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Preface

The 1st and 2nd International Conferences on Functional Imaging and Modelling
of the Heart (FIMH) were held in Helsinki, Finland, in November 2001, and in
Lyon, France, in June 2003. These meetings were born through a fruitful scien-
tific collaboration between France and Finland that outreached to other groups
and led to the start of this biennial event. The FIMH conference was the first
attempt to agglutinate researchers from several complementary but often iso-
lated fields: cardiac imaging, signal and image processing, applied mathematics
and physics, biomedical engineering and computer science, cardiology, radiol-
ogy, biology, and physiology. In the first two editions, the conference received
an enthusiastic acceptance by experts of all these communities. FIMH was origi-
nally started as a European event and has increasingly attracted more and more
people from the US and Asia.

This edition of FIMH received the largest number of submissions so far with
a result of 47 papers being accepted as either oral presentations or posters.
There were a number of submissions from non-EU institutions which confirms
the growing interest in this series of meetings. All papers were reviewed by up
to four reviewers. The accepted contributions were organized into 8 oral sessions
and 3 poster sessions complemented by a number of invited talks. This year we
tried to allocate as many papers as possible as oral presentations to facilitate
more active participation and to stimulate multidisciplinary discussions. Papers
were organized around several tracks: anatomical modelling of the heart, elec-
trophysiology, electro- and magnetography, modelling of the cardiac mechanics
and function, cardiac motion estimation, and also a miscellaneous section. The
order of presentation in these proceedings follows that of presentation at the
conference.

For the communities related to this conference, it would be impossible to over-
look ongoing international efforts such as Cardiome1, which tackles the fields of
cardiac imaging, and multiscale modelling and simulation of the heart. Cardiome
is the first, and possibly currently the most advanced, effort within the Phys-
iome2 initiative that is sponsored by the International Union for Physiological
Sciences (IUPS). Also related to Physiome is the UK-sponsored project Inte-
grative Biology3, a key part of which relates to projects on the heart. All these
efforts aim at developing a vision for computational physiology where knowledge
and understanding at every length and temporal scale of the different organic
systems of the human body can be integrated through computational models.
We believe that FIMH will contribute to several key challenges within Cardiome

1 http://www.cardiome.org/
2 http://www.physiome.org/
3 http://www.integrativebiology.ox.ac.uk/
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and, therefore, be of importance to the overall objectives of the Physiome and
Integrative Biology projects.

Another important ingredient of FIMH 2005 was the participation of the
European Commission through the organization of a satellite workshop entitled
Towards Virtual Physiological Human: Multilevel Modelling and Simulation of
the Human Anatomy and Physiology. This half-day workshop, jointly organized
by the Directorate-General Information Society and Media in collaboration with
the Institute for Prospective Technological Studies (IPTS), further motivated
the conference by presenting progress to date, providing a wider perspective on
modelling and simulation, and allowing the exchange of ideas about this exciting
topic.

Finally, we would like to take the opportunity to thank all the authors for
the outstanding cont ributions to FIMH, and the Program Committee and
additional reviewers for their invaluable efforts in a timely review process. Last
but not least, we would like to express our gratitude to all the sponsoring and
organizing institutions for their support of this conference.

We hope that the attendees enjoyed the atmosphere and program of the con-
ference and we hope to see you again at FIMH 2007.

June 2005 Alejandro F. Frangi
Petia Radeva

Andres Santos
Monica Hernandez
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Multi-surface Cardiac Modelling, Segmentation,
and Tracking

Jens von Berg and Cristian Lorenz

Philips Research Laboratories, Sector Technical Systems,
Röntgenstr. 24-26, 22335 Hamburg, Germany

Jens.von.Berg@philips.com

Abstract. Multi–slice computed tomography image series are a valu-
able source of information to extract shape and motion parameters of the
heart. We present a method how to segment and label all main chambers
(both ventricles and atria) and connected vessels (arteries and main vein
trunks) from such images and to track their movement over the cardiac
cycle. A framework is presented to construct a multi–surface triangular
model enclosing all blood–filled cavities and the main myocardium as well
as to adapt this model to unseen images, and to propagate it from phase
to phase. While model construction still requires a reasonable amount of
user interaction, adaptation is mostly automated, and propagation works
fully automatically. The adaptation method by deformable surface mod-
els requires a set of landmarks to be manually located for one of the
cardiac phases for model initialisation.

1 Introduction

The aim of our work is a comprehensive model of the geometry of the human
heart contraction as well as its inter–individual variations. Such a model in-
troducing a priori knowledge about typical properties of a beating heart will
be highly beneficial in the whole chain of image–based cardiac diagnostics, as
well as in many cardiac treatment procedures. The model covers landmarks, the
coronary tree, and the surfaces of the large vessels [1]. The latter is the subject
of the work reported here. The most valuable and practically unique source of
information for the modelling process are cardiac images from clinical practice.
In this paper the use of multi–slice computed tomography (MSCT) images is
reported that have a voxel size of about 0.5 mm in each direction and a tempo-
ral resolution of 10 volumes per cardiac cycle. Mostly, cardiac MRI were used
previously for this purpose [2, 3, 4, 5, 6]. MSCT may provide even better insight
into the morphology of the human heart [7]. Extracting the relevant informa-
tion from these images is hardly feasible without a priori knowledge [8]. Many
approaches to cardiac segmentation were based on manually segmented images,
which is a good means to both tune parameters by automated supervised learn-
ing, and to finally prove their performance in comparison to human expertise.
However, manually segmenting an MSCT series means delineating each object

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J. von Berg and C. Lorenz

of interest in about two thousand images. This dilemma led us to a bootstrap
approach with a consecutive refinement of the model during successive analysis
of new images.

2 Model Construction

The model covers the blood pool of both the left and the right heart. The blood
pools of the ventricles should be distinguishable from those of the atria. All at-
tached vessels should also be modelled, i.e. the aorta, the pulmonary artery, the
vena cava, and the pulmonary vein trunks. As it is clearly visible, and diagnos-
tically relevant, also the left myocardium should be represented in the model.
Including adjacent volumetric entities required a surface modelling scheme be-
yond two–dimensional manifolds. In the discrete case with triangular faces this
means that there are faces with more than three neighbours wherever multiple
surfaces share an edge. In order to enable multi–scale / multi–resolution ap-
proaches or to just find an ideal trade–off between accuracy and complexity, a
multi–resolution representation of the surface discretisation was desired.

The initial step was the construction of single basic shapes like spheres (atria),
tubes (attached vessels), and opened ellipsoids (ventricles). Each one modelled
an anatomical entity. These shapes were then positioned in the training image
and adapted to the corresponding entities. A re–sampling closed this step to get
a defined level of granularity. The third step was the most important one that
combines the single basic two–dimensional manifolds to form the multi–surface
model. The method used in this third step is explained in some detail below.
In the resulting model, each face should be assigned a label that indicates the
anatomical structure it belongs to. This information was derived by storing which
of the initial basic shapes a face originates from. The basic shapes were left atrium
al, left ventricle endocardium (inner part vi), left ventricle epicardium (outer part
vo), aorta a, vena cava superior vs, vena cava inferior vl, right atrium ar, right
ventricle vr, pulmonary artery ap (right branch only), and the pulmonary vein
trunks (v1, v2, v3, v4,) that drain into the left atrium.

2.1 Building a Multi-surface Model

The combination step was made by successive application of a handful of basic
operations on surface meshes, starting with the basic meshes. There are volu-
metric set operations that consider the enclosed volume of two meshes, apply
the union (∪) or the difference (\) operation on them, and yield the resulting
surface mesh. A similar approach but with implicit surface models was proposed
in [9]. Each of the present operations was defined as B×B → B, where m ∈ B
is a two–dimensional manifold mesh. As a further constraint on theses opera-
tions, the intersection line between both meshes had to be closed polygons. This
required open basic meshes to fully overlap with their neighbours (e.g. ventricle
with atrium). The join operator (�) was defined as B × B → M, where m̄ ∈ M
may be a non–two–dimensional manifold mesh. The join operator just unites
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Fig. 1. A basic (a), some intermediate (b to d), the final (e), and a derived (f) sub mesh,

all seen from left anterior. a: left atrium al, b: left blood pool pl, c: left myocardium a1,

e: whole heart h̄, f: blood pool of the left ventricle only pvi . The colour–coding denotes

face labels. All shown meshes are just subsets of the complete multi–surface model h̄

both sets of faces and unifies corresponding faces that occur in both meshes.
The unary operator cl (M → M) removes all edges smaller than given by pa-
rameter l and preserves the triangles’ labels. It was needed to replace auxiliary
triangles created by volumetric set operations. The left blood pool pl ∈ B was
build by

pl = cl (v1 ∪ v2 ∪ v3 ∪ v4 ∪ al ∪ vi ∪ a) . (1)

In order to construct the complete multi–surface model h̄, first the intermediate
meshes a1 and a2 were constructed by

a1 = cl (vo \ pl) (2)
a2 = cl (vo ∪ pl) , (3)

where a1 now exactly enclosed the left myocardium. The complete left heart
model h̄l was built by

h̄l = a1 � a2, (4)

and the right blood pool was built by

pr = cl(ar ∪ vr ∪ ap ∪ vl ∪ vs) \ a1. (5)

Left and right part were fused to

h̄ = h̄l � pr. (6)

In Figure 1 some basic, intermediate, and the final mesh h̄ are rendered from
the same viewing position. The edge size was set to range between 2.5 mm and
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5 mm. Also other sub meshes than those required to build the final mesh may
be constructed, for instance the blood pool of the left ventricle excluding the left
atrium by

pvi
= vi \ al. (7)

3 Model Adaptation

For adaptation of the multi–surface model to a cardiac CT image, a shape–
constrained deformable surface model approach was followed as previously de-
scribed in [10, 4]. The model with given vertex positions v̂ taken from a training
image both served for the initialisation of the initial mesh v0 and as constraint
during its adaptation to v1···n. The number of triangles remained unchanged in
this process.

3.1 Affine Pre-registration

In order to pose the initial mesh into the image as accurately as possible, 25
anatomical landmarks were manually located both for the image the model was
built from and for each target image [1]. These landmarks are mainly centre
locations of chambers, valves, and ostia. A point–based affine registration [11]
was applied on the two sets of landmarks. The resulting affine matrix A and
translation vector t were then used to pre–register the initial mesh by v0 =
Av̂ + t.

3.2 Model Deformation

In the optimisation scheme the vertex positions of the triangular surface mesh
were the parameters to be varied. Mesh deformation was done by minimizing
the energy term

E = Eext + αEint. (8)

The external energy Eext drives the mesh towards the surface points obtained
in a surface detection step. The internal energy Eint restricts the flexibility by
maintaining the vertex configuration of a shape model. The parameter α weights
the influence of both terms. A fixed number n of such minimisation steps is
performed on the mesh. The different components of the deformation algorithm
are described below.

Surface Detection. Surface detection was carried out for each triangle barycen-
tre xi. Within a sampling grid of points ck, defined in a local co-ordinate system,
that point c̃i is chosen that maximizes the objective function

c̃i = argmaxk=−l,...,l

{
Fi(xi + Mick) − δ ‖ck‖2

}
. (9)
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Mi is a rotational matrix that rotates the z–axis of the local co–ordinate
system to the triangle surface normal ni and

x̃i = xi + Mic̃i (10)

is the new surface point for xi. The parameter δ controls the trade–off between
feature strength and distance. The sampling grid

ck ≡ GL = (0, 0, kε) : k = −l, . . . , l (11)

was used, that results in (2l + 1) equidistant sampling points along the triangle
surface normal.

Feature Function. The feature function

Fi (x) =

{
−ni

t∇I(x) gmax(gmax+‖∇I(x)‖)
g2

max+‖∇I(x)‖2 : Imin < I(x) < Imax

0 : otherwise
(12)

was used that projects the image gradient ∇I(x) onto the face normal ni and
damps its value so that surface points with image gradients stronger than gmax do
not give higher response. The restriction to a dedicated intensity range may make
the feature function more specific and thus makes adaptation less vulnerable to
adjacent false attractors (see below).

External Energy. The external energy

Eext =
∑

i

wi (e∇I c̃i)
2
, wi = max

{
0, Fi(xi + Mic̃i) − δ ‖c̃i‖2

}
(13)

drives each triangle barycentre xi towards the detected surface point x̃i. e∇I is
the unit vector in the direction of the image gradient at the surface point x̃i.
Since only the projection onto e∇I is penalized, this allows the triangle centre to
locally slide along an iso–contour. This method proved to be superior to direct
attraction by the candidate in [10] in case of intermediate false attractions.

Internal Energy. The internal energy

Eint =
∑

j

∑
k∈N(j)

((v̂j − v̂k) − sR(vj − vk))2 (14)

preserves shape similarity of all mesh vertices vi to the model vertices v̂i. N (j) is
the set of neighbours of vertex j. The neighbouring vertices are those connected
by a single triangle edge. The scaling factor s and the rotational matrix R
are determined by a closed–form point–based registration method based on a
singular value decomposition [11] prior to calculation of (14).

Optimisation. As only interdependences between neighbour vertices exist (14)
and the energy terms are of a quadratic form, the conjugate gradient method
[12] could be used for minimisation of (8) with a sparsely filled matrix.
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Multi-surface Parameterisation. The labels assigned to each face of the
multi–surface model may be used to parameterise interfaces between different
anatomical entities specifically. However, dedicated parameter tuning was re-
stricted to the epicardium border towards the lung parenchyma that differs in
its appearance significantly from the other surfaces that enclose the blood pool.
Thus, gmax was set to 60 HU

mm here instead of 120 HU
mm elsewhere. and the in-

tensity range (Imin · · · Imax) was adjusted to 350 · · · 800 HU instead of 1000 HU
and up. The other parameters were globally set to α = δ = 1, ε = 1 mm, l = 10.

4 Surface Tracking

In order to capture tissue trajectories one has to find corresponding tissue land-
marks in images from different cardiac phases. This was mainly done previously
either by non–linear registration [13] or by active appearance models [14]. With
some modifications that rather belong to the second category and that are ex-
plained below, the adaptation method presented above was also applied for a
surface tracking approach that utilizes point correspondence.

Surface detection is carried out following equation (9). In order for a surface
point not only to be attracted along the surface normal, a sampling grid is used
that extends into all direction. A multi–icosahedron grid

ck=1···37 ≡ GI = {(0, 0, 0), P2, P4, P8} (15)

was used where each Pn is a set of 12 icosahedron surface points with a radius
of nε mm around the origin of the local coordinate system. Individual feature
functions are required for each surface point in this case to take the local image
properties into account. The feature function

Fi(x) =
2l + 1∑

k=−l...l (I (x + Misk) − ĝi,k)2
(16)

that replaces (12) thus evaluates similarity of local appearance samples to the
once learnt model ĝi. The linear sampling grid sk = GL from equation (11) is
taken. It is applied at each sample point. The external energy is calculated by

Eext =
∑

i

c̃2
i (17)

instead of (13), and the internal energy is taken from (14).
In order to demonstrate the general feasibility of surface tracking with de-

formable models and appearance models a simple test study was carried out. A
cylindrical surface mesh was posed into a cardiac CT image to roughly fit the
left myocardium. The image appearance ĝ was learnt and the mesh was rotated
around its main axis by r = ± π

16 ,±π
8 ,±π

4 , and ±π
2 afterwards in a number of tri-

als. An adaptation with n = 80 iterations was performed for each rotation angle.
Up to r = ±π

4 the mesh successfully recovered the initial position. This simple
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test showed that the tracking method has a remarkable capture range, and that
with the rotationally symmetric shape model, appearance alone is sufficient as
driving force.

The propagation through all cardiac phases started with a phase to which
the shape model was adapted successfully. From the image of this phase 1 the
appearance ĝ1 was learnt at positions given by v1. This shape v1 was used as
initial mesh and further on v0

i = vn
i−1. The same holds for the shape model

v̂i = vn
i−1. This was repeated until all phases were processed. For each phase

the initial appearance model ĝ1 was used.

5 Results

5.1 Model Construction

A multi–surface mesh with a total number of about 7, 000 vertices and 13, 000
triangle faces was constructed with edge lengths ranging between 2.5 mm and
5 mm. Its shape is shown in Figure 1. The basic meshes this model was con-
structed from, were adapted to the anatomical entities of the end–diastolic phase
of the training image. The resulting multi–surface model was then adapted to a
set of five other cardiac MSCT images from different hospitals but all acquired
with a Philips MX8000 IDT 16–line CT scanner. The images were contrast–
enhanced as they were acquired for the purpose of coronary assessment.

5.2 Pre-registration

The affine pre–registration led to a mean (± standard deviation) residual land-
mark distance of 7.5 ± 4.3 mm, 7.0 ± 3.3 mm, 8.3 ± 3.5 mm, 5.6 ± 2.6 mm,
and 13.0 ± 12.1 mm for the five images. The latter resulted in an unaccept-
able pre–registration, both visually and with respect to the subsequent adapta-
tion result. An alternative rigid registration with an isotropic scale parameter

Fig. 2. Left: Pre–registration (dark mesh) and subsequent automatic adaptation (light

mesh) of the multi–surface model to an unseen image. The arrow marks a local mis–

adaptation. Right: Mean end–diastolic model of the five patients with colour–coded

standard deviation (dark:0.8 mm, light:7.8 mm)
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(13.0 ± 14.4 mm) resulted in an acceptable pre–registration for further process-
ing. A typical affine pre–registered model is shown in Figure 2 in comparison to
the automatic deformable adaptation based on this pre–registration.

5.3 Adaptation

The adaptation by model–based deformation significantly improved on the re-
sults of the affine pre–registration (Figure 2). Automatic adaptation with n = 10
iterations took about 15 seconds on a 2.6 GHz PC including real–time surface
rendering. The majority of surface parts could be considered well–adapted. The
reasons for remaining local mis–adaptations were mainly adaptations to false
attractors e.g. of the epicardium mesh to the endocardium (see Figure 2) or to
coronaries, and of the aorta mesh to the vena cava. Using the methods described
in [15] manual corrections that survive subsequent automatic adaptation steps
could be applied to these mis–adapted parts.

5.4 Calculating a Mean Model

The resulting individualized models were mutually registered (rigid plus isotropic
scale) using a procrustes analysis of their corresponding anatomical landmarks.
A mean model of the five subjects was calculated (Fig. 2).

5.5 Surface Tracking

The surface tracking method was applied to the training image sequence. The
initial mesh v1 was the one that resulted from model construction and that was
fit to the end–diastolic phase image of the training sequence. Each propagation
step vi−1 → vi was done with n = 12 iterations. Propagation was done for all
nine images of subsequent phases and back to the initial image with v0

1 = v12
9 .

This allows for a comparison of the round–trip adaptation result v12
1 with the

initial mesh v1. The mean (± standard deviation) distance of corresponding
vertices between both was 1.4±0.7 mm. The meshes are shown in Figure 3. The
mean distance of all corresponding vertices in all phases between the forward
(vi−1 → vi) and the backward (vi+1 → vi) propagation was 2.1± 1.3 mm. The
propagation from the initial mesh (v1 → vi) differs from forward propagation by

Fig. 3. Result of the consistency test: Initial mesh (white) and result of a round–trip

adaptation (black) to the end–diastolic initial image
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Fig. 4. Left: Trajectories of each vertex through the cardiac cycle. For visibility reasons

they were scaled down by a factor 4 with respect to their initial (end–diastolic) vertex

position. Centre: end–diastolic mesh. Right: end–systolic mesh

1.6 ± 1.0 mm and from backward propagation by 1.5 ± 0.9 mm. A visualisation
of the moving model by a surface rendering loop gives a very natural impression
of contraction (ventricles), parallel displacement (valve plane), and rather stable
parts (atria). Figure 4 tries to show the results in a printed form.

6 Discussion

A method was presented that enables a widely automated construction of a
multi–surface triangular mesh of cardiac chambers and vessels, mostly automatic
adaptation to individual MSCT images, and automatic propagation of such an
individualized model through the cardiac phases. For model construction a set of
single basic shapes was adapted each to its anatomical entity. The multi–surface
model resulted from their automatic combination. Some anatomical landmarks
were manually located in order to pre–register this model to an unseen image by
either affine or rigid registration. The subsequent deformation to fit the image
boundaries was mainly gradient–based. All parameters were set explicitly during
an explorative test phase resulting in a small knowledge base. Some individual
surfaces of the model were parameterised specifically, which was well supported
by the anatomical labels given in the multi–surface model. The surface tracking
however used individual grey value profiles for each surface location learnt from
the initial phase’s mesh. This method was chosen in order to closely approximate
the real tissue trajectories. Due to the large data volume (up to two thousand
slices for a cardiac cycle) and the difficulties in manually finding reliable trajec-
tories there was no high quality expert data available for validation. We were
able to perform a capture range test and a consistency test of the method with
good results. Also the animated visualisation gave a realistic impression. Only
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the rotational component and the twist of the left ventricle seemed to be under-
estimated, which we suppose to be due to the too rigid regularisation in (14).
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Abstract. The relationships among vascular geometry, hemodynamics,
and plaque development in coronary arteries are not yet well under-
stood. This in-vivo study was based on the observation that plaque fre-
quently develops at the inner curvature of a vessel, presumably due to
a relatively lower wall shear stress. We have shown that circumferential
plaque distribution depends on the vessel curvature in the majority of
vessels. Consequently, we studied the correlation of plaque distribution
and hemodynamics in a set of 48 vessel segments reconstructed by 3-D
fusion of intravascular ultrasound and x-ray angiography. The inverse
relationship between local wall shear stress and plaque thickness was sig-
nificantly more pronounced (p<0.025) in vessel cross sections exhibiting
compensatory enlargement (positive remodeling) without luminal nar-
rowing than when the full spectrum of vessel stenosis severity was con-
sidered. Our findings confirmed that relatively lower wall shear stress is
associated with increased plaque development.

1 Introduction

Coronary atherosclerosis starts at a young age and is a major cause of death
in developed countries. As shown in Fig. 1(a)–(c), the intimal layer (mid gray)
thickens as plaque develops. However, the lumen (light gray) initially remains
unchanged due to compensatory enlargement as part of a remodeling process
that causes the media (dark gray) to grow outward. Luminal narrowing forming
an angiographically visible stenosis generally occurs after the plaque area ex-
ceeds about 40% of the cross-sectional vessel area [1]. Intravascular ultrasound
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(a) (c)(b) (d)

(3)

(1)

(2)

Fig. 1. Development of atherosclerotic plaque: (a) vessel without any stenosis; (b) com-

pensatory enlargement; (c) luminal narrowing; (d) IVUS image with (1) catheter, (2) lu-

men/plaque, and (3) media/adventitia borders

(IVUS) is able to visualize plaque development, as shown in Fig. 1(d). Previ-
ous studies have linked plaque development with low wall shear stress [2]. Thus,
the identification of areas of initially low wall shear stress and evaluation of the
plaque distribution is of major interest, especially given the capabilities of IVUS
to image plaque. As is typical for coronary IVUS studies, all subjects imaged
had clinically indicated coronary catheterization. It is imprudent to perform
IVUS imaging in patients with healthy or minimally diseased coronary vessels.
Consequently, the enrolled subjects invariably suffered from advanced coronary
artery disease. As such, the relationships we observed were between an already
substantially altered coronary morphology and the related altered hemodynamic
shear stress conditions. It has been shown that luminal narrowing deminishes
the inverse relationship between plaque thickness and wall shear stress [3]. In
addition to this phenomenon, we were also interested in the notion that hemo-
dynamic shear stress plays a role in the onset of coronary disease. In contrast
to wall shear stress, vascular geometry (curvature) is not changed by the course
of the disease and thus can serve as a surrogate of the hemodynamic conditions
prior to atherosclerotic disease development. Therefore, the relationship between
vessel curvature and plaque distribution was studied as well as the relationship
between wall shear stress and plaque distribution with special consideration of
vascular remodeling.

2 Methods

2.1 Multi-modality Fusion

We have developed a comprehensive system that generates geometrically cor-
rect 3-D and/or 4-D (i.e., 3-D+time) reconstructions of coronary arteries and
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Fig. 2. Processing of the data as outlined in Section 2.1

computes corresponding quantitative indices of coronary lumen and wall mor-
phology. The reconstructions serve as input for hemodynamic analyses and allow
for interactive visualization [4, 5, 6]. A flowchart outlining the system is given in
Fig. 2. In brief, the vessel geometry is obtained from biplane (or a pair of single-
plane) x-ray angiographic projections, whereas the cross-sectional information is
retrieved from IVUS. Thus, the resulting model accurately reflects the curvature
and torsion of the vessel as well as any accumulated plaque. The angiography
and IVUS data are retrospectively ECG-gated and segmented. Fusion leads to
the 3-D/4-D plain model representing both the lumen and the vessel wall. The
model consists of the lumen/plaque and media/adventitia contours oriented rel-
ative to the IVUS catheter. After tetrahedral meshing, this model is suitable for
hemodynamic analyses. Following resampling orthogonal to the vessel centerline,
morphologic analyses are performed. The quantitative results annotate the re-
sampled contour model, which is subsequently used for visualization and further
analyses. Our system utilizes conventional PC hardware and widely available
software tools. Standardized storage formats for parameters and contour lists
have been adopted to ensure proper interfacing between our fusion system and
commercially available analysis software packages and to enhance data sharing
and collaboration.

2.2 Segmentation of IVUS Image Data

While many components of the fusion system perform to full satisfaction, several
challenges remain. One of them is the segmentation of the IVUS data. It is well
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known that IVUS images contain artifacts from various sources, thus requiring
the design of cost functions that incorporate a-priori knowlegde of regional and
border properties to robustly determine the optimum contours. The cost function
employed in our graph-based IVUS segmentation method combines three major
groups of features: (a) image data terms such as edge detectors and intensity
patterns; (b) physics-based terms that distinguish different tissue types based on
their Rayleigh distribution patterns [7, 8]; and (c) border probabilities based on
expert tracings. A scoring system is employed to evaluate these feature classes
in each image to be analyzed, and the borders are found using a multiresolution
approach that mimics human vision [9].

2.3 Morphologic and Hemodynamic Indices

The reconstructed vascular model provides 3-D locations for 72 circumferential
vertices on both lumen/plaque and media/adventitia contours, radially oriented
with respect to the vessel centerline. This allows a straightforward determination
of the plaque thickness at each location, as well as volumetric measurements over
any given subsegment of the vessel [10]. In order to determine local curvature
magnitude and direction, Frenet-based computational geometry was employed.
To distinguish between locations of “inner” vs. “outer” curvature on the circum-
ference of the vessel, a new scheme was introduced that weights the curvature
magnitude by an index of the circumferential position of each element [11]. Blood
flow through the coronary arteries was simulated using computational fluid dy-
namics (CFD) methodology. Tetrahedral meshing of the lumen using commer-
cially available meshing software provides an unstructured grid for simulations
with U2rans, a CFD software developed at The University of Iowa [12]. Posi-
tive and negative wall shear stress values are determined at each circumferential
lumen location and mapped onto the 3-D model.

2.4 Classification of Circumferential Regions

Each of the 72 circumferential locations in each vessel cross section was catego-
rized with respect to its relative plaque thickness (above or below average for
this cross section), its location relative to the local vessel curvature (inner or
outer curvature), and its wall shear stress (above or below cross-sectional av-
erage). In this way, eight different “regions” resulted. A ninth “neutral” region
included those areas of curvature magnitude below a certain threshold that were
eliminated from further analysis to avoid distortion of the results by noise. The
following two studies correlate independently plaque distribution with curvature
and wall shear stress.

3 Studies and Results

3.1 Plaque Distribution in Relation to Vessel Curvature

To verify the observation that plaque accumulation in curved vessels is bi-
ased towards the inner bend of the curvature rather than the outer bend of



16 A. Wahle et al.

(i)

(ii)

(iii)

(iv)

(v)

In
d
ex

r P
C

Curvature threshold [◦/cm]

rPC >0.5 for n thresholds
Vessel 12 ≥6 ≥1 =0
LAD 17 3 1 2 23
RCA 10 4 1 8 23
LCX 9 1 0 4 14

36 8 2 14 60

(a) (b)

Fig. 3. Plaque thickness vs. curvature: (a)(i) angiogram of a left anterior descending

artery with the IVUS catheter inserted, (ii) lumen and adventitia borders from fusion,

(iii) plaque-thickness annotation, (iv) curvature-index annotation, (v) after classifica-

tion into regions, with the branch segment removed from analysis; (b) results from 60

analyzed vessels, by curvature threshold and vessel, with rPC>0.5 indicating that our

guiding hypothesis was satisfied for all (12), at least half (≥6), at least one (≥1), or

none (=0) of the curvature thresholds

the curvature, the relative amount rPC of regions where inner curvature co-
incides with above-average plaque accumulation, or outer curvature coincides
with below-average plaque accumulation, was determined in a set of 60 vessels.
Preliminary results in 37 vessels and methodology were reported in [11]. The
ratio rPC represents a “plaque/curvature index” with a value rPC>0.5 indi-
cating that more plaque has accumulated along the inner curvature as com-
pared to the outer curvature, thus supporting the hypothesis. As an exam-
ple, Fig. 3(a)(iii) shows a color-coded plaque-thickness distribution in a geo-
metrically correct 3-D representation, with red indicating high and blue indi-
cating low plaque thickness, normalized over the entire vessel segment. As de-
scribed above, a curvature index was determined for each circumferential loca-
tion on the contour. Fig. 3(a)(iv) shows the color-coded curvature-index distri-
bution, with red indicating inner curvature and blue indicating outer curvature.
Four regions were defined, as depicted in Fig. 3(a)(v): Rai (red), Rao (magenta),
Rbi (yellow), and Rbo (blue). These regions represent pairs distinguishing cir-
cumferentially considered “above-average” plaque thickness (a) from “below-
average” plaque thickness (b), coinciding with either “inner curvature” (i) or
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“outer curvature” (o) of the vessel wall. Thus, the plaque/curvature index was
defined as

rPC =
‖Rai + Rbo‖

‖Rai + Rbo + Rao + Rbi‖ (1)

Impact of Curvature Threshold and Vessel Type. The results are de-
picted in Fig. 3(b). Twelve different threshold values were empirically selected
ranging from 2.31 to 22.94◦/cm, resulting in 10.1–77.8% of circumferential lo-
cations being assigned to the neutral region Rn (green). The chart shows that
the average rPC over all 60 vessels increases steadily with increase of the cur-
vature threshold. Thus, the more regions of low curvature are included into Rn,
and therefore increasing the proportion of higher curvature regions included in
the calculation of rPC , the more the hypothesis was supported. The increase

(a) (b)

In
d
ex

r P
C

Curvature threshold [◦/cm]

(c)

Fig. 4. (a) IVUS frame of an untreated vessel segment with slight stenosis; (b) the

same vessel after stent placement at a location with heavy disease; (c) the hypothesis

rPC>0.5 is only satisfied after exclusion of the stented segment, thus including segments

with lesser disease only, as compared to the results over the entire vessel
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in standard deviation of rPC prompted us to categorize the results by vessel.
While almost two thirds of the vessels satisfied rPC>0.5 for all thresholds, the
hypothesis was more strongly supported in left anterior descending (LAD) ar-
teries (87% for all or at least half of the thresholds). Since the right coronary
(RCA) and left circumflex (LCX) arteries have higher tortuosity than the LAD,
the less supportive results may be caused by the more complex flow patterns
that can no longer be explained by the curved-tube model.

Impact of Interventions. Stenting may have a substantial impact on the out-
come of the plaque/curvature index rPC . In several of the vessels analyzed, a
below-threshold value of rPC (rPC<0.5) was determined when all segments were
included and only branch locations were excluded. After also excluding known
regions of intervention and stenting, rPC>0.5 was reached, frequently showing
the increase of rPC with the increase in curvature threshold (Fig. 4). This con-
tradicts our initial findings reported in [11] that stenting does not significantly
affect the plaque/curvature index rPC and indicates that substantial disease and
stenting may have a distorting impact on the relation between vessel geometry
and plaque distribution.

3.2 Plaque Distribution in Relation to Wall Shear Stress

While disease progression and stenting impact the curvature/plaque relationship
to some extent, an even more substantial effect can be expected on the wall shear
stress distribution. The distribution is substantially altered when the limits of
positive remodeling are reached [3]. Thus, the vessel subsegments for which the
area stenosis is between 10% and 40% are of specific interest (the compensatory-
enlargement range identified by Glagov et al. [1]). Consequently, we concentrated
on whether and how significantly the correlation improves once vessel segments
of certain properties are excluded from the analysis. In this way, indirect evidence
of which local conditions favor the underlying hypothesis of below-average wall
shear stress inducing above-average plaque thickness was sought.

Grouping of Vessels and Segments by Disease Severity. 48 vessels (a sub-
set of Section 3.1, since some parameters were not available for vessels received
from collaborating sites) were analyzed. The data was smoothed with a moving
45◦-wedge over 5 frames to limit the impact of local noise. The analyses were
performed in 4 increasingly restrictive subsets of data. First, the relative amount
rPW of elements for which circumferentially above-average plaque thickness co-
incides with below-average wall shear stress (and vice versa) was determined
for each vessel segment – similar to the plaque-thickness/curvature study. By
replacing “inner curvature” (i) with “lower-than-average wall shear stress” (l)
and “outer curvature” (o) with “higher-than-average wall shear stress” (h) in
Eq. (1),

rPW =
‖Ral + Rbh‖

‖Ral + Rbh + Rah + Rbl‖ (2)
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Calc. Excl.>40%
(area stenosis)

<40%<10%

Legend:

Vessel 2
Example

Vessel 1
Example

Vessel 2
Example

Vessel 1
Example

Vessel 2
Example

Vessel 1
Example

exclude: branches, stents, calcifications

segments have <40% area stenosis
exclude: vessels for which <35% of

exclude: >40% area stenosis

exclude: >40% area stenosis
Set #2 Set #2a

Set #3 Set #3a

Set #1

Vessel Vessel excludedexcluded

Fig. 5. Example for the definition of the sets: Vessel 1 shows only minor disease,

whereas Vessel 2 is subject to advanced atherosclerosis; both form Set #1. For Vessel 1,

all subsegments are retained when proceeding to Set #2, whereas two subsegments of

Vessel 2 were discarded due to calcifications. All subsegments outside the 10–40% area

stenosis range are removed from Set #2 to create Set #2a, thus discarding 1 subseg-

ment from Vessel 1 and 2 subsegments from Vessel 2. Only Vessel 1 proceeds from

Set #2 to Set #3, since less than 35% of Vessel 2 are within the 10–40% area stenosis

range. For Vessel 1, (in analogy to the step from Set #2 to Set #2a) the center segment

is discarded from Set #3 to Set #3a
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results as definition for the plaque/wall-shear-stress index. This step created
Set #1. Next, all vessel subsegments that included vessel branching areas, stents,
or regions of dense calcification were excluded, forming Set #2. Within Set #2,
percent-area stenosis was determined for each frame following Glagov’s def-
inition, which does not require the presence of a normal reference segment
(plaque+wall area over cross-sectional vessel area) [1]. Set #3 consisted of all
such vessles from Set #2 for which the percent-area stenosis was in the range of
10–40% in at least 35% of the non-excluded vessel segments. Set #3 consisted
of 31 vessels satisfying this criterion. In each vessel, the segments of Sets #2
and #3 that were within the 10–40% range of area stenosis formed Subsets #2a
and #3a. An illustration for the definition of these sets is shown in Fig. 5.

Hypothesis Test. If the hypothesis is correct and observable in regions where
severe luminal narrowing is not present, the vessels in Subsets #2a and #3a
should provide higher rPW ratios than the corresponding vessels in Sets #2
and #3. Therefore, we determined factors gPW quantifying the change gPW{2} =
rPW{2a}/rPW{2} for all vessels and gPW{3} = rPW{3a}/rPW{3} for vessels with
the minimum of 35% of frames within the 10–40% area-stenosis range. Note
that the gPW{x} represent the differences in hypothesis validity. Consequently,
gPW{x}>1 suggests a case for which the hypothesis is more strongly supported
in those segments of vessel x with compensatory enlargement as compared to
those with lumen narrowing. The analysis rationale is to determine: (1) whether
applying the hypothesis test on the subset of segments defined in Set #2a (10–
40% stenosis) increases the validity of the hypothesis compared to the Set #2;
and, (2) whether applying the hypothesis test on Set #3a (10–40% stenosis in
vessels with ≥35% of the wall within this range) increases the hypothesis validity
compared to the Set #3 (≥35% of the wall within the 10–40% stenosis range).

Changes in Hypothesis Validity. The results can be summarized in the fol-
lowing table (gPW{x}≥1.01 “increase” and gPW{x}≤0.99 “decrease”):

gPW{x} ≥1.01 <1.01
>0.99 ≤0.99 *

Sets #2a/#2 n=48 25 3 16 4 R=0.61, p>0.75
#3a/#3 31 19 3 7 2 R=0.92, p<0.025

where for the vessels marked with ∗, either all or none of the frames were within
the 10–40% area-stenosis range, therefore gPW{x} was considered undefined, and
these vessels were excluded from the R and p calculations. Evidently, hypothesis
validity improves and becomes statistically significant in Set #3 vs. Set #2, thus
confirming our assumption. A notable cluster of 12 vessels in Set #3, having
35–63% of frames in the 10–40% area-stenosis range, shows an average 10.2%
increase in hypothesis validity which is highly significant (R=0.96, p<0.001).
This can be explained, in part, by the minimization of statistical noise with an
even distribution of frames within vs. outside of the 10–40% area-stenosis range.
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4 Discussion and Conclusions

Plaque development depends on the wall shear stress distribution, which in turn
depends on the vessel geometry. The presented study demonstrated in-vivo that
plaque distribution correlates with vessel curvature, and also correlates with wall
shear stress in early stages of atherosclerosis. The analysis of a direct relationship
between curvature and shear stress is ongoing. We have shown that, in the
majority of vessels, plaque tends to form at the inner curvature of the vessel wall.
These findings suggest that low wall shear stress, which is typically associated
with inner vessel curvature locations, likely contributes to the initial formation
of atherosclerotic plaque in the early stages of the disease in human coronary
arteries. However, the wall shear stress distribution is altered in the later stages
of atherosclerosis, when positive remodeling can no longer compensate for the
disease and the lumen narrows. We have demonstrated that the hypothesis of
above-average plaque thickness being associated with below-average wall shear
stress is more strongly supported in the early stages of disease progression.
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Abstract. A novel approach to automated segmentation of X-ray Left Ventricu-
lar (LV) angiograms is proposed, based on Active Appearance Models (AAMs) 
and dynamic programming (DP). Due to combined modeling of the end-
diastolic (ED) and end-systolic (ES) phase, existing correlations in shape and 
texture representation are exploited, resulting in a better segmentation in the ES 
phase. The intrinsic over-constraining by the model is compensated by a DP al-
gorithm, in which also cardiac contraction motion features are incorporated. An 
elaborate evaluation of the algorithm, based on 70 paired ED-ES images, shows 
success rates of 100% for ED and 99% for ES, with average border positioning 
errors of 0.68 mm and 1.45 mm respectively. Calculated volumes were accurate 
and unbiased, proving the high clinical potential of our method. 

1   Introduction 

X-ray LV angiography is a widely applied modality for the assessment of cardiac 
function. In both the end-diastolic (ED) and end-systolic (ES) image frame endocar-
dial contours are drawn around the LV manually, from which the ventricle volume in 
ED and ES can be estimated [1]. In addition, relevant clinical parameters such as re-
gional wall motion and Ejection Fraction (EF) can be quantified. 

Currently, several packages are available that assist the cardiologists in manually 
drawing contours in LV angiograms. However, due to poor image quality, drawing 
contours by hand is difficult, time-consuming and prone to inter- and intra-observer 
variability. When an expert examines an X-ray image sequence, he also inspects 
neighboring frames around ED and ES, to decide on correct boundary locations. This 
way, knowledge about contraction dynamics is used to improve the segmentation ac-
curacy. The goal of this work is to automate the contour detection process by integrat-
ing prior knowledge about cardiac shape, appearance and motion. We aim to achieve 
this with the following contributions: 

Automated Segmentation of X-ray Left Ventricular 
Angiograms Using Multi-View Active Appearance 

Models and Dynamic Programming 
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• A Multi-View AAM [2, 3] is employed in which statistical information of dif-
ferent views of the same object is modeled simultaneously. The existing correla-
tion in shape and texture between ED and ES is exploited. The more reliable LV 
information present in the ED images supports the segmentation of the fre-
quently poorly defined LV in the ES images. 

• To prevent the model from locking in on local minima, we propose a novel, 
controlled gradient descent optimization, in which a limited number of model 
parameters is updated at a time. This greatly improves convergence robustness. 

• Dynamic Programming is applied to compensate for over-constraining by the 
model and thus to attain better local border delineation. Full use of all available 
priors is achieved by constructing a cost function from both image features and 
contraction motion features. 

• An elaborate evaluation of clinical efficiency of the algorithm is described 
based on 70 ED-ES image pairs. To our knowledge, this is the largest evaluation 
of an automated segmentation method for clinically realistic X-ray LV an-
giograms. 

2   Segmentation Method 

2.1   Multi-view Active Appearance Models 

Active Appearance Models, introduced by Cootes [4, 5], are an extension of the well-
established Active Shape Models [6], and integrate knowledge about object shape and 
image texture variability into the segmentation. An AAM is built by warping a com-
plete image patch around the training shapes to the average shape. After intensity 
normalization to zero mean and unit variance, the shape-normalized intensity average 
and principal components are computed. A subsequent combined Principal Compo-
nent Analysis (PCA) on the shape and intensity model parameters yields a set of 
components that simultaneously capture shape and texture variability. AAM matching 
is based on minimizing the difference between model intensities and the target image. 
This enables a rapid search for the correct model location, while utilizing pre-
calculated derivative images for optimizing the parameters. AAMs are described in 
detail in [5], and an elaborate overview of medical applications is given in [7]. 

Typically, AAMs are applied to segmentation of single image sets, whereas in car-
diac imaging, often multiple acquisitions are acquired within one patient examination, 
where images may depict different geometrical or functional features of the heart. 
Different time frames from an angiographic image sequence are examples of such in-
terrelated views. Multi-View AAMs exploit existing shape- and intensity correlations 
between different images of the same heart. Potentially, this increases robustness and 
enforces segmentation consistency between views, yielding a better segmentation. 

The Multi-View model is constructed by aligning the training shapes for different 
views separately, and concatenating the aligned shape vectors xi for each of the N 
views. A shape vector for N frames is defined as: 

( )TT
N

TT xxx ,,x 21=  (1) 



 

By applying a PCA on the sample covariance matrix of the combined shapes, a 
shape model is computed for all frames simultaneously.  The principal model compo-
nents represent shape variations, which are intrinsically coupled for all views. For the 
intensity model, the same applies: an image patch is warped on the average shape for 
view i and sampled into an intensity vector gi, the intensity vectors for each single 
frame are normalized to zero mean and unit variance, and concatenated: 

( )TT
N

TT ggg ,,,g 21=  (2) 

Analogous to the conventional AAMs, a PCA is applied to the sample covariance 
matrices of the concatenated intensity sample vectors. Subsequently, each training 
sample is expressed as a set of shape and appearance coefficients. A combined model 
is computed from the combined shape-intensity sample vectors. In the combined 
model, the shape and appearance of both views are strongly interrelated. 

Like in all AAMs, estimation of the gradient matrices for computing parameter up-
dates during image matching is performed by applying perturbations on the model 
and pose parameters, and measuring their effect on the residual images. In Multi-
View AAMs, a disturbance in an individual model parameter yields residual images 
in all views simultaneously. The pose parameters however, are perturbed for each 
view separately to accommodate for trivial differences in object pose in each view, 
whereas the shape and intensity gradients are correlated for all views. During match-
ing, the pose transformation for each view is also applied separately, whereas the 
model coefficients intrinsically influence multiple frames at once. 

Multi-View AAMs have been successfully applied to segmentation of long-axis 
cardiac MR views and a pilot study on left ventricular angiograms was performed [2]. 
This pilot study revealed two limiting factors that needed to be addressed to make the 
method suitable for clinical application: sensitivity to local minima, and over-
constraining of the model towards the trained data. In addition, this study showed that 
the exact location of the LV border can only be determined based on motion features. 
In the next sections, solutions to these problems are proposed. 

2.2   Controlled Gradient Descent 

The conventional AAM matching strategy occasionally shows difficulties in conver-
ging to the true contour positions. The gradient descent [8] in regular AAM segmenta-
tion minimizes the difference between model and true LV representation. When the 
model is initialized far away from the actual LV position or with a largely different 
scale or orientation, the model will lock in on its direct surroundings, matching to the 
closest local minimum. To overcome this, we developed a more controlled gradient 
descent, updating only a limited number of directions at a time. First all parameter 
updates corresponding to the specific modes of variation, are sorted to descending 
magnitude and the largest single parameter update is executed. If this lowers the error 
criterion, the proposed update is accepted, new model and pose parameters are calcu-
lated and a new parameter update vector is determined and ordered in the next itera-
tion. In case an update proposal does not lower the error criterion, the number of up-
dated model parameters is incremented in the next attempt. With this strategy, a large 
decrease of the error criterion is achieved based on one or a few parameters at a time. 
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2.3   Contour Refinement Using Dynamic Programming 

The power of the AAM algorithm is that it is still able to come to an acceptable global 
segmentation in an environment with vaguely defined features. The model freedom to 
deform however, is limited by the modes of variation derived from the training data 
set. Therefore, a shape that slightly deviates from a model-generated LV contour 
should also be considered as valid, and a refinement of the contour is desirable. In 
previous work [3] an AAM contour refinement was done by applying a second AAM, 
in which only image intensities close to the contour were incorporated. This approach 
slightly improved the segmentation, but being statistically trained, it still intrinsically 
over-constrained the contours towards the training data. 

To allow for more shape flexibility we have used a locally selective DP, in which 
the cost function is constructed from image and motion features, to mimic the experts 
routine of including knowledge of contraction dynamics. DP is well-established for 
contour detection in X-ray angiography [9]. Typically, angiographic DP searches for 
an optimal contour path through a cost matrix, where the cost function is based on a 
mix of first and second order image derivatives. In addition, we integrate features 
from a subtraction image (ES image minus ED image), from which contraction in-
formation can be extracted (Figure 1). The cost matrix C is defined as: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )jiTjiGjiTjiGjiC ,1,1,1,, 22221111 ααβααβ −+−+−+=  (3) 

where ( )jiC ,  is the cost of element in row i and column j,  is the weighing factor be-

tween the costs in the true image data and the costs in the subtraction image, ( )jiG ,1  

and ( )jiG ,2  are the gradients of both images, ( )jiT ,1  and ( )jiT ,2  are the second or-

der derivatives and 1 and 2 are weighing factors between the first and second order 
derivatives for the true image data and the subtraction image respectively. The polar-
ity of edges in the subtraction image is defined differently for ED and ES, making the 
cost function locally selective for each phase. In ED the area outside the contour 
should be dark and the area inside the contour should be light. For ES this edge polar-
ity is opposite. The use of these directed edges is only possible, since the Multi-View 
AAM already produces a reliable global segmentation in each frame. 

3   Clinical Evaluation 

To determine the clinical utility of our approach and to assess whether Multi-View 
AAM segmentation results are comparable to manual segmentation results produced 
by experts, experiments were executed using a data set of 70 paired ED-ES images 
from infarct patients. This data was used to train 14 leave-five-out Multi-View 
AAMs. All models were constructed retaining 100 % shape variability and 95 % in-
tensity variability. 

Automatically determined ED volume, ES volume and EF were compared with 
corresponding values derived from manual contours. Volumes were calculated using 
the area-length volume estimate [1]. Linear regression was used to determine relation-
ships between manually traced and computer determined values. A two-tailed paired 
samples t-test was applied to volume measurements from manual and automatic con- 
 



 

 

Fig. 1. Additional information can be extracted from the subtraction image (c): ES (b) minus 
ED (a). This example shows that the subtraction image contributes to a better definition of the 
mitral valve area for both ED and ES. Furthermore, the diagonal shadow is removed 

tours to investigate systematic errors. A p-value smaller than 0.05 was considered 
significant. In addition, point to curve errors were determined, and similar to [10] we 
used the following equations to calculate contour errors and area errors respectively: 
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in which Rp is the region within the automatically drawn contour, RD is the region 
within the manually drawn contour, RE is the region of evaluation and ⊗  denotes the 
logical exclusive OR operator. 

The performance of our algorithms was tested by comparing obtained results with 
the manual contours that were used to train the 14 AAMs (expert #1 contours). Using 
the leave-five-out setup, none of the tested image pairs was included in the model 
used for segmentation. To asses the clinical relevance, calculated contours were com-
pared with manually drawn contours of three experts. Furthermore we determined the 
state of automation that can be achieved, by comparing a fully automatic method with 
a semi-automatic approach in which for both ED and ES the endpoints of the aortic 
valve and the apex are predefined by a user. In the fully automatic method the model 
was initialized in the image center, with average scale and orientation. The benefit of 
the controlled gradient descent was tested by comparing it with regular AAM results. 

The difficulty in interpreting LV angiograms results in a large inter- (and intra-) 
observer variability. For example, differences in ES volume estimation by different 
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experts can amount to over 80 % and average ES point to curve differences can 
amount to 10 to 15 mm. Consequently, defining a notion of success for an automatic 
LV segmentation algorithm is difficult. To decide on success or failure, we have cho-
sen not to look at quantitative numbers only, but to use them as a reference while 
scoring the segmentations visually. 

4   Results 

4.1   Semi-automatic Segmentation 

The semi automatic algorithm yielded borders that agreed closely to the manual ex-
pert contours. The success rate of the algorithm is 100 % for ED and 99 % (1 outlier) 
for ES. After removal of the image pair with this partial failure, both ED and ES con-
tour errors, calculated areas and calculated volumes were, to our knowledge, better 
then any previously reported method. Figure 2 displays representative examples of 
obtained contours, proving that accurate segmentation is also feasible in images with 
acquisition artifacts. 

 

Fig. 2. Successful matches for ED (left column) and ES (right column) generated with the 
semi-automatic algorithm. Black dotted lines denote the manual contour, white dotted lines rep-
resent the semi-automatic contours. Semi-automatic contours correspond closely with manual 
contours, also when for example contrast is low (upper row) 



 

Table 1. Point-to-curve distances (PtC), contour errors (EC), area errors (EA) and volume  
errors (EV) for ED and ES. Six comparisons are displayed: semi-automatic model vs. expert #1, 
semi-automatic model vs. expert #2, semi-automatic model vs. expert #3, expert #2 vs. expert 
#1, expert #3 vs. expert #1 and expert #3 vs. Expert #2 

ED PtC [mm] EC [%] EA [%] EV [%] 
semi vs #1 0.68 ± 0.37 4.13 ± 1.90 1.90 ± 1.71 3.50 ± 3.45 
semi vs #2 0.74 ± 0.26 5.56 ± 2.97 2.01 ± 2.43 3.81 ± 3.23 
semi vs #3 0.72 ± 0.27 5.24 ± 2.07 2.39 ± 1.93 4.04 ± 3.83 
#2 vs #1 0.57 ± 0.20 4.37 ± 2.37 2.13 ± 2.54 3.36 ± 3.04 
#3 vs #1 0.59 ± 0.28 4.27 ± 1.80 2.03 ± 1.65 3.34 ± 2.27 
#3 vs #2 0.72 ± 0.39 5.21 ± 3.36 2.46 ± 2.98 3.87 ± 3.26 
     

ES PtC [mm] EC [%] EA [%] EV [%] 
semi vs #1 1.45 ± 0.76 12.8 ± 6.30 6.42 ± 5.36 13.5 ± 11.7 
semi vs #2 2.13 ± 1.73 26.4 ± 27.4 21.0 ± 28.1 38.3 ± 56.0 
semi vs #3 1.77 ± 1.29 20.8 ± 18.9 14.0 ± 18.9 31.4 ± 49.7 
#2 vs #1 1.23 ± 0.63 14.3 ± 8.64 11.6 ± 9.31 15.5 ± 11.6 
#3 vs #1 1.05 ± 0.69 11.1 ± 7.26 7.31 ± 7.48 11.7 ± 10.9 
#3 vs #2 1.25 ± 1.06 14.0 ± 13.0 9.37 ± 13.2 10.9 ± 16.5 

 

Fig. 3. Volume regression plots for ED, ES and EF for the semi-automatic algorithm 

Table 2. Comparison of semi-automatic contours with 3 experts and comparing the experts 
mutually: relative ED volume and ES volume errors and the absolute ejection fraction error 

 ED error [%] ES error [%] EF error [%] 
semi vs #1 -1.56 -0.88 -1.20 
semi vs #2 -0.86 12.79 -6.20 
semi vs #3 0.30 9.54 -4.26 
#2 vs #1 -0.70 -12.11 4.95 
#3 vs #1 -1.85 -9.45 2.98 
#3 vs #2 -1.15 3.03 -1.96 
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Border positioning errors were generally small. Average point to curve errors were 
0.68 ± 0.37 mm for ED and 1.45 ± 0.76 mm for ES. All quantitative results (model vs. 
expert #1) are summarized in Table 1, together with a comparison of automatically 
generated contours with expert #2 and expert #3 and a mutual comparison of all three 
experts. For the mutual comparison of experts, only 43 samples of the original 70 
paired ED-ES data were available. 

Excellent correlation between volumes based on manual and semi-automatic con-
tours was achieved, as shown in Figure 3. In a paired samples t-test differences be-
tween manually and semi-automatically calculated ED volume, ES volume and ejec-
tion fraction were found statistically insignificant (p=0.13, p=0.76 and p=0.15 
respectively). Table 2 gives an overview of errors in ED volume, ES volume and EF. 
The semi-automatic algorithm compared to expert #1 gives the overall best results. 
Especially the differences in calculated ES volume and EF were remarkably small, 
smaller than any of the inter-expert differences. This indicates that the method per-
formed within limits of inter-observer variability. 

4.2   Fully Automatic Segmentation 

The success rate of the fully automatic algorithm was 91 % for ED and 83 % for ES. 6 
complete failures were observed, in which both ED and ES segmentation diverged, 
and 6 partial failures in which only ES segmentation failed. After removing these 
failures, point to curve errors were 0.79 ± 0.43 for ED and 1.55 ± 0.66 for ES, which 
is comparable to the semi-automatic results. 

Linear regression is acceptable for ED (y = 0.93x + 6.88, R2 = 0.99), ES (y = 0.90x 
+ 4.55, R2 = 0.96) and EF (y = 0.84x + 9.46, R2 = 0.82). Only ED volume comparison 
between manual and automatic contours was statistically significant, according to a t-
test (p=0.03). Differences in ES volume and ejection fraction were found statistically 
insignificant (p=0.33 and p=0.72 respectively). 

4.3   Controlled Gradient Descent versus Standard AAM 

To determine the effect of the controlled gradient descent, experiments were repeated 
while using a regular Multi-View AAM instead of the proposed gradient descent. 
When applying a regular Multi-View AAM in semi-automatic segmentation, per-
formance and accuracy remained similar. Large difference in performance however 
occurred when applying a regular Multi-View AAM in fully automatic segmentation. 
The number of failures amounted to 40 % in ED and 50 % in ES segmentation: 
substantially worse than the controlled gradient descent matching. With a success rate 
of 91 % for ED and 83 % for ES the controlled gradient descent showed to be far 
more robust in evading local minima and converging to the desired solution. 

5   Discussion and Conclusions 

The semi-automatic algorithm shows a high success rate of 100 % for ED and 99 % 
for ES. The only failure occurred when the ES image showed an extremely slim and 
elongated shape. The results are based on the same data set as in [2]. Results have im-
proved significantly compared to [2], in which a combined success rate of 87 % for 



both ED and ES was reported. Correlation between manually determined LV volumes 
and semi-automatically calculated LV volumes was good and, to our knowledge, bet-
ter than any previously reported method. Especially the ES results have improved sig-
nificantly, which can be mainly attributed to the combined modeling of the ED and 
ES phase. The correlation values shown in Figure 3 are, to our knowledge, the best 
values reported until now. However, correlation values (R2 = {0.99; 0.95; 0.84}) do 
not match inter-observer correlations (R2 = {0.99; 0.98; 0.93}). Due to a lack of im-
age information, ES volumes are generally underestimated slightly. When using this 
method in daily clinical practice, a cardiologist will need to redraw about 20 % of the 
ES contour. This will increase both the ES segmentation quality and the EF calcula-
tion accuracy. To put this number in perspective, based on the similar conditions, ex-
pert #1 would on average redraw 14 % of an ES contour drawn by expert #2 and 12 % 
of an ES contour drawn by expert #3. 

Quantitative evaluation results of the semi-automatic algorithm proved to be within 
boundaries of inter-observer variability. The average difference and standard devia-
tion in comparing the semi-automatic method with expert #1 contours (the expert who 
produced the training contours) were comparable to values obtained when comparing 
different experts (Table 1 and Table 2). The ability to mimic expert drawing behavior 
is evident in Table 2. Differences between the semi-automatic algorithm and expert 
#1 are generally smaller then differences between experts. 

Both the amount of failures and the quantitative results for the fully automatic al-
gorithm were not as good as the semi-automatic approach. The major difficulty in 
fully automatic segmentation is the location of the three landmark points; upper aortic 
valve point, lower aortic valve point and apex. Errors for these landmarks are 3.8 mm, 
4.1 mm and 3.0 mm respectively for ED and 4.4 mm, 3.8 mm and 6.2 mm for ES. 
These errors strongly influence the volume estimates from the area-length method. 
Still the fully automatic algorithm provided acceptable segmentation results. After 
removal of failures, quantitative results were comparable to results of the semi-
automatic algorithm. 

The benefit of controlled gradient descent became evident when large adjustments 
of model and pose parameters were necessary, mainly when automatic initialization 
was applied. The success rate improved from 50-60% for the conventional matching 
to 80-90% for the controlled gradient descent. It proved to be a suitable approach in 
which the model deformation is directed by the modes of variation that most typically 
describe the object of interest. The controlled gradient descent approach has proven to 
evade local minima by converging in smaller and more controlled steps.  

The method is fast (1-2 seconds per case) and needs minimal user input: setting 6 
seed points manually produces the ED and ES contours. Quantitative results demon-
strate that the semi-automatic algorithm is robust and accurate, even when acquisition 
artifacts were present, such as poor contrast, overlapping diaphragm or strong shad-
ows in the image. 

Also, our method outperforms other recently published methods. Suzuki’s neural 
edge detector [10], trained on 12 ED and 12 ES images, achieved average contour er-
rors EC of 6.2 % and 17.1 % for ED and ES respectively and average area errors EA of 
4.2 % and 11.6 % for ED and ES respectively. The semi-automatic approach pre-
sented in this paper needs a similar amount of user interaction and produces EC values 
of 4.1 % and 12.8 % and EA values of 1.9 % and 6.4 %, comparing favorably to 
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our evaluation.  
In conclusion, a new algorithm for semi-automatic segmentation of the left ventri-

cle in X-ray LV angiograms is presented. The method is a combination of a Multi-
View Active Appearance Model and a locally selective dynamic programming ap-
proach and exploits knowledge about LV shape, image texture and contraction dy-
namics. The algorithm is capable of mimicking clinical expert drawing behavior and 
therefore provides excellent results. Local border accuracy is improved by a model-
initialized dynamic programming step in which both image information and knowl-
edge of contraction dynamics was integrated in the cost function. Furthermore, the 
robustness in fully automatic segmentation improved substantially by introducing a 
controlled gradient descent approach in updating the model parameters. 
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Abstract. In this paper, a new technique (SPASM) based on a 3D-
ASM is presented for automatic segmentation of cardiac MRI image data
sets consisting of multiple planes with different orientations, and with
large undersampled regions. SPASM was applied to sparsely sampled
and radially oriented cardiac LV image data.

Performance of SPASM has been compared to results from other
methods reported in literature. The accuracy of SPASM is comparable
to these other methods, but SPASM uses considerably less image data.

1 Introduction

Nowadays, cardiac MRI and CT are increasingly used for cardiac functional
analysis in daily clinical practice. Both modalities yield dynamic 3D image data
sets. With CT, images are acquired in an axial orientation and for cardiac anal-
ysis, usually short-axis (SA) views are reconstructed from the axial image data.
With MRI, images can be acquired in any spatial orientation. Commonly used
orientations are short-axis and long-axis (LA) views (2-chamber and 4-chamber),
and radial stacks. The SA acquisitions consist of a full stack of typically 8 to
12 (parallel) slices covering the heart from apex to base. However, there is an
ongoing debate on potential improvement of functional measurements by using
LA views or radially scanned long-axis (RAD) image slices, since they appear
to give better volume quantification due to better definition of the apex and
base [1].

For quantitative analysis of cardiac function, typically a cardiologist or radiol-
ogist manually segments the images. After segmentation, measurements of global
and regional functional parameters can be performed, such as wall thickening
or wall thinning, LV volume and Ejection Fraction (EF). Due to the increasing
amount of data, the amount of work for manually delineating the image data
has become prohibitively large, and automated segmentation is highly desired.

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 33–43, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recent work has shown that integration of prior knowledge into medical
image segmentation methods is essential for robust performance. Many recent
methods utilize a statistical shape model, and the seminal work of Cootes [2, 3]
on 2D Active Shape Models (ASMs)- and Active Appearance Models (AAMs)
has inspired the development of 3D ASMs [4, 5], 3D AAMs [6], 3D Spherical
Harmonics (SPHARM) [7], 3D Statistical Deformation Models (SDMs) [8,9,10,
11] and 3D medial representations (m-reps) [12]. However, all these statistical
models are only applicable to densely sampled 3D volume data, because the
modeling mechanism is either based on a dense volumetric registration [6, 8, 9,
10, 11] or the matching mechanism is based on a dense set of updates along
the model surface [4, 5, 12]. Therefore they typically assume a near isotropic
resolution and parallel image planes. The main goal of this work is to avoid the
need for these requirements on data sampling by developing a 3D active shape
model that:

– is applicable to sparsely sampled data sets without making assumptions
about voxel isotropy or parallel slices.

– is extensible to other modalities without retraining the shape model

To accomplish this, we present a 3D-Active Shape Model (3D-ASM) of the
cardiac left ventricle (LV). The underlying statistical shape model was based on
a 3D atlas that was constructed using non-rigid registration [9, 13]. Matching
of the model to sparse, arbitrarily oriented image data is accomplished through
a deformable mesh that enables propagation of image updates over the model
surface. Independence of a trained gray level model is achieved through a Takagi-
Sugeno Fuzzy Inference System (TSFIS) [14] for determining iterative model
updates based on relative intensity differences [4].

2 Background

Active Shape Models were introduced by Cootes et al. [2, 15] and consist of a
statistical shape model (often referred to as Point Distribution Model (PDM))
and a matching algorithm. The PDM is trained from a population of typical
examples of the target shape, and models shape variability as a linear combina-
tion of a mean shape, i.e. a mean set of (pseudo-)landmarks, and a number of
eigenvariations. For an elaborate introduction to ASMs, the reader is referred
to [2, 15,16].

2.1 Atlas Construction

A critical issue to achieve extension of PDMs to three and more dimensions is
point correspondence: the landmarks have to be placed in a consistent way over a
large database of training shapes, otherwise an incorrect parameterization of the
object class would result. The methodology employed to automatically achieve
this point correspondence of the heart was described in detail in [9]. The general
layout of the method is to align all the images of the training set to a mean at-
las (Fig. 1). The transformations are a concatenation of a global rigid registration
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Fig. 1. Atlas construction, a set of final global (Tg) and local (Tl) transformations can

take any sample shape of the training set, to the atlas coordinate system. On the left,

there is landmark propagation. Once the final global and local transformations are

obtained, they are inverted and used to propagate any number of arbitrarily sampled

landmarks on the atlas, to the coordinate system of the original samples

with nine degrees of freedom (translation, rotation, and anisotropic scaling) and a
local transformation using non-rigid registration. After registration of all samples
to the mean shape, the transformations are inverted to propagate a topologically
fixed point set on the atlas surface to the coordinate system of each training shape.
While it is still necessary to manually segment each training image, this technique
reliefs from manual landmark definition. The method can easily be set to build ei-
ther 1- or 2-chamber models; in this work we have used a 1-chamber model. To
build the statistical shape model, the auto-landmarked shapes are aligned using
Procrustes alignment [17]. Principal Component Analysis (PCA) can then be per-
formed on the remaining differences, which are solely shape related.

2.2 Matching Algorithm

The model described above was extended with a matching algorithm to apply
it to image segmentation. A key design criterion behind this matching approach
was applicability to data acquired with arbitrary image slice orientations, from
different modalities (MR and CT), and even to sparsely sampled data with
arbitrary image slice orientations. This implies that:

– only 2D image data may be used for updating the 3D model, to ensure
applicability to arbitrarily oriented sparse data

– generation of update points is performed based on relative intensity differ-
ence to remove the dependence on training-based gray-level models.

To accomplish this, the landmark points are embedded in a surface triangu-
lar mesh. During the matching, this mesh is intersected by the image planes,
generating 2D contours spanned by the intersections of the mesh triangles. To
remove dependencies on image orientation or limited resolution, model update
information is represented by 2D point-displacement vectors. The 2D update
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vectors located at the intersections of the mesh with the image slices are first
propagated to the nodes of the mesh, and projected onto the local surface nor-
mals. Scaling, rotation, and translation differences between the current state of
the model and the point cloud representing the candidate updates are eliminated
by alignment. The current model state is aligned with the candidate model state
(i.e., current model state with nodes displaced by the update vectors inferred
from image information) using the Iterative Closest Point algorithm [18]. Suc-
cessively, the parameter vector b controlling model deformation is calculated.
An adjustment to b with respect to the previous iteration is computed, using
both the candidate model state, x̂n+1, and the current model state, xn

b̂n+1 = bn + Δb = bn + ΦT (x̂n+1 − xn) (1)

with xn representing the aligned current state of the mesh, and bn representing the
parameter vector describing the current shape of the model within the statistical
bounds. The vector x̂n+1 is the proposed model shape for the next iteration, and
b̂n+1 its shape parameter vector before statistical constraints have been applied.

2.3 Update Propagation to Undersampled Surface Regions

In densely sampled data, a 3D data volume can be reconstructed that enables
generation of a 3D update in each model landmark. However, in sparsely sam-
pled data containing large undersampled regions, a (dense) 3D data volume
cannot be reconstructed: interpolation between sparse image slices with differ-
ent orientations (e.g., a radial stack of cardiac LA views) is non-trivial, if at
all possible. In void locations, no information can be extracted from the image
data to contribute to a new model instance. However, for the calculation of new
model parameters, updates for the complete landmark set are required: setting
updates of zero displacement would fixate the nodes to their current position,
thus preventing proper model deformation.

Paulsen et al. [19] applied Gaussian smoothing of a mesh surface in combina-
tion with a Markov Random Field for restoration of point correspondences for an
ear canal ASM. During the deformation of a mesh to presegmented shapes of ear
canals and projection of the mesh nodes on the target shape, swapping of mesh
vertices could occur. Instead of the training stage, we apply a similar method
to the matching stage of SPASM. To overcome large void areas without update
information, we propose a node propagation mechanism that distributes the up-
dates from non-void update locations towards the void regions (see Fig. 2(a)).
This mesh update propagation is weighted with the geodesic distance to the
origin of the update using a Gaussian kernel (see Fig 2(b)):

w(x) = e−
‖x−ω‖2

2σ2 (2)

where w(x) is the weight at the location of the receiving node in the mesh x, ω
is the source node, ‖x − ω‖ is the geodesic distance to the origin of the update,
σ is the width of the kernel. Therefore, if multiple paths exist from source node
to receiving node, only the shortest path is used. Thus, a receiving node accepts
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(a) (b)

Fig. 2. (a) Propagation of single model updates at the intersection with an image

plane (solid line). Propagation from the update sources surrounded with a circle is

illustrated here. From a source, an update vector originates (short arrow). Updates are

first propagated (longer solid arrows) to the nearest nodes in the mesh (marked with

squares). Updates are further propagated to adjacent nodes weighted with a Gaussian

kernel. Secondary updates (dotted lines) and tertiary updates (dashed lines) are also

shown. (b) Gaussian propagation with σ = 4mm (right) of two model updates (left)

propagated updates from any source only once. To avoid propagation updates
over the entire surface, propagation is stopped when the geodesic distance ex-
ceeds a fixed threshold (χ ≡ 3σ). After all propagations stopped, a pruning of all
node updates is performed. Each node has a list of weighted contributions from
source nodes, and a list of weights that were used to calculate each contribution.
A total update per node is computed by summing over all contributions and
normalizing with the sum of the weights.

2.4 Edge Detection Using Fuzzy Inference

The mesh structure combined with the update propagation enables applications
to sparsely and arbitrarily oriented data. To apply the model to different modal-
ities without retraining, the matching algorithm should not employ any trained
intensity model to generate the updates. Instead, we have developed an update
mechanism based on a Takagi-Sugeno Fuzzy Inference System (TSFIS) [14],
which uses Fuzzy C-Means clustering (FCM) on the gray values of a 3D vol-
ume patch surrounding the current instance of the model (see Fig. 3(c)). This
approach has been described in detail in [4], and can be summarized as follows:

1. Input
For each intersection point between the mesh and each of the 2D images, an
image patch, centered in this point, is considered. Patch size was selected
such that multiple tissues were included in the patch.
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2. Sectorization
To overcome possible inhomogeneities in the gray value distributions due to
surface coil effects, the ventricle shape is divided in multiple sectors. Patches
are pooled following this sectorization, enabling application of different rule
sets for different anatomical sectors the LV.

3. Fuzzification
To locate tissue transitions, gray values are classified per sector based on
relative intensity differences between blood, myocardium and air using stan-
dard Fuzzy C-Means (FCM) [20] clustering. In this work, the classes in the
FCM are bright, dark, and medium bright, representing blood pool, air and
myocardium respectively.

4. Inference of model updates
For each pixel, three fuzzy membership degrees (FMDs) result from fuzzy
clustering, above. Based on the FMDs, a mesh update is inferred as follows:
(a) defuzzification for each pixel

if (gray value is bright) then pixel is blood pool
if (gray value is medium) then pixel is myocardium
if (gray value is dark) then pixel is air
However, pixels are only classified if they clearly belong to one tissue class.
If a pixel does not reach a preset minimum membership degree for any
tissue class (seeTable 1), it is not classified andnot considered for inference.

(b) transition inference
endocardial border: from outside to inside, find the first transition from
myocardium to blood pool
epicardial border:

a at the septum
from inside to outside, first transition from myocardium to blood pool

b at the lung, anterior and posterior wall
from inside to outside, first transition from myocardium to another
tissue

(a) (b) (c)

Fig. 3. (a) Radial cardiac image stack. (b) Radial slice acquired with the Turbo Field

Echo (TFE) protocol. (c) Classified set of image patches. (A=LV blood pool, B=RV

blood pool, C=myocardium, D=air, E=outside image patches)
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Table 1. Parameters of the SPASM and their values

Defuzzification [21] ASM

Air cut-off proport. (See [4]) -0.20 Modes of variation 60
Blood pool mem.ship thresh. 0.20 Max variation per mode 2σ
Myocardium mem.ship thresh. 0.05 Propagation
Air mem.ship thresh. 0.50 Gauss. kern. width σ (Eq. (2)) 8mm

3 Experimental Setup

3.1 Test Data and Protocol

To test the performance of the sparse data model, a group of 15 volunteers was
scanned with a Philips Gyroscan NT5 (1.5T) scanner, using the Steady State
Free Procession (SSFP) and the Turbo Field Echo (TFE) protocols. For all
scans and protocols, the QBody coil was used. A number of acquisitions with
different slice orientations were performed during breath hold in end expiration.
First, SA images were acquired, yielding a stack of typically 10-12 parallel image
slices. Next, a radial scan was performed comprising four LA image slices, with
inter-slice angle of 45◦ (see Fig. 3(a)). To avoid breathing-induced slice shifts,
every slice was acquired with the TFE protocol, acquiring all four slices in the
same breath hold. Image slices had a 2562 matrix and covered a field-of-view of
300 − 400mm, slice thickness and slice gap for the SA acquisitions were 8mm
and 2mm respectively. For the RAD TFE acquisitions, the slice thickness was
8mm. LV contours were manually drawn in all data sets. The manual contours
in the radial stack were used to compensate for slice shifts in the SA volume
due to differences in inspiration level. To assess inter-observer variability with
respect to manual delineation, contours on all subjects were drawn by two ob-
servers.

3.2 Matching

Initialization of the model in the target data set was performed manually. Initial
pose and scale were calculated from manual delineations on the image data from
the SA acquisition. Due to the rotational symmetry of the model with respect
to the long-axis and the sectorization, special attention was paid to initialize
the model such that the myocardial sectors corresponded to the approximately
correct anatomical location in the image data.

Parameter settings for the membership thresholds for the FIS used to define
model updates at locations where the model is intersected by image planes were
taken from previous work [21]. Best settings for the propagation parameters were
determined in an exhaustive search on a computer cluster with 50 processors,
using point-to-surface (P2S) error measures of the final state of the model with
respect to manual segmentation as criterion for evaluation. The optimal settings
for the parameters are listed in Table 1.
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3.3 Quantitative Evaluation

To quantify the performance of the SPASM on the sparse radial image data,
point-to-surface (P2S) error measurements were performed (see Fig. 5. Manually
delineated surfaces in the SA image data were selected as gold standard. In
addition, a comparison was performed between volumes of the final model states
and volumes derived from the manual segmentations on the SA acquisition data.

(a) (b) (c) (d)

Fig. 4. Final segmentation result of one of the subjects in the test population. (a-d)

Result shown on slice 1 through 4, respectively

Fig. 5. Point-to-surface error measurement. Distances are measured from points on

the automatic surface (solid) to the manually segmented surface (mesh). Note that the

largest errors are made at the apical region

4 Results

Results from the tuning of the update propagation parameters are shown in Ta-
ble 1. Results from the P2S evaluations between the final model instance and

1 These are the best obtained results by Lötjönen et al [11] with a 4-chamber ASM
based on a probabilistic atlas. Other models were built using normalized mutual
information, landmark probability distribution, PCA, and ICA.

2 Mitchell et al. compute errors of the automatic segmentation results slightly different
than in this work. Mitchell et al compute (2D) distances in the image slices along lines
perpendicular to the centerline between automatic and manual segmented contours.
This does not guarantee shortest point-to-curve or point-to-surface distances, and
may thus overestimate errors with respect to the method used in this paper and by
Lötjönen et al.
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Table 2. Point-to-surface distances measured per subject between manual and au-

tomatic surfaces in mm, averaged over the total population (14 subjects). Maximum

distances are maximum distances per subject averaged over the total population.(all

values are average ± standard deviation in mm)

Average Maximum
endocard epicard endocard epicard

Inter observer 1.27 ± 0.30 1.14 ± 0.29 4.34 ± 0.88 3.93 ± 0.79
Lötjönen et al. (aut. ref.) [11]1 2.01 ± 0.31 2.77 ± 0.49 n.a. n.a.
Mitchell et al. [6]2 2.75 ± 0.86 2.63 ± 0.76 n.a. n.a.
Kaus et al. [5] 2.28 ± 0.93 2.62 ± 0.75 13.82 12.35
SPASM 2.24 ± 0.54 2.83 ± 0.78 11.1 ± 2.54 15.7 ± 5.06

Table 3. Volume regression numbers. Volumes were calculated per subject (14 sub-

jects), separately for endocardial volume and epicardial volume. Volume calculated

from SA reconstruction was taken as the reference volume (ground truth)

Correlation coefficient (R)
endocardium epicardium

Manual volume (radial image slices) 0.74 0.71
Automatic volume 0.78 0.74

manual segmentations in SA views are presented in Table 2. Correlation coef-
ficients between manual volumes from SA views and automatic volumes from
the final model instance are shown in Table 3. For comparison, the correlation
coefficients between manually segmented volumes from SA views and from RAD
views are presented in Table 3 as well. In the results, one subject was excluded
due to a mismatch for almost all the runs in the tuning process on this subject.
A final segmentation result of one of the subjects is shown on all four slices in
Figure 4. Matching for Nmax = 100 iterations took 727 ± 134 seconds (mini-
mal 522 seconds, maximal 915 seconds) on a 2.8 GHz Xeon computer machine
running Linux Redhat 9.

5 Discussion and Conclusion

In this paper SPASM is presented, a new technique based on a 3D-ASM, that is
able to automatically segment cardiac MRI image data sets consisting of multiple
planes with different orientations, and having large undersampled regions.

Because SPASM does not include a statistical gray level model, it is poten-
tially applicable to both MRI and CT data sets without fully retraining the
intensity model. For segmentation, it does not require image slices with equal
orientations as present in the training data. SPASM was applied to radially ori-
ented cardiac LV image data, which contains undersampled regions with larger
sampling density at the apex than at the base.
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Performance of SPASM was evaluated against manual delineations on an SA
data set of the same subjects. In the SA data set, the heart can be displaced
between different slice acquisitions, due to different breath hold levels. Although
this displacement is minimized by acquisition during end expiration, correction
of slice positions was necessary.

The maximum errors presented in Table 2 are mainly observed at the apical
regions (see Fig. 5). This is due to the closed apex in SPASM, while the manual
segmentation at the apex is open.

Performance of SPASM has been compared to results from other methods
reported in literature [6, 11, 5] (see Table 2). The accuracy of SPASM is com-
parable to these other methods. However, SPASM is the only method that can
be applied to a set of arbitrarily oriented and sparsely sampled image slices: it
was applied to only four image slices, whereas the other models required a stack
of 8-12 parallel slices, yielding comparable accuracy. Segmentation errors of all
methods are substantially larger than the inter-observer variability (see Table
2). This may be caused by too rigid statistical constraints on the allowed defor-
mation of statistical shape models in general. Further evaluation of SPASM is
ongoing with respect to the minimally required sampling density, different com-
binations of LA and SA image slice orientations, and the sensitivity of the final
segmentation results to model initialization.
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11. J. Lötjönen, S. Kivistö, J. Koikkalainen, D. Smutek, and K. Lauerma, “Statisti-
cal shape model of atria, ventricles and epicardium from short- and long-axis mr
images,” Medical Image Analysis, vol. 8, pp. 371–386, 2004.

12. P. Yushkevic, P. T. Fletcher, S. Joshi, A. Thall, and S. M. Pizer, “Continuous
medial representations for geometric object modeling in 2d and 3d,” Image and
Vision Computing, vol. 21, no. 1, pp. 17–27, 2003.

13. S. Ordas, L. Boisrobert, M. Bossa, M. Laucelli, M. Huguet, S. Olmos, and
A. Frangi, “Grid-enabled automatic construction of a two-chamber cardiac PDM
from a large database of dynamic 3D shapes,” in IEEE International Symposium
of Biomedical Imaging, 2004, pp. 416–419.

14. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
to modeling and control,” IEEE Transactions of Systems, Man and Cybernetics,
vol. 15, no. 1, pp. 116–132, 1985.

15. T. F. Cootes, D. Cooper, C. J. Taylor, and J. Graham, “A trainable method of
parametric shape description,” Image and Vision Computing, vol. 10, no. 5, pp.
289–294, 1992.

16. T. F. Cootes and C. J. Taylor, “Statistical models of appear-
ance for computer vision,” Imaging Science and Biomedical En-
gineering, University of Manchester, Manchester M13 9PT, U.K.,
http://www.isbe.man.ac.uk/∼bim/Models/app models.pdf, Tech. Rep., March
2004.

17. J. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40, pp. 33–50,
1975.

18. P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–
256, 1992.

19. R. R. Paulsen and K. B. Hilger, “Shape modeling using markov random field
restoration of point correspondences,” in Information Processing in Medical Imag-
ing, ser. Lecture Notes in Computer Science, C. Taylor and J. A. Noble, Eds., vol.
2732. Berlin: Springer Verlag, 2003, pp. 1–12.

20. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. New
York: Plenum press, 1981.

21. S. Ordas, H. C. van Assen, B. P. F. Lelieveldt, and A. F. Frangi, “Segmentation
performance assessment of an autolandmarked statistical shape model,” submitted.



Combining Active Appearance Models and
Morphological Operators Using a Pipeline for

Automatic Myocardium Extraction

Bernhard Pfeifer1, Friedrich Hanser1, Thomas Trieb2, Christoph Hintermüller1,
Michael Seger1, Gerald Fischer1, Robert Modre1, and Bernhard Tilg1

1 University for Health Sciences, Medical Informatics and Technology,
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Abstract. A geometrical model of the human heart is of interest in
many fields of biophysics. The myocardium contains the electrical sources
responsible for the generation of the body-surface ECG. An accurate
geometric knowledge of these sources is crucial when dealing with the
electrocardiographic forward and inverse problem. We developed a semi-
automatic approach for segmenting the myocardium in order to deal with
the electrocardiographic problem. The approach can be divided into two
main steps. The first step extracts the atrial and ventricular blood masses
by employing Active Appearance Models (AAM). The ventricular blood
masses are segmented automatically after providing the positions of the
apex cordis and the base of the heart. Due to the complex geometry of the
atria the segmentation process of the atrial blood masses requires more
information. We divided, therefore, the left and the right atrium into
three divisions of appearance: the base of the heart, the lower pulmonary
veins from its first up to the last appearance in the image stack, and the
upper pulmonary veins. After successful extraction of the blood masses
the second step involves morphologically-based operations in order to ex-
tract the myocardium either directly by detecting the myocardium in the
volume block, or by reconstructing the myocardium using mean model
information, in case the algorithm fails to detect the myocardium.

1 Introduction

Atrial and ventricular surface activation time imaging from body-surface ECG
mapping data [8, 5, 7] may become a diagnostically powerful clinical tool for
assessing cardiac arrhythmias. This cardiac source imaging technique aims to
provide information in a noninvasive manner about the spread of electrical exci-
tation in order to assist the cardiologist in developing strategies for the treatment
of cardiac arrhythmias. Common cardiac arrhythmias, such as atrioventricular
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reentrant tachycardia, atrioventricular nodal reentrant tachycardia, or atrial fib-
rillation, can, in many cases, be traced back to accessory pathways, atrial or
ventricular foci, e.g., from the pulmonary veins [6, 1], and reentrant circuits [13].
Identifying the site of origin of the ectopic focus or the location of an acces-
sory pathway provides the essential information for treatment strategies, such
as catheter ablation [9].

Activation time imaging from three-dimensional anatomical and body-surface
ECG mapping data enables noninvasive imaging of the electrical excitation in the
heart [12]. The method yields solutions to the electrocardiographic inverse prob-
lem and is based on an electrodynamic model of the patient’s volume conductor
and heart. The volume conductor considers a model of the electrodynamically
most relevant compartments including chest, lungs, atrial and ventricular my-
ocardium, and blood masses. A model of the heart comprises separate models
for the atria and ventricles since whole heart models still resist a technical im-
plementation with regard to the electrodynamic inverse problem. The crucial
point of an atrial and ventricular model is their geometry. Geometric distances
between the cardiac sources and the chest strongly influence the electrodynamic-
based model and, therefore, the overall model error. The complex geometry of
the atria is given by the orifices of the pulmonary veins, orifices of superior and
inferior vena cava, tricuspid and mitral annuli, and right and left appendages,
and this makes it more difficult, compared to the ventricle, to generate a geomet-
rical model. It is clear that any technique that is capable of generating an atrial
model will succeed also for the ventricle. Consequently, we decided to extract
the ventricular blood masses using the same technique as used for the atrial
blood masses, although especially the myocardium of the left ventricle could
be segmented in a direct way. The reason for this decision was to get a con-
sistent way for cardiac modeling and for incorporating the proposed technique
into a segmentation pipeline with little user interaction. The main problem of
constructing a realistic heart model is that the myocardium can hardly be seg-
mented in volume data (especially the atria are a big challenge) because of the
low sensitivity and resolution even for state-of-the-art medical imaging modal-
ities like MRI and CT. We employed AAM for the extraction of blood masses
and we use morphological operations to reconstruct the myocardial structure
directly, in case the myocardium can be detected in the volume data, or in an
indirect way, using a priori knowledge, otherwise.

The paper is organized as follows: Section 2 describes the segmentation ap-
proach and the implemented algorithms. Results of geometrical models of the
atrial and ventricular myocardium are presented in section 3. The two steps of
the approach are discussed in section 4, and finally, we summarize in section 5.

2 Methods

Our goal when developing this segmentation approach was to get a consistent
way for cardiac modeling and for incorporating the proposed technique into a
segmentation pipeline with little user interaction. We employed AAM for the
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extraction of blood masses because this model based technique is able to gen-
erate reliable results when segmenting the cardiac blood masses. The use of
morphological operations provides a fast method for myocardium reconstruc-
tion, in case the myocardium is detectable, or estimation otherwise, and enables
an easy implementation in a semiautomatic segmentation pipeline.

2.1 Blood Mass Extraction Using Active Appearance Models

In the year 1991 Craw and Cameron published one of the first appearance mod-
eling approaches [4]. They wrapped faces to a reference shape before doing a
Principal Component Analysis (PCA). In 1994 Cootes et al. introduced Statis-
tical Models of shape and texture [2]. In 1998 Active Appearance Models were
introduced [3] and since this introduction a lot of enhancements were done. For
more information http://www.isbe.man.ac.at/∼bim/ should be picked up.

Objects in images are represented using shapes. A shape can be described by a
set of n points. Statistical methods can be applied when using shapes and, there-
fore, it is possible to analyze the shape differences and shape changes. Shapes
can be inserted into an input or training image by searching for corresponding
landmarks. Normally a human expert annotates the training sets by hand. Good
landmarks are points of high curvature or junctions. Intermediate points can be
used to define the boundary more precisely. The vector for representing a shape
can formally be defined as

x = (x1, ..., xn, y1, ..., yn)T . (1)

If there are s training examples, then s vectors are generated by the human ex-
pert. Before applying statistical analysis on these vectors it has to be guaranteed
that all shapes are in the same coordinate-frame. Therefore all shapes are aligned
in a way, that the sum of distances of each shape to the mean (D =

∑ |xi−x|2)is
minimized. An appearance model can represent shape and texture changes learnt
in the training sets. The shape of an object is represented as a vector x and the
texture as a vector g:

x = x + Qsc (2)
g = g + Qgc (3)

where the parameter c controls shape and texture. x is the mean shape, g is the
mean texture and Qs, Qg are matrices describing the modes of variation (shape
and texture) learnt from the training set. Generally, an AAM seeks to minimize
the difference between an unseen image and one created by the appearance
model.

For creating the AAM we integrated the AAM-API1 available at
http://www.imm.dtu.dk/∼aam/ into our Medical Segmentation Toolkit (MST)
framework. The MST framework is developed using C++ and includes some

1 Copyright (c) 2000-2003 Mikkel B. Stegmann, mbs@imm.dtu.dk; This software is
freely available for non-commercial use such as research and education.
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Fig. 1. Training set, annotated using 66 landmark points, of a blood mass from the

right ventricle

different standard frameworks like the DCMTK framework for handling medi-
cal images (http://dicom.offs.de/dcmtk.php.en), ITK (http://www.itk.org/) for
some segmentation methods, and Qt (http://www.trolltech.com/) for creating
user interfaces. This toolkit enables to combine different segmentation techniques
for each compartment and offers the creation of defined compartment pipelines.

When constructing a realistic cardiac model of a patient the main problem
is that the myocardium can only be detected at limited locations in the volume
conductor. The only structure which can be seen with sufficient accuracy are the
blood masses. But also the blood masses have a big variation in shape and tex-
ture. Because of this reason a segmentation approach for this task needs a-priori
information for successful and almost error-free extraction of the searched blood
masses. Model based approaches like the AAM seem, therefore, to be a good
choice for solving this segmentation problem. When trying to segment the atrial
and ventricular blood masses from different patients the structures vary in shape
and texture. With the help of AAM it is possible to figure out which are plau-
sible variations and which are not. A new data set can, therefore, be segmented
by finding the best plausible match between the model and image data.

The appearance model represents both the shape and texture variability seen
in a training set. The training set consists of labelled images, where key land-
mark points are marked on each example object. We used 96 different training
sets for establishing the right and left ventricular blood mass AAM. Every image
set was annotated using 66 annotation points. 33 points were used to describe
the left/right ventricular blood mass and 33 points were used to define the peri-
cardium. Figure 1 shows an example of a training set for right ventricular blood
mass extraction AAM. The pericardium (whole heart contour) is annotated be-
cause this makes it easier to initial locate the desired structure, a manner that
was used for each AAM. After the preparation of the ventricular data sets, the
training procedure - the processing of the principal component analysis - yielded
55 main components for the right ventricular blood mass and 56 main compo-
nents for the left ventricular blood mass.

As already mentioned above, the atria show a more complex geometry and,
therefore, more information is needed for the segmentation process of the atrial
blood masses. In order to simplify the segmentation process we decided to divide
the atria into three divisions of appearance: the base of the heart up to the left
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upper (LUPV) and the left lower (LLPV) pulmonary vein, the LUPV and the
LLPV from its first up to its last appearance in the image stack, and from this
position up to the right lower (RLPV) and upper (RUPV) pulmonary vein. We
created one training set for each division. All together, we prepared 193 training
sets for atrial blood mass extraction and each atrial blood mass was annotated
by 66 annotation points. 33 annotation points were used to define the left/right
atrial blood mass and the resting 33 annotation points were used to describe the
pericardium. The creation of the appearance models yielded 56 main components
for the first atrial division, 58 main components for the second division and 51
main components for the third defined atrial division. The main components of
our AAMs were defined to include 97% of all shape and texture variations.

Blood Mass Search Procedure. When extracting the ventricular blood
masses the user has to provide the position of the apex cordis and the base
of the heart in the associated volume block. After this, the AAM approach for
the left and the right ventricular blood masses is initialized and then yields the
desired segmentation of the ventricular blood masses by applying the fitting
procedure until convergence.

The segmentation procedure for the atrial blood masses can be described this
way. First initial parameters have to be set: the base of the heart, the end of the
first division of appearance and the end of the second division of appearance in
the volume block have to be marked. Then the AAM need to be initialized and
that means to locate the desired structures in principal. After this process the
model fit approach starts and operates until the search process converges.

These steps have to be repeated for each image between the given parameter
range in the volume block to extract the ventricular blood masses as well as the
atrial blood masses. Because the AAM ranges are defined by the given parame-
ters the associated AAM are used in order to extract the desired structures.

2.2 Myocardium Reconstruction/Estimation Using Morphological
Operations

After blood mass extraction using the technique described in section 2.1 the
labelset should be smoothed by appropriate tools. Figure 2 shows a triangula-
tion, created by a marching cubes algorithm, of the extracted labelsets of the
atrial blood masses. The extracted blood masses are the basic input for the
myocardium modeling procedure. The atrial and ventricular myocardium is
constructed directly, in case the myocardium can be detected by the algorithm
in the volume data, or artificially otherwise by applying appropriate voxel ma-
nipulations. The method adds label voxels in the outward normal direction until
the user defined wall thickness is reached. Due to given facts in human beings
the atrial wall thickness is between 3 to 5mm, the right ventricular myocardium
between 6 to 8mm and the left ventricular myocardium between 8 to 12mm. The
necessary input parameters for the algorithm are the minimum wall thickness,
the mean wall thickness, and the maximum wall thickness. The approach uses op-
erations of mathematical morphology. In principal the dilation operation is used.



Combining Active Appearance Models and Morphological Operators 49

Fig. 2. Left panel shows the triangulated blood masses of the left atrium, and the right

panel shows the triangulated blood masses of the right atrium

Fig. 3. On each boundary voxel of the endocardium, a virtual circle with a predefined

radius rolls around the endocardium in order to reconstruct the atrial myocardium

The algorithm uses virtual circles as structuring elements with a radius range
from the defined minimum wall thickness up to a maximum wall thickness. These
circles roll around the blood mass boundary in order to reconstruct the myocar-
dial structure. If the algorithm is able to determine the myocardium by probing
all voxels to be element of a user defined gray value range inside the virtual
circles (minimum up to maximum wall thickness) then the myocardial structure
can be reconstructed directly. If the myocardial structure can not be detected
the mean model information is used to reconstruct the myocardial structure.
The mean model is a user defined parameter that describes the myocardium
to have a standard wall thickness of 5mm for the left/right atrial myocardium,
7mm for the right ventricular myocardium and 10mm for the left ventricular
myocardium, as an example for one possible parameter set.

The situation of estimation occurs predominantly when reconstructing the
atrial myocardium because the atrial myocardium is almost always invisible due
to its low sensitivity in the image data. This approach processes the volume
stack sequentially in z direction without taking adjacent slides into account. For
this reason this approach is a 2D version. In spite of the fact that this 2D version
of the algorithm yields good results, the marching cubes algorithm can produce
holes, especially when the segmentation of the blood masses differs too much
between adjacent images or labelsets within the volumestack. Such a variation
may occur because of the choosen image modalities (4mm slice thickness) and
possible artefacts especially caused by motion. Although a slice thickness of 1mm
is possible with new scanners such an image modality setting needs a lot of time
that is not available when using the approach in a clinical application nowadays.
To overcome this problem, the adjusted variant, the 3D variant, takes one slide
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Fig. 4. Segmented ventricles and atria triangulated - for visualization - using a march-

ing cubes algorithm

above and one slide below the initial labelset slide into account. As a main step
of the 3D variant the adjacent slides are similarified by the algorithm [10]. To
similarify the adjacent sets reduces the likeliness of holes when triangulating the
labelset using a standard marching cubes algorithm. Because for the estima-
tion of the electrical spread in the human heart a functional model and not an
anatomical one is needed, model variations caused by similarify and smoothing
operations influence the inverse solver less than having non existing structures
(e.g., holes) in the model caused by above described possible situations.

3 Results

The segmented labelset is triangulated with a standard marching cubes algo-
rithm followed by a remeshing process guaranteeing quality standards (equilat-
erality of triangles) that qualify for a FEM/BEM formulation used for dealing
with the electrocardiographic problem. Our main problem is to get a model
of the volumeconductor, on the one hand, in a very fast and efficient way to
enable the estimation of the electrical excitation in a clinical application, and,
on the other hand, to keep the model error as small as possible to get reliable
results when trying to solve the inverse problem - and that means to find the
pathological pathway in a non invasively way.

