allows better definition of thin walls and intra-cavity structures.
However, fetal cardiac volumetric imaging simplifies the gating process and will be
the method of choice for acquiring future datasets.

Future work will involve validation of the accuracy of the automated volume
determination from a phantom as well as further testing on additional datasets.
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Abstract. Calcified coronary arteries can cause severe cardiac problems
and may provoke an infarction of the heart’s wall. An established treat-
ment method is the bypass operation. The usage of a telemanipulation
system allows for the execution of that operation as a totally endoscopic
coronary artery bypass (TECAB) grafting. This relatively new method
narrows the surgeon’s view and does not permit the palpation of the
vessel in order to detect calcifications (hard plaques).

A planning based on contrast enhanced, cardiac CT data sets can
compensate for that problem. This work presents analysis methods for
coronary arteries. Hard plaques are detected using a tracking-based ves-
sel segmentation technique. In addition, the vessel’s neighborhood is an-
alyzed in order to decide whether it is surrounded by tissue or fat, or
if it is freely accessible for the surgeon’s instruments. Furthermore, well
adapted methods for the visualization of these analysis results are pre-
sented.

Keywords: Coronary arteries, vessel segmentation, calcification detec-
tion, minimally invasive surgery, cardiac imaging, computed tomography.

1 Introduction

In the developed nations, malfunctions of the cardiovascular system are wide-
spread. Often an obstruction of coronary arteries causes severe risks for the
patient’s health. The herewith related coronary artery disease (CAD) can hinder
the blood-flow towards the areas of the myocardium close to the heart’s apex.
In the worst case this can provoke an infarction of the heart’s wall.

The bypass grafting is an established procedure for the treatment of ob-
structed coronary arteries. Conventionally, it is executed as open-chest surgery.
There, the surgeon can directly look onto the artery and detect hard plaques by
palpation of the vessel. New medical devices like ‘telemanipulators’ change the
way that such operations are executed (see fig. 1). They allow for a special form
of minimally invasive surgery — the totally endoscopic coronary artery bypass
(TECAB) grafting [1,2].

There, the chest is no longer opened completely, and the intervention can
be done on a beating heart. The surgical instruments and an endoscope are
inserted into the patient via small ports and controled by the surgeon from a

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 133-142, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A telemanipulator based system for minimally invasive surgery (da Vinci, Intu-
itive Surgical): The surgeon controls the instruments from a console that is providing
a stereoscopic view on the operation area (left). The instruments and the endoscope
are attached to the arms of the system, and inserted into the patient via ports (right)

console that is providing a stereoscopic view on the operation area. That type
of the bypass grafting results in less trauma for the patients, a faster recre-
ation and a much lower infection risk. On the other hand, the TECAB grafting
requires more experience of the surgeon due to the limited view during the op-
eration. Finally, only a good planning of the intervention can lead to an optimal
result.

An analysis of the coronary artery can compensate for the limitations due to
the minimally invasive character of the operation. Considering the fact that a
huge amount of time is used for accessing the artery that is often hidden behind
fat or muscle tissue, it would be desireable to have this information already prior
to the operation. Also, the position of hard plaques should be known before in
order to decide where the bypass should be attached to the vessel.

In the past, coronary artery calcium has often been detected based on electron-
beam computed tomography (EBCT) data. Several publications describe meth-
ods for quantifying the calcium [3, 4], others focus on the reproducibility of the
calcium scoring [5]. The reason for the usage of EBCT was the much shorter ac-
quisition time of EBCT compared to conventional computed tomography (CT)
of these days.

But the advent of multi-slice computed tomography (MSCT) scanners in com-
bination with a still increased rotation speed now allows for high-quality cardiac
imaging based on conventional CT. The simultaneous acquisition of projection
data in 16 or more detector rows makes it possible to acquire the whole heart
during one single breath-hold [6]. This opens new horizons for the employment of
MSCT for cardiac imaging and analysis; especially in the domain of non-invasive
coronary angiography [7]. CT based analysis of the coronary arteries is still a
relative new technique. Most of the approaches described in the literature are
limited to the detection of stenoses and an analysis of 2D image data [8,9]. To
the knowledge of the author there has not been published any work regarding
true 3D analysis of coronary arteries based on MSCT coronary angiography yet.
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The ‘gold standard’ for the analysis of the coronary artery tree is still con-
ventional angiography. However, this imaging modality is not used for prepar-
ing a TECAB grafting. The reason for that is the fact that angiography is an
invasive modality that is not suitable for the examination of bypass patients.
Furthermore, angiography does not provide any information about the tissue
surrounding the coronary artery tree.