We tested our approach using volume data from eight different patients [12].
The segmentation of the left and the right ventricular blood mass needed μ = 148
seconds. The segmentation of the right and the left atrial blood masses needed
μ = 167 seconds. The reconstruction process of the myocardial structure by
using the blood masses as the main input source, needs about μ = 5 seconds.
For the reconstruction approach we used a Dual Pentium Xeon workstation with
a clock frequency of 2.8 GHz and 2 GByte main memory (RAM).

Figure 4 shows a triangulated and remeshed ventricular and atrial my-
ocardium model that qualifies for estimating the spread of electrical excitation
in the patients volume conductor. Figure 5 shows a ventricular model of a female
patient and the atrium with its blood masses.

To decide if the method qualifies, or with other words, if the model represents
the for the estimation relevant parameters preferably close, the segmentation
result of the blood masses were compared with the blood masses extracted by two
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Fig. 5. Left: Reconstructed myocardium of the left and the right ventricle; Right:

Atrium with blood masses

different human experts. The correlation coefficient, that was used to measure
similarity, resulted in the correlation coefficient range from 0.912 to 0.931. The
models of the human experts qualified as well as the automatically extracted
models for the estimation of the electrical spread in the human heart.

4 Discussion

We presented a semiautomatic segmentation approach that allows to reconstruct
the myocardial structure of the ventricles and the atria even if the myocardium
can not be detected in the volume data. The indirect reconstruction/estimation
of the myocardial structure enables the creation of a semiautomatic segmentation
approach, because the main input for the myocardium extraction, the blood
masses, can be seen clearly in the volume data, even if there are artefacts. This
fact reduces the necessary user input and the mending process dramatically. Due
to the possibility that the myocardium can be reconstructed using the blood
masses, or the endocardial structure, the contribution to the model error will
be sufficiently small. It is clear that it is important to have only a very small
model error when trying to estimate the spread of electrical excitation in the
human heart. Note that not only the segmentation task causes a model error.
Also the quality of the ECG signal, the positions of the electrodes and other
interferences cause an increase of the mean model error. So it is important to
hold all these sources of errors down because only if the sum of all errors is low
the mean model error has an acceptable value.

It seems to be imperative, when trying to reconstruct the myocardium, to
extract the blood masses primary and then to use an indirect technique using
the blood masses as a-priori information for the myocardial extraction. The
reason for this strategy was that the myocardium can be detected only at limited
locations in the medical image data. This myocardium visibility problem occurs
because of low image resolutions, artefacts (caused by motion of the patient
and/or the heartbeat) and image modality settings. Our cine gated short axis
scan image data were acquired using a slice thickness of 4mm. This slice thickness
requires an indirect myocardium extraction approach because the thickness of
the atrial myocardium is about 4mm and, therefore, it is almost always invisible
in the image data. Although it is possible to generate slides with a thickness
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of 1mm with modern scanners, the acquisition time increases. When using the
4mm slice thickness the MRI procedure can be finished in an acceptable time
span (about 30 to 45 min). The MRI procedure consists of the preparation of the
patient and the acquisition of the axial and the cine-gated short-axis scan. The
cardiologist usually starts with the electrophysiology study (EPS) after a two
hour intermission. During this break the whole volume conductor model has to be
generated in order to enable the non invasive imaging of cardiac electrophysiology
(NICE) [11] approach in the catheter laboratory.

5 Summary

The usage of AAM allow the extraction of ventricular and atrial blood masses in
a very efficient way, which means that the run time behavior and the quality of
the labelsets are in an excellent ratio. Only the annotation or rather the learning
procedure of the appearance models need a lot of experience and time. The
extraction result of the appearance models, the blood masses of the ventricles
and the atria, can be directly used as input by the myocardium extractor. This
technique allows to reconstruct the myocardium directly, when the structure can
be detected in the volume data, or indirectly by using a-priori information, when
the myocardium can not be identified in the volume data. The big advantage of
this step is that only a few parameters have to be set and that the algorithm
reconstructs the desired structure in a very efficient way.

The approach yields ventricular and atrial models that qualify, according
to our experience, for cardiac source imaging. Thanks to the reduction of user
interaction, the fast structure detection and the fast reconstruction of the cardiac
model, this approach can be used in clinical applications.

The cardiac models were implemented many times in the construction of the
patient’s volume conductor model needed for solving the electrocardiographic in-
verse problem. The construction of this volume conductor segmentation pipeline
coupled with our inverse solver can provide essential information to the cardi-
ologist, in order to develop treatment strategies like catheter ablation. To get
such information in a non invasive manner can help reducing costs, time, and it
also reduces the remaining risk for the patient that arises during every invasive
treatment.

The combination of AAM and morphological operators allows to create a
segmentation pipeline with little user interaction and to reconstruct the desired
structure even if not detectable in the volume data.
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Abstract. This paper describes a method for automatic contour de-
tection in long-axis cardiac MRI using an adaptive virtual exploring
robot. The robot is a simulated trained virtual autonomous tri-cycle
that is initially positioned in a binary representation of the left ventricle
(LV) and finds the contours during navigation through the ventricle. The
method incorporates global and local prior shape knowledge of the LV
in order to adapt the navigational parameters. Together with kinematic
constraints, the robot is able to avoid concave regions such as papillary
muscles and navigate through narrow corridors such as the apex. Valida-
tion was performed on in-vivo multiphase long-axis cardiac MRI images
of 11 subjects. Results showed good correlation between the quantita-
tive parameters, computed from manual and automatic segmentation:
for end-diastolic volume (EDV) r=0.91, for end-systolic volume (ESV)
r=0.93, ejection fraction (EF) r=0.77, and LV mass (LVM) r=0.80.

1 Introduction

Over the last decade cardiovascular MRI imaging has become the clinical stan-
dard for the functional assessment of the human cardiovascular system. A typical
MRI study consists of a large amount of data and, therefore, automated analysis
of acquired data is desirable in the daily clinical practice.

For modelling and extracting myocardium borders a large number of tech-
niques have already been proposed. For example, Active Contour Model (ACM)
is a deformable contour, which is widely employed for tracing the cardiac bor-
ders [1]. Deformation is governed by the internal and external energies. The inter-
nal energy assures the contour’s smoothness imposing constraints on its shape.
The external energy attracts the contour to the object’s boundaries. ACM comes
short in segmentation of long-axis cardiac images. The contour has to be rigid
enough to prevent its deformation outside the myocardial borders, where the
boundaries are not well defined (e.g. boundary between the myocardium and
papillary muscles or liver), and it must be flexible enough to provide reliable
segmentation of regions with high curvature (apex). A technique, based on Ac-
tive Appearance Models (AAM) [2] overcomes the aforementioned drawbacks of
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ACM by incorporating knowledge about the myocardial boundaries. This knowl-
edge is formalized in terms of the statistical properties of the average heart’s
shape and appearance (gray-level representation) as well as the main modes of
variation found in a training set. The AAM model placed in a new image is
deformed to minimize the difference between the model and object of interest
within the image. The deformation is restricted to variations found in the train-
ing set. AAM’s were used for extraction of the cardiac borders at end-diastole
and end-systole and showed good correlation between automatically delineated
and expert contours [3]. However AAM’s can be successfully used to match an
object with the statistically plausible shape, while it fails to recognize the object
of interest that shows large deviation from shapes in the training set.

An novel method for myocardial border detection based on a virtual explor-
ing robot was introduced in [4]. The robot is represented as a tricycle with
a steering front wheel. It can automatically navigate through an environment
(myocardium). Using the frontal and lateral range sensors the robot is able to
detect the coordinates of obstacles (myocardial borders) and to plan a safe path
towards the target avoiding these obstacles. The robot was used for short-axis
contour extraction in MRI data sets and showed promising results.

In this paper we propose a new system for automatic delineation of long-axis
contours for both two- and four-chamber orientations using a modified version
of the robot. The navigational environment is constructed with an improved seg-
mentation procedure based on both intensity and spatial information to reduce
misclassification of pixels. The path planning is made more robust allowing the
navigation in narrow regions with high curvature. The robot is made adaptive
with respect to its length, speed and maximum turning angle, depending on the
local LV geometry.

2 Methods

The global outline of the system is as follows. The multiphase images in two- or
four-chamber view are automatically segmented by fitting finite gaussian mix-
ture into the combined image histogram and applying spatial regularization in
terms of Markov Random Field (MRF). The classified pixels are subsequently
recombined to yield binary images consisting of the allowed navigational space
or obstacles. For each binary image the initial start position and orientation for
the robot as well as the target are determined. The navigational environment
along with the robot’s initial position and orientation provides the input for the
next step. The myocardium is divided into four different segments. The robot is
initialized once at the segment boundaries and cruises through the navigational
environment until the end of the segment is reached. Depending on the local LV
geometry the robot adapts its navigational parameters to prevent from getting
stuck and to avoid concave regions such as the papillary muscles, collect informa-
tion about the endocardial (endo) and epicardial (epi) boundary points. Finally,
the detected edge segments are used to reconstruct the endo- and epi-contours.
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2.1 Creation of Navigational Environment

The robot is designed to navigate through a binary environment. Therefore, the
gray-level images must be converted into binary images consisting of allowed
navigational space (myocardium) and obstacle (blood pool and air).

To automatically segment the image, the pixels are grouped into classes by
modelling the pixel intensity distributions with three gaussian mixtures using
Expectation-Maximization (EM) [5, 6] with greedy search heuristics [7]. During
the expectation step the pixels are assigned to a class with the highest conditional
probability based on previous estimates of the distribution parameters. In the
maximization step the distribution parameters are updated to maximize the
log-likelihood. These two steps are repeated until convergence.

With the estimated pixel intensity distributions the images can be segmented
into blood, myocardium and air. However statistical segmentation based only
on the pixel intensity may lead to misclassification due to the presence of noise.
Therefore, the context of the pixel’s neighborhood is taken into account and pixel
intensity information is augmented with spatial regularization using MRF [8].
The amount of spatial regularization is limited to 8-connected neighborhood and
pairwise interaction between two neighboring pixels. The spatial mixture model
yields the final classification of the image and is schematically represented inFig. 1.

Fig. 1. Creation of navigational environment: (A) input image; (B) probability density

maps for air (top), myocardium (middle), blood (bottom); (C) statistical segmenta-

tion with spatial regularization; (D) navigational environment - white corresponds to

obstacle space, black - to allowed navigational space

2.2 Estimation of Initial Navigational Parameters

For the autonomous navigation in the allowed space the robot needs the starting
position, starting orientation, and target. Based on the assumption that the
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LV resembles a truncated ellipse at end-diastole, fitting an ellipse [9] into the
myocardium gives a good approximation of the spatial orientation of the LV.
Using the elliptic model the important anatomical landmarks can be localized
and division of the heart into four non-overlapping segments can be done (Fig.2).
The apex is located by finding the intersection point between the long axis of
the ellipse and myocardium and yields the end point of the apical segments.
The boundary between the basal and midventricular segments is put at the
intersection of the myocardium with the line that is parallel to the ellipse short-
axis and passes though the ellipse focal point, thus serves as the starting point
for the robot navigation. The target is located in the ellipse center and the start
orientations are the direction of the tangent line of the closest point on the
ellipse. From the starting position the robot cruises through the allowed space,
bounces from the endocardial LV border in attempt to reach the target and
proceeds further until the end of the segments. It is initialized in each segment
and navigates twice towards the mitral valve points and twice to the apex.

Fig. 2. Division of the LV into four segments. Segments 1 and 2 cover to the basal

part, while segments 3 and 4 represent the midventricular and apical parts

2.3 Adaptive Robot Navigation

The robot is a tricycle with a front steering wheel as is illustrated in Fig.3A. The
position and orientation of the robot are characterized by p(x, y, θ), where x and
y are the coordinates of the front wheel, θ is the orientation of the robot with
respect to the x-axis of the coordinate system, l is the length between the front
and rear wheel axis, φ is the orientation of the front wheel. The robot moves
with a constant speed v. Its motion obeys the following kinematics equations:

ẋ = v cos(φ) cos(θ); ẏ = v cos(φ) sin(θ); θ̇ =
v

l
sin(φ) (1)

The robot is subject to the non-holonomic constraints: it can only move along
a direction perpendicular to its rear wheel axis and its maximum front wheel
angle is upper bounded.

To navigate through the allowed space towards the target the robot is
equipped with range sensors of a limited length (Fig.3B). The frontal sensors
have their origin at the front wheel and cast rays at the different angles with
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Fig. 3. The virtual mobile robot as a tricycle with the steering front wheel (A);

Mounted frontal and lateral sensors (B); Navigational corridors corresponding to the

different orientation of the front wheel (C); Robot navigation (D and E)

respect to the robot axis - a line connecting the front wheel and the middle point
of the rear wheel axis. These sensors are primarily used to scan the environment
in the vicinity of the current robot position, to detect the obstacles and to plan
further movements towards the target. The lateral sensors, which are mounted
on the left and right sides of the robot and perpendicular to the robot axis, are
intended for inner and outer myocardial border detection.

The concept of the pre-computed corridors turns the robot navigation into a
computationally efficient procedure. Depending on the orientation of the front
wheel and using the kinematic equations (1) a trajectory of the robot or a cor-
ridor can be calculated. Provided that the corridor has a limited width the
distances to its boundary for each range sensors can be computed and saved
(Fig.3C). This procedure is repeated for each orientation of the front wheel.
These pre-calculated distances are used during the navigation of the robot. While
navigating, the robot scans the surrounding environment before moving forward.
The range sensors give the information about the distances to the obstacle at
the current robot’s positions. These distances are compared to the ones of the
pre-computed corridors and a decision about the corridor safety is made. The
corridor is assumed to be safe if the distances to the obstacle at the current
positions are bigger than the distances to the pre-computed corridor boundaries
for each range sensor. Among possible safe corridors the one leading closest to
the target is taken [4].

This approach to path planning was successfully applied for myocardial bor-
der delineation in short-axis images and is not robust enough for contour detec-
tion in the long-axis views. The LV geometry in two- and four-chamber projec-
tions consists of the regions with the variable myocardial width thickness and
high curvature. Moreover, the information obtained from the discrete sensory
system is not sufficient to reconstruct a precise topological structure of the al-
lowed navigational space for such regions. This situation is illustrated in Fig.3D.
From the initial position, marked as one, the robot moves to position two fol-
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lowing the ”closest safe corridor” strategy. However, being in position two the
robot cannot enter the narrowing region in front of it without bumping into the
obstacle and, therefore, cannot advance forward.

To solve the problem mentioned above the navigational strategy has been
modified to assure its robustness in two- and four-chamber views. The basic idea
is to find the safest path with a ”look-ahead” procedure. The robot is allowed
to explore the surroundings by advancing a number of steps in forward direc-
tion from its current position and choosing the longest and safest path leading
closest to the target. After such a path has been found, the robot advances one
step ahead. Fig.3E shows the path planning procedure using the ”look-ahead”
strategy. From position one the robot moves forward to position two, from which
a safe move to position three is guaranteed due to better path planning. There-
fore, the navigation through highly curved regions with the variable myocardial
thickness is made more robust.

To account for the complex LV shape in two- and four-chamber views, the
robot’s navigational parameters are made regionally dependent. Three different
regions, namely basal, midventricular, and apical, are commonly addressed in the
medical literature and their geometric properties can be summarized as follows:

– Apical: high curvature with significantly changing myocardial thickness;
– Midventricular: low curvature with concave regions such as the papillary

muscles;
– Basal: medium curvature of a constant myocardial thickness.

We exploit this knowledge to deduce estimates for the navigational parameters:

– Apical: The robot has to be highly mobile, which is guaranteed by its short
length and slow speed.

– Midventricular: The robot is made long and fast enough to avoid the concave
regions.

– Basal: The robot has a medium velocity and is made long enough to stop at
the mitral valve points without a possibility of turning around.

The robustness of the robot navigation with respect to the navigational pa-
rameters has been tested in a pilot study performed on a dataset acquired from
several subjects. The initial guesses for the parameters were chosen by taking
into account the aforementioned considerations and analyzing the global geomet-
ric properties such as the size and maximal curvature of each cardiac segment.
The final parameters, shown in Tab.1, were derived from the initial guesses by
brute-force optimization.

Having been safely initialized inside the allowed navigational space, the robot
autonomously explores the structure of the each myocardial segment. In attempt
to reach the target, which set in the middle of the LV cavity, the robot bounces
from the obstacle, formed by the LV blood pool, and proceeds further along
the endocardial border. As the target is located inside the obstacle space and
could not be possibly reached, the robot eventually arrives to the end of the
segment and stops. During the trip the robot uses the lateral sensors to detect
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Table 1. Robot’s navigational parameters

Parameter Basal Segment Midventricular Segment Apical Segment

Speed (mm/step) 4.17 6.59 2.78
Length (mm) 13.9 13.9 6.95

Number of corridors 15 21 19
Sensor length endo (mm) 6.95 2.78 6.95
Max steps looked ahead 1 2 2

the presence or absence of the myocardial borders (i.e.the transactions between
the allowed navigational space and obstacle), and memories the coordinates of
the candidate border points. This navigational procedure is repeated for all four
segments, resulting in complete exploration of the left ventricle in a two- or
four-chamber view.

2.4 Contour Reconstruction

The final step in automated contour detection is collecting the contour segments
found by the robot and merge those together in a single contour. Reconstruc-
tion of the endo-contour is relatively straightforward. The papillary muscles are
already removed due to the kinematic constraints of the robot and short lat-
eral sensors used for endo-cardiac border detection. Therefore, connecting the
detected points is sufficient to reconstruct the endo-contour. Reconstruction of
the epi-contour is more challenging (Fig.4). Firstly, the outliers (falsely detected
boundaries) has to be removed. To achieve this, goal prior knowledge about the
myocardial thickness is used. The reconstructed endo-contour provides the ref-
erence to approximate the wall thickness. The distance between each epicardial
candidate point and the reference is measured. All points, for which the calcu-
lated wall thickness is larger than a predefined threshold of 30mm, are deleted.
Secondly, an additional step is required to approximate possibly missing seg-
ments caused by the absence of the myocardial border in the regions where the

Fig. 4. Reconstruction of endo- and epi-contours (left). Prior knowledge about the

myocardial wall thickness is used to remove outliers (A). The missing segments (B) are

interpolated using non-uniform cubic splines. Reconstructed contours (right)
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heart is adjacent to the organs with the same grey-level intensities (i.e. liver).
To restore the missing information interpolation using the non-uniform cubic
splines [10] is performed.

3 Results

In-vivo cardiac long-axis images were obtained at Leiden University Medical
Center from 11 subjects using a Philips Gyroscan Intera 1.5T MRI scanner.
Balanced-FFE protocol with prospective VCG and respiratory triggering was
utilized to acquire breath-hold cardiac images in two-chamber and four-chamber
views. Thirty phases provided the complete coverage of the cardiac cycle result-
ing in a total of 660 cardiac datasets. The field of view and slice thickness were
equal to 350 mm and 8 mm, respectively. The reconstruction matrix of 256x256
was used. The total acquisition time did not exceed 10 minutes.

Fig. 5. Results of the statistical comparison between global LV function for manually

and automatically segmented images

To assess the algorithm’s performance the global LV function was computed
for manually and automatically segmented images using commonly used area-
length methods. The CMR measurements from two- and four-chamber views
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Fig. 6. Automatically detected myocardial endocardial (red) and epicardial (green)

boundaries for two- (left) and four-chamber (right) view images

were polled together. The regression analysis was used to estimate the strength
and direction of a linear relationship between manual and automatic measure-
ments and graphically summarized in Fig.5. The paired t-test revealed statisti-
cally indistinguishable differences at 5% significance level between the manual
and automatic segmentation for all parameters (two-chamber: EDV p=0.26; ESV
p=0.09; EF p=0.1; four-chamber: EDV p=0.17; ESV p=0.34; LVM p=0.16) but
two-chamber LVM (p=0.01) and four-chamber EF (p=0.04). The results of au-
tomatic segmentation are shown in Fig.6.

4 Discussion and Conclusions

Creation of the navigational environment required the classification of the in-
put image into three profoundly distinct classes: air, blood, and myocardium.
Although this assumption may not be necessary true for cardiac images where
other anatomical structures, such as myocardial fat, are present. Nevertheless,
due to the use of EM algorithm with greedy search heuristics this requirement
can be easily incorporated by adding one extra class into the statistical segmen-
tation scheme. However decision about the number of distinguishable classes
presented in input images remains a challenging problem.

To take into account the complex LV geometry, three different sets of the
navigational parameters were utilized depending on the LV region. However, the
requirements for the robot navigation in the basal and midventricular regions can
be combined together, resulting in only two sets of the navigational parameters.
Further simplification of our method may be achieved by letting the robot nav-
igate in only two segments (i.e. posterior and anterior myocardial walls starting
from the mitral points towards the apex). Implementation of the aforementioned
improvements would require accurate tracing of the mitral points in all phases
because of the prominent cardiac contraction.

A better path planning procedure based on the ”look-ahead” strategy re-
sulted in a more robust navigation of the robot. A number of different paths
is tried to determine the safest route, before the robot advances only one step
forward. This results in increased computational demands and a slightly lower
performance. An alternative approach would involve the map-based navigation
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using the simulated topological maps of the navigational environment [11]. In this
case the neighborhood around the robot’s current positions would be matched
against templates of the environment from the database and the precalculated
path for the chosen template can be undertaken. However, it remains debatable
whether the map-based navigation will be more computationally efficient.

Our validation study was carried out only on a group of healthy subjects.
Some assumptions (i.e. the predefined myocardial wall thickness in the contour
reconstruction phase) may not be valid for abnormal hypertrophic hearts. Hence,
further validation of our method in patients is desirable.

In this paper an unorthodox method for the myocardial border detection in
long-axis views using the adaptive exploring robot was presented. Using this
approach a reliable and consistent segmentation of the myocardial boundary
can be achieved. A clinical validation on a group of healthy subjects showed
good agreement between the global LV function computed from manually and
automatically segmented images.
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Abstract. Plaque analysis in IVUS planes needs accurate intima and
adventitia models. Large variety in adventitia descriptors difficulties its
detection and motivates using a classification strategy for selecting points
on the structure. Whatever the set of descriptors used, the selection stage
suffers from fake responses due to noise and uncompleted true curves.
In order to smooth background noise while strengthening responses, we
apply a restricted anisotropic filter that homogenizes grey levels along
the image significant structures. Candidate points are extracted by means
of a simple semi supervised adaptive classification of the filtered image
response to edge and calcium detectors. The final model is obtained
by interpolating the former line segments with an anisotropic contour
closing technique based on functional extension principles.

1 Introduction

IVUS clinical interest feeds development of image processing techniques address-
ing detection of arterial structures [1], [2], such as lumen/intima segmentation or
plaque characterization. However, although adventitia modelling is crucial for a
reliable plaque quantification, the topic has been hardly approached. Regardless
of low quality in IVUS images, adventitia detection adds the difficulty of a large
variety of descriptors, which include image edges points of maximum variance
(calcium) and tissue region segmentation. Deterministic strategies presented in
previous works on adventitia detection exclusively basing on contour extraction
are not reliable enough and need of either manual intervention [6] or laborious
special treatment of sequences [7]. We argue that a robust adventitia segmenting
algorithm should rely on learning strategies.

In this paper we address adventitia detection in two stages: a statistical ex-
traction of points laying on the adventitia and a deterministic recovery of a
closed model of the extracted points. At the first step, we define the quantities
that best characterize the adventitia, that is, in the framework of classification,
we should determine the optimal feature space of image descriptors. In such rep-
resentation space, the adventitia should lie on a region isolated from other image
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structures response, so that the problem of point selection reduces to determin-
ing the borders of such regions. Within this framework, there are several point
selection strategies. On one side, we have statistical approaches [13] searching
for a criterion to discriminate the target object representation in the feature
space. On the other side, we apply a deterministic criterion of image smoothness
to choose pixels achieving extreme values of the functions (filters) that deter-
mine the feature space. Still, even in this case, thresholding values should take
into account the probability distribution of the image response to the describing
filters. Therefore, whatever the decision criterion we adopt, the selection step
nature is essentially statistical. Because the selected set of points is prone to
be unconnected, contour completion is a compulsory second step. Usual tech-
niques rely on deterministic principles: active models (parametric [4], geodesic
[5] or region-based [14]) solve an energy minimizing problem and contour closing
techniques [8] base on interpolation/functional extension methods.

The deterministic-statistical strategy for adventitia detection we propose is
the following. For a better handling of the classifying problem, our feature space
reduce to adventitia and calcium detectors, the latter to discard sectors with
ambiguous information. In order to enhance significant structures while remov-
ing noise and texture response, we use a Restricted Anisotropic Diffusion [9]
(RAD). For adventitia points selection, we search for the feature space partition
(thresholds) achieving the best classification rate for a training set. For segment
closing we suggest using an Anisotropic Contour Closing (ACC) [8] that bases
on image local geometry for curve segment interpolation. Parametric B-spline
snakes yield the final compact explicit model.

The topics are presented as follows. In Section 2 we thoroughly describe the
way adventitia points are selected. Explanations about the main detection steps
are given in Section 3. Section 4 is devoted to validation of the method and
Section 5 to conclusions and further research.

2 A Deterministic Statistical Strategy

There are two main points in the segmentation process:

2.1 Statistical Selection of Adventitia Points

Since in an IVUS plane, the adventitia is a circular-wise structure (fig.1 (a)), we
work in polar coordinates (see Section 3.1 for details). Let AdvPol(i, j) denote
images in polar form (fig.1 (b)) with radius i = 1, . . . , Rmax, and angle j =
1, . . . , 360. The selection stage summarizes in the next steps:

Set of Descriptors. The feature space for adventitia detection we propose
reduces to the following two characteristics:

1. Horizontal Edges (X)
Since in the coordinate system chosen (fig. 1(b)), the adventitia layer is an
horizontal dark line, horizontal edges constitute our main descriptor (see fig.
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(a) (b)

Fig. 1. IVUS images in cartesian (a) and polar (b) coordinates

2). Edges are computed by convolving the image with the y-partial derivative
of a 2 dimensional gaussian kernel of variance ρ:

X = ey(i, j) = gy ∗ AdvPol for gy(x, y) = − y

2πρ4
e−(x2+y2)/(2∗ρ2)

Although intima and adventitia correspond to negative edges (fig.2), with a
suitable (intima removing) strategy [10], this detector achieves optimal ac-
curacy in the absence of calcium. Because at angles of calcium the adventitia
does not appear and the detection is misled towards the intima, we discard
those sectors. We base on calcium outstanding brightness to detect it by
means of:

2. Radial Standard Deviation (Y )
Striking brightness corresponds to an outlier of the pixel gray value in the
radial distribution. We measure it by means of the difference between the
pixel gray value and the radial mean. For each pixel (i, j), we define it as:

σ(i, j) = (AdvPol(i, j) − ν(j))2

where ν(j) is the radial (i.e. column-wise) mean of the polar image:

ν(j) =
1

Rmax

i=Rmax∑
i=1

AdvPol(i, j)

Point clouds in fig. 2(b) show the feature space corresponding to the images in
fig. 2(a). Adventitia corresponds to large negative X values an a small Y negative
range, while calcium yields in the extreme positive values of the pair (X,Y ).

Statistical Thresholding. In a classification framework, determining the
threshold values of the pair (X,Y ) that characterize each structure reduces to
finding a partition of the feature space separating adventitia and calcium from
other vessel structures. Supervised techniques learn regions enclosing most of the



68 D. Gil et al.

(a)

−0.15 −0.1 −0.05 0 0.05 0.1
−5

0

5

10

15

20
x 10

−3

X

Y

Threshold
value

Adventitia /Intima

Calcium

(b)

Fig. 2. Feature Space of Vessel Structures: X and Y responses, (a), and (X,Y) plane,(b)

training set, while ’ad-hoc’ unsupervised clustering bases on the class instances
structure given in a particular image. Although classical strategies exclusively
follow either a supervised or an unsupervised approach, we adopt an adaptive
criterion since mixed approaches [3] have proven to work better in IVUS images.

Because, in the feature space proposed, points of calcium correspond to ex-
treme values, a supervised approach based on the Mahalanobis distance would
work fine. However, by their spatial distribution, we have further reduced the
decision criterion to choosing the threshold for Y values achieving the best com-
promise between true and fake classifications. On the other hand, if we consider
all training images as a whole, adventitia points response presents a within class
variability significant enough as to discard a fixed supervised criterion. By us-
ing a gaussian mixture [13] to model the training set density function, we have
a misclassification error of 47.09% of fake detections for a test set. An unsu-
pervised clustering is not sensible either since low dimensionality of the feature
space introduces an overlapping between adventitia and other structures. What
we propose is using an image sensitive classification based on searching for ra-
dial outliers in X negative values. That is, the thresholding value corresponds
to the 5/6% percentile of the X values along each angle (columns in the polar
image). This simple image adaptive criterion drops misclassification to 42.18%
false positives corresponding to points on the intima layer.

2.2 A Restricted Diffusion Determined by Image Geometry

In order to smooth textures and strengthen response to the describing functions
given in (2.1), we evolve the polar image under the following structure preserving
filtering:
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Vector Field Original RAD

(a) (b) (c)

(d) (e) (f)

Fig. 3. RAD smoothing for calcium (1st row) and adventitia (2nd row)

Restricted Anisotropic Diffusion (RAD). Most filtering techniques based
on image gray level modification [11] use the heat diffusion equation:

ut(x, y, t) = div(J∇u)

The time dependent function u is the family of smoothed images and J
is a 2-dimensional metric (i.e. an ellipse) that locally describes the way gray
levels distribute. The diffusion tensor J is thoroughly described by means of its
eigenvectors (ξ, η = ξ⊥) and eigenvalues (λ1, λ2). If the latter ones are strictly
positive, gray values spread on the whole image plane and the family u converges
to a constant image. On the other side if we degenerate J (i.e. we admit null
eigenvalues), then the final image [9] is a collection of curves of uniform gray level.
Smoothing effects depend on the suitable choice of the eigenvector of positive
eigenvalue. Let us consider a metric J̃ with eigenvalues λ1 = 1 and λ2 = 0, and
ξ the eigenvector of minimum eigenvalue of the Structure Tensor [12]. If u0 is
the image to be denoised, then the Restricted Heat Diffusion we suggest is given
by:

ut = div(J̃∇u) with u(x, y, 0) = u0(x, y) (1)

Figure 3 illustrates the way restricted diffusion works. Around the image
significant structures (calcium in fig.3(a)), ξ represents the tangent space to a
closed model of such structures. Meanwhile at noisy areas (textured tissue in
fig.3(d)), it is an irregular vector with random orientation. The result is that
gray levels homogenize along image regular level sets and solutions to (1) con-
verge to a smooth image that enhances the main features of the original image,
in the sense that their response to standard detectors is uniform. Figure 3 shows
the improvement of calcium (first row) and edges (second row) responses after
applying RAD. Background spurious edges due to noise in fig.3(e) have been
removed, in a similar fashion a gaussian smoothing would do, while edges cor-
responding to the vessel adventitia and calcium are continuous closed curves in
the RAD images of fig.3(c),(f).
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(a) (b)

(c) (d)

Fig. 4. Straighten adventitia layer procedure

Anisotropic Contour Closing (ACC). Heat diffusion has also the property
of smoothly extending a function defined on a curve in the plane, provided
that boundary conditions are changed to Dirichlet [15]. By using restricted heat
operators this property can be used to complete unconnected contours [8] as
follows. Let γ be the set of points to connect, χγ its characteristic function (a
mask) and define J̃ as in RAD, then the extension process given by:

ut = div(J̃∇u) with u|γ = u0 (2)

converges to a closed model of γ. Intuitively, we are integrating the vector field ξ,
that is, we are interpolating the unconnected curve segments along it. This fact
not only ensures convergence to a closed model, but also yields closures more
accurate than other interpolating techniques (such as geodesic snakes [5]).

3 Adventitia Modelling Steps

The characterization strategy of Section 2 serves to model the adventitia layer
in the following three step procedure.

3.1 Polar Coordinates Origin

Polar coordinates with a fixed origin at the center of the cartesian image present
two main artifacts produced by cardiac movement and the artery geometry. In
cartesian coordinates, heart movement induces a translation followed by a rota-
tion. This motion converts into an angular translation (rotation) and a radial
dynamic wave (translation). The latter is a main artifact for the set of descrip-
tors given in Section 2.1 and it is removed by taking as origin of coordinates
the mass center of the image (fig. 4(a)). In such coordinates, the adventitia still
presents a slight static wavy shape because image mass centers do not coin-
cide with geometric centers. We correct this deformation by means of a set of
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points extracted using the strategy described in Section 2. The impact of noise
is minimized by considering the average of the energy ey in the sequence tem-
poral direction (fig. 4(b)). In order to endow further continuity to the extracted
edges, we use the statistical distribution of their position in angular sectors of
the cartesian image. For each sector we only consider edge points within the
central percentile computed for a given number of frames (fig. 4(c)). The mass
center of the cartesian transform of the former radial values serves as geometric
center of the adventitia layer and is the origin of our polar transform. Fig. 4 (d)
shows the final polar coordinates.

3.2 Adventitia Selection

The classification of the filtered images given by RAD yields a calcium and ad-
ventitia masks. Small structures in the adventitia image are removed by applying
a length filtering, so that only segments of length above the 75% percentile are
kept. In order to remove intima points, we consider that an edge connected com-
ponent is on the adventitia layer if it corresponds to an edge of maximum radius
in a longitudinal cut of the sequence.

3.3 Adventitia Closing

We split interpolation of the selected curve segments into computation of an
implicit closed representation and explicit encoding with parametric B-splines.

For adventitia completion we will use ACC with the Structure Tensor defining
the vector ξ computed over the edge map used in the selection step. In order to
obtain models as accurate as possible, the vector ξ is weighted by the coherence
of the Structure Tensor:

coh =
(λ1 + λ2)2

(λ1 − λ2)2

where λ1 ≥ λ2 are the eigenvalues of the tensor. At regions where ξ is a contin-
uous vector, λ2 is closed to zero, so coh is maximum, meanwhile, at noisy areas,
since ξ is randomly oriented, λ1 compares to λ2 and coh ∼ 0. In this manner we
avoid wrong interpolations at side branches and sensor shadows sectors.

The final model discards angles presenting response to calcium and uses B-
splines to smoothly interpolate the adventitia at side branches and calcium sectors.

4 Results

Objective quantitative validation of the method has been based on the following
assessment protocol. A total number of 3300 frames extracted from 9 different
patients, including 4 sequences with calcium, have been analyzed. The measures
used to quantify accuracy of the automated detections are the mean and maxi-
mum distance error (in mm) and area differences (in percentages) between our
model and an expert manual segmentation. The sequences have been manually
segmented by 3 different physicians every 10 frames in order to analyze inter-
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observer variation. Figure 5 shows adventitia snake models for soft plaque (fig.5
(a), (d)), calcium (fig.5 (b), (e)) and at a side branch (fig.5 (c), (f)).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Segmentations (a), (b), (c) for different plaque (d), (e) and at a side branch (f)

(a) (b)

(c) (d)

Fig. 6. Whisker Boxes for Automated Error and Inter-Observer Variation
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4.1 Statistical Measurements

Figure 6 shows whisker boxes for mean distance absolute errors and inter-
observer variations for soft plaque (1st row) and calcium segments (2nd row).
They summarize the statistics for each patient and for the total population at
the last box on the right. An analysis of the whisker boxes reflects robustness
of segmentations: the smaller the boxes are, the more reliable the method is.
First note that, lack of reliable information at large angular sectors, significantly
increases errors variability in calcified segments (fig.6(c), (d)), especially for man-
ual segmentations, due to the subjectivity of manually traced curves. Still, our
strategy is highly stable as, in most cases, graphics present a smaller variability
than manual models. Only subject 5 has a large variability, but, comparing, with
manual errors (fig.6(b)), we observe that this subject is also the one presenting
the largest box. Average relative and absolute errors in distances and percent-
age of area difference for the total number of patients (excluding the outlier
case 5) are summarized in table 1. Mean distances compare to inter-observer
variability and maximums, although above it, are less than 1% of the vessel
radius.

Table 1. Statistics on Errors

Max. Dist. (mm) Mean Dist. (mm) Area Dif.
Abs. Error Rel. Error (%) Abs. Error Rel. Error (%) (%)

INT-OBS. 0.560 ± 0.326 0.5 ± 0.28 0.284 ± 0.222 0.247 ± 0.203 8.294 ± 3.914

AUT. 0.655 ± 0.349 0.619 ± 0.4 0.273 ± 0.131 0.243 ± 0.120 10.287 ± 4.369

5 Conclusions

Using an integrated approach of statistic classification and anisotropic filtering
to detect the adventitia layer presented in this paper is a new trend in medical
imaging with a straightforward clinical application to plaque area and vessel
diameter measurements. The strategy proposed combines statistical classifica-
tion and deterministic energy based techniques into a two step algorithm. On a
first stage, a set of adventitia and calcium descriptors are proposed as a feature
space. A supervised analysis of such 2-dimensional space serves to determine
those regions enclosing target points. Feature extraction is optimized by apply-
ing a response regulating restricted diffusion operator to polar IVUS images.
The second step involves computation of a closed model of the selected curve
segments. An anisotropic contour closing is used for obtaining an implicit rep-
resentation that captures all geometric features.

Statistics show that automated errors are comparable to inter-observer vari-
ability as far as adventitia can be detected by means of the proposed descriptors.
Since accuracy exclusively relies on such features, our future research will focus
on adding some a priori knowledge on vessel tissue.
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Abstract. A procedure for helping the professional in electrophysiology
in performing catheter ablation as a definitive treatment of certain types
of arrythmia is presented here. This procedure uses trajectory planning
techniques that have been developed in the robotics field. Starting off
from signals obtained in an electrophysiological study of a patient, an
electrical model of the heart with zones of different propagation proper-
ties is generated. Trajectory planning techniques are used to obtain the
qualitative behavior of the heart under different types of arrythmia. A
good point for ablation is computed as one that interrupts the trajectory
that is sustaining the arrythmia.

1 Introduction

The upheavals of the heart rate are cause of 50% of the cardiac related deaths
[1]. In addition, most of them are produced by sudden death. There are more
than 300,000 sudden deaths per year only in the US and 90% are caused by car-
diac arrhythmia. Cardiac arrhythmia is any alteration of the heart rate including
changes of the cardiac characteristics or inadequate variations of the heart fre-
quency. Unfortunatly, the available therapeutic arsenal for cardiac arrhythmia
is still relatively limited [2].

The evidence that arrhythmia needs an anatomo-electrophysiological substra-
tum (forced conduction circuits) for its maintenance motivated the development
of catheter ablation techniques. This is the only form of definitive treatment.
Its advantages are efficiency, safeness, practically null mortality, low cost and
almost absence of counterindications [3].

Notwithstanding, this technique has several fundamental limitations. The
location of isthmuses or zones of forced conduction requires a long time electro-
physiological study (EPS) that has to be performed by an experienced profes-
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sional. The success of the treatment depends on the electrophysiologist’s skills.
In some cases, the EEF stimulation to find these zones can represent a potential
danger for the patient’s life. On the other hand, presently there is no tool in the
market that locates the optimal place for performing ablation.

The research presented here is motivated by this necessity and aims to the im-
provement of the conventional cardiac arrythmia treatments by catheter ablation.

This paper presents the outline of a new procedure for estimation of cardiac
activation trajectories and location of the optimal point for ablation in a virtual
map previously developed and adjusted from EPS signals.

2 Frame of Application: Electrophysiological Studies

Electrophysiological studies are carried out in a cardiac catheterization labora-
tory. They are based in obtaining intracavitary electrograms, with the purpose
of studying its cardiac activation sequence in basal conditions, during different
arrhythmias as a response to a programmed heart stimulation. The indications
for the accomplishment of these studies are in a constant evolution [4].

The general procedure consists of introducing electrocatheters through the
vessels of the leg and carry them to the heart. The guidance is accomplished
by means of fluoroscopic control. An electrocatheter registers the electrical im-
pulses of the heart allowing to obtain a map of the electrical conduction
system.

The correspondence of cardiac signals is the technique by which the signals
gathered from the multiple locations of the heart are drawn as a function of time
in an integrated way [5]. It requires the determination of the local activation time
for each electrode and the creation of activation maps providing space models of
the activation sequence. It is used to unveil the arrythmia mechanisms, its prog-
nosis and to delimit the structures implied in its maintenance with the purpose
of eliminating it (or at least modifying it) by ablation. Therefore, this technique
tries to locate the origin of the arrhythmia, i.e. the point that has the precocious
electrical activity. Recent advances in this field are new correspondence systems
that do not need fluoroscopy to guide catheters [2].

The treatment of cardiac arrhythmias has evolved quickly during the last
decade [6]. At the beginning of eighties, the development of invasive electro-
physiology techniques as ablation revolutionized the treatment of many types of
arrythmia. Ablation consists of producing a controlled injury in the vital zone
for the initiation and/or the maintenance of the arrhythmia. The objective is
to burn fibers and consequently suppress the electrical conduction in that zone.
The controlled injury produces that an essential part of the electrical circuit
responsible for the maintenance of the arrhythmia is eliminated and this avoids
the initiation and/or the sustainment of it. The injury area produced, depends
on the size of the electrode, the time and power of application, and the type
of tissue. The development of these techniques allowed to introduce the only
really curative treatment for many types of arrythmia. This has been one of the
greatest electrophysiology advances.
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The application of this treatment could be greatly improved with the aid of a
tool able to locate the circuits without inducing a tachycardia. This tool should
also minimize the registration time and locate the best point for ablation avoiding
the detection of false places that are not essential part of the circuit. A computer
tool supporting these features would be very valuable for the electrophysiologist
and would make this treatment more reliable, simple, efficient and economic,
with a minimal risk for the patient.

3 Hypothesis

The proposed hypothesis is that a model based on cardiac potential maps can
be developed, where different conduction properties are given to distinct zones
according to signals obtained in conventional EPS. Using this model, it is possible
to apply trajectory planning ideas developed in the field of robotics [7] in order to,
first elaborate a procedure that simulates the feasible propagation pathways from
one point to another on the surface model; and second, search for the optimal
point that would interrupt some specific trajectories. This point is selected by
establishing previous conditions according to the mechanisms that originate or
maintain the arrhythmia and also, according to the morphological characteristics
of the involved conduction areas.

4 Methodology and Implementation

In order to validate the hypothesis, the following steps are proposed:

– Development of a basic cardiac conduction model running on a PC that
integrates cardiac geometry information about origin, characteristics and
propagation of the associated electrical signal from EPS.

– Development of a procedure to locate the forced conduction circuits in the
model under certain given propagation conditions. The procedure would ex-
ploit the type of arrhythmia represented by the model and would apply
trajectory planning techniques.

– Development of a procedure to search the points that interrupt the trajec-
tories fulfilling the pre-established specifications.

In order to obtain this purpose, recent results about data processing, exper-
imental modelling and system identification will be applied. These techniques
will be combined with trajectory planning methods from the field of robotics
and theoretical advances in heart electrophysiology.

A software tool called SCIRun/BioPSE [8] is being tested for the development
of the models and simulation of the conduction features. SCIRun/BioPSE is a
shareware (MIT license) scientific program, developed by The Scientific Com-
puting and Imaging Institute (SCI Institute) of the University of Utah, that
allows a modular and interactive development, error debugging and execution
of scientific computations on a great scale. By using this computational tool,
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a data flow programming model is designed and tested by simulation. Geomet-
ric, mathematical and bioelectrical information are integrated in the model that
also allows for automatic parameter adjustment, contour conditions, as well as
fitting the discretization level necessary to obtain a suitable numerical solution.
By comparison with the “off-line” procedures that are usually employed for this
type of simulations, SCIRun allows an interactive handling of the design and
simulation phases. Also, it avoids the excessive use of memory, that is one of
the problems of data flow standard implementations, and improves the the com-
putacional efficiency. In addition it allows the visualization of scalar, vectorial
and tensor fields. This tool has being used to solve medical problems related to
bioelectric fields and has been selected as a suitable tool for our purpose.

5 Basic Conduction Model

The purpose is the development of a base whose elements will be basic maps
of propagation. Each map will be generated on a 3D geometric heart model
(elaborated by means of the finite elements method) and a tensor of parameters
is associated to each cell of the model. This tensor would gathers, at least, the
three electrical properties of cardiac fibers:

– Automatism or the capacity to generate impulses that can propagate through
the tissues. Sinus node cells and also atrio-ventricular ones are fundamentally
automatic.

– Excitability or the capacity that has any cardiac cell to respond to an effec-
tive impulse. Contractile cells only respond to propagated impulses from an
automatic structure. Once excited, every cell requires of a time to recover
its excitability (refractory period).

– Conductivity or the capacity to propagate the impulses. This propagation
takes place by an electrical phenomenon that crosses the cellular membrane
and all the cardiac structures. The normal speed of conduction varies for
the different cardiac structures (atrium, 1–2 m/s; atrio-ventricular node,
0.05 m/s; Purkinje system, 1.5–4 m/s; ventricle, 0.3 m/s).

These properties will be assigned to a tensor according to the signals gathered
from EEF. Starting off from these signals is possible to build a map of cardiac
potentials and relate the characteristics of this map to the properties associated
to the tensors at each cell of the model.

In [9] a three-dimensional atlas of the human heart is given. It is based on the
image data obtained by tomography, accessible magnetic resonance and cryosec-
tion in the Visible Human Project. This heart atlas offers great possibilities for
analysis using computer vision techniques. The underlying cardiac model has
been complemented with the addition of a temporal dimension for simulation of
the excitation. For this purpose, an algorithm based on second generation of cel-
lular automata has been implemented. It is adapted to the kinetic of the cardiac
tissue excitation. This system demonstrates to be a right method for visualizing
and researching the cardiac excitation.
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During the last years, the resolution of the inverse problem in the field of
cardiology has acquired a greater importance [10]. This problem consists of ob-
taining the bioelectrical image projection. The projection of the electrocardio-
graphic image (ECG) uses an applied inverse solution to the electrical voltages
registered in the surface of the thorax, and/or the actual characteristics of the
cardiac source that produces the surface distributions.

6 Location of the Circuits

Our proposal here is to apply the trajectory planning techniques used in robotics
to solve this step. Trajectory speed is making reference to a path associated to
a kinematic profile.

The theoretical formalization of the planning problem has been widely stud-
ied by Latombe [7]. Many particular planners are found in the literature, for
example those implemented by Farvejon and Tournassoud [11] or Kondo [12].

Most of the abovementioned results are applicable to static environments
because the traditional algorithms for movement planning in deformable spaces
are designed to work in spaces where the obstacles are rigid. This restriction
is important because it limits the complexity of the model. A widely accepted
method is that of L. Kavraki et al. [13]. There are also studies of movement
planning for dynamic environments [14], but in order to validate our hypothesis
a simpler model is preferred. The methodology will be later improved by using
deformable space models.

A plan is a set of actions that allows an agent (in our case it will be a
stimulus) to go from an initial state to a final state. Thus, the plan will be
defined by searching trajectories or propagation paths in the cardiac map. The
basic elements to formulate the plan will be the states (e.g. stimulus position,
initial state), and the operators. The following elements are considered to be
given:

– States:
• position (X, Y, Z) of the cell in the map,
• propagation tensor associated to each cell.

– Operators (or actions):
• Movement to some neighboring cell: X ± 1, Y ± 1, Z ± 1
• Propagation conditions determined according to the type of arrhythmia

subject of study.

Initial considerations are:

– A stimulus will be modeled as a point and a tail (with time-varying properties
depending on the refractory time).

– A static environment with known obstacles (nonconduction zones).

If a set of cells or a road-map, free of obstacles, obtained previously by means
of Voronoi diagrams is considered, an approximate diagram derived from the first
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one can be used. This auxiliary diagram considers a maximum distance to the
obstacles corresponding to the limitations given by the sensors (catheter).

Applying potential field techniques [7] the following analogy could be made:

– The stimulus is a particle with electrical charge.
– The free space is considered a potential field.
– The obstacles have an electrical charge of the same sign than the stimulus.
– The goal has an electrical charge of opposed sign to the stimulus.

The differential potential field, U , is constructed adding the goal field Ug,
and the obstacles field, Uo:

U(q) = Ug(q) +
∑

Uo(q)

From this differential potential field, U , an artificial force field, F is obtained
as:

F = −∇U(q)

Once derived the force field, the stimulus movement is based on the local
force. A robust scheme is obtained and it has implicit a plan for any point of the
space. The potential functions of the goal (parabolic attractor), center (parabolic
repulsor) and obstacles (exponential potential barriers) has to be modeled. Later,
the potential for each point of the free space can be computed and the forces
are obtained by potencial derivation. The main advantages of this technique are
the following:

– Trajectories can be generated from the force field in real time.
– Generated trajectories are smooth.
– It allows direct connection of the planning phase with the control phase.

7 Location of the Interruption Point

After obtaining the plan, a procedure for searching spheres of radius R that inter-
rupt the abnormal circuits of propagation is developed. Criteria to decide their
location will be previously established by an electrophysiologist and implemented
on the computer in order to be automatically detected or even interactively se-
lected. Certain fundamental premises are considered in order to formulate the
problem:

– The spheres must have a minimum surface.
– The natural propagation path cannot be interrupted under any circum-

stances.
– Particular conditions for each type of arrhythmia are teaken into account.

An algorithm to estimate the risk of a wrong or false interruption will be
implemented in order to avoid bystanders or local minima. The algorithm evalu-
ates the convenience of one greater sphere in a place strategically better placed.
Strategies used in the trajectory planning can also be applied to avoid tramps,
as backtracking or wall pursuit (in our case, null conduction zones pursuit), and
so on.
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8 Study Case

Let consider the simple 2D heart model with an accesory pathway depicted
in figure 1 that represent a patient suffering Wolff-Parkinson-White Syndrome
(WPW). Certain properties as automatism, excitability, conductivity and speed
are given to each cell and are also graphically shown in figure 1.
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Fig. 1. Simple 2D model of a patient with WPW and properties assigned to each cell

in the model

WPW is a form of supraventricular tachycardia characterized by the presence
of extra pathways called accessory pathways in addition to the normal conduc-
tion ones. This is graphically shown in figure 2. The impulses travel through
the extra pathway (shortcut) as well as through the normal AV-HIS Purkinje
system.

The simulation of the propagation during only one beat in the model permits
to observe that stimulus travels through different pathways, as can be checked
in figure 3.

Points A and B represent places where two impulses collide so that they
cannot continue the propagation in that direction. In that case they do not travel
around the heart in a circular pattern. The collision at point B will generate a
signal characterized by the delta wave in the ECG. The most the ventricle is
depolarized by the accessory pathway, the greater delta wave is.

However, when multiple beats are simulated, the cell with high automatism
capacity in the left ventricule of the model (see figure 1) could originate an
impulse. If the neighboring cells are capable of responding to this impulse then
it could occur the situation depicted at left in figure 4. Stimulous could travel
very quickly through the heart in a circular pattern, causing the heart to beat
unusually fast. Sinus node (SN) is inhibited and the circular pattern is sustained.
Under such circumstances, a re-entry tachycardia is observed in the ECG.

Determining the optimal place for ablation is easy in this case. At right in
figure 4 it can be seen the precocious activity that has been generated in point B.
Nevertheless, eliminating this point is not the solution because after some time,
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Fig. 2. Propagation in a WPW patient
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Fig. 3. Propagation of a signal characterized by the delta wave in the ECG
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Fig. 4. Propagation in a re-entry tachycardia in a WPW patient and searching for the

place for ablation

it could appear another pulse generator point in the ventricule and cause another
re-entry tachycardia. This could be easily checked by simulation of the model
but changing automatism properties of a contiguous cell to point B and changing
cell B speed properties to zero. The elimination of other cells of the circuit will
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modify the trajectory but not open the circuit. Therefore, the candidate places
for ablation are points A and C. Point A is not a good alternative, because it
would interrupt the normal propagation pathway. As a consequence, point C is
the best candidate.

Finally, it is convenient to remark that the models used here are very simple
and the conclusions obtained are very promising and good from a qualitative
point of view. However, more detailed models have to be developed and tested for
a precise prediction of arrythmia mechanisms and for the reliable determination
of ablation points. Speeds and accuracy in the location will depend on some
factors (i.e. complexity of the model, software and hardware implementation,
other systems involved, etc.).

9 Conclusions

Some deficiencies and lacks in the therapeutic arsenal used for conventional
procedures of definitive treatment of patients with cardiac arrhythmias have
been detected and exposed here. The essential steps to develop a procedure
that carries out a significant contribution to the progress and the qualitative
improvement of catheter ablation treatments have been studied and reported.
The specific techniques to be used at each of the steps previously mentioned have
been described. Also, a tool to be used for the implementation of the procedure,
according to our criteria has been selected.

Finally, a simple example of a simulated model of a heart suffering Wolff-
Parkinson-White Syndrome (WPW) has been studied using the proposed method-
ology. Properties as automatism, excitability, conductivity and speed are given
to the model. Using this model, some propagation trajectories that validates the
behavior of a WPW patient have been obtained and the optimal suggested point
to apply the radiofrequency ablation has been computed.

The preliminary results obtained are quite promising, at least from a qual-
itative point of view, although more detailed models have to be developed and
tested for prediction of particular arrhythmia mechanisms and for the consistent
determination of ablation points. The validation of all the established hypothe-
ses in this formal proposal strongly depends on the multidisciplinar cooperation
between the medical and the engineering teams.

The final goal is to integrate the new procedure in the same computers that
are used now for catheter mapping and make interactive use of it during the
interventions.
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We developed a 3D computer graphic model of functional anatomy of the 
human heart. The model provides visually correct anatomical and functional 
detail suitable for medical education. We reconstructed 3D surface models of 
the human heart based on segmentation obtained from the Visible Human 
image datasets. We developed a fiber based muscle action model specially 
adapted for the myocardium. Each muscle fiber is equipped with contractile and 
elastic elements and is used as a local shape deformation guide. The timing of 
fiber contraction activation is driven by patient specific action potential 
excitation patterns. As a first step we have visualized the function of a healthy 
heart. We are now planning to visualize a range of cardiac conditions and 
dysfunctions. 

1   Anatomic Model 

The reconstruction of a 3D surface model of the human heart was based on the 
Visible Human Project datasets [1]. Segmentation was extracted from the axial 
anatomical cross-section images of the Visible Male and Female datasets in the 
thoracic region (see figure 1). A male and female heart models were reconstructed. 
The male model, coming from a 39 year old healthy person, was used to visualize the 
function of a healthy heart. The female heart model, coming from a 59 year old 
person with enlarged heart, will be used for the visualization of heart failure. 

 

Fig. 1. Axial anatomical cross-section images from the Visible Male (left) and Visible Female 
(right) 
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Fig. 2. Views of the reconstructed 3D female heart model 

At every stage of development particular attention was paid to the functionality of 
each part of the model. This was done to facilitate the integration of the graphic 
model into the functional model. 

The surface model includes detailed inner and outer wall structures on all four 
chambers and valves. Also structures such as the trabeculae carneae, the papillary 
muscles and all the main cardiac veins, arteries and fatty tissue have been modeled 
(see figure 2). 

2   Mechanical Contraction 

We developed a fiber based muscle action model specially adapted for the human 
heart myocardium [2]. In our model a muscle is represented by a set of fibers, which 
run through the muscle body. 

Each fiber is equipped with contractile and elastic elements connected in parallel 
[3] (see figure 3). Each fiber line acts as a local shape deformation guide for the 
surrounding muscle tissue. By activating each fiber we can accurately specify the 
level of contraction and volume preservation of a muscle. 

The modeled fibers in and around the ventricles were made to follow approximate 
heart muscle fiber orientation data obtained from diffusion tensor MRI [4] (see figure 4). 

 

Fig. 3. Muscle action model with parallel contractile and elastic elements 
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Fig. 4. Muscle fiber orientation in both ventricles 

 

Fig. 5. Muscle fiber orientation mapped onto the 3D model 

 

Fig. 6. Graph of the inner volume of left ventricle during a normal heartbeat cycle 

Fiber orientations were geometrically mapped onto the inner and outer surfaces of 
the ventricle models. Thus the surface of each ventricle was equipped with the fiber 
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based deformation system (see figure 5). Fiber orientation in the atria was derived 
from anatomical morphology studies [5] and by cadaveric observation. 

The mechanical model was equipped with an inner volume calculation algorithm. 
An experimental relationship between the amount of fiber contraction and the inner 
volume in a heart chamber (i.e. the left ventricle) was derived as follows: the amount 
of fiber contraction was step increased and the resulting inner chamber volume was 
simultaneously calculated. By reversing this experimentally derived relationship a 
simple volume graph such as the one in figure 6 was used to determine the amount of 
mechanical contraction during a complete heartbeat cycle (see figure 7). 

 

Fig. 7. Wall thickness in the left ventricle in end diastole hd (left) and end systole hs (right) 

The ventricular wall thickness was calculated by locally approximating the 
chamber in question (i.e. the left ventricle in figure 7) with the shape of a spherical 
membrane with thick walls. In this case, the law of Laplace (see equation 1) relates 
the inner and outer pressures pi and po and radii ri and ro with the membrane stress  
T [3]: 

T = piri
2 – poro

2 / (ri + ro).                                      (1) 

T = h(σ).                                                    (2) 

The inner pressure was made to follow a pressure graph of a normal heartbeat 
cycle while the outer pressure was kept constant and approximately equal to the 
atmospheric pressure. Equation (1) was combined with an experimentally acquired 
stress (T)/strain (h(σ)) function of cardiac muscle [3] (see equation 2). The wall 
thickness was calculated by combining equations (1) and (2) and solving for h. 

All four main valves (bi-cuspid, tri-cuspid, aortic and pulmonary) were modeled. 
Fiber based rigging enabled their opening and closing function, synchronized with the 
heartbeat cycle (see figure 8). 

Cardiac vessels (coronary arteries and veins) were subjected to forced 
displacement by the underlying muscle contraction, while their volumes were kept 
constant (see figure 9). 
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Fig. 8. Left ventricle in cross-section and bi-cuspid (mitral) valve during diastole (left) and 
systole (right) 

 

Fig. 9. Cardiac vessels during heartbeat from end diastole left to end systole right 

3   Electrical Excitation 

The timing of fiber activation can be driven by manually designed contraction/time 
graphs. All movement in atria, ventricles and valves can be independently driven by 
such graphs. By modifying the contraction/time graphs we can visualize normal heart 
beat as well as various arrhythmic conditions. 

Patient specific action potential maps were also used to drive the timing of the 
mechanical model. In figure 10, electrical propagation maps were acquired using the 
Ensite catheter (from Endocardial Solutions Inc.) inside a patient's right atrium. 

In a cardiac cell mechanical contraction occurs after the cell has been electrically 
stimulated. Each peak of electrical stimulation is followed by a single contraction 
peak with an approximate delay of 150 ms (see figure 11). 

The above mentioned patient specific maps were geometrically projected onto the 
3D surface of our modeled atrium (see figure 12). The mechanical contraction of the 
right atrium was activated by patient specific electrical data. Muscle contraction at 
each point on the atrium peaked approximately 100-150 ms after the arrival of 
maximum action potential on the same point. 
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Fig. 10. Patient right atrium geometry with recorded electrical activation pattern 

 

Fig. 11. Graph of action potential and contraction in a single cardiac cell (contraction graph out 
of scale) 

 

Fig. 12. 3D heart model right atrium with mapped electrical activation pattern 

4   Conclusion and Future Work 

A heart function visualization model was developed. A fiber based muscle action 
model was combined with inner volume/time and pressure/time graphs in order to 
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achieve a visually correct contraction cycle. Manually derived and patient specific 
electrical data were used to activate the model. As a first step we visualized the 
function of a healthy heartbeat in 4 dimensions. As a further step we are planning to 
visualize a range of cardiac conditions and dysfunctions such as myocardial 
infarction, atrial fibrillation, bradycardia, tachycardia, the sick sinus syndrome, valve 
dysfunction, etc. Also the transition between arrhythmic and normal cycles will be 
addressed. This research is supported by a SMART Exceptional Award grant from the 
Department of Trade and Industry, UK. 
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Abstract. Different methods were evaluated to enlarge artificially a training set
which is used to build a statistical shape model. In this work, the shape model
was built from MR data of 25 subjects and it consisted of ventricles, atria and
epicardium. The method adding smooth non-rigid deformations to original train-
ing set examples produced the best results. The results indicated also that artificial
deformation modes model better an unseen object than an equal number of stan-
dard PCA modes generated from original data.

1 Introduction

Segmentation is known to be one of the most difficult problems in image analysis.
Several reasons explain the difficulty, such as noise in images, image inhomogenities,
partial volume effect, complex and cluttered scenes and low visibility of edges between
objects. Deformable model-based methods provide one approach to overcome partially
the problem. In these methods, an a priori model is non-rigidly registered to the object
of interest in the image by optimizing a cost function. To find the optimal non-rigid
transformation is an ill-posed problem; hence some form of constraints are required.
One possibility is to use physical-based models, such as viscous fluid or elastic models
[1, 2]. Statistical shape models is another option. In these methods, an a priori model
is allowed to deform only in a way consistent with the information captured from a
training set.

The most popular approach for modeling the shape changes is the point distribution
model, also referred to as active shape model (ASM) [3]. It defines a mean model and
its typical deformation modes on the basis of a training set using principal component
analysis (PCA). The deformation modes are the eigenvectors of the covariance matrix
determined for corresponding points in different examples of the training set.

Statistical shape models suffer from two commonly known problems especially in
medical applications. First, building a statistical shape model is laborious as the point
correspondences need to be defined between the training set examples. However, au-
tomatic procedures have been recently proposed to overcome this problem [4, 5, 6].
Second, as the building process is time consuming and enough data are not always
available, only a small set of examples are often used to construct the model. Since the
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maximum number of deformation modes can not exceed the number of examples in
the training set minus one, the eigenvectors obtained span only a small subspace which
can not represent the full range of shape variation present in real medical objects. For
example, 10 − 30 subjects have been used to construct a 3D statistical shape model of
the brain and heart [5, 7, 8, 9]. As reported in [9], the size of the training set was consid-
ered to be the most important reason for a relatively high segmentation error. This work
concentrates on the modeling of the heart.

The segmentation accuracy depends on the ability 1) of the model to represent an
unseen object, and 2) of the segmentation algorithm to define correctly the model pa-
rameters. This work concentrates on the first point. The objectives of this work are
two-fold:

– To define an appropriate method for enlarging the training set artificially and effi-
ciently.

– To estimate the relation between the size of the training set and the ability of the
model to represent an unseen object, as applied to cardiac data.

The latter objective is closely related to commonly known bias-variance trade-off.
In other words, if the number of the deformation modes is too small, the model is over-
constrained. However, choosing too many deformation modes based on a large training
set leads to overfitting.

2 Methods

2.1 Statistical Shape Models

In statistical shape models, new examples of the shape, x = [x1, . . . , xn]T , that are
specific to the studied object, are generated using a linear combination

x = x̄ + Φb, (1)

where x̄ = [x̄1, . . . , x̄n]T is a reference shape, typically a mean shape constructed from
a training set, Φ = [φ1, . . . , φm] is a matrix consisting of the modes of shape variation,
φi, and b = [b1, . . . , bm]T is a weight vector.

In ASM [3], the object is represented by a point set. The training set is first affinely
aligned, and the mean shape is calculated:

x̄ =
1
N

N∑
i=1

xi, (2)

where N is the size of the training set. Next, PCA is applied to the variations of the
training set, i.e., the eigenvectors and eigenvalues of the covariance matrix

Σ =
1

N − 1

N∑
i=1

(xi − x̄) (xi − x̄)T (3)
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are calculated. The eigenvectors of the covariance matrix describe the ways in which
the shapes vary, and the corresponding eigenvalues explain the variance of the data
projected onto each eigenvector.

If the number of points in a training set example is denoted by P and the dimen-
sionality by D (D = 2 in 2D and D = 3 in 3D), the maximum number of deformation
modes is min(N − 1, D · P ).

The model instance x′ representing an unseen object x is

x′ = x̄ + Φb′, (4)

where the weights b′ are computed from

b′ = Φ−1(x − x̄). (5)

In this work, we model five objects: 2 atria, 2 ventricles and epicardium. Contours of
these objects are catenated to one vector, i.e. xi = (xi1, yi1, xi2, .., yiP ) in 2D, i.e. each
mode contained deformations for all objects.

2.2 Materials

Our dataset consisted of cardiac short- and long-axis magnetic resonance images ac-
quired from 25 healthy subjects. The mean shape and its variation were modeled as
described in detail in [9]. The procedure is shortly summarized.

The atria, ventricles and epicardium were manually segmented by fitting a triangu-
lated surface model simultaneously to the short- and long-axis images. Thereafter, one
subject was considered as a reference volume to which all other subjects were aligned
using translation, rotation and isotropic scaling. The normalized mutual information
(NMI) was used as a similarity measure. Segmented volumes, where each object was
represented by one gray-scale value, were used in registration. Next, the reference vol-
ume was non-rigidly registered to the aligned volumes using a non-rigid registration
based on a deformation sphere technique [10]. In the deformation sphere technique,
smooth deformations are applied to voxels inside a sphere in such a way that the NMI
is maximized. The location of the sphere is randomly chosen from the surfaces of ven-
tricles, atria and epicardium, and it is varied during the iteration.

The nodes of the triangulated surface model of the reference subject, obtained from
the manual segmentation, were considered as semi-landmarks. Semi-landmarks were
used because only a few anatomical landmarks can be located from the heart in the MR
images. Propagating the semi-landmarks, using the non-rigid transformations defined
above, a set of corresponding semi-landmarks was achieved for each training set sub-
ject. The mean shape and its variance was then computed by applying Eqs. 2 and 3. In
addition, the mean gray-scale short- and long-axis volumes were computed.

To reduce the bias of the mean shape towards the selected reference subject, and to
give a better a priori estimate in the non-rigid registration, the preceding procedure was
repeated by using the mean shape as a reference model.

In this work, two datasets were used: 1) a set of 2D contours from one long-axis
image of each subject (Fig. 1a), and 2) a set of 3D triangulated surfaces from each
subject (Fig. 1b). The number of data points was P = 219 in 2D and P = 2086 in
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(a) (b)

Fig. 1. A set of a) 2D contours and b) 3D surfaces of atria, ventricles and epicardium from one
subject

3D. The number of deformation modes to represent any arbitrary contour or surface is
D ·P = 2 ·219 = 438 or 3 ·2086 = 6258, respectively. Because the number of subjects
is N = 24 (24 instead of 25 because of cross-validation) in this work, the maximum
number of deformation modes is, however, 23 (N − 1 < D · P ) for the standard PCA.

2.3 Techniques to Increase the Size of Training Set

Techniques to enlarge artificially the training set have been widely studied [11, 12, 13,
14, 15]. Next, the techniques tested in this work are summarized.

The values in parentheses in the text below are related to user-defined parameters
and indicate the values that produced the lowest mean point-to-point error (Section 2.4).
These values were used in Section 3.

Standard PCA. The procedure described in Section 2.1 was followed producing N −1
deformation modes.

PCA & FEM. Cootes et al. [11] combined the standard PCA and finite element method
(FEM) in shape modeling. FEMs take an instance of a shape and treat it as if it was made
of flexible material. Modal analysis gives a set of linear deformations of the shape, such
as bend, shear and pinch, equivalent to the modes of vibration of the original shape.
These modes can be used in shape modeling:

x = xi + Ωiu, (6)

where xi is an example of shape (as in Eq. 2), Ωi is a matrix consisting of eigenvectors
computed for the stiffness matrix of the shape i, and u is a weight vector (as b in Eq. 1).

The deformation modes are the eigenvectors of the matrix

S = Σ + α(
1
N

N∑
i=1

ΩiΛiΩT
i ), (7)
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where Σ is the covariance matrix from Eq. 3, α is a user defined weight (α = 0.5), N
is the number of chosen example shapes, Λ is an inverse matrix of the diagonal matrix
consisting of eigenvalues of the stiffness matrix. The procedure produces D · P defor-
mation modes.

Adaptive Focus. In the standard PCA method, each point has an equal weight in com-
puting the covariance matrix. Shen and Davatzikos [12, 13] proposed a method called
adaptive focus where objects having a low spatial variance or objects with a high confi-
dence were spatially scaled in order to increase the variance. Due to scaling, the de-
formations of the scaled object became more emphasized and better represented in
the most important deformation modes (high eigenvalues because of high variance).
In this work, each object was scaled separately in the co-ordinate system of the refer-
ence model (the scaling factor 2). The procedure produces (O + 1)N − 1 deformation
modes where O is the number of objects (O = 5) and N is the size of the training set.
The factor O + 1 is used instead of O because the original examples are also included
in addition to scaled ones.

Non-rigid Scaling. In this approach, the adaptive focus technique was extended to
non-rigid but smooth deformations. The contours were scaled inside of a deformation
sphere. The scaling factor, s = s(x, y, z), of a point (x, y, z) is computed from

s(x, y, z) =
e−2

(x−cx)2+(y−cy)2+(z−cz)2

r2 − e−2

1.0 − e−2
S + 1, (8)

where (cx, cy, cz) and r are the location and the radius of the sphere (r = 50 mm),
respectively, and S is the user specified scaling factor (S = 1). The sphere is randomly
located to L locations on the contours (L = 100), and the original contour points are
deformed at each location. The origin during the scaling is in the center of the sphere.
The number of deformation modes produced is (L + 1)N − 1.

Non-rigid Movement. Another strategy, very similar to the non-rigid scaling technique,
was also tested. The displacement vector, v(x, y, z), for any point inside the sphere is
computed from

v(x, y, z) =
e−2

(x−cx)2+(y−cy)2+(z−cz)2

r2 − e−2

1.0 − e−2
V, (9)

where V is a random vector and other parameters as in Eq. 8. The length of the vector
V was chosen from a uniform distribution ([0 25] mm).

Fourier. The approach adopted in this work is closely related to the hierarchical method
proposed in [14] where the data were divided into different frequency and spatial lo-
cation bands using wavelets, and PCA was performed for each band separately. In this
work, the data were decomposed only in frequency bands. The deviations of the training
set examples from the mean were transformed into the frequency space using Fourier
transformation and the data were band-pass filtered into B (B = 18) separate frequency
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bands. New artificial training set examples were then generated by restoring each band
separately into the shape space with inverse Fourier transformation. This procedure pro-
duces (B + 1)N − 1 deformation modes, when also original examples are included in
the training set.

Noising. In this approach, Gaussian noise is added to each point which makes data less
correlated. The displacement of a point was chosen from a uniform distribution ([−2 2]
mm) in each direction. From each training set example, L (L = 100) noisy contours
were generated leading to (L + 1)N − 1 deformation modes. Alternatively, the data
could be made more uncorrelated by replacing the covariance matrix Σ by Σ + αI,
where α is a weight factor and I a unit matrix.

2.4 Evaluation

As mentioned above, the segmentation accuracy does not depend only on the model
properties but also details of the optimization method and image characteristics affect
the result. In addition, normally no real gold standard exists for evaluating the accuracy
of the segmentation. The automatic segmentation result is usually compared with the
manual one which is commonly known to contain errors. Warfield et al. [16] recently
proposed a solution to this problem. In our work, two methods were used in evaluation:
1) the model was fitted directly to a training set example using Eq. 5 (model-to-shape
fit), and 2) the model was fitted iteratively to image data (model-to-image fit). The
former method measures the ability of the model to represent an unseen object while
the latter method includes all error sources in segmentation.

Two error measures are defined. Point-to-point (PP) error is computed as an average
Euclidean distance between the corresponding points in x′ and x (Eq. 4). The PP error
can not normally be used in segmentation, because the point correspondences are not
known. Therefore, point-to-curve/surface (PCS) error is defined: 1) search the shortest
Euclidean distance from each point of x′ to the contour or surface defined by x, and 2)
take an average of these distances. In other words, the PCS error omits the error in the
tangential direction of the contour or surface, and produces lower values than the PP
error. Both PP and PCS errors were used to measure the model-to-shape fit while only
the PCS error was used with the model-to-image fit.

Cross-validation was used: each training set example was once regarded as a target,
the shape model was built using the remaining training set, and the target was repre-
sented by the shape model.

3 Results

Model-to-Shape Fit. The 2D PP error (in [mm]) for different techniques is represented
in Fig. 2. A non-parametric Wilcoxon Signed Ranks Test was used to detect statisti-
cally significant differences between the shape models when the number of deforma-
tion modes was 23. Statistical significance was considered to be obtained for p-value
p < 0.01. The non-rigid movement technique produced the best result: as compared
with the non-rigid scaling (p < 0.01) and with the other methods (p < 0.0001). This
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Fig. 2. a) The 2D PP error in function of deformation modes for different techniques. b) The same
curves only up to 25 modes
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Fig. 3. The 3D PP error in function of deformation modes for the non-rigid movement technique.
Table shows segmentation error and the corresponding NMI value for the standard PCA and
non-rigid movement technique (NRM) with different number of deformation modes

indicates that partly artificially generated modes perform better than the modes derived
from the original training set using the standard PCA. The curves show also that the PP
error decreases very slowly after 100 − 150 modes. In addition, the noising technique
is clearly the worst approach. Fig. 3 shows the corresponding curve for the non-rigid
movement technique as applied to 3D surfaces.

Model-to-Image Fit. Preliminary 3D segmentation results are also provided. The fol-
lowing method was used to optimize the weights of the deformation modes. For each
data point (P = 2086), two gray scale profiles normal to the surface were generated:
one from the mean short-axis and one from the mean long-axis data sets. The NMI was
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Segmentation result superimposed on MR slices of one subject. A short-axis view showing
the result for a) the standard PCA (PCS error 1.95 mm), b) the non-rigid movement technique
(PCS error 1.80 mm, 250 modes) and c) manual segmentation. The images d), e) and f) show the
corresponding results in a long-axis view

maximized between the profiles from the model and the profiles from same locations
in the target data. All points from all profiles and from the both data sets were used in
computing the NMI. In this work, the length of the profile was 21 points and the data
sets were quantized to 32 gray values. Conjugate gradient method was used to optimize
the weights of the deformation modes.

The segmentation results have been shown in Fig.3. No statistically significant dif-
ferences were found between PCS values. However, when the NMI values were com-
pared, the artificial modes were found superior compared with the standard PCA (p <
0.00001) and 100 or 250 artificial modes produced better results than 23 artificial modes
(p < 0.00001). The improvement in NMI but not in the segmentation error indicates
the existence of errors in our manual segmentation results used as a gold standard. The
difference in the NMI values between 100 and 250 modes was not statistical significant.
The segmentation result of one subject is visualized in Fig. 4.

The 3-D segmentation errors of cardiac structures, produced by automatic tools not
based on the PCA-based approaches, have been recently reported to be around 2 − 3
mm [9, 17]. The PCS error was about 55 % and 46 % of the PP error with our 2D and
3D data, respectively. This means that 23 deformation modes (3.6 mm PP error) have
enough degrees of freedom to reach 1.7 mm PCS error. As our segmentation results
indicated, the real segmentation error is higher: the PCS error was 2.09 mm for 23
modes defined by the non-rigid movement technique. For 250 modes, the PCS error
was 2.04 mm while the minimum PCS error, due to limited degrees of freedom in the
model, is only 0.7 mm (46 % of about 1.5 mm for 250 modes in Fig. 3).
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4 Discussion

Different techniques to increase artificially the number of deformation modes were
studied. The technique based on non-rigid movements produced the best results, also
in statistical sense. The advantages of the method were that 1) the PP error decreased
fastest as the size of the training set was increased, and 2) the PP error was lower than
using the standard PCA with an equal number of modes. The latter point indicates that
the standard PCA restricts the shape space too much if the training set is small, and
introducing artificial variation improves the generality of the model. On the other hand,
the artificially enlarged training set has also drawbacks. The model may become phys-
ically implausible and unrealistic segmentation results can be produced for low-quality
and complex image data. In addition, statistical shape models can be used to detect dif-
ferent abnormalities from images if the training set is defined from healthy volunteers.
With artificial training set this property is lost.

In order to avoid overfitting of the model, a common habit is to select only modes
that explain, for example, 99 % of the variance in the training set. The more L-shaped
the error curve is (Figs. 2 and 3), the easier the selection of the optimal number of
modes is. The optimal number of modes is attained in the cross-section of vertical and
horizontal parts of the L-curve because the error decrease per an added mode is small
after that point [18]. In our cardiac cases, the cross-section point was approximately at
130 modes in 2D and at 250 modes in 3D as the non-rigid movement technique was
used. In other words, the model does not improve considerably by adding more data to
the training set after these limits. Although these limits have been derived from a partly
artificially generated training set, we believe that the shape of curves for real data would
be approximately similar, and the limits computed from artificial data provide a rough
estimate of the optimal size of the training set also for real data.

The results indicated that although the model with extended training set is capable to
represent more accurately unseen objects, the segmentation accuracy does not improve
equally. Two reasons explain the relatively small improvement in the segmentation ac-
curacy: 1) a local maximum of NMI has been found because the conjugate gradient
method is not a global optimization technique, and 2) the manual segmentation used as
a gold standard contains errors. The relative contribution of these error sources should
be studied in future.
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Abstract. Domain knowledge about the geometrical properties of cardiac 
structures is an important ingredient for the segmentation of those structures in 
medical images or for the simulation of cardiac physiology. So far, a strong 
focus was put on the left ventricle due to its importance for the general pumping 
performance of the heart and related functional indices. However, other cardiac 
structures are of similar importance, e.g. the coronary arteries with respect to 
diagnosis and treatment of arteriosclerosis or the left atrium with respect to the 
treatment of atrial fibrillation. In this paper we describe the generation of a 
comprehensive geometric cardiac model including the four cardiac chambers 
and the trunks of the connected vasculature, as well as the coronary arteries and 
a set of cardiac landmarks. A mean geometric model has been built. A general 
process to add inter-individual and temporal variability is proposed and will be 
added in a second stage. 

1   Introduction 

The use of cardiac domain knowledge in terms of geometrical models of the heart has 
been reported in many articles (see [1] for a review). The main focus so far, was on 
the left ventricle and the related cardiac function and wall motion analysis. Recently, 
motion analysis has also been performed on the right ventricle [2] and atrium [18] and 
modeling approaches started to include both ventricles [3-8] or even all 4 cardiac 
chambers [9,17]. Other publications deal with the geometrical properties of the 
coronary arteries [10-12]. In clinical practice, two trends are currently gaining 
importance. First of all there is a strong trend towards automation. Limited budgets in 
terms of money and time call for “zero-click” procedures for cardiac analysis such as 
functional values or coronary artery assessment. A comprehensive image based 
cardiac diagnosis session, revealing all important parameters and producing all 
relevant image renderings needs to be finished in about 10 to 15 min. The second 
trend is about accomplishing a synoptic representation of the cardiac aspects of the 
patient: How is the stenosed coronary artery related to the damaged myocardial 
tissue? Does the wall motion artifact support the myocardial perfusion findings? A 
key issue arising from both trends is the extensive use of cardiac domain knowledge 
i.e. the use of cardiac models. A third trend actually comes from the scientific desire 
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to understand and simulate the heart from first principles. Here, in the end, we need to 
include all relevant structures and the related properties into one model: The coronary 
arteries supplying the myocardium with oxygen, the myocardium contracting and 
performing a pump-action, the resulting blood flow in turn supplies oxygenated blood 
to the coronary arteries. Each of the three trends benefits from or even requires a 
comprehensive representation of all important cardiac structures in one model. In this 
paper the generation of such a comprehensive geometric heart model is described. 

In addition to the information about shape and appearance of the object itself (as 
e.g. used in a model based segmentation approach), the model can provide 
information for proper initialization of position and pose of the object, e.g. by use of 
geometrical relations between the object of interest and other cardiac structures. For 
example the position of either manually marked or automatically detected landmarks 
can be used to estimate an initial spatial transformation to place the cardiac model 
into the image space. The landmarks used for the procedure must be part of the 
comprehensive model but they need not be part of the object of interest. Another 
possibility is a sequence of segmentation or adaptation procedures, each one being 
initialized with the result of the previous one. The result of an adaptation of a surface 
model to the left ventricle of the heart can be used to initialize the segmentation of the 
coronary arteries by transforming the coronary artery model into the image space and 
thereby restricting the search space for the subsequent coronary artery segmentation.  

2   A Multi-component Model 

The generation of a multi-component model raises several issues:  

• The combination of geometrical information form several sources 
In our case, the mean geometrical model for the coronary arteries was taken 
from the literature [13,14], the cardiac surfaces and cardiac landmarks originate 
from multi-slice CT data which provides high resolution data of the complete 
heart (but with limited temporal resolution) and we intend to improve the 
motion model using cardiac MRI data which provides a better temporal but 
anisotropic spatial resolution and covers usually only the left and right 
ventricles. The information from all these sources needs to be combined. 

• The representation of consistent variability, avoiding conflicting 
deformation of the individual structures 
The geometrical information provided by a comprehensive multi-object model 
may contain geometric entities of different representation. Some surfaces are 
perhaps represented as triangular meshes, others as spline surface patches, 
others may be represented using implicit functions. In addition to the surfaces, 
there may be vessel representations using centerlines and radius values etc. In 
this case, where we have different geometric parameterizations, the standard 
Eigen-value decomposition of the covariance matrix of the shape samples [15] 
cannot be used any longer. In addition, the available geometry samples may 
contain different sub-sets of the object set contained in the projected model. We 
think that this aspect calls for a distinct representation of the shape geometries 
and their variability. More specifically we propose to generate a mean 
comprehensive geometry model and separate deformation models, dealing with 
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inter-individual deformation and temporal deformation and defining each full-
space deformations. 

• The representation of the topological, geometrical, anatomical, and 
physiological relations between sub-structures  
For higher levels of reasoning and user interaction, a complex anatomical model 
needs to be augmented with information beyond pure geometry. Anatomical 
nomenclature and its associated relations and hierarchies will e.g. help to 
display processing results adequately to the clinical user or to request user input, 
or to inhibit penetration or intersection of certain structures by other structures, 
during model adaptation. 

3   General Structure of the Model 

The model includes a definition of a set of cardiac landmarks and their mean 
locations, the mean geometry of the coronary arteries (centerlines and radii), the mean 
surfaces of the four cardiac chambers, and the connected vascular trunks, i.e. trunks of 
the vena cava, the pulmonary arteries, the pulmonary veins and the aorta. The mean 
geometries correspond to the end-diastolic cardiac phase. In addition to the mean 
geometries the model will be extended to include typical deformation patterns for 
inter-individual deformation and for temporal deformation. The deformation patterns 
are expressed as smooth full space transformations, independent of the geometric 
structures. All geometric entities feature an anatomical label. A nomenclature table 
allows the lookup of the respective anatomical name of the structure. Relation tables 
provide information about the relation of anatomical items. Currently the relations "is-
part-of", "is-child-of", and "is-connected-to" are covered. To facilitate user interaction 
pictograms can be added to the model. Currently a pictogram of the coronary arteries 
derived from the one proposed by the American Heart Association (AHA) [16] is 
provided. The model is intended to support mainly image processing applications. In 
order to do so, the pure information (e.g. geometries, variability, meta-information) 
covered by the model is associated with application independent model related 
functionality. It covers basic individualization functionality (e.g. landmark based 
model deformation or model to image registration), meta-information related 
functionality (e.g. retrieve a list of related structures for a given structure of interest), 
and basic user interaction (e.g. rendering of image data together with geometric 
entities or pictogram based user-input). The model related functionality has been 
implemented in Java, model persistence is achieved by serialization of the model 
object entities to XML files. 

4   Model Generation 

4.1   The Coronary Artery Model 

As the basis for the coronary artery model we used measurements from J. T. Dodge et 
al. about the location [13] and diameters [14] of human coronary arteries as 
reconstructed from bi-planar angiograms. In addition to the publicized values, J. T. 
Dodge kindly made available an updated and enlarged list of values. Dodge 
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distinguishes 32 coronary artery segments. Each segment is trisected in a proximal, 
mid, and distal section and the center-point of each section is measured, giving in 
total 96 points defining the coronary artery tree. Basis for the measurements are 37 
patients, categorized into three coronary supply types: right dominant, balanced and 
left dominant. The original point data is given in a spherical coordinate system. Based 
on this data, we constructed a coronary artery tree model. Since the point set provided 
by Dodge does not include the start and end point of each segment, we recovered the 
branching points by linear extrapolation and intersection with the parent segments. An 
interesting result of the measurements performed by Dodge, is the consistency of 
coronary artery location across the three supply types. The main property that differs 
depending on the supply type, is the tree topology, i.e. the connectivity between 
coronary artery segments. As a result, the arteries at the lower "back-side" of the heart 
are sometimes fed by right coronary artery and sometimes by the left circumflex 
coronary artery, but they stay mainly in place. Figure 1 shows a rendering of the 
resulting coronary artery model and the corresponding pictogram derived from the 
one recommended by the AHA [16]. The model was evaluated on multi-slice CT 
angiography (MSCTA) images [12]. The evaluation was restricted to the three main 
coronary arteries (left anterior  descending, circumflex, and right coronary artery) 
being manually drawn in the images. The smaller branches could not be imaged with 
the necessary constant visibility over patient samples and were therefore left out. It 
could be shown that using an affine adaptation scheme, a mean residual distance 
between adapted model and sample lines of 2.7 mm could be achieved [12]. 

 

 
 

 

Fig. 1. Left: Coronary artery model, derived from the Measurements of Dodge et al. [13,14]. 
Right: Pictogram adopted from the AHA recommendation [16] using a coherent color scheme. 
The whitish colored coronary artery segments of the pictogram depict the variable portion
depending on the supply type 

4.2   Adding Landmarks to the Model 

Cardiac landmarks are usually not of direct interest in cardiac diagnosis or treatment 
planning. However, they can serve as reference points that can be used to register 
image-data to image-data or model to image-data. Landmark positions may originate 
from user input or from automated detection algorithms. We defined a set of 25 
landmarks (see figure 2). The landmarks were manually defined in 20 end-diastolic 
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cardiac CTA datasets in order to create a mean landmark model. In addition to the 
landmarks, the three main coronary arteries were defined in the CTA datasets, in 
order to allow a registration between landmark model and coronary artery model. In 
order to calculate mean landmark positions, the landmark sets need to be transformed 
into a common reference coordinate system. We performed a Procrustes analysis [15] 
to find the optimal transformations for all shape samples given the allowed 
transformation class (similarity transformation). In order to transform the mean 
landmark model into the coordinate system of the coronary artery model, the 
transformations resulting from the Procrustes analysis are applied to the manually 
delineated coronary artery centerlines of the samples. By a subsequent match of the 
resulting bunch of coronary arteries to the coronary artery model, and applying the 
resulting transformation to the landmark model, we achieve a combined coronary 
artery and landmark model (Fig. 2). 

 

(a) (b) 

 
(c) (d) 

 
(e) 

Fig. 2. Cardiac landmarks. The landmark set includes the overall center of the heart, the center-
points of the four cardiac chambers, the four valve centers, apex, center of left anterior, left
posterior, and right anterior papillary muscle, center points of left and right atrial appendage, 
left and right coronary ostium, bifurcation point of left anterior descending and circumflex
coronary artery, the four ostia of the pulmonary veins, ostia of vena cava superior and inferior,
and the ostium of the coronary sinus 
Figures a-d: Some landmark examples, (a) center left ventricle, (b) aortic valve, (c) apex, (d)
onset of vena cava superior. Figure (e) shows the error ellipsoids (directional std. deviation)
centered at the landmark positions with the registered coronary artery model 

4.3   Adding Cardiac Surfaces to the Model 

With cardiac surfaces we mean the endo- and epicardium of the cardiac chambers and 
the walls of the connected vascular trunks. On the basis of state of the art 3D image 
material such as CT or MRI images, endo- and epicardium can often only be 
distinguised for the left ventricle. Therefore, for the time being, the right ventricle and 
the left and right atria are modeled with one surface each, representing endo- and 
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epicardium. The following structures are included in the model: Left and right 
ventricle, left and right atrium, trunks of vena cava superior, vena cava inferior, 
pulmonary artery, pulmonary veins, and aorta. The surfaces are represented as a set of 
connected triangular meshes. A labeling scheme allows identifying for each triangle 
the corresponding cardiac structure.  

The standard procedure to generate an anatomical surface model starts with the 
(usually interactive) segmentation and labeling of a learning set of data. In a second 
step either a mean label image is generated [3] and subsequently triangulated, or one 
label image is triangulated and the resulting mesh is adapted to the other label images 
[19]. For the generation of our cardiac surface model we tried to circumvent the 
necessity of a set of segmented datasets and chose for a bootstrap method working 
directly on un-processed 3D images. The main reason for this choice is to avoid the 
extremely time consuming procedure of manual or semi-automated segmentation of 
all the required cardiac structures. Our method makes use of available mesh 
generation and manipulation functionality [20] as well as active surface adaptation 
procedures for 3D image segmentation [21]. The procedure is somewhat similar to the 
one described in [19], but circumvents the use of labeled images. It consists of four 
main steps: 

1. All cardiac structures of interest are independently interactively segmented in 
one high-quality, "normal" CTA image (root image). The segmentation is 
performed using an active shape procedure [21] starting from a simple, e.g. 
ellipsoidal or tubular shape. The segmentation of the individual structures is 
iteratively improved until a sufficient segmentation quality is reached. Each 
iteration consists of an automatic active surface based surface to image 
adaptation and a subsequent interactive correction at locations of insufficient 
match. The interactive corrections are mesh deformation operations working on 
an adjustable influence range [20]. The result of this step is a set of closed 
surfaces, each resembling one cardiac structure, i.e. one for the left ventricle, one 
for the left atrium etc. 

2. Next, the set of surfaces from part one are merged to create one connected and 
labeled surface mesh. It requires the successive application of a handful of basic 
operations on surface meshes such as volumetric operations (union or difference 
operation applied to two closed surfaces), intersection and cut operations, and 
mesh refinement operations (e.g. in order to remove small triangles or to change 
the resolution of the triangulation) [22]. As long as the structures that need to be 
merged are overlapping, the merging operation can be performed automatically, 
given a set of closed surfaces and the desired triangle size. In case of non-
overlapping structures that still need to be connected, some handcrafting is 
required. The result of this step is one connected and labeled mesh covering all 
input structures. The mesh resembles the shape of the structures as given in the 
input image.   

3. Then, the mesh resulting from part two is adapted to a learning set of images. For 
initialization, a similarity transformation is applied to the vertices of the mesh 
resulting from part two. The transformation is estimated [23] on the basis of a set 
of cardiac landmarks defined in the root image and the image under 
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consideration. After initialization the mesh is semi-automatically adapted to the 
image similarly to the procedure in part two. The active surface method used 
during the adaptation procedure contains a shape term that minimizes triangle 
edge ratio differences between the model shape and the adapted shape. This leads 
to a predominant conservation of point correspondences [19]. The result of this 
step is a learning set of corresponding sample meshes.       

4. Finally, based on the learning set of corresponding meshes from part three, a 
mean model and deformation modes can be extracted. The averaging can either 
be performed in the coordinate system of the landmark model or in a coordinate 
system resulting from a Procrustes analysis. According to our experience, the 
landmark based registration scheme works sufficiently well, a rigorous analysis 
of the influence of the registration scheme needs still to be performed. 

The procedure described above is clearly biased by the selection of the root image. In 
order to reduce the influence, steps three and four may be iterated, similar to an 
iterative Procrustes procedures. The approximate time consumption of the above 
procedure is as follows. Step one requires about 5 min per structure. For all structures 
of the cardiac surface model this sums up to about one hour. The merging of 
structures in part two works largely automatically for nicely overlapping structures. 
Together with the remaining handcrafting step two requires again about one hour. The 
mesh adaptation to the set of learning samples in step three requires about 5 min. for 
the landmark definition and another 10 min. for the semi-automated adaptation 
procedure, summing up to 15 min. per learning sample. Thus, the construction of a 
model from 20 samples requires about 7 hours.  

 

(a) 
 

(b) 

Fig. 3. (a) Triangular meshes representing the cardiac surfaces. (b) Registered surface and
coronary artery model 
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4.4   Adding Variability to the Model 

As pointed out in section 2, we follow the idea of separating the representation of 
(mean) shape and the representation of deformation. The advantage of this approach 
is firstly that it intrinsically enables a coherent deformation of the model, independent 
of the representation and parameterization of the geometry of the model parts. 
Secondly, it allows using deformation fields that originate from other sources, e.g. 
from elastic registration procedures or from tagged or phase contrast MRI images. 
The approach is related to methods that use elastic registration during the model 
construction or adaptation phase [24-26]. In order to realize this approach we need a 
common scheme to represent deformation. The steps to achieve this are sketched as 
follows. We assume that a deformation measurement consists of a set of deformation  
 

(a) 
 

(b) 

Fig. 4. Result of the adaptation of the cardiac surface model to a multi-phase CTA dataset. (a) 
depicts the end-diastolic and (b) the end-systolic heart phase. Based on the motion of the mesh 
vertices a full-space deformation field as been interpolated using a thin-plate-spline approach, 
depicted by the blue grid-lines 

vectors in a given coordinate system. This could be a set of corresponding vertices of 
a surface mesh propagated through a time series of images, or corresponding tag-line 
crossings of a tagged MRI image series, or the motion of a grid of control points 
derived from an elastic registration. In a first step the deformation vectors are 
transformed into the model coordinate system based on the registration of a sub-set of 
geometrical model-items that can be delineated in the source images (e.g. a set of 
cardiac landmarks). In the second step a smooth deformation field is interpolated from 
the (potentially sparse) input vectors, e.g. by a thin-plate-spline (TPS) interpolation 
approach [27], resulting in a smooth full space deformation field. In a third step, the 
deformation field now defined everywhere is sampled in a standardized way, e.g. on a 
Cartesian grid. Based on the representation resulting from step three, the deformation 
fields can be averaged or further statistically analyzed. Figure 4 shows a deformation 
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derived from surface tracking through the cardiac cycle. The end-diastolic (4a) and 
end-systolic (4b) shape of the cardiac surface model as adapted to a multi-phase 
cardiac CTA image is shown. The blue grid-lines visible in the images indicate the 
spatial deformation as derived from a TPS interpolation. 

5   Conclusions and Future Work 

The generation of a comprehensive geometrical model of the human heart has been 
described. Currently available is a mean model of the cardiac structures comprising 
the surfaces of the cardiac chambers and trunks of the connected vasculature, the 
coronary arteries and a set of 25 landmarks. The model is based on published data on 
the coronary arteries and on 20 multi-slice CT datasets. We advocate a distinct 
representation of the mean model geometry and model variability. A scheme to 
represent and add inter-individual and temporal variability to the model has been 
proposed. Current activities focus on enlarging the set of learning samples and on 
motion field extraction based on multi-phase cardiac CT and cine cardiac MRI image 
data. The next step will be the model application in the context of automated 
detection, segmentation and tracking of cardiac structures.  
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Abstract. For the analysis of shape variations of the heart and the cardiac 
motion in a clinical environment it is necessary to segment a large amount of 
data in order to be able to build statistically significant models. Therefore it has 
been the aim of this project to find and develop methods that allow the creation 
of a fully automatic segmentation pipeline for the segmentation of endocardium 
and myocardium in ECG-triggered MRI images. For this purpose a combination 
of a number of image processing techniques, from the fields of segmentation, 
modeling and image registration have been used and extended to create a 
segmentation pipeline that reduces the need for supplementary manual 
correction of the segmented labels to a minimum. 

1   Introduction 

The analysis of shape and shape variations of organs and anatomical structures in 
general has become an important field of medical image processing. Detailed shape 
analysis gives the possibility to identify typical variations among healthy individuals 
in order to be able to distinguish them from pathological variations and improve the 
early diagnosis of diseases, which result in pathological variations of shape. Since the 
heart is a dynamic organ, not only the analysis of the cardiac shape, but also the 
analysis of the cardiac motion is a major topic in medical image analysis. For this 
purpose, the heart has to be segmented not only at one particular time, but during one 
cardiac cycle, which is typically consisting of 15-20 images using ECG-triggered 
MRI images. Due to the fact that such large amounts of data are needed in order to 
perform analysis of shape and shape variations, it has been the objective of this 
project to develop a pipeline that is providing methods, which allow fully automated 
and at the same time robust and effective segmentation of cardiac MRI-images. 

In the last decade, deformable models [1] emerged as a well established method for 
medical image segmentation. Beside of parametric deformable models [1] also known 
as “snakes”, introduced by Kass and Terzopoulos, geometric deformable models 
based on level sets [2, 3] became one of the  most used methods in medical 
segmentation pipelines. The fact, that geometric deformable models can easily handle 
topological changes and are easily expandable from two to three dimensions made 
them a frequent choice for a number of extensions to the geometric deformable 
models originally introduced by Sethian and Osher [2, 3]. 

One characteristic of deformable models is that the segmentation process has to be 
started by providing an initial surface, which will be deformed and adapted to the 
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image data by minimizing an energy functional. One possibility to generate such an 
initial surface, which is ideally already a good approximation of the structure to be 
segmented is to use user defined seed points and take them as a basis for e.g. fast 
marching segmentation [4]. The disadvantage of using these methods is, that they 
need user interaction to set the seed points and the resulting initial surface is very 
dependent on the location of the seed points. Therefore a better solution is to use a 
pre-defined initial surface to start the level set segmentation. One possibility to fulfill 
this task is to create a common shape template the from a number of segmented data 
sets by using principal component analysis [5].  The term common shape template is 
used, since we are only using the mean shape for initialization and not to guide the 
segmentation process, where the whole common shape model – including the 
principal components – would be used.  

Having an initial surface, this surface has to be positioned - ideally - as near as 
possible to the boundaries of the structure to be segmented. For this purpose a 
registration of the dataset to be segmented, with the common shape template has to be 
performed. This can be done by registering the individual dataset and an atlas, 
containing the common shape template and a grayscale image that has once been 
aligned to the common shape template. A good choice for performing this task is to 
use mutual information  metric [6]. 

For the segmentation of the whole cardiac cycle the segmented label from one 
point in time of the cardiac cycle can be used as initial template for the next point in 
time. The initial template for the myocardium segmentation is generated by creating 
distance maps of the segmented endocardium to produce initial templates for the 
myocardium. The final myocardium segmentation is again performed using level set 
segmentation. 

Summing up, the objective of this project was to generate a pipeline for automatic 
segmentation of the endocardium and myocardium for a whole cardiac cycle, by using 
a common shape template for the initialization of the segmentation. For this purpose 
two main tasks had to be fulfilled 

1. Building a common shape template of the four chambers of the heart in order to 
initialize the segmentation process. 

2. Generating a segmentation pipeline that uses this template for initialization and 
succeeds in automatically generating labels of the cardiac endocardium and 
myocardium, which need no or minimal manual correction. 

2   Methods 

2.1   Geodesic Snakes/Geometric Deformable Models 

Although parametric deformable models are quite intuitive to implement, they are 
also having some weaknesses, which are partially limiting the usability of this type of 
models: Firstly, realizing topologically adaptive parametric models, means to do some 
major modifications of the parametric deformable models, since any change in 
topology need new parameterization. During the evolution of a contour in the 
segmentation process, interfaces may change connectivity and split, thereby 
undergoing a topological transformation which is often very difficult to follow using 
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traditional approaches. Moreover adapting parametric models to 3 or 4 dimensions is 
a very challenging task and requires computationally expensive methods [7]. 

In order to overcome these problems, geometric deformable models have been 
introduced in the field of image analysis by Caselles and Malladi [8, 9]. They are 
based on curve evolution theory and level set methods [4]. 

Being more independent from initialization than parametric deformable models, 
level sets are also designed to handle problems in which the evolving interfaces can 
develop sharp corners and cusps and change topology. Hence in order to provide a 
method, which is on the one hand capable of handling topological changes and on the 
other hand allow the usage of statistical shape models to guide the segmentation 
process in the future, geometric deformable models have been preferred to parametric 
deformable models in the course of this project.    

In this project geometric deformable models have been used in two different 
concepts: Boundary driven geometric deformable models for the endocardium 
segmentation and region-competition snakes for myocardium segmentation. 

Boundary-Driven Geometric Deformable Models.  As posted in [10], geometric 
deformable models are defined as the zero level set of an implicit function φ, defined 
on the entire image. The evolution of the surface is defined via partial differential 
equation on the implicit function φ. Following the approach used by Caselles et al. [9] 
we are using the following formula  

 0( )( ) ( ) ( ( ) ( ))c x V P
t

δφ κ φ β φ
δ

= + ∇ + ∇ ⋅∇ . (1) 

( ( ) ( ))Pβ φ∇ ⋅∇ is the projection of an attractive force vector to the surface. P is the 

gradient of a potential field, given as 

 ( , , ) ( ( ( , , )))P x y z G I x y zσ= ∇ ∗ . (2) 

 denotes the strength of the attractive force and  is the curvature dependent 
speed. ( )c x is the stopping term based on the image gradient and 0V is a constant. 

The curvature dependent stopping term adds some robustness concerning leakage 
through object boundaries and prevents the evolving contour from leaking through 
small gaps.  

Region-Competition Snakes. In contrast to boundary driven snakes, geometric 
deformable models can also be governed by local probabilities that determine if the 
snake is inside or outside of the structure to be segmented. In this implementation of 
geometric deformable models, the propagation term is controlled in a way, that it 
shrinks, when the boundary encloses parts of the background and grows, when the 
boundary is inside the wanted regions [11]. 

In our implementation, based on the itkTresholdSegmentationLevelSetImageFilter 
of the Insight Segmentation and Registration Toolkit (ITK) [12] a speed term (feature 
image) with positive values inside an intensity window (between a low and high 
threshold) and negative values outside that intensity window is constructed. The 
evolving level set front will lock onto regions that are at the edges of the intensity 
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window. In detail the feature image is calculated as follows (L…lower threshold, 
U…upper threshold). 

 ( ) ( ) ( ) / 2
( )

( )

g x L if g x U L L
f x

U g x otherwise

− < − +
=

−
. (3) 

In our application the thresholds can be calculated by calculating the mean grey 
value and standard deviation of the pixels, which are at the position of the template 
image in the original grayscale image. The thresholds are set by taking the mean grey 
value of the template region ± 1 standard deviation.  

Furthermore, a Laplacian calculation on the image to the threshold-based speed 
term can be added. The Laplacian term causes the evolving surface to be more 
strongly attracted to image edges.  
Identically to boundary driven snakes, an additional curvature based smoothing term 
adds robustness concerning leakage through object boundaries.  

2.2   Model Building 

Signed Distance Maps. For the purpose of building models of already segmented 
label data, we were choosing distance maps as a representation of shape following the 
approach of Leventon et al. [5]. A curve C which should be represented is embedded 
as the zero level set of a higher dimensional surface u, whose height is sampled at 
regular intervals. Each sample encodes the distance to the nearest point on the curve, 
with negative values inside the curve. The unsigned surface u is defined as 

 ( ) min ( )
q

u x C q x= − . (4) 

Distance maps have the property, that the gradient magnitude of the image is 
constant across the image and equal to one.  The direction of the gradient is equal to 
the outward normal of the nearest point on the curve C. From any point x in space the 
nearest point on the curve can be computed by 

 ( ) ( )x u x u x− ∇ . (5) 

A distance map provides the propagation of the boundary information without loss 
of fidelity and the redundancy of information over a region in space provides stability 
in many types of computation. 

Alignment of Distance Maps. In order to rigidly align the distance map 
representations of the individual labels, we were using mutual information (MI) 
independently introduced by Viola and Wells [6].  

Given two variables U and V, mutual information is defined as 

 MI(U,V) = H(U)+H(V)-H(U,V). (6) 

Already applied to a wide range of applications for multi modality registration, MI 
turned out to be also very useful for the global alignment of distance functions and 
provided very reasonable results for the alignment of our signed distance maps.  
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Principal Component Analysis on Signed Distance Maps. Having a training set of 
signed distance maps, Principal Component Analysis can be used to derive a shape 
model [13]. A mean surface can be computed by taking the mean of the signed 
distance functions. The matrix of eigen-vectors and the diagonal matrix of 
corresponding eigen-values is computed from the co-variance matrix using Single 
Value Decomposition. 

An estimate of a novel shape, u, can be represented by k principal components in a 
k-dimensional vector of coefficients, α : 

 ( )
T

k
uUα μ= − . (7) 

Uk is a matrix consisting of the first k columns of the matrix of eigen-vectors U, 
which is used to project a surface into the eigen-space. Given the coefficientsα , an 
estimate of the shape u is reconstructed from Uk and μ : 

 ku U α μ= + . (8) 

Since distance transforms do not form a linear vector space, u will in general not 
be a true distance function. However, the surfaces still have the properties of 
smoothness and local dependence, which is sufficient for our purposes [5]. 

2.3   Model to Image Registration 

In order to register the common shape template to a new image, we are also using 
mutual information by rigidly aligning the grey-scale image, on whose segmented 
label data all other label data sets have been registered, and the image to be 
segmented.  

For this purpose a multi-resolution registration approach has been used. This 
means that the images are registered in an iterative process, using different resolutions 
of the images. This fact adds robustness to the registration process and increases 
speed and accuracy. 

3   Results 

In the course of this project, we have been developing a C++ software-pipeline for 
fully automatic segmentation of 4D heart MRI datasets. This pipeline is implementing 
the methods described above, by using and extending some of the functionality of the 
Insight Segmentation and Registration Toolkit (ITK) and the Visualization Toolkit 
(VTK) [14].  

As a first step we had to create a common shape template out of 10 segmented 
heart datasets. Since we also wanted to have the possibility to segment the four 
chambers of the heart separately, we have not only been creating a common shape 
template of the whole endocardium, but also of each chamber of the heart.  For this 
purpose we created distance maps of the datasets, and rigidly aligned them by using 
mutual information. Fig. 2 is showing the results of the registration of the whole 
endocardium and of the left ventricle each with 5 datasets. 
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Fig. 1. Result of the rigid alignment of 5 labeled heart datasets. Left: Registered endocardium, 
Right: Registered left ventricles 

Of course rigid alignment does not provide perfect correspondence, however, for 
the task of building a model/template to initialize the segmentation process and using 
signed distance maps, which are robust to slight misalignment as a representation of 
shape, we did not necessarily need perfect correspondence.  

Using the methods described in section 2.2 we were calculating the common shape 
template and its principal components. Note, that the main variations of the model 
represented by the principal components are not involved in the segmentation process 
up to now, however, this might be part of our future work. Moreover, at this point of 
time the principal components are an additional important criterion to evaluate the 
validity of the model for our purposes. Fig. 2 is showing the common shape templates 
of the 4 chambers of the heart. 

  

  

Fig. 2. Common shape templates of the four heart chambers. Top row: left atrium (left), right 
atrium (right), bottom row: left ventricle (left), right ventricle (right) 
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Having these initial templates the image to be segmented has been registered to the 
grayscale image containing the label data on which the distance maps have been 
registered, using mutual information. Another possibility would have been to directly 
register the new image to the distance map of the common shape template, however, in 
this case, the results turned out to be less robust and less correct, than in the first case. 

The active geodesic level set segmentation process itself is started by using the 
common shape templates as initial templates and setting predefined parameters for the 
level set algorithm. As stopping criteria a threshold for the amount of change of the 
zero level set between two segmentation iterations has been used. Additionally a 
maximum number of iterations has been set. Due to the fact, that the segmentation is 
initialized very near to the object boundaries, the propagation scaling (~balloon force) 
can be set rather low. This brings the advantage that leaking through boundaries is 
less likely and the geometric deformable model is guided by the advection force, 
pulling the contour to edges in the image and the curvature term, preventing the 
contour from leaking and resulting in more robust convergence.  

Fig. 3 is showing the initial templates and the results of endocardium segmentation. 
Note that the borders between atria and ventricles have not been manually corrected. 

 

Fig. 3. Endocardium segmentation. Comparison of initial state and segmentation result of a 
endocardium segmentation in 2D (first two images) and 3D (third and fourth image) 

  

Fig. 4. Example for a template of the myocardium segmentation of the left ventricle generated 
via distance maps (left) and the final segmentation result for the left ventricle myocardium 
(right) 
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For the segmentation of the cardiac cycle, the segmentation results of the initial 
point in time have been used as initial templates [15]. For this purpose, the same 
transformation as for the first image has to be applied to the whole dataset of the 
cardiac cycle. An initial template for the myocardium segmentation can be generated 
by thresholding a signed distance map of the endocardium labels, for each chamber. 
Using this as an initial template, the thresholds for the region-competition snakes are 
computed by calculating the mean grey value of the pixels covered by the label. The 
thresholds are set by adding ±1 standard deviation to this mean value. 

In this work the correctness of the segmentation has been evaluated for two 
different heart datasets: One dataset of the ten datasets, which have been used for the 
model building process (1) and one new dataset (2). In order to evaluate the 
correctness of the segmentation for the datasets, the generated labels have been 
compared with the labels after manual correction of the segmentation results, 
considering this as the gold standard. For endocardium and myocardium segmentation 
a similarity index for three different points in time of the cardiac cycle has been 
calculated by using 

 
2 A B

S
A B

∩
=

+
. (9) 

A and B are the non-zero pixels in the first and second input images. Operator  

represents the size of a set and ∩  represents the intersection of two sets. 
Table 1 is showing the results for the similarity indexes:  

Table 2 is showing the undirected Hausdorff distances, comparing the 
automatically segmented endocardium and the manually corrected labels. 

Table 1. Similarity indexes for automatic segmentation results and manually corrected 
segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the ECG) 

000 ms 060 ms 110 ms 
Similarity index 

Heart 1 Heart 2 Heart 1 Heart 2 Heart 1 Heart 2 
Endocardium  0.980 0.992 0.970 0.980 0.971 0.976 
Left ventricle  0.991 0.991 0.998 0.992 0.998 0.976 
Right Ventricle  0.946 0.988 0.933 0.976 0.927 0.918 
Left atrium  0.975 0.984 0.988 0.976 0.979 0.930 
Right atrium  0.986 0.990 0.989 0.961 0.948 0.953 
Myocardium  0.950 0.964 0.952 0.958 0.940 0.936 

Table 2. Hausdorff distances in mm between automatic segmentation results and manually 
corrected segmentation results for two heart data sets (0, 60 and 110 ms after the R-peak in the 
ECG) 

000 ms 060 ms 110 ms Hausdorff 
distance Heart 1 Heart 2 Heart 1 Heart 2 Heart 1 Heart 2 

Endocardium  2.3 2.0 2.7 2.5 2.7 2.5 
Myocardium  5.1 4.8 5.3 5.2 5.8 6.1 
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4   Discussion 

Using mutual information to register the distance maps of the individual labels and 
the grayscale images to the atlas resulted in a precise rigid alignment and provided 
very satisfying results. Calculating a mean model resulted in a meaningful and 
feasible common shape template, which proved to be an adequate tool for the 
initialization of the level set segmentation process. Using geodesic level sets for the 
segmentation of the endocardium turned out to be an adequate choice and resulted in 
good segmentation results compared to the gold standard. Note that no manual 
correction has been performed between the segmentation of the different phases of the 
cardiac cycle. Performing minimal manual correction - especially the correction of the 
valve plane level - after segmenting the first point in time of the cardiac cycle would 
of course mean another improvement of the segmentation results.  

The usage of ITK and VTK to implement the segmentation pipeline turned out to be 
an adequate choice for programming the software pipeline. 

A detailed and comprehensive evaluation of the presented pipeline and an 
extension of the pipeline, which is using a modified template created out of more 
datasets and using other forms of shape representation in order to implement 
knowledge about shape variations in the segmentation process itself is currently under 
development. 
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Abstract. Segmentation of the fetal heart can facilitate the 3D assessment of the 
cardiac function and structure. Ultrasound acquisition typically results in drop-
out artifacts of the chamber walls. This paper presents a level set deformable 
model to simultaneously segment all four cardiac chambers using region based 
information. The segmented boundaries are automatically penalized from 
intersecting at walls with signal dropout. Root mean square errors of the 
perpendicular distances between the algorithm’s delineation and manual 
tracings are within 7 pixels (<2mm) in 2D and under 3 voxels (<4.5mm) in 3D. 
The ejection fraction was determined from the 3D dataset. Future work will 
include further testing on additional datasets and validation on a phantom. 

1   Introduction 

Congenital heart disease affects about 8 in every 1000 births [1] and its signs can be 
diagnosed with prenatal echocardiography [2]. As with the adult heart, functional 
volume estimation of the left ventricle provides quantitative information about the 
state of the myocardium. However, in the fetus the blood flow in both sides of the 
heart is allowed to mix and so both ventricles are important for clinical assessment. 
One important application of fetal cardiac segmentation is for measurement of the 
absolute size of the chambers. This can be used for evaluation of the function of the 
heart, compromised either by cardiac malformations or by non-cardiac diseases such 
as immuno-haemolysis. In this condition the maternal immune system can kill fetal 
blood cells and so the fetal heart grows larger to compensate. 

The prenatal heart has very thin chamber boundaries particularly in the areas 
consisting of the atrial septum, the membranous segment of the ventricular septum, 
and the valvular leaflets. Often the resolution of the ultrasound beam perpendicular to 
its axis is insufficient to resolve these structures and so these walls suffer from signal 
dropout and appear as holes in the endocardium. These dropouts can also be 
misleading for clinical diagnosis since the fetal heart contains septal holes which 
normally close at birth. Artefacts such as these complicate the automated functional 
volume quantification of each chamber for determining useful cardiac indices such as 
ejection fraction. In some cases it is difficult for fetal cardiologists to manually trace 
the endocardiac structures because of the missing image greyscale information. 
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Automated volume quantification in fetal cardiology is relatively new since it is 
difficult to acquire datasets without significant shadowing. Fetal body and cardiac 
motion artefacts are most noticeable when using slice-reconstruction 3D methods. 
Recent advances in volumetric acquisition have allowed the fetal heart to be imaged 
in 3D with considerably reduced motion artifacts [3], [4]. 

In the past Navaux and co-authors have published their work on segmentation of 
the 2D fetal heart by classification via neural networks [5], [6]. There has been 
relatively little use of deformable models to segment fetal cardiac data – only two 
papers in the literature currently exist:  Lassige et al [7] used a level set snake to 
measure the size of the septal defects in echocardiographic images. This snake had a 
constant speed term that frequently overshot boundaries. In 2003 Dindoyal and co-
workers presented an explicit 2D Gradient Vector Flow (GVF) snake algorithm with 
rigid body motion constraints to segment and track ventricles in 2D motion-gated 
fetal cardiac data [8]. Recently Esh-Broder et al [3] have collected over 20 3D fetal 
heart datasets. In this study the ejection fraction was estimated from the manual 
segmentation as well as comparison of both left and right ventricular volumes.  

Section 2 outlines the proposed method to automatically segment the fetal cardiac 
chambers of two echocardiographic datasets after placement of manual seed points; 
one dataset was acquired from conventional 2D ultrasound slices and the other by 
Live 3D. The next section presents a selection of the images segmented with manual 
tracings for comparison as well as measurement of the accuracy. We then conclude 
the work and present further directions for study. 

2   Method 

2.1   Data Acquisition 

3D acquisition of the fetal heart by serial slices was carried out by an online motion 
gated method pioneered in our group [9] using paired Acuson scanners (25 frames per 
second and a square pixel spacing of 0.26mm). True 3D acquisition of the fetal heart 
was performed with the Live 3D ultrasound scanner from Phillips [4]. This imaging 
system is capable of capturing about 24 volumes per second and can output a 
resampled cubic voxel resolution of 1.47mm3 for the penetration depth required. 
Although the 2D images from the paired scanners were stacked in 3D with motion 
gating, there was parts of the volume with noticeable motion artifacts that caused 
misalignment between slices. For this reason the volume dataset from the Acuson 
scanners was treated as separate 2D images. The Live 3D dataset did not suffer from 
this problem due to the volumetric acquisition method. Motion gating was 
unnecessary for this dataset since it was acquired with the probe kept immobile during 
no apparent fetal body movement. 

2.2   Level Set Deformable Model 

The level set method is defined implicitly compared to many adaptations of the snake 
model first introduced by Kass in 1988 [10] which track explicit markers. Level set 
methods can behave like the explicit case by chopping the level set function at the 
zero level (refer to Fig. 1). These implicit models have attractive properties in image 
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segmentation such as automatic interpolation of the propagating front for irregular 
shaped boundaries and the ability to handle topological changes with ease. 

 

Fig. 1. Illustration of the level set function and zero levels for a 2D image 

The generic level set equation for image processing can be written in the form 

 (1) 

where  is the level set function and F is a problem dependent speed function. 
The level set used in this paper was solved using a first order iterative scheme 

because of its low computational complexity 

 1n n nNFϕ ϕ ϕ+ = + Δ  . (2) 

where n is the iteration number and ΔN is the timestep. Upwind differencing schemes 
were used where appropriate to maintain numerical stability around the propagating 
front as well as a small timestep.  A form of narrow banding was used to speed up the 
level set propagation and to prevent nucleation of new fronts. The front is tracked on 
each iteration and its intersection with the edge of the narrow band can be predicted. 
When this occurs a new band is grown from the current zero level front by isotropic 
diffusion. 

The front was manually initialized as a circle or sphere in each chamber. Each 
chamber contained a different snake which was stored in separate memory space to 
the others. This was implemented to prevent the level set merging of neighboring 
fronts. The distance transform for each snake was defined as a cone with negative 
values inside the front and positive elsewhere. This can be computed very quickly for 
such simple geometry in a single pass by computing the distance between voxel 
positions from the radius of the front. For non primitive initializations it may be 
necessary to use more general efficient distance transforms such as chamfering. The 
usual criterion of normalizing the distance transform was enforced. 

Sarti et al 2002 [11] developed a level set algorithm with mean curvature and edge 
flow diffusion properties to segment datasets with missing boundaries. In this paper a 
new term was added to this evolution equation proposed by Sarti to incorporate region 
growing based on local deviations from the interior and exterior regions using the 
image part of the Mumford Shar (MS) functional. This term is useful in images 
without clear boundaries [12]. In the implementation proposed here the MS force is 
heavily penalized by curvature and inter-snake collision detection to reduce inter-

Fϕ ϕ= ∇  . 
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chamber leakage. This is shown in equation (3) where Sarti’s geometric model for 
boundary completion is enclosed in curly braces. 

Where g = (1+|∇GF |)-1 is an edge detector that returns a value between 0 and 1, 
with G denoting Gaussian filtering and F is the image. In the implementation for this 
paper image prefiltering to reduce noise was unnecessary for the volumetric data 
since the images were already at very low spatial resolution, but was necessary for the 
2D sliced data due to the high speckle content.    

In equation (3) ϕ is the level set function, I is the current voxel intensity under 
investigation. μi, and μo are the means of the internal and outside regions of the dataset 
defined by the level set front. ξ is a function that tests if any of the enclosed regions 
from individual snakes overlap. If there is overlap ξ returns 1 and 0 otherwise. β is a 
function to penalize edge advection in the presence of local edges and is defined as β = 
exp(-γ |∇GF |).  In Sarti’s original formulation β is a unitary constant.  The factors α, 
γ, λ1, λ2, κ  are empirically determined weighting coefficients for the respective terms. 

In Sarti’s equation the first term is standard mean curvature flow weighted by an 
edge stopping coefficient. It serves to regularize the curve where the data is sparse 
and propagation can be further reduced by the presence of edges.  The advection term 
drives the front towards image edges that have been defined from a pre-computed 
edge diffusion field. The main weakness of this term is the presence of many edges at 
various strengths as is often found in sonography. Edge flow by advection is heavily 
dependent on the quality of the edgemap and so may fail to propagate the front 
towards the edges sufficiently to overcome the mean curvature flow. 

The proposed term aims to provide some expansion or contraction forces 
dependent on the local tissue type in the absence of a strong edge field, e.g. when the 
front is in homogeneous regions. Unlike the constant advection term in Lassige’s 
algorithm [7] this force can propagate the front in either direction according to the 
position of the boundaries and so would be less prone to overshoot. The MS factor 
models the foreground and background of the image and tries to minimize its energy 
by separating these two regions. The foreground was estimated from a small 
circle/sphere placed inside the chamber prior to evolution and the background was 
assumed to be the remainder of the dataset. Since the appropriate λ1 and λ2 could 
potentially vary significantly between datasets, the images were normalized to reduce 
the dependence on these coefficients. 

The exponential factor contains a second mean curvature component and its 
presence is mostly required where there is extensive shadowing to the chamber. The 
collision detection component is heavily penalizing and tends to stop two intersecting 
fronts immediately upon contact so that a steady wall is formed where the two 
interfaces meet. Although open valves cause blood from atria and ventricles to mix 
cardiac function in clinical use is measured by treating each chamber in isolation. 

[ ] [ ]( ) ( )2 2

1 2

( ) ( )
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From preliminary experiments it was discovered that for the collision to occur at the 
right place (where part of the chamber wall has suffered signal dropout due to the 
beam resolution); the two snakes should be started from as close to the centers of their 
respective chambers as possible. This prevents one snake from invading the adjacent 
chamber due to its arrival at the missing boundary first. 

3   Results and Discussion 

Fig. 2 illustrates the effect of the added term to Sarti’s equation. Without the presence 
of a clear edgemap from the data Sarti’s snake fails to propagate appreciably towards 
the desired boundary. To overcome this restriction we used the bidirectional MS term 
in conjunction with Sarti’s algorithm which yielded a closer segmentation to the 
expert’s delineation. We used manual expert tracings by a fetal cardiologist as a gold 
standard. Full interactive segmentation of the images proved to be both challenging 
and tedious in particular for areas with partial volume artifacts of the papillary 
muscles and the missing atrial septum. 

 

 

Fig. 2. Segmentation by the algorithm proposed in this paper (left) and segmentation by Sarti’s 
algorithm (middle). The white contours are automatically generated and grey denotes manual 
tracings. Atria appear at the top of the image and ventricles at the bottom. The right image 
shows the edgemap  

 

Fig. 3. Effect of the collision penalization term (enabled in left image and disabled in right 
image) 
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Fig. 3 shows the effect of the collision penalization term. The left image shows the 
atrial boundary reconstructed at approximately the location of the true boundary and 
the right image illustrates overgrowth of the fronts. 

 

Fig. 4. Segmentation results of the algorithm on the 2D slice data (white) superimposed on 
manual tracings (grey) 
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Fig. 5. 3D segmentation on the Phillips Live 3D data (only central slices are shown for clarity). 
Space varies horizontally and time vertically in this figure. White contours were generated by 
the algorithm and grey ones are manual tracings 

The algorithm was applied to 32 2D images from the Acuson scanner and a 3D 
dataset from the Phillips Live 3D scanner. Inter-operator variability of manual 
segmentation was not measured for comparison with the automated delination in this 
paper. It was assumed that the repeatability of manual tracing to within an error of 2 
voxels would be sufficient for clinical use. To access the accuracy of the algorithm 
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root mean square (rms) errors were computed from point-wise distances between the 
automatic boundaries and the manual tracings. The segmentation results in 2D can be 
seen in Fig. 4 and 3D analysis is displayed in Fig. 5.  

Frequency analysis of the rms errors is shown in the bar charts in Fig. 6. The rms 
errors are within 7 pixels (<2mm) in 2D for the chambers excluding the right atrium. 
In Fig. 6 the scale was truncated to empathize the distribution of 2D rms errors 
excluding outliers of the right atrium.  The outliers stretch out to 15 pixels.  Fig. 4 
shows several examples where the snake is attracted to regions of echo enhancement 
in the ultrasound image above the right atrium.  The algorithm appears to be 
influenced by strong intensity inhomogeneity artifacts and this pulls the contour away 
from the desired endocardiac boundaries.   

 

 

 

Fig. 6. Top row: rms errors of segmentation for each chamber. Bottom left: sensitivity analysis 
of the weighting coefficients in the 3D segmentation. Bottom middle: example volume 
rendering of segmented Live 3D dataset (during ventricular diastole and atrial systole, posterior 
view). Bottom right: volume-time curves for all frames 

In 3D the rms errors were between 1-2 voxels (4.5mm). The graphs show that the 
spread of rms errors is greater in the 2D case although the overall errors from the 3D 
algorithm are larger when expressed in mm units. We attribute the cause of this to the 
lower spatial resolution in direct volumetric acquisition which increases the partial 
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volume effect. Strong echo enhancement effects would further increase the spatial 
rms errors but these were absent in this dataset. 

In many of the 2D segmented images the front stopped short of the desired 
boundary and this shows up in the high rms errors (refer to Fig. 6). Whilst high 
curvature penalization was partially responsible, premature stopping of the level set 
front was also due to contributions from the type of image forces used. The MS term 
models unchanging mean intensities both inside and outside of a small sphere or 
circular seed placed inside the chamber. If the mean was updated as the snake evolved 
the front could come to rest closer to the boundary. The edge flow term requires a 
diffusion equation to be applied to an edge map and so broadens edges. The Gaussian 
prefiltering used a large kernel of width 9 pixels and this could contribute to the edge 
broadening. 

To assess the dependence of the segmentation on the weighting coefficients, these 
parameters were varied independently within a range of 50-140% of their appropriate 
values for this application. The test was arbitrarily run on the 1st frame of the Live 3D 
dataset and for this range of parameter values, rms errors in the segmentation 
remained below 3.5 voxels for all chambers.  Fig. 6. shows that the MS region term  is 
most strongly affected by choice of weighting coefficients. 

The left and right ventricular ejection fractions were computed as 61% and 59% 
respectively from the automatic segmentation (frames 0 and 6 were identified as the 
necessary cardiac time points to perform this calculation). These values are 
comparable to the ranges found in a study by Esh-Broder [3] (57.5±14.6% and 
54±11.2% respectively), who also measured a non-significant variation between the 
left and right ventricles. A volume-time graph of all four cardiac chambers is shown 
in Fig. 6 as well as a volume rendering of the level set front.  

4   Conclusion 

To our knowledge this is the first time non manual segmentation techniques have 
been applied on 3D prenatal heart data to measure volumes and cardiac indices. The 
automated method provides a segmentation that is far quicker and more repeatable 
than manual tracings; but has problems in delineating fine intra-cavity structures and 
is strongly affected by enhancement of echogenic regions. The 2D data appears to be 
easier to automatically segment than the new Live 3D possibly due to the smaller 
pixel size which allows better definition of thin walls and intra-cavity structures. 
However, fetal cardiac volumetric imaging simplifies the gating process and will be 
the method of choice for acquiring future datasets. 

Future work will involve validation of the accuracy of the automated volume 
determination from a phantom as well as further testing on additional datasets. 

Acknowledgements 

We are grateful for the volume rendering provided by Daren McDonald and 
stimulating discussions about optimization strategies with Dr Robin Richards. This 
work was supported by EPSRC (GR/N14248/01) and MRC (D2025/31) under the 



132 I. Dindoyal et al. 

 

Interdisciplinary Research Consortium scheme - “From Medical Images and Signals 
to Clinical Information” (MIAS IRC). Dr Jing Deng is supported by MRC 
(G108/516).  

References 

1. Mitchell SC, Korones SB, Berendes HW. Congenital heart disease in 56,109 births. 
Incidence and natural history. Circulation, Vol. 43. (1971) 323-332 

2. Copel JA, Gianluigi P, Green J, Hobbins JC, Kleinman CS. Fetal echocardiographic 
screening for congenital heart disease: The importance of the four-chamber view. British 
Journal of Obstetrics and Gynaecology, Vol. 157. (1987) 648-655 

3. Esh-Broder E, Ushakov FB, Imbar T, Yagel S. Application of free-hand three-dimensional 
echocardiography in the evaluation of fetal cardiac ejection fraction: a preliminary study. 
Ultrasound in Obstetrics & Gynecology, Vol. 23. (2004) 546-551 

4. Deng J. Terminology of three-dimensional and four-dimensional ultrasound imaging of 
the fetal heart and other moving parts. Ultrasound in Obstetrics & Gynecology, Vol. 22. 
(2003) 336-334 

5. Piccoli L, Dahmer A, Scharcanski J, Navaux POA. Fetal echocardiographic image 
segmentation using neural networks. In. Image Processing and its Applications 1999, 
Seventh International Conference. (1999) 

6. Siqueira ML, Scharcanski J, Navaux POA. Echocardiographic image sequence 
segmentation and analysis using self-organizing maps. Journal of VLSI Signal Processing, 
Vol. 32. (2002) 135-145 

7. Lassige TA, Benkeser PJ, Fyfe D, Sharma S. Comparison of septal defects in 2D and 3D 
echocardiography using active contour models. Computerized Medical Imaging and 
Graphics, Vol. 24. (2000) 377-388 

8. Dindoyal I, Lambrou T, Deng J, Ruff CF, Linney AD, Todd-Pokropek A. An active 
contour model to segment foetal cardiac ultrasound data. In. Medical Image 
Understanding and Analysis. 03 Jul 10, University of Sheffield, UK. (2003) 

9. Deng J, Ruff CF, Linney AD, Lees WR, Hanson MA, Rodeck CH. Simultaneous use of 
two ultrasound scanners for motion-gated three-dimensional fetal echocardiography. 
Ultrasound in Medicine and Biology, Vol. 26. (2000) 1021-1032 

10. Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International Journal 
of Computer Vision, Vol. 1. (1988) 321-331 

11. Sarti A. Subjective surfaces: a geometric model for boundary completion. International 
Journal of Computer Vision, Vol. 46. (2002) 201-221 

12. Gibou, F. and Fedkiw, R. A fast hybrid k-means level set algorithm for segmentation. 
Stanford Technical Report. (2002) 



Supporting the TECAB Grafting Through CT
Based Analysis of Coronary Arteries

Stefan Wesarg

FhG-IGD, Dept. Cognitive Computing & Medical Imaging, Darmstadt, Germany
stefan.wesarg@igd.fraunhofer.de

Abstract. Calcified coronary arteries can cause severe cardiac problems
and may provoke an infarction of the heart’s wall. An established treat-
ment method is the bypass operation. The usage of a telemanipulation
system allows for the execution of that operation as a totally endoscopic
coronary artery bypass (TECAB) grafting. This relatively new method
narrows the surgeon’s view and does not permit the palpation of the
vessel in order to detect calcifications (hard plaques).

A planning based on contrast enhanced, cardiac CT data sets can
compensate for that problem. This work presents analysis methods for
coronary arteries. Hard plaques are detected using a tracking-based ves-
sel segmentation technique. In addition, the vessel’s neighborhood is an-
alyzed in order to decide whether it is surrounded by tissue or fat, or
if it is freely accessible for the surgeon’s instruments. Furthermore, well
adapted methods for the visualization of these analysis results are pre-
sented.

Keywords: Coronary arteries, vessel segmentation, calcification detec-
tion, minimally invasive surgery, cardiac imaging, computed tomography.

1 Introduction

In the developed nations, malfunctions of the cardiovascular system are wide-
spread. Often an obstruction of coronary arteries causes severe risks for the
patient’s health. The herewith related coronary artery disease (CAD) can hinder
the blood-flow towards the areas of the myocardium close to the heart’s apex.
In the worst case this can provoke an infarction of the heart’s wall.

The bypass grafting is an established procedure for the treatment of ob-
structed coronary arteries. Conventionally, it is executed as open-chest surgery.
There, the surgeon can directly look onto the artery and detect hard plaques by
palpation of the vessel. New medical devices like ‘telemanipulators’ change the
way that such operations are executed (see fig. 1). They allow for a special form
of minimally invasive surgery – the totally endoscopic coronary artery bypass
(TECAB) grafting [1, 2].

There, the chest is no longer opened completely, and the intervention can
be done on a beating heart. The surgical instruments and an endoscope are
inserted into the patient via small ports and controled by the surgeon from a
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Fig. 1. A telemanipulator based system for minimally invasive surgery (daVinci, Intu-

itive Surgical): The surgeon controls the instruments from a console that is providing

a stereoscopic view on the operation area (left). The instruments and the endoscope

are attached to the arms of the system, and inserted into the patient via ports (right)

console that is providing a stereoscopic view on the operation area. That type
of the bypass grafting results in less trauma for the patients, a faster recre-
ation and a much lower infection risk. On the other hand, the TECAB grafting
requires more experience of the surgeon due to the limited view during the op-
eration. Finally, only a good planning of the intervention can lead to an optimal
result.

An analysis of the coronary artery can compensate for the limitations due to
the minimally invasive character of the operation. Considering the fact that a
huge amount of time is used for accessing the artery that is often hidden behind
fat or muscle tissue, it would be desireable to have this information already prior
to the operation. Also, the position of hard plaques should be known before in
order to decide where the bypass should be attached to the vessel.

In the past, coronary artery calcium has often been detected based on electron-
beam computed tomography (EBCT) data. Several publications describe meth-
ods for quantifying the calcium [3, 4], others focus on the reproducibility of the
calcium scoring [5]. The reason for the usage of EBCT was the much shorter ac-
quisition time of EBCT compared to conventional computed tomography (CT)
of these days.

But the advent of multi-slice computed tomography (MSCT) scanners in com-
bination with a still increased rotation speed now allows for high-quality cardiac
imaging based on conventional CT. The simultaneous acquisition of projection
data in 16 or more detector rows makes it possible to acquire the whole heart
during one single breath-hold [6]. This opens new horizons for the employment of
MSCT for cardiac imaging and analysis; especially in the domain of non-invasive
coronary angiography [7]. CT based analysis of the coronary arteries is still a
relative new technique. Most of the approaches described in the literature are
limited to the detection of stenoses and an analysis of 2D image data [8, 9]. To
the knowledge of the author there has not been published any work regarding
true 3D analysis of coronary arteries based on MSCT coronary angiography yet.
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The ‘gold standard’ for the analysis of the coronary artery tree is still con-
ventional angiography. However, this imaging modality is not used for prepar-
ing a TECAB grafting. The reason for that is the fact that angiography is an
invasive modality that is not suitable for the examination of bypass patients.
Furthermore, angiography does not provide any information about the tissue
surrounding the coronary artery tree.

There are several publications dealing with the planning of a TECAB graft-
ing using a telemanipulation system. However, the authors mainly focus on the
optimization of the port placement for avoiding collisions of the instruments
while assuring the reachability of the heart and the coronary artery the surgeon
is focusing on [10, 11].

The here presented work introduces methods for localizing calcifications in
coronary arteries and inspecting the tissue in their neighborhood aiming on
supporting the TECAB grafting in cardiac surgery.

2 Material and Methods

It is desireable to present the image data used for the planning of the intervention
in 3D, rather than as conventional 2D slices. However, a 3D view of the image
data based on direct volume rendering does neither allow a good perception of
coronary arteries and calcium therin, nor the constitution of the surrounding
tissue can easily be determined. Therefore, a vessel analysis based on the result
of its segmentation is introduced, and well adapted methods for the presentation
and exploration of the analysis results are presented.

For the acquisition of our test data a contrast agent has been used to enhance
the visibility of the cardiovascular structures. The projection data has been
acquired with a multislice CT scanner (Siemens Somatom Sensation 16 ) and
reconstructed based on the simultaneously recorded ECG data. This resulted
in high-quality image data without severe artifacts. The data sets consisted of
nearly cubic voxels with a size of about 0.5 mm for each direction.

2.1 Segmentation of Coronary Arteries

We used our own tracking-based vessel segmentation technique that has been
developed for the reliable extraction of coronary arteries from high-resolution
CT data sets [12]. Vessels, that are containing a contrast agent, are relative
homogeneous and show a high contrast with respect to the surrounding tissue.
This allows for a detection technique we call the ‘corkscrew algorithm’, and
that is truely working in 3D. Thus, a connection between the user defined start
and end point following a helical – or corkscrew-shaped – path is searched. It
provides in the first step an estimation for the centerline, that is afterwards
corrected iteratively by detecting the voxels that belong to the vessel’s border.
The algorithm’s output is a set of points defining the centerline and another one
representing the border of the artery. For more details see reference [12].
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2.2 Hard Plaque Detection

The output of the vessel segmentation presented in the preceding section allows
for the subsequent calcification detection. Each computed point of the centerline
has a corresponding set of points representing the vessel’s border in perpendic-
ular direction to the centerline segment. As a consequence, the diameter of the
coronary artery can easily be computed, resulting in a diameter function for the
segmented coronary artery.

The employed vessel extraction approach excludes calcifications from the seg-
mentation result. Hence, calcified regions are expected to lower the mean diam-
eter, since the corresponding border points lie ‘in front’ of them. Based on the
generated diameter function and the image data a three-step analysis is per-
formed (see fig. 2):

1. From the diameter function calcification candidates are extracted by select-
ing those centerline points with a corresponding diameter below a certain
threshold. (This could be for instance the mean value of that function.)

2. Afterwards, these candidate points’ neighborhoods are searched through
whether voxels with high gray values are present. Calcifications are assumed
to be 20 % to 30 % brighter than the vessel’s lumen that is filled with a
contrast agent. Only those candidate points possessing a neighborhood that
fulfills that brightness condition are kept.

3. In a last step, the remaining candidate points are analyzed whether they
are close to the same calcification. If several candidate points form a group
sharing the same calcification, the position laying in the middle between the
first and the last point of the group is stored.

threshold value

}candidate points

20 to 30% 
brighter voxels 

in the  
neighborhood?

Y

N

reject point

store posi tion in the 
middle between the f i rst 

and the last point 
belonging to the same 

calci f ication

Fig. 2. The analysis for localizing calcifications in coronary arteries: A set of candidate

points is selected based on an automatically computed threshold. These points are

further analyzed whether bright gray values are in their neighborhood. At the end, the

remaining points are decimated again for assuring that only one of them belonging to

the same single calcification is stored
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The result of that analysis is a set of points with on one hand a position
related to a relative low diameter of the coronary artery and on the other hand
a neighborhood containing voxels with a high gray value. These two conditions
are expected to reliably localize calcifications.

2.3 Inspection of the Artery’s Neighborhood

Coronary arteries are often not freely accessible for the surgeon’s instruments,
since they are surrounded by muscle tissue or fat. The preparation of a TECAB
grafting requires the coagulation of that matter in order to isolate the vessel.
This procedure is very time-consuming, since it has to be done very prudently in
order to not hurting the artery. That process and the TECAB grafting in general
could be speed up if there was a possibility for classifying and quantifying the
tissue in the vessel’s neighborhood.

We propose an analysis method that is based on our vessel segmentation
described above. For each set of border points belonging to the same centerline
point a set of rays starting from the centerline and passing through the cor-
responding border points is considered. Along these rays, starting behind the
border point, gray value samples from the image data are taken. These values
are converted into Hounsfield units (HU) (a task that can easily be done for CT
data, since the necessary information is stored in the header of the DICOM 1

data). Based on the obtained HUs the tissue can be roughly classified into air
(HU: ≈ −1000), fat (HU: −220 to −20), and muscle tissue (HU: 20 to 50). The
length of the rays as well as the sampling rate for the gray value acquisition can
be selected by the user.

2.4 Visualization of the Analysis Results

In this section we describe the methods that we have developed for the presen-
tation of the analysis results. They have been designed to be well adapted to the
planning of a TECAB grafting. All visualization tasks are done using the freely
available toolkit VTK2.

The ‘natural’ way of presenting the generated diameter function is an x-y
plot (see left part of fig. 2). For a direct visualization of the diameter function in
the volume rendered view, we implemented a filter that creates a tube around
the generated centerline. This tube’s cross-section dimension varies the same
way the diameter function does. In addition, it is colored based on the diameter
values. A red color signifies a low diameter, whereas a blue color stands for a
large one (see fig. 3).

For visualizing the results of the hard plaque detection multiple cone-shaped
pointers are used for indicating the detected calcifications directly in the 3D
view. In addition, their positions are given in a list box control. By clicking

1 The DICOM standard (Digital Imaging and Communications in Medicine)
(http://medical.nema.org/)

2 The Visualization Toolkit by Kitware, Inc. (http://www.vtk.org)
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Fig. 3. Visualization of the diameter function directly in the 3D rendered volume of a

cardiac MSCT data set: A tube around the computed vessel’s centerline is shown. It

varies in diameter corresponding to the diameter function. In addition, this variation

is color-coded using a linear rainbow-based transition from red to blue. (The artery

itself can be perceived as shadow around the generated tube)

Fig. 4. Detection of multiple hard plaques in a coronary artery: All three calcifications

present in the LAD (= left anterior descending) have been detected and are indicated

by a pointer (left). Selecting one of them from a list box control adjusts the 2D views

and highlights the position of the calcification – axial view shown as example (right)

on one of these entries the corresponding 2D views are shown, highlighting the
calcification position (see fig. 4).
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Fig. 5. Visualization of the coronary artery’s neighborhood: A polar plot shows the

color coded HUs (red: air, greenish cyan: fat, blueish cyan: muscle, intense blue: contrast

filled right atrium and ventricle) for a selected centerline point. The mean gray values

of the artery’s neighborhood are shown in an x-y plot (left). Comparison with the

corresponding original axial slice shows a strong coincidence with the output of the

tissue classification. The small red circle is the outer boundary of the segmented artery.

The region’s size shown in the polar plot equals approximately the circle through the

square’s corners (right)

A special visualization method for the inspection of the vessel’s neighbor-
hood has been developed. It consists of two outputs. The first one displays the
HUs of that neighborhood for each centerline point as color coded values in a
polar plot. There, the correct relative dimensions of the vessel’s mean diame-
ter and the selected ray length are used. A slider control allows for navigating
along the centerline and inspecting the coronary artery’s neighborhood. An x-
y plot displays the mean gray value of the neighborhood for every centerline
point.

In addition, the correspondence between this special visualization method
and the conventional way of displaying medical image data can easily be verified.
For each position along the centerline the 2D views can be aligned according to
the x (sagittal), y (coronal), and z (axial) position, and the corresponding point
in such a 2D slice is highlighted (see fig. 5). In the 3D view that position is
indicated by a small pointer.

3 Results

The proposed analysis techniques have been tested with CT data from 7 patients.
For all of them the left anterior descending (LAD), the left circumflex (LCX),
and the right coronary artery (RCA) have been segmented using the corkscrew
algorithm [12]. The segmentation did not always extract the whole artery due
to imaging artifacts that interupted the continuous run of the vessel. In these
cases only that part that has been segmented could be further analyzed.
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Table 1. The results for the automatic detection of hard plaques in coronary arteries

based on their segmentation: The data sets of seven patients have been used, and in

all of them the LAD, the LCX, and the RCA have been inspected

Data set Hard Plaques LAD LCX RCA

1 Visible 0 0 0
Detected 0 0 0

2 Visible 3 1 1
Detected 3 1 1

3 Visible 5 2 5
Detected 6 2 5

4 Visible 1 0 0
Detected 1 0 0

5 Visible 3 0 0
Detected 3 0 0

6 Visible 6 0 1
Detected 6 0 1

7 Visible 4 0 2
Detected 5 0 2

The color mapping of the computed artery’s diameter on a tube around the
vessel’s centerline allowed for a perception of the change of that parameter along
the artery without any difficulty. This way of representing the diameter function
is more convenient than providing only its x-y plot.

Table 1 shows the results for the automatic detection of hard plaques. The
above introduced automatic technique detected reliably the present calcifica-
tions. All of the hard plaques that have been found during a preceding manual
inspection of the axial slices have been tracked. Two of them have been indicated
twice due to their large size that led the algorithm to an overestimation of the
number of calcifications in these cases (data sets 3 and 7). Those segments that
did not contain any visible hard plaque have been classified by our technique to
be calcification-free, i. e., our tests resulted in a false-positive value of 0.

The method for inspecting the artery’s neighborhood has been tested with the
same datasets where the LAD, the LCX, and the RCA have been segmented.
There, only a retrospective analysis could be done since the data came from
patients whose treatment was already finished. Consequently, we only checked
whether the color-coded display of the HUs for the surrounding tissue corre-
sponded to what could be perceived in the conventionally displayed image data.
For a run of the artery in axial direction this could simply be done by comparing
the colored polar-plot of the analysis window with the axial slice (see fig. 5). For
more ‘difficult’ directions of the vessel the other two 2D views as well as the 3D
view have been used. In all of the cases this visual evaluation showed a perfect
correspondence: Air was displayed red, fat in greenish cyan, and muscle tissue in
blueish cyan. In addition, hard plaques and contrast agent filled cavities could
easily perceived since they appeared as intense blue areas.
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4 Discussion

The presented, yet preliminary, analysis results using the segmentation output
of our tracking-based approach [12] turned out to be robust. The detection of
hard plaques delivered in all cases the correct number and positions of the calci-
fications that have been found by a visual inspection of the image slices. In two
cases a single but widespread hard plaque has been detected twice. But, this can
not be considered as a serious drawback of our technique. Very important for
a clinical use of the automatic hard plaque detection is the false-positive value.
Here, the tests resulted in a value of 0 – no false indication of non-existing hard
plaque. However, the criteria that the hard plaque detection is based on are of a
rather qualitative nature, and an extended, clinical evaluation of our technique
is needed (see the end of this section).

The highlighting of the calcifications’ positions also in the conventional 2D
slices establishs a relationship between the newly introduced technique and the
manual inspection of the slices. Thus, radiologists will hopefully accept the au-
tomatic technique without reservation, since they can still verify the analysis’
output in their habitual way.

Stenoses that may be introduced by calcifications can easily be found when
inspecting the vessel’s diameter. The proposed method of generating a colored
tube that varies in diameter the same way the artery does makes it easy to
localize areas of small vessel diameter in the 3D view of the volume. There is no
need any longer to mentally map the x-y plot to the image data.

Our method for analyzing the neighborhood of the artery is an innovative
approach for providing essential information for the planning of a TECAB graft-
ing. The HU based color coded visualization of the surrounding tissue and air
makes it easy for the surgeon to estimate the amount of tissue that has to be
removed in order to access the artery.

As a limitation of this work one might consider the fact that the presented
methods have been tested only with data from seven patients. We are aware
of this, and consequently a clinical study together with our partners from the
University Hospital Frankfurt has been started. This study is also aiming on the
comparison of our CT based analysis methods with the current ‘gold standard’
– conventional angiography.

The inspection of the vessel’s neighborhood could be done only as a ret-
rospective study of patients whose treatment has already been finished. The
aforementioned clinical study will also determine the expected improvements for
the TECAB grafting in terms of speeding up the dissection of the artery.

Finally, the here presented methods for visualizing the analysis results are an
improvement over existing approaches. But, they are not an optimal solution yet.
Therefore, future work will focus on a simulation of the limitations the surgeon is
experiencing through the fixed angle view of the used endoscope. In addition, an
augmentation of the endoscopic view provided by the telemanipulation system’s
console with the analysis results would be a possible and usefull extension of our
proposed approach.
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Abstract. Magnetocardiographic (MCG) mapping measures magnetic fields 
generated by the electrophysiological activity of the heart. Quantitative analysis 
of MCG ventricular repolarization (VR) parameters may be useful to detect 
myocardial ischemia in patients with apparently normal ECG. However, manual 
calculation of MCG VR is time consuming and can be dependent on the 
examiner’s experience. Alternatively, the use of machine learning (ML) has 
been proposed recently to automate the interpretation of MCG recordings and to 
minimize human interference with the analysis. The aim of this study was to 
validate the predictive value of ML techniques in comparison with interactive, 
computer-aided, MCG analysis.  

ML testing was done on a set of 140 randomly analysed MCG recordings 
from 74 subjects: 41 patients with ischemic heart disease (IHD) (group 1), 32 of 
them untreated (group 2), and 33 subjects without any evidence of cardiac 
disease (group 3). For each case at least 2 MCG datasets, recorded in different 
sessions, were analysed.  

Two ML techniques combined identified abnormal VR in 25 IHD patients 
(group 1) and excluded VR abnormalities in 28 controls (group 3) providing 
75% sensitivity, 85% specificity, 83% positive predictive value, 78% negative 
predictive value, 80% predictive accuracy This result was for the most part in 
agreement, but statistically better than that obtained with interactive analysis. 

This study confirms that ML, applied on MCG recording at rest, has a 
predictive accuracy of 80% in detecting electrophysiological alterations 
associated with untreated IHD. Further work is needed to test the ML capability 
to differentiate VR alterations due to IHD from those due to non-ischemic 
cardiomyopathies. 

1   Introduction 

Magnetocardiographic mapping measures magnetic fields generated by the 
electrophysiological activity of the heart, and is a promising imaging technology 
developed for the rapid, non-invasive detection of ventricular repolarization 
abnormalities.  MCG data are usually mapped, simultaneously or sequentially, from 
                                                           
1 Partially supported by MIUR grants # 9906571299_001, 2001064829_001 and by the National Science 

Foundation, SBIR phase II award #0349580. 
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33-60 locations above the frontal torso, using superconducting quantum interference 
devices (SQUIDs).   

Previous research1 has shown that, compared to standard ECG, multichannel MCG 
provides non-invasive evaluation of cardiac electrogenesis, with similar investigation 
time, but higher spatial and temporal resolution.  

The diagnostic potential of MCG mapping ranges from three-dimensional 
electroanatomical localization of arrhythmias, to the identification of VR 
abnormalities in patients with myocardial ischemia and non-diagnostic ECG1,2.  

The analysis of VR from MCG mapping can be done visually and/or 
quantitatively. Quantitative VR parameters can be calculated from the ST interval 
and/or the T wave3-10. Interactive computer-aided analysis of MCG parameters, 
especially of the ST interval, can be influenced by low signal to-noise ratio (SNR) and 
by the examiner’s experience. Therefore, automatic analysis procedures are needed to 
speed-up the procedure and to minimize human input.  

The aim of this study was to validate automatic classification of 
Magnetocardiograms using a Machine Learning (ML) approach, developed under the 
NSF SBIR phase I grant #0232215 and described by Szymanski et al11. The 
performance was compared to computer-aided interactive analysis of MCG mapping, 
independently performed by two expert cardiologists.  

As the ST-segment has usually a low SNR in magnetocardiograms, whereas the T-
wave is most likely to show primary abnormalities due to ischemia and has a high 
SNR, ML was applied to the magnetic field data of the T-wave only.  

2   Methods 

2.1   Instrumentation and Data Pre-processing 

MCG mapping was performed at rest in supine position, with a 36-channel MCG 
system (CardioMag Imaging Inc., USA)12 based on DC-SQUID sensors coupled to 
second order gradiometers (baseline: 50-70 mm) with pick-up coils diameter of 19 
mm and sensor-to-sensor spacing of 40 mm. The distance between the measuring 
sensors, kept at liquid helium temperature and arranged in a horizontal plane, and 
the flat bottom surface of the cryostat is 19 mm2.  With a built-in automatic 
electronic noise suppression system (ENSS), the instrumentation reaches a 
sensitivity of about 20 fT/Hz½ at 1 Hz, with balance stability of gradiometers better 
than 0.01%. 

All MCG signals and one reference 12-lead ECG were simultaneously recorded for 
90 seconds, at a sampling rate of 1 kHz, in the bandwidth from DC to 100 Hz.  

All recordings were performed without electromagnetic shielding, in a room fully 
equipped for cardiac catheterization and intensive care. Digital low pass filter at 20 
Hz was used before ML was applied. To eliminate stochastic noise components, all 
signals were averaged.  For automatic classification, data from a time window 
between the J point and T peak were used.  
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Fig. 1.  MCG signal processing 

2.2   Signal Processing 

To eliminate stochastic noise components, all signals were averaged using the 
maximum of the R peak as a trigger point (Figure 1).  

VR was analyzed according to specific preset parameters, and two ML scores 
automatically calculated for each subject resulting in an MCG classification of either 
normal or abnormal (Figure 2). 

The tool used for ML is called Direct Kernel partial least squares (DK-PLS). Partial 
least squares (PLS) are one of the standard analysis methods in QSAR and chemo 
metrics14. Kernel PLS (K-PLS) is a recently developed nonlinear version of PLS, 
introduced by Rosipal and Trejo15. K-PLS is functionally equivalent to support vector 
 

 

Fig. 2. Time intervals (indicated by T3 and T4 bars) from which the two ML scores were 
calculated  
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machines (SVMs) and is currently used to predict binding affinities to human serum 
albumin. The difference between K-PLS and DK-PLS is that the feature (data) kernel 
matrix is used in K methods while this matrix is replaced by the (non-linear) kernel-
transformed matrix in DK methods16. DK-PLS reached a convincing performance in a 
preliminary preclinical test11. The algorithm was trained on data from 73 cases 
considering MCG patterns of ischemic and non-ischemic patients. Two diagnostic 
scores were calculated: 

1) The “ML extrema” score, based on wavelet transformed MCG patterns of the 
upslope of the T-wave as shown in Figure 2a (abnormal if > 50). 

2) The “ML Dipole” score, based on parameters delivered by the solution of an 
inverse problem. This approach assumes that the electrical processes in the heart 
during repolarization can be approximated by a so-called Effective Magnetic 
Dipole (EMD), (see Figure 2b, abnormal if > 34). 

2.3   Validation 

To validate ML automatic analysis, two expert cardiologists independently performed 
interactive computer-aided analysis on the same data sets.  The interactive analysis 
of MCG mapping was based on: 

 The T-wave “extrema” Magnetic Field (MF) dynamics analysis”, which 
calculates cardiac magnetic field parameters, in a moving time window of 30 
msec duration during the T- wave. Said time window starts at MF strength of 
1/3 of that at the Tpeak and ends at the Tpeak. For each millisecond a color 
contour plot is calculated from the MF and displayed as shown in figure 1. In 
each map two points are marked indicating the extreme values of the 
magnetic field. The point indicating the location of the maximal magnetic 
field strength is labeled “+” (“+ pole”), and the point indicating the location 
of the minimal magnetic field strength is labeled “-” (“- pole”). Parameters 
calculated within this time interval are: 

1) Change of angle between + pole and - pole (abnormal if  > 45°); 
2) Change of distance between + pole and - pole (abnormal if  > 20 mm); 
3) Ratio between the strength of + pole and - pole (abnormal if  > 0.3)10; 

 The Quantitative Dipole score (Q score), also based on analysis of EMD 
parameters calculated at 20 points of the T-wave in the same T3-T4 interval 
used for the ML Dipole (Figure 2 b), (abnormal if > 0) 8, 9.  

 The magnetic field gradient (MFG) orientation (  angle angle), computed at two 
time-intervals: 1) the integral of the second quarter from the J-point to the T-
wave apex, representing ST-segment, and 2) the T-wave apex3. The MF  
angle was then calculated as the angle between the direction of the largest 
gradient and the patient’s right-left line. The  angle values were considered 
normal when in the range between 0-90° (Figure 3). 



 Clinical Validation of Machine Learning for Automatic Analysis 147 

 

Fig. 3. Example of normal MFG orientation (  angle), at the second quarter of the ST interval 
(a) and at the apex of the T-wave (b) 

2.4   Patients 

All MCG studies were performed, after written informed consent, mainly on 
outpatients, as an additional simultaneous procedure during ECG control.  

ML testing was done on a set of 140 randomly analysed MCG recordings 
belonging to 74 subjects:  

41 patients (Group 1), 26 males and 15 females; 26 with previous MI and 22 with 
stable class 1 or class 2 angina. Patients were classified as ischemic based on clinical 
criteria, and on results of exercise ECG testing, nuclear stress testing and/or coronary 
angiography (CA). CA was available in 31 (29 abnormal). Nuclear stress testing   was 
available in 33 (abnormal in 30). In 9 patients MCG was performed after CA and 
successful therapy with PTCA.  In the 10 patients without CA, nuclear stress testing 
was abnormal.  

All patients were chest pain free at the time of testing, and 27 (67.5%) had a 
normal or non-specific 12-lead ECG. As 9 patients were studied only after CA, the 32 
patients who were studied with MCG before CA were also analysed as a separate 
group (Group 2).  

33 subjects, without any evidence of cardiac disease at clinical history, normal 
physical examination and echocardiography, were included as normal controls 
(Group 3). The mean age of the investigated subjects was 64.2  ± 9.9 years for group 
1 versus 44.4 ± 9.3 years for group 3 (p<0.0005).  

For each case at least 2 MCG datasets, recorded in different sessions were analysed. 

2.5   Statistics 

Data are reported as mean ± S.D. Statistical analysis was performed with the unpaired 
two-tails Student t-test, to evaluate the significance of differences among males and 
females parameters. A value of p  < 0.05 was considered significant. 
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3   Results 

3.1   Automatic Classification of MCG 

ML classification of MCG mapping was highly reproducible. In Group 1, the 
combination of two ML scores, obtained by considering “pathological” any patient 
with at least one of the two scores abnormal, gave: 61% sensitivity, 85% specificity, 
83% positive predictive value, 64% negative predictive value, and 72% predictive 
accuracy  (Table 1). However, if only patients of Group 2 were considered (Table 2), 
the predictive accuracy of the combined ML scores increased to 80%. 

Table 1. ML results of 41 IHD patients (Group 1) vs 33 Normals (Group 3) 

 ML extrema ML Dipole 
Combination of  

2 ML scores 

41 IHD patients 46,4 ± 36,1 46 ± 32,3 - 

33 Normals 12,9 ± 17,2 8,8 ± 16,3 - 

p value < 0.001 < 0,001 - 

Sensitivity 41,4 54 61 

Specificity 94 88 85 

Positive PV 89 85 83 

Negative PV 56 60 64 

Predictive Accuracy 65 69 72 

Table 2. ML results of 32 IHD patients (Group 2) vs 33 Normals (Group 3) 

 ML extrema ML Dipole 
Combination of the 

2 ML scores 

32 IHD patients 53,6 ± 36,8 53,5 ± 31 - 

33 Normals 12,9 ± 17,2 8,8 ± 16,3 - 

p value < 0.001 < 0,001 - 

Sensitivity 47 63 75 

Specificity 94 88 85 

Positive PV 88 83 83 

Negative PV 65 71 78 

Predictive Accuracy 71 75 80 

3.2   Validation by Comparison with Interactive Quantitative Analysis 

For comparison the predictive values of computer-aided interactive estimate of VR 
parameters (T-wave extrema MF dynamics analysis, Q score analysis and MFG 
orientation) were calculated. 
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Fig. 4. Examples of typical MF distribution and of average values of MF field gradient 
orientation (  angles), computed during the ST interval and at the T-wave peak, are shown for 
Group 1 patients and for controls (Group 3) 

 

Fig. 5. Example of interactive computer-aided analysis of the MF dynamics during the 
ascending phase of the T-wave (vertical bars on the ECG). In A, abnormal pattern of an IHD 
patient. In B, a normal subject is shown for comparison 



150 R. Fenici et al. 

 

An example of typical MF distribution during the ST interval and at the T-wave 
peak in IHD patients and in normal controls is shown in Figure 4, where the average 
values of MF gradient orientation (  angles) are also included. 

An example of MF dynamics analysis is shown in Figure 5. 
Interactive computer-aided quantitative estimate of VR parameters (Table 3) was 

in good agreement with the results of automatic classification, although none of the 
calculated parameter reached the same predictive accuracy obtained with a 
combination of the two ML scores, especially in Group 2 patients. 

Table 3. Interactive computer-aided analysis  

 41 IHD patients (Group 1) 32 IHD patients w/o PTCA (Group 2) 

%  
ST  

α angle 
T-wave 

extrema * 
Q 

 score 
ST 

 α angle 
T-wave  

Extrema * 
Q  

score 

Sensitivity 69 22 39 46 56 81 25 47 50 66 

Specificity 70 100 91 79 79 70 100 91 79 79 

PPV 74 100 84 73 77 72 100 83 70 75 

NPV 64 51 55 59 59 79 58 64 62 70 

Pred Acc 69 57 62 61 66 75 63 69 65 72 

* T-Wave extrema parameters: Change of angle between + pole and - pole; Change of 

distance between + pole and – pole; Ratio between the strength of + pole and - pole (see 

page 4). Pred Acc: Predictive accuracy. 

4   Conclusions 

The possibility of accurate, rapid, and no risk diagnosis of ischemia in an emergency 
room setting may have a great impact on health care. Truly ischemic patients would 
benefit from a significant reduction of time for diagnosis while in non-ischemic 
subjects unnecessary admissions and more invasive testing could be avoided. 

This study was performed in an unshielded hospital room fully equipped for 
intensive cardiac care and interventional cardiology. The MCG data and mapping 
quality was sufficiently high to detect ventricular repolarization abnormalities in IHD 
patients. 

Automatic classification of rest MCG recording provided quick detection 
of electrophysiological alterations associated with ischemic heart diseases, with 
sensitivity ranging between 60 and 70%, specificity of about 85% and predictive 
accuracy higher than 70%, thus better than that of rest ECG, which was 50 % in 
Group 1 patients (Table1). Interestingly, when patients successfully treated with 
PTCA before MCG mapping were excluded from the statistic evaluation (Group 2), 
the sensitivity, specificity, and predictive accuracy improved to 75%, 85%, and 80%, 
respectively (Table 2). Thus, although the number in investigated patients is limited, 
our results confirm that, as for patients with acute chest pain and normal or non-
specific 12-lead ECG and normal troponin8-10 magnetocardiographic imaging is a  
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promising alternative with the capability of detecting repolarization abnormalities at 
rest in patients presenting with class 1 and 2 angina, in the absence of significant ECG 
alteration. The predictive accuracy of the ML method was comparable with that 
obtained blindly with interactive computer-aided analysis by two expert cardiologists, 
or even better in untreated patients (Group 2) (Tables 2–3).  

In order to improve the predictive accuracy of the method one could incorporate 
so-called domain knowledge into the machine learning process. Information about the 
patient, e.g. history, risk factors, results from other tests, could be considered as 
additional parameters if available.  An interesting challenge will be the automatic 
differentiation of magnetocardiographic abnormalities due to different cardiac 
diseases by solving a non-ordinal multi-class classification problem13. 
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Abstract. Left ventricular hypertrophy induces remodeling of various ion 
channels and prolongs depolarization of the ventricles. We modified a model of 
electrical activity of rat ventricular cell by incorporating available experimental 
data. Hypertrophy was modeled by incorporating experimental data of changes 
in sodium (INa), hyperpolarizing (If), outward transient potassium (Ito) and T-type 
calcium currents channel kinetics (ICaT), cell size and Ca2+ handling. In 1D simu-
lations, a continuous increase in action potential duration (APD) and corre-
sponding decrease in conduction velocity (CV) with subsequent beats was ob-
served, resulting in conduction block at low values of stimulus intervals (SI), 
for which the simulated action potential (AP) restitution of the cell models has 
negative slope. 

1   Introduction 

Cardiac hypertrophy is a response to long-term pathologic (e.g. hypertension) or 
physiologic (e.g. exercise) hemodynamic overload accompanied by changes in energy 
substrate utilization, or advancement of age by cellular hypertrophy. Hypertrophy is a 
major cause of cardiac disease.  

Hypertrophy induces an increased action potential duration and [Ca2+]i transient 
duration. It reduces the [Ca2+]i transient amplitude. The electrical restitution properties 
of cells often dictate spatial behaviours and their instabilities. The relationship be-
tween APD of successive pulses APDn and their corresponding diastolic intervals DIn 
is given by  

APDn+1 = f(SI - DIn) (1) 

where f is the restitution relationship for single cell. An equilibrium point of equation 
(1) corresponds to a periodic response.  This equilibrium point, and consequently the 

APD, will become unstable if 1|| >
ndDI

df
. The case for  1>

ndDI

df
 leads to alternans 
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instability. The case when 1−<
ndDI

df
 leads to a new type of instability. Idealised 

models have been shown to exhibit a monotonically increasing APD rather than alter-

nans behaviour when 1−<
ndDI

df
 [1] that leads to conduction block in 1D virtual 

strand. 

2   Methods 

A computer model of rat left ventricular cell was constructed by modifying the model 
of Pandit et al. [2]. The main modifications included were as following.  

For the normal cell model, we incorporated experimental data on the kinetics and 
conductances of L-type Ca2+ channel [3], transient outward current [4], and the Na+ 
current [5, 6]. The calcium handling mechanism was taken from [7].  

To simulate hypertrophy [8], we incorporated data of hypertrophy induced down-
regulation of transient outward current (a decrease in conductance by 35 %) [4], up-
regulation of Na+ current (increase in conductance by 8 %) [5], up-regulation of 
hyperpolarizing current (increase in conductance by 10 %) [9], up-regulation of the 
Na+-Ca2+ exchanger current (an increase in scaling factor for INaCa by 5 %) [10]. Cell 
capacitance was increased by 30% [11], as was cell size [12]. Hypertrophy induced T-
type calcium current was also considered in the hypertrophic model with a conduc-
tance of 2 x 10-7 μS. Steady state kinetics were obtained from [13]. The time constants 
and formulation for the current were taken from [14].  A 16.5 % decrease in SR activ-
ity was introduced [15]. 

Both normal and hypertrophic models were integrated using a simple forward 
Euler method with a time step of 0.1 μs which gave stable solutions. 

Firstly, single cell models were integrated using a single stimulus. New and 
changed currents related to simulation of hypertrophy were measured. We then nu-
merically integrated both normal and hypertrophic models to obtain S1S2 restitutions. 
This was done by applying 10 stimuli at 1 s intervals and consequently applying a 
premature stimulus. The final DIn and APDn+1 were noted. We noted time profiles for 
potential and intracellular calcium, [Ca2+]i. We also obtained dynamic restitution 
curves. This was done by applying 10 stimuli at a given pacing interval and noting the 
final DIn and APDn+1. The pacing interval was progressively reduced. This was con-
tinued until the potentials in the normal and hypertrophic models failed to oscillate. 
The corresponding AP profiles and [Ca2+]i profiles were noted. APs were initiated in 
the cell models by applying a stimulus of duration 5 ms and of strength 0.6 pA [16] 
for normal, and 1.8 pA for hypertrophic cases. 

The virtual strand was taken to be 8 mm.  Electrotonic interaction between cells 
was simulated through diffusive coupling and 1D models were developed by incorpo-
rating single cell models into a parabolic partial differential equation (PDE) of the 
form 
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where Iion is the total cellular ionic current, V is the cell membrane voltage, C is cell 
capacitance, and D is the diffusion constant. The space step was 0.1 mm. No flux 
boundary conditions were imposed at each end of the strand. Diffusion constant was 
set to a value of 0.1 cm2/s.  Periodic waves were stimulated in the strand by applying 
a periodic SI to 7 nodes situated at one end of the strand. Strength and duration of the 
stimulus were the same as in the single cell models. A total of 10 stimuli were applied 
during each simulation. With the chosen value we obtained a CV of 14.2 cm/s in 
normal strand [17]. The corresponding CV for hypertrophic strand was 9.2 cm/s. 

In case of single cell models, we measure APD90 and calcium transient duration 
and amplitude. We measure single cell restitution from the final APD and DI. In case 
of the virtual strand simulations, we measure the APD and CV as a function of time 
and space. We repeat strand simulations for increasingly smaller SI, i.e. for higher 
pacing rates. 

3   Results 

We incorporate all the modifications mentioned in the previous section and construct 
normal and hypertrophic models.  

A single stimulus was applied to the single cell models to elicit a solitary AP. The 
resulting APD90 obtained is 41.5 ms for normal and 73.2 ms for hypertrophy. There 
is a 77 % increase in APD induced by hypertrophy. APD profiles are compared in 
Figure 1. Resting [Ca2+]i increased from 78 nM for normal to 88 nM for hypertrophic 
case. Corresponding [Ca2+]i peak are 347 nM and 282 nM. A significant reduction in 
[Ca2+]i transient amplitude from 276 nM to 195 nM is induced by hypertrophy, a 
change of 30 %.  Due to remodelling, the conductance INa of was upregulated. This in-
creased the peak current by 16 %. INaCa increased by 19 %. The new ICaT current that is 
not in the normal cell model gave current amplitude of 0.00142 pA during the hyper-
trophic AP. If increased due to up regulation by 13 %. Down regulation of Ito caused 
the peak current during AP to reduce by 20 %. Profiles of APD, [Ca2+]i and all the 
changed currents are shown in Figure 1. Input resistance is increased by 223 %. The 
upstroke velocity for normal was 132 V/s and for hypertrophic case was 90 V/s, a re-
duction of 32 %. The peak overshoot increased marginally from 34.5 mV to 37 mV. 
Thus, in hypertrophy, APD increases significantly, [Ca2+]i transient amplitude de-
creases, sodium current amplitude increases, and potassium current amplitudes de-
crease.

Single cell restitution was obtained for normal and hypertrophic models as de-
scribed in the previous section. Restitution curves were constructed by plotting DIn 
against APDn+1. Protocol followed was as described in methods. We also noted the 
potential and [Ca2+]i. Profiles and the restitution curves are shown in Figure 2. In both 
cases, as the final DI decreases, APD is seen to increase. For normal case, at values of  
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Fig. 1. Single cell simulation for a solitary AP and current profiles. Solid line represents quanti-
ties from normal cell model and long dashed line represents quantities from hypertrophic 
model.  A: Solitary AP for normal and hypertrophic models. APD is considerably increased in 
hypertrophic case. B: [Ca2+]i transients for normal and hypertrophic cases. The amplitude in 
hypertrophic case is reduced. C: INa current profiles. The absolute peak amplitude of the current 
is increased. D: INaCa current profiles. E: Ito current profiles. The peak value of Ito is reduced in 
the hypertrophic case. F: ICaT current profile. This current is only present in the hypertrophic 
case. G: If current profiles. The amplitude of this current is increased in the hypertrophic case 

DI lower than 210 ms, the resulting APD is very small. In the hypertrophic case, the  
smaller the value of DI, the larger is the resulting APD. The restitution curves show a 
region of negative slope. 

Single cell dynamic APD restitution for normal and hypertrophic models was ob-
tained as described in Methods section. SI was progressively decreased. At short SI 
we saw that the APD increased monotonically with time, with each successive stimu-
lus. For values of SI lower than 230 ms in normal case and 450 ms in hypertrophy 
case we saw that APD increased monotonically. For values of SI 400 ms or lower in 
the hypertrophy case, we see that the AP fails to return to resting potential after a few 
stimuli. Final values of APD and DI were noted for constructing restitution curves.  
 

A C

D E F

G 
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Fig. 2.  S1S2 restitution (see text for detail) for normal and hypertrophic cell models. Left pan-
els show normal and right panels show hypertrophic model. A: Final 2 APs were plotted for SI 
550 ms, 350 ms, 220 ms and 25 ms. Profiles for SI = 550 ms is the solid line, for 350 is the long 
dashed line, for 220 s is the dotted line and for 250 ms is dashed dotted line. The increase in 
APD as DI decreases is more evident in the hypertrophic (right hand panel) case. B: Final 2 
profiles for [Ca2+]i transients were plotted. Both profiles are for the same values of stimuli used 
in A. C: Restitution plots for normal (left panel) and hypertrophic (right panel) cases. In the 
hypertrophic case, the APD increases monotonically as the DI is reduced 

Figure 3 shows the restitution curves for normal and hypertrophic models. The dy-
namic APD restitution agrees qualitatively with experimental results showing a nega-
tively sloped region at small DI [18]. 
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Virtual strands of 8 mm length were paced at one end at successively decreasing 
pacing intervals. Space-time plots were obtained and APD and conduction velocity 
were measured at different times and at all spatial locations through the strands. This 
is shown in Figure 4. At high pacing rates (SI = 220 ms in normal case, and SI = 400 
ms in hypertrophy case), we see that conduction block starts to occur. This is shown 
in Figure 5. Although the stimulated region becomes excited, the propagation of the 
APD does not occur. If SI is such that the DI corresponds to dynamic restitution of 
negative slope, then a monotonic change in APD and CV are observed in both 
cases. 

 

Fig. 3.  Dynamic pacing of single cell models. Left hand panels represent profiles for normal 
model and right hand for hypertrophic. Profiles in A and B are represented by a solid line for SI 
550 ms, long dashed for SI 350 ms, and dotted for SI 200 ms. A: AP profiles for dynamic pac-
ing. The APDs increase monotonically at faster pacing rates. B: [Ca2+]i transient profiles. C: 
Dynamic restitution curves for normal (left hand panel) and hypertrophic cases (right  
hand panel) 
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In normal case, APD increases monotonically and corresponding CV decreases. 
The difference in values at consecutive beats is larger closer to the stimulation site. 
Values come closer as the AP propagates along the strand. A similar phenomenon is 
seen to occur in the hypertrophy case, albeit at a much larger value of SI. At lower 
values of SI, conduction block is seen to occur. 

 

Fig. 4.  Homogenous strands of normal (left panels) and hypertrophic models (right panels) 
paced at a constant SI. A total of 11 stimuli were applied to obtain 11 propagating waves. A: 
Homogenous strand of normal and hypertrophic tissue paced at SI 230 ms and 500 ms respec-
tively. Beat numbers 1, 4, 7 and 10 are marked. B: APD was measured at beats 1, 4, 7 and 10. 
APD was measured at each point along the strand. C: Variation of CV along the strand. CV 
was measured for beat numbers 1, 4, 7 and 10 and at each point on the strand 
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Fig. 5.  At high rates of pacing (i.e. low SI), conduction block is observed. A: Normal strands 
show block at SI 220 ms or lower values. B: Hypertrophic strands shows conduction block at 
SI of 450 ms or lower 

4   Conclusions 

The cell models allow us to reproduce the AP and the hypertrophy induced increase in 
APD [4, 19]. [Ca2+]i and hypertrophy induced reduction in [Ca2+]i transient amplitude 
have been obtained [10, 20]. The peculiar property of negatively sloped region in the 
restitution curve was reproduced [1, 18]. The property of monotonic increase in APD 
at fast pacing was seen to favor conduction block in 1D simulations. Thus this prop-
erty of single cell models favors arrythmogenesis in spatial models. 
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Abstract. Effects of pathophysiological conditions and pharmacological inter-
vention on transmural propagation are computed for the virtual ventricular wall. 
ST depression during sub-endocardial ischaemia and unidirectional functional 
block in the vulnerable window during Class III drug action are explained by 
changes induced in the transmural dispersion of action potential duration.  

1   Introduction 

Electrophysiological recordings from cells and tissue isolated from endocardial, mid-
myocardial (M-cell) and epicardial regions of the ventricular wall show marked 
transmural differences. These include differences in action potential (AP) shape and 
duration [1], as well as differential responses to changes in pacing cycle length, phar-
macological intervention and pathophysiological conditions (e.g., ischaemia). The 
importance of dispersion of action potential duration (APD) for the initiation of ar-
rhythmias is well recognized [2-4], and the respective transmural differences can be a 
potent arrhythmogenic source. Even if cell coupling reduces the transmural differ-
ences, they can be enhanced by pathophysiology, such as ischaemia [5], or by phar-
macological blocking of repolarising K+ currents (primarily IKr and IKs), which can in-
crease the transmural APD dispersion and trigger re-entrant arrhythmias [6].  

We use a computational model – virtual ventricular wall – to study electrophysio-
logical changes of the transmural APD dispersion in response to pathophysiological 
conditions and pharmacological intervention – primarily, ST depression during sub-
endocardial ischaemia and unidirectional propagation block in the vulnerable window 
(VW) during action of Class III drugs.  

The link between the transmural heterogeneity of the ventricular tissue and clini-
cally recorded electrocardiograms (ECGs) under normal and abnormal conditions has 
been explored recently: Antzelevitch et al. [7,8] related transmural APD differences to 
development of QT dispersion, and Gima and Rudy [9] explained how the APD dis-
persion accounts for ST elevation during global ischaemia [10]. We use a similar ap-
proach to dissect the electrophysiological mechanisms of ST depression during sub-
endocardial ischaemia. Although depression of the ST-segment in ECGs is used clini-
cally as an index of sub-endocardial ischaemia [11,12], the impact of the associated 
transmural electrophysiological changes is still not known. 
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Experiments suggest that ventricular tissues with large transmural differences in 
APD are more vulnerable to re-entry, and clinical studies show that pharmacological 
treatment that increases the APD dispersion can be proarrhythmic [6,13]. We compare 
electrophysiological properties of tissues treated with two different Class III drugs: 
amiodarone and d-sotalol. Proarrhythmic d-sotalol increases the transmural heteroge-
neity by preferentially increasing APD in M-cells [14,15], whereas amiodarone, the 
safest among Class III drugs, decreases the heterogeneity by increasing APD in endo- 
and epicardial cells [6]. However, electrophysiological mechanisms underlying the 
low arrhythmogenicity of amiodarone at the tissue level are poorly understood. We 
study the differential effects of the Class III drugs on transmural propagation, APD 
dispersion and vulnerable properties of the virtual ventricular wall. 

2   Virtual Ventricular Wall 

Virtual ventricular tissues are physiologically detailed reaction-diffusion models of 
ventricular tissues, that have proved to be an effective tool for simulating normal and 
abnormal ventricular propagation patterns, and for proposing hypotheses that can be 
tested experimentally [4,16-18]. In this paper we study transmural propagation in vir-
tual ventricular wall consisting of three compact regions: endo-, M- and epicardial.  

A one-dimensional (1D) model describing profiles of the membrane voltage, V 
(mV), through the virtual wall is based on the nonlinear cable equation [4, 16-18]:  

ionI
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Here 0 ≤ x ≤ L is spatial coordinate through the virtual wall (mm), t is time (ms). L = 
15 mm is the thickness of the virtual wall. D is the effective diffusion coefficient 
(mm2 ms-1), that characterizes electrotonic spread of voltage, primarily through the in-
tercellular resistive gap junctions. Iion is the total membrane ionic current (μA μF-1). 
The latter can be described in biophysical detail by the Luo-Rudy dynamic (LRd) 
ventricular cell model [19], which includes equations for time and voltage-dependent 
current flow through ion channels, pumps and exchangers in the cell membrane, as 
well as for Ca2+ dynamics within the cell.  

Note that “1D virtual wall” refers to an idealization of the real 3D ventricular wall. 
Similar to the transmural wedge experiments [7, 8] and previous modelling studies 
[9], our simulations correspond to the situation during a normal heart-beat, where the 
Purkinje system ensures near-simultaneous excitation of the endocardium, resulting in 
a planar transmural wave-front parallel to the endocardial surface. 1D model is suffi-
cient for simulating such a planar wave. 

Transmural differences in the density of two repolarizing ionic currents, the slow-
delayed rectifier potassium current IKs (μA μF-1) and the transient outward potassium 
current Ito (μA μF-1), through the virtual ventricular wall are introduced to represent 
three cell types: endo-, M- and epicardial [9]. Primarily, the density ratio IKs:IKr (here 
IKr is the rapid-delayed rectifier potassium current) is 11:1, 4:1 and 35:1, and maxi-
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mum conductance of the Ito current is 0.0, 0.2125 and 0.25 mS μF-1 for endo-, M- and 
epicardial cells, respectively.  

For geometric simplicity we assume that each cell type composes a uniform region 
occupying a third of the wall. As the exact proportion of endo-, M- and epicardial 
cells within the wall is not known, this assumption constitutes a first approximation of 
the transmural cellular structure. It also allows direct comparison of our simulations 
with the results on ST elevation in globally ischaemic ventricular wall [9]. The 
diffusion coefficient is set to a uniform value of 0.06 mm2 ms-1 through the whole 
wall, except for a 5-fold decrease at the boundary between M- and epicardial regions 
[9], giving a solitary action potential transmural propagation velocity of 0.45 m s-1 
and a transmural propagation time of ~33 ms. 

The equation (1) is solved numerically using the explicit Euler method with time 
step Δt = 0.005 ms and space step Δx = 0.1 mm. The endocardial end of the wall is 
stimulated 5 times by 0.5 ms, –100 μA μF-1 current pulse stimuli at a basic cycle 
length (BCL) of 500 ms, leading to the transmural action potential propagation. Ec-
topic (S2) stimuli are applied at different time intervals following the last AP, result-
ing in either propagation failure, unidirectional functional propagation block or bidi-
rectional propagation. Vulnerable window is defined as the range of S2 intervals 
leading to the unidirectional block (see in Fig. 1). 

 

Fig. 1. Transmural AP propagation and VW definition in the virtual ventricular wall. The wall 
is stimulated from the endocardial end (at the left), leading to the AP propagation. Following 
S2 stimulation with different timing results in either (a) propagation failure for S2 = 160 ms, 
(b) unidirectional block for S2 = 180 ms or (c) bidirectional propagation for S2 = 200 ms. 
Space-time plots are shown, the membrane voltage is colour-coded using the standard rainbow 
palette. Each panel presents 400 ms of activity in 15 mm thick wall. In this illustration the S2 
stimuli are applied to the epicardial region at x = 12 mm 

Sub-endocardial ischaemia is an ischaemic region of spatial extent l < L (l = L cor-
responds to global ischaemia), in which the ATP concentration (mM), the 
extracellular potassium concentration [K+]o (mM) and pH are changed [9,20]. In the 
normal conditions ATP = 10 mM, [K+]o = 4.0 mM and pH = 7.5, in the ischaemic 
conditions ATP = 3 mM, [K+]o = 10.0 mM and pH = 6.5. Transmural differences in 

a b c 



 Virtual Ventricular Wall: Effects of Pathophysiology and Pharmacology 165 

 

the density of ATP-sensitive potassium current IK(ATP) (μA μF-1) are also accounted 
for by varying the half-saturation coefficient for this current, kATP (mM): kATP equals 
0.0625, 0.125 and 0.25 mM in the endo-, M- and epicardial regions, respectively [9].  

The effects of amiodarone and d-sotalol are incorporated as changes in the density 
of the rapid-delayed rectifier potassium current IKr (μA μF-1) – the primary target for 
the Class III drug action – and the L-type depolarizing calcium current ICa,L (μA μF-1), 
which reproduces relative alterations of APD in the three cell types [6,14,15]. For the 
d-sotalol model IKr is depressed by 40% in endo-, by 100% in M-cell and by 65% in 
the epicardial region; for the amiodarone model IKr is uniformly depressed by 50% 
throughout the wall and ICa,L is depressed by 40% in the M-cell region. 
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Fig. 2. Action potentials in endo-, M- and epicardial cells. APs for each of the three cell types 
are shown under the normal (top left) and ischaemic (top right) conditions, and under the ef-
fects of amiodarone (bottom left) and d-sotalol (bottom right) 

Single-cell action potentials generated by endo-, M- and epicardial cells under 
various conditions studied in this paper are illustrated in Fig. 2.  

The extracellular potential generated by the spatial membrane voltage distribution 
V(x, t) within the 1D virtual ventricular wall is estimated using the expression [9]: 
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Here K = 1.89 mm2 is a positive constant, ∗x  = 20 mm is the distance from epicardial 
end of the tissue to an in line “electrode” site. The time profile of Φe constitutes an 
approximation for the ventricular component of the ECG – pseudo-ECG.  

3   Results 

3.1   Pathophysiology 

Our simulations have separated the spatial and cellular mechanisms of ST depression 
caused by transmural AP propagation through a heterogeneous virtual ventricular wall 
during sub-endocardial ischaemia. ST depression results from predominantly positive 
transmural spatial gradients in the membrane voltage, xV ∂∂ , and hence, in negative 

values of the integral Φe (2), during ventricular repolarization (Fig. 3). The gradients 
are produced by an abnormal transmural repolarization sequence caused by a decrease 
of APD in the ischaemic region. ST depression is facilitated by elevation of the 
pseudo-ECG baseline (see in Fig. 3), which results from a negative spatial gradient of 
the resting membrane potential between the normal and the ischaemic regions. 
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Fig. 3. Transmural distributions of APD in the normal, globally ischaemic and sub-
endocardially ischaemic virtual ventricular walls (left), and respective pseudo-ECGs (right). 
Depth of the sub-endocardial ischaemia is l = 10 mm, such that the ischaemic region extends 
over the whole endocardial and M-cell regions, which results in decrease of APD 

The cellular mechanisms of ST depression can be dissected by simulating separate 
components of the sub-endocardial ischaemia – acidosis, anoxia and hyperkalaemia. 
Our simulations show that sub-endocardial elevation of [K+]o alone results in the 
transmural APD dispersion leading to ST-depression, whereas both sub-endocardially 
low pH and low ATP generate transmural APD distributions and ECG patterns re-
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sembling those of the normal virtual wall (Fig. 4). We conclude that the primary cel-
lular mechanism underlying ST depression is sub-endocardial hyperkalaemia – eleva-
tion of the extracellular potassium concentration [K+]o. Its effects on the electro-
physiological properties of the ventricular wall are mediated through the K+-sensitive 
membrane currents regulating the cellular AP shape and duration. 
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Fig. 4. Role of the ischaemic components – acidosis, anoxia and hyperkalaemia – in ST depres-
sion. Transmural distributions of APD (left) and pseudo-ECGs (right) are shown. l = 10 mm 

3.2   Pharmacology 

Fig. 1 illustrates AP propagation through the virtual ventricular wall and defines the 
vulnerable window. VWs computed for the walls treated with amiodarone and d-
sotalol are shown in Fig. 5. The shape and extent of the VWs demonstrate clear corre-
lation with the respective transmural APD dispersions within the wall. As d-sotalol 
increases the APD dispersion by predominant increase of APD in M-cells, the VW in  
 

 

Fig. 5. Effects of (a) d-sotalol and (b) amiodarone on the virtual ventricular wall. Spatial distri-
butions of APD through the normal wall (dashed line) and the wall treated by the drugs (solid 
lines) are shown along with the respective VWs (gray areas) 
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the endo- and epicardial regions, where unidirectional block persists until the M-cell 
region is fully repolarized, is wide. Amiodarone, however, decreases the dispersion by 
prolonging APD in endo- and epicardial cells and decreasing APD in M-cells, which 
results in a narrow VW similar to that of the normal tissue. Pacing the virtual wall at 
different BCL shows that the transmural APD dispersion is larger at low rates, espe-
cially with d-sotalol (Fig. 6). 

We conclude that an electrophysiological explanation for the safety of amiodarone 
in comparison to other Class III drugs lies in relatively low transmural APD disper-
sion leading to narrow vulnerable window, and hence, low probability of unidirec-
tional block (which can lead to initiation of re-entry in 2D and 3D) in the ventricular 
wall. Our simulations also show that APD change in M-cells is the major contributor 
to the transmural dispersion of repolarization, and hence, extent of the VW. 
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Fig. 6. Effects of BCL on the transmural APD dispersion. Pseudo-ECGs corresponding to the 
transmural AP propagation are computed for the virtual wall treated with d-sotalol (left) and 
amiodarone (right). T-wave prolongation is an index of increase in the APD dispersion [15] 

4   Human Model 

Although the LRd is the most experimentally validated of all cardiac cell models, it is 
adopted to description of AP properties in guinea-pig ventricular cells. However, 
clinical studies are performed on human patients, and hence, an adequate model of 
human cells, which accounts for the transmural variations, is required to compare 
computational results to these data. Such a model has been developed recently [21].  