There are several publications dealing with the planning of a TECAB graft-
ing using a telemanipulation system. However, the authors mainly focus on the
optimization of the port placement for avoiding collisions of the instruments
while assuring the reachability of the heart and the coronary artery the surgeon
is focusing on [10, 11].

The here presented work introduces methods for localizing calcifications in
coronary arteries and inspecting the tissue in their neighborhood aiming on
supporting the TECAB grafting in cardiac surgery.

2 Material and Methods

It is desireable to present the image data used for the planning of the intervention
in 3D, rather than as conventional 2D slices. However, a 3D view of the image
data based on direct volume rendering does neither allow a good perception of
coronary arteries and calcium therin, nor the constitution of the surrounding
tissue can easily be determined. Therefore, a vessel analysis based on the result
of its segmentation is introduced, and well adapted methods for the presentation
and exploration of the analysis results are presented.

For the acquisition of our test data a contrast agent has been used to enhance
the visibility of the cardiovascular structures. The projection data has been
acquired with a multislice CT scanner (SIEMENS Somatom Sensation 16) and
reconstructed based on the simultaneously recorded ECG data. This resulted
in high-quality image data without severe artifacts. The data sets consisted of
nearly cubic voxels with a size of about 0.5 mm for each direction.

2.1 Segmentation of Coronary Arteries

We used our own tracking-based vessel segmentation technique that has been
developed for the reliable extraction of coronary arteries from high-resolution
CT data sets [12]. Vessels, that are containing a contrast agent, are relative
homogeneous and show a high contrast with respect to the surrounding tissue.
This allows for a detection technique we call the ‘corkscrew algorithm’, and
that is truely working in 3D. Thus, a connection between the user defined start
and end point following a helical — or corkscrew-shaped — path is searched. It
provides in the first step an estimation for the centerline, that is afterwards
corrected iteratively by detecting the voxels that belong to the vessel’s border.
The algorithm’s output is a set of points defining the centerline and another one
representing the border of the artery. For more details see reference [12].
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2.2 Hard Plaque Detection

The output of the vessel segmentation presented in the preceding section allows
for the subsequent calcification detection. Each computed point of the centerline
has a corresponding set of points representing the vessel’s border in perpendic-
ular direction to the centerline segment. As a consequence, the diameter of the
coronary artery can easily be computed, resulting in a diameter function for the
segmented coronary artery.

The employed vessel extraction approach excludes calcifications from the seg-
mentation result. Hence, calcified regions are expected to lower the mean diam-
eter, since the corresponding border points lie ‘in front’ of them. Based on the
generated diameter function and the image data a three-step analysis is per-
formed (see fig. 2):

1. From the diameter function calcification candidates are extracted by select-
ing those centerline points with a corresponding diameter below a certain
threshold. (This could be for instance the mean value of that function.)

2. Afterwards, these candidate points’ neighborhoods are searched through
whether voxels with high gray values are present. Calcifications are assumed
to be 20 % to 30 % brighter than the vessel’s lumen that is filled with a
contrast agent. Only those candidate points possessing a neighborhood that
fulfills that brightness condition are kept.

3. In a last step, the remaining candidate points are analyzed whether they
are close to the same calcification. If several candidate points form a group
sharing the same calcification, the position laying in the middle between the
first and the last point of the group is stored.
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Fig. 2. The analysis for localizing calcifications in coronary arteries: A set of candidate
points is selected based on an automatically computed threshold. These points are
further analyzed whether bright gray values are in their neighborhood. At the end, the
remaining points are decimated again for assuring that only one of them belonging to
the same single calcification is stored
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The result of that analysis is a set of points with on one hand a position
related to a relative low diameter of the coronary artery and on the other hand
a neighborhood containing voxels with a high gray value. These two conditions
are expected to reliably localize calcifications.

2.3 Inspection of the Artery’s Neighborhood

Coronary arteries are often not freely accessible for the surgeon’s instruments,
since they are surrounded by muscle tissue or fat. The preparation of a TECAB
grafting requires the coagulation of that matter in order to isolate the vessel.
This procedure is very time-consuming, since it has to be done very prudently in
order to not hurting the artery. That process and the TECAB grafting in general
could be speed up if there was a possibility for classifying and quantifying the
tissue in the vessel’s neighborhood.

We propose an analysis method that is based on our vessel segmentation
described above. For each set of border points belonging to the same centerline
point a set of rays starting from the centerline and passing through the cor-
responding border points is considered. Along these rays, starting behind the
border point, gray value samples from the image data are taken. These values
are converted into Hounsfield units (HU) (a task that can easily be done for CT
data, since the necessary information is stored in the header of the DICOM !
data). Based on the obtained HUs the tissue can be roughly classified into air
(HU: = —1000), fat (HU: —220 to —20), and muscle tissue (HU: 20 to 50). The
length of the rays as well as the sampling rate for the gray value acquisition can
be selected by the user.

2.4  Visualization of the Analysis Results

In this section we describe the methods that we have developed for the presen-
tation of the analysis results. They have been designed to be well adapted to the
planning of a TECAB grafting. All visualization tasks are done using the freely
available toolkit VTK?2.

The ‘natural’” way of presenting the generated diameter function is an x-y
plot (see left part of fig. 2). For a direct visualization of the diameter function in
the volume rendered view, we implemented a filter that creates a tube around
the generated centerline. This tube’s cross-section dimension varies the same
way the diameter function does. In addition, it is colored based on the diameter
values. A red color signifies a low diameter, whereas a blue color stands for a
large one (see fig. 3).

For visualizing the results of the hard plaque detection multiple cone-shaped
pointers are used for indicating the detected calcifications directly in the 3D
view. In addition, their positions are given in a list box control. By clicking

! The DICOM standard (Digital Imaging and Communications in Medicine)
(http://medical.nema.org/)
2 The Visualization Toolkit by Kitware, Inc. (http://www.vtk.org)
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Fig. 3. Visualization of the diameter function directly in the 3D rendered volume of a
cardiac MSCT data set: A tube around the computed vessel’s centerline is shown. It
varies in diameter corresponding to the diameter function. In addition, this variation
is color-coded using a linear rainbow-based transition from red to blue. (The artery
itself can be perceived as shadow around the generated tube)

Fig. 4. Detection of multiple hard plaques in a coronary artery: All three calcifications
present in the LAD (= left anterior descending) have been detected and are indicated
by a pointer (left). Selecting one of them from a list box control adjusts the 2D views
and highlights the position of the calcification — axial view shown as example (right)

on one of these entries the corresponding 2D views are shown, highlighting the
calcification position (see fig. 4).
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Fig. 5. Visualization of the coronary artery’s neighborhood: A polar plot shows the
color coded HUs (red: air, greenish cyan: fat, blueish cyan: muscle, intense blue: contrast
filled right atrium and ventricle) for a selected centerline point. The mean gray values
of the artery’s neighborhood are shown in an z-y plot (left). Comparison with the
corresponding original axial slice shows a strong coincidence with the output of the
tissue classification. The small red circle is the outer boundary of the segmented artery.
The region’s size shown in the polar plot equals approximately the circle through the
square’s corners (right)

A special visualization method for the inspection of the vessel’s neighbor-
hood has been developed. It consists of two outputs. The first one displays the
HUs of that neighborhood for each centerline point as color coded values in a
polar plot. There, the correct relative dimensions of the vessel’s mean diame-
ter and the selected ray length are used. A slider control allows for navigating
along the centerline and inspecting the coronary artery’s neighborhood. An z-
y plot displays the mean gray value of the neighborhood for every centerline
point.

In addition, the correspondence between this special visualization method
and the conventional way of displaying medical image data can easily be verified.
For each position along the centerline the 2D views can be aligned according to
the z (sagittal), y (coronal), and z (axial) position, and the corresponding point
in such a 2D slice is highlighted (see fig. 5). In the 3D view that position is
indicated by a small pointer.