We use the equation (1) along with the description of the ionic current Iion provided 
by the model [21] for endo-, M- and epicardial cells in order to simulate human vir-
tual ventricular wall. The computational set-up is similar to that used in case of the 
LRd cellular models. As the human cell models have little difference in APD between 
the endo- and epicardial cells, the 1D virtual human wall does not generate a positive 
T-wave in the pseudo-ECG (2). Therefore, simulating ST-depression with this model 
is not feasible (as the ST-segment cannot be defined).  
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Results of simulating the effects of Class III drugs on the human virtual wall are il-
lustrated in Fig. 7. The model reproduces the effects of d-sotalol and amiodarone on 
the APD dispersion, as seen in our LRd-based simulations, but the resultant VWs are 
very narrow (< 1 ms) throughout the virtual wall. We use dynamic restitution curves 
for single endo-, M- and epicardial cells to test rate-dependence of the APD disper-
sion. Fig. 8 shows that the transmural APD dispersion is large with d-sotalol and rela-
tively small with amiodarone at all tested rates, which is in agreement with the ex-
periments [15]. However, contrary to the experiments [15], the APD dispersion 
between the model endo-, M- and epicardial cells [21] does not substantially change 
with increasing BCL in the range from 1 to 10 seconds (see in Fig. 8). 
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Fig. 7. Effects of (a) d-sotalol and (b) amiodarone on the human virtual ventricular wall. Spa-
tial distributions of APD through the normal wall (dashed line) and the wall treated the drugs 
(solid lines) are shown along with the respective VWs (narrow gray areas) 
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Fig. 8. Effects of BCL on APD in single human endo-, M- and epicardial cells treated with  
d-sotalol (left) and amiodarone (right). APD is measured after the cells are paced 5 times  
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5   Conclusion 

We conclude that the effects of pathophysiology (sub-endocardial ischaemia) and 
pharmacology (Class III drugs) on the transmural propagation can be explained by 
changes in the transmural APD dispersion leading, primarily, to ST depression and 
increase of the vulnerable window in the virtual ventricular wall. ST depression re-
sults from relative changes of APD in endo-, M- and epicardial cells unequally ef-
fected by the ischaemia, and the increase/decrease of the tissue vulnerability in re-
sponse to d-sotalol/amiodarone results from respective changes in the APD dispersion 
and probability of the unidirectional propagation block. Although our computational 
model has proved to be an effective tool for studying these effects, it cannot be used 
for simulating non-planar transmural or intramural waves, such as re-entrant vortexes 
[22,23]. Development of 2D and 3D models constitutes the next step of our research. 
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1 Institut für Biomedizinische Technik, Universität Karlsruhe (TH),
Kaiserstr. 12, 76128 Karlsruhe, Germany,
Gunnar.Seemann@ibt.uni-karlsruhe.de

www.ibt.uni-karlsruhe.de
2 Nora Eccles Harrison Cardiovascular Research and Training Institute,

University of Utah, Salt Lake City, UT, USA

Abstract. Electrophysiological heterogeneity within human ventricles
is mainly based on differences of ion channel characteristics inside the
wall. This influences also properties of cellular tension development.

In this work, knowledge about transmural heterogeneity was trans-
ferred to an electro-mechanical heart model composed of a human model
describing electrophysiology and of a model for the development of ten-
sions. The heterogeneity was included in the cardiomyocyte model by
varying ion channel kinetics and density on basis of measured data. The
properties of the heterogeneous electro-mechanical model were demon-
strated in a realistic model of left ventricular geometry and fiber orienta-
tion using a monodomain approach for describing electrical interaction.

This study indicated the necessity of incorporating regional hetero-
geneity to model human cardiac electro-mechanics with qualitative good
agreement to measured data. The heterogeneity leads to a homogeniza-
tion of the mechanical process due to increasing time to peak tension
from epicardium towards endocardium.

1 Introduction

Electrical excitation causes mechanical contraction during a heart cycle. This
electro-mechanical coupling is controlled by free cytoplasmic calcium. Electrical
excitation and repolarization propagation depends on tissue type and distri-
bution, geometry of the heart, and heart rate. Furthermore, fiber orientation,
distribution of gap junctions and pathologies influence the activity of the heart.
A heterogeneity in the ventricular myocardium is present caused by transmurally
changing ion channel kinetics and distributions, influencing mainly plateau and
repolarization phase of action potential (AP) and the development of tension.

Three principal ventricular cell types can be distinguished: subendocardial,
midmyocardial (M), and subepicardial cells. They differ in electrophysiological
properties, in their respond to pharmacological agents, and in the pathological

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 172–182, 2005.
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expression [1]. A spike-and-dome morphology of AP is present for subepicar-
dial cells vanishing throughout the wall towards the endocardium. The action
potential duration (APD) is longest in M cells. Altogether, the transmural differ-
ences of transmembrane voltage are important factors for generating the positive
monophasic T wave in transmural electrocardiograms (ECG) [2].

Some pathologies are based on defects mainly influencing the transmural het-
erogeneous balance by changing electrophysiolgical characteristics dramatically
in parts of the tissue like M cells. E.g. Long QT Syndrome, Brugada Syndrome,
and the genesis of torsades de pointes were attributed to the disarrangement of
the transmural heterogeneity [1].

Mechanical function of a cardiomyocyte is initiated by the electrical excita-
tion. The varying concentration of intracellular calcium triggers the development
of tension in the force generating units. Thus, onset of tension follows nearly the
same spatiotemporal sequence as the electrical excitation.

An electrophysiological model with heterogeneous parameters in combination
with a tension development model in an anatomical model was applied. This
anatomical model is based on the left ventricle (LV) of the Visible Female data
set including realistic fiber orientation. The aim of this work was to investigate
the effects of heterogeneity on the electromechanical properties of the tissue.

2 Materials and Methods

The mathematical description of cardiac electromechanical processes was based
in this work on an anatomical model of the LV of the Visible Female data set
including realistic fiber orientation, a cellular model for describing the physiolog-
ical properties and a model to calculate the electrical interactions of the cells in
the tissue. The cellular model consisted of two sub-models: One model described
the electrophysiology of the myocyte and a second model quantified the function
of the contractile units. Both sub-models describe the status of myocytes with a
set of nonlinear-coupled partial differential equations. The electrical coupling of
cells was achieved by incorporating a monodomain model.

2.1 Anatomical Model

Highly detailed three-dimensional (3D) anatomical models are not yet producible
with standard medical tomographic systems. The photographic images of the
Visible Human Project [3] were used to obtain a precise model. The images of
a 59 year old female are basis for the heart model in this work. These im-
ages are transversal cryosections with a resolution of 0.33mm. The distance be-
tween the data is also 0.33 mm. The images were pre-processed to obtain a 3D
data set. Afterwards, this data set was segmented and classified using different
techniques of digital image processing, e.g. thresholding, region-growing, mor-
phological operators and interactively deformable contours [4]. Figure 1 shows
the model consisting of cubic voxels in a surface based transparent
visualization.
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Fig. 1. A: Left ventricle of the Visible Female data set in a transparent frontal view. B:

Central cross-sectional slice of the model describing the variation of tissue types from

endocardium to epicardium with dark gray to white, respectively. C: Vectors showing

the fiber orientation in the same exemplary slice

The orientation of muscle fibers was included into the model allowing the
incorporation of anisotropic electrical and mechanical properties (fig. 1 C). The
orientation was constructed with a rule-based method that was derived from
anatomical studies [5]. The orientation of the fibers varies from subepicardial
(−75◦) via midmyocardial (0◦) to subendocardial myocardium (55◦) [6].

2.2 Heterogeneous Electrophysiology

The electrophysiological behavior of cells was simulated with a modified Priebe-
Beuckelmann model of human ventricular cardiomyocytes [7]. This model is
based on the fundamental work of Hodgkin and Huxley [8]. Both models describe
the electrophysiological behavior of an excitable cell with a set of nonlinear-
coupled differential equations. These equations were solved with the forward
Euler method and reconstruct intra- and extracellular ion concentrations, ion-
flows through the cell membrane, states and dynamic changes in ionic channels,
and the transmembrane voltage. The model includes also detailed descriptions
of the behavior of intracellular structures, i.e. the sarcoplasmic reticulum and
calcium buffers. Especially, the accurate description of the intracellular calcium
concentration [Ca2+]i is of importance for this work, since it is the link between
electrical and mechanical activity. The transport of ions is time dependent and
influenced by gradients of the concentrations and the electrical field and is rep-
resented in the model by a set of membrane currents Imem.
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Fig. 2. Electromechanical properties of a single cell located in subendocardium, mid-

myocardium, and subepicardium. A: Action potential. B: Tension development

The temporal changes of the transmembrane voltage Vm is defined by

dVm

dt
=

1
Cm

(Imem + Iinter) (1)

with the membrane capacity Cm and the intercellular stimulus current Iinter.
The transmural heterogeneous characteristic is based mainly on differing ion

channel expression. The detailed description of the measurement data and the
obtained model is discussed in [9]. The transient outward potassium current Ito

is largest in subepicardial areas and decreases towards endocardium. Differences
in the expression of slow-delayed rectifier potassium current IKs were measured,
describing a reduction of channel density in M cells. A varying density of the
potassium inward rectifier current IK1 were measured. The largest density was
found in subepicardial myocytes. A recent study reported a decreased expression
of sodium-calcium exchangers (INaCa) towards endocardium.

The location of M cells varies within the ventricular wall [1]. M cells were
found in more epicardial regions in the lateral wall, more endocardial areas in the
anterior wall and throughout the wall near the valves. We placed the M cells in
the end of the first quarter of the distance between endocardium and epicardium
and defined a smooth transition of changing ion channel characteristics inside
the whole ventricle (fig. 1 B).

Figure 2 A shows the transmembrane voltage for this model in subendocar-
dial, M, and subepicardial cells after a stimulation with a frequency of 1Hz.

2.3 Tension Development

Tension development in the contractile elements of myocytes is provoked and
modulated by the concentration of intracellular calcium [Ca2+]i commonly re-
sulting from an electrical excitation. In this work the tension development was
calculated with the model of Glänzel et al. [10, 11]. The model describes the
binding of calcium to troponin C, the configuration change of tropomyosin, and
the interaction of myosin and actin with a set of 14 state variables, which are
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coupled by rate coefficients. The sarcomere length, state variables, the sarcomere
stretch, and the sarcomere stretch velocity influence these coefficients. The co-
operativity mechanisms cross-bridge–troponin, cross-bridges–cross-bridges, and
tropomyosin–tropomyosin are incorporated in the model. The resulting normal-
ized tension Tn is given by:

Tn =
αTAM

Tmax
(2)

with the sarcomere overlap function α = α(λ), the sum of the tension developing
states TAM , and the maximum tension Tmax during resting stretch. The orig-
inal tension generating model was modified for the interplay with the utilized
electrophysiological model [12].

Because sarcomere density and structure is assumed to be homogeneous in
ventricles, it was proposed that inhomogeneous mechanical behavior is only due
to electrical heterogeneity [13]. A study with guinea-pigs suggested that peak
amplitude of cell shortening is largest in epicardial cells and smallest in midmy-
ocardial ones [14]. On the other hand, another study with canine showed that
peak amplitude of cell shortening is largest in endocardial cells and smallest in
epicardial ones during unloaded cell shortening [13]. Also the time to peak and
latency to onset of contraction were increasing from epicardium to endocardium.

Figure 2 B illustrates the simulated tension provoked by the change of [Ca2+]i
for isolated subendocardial, M, and subepicardial cells. The maximum tension
is largest in subendocardial cells and decreases towards epicardium. This is con-
sistent with the measurement data of Cordeiro et al. [13].

2.4 Anisotropic Conduction Model

The myocardium consists primarily of discrete myocytes, arranged in an oriented
and laminated structure [6, 15]. Myocytes are enclosed by the sarcolemma, which
delimits extra- from intracellular space and are of irregular shape, but a dominant
principal axis can be assigned.

The intracellular space of myocytes is coupled by gap junctions, located at the
intercalated disks. The distribution of gap junctions combined with the shape
and orientation of the myocytes leads to a macroscopic anisotropic electrical
conductivity.

The bidomain diffusion model treats the electrical behavior of the tissue in
two domains, the intra- and extracellular space, separated by the cell mem-
brane [16]. Poisson’s equation for fields of stationary electrical current is fulfilled
in each domain. The domains are coupled by the transmembrane voltage Vm.

The bidomain model can be reduced to a monodomain model for the special
case of intra- and extracellular conductivity having the same anisotropy ratios.
The monodomain model is described by the equation

∇ (σ∇Vm) = βImem − Isi (3)

with the combined conductivity tensorσ, the surface to volume ratio of the mem-
brane β, and an externally applied current source Isi.
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The combined conductivity σ consists of conductivities for intra- and ex-
tracellular components and for gap junctions for longitudinal and transversal
direction. σ was adapted to the resolution of 0.33 mm using numerical experi-
ments with higher resolution. The transversal conductivity was set to 0.15 S/m
and the longitudinal to 0.95S/m.

2.5 Computational Environment

The presented models were combined to an electromechanical coupled heart
model. The simulation was performed on 10 Apple XServe G5 dual 2 GHz pro-
cessor cluster nodes using multiprocessing techniques [17]. The model consists of
approximately 16 million cubic volume elements with a side length of 0.33mm.
Approximately 6.5 million of these elements describe excitable tissue, the re-
mainder blood and surrounding tissue. The simulation required 2.6 GB of main
memory and needed for a 600ms interval with a temporal increment of 20μs
seven hours of calculation time. The monodomain model was discretized with a
finite difference method and the integration of the cellular models was achieved
with the Euler method. The software was implemented with C++.

Stimulation of the ventricular model was initiated at the subendocardium in
voxels modeling myocytes with connections to Purkinje fiber ends. These points
were placed semi-automatically, since the cardiac conduction system was not
visible in the cryosection images of the Visible Female data set. The virtual
Purkinje fiber ends are positioned by identifying the endocardial border of the
tissue. The most apical point on the endocardium has to be selected manually.
Starting from this point, a binary method defines the Purkinje fiber ends towards
the base of the heart. In these points, intracellular currents were applied in a
specific temporal sequence. The application of currents started at the most apical
point and wandered basal with approximately 3m/s.

3 Results

The transmembrane voltage distribution in the LV is shown in fig. 3 at differ-
ent time steps after the initial activation during one heart cycle. The excitation
started at subendocardial, apical points (fig. 3 A–B). Afterwards, the depolariza-
tion front wandered basal and from endocardial to epicardial regions (fig. 3 C–D).
No significant transmural gradient of Vm was present during the plateau phase
(fig. 3 E–F). The repolarization was mainly homogeneous (fig. 3 G), but the final
repolarization was located in deep subendocardium near the M cells (fig. 3 H).
These characteristics were also clearly evident in the cross-sectional slice in fig. 4
with more quantitative detail.

Figure 5 shows the developed tension in the model at different time steps.
The onset of tension was more homogeneous than the electrical activation but
still starts near the endocardium (fig. 5 A–D). The maximum tension was also
larger in endocardial areas compared to epicardial during the peak of the tension
(fig. 5 E–F). During relaxation, tension in endocardium was largest (fig. 5 G–H).
The same information is shown in a cross-sectional slice in fig. 6.
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A B C D

E F G H

5 ms 10 ms 15 ms 25 ms

40 ms 310 ms130 ms 280 ms

Fig. 3. Excitation and repolarization propagation in the Visible Female left ventricle at

different time steps after initial activation. The transmembrane voltage distribution is

illustrated gray coded. Dark gray is resting (−80 mV ) and white depolarized (10 mV )

B C DA

F G HE

Fig. 4. Central cross-sectional slice of the left ventricle. Same information as in fig. 3.

The action potential heterogeneity is mainly visible during repolarization phase



Electrophysiology and Tension Development 179

A B C D

E F G H

50 ms 70 ms 90 ms 120 ms

350 ms300 ms250 ms150 ms

Fig. 5. Gray coded tension development in the Visible Female left ventricle at different

time steps after initial electrical activation. Dark gray is resting (20%) and white

maximum normalized tension (70 %)

B C DA

F G HE

Fig. 6. Central cross-sectional slice of the left ventricle. Same information as in fig. 5

Figure 7 demonstrates the distinctions in the electromechanical properties
in two different situations: The first results were obtained from simulations
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Fig. 7. Differences between heterogeneous single cell models and heterogeneous coupled

model of the left ventricle. A: Action potential duration B: Normalized maximum peak

tension C: Time to maximum peak tension

with isolated cells of different regions from endo- to epicardium and the oth-
ers were derived from the heterogeneous and electrically coupled anatomical LV
model.

Figure 7 A shows that the APD distribution occurring in the simulation with
the isolated cells was smoothened in the LV model due to electrotonic interaction.
This led to a prolongation of APD mainly in endocardial cells resulting in the
vanishing of repolarization in the LV model close to the M cells.

The distribution of transmural maximum tension (fig. 7 B) was not as much
influenced by the electrical coupling as the APD. The reason for this is that
the calcium transient is a few milliseconds after the depolarization, but the
electrotonic interaction acts mainly on the repolarization phase. The largest
differences in transmural direction were visible in the subendocardial area.

The time to peak tension shown in fig. 7 C demonstrates the importance of
electrophysiological heterogeneity. The time to peak tension is longer in suben-
docardial compared to subepicardial myocytes leading to a homogenization of
the tension development. We suggest that the time to peak for subendocardial
cells was more prolonged compared to the isolated cell simulations due to the
coupling enhancing the effect of mechanical synchronization.

4 Conclusion

The presented model was suitable to simulate the general effects of the electro-
physiological excitation and the tension. The simulated tension variation induced
by electrophysiological heterogeneity shown in fig. 2 is in qualitative good agree-
ment with recently published data for canine LV [13]. Both the simulation and
the measurements showed that tension, respectively the unloaded cell shorten-
ing in the measurements, is largest in endocardial areas and decreases towards
epicardium (fig. 7 B). Also, the simulated increasing time to maximum tension
from subepicardial to subendocardial cells (fig. 7 C) is consistent with measure-
ments [13]. This results in the synchronization of the tension across the ventricu-
lar wall due to the electrophysiological heterogeneity. Further experiments have
to be carried out to validate the proposed characteristics.
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The calcium handling approach of the electrophysiological model has to be
adapted to recent descriptions with new measurement data to reproduce accu-
rately the calcium transient in human ventricular myocytes. Furthermore, we ne-
glected in this study the sarcomere length dependency of the tension. This might
reduce the gradient in maximum tension (fig. 7 B), because tension is scaled by
the fiber-strain due to overlap of actin and myosin.

The influence of heart rate and pathological behavior as well as deformation
on the model will be examined in future. Such models have the potential to
enable specific diagnosis and therapy advancements, to assist drug development
and to improve understanding of the complex cardiovascular system.
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2. Weiß, D.L., Seemann, G., Dössel, O.: Conditions for equal polarity of R and T
wave in heterogeneous human ventricular tissue. In: Proc. BMT. Volume 49-2/1.
(2004) 364–365

3. Ackerman, M.J.: Viewpoint: The Visible Human Project. J. Biocommunication
18 (1991) 14

4. Sachse, F.B., Werner, C.D., Stenroos, M.H., Schulte, R.F., Zerfass, P., Dössel, O.:
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Abstract. Recent findings in a sheep model of atrial fibrillation support
the hypothesis that an organized micro-reentry could be the maintain-
ing mechanism of the arrhythmia (mother wavelet). According to these
studies we constructed a two dimensional computer model of tissue in
the region around a pair of pulmonary vein ostia and investigated an-
choring of a reentry wave at these ostia. We used the Luo Rudy phase
I ionic current model to describe membrane kinetics and generated two
different stages of electrical remodelling of the cells by varying the slow
inward calcium current. Our attempt to initiate a stable reentry failed
for cells with higher action potential duration and higher rate adaption.
By simulating a higher stadium of electrical remodelling we finally were
successful, and we were able to produce a periodic reentry. This led us
to the conclusion that a low rate adaption (high electrical remodelling)
facilitates organized activity in the atria.

1 Introduction

Current understanding of atrial fibrillation is mainly based on the hypothesis
that the excitation pulse of cardiac activation is split into a number of irregular
propagating wave fronts (multiple wavelet hypothesis) [1], [2], [3]. Though, it is
not fully clarified how these multiple wavefronts are maintained. Experiments on
sheep hearts show that a single micro-reentry circuit can act as driving mech-
anism (mother wavelet hypothesis) [4], [5]. In the tissue forming the leading
reentry pathway signals of high rate and periodic activity were recorded, which
supports the conceptual model of an organized activation pattern as the driving
mother wavelet.
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In three of the seven experiments investigated in [4] the anchor for the driving
reentry circuit was close to the pulmonary vein (PV) ostium (in the sheep the
PVs have one common ostium), but the possibility of an anatomical reentry
around the ostium was excluded in this study. On the other hand the data in [6]
indicate that the shortest fibrillation cycle length in humans is recorded around
the right and left pair of PVs.

We hypothesized that an organized reentry pathway in human atria can be
formed by an activation front travelling around a pair of PV ostia thus doubling
the pathway length. A functional block in the isthmus between the ostia is
maintained because the region is stimulated with double frequency since the
activation front enters twice within one cycle.

It is well known that a shorter action potential duration (APD) favors initia-
tion of a stable reentry around an anatomic obstacle because the wavelength of
activation (λ = APD·c, where c is the conduction velocity) becomes smaller than
the necessary pathway length around the obstacle. It is also known that reducing
the slow inward current which is mainly carried by Ca2+ ions has two effects:
on one hand APD is decreased, on the other hand rate adaption is reduced. In
this study we want to quantify this change of rate adaption and investigate its
influence on the possibility to initiate a stable reentry around a pair of PV ostia.

2 Methods

2.1 Bioelectric Model

Intercellular coupling in the homogeneous tissue (domain Ω) was modelled by
the monodomain equation in two dimensions x and y,

σ

(
∂2V

∂x2
+

∂2V

∂y2

)
= Am

(
Cm

∂V

∂t
+ IIon

)
in Ω , (1)

with homogeneous Neumann boundary conditions,

∂V

∂n
= 0 on ∂Ω . (2)

Here, V is the membrane potential, σ is the intercellular conductivity, Am is the
surface to volume ratio of the cells, Cm is the membrane capacitance per area
unit, and IIon is the ionic current per area, as obtained by the ionic current model
(see next section). The finite difference method was applied for discretization in
the spatial domain (Δx = 160 μm). The Crank-Nicolson method was used for
time integration with a step size of 20 μs. Therefore, we had to solve a linear
system with unchanged left hand side at each time step, which was done by a
preceding LU decomposition, and forward- and backward substitutions during
simulation.

The numerical model was implemented in C++, and each simulation was ex-
ecuted at a single processor machine with 2.8 GHz. For a typical model size used
in this study (about 58000 nodes) and 4 seconds of simulated cardiac activity
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time we found execution times of around 165 minutes for the linear system part
and 160 minutes for the part of the ionic current model, i.e. about 5 and a half
hours for the whole simulation.

2.2 Single Cell

We used the Luo-Rudy phase I (LRI) model for computing the ion dynamics in
the cell membrane [7]. Since this model was originally based on data from canine
ventricular cardiomyocytes, we had to make a few modifications to approximate
membrane kinetics of atrial cells in the stadium of early electrical remodelling.
Thus, we reduced conductivity Gsi of the mainly calcium related slow inward
current Isi, similar as in [8] and [9]. In order to have two different values we set
Gsi to 30% and to 40% of its original value, i.e. Gsi = 0.27 S

m2 and Gsi = 0.36 S
m2 .

Throughout this paper, these settings will be referred to as G30%
si and G40%

si ,
respectively.

To prove the correlation between slow inward calcium current and rate adap-
tion we considered an isolated cell which was stimulated at constant cycle length.
We measured APD as a function of cycle length for both values of Gsi, similar
as in [10]. For this purpose we used APD90 which is defined as the time from
the first upstroke until transmembrane potential loses 90% of its amplitude.

2.3 Tissue Model

We wanted to create a model with comparable dimensions to human anatomy
in the region of the PV ostia. Thus, we used a rectangular patch of size 51.2 mm
× 32 mm with two holes representing the ostia (see Fig. 1). The distance be-
tween the two holes at their narrowest point was 2.56 mm. According to the
data presented for formalin fixed preparations in [11] one can estimate that in
about 50% of the adult human hearts this muscular separation is smaller than
3 mm. The ostial diameters were made 10 mm, which was again motivated by
data from [11]. In this study a mean venous orifice diameter of 12.5 mm at the
venoatrial junction is reported. Isotropic properties were assumed for the patch.
Furthermore, we set Am = 100 1

mm and Cm = 0.01 μF
mm2 .

For G40%
si we used a tissue conductivity σ = 0.14 S

m . Note that this con-
ductivity leads to a conduction velocity of about 75 cm

s , if we measure a plane
activation front. This value corresponds to data reported in [12] for the tissue
around the PV ostia. In the case G30%

si we turned conductivity to σ = 0.20 S
m

in order to keep the wavelength of activation constant. This choice is motivated
as follows: Assuming a reduction of APD of between 20% and 25% due to the
reduction of Gsi, we should obtain a conduction velocity that is a factor 1.18 to
1.25 higher. From analytical considerations in a 1D cable model (in our model
we have 1D wave propagation) [13] we get a quadratic dependence between con-
duction velocity and conductivity, i.e.

c2

σ
= const. (3)
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Fig. 1. Model geometry: stimulus sites are the upper right corner (quarter circle) and

the framed area (for details see Sect. 2.4), transmembrane potential is recorded every-

where, and with a higher sample rate at the x-marked point

By this equation we obtain a modification factor for σ between 1.39 and 1.56,
therefore a conductivity of σ = 0.20 S

m seems appropriate. We tested this choice
a posteriori in a 1D cable model. For each of the cases G30%

si and G40%
si we applied

30 consecutive stimuli at one end of the cable, using a stimulus rate that was
comparable to the period duration of the reentry in the 2D model. Thus, we
could compare the distributions in space of the activations.

By keeping activation wavelength constant we could be sure that the influence
of APD shortening on the anchoring process is excluded, thus we were able to
investigate the effect of rate adaption only.

2.4 Stimulation Protocols

We had to use different time intervals for the stimulation protocols for G30%
si

and G40%
si due to the different APDs. In both cases we applied two consecutive

stimuli (S1, S2) at the upper right corner of the tissue to put the cells under
fibrillation like conditions (high rate activation). After that we stimulated a
rectangular area containing the inter-ostial isthmus (see black frame in Fig.
1) at the time when the upper border of this area was fully recovered from
activation and the bottom border was not yet excitable (S3). By this means
we obtained an activation front propagating in only one, namely in the upper
direction. Note, that we were stimulating at the so called vulnerable window in
order to achieve a unidirectional block [14]. Additionally, since the inter-ostial
isthmus was included in the stimulated area, it was still active when the wave
front had circled the upper PV ostium and reentered from the left hand side. Our
aim was to establish a functional block in the isthmus region. Furthermore, we
applied a lower stimulus current for S1 and S2 because cells were fully recovered
in these cases, and a smaller current was sufficient to initiate wave propagation.
Details of the stimulation protocol are presented in Tab. 1.
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Table 1. Stimulation protocols

distance to distance to area Istim [ A
m2 ] time (G30%

si ) time (G40%
si )

upper edge [mm] left edge [mm] [mm2]

S1 31 0 1 × 1 −0.5 0 0
S2 31 0 1 × 1 −0.5 150 210
S3 15 24 17 × 3 −0.75 260 340

Position is given by distance to the upper and to the left edge of the tissue

3 Results

3.1 Slow Inward Calcium Current and Rate Adaption

If we stimulate an isolated cell with constant frequency, using the LRI-model,
we find that APD90 converges to a constant value after a few cycles. Figure 2
shows the action potentials in each case for a typical sinus rate and flutter rate,
taken after 10 seconds of stimulation. A summary of all the results is presented
in Tab. 2. Apparently, cells at G30%

si are less affected by the higher stimulation
rate than cells at G40%

si . Thus, we can conclude that a lower Gsi decreases rate
adaption, similar as for atrial cell model in [10].

Fig. 2. Action potentials of a single cell for G40%
si (left panel) and G30%

si (right panel)

are shown at sinus rate (1 Hz) and a typical flutter rate (4 Hz)

Table 2. APD90 for different parameter settings

rate absolute values [ms] relative to reference

[Hz] G30%
si G40%

si G30%
si G40%

si

0.5 118 169 100% 100%
1 117 168 99% 99%
2 110 155 93% 92%
4 94 121 80% 72%
6 81 98 69% 58%

Results at 0.5 Hz taken as the reference
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Fig. 3. Transmembrane potential along the 1D cable for G30%
si (dotted line) and G40%

si

(solid line) after the 30th stimulus (applied at the left end of the cable). For both cases

we obtain an activation wavelength of about 56 mm

3.2 Wavelength of Activation

We used a 1D cable model in order to compare the activation wavelengths for
each setting. The stimulus was applied at one end of the cable, and its rate was
80 ms for G30%

si and 93 ms for G40%
si , which was motivated by the period durations

obtained in the 2D models (see Figs. 5 and 8). Figure 3 shows the transmembrane
potential along the cable after the 30th stimulus. The time frame is chosen such
that activation occurs at 6.5 cm in both cases. Note, that the curves intersect
again at -83 mV (resting potential at -85.5 mV), which finally leads us to the
conclusion that the wavelengths of activation are approximately the same.

3.3 Anchoring at Pulmonary Vein Ostia

To investigate the rate adaption dependent probability of anchoring at PV ostia
we first consider the simulation with lower Gsi.

Results for G30%
si : A sequence of snapshots of the activation pattern is pre-

sented in Fig. 4. The first picture (upper left) is taken immediately after the
stimulus (S3) and thus highlights the stimulated area. The following pictures
show the activation pattern each time when the wavefront reaches the top and
the bottom of the two PV ostia. Note, that the inter-ostial isthmus never is
fully recovered, so the wavefront is always blocked at this site and runs around
both ostia. The activation pattern approaches more and more the regular shape
of the bottom right panel (isopotential lines nearly orthogonal to propagation
direction), since the pathway of the wavefront is the same each cycle. Finally we
obtain a stable reentry and a self-maintained functional block in the isthmus.

Figure 5 shows the convergence of the action potential to periodic activity
at a single cell, taken from the x-marked point in Fig. 1. In the left panel we
plot the period duration against time, having the period duration defined as the
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Fig. 4. Initiation of the reentry around both ostia. The pictures show distributions of

transmembrane potential at times indicated in the upper right corner of each panel. A

linear grey scale from white (-85 mV) to black (15 mV, fully activated) is used. There

are 3 white isopotential lines indicating 0 mV, -25 mV and -50 mV, and one black

isopotential line at -78.5 mV which roughly represents the border between partially

and fully recovered cells

time between one action potential upstroke to the next. In the right panel we
investigate the action potential shape, and calculate rms-error of each action
potential with the last one serving us as reference. Convergence occurs in less
than 2 seconds in both panels.

Figure 6 highlights the mechanism of the functional block between the os-
tia. At advanced simulation time (i.e. at already periodic activity), the action
potentials of three different single cells are plotted. Locations of these cells are
middle isthmus (solid line), edge of the isthmus (dashed line) and bulk medium
(dotted line). Cells in the isthmus do not recover entirely because of double stim-
ulation frequency and are therefore never fully activated, which is the cause of
the functional block.

Results for G40%
si : The activation sequence for the stimulation protocol in

this case is shown in Fig. 7. After the first cycle at 436 ms there is only a small
excitable gap just in front of the propagating wave. This gap is small enough for
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Fig. 5. Convergence to periodic activity at G30%
si : Left Panel: APDs at the x-marked

point in Fig. 1 are calculated and plotted against time, Right Panel: Rms-error of

each action potential with a reference (last action potential within simulation time) is

plotted against time

Fig. 6. Functional block in the inter-ostial space: The solid line shows transmembrane

potential in the mid-isthmus region (high frequency, low amplitude, incomplete recov-

ery), the dashed line indicates the potential at the border of the isthmus (medium

amplitude and an after-depolarization like dome, full recovery), and the dotted line

represents action potential in the bulk medium (high amplitude, full recovery)

the tip of the spiral wave to drift away from the upper ostium (474 ms) for a
few milliseconds. During the next four half cycles (see panels for 508 ms, 558 ms
and 607 ms) the functional block in the isthmus is maintained, but at 679 ms
the spiral wave tip drifts away again. This time the half cycle around the upper
ostium takes too long, and the tissue in the isthmus region is already excitable.
Thus, the wavefront can pass through the ostia (721 ms) and propagates towards
the border of the tissue because the excitable gap becomes too small (head meets
tail). At this point the activation terminates.

The attempt to produce the same stable activation pattern as for G30%
si fails

with this stimulation protocol. Variations were made for the size of the stimulated
area, for the stimulation time and for the intercellular conductivity σ but none of
the simulations produced a stable reentry pattern. Therefore, we can conclude
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Fig. 7. Attempt to initiate reentry at G40%
si : The grey scale and the isopotential lines

are the same as in Fig. 4. Simulation time is highlighted at the upper right corner of

each panel. Activation terminates at about 750 ms because the spiral wave tip reaches

the right border after 4 and a half cycles

that the initiation of such a regular pattern is less probable for higher rate
adaption.

Since all our attempts failed to initiate stable reentry, we want to check
whether a stable pattern for G40%

si is generally possible or not (without hav-
ing the effects of the initiation process). Therefore, we consider the simulation
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Fig. 8. Convergence to periodic activity at G40%
si : The plots are analogous to Fig. 4,

but the convergence occurs more slowly than in Fig. 4

shown in Fig. 4 where a stable reentry is achieved, and store the state of the
tissue at time 4000 ms. We then switch tissue conductivity from σ = 0.20 S

m to
σ = 0.14 S

m and conductivity of the slow inward current Gsi from 30% to 40%
of the original value, and continue the simulation. By this means we are able to
produce a stable periodic activation even for G40%

si . Time evaluation of period
duration and rms-error is shown in Fig. 8. It can be seen that convergence occurs
slower than in the simulation for lower Gsi. This supports the assumption that
a higher rate adaption reduces the probability of the formation of an organized
micro-reentry.

4 Discussion

In this study we examined the influence of cellular rate adaption on the forma-
tion of a periodic reentry pattern around a pair of PV ostia. In order to exclude
the effect of action potential shortening from the analysis two different conduc-
tivity values σ were used for G30%

si and G40%
si with a ratio of 1.4. This setting

led to similar activation wavelengths of about 56 mm for both cases in a one
dimensional cable (see Fig. 3), indicating the accurate compensation of action
potential shortening in the 2D simulations. With this setting we were able to
induce a periodic reentry for low rate adaption (G30%

si ) by the stimulation pro-
tocol described in Tab. 1, while we could not induce it for higher rate adaption
(G40%

si ). For G40%
si a periodic pattern was obtained only by a relatively artificial

manipulation, i.e., the periodic reentry was induced at low adaptation and then
the parameters in the simulation were switched to the setting used for higher
rate adaption. Due to the abrupt change of parameters again a transition to
a new periodic pattern was induced. Here, convergence took more than twice
the time as needed for G30%

si also supporting the hypothesis that rate adaption
inhibits the formation of periodic micro-reentries.

As any computer model also our model provides only an approximation of
the true biophysical phenomenon. The ionic current model used was originally
based on data from canine ventricular cells. Similar as in [8], [9] the slow inward
current was reduced for simulating electrical remodeling in the atria. The model
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dimension slightly underestimate the true dimensions as the data is based on
formalin fixed preparations (10 to 20 % shrinking). No fibrous structures were
included in the model.

However, the major goal of the study was to investigate the influence of
electric remodeling (associated with a reduced rate adaption) on the forma-
tion of periodic reentries as experimentally observed in the animal model [4].
The study protocol enables the investigation of this effect at a significantly
dumped contribution of action potential shortening. One can expect that sim-
ilar results will be obtained for a modified tissue geometry including fibrous
structures. Concluding, we can state that a high degree of electrical remodel-
ing favors the formation of mother reentries as the driving mechanism of atrial
fibrillation.
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Abstract. We report on an investigation into using a Level Sets based
method to reconstruct activation wavefronts at each time instant from
measured potentials on the body surface. The potential map on the epi-
cardium is approximated by a two level image and the inverse problem
is solved by evolving a boundary, starting from an initial region, such
that a filtered residual error is minimized. The advantage of this method
over standard activation-based solutions is that no isotropy assumptions
are required. We discuss modifications of the Level Sets method used to
improve accuracy, and show the promise of this method via simulation
results using recorded canine epicardial data.

1 Introduction

Inverse electrocardiography (ECG) estimates the electrical activity of the heart
from potential measurements on the body surface. Because of smoothing and at-
tenuation in the body, the measured potentials on the body surface can obscure
significant detail about the heart’s electrical activity. Thus conventional electro-
cardiography fails to detect heart problems in many situations [1]. A possible
improvement is to model the electrical properties of the torso volume conductor
and attempt to explicitly estimate features of cardiac electrical behavior; this is
known as inverse electrocardiography. This problem is considered by many re-
search groups [1, 2, 3, 4, 5]. However, the inverse problem of ECG is ill-posed and
we need to add constraints to get a stable solution. The single most important
feature of the heart’s electrical activity is the activation wavefront, which passes
through the heart muscle once per cardiac cycle and triggers, after some delay,
the mechanical contraction of the muscle. The time that this wavefront passes
through any given point in the heart is called the activation time. The problem
of finding activation time has been studied using both activation-based models
[3, 4, 5] and potential-based models [6].
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The advantage of activation-based models is the reduction of the unknowns
to the arrival time of the wavefront at each point on the epicardial and endocar-
dial surfaces. Potential-based models instead treat the value of the potential at
each point on the relevant surface at each time instant as a free variable. How-
ever, activation-based models depend on isotropy / homogeneity assumptions
and a fixed shape of the temporal waveform in order to form a tractable forward
model. Potential-based models are less restrictive but imply a high-order param-
eterization and thus require considerable smoothing (regularization). A method
that is used frequently in inverse ECG is Tikhonov regularization, which indeed
smooths the solution because of the type of 2-norm constraints employed. It is
difficult to include the physical and geometric constraints imposed by the cen-
tral physiological feature, namely wavefront behavior, except via indirect and
somewhat coarse models [7, 8].

Our goal here is to investigate the possibility of estimating the activated
region on the epicardium at each time instant using a Level Sets based inverse
solution [9, 10]. The forward model we use is potential-based, with a very simple
two-level model to characterize the potential distribution given the wavefront.
The potential advantage is that we maintain some benefits of activation-based
solutions without requiring isotropy assumptions.

In this work we use two constraints. The first assumes that the potentials
on the heart can be effectively approximated by two values, representing the
activated and inactivated regions respectively. This assumption is of course a
rather crude approximation in both the activated and non-activated regions,
and ignores the transition area between the two regions. But since we are look-
ing for activation time this assumption may be useful, and we follow similar
assumptions used in activation-based solutions [3, 4, 5]. The second constraint
is a spatial constraint applied by the Level Sets method. Level Sets were first
proposed in [9] to solve inverse problems when a constant-value inhomogene-
ity is enclosed in a constant-value background by evolving a boundary, starting
from an initial region, such that the residual error is minimized. Modifications
of the original Level Sets method were needed to improve reconstruction quality.
New constraints were added to the Level Sets evolution to improve the shape of
the recovered wavefront and to enhance sensitivity to regions of the epicardium
whose effect on the residual error was otherwise too weak. In addition, we filtered
the residual error to reduce the effect of the error introduced by the two-level
quantization on the wavefront evolution.

Section 2 introduces the Level Sets Method applied to the inverse problem
of electrocardiography. We first present the formulation of linear inverse prob-
lems in terms of Level Sets, as proposed in [9]. Second, we discuss practical
problems implementing this method for inverse electrocardiography. In Section
3, we report on improvements obtained by adding new spatial constraints to
the evolution and by filtering the residual error. Finally, Section 4 discusses
our results, summarizes our conclusions, and gives some suggestions for future
research.
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2 Level Sets Method

2.1 Level Sets Formulation

The Level Sets Method, as described in [10], is a curve/surface evolution tech-
nique, based on a function whose dimension is one higher than the boundary of
interest. The zero level set of this function is iteratively guided by a well designed
speed function to evolve to an unknown desired contour. It naturally provides
an opportunity for geometrical and spatial constraints. A particular set of in-
verse problems, known as obstacle reconstruction problems, can be formulated
in terms of Level Sets [9]. In these problems, the solution consists of an unknown
region, simply or multiply connected, with some characteristic that differs from
the surrounding background. The solution only has two possible reconstruction
values: one for the unknown region and another for the background. Applying
Level Sets, the zero level set will evolve to the boundary of this region. Hence,
Level Sets evolution adds geometrical and spatial constraints, without any a pri-
ori assumption about the connectedness of the region. Besides that, the Level
Set boundary can split and merge naturally and provide multiple connectivity
without any additional complexity. On the other hand, it turns a possibly linear
problem into a decidedly nonlinear problem (although non-linearity is common
to all activated-based inverse methods in ECG). In addition, there is no the-
oretical proof on convergence (only practical results, see [9]), and the solution
depends on the algorithm initialization.

We use the approach described in [9]. Let φ, be the function whose level set
φ = 0 is taken as the contour of interest (here the activation wavefront location).
The general Level Sets evolution equation is:

φt + F |∇φ| = 0 (1)

where F is the speed in the outward normal direction and φt is the time derivative
of φ. The key issue in using Level Sets in most problems is determining the speed
function F . In inverse problems F should be defined such that the solution moves
toward minimizing the norm of the residual [9].

Our forward model for ECG is:

y = Ax + n (2)

where A is a forward matrix, obtained here by the boundary element method
(BEM), x holds the heart potentials, y holds the body surface potentials and n
is white Gaussian noise. It is shown in [9] that the residual error is monotonically
descending if the speed is defined as follows:

F = −AT (Ax − y). (3)

This evolution can be seen as a flow in the steepest descent direction of the
residual error ||Ax − y||22.
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Thus, the Level Sets evolution equation for inverse problems at iteration n+1
is:

φ(n + 1) = φ(n) − Δt · (AT (A · x(n) − y) · |∇φ(n)|) (4)

where x is initialized and then updated in each iteration as the zero level of φ.
To approximate the inverse problem in electrocardiography as an obstacle

reconstruction problem formulated in terms of Level Sets, we divide the heart
surface in two regions: activated and inactivated areas. The potential in each
area is assumed to be constant with two different values, obtained independently
for each time instant from a dataset of cardiac mapping ECG data. The zero
level set is evolved to estimate the boundary between activated and inactivated
regions.

2.2 Level Sets Practical Implementation and Initial Results

An inverse ECG Level Sets implementation has to overcome some practical prob-
lems. First, an accurate heart geometry model is needed. In this work we used the
Utah Cardiovascular Research and Training Institute (CVRTI ) Heart Geome-
try Model (a 3D, non-uniform triangulated grid). We further interpolation the
surface to improve the model, and thus, the Level Sets solution, removing large
triangles in the superior region and near the apex and some non-differentiable
points in the original.

Another practical problem was the initialization of the Level Sets function,
because of the solution’s dependence on the starting value. Our solution ensured
that the activated area was included inside the initial guess, and we centered it
on the activated area recovered by Tikhonov regularization at each time instant.
To obtain the activated area from the Tikhonov solution, the potential histogram
was computed and the middle point of its two first maximums was used as a
threshold (ensuring that the maxima were different enough that one belong to the
activated potentials and the other to the inactivated set). Finally, we chose the
value of evolution step size to ensure that the evolution didn’t stop prematurely,
but rather remained sensitive to the curve boundaries.

We first applied the Level Sets method in this straight-forward manner. We
used an epicardial electrocardiogram dataset recorded during tank experiments
by our collaborators at CVRTI in Utah [12]. From these epicardial potentials we
computed the potentials on the torso surface using the linear model in Eq. 2,
and added Gaussian white noise to achieve a 30dB signal to noise ratio (SNR). A
realistic homogeneous torso volume conductor forward model matrix was com-
puted by the BEM method with dimension 711 × 620: 620 nodes in the heart
geometry model mapped to 711 electrodes on the torso.

The results obtained were not satisfactory. Although the algorithm provided
some information about the location of the activated area, the shape of the wave-
front was not geometrically reasonable. A lack of geometric constraints (causing,
for instance, non-physiological aberrations such as inactivated nodes inside the
depolarized region) and, a lack of sensitivity (few activated nodes, in general, on
the side and back of the heart) were obvious.
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3 Improvement of the Level Sets Method Performance

To improve on these results, we made several modifications to the standard
Level Sets algorithm. The first two modifications were rather straight-forward
attempts to reinforce the spatial constraints and improve the sensitivity of the
Level Sets approach. First, we adopted a “restart” method, reinitializing the
Level Sets function every 10 iterations to avoid excessive deformation. In ad-
dition, to improve the sensitivity, a new constraint was added, which at each
restart pushed the zero level set inwards. In other words, assuming that the next
activated region would be inside the current activated region, the zero level set
was forced to evolve even when the error was small at a specific node. Specifi-
cally, the Level Sets function was rebuilt as equal to a signed distance function
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Fig. 1. Top panel: Time signal of the pacing site. Bottom: Activated and inactivated

areas of the original data, and of the Level Sets and thresholded Tikhonov reconstruc-

tions. Time instants 50, 60 and 70ms, as seen on the top panel’s waveform, are shown
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Fig. 2. Same format as bottom panel of previous figure, except that two views (Ante-

rior, top, and Posterior, bottom) are shown for the same time instant, 110ms (using

the time markings on the waveform shown in previous figure), later in QRS

(a) (b) (c)

Fig. 3. (a) Front view of the residual error of the Tikhonov solution. (b) Front view of

the residual error induced only by the two-level approximation of the original potentials.

(c) Front view of Level Sets residual error. Time instant 70ms.

from each node to a zero level set. We shrank the zero level set first by simply
taking the inward values at the border between positive and negatives points as
the zero level set for the reinitialization.

In Fig. 1 and 2, we show the inverse solutions for different time instants of
the electrocardiogram dataset described in Section 3. The time waveform at the
pacing site is shown in the top panel of Fig. 1. The bottom panel of this figure
contains maps at three time instants. Fig. 2 shows the same comparison for an-
terior and posterior views at a later time instant in QRS. From these results,
we can conclude that Level Sets solution, after these modifications, is slightly
better than Tikhonov in terms of shape information, capturing the anisotropy of
the propagating front. This improvement is especially visible in the earlier time
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(a) (b) (c)

Fig. 4. (a) Front view of the first singular vector of the matrix U , from the Singular

Value Decomposition: A = UΣV T . (b) Front view of the second singular vector of the

matrix U . (c) Front view of the third singular vector of the matrix U . Time instant

70ms
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Fig. 5. Original activated and inactivated areas, Level Sets and filtered Level Sets

(k = 3) activated and inactivated areas. Data from ECG dataset, time instant 90ms

from front and side views, respectively

instants, when the propagating front has a characteristic elliptical shape. The
solution also preserves some physiological behavior of the depolarization wave-
front: closed activated area and no isolated activated or inactivated nodes inside
inactivated or activated regions respectively. In this sense, Tikhonov fails for
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later time instants, as seen in Fig. 2. In addition, Tikhonov is more sensitive to
threshold level variation than Level Sets, due to its smoothing. A small threshold
variation can cause a large change in the area of the Tikhonov-estimated acti-
vated region, while the Level Sets solution would hardly change. On the other
hand, the Level Sets method was rather insensitive to some regions, especially in
the back and sides of the heart. The Tikhonov solution behaved slightly better
in those areas, as it can be seen in the posterior view of Fig. 2.

Studying this effect, we noted that the residual error was highly spatially
correlated, unlike the Tikhonov error. This is due to the systematic error intro-
duced by the two-level approximation. We illustrate this effect for one time in-
stant in Fig. 3 [13]. We can see that the Level Sets residual error varies smoothly
and slowly in space, so that it is mainly a low spatial frequency phenomenon.
We decreased the effect of this error on the inverse solution by minimizing a
filtered version of the residual error, where the low spatial frequencies of the
residual error were removed. The idea is to concentrate the Level Sets iterations
on matching the components of the data that are in a subspace orthogonal to
these low-frequency components, since this is the error due to mismatch of the
activation region rather than simply the effect of the thresholding itself.

In Fig. 4 [13], the three singular vectors of A corresponding to the three largest
singular values are shown as torso maps. We observe that the dominant residual
error components are similar to these first singular vectors. Hence, we can apply
the Level Sets method by projecting the residual error onto the subspace spanned
only by the singular vectors corresponding to indices higher than some small
value k, i.e., calculating the speed function of the Level Sets evolution equation
with a filtered version of the forward matrix, where the first k singular values of
A have been set to zero.

In Fig. 5 we show the results for one time instant when we filter the residual
to remove components in the subspace spanned by the first 3 singular vectors.
We note that the activated area, especially in the right view, more closely ap-
proximates the original. We believe this is because of enhanced sensitivity to
regions of the heart farthest from the anterior electrodes due to removal of the
low-frequency threshold-induced residual error.

4 Discussion, Conclusions, and Future Work

The purpose of this work was to develop and evaluate an initial attempt at a
Level Sets method that can be applied to non-invasive electrocardiography to
reconstruct activation wavefronts on the epicardium. The principle attractive
features are that we avoid any isotropy assumptions and develop a framework
within which we can use spatial and geometric information that the physiol-
ogy of the problem might provide. Essentially, our method is close to standard
activation-based methods in terms of how we model the source. However, those
methods depend on isotropy assumptions that Level Sets skips because it calcu-
lates a coarse model of epicardial potentials and uses that in a potential-based
forward model.
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As we describe, we introduced some modifications to improve the initial per-
formance of the Level Sets algorithm. Adding new geometrical constraints in-
creased spatial consistency and sensitivity. We also introduced a high-pass fil-
tering of the residual error to remove part of the two-level quantization error,
which helped to improve the sensitivity in the side and back areas of the heart.
The geometrical constraints are visible in the results: evolution of the boundary
and a closed activation area. Moreover the anisotropy of the wavefront is gen-
erally captured better than with a thresholded Tikhonov solution. The shape
of the activated area recovered is better at some time instants than others but
generally reflects the anisotropy induced by fiber direction. Finally, the method
here uses the actual data to obtain the threshold levels; an independent method
needs to be developed to estimate these values without a priori knowledge or to
allow them to remain constant in time.

We are currently looking at several remaining aspects of this study. The
residual filtering approach we used was just a first attempt, and we believe that a
more careful study can lead to a more effective implementation. In addition there
is a tradeoff between enhanced sensitivity and loss of robustness when filtering
more singular vectors; thus we need an algorithm to estimate an appropriate
number of singular vectors to remove. An idea of primary interest is to introduce
more geometric physiological information into the model by incorporating fiber
direction information, even from a different heart. The Level Sets speed function
provides a perfect vehicle to include this a priori information. Relaxing the
quantization of the heart potentials by defining a transition area (dividing the
epicardial surface in three regions instead of only two), and/or modeling this
region as an analytical function such as an arc-tangent [3], and anchoring the
evolution around breakthrough’s calculated using the Critical Point Theorem [4],
are some other approaches to better incorporate known physiological constraints.
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Abstract. Rett syndrome (RS) is a severe neurological disorder, predominant in 
females, with higher risk of sudden death (SD). So far for risk-assessment, heart 
rate variability (HRV), QT duration and its dispersion (QTd) were measured 
with ECG. However SD has occurred in RS also in absence of ECG 
abnormality. We aimed to evaluate the feasibility of magnetocardiographic 
(MCG) mapping as an alternative to study ventricular repolarization (VR) 
alteration in RS patients. 9 female (age: 1-34 years) RS patients were studied 
with an unshielded 36-channels MCG system. To assess VR, heart rate (HR)-
corrected JTpeak, JTend, QTend, Tpeak-end intervals and QTd, were measured from 
both MCG and ECG signals. Moreover the magnetic field (MF) gradient 
orientation ( -angle) during the ST segment and three MF dynamic parameters 
were automatically evaluated from MCG T-wave. HRV parameters were 
evaluated from 12-lead Holter ECG. 15 age-matched normal controls (NC) 
were studied for comparison. HR-corrected JTpeak, JTend, QTend and Tpeak-end 
intervals, and QTd were longer in RS than in NC. The differences were more 
evident with clinical impairment (stage IV). MF gradient orientation and MF 
dynamic parameters were abnormal in RS patients. As compared to NC, HRV 
parameters were altered in the time-domain, although still within normal range 
in the frequency-domain.  In RS, ECG recordings are often noisy and BSPM is 
difficult. On the contrary MCG mapping is easily feasible and discovers VR 
alteration not evident at the ECG. The diagnostic value of MCG in RS remains 
to be defined. 

1   Introduction 

Rett syndrome (RS) is a severe progressive neurodevelopment disorder, occurring 
almost exclusively in females, characterized by cortical atrophy, psychomotor 
regression, mental retardation, irregular breathing, hyperventilation1-2 caused by 
dominant mutation of the MeCP2 gene, encoding the transcriptional repressor methyl-
CpG-binding protein 2, related to Xq28 locus3. RS Diagnostic Criteria World Group4-5 
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differentiates four stages of clinical evolution (Stage I-IV), which are characterized by 
progressive deterioration of neural, respiratory and cardiac functions. Life expectancy 
of RS patients is uncertain. The survival rate drops to 70% by age thirty-five, and for 
the profoundly mentally retarded, it drops to 27%, due to autonomic nervous system 
(ANS) abnormality with associated cardiac, gastrointestinal and breathing problems6. 
In RS incidence of sudden death (SD) is greater than that in the general population7-8, 
likely due to cardiac electrical instability, associated with ANS activity abnormality9 
and with reduced level of nerve growth factor (NGF) leading to a decline in number of 
choline acetyltransferase (ChAT)-positive cells that are necessary for the production of 
acetylcholine10-11. So far, HR-corrected QT interval duration (QTc), its dispersion 
(QTd) measured from 12-lead ECG and heart rate variability (HRV) parameters have 
been used as markers of electrical instability in RS12-15. However SD has been reported 
in RS pts also in the absence of ventricular repolarization (VR) alterations at the 
ECG16. Furthermore, being the RS pts restless, movement artifacts often disturb the 
ECG recordings and impair precise measurements of ECG parameters. For the same 
reason body surface electric mapping has never been attempted so far in RS. 
Alternatively to ECG, contactless magnetocardiography, which provides accurate 
multisite mapping of cardiac electrical activity without movement artifacts17, can be 
used. Previous studies suggest that magnetocardiographic (MCG) recordings might 
contain information additional to 12-lead ECG18-19. Moreover it has been shown that 
MCG mapping is useful for precise quantitative evaluation of VR abnormalities and to 
identify markers of arrhythmogenic risk20-21. The aim of this study was limited to 
evaluate the feasibility of multichannel MCG mapping in RS pts, and its reliability to 
detect VR abnormalities, associated or not to alteration of HRV parameters, in the 
absence of significant ECG alterations.  

2   Methods 

2.1   Patients 

9 female RS pts, aged 1 to 34 years, clinically classified in stage II (2), in stage III (4), 
and in stage IV (3)4 were investigated, after parental written informed. consent. 15 
age-matched normal controls (NC) were studied for comparison. 

2.2   Study Protocol 

The cardiac magnetic field (MF) component perpendicular to the sensor array surface 
was mapped in the supine position, from a 6 x 6 grid covering an area of 20 x 20 cm 
(Figure 1), with a 36-channel system, featuring DC-SQUID sensors, coupled to 
second-order axial gradiometers, with pick-up coil diameter of 19 mm, baselines of 
50-70 mm, and intrinsic sensitivity of 20 fT / √Hz, in the frequency range of interest 
for clinical MCG signals (DC to 100 Hz)22 (CardioMag Imaging Inc. Schenectady, 
NY) (Figure 1 A).  

MCG signals (low-pass filtered at 100 Hz) were digitally recorded at 1 kHz (with 
24 bits resolution). The relative position of the patient in respect of the sensors was 
defined with three laser pointers. Each MCG mapping lasted typically 90 seconds and 
was repeated twice to test for reproducibility. 12-lead ECG was simultaneously 
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recorded (bandwidth: 0.05-100 Hz), with amagnetic electrodes.  HRV parameters 
were calculated, in the time (TD) and frequency (FD) domains, according to standard 
protocols23, from 12-lead ECG Holter (H-scribe Digital Holter, Mortara Instruments, 
Inc.). 

 

Fig. 1. Typical positioning of the patient under the MCG mapping system (A). Real–time MCG 
signals with one reference ECG (B). MCG averaged waveforms (C). Magnetic field 
reconstruction (D) 

2.3   MCG Signal Processing and Analysis 

MCG signals were automatically processed and analyzed with a Windows-based 
software (CardioMag Image Inc) and with the UNIX-based software developed by 
the Helsinki University of Technology (NEUROMAG), as described elsewhere20,24-26. 
Briefly, MCG signals were adaptively filtered (Figure 1 B) and averaged (Figure 1 C) 
to eliminate the 50 Hz noise and improve the Signal/Noise ratio. After automatic 
(and/or interactive) baseline selection, MCG signals were analyzed as waveforms in 
the time domain and used to construct isofield contour maps by automatic 
interpolation, with a time resolution of 1 millisecond (msec). Contour maps were also 
constructed after time integration of specific intervals of interest (Figure 1 D). The 
software provides automatic measurements of ventricular time intervals. However, the 
Q wave onset, the J point, the Tpeak and the Tend were also interactively edited, using a 
“butterfly” superposition of all MCG signals amplified at the resolution of 10 mm/pT 
(picoTesla) with a time scale of 200 mm/sec (Figure 2 A) and morphological analysis 
of the time evolution of the MF maps (Figure 2 B) to improve the timing accuracy. 

2.4   Ventricular Repolarization Parameters  

To assess VR, the following quantitative MCG parameters were evaluated: 

1. The JTpeak, JTend, QTend, and Tpeak-end intervals (Figure 2 A), all corrected for the 
heart rate (HR), and the QTdispersion, measured automatically from MCG and 
manually from ECG signals. In order to correct to HR, the values were divided 
by the square root of the averaged R-R interval measured in seconds [corrected 
value = measured value (ms) / √ RR (sec)].
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3. The dynamics of MF distribution, in any floating time windows of 30 ms 
during the T-wave (starting when the MF strength is equal to 1/3 of that at the 
Tpeak, arbitrarily defined Tonset, until the Tpeak), quantified as: a) changes of the 
angle between + pole and - pole (abnormal if  > 45 degrees); b) changes of the 
distance between + pole and - pole (abnormal if  > 20 mm); c) changes of the 
ratio between the strength of + pole and - pole (abnormal if  > 0.3)25  (Figure 4). 

 

Fig. 2. “Butterfly” superposition of the 36 MCG averaged waveforms (A). Typical MF 
distribution at the onset and offset of the QRS, and at the onset, peak and offset of the T-wave (B) 

 

Fig. 3. Normal control (22 years old female). Examples of typical stability of the MF 
distribution and of the MF gradient orientation (angle ), measured at the second quarter of the 
ST (A), at the T-wave onset (B) and at the T-wave peak (C). In (D), 12-lead ECG 

2. The MF gradient (MFG) orientation, measured at the integral of the second 
quarter from the J-point to the Tpeak  and at the Tpeak, as the angles ( ) between the 
direction of the largest MF gradient (vector between the maximum positive and 
negative magnetic poles) and the patient’s right-left axis26  (Figure 3). 
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Fig. 4. Normal control (7 years old female). Example of automatic score analysis based on the 
MF dynamics during the Tonset -Tpeak interval (A). In spite of the “juvenile” repolarization 
pattern at the 12-lead ECG (negative T-wave in V2 and V3) (B), all T-wave MF dynamic 
parameters are within normal range. The automatic classification is negative (green flags) 

2.5   HRV Parameters 

The following standardized parameters23 were calculated:  
pNN 50%: NN50 count divided by the total number of all NN intervals; SDNN 
(msec): Standard deviation of all NN intervals; SDANN (msec) Standard deviation of 
the averages of NN intervals in all 5 min segments of the entire recording; r-MSSD 
(msec): the square root of the mean of the sum of the squares of differences between 
adjacent NN intervals; LF/HF ratio: Low Frequency/High Frequency Ratio: LF 
[msec2]/HF [msec2]. 

2.6   Statistical Methods 

Data are reported as mean ± S.D. Statistical analysis was performed with the unpaired 
two-tails Student t-test. A value of p < .05 was considered significant. 

3   Results 

3.1   Ventricular Repolarization 

Average values of HR-corrected JTpeak, JTend, QTend and Tpeak-end intervals and of QTd 
are summarized in Table 1.  

In general, all MCG intervals were shorter (p = n.s.) than corresponding ECG ones. 
In spite of the limited number of cases, significant differences were found between 
RS pts and NC for all parameters except JTpeak. However, only MCG evidenced 
significantly longer values of Tpeak-end and of QTd. 
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Table 1. MCG and ECG intervals in Rett syndrome patients and in NC.  Data are presented as 
mean ± SD 

 MCG ECG 
HR-
corrected 

Rett Normals    P Rett Normals P  

JTpeak 240.4±26.8 223.9±18.0 n.s. 248 ± 48.8 215.7 ± 26 0.05 

JTend 312.3±29.9 281.1±11.8 < 0.01 342.2 ± 43 307.9 ± 21 <0.02 

QTend 402.7±29.8 378.05 ± 15 < 0.02 428 ± 42.7 388.7 ± 21 <0.01 

Tpeak-end 71.8± 23.6 57.02 ± 10 < 0.05 94.2 ± 23.6 92.2 ± 20.9 n.s. 

QTd 18.6 ± 9.3 7.28 ± 1.46 < 0.001 33.8 ± 14.1 33.1 ± 17.3 n.s. 

Table 2. MF orientation (  angle) and MF dynamics in RS patients and in NC. Data are 
presented as mean ± SD 

 Rett Normals P value 

ST  angle (degrees) 135.6±79 55.9±23.3 < 0.01 

T  angle (degrees) 72.1 ± 2.9 60.8± 13.08 n.s. 

MF +/- poles angle dynamics (degrees) 29.4 ± 38.3 4.8 ± 2.9 < 0.02 

MF +/- distance dynamics (mm) 27.1 ± 28.1 7.6 ± 5.6 < 0.02 

MF +/- ratio dynamics   0.68 ± 0.36 0.018 ± 0.09      < 0.01 

 

Fig. 5. Rett syndrome stage IV, (19 years old female). MCG mapping evidences clear-cut 
alteration of the MF gradient, during the ST interval (A and B), in spite of the absence of 
significant VR abnormalities at the 12-lead ECG at rest (D). The MF gradient at the T-wave 
peak is still within normal limits (C) 

Taking into account the different degree of clinical impairment, a trend toward 
prolongation of JTend and of QTend values was found in stage IV patients, in respect of 
stage II and III patients. Among other MCG parameters (Table 2), the ST -angle 
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(Figure 5) and the three T-wave MF dynamic parameters were significantly abnormal 
in RS patients (Figure 6), although only non-significant repolarization abnormalities 
were observed at the 12-lead ECG. 

 

Fig. 6. Rett syndrome stage IV, (8 years old female). All MF dynamics parameters, during the 
Tonset -Tpeak interval, are abnormal (red flags) (A), in spite of non-significant VR alterations 
(negative T wave in V2 and V3) at the 12-lead ECG (B), similar to those of the age-matched 
control (shown in Figure 4 B) 

3.2   HRV Analysis  

In all RS pts, independently of the clinical stage, HRV analysis in the time domain 
(pNN50%, SDNN, SDANN, r-MSSD) evidenced lower values as compared with 
normal age-matched subjects27-28 (Table 3).  

Table 3. HRV parameters in Rett Syndrome patients. Data are presented as mean ± SD 

Stage  pNN50% SDNN SDANN r-MSSD LF/HF 
(day) 

LF/HF 
(night) 

II 3.13 ± 2.2 59.4±14.7 51.0± 12.7 22.7 ± 3.8 1.46 ± 0.4 2.5± 1.2 

III 1.6 ± 0.8 62 ±17.9 51.5 ± 8.6 18.1 ± 4.6 4.1 ± 1.4 2.8± 1.2 

IV 6.9 ± 0.6 109.8±7.4 93.1 ± 1.8 31.3 ± 3.1 2.0 ± 0.7 1.2± 0.1 

In the FD, the total power was higher then 1900 msec2 in all patients; however in 
stage II patients the LF/HF ratio was higher during the night than during daytime, 
whereas in stage III and IV, an inversion was observed, being the LF/HF ratio higher 
in daytime. 

4   Discussion 

RS is a severe neurodevelopmental disorder associated to higher risk of SD than in 
general population7. Cardiac electrical instability has been hypothesized as the 
potential mechanism for SD, in few studies, carried out with 12 lead-ECG or 24 
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hours ECG Holter monitoring12-15, in which a reduced HRV and/or prolonged QTc 
interval were found. Although the ECG is the most widely used method to detect VR 
abnormalities, to assess the arrhythmogenic risk and predict cardiac death, especially 
in patients with ischemic heart disease (IHD) or long-QT syndrome29-32, recent work 
has shown that MCG mapping is more sensitive than rest ECG in detecting VR 
alterations and markers for risk of SD in patients with IHD and with dilated 
cardiomyopathy (CMP)20-21,33-34. In this study, we demonstrated the feasibility of 
unshielded MCG mapping in RS patients.  Indeed in some cases, although it was 
difficult to maintain the patient immobile during the recording, limbs movement did 
not affect significantly the quality of the MCG signals, good enough for quantitative 
analysis of VR, even when ECG was unreliable for artifacts. In agreement with 
previous studies11-15, a prolongation of all HR-corrected JTpeak, JTend, QTend and Tpeak-

end intervals was observed in RS patients in comparison with NC, measured 
independently from MCG and ECG recordings. Moreover a trend was observed 
toward more prolonged values in patients in stage IV. Absolute values of MCG VR 
intervals were shorter than those measured from ECG. This might be due to the 
partially different definition of the T-wave end by automatic MCG analysis as 
compared to manual ECG measurements. However MCG measurements evidenced 
significant differences for Tpeak-end and QTd, between RS patients and NC, which 
were not appreciable with ECG. This suggests that, as previously observed in 
patients with ischemic or dilated CMP20-21,33, MCG mapping might be more 
sensitive than ECG in detecting early signs of VR dispersion in RS. Moreover 
abnormalities of ST -angle and of MF dynamics, similar to those demonstrated in 
IHD and CMP, were found in RS patients in more advanced stages4. As concern 
HRV, we found that independently of the clinical stage of disease, TD parameters in 
RS were lower as compared with age-matched NC27-28. This might be a sign of 
parasympathetic impairment. However the FD parameters were still within normal 
range, although a non-physiological behavior of the LF/HF ratio was observed in 
patients in stage II. The evident limitation of this study is that the number of patients 
is too small to draw any conclusion about the statistical significance of the results. 
This is due to the fact that it was not easy to collect RS patients, in the condition to 
collaborate for the additional MCG procedure, unless with some sedation. On the 
other hand this was a feasibility study and we did not considered ethical to include 
patients needing sedation, without the “a priori” knowledge that MCG mapping 
could provide information useful for their risk stratification. 

5   Conclusion 

This is the first study reporting non-invasive MCG evaluation of RS patients. The 
MCG method provides easy and quick multi-site mapping of cardiac electromagnetic 
activity, without any contact or the need to undress the patient, thus avoiding some of 
the pitfalls, which impede sometime the recording of good quality ECG in non-
collaborative patients. In conclusion, although the number of cases investigated in this 
feasibility study is too small to conclude that MCG mapping is more sensitive that 
ECG, it was observed that the MCG method evidence abnormality of VR dynamics, 
not detected by the 12-lead ECG. Thus MCG mapping might provide additional 
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electrophysiological information, clinically useful for early non-invasive risk 
assessment, especially of uncooperative and restless RS pts, and to select more 
appropriate diagnostic and therapeutic approaches. The only limitation to a 
widespread use of MCG mapping is at the moment the cost of LT SQUID-based 
instrumentations. However low-cost MCG non-cryogenic systems, such as laser-
pumped optic magnetometer35, are under development and should be commercially 
available rather soon.  
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Abstract. Basic electrical properties and electrophysiological mecha-
nisms of cardiac tissue have been frequently researched applying prepa-
rations of papillary muscle. Advantages of these preparations are the
simplicity to satisfy their metabolic demands and the geometrical ele-
mentariness in comparison to wedge and whole heart preparations. In this
computational study the spatio-temporal evolution of activation fronts
in papillary muscle was reconstructed with a bidomain model of elec-
trical current flow and a realistic electrophysiological model of cardiac
myocytes. The effects of two different pacing sites were investigated con-
cerning the distribution of extracellular potentials and transmembrane
voltages. Results of simulations showed significant changes of the re-
sulting wave fronts and the related potential distributions inside of the
muscle and in the bath for the different pacing sites. Additionally, the
results indicated that reliable measurements of activation times can be
carried out only in regions adjacent to the wave front. These results can
be applied for development of measurement setups and techniques for
analysis of experimental studies of papillary muscle.

1 Introduction

Papillary muscles have been frequently applied in experimental studies to char-
acterize electrical properties of myocardium and spread of electrical excitation
under varying conditions [1–6]. In attempts to reconstruct measurement data
and to support analysis of these data, the electrophysiological properties of pap-
illary muscles were studied also with several computational models [7–11],

This computational study aims at guiding future development of measure-
ment setups and techniques for analysis of electrophysiological experiments with
papillary muscles. Particularly, this study parallels an experimental study of
mechano-electrical feedback mechanisms in excised papillary muscle from rab-
bits [5]. A crucial component of the analysis in this and other experimental
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studies is the accurate detection of activation times from analysis of bath volt-
age measurements near to the surface of the muscle.

Extraction of local activation times was applied e.g. to create activation and
isochrone maps as well as to determine conduction velocity. While detection of
activation times in transmembrane voltage recordings is possible with simple
numerical methods, detection in electrograms in the bath is challenging due to
interferences from non-related electrical sources and a commonly significantly
smaller signal-to-noise ratio. Further complexity is added by geometrical rela-
tionships between the positions of the measurement electrodes, the activation
front and its spatial domain.

The computational study had two specific aims: (1) The spatio-temporal evo-
lution of activation fronts and the related extracellular and bath voltage distribu-
tions were determined and analyzed for two different stimulus electrode arrange-
ments. (2) The relationship between activation times detected in the bath and
from the transmembrane voltage in the muscle, respectively, was investigated.

The computational study was carried out with an anisotropic bidomain model
of papillary muscle in a bath. The model was created using simplified geomet-
rical descriptions and applied in numerical experiments. The experiments were
designed to reproduce experimental conditions, where a stimulus was given at
one end of the preparation and electrograms are acquired at some points along
its surface.

2 Methods

2.1 Experimental Conditions

In previous work we developed a software-controlled experimental setup for
studying cardiac mechano-electrical feedback of excised papillary muscle in a
physiological environment [5]. The setup allows measurement of intracellular
and bath electrograms as well as tension of the muscle under various strain con-
ditions. During the measurements the muscle was placed in a horizontal flow-
through chamber filled with a modified Tyrode solution of temperature of 37oC.

The measurement procedure was automated and necessitates only minor user
interaction. Electrical signals were acquired from a set of positions, which were
determined from a set of points given by the user through steering a pointer
with the motorized manipulator. The coordinates of these points were read dig-
itally from a motorized micro-manipulator. Commonly, the recording electrode
served as pointer and points at the ends of the muscle were selected. The given
coordinates were applied to describe line segments or quadrangles, which were
discretized to define measurement positions using sampling of finite element
shape functions [12].

2.2 Computational Model

A computational model was created to mirror relevant aspects of the previously
described experimental setup. Central component of the model was an bidomain
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Fig. 1. Model of papillary muscle in bath. The muscle is represented by a cylinder,

which is centered in the bath.

description used to reconstruct excitation propagation as well as the correspond-
ing intra- and extracellular as well as bath potential distribution [13].

The bidomain model was based on a simplified geometrical description of
the papillary muscle, the bath, and the reference electrode. The model included
anisotropic intra- and extracellular conductivities as well as a biophysically de-
tailed cellular electrophysiological model, i.e. the Noble-Kohl-Varghese-Noble
model of a ventricular myocyte from guinea-pig [14]. For both domains the gen-
eralized Poisson’s equation for electrical current fields was applied, which was
discretized with the finite element method on hexahedral grids consisting of 70
x 70 x 140 elements in x-, y-, and z-direction (fig. 1). Each element was cubic
with an edge length of 50 μm. A cylinder with a diameter of 1 mm and a length
of 3.5 mm was rendered in the grids associated to the two domains to represent
the papillary muscle. The long axis of the cylinder and the fiber orientation were
chosen to be parallel to the z-axis. In summary, 24779 voxels were assigned to
papillary muscle, 661221 voxels to bath.

Node variables were associated with the vertices of the hexahedrons [12]. In
the finite element approach used in this work a trilinear polynomial was applied
to interpolate intra-, extracellular and bath potentials as well as transmembrane
voltages and conductivities inside of the hexahedrons. Integration of energy in
the elements was carried out with 8-point Gaussian quadrature. A modification of
this quadrature technique allowed to respect non-flow conditions at the boundary
of the muscle’s intracellular space.

The following conductivities were chosen (in S/m) [18]: myocardium extra-
cellular longitudinal σe,l = 0.375 and transversal σe,t = 0.214, myocardium
intracellular longitudinal σi,l = 0.375 and transversal σi,t = 0.0375, and bath
σb = 1.5.

The Euler forward method with a temporal resolution of 10 μs was used to
solve the ordinary differential equations associated with the electrophysiological
model [15]. At each time step the Poisson equation attributed to the extracellular
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space and bath was solved with an over-relaxation method. An over-relaxation
factor λ = 1.85 was chosen.

Two different pacing sites were chosen: central and superficial at the left end
of the muscle. A stimulus current was applied extracellularly at t = 0 ms for
a duration of 1 ms at the center and a peripheral position, respectively, of the
left circular face of the cylinder. The magnitude of the stimulus current was
chosen in such a manner that a propagating front was initiated. Additionally,
Dirichlet boundary conditions were defined on the right side of the bath, i.e. the
extracellular potential at position (0,0,7) mm was set to zero.

Parallelization of computationally expensive tasks was achieved on basis of
the OpenMP API [16]. The simulations were performed on a Silicon Graphics
Origin 3000 compute server with 32 GB of main memory and 64 processors of
type R14000/600 MHz. In both simulations 24 processors were employed, each
for ≈ 40 h.

2.3 Detection of Activation Time

In this work the activation time in computed courses of transmembrane voltages
and bath electrograms was detected by searching for the maximal and minimal
temporal derivative, respectively [17, 18]. The search was restricted to a time
window after the stimulus.

3 Results

The spread of excitation through the papillary muscle was simulated for cen-
tral and superficial stimulation (figs. 2 and 4). The simulation was carried out
for a time interval starting from stimulation to full excitation of the preparation.

Central Stimulation. In initial phases of the simulation a high curvature of the
propagation front was found reflecting the anisotropy of conductivities (fig. 2,
2ms). This phase was followed by a decrease of curvature. In the last phase of
spread, when the front reached the right end, a small curvature was found (fig. 2,
12ms).

Superficial Stimulation. The simulation showed activation fronts shaped sig-
nificantly by the anisotropic properties of myocardium (fig. 4). The conduction
velocity vector was composed of a large longitudinal and small transverse compo-
nents. Full excitation of the preparation was found 2 ms earlier than for central
stimulation.

In both simulations, transmembrane voltages ranged between -92 and 48 mV
as well as extracellular and bath potentials were between -25 and 10 mV . Both,
the transmembrane voltages and extracellular potentials showed largest magni-
tudes of their spatial gradients at the propagation front (figs. 3 and 5). Isolines of
extracellular potentials and transmembrane voltage were partly of similar shape
inside of the muscle.
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Fig. 2. Transmembrane voltages in XZ-slice through the long axis of muscle. The

excitation was initiated with an electrical stimulus in the extracellular space at the

center of the left border of the muscle, i.e. position (0, 0, 1.75). The three panels show

isolines of voltages at 2, 7, and 12 ms. The style of the isolines codes voltages in mV.

The scaling of the axes is in mm

Activation times at different positions were detected from the extracellular
potentials and transmembrane voltages (fig. 6). The activation times detected
in transmembrane voltages for central and superficial stimulation indicated dif-
ferences of related activation fronts and boundary effects. A significant initial
offset of ≈ 4.3 ms was found (fig. 6a), which was followed be a decrease due
to the higher velocities for superficial stimulation. In the final phase of prop-
agation, the activation time offset averaged to ≈ 2 ms. Reliable detection of
activation times in extracellular electrograms was partly not possible due to
their small slopes (fig. 6b,c). A non-constant offset between the activation time
courses was observed. In general, the relationship between activation time and
distance was found to be nonlinear particularly at the left and right end of the
preparations.
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Fig. 3. Extracellular and bath potentials corresponding to fig. 2

4 Conclusions

The study revealed that excitation propagation in papillary muscle is a three-
dimensional process, which can only poorly be described by uni-dimensional
approximations. The simulations showed significant differences of the spatio-
temporal evolution of activation fronts and related potential distributions re-
sulting from central and superficial stimulation.

Already in the case of central stimulation, the curvature of the wave front,
particularly near the stimulus site, led to radial differences of the transmem-
brane voltage and related detected activation times. These radial heterogeneities
of transmembrane voltage led to radial heterogeneities of electrical fields in the
bath and differences of therein detected activation times. Additional hetero-
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Fig. 4. Transmembrane voltages in XZ-slice through the long axis of muscle. The

excitation was initiated with an electrical stimulus in the extracellular space at the

lower left border of the muscle, i.e. position (-0.5, 0, 1.75)

geneities with a significant non-radial component were found for the superficial
stimulation. Thus, particularly at the ends of the preparation the linearity of the
relationship of activation time and distance degrades significantly as the distance
of measurement position to the preparation increases. These findings confirms
that conduction velocity can be detected with a given accuracy only in specific
areas, which are defined by their neighborhood to the activation front.

For both cases of stimulation, the wave front was initially convex and after-
wards its curvature decreased. In case of superficial stimulation the wave front
was concave during the final phase of simulation (fig. 4 10ms). Other studies
reported a steady state of conduction velocity associated with a concave curva-
ture for a cylindrical strand of cardiac muscle [17, 18]. A steady state was not
reached in our study, which can be explained by the relatively short length of
our preparation, i.e. 3.5 versus 12.8 mm. Additionally, the type and location of
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Fig. 5. Extracellular and bath potentials corresponding to fig. 4

stimulus electrodes applied in our study, i.e. central and superficial point versus
ring electrodes, will increase the time until steady state is reached.

Future work will necessitate research concerning more efficient numerical
methods to solve the bidomain model. Particularly, we are interested to reduce
the high computational demand associated with solution of Poisson’s equation
associated to the extracellular space, e.g. by applying mesh-less techniques for
solving of differential equations, and the high temporal resolution necessary to
solve ordinary differential equations with the Euler method.
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Fig. 6. Activation times detected for central and superficial stimulation. (a) The time

of maximal derivative delivered activation from the transmembrane voltage at (0,0,z).

The time of minimal derivative of the extracellular potentials in the bath at a distance

of (b) 25 μm and (c) 275 μm to muscle surface determined activation
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Abstract. The stability of induced pacemaker activity in a virtual hu-
man ventricular cell is analysed by numerical simulations and contin-
uation algorithms, with the conductance of the time independent in-
ward rectifying potassium current (IK1) as the bifurcation parameter.
Autorhythmicity is induced within a narrow range of this conductance,
where periodic oscillations and bursting behaviour are observed. The
frequency of the oscillations approaches zero as the parameter moves to-
wards the bifurcation point, suggesting a homoclinic bifurcation. Intra-
cellular sodium ([Na+]i) and calcium ([Ca2+]i) concentration dynamics
can influence the location of the bifurcation point and the stability of
the periodic states. These two concentrations function as slow variables,
pushing the fast membrane voltage system into and out of the periodic
region, producing bursting behaviour. Moreover, suppressing IK1 will
prolong action potential duration and may introduce risks of developing
stable periodic intermittency and arrhythmia. A genetically engineered
pacemaker may appear an attractive idea, but simple analysis suggests
inherent problems.

1 Introduction

Cardiac pacemaker cells are autorhythmic, while ventricular cells are excitable
and normally require repetitive current flows from neighbouring excited cells
to generate repetitive action potentials. These contrasting behaviours are the
sum of the activities of different membrane channels. Channel properties such as
availability, density and single channel conductance, can be modelled as sets of
maximum conductance for each current. Holden and Yoda [1, 2] have argued that
the ionic channel densities of excitable cells can act as bifurcation parameters and
these cells can undergo a Hopf bifurcation into autorhythmicity by a reduction
in potassium conductance.

Indeed, pacemaker activity has been induced in mammalian ventricular cells.
Miake et al [3, 4] injected a negative dominant gene construct of the Kir2.1 chan-
nels into ventricular myocytes of adult guinea pigs. The expression of the con-
struct produced non-functional channels; as a result, the maximum conductance
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(ḠK1) of the time independent inward rectifying potassium current (IK1) was re-
duced. Cells with more than 80 % reduction in IK1 activity exhibited pacemaker
activity; cells with moderate reduction had prolonged action potential duration
(APD), depolarised resting membrane potential and reduced repolarisation rate.
Over-expression of IK1 channels produced the opposite effects [4]. These stud-
ies suggest the possibility of genetically engineering a ventricular pacemaker by
down-regulating IK1.

Computational studies with ventricular cell models [5, 6] suggest that pace-
maker activity induced by IK1 down regulation is carried by the sodium-calcium
exchanger current (INaCa) and thus depends on intracellular sodium ([Na+]i)
and calcium ([Ca2+]i) concentrations. As a consequence, the rate of the induced
pacemaker activity may also respond to beta-adrenergic stimulation, as in natu-
ral pacemaker cells. Compared to the electronic pacemakers in clinical practice, a
genetically engineered biological pacemaker that will not require surgical implan-
tation and battery replacement every ten years, is regulated by the sympathetic
nervous system, and can adapt to hormone changes, is an attractive idea.

However, for a functional pacemaker, stable periodic activity is crucial. Here
we address this problem using numerical simulations and continuation algorithms
to characterise the stability and bifurcations of the induced autorhythmic activ-
ities in a human ventricular cell model [7].

2 Human Ventricular Model

The human ventricular cell model by ten Tusscher et al [7] is used. For an
isopotential single cell,

Cm
dV

dt
= −Iion , (1)

where V is the transmembrane potential (mV); Iion is the total current density
(μA cm−2), which is the sum of all currents of ion channels, pumps and ex-
changers; Cm = 2 μF cm−2, is the membrane specific capacitance. The equation
was integrated using the forward Euler method with a variable time-step from
0.02 ms to 1 ms. The epicardial cell model, with parameters given in [7], was used
so the results could be compared with other human epicardial cell models [8, 9].
In addition, an equivalent study was performed earlier using different cell types
of the Luo-Rudy guinea pig ventricular cell model (LRd00) [10, 11]. Similar dy-
namics were observed among the cell types and their differences were marginal
[12]. So, different cell types of the human model may also give similar results.

Down-regulation of IK1 was modelled by multiplying the standard value of
ḠK1 (5.405 nS pF−1) with a dimensionless fractional term x, where 0 ≤ x < 1
represents suppression. In what follows, x is referred to as gK1. When required,
stimuli were applied with a current density of − 90 pA pF−1 for 0.5 ms, otherwise
the cell was left unperturbed until steady state or periodic cycle was reached.

A solitary action potential evoked in the normal epicardial cell model and
its restitution properties are illustrated in Fig. 1. Restitution is the relationship
between action potential duration at 90 % repolarisation (APD90) and diastolic
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Fig. 1. (a) A solitary action potential excited by a stimulus in the epicardial cell model,
APD90 = 266ms. (b) The S1-S2 restitution and the dynamic restitution

interval (DI), defined as the interval between the time at 90 % repolarisation of an
action potential (AP) and the upstroke of the next AP. Two restitution protocols
were used. S1-S2 restitution, a common method to define cellular properties, is
found by applying a test stimulus (S2) at some DI after a train of 10 stimuli
(S1) at 1 Hz. Dynamic restitution, which is more relevant to re-entry stability
[13], is found by plotting the steady state APD90 against steady state DI during
periodic pacing at different rates.

3 Down Regulation of IK1

Pacemaker activity was induced in the human ventricular cell model. The mem-
brane potential remained steady when IK1 was not suppressed (gK1 = 1)
but autorhythmic action potentials appeared when IK1 was completely blocked
(gK1 = 0) (Fig. 2a). The resting membrane potential depolarised as gK1 de-
creased; at gK1 ≈ 0.077, i.e. ∼ 92 % reduction in IK1, a bifurcation occurred
separating the resting states and the oscillating states (Fig. 2b). Similar dy-
namics were also observed among different cell types of the LRd00 model: their
bifurcation occurred at gK1 ≈ 0.3, i.e. 70 % reduction in IK1 [12]. Therefore,
a greater reduction in IK1 is required for pacemaker activity to be induced in
human ventricular cells.

However, ventricular cells with down regulated IK1 may become proarrhy-
thmic. In fact, patients with Andersen syndrome (OMIM: #170390)1, where
mutations in IK1 channels are implicated, may experience frequent periodic para-
lysis and ventricular arrhythmias [4, 6]. Stimulated at 1 Hz, APD90 is prolonged
from 266 ms to 315 ms as gK1 decreases, and peaks at 345 ms at the bifurcation

1 OMIM (Online Mendelian Inheritance in Man) is a database of human genes and
genetic disorders. It can be accessed through the National Center for Biotechnology
Information. http://www.ncbi.nlm.nih.gov/
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Fig. 2. (a) V (t) with gK1 = 0 (solid line) and gK1 = 1 (dotted line) for the human
epicardial cell model. Autorhythmicity is produced by complete block of IK1. (b) The
numerically computed bifurcation diagram with gK1 as the bifurcation parameter. The
resting membrane potential depolarises as the parameter decreases and oscillations
emerge at gK1 ≈ 0.077. (c) Prolongation of APD90 with reducing gK1. Where oscilla-
tions did not occur, steady state APD90 is determined by applying stimuli at 1 Hz. S1-S2
(d) and dynamic (e) restitutions of an epicardial cell model at gK1 = 0.1 and 1.0. Sup-
pressing IK1 shifts both restitution curves upwards, and stable periodic intermittency
is induced at small DI in dynamic restitution. (f) V (t) of the intermittency after tran-
sients
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point (Fig. 2c). Prolonged APD90 increases the time interval of the vulnerable
window where extrasystoles may occur.

Moreover, suppressing IK1 alters the APD90 restitution properties, and may
introduce a risk of developing stable periodic intermittency. At gK1 = 0.1, both
the S1-S2 restitution (Fig. 2d) and the dynamic restitution (Fig. 2e) shifted up-
wards. Minimal change is found in the S1-S2 restitution. However, the dynamic
restitution curve flattens when DI is less than 0.2 s and stable periodic inter-
mittency develops for DI less than 50 ms. Fig. 2f shows an example of a stable
periodic intermittency.

Down-regulation of IK1 in ventricular cell can push the cell from resting
states into autorhythmic states, inducing pacemaker activity. However, potential
risks for arrhythmogenesis increases as IK1 is suppressed, especially around the
bifurcation point.

4 Bifurcation Analysis

For bifurcation analysis, continuation algorithms such as AUTO [14] – via XPP-
AUT [15] a simulation tool with an AUTO interface – is used in addition to the
numerical experiments, to further characterise the behaviour and its stability of
the human ventricular epicardial cell model. Continuation algorithms are use-
ful for exploring the behaviour of a system, as they can trace solutions within
parameter space, identify different types of bifurcation points and determine
their stability.

AUTO requires the system to start from a steady state solution or a periodic
orbit. However, the human ventricular cell model is a complex system with
stiff, high-order differential equations. As the cell model is electrically but not
electrochemically neutral [16], the full system could not settle into a stable
steady state in XPPAUT. Therefore, a reduced system without intracellular
concentration dynamics was used for continuation analysis in XPPAUT, as
the intracellular concentration dynamics are slow compared to the fast mem-
brane voltage system. The intracellular concentrations were clamped at con-
stant values: [Na+]i = 11.6 mM; [Ca2+]i = 0.2 μM; intracellular potassium,
[K+]i = 138.9 mM. A fourth order Runge-Kutta integrator (within XPPAUT)
with a fixed time step of 0.02 ms was used to bring the reduced system into
steady state. Again, gK1 was set as the bifurcation parameter.

Solutions from the numerical experiments on the full system (Fig. 3a) show
the system bifurcates at gK1 ≈ 0.077, at which point periodicity and bursting
occur. Oscillations emerge with large periods and quickly decrease with further
reduction in gK1. Moreover, these oscillations appeared to be stable over long
period of time (80 min). This suggests a homoclinic bifurcation rather than a
Hopf bifurcation.

AUTO solutions of the reduced system (Fig. 3b) show that it bifurcates in
the non-physiological range at a negative gK1 with a Hopf bifurcation and high
frequency (low period); and ends at a homoclinic bifurcation close to gK1 ≈ 0.05
as the frequency approaches zero (infinite period). Compared to the full system in
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Fig. 3. Bifurcation diagrams with gK1 as the bifurcation parameter. (a) The full system
with solutions computed numerically. Bifurcation point occurs at gK1 ≈ 0.077. Periods
are defined as the time interval between peaks (maximal V ). In the range of gK1: 0.05–
0.077, multiple periods are observed and V (t) shows bursting behaviour (see Fig. 4).
(b) Stable (black) and unstable (grey and dotted line) solutions of the reduced system,
which consists of only the fast membrane system and no intracellular ionic dynamics,
are traced by the continuation algorithm, AUTO/XPPAUT. Only the physiological
range of gK1 is shown. The bifurcation point occurs at gK1 ≈ 0.05, less than the
numerical solutions of the full system. Bursting is not seen in the reduced system

Fig. 3a, bursting is not observed in the reduced system. Also, stable oscillations
only occur within a narrow range of gK1 and their stability is lost again when the
system is close to the bifurcation point. Moreover, this bifurcation point coincides
with the onset of bursting in the full system, suggesting that the dynamics
of intracellular concentrations could influence the behaviour and stability of a
virtual ventricular cell.

5 Bursting Behaviour

The bursting behaviour seen in the full system of the human ventricular cell
is curious as it is common among neurons, smooth muscle, endocrine cells and
embryonic cardiac cells [17, 18, 19, 20], but is rarely observed in adult cardiac
myocytes. At gK1 = 0.07, V (t) shows neuron-like bursting behaviour on a time
scale of minutes with the action potential bursts repetitively interrupted by
a long period of inactivity (Fig. 4a). The intervals between action potentials
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Fig. 4. Bursting behaviour of the full system seen at gK1 = 0.07 and after all the
transients. (a) V (t) shows periods of inactivity interrupting the oscillations (top). The
periods of the oscillations follow a parabolic fashion (bottom). (b) Oscillations of [Na+]i
(top) and [Ca2+]i (bottom) during bursting

decreases and increases during the bursting, and the action potentials undershoot
below the voltage observed during the quiet period. These are characteristics of
Type II parabolic bursting.

Type II bursting involves oscillations of at least two slow variables pushing the
fast membrane system in and out of a homoclinic bifurcation [21, 22, 23]. As the
intracellular concentration dynamics are slow compared to the fast membrane
voltage system, these could be the variables that drive the bursting behaviour
in the full system of the human ventricular cell model. We focused on [Na+]i
and [Ca2+]i in particular as the pacemaker activity was suggested to be carried
by INaCa [5]. Fig. 4b shows oscillations of [Na+]i and [Ca2+]i during bursting,
and Fig. 5a shows that these concentrations form an orbit in the phase dia-
gram, where bursting starts at low [Na+]i and [Ca2+]i and terminates as these
concentrations accumulate.

In order to determine the dynamics of the fast membrane system with dif-
ferent combinations of intracellular concentrations, a two parameter bifurca-
tion diagram with [Na+]i and [Ca2+]i as bifurcation parameters is computed at
gK1 = 0.07 with XPPAUT and the reduced system of the human ventricular
cell model (Fig. 5b). The left arm (between 5 mM of [Na+]i and the cusp point)
separates periodic and steady states solutions of the fast membrane system. The
base of this arm swings from left to right as gK1 is reduced (not shown). In spite
of the dynamics of this boundary, for stable steady solutions, the full system is
represented by a point underneath the arm; for stable periodicity, the full system
forms a single [Na+]i-[Ca2+]i orbit above the arm.
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Fig. 5. (a) Numerical results of the dynamics between intracellular sodium ([Na+]i)
and calcium ([Ca2+]i) concentrations during bursting in the full system at gK1 = 0.07.
Bursting starts at low [Na+]i and [Ca2+]i and terminates as these concentrations ac-
cumulate. (b) Two parameter bifurcation diagram computed by XPPAUT using the
reduced system at gK1 = 0.07. The arm between 5 mM of [Na+]i and the cusp point
separates steady states (SS) and the oscillatory states (OS) of the fast membrane sys-
tem. (c) Superimposed the numerical results in (a) onto the two parameter bifurcation
diagram in (b), the full system is right on the boundary between periodic and steady
states. The details in the box are shown enlarged in (d). The full system is being pushed
across and back from the boundary by [Na+]i and [Ca2+]i dynamics. Bursting starts
clockwise as the system enters the OS region and terminates when it falls back into
the SS region but unable to push across the boundary again

Superimposing the [Na+]i-[Ca2+]i orbit during bursting in Fig. 5a onto the
two parameter bifurcation diagram in Fig. 5b shows that at gK1 = 0.07, where
bursting occurs, the system is on the boundary of periodic and steady states
(Fig. 5c and Fig. 5d). Bursting initiates when both [Na+]i and [Ca2+]i are low.
[Ca2+]i accumulates much faster than [Na+]i initially, pushing the system away
from the boundary. However, as more [Na+]i accumulates, the system is pushed
back towards the boundary and eventually crosses the boundary into the steady
states region.

Intracellular concentration dynamics are not only responsible for the burst-
ing behaviour in the human ventricular cell model, but could also influence the
location of the bifurcation point of gK1 and the stability of the pacemaker activ-
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ity. For example, with higher [Na+]i, the bifurcation point of gK1 in the reduced
system will shift to the right, but the oscillations become more unstable; with
lower [Na+]i, the bifurcation point will shift to the left, but the oscillations with
become more stable (results not shown).

6 Conclusion

Pacemaker activity induced in human virtual ventricular cells is addressed here
using both numerical simulations and continuation algorithms. Autorhythmicity
is induced within a very narrow range of gK1 (0–0.077), implying that more than
92 % block of IK1 may be required to induce pacemaker activity in human ven-
tricular cells. Within this narrow range, less than two thirds of the gK1 (0–0.05)
show apparent stable periodic oscillations, the remainder exhibiting bursting
behaviour. Application of continuation algorithms to a reduced system without
slow intracellular concentration dynamics shows that the range of gK1 for stable
autorhythmicity is further restricted to gK1 = 0.02–0.05.

Intracellular concentration dynamics plays a critical role in the behaviour and
stability of the induced autorhythmicity in ventricular cells. For example, the
observed bursting behaviour is a product of the slow dynamics of intracellular
concentrations driving the fast membrane system between periodic and steady
states. Therefore, manipulating intracellular concentrations, maybe via the ac-
tivities of the sodium-potassium pump and the sodium-calcium exchanger, could
be tools to influence the stability and behaviour of the induced autorhythmicity
in human ventricular cells.

In addition to the stability of induced pacemaker activity, suppressing IK1

in human ventricular cell will prolong APD90 and introduce risks of developing
stable periodic intermittency and arrhythmia. The genetically engineered pace-
maker suggested by Miake et al [3] may appear an attractive idea, but simple
analysis suggests inherent problems.

WCT is supported by a British Heart Foundation research studentship
(FS/03/075/15914).
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Abstract. Cardiovascular diseases are a major health concern all over the world 
and, especially, heart failure has gained more importance in the recent years. 
Improving diagnosis and therapy is therefore critical and among the several re-
sources at our disposal, implantable devices is expected to have a better rate of 
success. This paper is focused on two topics: (i) our views of the main chal-
lenges to face in order to reach these objectives and (ii) a specific target regard-
ing the pose of leads for multisite pacemakers by means of virtual endoscopy 
pre-operative planning and path finding throughout the coronary venous tree. 

1   Introduction 

The cardiovascular disorders remain the most important cause of death in all coun-
tries. They cover a wide spectrum of causes among which coronary artery and cardiac 
valve diseases, abnormal excitation-contraction coupling or heart failure. Electro-
physiological pathologies are among the most deeply investigated for a long time. 
They include cardiac arrhythmia and myocardial ischemia which both may originate 
from very distinct locations and have many underlying expressions (ectopic foci, spi-
ral-like wavefronts, conduction blocks, ..). In all cases, early diagnosis must be based 
on a full exploration of the whole heart instead of focusing on the left ventricle. How-
ever, any improvement at the diagnosis stage will be of limited interest if subsequent 
sound therapies are not available. Advances have been made over years in the design 
of drugs but some of them have been associated with side effects and negative out-
comes. Technological solutions rely on Cardiac Resynchronization Therapy and Ra-
diofrequency Ablation. They both share, to be efficient, a lot of concerns regarding 
the definition of target sites where abnormal patterns are observed, the consequences 
of which are acute and overall dysfunctions in the heart pumping. They require ad-
vanced imaging techniques for their localization and for assisting the physician be-
fore, during and after the interventions. 

This paper is focused on Cardiac Resynchronization Therapy (CRT) aimed at 
restoring the contractile coordination in hearts with severe heart failure (HF), sinus 
rhythm and ventricular conduction delay. It is performed by stimulating both the right 
and the left ventricles, pacing them simultaneously or with a small delay. Several 
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clinical trials have shown that this technique is beneficial for acute as well as chronic 
disorders, improving the heart’s performance, the capacity of the patient for exercise 
and reducing the mortality from heart failure, [Cazeau, 2001], [Leclercq, 2002], 
[Kass, 2003]. However, these studies point out that the main issue remains to identify 
and assess the most effective pacing sites in order to reduce the percentage of non-
responding patients which may reach up to 25 to 30% of recipients. They have also 
shown that LV-lead positioning (either LV-only pacing or biventricular pacing) is 
without contest the most challenging task to carry out.  

Our objective is therefore to better prepare the placement of CRT leads using the 
new Multislice Computed Tomography (MSCT) capabilities in imaging the heart. 
Section 2 provides a brief overview of the multiple challenges we must address at 
long range to understand how the major components (electrical, mechanical, etc.) 
work together and are regulated under normal and abnormal physiological conditions. 
Section 3 brings more clues on the CRT issues in pre-operative context. Section 4 re-
ports some preliminary results achieved by using virtual endoscopy and a few per-
spectives are discussed in Section 5. 

2   The Overall Heart Picture 

The key dimensions [Coatrieux, 2004] for further advances in clinical diagnosis and 
therapy are reported figure 1. Only a few of them, that we consider as major issues to 
deal with, will be detailed here. 

The identification of the disorder through non-invasive data recording is the first 
stage to go through. The most generic and relevant tool remains standardized ECG (or 
esophageal ECG) which can be coupled to clinical observations (symptoms, past his-
tory), impedance measurements (cardiac output), phonocardiogram (PCG)… Body 
Surface Potential Mapping (with or without the so-called direct-inverse problem solv-
ing) has been shown superior to the conventional 12-lead ECG for non-invasively 
identifying the sites of earliest endocardial activation and the further spread through 
the ventricles. However, all these resources only give first assumptions on the abnor-
mal behaviours that are observed and their potential localizations. 

The integration of multimodal imaging data is another critical issue [Roux, 1997]. 
It starts with the diagnosis tools providing the 2D, 3D and 4D elements to capture lo-
cal, regional and global characteristics required to determine the morphological and 
functional patterns of the heart, either normal or abnormal. The progress in ultrasound 
techniques, and in Multislice CT allows now to acquire 3D time image sequences 
with high contrast and spatio-temporal resolutions. The major problems, beyond spa-
tio-temporal registration methods aimed at deriving a common coordinate system, are 
to extract quantitative features that can be physically and physiologically interpreted 
with a proper anatomical reference. Accurate and reliable segmentation methods, ful-
filling the time computation constraints in clinical practice, with robust motion esti-
mation algorithms and perfusion parameters have to be combined in a sound informa-
tion processing frame in order to get a full view of the status of the heart. The 
constraints imposed in intra-operative environment, the therapeutic nature of the in-
tervention, are even more demanding due to the real-time responses required for reg-
istration, detection, guidance of instruments, etc. 
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Fig. 1.  Clinical diagnosis and therapy. Picture (a) is from [Garreau, 2004]. Picture (b) is from 
[Schleich, 2002]. Pictures (c) and (d) are from [de Boer, 2000] 

Electrical mapping [Gepstein, 1997] [Schilling, 1998] [De Bakker, 2000] is a rele-
vant complement of the imaging sources for electrophysiological tracking. The avail-
ability of catheter-based 3D non fluoroscopic contact (Carto, Biosense, or Constella-
tion, Boston Scientific, Inc) and noncontact mapping (Ensite 3000, Endocardial 
Solutions, Inc) techniques allow in vivo assessment of the activation sequence with a 
relatively high spatial resolution. If the benefits of these techniques are clearly estab-
lished in terms of electrophysiological insights, they have the inconvenient to be inva-
sive, expensive and to increase the time duration of the exploration, and as such put 
more clinical demands.  

The physiopathological in-silico modelling of the heart capable to fuse together the 
patient specific features (i.e electrical, mechanical and perhaps more importantly the 
electromechanical, mechanochemical, etc.) with the corresponding anatomical struc-
tures into generic models integrating the last data obtained through in-vitro, ex-vivo 
and in-vivo experiments is perhaps the grand challenge for tomorrow. A lot of efforts 
have been devoted to the restitution of the electro-physiological activity of the heart 
and two main model families can be distinguished (refer to [Bardou, 1996] [Virag, 
2001] for full references): i) Simplified models, which are limited to the simulation of 
an action potential waveform, without taking into account any sub-cellular process, 
such as the Fitzugh-Nagumo’s model (which was later improved by Aliev and Pan-
filov) or the model proposed by van Capelle and Durrer and ii) Electrophysiologically 
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detailed models: which are based on the Hodgkin-Huxley approach for modeling 
ionic currents. A variety of models have been proposed for the later type, with in-
creasing levels of detail and for specific myocardial tissues (i.e. ventricular, atrial, or 
Purkinje myocites). Two significant examples, for the ventricular myocite, are: the 
Beeler and Reuter’s model, developed in 1977 which introduced the dynamics of in-
ternal calcium concentration and the models proposed by Luo and Rudy, with an in-
creased number of ionic currents and a more detailed calcium dynamics. Bi-
dimensional networks of cells can be built, where each node is described by one of 
these models and an extension of the cable equation is used to couple them. This ap-
proach has been readily applied since the 80s to model myocardial propagation.  

More recently, large-scale electrical models have been developed [Noble, 1997] 
[Quan, 1998]. Some of these models have been mapped to 3D anatomical data 
[Hunter, 1996], [Rudy, 1995] [Sermesant, 2004] but the key issue remains the inverse 
problem, i.e. the identification of the system from the current observed data. How-
ever, even if it is not out of reach, we are still far to deal with the full complexity of 
cardiac mechanisms. To just take an example, the excitation-contraction coupling, 
which refers to the physiological processes linking myocite depolarisation and con-
traction, involves many structural and regulatory proteins whose nature and function 
are just emerging [Bers, 2002].  

Merging the multifunctional models we need to face electrical, mechanical, hemo-
dynamic facets, at different scales, distinct supports, time dynamics with the multi-
modal data that we have at our disposal, would directly impact our capability to diag-
nose and care. 

Further advances should rely on the design of intelligent devices, implantable or 
not, able to handle the several variables required, with both real-time recording, proc-
essing, stimulation capabilities. Along this path, recent technological breakthroughs 
of implantable devices have been achieved: they concern biventricular pacing (or 
CRT), cardioverter-defibrillator (ICD, Implantable Cardioverter Defibrillator) or joint 
device (CRT-ICD). 

The last fundamental component we wish to highlight concerns the pre-operative 
planning, intra-operative assistance and post-operative follow-up. With the advances 
in medical imaging, image processing and rendering, almost over three decades, the 
concept of computer-assisted surgery has emerged with the aim to reduce the duration 
of interventional procedures, make them more successful and secure [Taylor, 1996]. 
Many achievements have been reported from the early biopsy applications in the 80s 
based on simple instruments, straight line trajectories into rigid tissues. Image-guided 
therapies, with several marketed products, now go well beyond surgical procedures 
and address soft tissue applications as well as moving organs like the heart. They are 
of relevance for mitral valve replacement, ablation and pacing procedure. They share 
a number of methodological, technical and clinical features but also include several 
specific components, the main one for pacing being related to the venous coronary 
tree exploration that will be examined in the next paragraph. 

3   Cardiac Resynchronization Therapy 

In 1998, a way to overcome the problem of multisite pacing by using a transvenous 
technique has been proposed [Daubert, 1998], permitting to stimulate the left ventricle 
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on a long-term basis. The overall procedure consists in positioning endocardial leads 
in the right atrium and the right ventricle, the left ventricle being paced via a lead 
passed through the coronary sinus to an epicardial vein on the free wall of the left 
ventricle. The implant success rate, in between 85 and 92%, although already high, is 
limited by the impossibility to access the target vein for lead placement, incorrect or 
suboptimal pacing site selection and possible electrode displacements [Alonzo, 2001], 
[Abraham, 2002]. 

The main objective is thus to assist cardiologists in improving and securing the im-
plant techniques. From a clinical standpoint, it will rely on the study of the patient’s 
coronary anatomy to define the target veins, to confirm their accessibility and to 
minimize the implant time. The pre-operative assistance, defined as Virtual Naviga-
tion [Haigron, 2004], will consist here to: 

• Navigate through the patient’s coronary venous tree so as to define the potential 
access paths for the pacing leads.  

• Define which catheter and guide type should be used (with different diameters 
and curvatures, for example). 

• Better define the optimal pacing site, based on the anatomo-functional informa-
tion and on the electro-mechanical models of the cardiac activity. 

Up to now, to our knowledge, there was no image-based planning of the implant 
procedure because no imaging source was capable to provide a full, 3D, time image 
sequence access to the venous tree of the heart. The pose of CRT is still directly per-
formed, after the decision to implant a CRT, by using 2D venous coronary X-ray 
which leads to a partial and limited access to 3D anatomy.  

The availability of MSCT is dramatically changing this situation: this 4D func-
tional imaging CT Scanners can be used to obtain the basic structural and functional 
features required to achieve an optimal CRT planning. The LV can be paced trans-
venously through a subclavian vein, going successively via the cava vein, the right 
atrium, the coronary sinus and the great vein. The target location is a lateral or poster-
olateral vein. If lateral vein catheterization failed or in the case of poor pacing thresh-
old, the LV lead is inserted into the great cardiac vein to pace the anterobasal wall or 
into the mid cardiac vein to pace the inferoapical region. Specifically designed coro-
nary sinus leads are used. The injection of contrast medium in conventional X-ray an-
giography allows viewing the venous tree to be explored but it remains difficult to 
visually analyse due to the backward blood flow. 

4   Looking Pre-operatively for a Left Ventricular Path: 
Preliminary Results 

The procedure that has been worked out consists to select spatial sequences among 8 
angio-scanners at our disposal (with minimal motion artefacts). The data were ac-
quired on a Siemens Somatom volume zoom 4 detectors. Identical protocols were 
used with the following acquisition parameters: collimation of 0.6 mm, table dis-
placement of 1.5 mm/rotation, reconstruction increment of 0.6 mm, size of the matrix 
512x512 with about 250 slices and a pixel size from 0.33x0.33 to 0.4x0.4 mm. The 
resolution is 12 bits and the slice thickness of 1.25 mm. 



 Transvenous Path Finding in Cardiac Resynchronization Therapy 241 

 

In this section, we present one example of navigation which has been prepared fol-
lowing the anatomical pathway required for the implantation of the left lead of a 
biventricular pacemaker. As emphasized from the beginning, this path is the one that 
implies the highest difficulty along the pacemaker implantation procedure. The prin-
ciples of the virtual navigation have been reported elsewhere [Haigron, 1996]. The in-
teractive procedure has been retained here. It consists for the physician to position the 
virtual sensor inside the object of interest, to define the viewing direction and to set 
the detection threshold. These tasks are performed by using three orthogonal planes 
commonly used in marketed workstations. In short, the algorithm used for the image 
computation relies on a rough detection of the inner surface of the vessels, a linear in-
terpolation of the subvolume around this point, a refined detection with subvoxel ac-
curacy, the computation of the surface normal for shading. Experiments have been 
conducted to evaluate the influence of the threshold in different data volumes, for dif-
ferent objects and locations. It appears that its setting is not difficult to control by the 
user and provides good results within the window 70-120 Hounsfield units. In addi-
tion, the method performs a semi-automatic analysis of the computed image in such a 
way that the vascular branches can be identified, their locations stored and paths con-
structed with a possible backward exploration. Quantitative features, going from local 
lumen diameters, centerline positions, calcification volume if any, angles at bifurca-
tions, are available during the navigation. 

The virtual sequences that have been defined correspond to hundreds of computed 
images that would need to be displayed as video records. Only a few of them are de-
picted Figure 2 in order to show the high quality that can be reached. It must be em-
phasized that the size of the distal veins is very small (a diameter approximately of 3-
4 voxels or even less) and that, even in such situations, the current tools at our dis-
posal behave well. The resulting 3D trajectories of several paths, using a MIP display, 
are described Figure 3 for different viewpoints.  

The feasibility of the search for candidate paths is the first point that is assessed. 
The image quality is high enough to show details as well as major information about 
the environment into which the navigation takes place. 

However, the search for some structures is not always easy. For example, when the 
virtual sensor is located in the atrium, finding the coronary sinus can take some time. 
This is also the case when we are looking for a specific vein. From our experiments, 
several reasons can be invoked to explain that: (i) we must be fully familiar with the 
anatomy of the venous network; (ii) a learning curve is necessary before decoding the 
MSCT data which are providing a lot of insights in the heart but, conversely, lead to 
complex reading; (iii) the virtual images have also to be practiced and local views 
must be referred to global views simultaneously in order to facilitate the exploration. 

The preliminary experiments conducted with our clinical partners point out that this 
pre-operative planning represents a relevant step for CRT. The time required to define 
the candidate paths may reach up to 10 minutes but with a learning phase it is foreseen 
to be significantly reduced. A quantitative validation is in progress to estimate the re-
duction gained in intra-oprative time and consequently in terms of irradiation benefits. 
Finding the candidate pathways, verifying if the stimulation site is accessible, estimating  
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Fig. 2. Some virtual images computed during the navigation and showing the right atrium (1, 
2), the postero-lateral and Marshall’s veins (4, 5), the coronary sinus (3, 6), the great vein and 
the lateral veins (7, 8). The positions (1 – 8) are also reported in figure 3 

feasibility of the implantation, learning the gestures to be carried out, selecting the 
proper instruments, etc. are all major components. Thus, they allow reducing risk for the 
patient, optimising and facilitating the implantation procedure and subsequently, reduc-
ing the time of medical personal and operating rooms required. 
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From the engineering standpoint point, the genericity of the solutions, early pro-
posed for navigating into peripheral vessel networks and coronary arteries (where 
stenoses and calcifications may be present), has been demonstrated. The thresholding 
criteria involved in detection, interactively defined for a given data set, have been 
systematically studied and are not sensitive (i.e the interval of values is sufficiently 
large to provide enough robustness). 
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Fig. 3. Resulting 3D trajectories (in white) visualized using MIP from different points of view 
(lateral, apical and posterior). The ribs and other anatomical structures surrounding the heart 
have been suppressed using an appropriate ROI 
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5   Conclusion  

The conjunction of electrical data, morphological and mechanical behaviour is very 
likely a source of additional progress. Insights into electromechanical coupling should 
improve the understanding of local, regional and global abnormalities and the local-
ization of optimal stimulation or ablation sites. The present work was devoted to a 
subproblem in this overall frame: the pre-operative assistance of biventricular pacing 
based on a transvenous technique using the new possibilities offered by Multi-Slice 
Computed Tomography. These images are difficult to explore due to the many struc-
tures that are enhanced and to the complexity of the venous tree, close and strongly 
intermingled with the arterial network, and composed of thin, low contrast tube-like 
shapes. An interactive navigation has been proposed which leads to the definition of 
candidate venous paths toward the left ventricle. The joint measurements that can be 
carried out during the navigation (distance from reference entry points, diameters, an-
gles) provide the means for a prior evaluation of path feasibility.  

The 3D data sets examined so far were almost free from artefacts and blurring ef-
fects related to movement of the heart. However, these problems can become more 
critical when small structures like veins are concerned. The next generation of imag-
ing device with an increase number of detectors and better motion-corrected recon-
struction algorithms will minimize such problem in the near future. The next step is 
clearly the image guided intra-operative assistance of CRT. The poor contrast of 
fluoroscopic venous images makes this task very challenging for motion tracking and 
2-D/3-D matching. 
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Abstract. The dangerous cardiac arrhythmias of tachycardia and fibrillation are 
most often sustained by re-entry. Re-entrant waves rotate around a phase 
singularity, and the identification and tracking of phase singularities allows the 
complex activity observed in both experimental and computational models of 
fibrillation to be quantified. In this paper we present preliminary results that 
compare two methods for identifying phase singularities in a computational 
model of fibrillation in 2 spatial dimensions. We find that number of phase 
singularities detected using each method depends on choosing appropriate 
parameters for each algorithm, but that if an appropriate choice is made there is 
little difference between the two methods. 

1   Introduction 

Cardiac cells are electrically excitable and a propagating sequence of electrical 
activation and recovery (the cardiac action potential) initiates the contraction and 
relaxation of cardiac tissue. During normal beats the cardiac pacemaker synchronizes 
the electrical and mechanical activity of the heart, but during an arrhythmia the 
electrical activity is self-sustaining. An excitation wave that propagates repeatedly 
along a closed path is termed re-entry, and re-entry is the mechanism that is believed 
to sustain many cases of the dangerous cardiac arrhythmias of ventricular tachycardia 
(VT), and ventricular fibrillation (VF). In a two-dimensional tissue sheet without any 
obstacles a single re-entrant wave adopts a spiral shape, and in three-dimensional 
tissue the wave adopts a scroll shape [1]. Mapping electrical activity on the surface of 
the ventricles during VF has revealed complex spatio-temporal activity [2], and direct 
evidence of re-entrant waves is seen only rarely [3]. This is attributed either to 
breakdown of re-entrant waves into multiple interacting wavelets or intermittent 
conduction of waves emanating from a mother rotor [4-6]. 

One of the ways to simplify the complex activity observed during experimental 
studies is to identify the tips of re-entrant waves on the heart surface, and this can be 
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done by transforming the measured voltage distribution measured on the heart surface 
into phase [7, 8]. The tips of re-entrant spiral waves are surrounded by tissue in all 
phases of the activation-recovery cycle, and hence are phase singularities (PS). In an 
experimental study the phase singularities observed on the surface of ventricular 
tissue are intersections of filaments of PS around which re-entrant scroll waves rotate. 
Modeling studies show that filaments may be contained within the ventricular wall 
and intersect with the heart surface only briefly; this observation may explain the 
short lifetimes of PSs on the heart surface [9, 10]. 

Identification of PSs is a powerful technique for analyzing experimental data 
because the voltage signals recorded optically from the heart surface are often noisy, 
but transformation of voltage into phase removes the noise and enables accurate 
location of phase singularities [11]. PSs also provide a valuable link between 
experimental data and computational simulation [12]. However, different 
investigators have used different approaches to identify the location of PSs, and little 
is known about the differences between these methods [11-14]. In addition, although 
the tip trajectories of single spiral waves have been studied extensively in 
computational models with different parameter regimes [15], little is known about 
how PSs behave during the breakdown of a single re-entrant wave into fibrillation. 
The aim of this paper is to present preliminary results comparing two different 
approaches for locating PSs, and then to track phase singularities during the 
breakdown of a spiral wave into fibrillation. 

2   Methods for Identifying Phase Singularities 

In experimental studies the spatial distribution of phase has been used to identify PSs 
[7]. In computational studies more information is generally available, and PSs can be 
identified from the intersection of isolines of constant membrane voltage Vm and 
another variable associated with repolarisation such as a gating variable for the Ca2+ 
channel [16] or a line where dVm/dt = 0 [13]. 

The spatial distribution of membrane voltage obtained from an experimental 
preparation or computational model can be mapped to a spatial distribution of phase 
by obtaining the current value of membrane voltage at each point Vm(t) and a previous 
value of the membrane voltage Vm(t-tau). If the delay tau is chosen to be a few ms, 
then a plot of Vm(t-tau) against Vm(t) for a spiral wave shows that the points follow a 
trajectory around a central reference point (Fig.1). If the coordinates (Vref,x,Vref,y) of the 
central reference point are obtained, then the phase at each point is the elevation 
above the Vm axis, and is given by [11] 

−
−−

=
xrefm

yrefm

VtV

VtautV
tphi

,

,

)(

)(
arctan)( , 

(1) 

where arctan returns a value between –pi and +pi. Fig.2 shows the spiral wave 
simulation used to create the plot shown in Fig.1, together with the phase distribution 
obtained from Fig.1 using the mean value of Vm to give both Vref,x, and Vref,y. 
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Fig. 1. Plot of Vm(t-tau) vs Vm(t) for a single spiral wave with a time delay tau of 5 ms. The 
phase angle phi is obtained for each point using the central reference point with co-ordinates 
(Vref,x,Vref,y) as shown 

 

 
 
 
 
 

Fig. 2. Phase analysis of a single re-entrant spiral wave in a computational model (see text for 
details). (a) Distribution of membrane voltage. (b) Distribution of phase, obtained using a time 
delay of 5 ms. (c) Magnification of (b) showing the distribution of phase around the spiral wave 
tip and the phase singularity as a black point 

As noted above, this approach is particularly useful for noisy experimental data, 
where the phase calculation acts as a filter to remove the noise. Different techniques 
can be used to identify phase singularities from the phase distribution, but all rely on 
identifying points that are surrounded by a complete cycle of phase from –pi to +pi [8, 
11, 14]. The method used here is based on the concept of topological charge, tn , and 

is described in detail elsewhere [8, 11, 14]. The mathematical definition of a PS is 

∇=
C

t dlphin .
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where the line integral is taken over the path l
r

 on a closed curve C surrounding the 

singularity; tn  is an integer value with the sign depending on the chirality of phase 

surrounding PS. The integral (2) at location [ , ]m n  can be evaluated by the following 

convolution operation 

phi

(Vref,x,Vref,y

)

 +50 
 
 
 
 mV 
 
 
 
 -90 

 +pi 
 
 
 
 0 
 
 
 
 -pi 

 +pi 
 
 
 
 0 
 
 
 
 -pi 

(a) (b)  (c) 



 Methods for Identifying and Tracking Phase Singularities in Computational Models 249 

 

xyyx

C

kkdlphi ⊗∇+⊗∇∝∇ .  (3) 

where ⊗  is a convolution operator, ∇x and ∇y are convolution kernels  
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Equation (3) provides a way to obtain a two-dimensional array from the phase 
distribution, and phase singularities are defined as the nonzero elements in this array. 

Using the second technique a PS can be determined as the intersection point of an 
isoline of constant membrane voltage Vm = Viso and a line where dVm/dt = 0 [13]. So, 
at timesteps n and n+1 the membrane voltage at a point should satisfy 

1

n
m iso

n
m iso

V V

V V+

=
=

 

The elements of the membrane voltage array that are in accord with these two 
simultaneous equations then designate phase singularities. 

3   Cardiac Virtual Tissue 

The cardiac virtual tissue used in this study was a simplified 2D model of a sheet of 
ventricular tissue, where action potential propagation was described using a 
monodomain formulation 

ion
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mmm I
Cy
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V 1
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∂
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∂
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where D denotes a diffusion coefficient, Cm the specific membrane capacitance, and 
Iion current flow through the cell membrane [17]. We used the three variable model 
described by Fenton and Karma to compute Iion, with parameters set to reproduce the 
action potential duration (APD) restitution of the Beeler-Reuter model for canine 
ventricular cells [13]. In the model the APD restitution curve is steep, and so a single 
spiral wave is unstable, and breaks up into multiple wavelet re-entry [18]. 

4   Results 

The performance of the first method with various reference points and time-delay 
(tau) is illustrated in Fig.3 and Fig.4 for a 2D tissue simulation where a single spiral 
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wave has broken down into multiple wavelets 700 ms after initiation. The phase 
distribution in Fig.3 was obtained using (1). In Fig.4 white points label positive PSs 
(chirality = +1, clockwise rotation) and black negative PSs (chirality = -1, counter 
clockwise rotation). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Phase distribution at t=700 ms computed as (1). (a) tau=5 ms, (Vref,x,Vref,y) is equal to the 
mean value of Vm(x,y,t) among all time records at the point (x,y). (b) tau=5 ms, Vref  =-65 mV. 
(c) tau=5 ms, Vref  =15 mV. (d) tau=2 ms, Vref  =mean value of Vm . (e) tau=1 ms, Vref  =mean 
value of Vm . (f) tau=25 ms, Vref  =mean value of Vm 

The phase distribution and PS location obtained using tau of 5 ms and three 
different (Vref,x,Vref,y) are shown in Fig.3(a)-(c) and in Fig.4(a)-(c) respectively. 
Although the overall phase distribution in each case is similar, there are two excess 
singularities in Fig.4(b) and three missing PSs in Fig.4(c) in comparison with 
Fig.4(a). Moreover, the coordinates of PSs obtained using 15mV as the reference 
point differ markedly from the coordinates of PSs in Fig.4(a) and 4(b). 

Figures 3(d)-(f) and 4(d)-(f) demonstrate the change of phase distribution and PSs 
location with tau, which was equal to 2 (Fig.3(d), 4(d)), 1 (Fig.3(e), 4(e)), and 25 ms 
(Fig.3(f), 4(f)). Here the coordinates of the reference point were chosen as the mean 
value of Vm(x,y,t). The PS location in Fig.4(a) and 4(d) are similar, but if tau is less 
then 2 ms (Fig.4(e)), there is an excess of singularities, similar to Fig.4(b). However, 
at tau=25 ms (Fig.4(f)) three PSs disappear similar to Fig.4(c). 

The second technique for PS localization is illustrated in Fig.5, for the same 2D 
simulation. The figures represent contour plots of various Viso : -10 mV (Fig.5(a)), -15 
mV (Fig.5(b)), -20 mV (Fig.5(c)), -25 mV (Fig.5(d)), -30 mV (Fig.5(e)), -35 mV 
(Fig.5(f)). Blue snowflakes label PSs. PS location is strongly dependent on the choice 
of Viso, and all parts of Fig.5 are different except Fig.5(e) and 5(f) which are similar 
and resemble Fig.4(b) and 4(e). Fig.5(c) is the exact copy of Fig.4(a) and 4(d). In 
some cases, very closely spaced PS pairs are identified and these are highlighted. 
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Fig. 4. Location of phase singularities corresponding to phase distribution in Fig.3. (a) tau=5 
ms, (Vref,x,Vref,y) is equal to the mean value of Vm(x,y,t) among all time records at the point (x,y). 
(b) tau=5 ms, Vref  =-65 mV. (c) tau=5 ms, Vref  =15 mV. (d) tau=2 ms, Vref  =mean value of Vm . 
(e) tau=1 ms, Vref  =mean value of Vm . (f) tau=25 ms, Vref  =mean value of Vm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Contour plots with PSs (blue snowflakes) computed identifying the intersection of two 
isolines at t=700 ms. (a) Viso=-10 mV. (b) Viso=-15 mV. (c) Viso=-20 mV. (d) Viso=-25 mV. (e) 
Viso=-30 mV. (f) Viso=-35 mV 

A comparison of the two methods for PSs detection is presented in Fig.6. The 
distribution of membrane voltage with blue singularities obtained by the first method 
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is shown in Fig.6(a)-(c). Membrane voltage with PSs computed by the second 
technique is displayed in Fig.6(d)-(f). At t=50 ms a single spiral wave and one PS 
exist, and the PS is located correctly by both methods. Here tau=5 ms (Fig.6(a)) and 
Viso =-20 mV (Fig.6(d)). It is clear that these two figures are identical. The example of 
a more complicated case is presented in Fig.6(b), 6(c), 6(e), 6(f). Here t=600 ms, 
tau=5 ms (Fig.6(b)), Viso =-20 mV (Fig.6(e)), tau=2 ms (Fig.6(c)), Viso =-30 mV 
(Fig.6(f)). The PS location computed using a time-delay of 5 ms is similar to location 
of singularities obtained by the second method with Viso =-20 mV, and the PS 
coordinates computed by the first technique with tau=2 ms are almost the same as 
coordinates of singularities obtained using Viso =-30 mV. However, there are some 
differences between the number of PSs identified, and these differences can be 
attributed to the closely spaced PS pairs that are circled in Fig.6(b) and 6(e). 

 

Fig. 6. Distribution of membrane voltage with singularities (blue snowflakes) obtained using 
both techniques for PSs detection. (a) t=50 ms, tau=5 ms, Vref  =mean value of Vm . (b) t=600 
ms, tau=5 ms, Vref  =mean value of Vm . (c) t=600 ms, tau=2 ms, Vref  =mean value of Vm . (d) 
t=50 ms, Viso=-20 mV. (e) t=600 ms, Viso=-20 mV. (f) t=600 ms, Viso=-30 mV 

Trajectories of singularities computed by the first method with tau=5 ms and the 
mean value of membrane voltage as the reference point are displayed in Fig.7. 
Fig.7(a) shows PSs trajectories by 300 ms. By 111 ms a single positive (chirality=+1) 
PS (red trajectory) existed. At t=111 ms two additional PSs appeared: positive 
(yellow line) and negative (green) and a spiral wave began to break up. At 173 ms 
another two singularities were born: positive (magenta) and negative (black). At 175 
ms the red and black PSs collided and disappeared. Continuing by a similar manner at 
300 ms three singularities remained (a positive and two negative). However, at 
t=1050 ms the amount of positive PSs is a bit greater (Fig.7(b)). In Fig.7(b) red lines 
label trajectories of singularities of positive chirality and green – negative. In our 
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simulations all PSs were created in pairs (87 pairs of positive-negative singularities) 
or due to interaction with a boundary (5 PSs). The PSs vanished, either due to 
positive-negative collision (57 pairs) or by collision with a boundary (54 PSs). 

Fig. 7. PS trajectories computed using tau=5 ms, Vref  =mean value of Vm . (a) t ∈ [0; 300] ms. 
(b) t ∈ [0; 1050] ms. PSs trajectories of positive chirality are shown in red, trajectories of 
singularities of negative chirality are displayed in green 

PS detection in 2D simulations of cardiac fibrillation. We have shown that both 
methods identify a broadly similar number of PSs, but the parameters used in each 
method can affect both the number of PSs that are detected as well as their location. 
PSs have already been identified in experimental data using the first method [7], and 
our study indicates that these results would be broadly comparable with the results of 
numerical studies where PSs are detected using the second technique.  

The choice of tau and reference point is known to have a crucial influence on PS 
detection by the first method [8, 11, 14]. These values should be chosen such that the 
phase can be uniquely defined during the course of a spiral (scroll) wave rotation. The 
ideal reference point is one that is encircled by all trajectories independently of the 
originating spatial location. If one chooses a random point in the state space as the 
reference point, this point may lie within some trajectories and outside others. In this 
paper we compared the location of singularities obtained using the mean value of 
membrane voltage (that is supposed to be encircled by all trajectories) as the reference 
point (Fig. 4(a)), with PSs coordinates calculated using two example reference points. 

As time-delay (tau) we chose four values, two of them (2ms and 25 ms) are often 
used in cardiac literature [8, 11, 14]. It was shown in [8, 11, 14] that for cardiac 
activation, if tau is on the order of the action-potential upstroke duration, the amount 
of trajectory folding (hence, nonunique calculation of phase) will reduce. Our results 
have demonstrated that assuming time-delay between 2 and 5 ms has a little effect 
(Fig.6(b), 6(c)) or no effect (Fig.4(a), 4(d)) on the PSs location. However, tau equal to 
1 or 25 ms leads to additional or missing singularities relative to those obtained using 
tau of 5 ms and noticeable shift of PSs coordinates for time-delay of 25 ms. 

Although an earlier study suggested that the choice of Viso influences the location 
of the PS only slightly [19], our results have shown that this choice can be important 
(fig.5). The main effect is to identify additional closely spaced PS pairs. 
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The examples of t=50 ms, t=600 ms and t=700 ms (Fig.4-6) have demonstrated 
that using a time-delay of 5 ms in the first method for PSs detection produces a 
similar PS distribution to using Viso =-20 mV in the second technique. In addition to 
the data shown in Fig.6, we also deployed each method at other times during the 
simulation. We found that if the number of PSs was insensitive to the choice of tau 
between 1 and 5 ms in the first method, then the choice of Viso between –20 and 
-40 mV in the second method would also have little effect on the number of PSs 
detected. This finding suggests that the robustness of each method is variable, but a 
more systematic comparison of the two methods is needed. 

The balance between created and destroyed PSs and the influence of boundaries 
are also topics for further investigation. Although our studies are preliminary, they 
indicate that the role of heart tissue boundaries could be important, especially for PSs 
death (54 singularities among 168 were destroyed due to collision with boundaries in 
spite of a quite large 12.5×12.5 cm domain), and hence these investigations could aid 
the development of possible defibrillation strategies.  

6   Conclusions 

In this paper we have compared two different methods for PSs detection, and using 
one of the techniques we have tracked singularities during the breakdown of a spiral 
wave into fibrillation (during approximately 1 s). Neither method is ideal since both 
require some parameter values to be chosen. However, there is clear advantage of 
using the first technique, which is based on topological charge. It immediately gives 
us knowledge about the sense of spiral wave rotation (chirality), and this is an 
additional feature that is extremely useful for PS tracking.  
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Abstract. In this article we study the problem of estimating the pa-
rameters of a 2-D electrophysiological model of the heart from a set of
temporal recordings of extracellular potentials. The chosen model is the
reaction-diffusion model on the action potential proposed by Aliev and
Panfilov. The strategy consists in building an error criterion based upon
a comparison of depolarization times between the model and the mea-
sures. This error criterion is minimized in two steps : first a global and
then a local adjustment of the model parameters. The feasibility of the
approach is demonstrated on real measures on canine hearts, showing
also the necessity to introduce anisotropy and probably a third spatial
dimension in the model.

1 Introduction

Direct models of the electrical activity of the heart are numerous ([12, 3, 8]).
Since in vivo measures are available([10, 4, 14]), a new challenge is to solve the
inverse problem, that is to find the parameters of a model that best fit the
measures obtained from a specific patient. Fitting a model on real measures is
necessary for building a patient specific model suitable for diagnosis of electrical
pathologies as well as for intervention planning.

When inspecting electrophysiological data, cardiologists often base their anal-
ysis on the depolarization and repolarization maps of the epicardium or endo-
cardium ([14]). From those maps, expert eyes can detect different electrophysio-
logical pathologies ranging from the presence of low conduction zones caused by
infarcted tissue, to the occurrence of fibrillation caused by scrolling waves.

The aim of the research effort presented in this paper is to provide cardiol-
ogists with additional information for a better diagnosis and a better planning
of therapies by finding the parameters of a cardiac electrophysiology model that
can best explain electrophysiological observations (isochrones).

By inverting such a model, we can expect two important outcomes. First, we
aim at estimating “hidden” physical parameters which help to better understand
and quantify the heart physiology (conductivity for instance) from an original
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set of physical measurements (depolarization times). Second, with this set of
parameters, we can use the direct model to study pathologies, to plan and even
simulate some therapeutic protocols.

In vivo electric measures on the endocardium or epicardium ([10, 4]) consist
in measuring of the extracellular potential, from which the depolarization times
are computed. Very accurate models such as bidomain models ([6]) or Luo-
Rudy models ([9]) provide excellent insight into the physiological phenomena
provoking the electrical activity of the heart but are probably too sophisticated
for our inverse problem. Indeed, these models are designed to capture very subtle
modifications in the shape of the action potential whereas we only measure here
the depolarization times. For this type of measures, a phenomenological model
describing the action potential propagation is probably sufficient, such as the
FitzHugh-Nagumo [5] model. Aliev and Panfilov developed a modified version
suited to the cardiac action potential [1]:

ε2∂tu = εdiv (D∇(u)) + ku(1 − u)(u − a) − uz (1.a)
∂tz = −(ku(u − a − 1) + z)) (1.b) (1)

where u is a normalized action potential (between 0 and 1), z is a dynamic
variable modeling the repolarization, k controls the repolarization, ε controls
the coupling between the action potential and the repolarization variable z,
and a controls the reaction phenomenon. The depolarization time of a point
is computed as the first time such that u(t) = 0.5. A 3D anisotropic model
based on the Aliev-Panfilov system was developed in the context of the ICEMA
collaborative research action [2, 15].

The electrophysiological measures are usually available on the endocardium
or the epicardium, so as a first methodical and essential stage before going on
to the 3D problem, we treat a simplified and tractable problem by considering
a surface model. In this manner, we simulate the Aliev and Panfilov model on a
surface triangulation S with N vertices and L triangles. We name V the set of
vertices and T the set of the triangles. Hence, the tridimensional propagation is
simplified to a propagation on the 2D surface of the epicardium. Furthermore, the
fiber directions are not relevant in the 2D model since they are not tangential
to the epicardial surface, and we consider an isotropic propagation i.e. D =
d diag(1, 1, 1) in system (1), where the diffusion coefficient d is proportional
to a conductivity. System (1) is normalized, the model is only 2D and the 3
parameters a, k and d all influence the depolarization times. Hence it is not
possible to estimate an electrical conductivity from the depolarization times and
we will call d the apparent conductivity in the sequal. The temporal integration
of the system (1) is done with an explicit Euler scheme. The spatial integration
is performed with the finite elements method with linear triangular elements.
The numerical issues and the implementation are described in [11].

In this article we present results on the inversion of the Aliev-Panfilov electro-
physiological model leading to a regional estimation of apparent conductivities.
In Section 2, we first achieve a coarse global estimation of the parameter k that
properly scales the electrical propagation. In Section 3, we perform the regional
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estimation of the apparent conductivity by minimizing an error function between
the measured and simulated depolarization times. In Section 4, a case study
on dog hearts shows the efficiency of the presented approach for inverting the
Aliev-Panfilov electrophysiological model. Finally in Section 5, we sum up this
work and present its perspectives.

2 Global Estimation of the Parameter k

The parameter ε is chosen according to the grid size, and the parameters of the
model a, k, or d can vary between different individuals or species. We choose to
estimate the parameter k from the depolarization times while standard values
are assigned to the other parameters.

As stated in [7], the velocity of the depolarization wave on a 1D domain can
be expressed as follows

c =
√

2kd(0.5 − a) (2)

In 2D, this velocity is not constant in space. At each point in the mesh, it
is equal to the velocity in 1D (Equation (2)) minus a term proportional to the
curvature of the front [7]. Since we only need a global estimate of the propagation
velocity on a surface, we neglect, as a first approximation, the front curvature and
simply approximate the velocity c of the depolarization wave by its expression
in Equation (2).

Luckily, the depolarization velocity can also be computed from the gradi-
ent of the measured depolarization times on the surface, ∇xt : 1/c = ‖∇xt‖ .
Then, we can estimate a median value of the parameter k over the whole mesh:
median (‖∇xt‖)−1 =

√
2kd(0.5 − a).

A direct inversion of this equation would be a comparison between a theo-
retical 1D velocity and an apparent velocity computed on a 2D surface. As a
consequence, we use a velocity estimated from a first guess simulation, that we
computed on the same mesh as the one used for the measures. As the veloc-
ity c is proportional to 1/

√
k, a ratio between measured cm and simulated cs

propagation velocity can be computed as follows.

median ‖∇xtm‖
median ‖∇xts‖ =

cs

cm
≈

√
ks

√
km

. (3)

The measured and the simulated depolarization times are denoted by tm and ts

respectively. ks is the value for the parameter k used to compute the first guess
simulation and km is the value computed to adjust the measures. km can be
computed as follows.

km = ks

(
median ‖∇xts‖
median ‖∇xtm‖

)2

(4)
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3 Local Estimation of the Electrical Apparent Conductivity

With a simulation globally fitting the measures, a local adjustment of the model
is possible. We choose the apparent conductivity d as the spatially varying pa-
rameter. Indeed, we can give a clinical interpretation of its variation: a region
with a low apparent conductivity (AC) value is a region where the electrical
wave does not propagate as fast as in the other regions and consequently may
be pathological. The AC that we estimate cannot be compared to the electrical
conductivity because we used normalized Aliev Panfilov equations. Moreover, we
only estimate one parameter of the equation whereas the depolarization times
also depend on a and k. Consequently, we detect variations of parameter d which
are influenced by the other parameters.

Estimating the AC from patient specific data can be addressed as a data
assimilation problem. None of the classical methods of data assimilation, like
Kalman filtering and variational methods are truly suited for the model and
the measures of our problem. Indeed, classical methods generally require an ex-
plicit functional relationship between the results of the model and the measures.
Such a relationship is not available between action potentials and depolariza-
tion times since the depolarization time is an implicit function of the action
potential.

In the discretized model ([11]), an AC value is assigned to each triangle.
Consequently, we look for an AC map (d) = (dj)0≤j≤L−1, where L is the num-
ber of triangles in the triangulation. This AC map should minimize C(d) =∑

v∈V(tmv − tv(d0, . . . , dL−1))2 where V is the set of the vertices in the triangu-
lation, tmv is the measured depolarization time at vertex v and tv(d0, . . . , dL−1)
the depolarization time at vertex v resulting from a simulation with the conduc-
tivities (d0, . . . , dL−1).

In order to have a robust estimation of the AC, we split the heart surface
into different connected regions and estimate one AC value for each region. Let
(Rk)0≤k≤K−1 be a partition of the surface in K regions. For each region Rk,
dj = dRk

for all j such that the jth triangle of the surface belongs to Rk. Then,
the new minimization problem is to find (d) = (dRk

)0≤k≤K−1 that minimizes
C(d) =

∑
v∈V(tmv − tv(dR0 , . . . , dRK−1))

2

We look for the minimum of C(d) with respect to K variables: dR0 , . . . dRK−1 .
Instead of using a generic method to solve for this multidimensional minimiza-
tion, we consider the causality of the electrical wave propagation: the depolar-
ization times in one region mostly depend on the apparent conductivities of the
regions that were depolarized before. Hence, we estimate the AC for one region
after the other, following the order of depolarization. During the estimation of
dR, the conductivities of the other regions remain constant.

We transform a K-dimensional minimization problem to K successive one-
dimensional minimization problems:

C(dR) =
∑
v∈V

(tmv − tv(dR))2 (5)
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We simplify the criterion C(d) by taking into account only the vertices of
the region R because there are enough vertices in a region to provide a robust
estimate. Equation (5) then yields C(d) =

∑
v∈R(tmv − tv(dR))2

The values of the function t(dR) can only be computed after simulating the
propagation. Therefore the derivative is computationally expensive to estimate.
We favoured a minimization method that does not involve any derivative, an
iterative inverse parabolic interpolation derived from the Brent method [13].
This very consistent method replaces the function to be minimized by a well-
chosen parabola. The minimum of the function C is approximated by the easily
and efficiently computed minimum of the parabola. Given three points on the
curve (da, C(da)), (db, C(db)) and (dc, C(dc)) , there is a unique parabola f(x) =
αx2 + βx + γ described by these points. It reaches its extremum at point x such
that

x = db − 1
2

(db − da)2(C(db) − C(dc)) − (db − dc)2(C(db) − C(da))
(db − da)(C(db) − C(dc)) − (db − dc)(C(db) − C(da))

. (6)

From these remarks, we construct an iterative process which is a simplified
version of Brent’s method [13], to find the minimum from an initial bracketing of
this minimum. We call a bracketing of the minimum of function C three points
da, db and dc such that da < db < dc, C(db) < C(da) and C(db) < C(dc).
We repeat the parabolic estimation until we are satisfied with the computed
value: if (dk) is the sequence of successively estimated minima, we consider that
convergence is reached when the difference between two successive estimations
is smaller than a given precision value p i.e. |dk+1 − dk| < p.

4 Results on in vivo Measures

The in vivo measures used in this section were acquired on adult male mongrel
dogs using a multi-electrode epicardial sock during an artificial pacing on the

(a) (b)

Fig. 1. Measured depolarization times. (a) Normal heart. (b) Case of an infarct on the

anterior wall



Estimating Local Apparent Conductivity 261

right ventricle. The surgery, experimental layout and the data acquisition are
described in [11, 15]. In this paper, we present two cases. The first case which
is a normal heart, will be used to describe the procedure (Figure 1.a). The
depolarization times were computed from a recording of electrical potentials on
128 electrodes and interpolated on a 192 vertices surface mesh. The second case
is that of a heart with an anterior wall infarct (Figure 1.b). The depolarization
times were computed from a recording of electrical potentials on 247 electrodes.

The first step toward a parameter estimation is a good initialization since the
propagation is very sensitive to the localization of the pacing regions. We thus
selected from the measures (Figure 1) the points with the smallest depolarization
times to initialize the propagation.

4.1 Global Estimation of the Parameter k

Applying the method presented in Section 2 to the data of the normal heart, we
obtained a global value of km = 25.2 starting from a crude initialization ks = 8.

The absolute error between the simulated depolarization and the measured
depolarization times before the automatic estimation of k is presented on Fig-
ure 2.a. After this estimation, the error is significantly lower as shown on Fig-
ure 2.b. Before the estimation , the mean error was 20.6 ms. After the automatic
estimation, the mean error was 10 ms compared to the total duration of the
depolarization wave which lasts around 120 ms.

(a) (b) (c)

Fig. 2. Absolute error on the depolarization times between measures and simulations

before (a) and after (b) the global automatic estimation and after the local estima-

tion (c)

4.2 Local Estimation of the Apparent Conductivity

We now apply the presented method to perform the local estimation of the ap-
parent conductivity (AC). We first need to partition the epicardium into different
regions. We create a partition of the epicardium according to the electrical prop-
agation. In this way, this partition is adapted to the particular artificial pacing of
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(a) (b) (c) (d)

Fig. 3. The regions chosen on the epicardium, according to the propagation of the

depolarization wave. The large red region contains the pacing site

Fig. 4. Apparent conductivity map estimated from the first set of data

this experiment. In practice, we split the epicardium in successive regions follow-
ing the isochrones of the depolarization times map as closely as allowed by the
mesh resolution, and we then split these regions orthogonally to the isochrones.
Figure 3 show a partition in 14 regions. We sort out the regions of Figure 3 in
the order of their depolarization.

We then estimate one AC value for each region successively. The convergence
on each region is quick and stable. Figure 4 presents the AC map that we obtain
for the case of the normal heart.

4.3 Discussion

Although the variations of the computed AC for the normal heart do not have
a physiological meaning, they closely reflect the asymmetry of the measures.
These variations are probably due to the modeling of the epicardium as an
homogeneous medium, without distinguishing the left and right ventricles nor
taking into account the fibers direction.

Figure 5 displays the depolarization times simulated by the model before
(5.a) and after (5.b) the local estimation of the AC, and compare them to the
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(a) (b) (c)

Fig. 5. Depolarization times before (a) and after (b) the local estimation compared

with the measures (c). The absolute error on the depolarization times after the local

estimation of the parameters is displayed Figure 2.c

(a) (b)

Fig. 6. AC estimated for the case of the anterior infarct (a). The points marked with a

bright circle design the localization of the infarct. The points marked with a dark star

design the pacing region. Depolarization times computed with these AC values (b)

measures (Figure 5.c). The depolarization times computed with a constant AC
are in the proper range of values, but from Figure 5, when comparing these
results with the measures (5.c), we notice that the shape of the depolarization
front is much closer to the measures with the local adjustment.

The quality of this estimation is also assessed by the visualization of the
absolute error (Figure 2.c) on the depolarization times in the epicardial surface.
We can see on Figure 2 that the absolute error decreased significantly after both
the global and the local estimation.

We also applied the AC estimation method on the case of an infarct on the
anterior wall. The AC values are displayed on Figure 6.a, the purple circles
correpond to the infarcted region. The depolarization times computed from a
simulation taking into account these values are displayed on Figure 6.b. In the
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infarcted region, the shape of this depolarization front reproduces the shape of
the measured depolarization front (Figure 1.b).

A large portion of the infarct is detected in the two regions with the lowest
conductivity values, but we see that a part of the infarct is not detected as a
low conductivity region. The heterogeneous infarct geometry in the heart wall
can explain this observation: the infarct can be transmural (i.e. extending from
the inner surface to the outer surface) or non-transmural (i.e. extending from
the inner surface to somewhere in the wall), and when considering vertices in
the mesh, where the infarct is non-transmural, electrical conductivity can be
almost normal. In addition, a low conductivity is estimated in normal regions.
As seen in the first case, this may be due to the modeling of the epicardium as
an homogeneous medium. We are currently working on the inclusion of the fiber
directions in this model.

5 Conclusions and Perspectives

We addressed the problem of estimating a set of parameters for the action poten-
tial propagation modeled by Aliev and Panfilov from measured depolarization
times. In order to evaluate the quality of our results, we used a criterion based
on the difference in depolarization times between the model and the measures.
We first presented a procedure to globally estimate a set of parameters so that
the electrical propagation in the model occurs in the same time and space scale
as the measures. We then presented a method to locally estimate the electrical
apparent conductivity (AC) region by region. We successfully estimated global
and local parameters of the model from in vivo measures of a canine heart.
The simulation of the model with these new values showed that the error on
the depolarization times was significantly decreased. Moreover, the variations of
the AC values that we computed are consistent with the measures. When this
method was applied to an infarcted heart, a large part of the infarcted region
was assigned a low AC value.

In order to have a fully automatic process, we still need to build automati-
cally the epicardium’s partition. The next step will be to estimate the param-
eters of a 3D model of the heart by establishing a correspondence between 2D
measures and a 3D mesh. A proper physiological validation would require the
application of our method to a benchmark of pathological and normal mea-
sures analyzed by experts. At that time, only the AC is estimated, but other
measures, as the action potential duration, would allow us to estimate more
parameters. An advantage of the proposed local estimation is that it is not de-
pendent on the model since it only uses simulations of the direct model. Thus,
it can easily be adapted to more complex models that can reproduce specific
pathologies.
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Via Saldini 50, 20133 Milano, Italy

pavarino@mat.unimi.it
3 Cardiovascular Research and Training Institute,

University of Utah, Salt Lake City, Utah
taccardi@cvrti.utah.edu

Abstract. Large scale simulations of an anisotropic and heterogeneous
cardiac model in three dimensional myocardial blocks are presented. The
Monodomain tissue representation used includes orthotropic anisotropy,
intramural fiber rotation and homogeneous or heterogeneous intramural
Luo-Rudy I membrane ionic models. Simulations of the entire QT inter-
val for epicardial and endocardial pacing show that the effect of intra-
mural heterogeneity on the dispersion of the action potential duration
is mostly discernible along the epi- endocardial direction, while in the
orthogonal directions the dispersion patterns have the same qualitative
features of the homogeneous model.

1 Introduction

During a normal heartbeat, the ventricular transmembrane potential displays
two main phases having different time and space scales: depolarization and
repolarization. Repolarization exhibits a short rapid downstroke, a plateau
and final, slower downstroke. While the excitation phase has been exam-
ined in considerable detail both experimentally and numerically much less is
known concerning the recovery phase (see [8, 16, 7, 4]). Both phases are in-
fluenced by the fiber direction through which excitation is spreading and
by the anisotropy of the intra and extracellular media. The study of these
phases can be greatly enhanced by the use of computational models based
on systems of differential equations. Previous studies considered simulations
of the entire excitation and repolarization sequences mainly in 1D cables
[10, 15, 17, 14] and 2D sheets, see e.g. [4]; only few simulation studies of a
normal beat in 3D slabs are available in the literature, see e.g. [7, 9], even
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if reentry dynamics have been largely studied. This is mainly due to the
high computational costs involved in large scale simulations of a full car-
diac cycle in three dimensions, which require adaptive and parallel numeri-
cal techniques. In [5], we implemented an efficient parallel simulator and per-
formed several numerical experiments in 3D on parallel architectures with
both the Monodomain and the Bidomain models. In [6], a detailed compari-
son between the excitation and the repolarization sequences elicited by a lo-
cal stimulus showed that the Monodomain model is adequate for a quali-
tative investigation of the repolarization sequences and of the patterns dis-
played by the action potential duration (APD) distributions. Recently, the
electrophysiological consequences of the intramural heterogeneity of the APD
have generated considerable interest and some controversy. A subpopulation
of cells (M cells) has been discovered, displaying a longer APD than epi-
cardial and endocardial ventricular cell types, mainly in “in vitro” experi-
ments, see e.g. [18]. On the other hand, high degrees of intramural hetero-
geneity have not been detected in “in vivo” studies of normal hearts, see
e.g. [1], where it is noted that the intercellular coupling in cardiac tissue
is a factor affecting APD modulation. However, controversy still exists over
the extent to which heterogeneity in repolarization is expressed across the
normal ventricular wall. In this work, we use our parallel simulator to in-
vestigate the influence of intramural heterogeneity of the intrinsic properties
of the cellular membrane on the repolarization sequences and on the APD
dispersion.

2 Mathematical Models

From a macroscopic point of view, the cardiac tissue is conceived as the su-
perposition of two averaged continuous media, the intra and the extracellular
medium, whose anisotropy is characterized by the conductivity tensors Di(x)
and De(x). These tensors are anisotropic related to the direction of the cardiac
fibers that rotates counterclockwise (CCW) from epicardium to endocardium
and to the laminar organization of the heart muscle (see [11]). Therefore, at
any point x, it is possible to identify a triplet of orthonormal principal axes
al(x), at(x), an(x), with al(x) parallel to the local fiber direction, at(x) and
an(x) tangent and orthogonal to the radial laminae respectively and both be-
ing transversal to the fiber axis. Denoting by σi,e

l , σi,e
t , σi,e

n the conductivity
coefficients measured along the corresponding directions, then the conductivity
tensors Di(x) and De(x) related to orthotropic anisotropy of the media are given
by: Di,e = σi,e

l alaT
l + σi,e

t ataT
t + σi,e

n anaT
n .

The intra and extracellular electric potentials ui, ue in the Bidomain model
are described by a reaction-diffusion system, coupled with a system of ODEs for
ionic gating variables w ∈ RQ and for the ions concentration c ∈ Rp. Denoting
by v = ui − ue the transmembrane potential and by Itot = −Di∇ui − De∇ue

the total current flowing in the two media, then, for an insulated cardiac domain
H, (v, ue, Itot, w, c) satisfy the system:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cm∂tv − div(DeD
−1Di∇v) + Iion(v, w) − div(DeD

−1Itot) = 0,
∂tw − R(v, w) = 0, w(x, 0) = w0(x),
∂tc − S(v, w, c) = 0, c(x, 0) = c0(x),
nT Dm∇v = 0, v(x, 0) = v0(x),
Itot = −Di∇ui − De∇ue,
−div(D∇ue) = div(Di∇v), −nT D∇ue = nT Di∇v,

where ∂t = ∂ /∂t, cm = χ∗Cm, Iion = χ∗iion, with χ the ratio of membrane area
per tissue volume, Cm the surface capacitance and iion the ionic current of the
membrane per unit area. Disregarding applied currents, from the current conser-
vation law, we have divItot = 0. It is well known that, assuming equal anisotropy
ratio of the two media, the Bidomain system reduces to the Monodomain model.
If we disregard the source term div(DeD

−1Itot), then a Monodomain model is
derived as a Relaxed Bidomain system without assuming that the two tensors
are proportional. Therefore, we obtain the anisotropic Monodomain model by
solving first a single parabolic reaction-diffusion equation for the transmembrane
potential v with the conductivity tensor given by Dm = DeD

−1Di and coupled
with the same gating and concentration system⎧⎪⎪⎨

⎪⎪⎩
cm∂tv − div(DeD

−1Di∇v) + Iion(v, w) = Iapp,
∂tw − R(v, w) = 0, w(x, 0) = w0(x),
∂tc − S(v, w, c) = 0, c(x, 0) = c0(x),
nT Dm∇v = 0, v(x, 0) = v0(x),

and then solving an elliptic problem for the extracellular potential

−div(D∇ue) = div(Di∇v), −nT D∇ue = nT Di∇v.

We remark that the first equation is coupled with the system of ordinary differen-
tial equations in w, c and uncoupled from the elliptic equation in ue; the system
uniquely determines v, while the potential ue is defined only up to an additive
time-dependent constant related to the reference potential, chosen to be the
average extracellular potential in the cardiac volume by imposing

∫
H

ue dx = 0.

3 Numerical Discretization

The cardiac volume H is discretized by a structured grid of hexahedral isopara-
metric Q1 elements. A semidiscrete problem is obtained by applying a standard
Galerkin procedure and choosing a finite element basis.

The time discretization is performed by a semi-implicit method using for the
diffusion term the implicit Euler method, while the nonlinear reaction term Iion

is treated explicitly. The implicit treatment of the diffusion terms is essential in
order to allow an adaptive change of the time step according to the stiffness of
the various phases of the heartbeat. The ODE system for the gating variables is
discretized by the semi-implicit Euler method and the explicit Euler method is
applied for solving the ODE system for the ions concentration. We decouple the
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full system by solving the gating and ions concentration system first (given the
potential vn at the previous time-step)

wn+1 − Δt R(vn,wn+1) = wn, cn+1 = cn + Δt S(vn,wn+1, cn)

and then solving for vn+1

AΔtvn+1 = M
[cm

Δt
vn − Ihion(vn,wn+1, cn+1) + Im,h

app

]
,

where AΔt = cm

Δt M + A, with A the stiffness matrix, M the mass matrix and
Ihion, I(m,e),h

app the finite element interpolants of Iion and Im,e
app , respectively. We

employed an adaptive time-stepping strategy based on controlling the trans-
membrane potential variation Δv = max(vn+1−vn) at each time-step, see [12].
The linear system at each time step in the discrete problems is solved iteratively
using the PETSc parallel library [2] and a preconditioned conjugate gradient
solver with block Jacobi preconditioner and ILU(0) on each block. The parallel
machines employed are an IBM SP RS/6000 Power4 with 512 processors Power
4 - 1300 MHz, (www.cineca.it), and a Cluster Linux with 72 Xeon 2.4 GHz
processors. More details on the parallel solver can be found in [5].

4 Results

The cardiac domain considered is a cartesian slab of dimensions 5 × 5 × 1 cm3

modeling a portion of the left ventricle. A structured grid of hexahedral isopara-
metric Q1 elements of size h = 0.1 mm was used in all computations. In the
numerical tests, we have used the following parameters: χ = 103 cm−1, Cm =
10−3 mF/cm2, {σe

l , σ
i
l , σ

e
t , σ

i
t} = {2, 3, 1.35, 0.315} mΩ−1cm−1 and σe

n =
σe

t /2, σi
n = σi

t/10. These conductivity coefficients of the orthotropic anisotropy
have been calibrated so that the associated propagation velocities (θl, θt, θn) of
ideal plane wavefronts can be conservatively estimated as (60, 25, 10) cm sec−1,
respectively. These estimates are in accordance with the histological findings of
[11]) supporting the idea that the cardiac tissue anisotropy could be orthotropic.
The fibers rotate intramurally linearly, proceeding counterclockwise (CCW) from
epicardium (−45o) to endocardium (75o), for a total amount of 120o. In this pa-
per, we consider the phase I Luo-Rudy (LR1) model (see [12]), since it is one of
the complex gating systems mostly used in recents 3D simulations. The initial
conditions are at the rest and we apply an appropriate stimulus on a small area
at the center of the slab (3 or 5 mesh points in each direction). Other than po-
tentials and gating variables, at each time-step, we compute also the activation
(ACTI) and the repolarization (REPO) times, defined as the times when the
action potential (AP) crosses −60 mV during the upstroke and the downstroke,
respectively; hence, the APD is defined as the difference APD = REPO - ACTI.
. When homogeneous intrinsic properties of the cellular membrane are assumed,
the slow inward current in the LR1 model is reduced by a factor 2/3, yield-
ing an APD of about 266 msec. We also consider simulations with intramural
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heterogeneity of the cellular membrane. In order to reproduce qualitatively the
APD transmural behaviour measured in wedge preparations, see [18], Fig. 4 and
[13] Fig. 5, we performed 1D simulations using a suitable subdivision of the wall
thickness with different membrane properties. More precisely, we subdivided the
slab into four layers of thickness (0.1, 0.1,0.7 0.1) cm, respectively, proceeding
from the endo- to epicardium and by multiplying the slow inward current Isi

of the LR1 model by (7.66, 8.66,7.86.6.66), corresponding to intrinsic APDs of
(295,324,301,266), respectively. Hence we assume that sub-endocardial and mid-
myocardial layers display a longer APD than the epi- and endo-cardial cells.
The piecewise constant line in Fig. 1 (dashed) displays the intrinsic intramural
APD distribution of the cells. We first consider a one-dimensional model having
uniform conductivity equal to the intramural cross-fiber conductivity σt with ho-
mogeneous or heterogeneous intrinsic properties of the cellular membrane. In the
homogeneous case (left panel of Fig. 1), the excitation and recovery fronts reach
a quasi-stationary propagation, apart from the acceleration during the starting
phase of the propagation and also during the subsequent collision with the en-
docardium. The total times for activation and recovery are about 39 and 32
msec, respectively, and the APD dispersion amounting to about 7 msec, mostly
concentrated around the stimulus and collision sites. Notice that repolarization
moves slightly faster than activation in the homogeneous model.

In the heterogeneous case (central panel of Fig. 1), the activation time results
practically unchanged, while we have a higher repolarization time of about 54
msec. The APD dispersion, amounting to 21 msec, is three times larger than
the homogeneous case. Due to current conduction, the intrinsic APD differences
between the four cell layers are strongly smoothed and reduced. We have also
applied an endocardial stimulus to the heterogeneous 1D model (right panel
of Fig. 1). The sequence of excitation results the same as the one elicited by
the epicardial stimulus, while the repolarization process is completed in 19 msec
and the APD dispersion amounts to 28 msec. Therefore, an endocardial stimulus
in the heterogeneous case brings about a significant shortening of the recovery
sequence and a higher APD dispersion than an epicardial stimulus. In other
words, epicardial stimulation increases the dispersion of the recovery time. We
remark that these simulations are limited to an action potential elicited by a
single stimulus, a condition that emphasizes the APD dispersion, since it is well
known that a periodic stimulation, at an increasing rate, results in shortening
of APD with a reduced dispersion.

We consider now 3D simulations of the excitation and repolarization pro-
cesses elicited by an epicardial central stimulation in an orthotropic slab, homo-
geneous in Fig. 2, heterogeneous in Fig. 3. In both cases, we show the spread
of excitation (ACTI), the sequence of recovery (REPO) and the APD on the
whole slab (bottom) and on 5 plane sections parallel to the epicardial face, lo-
cated at z = 0 (endo), 0.25, 5, 0.75, 1 (epi) cm, respectively. We now briefly
describe some common features of the homogeneous and heterogeneous models.
The spread of excitation and recovery exhibit an acceleration in the direction
across fibers and dimple-like inflections appear in the isochrone profiles, due to
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Fig. 1. Simulations along a fiber with conductivity coefficient σt of the intramural

slab thickness. Activation, repolarization times and APD are displayed by dashed-

dotted, continuous and dashed lines, respectively. Activation time has been shifted by

the value of the repolarization time at the stimulus site. The piecewise constant line

indicate the intrinsic APD of the cell layers. Left and Central Panels are related to an

epicardial stimulation assuming homogeneous and heterogeneous intrinsic properties of

the cellular membrane, respectively; the Rigth Panel refer to an endocardial stimulation

for the heterogeneous case

the faster propagation of the fronts in deeper layers where the fiber direction
rotates CCW relatively to the upper planes. The recovery isochrones on the
epi, intramural and endocardial planes exhibit a somewhat smoother shape and
slightly faster propagation compared with the excitation sequence. In particu-
lar, epicardial repolarization propagates across fibers faster than the excitation
sequence, yielding a progressively APD shortening across fibers, as shown by
Figs. 2,3. The APD patterns in both models are characterized by the following
features: i) The APD distributions on the epicardial and intramural planes, ex-
hibit a maximum located at the epicardial stimulation site or at the intramural
points firstly reached by the excitation front, respectively; the level lines, sur-
rounding these maxima, are elongated along the local fiber direction and display
dog-bone shaped profiles. This indicates that APD decreases more rapidly when
moving away from the center of the face in the cross-fiber direction than along
fibers. ii) On the intramural sections (from subepicardial to midwall ones), two
finger-shape valleys of decreasing APD values occur. These narrow valleys of
relative APD shortening are located in the regions where excitation isochrones
exhibit a dimple-like inflections. iii) On the endocardial plane the APD distribu-
tion displays a saddle point at the endocardial breakthrough; the APD increases
reaching a maximum when moving away from the breakthrough point in a di-
rection parallel to the endocardial fibers of 75o CW. On the other hand, on
the transmural sections displayed in Fig. 4 we see considerable differences be-
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tween the homogeneous and heterogeneous case. In both models the excitation
isochrones on the transmural section show the presence of returning pathways,
i.e. pathways that, starting from the epicardial stimulation site, proceed toward
the endocardium but, about midway of the wall thickness, return toward the epi-
cardial side. These pathways accelerate the propagation in epicardial areas where
the excitation proceeds mainly across fibers. Return pathways of repolarization
appear in the homogeneous slab whereas more complex recovery isochrone pro-
files are present in the heterogeneous model. In the heterogeneous model, the
APD pattern shows parallel level lines stretched horizontally as opposed to the
complex transmural APD pattern observed in the homogeneous slab. In planar
sections parallel to the epicardial face, excitation and repolarization sequences
and the spatial APD patterns elicited by endocardial pacing shared the same
qualitative features as those described above for epicardial pacing in both the
homogeneous and heterogeneous slab.

5 Conclusions

Our results show that, in spite of the homogeneous cellular membrane properties
(i.e., all individual cells have the same intrinsic transmembrane action potential),
the anisotropy of the media produces a spatial variation of the APD throughout
the slab and the APD distribution exhibits anisotropic patterns strongly corre-
lated with the excitation wave front motion and the front-boundary collisions.

The introduction of an intramural variation of the intrinsic cellular APD
yields excitation and repolarization sequences and APD patterns which, on lay-
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ers parallel to the epicardium, unexpectedly share the same main anisotropic
spatial features encountered in the homogeneous slab, although recovery times
and APDs exhibit a different range of values. The differences between the ho-
mogeneous and heterogeneous model remain confined transmurally for the repo-
larization and APD patterns while the excitation sequence does not change.

Anisotropic spatial variations of the APD along and across fibers were ob-
served experimentally in 2D myocardial laminae in e.g. [8] and on the epicardium
of dog hearts [3, 16]. We remark that simulation studies and experimental data
have shown that excitation return pathways, proceedings toward the pacing level,
have been observed for pacing sites located at any intramural level, from epi-
to endo-cardium. Our simulated results show that clear repolarization return
pathways are expected for the homogeneous slab.

In experimental studies in exposed and isolated dog hearts, the observed
transmural dispersion of APD in the left ventricular wall is 30 msec at most,
see e.g. [1]. Our unpublished experimental results confirm these findings, since
during ventricular pacing with cycle length of 350 or 400 msec we observed 15-
20 msec APD dispersion. In these preparations, the repolarization sequence was
qualitatively similar to the activation sequence. When the pacing site was epi-
cardial, both the excitation and the the repolarization ”wave front” returned
toward the epicardium in a transmural plane perpendicular to the epicardial
fiber direction. However, further studies are needed to determine whether these
findings occur consistently in varying experimental conditions. In this study, we
have considered simulated beats by a single stimulus, a condition that empha-
sizes the APD difference and dispersion. Thus, our results show that transmural
heterogeneities of APD cannot be detected from the epicardial pattern of the
APD distribution.
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Abstract. To investigate the quantitative abnormalities induced by
prior myocardial infarction (MI) on the whole electrical cardiac cycle,
body surface potential mapping was recorded in 144 patients with prior
MI and 75 healthy controls. QRS onset, offset and T-wave end were au-
tomatically determined from the averaged signal. Time integrals were
calculated for the QRS wave and the STT wave. In MI patient group
the average QRS and STT integrals showed strong negative correlation
on the body surface (r = −0.901, p < 0.001) in contrast to the positive
correlation in the control group (r = 0.285, p < 0.001). Sensitivity of an
inverted QRS / STT integral relation to detect MI was 79%, as opposed
to the sensitivity of the descriptive Minnesota code of 70%. Furthermore
the degree of inversion correlated with left ventricular ejection fraction
thus relating to the size of MI.

1 Introduction

Conventional electrocardiographic (ECG) criteria for diagnosing old myocardial
infarction (MI) rely on descriptive features of the initial QRS wave. Yet, the
sequentialdepolarization of the ventriclewould imply thatMI indifferent locations
ofthe leftventriclewouldmanifestatdifferenttimeperiodsoftheQRS.Furthermore,
MI inevitably affects also the repolarization. To determine the abnormalities
induced by MI on the whole electrical cardiac cycle, we quantitatively analyzed
the electrocardiograms registered by body surface potential mapping (BSPM).

2 Methods

Altogether 144 patients with at least 1 prior myocardial infarction in the hospi-
tal records were recruited. All had presented with typical chest pain followed by
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Table 1. Study population

Age (years) Left Ventricular Ejection Fraction (%) Female / Male (N)

Patients 61 ± 10 41.0 ± 9.9 27 / 117
Controls 52 ± 12 61.8 ± 7.3 19 / 56

elevation of the cardiac CK-MB enzyme or troponin T. All had angiographically
verified coronary artery disease and a local dysfunctional region in left ventricle,
determined by cineangiography (108 patients), or by echocardiography (36 pa-
tients), along with left ventricular ejection fraction (EF) (Table 1). The patients
were classified, on the basis of 12-lead ECG, as having a Q-wave myocardial
infarction (QMI) or a non Q-wave myocardial infarction (NQMI), according to
the Minnesota criteria 1-1 [1]. Of the patients 101 had QMI and 43 NQMI. As
controls were included 75 subjects without any history of heart disease or Min-
nesota Q-waves in 12-lead ECG. The Minnesota code indicated MI with 70%
sensitivity, and, by protocol definition, with 100% specificity.

BSPM with 120 unipolar leads covering the whole thorax, in addition to 3
limb leads, was recorded as reported previously [2]. Wilson’s central terminal
was used as reference potential.

The BSPM data were signal-averaged, and automatic identification of the
QRS onset and offset was performed after bi-directional high-pass filtering of the
depolarization wave [3]. T-wave end and apex were determined automatically,
as described earlier [4]. Integrals over QRS and STT (from J-point to the end of
T wave) were analyzed.

The average integral values in the MI patient and control groups were calcu-
lated for each lead. Scatter plot was constructed with the average QRS and STT
integrals on x– and y–axes in each lead location. Spatial correlation between
QRS and STT integrals was calculated, using Pearson correlation coefficient (r),
for the group average values and for each study subject separately.

3 Results

The average QRS integral correlated negatively with corresponding average STT
integral in the MI patient group (r = − 0.901, p < 0.001) (Fig. 1). In the
control group the average QRS integral correlated positively with the average
STT integral (r = 0.285, p < 0.001) (Fig. 2). In subgroup analysis respective
correlation was −0.904 for QMI patients (p < 0.001) and − 0.888 for NQMI
patients (p < 0.001).

In the analysis of each study subject separately, correlation between the QRS
and STT integrals was negative in 114 MI patients (79%) and positive in 30 MI
patients (21%). This correlation was negative in 24 controls (32%) and positive
in 51 controls (68%). Thus, the sensitivity of the inverted correlation in detecting
MI was 79% and the specificity was 68%.

The correlation of QRS and STT integrals was negative in 84 patients in
QMI patient group (sensitivity 83%) and in 31 patients in NQMI patient group
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Fig. 1. Scatter plot of average QRS integral values against STT integral values in each
BSPM lead in the MI patient group. Values are in μVms
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Fig. 2. Scatter plot of average QRS integral values against STT integral values in each
BSPM lead in the control group. Values are in μVms

(72% sensitivity). There was a weak but significant positive correlation be-
tween the relationship of QRS to STT integrals and the left ventricular EF
(r = 0.219, p = 0.009) in MI patients.

4 Discussion

The present study confirmed previous observations that the QRS and STT in-
tegrals are positively correlated in healthy controls [5]. Thus, the polarity and
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magnitude of the body surface potentials caused by depolarization and repolar-
ization of the ventricles are mainly concordant in healthy subjects. This normally
positive relationship of QRS and STT integrals is inverted in patients with prior
MI. This indicates that the abnormalities in ventricular depolarization and re-
polarisation in old MI are spatially concordant though the values of the integral
potentials are opposite. This close relationship of de– and repolarisation abnor-
malities in old MI is reflected as distinct line in the scatter plots whereas the
values in controls are dispersed. Of importance is that the negative correlation of
QRS and STT integrals is strong also in NQMI patients, suggesting that quan-
titative analysis of the QRS and STT deflections may detect MI in the absence
of conventional qualitative criteria. In the light of our findings, cardiac mortality
predicting ability of spatial QRS–T angle may be attributed to unrecognized MI
[6]. Spatial inversion of QRS and STT integrals might even hold potential for
risk stratification in post-MI patients, as does the angle between depolarization
and repolarization wavefronts [7].

When the inversion of QRS and STT correlation was applied as an indicator
of prior MI, the sensitivity of the method exceeded the sensitivity of the Min-
nesota code. The specificity fell behind the Minnesota code, which by definition
was 100% due to the prerequisite of absent Q-waves for inclusion of controls.

The degree of the inversion of QRS and STT in each patient, expressed
as correlation coefficient, showed a relationship with left ventricular EF. This
finding indicates that the degree of inversion may be associated with the size of
the MI.

5 Conclusions

In old myocardial infarction the ventricular depolarization and repolarization
wave integrals are spatially inversely correlated as opposed to positive corre-
lation in the healthy heart. The degree of inversion may relate to the size of
the infarction. A quantitative analysis of the inversion of ventricular depolariza-
tion and repolarization waves may be combined with other electrocardiographic
variables to improve detection of prior MI.
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Abstract. Numerical simulations of re-entrant waves in detailed ionic
models reveal a phenomenon that is impossible in traditional simplified
mathematical models of FitzHugh-Nagumo type: dissipation of the ex-
citation front (DEF). We have analysed the structure of three selected
ionic models, identified the small parameters that appear in non-standard
ways, and developed an asymptotic approach based on those. Contrary to
a common belief, the fast Na current inactivation gate h is not necessar-
ily much slower than the transmembrane voltage E during the upstroke
of the action potential. Interplay between E and h is responsible for the
DEF. A new simplified model emerges from the asymptotic analysis and
considers E and h as equally fast variables. This model reproduces DEF
and admits analytical study. In particular, it yields conditions for the
DEF. Predictions of the model agree with the results of direct numerical
simulations of spiral wave break-up in a detailed model.

1 Introduction

Contemporary detailed models of excitation propagation in heart tissue can re-
produce many important conduction pathologies, including transient propaga-
tion blocks. Such blocks are involved in generation, transformation and termina-
tion of re-entrant circuits, the importance of which for cardiac pathologies has
been recognized early[1]. In modern detailed models, the relevant phenomena
include break-up of spiral waves[2], meandering patterns of spiral waves[3],[4],
or spontaneous termination of re-entrant activity[5, 6]. Break-up of spiral waves
is thought to be a key mechanism of transition from less dangerous arrhythmia
to fibrillation[7, 8, 9]. Thus, it is important to understand, how such break-up,
or, more generally, a spontaneous transient excitation conduction block may
happen. The detailed mathematical models, in principle, answer this question,
in the sense that they can, more or less accurately, reproduce the phenomenon.
However, currently there is no other way to see how the possibility of conduc-
tion block changes with parameters but to repeat calculations, which may be
rather extensive. Situation is even worse if we want to know what changes in
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Fig. 1. Propagation block caused by temporary local suppression of excitability in (a,b)
the traditionally used simplified mathematical model (FitzHugh-Nagumo) and (c) in
a detailed mathematical model of human atrial tissue (Courtemanche et al.[17]). The
time and space in the simplified model are in arbitrary units; in the detailed model,
the time range is 600ms and space range is 600mm (artificially long for illustration
purpose, just to see the whole wave)

parameters are necessary to achieve a certain effect, such as a decrease or an
increase in the probability of conduction block in certain conditions in a certain
model, as the detailed models are not necessarily intuitive in that sense. Thus
the motivation of our study: is it possible to predict the conduction block in a
simpler way, without running complicated numerical simulations, say but using
an explicit analytical formula. The detailed equations describing heart tissue are
very complicated and do not to admit exact analytical solutions. Thus we must
speak about some simplifications and approximations of those models.

One such approach is well known under the name of slope-1 theory. It gives
simple criteria when a stationary re-entrant wave becomes unstable and leads to
alternans and break-up[10, 11]. This theory only works as long as its underlying
assumptions are true[12, 6], and the relevance of this model to human hearts is
a subject of discussions. We must stress, however, that in any case this theory
only predicts instability of stationary propagation, and whether this instability
will lead to stable alternans or to break-ups is quite another question.

There is an important class of simplified models of excitable tissues, origi-
nating from the works by FitzHugh[13] and Nagumo et al.[14]. We call this class
FitzHugh-Nagumo-type models. The defining features of this model is one fast
variable responsible for the front profile, usually associate with the transmem-
brane voltage, and bistability of the corresponding fast subsystem. This class is
simple enough to allow some analytical study[15, 16]. However, it appears that
for the purpose of studying transient propagation block, this type of model is
unsuitable. This is illustrated on fig. 1.

It shows what happens if an excitation wave meets a region with temporary
suppressed excitability in two different models, in a simplified model (panels a
and b) and in a detailed model of atrial tissue (panel c). Suppression of excitabil-
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ity in the simplified models was through replacement of the reaction term in the
activator equation with zero. In the detailed model, it was modelled by replacing
the fast sodium current with zero.

In panel (a), the excitability is restored early, before the excitation disap-
peared completely. Then the wave resumes propagation. In panel (b), the ex-
citability is restored a little later. By that time, the back of the wave caught up
with the front, and the excited region disappeared. When excitability is restored,
the propagation does not resume as there are not excited cells left.

Such simplified models lead to the popular intuitive understanding that a
break-up of an excitation wave occurs when the wavelength reduces to zero,
that is, the back catches up with the front[8].

However, this is not what really happens in detailed models. On panel (c),
excitability in the detailed model is restored long before the back of the excitation
wave reached the front. However, the wave does not resume propagating. Note
that while the front is being held back by the obstacle, it becomes smoother,
“dissipates”. The diffuse excitation front seems unable to resume propagation.

Our aim is to find the simplest way to explain, i.e. to build a mathematical
model, of this phenomenon. Our leading hypothesis is that a complete detailed
excitation model is not needed, and it can be reproduced in a much simpler model
as long as the key factors are included. This would validate our understanding
of what are the key factors. As we have seen, the traditional simplified models
are unsuitable for this purpose. So we need a new simplified model.

2 The Simplified Model: The Underlying Assumptions
and the Key Results

The New Simplified Model. We considered Hodgkin and Huxley[18], Noble[19]
and Courtemanche et al.[17] models, as three very different representatives of the
enormous variety of physiology based models of excitable systems, and identified
features common to all of them, in the hope that these features are reasonably
universal. We analysed what is large and what is small in these detailed models,
and what can be neglected for our purpose. Our purpose is to describe the
propagating front. The main player there is the fast sodium current, INa. In
asymptotic approaches, it is customary to involve consideration of relative speed
of dynamic variables. Typically the activation gate m is fast, the fast inactivation
gate h is slower and its dynamics, especially when dealing with propagation
block, are comparable to those of the transmembrane voltage E, and the slow
inactivation gate j (not present in Hodgkin-Huxley and Noble-1962 models, of
course) is the slowest. However, such considerations were not enough to describe
the front dissipation. It has also proved important that INa is much stronger
than other ionic currents, but not always, and only during the upstroke of the
action potential, whereas at other stages the “window” component of INa is
comparable or smaller than other currents. To properly represent this property
in the dynamic equations of the simplified model, we have to take into account
the “almost perfect switch” properties of the INa channels, i.e the fact that the
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INa ionic gates tend to close well in some ranges of the transmembrane voltage,
and the ranges of almost perfect closure of m and h overlap.

These considerations have lead us to a system of only two differential equa-
tions describing propagation of excitation, with transmembrane voltage E and
the fast inactivation gate h as the key dynamic variables.

Cm
∂E

∂t
= INa,max(E)jhθ(E − Em) + D

∂2E

∂x2

∂h

∂t
=

1
τh(E)

(θ(Eh − E) − h) (1)

where E is the membrane capacitance, INa,max(E) is the maximal fast sodium
current when all gates are open, j is the slow inactivation gate assumed almost
unchanged during the front, D is the voltage diffusion coefficient, τh(E) is the
characteristic time of the dynamics of the h-gate, Eh and Em are the switch
voltages of the h- and m-gates respectively (Em > Eh), and θ() is Heaviside’s
perfect switch function. This is opposed to, say, 21 equations in Courtemanche
et al. model. Some further simplification, in the form of replacing INa,max(E)
and τh(E) with constants, while retaining qualitatively correct behaviour of the
solutions, has allowed exact analytical solutions. The details of the solutions have
been described elsewhere[20, 21]. For our present purpose, the most interesting
result is the excitability, measured say by the local instant value of gate j at the
front,1 that is necessary for propagation of a front with a given speed c:

j =
Cm

τhINa,max
g

(
c
√

τh/D,
Eh − Emin

Em − Emin

)
. (2)

Here Emin is the pre-front value of the transmembrane voltage, and the dimen-
sionless excitability g is defined as a nonlinear function of the dimensionless front
speed

σ = c
√

τh/D

and the dimensionless voltage load parameter

β =
Eh − Emin

Em − Emin

as

g(σ,β) =
1 + σ2

(1 − β)β1/σ
. (3)

Figure 2 illustrates these results, in comparison with the traditional simplified
model. Panel (a) shows a typical behaviour of the front propagation speed in

1 To avoid confusion, we stress here that the terminology we adopt may be different
from other authors. Since in our approach gate j is considered as a slow variable,
almost unchanged during the front, it is classified as an excitability condition. That
is, it characterizes the ability for excitation, which is explicitly opposed to the vari-
ables E, m and h which change significantly during the front and thus represent
excitation process proper.
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Fig. 2. Some analytical results on excitation propagation fronts, all graphs in arbi-
trary units. (a) Dependence of the front propagation speed on the instant value of an
excitability parameter, in a FitzHugh-Nagumo-type model[15]. (b) Same, in our new
simplified model based on detailed equations[20]; here the excitability parameter j is
proportional to the product of the local value of INa conductivity, the slow inactivation
gate, and the transmembrane voltage relative to INa reversal potential. (c) Dissipation
of a front at a site with a temporary suppressed excitability and its failure to resume
propagation after the excitability is recovered, in our new simplified model, in a setting
similar to that on fig. 1

a traditional FitzHugh-Nagumo-type model, as a function of the instantaneous
local value of a slow “excitability” parameter. In that class of simplified models,
such parameters usually do not have a straightforward physiological connotation,
as there only one slow variable is to represent all slow variables of detailed
models at once. An essential feature of dependence shown on fig. 2(a) is that,
as the excitability parameter varies, the propagation speed can be arbitrarily
low, can be zero, and can even be negative, which corresponds to excitation
front turning into a recovery front. Panel (b) illustrates what stands instead of
this dependence in our new simplified model, where the excitability is varied via
parameter j with other parameters fixed. The key feature of this dependence
is that the excitability parameter given by equations (1,2) has a minimum as
a function of speed, so for the front to propagate, excitability should not be
less than a certain minimum jmin. For every value of excitability above that
minimum, there are two solutions in the form of stationary propagating fronts.
However, it appears that only the solution with the higher speed, shown with a
solid line, is stable, while the solution with the lower speed, shown with a dashed
line, is unstable [22]. Thus, a propagating front can have a speed no smaller than
a certain cmin.

The New Model Describes Dissipation of Fronts. Thus we deduce that if the
front, for any reason, is not allowed to propagate with a speed cmin or higher
and/or if the local instant value of the excitability parameter is below jmin, then
the stationary propagation would not be observed, and the only alternative is
the front dissipation, as in the simplified model, this corresponds to a complete
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closure of the INa gates and the evolution of the transmembrane voltage E is
described then by simply a diffusion equation.

This conclusion is confirmed by numerical simulations with the new simplified
model, which are shown on fig. 2(c). Here the setting is similar to that of fig. 1(c),
except now, to be more convincing, we did not use a complete block of excitability
in the left half of the medium, but, rather, temporary decreased it to slightly
(by 4.3%) below the critical value jmin. The excitability in the left half after
the temporary “block”, as well as all the time in the right half of the medium,
was slightly (by 8.7%) above jmin. As a result, the excitation front reached the
region with suppressed excitability, where it lost its sharp gradient, and after
the excitability recovered, the front did not resume propagation but continued
to spread diffusively. That is, it has shown exactly the same qualitative properties
as observed in the full model (fig. 1c). So, our simplified model does take into
account all the key factors involved in the front dissipation.

Application of the Propagation Condition to the Analysis of the Breakup of a
Re-entrant Wave. So, our simplified model gives a necessary condition of propa-
gation, in terms of the local excitability and the pre-front voltage. If the condition
is not satisfied, the front cannot propagate and dissipates. Figure 3 shows a frag-
ment of a simulation of a re-entrant wave in two-dimensional medium with the
kinetics of Courtemanche et al. model[17], which is described in more detail in
our recent work[5].

The top row shows distribution of the action potential, as it would be seen by
an ideal optical mapping system (dark represents higher voltage). Propagation
of a part of the re-entrant wave is blocked by the refractory tail of its previous
turn. The wave then breaks up into two pieces, and the net result is there are now
three free ends of excitation waves, i.e. three potential re-entry cores in place of
one. The second row shows the profile of the transmembrane voltage along the
dotted line on the upper panels. One can see first a reduction of the amplitude of
the upstroke, and then the loss of the sharp upstroke altogether. The third row
shows the profile of the factor of the INa due to the fast gates; the sharp peaks
represent the excitation front. And the bottom row shows the profile of the slow
gating variable j, which in our interpretation represents, together with the pre-
front voltage, the conditions for the front propagation. The instant maximum of
this profile is at the front, as the excitability restores before the fronts and falls
after the front. The first shown moment t = 4100ms is when the excitability
at the front drops down as low as the critical value, which is designated by a
dotted horizontal line on the bottom row panels. If the front went slower at
this moment, then excitability ahead of it would recover and it could propagate
further. However, as predicted by our simplified model, the front speed cannot
decrease below a certain minimum. So the front cannot slow down and “wait”
until the excitability is recovered, but has to run further towards even a less
excitable area. As a result, the conditions of propagation are no longer met, and
the front dissipates, which is seen as the loss of the sharp gradient of E(x), or,
clearer, as disappearance of the peak of the m3(x)h(x) profile. After that, even
though excitability j recovers above the critical level, the front does not resume.
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Fig. 3. Analysis of a break-up of a re-entrant wave in a two-dimensional (75× 75mm)
simulation of a detailed model[17]. Top row: snapshots of the distribution of the trans-
membrane voltage, at the selected moments of time (designated above the panels). The
other three rows: profiles of the key dynamic variables (designated on the left) along
the dotted line shown on the top row panels, at the same moments of time. Dotted line
here represents jmin

Note that this analysis concerns only interaction of the front with the tail
of the previous wave, and has nothing to do with the back of the new wave.
Front dissipation occurs long before the wavelength reduces to zero. Of course,
a break-up of a wave implies that its length vanishes eventually, but it will be
long after the crucial events have already happened. Thus, the fate of the front
here is determined already at the first snapshot, although it is not at all obvious
in the voltage distribution.

3 Conclusions

Summary of Results

– For understanding the mechanisms of transient propagation blocks, such as
occurring in re-entrant arrhythmia, it is important to bear in mind that the
propagation speed in all circumstances has a positive lowest critical value,
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which is determined by the properties of the fast sodium channels. If the
front is not propagated fast enough, say because excitability ahead of it
recovers slower after the previous wave, then the front dissipates. After dis-
sipation, the excitation front will not resume propagation even if excitability
is restored.

– We have suggested a new simplified model that reproduces this behaviour of
the excitation front, thus confirming the main physiological processes respon-
sible for it. The simplified model is based on properties of the fast sodium
current. Specifically, the dissipation of the excitation front is related to the
simultaneous and mutually dependent dynamics of the transmembrane volt-
age E and the fast INa inactivation gate h.

– This particular mechanism of the propagation block is confined to the front,
and has nothing to do with the wave back. That is, the propagation is blocked
long before the wavelength reduces to zero.

– Apart from the transient propagation block, the new simplified model should
be helpful in other cases concerning the margins of normal propagation.
This includes initiation of excitation waves, which is the opposite of the
propagation block, and the re-entrant waves around functional blocks, which
imply juxtaposition of successful and unsuccessful propagation.

– FitzHugh-Nagumo type caricatures, although successfully describing success-
ful propagation, fail to correctly describe propagation failure as it happens
in reality or in detailed models. Thus using such models to describe any
processes involving initiation of waves, block of propagation, or re-entrant
waves, may misrepresent most important features. The new simplified model
or its analogue should be used instead.

Limitations and Further Work. Model (1) has been obtained via a number of
simplifications: freezing of slow processes, adiabatic elimination of fast processes,
replacement of INa gates with perfect switches and replacement of INa,max(E)
and τh(E) with constants. Besides, the detailed models themselves are simplified,
e.g. they are based on Hodgkin-Huxley description of Na channels rather than
the more recent Markovian description. Validity of the results is therefore subject
to one’s ability to justify the simplifications and show that they do not alter the
main properties. This is an ongoing work. We have shown recently that a formal
asymptotic limit in Noble-1962 model naturally leads to (1) as a fast subsystem,
and reproduces a single-cell action potential with a good accuracy [23]. We have
also demonstrated that a similar asymptotic limit works in Courtemanche et al.
model, and system (1) obtained in this way gives a reasonable estimate of the
critical conditions of front dissipation, which can be further improved by taking
into account the dynamics of m-gates instead of adiabatically eliminating them
[24]. A Markovian, non-Hodgkin-Huxley description of INa involves a radically
different description of the Na channels. Inasmuch as the old Hodgkin-Huxley
description was reasonably accurate phenomenologically, one can expect that the
main features should maintain; however, an ultimate answer to that can only be
obtained via a further detailed study.
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Abstract. We describe numerical simulations of spiral waves dy-
namics in the computational model of human atrial tissue with the
Courtemanche-Ramirez-Nattel local kinetics. The spiral wave was ini-
tiated by cross-field stimulation protocol, with and without preliminary
“fatigue” by rapid stimulation of the model tissue for a long time. In
all cases the spiral wave has finite lifetime and self-terminates. However
the mechanism of self-termination appears to depend on the initiation
procedure. Spiral waves in the “fresh” tissue typically terminate after a
few rotations via dissipation of the excitation front along the whole of
its length. The dynamics of spiral waves in “tired” tissue is character-
ized by breakups and hypermeander, which also typically leads to self-
termination but only after a much longer interval of time. Some features
of the observed behaviour can not be explained using existing simplified
theories of dynamic instabilities and alternanses.

1 Introduction

In this paper we continue to investigate the behaviour of re-entrant waves of
excitation in a computational model of human atrial tissue, which we started
in [1]. The model showed spontaneous break-ups and self-termination of spiral
waves, which can have relationship to mechanisms underlying atrial fibrillation,
a condition that adversely affects quality of life and bears potential life threat.
So despite all the limitations coming from simplified geometry, homogeneity and
isotropy of our model, these results were suggestive and promising, and war-
ranted further investigation. The mechanisms of breakups and self-termination
of spirals in our computational model are far from understanding. In this pa-
per we extend the study to different types of initial conditions and to different
methods of analysis. The purpose of considering different initial conditions is to
assess their effect on the re-entry behaviour. In the analysis of results of simu-
lation, we assess, in particular, the feasibility of the “slope-one” theory, started
by Nolasco and Dahlen [2] and given much prominence recently [3–6]; we refer
to it as Nolasco-Dahlen (ND) theory for brevity. This theory has been tested
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and confirmed on some simplified models and some experimental preparations,
although its universal applicability so far remains questionable [6]. In this paper
we deliberately avoid discussing the basis of the theory, but restrict ourselves to
purely phenomenological analysis of the results of simulations. Thus the struc-
ture of the paper is as of an experimental paper, with Section 2 dedicated to the
methods, Section 3 to the results, and Section 4 to their discussion.

2 Methods: 2D Model of Human Atrial Tissue

Excitation Kinetics of Cells. We used the human atrial action potential model
by Courtemanche et al. [7] (CRN model) incorporated into a two-dimensional
reaction-diffusion system of 21 partial differential equations.