3 Results

The proposed analysis techniques have been tested with CT data from 7 patients.
For all of them the left anterior descending (LAD), the left circumflex (LCX),
and the right coronary artery (RCA) have been segmented using the corkscrew
algorithm [12]. The segmentation did not always extract the whole artery due
to imaging artifacts that interupted the continuous run of the vessel. In these
cases only that part that has been segmented could be further analyzed.
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Table 1. The results for the automatic detection of hard plaques in coronary arteries
based on their segmentation: The data sets of seven patients have been used, and in
all of them the LAD, the LCX, and the RCA have been inspected

Data set [ Hard Plaques [ LAD [ LCX [ RCA
1 Visible 0 0 0
Detected 0 0 0
2 Visible 3 1 1
Detected 3 1 1
3 Visible 5 2 5
Detected 6 2 5
4 Visible 1 0 0
Detected 1 0 0
5 Visible 3 0 0
Detected 3 0 0
6 Visible 6 0 1
Detected 6 0 1
7 Visible 4 0 2
Detected 5 0 2

The color mapping of the computed artery’s diameter on a tube around the
vessel’s centerline allowed for a perception of the change of that parameter along
the artery without any difficulty. This way of representing the diameter function
is more convenient than providing only its x-y plot.

Table 1 shows the results for the automatic detection of hard plaques. The
above introduced automatic technique detected reliably the present calcifica-
tions. All of the hard plaques that have been found during a preceding manual
inspection of the axial slices have been tracked. Two of them have been indicated
twice due to their large size that led the algorithm to an overestimation of the
number of calcifications in these cases (data sets 3 and 7). Those segments that
did not contain any visible hard plaque have been classified by our technique to
be calcification-free, i. e., our tests resulted in a false-positive value of 0.

The method for inspecting the artery’s neighborhood has been tested with the
same datasets where the LAD, the LCX, and the RCA have been segmented.
There, only a retrospective analysis could be done since the data came from
patients whose treatment was already finished. Consequently, we only checked
whether the color-coded display of the HUs for the surrounding tissue corre-
sponded to what could be perceived in the conventionally displayed image data.
For a run of the artery in axial direction this could simply be done by comparing
the colored polar-plot of the analysis window with the axial slice (see fig. 5). For
more ‘difficult’ directions of the vessel the other two 2D views as well as the 3D
view have been used. In all of the cases this visual evaluation showed a perfect
correspondence: Air was displayed red, fat in greenish cyan, and muscle tissue in
blueish cyan. In addition, hard plaques and contrast agent filled cavities could
easily perceived since they appeared as intense blue areas.
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4 Discussion

The presented, yet preliminary, analysis results using the segmentation output
of our tracking-based approach [12] turned out to be robust. The detection of
hard plaques delivered in all cases the correct number and positions of the calci-
fications that have been found by a visual inspection of the image slices. In two
cases a single but widespread hard plaque has been detected twice. But, this can
not be considered as a serious drawback of our technique. Very important for
a clinical use of the automatic hard plaque detection is the false-positive value.
Here, the tests resulted in a value of 0 — no false indication of non-existing hard
plaque. However, the criteria that the hard plaque detection is based on are of a
rather qualitative nature, and an extended, clinical evaluation of our technique
is needed (see the end of this section).

The highlighting of the calcifications’ positions also in the conventional 2D
slices establishs a relationship between the newly introduced technique and the
manual inspection of the slices. Thus, radiologists will hopefully accept the au-
tomatic technique without reservation, since they can still verify the analysis’
output in their habitual way.

Stenoses that may be introduced by calcifications can easily be found when
inspecting the vessel’s diameter. The proposed method of generating a colored
tube that varies in diameter the same way the artery does makes it easy to
localize areas of small vessel diameter in the 3D view of the volume. There is no
need any longer to mentally map the z-y plot to the image data.

Our method for analyzing the neighborhood of the artery is an innovative
approach for providing essential information for the planning of a TECAB graft-
ing. The HU based color coded visualization of the surrounding tissue and air
makes it easy for the surgeon to estimate the amount of tissue that has to be
removed in order to access the artery.

As a limitation of this work one might consider the fact that the presented
methods have been tested only with data from seven patients. We are aware
of this, and consequently a clinical study together with our partners from the
University Hospital Frankfurt has been started. This study is also aiming on the
comparison of our CT based analysis methods with the current ‘gold standard’
— conventional angiography.

The inspection of the vessel’s neighborhood could be done only as a ret-
rospective study of patients whose treatment has already been finished. The
aforementioned clinical study will also determine the expected improvements for
the TECAB grafting in terms of speeding up the dissection of the artery.

Finally, the here presented methods for visualizing the analysis results are an
improvement over existing approaches. But, they are not an optimal solution yet.
Therefore, future work will focus on a simulation of the limitations the surgeon is
experiencing through the fixed angle view of the used endoscope. In addition, an
augmentation of the endoscopic view provided by the telemanipulation system’s
console with the analysis results would be a possible and usefull extension of our
proposed approach.
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