Tissue Model. We modelled the tissue as a continuous, homogeneous, isotropic,
monodomain syncytium, i.e. in terms of “reaction+diffusion” system of equa-
tions, with diffusion term only in the equation for the transmembrane voltage,

du
dt

= f(u) + D∇2u

where u = (E,m,h, . . . )T ∈ R
21 is the vector of the dynamic variables of the

model, and D = diag(D, 0, 0, . . . ) is the matrix of diffusion coefficients, of which
only the diffusion coefficient of the transmembrane voltage E is nonzero. This
simplified description focuses on the excitation and propagation kinetics and al-
lows interpretation in terms of numerous theories applicable to this kind of equa-
tions, while ignoring the additional complications due to geometry, anisotropy
and heterogeneity of a real atrium. The diffusion coefficient of the transmem-
brane voltage D = 0.03125mm2/ms was set to give a plane wave velocity of
≈ 0.265mm/ms. Different D produce identical behaviour, only on a different
spatial scale. The problem was posed in a square 75mm × 75mm with no-flux
boundary conditions for E.

The Numerical Scheme. The partial differential equations were solved using ex-
plicit Euler scheme in time, with time step Δt = 0.1ms, and simplest second-
order approximation of the Laplacian space step Δx = 0.2mm.

Initial Conditions. Spiral waves in this study were initiated by the cross-field
stimulation method. This is a widely used method for initiation of spiral
waves, as it is relatively easy to implement both in the experiments and in the
simulations.Our numerics used one or more of plane waves (conditioning waves)
initiated to propagate from right to left of the medium; then at a certain moment,
when the recovery tail of a wave is somewhere in the middle of the medium, we
excited the lower half of the medium by instantly raising the transmembrane
voltage by 100mV in the lower part of the medium. This creates a new excitation
front in the right half of the medium where it has recovered but not in the left
which is still refractory. This broken excitation front quickly develops into a
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spiral wave. This is different from the phase distribution method whereby
one-dimensional calculations are used to record values of all dynamical variables
in a plane periodic wave of a high frequency, U(φ), where U ∈ R

21 is the
vector of dynamic variables of the model and φ ∈ R mod 2π is the phase within
the period, and then the initial conditions are set as u(x, y, 0) = U(φ(x, t)),
where φ(x, y) is the distribution of the phase, chosen by will, e.g. corresponding
to Archimedean spiral; thus the name of the method. The phase distribution
method was used in our previous work [1] as it allowed quick generation of a spiral
wave with the desired position of the core in the medium, and promised freedom
from artificial inhomogeneities introduced by initial conditions. In present work,
we used the cross-field stimulation as more realistic physiologically, and to see
to what extent the behaviour of the spiral waves depends on the details of the
initial conditions.

As in the case of phase-distribution method, the cross-field method can be
implemented not only with ‘fresh’ medium but also with a ‘tired’ medium. The
fresh medium was where the function U(φ) and the conditioning waves are
obtained by propagating a single wave through the medium, which prior to that
was in the steady equilibrium ‘resting state’. For the tired medium, this wave
was the last wave in the series of a long (30 s long) series of rapid (period 300ms)
plane waves. There are ‘superslow’ variables in the model, which do not fully
recover within a 300ms excitation cycle; these changes accumulate over time
which effectively amounts to change in the model parameters. Relevance of such
changes in a particular model to any physiological condition is debatable, see [8]
and references therein. Yet, these changes are relatively minor, and provide an
example of physiologically feasible parameter variations, perhaps the best of
what is achievable within the framework of this particular model and without
involving further experimental data.

Thus, we had two sets of numerical experiments, with two different types of
media, ‘fresh’ and ‘tired’. This can be compared to two sets of simulations with
similarly ‘fresh’ and ‘tired’ media but with phase-distribution initial conditions
described in [1].

Processing of Results. We depict the front propagation patterns as snapshots
of the excitation field and by isochrone maps. Snapshots show distribution of
the fields of E(x, y, t), the transmembrane voltage, and oi(x, y, t), the inactiva-
tion gate of the transient outward current, as functions of x, y at fixed selected
values of time t. On each snapshot, the red component of the colour of a point
corresponds to the value of E, with zero corresponding to E = −100mV and
maxium corresponding to E = 50mV, and the green component of the colour
corresponds to the value of oi, with zero corresponding to oi = 0 and the maxi-
mum corresponding to oi = 1. By virtue of the excitation kinetics, the green and
red colours are almost complement of each other. In black and white printed
version, the regions with higher E (excited, systolic regions) are darker than
the regions with higher oi (unexcited, diastolic regions). Isochrone maps are
collections of isochrones, i.e. instant positions of wavefronts or wavebacks, de-
fined as fragments of isolines E(x, y, t) = −40mV which satisfy condition of
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oi(x, y, t) > 0.5 (wavefronts) or oi(x, y, t) < 0.5 (wavebacks) for a given value of
t. Correspondingly, the wavebreak points, and spiral wave tips are defined as
internal ends of these fragments, i.e. intersections of isolines E(x, y, t) = −40mV
and oi(x, y, t) = 0.5. The moment of self-termination of the arrhythmia was
defined as the moment of ultimate disappearance of all tips; this inevitably lead
to eventual return of the medium to the uniform resting state when last ex-
citation waves reach boundaries. Restitution curves are usually defined as
dependence of the action potential duration (APD) of a cell on the preced-
ing diastolic interval (DI) of that cell. In our numerics, we defined APD as
a continuous interval of time t when E(x, y, t) > E∗ at a given point (x, y) and
for a certain fixed E∗; correspondingly, DI is the interval when E(x, y, t) < E∗.
We have tried different values of E∗.

3 Results

3.1 Fresh Medium

We have made 7 simulations of spiral waves stimulated in the fresh medium,
different in the initial position of the spiral wave with respect to the medium
boundaries. This allowed us assess the effect of boundaries on the spiral wave
dynamics. We describe in detail one simulation of this series. Figure 1 shows a
collection of snapshots, from the moment of initiation by cross-field stimulation,
t = 0, with an interval of 100ms up to the frame t = 1900ms, after which the
spiral wave self-terminates, i.e. excitation fails to re-enter in the medium and
eventually decays (not shown). As can be seen from the movie, but not necessary
from the set of still pictures, the key event leading to the self-termination happens
at around t ≈ 1400ms and is characterized by block of propagation, at which
the wavefront “dissipates” along a long line, stretching almost up to the upper
boundary of the medium.

To visualize this and other important events, we employed the method of
isochrone maps. The relationship between the snapshot and isochrone represen-
tation is illustrated by fig. 2, where a front isochrone, a tip and a back isocrhone
are shown for a selected snapshot from the previous series.

The isochrone maps, i.e. collection of such isochrones for a selected intervals of
times, separately for fronts and backs, are shown on fig. 3. Whereas propagation
of fronts is more or less smooth everywhere where the fronts propagate at all, the
evolution of the back is highly irregular, and this irregularity has a tendency to
increase with time. This is a display of the “dynamic inhomogeneity” discussed
in [1]. At times the irregularity reaches a stage where visual propagation of the
back is opposite to the propagation of the previous front at that point. In extreme
cases, one can see islands of recovered medium before the overall back of the wave
reaches that site. One such episode can be seen on the panel of back isochrones
for t = 600 . . . 900ms in the left top quarter. This is the effect of “triggered re-
covery” [1,9]. The inhomogeneity of the propagation pattern of wavebacks, with
the relative homogeneity of the wavefronts, is an evidence of high variability of
the action potential durations. This inhomogeneity affects propagation of next
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Fig. 1. (color online) Development of a spiral wave, initiated by cross-field stimulation
in the fresh medium. Shown are snapshots with interval 100 ms, starting from 0 ms, in
the “reading order” (left to right, then top to bottom)

Fig. 2. (color online) Alternative representations of an excitation pattern. Left: snap-
shot t = 300 ms from fig. 1. Right: the same, represented by isoline E = −40 mV,
the ‘isochrone’. The dot on the line is the tip of the spiral, defined by the additional
condition oi = 0.5. This point splits the isoline to two parts, front (red) and back (blue)

wavefronts either by slightly delaying or speeding them up, and from time to time
by blocking next fronts, which leads to sudden displacement of the functional
block of the spiral wave, which results in the highly irregular, “hyper-meander”
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[0, 300] [300, 600] [600, 900] [900, 1200] [1200, 1500] [1500, 1800]

Fig. 3. (color online) Isochronal maps corresponding to fig. 1. Time interval between
isochrones is 10 ms. Fronts are on upper panels, backs are on lower panels. Bold points,
blending together into thick black lines, are the free ends of the isochrones, i.e. tips of
the spirals

trajectory of the spiral tip. This is likely to happen where the speed of recovery
wave is slow, which shows as dense location of back isochrones. The above men-
tioned key event of front propagation block is clearly seen on front isochrone map
t = 1200 . . . 1500ms as a long almost straight trajectory of the wavetip at which
the wavefronts retract rather than protrude; this is a visual effect of wavefronts
actually dissipating when reaching that line. This event is preceded by a density
of wavebacks, which is seen on back isochrone maps of t = 900 . . . 1200ms (from
approx. 1000ms on) and t = 1200 . . . 1500ms (up until approx. 1300ms), which
occurs right at the site where subsequent fronts are blocked.

A distinct feature of the above discussed simulation is a relatively short
lifetime of the spiral wave, 1776ms. Other 6 simulations with different ini-
tial positions of the spiral showed similarly short lifetimes, from 1732ms to
2732ms, with average and standard deviation of 1900 ± 367ms for all 7
simulations.

3.2 Tired Medium

Figures 4 and 5 show evolution of a spiral wave in a selected simulation with
a tired medium. The lifetime of this spiral wave was 6992ms, i.e. much longer
than those in a fresh medium. Figure 4 shows snapshots in the first 3400ms of
that interval and fig. 5 shows isochrones in the first 1500ms of it.

As in the fresh medium, there is prominent dynamic inhomogeneity caused by
variability of APD and reflected by irregular patterns of the waveback isochrones.
However, this time the irregularity seems less, although we didn’t measure it by
any formal measure. As a result, the dynamic imhomogeneity does not develop
a complete block of the propagation and instead shows localized block of prop-
agation, i.e. a breakup of the wave. The analysis of the record of the wavebreak
points in the numerics of figs. 4,5 shows that the breakups lead to generation of
new pairs of spiral waves which occur both nearly in the same place and each
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Fig. 4. (color online) Spiral wave in a tired medium. Shown are snapshots with interval
100 ms, starting from 0 ms
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[0, 250] [250, 500] [500, 750] [750, 1000] [1000, 1250] [1250, 1500]

Fig. 5. (color online) Isochronal maps of initial 1800 ms of evolution of a spiral wave
initiated by cross-field method in a tired medium. Notations are the same as on fig. 3

exist for about one period before annihilating, in the intervals t = 770 . . . 874ms
and t = 1132 . . . 1258ms (although at different definition of wavebreaks this
could perhaps be considered as one pair of spirals which existed for two rota-
tions).

Evolution in other two simulations with the tired medium showed similar
types of evolution and similarly large lifetimes of the spirals, from 4034ms
to 9924ms with average and standard deviation of 3 simulations 6983
±2945ms.

3.3 De-facto Restitution Properties

The ND theory and its variations aim to describe precisely the kind of pro-
cess, when the action potential duration (APD) variability in response to the
history of excitation causes instability of regular propagation of waves. This
theory is based on the relationship between the diastolic interval (DI) and sub-
sequent APD. To test how much this theory can be applied to our model, we
have recorded values of transmembrane voltage, Ej(t) = E(xj , yj , t), for a reg-
ular grid of 13 × 13 points (xj , yj), j = 1 . . . 269 regularly spread through the
medium. We have tried different values of E∗ for defining APD and DI. Fig-
ure 6 shows a typical electrogram in relation to voltages E∗ = −33mV, corre-
sponding to m̄(E∗) = 1/2, E∗ = −67mV, which corresponds to h̄(E∗) = 1/2,
and E∗ = −50mV which is the average of the two, i.e. in the middle of the
fast Na current excitation window. We see that the high variability of action
potential profiles makes any of these voltages not ideal for determining APD
and DI, although, arguably, E∗ = −67mV looks more sensible than the other
two.

The graphs of APD vs DI for the three selected values of E∗ are shown
on fig. 7. We believe that even bearing in mind all possible sources of er-
rors, these graphs are an evidence that DI is not a good predictor of APD
at all.
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Fig. 6. An electrogram recorded at point with coordinates (35.2, 35.2) mm from the
left top corner in the numerics described in figs. 1 and 3. Horizontal lines show the
levels at which detection of APD and DI was attempted
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Fig. 7. Graphs of APD vs DI for electrograms at 289 points in the numerics shown
on figs. 1 and 3, for different values of E∗. Top row: fresh medium. Bottom row: tired
medium

4 Discussion

We have found that the difference in the initial condition does not qualitatively
change the behaviour of spiral waves in this model of atrial tissue. As in [1], we
see that the evolution of spiral waves is dominated by such factors as developing
dynamic inhomogeneity, including triggered recovery, which causes localized or
massive dissipation events of wavefronts, which in turn lead to hypermeander
of the tip of the spiral, spontaneous generation of new spirals, and eventually
to self-termination of all re-entrant activity. The new study confirms that the
time to self-termination in a tired medium is much longer than in the fresh
medium.



302 I.V. Biktasheva, V.N. Biktashev, and A.V. Holden

This finding seems to suggest a possible mechanism of proarrhythmic action
of tissue fatigue. However, it is not certain how our “numerical fatigue” relates to
physiology. So the theoretical aspect, the mechanism of the development of the
dynamic inhomogeneity, may be even more important. The ND theory explains
the dynamic inhomogeneity based on the assumption that an APD is determined
by the immediately preceding DI. This works for some models [5]. However, this
assumption does not seem to bear any resemblance to the processes happening
in this model. Perhaps, correct predictors of APD can be found based on asymp-
totic analysis of the realistic excitability models, rather than phenomenology of
simplified models. Also, there is no obvious explanation in ND theory to the dif-
ference between the behaviour in fresh and recovered medium, perhaps because
that theory does not even aim to explain the process of propagation block, only
development of a dynamic instability.

An interesting theoretical mechanism of finite lifetime of re-entrant waves was
suggested long ago by Krinsky [10], within an axiomatic “tau-model”, which
has some properties that are relevant to cardiac tissue but not captured by
FitzHugh-Nagumo type simplified models. Although the mechanism of finite
lifetime re-entry of [10] is based on static inhomogeneity of tissue properties and
thus not directly applicable to our case, it still can offer some food for thought.
A new hope on further progress in understanding the phenomena described in
this work comes from recent results on asymptotic properties of realistic models
which make them different from traditional simplified models [11,12].
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Abstract. One mechanism for the onset of arrhythmias is abnormal
impulse initiation such as ventricular ectopic beats. These may be caused
by abnormal calcium (Ca2+) cycling. The Luo-Rudy model was used to
simulate the dynamics of intracellular Ca2+ ([Ca2+]i) handling and the
initiation of ectopic beats in virtual ventricular myocytes and tissues.
[Ca2+]i in the reduced Ca2+ handling equations settles to a steady state
at low levels of intracellular sodium ([Na+]i), but oscillates when [Na+]i
is increased. These oscillations emerge through a homoclinic bifurcation.
In the whole cell, Ca2+ overload, brought about by inhibition of the
sodium-potassium pump and elevated [Na+]i, can cause autorhythmic
depolarisations. These oscillations interact with membrane currents to
cause action potentials that propagate through one dimensional virtual
tissue strands and two dimensional anisotropic virtual tissue sheets.

1 Introduction

Cardiac arrhythmias such as ventricular tachycardia and fibrillation are a major
cause of morbidity and mortality in developed countries. Ca2+ overload in car-
diac myocytes is well known to be a cause of delayed afterdepolarisations, where
an action potential is followed by triggered activity [1, 2, 3, 4, 5]. This is a distinct
arrhythmogenic mechanism from autorhythmicity, where spontaneous depolari-
sations occur from the resting membrane potential and do not necessarily require
a preceding action potential [1]. Here we use virtual ventricular myocytes and
tissues to investigate the role of Ca2+ in causing such autorhythmicity.

Normally, regular membrane potential (V ) oscillations (the action potentials)
in ventricular myocytes drive regular intracellular calcium ([Ca2+]i) oscillations,
but under conditions of sarcoplasmic reticulum (SR) Ca2+ overload, Ca2+ is
spontaneously released from the SR [3], causing [Ca2+]i oscillations indepen-
dently of V oscillations. These [Ca2+]i oscillations can be arrhythmogenic if
they interact with the cell membrane and produce transient inward currents that
depolarise V past threshold. The transient inward currents that respond to spon-
taneous SR Ca2+ release could be the Na+-Ca2+ exchange current INaCa and/or
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the Ca2+-activated non-specific current Ins(Ca) [6, 7]. Propagation of these au-
torhythmic depolarisations into surrounding tissue is dependent on the size of
the autorhythmic focus and on the cell-cell coupling within the tissue.

One mechanism of inducing Ca2+ overload is block of the Na+-K+ pump
current INaK, as seen during ischemia [8] and digitalis intoxication [9, 10] for
example. The consequent build up of [Na+]i reduces the effectiveness of the
Na+-Ca2+ exchanger at removing Ca2+ from the cell and intracellular Ca2+

concentrations become elevated [9].
Mathematically, the conditions that lead to this type of autorhythmicity can

be identified using bifurcation analysis: at a bifurcation the qualitative behaviour
of a system changes, from a single stationary solution to oscillatory activity, for
example. Several previous studies have used mathematical models of atrial and
Purkinje fibre cells and tissues to investigate autorhythmicity brought about by
abnormal Ca2+ handling. Varghese & Winslow [11] examined the stability of the
equations describing the Ca2+ subsystem in the DiFrancesco-Noble model [12]
of the cardiac Purkinje fibre. Using a clamped voltage between -40 and -100 mV
and constant [Na+]i (a step justified by the slow dynamics of [Na+]i compared
to [Ca2+]i), they found a single stationary solution for [Ca2+]i at low values
of [Na+]i. As [Na+]i was increased, a supercritical Hopf bifurcation led to an
unstable fixed point and stable periodic [Ca2+]i oscillations. These oscillations
were shown to alter regular V oscillations in the complete model [13]. Winslow
et al. [14] showed that inhibition of the Na+-K+ pump in an atrial cell model
[15] resulted in [Na+]i overload and [Ca2+]i oscillations driving V oscillations.
When a compact subset of around 1000 [Na+]i overloaded cells were placed
in the centre of a two-dimensional (2-D) tissue composed of 512 × 512 cells,
the depolarisations could propagate out into the surrounding quiescent tissue.
Recently, Joyner et al. [16] examined how a spontaneously depolarising focus
leads to excitation of sheets of atrial and ventricular cell models, while Wilders
et al. [17] examined the effects of tissue anisotropy on propagation from an
autorhythmic focus in a virtual ventricular sheet.

We used the Luo-Rudy dynamic (LRd00) model of the ventricular myocyte
[18] to: (i) identify bifurcations that lead to autorhythmicity; (ii) induce [Ca2+]i
overload and ectopic beats in single myocytes and (iii) characterise the conditions
required for propagation of these beats in one dimensional (1-D) and 2-D virtual
ventricular tissues.

2 Numerical Methods

LRd00 models the ventricular action potential using an ordinary differential
equation (ODE) that describes the rate of change of V :

dV

dt
=

−1
Cm

Iion , (1)

where Cm = 1μF cm−2 is membrane capacitance and Iion is the sum of ionic
currents through the cell membrane. Iion is composed of voltage gated channel
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currents modelled using Hodgkin-Huxley formalism [19], as well as currents car-
ried by other channels, pumps and exchangers. Ionic concentrations are modelled
using the ODE:

d[B]
dt

=
−IB · Acap

V olC · zB · F
, (2)

where [B] is the concentration of ion B, IB the sum of the currents carrying ion B,
Acap is capacitive membrane area, V olC the volume of the compartment whose
concentration is being updated, zB the valency of ion B and F is the Faraday
constant. Parameter values and equations describing the ionic currents can be
found in [18, 20, 21, 22, 23]. Equations describing gating variables were solved us-
ing the scheme of Rush & Larsen [24], and equations of the form (1) and (2) using
an explicit Euler method. The source code, written in C/C++, can be found at
http://www.cwru.edu/med/CBRTC/LRdOnline/LRdModel.htm. Two variants
of the model were used: one describing the Ca2+ handling system, the other
describing a single myocyte. These were incorporated into 1-D and 2-D tissues.

2.1 Calcium Handling Equations

We reduced the LRd00 equations to those describing the Ca2+ handling system
by applying a V clamp and using an adiabatic approximation where [Na+] and
[K+] remain constant [11, 25]. V -dependent gates take on their steady-state val-
ues and, as V , [Na+] and [K+] are constant, any ionic currents that contribute
only to the rate of change of these variables were removed from the system.
The LRd00 equations were therefore reduced to four ODEs describing the rate
of change of total [Ca2+] in the network SR, junctional SR, intracellular and
extracellular spaces. [Ca2+]i is dependent on [Na+] via INaCa and on V via the
driving force of the membrane currents and the V -dependent gates of the L-type
Ca2+ channel (gates d and f) and the T-type Ca2+ channel (gates b and g).
[Na+]i and V were therefore treated as control parameters.

2.2 Modified Single Myocyte

The complete LRd00 virtual endocardial cell was modified to induce [Ca2+]
overload: 100% INaK inhibition, Ins(Ca) increased twofold, [CSQN]th decreased
to 7.0 mM, and the time constants of activation and inactivation of Irel,jsrol in-
creased to 5 ms. In all Ca2+ handling and single myocyte integrations, a time
step of dt = 0.01 ms was used.

2.3 One- and Two-Dimensional Tissues

A 15 mm 1-D tissue strand composed of equal fractions of endocardial, midmy-
ocardial and epicardial tissue [22], and a 60 × 60 mm 2-D anisotropic endocardial
tissue sheet were used to investigate the propagation of autorhythmic depolari-
sations. In the 1-D tissue, the rate of change of V is given by a reaction-diffusion
equation:
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∂V

∂t
= Dx

∂2V

∂x2
−

1
Cm

Iion , (3)

and in the 2-D tissue:

∂V

∂t
= Dx

∂2V

∂x2
+ Dy

∂2V

∂y2
−

1
Cm

Iion , (4)

where D is a diffusion coefficient, and x and y denote directions perpendicu-
lar to and parallel to fibre axis, respectively. No-flux boundary conditions were
imposed at the edges of each geometry. Ca2+ overloaded tissue, composed of
modified LRd00 myocytes as described in Sect. 2.2, was located on the endocar-
dial border of the 1-D strand or the centre of the 2-D sheet. Diffusion coefficients
of Dx = 0.06 mm2 ms−1 and Dy = 0.1 mm2 ms−1 were used, giving conduction
velocities for solitary plane waves of 0.4 and 0.54 m s−1 in the x and y directions,
respectively. A time step of dt = 0.02 ms and a space step of dx = dy = 0.1 mm
were used in both 1-D and 2-D simulations. Computation time was decreased
when running 2-D simulations by tabulating the values of V -dependent expo-
nential functions for values of V between −100 and 100 mV with a resolution of
0.1 mV. Linear approximation was used for functions where V fell between the
tabulated values.

3 Bifurcations in the Calcium Handling Equations

We determined behaviour of the Ca2+ handling equations by numerical integra-
tion over a period of 120 s, where [Ca2+]i either settled to a stationary stable
state or oscillated. Fig. 1A is a bifurcation diagram showing stationary stable
states and amplitudes of oscillations, where V is clamped at -90 mV and [Na+]i is
the bifurcation parameter. The periods of the oscillations are shown in Fig. 1B.
As [Na+]i is increased to ∼16.1 mM, large period oscillations emerge. The period
of the oscillations decreases rapidly as the bifurcation parameter is further in-
creased, indicative of a homoclinic bifurcation rather than the Hopf bifurcation
identified in the DiFrancesco-Noble Purkinje fibre model by Varghese & Winslow
[11]. Fig. 1C shows [Ca2+]i oscillations, with V = −90 mV, [Na+]i = 20 mM and
initial Ca2+ concentrations as in the normal LRd00 model ([Ca2+]i = 79 nM
at t = 0 ms). In this case, minimum and maximum [Ca2+]i is 171 and 928 nM,
respectively, giving an amplitude of 757 nM and a period of 1194ms. Fig. 1D
shows the dynamics of the system in [Na+]i-V parameter space for values of
[Na+]i between 0 and 20 mM and for values of V between −110 and −40 mV.

4 Whole Cell Calcium and Voltage Oscillations

In Sect. 3 we showed that, under certain conditions, [Ca2+]i in LRd00 can oscil-
late independently of membrane potential oscillations. By unclamping the volt-
age, it is possible to observe whether these [Ca2+]i oscillations can drive transient
inward currents strong enough to take the membrane potential past threshold
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Fig. 1. Bifurcation analysis of the calcium handling equations in LRd00. A: Bifurca-
tion diagram with V clamped at −90 mV, showing steady state values and oscillation
amplitudes of [Ca2+]i. For low values of [Na+]i, [Ca2+]i settles to a steady state. Oscil-
lations emerge when [Na+]i is increased to ∼16.1 mM. B: The periods of the oscillations
shown in A. As oscillations emerge the period is large, then decreases rapidly as [Na+]i
is further increased. C: [Ca2+]i oscillations with V clamped at −90 mV and [Na+]i
at 20 mM. D: [Ca2+]i dynamics in [Na+]i-V parameter space. Dynamics are classified
according to behaviour during the first 120 s of integration, and can either oscillate or
settle to a steady state

to induce autorhythmic depolarisations. That is, we can observe whether the
[Ca2+]i oscillations can drive V oscillations.

[Na+]i was clamped at 20 mM, a value that results in [Ca2+]i oscillations in
the Ca2+ handling system at LRd00 resting V of approximately −88 mV (see
Fig. 1D). [K+]i was clamped at 125 mM [11]. Integration of this modified LRd00
model revealed that [Ca2+]i oscillations drive V oscillations through the action of
transient inward currents. Fig. 2A shows these autorhythmic depolarisations oc-
curring during the first 10 s of integration. The cell initially depolarises at around
t = 3.34 s, with the action potential having an upstroke velocity of 184mVms−1,
a peak V of 28 mV and an action potential duration (APD90) of 192 ms. Figs. 2B
and 2C show the transient inward currents that cause V to increase past thresh-
old. When INaCa is operating in forward mode, Ca2+ is extruded from the cell
and Na+ is brought in at a ratio of 1:3, and consequently the net current is
inward (i.e. depolarising). Ins(Ca) carries both Na+ and K+ and so net Ins(Ca)



Calcium Oscillations and Ectopic Beats 309

Fig. 2. Autorhythmic activity in a single modified LRd00 myocyte. A: [Ca2+]i oscilla-
tions (dotted line) interact with the cell membrane, resulting in repetitive autorhythmic
depolarisations (solid line). Both INaCa (B) and Ins(Ca) (C) are transiently inward, de-
polarising currents immediately before the depolarisation. In B and C, currents are
shown as solid lines, V as dotted lines. Note that currents have been calculated for
1 cm2 of membrane, and that negative current amplitudes indicate inward currents

is dependent on the sum of both these component currents. Under physiological
conditions, the Na+ current carried by Ins(Ca) is a depolarising inward current,
while the K+ current is a hyperpolarising outward current. Immediately before
the depolarisation, both INaCa (Fig. 2B) and Ins(Ca) (Fig. 2C) become relatively
large depolarising inward currents in response to Ca2+ release from the SR.
This is in contrast to the other inward currents – the fast Na+ current and the
L- and T-type Ca2+ currents – that increase in amplitude only in response to
the depolarisation (not shown). Block of either INaCa or Ins(Ca) causes a reduc-
tion of the membrane response to spontaneous SR Ca2+ release, and V remains
sub-threshold: the transient inward current is only large enough to take V to
threshold when both INaCa and Ins(Ca) are included.

5 Propagation

Propagation of an action potential from a localised area into the surrounding
tissue is dependent on several factors. In 1-D and 2-D tissues, both the size of the
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focus from which the action potential propagates and the cell-cell coupling within
and between the autorhythmic and quiescent tissues are important. Additionally
in 2-D tissues, the degree of anisotropy present and the curvature of the wavefront
both affect propagation.

A minimum of 3.4 mm of Ca2+ overloaded tissue located on the endocar-
dial border was required to produce repetitive propagation of action potentials
through the 1-D heterogeneous tissue strand. Fig. 3A is a space-time plot show-
ing these depolarisations emerging from the autorhythmic focus and propagat-
ing along the strand during the first 5 s of integration. The initial depolarisation
propagates with a wavefront velocity of 0.4m s−1, taking 28.8 ms to reach the
epicardial border from the edge of the autorhythmic focus. The period of the
depolarisations in the autorhythmic focus is ∼1072 ms during the first 5 s, de-
creasing with time presumably as ionic concentrations accumulate or deplete
(due to Na+-K+ pump inhibition) and affect membrane conductance. As no-
flux boundary conditions are used, the liminal length (the minimum amount of
excited tissue located in the middle of a strand required to produce bi-directional
propagation) is 6.8mm. Here we used a spatially homogeneous diffusion coeffi-
cient of Dx = 0.06 mm2 ms−1. However, alterations in cell-cell coupling (modelled
as the diffusion coefficient, D), either within the autorhythmic focus, within the
quiescent tissue, or at the interface of the two, will affect the behaviour of these
tissues and, therefore, the liminal length required for propagation [26].

In the 2-D anisotropic endocardial tissue, repetitive propagation of autorhyth-
mic depolarisations from a central circular focus occurred with a minimum focus
radius of 5mm, giving a liminal area of 79 mm2. This radius is larger than the
3.4 mm in the 1-D strand as the excitatory current provided by the autorhythmic
focus must distribute over a larger area due to the curved border of the 2-D focus
[27], even though increasing anisotropy has been shown to decrease the liminal
area [17]. With LRd00 cell dimensions of 100 × 22 μm [18], the liminal area
is composed of nearly 36,000 cells. This is in comparison to the liminal area of
∼1,000 cells found by Winslow et al. [14] using an atrial cell network model. Fig-
ures 3B-E show snapshots of the propagation of a single action potential through
the tissue at times 910, 935, 960 and 1120 ms, respectively. As well as the direct
effects of cell-cell coupling (i.e., the passive electrical properties of the tissue),
the geometry of the wavefront also affects propagation [27]: the wavefront here
is not a simple plane wave but is curved due to the circular autorhythmic focus,
and this convex wavefront curvature acts to reduce conduction velocity. Thus
the shape of the autorhythmic focus (and therefore the shape of the propagating
wavefront) affects propagation. Additionally, the degree of anisotropy will affect
conduction velocity through this mechanism, as the wavefront is less convex in
the direction of lower cell-to-cell coupling, with this discrepancy increasing as the
wave propagates (compare, for example, Figs. 3B and 3C). Both these mecha-
nisms cause a decrease of conduction velocity; as the wavefront geometry changes
with distance from the focus, wavefront conduction velocity will also change.
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Fig. 3. Propagation of autorhythmic depolarisations in virtual tissues. A: Space-time
plot showing propagation from a 3.4 mm autorhythmic focus located on the endocardial
border of a 15mm heterogeneous LRd00 virtual tissue strand. B-E: Snapshots showing
propagation from an autorhythmic focus 5 mm in radius, located in the centre of a 60
× 60 mm 2-D anisotropic endocardial LRd00 virtual tissue sheet, at t = 910, 935, 960
and 1120ms, respectively

6 Conclusions

We have shown that Ca2+ overload, brought about via inhibition of the Na+-K+

pump, can cause propagating autorhythmic activity in virtual ventricular my-
ocytes and tissues of the LRd00 family. [Ca2+]i in the Ca2+ handling equations
settles to a steady state at low levels of [Na+]i, but oscillates when [Na+]i is in-
creased; these oscillations emerge via a homoclinic bifurcation. In the whole cell,
the [Ca2+]i oscillations interact with the membrane currents INaCa and Ins(Ca)

to cause autorhythmic depolarisations that, if spatially localised, can propa-
gate through 1-D heterogeneous virtual tissue strands and 2-D homogeneous
anisotropic virtual tissue sheets. The shape of the 2-D focus and the degree of
tissue anisotropy affect both the liminal area of the focus and the conduction of
the wavefront through the 2-D tissue.
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Abstract. Mathematical modeling of cardiac mechanics could be a use-
ful clinical tool, both in translating measured abnormalities in cardiac
deformation into the underlying pathology, and in selecting a proper
treatment. We investigated to what extent a previously published model
of cardiac mechanics [6] could predict deformation in the healthy left
ventricle, as measured using MR tagging. The model adequately pre-
dicts circumferential strain, but fails to accurately predict shear strain.
However, the time course of shear strain proves to be that sensitive to
myofiber orientation, that agreement between model predictions and ex-
periment may be expected if fiber orientation is changed by only a few
degrees.

1 Introduction

Adequate pump function of the heart relies on the function of many underlying
systems, such as initiation of cardiac contraction through electrical depolarisa-
tion, exchange of oxygen, nutrients and waste products through the coronary
circulation, and directioning of the blood flow through the heart valves. Mal-
function of each of these systems leads to deterioration of pump function.

Many cardiac pathologies (e.g. ischemia, disturbed conduction) are reflected
in abnormal deformations of the cardiac wall [11, 13, 14]. Clinically, deformation
patterns of the heart can be assessed with MR tissue tagging, creating opportu-
nities in determining the underlying pathology. However, the relation between
the change in deformation pattern and the underlying pathology is not straight
forward. A mathematical model, capable of predicting the forward relation be-
tween pathology and deformation, could, if used in an inverse analysis, be a useful
clinical tool in determining causes of the pathology and a proper treatment.

Several models describing deformation in the heart have been proposed [2, 5,
7, 8, 12]. None of these models has already been used as a diagnostic tool. Even
the first step towards this application, the complete prediction of deformation in
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the normal healthy heart, has not been made. In this study we investigate the
capability of a previously published three-dimensional finite element (FE) model
of cardiac mechanics [6], to predict the deformations of the myocardial wall of
the healthy left ventricle.

2 Methods

2.1 Assessment of LV Wall Strain Using MR Tagging

In four healthy subjects (age 28 to 33 years) deformation patterns of the heart
were assessed noninvasively using MR tagging. The experiments were performed
at the University Hospital Maastricht, in a 1.5 T scanner (Gyroscan NT, Philips
Medical Systems, Best, The Netherlands), with imaging parameters set as fol-
lows: echo time 10 ms, inter-tag distance 6 mm, slice thickness 8 mm, tag-width
2.5 mm, field of view 250 mm and image size 256 × 256 pixels. Images were
acquired using ECG-triggering on the R wave during breath hold for a period
of about 20 s. Five parallel short-axis slices of the heart were imaged, evenly
distributed from apex to base (figure 1). Series of line-tagged images from the
same slices were obtained, with time intervals of about 20 ms, using spatial
modulation of the magnetization [1].

From the MR-images, displacement maps were determined [13]. Next, the
Green-Lagrange strain tensor was determined with respect to begin ejection,
and written in components with respect to a local cylindrical coordinate system.
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Fig. 1. Left: long-axis MR slice demonstrating the positions of the five short-axis slices,

imaged in the LV of the heart, numbered from 1 (apex) to 5 (base). Right: illustration

of the ellipsoidally shaped model of left ventricular mechanics showing helix (αh) and

transverse (αt) fiber angles. The fiber angles at a point P are defined from projection

of the fiber direction ef on planes spanned by the local transmural er, longitudinal el

and circumferential ec direction



316 S. Ubbink et al.

Strain components were averaged in transmural direction, with weight factors
distributed according to a gaussian curve with the top at the midwall posi-
tion. Finally, these midwall values were averaged in circumferential direction,
yielding the average circumferential (Ecc) and radial (Err) normal strain, and
circumferential-radial shear strain (Ecr) for each of the five slices.

To relate timing of the MR images to phases in the cardiac cycle, for each
moment in each slice the midwall radius was determined. Using the interslice
distance, the volume enclosed by the ventricular midwall was estimated. Differ-
entiation of this volume with respect to time yielded an estimation of mitral
inflow and aortic outflow. Zero crossings of this signal defined moments of tran-
sition between phases in the cycle.

2.2 Computation of LV Wall Strain Using the FE Mechanics
Model

The finite element (FE) model of LV mechanics has been described before [6]. In
short, a thickwalled geometry is assumed with endocardial and epicardial sur-
faces consisting of confocal ellipsoids. The helix angle αh and transverse angle αt

are used to describe the base-to-apex component and the transmural component
of the myofiber direction, respectively (figure 1). In the model, conservation of
momentum is solved:

∇ · σ = 0 (1)

with σ representing the Cauchy stress, composed of a passive component (σp)
and an active component (σa) along the myofiber direction ef :

σ = σp + σaefef (2)

Passive material behaviour is modeled nonlinearly elastic, transversely isotropic
and virtually incompressible. The active stress σa is assumed to depend on time
elapsed since depolarization, sarcomere length and sarcomere shortening velocity.
Depolarization is assumed to be simultaneous.

Several simulations were performed. In the simulation, indicated with ref, set-
tings of αh and αt were adopted from Rijcken et al. [9, 10], who determined my-
ofiber orientation by optimization for a homogenous distribution of fiber strain
during ejection (figure 2). In view of reported sensitivity of wall mechanics to
fiber orientation [2, 4], sensitivity of computed strains to settings of αt and αh was
investigated. Sensitivity to the choice of αt was assessed in simulations trans-2

and trans+2, where αt was shifted by −2o and +2o, and simulations trans*0.75

and trans*1.25, where αt was multiplied by 0.75 and 1.25. Similar variations
were applied to the helix angle αh: in simulations helix-5 and helix+5 αh was
shifted by −5o and +5o, whereas in simulations helix*0.9 and helix*1.1 αt was
multiplied by 0.9 and 1.1 (figure 2). The variations were chosen such, that the
resulting distributions of the fiber angles were within the range of experimental
data.
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3 Results

3.1 LV Wall Strain Assessed with MR Tagging

Images were acquired over a time span of 600 ms. Since the cardiac cycle time was
about 750 ms, no strains were determined for the last part of the filling phase and
the initial part of the isovolumic contraction phase. Measured circumferential
strain Ecc was similar in all four hearts. Typically, Ecc was similar in all five
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slices (figure 3). Measured shear strain Ecr was similar in 3 out of 4 hearts.
Typically, Ecr decreased equally in all five slices until one third of the ejection
period (figure 3). Thereafter, Ecr continued decreasing near the apex (slice 1),
remained about constant near the equator (slice 3), and increased near the base
(slice 5). Throughout the isovolumic relaxation phase, Ecr increased in all slices.
During the first part of filling, Ecr converged towards the state at begin ejection
in all slices.

3.2 LV Wall Strain Computed with the Reference Model

Time courses of strains Ecc and Ecr with respect to begin ejection, as computed
in the ref simulation at lattitudes corresponding to slices 2 to 4 are shown in
the left panel of figure 4. To facilitate comparison, the experimental data are
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redrawn in the right panel. The model predicts a virtually identical time course
of Ecc for all three slices. Ecc increases during filling, decreases slightly during
isovolumic contraction, decreases further during ejection, and remains nearly
constant during isovolumic relaxation. The pattern is similar to the measured
pattern, including the overall increase in strain from Tem, the moment the last
MR image was acquired, to begin ejection.

In the model, Ecr is about constant during filling, with a small decrease for
slices 2 and 3, and a small increase for slice 4 towards the end of filling. During
isovolumic contraction, Ecr increases in slices 2 and 3 and decreases in slice
4. During the first part of ejection, Ecr increases similarly for the three slices.
Thereafter, Ecr values decrease and diverge. During isovolumic relaxation, Ecr

values increase towards the values at the beginning of filling.
Computed Ecr is quite different from measured Ecr. In particular, the model

predicts a strong change of Ecr from Tem until begin of ejection, while variation
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in the experiment is negligible. During the first part of ejection, changes in Ecr

in model and experiment are opposite.

3.3 Sensitivity of LV Wall Strain to Fiber Orientation

Simulations trans+2 en trans-2 illustrate that a change in offset in αt predom-
inantly affects the common change in Ecr in all three slices during isovolumic
contraction and the beginning of the ejection (figure 5; top panels). A change in
the slope of the longitudinal course of αt (simulation trans*0.75 and trans*1.25)
affects the differences in Ecr between the slices during isovolumic contraction
(figure 5; bottom panels).

A change in offset of the helix angle distribution (simulations helix+5 and
helix-5) changes the range in Ecr during ejection (figure 6; top panels) moder-
ately. A change in slope of the transmural course of αh (simulations helix*0.9

and helix*1.1) has a small effect on the distribution of changes in Ecr during
isovolumic contraction (figure 6; bottom panels).

4 Discussion

Left ventricular wall strains, as predicted by an existing model of left ventricular
mechanics, were compared with strains, derived from MR tagging measurements
in healthy humans. Differences between measured and computed time course of
Ecc in the equatorial region of the LV were small, but the differences in Ecr

appeared significant. This is not surprising, since the change of Ecc is closely
related to the change in cavity volume, while Ecr is related to the internal
equilibrium of forces in the LV wall. Discrepancies in Ecr occurred predominantly
between the moment of end of measurement Tem and about mid ejection. In
the model, Ecr changed strongly during isovolumic contraction, when the LV
transforms from the passive diastolic to the active systolic state. Apparently,
mechanical equilibrium in the anisotropic activated tissue involves large forces
in the passive matrix, and consequently a large deformation. In contrast, in the
experiment, Ecr at Tem was about equal to that at the beginning of ejection.
During the period from Tem until the end of isovolumic contraction, Ecr was
not measured. However, Ecr at Tem may be considered representative for strain
at end diastole: during the last part of the filling phase no shear deformation
is to be expected since the tissue is passive and hence virtually isotropic. This
expectation is supported by the time derivative of measured Ecr near Tem, which
is about zero. Although no strains were measured during isovolumic contraction,
the data suggest that no significant deformation of the passive matrix occurs
during this phase either.

The parameter variations show that the extent to which the passive matrix
is involved in force transmission is very sensitive to the orientation of the muscle
fibers. The influence of the helix angle αh and the transverse αt on shear Ecr is
illustrated in figure 7. As a consequence of the base-to-apex component of fiber
orientation, expressed by αh, shortening of subendocardial myofibers would cause
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Fig. 6. Time course of the midwall Ecr for slices 2 (×), 3 (+) and 4 (�) as predicted by

LV mechanics model according to simulations helix+5, helix-5, helix*0.9 and helix*1.1,

representing various settings of the helix fiber angle

a clockwise apical rotation, when viewing the apex in apex-to-base direction.
Shortening of subepicardial myofibers would cause a counterclockwise apical
rotation. In the absence of an endo-to-epi component of fiber orientation, this
shear load can only be counteracted by the passive myocardial tissue. Because the
passive tissue has a low stiffness, mechanical equilibrium is reached at large shear
strains Ecr. If, however, myofibers cross over between inner and outer layers of
the wall, as expressed by a nonzero αt, then these active, relatively stiff myofibers
participate in the transmission of the shear load as well, and shear deformation
is reduced. The role of the transverse angle has been identified before [2], but no
realistic prediction of LV wall shear was obtained in that study.

Our study has its limitations. Strains are averaged in circumferential and
radial direction, which reduces noise but also removes information on strain gra-
dients in these directions. Circumferential averaging is in line with the rotational
symmetry of our model of LV mechanics. Probably computed shear strains are
less sensitive to geometry [4] than to timing of depolarization of the LV wall [6]
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Fig. 7. Schematic illustration of the influence of helix angle αh and transverse angle

αt on transmural shear in a cylindrical model of the LV. In absence of a transverse

angle (a), shortening of the myofibers (- - -) would cause a clockwise apical rota-

tion of the endocardium (b) and a counterclockwise rotation of the epicardium (c). In

the commonly used apex-to-base view of short-axis images, this results in a positive

circumferential-radial shear (d), i.e. the angle between line elements originally oriented

in circumferential (ec) and radial (er) direction will become less than 90◦. This shear

is counteracted by a negative circumferential-radial shear, as a result of the negative

transverse angle in the apical part of the ventricle (e). The final shear (f) depends on

the balance between the two effects

or passive shear stiffness. While the latter aspects remain to be investigated, we
expect the sensitivity of shear strain to myofiber orientation to persist.

In literature, other models of the cardiac mechanics have been proposed
[5, 7, 12], but none of them yielded an accurate representation of measured shear
strains. Discrepancies were attributed to simplifying orthotropic passive be-
haviour to transversely isotropic behaviour [5], but sensitivity of the computed
deformations to the choice of the passive material model was small [12]. Also,
it was suggested that active cross-fiber stress development should be incorpo-
rated into the models. Indeed, introduction of active cross-fiber stress affected
end-systolic shear strains significantly, but agreement with experimental values
was not obtained [12].

The present study suggests that the main shortcoming in the above models
lies in an unrealistic setting of myofiber orientation, in particular in neglect-
ing the transmural component of myofiber orientation, expressed by a non-zero
transverse angle. With histological sectioning techniques, fiber angles are ob-
tained with an accuracy of ±10◦. When using magnetic resonance diffusion ten-
sor imaging, accuracy is about ±6◦ [3]. Our sensitivity study shows that the
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reliability of experimental data is too low to be able to yield reliable predictions
of LV wall strain.

5 Conclusion

It is concluded that (1) the previously published three-dimensional mathematical
model of cardiac mechanics [6] adequately predicts circumferential strain, but
fails to accurately predict shear strain, (2) the time course of shear strain is
very sensitive to the choice of the myofiber orientation, in particular to the
choice of the transverse angle, and (3) agreement between model predictions
and experiment may be expected by a change of the fiber orientation by only a
few degrees.
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Abstract. In this article, we present a framework to estimate local my-
ocardium contractility using clinical MRI, a heart model and data as-
similation. First, we build a generic anatomical model of the ventricles
including muscle fibre orientations and anatomical subdivisions. Then,
this model is deformed to fit a clinical MRI, using a semi-automatic
fuzzy segmentation, an affine registration method and a local deformable
biomechanical model. An electromechanical model of the heart is then
presented and simulated. Data assimilation makes it possible to estimate
local contractility from given displacements. Presented results on adjust-
ment to clinical data and on assimilation with simulated data are very
promising. Current work on model calibration and estimation of patient
parameters open up possibilities to apply this framework in a clinical
environment.

1 Introduction

The integration of knowledge from biology, physics and computer science makes
it possible to combine in vivo observations, in vitro experiments and in silico

simulations. From these points of view, knowledge of the heart function has
greatly improved at the nanoscopic, microscopic and mesoscopic scales [15, 18].

Due to the limitations of medical imaging, modelling capabilities and com-
putational power, the validation of heart models with human in vivo data and
furthermore their use in clinical applications are very challenging. We present
in this paper a framework aiming at overcoming these difficulties by directly
combining modelling of the heart, cardiac function estimation and parameter
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adjustment. The detailed application is the estimation of local contractility in
the myocardium from displacements measured in medical images.

The 5 components presented in this paper are: medical imaging techniques
to observe the heart in vivo, building a generic anatomical heart model, equa-
tions used to simulate the cardiac electromechanical behaviour, adjustment of
a generic heart model to patient anatomy, and data assimilation method to es-
timate local contractility. We emphasise in each of these sections the advances
made and the difficulties encountered.

2 Observations: Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a successful and promising modality but
it remains difficult to use, and is seldom used outside major research centres. A
particular challenge in Cardiac MRI is that the heart is a moving organ, in a mov-
ing environment (breathing). This restricts the resolution that can be obtained,
and often leads to inconsistent data, making subsequent analysis challenging.

2.1 Anatomical Imaging

Black-Blood Imaging is characterised by the suppression of the signal from
flowing blood. This gives a good visualisation of the myocardium, which is of
great interest for our modelling purpose. Unfortunately, due to the pre-pulse
and the inversion time, black-blood imaging is essentially a single slice sequence
for each breath-hold. However, new methods are emerging to allow multi-slice
imaging.

Bright-Blood Imaging on the contrary generates high signal intensity for
blood and can be used for dynamic (cine) images of a small number of slices in
each breath-hold. Therefore, bright-blood acquisitions allow both morphological
and functional assessment. A major drawback however is that delineating the
epicardium remains difficult due to the poor contrast between the heart and
the lungs. 4D images with bright blood are becoming available to provide ap-
proximately isotropic resolution. These sequences usually have inferior temporal
resolution and contrast to 2D dynamic sequences.

2.2 Functional Imaging

Global Cardiac Function Analysis. The quantification of ventricular vol-
umes, myocardial mass and ejection fraction using MRI are both accurate and
reproducible in the hand of experienced users. However, the time required for
acquisition and analysis of MR images hampers the introduction of cardiac MR
into routine clinical use. Cardiac MR examinations are frequently more than one
hour, and involve numerous breath-holds, which add to patient discomfort.

Fractional k-space filling methods or view-sharing strategies enable the imag-
ing time to be considerably reduced without substantial loss of image quality and
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resolution. However, these techniques are mainly used for 2D imaging. The ma-
jor issue with multiple 2D imaging is that the coverage of the ventricles requires
multiple breath-holds. Inconsistencies in the different breath-hold positions can
lead to errors in image interpretation.

3D multiphase single breath-hold imaging methods appear to be a promising
alternative for functional imaging [21]. Nevertheless, compromises had to be
made in terms of image quality, spatial and temporal resolutions.

Regional Cardiac Function Analysis. Ejection Fraction is a global parame-
ter that assesses the status of the cardiac function with great efficiency. However,
it is not specific enough for myocardial efficiency and contractility. The study
of wall deformations provides more insights on the mechanical contraction of
the heart. Tagging is a well-known method to track local deformations of a
“printed” grid as it follows the heart contracting. It enables parameters such as
twist, strain and strain rate to be derived. The extraction of motion is based on
models or registration techniques [5]. Although accurate, it is time consuming
and suffer from the low spatial resolution of tags. More recently, the develop-
ment of harmonic phase (HARP) and displacement encoding stimulated echo
(DENSE) methods makes it possible to quantify the displacement of each mov-
ing pixel inside the myocardium. These techniques though are currently limited
to 2D displacements.

The direct relationship between myocardial motion and contractility is diffi-
cult to estimate directly from the images. A model-based approach could thus
help to extract this hidden information.

3 Generic Anatomical Heart Model

The aim of this work is to provide a method for model-based analysis of the
previously described medical images. The idea is to adjust a biomechanical model
of the myocardium using these images in order to extract hidden parameters
useful for diagnosis, like local contractility. To achieve the simulation of cardiac
electromechanical activity, we need the myocardium geometry and the muscle
fibre orientations as anatomical inputs. The geometry gives the domain on which
to carry out computations. Fibre orientations are important for both the active
and passive behaviour of the myocardium.

The difficulty for this step is to obtain both types of information for a partic-
ular myocardium. On the one hand, geometry can be extracted from anatomical
medical images. But fibre orientations cannot be measured in vivo and current
diffusion tensor images of fixed hearts are still noisy compared to the smoothness
required by the electromechanical computations.

On the other hand, when fibre orientations are measured from dissection, the
geometry is often not available, or in so deformed shape that adjustment of the
model to the in vivo images becomes very challenging.

Due to these problems, our approach is to synthesise a generic anatomical
model of the myocardium, composed of a simple geometry, close enough to in
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vivo observations, and of synthetic fibre orientations, generated according to the
measurements available in the literature.

3.1 Heart Geometry

Left ventricle shape is close to a truncated ellipsoid, as shown by the use of
this shape for left ventricle volume estimation from 2D images [19]. The right
ventricle can also be approximated by a truncated ellipsoid. The generic heart
model geometry is defined using different parameters for the radii of the left and
right ventricles ellipsoids, their thickness and the height of the truncating basal
plane (see Fig. 1).

(a) (b) (c) (d)

Fig. 1. Generic anatomical heart model: equatorial short axis slice of (a) geometry, (b)

fibres orientation (elevation angle), (c) AHA division. (d) Resulting mesh with fibre

orientations (black segments) and AHA divisions (colours)

3.2 Heart Fibres Orientations

It is well known that muscle fibre orientations vary across the myocardial wall.
Most diffusion tensor imaging and dissection analysis observed an elevation an-
gle (angle between the fibre and the short axis plane) varying from +90o on
the endocardium to −90o on the epicardium [11]. We analytically defined the
model fibre orientation to follow a linear variation between these two values, this
orientation being in the short axis plane at mid-wall.

3.3 Cardiac Anatomical Divisions

Accurate calibration, estimation and analysis of the model is made easier by
subdividing it into different anatomical regions. Generating the model makes it
possible to analytically divide it into the 17 regions of interest proposed by the
American Heart Association (AHA) [4].

3.4 Myocardium Mesh

From the anatomical image, a triangulated surface is extracted using the march-
ing cubes algorithm. This surface is used to create a tetrahedral mesh with the



Cardiac Function Estimation from MRI Using a Heart Model 329

INRIA GHS3D software1. Finally, fibre orientations and subdivisions are as-
signed to the mesh using rasterization, see details in [24]. The resulting mesh is
presented Fig. 1d.

4 Cardiac Muscle Biomechanics

Modelling the myocardium behaviour is difficult because of its active, non-linear,
anisotropic nature. Several constitutive laws were proposed for the active and
passive properties of the myocardium [15, 18].

4.1 Myofibre Active Constitutive Law

A constitutive law of the electrically-activated myofibres was proposed by Bestel-
Clément-Sorine [3]. Whereas most modelling endeavours rely on heuristic consid-
erations [2, 8, 12], this law is based on a multi-scale approach taking into account
the behaviour of myosin molecular motors, and the resulting sarcomere dynamics
is in agreement with the sliding filament hypothesis introduced in [13]. Denoting
by σc the active stress and by εc the strain along the sarcomere, this law relates
σc and εc as follows:⎧⎨

⎩
τ̇c = kcε̇c − (α|ε̇c| + |u|)τc + σ0|u|+ τc(0) = 0
k̇c = −(α|ε̇c| + |u|)kc + k0|u|+ kc(0) = 0
σc = τc + με̇c + kcξ0

(1)

where u represents the electrical input (u > 0: contraction, u ≤ 0: relaxation).
Parameters k0 and σ0 characterise muscular contractility and respectively cor-
respond to the maximum value for the active stiffness kc and for the stress τc in
the sarcomere, while μ is a viscosity parameter.

The propagation of the action potential activating the muscle contraction can
be modelled by non-linear reaction-diffusion equations, see [10] and references
therein. However, the corresponding numerical computations are costly, and in
particular make a combined electromechanical data assimilation procedure well
out of reach. Hence so far we have mostly considered simplified activation pat-
terns such as uniform activation (in space) or a planar wave travelling from apex
to base.

4.2 3D Model of the Myocardium

The above active constitutive law was used within a rheological model of Hill-
Maxwell type [6], as depicted in Fig. 2a. The element Ec accounts for the con-
tractile electrically-activated behaviour governed by (1). In addition, an elastic
material law is considered for the series element Es, while Ep is taken viscoelastic.
Based on experimental results, the corresponding stress-strain laws are assumed
to be of exponential type for Ep [26], and linear for Es [20].

1 http://www-rocq.inria.fr/gamma/ghs3d/ghs.html
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Fig. 2. (a) Hill-Maxwell rheological model. (b) Aortic valve model mechanism. (c)

Formulation as a double contact problem, dashed: relation (2), solid: regularised

This rheological model is compatible with large displacements and strains
and led to a continuum mechanics description of the cardiac tissue [7]. A study
and simulations of a simplified 1D model derived from this continuum mechanics
model are detailed in [6].

4.3 Modelling the Blood

The blood inside each ventricle is modelled as a pressure / volume system. The
phases of the cardiac cycle (isovolumetric contraction, ejection, isovolumetric
relaxation, filling) are distinguished through coupling conditions between the
internal fluid and other parts of the cardiovascular system, namely the atrial
cavities and the external circulation. With Pv, Par and Pat denoting the blood
pressures in the ventricle, the artery, and the atrium, respectively, the ejection
occurs when Pv ≥ Par whereas the mitral valve opens when Pv ≤ Pat, see Fig. 2b.
Denoting by Q the outgoing flow, the coupling conditions can be formulated as
a (double) contact problem:⎧⎨

⎩
Q ≥ 0 when Pv = Par ejection

Q = 0 when Pat < Pv < Par isovolumetric phases

Q ≤ 0 when Pv = Pat filling

(2)

To avoid numerical difficulties, we used a regularised form of this function as
depicted by the solid line in Fig. 2c. External circulation is modelled by a Wind-
kessel model [17, 25], and blood flow coming from the atria by a pressure Pat.

5 Data Assimilation

The aim of data assimilation is to incorporate measurements into a dynamic
system model in order to produce accurate estimates of the current (and pos-
sibly future) state variables, parameters, initial conditions and input of the
model.
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(a) Reference σ0 (b) Estimated σ0

Fig. 3. Contractility (σ0) estimation from simulated data. The observations are the

displacements on the epicardial and endocardial surfaces and the variational technique

is used. The lower contractility region is well recovered by the data assimilation. The

scale is going from 1.102 (central zone with reduced contractility) to 2.102 (normal

contractility)

The symbol H denoting the observation operator, Y (t) the available measure-
ments and X(t) the model response, the general objective of data assimilation
is the minimisation of a cost function J performed over the set of parameters to
be estimated

J =
∫

I

‖Y (t) − HX(t)‖2
Ω

dt + penalty (3)

‖.‖Ω being a suitable norm associated with the problem formulation.
If I denotes the complete simulation time interval [t0, T ], the assimilation

technique is said to be variational and corresponds to an optimal control prob-
lem [9, 16]. If at each time step tk, I = [t0, tk], then the filtering technique is said
to be sequential [14].

Due to the complexity of the model and to observability considerations, esti-
mating all the quantities appearing in the complete electromechanical problem
is out of reach. Hence we focus on parameters that are crucial for medical pur-
poses in order to detect contraction troubles, in particular the parameters σ0

and k0.
Preliminary results in data assimilation have been presented in [23]. Results

presented here have been obtained using numerically simulated observations as-
similated with the complete 3D problem on a left ventricle model (Fig. 3).

Both sequential and variational techniques have been tested. Without con-
sidering the computational costs, the results given by the two methods are very
similar. The data assimilation process validation is the following:
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• The direct 3D problem is simulated with a given parameter σ0.
• Observations {Y (Mk, tp)}k,p are obtained using Y (Mk, tp) = HX(Mk, tp),

H being the chosen observation operator. Here the observations Y chosen
are the displacement vectors for the points located on the epicardium and
endocardium surfaces only.

• Starting from a given parameter σ̂0 different from the one used for the direct
simulation, the data assimilation is carried out.

For this simulation we chose σ0(M) constant across the wall, with a region
of different σ0, visible on Fig. 3a. The result of the estimation of σ0 is shown
in Fig. 3b. The data assimilation process, initialised with a homogeneous dis-
tribution, recovered the spatial variations of σ0 rather accurately. We used the
variational technique (four iterations), briefly described in Appendix.

6 Toward Patient-Specific Cardiac Function Estimation

We demonstrated in the previous section that we could estimate local contrac-
tility in the myocardium using sparse known displacements and a biomechanical
model, through data assimilation. Before being able to run this method on clin-
ical data, we first have to adjust the model anatomy to the 3D patient anatomy.

6.1 Patient-Specific Heart Anatomy

Automatic segmentation of the myocardium from MRI is still very difficult, as
the epicardium is not easily distinguished and the right ventricle is quite thin.
Our approach is to deform the generic anatomical model designed in Section 3
into the first 3D image of the sequence. This is done in three steps: segmentation
of the image blood pools, intensity-based registration for the affine adjustment
and deformable model-based segmentation for local deformations.

As the clinically used MR sequences produce relatively homogeneous blood
pool intensity, one can semi-automatically segment the ventricular blood pools
using a combined boundary-based and regional-based fuzzy classification method
[1], in order to ease the registration step.

Then, an automatic affine (15 parameters) registration algorithm is applied
from the segmented image to the blood pools from the model geometry, using
the cross correlation as similarity measure.

Finally, local adjustment is done with a deformable biomechanical model [24],
using the affine transformation computed previously for initialisation. We use
a Houbolt semi-implicit time integration which gives better results for large
deformations, as the semi-implicit part regularises the way the mesh deforms.
This allows precise adjustment of the generic anatomical model to the patient
image (Fig. 4), but still preserves surface smoothness and element numerical
quality: the aspect ratio mean (resp. standard deviation) on all the tetrahedra
of the mesh is 0.674 (0.109) for the original mesh, 0.650 (0.113) after affine
transformation, and 0.652 (0.114) after local deformation.
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(a) (b) (c)

Fig. 4. Patient-specific model three steps: (a) semi-automatic segmentation of the

blood pools (white contours), (b) affine registration between the model blood pools

(grey) and the segmentation (green), (c) local adjustment (orange wire-frame)from the

affine transform of the model (blue surface) using a deformable biomechanical model

To introduce prior information (e.g. fibre orientation) and make it easier to
compare the results between normal and pathological cases, it is very advanta-
geous to have correspondence between the reference mesh and patient-specific
meshes. Moreover, it is difficult to obtain good quality meshes directly from auto-
matically segmented medical due to the lack of smoothed boundaries. Therefore
we chose to build a generic model and then deform it into the patient-specific
data.

The whole process could be rather automated, as segmentation and regis-
tration parameters are robust with respect to the input images. The local de-
formation needs some visual control as no stop criterion has yet been imple-
mented. Nevertheless, from our experience, the parameters in these three steps
are quite constant across different images so it should be possible to minimise
user input, and the overall time is considerably inferior to manual segmentation
duration.

This patient-specific model can then be used for the data assimilation proce-
dure, but there are requirements on the observations used.

6.2 Data Assimilation Difficulties

Measurements used to apply the data assimilation in section 5 are displacements
in some points of the myocardium. The idea is to use the same data assimilation
procedure, with displacements from tagged MRI.

In data assimilation, difficulties arise from various areas, from the available
measurements to the complexity of the operator (type of variables, dimension,
rank) and the natures of the spaces and norms used. Current work on these dif-
ficulties should help design the best possible operators to achieve this parameter
estimation.

A difficulty is the invertibility of this observation operator because we want to
obtain the state X and the parameters from the observations using a generalised
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inverse of H. The analysis of this invertibility property (observability) is very
difficult in general both as regards surjectivity (whether there exists a set of
parameters and variables which leads to the given observation) and injectivity
(whether this set is unique).

Another difficulty in the choice of the observation operator lies in the fact
that the efficiency of the filtering technique is highly dependent on the noise.
To avoid adding noise in the different image processing steps, an idea could be
to formulate an operator as close to the measurements as possible. We could
consider the tagged images as the observation by simulating tagged images from
the model displacements. Recent full 3D tagged MRI could allow direct 3D
comparison [22].

7 Conclusion

This article presents a framework for automatic estimation of local contractility
from MRI and a model of the myocardium, along with initial results. We detailed
the medical images used and the information we can extract from it, the con-
struction of a generic anatomical model of the ventricular myocardium integrat-
ing muscle fibre orientations and its subdivision into segments, the biomechanical
modelling of the myocardium, and a data assimilation method to automatically
adjust the parameters of the model from known displacements.

We demonstrated the capability of such a framework, with also pointing out
the different difficulties at the theoretical and practical levels. The results so far
obtained by combining modelling and data are very promising. Precise calibra-
tion of the model before data assimilation is difficult and additional measure-
ments can help for this task. Progress in MRI, especially in flow measurements,
open up possibilities to obtain patient-specific boundary conditions.

For data assimilation, the current work is on observation operators, for in-
stance whether it can be written in a Lagrangian framework, as with tagged
MRI. Lagrangian approach is more easily dealt with, but it is not suitable for all
types of measurements, in particular for those directly related to the deformed
geometry. Many clinical observations (e.g. cine MRI and ultrasound) are indeed
more Eulerian in essence.

Future developments are planned to integrate different modalities. For in-
stance, with patients undergoing electrophysiology studies, electrophysiology
clinical data can be acquired, using XMR interventional imaging for instance.
Such datasets open up possibilities to also adjust electrophysiology models.
We point out that an interesting open problem concerns whether or not the
electrical activity may also be estimated from displacements measurements of
the myocardium. The proposed framework could give insights on this prob-
lem. Finally, coupling models and parameter estimation is valuable for inter-
vention planning and therapy testing, owing to the predictive capacity of
modelling.



Cardiac Function Estimation from MRI Using a Heart Model 335

Acknowledgements

The authors would like to thank for their collaboration the Cardiac MR Research
Group in Guy’s Hospital, London and the co-workers of the ICEMA collabora-
tive research actions2,3 funded by INRIA. Part of this work was done during
the Summer Mathematical Research Center on Scientific Computing and its
Applications (CEMRACS)4. The authors acknowledge grant support from EP-
SRC (M.S., O.C. and R.A.) and the use of software developed by the Epidaure
project5, INRIA.

References

1. R. Andriantsimiavona, L. Griffin, D. Hill, and R. Razavi. Simple cardiac MRI seg-
mentation. In International Society for Magnetic Resonance in Medicine Scientific

Meeting, volume 6, page 951, 2003.
2. T. Arts, P. Bovendeerd, A. van der Toorn, L. Geerts, R. Kerckhoffs, and F. Prinzen.

Modules in cardiac modeling: Mechanics, circulation, and depolarization wave. In
Functional Imaging and Modeling of the Heart (FIMH’01), number 2230 in Lecture
Notes in Computer Science (LNCS), pages 83–90. Springer, 2001.

3. J. Bestel, F. Clément, and M. Sorine. A biomechanical model of muscle contraction.
In Medical Image Computing and Computer-Assisted intervention (MICCAI’01),
volume 2208 of Lecture Notes in Computer Science (LNCS), pages 1159–1161.
Springer, 2001.

4. M. Cerqueira, N. Weissman, V. Dilsizian, A. Jacobs, S. Kaul, W. Laskey, D. Pen-
nell, J. Rumberger, T. Ryan, and M. Verani. Standardized myocardial segmenta-
tion and nomenclature for tomographic imaging of the heart. Circulation, 105:539–
542, 2002.

5. R. Chandrashekara, R. Mohiaddin, and D. Rueckert. Analysis of 3-D myocardial
motion in tagged MR images using nonrigid image registration. IEEE Transactions

on Medical Imaging, 23(10):1245–1250, 2004.
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Appendix

Variational data assimilation techniques are based on an iterative approximation
of the optimality condition ∇SJ(S∗) = 0, where S denotes the parameter set to
estimate, leading to an adjoint problem. If the problem to solve is (A), in the
absence of a penalty term in J , the adjoint state P is governed by (B):
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(A)

⎧⎨
⎩

Ẋ = F (X,S, t)
X(t0) = X0

S unknown parameters
(B)

{
Ṗ +

[
∂F

∂X

]t

P = Ht(HX − Y )
P (T ) = 0

The numerical algorithm used is the following:

• Start from a first guess S0 of the parameter set
• Start iteration n

• Integrate the direct model from 0 to T

• Integrate the adjoint model from T to 0
• Calculate the gradient ∇J(Sn) =

∫
T

0

[
∂F

∂Sn

]
P dt

• Compute Sn+1 = Sn + ρn∇J(Sn)
• n → n + 1 until a stopping criterion on J is reached

This algorithm was used to make the local contractility evolve (with S =
σ0(M)) in the data assimilation results presented in section 5.
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Abstract. We evaluated applicability of ICA (Independent Component
Analysis) for the separation of functional components from H15

2 O PET
(Positron Emission Tomography) cardiac images. The effects of varying
myocardial perfusion to the separation results were investigated using
a dynamic 2D numerical phantom. The effects of motion in cardiac re-
gion were studied using a dynamic 3D phantom. In this 3D phantom, the
anatomy and the motion of the heart were simulated based on the MCAT
(Mathematical Cardiac Torso) phantom and the image acquisition pro-
cess was simulated with the PET SORTEO Monte Carlo simulator. With
ICA, it was possible to separate the right and left ventricles in the all
tests, even with large motion of the heart. In addition, we extracted the
ventricle volumes from the ICA component images using the Deformable
Surface Model based on Dual Surface Minimization (DM-DSM). In the
future our aim is to use the extracted volumes for movement correction.

1 Introduction

The Positron Emission Tomography (PET) using Oxygen-15-labeled water al-
lows for noninvasive quantification of myocardial blood flow [1]. The analysis
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is based on estimating the time-activity curves (TACs) of the blood pool and
the myocardial tissue from the dynamic PET images. The TACs describe the
time-dependent uptake of the radiopharmaceutical in tissues. However, unlike
in F-18 labeled 2-fluoro-2-deoxy-D-glucose (FDG) cardiac studies it is difficult
to identify the anatomical structures in H15

2 O images, because the 15O labeled
water is rapidly distributed over the entire thorax region producing images with
low contrast between anatomical structures. The motion of the patient and the
motion of the inner structures of the thorax region are also significant problems
in the analysis of functional cardiac images [2]. Because the nature of the motion
in the thorax region is non-rigid and it is composed of the motion of the heart
and other tissues, the detection and correction of the movement artifacts is a very
complicated task. Furthermore, the varying tracer uptake and noise in dynamic
images form additional challenges for the extraction of the cardiac structures.

The evaluation of the image processing procedures in cardiac PET imaging
is a difficult task. However, using realistic simulations for the image acquisition
process and phantom images describing the human anatomy, it is possible to
evaluate the performance of image analysis algorithms. In the thorax region
the motion of the involved structures has to be taken into account as well as
the dynamic behaviour of the tracer in the different regions, which make the
generation of the cardiac perfusion PET phantoms very demanding.

Our long term goal is to develop a procedure to correct the motion artefacts
between two H15

2 O cardiac studies of the same patient. Our novel idea is to first
enhance the contrast of the cardiac perfusion PET images, so that different func-
tional components such as ventricles and myocardium could be separated from
surrounding tissues and noise. We chose the Independent Component Analysis
(ICA) method [3] for this separation task. The ICA method has been previously
applied to robust extraction of the input function from myocardial dog PET
images [4], but has never been applied to human cardiac studies. In the second
phase we will automatically extract the volumes of the ventricles and the my-
ocardium with deformable models. The extracted volumes can then be used for
the realignment of two studies.

To reach this goal we need first to assess the performance of the methods
with phantom data. In this study the first goal was to analyse how well the
ICA method could separate different tissues when the myocardial flow varies.
The myocardial flow can differ from 40 ml/min*100g in infarcted regions up
to 500 ml/min*100g during physiological stress [5]. Further on, we studied the
effect of the motion of the heart on the separation of the functional components
and on the automatic volume extraction with deformable surface models. In the
future, we will use the extracted volumes to correct image artifacts caused by
the movement of the patient.

2 Materials

Two different phantoms were generated for this study. Simple numerical 2D
dynamic cardiac phantom was created for assessing the sensitivity of the ICA
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Fig. 1. In the left the anatomical geometry of the 2D phantom (Top) and the 3D

phantom (Bottom). In the top right the TACs for different tissues used in the genera-

tion of the dynamic 3D cardiac perfusion PET images. In the bottom example of the

simulated 3D dynamic phantom at 5 different time frames

separation of functional components with varying myocardial perfusion. In addi-
tion, with PET SORTEO, a Monte Carlo-based PET simulator [9], we generated
realistic dynamic cardiac studies, using the MCAT phantom [7][8]. These sim-
ulated studies were used to investigate the impact of the heart and respiratory
motions on the outcome of the separation and volume extraction processes.

The simple 2D phantom was composed of three different anatomical compo-
nents: left ventricle, myocardium and body background (Fig. 1). The phantom
consisted of 20 time frames (6 frames of 5 s, 6 frames of 15 s and 8 frames of 30 s)
with virtual time dependent tracer distribution. We applied a measured blood
TAC to calculate the tissue TACs using one block model [10]. The virtual perfu-
sion values for the myocardium of the phantom were set from 10 ml/min*100g
up to 500 ml/min*100g. For the body background the value of 5 ml/min*100g
was applied in all cases. Over-dispersed Poisson noise with large variance [9] was
added to the sinogram bin intensity values. The sinograms were reconstructed
with filtered back projection (FBP) using Hann-filter with cut-off value 0.5.

For the evaluation of the motion effect, we generated a realistic dynamic 3D
PET cardiac data set based on the MCAT phantom [7][8] using PET SORTEO
software [9]. The MCAT phantom was used as an anatomical base for the phan-
tom and the PET SORTEO software for simulating the PET dynamics with a
realistic signal degradation. In our phantom we took into account 6 different
anatomical structures: ventricles, atriums, myocardium, lungs, body and liver
(Fig. 1). The MCAT phantom provided a possibility to simulate the motion of
the heart and lungs over the time. We set the heart rate to be 60 beats per
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minute and the breathing to 12 cycles per minute. The resulting 4D phantom
characterizes both the physiological behaviour of the heart and lungs and the
dynamic behaviour of the tracer in the involved tissues. In addition, one dynamic
study without the cardiac and respiratory motions was generated corresponding
to the end-diastole phase.

The tissue TACs for 3D phantom were generated similarly as in the 2D phan-
tom. The perfusion values were set to be 75 ml/min*100g for the myocardium,
25 ml/min*100g for the lungs, 35 ml/min*100g for the liver and for the body
5 ml/min*100g (Fig. 1). The simulation of dynamic PET acquisition was car-
ried out using Monte Carlo-based 3D PET simulator PET SORTEO [9]. This
simulation tool has been dedicated to full ring PET tomography. The simula-
tion was performed for the Ecat Exact HR+ scanner operating in 3D mode.
The 15O imaging protocol lasted 6 minutes with the same frame times than in
the 2D phantom. The raw data was reconstructed with FBP (3DRP with Hann
apodizing window and the Nyquist frequency cutoff, scatter correction, online
subtraction of randoms, arc correction, normalization, and attenuation correc-
tion). This resulted in 20 time frames of 128x128x63 voxels each, whose sizes
were 3.52mm x 3.52mm x 2.43mm.

3 Methods

In this study the proposed approach to extract structures of interest from H15
2 O

cardiac PET images, split into two major steps. First, the tissues of interest in the
dynamic images were separated using the ICA method. Secondly, the volumes of
the left and right ventricles were extracted using the DM-DSM method [12][13]
from the ICA component images. The results were evaluated both visually and
quantitatively. The results of automatic segmentation were compared to the
ground truth by computing the Jaccard similarity coefficient [15] (also known as
the Tanimoto coefficient) between the automatically segmented structures and
the ground truth structures. The Jaccard value ranges from 0 for volumes that
have no common voxels to 1 for volumes that are identical.

3.1 Independent Component Analysis

Our aim was to separate different tissues from dynamic cardiac perfusion data for
the volume extraction. This problem was considered as a Blind Source Separation
Problem. In order to solve it, we applied the ICA method on the reconstructed
dynamic cardiac images. ICA is a statistical method whose goal is to represent
a set of random variables as linear combinations of statistically independent
component variables [3]. The ICA can be formulated to be the estimation of the
following linear model for the data:

x = As, (1)

where x is a random vector modelling the observations, s is a vector of the latent
variables called the independent components, and A is an unknown constant
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matrix, called the mixing matrix. In this study, x was the vectorized form of the
voxel intensity values from dynamic images and s was the vectorized form of the
functional components, which we tried to separate from the dynamic images. The
problem of ICA is then to estimate both the mixing matrix and the independent
components using only observed mixtures.

To solve the ICA separation problem we used FastICA algorithm [14]. The
FastICA algorithm is a computationally highly efficient method for performing
the estimation of independent components. The resulting ICA component im-
ages were identifying those voxels to same component whose dynamic behaviour
were similar. We considered that our mixture was composed of 4 different inde-
pendent components. In the simple 2D phantom we knew that the amount of
the source components was four (blood pool, myocardium, body and noise). In
the more realistic 3D dynamic phantom we assumed that there were 4 different
functional components in the field of view (blood pool, myocardium, lungs and
body background including noise component).

The result of FastICA depends on the initialization of the mixing matrix A.
Conventionally the initialization of the FastICA has been done using a random
matrix. The problem of using random initialization is that every run gives differ-
ent result. For this reason we used fixed initialization to solve ICA problem with
FastICA algorithm, because with fixed initialization we always end up to the
same result. The initialization matrix A = (aij)nxm was defined in the following
way: aij = 1 if i = j and otherwise aij = 0, n was the number of the mixtures and
m was the number of the source components. PCA (Principal Component Anal-
ysis) and whitening were used as pre-processing for ICA in order to de-correlate
the input data and reduce the dimensionality of data.

3.2 DM-DSM Method

For volume extraction purposes we used the DM-DSM (Deformable Model with
Dual Surface Minimization) algorithm [12][13]. The surface extraction is refor-
mulated as an energy minimization problem. The energy E(S; I) of the surface
S given an image I depends on the image data and the properties of the surface
itself. It is a weighted sum of the internal energy penalizing surfaces that are not
smooth and the external energy that couples surfaces with the image data. The
total energy of the surface S is

E(S; I) = λEint(S) + (1 − λ)Eext(S; I), (2)

where Eint(S) is the internal energy, Eext(S; I) is the external energy, and λ ∈

[0, 1] is the regularization parameter controlling the tradeoff between external
and internal energies.

The internal energy was based on a simple thin-plate shape model [12]. In
this study, the external energy values for each voxel were derived from the ICA
component images. The external energy value for each voxel was stored in look-
up-table, which was called energy image. In the energy image high intensity
value corresponded to surface which we were interested in. The energy images
were obtained using extended 3D version of varying adaptive window size edge
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detection method [16][17] to the resulting ICA component images. The starting
point of the volume search was defined manually to inside of the object.

4 Results

The values of Jaccard coefficients between the reference volumes and the ex-
tracted cardiac tissue volumes are reported in Table 1. In Fig. 2, Fig. 3 and Fig.
4 the results of the ICA separation and the volume extraction are shown. We
only present two resulting ICA component images, which contain the ventricles
(blood pool) and the myocardium.

Table 1. The Jaccard similarity coefficients between the automatically segmented

structures and the ground truth structures. The separation results of the myocardium

from the 3D dynamic data were not good enough for the volume extraction

Blood pool Myocardium

myocardial flow 500 ml/min*100g .958 .717

2D myocardial flow 300 ml/min*100g .931 .725

phantom myocardial flow 100 ml/min*100g .923 .681

myocardial flow 40 ml/min*100g .920 .534

3D No motion .652

phantom Motion .607

Fig. 2. In the left the ICA separation of the blood pool and in the middle the separation

of the myocardium from the 2D phantom with high myocardial flow (500 ml/min*100g).

In the right the sum of the all time frame images from the original 2D phantom image

4.1 The Myocardial Flow Test

The ICA method was able to separate automatically the blood pool and my-
ocardium even with very high myocardial blood flow values from the dynamic
2D phantom data. The separation results of the blood pool and myocardium
were visually excellent. The quantitative results showed that the blood pool
was extracted with very high accuracy in all cases, but the extraction of the
myocardium was more dependent on the perfusion level (Table 1). We used
tresholding to define the volume of the blood pool and the myocardium from
the resulting ICA component images. Fig. 2. shows the result of the separation
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Fig. 3. The ICA separation of the functional components from the MCAT based phan-

tom images. In the top left the blood pool and in the top right the myocardium from

phantom image without motion and in the bottom left the blood pool and in the bot-

tom right the myocardium from the phantom image with heart beating and respiratory

motion

Fig. 4. The volume extraction result of the right and left ventricle from the MCAT

based phantom images. In the top left the energy image of the blood pool, in the top

middle the extracted volumes of the ventricles and in the top right the 3D visualization

of the extracted ventricle volumes from the phantom images without the motion. In

the bottom left the energy image of the blood pool, in the bottom middle the extracted

volumes of the ventricles and in the bottom right the 3D visualization of the extracted

volumes from phantom images with heart beating and respiratory motion. The volumes

of extracted ventricles with the static phantom and the motion phantom were different

(The Jaccard coefficient between these volumes was 0.7178). The surfaces have been

smoothed based on [18]

with myocardial flow 500 ml/min*100g and it is compared to the sum of the time
frame images. This illustrates the problem of the initial low contrast of different
tissues in H15

2 O study.
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4.2 The Motion Test

The result of blood pool and myocardium separations from the MCAT based
PET phantom images are shown in Fig. 3. With the static phantom and the
phantom with the cardiac and respiratory motion the separation of the blood
pool was visually good and it could be used for volume extraction. When looking
the separation of the myocardium, we could see that the separation was more
difficult and the result is not visually so good. The ICA method had problems of
separating the myocardium from surrounding tissues. Especially, the separation
of the myocardium from the liver with the simulated study including heart and
respiratory motions was problematic. One problem with motion for separation
was also that ICA caught just some phase of the heart cycle and we could not
define, which phase the detected heart cycle phase was.

The separation result of myocardium was not good enough for the volume
extraction. Therefore, we concentrated to extract individually the right and left
ventricles from the resulting blood pool component images (cf. Fig. 3). Fig. 4
shows the result of the volume extraction with the DM-DSM method. We were
able to extract the right and the left ventricles visually with good quality from
the ICA component images in both cases. The extracted volumes were compared
to the reference phantom corresponding to the end-diastole phase. Table 1 shows
the accuracy of the methodology. With the static phantom the extracted volume
corresponded more to the reference volume than with the motion phantom,
because we do not know which phase of cardiac cycle was detected from the
motion phantom.

5 Discussion

We have examined the applicability of the ICA method for the separation of the
functional components from the dynamic cardiac perfusion images. Using ICA,
it was possible to separate the ventricles (blood pool) with varying myocardial
blood flow and even with large motion of the heart and lungs during the dynamic
study. The separation of myocardium was more difficult task. However, it was
possible to separate the myocardium with very high myocardial blood flow val-
ues, but the effect of the cardiac and respiratory motion was more problematic
for the ICA method. In addition, we demonstrated the possibility to extract the
volumes of the right and left ventricles from resulting ICA component images
using the DM-DSM method. The extracted volumes could be used for alignment
of two image sets that allows for the quantitative comparison of two studies. The
DM-DSM algorithm effectively avoids local minima, which reduces its sensitivity
to its initialization. Nevertheless, in this study, we needed manual interaction to
generate the initialization.

In this study we created realistic phantom data for testing automatic image
analysis methods in the case of dynamic H15

2 O cardiac perfusion images. The
3D dynamic phantom contained both dynamic information of the tracer and
the motion of heart and respiratory motion. It was generated using the Monte
Carlo-based simulation tool and the MCAT phantom. The motion which was
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included to the phantom described the extreme positions and shapes of the
heart and respiratory motion during the cardiac cycle, which is not realistic in
true PET imaging, where the motion in one time frame is the average motion
over the frame time. The reference phantom was taken from the end-diastole
phase, where the heart muscle is thinnest and the ventricles largest. This could
explain the problem of separating the myocardium from surrounding tissues. The
extracted volumes of the ventricles were different in static and moving case. This
result implicated that it is important to construct the phantoms carefully. To
achieve comparable results with patient studies also the motion needs to be taken
into account. In this study, the patient movement during the acquisition was not
simulated. Due to the relative short scanning time (6 minutes) in dynamic H15

2 O

cardiac perfusion study we could assumed that patient do not move.
Conventionally random matrix has been used for the initialization of the Fas-

tICA algorithm. In this study we used fixed initialization for the ICA separation.
This made it possible to achieve more reproducible results in automatic way, al-
though the used matrix may not be the optimal solution for the initialization. We
have also shown that perhaps the separation should be performed on sinograms
[6], because the selection of the image reconstruction method affects the result.

Our long term goal of the research is to find a procedure to correct the motion
artifacts between two studies of one patient, so that both visual and quantitative
analysis of the images can be performed, at least the comparison of equivalent
myocardial segments. Our idea is to first enhance the contrast in H15

2 O studies
with the ICA method so that it is possible automatically extract from component
images the ventricles or the myocardium for movement correction purposes. To
reach this goal we evaluated the ICA method for separation of functional com-
ponents from cardiac perfusion PET phantom images in this study. We studied
the effect of varying myocardial flow and motion to the ICA separation results.
In addition, we showed that it is possible to extract the volume of the ventricles
with the DM-DSM method for movement correction purposes. In the next step
we will use patient data and apply the extracted volumes for the alignment of
two image sets between two or more studies of one patient.
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Abstract. Radio-frequency (RF) ablation uses electrode-catheters to
destroy abnormally conducting myocardial areas that lead to potentially
lethal tachyarrhythmias. The procedure is normally guided with x-rays
(2D), leading to errors in location and excessive radiation exposure. One
of our goals is to provide pre- and intra-operative 3D MR guidance in
XMR systems (combined X-ray and MRI room) by locating myocar-
dial regions with abnormal electrical conduction patterns. We address
the inverse electro-mechanical relation by using motion in order to infer
electrical propagation. For this purpose we define a probabilistic mea-
sure of the onset of regional myocardial activation derived from motion
fields. The 3D motion fields are obtained using non-rigid registration of
tagged MR sequences to track the heart. The myocardium is subdivided
in segments and the derived activation isochrones maps compared. We
also compare regional motion between two different image acquisitions,
thus assisting in diagnosing arrhythmia, in follow up of treatment, and
particularly in determining whether the electro-physiological interven-
tion succeeded. We validate our methods using an electro-mechanical
model of the heart, synthetic data from a cardiac motion simulator for
tagged MRI, a cardiac MRI atlas of motion and geometry, MRI data
from 6 healthy volunteers (one of them subjected to stress), and an MRI
study on one patient with tachyarrhythmia, before and after RF abla-
tion. Results seem to corroborate that the ablation had the desired effect
of regularising cardiac contraction.

1 Introduction

Advances in non-rigid motion tracking techniques that use tagged MR (SPAMM)
now enable us to measure more subtle changes in cardiac motion patterns. One
example of disease with associated changes in motion patterns is tachyarrhyth-
mia: a pathological fast heart rhythm originating either in the atria (super-
ventricular) or ventricles (ventricular), often the result of abnormal paths of
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conduction. Radio-frequency (RF) ablation is the indicated treatment for pa-
tients with life threatening arrhythmia as well as for those on whom drug treat-
ment is ineffective. Applying a RF current via an ablation electrode induces
hyperthermia and destruction of the abnormally conducting areas. These proce-
dures are typically carried out under x-ray (2D) guidance, leading to errors in
the location of the abnormal areas as well as to excessive x-ray exposure for the
patient.

One of our goals is to provide pre- and intra-operative 3D MR guidance [1] [2]
in XMR systems (combined X-ray and MRI room) by detecting the onset of re-
gional motion and relating it to the electrical activation pattern. For this purpose
in this work we define a probabilistic measure of regional motion activation de-
rived from a 3D motion field extracted by using non-rigid 3D registration of
tagged MR image sequences. Since we address the inverse electro-mechanical
problem, trying to infer time of electrical activation by extracting information
from the cardiac motion, we use an electro-mechanical model of the heart to
validate these results. Isochrones computed from MR motion are compared be-
tween different image acquisitions, and also to those isochrones obtained with
the electro-mechanical model. A cardiac MR atlas of motion and geometry is
also used to validate results in a relatively noise free case.

The other goal of this work is to detect changes in the regional motion pat-
terns between two different image acquisitions. The purpose of this being the
follow up of medical treatment in general, and in particular of patients that
have undergone RF ablation. For these patients the method can aid in the iden-
tification and localisation of abnormal or changing motion patterns, and also
can help determine whether the ablation had the desired effect of regularising
cardiac contraction. In order to validate this methodology we use MR images
of 6 healthy volunteers (one subjected to stress), synthetic data generated with
a cardiac motion simulator of MR images, and pre- and post-intervention MR
images on a patient with tachyarrhythmia.

2 Methods

2.1 Registration for Motion Tracking

We use a non-rigid registration algorithm [3] to track the motion and deformation
of the heart in a sequence of 3D short- and long-axis tagged MR images. The
goal of the non-rigid registration is to align each time frame of the tagged MR
image sequence with the end-systolic (ES) time frame of the image sequence by
maximising the normalised mutual information of both time frames. To model
cardiac motion we use a free-form deformation based on cubic B-splines. The
output of the registration is a continuous time varying 3D motion or vector field
(see Figure 1a), F(p, t) where F : �4 → �3 and p ∈ �3 is the space coordinate
(or voxel (x, y, z) in the discrete implementation).
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The reconstructed motion field is shown in (a) with displacement vectors and

the myocardial surface. The end-diastole myocardial surface (t = 0) of a volunteer

is shown in (b) with the subdivision in 12 segments. In (c) the synthetic tagged

MR data is displayed with the recovered displacement field while the reconstructed

surface in (d) is coloured with the magnitude of the difference between the normal

and modified parameters. The region where the abnormal motion was produced was

accurately identified and can be seen in red and yellow. Two views of the smooth

cardiac atlas geometry with a slice of the motion field vectors are shown in (e) and

(f). All colour scales go from blue to red

2.2 Coordinate System and Myocardial Segmentation

A manual segmentation of the myocardium at end-diastole (ED) (see Figure 1b)
is used to determine the region of interest (myo) for the registration at time
t = 0. Using F, the myocardial region can then be automatically propagated
over the entire cardiac cycle (as in Figure 1a).

In order to be able to compare different image acquisitions, a common (cylin-
drical) coordinate system based on the left ventricle is defined for each subject.
In this manner we avoid potential misregistration errors due to subject motion
between scans. Using cylindrical coordinates based on the LV allows us to ex-
press the non-rigid motion measurements derived from F in terms of radial,
circumferential and longitudinal directions.

Using this coordinate system, the myocardium myo is then subdivided into
small meaningful regions or segments s, and the motion derived measurements
for each of these myocardial segment is computed during the cardiac cycle. For
the purpose of comparing motion between different scans we use S = 12 seg-
ments, with 4 sections around the z-axis that roughly correspond to septum,
lateral, anterior and posterior walls, and 3 sections along the z-axis, correspond-
ing to base, middle region and apex (see Figure 1b).
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2.3 Differential Motion Descriptors and Changes in Motion
Patterns

Some differential features derived from the motion field F(p, t) can provide an
insight of how a specific region of the myocardium is contracting. We write them
as the set of functions

Fm = Fm(p, t) where m ∈ μ = {D,R,C,Z, Ṙ, Ċ, Ż, E, r, c, z, ṙ, ċ, ż} (1)

and Fm : �4 → � are defined as the total deformation or displacement FD =
||F||, the radial, circumferential and longitudinal components of the deformation
(FR, FC and FZ) with respect to the a cylindrical coordinate system and their
corresponding time derivatives or velocities (F Ṙ, F Ċ and F Ż), the magnitude
of the strain matrix FE = ||Ei,j ||, the radial, circumferential and longitudinal
components of the strain (F r, F c and F z), and their time derivatives (F ṙ, F ċ and
F ż), all with respect to the the same cylindrical coordinate system. Although
FD and FE are not linearly independent of their components in the cylindrical
coordinate system, in this work we explore the efficiency of them all as motion
descriptors and those that turn out to be of less importance are minimized by
the use of the confidence weights wm defined in Section 2.4.

We use a Lagrangian framework where the transform F(p, t) follows, at time
t, the position of the 3D voxels p ∈ myo that correspond to the myocardium at
time t = 0.

The values of Fm(p, t) are computed for each voxel and the values averaged
for each of the myocardial segments s, for all time frames during the cardiac
cycle leading to the function

Fm(s, t) =
1∫

p∈s
dp

∫
p∈s

Fm(p, t)dp for all regions s ∈ myo. (2)

In order to evaluate changes in the motion patterns between two data sets
F1 and F2, for instance those corresponding to pre- and post-ablation scans,
the difference between the two functions Fm

1 and Fm
2 is computed for each

segment, integrated over time and normalised using the maximum value of the
function for the specific segment. This normalization of the values compensates
for the differences in the dynamic behaviour expected in the various regions of
the heart (like apex and base for instance). A statistical measure is derived from
the above combined quantities [4, 5] and each segment is assigned a measure of
motion change and classified as having either no, small or significant changes.

2.4 Activation Detection

Although the study of myocardial electrical phenomena such as excitation-con-
traction relation, re-entries and patterns occurring inside the myocardium re-
main open problems for study (see references in [6, 7]), in this work we use
the underling assumption that we can relate the onset of regional motion, de-
rived from the images sequences, to the electrical activation. That is, by us-
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ing the inverse relation of electro-mechanical coupling. Ideally the onset of re-
gional contraction could be inferred from the motion field with a simple mea-
sure such as strain. However, because of the limitations imposed by noise, er-
rors and the relatively low space and time resolution of the image acquisi-
tion and the extracted motion field, a more robust measure has to be used.
For this purpose we investigate the subset of differential descriptors Fm where
m ∈ M = {R,C,Z, Ṙ, Ċ, Ż, E, ṙ, ċ, ż}.

The first step to characterise the regional motion of the heart during the
cardiac cycle is to measuring a regional (TES(s)) and global (TES) end-systolic
times, as well as the critical times for each motion descriptor. We therefore define

Tm
max(s) = t∗ such that Fm(s, t∗) ≥ Fm(s, t)

∀ t ∈ [0, TES(s)]

and

Tm
min(s) = t∗ such that Fm(s, t∗) ≤ Fm(s, t)

∀ t ∈ [Tm
max(s), TES(s)].

Notice that for Tm
min the search interval begins at Tm

max, i.e. when the maximum
value has been reached (it is the late minimum value of Fm that will help
us define the end-systolic time, not those small values at the beginning of the
cycle). Because the computation of these values requires a first estimate of the
end-systolic time, we use as initialisation the time frame where the heart visually
appears to be at end-systole. However, a short iterative process rapidly provides
a better estimate for TES(s).

In the case of displacement and strain, the end-systolic time is linked to their
maximum values, while in the case of velocity and rate of change of strain it cor-
responds to their minimum values (when the heart has paused its contraction).
Therefore,

Tm
ES(s) =

⎧⎨
⎩

Tm
max(s) for m ∈ {R,C,Z,E}

Tm
min(s) for m ∈ {Ṙ, Ċ, Ż, ṙ, ċ, ż}

(3)

and combining these times we obtain an estimate that corresponds to the regional
time of end-systole:

TES(s) =
∑

m∈M

wmTm
ES(s).

The weights wm are normalised (i.e.
∑

m∈M wm = 1) and reflect the confidence
we have on each of the differential motion descriptors m. Although at present we
have assigned their values manually, a statistical measure derived from the data
is being developed in order to compute them automatically. In order to obtain
a global estimate for end-systolic time for each feature we integrate those values
over the entire myocardium: TES =

∫
s∈myo

TES(s)ds.
Using the above equations we can now define a probabilistic measure of the

activation for every voxel in the myocardium, at anytime time during the cardiac
cycle:



Detecting and Comparing the Onset of Myocardial Activation 353

A(s, t) =
∑

m∈M

wm

∫ t

0

Fm(s, τ)∫ T m
max(s)

0
Fm(s, τ ′)dτ ′

dτ (4)

where we impose Fm(s, t) = 0 if t > Tm
max(s) in order to keep the values nor-

malised (notice that some motion descriptors like the velocities and the time-
derivatives of strain reach their maximum values before end-systole).

The value of A(s, t) monotonically increases from zero to one as we expect
every voxel to have been activated by the time the motion descriptors reach the
maximum value at time Tm

max(s). In order to avoid singularities in the equation
we excluded from the computation, and labelled as not active, those voxels that
might remain relatively static (i.e. those for which Fm(s, Tm

max(s)) ≈ 0).
By integrating over time we obtain an accumulated probability and we can

therefore set a (percentage) threshold P , between 0 and 1, to define the time ta
at which the activation of a voxel s takes place. That is, if A(s, ta) = P then s
becomes active for t = ta. The activation isochrones are then defined, for a given
threshold P , as the function A(s) = ta, for all s ∈ myo.

2.5 Cardiac Motion Simulator for Tagged MRI

For the purpose of validating the proposed methodology with a controlled case
we also implemented and modified a cardiac motion simulator for tagged MRI [7].
The motion simulator is based on a 13-parameter model of left-ventricular mo-
tion developed by Arts et al. [8] and is applied to a volume representing the
LV that is modeled as a region between two confocal prolate spheres while the
imaging process is simulated by a tagged spin-echo imaging equation [9].

A pair of sequences of synthetic tagged LV images was produced in the follow-
ing manner: first, a ’post-intervention’ (normal) sequence was computed using
the standard model parameters, and secondly, a ’pre-intervention’ (abnormal)
sequence for which the motion parameters were modified in a small region of the
myocardium. The modification to the parameters consisted mainly in moving
the phase of the contraction forward in time and changing the magnitude of
the motion. Two such pairs of image sequences were produced, with different
abnormal parameters and in different regions of the myocardium. Examples of
these synthetic images can be seen in Figure 1.

3 Results and Discussion

3.1 Changes in Regional Motion Patterns

The detection of changes in motion patterns was evaluated on synthetic data as
well as real MR data from six subjects. In order to test the algorithm when the
ground truth is available, results on the ’pre-’ and ’post-intervention’ sequences of
synthetic tagged LV images were compared in two cases, with different param-
eters and regions of abnormal motion (see one case in Figure 1c). In both cases
these regions were accurately located. One segment showed significant changes
while the rest were correctly classified as having no change (see Figures 1d and 3).
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Fig. 2. Reproducibility: Time plots of a typical myocardial segment of a healthy

volunteer. The reproducibility of the motion fields is demonstrated with the similar

curves obtained for two independent acquisitions of the same subject. The plots show

the accumulated (a) and instantaneous (b) circumferential strain, for each of the two

image acquisitions
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Fig. 3. Synthetic data: Time plots of two segments of the cardiac motion simulator for

tagged MRI. Each plot shows results for the normal and modified motion parameters

of a segment in the region of abnormal motion, where significant change was correctly

detected. The plots show radial (a) and circumferential (b) deformation from end-

diastole to end-systole

We also acquired data from four volunteers. For each of them two separate sets
of image sequences were acquired with only few minutes between the acquisitions.
Since no change is expected in these pairs of image acquisitions, this allowed us
to verify the reproducibility of the motion fields computed by the algorithm
and to test the comparison method against false positive detection. The motion
patterns encountered were all very similar and no region was classified as having
a significant change (see Figure 2).

With another volunteer we acquired three sets of image sequences. The first
two as described above, with only few minutes between the acquisitions. The
third data set was acquired few minutes after the second, but while subjecting
the volunteer to stress. The stress was induced by placing one foot of the subject
into a bucket of cold water with ice. This experiment allowed us to compare
normal motion patterns with those obtained under stress, and again, to validate
the method regarding reproducibility and false positives. No segment showed
a significant difference between the first two acquisitions, but when comparing
normal motion to that under stress we found that three segments showed no
change, four presented small but noticeable changes, and the remaining five
showed a significant amount of change (see Figure 4).

Finally, MRI data was acquired from an eight year old patient with acute
super-ventricular tachyarrhythmia, before and after RF ablation. The image
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Fig. 4. Stress study: Time plots of a myocardial segment of a healthy volunteer, with

and without stress. There are no significant changes in the motion pattern between the

first two image acquisitions. In the third image acquisition, during which stress was

induced on the subject, a noticeable alteration was detected. The plots show circum-

ferential deformation (a) and strain (b) for each of the three image acquisitions
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Fig. 5. RF ablation patient: Time plots of circumferential motion of two myocardial

segments of a cardiac patient, before and after RF ablation. A significant change can

be seen in the post-intervention sequence, when this region of the myocardium exhibits

a faster and more pronounced motion, indicating a regularisation of the contraction

acquisition and catheter intervention were carried out with an XMR system [1].
Our results confirmed that the motion pattern changed in most parts of the my-
ocardium (visual inspection of the reconstructed 3D surfaces and displacement
vectors also showed pronounced changes in the overall contraction pattern), while
the largest changes were found in five segments. Examples of the compared mo-
tion also show the corrective effect of the intervention (see Figure 5).

3.2 Activation Detection

Figure 6 shows the results of activation detection (Equation 4) obtained on the
MR repetition and stress study described in Section 3.1. The times of activation
of different regions of the myocardium are shown as different colours over the
end-diastolic myocardial surface (activation isochrones maps). The first three
images in the figure compare the isochrones obtained from the three MR data
acquisitions of the same subject: two repetition scans with no changes in between
them, and a third scan acquired while the volunteer was subjected to stress.
Results of subtracting pairs of isochrones maps are also shown: the difference
between the two normal repetition acquisitions, in Figure 6e, and the difference
between a normal and the stress acquisition, in Figure 6f. We can see that the
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Isochrones of stress data. The motion-derived activation isochrones computed

from the two normal MR acquisitions, (a) and (b), and a third one acquired while the

volunteer was subjected to stress (c). Two isochrones subtraction maps are also shown

below their corresponding images: the difference between the two normal repetition

acquisitions in (e), and the difference between a normal and the stress acquisition in

(f). The orientation of the myocardium can be seen in (c), where a zoomed-out view

of the anatomical MR image is shown with the myocardial surface skeleton. Isochrones

computed from the electro-mechanical model are shown in (g). The colour scale for

the isochrones maps go from blue to red (0-500ms, with green approx. 200ms), and for

the isochrones subtraction maps from blue to red (0-100ms approx.)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Isochrones of cardiac atlas. Two views (top and bottom row) of the isochrones

were computed for the atlas using both, the electro-mechanical model (b), (c), (f) and

(g), and the proposed activation measure derived from the motion field (d) and (h).

The colour scale goes from blue to red, where blue shows the earliest time and red the

latest. The orientation of the left and right ventricle can be seen on the MR images of

the subject used as a reference for the atlas ((a) and (e))

difference between the isochrones of the two normal acquisitions is small, thus
validating the method regarding reproducibility, while on the other hand some
larger changes can be appreciated between the isochrones of the normal and the
stress scans, thus highlighting the regions that were most affected by stress.
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Since we are addressing the problem of inverse electro-mechanical coupling,
that is, trying to infer the time of electrical activation by extracting informa-
tion from the cardiac motion images, we have also used a forward 3D electro-
mechanical model of the heart [6, 10] to validate the activation detection
results. The segmentation of the myocardium of a healthy volunteer at end-
diastole was used as geometric input for the model. The muscle fiber orien-
tation and the Purkinje network location were fitted to the geometry from a-
priori values of the model. Figure 6g shows the isochrones values computed
using the electro-mechanical model applied to the subject of the stress study.
Good correlation can be seen between these and the isochrones derived from MR
motion.

We also used a cardiac atlas of geometry and motion generated from 3D MR
images sequences of 14 volunteers to test our activation measure in a realistic
but smooth and virtually noise-free data set [11] (see Figures 1e and 1f). For
the purpose of comparing activation detection results to those obtained with the
high-resolution electro-mechanical model, a larger number of smaller segments
was used (also, segments can be very small in this case since there is little noise
in the data). Figure 7 compares the isochrones for the atlas computed by both,
the electro-mechanical model, and the proposed activation measure derived from
the motion field. Promising agreement can be seen on these results of activation
detection.

4 Conclusions and Future Work

Despite current limitations such as distinguishing between epi- and endo-cardial
activation patterns, the methodology seems promising for the assessment of inter-
vention results and could also be used for the detection of arrhythmia, ischaemia,
regional disfunction, as well as for follow up studies in general.

Because acquisition of tagged images can be carried out in less than 20 min-
utes, either immediately before the RF ablation or the day before the inter-
vention 1, the proposed analysis is suitable for clinical practice in guiding and
monitoring the effects of the ablation procedure on ventricular arrhythmias [12],
with little extra discomfort added to the patient.

In order to account for possible changes in the heart rate between the pre-
and post-intervention acquisitions, we intend to re-scale one of the image se-
quences in the time domain, by using the 4D registration technique described
in [11]. Results will be compared to those obtained without rescaling (for in-
stance, in the case of the stress study, where there was a small change in the
heart rate).

1 When images are acquired on different days further image alignment has to be carried
out in order to register the different acquisitions. We are currently investigating
results of our methods in these circumstances.
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Abstract. IntraVascular Ultrasound (IVUS) is an exploratory technique
used in interventional procedures that shows cross section images of ar-
teries and provides qualitative information about the causes and severity
of the arterial lumen narrowing. Cross section analysis as well as visu-
alization of plaque extension in a vessel segment during the catheter
imaging pullback are the technique main advantages. However, IVUS
sequence exhibits a periodic rotation artifact that makes difficult the
longitudinal lesion inspection and hinders any segmentation algorithm.
In this paper we propose a new kinematic method to estimate and remove
the image rotation of IVUS images sequences. Results on several IVUS
sequences show good results and prompt some of the clinical applications
to vessel dynamics study, and relation to vessel pathology.

1 Introduction

The introduction of the IntraVascular UltraSound (IVUS) in the field of medical
imaging [1, 2] as an exploratory technique has significantly changed the under-
standing of the arterial diseases and individual patterns of diseases in coronary
arteries. Each IVUS plane visualizes the cross-section (Fig. 1 (left)) of the artery
allowing extraction of qualitative information about: the causes and severity of
the narrowing of the arterial lumen, distinction of thrombus of the arterioscle-
rotic plaque, recognition of calcium deposits in the arterial wall, determination
and location of morpho-geometrics arteries parameters [3, 4, 5], among others.
The main role of IVUS is to serve as a guide in the interventional procedures al-
lowing to measure the morphological structures along the vessel. Artifacts caused
by the periodic rotation of the image, introduce an error in the measurements
precision in tangential direction [6, 8]. The vessel wall follows a periodic oscilla-
tory motion in an image sequence corresponding to the heart cycles. This motion
has a rotation center positioned on the vessel wall border in most cases. We can
visually evidence this effect by using the mean of an IVUS sequence along its
temporal direction, as shown in Fig. 1 (right). This image represent the average
grey level of pixels along 25 frames corresponding to approximately one heart
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Fig. 1. Morphological arterial structures and artifacts (left). Empirical evidence of

IVUS rotation effect (right)

cycle. Since brighter structures correspond to the vessel wall, in this particular
case, the center of rotation is the most ”brilliant point”. The main goal of this
work is to estimate and remove the rotation effect, in order to improve the lon-
gitudinal IVUS visualization. Instead of using an optical flow scheme, prone to
be misled by blood random movement, we suggest using kinematic principles.
A good estimation of the rotation images gives the possibility of understanding
their mechanical and physiological genesis providing the possibility to study in
a robust form the vessel dynamics, and to establish new diagnostic tools. The
article is organized as follows: In section 2 we discuss some physical considera-
tions about the rotation effect, the general aspect over the kinematic model is
discussed in section 2.1, the neuronal network training procedures are explained
in section 2.2 and the estimation and removing procedures of the rotation ef-
fect are discussed in sections 2.3 and 2.4, respectively. Finally, the results and
conclusions are explained in sections 3 and 4.

2 Physical Considerations of IVUS Image Rotation

The IVUS rotation effect is an image sequence artifact described by various
authors [6, 8, 10] as a gray levels shift in the vessel tangential direction, that
avoids reliable measurements of distance in longitudinal views. There are two
main reasons of this artifact: mechanical and anatomic-physiological factors.
The mechanical factor corresponds to the catheter movement during pullback.
This motion is locally caused by pulsatile blood flow, the vessel wall dilation
and the intrinsic heart muscle dynamics and globally by the catheter trajectory
geometry. Anatomic factor is due to the dynamic response of the intrinsic vessel
architecture to blood pressure and its mutual interaction with the heart muscle.
We model the rotation artifact as follows:
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2.1 Kinematic Model for Rotation Estimation

In order to find the rotation center of the sequence, we consider that the vessel
wall shape can be modelled as a discrete structure, which temporal evolution
depends on the reciprocal interaction between the radial force that comes from
the blood pulse and the vessel wall local shape perceived by the catheter. Current
IVUS techniques assume that the vessel is circular, the catheter is located in
the center of the artery, and the transducer is parallel to the long axis of the
vessel. However, both transducer obliquity and vessel curvature can produce an
image giving the false impression that the vessel is elliptical. Transducer obliquity
is especially important in large vessels and can result in an overestimation of
dimensions and reduction of image quality [6]. In general, each image sequence
has its own center of rotation. This center can stay at rest or change the spatial
position along the sequence. In order to find such center of rotation, we will
assume that the vessel wall is a discrete linear elastic oscillating system, with a
total energy coming from the pulsatile radial force of the heart blood pulse [11].
Because arterial structures have approximately an elliptical shape, we use polar
coordinates to study their temporal evolution. It follows that if the trajectory is
given by: (x, y) = (r(t)cos(θ(t)), r(t)sin(θ(t))), the total energy of one element
(xi, yi) of the vessel wall is equal to:

Ei = Ti + Ui (1)

where Ti = miv
2
i

2 + mi

2 (riωi)2 Ui = kir
2
i

2

vi =
√

vx2
i + vy2

i ri =
√

x2
i + y2

i wi = ∂θi

∂t .

The quantities Ti and Ui are the kinetic and elastic energy respectively, mi,vi, ωi

and ki are the mass, tangential velocity, angular velocity and elasticity constant
of the i-th element of the vessel wall. In this paper the elastic constant is set
to ki = 1. The mass of one element can be estimated considering the minimal
”voxel” volume Vb ≈ 6.4× 10−5 mm3 swept by the ultrasound beam [14]. Using
this fact, the element of mass is m = ρ ∗ Vb ≈ 1.09 grs

cm3 ∗ 6.4 × 10 − 8grs ≈
6.97 × 10−5kg, where ρ is the tissue density [12]. Within the above kinematic
framework, the rotation center along the IVUS sequence is represented by the
region in the vessel wall that has minimal total energy. The steps to compute
and suppress the rotation are the following:

2.2 Neuronal Network Training

We find candidate structures in the media and intima, which can follow the ves-
sel wall kinematic during approximately a complete period of one cardiac event
≈ 25 images. In order to find the potential candidate structures, a Perceptron
Multilayer Neural Network (60 : 50 : 60 : 30) was trained using a standard Back
Propagation Algorithm [9]. The input features were the radial grey level inten-
sity defined as: I(r) = Ioexp

(−α(Nθ)rf
)
, where Io is the beam intensity at r = 0

and the absorbtion coefficient, α gives the rate of diminution of average power
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Fig. 2. Positive (+) and negative (-) pattern (left). Positive pattern features (right)

Fig. 3. Intima validated segmentation (left). Error distribution in mm (right)

with respect to the distance along a transmission path [7]. It is composed of two
parts, one (absorption) proportional to the frequency f , the other (scattering)
dependent on the ratio of grain, particle size or the scatterer number Nθ located
along the ultrasound beam path. Absorption coefficient, image pixel grey level,
standard deviation and mean of the data were used to train the Neural Net-
work. The absorption coefficient gives local information about the lumen-vessel
transition, the grey level distribution gives local and global information about
the vessel structure. The global and local vessel wall structure information is
given by the low and high frequencies, of the grey level distribution. Standard
deviation gives global textural information and the mean of the data is the base
line of the global grey level intensity. The training and test data were obtained
from IVUS images in polar form. Figure 2 (left) shows an example of a positive
(+) corresponding to intima and negative (-) patterns, corresponding to blood,
adventitia, shadows and artifact zones. The extraction of features for positive
patterns is show in Fig. 2 (right). The local absorption coefficient was obtained
from the regression line slope [15] of the image profile, grey level intensity vs.
radial penetration. Figure 3 (left) shows an example of the validated data and
its error spatial location (center) computed by 4 IVUS sequences of different
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patients. The error is defined as, the Euclidean distance between the manual
location of intima and the spatial location found out by the Neural Network
algorithm. In order to improve the rotation center, the spatial location of the
selected points should be greater as the vessel wall border. Although the spatial
error between validated intima points find out by the neuronal network is as high
as 5 pixels ∓ 12 (See Fig. 3 (right)), nevertheless with the selected intima points
recovery of temporal kinematics is optimal. This fact makes the method very
flexible since the main goal of this work is to find the global kinematic of the
vessel wall not the vessel segmentation. In this sense we find the global motion of
the structure physically connected to the vessel (intima and media) border whose
thickness is approximately 10 to 15 pixels. Figure 3 (right) shows an elliptical
approximation and the intima point find out by the neuronal network.

2.3 The IVUS Image Rotation Estimation

a. Center estimation. We determine the spatial location of the rotation cen-
ter (xc, yc) in frame k, as the position (ij) on the vessel wall that has a
minimal total energy given by (Eq. 2.1). The spatial location of the rotation
center is put into the image point that reaches the condition:

(xc, yc) = argminij

fn∑
k=1

Ek
ij

where fn = 25 is the image number used to evaluate this condition and (ij)
are the row and columns of the average IVUS images. Figure 4 shows the
kinematics parameters used by the estimation of the total energy such as
required in Eq. 2.1. The temporal evolution of the vessel wall candidates is
obtained using their kinematics variables: radial coordinates (a) and angular
position (b). The total energy is computed considering that all points having
the same mass (See section 2.1). Figure 4 (c) shows the minimal energy
distribution for a particular frame and 25 candidates. The spatial evolution
of the center of rotation is shown in Fig. 4 (d).

b. Angle estimation. Once the rotation center of the IVUS sequence has been
determined, the procedure to calculate the rotation angle for each frame is
as follows: 1.- An elliptical approximation following the ellipse fitting proce-
dures of [16] is adjusted to the spatial distribution of the points structures
(See Fig. 5). The fitting of ellipses is made over the mean of the IVUS se-
quence in the longitudinal direction. If the ellipse center is noted by (xk

e , yk
e ),

then the rotation angle αk (See Fig. 5) for a frame k is given by:

αk = arctan
( yk

e − yk
c

xk
e − xk

c

)

where (xk
e , yk

e ) and (xk
c , yk

c ) are the rotation center and ellipse center of image
k respectively.
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(a) (b)

(c) (d)

Fig. 4. Kinematics variables: r (a) and θ (b) coordinates evolution. Minimal energy (d)

location by 25 candidates points. Rotation center location (d)

Fig. 5. Parameters to estimate the IVUS image rotation αk
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2.4 Removing the IVUS Rotation Effect

The suppression of the rotation is given by the following linear transforma-
tion: The original image Io(x, y) is translated to the rotation center coordinates
(xk

c , yk
c ) and rotated through angle αk. The new image I ′o(x

′, y′) is finally located
in a new arbitrary center (xk

a, yk
a) as follows:

(
x′

y′

)
=

(
sin(αk) cos(αk)
−cos(αk) sin(αk)

)(
x − xk

c

y − yk
c

)
+

(
xk

a

yk
a

)
(2)

where (x′, y′) and (x, y) are the new and old cartesian image coordinates, (xk
c , yk

c )
is the actual rotation center, αk is the rotation angle and (xk

a, yk
a) is the new

image center of image respectively.

3 Results

Our experiments focus on assessment of the rotation suppression and illustration
of a possible application to pathology diagnosis.

3.1 Validation of the Rotation Suppression

Validation of rotation removing is done by analyzing the temporal evolution of
the rotation angles. We consider that the rotation has been removed if the rota-
tion angle profile after correction is constant to zero. There are several ways of
checking the former hypothesis. First, we can compare the temporal evolution of
the angle before and after rotation suppression. Lack of rotation is also reflected
in average images and longitudinal cuts. After suppression there is no grey level
shift so that bright structures stay still and the longitudinal cuts shape is a
straight line in contrast to the wavy shape of original cuts. The former analysis
is illustrated in Fig. 7. Rotation profiles before and after removing the rotation
artifact are shown in Fig. 6 (a) and (b), respectively. In figure 7 (a) and (b)
we depict the average sequences image with their corresponding centers of the
adjusted ellipses. Note that their spatial variation has significantly reduced after
image correction. Finally, longitudinal cuts before and after rotation elimination
are exhibited in figure 7 (c) and (d).

3.2 Healthy and Pathological Rotations Profiles

We studied the local rotation profile in order to illustrate differences between
healthy and pathological vessel segments. The comparative analysis is based on
the period and the amplitude of the profile. For our basic comparative analysis
we considered a healthy segment and 28 pathological ones including soft plaque,
hard plaque and atheroma. Graphics along 250 frames are shown in Fig.8. The
healthy patient presents a regular periodic behavior with an oscillation amplitude
of approximately 40 degrees and a period that coincides with the heart beat rate.
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(a) (b)

Fig. 6. Angle rotation profiles, before (a) and after (b) rotation suppression

(a) (b)

(c) (d)

Fig. 7. Ellipses centers spatial location, before (a) and after (b) correction of rotation.

Longitudinal cuts before(c) and after (d) rotation suppression
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Fig. 8. Differences between healthy and pathological vessel segments of the rotation

profiles for selected patients

Soft plaque still follows a periodic pattern synchronized with the heart beat,
although its amplitude drops to a range of 5 to 20 degrees, depending on the
severity of the lesion. The mechanical properties (elasticity and rigidity) of hard
plaque result in a suppression of vessel oscillation, yielding almost flat rotation
profiles. Finally, the atheroma profile is the most irregular one lacking of any
visual periodicity.

4 Conclusions

The clinical applications of the rotation artifact have not been reported today,
since the physiological, physical and geometrical reasons are not well known. We
developed a kinematic model that allows to estimate and remove the IVUS ro-
tation images effect. The model is based on the assumptions that the vessel wall
shape can be modelled as a discrete structure. The proposed kinematic model
can be used two ways: IVUS stabilization and kinematics characterization of the
vessel wall. The first aspect is the main goal of this work, therefore we introduced
a kinematics method to estimate and remove the rotation of IVUS sequences.
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The method is based on the assumption that the vessel wall can be described as
a discrete structure which kinematics temporal evolution can be followed by a
trained Neural Network, during at least one heart cycle. A first examination of
the qualitative shape of the rotation IVUS sequence profiles shows that the ro-
tation effect can be used as a complementary tool, to evaluate vessel pathologies
from kinematic point of view. Due to the anatomical distribution of the coronary
arteries, most of the IVUS sequences (> 85%), have their rotation center in the
vessel wall border. Still some sequences have the rotation center located in the
lumen center. In these cases in order to improve this first approach, a general
geometric model based on the vessel wall kinematics must be considered. This
is an object of our future work.
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Abstract. Heart ventricular mechanics has been investigated intensively in the 
last four decades. The passive material properties, the ventricular geometry and 
muscular architecture, and the myocardial activation are among the most 
important determinants of cardiac mechanics. The heart muscle is anisotropic, 
inhomogeneous, and highly nonlinear. The heart ventricular geometry is 
irregular and object dependent. The muscular architecture includes the 
organization of the fiber and the connective tissues. Studies of the myocardial 
activation have been carried out at both cell and tissue levels. Previous work 
from our research group has successfully estimated the in-vivo motion and 
deformation of both the left and the right ventricles. In this paper, we present an 
iterative model to estimate the in-vivo myocardium material properties, the 
active forces generated along fiber orientation, and strain and stress distribution 
in both ventricles. Compared to the strain energy function approach, our model 
is more intuitively understandable. Using the model, we have simulated the 
mechanical events of a few different heart diseases. Noticeable strain and stress 
differences are found between normal and diseased hearts. 

1   Introduction 

According to World Health Organization (WHO) estimates, 16.7 million people 
around the world die of heart disease each year, which contributes to nearly one-third 
of global deaths [27]. In the United States, heart disease has been the No. 1 killer each 
year since 1900 except 1918, causing more than 700,000 deaths per year since the 
1960s; the estimated direct and indirect cost of heart disease is $368.4 billion in 2004 
[1]. However, many aspects of the heart dynamics are still not well understood, 
although it has been studied for centuries. 

The primary function of the heart is mechanical pumping. Myocardial stress and 
strain are important determinants of various aspects of cardiac physiology, 
pathophysiology, and clinical factors. Myocardial deformation and the associated 
stress fields reflect local contractile status and are related to heart wall motion and to 
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the ventricular pressures. The quantitative description of heart ventricular strain and 
stress is important for the evaluation of cardiac performance in the diagnosis of heart 
disease.  

Many models have been proposed to describe and predict mechanical function of 
heart in a rational and systematic manner since the late nineteenth century [30]. Most 
models used knowledge of continuum mechanics, anatomy, physiology, deformation, 
boundary conditions and material properties of the heart. Since the right ventricle is 
difficult to approximate with any simple parameterized 3D shape, most models have 
focused on the left ventricle. In one of the earliest models, a thin-walled spherical 
geometry was assumed [29]. The stress was derived from cavity pressure and radius 
using the classical Laplace membrane solution. After more than seventy years, 
ellipsoidal thin-walled models were proposed [24, 25]. In these models, the 
assumption that the thickness is much less than the radii of curvature contradicts 
reality and severely limits their application. Thick-walled ventricular mechanics 
models were then proposed [28, 19]. However, the geometry was still assumed to be a 
regular shape such as sphere or axisymmetric ellipsoidal.  

With the invention of computers and the finite element method, irregular shapes 
were used in the modeling [8], which could describe the complex geometry of the 
ventricles more efficiently and accurately. The deformation was still assumed to be 
infinitesimal. Along with the development of large elastic deformation theory, finite 
deformation was incorporated into new models that offered real insight into 
myocardial stress distributions [20, 15]. Isotropic material properties were assumed in 
the models mentioned so far because of mathematical simplicity.   

Appropriate formulation of constitutive relations for passive myocardium is needed 
for the analysis of deformation and stress in the heart. To determine the constitutive 
relations of myocardium, it is necessary to consider its anatomical structure. In this 
paper, we only give some introduction to heart ventricular anatomy that is related to 
our modeling. Details of the anatomy of the heart can be found in [3, 7].  

Tissue structure studies have revealed that the myocardium muscle cells are 
bundled into fibers, which have different orientation through the heart wall. Hort, and 
later Streeter were the first to carry out systematic and quantitative measurements of 
muscle fiber orientations of canine heart [12, 25]. Their main findings are: (1) fibers 
predominantly lie in planes parallel to the endocardial and epicardial surfaces, and (2) 
the fiber directions generally vary in a continuous manner from +60° (i.e., 60° 
counter-clockwise from the circumferential axis) on the endocardium to -60° on the 
epicardium. This discovery has important implications for the mechanical properties 
of the myocardium. Hunter proposed the first non-axisymmetric large deformation 
finite element model of the left ventricle with anisotropic material properties [14]. In 
his model, the myocardium was represented as an incompressible, transversely 
isotropic material and transmural fiber orientation distribution was incorporated. 
Transversely isotropic material properties were then incorporated in many other works 
[13, 4, 9, and 5]. According to biaxial tissue testing, the stress-strain relations for the 
fiber and cross-fiber directions are different, which verified that heart material is 
anisotropic.  

More recent studies reported that myocardial muscle fibers are tightly bound into 
branching laminar sheets that are approximately four cells thick [16]. The sheets are 
generally oriented normal to the ventricular surfaces. The adjacent sheets are loosely 
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coupled and can slide over each other relatively easily, which may be the mechanism 
responsible for large ventricular wall thickening at end systole [5, 26]. 

Accurate representation of cardiac geometry is needed for the realistic modeling of 
heart ventricular mechanics. Cardiac geometry was traditionally given only qualitative 
descriptions. In the last three decades, a variety of imaging methods have been used to 
reconstruct three-dimensional geometry of heart ventricles [21]. However, most 
imaging methods are either invasive or cannot give information on the intramural 
motion due to the lack of suitable landmarks. 

Magnetic resonance imaging (MRI) provides a new method to study heart function. 
Coupled with magnetization tagging, MRI not only provides tomographic images of 
the heart wall, it can also provide a means to noninvasively track material points 
within the wall [2, 31]. Two-dimensional deformation of the heart wall can be 
calculated by analyzing sequential tagged images, without considering through-plane 
motion components. To reconstruct three-dimensional trajectory of material points, 
we must combine tag displacement data in three orthogonal directions (two short axis 
and one long axis) [22, 10]. 

In this paper, we propose a new model of myocardium stiffness. The active stress 
and material properties are estimated iteratively. Using experimental strain data, we 
predict in-vivo stress distribution in the heart wall. Moreover, we simulate the 
mechanical events of a few different heart diseases.  

2   Background 

2.1   Cardiac Cycle 

The cardiac cycle is divided into two major phases: systole (contraction) and diastole 
(relaxation). The pressure-volume loop of the left ventricle is shown in Figure 1. The 
mitral valve closes at A and the left ventricle undergoes isovolumic contraction with 
rapidly rising pressure until B, when the left ventricular pressure exceeds the aortic 
pressure and the aortic valve opens, blood is ejected and the left ventricle’s volume 
begins to decrease. The aortic valve closes at the end of systole at C, due to the 
decreasing intraventricular pressure, which falls below the aortic pressure. The left 
ventricle then undergoes isovolumic relaxation from C to D. The mitral valve reopens 
at D when the pressure of left ventricle is lower than that of left atrium. Blood 
pressure in the right ventricle cavity changes similarly over the heart contraction cycle 
though its magnitude is much smaller than that of the left ventricle [3, 7].  

2.2   Passive Myocardium Material Properties 

Various stretching tests have been performed on isolated myocardium and many 
constitutive formulations have been derived based on these experimental results. The 
most commonly performed experiment on excised cardiac tissue is the uniaxial test. 
In uniaxial test, the specimens are mounted in a uniaxial testing apparatus and 
stretched in muscle-fiber direction; the stress-extension relations are measured during 
the stretching. Papillary muscle and ventricular trabeculae have been used in most 
uniaxial testing due to their geometrical simplicity. The data demonstrated that 
cardiac muscle is a nonlinear pseudo-elastic material with time-dependent mechanical 
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properties. Fig. 2 shows schematic stress-extension relations for left ventricle midwall 
undergoing uniaxial loading in muscle fiber direction. 

However, uniaxial data are not sufficient for the constitutive relations because of the 
anisotropy of cardiac tissue. Researchers have obtained more complete information 
using biaxial testing procedures. Biaxial specimens are usually rectangular slices of 
ventricular free-walls tangential to the epicardial surface such that the muscle fibers lie 
within the plane of the specimens. Different from uniaxial testing, the specimens are 
stretched in two in-plane orthogonal directions and the force-length data are measured 
in both directions. The data suggested that passive myocardium is a nonlinear, 
anisotropic, nearly pseudoelastic and perhaps regionally heterogeneous material, which 
is consistent with both structural and uniaxial data. The fiber axis is two to three times 
stiffer than the cross-fiber direction in the LV midwall.  

 
  

Fig 1. Schematic pressure-volume loop of left ventricle Fig. 2. Schematic stress-extension 
relations for left ventricle midwall 
undergoing uniaxial loading in 
muscle fiber direction 

Although biaxial testing is useful to identify two-dimensional constitutive 
relations, it is not sufficient for three-dimensional models. Three-dimensional tests 
have been used for this purpose [11]. The only difference from biaxial testing is that a 
punch indents a small portion of the top surface of the specimen in the third 
orthogonal direction; the indentation force and punch penetration depth are measured 
along with biaxial force-length relations. The slope of the indentation force-depth 
relationship is called a measure of transverse stiffness.  

3   Estimation of Material Properties and Active Forces 

Since the stresses cannot be measured directly, there is a need for a reliable model for 
estimating the state of stress in a beating heart. One important approach is using the 
classical balance relations of continuum mechanics and computational techniques such 
as finite element method. With knowledge of cardiac anatomy, muscle fiber and sheet 
orientation, and boundary conditions, the most significant problems in developing such 
a model are estimating the stress-strain relationship of the materials of the heart and the 
laws governing the active contraction of the heart muscle. In this section, we present 
our methods to estimate the material properties and active forces for a beating heart. 

Extension Ratio 
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3.1   Boundary Conditions 

Since our reconstructed data do not include the atrium, we need to assume some 
reasonable boundary conditions at the base area. We assume that each basal node of 
ventricular wall is attached to a spring from above. The spring is at its stress-free state 
at end-diastole. Since base area moves down towards the apex area during systole, the 
springs will be stretched and generate forces pulling basal nodes. The elasticity of the 
spring is assumed to be equal to the Young’s modulus of ventricular wall.  

During contraction, the blood pressure acting on the endocardial wall is PLV, 
which changes with time. We assume the blood pressure is uniform in the whole 
ventricle and follow empirical results [6].  

From the reconstructed motion, we observe that the apex area has relatively small 
displacements. Moreover, there is no other organ attached to the ventricle at the apex. 
Therefore, it is reasonable to assume that the displacements of the nodes around the 
apex are given, either from reconstructed data for real heart models or zero for regular 
geometric model.  

3.2   Nodal Forces from Active Contraction 

For simplicity, we assume that cardiac muscle only generates forces along the fiber 
orientation. To be implemented in the finite element method, these active forces need 
to be converted into the equivalent node forces. Consider a 2D square in Fig. 3; 
suppose the fiber is located at the center of the square and the fiber angle with respect 
to the horizontal axis is θ. Assume the active force within fibers is F, which is along 
the fiber direction. We need to calculate the equivalent forces on the four nodes 
named 1, 2, 3, and 4. We assume all four nodal forces are parallel to the fiber force 
and the magnitudes of diagonal forces are equal to each other because of symmetry: 

4231 ffff ==  
 
(3.1) 

To calculate the equivalent nodal forces, we cut the plane in the middle virtually by 
a plane perpendicular to the fiber orientation. From force balance, it is easy to find 
that the summation of forces 1 and 4 is equal to the active force: 

Fff =+ 41  (3.2) 

To determine the magnitudes of forces 1 and 4, we use torque balance with respect 
to node 1:  

044 =⋅−⋅ LfLF F  (3.3) 

where:  
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Fig. 3. Calculation of equivalent node forces in a square element: (a) one square element 
with active forces along fiber orientation; (b) one half of the same element 
 

where L is the length of the side of the square and θ is assumed to be less than or 
equal to 45° (similarly we can derive the forces for other values of θ). Substitute (3.2) 
and (3.4) into (3.3), we get: 
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To compute active force, we need to multiply active stress by the corresponding 
cross section area. Since we assume fibers lie in the plane parallel to the surface, one 
simple way to calculate the cross section area is taking the average of four face areas 
that fibers cross through. The active force for one element is:    

af
i

i fSF =
=

4

14
1

 

 
(3.6) 

where faf is the element’s active fiber stress that we will estimate, and Si is area of the i 
th face that fiber crosses through.  

In above computation, the directions of nodal forces are relative to the local 
element coordinates and parallel to the fiber direction. We need to express them in 
global coordinates before they can be used in finite element computing. Suppose fiber 
direction in global coordinates is given by: 

zyx erererr 321 ++=  
(3.7) 

The equivalent force at node 1 will be:  
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In order to get the net active forces on each node, we go through the same 
procedure for each element of the heart ventricles. For one node i, suppose it is one of 
the corner nodes of ni elements, the net active force on node i is: 

=

=
ni

k
kii ff

1
,  (3.9) 

where fi,k is the nodal force acting on node i generated from neighbor element k. 
Combing equations (3.5-3.9), we derive the relationship between equivalent nodal 
forces and active forces in matrix form as follows: 

afafaf fAP =  (3.10) 

where Paf is the nodal force vector with 3n entries (n is the number of nodes, 3 entries 
for each node in 3D problems), faf is the finite element active stress vector with m 
entries (m is the number of elements), and Aaf is the matrix (3n by m) that maps the 
element active stresses onto the nodal forces. The mapping matrix Aaf depends on the 
geometry and fiber angle only. 

3.3   Singular Value Decomposition 

If we neglect body forces and residual stresses, the finite element equation will be:  

afcavity PPaK +=⋅  
(3.11) 

where K is the stiffness matrix, Pcavity is the pressure generated by blood in the 
ventricular cavity, Paf is the equivalent nodal force given by equation (3.10). Since 
displacement is given by the reconstructed motion data and we use empirical blood 
pressure, the active stresses can be determined once K is known. Substituting equation 
(3.10) into (3.11), we have: 

cavityafaf PaKfA −⋅=⋅  
(3.12) 

Observing that the coefficient matrix Aaf is non-square and equation (3.12) is an 
over-determined set of linear equations, we use singular value decomposition (SVD) 
to solve these equations. Supposing Aaf is a M × N matrix, it can be written as the 
product of an M × N column-orthogonal matrix U, an N × N diagonal matrix W with 
positive or zero elements, and the transpose of an N × N orthogonal matrix V [23].  

T
af VWUA ⋅⋅=  

(3.13) 

The solution of equation (3.12) is then given by: 

( )( )cavity
T

jaf PaKUdiagVf −⋅⋅⋅⋅= )]/1([ ω  (3.14) 

where ωj is the j th diagonal element of matrix W, and 1/ωj is replaced by zero if ωj = 
0. The solution given by equation (3.14) will not exactly solve equation (3.12), 
however, it minimizes: 
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( )cavityafaf PaKfAr −⋅−⋅=  
(3.15) 

where r is called the residual of the solution.  

3.4   Assumptions on Stiffness 

One of our major tasks is to identify the myocardial material properties and active 
stress during systole. Passive myocardial material properties change greatly when 
strains are large. Conventional models will predict that passive myocardial material 
properties vary only a small amount during iso-volumic contraction since there is very 
little deformation at this phase. From this observation, we cannot use the passive 
material properties only to compute the stiffness matrix K in equation (3.11). 
Otherwise, it will be in contradiction with the real underlying mechanics; since the 
active stress goes up rapidly during iso-volumic contraction and the cavity pressure 
goes up quickly as well; if the stiffness does not change much, the deformation of 
myocardium would be quite large, which is different from the real measurements. 
Therefore, we propose a new model, that myocardial stiffness consists of two 
components: one component depends on active forces only while another component 
depends on strains only: 

ε  ,f  ,  , sastotals YYY +=  
(3.16) 

where Ys,total  is the overall Young’s modulus of the myocardium, Ys af  is the active 

Young’s modulus that depends on active forces, and ε  ,sY  is the passive Young’s 

modulus that varies with strains.  
For simplicity, we assume the active Young’s modulus is a linear function of 

active force along the fiber: 

afas fCY 1f  , =  (3.17) 

where C1 is a coefficient, and faf  is the active stress generated by the fiber. Since the 
Young’s modulus and active stress have the same units, C1 is unit-less. Note that Ys, af 
is equal to zero when there is no active stress. Since myocardium has different 
Young’s modulus along different directions, to make it reasonably agree with 
experimental results, we need to use at least three functions to represent active 
Young’s modulus along fiber, sheet, and sheet normal orientation, respectively. There 
are three parameters to be determined in these functions, and we express them in one 
vector as (C1,f, C1,s, C1,sn). They are the constant coefficients corresponding to fiber, 
sheet, and normal sheet, respectively. The corresponding passive Young’s modulus is 
derived from published experimental data. 

3.5   Estimation Algorithm 

Although both sides of equation (3.12) have unknown variables, we can estimate them 
based on more constraints. The active force generated by the fibers acts to increase 
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the cavity pressure during iso-volumic contraction and then push the blood out of 
ventricles during ejection. The magnitude of blood pressure mainly depends on how 
much active force has been generated, while the deformation of the ventricles depends 
on active force, blood pressure, and the material properties. The deformation itself 
determines how much the volume of the cavity will change. Since the volume of the 
cavity does not change during isovolumic contraction, this imposes one more 
constraint on the model.  

We use the binary search method to estimate the approximate amount of active 
force needed to generate the given blood pressure during isovolumic contraction. We 
then use a generalized EM algorithm [18] to estimate the active Young’s moduli and 
active stress. The procedure is as follows: 

1. Let i = 0, Assume initial active stress )(i
aff  is 0,  

2. Use mean active stress E( )(i
aff ), active Young’s modulus coefficients, and the 

passive Young’s modulus from experimental data to calculate K in equation 
(3.15),  

3. Use K from step 2, the reconstructed motion data, and empirical blood 

pressure to calculate active stress  )1( +i
aff  using equation (3.15), 

4. Take the mean active stress ( ))1( +i
affE  from all elements, if 

( ) ( )
( ) δ<

−
+

+

)1(

)()1(

i
af

i
af

i
af

fE

fEfE
, stop the iteration (δ is a small number), else let i 

= i + 1, go to step 2. 

The step 2 is the E-step since we use the mean value of active stress to compute the 
active Young’s modulus. The step 3 is the M-step since we use the singular value 
decomposition (SVD), which is fundamentally a general least-square method.  

4   Simulation of Patho-Physiological Ventricles 

The goal of our modeling and simulation is to provide quantitative data on the strain 
and stress distribution within the heart ventricles to clinicians who may find this 
information useful for treating cardiovascular diseases (CVD). Since our research is 
focused on heart ventricles, we will study two kinds of heart disease - ischemia and 
conduction abnormalities. 

  

Fig. 4. Simulation of ischemia with different size: small ischemia (yellow area) (left); 33% 
of the left ventricle’s free wall is ischemia (yellow area) (right) 
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4.1   Ischemia 

Heart muscle needs a steady supply of oxygen and nutrients to function properly. The 
coronary arteries supply oxygenized blood flow to the heart. These arteries normally 
have smooth inner lining. However, they can become clogged with fats, cholesterol 
and plaques. As a result, a blocked coronary artery prevents sufficient oxygen and 
nutrients from reaching a section of the heart. This is called ischemia. There is an 
imbalance between oxygen supply and oxygen demand during myocardial ischemia 
and the myocardium becomes hypoxic. When ischemia lasts for more than a few 
minutes, heart muscle can begin to die and lead to infarction of the tissue, causing a 
heart attack.  

In our model, we consider acute ischemia. We assume the acute ischemia region 
does not generate active force and is less stiff than normal regions. We control the 
size of ischemia from a small area to 33% of the free wall of left ventricle (Fig. 4).  

4.2   Conduction Delay 

The heart muscle needs electric stimulation for every contraction. Cardiac conduction 
system refers to the system of electrical signaling that instructs these muscle cells to 
contract. The Sinoatrial (SA) node is the electric impulse station of the heart. It is 
located in the upper corner of the right atrium. The action potential from the SA node 
spreads to neighboring cardiac muscle cells and triggers atrial systole. The SA node 
eventually activates the atrioventricular (AV) node that is located between right 
atrium and right ventricle. A group of fast-conducting fibers called the His bundle 
carry the AV node activity to the interventricular septum very quickly. The His 
bundle divides into two branches when it reaches the interventricular septum. The left 
branch is for left ventricle and the right branch is for right ventricle. The bundle 
branches run all the way down to apex of the heart through the septum and then go 
back up along the ventricles. The bundle branches running up the outer edges are 
called Purkinje fibers [6].  

The conduction within the bundle branches may be delayed in diseased hearts. This 
results in a delay of the depolarization for part of the ventricular muscle. It is useful to 
study the impact of such delay on the function of heart ventricles. We use a simple 
model to simulate conduction delay within left ventricle. We assume 33% of the free 
wall of left ventricle is activated later than other regions. The region with delayed 
activation will be initially stretched a little bit. From the Frank-Starling law, this 
region will generate greater active force than other regions when it gets activated. The 
results are shown in Section 5.3.2.  

5   Results 

In this section, we present experimental results of our modeling and corresponding 
simulation. First, we will show the reconstructed 3D strain of heart ventricles. Next, 
we will present the material properties and active force estimation results and the 
stress distribution in heart ventricles. Finally, we demonstrate the application of our 
model to different heart disease simulations.   
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5.1 Clinical Strain Data 

The 3D motion reconstruction technique was applied to data from 5 normal 
volunteers. The motion of heart ventricles from end-diastole to end-systole was 
extracted. Motion data from all 5 normal volunteers had similar behavior. There are 5 
frames from end-diastole to end-systole in this data set. There are two layers of 
elements in the radial direction in the left ventricle. The right ventricle has one layer 
of elements along the radial direction. We use this motion data to compute the strain 
of the ventricles. The strain components are presented in local wall coordinates. The 
normal and shear strain components of left and right ventricles in RCL (radial, 
circumferential, and longitudinal) coordinates at end-systole are shown in Fig. 5. We 
observe that the ventricles become thicker radially, and shorter circumferentially and 
longitudinally during systole.  

5.2   Material Properties and Stress  

The passive material properties of heart ventricles are assumed to take some average 
values from the experimental data reported by other researchers [26]. We use the 
passive Young’s modulus given in Table 1 in our model. Estimated passive stress 
distribution in one normal bi-ventricle heart at end-systole is shown in Fig. 6. 

Table. 1. Passive Young’s modulus of heart ventricles: εεε   ,  ,  ,  and ,  , snfsssf YYY  are passive 

Young’s modulus along fiber, sheet, and sheet-normal directions, respectively 

Axial strain 
         

0.0 0.1 0.2 0.3 

  ε  ,sfY   (KPa) 40 90 140 200 

ε  ,ssY    (KPa) 10 40 80 125 

 ε  ,snfY (KPa) 6 20 40 70 

. 
 

  

 

Fig. 5. Normal heart strain components at end-systole 
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Fig. 6. Normal heart stress components at end-systole 

5.3   Patho-Physiological Ventricles 

5.3.1   Ischemia 
We used regular geometry in the simulation of heart diseases. In this simulation 
experiment, ischemia region occupies 33% of the left ventricle’s free wall (see Fig. 4). 
The strain components are shown in Fig. 7. As we can see, the ischemia region has 
different strain components from normal region, especially the radial and 
circumferential components. From the simulation results, we observe that a small area 
of ischemia does not alter the systolic function much and the strain and stress pattern of 
the ventricle is very similar to the normal heart. However, the strain and stress are quite 
different from those of normal heart when the ischemia size becomes large. In addition, 
a large ischemia alters not only the function of itself but also the border zone.  

  

  

Fig. 7. The strain pattern in diseased heart with ischemia at frame 2 (top left), 3 (top right), 4 
(bottom left), and 5 (bottom right), respectively 
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5.3.2   Conduction Abnormalities  
In this simulation experiment, 33% of the left ventricle’s free wall (the same area as 
Fig. 4) is activated later than other regions. The Frank-Starling law tells us that this 
region will contract more rigorously due to the initial stretch. We can see from Fig. 8 
that the greater contraction force compensates the delay and the final strain within this 
area is similar to other areas. 

  

  

Fig. 8. The strain pattern in diseased heart with conduction abnormality at frame 2 (top left), 
3 (top right), 4 (bottom left), and 5 (bottom right), respectively 

6   Conclusion 

We have developed an iterative model to estimate the strain and stress of both cardiac 
ventricles by using accurate displacements reconstructed from MRI-SPAMM tagging 
and a deformable model. Compared to the traditional strain energy function method, 
our model gives more intuitive and understandable parameters. In addition, we have 
used our models to simulate two different heart diseases, which have different strain 
and stress patterns from normal heart. The modeling and simulation results may be 
clinically useful for heart disease treatment in the future. In future work, we will 
extend our model to the full cardiac cycle by including the relaxation phase and carry 
out sensitivity analysis on parameter estimation.  

Reference 

[1] American Heart Association. 2004 Heart and Stroke Statistical Update. Dallas, TX: Am. 
Heart Assoc. 

[2] L. Axel, L. Dougherty. Heart wall motion: Improved method of spatial modulation of 
magnetization for MR imaging. Radiology, 272:349-50, 1989. 



382 Z. Hu, D. Metaxas, and L. Axel 

 

[3] R.M. Berne, M.N. Levy. Principles of Physiology. Mosby-Year Book, 1996. 
[4] P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. van Campen, R.S. Reneman. 

Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A 
model study. J. Biomech. 25(10), 1129-1140, 1992.  

[5] K. Costa. The Structural Basis of Three-Dimensional Ventricular Mechanics, Ph.D. 
Dissertation, University of California, San Diego, CA, 1996. 

[6] Y.C. Fung. Biomechanics: Circulation, 2nd Edition. Springer-Verlag, New York, 1997. 
[7] L. Glass, P. Hunter, A. McCulloch. Theory of Heart: Biomechanics, Biophysics, and 

Nonlinear Dynamics of Cardiac Function. Springer-Verlag, 1991.  
[8] P. Gould, D. Ghista, L. Brombolich, I. Mirsky. In vivo stresses in the human left 

ventricle: Analysis accounting for the irregular 3- dimensional geometry and comparison 
with idealized geometry analyses. J. Biomech. 5, 521-539, 1972. 

[9] J.M. Guccione, K.D. Costa, A.D. McCulloch. Finite element stress analysis of left 
ventricular mechanics in the beating dog heart. J. Biomech. 28(10), 1167-1177, 1995.  

[10] I. Haber, D.N. Metaxas, L. Axel. Three-dimensional motion reconstruction and analysis 
of the right ventricle using tagged MRI. Medical Image Analysis, 4:335-355, 2000. 

[11] H.R. Halperin, P.H. Chew, M.L. Weisfeldt, K. Sagawa, J.D. Humphrey, F.C.P. Yin. 
Transverse stiffness: A method for estimation of myocardial wall stress. Circ. Res., 
61:695-703, 1987. 

[12] W. Hort. Mikrometrische Untersuchungen an verschieden weiten 
Meerschweinchenherzen, Verhandl. Deut. Ges. Kreislaufforsch, 23: 343-346, 1957. 

[13] J.D. Humphrey, F.C.P. Yin. Biomechanical experiments on excised myocardium: 
Theoretical   considerations. Journal of Biomechanics, 22:377-383, 1989. 

[14] P.J. Hunter. Finite element analysis of cardiac muscle mechanics. Ph.D. thesis, University 
of Oxford. 1975. 

[15] R.F. Janz, A.F. Grimm. Finite element model for the mechanical behavior of the left 
ventricle. Circ. Res. 30, 244-252, 1972. 

[16] I.J. LeGrice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, P.J. Hunter. Laminar 
structure of the heart: ventricular myocyte arrangement and connective tissue architecture 
in the dog. Am. J. Physiol. 269: H571-582, 1995. 

[17] A.D. McCulloch. Cardiac mechanics. In: J.D. Bronzino (ed.), The Biomechanical 
Engineering Handbook. CRC Press, Boca Raton, FL. Chapter 31, pp. 418-439, 1995. 

[18] G.J. McLachlan, T. Krishnan. The EM algorithms and extensions. John Wiley & Sons, 
Inc. 1997. 

[19] I. Mirsky. Effects of anisotropy and nonhomogeneity on left ventricular stresses in the 
intact heart. Bull. Math. Biophys. 32(2), 197-213, 1970. 

[20] I. Mirsky. Ventricular and arterial wall stresses based on large deformations analysis. 
Biophys. J. 13(11), 1141-59, 1973. 

[21] W.G. O’Dell, A.D. McCulloch. Imaging three-dimensional cardiac function. Annu. Rev. 
Biomed. Eng. 2:431-56, 2000. 

[22] J. Park, D. N. Metaxas, L. Axel. Analysis of left ventricular wall motion based on 
volumetric deformable models and MRI-SPAMM. Medical Image Analysis, 1:53-71, 
1996. 

[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical recipes in C++, 
the Art of Scientific Computing. 2nd Edition. Cambridge University Press, 2002.   

[24] H. Sandler, H.T. Dodge. Left ventricular tension and stress in man. Circ. Res. 13(2), 91-
104, 1963. 



 Computational Modeling and Simulation of Heart Ventricular Mechanics 383 

 

[25] D. D. Streeter Jr., W. T. Hanna. Engineering mechanics for successive states in canine 
left ventricular myocardium: I. Cavity and wall geometry. Circulation Research, 33:639-
655, 1973.  

[26] T. P. Usyk, R. Mazhari, A. D. McCulloch. Effect of laminar orthotropic myofiber 
architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity, 
61: 143-164, 2000. 

[27] WHO World Health Report, 2003; WHO website: www.who.int/ncd/cvd.  
[28] A.Y.K. Wang, P.M. Rautaharju. Stress distribution within the left ventricular wall 

approximated as a thick ellipsoidal shell. Am. Heart J. 75(5), 649-662, 1968. 
[29] R.H. Woods. A few applications of a physical theorem to membranes in the human body 

in a state of tension. J. Anat. Physiol. (26) 362-370, 1892. 
[30] F.C.P. Yin. Ventricular wall stress. Circ. Res. 49 (4), 829-842, 1981. 
[31] A.A. Young, L. Axel. Three-dimensional motion and deformation of the heart wall: 

estimation with spatial modulation of magnetization – a model based approach. 
Radiology, 185: 241-247, 1992. 



A Realistic Anthropomorphic Numerical Model
of the Beating Heart

Rana Haddad1, Patrick Clarysse, Maciej Orkisz, Pierre Croisille, Didier Revel,
and Isabelle E. Magnin

Creatis, CNRS Unit #5515, INSERM U630, F-69621 Lyon Cedex, France
rana.haddad@creatis.insa-lyon.fr

http://www.creatis.insa-lyon.fr/

Abstract. A realistic anthropomorphic numerical model of the beating
heart is presented. It includes the main cardiac anatomical structures,
vessels junctions and part of the coronary network. Its main feature is
that it is based on an imaging study on the same human subject from
which both structural and motion information are retrieved. This confers
to the model a remarkable consistency. Heart’s deformation is assessed
through successive 3D non rigid registrations in cine MR sequences. The
resulting model can be used for the evaluation of cardiac image pro-
cessing algorithms such as myocardium segmentation and cardiac image
registration.

1 Introduction

Up-to-date medical imaging modalities, such as Magnetic Resonance Imaging
(MRI) are now able to provide very accurate pictures of the heart’s anatomy
in 3D and through the cardiac cycle. Image acquisitions generally relies on trig-
gering systems (i. e. ECG gating) to reconstruct the anatomy from data record-
ing over a certain time interval (currently several cardiac cycles). For diagnostic
purposes, clinicians need image post-processing techniques in order obtain quan-
titative parameters, currently cavity volumes, ejection fraction or local motion
indexes such as myocardial wall thickening. Therefore, a significant number of
methods have been developed for the segmentation of the heart and the estima-
tion of its motion [13, 4, 16, 9]. Some of them may surely obtain good results in
specific cases but the novel user usually lacks objective performance comparison.
A beating heart model could serve as a reference to evaluate the performances
of segmentation methods [3], [8]. Such a model could also be of great interest
for the evaluation of image reconstruction [6] and registration [12] algorithms.
In these cases, the model would include not only a computer description of the
main cardiac structures but also the associated medical images in mono or even
multi-modalities. Another interest of such a model would be the training for
minimally invasive beating heart surgeries [18]. If the model is doted of some
tuning parameters, various normal and pathological conditions could then be
simulated.

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 384–393, 2005.
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This paper reports the current state of development of a beating heart model
which includes the heart’s cavities, the junction of the main vessels and the
coronaries. One of the main characteristics of this model is that it issues from
the same single anatomical and dynamic imaging study on a healthy subject.
Also, the model comprises both a surface description of the anatomical structures
and the associated MR images.

2 Method

As described in Figure 1, the model’s development first relies on the construction
of a static anatomical model which will be animated in a second phase. These
two steps are detailed hereafter.
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Fig. 1. Overview of the anthropomorphic beating heart model development

2.1 Static Model Construction

The anatomy of the heart and the main vascular structures, including the coro-
naries, is obtained from the acquisition of a specific 3D image set in MRI exami-
nation of a healthy subject. The static model construction relies of the following
four successive steps:
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1. Acquisition of the reference data set
2. Extraction of the contours and 3D surface reconstruction of anatomical struc-

tures
3. Semi-automatic extraction and reconstruction of the coronary network
4. Assembling the whole model

Reference Data Set. A 3D MRI acquisition has been performed on a healthy
subject on a INTERA 1.5T, Philips Medical Systems at the Cardiological Hos-
pital, Lyon, France. 3D sense sequence has been used with ECG gating and echo
navigation (free respiration) to acquire a dense set of 80 transverse slices (slice
thickness=2mm, spacing between slices=1mm, image resolution=0.53x0.53mm2,
matrix=512x512) to cover the whole heart and peripheral vessels at mid-systole
(Figure 2(a)). Cine images has been acquired on the same volunteer to be used
for the animation of the model (Section 2.2). Seven slice levels cover the whole
heart. For each slice, thirty frames sample the cardiac cycle. At total, 210 short
axis images has been obtained. The parameters are: slice thickness=7mm, spac-
ing between slices=10mm, image resolution=1.05x1.05mm2, matrix=256x256
(Figure 2(b)(c)). 2 and 4 chambers long axis cine images (30 frames) com-
plete the reference data set. Their parameters are : slice thickness=6mm, image
resolution=1.13x1.13mm2, matrix=256x256 (Figure 2(d)).

Contour Extraction and 3D Surface Reconstruction. The contours of the
left and right ventricles and atria, the pericardium have been manually traced
by a radiologist. Each contour, which has been individually checked, is labeled
by the corresponding anatomical structure it is part of. In the same way, the
junctions of the four pulmonary veins, vena cava and the aorta have been seg-
mented. Figure 3(a) shows some of the extracted contours. 3D reconstruction of
the cardiac structures is based on the method developed by B. Geiger for surface
reconstruction from planar contours and implemented in the Nuages1 software.
Surfaces are available as 3D triangle meshes. A smoothed version of the surfaces
has been generated using Laplacian smoothing (vtkSmoothPolyDataFilter of the
VTK library2). Figure 3(b) shows some of the reconstructed surfaces.

Semi-automatic Extraction and Reconstruction of the Coronary Net-
work. Semi-automatic extraction and reconstruction of the coronary network
perceptible in the data set was achieved in following steps: 1) image filtering
aiming at the enhancement of the coronary arteries, while attenuating other
structures, 2) segment-by-segment extraction of arterial centerlines, along with
estimation of local diameters, 3) extraction of cross-sectional lumen boundaries
of each arterial segment in image planes locally perpendicular to the center-
line, 4) connection and smoothing of the centerline segments, 5) generation of
smoothed lumen surfaces.

1 http://www-sop.inria.fr/prisme/
2 http://public.kitware.com/VTK/



A Realistic Anthropomorphic Numerical Model of the Beating Heart 387

(a)

Apex

Base

LV

LC

RV

LA

RC

RA

512

512

0.53 * 0.53 mm2

(b)

S4 S7

S
1

S
7

256

256

1.05 * 1.05 mm2

S1

(c)

t30
t1 t2

S
4

at t
1

S
4

at t
30

1.13 * 1.13 mm2

(d)

t30
t2t1

256

256

(a)

Apex

Base

LV

LC

RV

LA

RC

RA

512

512

0.53 * 0.53 mm2

(a)

ApexApexApex

BaseBaseBase

LV

LC

RV

LA

RC

RA LV

LC

RV

LA

RC

RA

512

512

0.53 * 0.53 mm2

512

512

0.53 * 0.53 mm2

(b)

S4 S7

S
1

S
7

256

256

1.05 * 1.05 mm2

S1

(b)

S4S4 S7S7

S
1

S
1

S
7

S
7

256

256

1.05 * 1.05 mm2

S1

256

256

1.05 * 1.05 mm2

S1S1S1

(c)

t30
t1 t2

S
4

at t
1

S
4

at t
30

(c)

t30
t1 t2

S
4

at t
1

S
4

at t
30

t30t30
t1t1 t2t2

S
4

at t
1

S
4

at t
1

S
4

at t
30

S
4

at t
30

1.13 * 1.13 mm2

(d)

t30
t2t1

256

256

1.13 * 1.13 mm2

(d)

t30
t2t1

256

256

1.13 * 1.13 mm2

(d)

t30
t2t1

(d)

t30
t2t1

t30
t2t1

t30t30
t2t2t1t1

256

256

Fig. 2. (a) Reference MRI data set and the annotated anatomical structures (LV and
RV are left and right ventricles, LA and RA are left and right atria, respectively). Note
that right (RC) and left (LC) coronaries are also visible. (b) 3 levels of short axis slices.
(c) 3 over the 30 frames acquired at one short axis slice level. (d) 3 over the 30 frames
acquired at one long axis slice (2 chambers)

The first step was carried out using Frangi’s multi-scale filter based on
Hessian matrix eigenvalues λ3 < λ2 < λ1 [5]. As the arteries appear bright
on darker background, and their expected shape is cylindrical, the filter en-
hances the points that meet the following criterion: λ1 ≈ 0, |λ1| << |λ2|
and λ2 ≈ λ3. This criterion at a given scale σ is computed as follows: Pσ =[
1 − exp

(−R2
A/2a2

)]
exp

(−R2
B/2b2

) [
1 − exp

(−S2/2c2
)]

, where the parame-
ters a = b = 0.25, and c depends on image dynamics. With RA = |λ2/λ3|, the
first term is a measure of cross-sectional circularity. With RB = |λ1| /

√
λ2/λ3,

the second term is a measure of elongation. The last term uses the Frobenius
norm S of the Hessian matrix to reject unstructured regions. The second deriva-
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tives used to construct the Hessian at a given scale are obtained by convolving
the image with appropriate derivatives of the Gaussian Gσ. For each voxel, the
filter chooses the strongest response across a discrete set of scales σ correspond-
ing to the expected radii of the arteries.

The filtered images were used as input to the MARACAS software [7]. This
software was designed for the purpose of segmentation and quantification of 3D
MR Angiography images. It has been validated in gadolinium-enhanced MRA
of carotid arteries, where the background was removed by subtracting a pre-
contrast mask image. Its direct application in coronary MRA would be diffi-
cult without the above-described pre-filtering, because of the presence of high-
intensity large structures, namely cavities, in the close vicinity of the vessels.
In a user-selected vessel, MARACAS performs centerline extraction within an
iterative prediction/estimation framework. This process is based on local image
moments, namely gravity center and inertia-matrix eigenvectors and eigenvalues.
The prediction of a next centerline point is done according to the orientation of
the eigenvector associated with the smallest eigenvalue. The estimation attracts
the predicted point toward the local gravity center, while using first and second
order shape constraints like those used in snakes, i.e. elasticity and flexibility. Si-
multaneously, an approximate value of the local diameter of the vessel is deduced
from a multi-scale analysis of the eigenvalues [11].

The cross-sectional boundaries of the vascular lumen were extracted by
MARACAS in image planes locally perpendicular to the centerline, using iso-
contours with an adaptive iso-value. The local iso-values were deduced from a
low-pass filtered intensity curve of the centerline points. The centerlines of sep-
arate arterial segments provided by MARACAS were then connected. Namely,
the segments belonging to the same branch were concatenated and smoothed
with B-spline interpolation.

Surface points corresponding to each branch were generated by placing dis-
crete circular contours along the centerline, with constant spacing. These con-
tours were locally orthogonal to the centerline and their radii were calculated as
follows. In each branch, refined local radii were inferred from the previously ex-
tracted cross-sectional boundaries. Thus obtained curve representing the radius
evolution along the artery was smoothed by low-pass filtering. The resulting set
of points representing the discrete circles along all branches, was used as input
into a triangular-mesh generation process.

Assembling the Model. The overall model is the combination of all the
anatomical and vascular structures (Figure 3(d)) that are perfectly superim-
posable onto the original MR data set (Figure 4(b)). Figure 3 illustrates the dif-
ferent steps of the reconstruction process. Two views of the resulting 3D model
are shown in Figure 4 as compared with anatomical sheets.

2.2 Animating the Model

Overview. Motion estimation of the heart was achieved by non rigid image
registration between frames in sequence of cine MR images (30 frames) acquired
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on the same volunteer (Figure 2(b)(c)). Such a technique allows to recover global
as well as local motion features which characterize the heart dynamics. Images
at each time point are linearly interpolated to an isotropic 3D volume. A volume
of interest (VOI) has been selected to focus on the heart area and to reduce
the computing time. Consecutive image pairs are then matched using a non
rigid registration method based on free form deformations (FFD) (see below).
Deformation from one time frame to the next time frame is available through a
set of grid point displacements. The static heart model has to be put into the
same coordinate reference as for the short axis cine images. Once in the same
coordinate system, FFD deformations are applied iteratively to the model and
its new configuration recorded at each time point.

Non Rigid Registration. The 3D non-rigid registration technique is an it-
erative algorithm based on the spline-based free form deformation principle. A
regular grid Φ(nx × ny × nz) of control points Φi,j,k is overlaid to the floating
volumetric image (which domain is denoted as Ω = {(x, y, z)|0 ≤ x ≤ X, 0 ≤
y ≤ Y, 0 ≤ z ≤ Z}) and deformed until the minimum of an intensity based
similarity criterion between the floating image B and a reference image A is
reached. Equation ( 1) defines the 3D Free-Form deformation TFFD used in the
algorithm.

TFFD(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (1)

where Bl represents the lth basis function of the B-spline, and i = �x/nx� − 1,
j = �y/ny� − 1, k = �z/nz� − 1, u = x/nx − �x/nx�, v = y/ny − �y/ny�,
w = z/nz − �z/nz�, with �� the floor operator [14].

As the matched images are of the same nature, we chose the sum of squared
intensity differences (SSD) as the registration metric (equation 2).

SSD =
1
N

∑
|A(i) − B(i)|2 (2)

where the intensities in the reference and transformed floating images are A(i)
and B(i),respectively, and N is equal to the number of pairs of pixels in the
intersection region of the two images. The minimum of the criterion is searched
for using a gradient descent technique. The algorithm stops when the similarity
stabilizes or when the maximum iteration number is reached. In practice, the
parameters were fixed to the following values : the size of grid is 20 × 20 × 20
pixels, the maximum number of iteration is 30, the maximum step length of the
optimizer is 15 and VOI dimension is 128 × 128 × 70 pixels. We designed the
algorithm from software components of the ITK3 library (Figure 5).

3 http://www.itk.org
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Fig. 5. FFD deformed grid overlaid to the floating image in 2D

Model Animation. Non Rigid registration is repeated for each successive VOI
pairs of the sequence. The result is a set of 30 steps of 3D control point displace-
ments. The model animation consists in applying the retrieved FFD’s to the
static model. To this end, the model is transformed to the same coordinate sys-
tem as the cine short axis images. This is performed using image position and
orientation information available in image file headers, assuming that the sub-
ject has not moved between the two acquisitions. This has been usually checked.
Then, the successive FFD warpings are applied to the reoriented static model to
simulate the heart motion. Each deformed model configuration is recorded in a
separate file. Figure ( 6) illustrates some of the computed displacement fields us-
ing the non rigid FFD based registration algorithm. One can observe the global
extension of the LV myocardium close to the end systole and the opposite effect
during diastole.

3 Discussion and Conclusion

In this paper, a novel 3D realistic beating model of the heart and main vessels is
presented. A few heart models have been previously reported in the literature.
Some of them issue from the biomechanical community [2, 17, 10] but the geom-
etry of the heart structures are quite idealized and usually restricted to the LV.
To our knowledge, the models of Segars and colleagues [15] and Wierzbicki and
colleagues [18] are similar to the one proposed in this paper. The main differences
relies on the fact that, in our model, all the imaging data, including heart and
vessels anatomy and heart’s motion, have been recorded from the same human
patient, with the same MRI modality and during the same examination. This
insures a very good consistency of the resulting model. Moreover, the model
includes the native images that can be transformed according to the estimated
motion model. Therefore, the overall model (structure surfaces + images + mo-
tion model) constitutes a unique basis for an accurate realistic anthropomorphic
imaging model of the beating heart and vessels. Still, the present model has to
be improved on a certain number of points. Long axis cine MR images should be
accounted for in the motion estimation process to better approach the motion
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Fig. 6. 2D displays of some computed displacement fields from 3D non rigid registration

in true 3D. Then, the resulting motion model should be carefully evaluated. It
is also envisaged to investigate the integration of motion estimations from MR
tagging which is known as the reference for non invasive cardiac deformation
assessment [1]. Simulating various heart dynamics could be achieved either by
adequately tuning the model’s parameters (control points) or processing addi-
tional examinations with healthy volunteers as well as pathological subjects. We
then truly hope to deliver these realistic models for various purposes such as
evaluation of cardiac image processing algorithms.
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Abstract. Many models of the cardiovascular system (e.g. cardiac elec-
trical activity, autonomous nervous system, . . . ) have been proposed for
the last decades. Research is now focusing on the integration of these
different models, in order to study more complicated physiopathological
states in clinical applications context. To get round the practical limita-
tions of existing models, multi-formalism modelling appears as a way to
ease the integration of these different models together.

This paper presents an original methodology allowing to combine
different types of description formalisms. This method has been applied
to define a multi-formalism model of cardiac action potential propagation
on a 2D grid of endocardial cells, combining cellular automata and a set
of cells defined by the Beeler-Reuter model. Results, obtained under
physiologic and ischemic conditions, highlight the improvements in term
of computing compared with mono-formalism systems, while keeping the
necessary explanatory strength for a practical clinical use.

1 Introduction

Cardiac modelling and simulation have been the subject of important research
during the last three decades. Different models of the electrical activity have
been proposed for the main types of cardiac myocites in normal or pathological
conditions [1, 2]. These models are defined at different levels of detail (i.e. taking
into account more or less independant ionic currents) and different formalisms
(usually ordinary differential equations for cellular defined models and cellular
automata for models defined at a wider scale).

Typically, individual models defined at a same level of detail and under the
same formalism are coupled in the form of 1D, 2D or 3D objects to represent
a given part of cardiac tissue, or to reproduce the whole cardiac anatomy. Ap-
plications range from the understanding of the cardiac function, in normal or
pathologic conditions (e.g. ischemia [3]), to the assistance in the definition of
new therapies [1]. However, none of the existing approaches allows a complete
consideration of whole cardiac activity and, choice and compromise have to be
done depending on the expected simulation.

After a short presentation of the main current cardiac modelling approaches,
this paper proposes an original modelling and simulation method based on a

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 394–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Multi-formalism Modelling of Cardiac Tissue 395

generic multi-formalism approach. Relevant results obtained under normal or
pathologic (ischemia) conditions, highlighting the interest of the method in terms
of computational needs and clinical interpretation, are presented and discussed
on the remaining parts.

2 Current Views of Cardiac Modelling Problem

Two different approaches can be identified in the definition of computational
cardiac models, depending on the level of detail employed for their definition:
whole cardiac models at a cellular level and complete heart models developed
at the tissue or organ level [4, 5]. Both views still suffer from difficulties that
reduce their clinical application: the former approach requires heavy computa-
tional resources while the later one is not able to reproduce certain pathologies
defined at different scales. A hybrid approach combining the two previous types
of description is now emerging.

2.1 Cellular Level

A number of cardiac models have been proposed at a cellular level [6, 7, 1]. In this
type of approach, systems are defined by a network of many ’atomic’ cells whose
description is usually implemented by means of models representing different
physiological aspects [8, 9, 10, 11].

In general, a system of such cells is defined as follows [12, 13, 5]:

dVi

dt
= G(PC) + K · �2V (1)

where Vi is the membrane potential of cell i , G is a function that depends on
a set of parameters PC , K is a diffusion coefficient and �2V , the Laplacian of
the membrane voltages of the neighbouring cells.

Usually, thousands of cells are coupled in a predefined geometry to represent
one or more cavities of the heart. Due to this extensive definition, models de-
fined at the cellular level require massive computing resources. Moreover, their
coupling with other models remains tricky and even with high performance cal-
culating resources, computational time limits their clinical application.

2.2 Tissue Level

Models developed at the tissue level are based on a coupled network of macrostruc-
tures, often using a cellular automata (CA) approach, which represent specific
anatomical structures of the heart [14, 15, 16].

The state behaviour of each automaton of such an event-based approach can
be defined by [17, 5]:

E = H(PA) (2)

where E is the state of the cellular automaton and H is the function governing in-
ternal state transitions, depending on parameters PA. When a given macrostruc-
ture reaches the depolarisation state, neighbouring tissues are activated by the
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transmission of a flag (external state transition). Particular properties of car-
diac cells, such as the dependance of the depolarisation slope to the stimulation
frequency, have also been included in some CA models [17].

Due to their low computational costs, this kind of models has been used
in different clinical setups. Although some major cardiac rhythms can be repro-
duced and explained by these models, some difficulties remain when dealing with
complex rhythms and when simulating pathologies implying modifications at a
cellular or molecular level such as myocardial ischemia [17]. These difficulties are
inherent to the definition of the models at a macroscopic scale and, consequently,
to the inability of considering a physiopathological process at a cellular level.

2.3 Multi-formalism Approach

In this context, one can easily think that a way to take advantage from the
benefits of each approach would be to selectively define different regions of the
modelled heart at different scale levels, depending on its physiological or patho-
logical state. Such a consideration is also legitimated by the practical clinical
diagnosis performed by the physician, which aims at refining progressively the
investigated region of the heart, going from a global consideration of healthy
parts to a precise analysis of pathological sources.

A similar problem of hybrid approach has been identified in other applica-
tions [18] and has led to specific researches and developments on multi-formalism
modelling (DEVS++, AToM3, Modelica, . . . ). This type of modelling consists
in gathering components described in different ways (known as description for-
malisms), which can be basically summarised as discrete or continuous specifica-
tions. Although these approaches reveal efficient in traditional engineering fields,
few works have been done on specific modelling of natural processes, including
cardiac modelling.

This approach parallels recent works by Poole et al [19] which presented
preliminary results of a multi-formalism approach on 1D segments of cardiac
tissue, rather than an exhaustive use of supercalculation. They expanded the
general theory of synchronous concurent algorithms (SCA) which consists in
unifying the different types of models on a global clock measuring discrete time.
Indeed, the advantage of a multi-formalism method lies in the partial use of
discrete models (cellular automata) that require less computational resources
than corresponding continuous models (based on ODE definition). Nevertheless,
Poole’s work suffer from certain limitations: i) their use of SCA can be considered
as a cosimulation approach [18] limiting the gains in term of computing time,
ii) the way the different models are coupled is unclear and iii) used cellular
automata lack of dynamical properties.

3 Proposed Methodology

The proposed approach tries to go deeper in the way of dealing with a multi-
formalism definition. Based on Zeigler’s work [20], our main goal has been to
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define a tool as generic as possible with ease of use in other fields than cardiol-
ogy and ease of implementing new types of models or new simulation algorithms.
The main difficulty associated with such a multi-formalism approach concerns
the definition of a unique but generalisable coupling criteria, particularly at the
interfaces between atomic models of different formalisms. Moreover, the propo-
sition of such a method should be accompanied by a quantitative method to
evaluate the differences between the multi-formalism approach and a monofor-
malism used as gold standard.

In our work, we have chosen to use a coupling function of the neighbouring
potential as performed for continuous models [5]. In our concern for developing as
generic as possible a system, using the same manner of coupling (same method in
the tissue model) for all the types of tissues allows to define a unique standard
coupling procedure. Adaptations of the methods will be done in each model
definition as follows:

Let CF.

i,j ,k be an atomic cell component of a cardiac tissue, defined by a for-
malism F. (where F. can be continuous Fc or discrete Fd). The generic coupling
behaviour can be extended from (1) as follows:

CF.

i,j,k = GF.
(P ) + CoupF.

(K · �2V ) (3)

where GF. is the function of parameters P , CoupF. the coupling method and K
as defined in (1). The coupling method can be defined as follows:

CoupF. =
{

thres if the cell model is discrete(F. = Fd)
id if the cell model is continuous(F. = Fc)

(4)

where id is the identity function and thres a threshold function setting external
activation for the cellular automata if the input is greater than the limit value
necessary for depolarisation of an equivalent continuous model (Fig. 1).

With this approach, the coupling between a set of cells of a tissue will always
be defined by the generic definition (3), whatever their description formalisms
are. This allows to keep into account the influence of the neighbouring cells
during the whole activation. Consequently, a minimum of information will be
lost during the propagation of depolarisation fronts, allowing not to alter the
clinical interpretation. Each specification of the methods will be done for each
model definition, in the sense of an object oriented approach.

4 Implementation Considerations

Traditional processing of the ’cable equation’ (1) is usually done using a centralised
approach (Fig. 3(a)) where the whole simulation is done at the same level and, usu-
ally, inside a unique simulation loop which can solve only one modelling formal-
ism. An alternative to this approach, which is particularly adapted to the multi-
formalism case, has been proposed by Zeigler [20]. It is based on a distributed sim-
ulator structure that parallels the model architecture (Fig. 3(b)). The introduc-
tion of coordinator objects grouping different sub-models, eases the use of a multi-
formalism approach and can facilitate a parallel implementation of the simulator.
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ordinator with an associated simulator

We have developed a generic library of modelling and simulation based on
this architecture. It consists of a list of different types of models inherited from
a standard mother class. By this definition, inherited classes can represent any
combination of elements (atomic element, structure of atomic elements, com-
plex structure mixing atomic elements and pre-existing structures, . . . ). Based
on Zeigler’s introduction of coordinator objects, simulation is done deepening
the level of the considered structure up to reaching only atomics elements and
specific simulators, adapted to each atomic model’s formalism, are used. The
simulation of the global system is performed at the coordinator level whereas
each component is simulated at the model level.

5 Results

5.1 Experimental Settings

The proposed generic method has been implemented on a 256 x 256 square tis-
sue of endocardial cells, corresponding to an average size of 10 mm x 10 mm.
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The coupling coefficient K has been set in order to maintain a conduction ve-
locity of 0 .5 m.s−1 in the case of healthy tissues.

Different types of tissues have been simulated: mono-formalism healthy (dis-
crete or continuous), multi-formalism healthy (discrete and continuous), mono-
formalism ischemic and multi-formalism ischemic. In the case of multi-formalism
tissues, peripheral cells are defined by a discrete approach while the 64 x 64 cen-
tral cells are continuous.

Cellular models fall in the two previous categories:

– Continuous models: Beeler Reuter (BR) model [9] is used in the case of
healthy tissues. Ischemic model used has been adapted from the Beeler
Reuter model by Sahakian [21] to take into account membrane current mod-
ifications. A different coupling coefficient is also used with gradual transition
from normal to pathologic cells [21, 3, 13].

– Discrete models: Cellular automata (CA) traditionally used are composed
of main action potential states (i) idle, ii) rapid depolarisation, iii) absolute
refractive period and iv) relative refractive period) but suffer from a lack of
dynamical properties. Contrary to those static models, our automata possess
two main dynamical properties: refractory period dependance to the stimu-
lation frequency as well as the response to premature activations [17]. The
CA output is defined by means of a piece-wise linear function fitting the
Beeler Reuter action potential, where each linear segment is associated to a
different state of the CA (Fig. 2).

5.2 Simulation Results

Depolarisation fronts obtained for healthy tissues are presented in Fig. 4(a-c).
The differences between BR defined mono-formalism tissue and the two others
are quantified in Fig. 4(d-e).

Depolarisation fronts are coherent with the known behaviour of electrical
propagation on cardiac tissue. Slight differences that appear between BR tissue
and the two others (Fig. 4(d-e)) are due to the atomic behaviour of each model
and, especially, to the difference on the depolarisation slopes (Fig. 2). Even if
the previous results are interesting only for validation purposes, it is important
to note that the clinical interpretation won’t be altered, from a qualitative point
of view, for discrete or hybrid tissues, presenting the same mean propagation
properties (i.e. conduction velocities). Moreover, experimental results show a re-
duction of the computing time in the case of multi-formalism approach compared
to mono-formalism one, highlighting the clinical interest of such a method.

Such a multi-formalism approach takes sense when dealing with ischemic
tissues. Results obtained for ischemic tissues are presented in Fig. 5(a-b) and
the difference between mono and multi-formalism simulation are quantified in
Fig. 5(c).

Even if the spatial depolarisation fronts simulated by these two apporaches
are not strictly identical, similar behaviour can be observed in both tissues:
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a)

b)

c)

d)

e)

t = 8 ms t = 12 ms t = 16 ms

Fig. 4. Depolarisation fronts for healthy tissues: a. BR tissue, b. CA tissue, c. CABR

tissue. Greyscale ranges from black for resting potential (−84 .5 mV ) to white for a

depolarised potential (22 mV ).

Differences in the depolarisation fronts for healthy tissues: a. between BR and CA,

b. between BR and CABR. Greyscale ranges from white where no difference appears

to black for the greatest differences
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a)

b)

c)

t = 8 ms t = 12 ms t = 16 ms

Fig. 5. Depolarisation fronts for ischemic tissues: a. BRIsch tissue, b. CAIsch tissue.

c. Differences in the depolarisation fronts for ischemic tissues

– Alteration of the propagation front linked with the presence of ischemic area.
– Abnormal and incomplete depolarisation of pathologic cells (note the small

difference in the 64 x 64 centre square of Fig. 5(c)): i) quicker depolarisation
in the border of the ischemia, ii) depolarisation block at the center of the
ischemic area, iii) modification of the depolarisation front in the shadow of
the ischemia.

– Temporal correspondance of the simulated events.

These experimental results have brought out improvements in terms of comput-
ing time compared with mono-formalism systems, while keeping the necessary
qualitative explanatory strength for a practical clinical use.

6 Conclusion and Perspectives

An original simulation method based on a multi-formalism approach has been
presented in this paper. Depolarisation fronts obtained from healthy or ischemic
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tissues have highlighted that the qualitative clinical interpretations are not al-
tered despite the partial use of simpler description models (CA). Experiments
have also shown a reduction of the computing time that would ease a practical
use of such models.

One great advantage of this method is the possibility of simulating phys-
iopathological states even in a hybrid approach. Compared to other projects in
the same field [19], which use Aliev-Panfilov model (a morphological description
of the action potential), the proposed method lets us integrate physiologically
detailed models, such as the BR model, while still minimizing the global com-
puting expenses.

Current development consist in improvements of our simulation library: i) in-
tegration of more detailled models such as Luo and Rudy [10, 11] and ii) improve-
ment of our CA simulation method, by taking into account their specific state
transition properties. Future work will deal with the extension of these results to
a 3D cardiac volume obtained from current developments in our laboratory [22].
It will be based on a multi-scale description of the volume combined with the
presented multi-formalism approach, with the constant aim of not altering the
clinical interpretations by being able to reproduce the important physiological
markers of cardiac electrical activity.
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1 LISA, Université d’Angers, 62 avenue Notre Dame du Lac 49000 Angers
aymeric.histace@univ-angers.fr
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Abstract. The non invasive evaluation of the cardiac function presents
a great interest for the diagnosis of cardiovascular diseases. Tagged car-
diac MRI allows the measurement of anatomical and functional myocar-
dial parameters. This protocol generates a dark grid which is deformed
with the myocardium displacement on both Short-Axis (SA) and Long-
Axis (LA) frames in a time sequence. Tracking the grid allows the esti-
mation of the displacement inside the myocardium. The work described
in this paper aims to make the automatic tracking of the grid of tags
on cardiac MRI sequences robust and reliable, thanks to an informa-
tional formalism based on Extreme Physical Informational (EPI). This
approach leads to the development of an original diffusion pre-processing
allowing us to increase significantly the robustness of the detection and
the follow-up of the grid of tags.

1 Introduction

The non invasive assessment of the cardiac function is of major interest for the
diagnosis and the treatment of cardiovascular pathologies. Whereas classical car-
diac MRI only allows to measure anatomical and functional parameters of the
myocardium (mass, volume...) tagged cardiac MRI makes the evaluation of the
intra-myocardial displacement possible. For instance, this type of information
can lead to a precise characterization of the myocardium viability after an in-
farction. Moreover, data concerning myocardium viability allows to decide of the
therapeutic : medical treatment, angiopathy, or coronary surgery and to follow
the amelioration of the ventricular function after reperfusion.

The SPAMM (Space Modulation of Magnetization) acquisition protocol [22]
we used for the tagging of MRI data, displays a deformable 45◦-oriented dark
grid which describes the contraction of myocardium (Figure 1) on the images of
temporal Short-Axis (SA) and Long-Axis (LA) sequences. The 3D+T follow-up
of this grid makes the evaluation of the intra-myocardial displacement possible.

Nevertheless, tagged cardiac images present particular characteristics which
make their analysis difficult. More precisely, images are of low contrast compared
with classical MRI, and their resolution is only of approximately one centimeter.

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 404–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. SA and LA tagged MRI of the Left Ventricle

Numerous studies were carried out concerning the analysis of the deforma-
tions of the grid of tag on both SA and LA sequences: These methods can be
divided into two major families:

– direct estimation of the displacement field of the myocardium (optical flow
[3], analysis of the Harmonic Images [13, 7], image registration [15]);

– undirect estimation of the displacement field (active contours [11, 21, 6, 1, 2],
use of the spectral information [23, 5]).

The common disadvantages of those approaches are their sensibility to noise
and to the fading of the grids of tags, their poor adaptation when tags are close
to myocardial boundaries and their bad adaptation to important deformations
of the grid between two consecutive instants. Moreover, manual interventions are
often needed to obtain precise results and execution time can sometimes reach
high values [10].

Moreover, the clinical validation of the different methods often shows a lack of
robustness and reproducibility which is incompatible with a medical application.

In order to avoid these problems, we propose in this article, an original
method for the detection and the follow-up of the grid of tags, based on active
contours and image diffusion. More particularly, we will show that the integra-
tion of an adapted external energy in a simple contour active model allows to
avoid the usual problems encountered by the different technics presented in lit-
erature. We will also show that our approach allows to obtain precise and robust
results of detection.

We present in a first part the principle of the detection and follow-up method,
to continue with the description of our diffusion process based on a recent theory
developed in [4] called Extreme Physical Information (EPI). In a second part, we
present the application of the resulting diffusion process to our particular topic.
In a last part, we present results of detection and follow-up of the grid of tags
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on tagged cardiac MRI showing the robustness of the technic, and illustrating it
with examples of quantification and representation of the extracted data.

2 Method

2.1 Principle

The general principle of the technic we present here has been already described
in a past article [9] : To detect and to follow-up the grid of tags on SA and LA
sequences, we deform a virtual grid, modeled by B-splines and controlled by 44
nods P (the intersections of the grid), each one characterized by a particular
energy, noted E, to minimize (Eq. (1)):

E = winternal.Einternal + wexternal.Eexternal . (1)

The internal energy imposes the regularity of the whole grid to obtain thus
a coherent result. For our application, we chose the weighted sum of two terms
defined by [18] :

– the energy Eint
esp ensures a regular spacing between each intersection point

(i,j) of the grid of tags.

Eint
esp =

∑
i,j

[(
1 − r2

1(i, j)

1 + r2
1(i, j)

)2

+

(
1 − r2

2(i, j)

1 + r2
2(i, j)

)2
]

(2)

where rk(i, j) is the ratio among the distances which separate the intersec-
tion point (i,j) and its two related intersections in the k direction (k=1 for
45◦ and k=2 for 135◦). We can note that this expression is equal to zero
when r1(i, j) = r2(i, j) = 1 for all (i,j), i.e. when intersection points are
regularly spaced.

– the energy Eint
align ensures the alignement of the related intersection points

on each lines of the grid of splines :

Eint
align =

∑
i,j

[
cos2

(
θ1(i, j)

2

)
+ cos2

(
θ2(i, j)

2

)]
(3)

where θk(i, j) is the angle of the intersection point (i,j) and its two related
intersection points in the k direction (k=1 for 45◦ and k=2 for 135◦). We
can note once again that this expression is equal to zero when θ1(i, j) =
θ2(i, j) = 180◦ for all (i,j), i.e. when two intersection points on a same line
are aligned.

Concerning Eexternal, this term takes into account the tag information of the
studied tagged MR image. Numerous proposition have been made since 1988 to
extract the tag information (gradient of the image, extraction in the Fourier’s
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domain), but no one of them appears to be really adapted to the problematic in
terms of robustness regarding small variations of winternal and wexternal.

As a consequence, it appears that an original definition of Eexternal is essential
for the implementation of a robust detection method of the grid of tags.

Thus, we propose to increase this robustness thanks to a method based on
the enhancement of the tag information using a diffusion process which takes
into account a priori data characterizing the grid.

2.2 Anisotropic Diffusion

Regarding the existing fundamental anisotropic diffusion method presented in
the literature [14, 19], it appears that their leading differential equations were
not adapted to our application because of the impossibility to take into account
particular characteristics of the information to enhance.

This is confirmed by the tests presented Figure (2) where we can see that,
whereas an optimal parameterization of the diffusion process is implemented,
the grid of tags is too much altered even for a small number of iterations.

To integrate in the diffusion process the local orientations of the grid of
tags, which will allow to preserve it from alteration, an enrichment of the fun-
damental diffusion equation (i.e. the heat equation (Eq. (4)), can be seen as a
solution.

{
ψ(r, 0) = ψ0(r)

∂ψ
∂t = u = div(∇ψ)

. (4)

10 iterations 20 iterations 30 iterations

Fig. 2. Top sequence: Perona-Malik’s Diffusion dt = 0, 2, bottom sequence: Weickert’s

Diffusion dt = 0, 2
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Thus, we propose to introduce in equation (4) a new parameter noted A which
is a potential vector :

∂ψ

∂t
= (∇− A).(∇− A)ψ . (5)

This integration allows to take into account particular properties of the structure
to be enhanced through a judicious choice for A.

2.3 About A

As we have just said, the A potential allows to control the diffusion process and
introduce some prior knowledge about the image evolution.

The choice we do for A is based on the fact that equation (5) allows to weight
the diffusion process with the difference of orientation between the local gradient
and A.

To explain the way we implement A, let us consider Figure (3):
We can notice on this Figure that when angle θ is null (i.e. A and ∇ψ are

colinear), the studied pixel will not be diffused. Thus, a precise local estimation
of this angle can lead us to preserve particular patterns in the processed image
for a given vector A.

Thus, a solution to the problem of enhancement of the grid would have been
to impose particular orientations for A, considering the fact that the gradients
to preserve are well known and correspond to the orientations of the grid-of-
tag ones (45◦, 135◦, 225◦, 315◦). However, because the contraction of the LV
induces a deformation of the tags, the local orientation of the grid for an instant
of acquisition different from the initial one, can be no more characterized by
imposed particular orientations. Moreover, because of the poor quality of MRI
sequences, it appears that a calculation of the local orientation of A directly
made on cardiac tagged images, would be strongly deteriorated by noise.

ψ

Aψ

ψ

θ’

θ’’

θ

⊥
π

Fig. 3. Local geometrical implementation of A in terms of the local gradient ∇ψ
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Fig. 4. Extraction of the tag information in the Fourier’s representation

As a consequence, we propose to make a local estimation of the direction
of A in the Fourier area, using the principle developed by Zhang and al [23]
(Figure 4).

This approach allows a denoising of the tag information which leads us to a
more precise estimation of A and allows to take into account the deformations
of the grid due to the contraction of the LV. Moreover, in order to compute a
precise estimation of θ, we propose a method for its calculation based on the
work of Rao [16] and Terebes [17] using the analysis of the eigen vectors of a
particular neighborhood of the studied pixel.

3 Results

The result presented in Figure (5.a), shows the restoration of the 45◦-oriented
tag on the first image of a tagged cardiac sequence by the diffusion approach.

As we can see in Figure 5.a, the diffusion process makes possible the fading
of noisy artifacts, and non-45◦-oriented lines.

Moreover, because the orientation of A is locally calculated taking into ac-
count a particular neighborhood, the diffusion process remains efficient even if
the tag is locally deformed due to myocardial contraction (Figure 5.b).

(a) (b)

Fig. 5. Preservation of the 45◦-oriented tag on (a) the initial image of a tagged sequence

and (b) for t �= t0
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Fig. 6. Detection and following of the grid of tags on both SA and LA sequences
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The different preserved images (45◦ and 135◦ ones) are then integrated as
a new external energy in our active contour model for the detection and the
following of the grid of tags as follows :

Each intersection point of the initial grid represents a node for which the
global energy E is computed on a N × N neighborhood. A research for the
minimum of E on the considered neighborhood allows to displace the studied
node to a new position in accordance with the tag information. The resulting grid
obtained for a particular instant t is used for the initialisation of the detection at
the successive instant t+1 time. The N ×N neighborhood has been empirically
fixed to 5. For N = 3 the research window does not contain enough information.
The value N = 7 gives the same results as those obtained for N = 5, but
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increase the calculation time. The same minimization of energy presented in [9]
being implemented, the results presented Figure (6) are then obtained.

These results are characterized by a good precision compared with usual
methods, but also by a good robustness regarding the necessary weighting of
Eexternal and Einternal. Indeed, a quantitative study of the variation of the
committed error (expressed in number of false detected pixel) in terms of the
ratio wexternal

winternal
shows that a 20% variation of it does not alter significantly the

precision of the detected grid.
In addition, the detection has been tested on 10 different sequences without

changing any parameters and the obtained results have been judged satisfying
by medical experts on all images.

4 Quantification

In order to make a first validation of the method, we have also quantified clas-
sical cardiac parameters on the 10 studied sequences as radial, circumferential,
longitudinal displacements, torsion or deformations. We present in Tab.1 a com-
parison between our obtained results for the quantification of the radial displace-
ments and two studied of the medical literature.

Table 1. Comparison between our quantification and two studies of the medical liter-

ature concerning the estimation of the radial displacements (expressed in millimeters)

for healthy volunteers

Base Mdian Apex

[20] (12 patients) 5.9 ± 0.4 6 ± 0.3 4.65 ± 0.2
[12] (31 patients) 5.0 ± 1.3 4.3 ± 1.1 4.2 ± 1.6

Our estimation (10 patients) 5.7 ± 0.5 4.9 ± 0.7 4.3 ± 0.9

5 Conclusion

The method presented in this article, based on both active contours and diffusion
process, finally allows to (i) smooth the image with a preservation of the tag
patterns, (ii) to ensure the robustness and the precision of the grid detection
and (iii) to completely automate the detection and follow-up process.

Moreover, by associating the detection method with an original automatic
detection of the myocardial boundaries (epical and endocardial ones) [8], it is
possible to realize a two-dimensional temporal map (according the recomman-
dations of the American Hospital Association) characterizing the local displace-
ments and local deformations of the myocardium (Figure 8).

The results presented are very interesting for radiologists to evaluate torsion,
shearing, longitudinal and radial displacements of the LV and then to draw early
diagnoses of particular cardiopathies.
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t1 t2 t3 t4

Contraction-Dilatation

Fig. 8. Radial contraction of the heart
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Abstract. In this paper we present a novel approach to the problem of spatio-
temporal alignment of cardiac MR image sequences. This novel method has the
ability to correct spatial misalignment caused by global acquisition and local
shape differences as well as temporal misalignment caused by differences in the
length of the cardiac cycles or by differences in the motion patterns of the hearts.
In contrast to our previous approach [1], the algorithm optimizes the spatial and
temporal transformation components separately, thus significantly speeding up
the registration process. To achieve this we have developed a novel approach for
the calculation of the temporal registration which does not require the spatial
alignment of the image sequences. The method was evaluated using fifteen car-
diac MR image sequences from healthy volunteers and the results were compared
to the previously presented method. The results indicate that the performance of
the method is similar to the previously presented method [1] while the the com-
putational complexity has been significantly reduced.

1 Introduction

Cardiovascular diseases are a very important cause of death in the developed world
[2]. Their early diagnosis and treatment is crucial in order to reduce mortality and
to improve patient’s quality of life. MR imaging plays an increasingly important role
for the high resolution imaging of the cardiovascular system since it allows the ac-
quisition of 4D cardiac image sequences which describe the cardiac anatomy and
function.

The recent advantages in the development of cardiac imaging modalities have led to
an increased need for cardiac registration methods (for recent reviews of cardiac image
registration methods see [3] and for a general review of image registration methods see
[4]). In general, cardiac image registration is a very complex problem due to the compli-
cated non-rigid motion of the heart and the thorax as well as the anisotropic resolution
with which cardiac images are usually acquired. In the recent years cardiac image reg-
istration has emerged as an important tool for a large number of applications. It has a
fundamental role in the construction of anatomical atlases of the heart [5, 6]. It has also
been employed for the analysis of the myocardial motion [7] and for the segmentation
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of cardiac images [8]. Image registration has been also used for the fusion of informa-
tion from a number of different modalities such as CT, MR, PET, and SPECT [9, 10]. In
addition, cardiac image registration is crucial for the comparison of images of the same
subject, e.g. before and after pharmacological treatment or surgical intervention. Fur-
thermore, inter-subject alignment of cardiac image sequences to the same coordinate
space (anatomical reference) enables direct comparisons between the cardiac anatomy
and function of different subjects to be made.

While a large number of registration techniques exist for cardiac imaging, most of
these techniques focus on 3D images ignoring any temporal misalignment between the
two image sequences. In an earlier publication, [1], we developed a novel approach for
the spatio-temporal alignment of cardiac MR image sequences. It uses a deformable
spatio-temporal transformation which has been decoupled into temporal and spatial
components. This method will not only bring a number of sequences of cardiac im-
ages acquired from different subjects or the same subject (for example short and long
axis cardiac image sequences) into the same spatial coordinate system but also into the
same temporal coordinate system. This allows direct comparison between both the car-
diac anatomy of different subjects and the cardiac function to be made. The registration
approach corrects temporal misalignment caused by different acquisition parameters,
different length of cardiac cycles and different motion patterns of the hearts. It also
corrects any spatial misalignment caused by global shape differences in the image se-
quences and local shape differences.

Due to the coupling of the spatial and temporal registration, the computational com-
plexity of the previously presented spatio-temporal deformable registration method, [1],
is very high. In this paper we present a novel approach for the spatio-temporal de-
formable registration of cardiac MR image sequences addressing the issues regarding
computational complexity. The approach is based on the same transformation model
as the one in [1]. However, it optimizes each transformation component separately. In
particular, the temporal registration algorithm does not require the image sequences to
be spatially aligned in order to calculate the optimal temporal registration.

2 Spatio- emporal Registration

Since the heart is undergoing a spatially and temporally varying degree motion during
the cardiac cycle, 4D cardiac image registration algorithms are required when register-
ing two cardiac MR image sequences. Spatial alignment of corresponding frames of the
image sequences (e.g. the second frame of one image sequence with the second frame
of the other) is not sufficient since these frames may not correspond to the same tempo-
ral position in the cardiac cycle of the hearts. This is due to differences in the acquisition
parameters (the initial offset or trigger delay in the acquisition of the first time frame
and different frequency in the acquisition of consecutive time frames), differences in
the length of cardiac cycles (e.g. one cardiac cycle maybe longer than the other) and
differences in the dynamic properties of the hearts (e.g. one heart may have a longer
contraction phase and shorter relaxation phase). Spatio-temporal alignment will enable
comparison between corresponding anatomical positions and corresponding positions

Fast Spatio-temporal Free-Form Registration of Cardiac MR Image Sequences 415
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in the cardiac cycle of the hearts. It will also resolve spatial ambiguities which occur
when there is not sufficient common appearance in the two 3D MR cardiac images.

A 4D cardiac image sequence can be represented as a sequence of n 3D images
Ik(x, y, z) with a fixed field of view ΩI and an acquisition time tk with tk < tk+1,
in the temporal direction. The resulting image sequence can be viewed as a 4D image
I(x, y, z, t) defined on the spatio-temporal domain ΩI × [t1, tn]. The goal of 4D image
registration described in this paper is to relate each point of one image sequence to its
corresponding point of the reference image sequence. In this case the transformation
T : (x, y, z, t) → (x′, y′, z′, t′) maps any point of one image sequence I(x, y, z, t) into
its corresponding point in the reference image sequence I(x′, y′, z′, t′). The mapping
used in this paper is of the following form:

T(x, y, z, t) = (x′(x, y, z), y′(x, y, z), z′(x, y, z), t′(t)) (1)

and can be of a subvoxel displacement in the spatial domain and of a sub-frame dis-
placement in the temporal domain. The 4D mapping can be resolved into decoupled
spatial and temporal components Tspatial and Ttemporal respectively where

Tspatial(x, y, z) = (x′(x, y, z), y′(x, y, z), z′(x, y, z)),Ttemporal(t) = t′(t)

One consequence of this decoupling is that each temporal frame t in image sequence
I will map to another temporal frame t′ in image sequence I ′, ensuring causality and
preventing different regions in a 3D image It(x, y, z) from being warped differently in
the temporal direction by Ttemporal.

2.1 Spatial Alignment

The aim of the spatial part of the transformation is to relate each spatial point of an
image to a point of the reference image, i.e. Tspatial : (x, y, z) → (x′, y′, z′) maps
any point (x, y, z) of a particular time frame t in one image sequence into its corre-
sponding point (x′, y′, z′) of another particular time frame t′ of the reference image
sequence. The transformation Tspatial consists of a global transformation and a local
transformation:

Tspatial(x, y, z) = Tglobal
spatial(x, y, z) + Tlocal

spatial(x, y, z) (2)

The global transformation addresses differences in the size, orientation and alignment of
the hearts while the local part addresses differences in the shape of the hearts. An affine
transformation with 12 degrees of freedom utilizing scaling and shearing in addition to
translation and rotation is used as Tglobal

spatial.
A free-form deformation (FFD) model based on B-splines is used in order to de-

scribe the differences in the local shape of the hearts. To define a spline-based FFD we
denote the spatial domain of the image volume as ΩI = {(x, y, z) | 0 ≤ x < X, 0 ≤
y < Y, 0 ≤ z < Z}. Let Φ denote a nx×ny×nz mesh of control points φi,j,k with uni-
form spacing δ. Then, the FFD can be written as the 3D tensor product of the familiar
1D cubic B-splines [11]:

Tlocal
spatial(x, y, z) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (3)



where i = � x
nx

�−1, j = � y
ny

�−1, k = � z
nz

�−1, u = x
nx

−� x
nx

�, v = y
ny

−� y
ny

�, w =
z

nz
− � z

nz
� and where Bl represents the l-th basis function of the B-spline. One advan-

tage of B-Splines is that they are locally controlled which makes them computationally
efficient even for a large number of control points. In particular, the basis functions of
cubic B-Splines have a limited support, i.e. changing a control point affects the trans-
formation only in the local neighborhood of that control point.

2.2 Temporal Alignment

The temporal part of the transformation consists of a temporal global part, Tglobal
temporal,

and a temporal local part, Tlocal
temporal:

Ttemporal(t) = Tglobal
temporal(t

′) + Tlocal
temporal(t

′)

Tglobal
temporal is an affine transformation which corrects for differences in the length of the

cardiac cycles and differences in the acquisition parameters. Tlocal
temporal is modeled by

a free-form deformation using a 1D B-spline and corrects for temporal misalignment
caused by different cardiac dynamic properties (difference in the length of contraction
and relaxation phases, different motion patterns, etc). To define a spline-based temporal
free-form deformation we denote the temporal domain of the image sequence as Ωt =
{(t) | 0 ≤ x < T}. Let Φ denote a set of nt control points φt with a temporal spacing
δt. Then, the temporal free-form deformation can be defined as a 1D cubic B-spline:

Tlocal
temporal(t) =

3∑
l=0

Bl(u)φti+l
(4)

where i = � t
nt
� − 1, u = t

nt
− � t

nt
� and Bl represents the l-th basis function of the

B-spline.
Tlocal

temporal deforms the temporal characteristics of each image sequence in order to
follow the same motion pattern with the reference image sequence. The combined 4D
transformation model (eq. 1) is the spatio-temporal free-form deformation (STFFD)[1].

2.3 Separate Optimization of the Spatial and Temporal Component

The computational complexity of the previously presented spatio-temporal deformable
registration method, [1], is very high. We can reduce the computational complexity
by optimizing each transformation component (the temporal and the spatial one) sepa-
rately. We first optimize the temporal component, Ttemporal, of the transformation T
and then the spatial component, Tspatial. In this method the calculation of the temporal
transformation does not require the hearts to be aligned in the spatial domain.

Optimization of the Temporal Component. The global temporal component,
Tglocal

temporal, is calculated by aligning the start and end frames of the image sequences
while the local temporal component, Tlocal

temporal, is a temporal free-form deformation
(eq. 4) which aligns temporal feature points which have been detected. In particular,
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Fig. 1. The temporal feature points used for the temporal alignment between two image se-
quences

Tlocal
temporal aligns the beginning of the cardiac cycles, the position of maximum contrac-

tion, the end diastolic time point of the left ventricle and the end of the cardiac cycles
(as in figure 1). In order to detect these temporal positions in each image sequence we
calculate the normalised cross-correlation coefficient between each frame with the first
frame:

CC =

∑
x

∑
y

∑
z(I0(x, y, z) − Ī0) · (Ii(x, y, z) − Īi)√∑

x

∑
y

∑
z(I0(x, y, z) − Ī0)2 ·

√∑
x

∑
y

∑
z(Ii(x, y, z) − Īi)2

(5)

were I0 is the first frame, Ī0 the mean intensity of the first frame, Ii each frame and Īi

the mean intensity of each frame.
The idea behind this approach is that during the contraction phase of the cardiac

cycle, in which the volume and shape of the heart changes significantly, each time frame
will be less similar to the end-diastolic time frame (first frame of the sequence) and
during the relaxation phase of the cardiac cycle each time frame will be more and more
similar to the end-diastolic time frame. The end-systolic image, in which the heart has
reached its maximum contraction, should have the highest degree of dissimilarity with
the first image since the heart has different shape and size due to the contraction.

Figure 2 (a) shows the plot of the calculated normalised cross-correlation and its
second derivative for a particular subject and 2 (b) shows the volume of the left ven-
tricle of the same subject over time. We can see the similarity of the cross-correlation
and the volume curves. The maximum contraction position is found by the minimum
cross-correlation value. In order to find the end-diastolic position we need to find the
minimum value of the second derivative after the location of the maximum contraction
2 (b). The second derivative is calculated using the finite differences method.

Optimization of the Spatial Component. The optimal spatial transformation,
Tspatial, is calculated using non-rigid 3D registration (equation 2) of the first frames
of the image sequences [11]. Tglobal

spatial is an affine transformation correcting translation,
rotation, shearing and scaling differences between the end-systolic time frames, while
Tlocal

spatial is a free-form deformation (eq. 3) deforming each sequence’s end-systolic
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Fig. 2. The cross-correlation and the second derivative of the cross-correlation between the first
frame and each consecutively frame (a) and the volume of the left ventricle of the same subject
over time (b)

time frame to map the reference sequence’s end-systolic time frame. Both Tglobal
spatial and

Tlocal
spatial are optimized using normalised mutual information [12] based on the intensity

histogram of the spatial domain of overlap of the two images.

3 Results

To evaluate the spatio-temporal deformable registration algorithm we have acquired fif-
teen cardiac MR image sequences from healthy volunteers. All image sequences used
for our experiments were acquired on a Siemens Sonata 1.5 T scanner using TrueFisp
pulse sequence. For the reference subject 32 different time frames were acquired (car-
diac cycle of length 950msec). Each 3D image of the sequence had a resolution of
256× 192× 46 with a pixel size of 0.97mm× 0.97mm and a slice thickness of 3mm.
Fourteen 4D cardiac MR images were registered to the reference subject. The length
of the cardiac cycle of these images sequences varied from 300msec to 800msec. An
initial estimate of the global spatial transformation was provided due to the large variety
in the position and orientation of the hearts. Since all the image sequences contained
almost entire cardiac cycles, the global temporal transformation was calculated in order
to compensate the differences in length of the cardiac cycles of the subjects (by match-
ing the first and the last frames of the image sequences). The spacing of the control
points of the local transformation were 10mm in the spatial domain and 90msec in the
temporal domain.

Figure 3 (a) shows the volume curves of the left ventricle after the optimization of
the spatio-temporal global transformation and 3 (b) after optimization of the spatio-
temporal local transformation by optimizing the transformation components separately.
The volume of the left ventricles were calculated after segmenting the images using the
EM-algorithm developed by Lorenzo-Valdés et al. [8]. We can clearly see that with the
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Fig. 3. The volume curves of the left ventricle for all subjects after optimisation of the global
spatio spatio-temporal transformation (a) and after local spatio-temporal registration using the
fast registration method (c)

introduction of the deformable components the hearts are significantly better aligned in
the temporal domain.

Figure 4 provides an example of the spatio-temporal free-form registration. The
images in the top row (a-c) are the short-axis, the long-axis and the temporal views of a
frame in the middle of the image sequence (in the temporal views the vertical direction
corresponds to time) after the optimization of the global transformations (affine spatio-
temporal registration). The lines in the images represent the contours of the reference
image sequence. The images in the middle row of figure 4 are the same images after
spatio-temporal free-form registration by combined optimization of the transformation
components [1]. The images in the bottom row of figure 4 are the same images after
spatio-temporal free-form registration by optimizing the transformation components
separately. We can clearly see with the introduction of the deformable temporal and
spatial transformation there is a significant improvement in the alignment of the image
sequences both in the spatial and in the temporal domain.

We calculated the error in the estimation of the maximum contraction and end-
diastolic positions in the cardiac cycle by manually determining the time frames in
which the maximum contraction and the end-diastole appears in each image sequence
and comparing them with positions identified by the algorithm. The mean error in the
detection of maximum contraction is 1.2 frames while the mean error of the end-diastole
detection is 0.93 frames. Furthermore, The quality of the registration in the spatial do-
main was measured by calculating the volume overlap for the left and right ventricles
as well as for the myocardium. The volume overlap for an object O is defined as:

Δ(T, S) =
2 × |T ⋂

S|
|T | + |S| × 100% (6)

Here T denotes the voxels in the reference (target) image part of object O and S de-
notes the voxels in the other image part of object O. We have also calculated the mean
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Fig. 4. Results of the 4D cardiac MR registration algorithm. The figure shows the short
axis, the long axis and the temporal views after (a-c) affine alignment, (d-f) after the spatio-
temporal free-form registration using combined optimization of the transformation compo-
nents [1], and (g-i) after the spatio-temporal free-form registration using separate optimiza-
tion of the transformation components. Animations of the registrations can be found at
http://www.doc.ic.ac.uk/˜dp1/Conferences/FIMH05/
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Table 1. The mean volume overlap and surface distance after affine spatio-temporal registra-
tion, after spatio-temporal free-form registration by combined optimization of the transformation
components [1] and after affine spatial-temporal registration (combined optimization of the trans-
formation components). The control spacing in the spatial domain is 10mm

Volume Overlap Surface Distance in mm
Anatomical region Affine Combined Separate Affine Combined Separate
Left ventricle 76.16% 85.57% 82.38% 4.16 2.96 3.41
Right ventricle 77.39% 84.67% 83.56% 4.95 3.60 3.93
Myocardium 70.57% 73.18% 71.62% 4.77 4.16 4.21
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Fig. 5. Temporal alignment between two image sequences

surface distance of the above anatomical regions after the affine and the deformable
4D registration. The mean surface distance has been measured by comparing for each
subject the distance between each surface point and the closest point on the surface of
the reference subject.

Table 1 shows the mean overlap and the mean surface distance (in mm) for each
anatomical region after affine spatio-temporal (similar to the prevously presented spatio-
temporal affine registration method [13]), after spatio-temporal free-form registration
(simultaneous optimization of the transformation components) and after spatio-temporal
free-form registration (separate optimization of the transformation components). We
can clearly see that the introduction of the deformable models significantly improve the
overlap of the anatomical features.

The results reported in table 1 and in figures 3 and 4 indicate that calculating the
temporal transformation separately and using the combined approximation approach
provides similar results. Obviously, the separate optimization of the temporal transfor-
mation aligns a limited number of positions in the cardiac cycle, while the combined
optimization provides a better temporal alignment between these cardiac positions. This
can been seen in figure 5, in the volume curves of figure 3 and in the temporal views
of figure 4. However, the computational complexity of the combined optimization ap-
proach is very high. A typical combined optimization takes more than 24 hours while



a typical registration using this method takes around an hour on a modern PC. Further-
more, an advantage of this method is that we can generate a temporal alignment between
two image sequences without having to perform image registration. There is no need
for the image sequences to be registered in the spatial domain in order to calculate the
temporal alignment.

4 Conclusions

We have presented an alternative approach to our earlier spatio-temporal free-form
registration for cardiac MR image sequences [1]. This contribution addresses the is-
sues related to the computational complexity of the previously presented method. The
fast spatio-temporal free-form registration method uses the same transformation model
based on B-Splines as the previously presented method. However, this approach cal-
culates the optimal spatial and temporal components of the transformation separately.
It first calculates the temporal component and then the spatial component. For the cal-
culation of the temporal component we used a novel approach based on normalised
cross-correlation. An additional advantage of this method is that the temporal align-
ment can be calculated without the sequences to be registered in the spatial domain.
The method has been evaluated using fifteen cardiac MR image sequences and the re-
sults have been compared to the previous registration method [1]. The experiments in-
dicated performance of this method is similar to the performance of the previously pre-
sented method. The combined optimization of the transformation components results to
marginally better spatio-temporal registrations. However, the computational complexity
of this method is significantly lower than the previous method.
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Abstract. This paper presents a comparison of the motion fields com-
puted from TrueFISP untagged and SPAMM tagged magnetic resonance
(MR) images using a 4D nonrigid registration algorithm that we have de-
veloped for cardiac motion tracking [3]. Our results, which were obtained
from a group of 7 normal volunteers, indicate that although there is a
good correlation between the motion fields computed from the tagged
and untagged MR images, some of the twisting motion is not captured
in the motion fields derived from the TrueFISP MR images.

1 Introduction

Magnetic resonance (MR) tagging [2] has been widely used as a means of mea-
suring local deformation fields in the myocardium of the left ventricle (LV) which
are useful indicators of cardiovascular diseases. Although a number of different
techniques have been developed including B-spline surface models [6, 8, 1], opti-
cal flow [5], and harmonic phase (HARP) MRI [7] there is still no agreed gold
standard. The main difficulties encountered are the need to estimate through-
plane motion as well as the process of tag fading.

We have recently proposed an algorithm [3] based on a 4D B-spline mo-
tion model and nonrigid image registration as a means of tracking the motion
of the myocardium in the left ventricle (LV) from tagged magnetic resonance
(MR) images. The 4D motion field was reconstructed by registering sequences of
short-axis (SA) and long-axis (LA) images of the LV simultaneously to the cor-
responding set of segmented images of the myocardium taken at end-diastole.
The motion field obtained from the registration algorithm was spatially and
temporally smooth and allowed displacements and velocities to be computed at
arbitrary time instants between end-diastole and end-systole; and because the
registration algorithm makes no assumptions about the type of tag pattern in the
images acquired it may even be possible to compute motion fields from untagged
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MR images. Such a possibility would mean that segmentation and motion field
analysis could be done using a single set of images which would have important
implications for patient diagnosis. Since there are no clear landmarks or features
in the myocardium of the LV it is possible that not all of the deformation can
be measured in the untagged MR images. Clearly, it is important to determine
what types of motion can be captured from the untagged MR images. So, in this
paper we present a comparison of the motion fields computed from TrueFISP
and SPAMM tagged MR images using nonrigid image registration.

This paper is organized as follows: In section 2 we describe the registration
algorithm developed in [3]. This algorithm is then used to compute the motion
fields in the myocardium of the left ventricle (LV) from a group of normal vol-
unteers. Two sets of images were acquired during the same scanning session for
each volunteer, TrueFISP untagged and SPAMM tagged MR images. The mo-
tion fields computed for each volunteer using the two different sets of images are
compared in section 3. Finally, in section 4 we make conclusions on the work
presented in this paper.

2 Method

To track the motion of the heart we need to find a transformation, T(x, t), which
describes how a particular material point, x = [x, y, z]T , in the myocardium
moves over time. Since the tag pattern used in a cardiac examination is a two-
dimensional one, deformations can only be measured parallel to the imaging
planes. So, it is usual to acquire image volumes with tag-planes applied in dif-
ferent directions to measure the deformation of the heart in all three directions.
Suppose we acquire two volume image sequences:

S = {S0, S1, . . . , ST−1} (1)
L = {L0, L1, . . . , LT−1} (2)

where St is the image volume taken at time t with the tag-planes applied per-
pendicular to the short-axis image planes, Lt is the image volume taken at time
t with the tag-planes applied perpendicular to the long-axis planes, and T is the
total number of time frames.

The method proposed in [3] was to pose the problem of tracking the motion
of the heart as a 4D registration problem in which the image sequences S and
L are registered to the following image sequences respectively:

S′ = {S′
0, S

′
1, . . . , S

′
T−1},where ∀t, S′

t = S0 (3)
L′ = {L′

0, L
′
1, . . . , L

′
T−1},where ∀t, L′

t = L0 (4)

By registering the image sequences S and L to S′ and L′ respectively we can
relate all points in the myocardium at t = 0 to their corresponding positions for
all other times and thus reconstruct the deformation field in the myocardium.

The coordinate system, X, used to register the image sequences and hence
perform the motion tracking is defined with respect to the reference image, S0,
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taken at end-diastole (t = 0). The x-, y- and z-axes of X correspond to the x-,
y-, and z-axes of the reference image and the transformation we use to perform
the image sequence registration, T(x, t), is defined by a 4D linear combination
of the cubic B-spline basis functions,

T(x, t) = x +
3∑

k=0

3∑
l=0

3∑
m=0

3∑
n=0

Bk(s)Bl(u)Bm(v)Bn(w)φg+k,h+l,i+m,j+n (5)

where the Bi’s are the cubic B-spline basis functions and the φ’s are the nxnynznt

three dimensional displacement vectors defined at the control point positions of
the 4D B-spline. s, u, v, w ∈ [0, 1], and g, h, i, j are given by

g = �x/δx� − 1, s = x − g + 1 (6)
h = �y/δy� − 1, u = y − h + 1 (7)
i = �z/δz� − 1, v = z − i + 1 (8)
j = �t/δt� − 1, w = t − j + 1 (9)

where δx, δy, δz, and δt are the spacings of the control points in the x-, y-, z- and
t-directions respectively. This is similar to the approach taken by Huang et al [6]
except that in our case we are using nonrigid image registration to perform the
motion tracking.

The image sequences S and L are registered to S′ and L′ by finding the
optimal set of displacement vectors, φg,h,i,j , such that the cost function

C[1,T−1] =
T−1∑
t=1

Ct (10)

is maximized, where

Ct = wS
H(S0) + H(Tt(St))

H(S0,Tt(St))
+ wL

H(L0) + H(Tt(Lt))
H(L0,Tt(Lt))

(11)

is the normalized mutual information between the SA and LA images being reg-
istered. Here H(A) represents the marginal entropy of the intensity distribution
in image A, H(A,B) is the joint entropy of the intensity distributions in images
A, and B, and Tt(A) represents the image A after it has been transformed into
the coordinate system X by T(x, t). wS and wL are weighting factors which
depend on the number of voxels in the myocardium in the end-diastolic time
frame

wS =
N(S0)

N(S0) + N(L0)
(12)

wL =
N(L0)

N(S0) + N(L0)
(13)

where N(I) is equal to the number of voxels in the myocardium in image I.
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Initially, the displacement vectors, φg,h,i,j are set to [0, 0, 0]T for all g, h, i,
and j, so that T(x, t) = x for all x and t. The φg,h,i,j are then optimized by
considering each subset:

Φj = {φg,h,i,j}nx,ny,nz

g=0,h=0,i=0 (14)

of displacement vectors in turn. Φj contains the displacement vectors defined at
one particular point in time but at different positions in space. Since changing
the displacement vectors in Φj only affects the computation of the similarity
metric at those time frames which are within the region of support of the B-
spline functions, we need only compute the similarity metric between those time
frames. The Φj are then optimized by using a gradient descent optimization
procedure so that C[ta,tb] is maximized, where ta and tb are the minimum and
maximum time frames between which the similarity metric in equation 10 is
affected. Before optimizing Φj+1 we reinterpolate the motion field so that

∀k > j,T(xi, yi, zi, t(k)) = T(xi, yi, zi, t(j)) (15)

by using the algorithm of Unser et al [9]. Doing this enables a good initial
estimate for the motion field at t(j + 1). Once the Φj are optimized for each j
individually, we consider the displacement vectors in all the Φj at once. Gradient
descent optimization is now used to maximize the metric C[1,T−1] for all time
frames. The final results of the optimization is a transformation which describes
the motion of the myocardium for all times between 0 and T − 1.

3 Results

Data was acquired from 7 normal volunteers consisting of a series of SA and
LA volume images of the heart. Both TrueFISP and tagged MR images were
acquired for each volunteer so that the motion fields computed from the two
sets of images could be compared with each other. A typical set of images from
one volunteer is shown in figure 1.

For each volunteer we computed the motion fields using the algorithm de-
scribed in section 2: once using the TrueFISP MR images and once using the
tagged MR images. We label the two transformations TTrueFISP and TSPAMM

respectively.
A cylindrical coordinate system was defined whose longitudinal axis passed

through the center of the LV and was perpendicular to the SA imaging planes.
The myocardium in each SA slice was divided into 16 sectors around the center
of the LV and the average radial, circumferential, and longitudinal displace-
ments were computed in each sector using the two transformations, TTrueFISP

and TSPAMM. Scatter plots of the radial, circumferential, and longitudinal dis-
placements were drawn to see how well TTrueFISP and TSPAMM were correlated.
The results are shown in figure 2.

Linear regression analysis was then performed on the scatter plots of the
motion fields, the results of which are presented in table 1. As can be seen there is
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Fig. 1. This figure shows the two sets of MR images acquired for one of the seven

volunteers. Row 1 shows a SA view of the LV using the TrueFISP imaging sequence,

while row 2 shows the same view using a SPAMM imaging sequence. Rows 3 and 4

show a LA view of the LV. The first column corresponds to end-diastole, the second

to mid-systole, and the last to end-systole

a good correlation between the radial and longitudinal displacements computed
from TTrueFISP and TSPAMM, but there is less of an agreement between the
circumferential displacements. In figure 3 we show the motion fields computed
from TTrueFISP and TSPAMM. The first and second rows show arrow plots of
the displacement fields in a mid-ventricular SA slice for one of the volunteers
using TTrueFISP and TSPAMM respectively. As can be seen the motion fields are
remarkably similar but there are regions where not all of the twisting motion
has been captured in TTrueFISP. These regions are indicated by the circles in the
third column. In the third and fourth rows, virtual tag grids have been placed
on the SA tagged MR image sequences and have been deformed over time by
TTrueFISP and TSPAMM respectively. From the third row we see that there is a
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(c) Longitudinal displacement scatter plot

Fig. 2. Scatter plots showing the correlation between the radial, circumferential, and

longitudinal displacements computed using TTrueFISP and TSPAMM. Results of linear

regression analysis on these plots are given in table 1
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Table 1. The results of linear least squares fitting for the radial, circumferential, and

longitudinal displacements computed using TTrueFISP and TSPAMM

Line of Best Fit Correlation Coefficient

Radial y = 0.73x − 0.97 0.74
Circumferential y = 0.53x + 0.24 0.43

Longitudinal y = 0.80x + 0.42 0.78

Fig. 3. The first and second rows show the computed motion fields in a mid-ventricular

SA slice for one of the volunteers using TTrueFISP and TSPAMM respectively. The

columns, from left to right, correspond to end-diastole, mid-systole, and end-systole.

Regions of the myocardium which show a discrepancy in the computed motion fields

are indicated by the circles in the third column. In the third and fourth rows, vir-

tual tag grids have been placed on the SA tagged MR image sequences and have been

deformed over time by TTrueFISP and TSPAMM respectively
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good agreement in the motion fields computed from the two sets of images since
the virtual tag grid follows the tag pattern in the images.

4 Discussion and Conclusions

This paper presented a comparison of the motion fields computed using a 4D
nonrigid registration algorithm from TrueFISP and SPAMM tagged MR images.
The correlation coefficients were found to be 0.74, 0.43, and 0.78 for the radial,
circumferential, and longitudinal displacements respectively computed from the
tagged and untagged motion fields. These results indicate that although not
all of the twisting motion is captured in the motion fields derived from the
untagged images, the motion fields may still be used for obtaining radial and
longitudinal displacements. Further work still needs to be done on how the image
acquisition method and the quality of the images acquired affect the correlation
between the computed deformation fields. In particular the heart rate of a vol-
unteer may not be constant throughout the duration of a cardiac examination
and methods for compensating for the variation in heart rate still need to be
developed.

In future work we intend to build a 4D statistical model of the motion of
heart as in [4]. Such a model would restrict the transformations obtained from
the registration algorithm to statistically likely types of motion predicted by the
motion model and should improve the estimation of motion and strain fields
from untagged MR images.
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Abstract. Matrix-phased array transducers for real-time three-dimensional 
ultrasound enable fast, non-invasive visualization of cardiac ventricles. 
Segmentation of 3D ultrasound is typically performed at end diastole and end 
systole with challenges for automation of the process and propagation of 
segmentation in time. In this context, given the position of the endocardial 
surface at certain instants in the cardiac cycle, automated tracking of the surface 
over the remaining time frames could reduce the workload of cardiologists and 
optimize analysis of volume ultrasound data. In this paper, we applied optical 
flow to track the endocardial surface between frames of reference, segmented 
via manual tracing or manual editing of the output from a deformable model. 
To evaluate optical-flow tracking of the endocardium, quantitative comparison 
of ventricular geometry and dynamic cardiac function are reported on two open-
chest dog data sets and a clinical data set. Results showed excellent agreement 
between optical flow tracking and segmented surfaces at reference frames, 
suggesting that optical flow can provide dynamic “interpolation” of a 
segmented endocardial surface. 

1   Introduction 

Segmentation and dynamic tracking of the endocardial surface are critical for 
quantitative assessment of an echocardiographic exam and diagnosis of pathologies 
such as myocardium ischemia. Ultrasound is the cardiac screening modality with the 
highest temporal resolution, but is still limited to two-dimensions in most medical 
centers. Developments in 3D echocardiography started in the late 1980s with the 
introduction of off-line 3D medical ultrasound imaging systems. Many review articles 
have been published over the past decade, assessing the progress and limitations of 
3D ultrasound technology for clinical screening [1-4]. These articles reflect the 
diversity of 3D systems developed for both image acquisition and reconstruction. 
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Although 2D transducers can be configured to assemble a 3D volume from a series of 
planar views, only matrix phased array transducers can scan true three-dimensional 
volumes [5]. This technology fundamentally differs from former generations of 3D 
systems as a true volume of data is acquired in real-time (1 scan per second), enabling 
the cardiologist to view moving cardiac structures from any given plane in real-time. 
A first generation of real-time three-dimensional ultrasound (RT3D) scanners was 
introduced in early 1990s by Volumetrics [5] but acquisitions artifacts prevented the 
technology from meeting its initial expectation and reaching its full potential. A new 
generation of RT3D transducers was introduced by Philips Medical Systems (Best, 
The Netherlands) in 2000s with the SONOS 7500 transducer that can acquire a fully 
sampled cardiac volume in four cardiac cycles. Each scan produces ¼ of the cardiac 
volume so that 4 scans are performed and spatially aggregated to generate one 
ultrasound volume over one cardiac cycle. This technical design enabled to 
dramatically increase spatial resolution and image quality.  

Clinical evaluation of 3D ultrasound data for assessment of cardiac function is 
performed via interactive inspection of animated data, along selected projection 
planes. Facing the difficulty of inspecting a 3D data set with 2D visualization tools, it 
is highly desirable to assist the cardiologist with quantitative analysis tools of the 
ventricular function. Complex and abnormal ventricular wall motion, for example, 
can be detected, at a high frame rate, via quantitative four-dimensional analysis of the 
endocardial surface and computation of local fractional shortening [6]. Such 
preliminary study showed that RT3D ultrasound provides unique and valuable 
quantitative information about cardiac motion, when derived from manually traced 
endocardial contours. Philips Medical Systems recently introduced a new RT3D 
ultrasound machine, the iE33 [7] that incorporates a ventricular analysis tool named 
QLAB quantification software. This tool includes an interactive segmentation 
capability for the endocardium using a 3D deformable model that alleviates the need 
for full manual tracing of the endocardial border. To assist the segmentation process 
over the entire cardiac cycle, we evaluated the use of optical flow (OF) tracking 
between segmented frames and tried to answer the following questions in this study: 
Can OF track the endocardial surface between ED and ES with reliable positioning 
accuracy? How does dynamic information derived from OF tracking on RT3D 
ultrasound compare to a single segmentation method, given the high inter and intra 
variability of segmentation by experts?  Can OF be used as a dynamic interpolation 
tool of the endocardial surface? 

Cardiac motion analysis from images has been an active research area over the past 
decade. However, most research efforts were based on CT and MRI data. Previous 
efforts using ultrasound data for motion analysis include intensity-based OF tracking, 
strain-imaging, and elastography. Intensity-based OF tracking methods described in 
[8-13] combine local intensity correlation with specific regularizing constraints (e.g. 
continuity). For strain-imaging or elastography, strain calculation and motion 
estimation are typically derived from auto-correlation and cross-correlation on RF 
data. The commercialized strain imaging package, “2D Strain” from General Electric 
[14] uses such a paradigm. Most published works on strain-imaging or elastography 
[14-18] are limited to 1D or 2D images. Early works [19] used simple simulated 
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phantoms while recent work [20] used 3D ultrasound data sequence for LV volume 
estimation. The presence of speckle noise in ultrasound prevents the use of gradient-
based methods while relatively large region-matching methods are relatively robust to 
the presence of noise. In this study, we propose a surface tracking application for a 4D 
correlation-based OF method on 3D volumetric ultrasound intensity data. 

2   Method 

2.1   Correlation-Based Optical Flow 

Optical flow (OF) tracking refers to the computation of the displacement field of 
objects in an image, based on the assumption that the intensity of the object remains 
constant. In this context, motion of the object is characterized by a flow of pixels with 
constant intensity. The assumption of intensity conservation is typically unrealistic for 
natural movies and medical imaging applications, motivating the argument that OF 
can only provide qualitative estimation of object motions. There are two global 
families of OF computation techniques: (1) Differential techniques [21-23] that 
compute velocity from spatio-temporal derivatives of pixel intensities; (2) Region-
based matching techniques [24, 25], which compute the OF via identification of local 
displacements that provide optimal correlation of two consecutive image frames. 
Compared to differential OF approaches,  region-based methods using correlation 
measures are less sensitive to noisy conditions and fast motion [26] but assume that 
displacements in small neighborhoods are similar. In three-dimensional ultrasound, 
this later approach appeared more appropriate and was selected for this study. Given 
two data sets from consecutive time frames: ( , ), ( , )I t I t tx x , the displacement 

vector x  for each pixel in a small neighborhoods Ω  around a pixel x is estimated 
via maximization of the cross-correlation coefficient defined as: 

2 2

( , ) * ( , )

( , ) ( , )

I t I t t
r

I t I t t

x

x x

x x x

x x x
                                              (1) 

In this study, correlation-based OF was applied to estimate the displacement of 
selected voxels between two consecutive ultrasound volumes in the cardiac cycle. The 

search window Ω  was centered about every (5 5 5) pixel volume and was set to 

size (7 7 7). 

2.2   Three-Dimensional Ultrasound Data Sets 

The tracking approach was tested on three data sets acquired with a SONOS 7500 3D 
ultrasound machine (Philips Medical Systems, Best, The Netherlands): 

- Two data sets on an anesthetized open chest dog were acquired before (baseline) 
and 2 minutes after induction of ischemia via occlusion of the proximal left 
anterior descending coronary artery. These data sets were obtained by 
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positioning the transducer directly on the apex of the heart, providing high 
image quality and a small field of view. Spatial resolution of the analyzed data 
was (0.56mm3) and 16 frames were acquired for one cardiac cycle. 

- One transthoracic clinical data set from a heart-transplant patient. Spatial 
resolution of the analyzed data was (0.8mm3) and 16 frames were acquired for 
one cardiac cycle. 

Because of the smaller field of view used to acquire the open-chest dog data and the 
positioning of the transducer directly on the dog’s heart, image quality was 
significantly higher in this data set, with some fine anatomical structures visible. 
Cross-section views at end-diastole (ED) from the open-chest baseline data set, and 
the patient data set are shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Cross-sectional views at ED for (a-c) Open-chest dog data, prior to ischemia, (d-f) 
Patient with transplanted heart. (a, d) axial, (b, e) elevation and (c, f) azimuth views 

2.3   Segmentation 

The endocardial surface of the left ventricle (LV) was segmented with two methods. 

Manual Tracing. An expert performed manual tracing of all time frames in the data 
sets, on rotating B-scan views (long-axis views rotating around the central axis of the 
ventricle) and C-scan views (short-axis views at different depths). 

QLAB Segmentation. The QLAB software, (Philips Medical Systems), was used to 
segment the endocardial surface. Initialization was performed by a human expert and a 
parametric deformable model was fit to the data at each time frame. Segmentation 
results were reviewed by the expert and adjusted manually for final corrections. We 
emphasize here that QLAB is used as a semi-automated segmentation tool. The QLAB 
software was designed to process human clinical data sets. Significant anatomical  

(a) 

(d) 

(c) 

(f) 

(b) 

(e) 
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 differences between canine and human hearts could lead to misbehavior of the 
segmentation software we decided to only apply the software tool to clinical data sets. 

2.4   Tracking with Optical Flow 

Tracking of the endocardial surface with OF was applied with initialization using the 
manually traced surfaces (for dog data and clinical data) and the QLAB segmented 
surfaces (for clinical data). Starting with a set of endocardial surface points (about 
three thousand points, roughly 1 mm apart for manual tracing and about eight hundred 
points, roughly 3 mm apart for QLAB) defined at ED, the OF algorithm was used to 
track the surface in time through the whole cardiac cycle. Since OF with correlation-
based method is very sensitive to speckle noise, all data sets were pre-smoothed with 
edge-preserving anisotropic diffusion as developed in [27]. We emphasize here that 
OF is not applied as a segmentation tool but as a surface tracking tool for a given 
segmentation method. 

2.5   Evaluation 

We evaluated OF tracking via visualization and quantification of dynamic ventricular 
geometry compared to segmented surfaces. Usually comparison of segmentation 
results is performed via global measurements like volume difference or mean-squared 
error. In order to provide local comparison, we propose a novel comparison method 
based on a parameterization of the endocardial surface in prolate spheroidal 
coordinates [28] and previously used for comparison of ventricular geometries from 
two 3D ultrasound machines in [29]. The endocardial surfaces were registered using 
three manually selected anatomical landmarks: the center of the mitral orifice, the 
endocardial apex, and the equatorial mid-septum. The data were fitted in prolate 
spheroidal coordinates ( ), ,λ μ θ , projecting the radial coordinate λ  to a 64-element 

surface mesh with bicubic Hermite interpolation and yielding a realistic 3D 
endocardial surface. The fitting process (illustrated in Fig. 2 for a single endocardial 
surface) was performed using the custom finite element package Continuity 5.5 
developed at the University of California San Diego (http://cmrg.ucsd.edu). In this 
figure, we can observe the initial positioning of the data points and the surface mesh, 
and the fitted surface after fitting with very high agreement between the data and the 
mesh. A zoom is provided on a small region where the fitted surface and the points do 
not match exactly, due to region-based global optimization of radial projections.  

The fitted nodal values and spatial derivatives of the radial coordinate, λ, were then 
used to map relative differences between two surfaces,  = (λseg – λOF) / λseg using 
custom software. The Hammer mapping was used to preserve relative areas of the 
flattened endocardial surface [30].  

For each time frame, root mean squared errors (RMSE) of difference in λ, over all 
nodes on the endocardial surface were computed, between OF and individual 
segmentation methods. Ventricular volumes were also computed from the segmented 
and the tracked endocardial surfaces. Finally relative λ differences maps were 
generated for end-systole (ES), providing a direct quantitative comparison of 
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ventricular geometry. These maps are visualized with iso-level lines, quantified in 
percentage values of radial differences. 

3   Results 

3.1   Open-Chest Dog Data  

Quantitative results, comparing OF and manual tracing, are plotted in Fig. 3 while 
three-dimensional rendering of the endocardial surfaces and difference maps at ES are 
shown in Fig. 4. 

RMSE results reported a maximum difference on radial absolute difference of 0.19 
(average radial coordinate value was 0.7±0.2 at ED and 0.6±0.3 at ES) at frame 11 
(start of diastole) on the baseline data set and 0.08 (average radial coordinate value 
was 0.7±0.3 at ED and 0.6±0.2 at ES) at frame 12 on the post-ischemia data set. 
Maximum LV volume differences were less than 7 ml on baseline data and 5ml on the 
post-ischemia data set. RMSE values were smaller for OF tracking on larger volumes. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Fitting process of the endocardial surface. (a) Initial FEM mesh and data points. (b)  
Fitted FEM surface and data points. (c) Zoom on a small region with the FEM fitted surface 
and the data points 

 

Fig. 3. Results on open-chest data sets. (a) RMSE of radial absolute differences: baseline data 
(solid line), post-ischemia data (dashed line); (b-c) LV volumes from manual tracing (solid 
line), and OF tracking (dashed line) for: (b) baseline, post-ischemia (c) 
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On the radial difference maps in Fig. 4, we observe similar difference patterns in 
the baseline and the post-infarct data, demonstrating repeatability of the OF 
tracking performance on a same ventricular geometry but with different contractility 
patterns. An area with large error in the baseline comparison localized on the 
anterior-lateral wall disappeared in post-ischemia tracking. This error is caused by a 
small portion of tracked points that were confused by acquisition artifacts at the 
boundary between the first and second quadrants. This result suggests that the OF 
algorithm has difficulty to track large motion in the unconstrained healthy heart. 
Errors were well distributed over the entire surface with overall shape agreement. 
Similar maps can be used to examine local fractional shortening using the technique 
developed by the Cardiac Mechanics Group at Columbia University [6] and 
revealed similar patterns of abnormal wall motion after ischemia using of tracked 
surface or manual tracing, and corroborates the accuracy of OF tracking to provide 
dynamic functional information. 

 

Fig. 4. Endocardial surfaces from open-chest dog data sets at ES. (a-c) Results on baseline data. 
(d-f) Results on post-ischemia data.  Three-dimensional rendering of endocardial surfaces were 
generated from manual tracing (dark gray) and OF tracking (light gray) for (a, d) lateral views 
and (b, e) anterior views. (c, f) Relative difference maps between OF and manual tracing 
surfaces 

3.2   Clinical Data 

OF tracking was run with initialized surfaces provided by either manual tracing or the 
QLAB segmentation tool. Because of lower image quality on the clinical data set, 
compared to the open-chest dog data, we performed two sets of additional 
experiments. First, we checked if the time frame selected for initialization had an 
influence on the tracking quality. 
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Based on manual tracing, we initialized OF tracking for the whole cardiac cycle 
with ED (forward tracking) or ES (backward tracking) and compared RMSE over the 
entire cycle. Results, plotted in Fig. 5a show very comparable performance, 
confirming that the OF seems to be repeatable and insensitive to initialization set up.  
We therefore selected the first volume in the sequences, triggered by EKG to 
correspond to ED. A second experiment tested the agreement between QLAB and OF 
tracking when increasing the number of reference surfaces used to re-initialize OF 
over the cardiac cycle. Results, plotted in Fig. 5b, show that agreement of OF tracking 
and QLAB segmentation increases with re-initialization frequency and reaches RMSE 
levels similar to the experiment with manual tracing for re-initialization every other 
frame. We point out that strong smoothing constraints, applied by the deformable 
model of the QLAB segmentation, lead to surface positioning that did not always 
correspond to the apparent high contrast interface. Finally, we compared RMSE 
values from forward tracking and from averaging forward and backward tracked 
shapes. We observed a large increase in agreement with the QLAB smooth 
segmentation when averaging tracked surfaces.  

Given these results, we modified our protocol for tracking based on QLAB and re-
initialized the OF every other frame, using the segmented surface. We did not need to 
use re-initialization for tracking based on manual tracing, since the RMSE was 
already very small without re-initialization.  

RMS error of radial relative differences and LV volumes were computed and these 
results are plotted in Figure 6 Maximum RMSE, over the whole endocardial surface, 
was equal to 0.09 (average radial coordinate value was 0.6±0.2 at ED and 0.5±0.2 at 
ES) at frame 09 (after ES) with manual-tracing initialization and 0.08 (average radial 
coordinate value is about 0.6±0.2 at ED and 0.5±0.2 at ES) at frame 10 (after ES) with 
QLAB initialization (with re-initialization). Three-dimensional rendered results and 
relative difference maps at ES are shown in Figure 7. 

 
 
 
 
 
 
 
 
 

Fig. 5. (a) RMSE between OF tracking and manual tracing: forward (solid line) and backward 
(dashed line). (b) RMSE between OF tracking and QLAB segmentation: forward tracking 
without re-initialization (solid line), forward tracking with re-initialization every four frame 
(dashed line), forward tracking with re-initialization every two frame (dotted line), and average 
result from forward and backward tracking without re-initialization (dashdot line) 

These experiments showed that OF tracking initialized with manual tracing 
provides ventricular endocardial surfaces similar to this segmentation method, with 
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less than 0.1 maximum absolute differences in RMSE and maximum LV volume 
differences below 10 ml. When initialized with QLAB, OF tracking with re-
initialization shows results with less than 0.08 maximum RMSE difference and less 
than 13 ml for LV volume differences. These differences are similar to inter and intra-
observer variability for measurement of LV volume from studies in 1979 [31, 32]. 
 

 

 

 

 

 

Fig. 6. Results on clinical data. (a) RMSE of radial difference for OF initialized with manual 
tracing (solid line) and QLAB segmentation with 2-frame re-initialization (dashed line); (b-c) 
LV volumes over one cardiac cycle: (b) Manual tracing (solid line) and OF initialized with 
manual tracing (dashed line); (c) QLAB segmentation (solid line) and OF initialized with 
QLAB segmentation (dashed line) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Endocardial surfaces from clinical data at ES. (a-c) Manual tracing; (d-f) QLAB 
segmentation. Three-dimensional rendering of endocardial surfaces from segmentation method 
(dark gray) and OF tracking (light gray): (a, d) lateral view; (b, e) anterior view. Relative radial 
difference maps between OF tracking and the segmentation method 

Ventricular geometries are illustrated in Fig. 7. We again observed high overall 
agreement between endocardial geometries provided by manual tracing and OF 
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tracking. Radial differences were distributed over the entire surface, with higher 
values on the lateral-posterior wall, which corresponded to poor image quality (due to 
scanning set up). The QLAB segmentation provided very smooth surfaces, well 
tracked by the OF. Larger errors were again observed on the lateral posterior wall. 
Comparison of the two experiments shows that OF over one time-frame can preserve 
the smoothness of the surface but will tend towards more convoluted surfaces during 
temporal propagation of the tracking process. 

Based on the high agreement with manual tracing, we can infer that OF might be a 
good candidate method to guide a deformable model with high smoothness 
constraints to better adapt to the ultrasound data and incorporate temporal information 
in the segmentation process. On the other hand, OF tracking could be adapted to these 
smoothness constraints, better ranked by cardiologists, to track larger spatial windows 
around the endocardial surface. 

4   Conclusion 

A correlation-based optical flow (OF) method was evaluated on RT3D ultrasound for 
tracking of the LV endocardial surface based on segmentations of the ED frame via 
manual tracing and QLAB segmentation from Philips Medical Systems. Geometries 
of the endocardial surface over the whole cardiac cycle from individual segmentation 
methods or tracked via OF were compared via quantitative mapping of relative radial 
differences of a fitted finite-element mesh. Results showed a promising ability of OF 
tracking to follow the endocardial surface on experimental and clinical data sets. Very 
high accuracy was achieved with two open-chest dog heart data sets and clinical data 
set using manual tracing. Similar patterns of abnormal motion appeared on the 
fractional shortening maps for the abnormal dog data set. When initialized with 
QLAB segmentation and re-initializated during the cardiac cycle, OF tracking also 
showed good tracking ability. Our experiments showed that OF tracking performance 
was not affected by tracking direction or initial time frame selection. Introducing re-
initialization and averaging shape results from forward and backward tracking 
improved agreement between OF tracking and QLAB segmentation. This study 
showed encouraging results regarding OF performance to accurately track the LV 
endocardial surface, yield dynamic information from RT3D ultrasound and provide 
automated dynamic interpolation of segmented endocardial surfaces. 
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Abstract. Magnetic resonance tagging technique measures the deformation of 
the heart wall by overlying darker tag lines onto the brighter myocardium and 
tracking their motion during the heart cycle. In this paper, we propose a new 
spline-based methodology for constructing a dense cardiac displacement map 
based on the tag tracking result. In this new approach, the deformed tags are 
tracked using a Gabor filter-based technique and smoothed using implicit 
splines. Then we measure the displacement in the myocardium of both 
ventricles using a new spline interpolation model. This model uses rough 
segmentation results to set up break points along tag tracking spline so that the 
local myocardium deformation will not be influenced by the tag information in 
the blood or the deformation in other parts of the myocardium. The 
displacements in x- and y- directions are calculated separately and are 
combined later to form the final displacement map. This method accepts either 
a tag grid or separate horizontal and vertical tag lines as its input by adjusting 
the offsets of images taken at different breath hold. The method can compute 
dense displacement maps of the myocardium for time phases during systole and 
diastole. The approach has been quantatively validated on phantom images and 
been tested on more than 20 sets of in-vivo heart data. 

1   Introduction 

Tagged MRI [1] data has been extensively used in clinical applications to extract the 
myocardial motion during the heart cycle. The deformation of tag lines reflects the 
deformation of the underlying heart wall so that the clinician has a more direct way to 
view the cardiac motion. Of more importance, quantative analysis based on the tag 
tracking results, i.e., strain analysis, helps us to understand the cardiac motion pattern 
better and can play an important role in the diagnosis of various kinds of heart failure 
and/or malfunctioning.  

To accurately track the myocardial motion and calculate the strain, one must create 
a dense displacement map over the heart cycle. In [2], a B-spline solid model has been 
used to trace the intersection of 3D tag planes and the image plane in different time 
phases during the heart cycle. However, the model suffers from the over smoothness 
caused by the limited number of the control points. The model also has the defect that 
the motion of the free wall and septum may have an influence on each other in case 
they share a common control point. Besides, the B-spline model in [2] did not 
consider the displacements in the myocardium of the right ventricle. 
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In [3] tag lines are automatically detected by using the image intensity profile 
along a tag’s perpendicular direction as a priori information in a MAP estimation 
framework. This method avoids the use of segmentation results during the tag 
tracking process and has a strong performance on 2D image tag tracking. However, 
no details are given on how to create a dense displacement map based on the tag 
tracking results. 

In [5] spatial-temporal filters have been used together with an interpolator 
approach to track tags. The method succeeded in tracking tag lines with their 
counterparts in different slices. However, the tags are smoothed using a quadratic 
approximation in each 2D slice and tag lines are assumed to be continuous during the 
tracking process. Both factors will introduce errors in the calculation of dense 
displacement map. 

In [9], a new segmentation framework, called metamorphs, that combines regional 
image information, prior shape information, and deformable models has been 
developed to segment 2D and 3D clinical objects such as the endocardial and 
epicardial surfaces of the myocardium, based on the work in [7, 8]. In [6], Gabor 
filters have been used to remove the tag lines in tagged MRI images. The magnitude 
of the local response to a bank of Gabor filters is used to replace the intensity of the 
pixel in the output image of this method. These results together with the boundary 
information in the original image can be used to provide us an estimation of the 
cardiac surfaces using the metamorphs.   

In this paper, we propose a new methodology based on the integration of spline 
interpolation, metamorph segmentation, and registration. This method solves the 
problem of over smoothness in tag tracking, wrong influences on tag fitting between 
different parts of the heart, and is capable of constructing a dense displacement map 
in the whole myocardium instead of only in the left ventricle wall. We tried our 
method on numerical phantoms, heart MRI of healthy volunteers, and heart MRI of 
patients to validate its effectiveness. 

The rest of the paper will be arranged as follows: in section 2, we will describe our 
method and explain the way it works. Related information will be given on Gabor 
filters, metamorphs, and the spline model. In section 3, we will demonstrate the 
effectiveness of the method by showing the dense displacement map and strains of a 
numerical phantom and validate the result using the ground truth of displacements 
and strains. More figures of experiment results will also be shown in this section to 
illustrate the combination of the spline model and metamorph segmentation. In 
section 4, we discuss the advantage of using our method to compute the dense 
displacement map and its effect on the computation of cardiac strains. Finally, we will 
list some possible directions for future researches.  

2   Method 

This section describes the metamorphs segmentation and the spline model. We will 
use 2 subsections to introduce these two models. In the subsection on metamorph 
segmentation, we will also introduce the Gabor filters. In the third subsection, we will 
also explain the integration of these two models. Finally, we will give details about 
the computation of the dense displacement map. 
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2.1   Gabor Filters and Metamorphs 

To segment the myocardium in a tagged MR image, we first use a bank of Gabor 
filters to remove the tags.  The Gabor filter acts as a band-pass filter with the central 
spatial frequency of the filter set equal to the frequency of tags in the image. The filter 
that we use to remove the tags in the myocardium has the form of: 

( , ) ( , ) sin( )h x y g x y yω θ= +   (1) 

where
2 2( / ) ( / )1

( , ) exp( )
2 2

x y

x y

x y
g x y

σ σ
πσ σ

+
= − , ω  is the sine wave frequency in 

the range (0.8 ,1.2 )tag tagω ω , where tagω  is the spatial frequency of the tags, θ  is the 

sine wave phase (0,2 )π , and xσ  yσ   are the standard deviations along the x- and y- 

axis. Equation (1) can be used to remove tags that are horizontal to the y-axis. A 
similar equation can be used to remove tags that are horizontal to the x- axis. This 
filter has a higher response in regions with the presence of tags and suppresses the 
low spatial frequency component of the image. Since the tags in the blood will be 
washed out soon after the initial tagging while the tags in the myocardium fade more 
slowly over time, the filter responds to the myocardium and suppresses the blood in 
the cardiac chambers. A bank of Gabor filters consisting filters with different phase 
shifts are applied on each pixel in the image and the maximum response will be used 
as the final response, thus the tag-attenuated and non-tag-attenuated myocardium will 
have the same response and the tags are removed. In figure 1 we show two 1D Gabor 
filters, the one with a 0 shift (blue) responds to the minimum tagged region (the 
region between tags) and the one with a 90 degree shift (pink) responds to the 
maximum tag attenuated region (the tags). 

The metamorphs method is a hybrid segmentation method that combines the shape 
and interior texture information. A hierarchy of both global and local deformations 
parameterizes the model geometry. During the global deformation, a global energy is 
minimized by optimizing the global parameters using the unified gradient descent 
method. In each step of the deformation, we calculate the partial derivatives of the 
image energy with respect to each of the global parameters, and then change the 
values for these parameters in the opposite direction to achieve the global minimum 
solution of parameters (Due to the restriction on the length of the paper, please refer 
to reference [9] for details). The local deformations are computed using the external 
force formulation, in which the model evolves based on Lagrangian dynamics: 

where K is the stiffness matrix, lq  is the local displacement vector, and extf  is the 

external force. In metamorphs, we use a combination of the edge map distance 
gradients, the region edge distance gradients, and the second order derivative of the 
original image as the external force. The form of the external force is shown below: 

( ( ( )) ( ( )) ( ( )))f a M I b M S I c G I
ext

= − ∇ + ∇ + ∇ ∇  (3) 

l l extf+ =q Kq  (2) 
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where I is the original image, M(.) is the function that extracts the edge from the 
image and computes the distance transform of the edge map by calculating at every 
pixel in the image the distance to the nearest edge, ∇  is the gradient operator, S(.) is 
the function that computes the binary mask of the object of interest, G(.) is the 
Gaussian operator, and a, b, c are the weights for the edge map distance gradient, the 
region edge distance gradient, and the second order derivative gradient flow 
respectively. 

 

Fig. 1. 1D Gabor Filter tag filling 

           
 

Fig. 2. The integration of Gabor filters and metamorphs. a) a metamorph is initialized inside the 
left ventricular region in the output image of Gabor filters; b) the global deformable fitting 
results (intermediate); c) the local and final segmentation results 

For endo-cardiac segmentation in this paper, the metamorph is initialized manually 
on one slice and then propagate to other slices. We use both the Gabor filter results 
(for the tagging texture) and the original image (for edge information) to guide the 
deformation of metamorphs. For epi-surface segmentation, the metamorph is either 
initialized based on the segmentation results of endo-cardiac surfaces or just manually 
segmented. 

In figure 2 we show how to segment the MR image using the Gabor filters and 
metamorphs. In a) there is an image that has been preprocessed using the Gabor 
filters. The tags have been removed and the myocardium and blood region are not any 
longer of similar intensity. A deformable model is initialized in the left ventricle (in 

(a) (b) (c) 
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green) and deforms to fit to the myocardium boundaries using both global 
transformation (b) and local deformation (c). 

2.2   Spline Model 

The spline model is initialized using the tag tracking result. We use a snake-based 
technique to track the tags. The snakes are driven by the gradient and they converge 
to the local minimum of image intensity. However, the results may not converge to 
the intensity minimum because of snake’s internal constraints and local noise. 

A band of pp-form splines are then fitted to these snakes to refine the tracking 
results. The pp-form of a polynomial spline of order k has the following form: 

1

( ) ( )
k

k i
j j ji

i

p x x cξ −

=

= −  (4) 

where 1 1, , lξ ξ +  are its break points, jic  are local polynomial coefficients, and l is 

the number of pieces. In our spline model, the k is set to 4, and the break points are 
densely and evenly (every 2 to 3 pixels) distributed along the tag line. This spline 
model is used to refit the snakes to the tags. We resample each snake at the interval of 
1 pixel and calculate the breaks for the spline using the local intensity information and 
the discretized snake location. The local information may also include the local 
gradient and also other nearby splines. The resampled snakes are more smooth and 
closer to the local image intensity minimum after the spline fitting. 

2.3   Integration 

 The segmentation results of the metamorphs have been used to provide break points 
on the spline model. Since the tags in the background (beyond the epi-surface or 
interior to the endo-surface of the myocardium) do not deform in the same pattern as 
those in the myocardium, we assume that the tags break at the boundary when they 
begin to deform. In previous work, researchers also noticed this so that they limited 
spline-tag fitting within the myocardium. However, in those approaches, the spline 
itself is still continuous. The continuous spline has a bad fitting performance in the 
regions that are close to the myocardium boundary and bring unnecessary mutual 
influence between different parts of the heart when there are limited control points. In 
our model, the spline is separated into several portions, each for a distinct part of the 
myocardium. The new model has a better fitting performance and prevents 
unnecessary influence between different parts of the myocardium.  

2.4   Computing the Dense Displacement Map  

After we have the refined spline-fitted tags in both the horizontal and the vertical 
direction, we compute the dense displacement map. Since the displacements in the x- 
and y- direction are independent of each other, we can compute the displacement map 
in each direction separately and then combine them to form the final displacement 
map. We first create the separate dense displacement map in the horizontal and the 
vertical directions. We use a spline-based technique to interpolate between the 
existing spline-fitted tags to form a series of virtual tags with the interval of 1 pixel in 
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the undeformed image. Because of the sparsity of the tags, sometimes there are 
missing part in these virtual tags. In such a case, we use a spline model that is the 
same as those we use to fit the real tags to complete the virtual tag. More than one 
loop may be needed in cases there are not enough tags to interpolate with. The 
interpolation result can be used as a close approximation to the real displacement 
field. The algorithm can be expressed as: 

Repeat 
    virtual_tags=Interpolate(existing_tags); 
    for each tag in the set of virtual tags 
        If isincomplete(current_tag) 
        then splineinterpolate(current_tag);  
    End; 
      existing_tags = virtual_tags;  
until there is no change in existing_tags 

 

In figure 3, we show an image with the spline model (in red) and the virtual tags 
(in green). 

After the computation of the separate displacement maps, we combine them 
together. Since we have all those virtual tags that can be treated as straight lines that 
are parallel to the axis in the undeformed image, we can compute the displacement at 
each pixel by calculating the distance between the pixel and the cross points of the 
corresponding horizontal and vertical virtual tags in the deformed image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The spline model and the virtual tags. The spline model is in red, the virtual tags are in 
green. For interpolation purposes, the spline model is extended a little beyond the myocardium 
boundary. The extended part is estimated using the information inside the myocardium 

3   Results 

We first show the result of our method on a numerical phantom. The phantom 
underwent a series of displacements and deformations under the influence of an 
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underlying displacement field. In the phantom, the horizontal and the vertical tags are 
in separate images. In figure 4 we show the location of the spline model and the 
virtual tags. In figure 5, we show the dense displacement map created by our method 
and its difference to the ground truth of displacement. We also calculated the strain 
based on the dense displacement map, and the result can be seen in figure 6. 

We also show the dense displacement map in other 2 real heart MR images and 
computed the strain based on the displacement map. In one image, the horizontal and 
the vertical tags were imaged separately. In the other image, there was a tag grid 
combining both the horizontal and the vertical tags. Our method output smooth and 
accurate dense displacement maps for both data sets. 

We also include the result of an experiment that we calculate the displacement map 
around both ventricles in figure 9. 

            

Fig. 4. The vertical and horizontal spline model (red lines) and virtual tags (blue) in the 
phantom 

            

Fig. 5. Comparison between the displacement map created by our method and the ground truth. 
The plot shows the arbitrary value of the displacement in millimeters (same in all the following 
plots with color bars). These two displacement map have a similar distribution. However, the 
magnitude of the real displacement map is a little bigger than that of the computed one (within 
10% error at most pixels) and the difference does not have effect on the computation of the 
strain 
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Fig. 6. The comparison between the strain derived from the calculated displacement map and 
the real strain. There is very little difference in the strain in all 6 phases of deformation. The 
plot shows the ratio between the changed length and the original length of the myocardium in 
the circumferential direction 
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Fig. 7. The dense displacement map of a healthy volunteer. a) is the undeformed heart at time 
phase 1, b) is the deformed heart at time phase 10, c) is the displacement from phase 10 to 1, d) 
is the average strain magnitude (the ratio between the changed and the original length) during 
the heart cycle calculated based on the displacement map 

Finally, multiple patient data have been unified and combined into one plot the 
show the difference between healthy hearts and abnormal hearts. 

(a) (b) 

(c) (d) 



454 L. Axel, T. Chen, and T. Manglik 

 

        

Fig. 8. The dense displacement map of a patient’s MRI with tag grid. The patient suffers severe 
heart dysfunction that his heart cannot beat synchronously 

 

Fig. 9. The virtue tags in around left and right ventricles. Red lines are the endo- and epi-
cardiac segmentation results. Yellow lines are the tag tracking results. Red lines are spline 
models. Green lines are virtue tags 

      

Fig. 10. (a) shows Strain developing in a human heart as a function of time. In both the images, 
plot "B" belongs to healthy volunteer where as rest of the plots belong to patients. In image (b) 
a patent underwent a heart surgery and improvement in his heart condition is quantified on this 
graph and compared to a healthy volunteer. The y-axis corresponding to the ratio of the 
changed length to the original length of the myocardium 
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4   Discussions 

Our approach of computing the dense displacement map has a strong performance by 
combining the segmentation module and the spline model. By inserting the break 
points into the spline model, the wrong tag information in the blood and the 
background does not have any influence on the myocardium displacement map 
computation. The pp-form spline with break points at the myocardial boundary also 
prevents the mutual influence of displacement between different parts of the 
myocardium. In addition, the spline model is capable of calculating the displacement 
map around the right ventricle.  

In the future, we plan to extend the method in 3D. By using information from both 
long axis and short axis heart MRs, we will be able to construct virtual tag planes and 
calculate the displacement in 3D spatial space. 
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Appendix 

Deformation refers to change in shape of an object between an initial (undeformed) 
state and a subsequent (deformed) state.  

1 2( , )i ix x X X=  (A.1) 

The description of position (x1 and x2), motion or deformation of a point in space as 
a function of it initial undeformed position (X1 and X2) is known as a Lagrangian 
formulation (equation A.1).  

F x X= ∇  (A.2) 

ˆ/ i iX X e∇ = ∂ ∂  (A.3) 

1
( ' 1)

2
L F F= −  

(A.4) 

The deformation gradient F (equation A.2) is given as a partial differentiation of 
equation A.1.  

The Lagrangian (or Green’s) finite strain tensor can be calculated from equation 
A.4. 
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Abstract. Multislice Computed Tomography (MSCT) scanners offers
new perspectives for cardiac kinetics evaluation with 3D time image se-
quences of high contrast and spatio-temporal resolutions. A new method
is proposed for cardiac motion extraction in Multislice CT. Based on a 3D
surface-volume matching process, it provides the detection of the heart
left cavities along the acquired sequence and the estimation of their 3D
surface velocity fields. A 3D segmentation step and surface reconstruc-
tion process are first applied on only one image of the sequence to obtain
a 3D mesh representation for one t time. A Markov Random Field model
is defined to find best correspondences between 3D mesh nodes at t time
and voxels in the next volume at t + 1 time. A simulated annealing is
used to perform a global optimization of the correspondences. First re-
sults obtained on simulated and real data show the good behaviour of
this method.

1 Introduction

Cardiovascular diseases are a major cause of mortality, being responsible for
about 30% of registered adult deaths in industrialized countries. Because a more
sensitive measurement of myocardial function might result in earlier diagnosis,
more effective treatment of heart disease may be possible. Technological im-
provements in cardiac imaging provide rich opportunities for such a progress.

The minimally invasive assessment of heart motion has been studied from
four-dimensional (4D) data sets with magnetic resonance (MR) imaging (es-
pecially MR imaging tagging [1, 2]), ultra-sound images [3] and recently with
transthoracic 3D echocardiography [4], electron-beam computed tomography
and the Dynamic Spatial Reconstructor (DSR) [5, 6]. The recent significant ad-
vances of spiral computed tomography, with the introduction of ultra-fast ro-
tating gantries (0.5 s/tr), multi-rows detectors and retrospective ECG-gated re-
constructions, provide higher contrast and spatio-temporal resolutions and allow
a huge progress toward the imaging of moving organs. The technical advances
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of MSCT imaging allow the reconstruction of all cardiac structures on one 3D
image, for successive instants of the cardiac cycle, under one single breathhold.
Some first reference studies have been conducted in MSCT for the detection
of coronary diseases [7, 8], but very few for the quantitative 3D cardiac motion
estimation [9].

The issue of nonrigid motion estimation from 3D images is one of the most
important challenges of computer vision. Methods which have been proposed for
this purpose are most often classified into three kinds of approaches: geometric
deformable models, optical flow estimation and feature matching methods. In
geometric model-based approaches, parametric models [10, 11, 12] involve the
parametric formulation of the object and/or of the movement. This kind of
methods is interesting to extract global motion and to represent it with few
parameters. Non parametric models [13, 14], using mainly mass-spring and finite
element methods, extract local motion using differential constraints. Optical flow
methods [15, 5] are mainly based on intensity conservation and motion smoothing
constraints. That constraint of intensity conservation with time is difficult to
advance with MSCT data because of the contrast agent diffusion combined with
the retrospective reconstruction of the sequence. Furthermore, these methods
providing dense motion fields are difficult to handle with big data volumes in
which the study deals only with few objects. Feature matching methods [16, 17,
18] are based on the search of correspondences between entities (considered at
t and t + 1 times) according to descriptive parameters. These methods enable
to focus the study on the objects of interest, and to extract local and global
motion. But most of them are highly dependent from the segmentation quality
because they need an accurate segmentation for each instant of the sequence.

We propose a new method to extract ventricular shapes and their motion
from cardiac MSCT images. This approach provides, with one unique process
and from the segmentation of only one moment, the detection of the object of
interest along the time sequence of 3D images and its motion. This problem
of dual 3D shape and motion estimation is viewed by a statistical approach as
it has been used in other works to estimate dense 2D motion fields in outdoor
scene analysis and video indexing [19, 20]. In this paper, the 3D sparse non-rigid
motion field to estimate at each instant is formulated as a Markov Random Field
model under spatio-temporal regularity hypotheses. This motion field is provided
by a matching method based on features of different types which are surface 3D
mesh nodes for one part and image voxels for the other part. These extracted
motion fields can then be used for global and local motion quantification and
interpretation. First results obtained on simulated and real data give promising
results.

In the remainder of this paper, we describe in Sect. 2 the surface-volume
matching method we have developed including the pre-processing step, the defi-
nition of the Markov Random Field model and of the associated energy function,
and the optimization stage. In Sect. 3 we present the results obtained on simu-
lated and real data. In Sect. 4 we conclude and discuss about the issues to develop
in further research.
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2 Surface-Volume Matching Based Method

From a time sequence of 3D MSCT cardiac images, our approach allows the
spatio-temporal detection of the left heart cavities and the quantification of
their deformations. This is achieved by a matching method which provides, for
each instant of the sequence, the correspondences between a 3D surface mesh
extracted at one instant and the 3D volume image available at the next instant.
The overall process description of this method can be decomposed in such a way:
a) a 3D segmentation step and surface reconstruction process are first applied on
only one 3D image of the time sequence (at t0 time) to provide the first surface
in the sequence ; b) the surface-volume matching process is applied to estimate
a 3D velocity field between a surface (at t0 time) and the next volume image (at
t1 time). An iterative procedure is used to provide the best estimated motion
field. c) A new 3D surface can be extracted at t1 time from the estimated motion
field; d) steps b) and c) are repeated until all images of the sequence have been
processed.

2.1 Pre-processing Stage: 3D Segmentation and Surface
Reconstruction

A segmentation process is applied to detect in the first image of the time se-
quence the object of interest. The method is based on a region growing process
combined with contour detection and mathematical morphology operators [21].
It has been developed to provide a tool adapted to cardiac MSCT images and al-
lows to extract a 3D object or a subset of objects in an isotropic 3D volume with
minimal user interaction. The extracted object is then submitted to a Marching
Cubes algorithm, giving access to a 3D mesh representation. This mesh is finally
adjusted to provide a mesh such as edges have a length similar to distances be-
tween voxels in 3D images. This constraint has been chosen to be as close as
possible of the available spatial details. This first stage provides the 3D surface
mesh for one t time to be used in the matching process. The next temporal
3D image (at t + 1 time) is submitted to a contour detection operator labelling
voxels as ”borders” or not.

2.2 Surface-Volume Matching Process

A feature matching problem implies to choose the entities to match and to define
local energies which can be combined to provide a distance measure between
entities. The best correspondences of selected entities can be finally obtained
from the minimization of a global energy.

Definition of Entities and Attached Local Energies. One original contri-
bution of this method is to establish correspondences between spatial entities
which are not of the same type. The matching process is conducted between 3D
mesh nodes on one part and image voxels on the other part. A local energy is
defined to compare a 3D mesh node with a voxel candidate for correspondence.
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A first energy term E1(fi,d)(Ni, Vk) models the local correspondence between one
node Ni (i = 1, ..., NS) (with NS the number of nodes) at t time and one voxel
Vk (k = 1, ..., NV ) (with NV the number of voxels) at t + 1 time. It provides a
data conformity term and, in such a way, a distance between the observation d
(surface at t and 3D image at t + 1) and the estimated motion fi from t to t + 1
times. For each (Ni, Vk), this term is given by the following equation:

E1(fi,d)(Ni, Vk) = αc.Econtour(Vk) + αt.Etopol(Ni, Vk) + αd.Edist(Ni, Vk) (1)

where the energy Econtour takes into account the probability that the voxel
Vk belongs to a border; the term Etopol expresses a topological correspondence
between the node Ni and the voxel Vk: the topology is described, for the surface,
in terms of coordinates of the neighbouring nodes and compared, in the volume,
to the corresponding voxel contour values. The energy Edist takes into account
the distance measured between the node Ni and the voxel Vk. αc, αt, αd are
weighting coefficients of the energy term.

A second energy E2(fi) term which models spatio-temporal regularity con-
straints is introduced. It is defined from the Markov Random Field model de-
scribed in the next paragraph.

Estimation of 3D Velocity Fields Based on a Markov Random Field
Model. The issue is to extract the 3D motion field corresponding to the evo-
lution of the object from one instant of the sequence to the next instant. This
field is obtained by a matching process between a 3D surface mesh previously
extracted at t time and the volume image available at t+1 time. The 3D motion
field to compute between two successive instants is considered as a realization
f = {fi/i = 1, ..., NS} of a 3D Markov Random Field F = {Fi/i = 1, ..., NS},
NS being the number of considered sites in the field.

The sites of the MRF are given by all the 3D surface mesh nodes at t time.
This surface corresponds to a graph G = [S, U ], with S = {i, i = 1, ..., NS} (NS

being the number of 3D nodes in the mesh) and with U the edges of the graph
G. The labels assigned to these sites express the fi estimations and are given
by the voxels found (at t + 1 time) in best correspondence with the 3D nodes:
fi ∈ L, with L the lattice of 3D voxels (Nx × Ny × Nz) in the next image.

The field F is considered as a MRF in relation to the neighbourhood of each
site i:

μi = {j ∈ S/{i, j} ∈ U} . (2)

The neighbourhood system μ results from the set of sites and verifies:

∀i ∈ S, i /∈ μi (3)

∀{i, j} ∈ S, j ∈ μi ⇔ i ∈ μj (4)

According to these definitions, the neighbourhood associated to one node i is
given by all nodes j which have a common edge with node i.
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The MRF conditional probability is given by:

P (fi/fS−i) = P (fi/fμi
) . (5)

According to the Hammersley-Clifford theorem [22], the random field F defined
in S is a Gibbs Random Field in relation to a neighbourhood system μ if and
only if the probability distribution function is given by:

P (f) =
1
Z

exp[U(f)] (6)

with U(f) an energy function defining the interactions between the sites. Z is a
normalization constant. The most probable realization f is provided by the mini-
mization of this energy function U(f). The function U(f) can be more precisely
noted U(f, d), where f is related to the estimation and d to the observations at
t and t + 1 times. The total energy is defined by the linear combination of two
terms:

U(f, d) = α1Ud(f, d) + α2Ur(f) (7)

where Ud(f, d) models the estimation error. It is defined as a quadratic error
computed on the set of sites from the local energy terms which have been pre-
viously described.

Ud(f, d) =
∑
i∈S
k∈L

(E1(fi,d)(Ni, Vk))2 . (8)

Ur(f) represents the internal energy of the Markov Field and has a regularization
effect. It is defined as:

Ur(f) =
∑
i∈S

E2(fi) (9)

with E2(fi) = |fi − fμi
| and fμi

= 1
ni

∑
j∈μi

fj , ni being the number of neigh-
bours of site i.

Optimization Stage. To perform a global optimization of the correspondences,
the stochastic relaxation Metropolis algorithm is used, combined with a simu-
lated annealing process. A first level iterative process is defined: a random scan-
ning of nodes included in the 3D mesh at t time is realized and, for each node,
a new candidate voxel at t + 1 time, which corresponds to one node transition,
is randomly chosen. The acceptance criteria for the transition of these nodes is
based on the comparison between the energy terms U(f, d) computed for the
current configuration and for the proposed new configuration resulted from the
tested transition. The number of transitions accepted with an increasing energy
is controlled by a temperature parameter. The stopping criteria used for this
first iteration is related to the number of accepted transitions with an increasing
energy and to the number of scanned nodes.

This first loop is included in a second iterative procedure in which the tem-
perature parameter is linearly decreased at each step. The initial temperature is
set to a high value in order to allow an important number of accepted transitions
at the beginning of the process. The field of correspondences is then re-adjusted
until a stopping criteria is reached.
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3 Results

3.1 Tests on Simulated Data

Numerical simulations have been used to test the motion extraction process be-
tween two successive instants. These simulations are based on a model including
one surface representing the endocardium at t time and one data volume inclu-
ding another surface (the first mesh after deformation) at t + 1 time. Because
of the great complexity to create a whole data volume with various grey levels,
the simulated data volume, generated by the transposition of the deformed sur-
face into an empty data volume, corresponds to the volume resulting from the
application of the edge operator.

In order to create the surface corresponding to the first instant, a superellip-
soidal shape is locally deformed to obtain local topological features comparable
to those of the real endocardial surface (cf. Fig. 1). To simulate the motion be-
tween two successive instants, this shape is successively deformed using five kinds
of motion (translation, twisting, rotation, global expansion/compression, and lo-
cal deformations) resulting in the mesh corresponding to the second instant (cf
Fig. 2). Because of the complexity to model cardiac motion with precision and in
order to test the algorithm in the worst situation, the simulated motion has been
applied with a greater amplitude than the motion potentially observed between
two successive volumes of MSCT databases. Results obtained with this situa-
tion are here described. Figure 3 represents one axial slice of these two simulated
shapes.

The mesh corresponding to t + 1 time is then transposed into an empty data
volume (75 slices of 128 × 128 pixels) to obtain a volume corresponding to the
result of the edge operator application. In this volume, to simulate the presence
of other objects (such as the epicardium) and of noise, another surface (previous
mesh after an expansion process) is transposed in the volume and a binary noise
is finally added (cf Fig. 4 representing one axial slice of the simulated volume at
t + 1 time). Using this process, the real correspondences are known. It enables
to measure the error of matching of the proposed method and to study the
evolution of the matching process along iterations. The impact of the different

Fig. 1. Simulated surface corresponding to
t time

Fig. 2. Simulated surface corresponding to
t + 1 time
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Fig. 3. Axial slice repre-
senting two contours corre-
sponding to the simulated
endocardium at t time (in
grey colour) and t + 1 time
(in white colour)

Fig. 4. Axial slice of the
simulated data volume
corresponding to t + 1 time
(simulated endocardium
and epicardium with noise)
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Fig. 5. Evolution of the er-
ror of matching according
to the number of iterations
for different values of α2 in
the energy function

parameters involved in the computation of the energies or in the optimization
process can also be evaluated.

For instance, Fig. 5 shows the evolution of the matching error according to
the number of iterations (one iteration corresponding to the test of one node’s
transition) for different values of the weighting factor corresponding to the regu-
larization term in the energy computation (cf. Eq. 7), highlighting better results
for an optimal value of 0.5.

Tests conducted with different shapes and motions have enable to find, for
each parameter involved in the matching process, its value corresponding to the
minimal final error. With this set of parameters (α1 = 0.50, α2 = 0.30, αc = 0.10,
αd = 0.05, αt = 0.30), a final mean 3D error of matching of 1.0 voxel (minimum:
0 voxel, maximum: 3.7 voxels) has been obtained.

3.2 Results on Real Data

The algorithm has been applied on real human heart data with a temporal
database acquired by a Siemens SOMATOM Sensation 16 with ten volume ima-
ges representing a whole cardiac cycle. Each volume contains about 300 slices
of 512 × 512 pixels, giving a resolution for each voxel of 0.3 × 0.3 × 0.6mm (cf
Fig. 6(a) illustrating one CT axial slice).

The segmentation pre-process has been applied to the first volume of the
sequence resulting in the extraction of the heart left cavities and of the beginning
of the aorta [21]. In order to highlight main motion and to reduce computational
time, the surface-volume matching method has been applied at a lower resolution
obtained after three filtering and down-sampling processes. To obtain the surface
mesh corresponding to t0 time, the low resolution segmented volume has been
processed by the Marching Cubes algorithm (cf Fig. 6(c)). Using the optimal
set of parameters found with the numerical simulations, the motion extraction
process has been applied between this mesh (corresponding to t0 time) and the
volume corresponding to t1 time after an edge operator application. After the
test of different detection operators, the Canny operator has been chosen in
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(a) (b) (c)

Fig. 6. (a) One axial slice of one data volume of the sequence, (b) corresponding
axial slice (at lower resolution) after the Canny filtering process and (c) 3D surface
representation of the extracted shape

order to promote false positive more than false negative results (cf Fig. 6(b)).
The algorithm has then been iteratively applied to the successive volume images,
providing a set of estimated surfaces and motion fields for each instant of the
sequence.

To evaluate the precision of the method, the resulting estimated surfaces (one
for each instant from t1 to the end of the sequence) have been compared to sur-
faces corresponding to the same instant, but obtained with the segmentation tool
used in the pre-processing stage. The mean difference between the two surfaces
increases at each estimation process (from 0 mm to 0.5mm), resulting to 1.5mm
after six estimation processes. These first results show that the segmentation
part of the algorithm provides satisfying results.

As example of motion extraction results, the estimated motion amplitude is
visualized in Fig. 7(a) and 7(b) for the end of the ventricular diastole (systole of

(a) (b) (c)

Fig. 7. Estimated motion amplitude at three following instants (from the end of the
ventricular diastole (a,b) to the beginning of the ventricular systole (c)) (colours: in
white: expansion, black: contraction)
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the atrium) and in Fig. 7(c) for the beginning of the ventricular systole, these
three surfaces corresponding to successive instants in the sequence. The contrac-
tion movements (represented with black colour), characteristic of systole, are
as well identified as the expansion movements (represented with white colour).
Moreover, movements extracted on the whole sequence are coherent with cardiac
phases.

This kind of representations enables to highlight functional abnormalities.
For instance, Fig. 7 highlights the pathological situation where the apical area
suffers from akinesia.

4 Conclusions

A new solution of motion extraction combined with surface estimation has been
introduced and applied to the left ventricle in 4D cardiac MSCT imaging. This
approach is based on a statistical surface-volume feature matching method for-
mulated with a Markov Random Field and provides, with one unique process,
left cavity surfaces and associated 3D motion vector fields. The algorithm has
been tested with simulated and real MSCT dynamic data, highlighting encourag-
ing results and confirming the great potential of MSCT imaging for quantitative
clinical measure assessment in cardiac applications. Further works will carry on
algorithm optimization and on extensive evaluation.
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Abstract. In the context of motion estimation of the heart and thoracic
structures from tomographic imaging, we investigated two free form de-
formations (FFD) based non linear registration methods as motion esti-
mators. Standard and cylindrical FFD (CFFD) methods are evaluated in
2D, both on simulated and in vivo cardiac and thoracic images. Results
tend to show that CFFD based method achieves the same accuracy with
less parameters. However, the fast convergence of this model is hamped
by a higher computing time with a straightforward implantation.

1 Introduction

Due to the great progress of image acquisition devices, it is now possible to
better explore the dynamics of moving organs such as the heart and the lungs.
Magnetic resonance imaging (MRI) and X-ray computed tomography (CT) can
provide information about the anatomy of the heart over the cardiac cycle. The
general context of our study is the motion analysis of organs within the ribcage
(in particular lungs and heart) for spatio-temporal segmentation of anatomical
structures and motion compensation in image sequences. Clinical applications
could be the tracking of anatomical structures and tumor during radiotherapy
treatments, or the motion compensation of the heart during minimally invasive
heart surgeries from preoperating tomographic acquisitions [1]. In the former
case, organ’s motion is, in current practice, not directly taken into account in
the radiation of tumors, except through error margins defined in the radiotherapy
treatment planning. Integration of motion information would therefore result in
a much more accurate irradiation without the need for breath control of the
patient.

In this paper, we focus on the motion estimation of rounded like anatomical
structures, such as the whole thorax and the heart from dynamic tomographic
image acquisitions. In this context, some author [2, 3, 4] have proposed cylindrical
free form deformation (CFFD) as a potentially better suited transformation for
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the reconstruction of the heart motion from cardiac image sequences. In this
paper, a CFFD based registration method is compared to the more classical
free form deformation (FFD) based registration both on simulated and in-vivo
images of a beating heart and breathing thorax.

2 Material and Method

2.1 Image Registration as Motion Estimator

Image registration algorithms are used to estimate correspondences between two
image data sets. The image registration problem can be formally defined by the
search of a multidimensional function within a space of admissible function,
called warp space such that:

If (g(x)) ∼= Ir(x), (1)

where If is the floating image to be warped, thanks to the transformation g, for
any coordinates x(x, y) in 2D, and Ir is the reference image. Thus, the task is
to find g so that the warped floating image matches as well as possible the ref-
erence image. In the literature, there exists a lot of methods, based on different
characteristics, to seek after this transformation (See [5] and [6] for detailed re-
views). In medical imaging, non-rigid registration is usually required to put into
correspondence images from two patients or to estimate the motion between two
images of the same patient acquired at different time points.

The selected warp space, characterizes the registration algorithm. The para-
metric and global methods can handle coarse motions (limited warp space) with
a small number of parameters. On the other hand, non parametric approaches
like variational methods, pioneered by Horn and Shunck [7], can handle a wide
warp space. In the regularization framework, the registration problem can state
as the search for a transformation ĝ(x) which maximizes the similarity between
If and Ir with given smoothness properties . Therefore, thin-plates [8] and elastic
[9] transformations have been proposed as regularizing functionals. Christensen
et al, [10], enforce the consistency by taken into account forward and reverse
transformations. Piecewise polynomial functions, like splines [11], present the
advantage of a local control of the deformation while being piloted by a limited
number of parameters.

2.2 FFD-Based Registration

FFD algorithms [12, 13] aim to recover local smooth deformations. Basically, the
principle of a free-form deformation is to deform an object by manipulating an
underlying mesh of control points. The transformation is defined by a geometrical
regular control point grid [14](Fig. 1). According to [11, 15], in 2D, the FFD
function g can be expressed by the tensor product of B-Splines:

g(x, c) = g(x, y, c) =
∑

(kx,ky)∈K

ckx,ky
β(x/hx − kx)β(y/hy − ky), (2)
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Fig. 1. (left) Cartesian grid for FFD (right) cylindrical grid for CFFD

where K stands for the set of all the points inside the control grid. The more
points, the greater the dimension of the warp space. If there is M nodes and data
lies in a N dimensional space, dimension of the vector of parameters c is defined
by M · N . Within a 2D deformation grid, the nodes are indexed by kx and ky.
The displacement at node [kx, ky] is defined by the parameter ckx,ky and, hx and
hy are the grid spacings which define the distance between two cubic B-Spline
functions β.

2.3 CFFD-Based Registration

Without any prior knowledge about the structures and their motion, the stan-
dard FFD-based registration method is a reasonable method to establish the
transformation. In cardiac image analysis, the standard shape of the heart and its
motion are, approximately known at least qualitatively. Recently, CFFD trans-
formation models (Fig. 1), have been proposed to more closely fit some specific
motions (ie. motion of the left ventricle) with less parameters than with cartesian
grids [2, 3, 4]. They may be more appropriate when the motion to be estimated
has a central tendency. In short axis acquisition plane, the left ventricular (LV)
myocardium looks like a ring which thickens during the systole. Therefore, it is
reasonable to expect that CFFD would allow a better reconstruction of the LV’s
motion. CFFD have been introduced in the 90’s [16]. Chandrashekara et al [2]
and Deng et al [4] used this model for tracking the motion of the myocardium
in tagged magnetic resonance images and Lin adapted a cylindrical topological
regular grid on manually segmented left ventricular walls in order to perform
the segmentation through image sequences [3].
The CFFD function is summarized in polar coordinates as:

g(r, θ, c) =
∑

(kr,kθ)∈K

ckr,kθ
βo(r/hr − kr)βc(θ/hθ − kθ). (3)

βo stands for open cubic spline function, and βc stands for closed cubic spline
function to handle the periodicity in the circumferential direction. Because of
the local support of the B-Spline for a given point p(r, θ), equation (3) can be
written as:

g(p, c) = g(r, θ, c) =
2∑

k=−1

2∑
l=−1

ckri+k
,kθj+l

βo(r/hr−kri+k
)βc(θ/hθ−kθj+l

), (4)
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with kri
= �r/hr� ,kθj

= �θ/hθ� . (5)

�� is the floor operator and (kri
,kθj

) is the index of the first point of the lattice
in which p is situated.

2.4 Similarity Metrics

In [2], normalized mutual information is used because tag intensity changes with
time (tag fading). With classical MRI and CT modalities we assume that the in-
tensity of a tissue does not change much and we use the sum of square differences
(SSD) criterion. The objective function E to be minimized in the registration
process is :

E(c) =
∑

p∈ROI

(If (g(p, c)) − Ir(p, c))2. (6)

Most of the time, the intensity value If (g(p, c)) does not correspond to the
value available at an exact pixel location. Therefore an interpolation is required
to map the floating image. Linear interpolation was used. Minimization of the
objective function E, is achieved through a gradient descent search. Kybic [15]
developed the computation of the derivative of the objective function. If q is the
linear application that transforms a point x(x, y) into p(r, θ), we have:

∇cE(c) =
∂E

∂c
= 2

∑
x∈ROI

ex
∂ex

∂c
where ex = If (g(q(x), c)) − Ir(q(x)), (7)

and
∂ex

∂c
=

∂If

∂p

∣∣∣∣∣
p=g(q(x),c)

· ∂g
∂c

∣∣∣∣∣
p=q(x)

(8)

In Equation (8),∂If

∂p is the gradient of If at point p, characterized by its two
polar coordinates. Thanks to the basis change matrix Q :

∂If

∂p
= Q−1 ∂If

∂x
where Q−1 =

[
cosθ sinθ
−sinθ cosθ

]
, (9)

where ∂If

∂x is the gradient of If at point x, characterized by its two cartesian
coordinates. The iterative process to derive the optimal parameters is defined
by:

cn+1 = cn + λ∇cE(c), (10)

where λ is halved when two consecutive gradient directions are different. In
this framework, no regularization is applied, but piecewise B-Spline polynomial
functions implicitly favor smooth deformations.
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2.5 Test Data Sets

Simulated Thoracic Data. Image sequence (Sim1) of a breathing thorax, con-
sisting in a two time points sequence, was simulated from a real 2D X-ray dy-
namic CT scan (Fig. 2a). Dimensions of the images are 512×512 pixels and spa-
tial resolutions are 1mm × 1mm. As the true motion is known, rectangular and
cylindrical models can be compared through a reference. The theoretical motion
field is used to emphasize advantages and drawbacks of the respective methods.

In Vivo Thoracic Data. Fig. 2b shows images which have been acquired during
a radiotherapy treatment (Centre Léon Bérard, Lyon, France). A breath control
device (Active Breath Control) was used to monitor the patient breathing (See
[17] for more details). For two patients, three different volumes are available
which corresponds to three steps of breathing. Corresponding 2D slices were ex-
tracted from 3D volumes to provide 2D test sets (ABC1,2) whose dimensions are
512 × 512 voxels and spatial resolutions are 0.94mm × 0.94mm.

In Vivo Cardiac Data. Both models were tested on heart cine-MR images
(Fig. 2c). Short Axis (SA) scans were obtained from a 1.5T Siemens Magnetom
Vision at the Helsinki Helsinki Medical Imaging Center, Helsinki University,
Finland. The temporal resolution is 30-40 ms, leading to about 20 time points
over the cardiac cycle. Dimensions of the data are 224 × 256 pixels and spatial
resolutions are 1.44mm×1.44mm or 1.31mm×1.31mm. For evaluation purpose,
five 2D mid-ventricular sequences (S1,..,5) of 20 time points were selected from
5 patient’s acquisitions.

(a) (b) (c)

Fig. 2. Data set used to test the two models a) 2D Dynamic CT slice used to generate

the sequence of a breathing thorax, b) one of the three breathing time points from the

classical CT data set acquired during radiotherapy protocol (3 corresponding 2D slices

has been selected), c) 4 of the 20 time points available from S2 sequence

2.6 Evaluation of the Results

For tests performed on simulated data, the gold standard is available to esti-
mate the accuracy of the results. Dense motion field can be assessed in terms of
quadratic (QE) or angular error (AE):
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QE = ‖u − u′‖ and AE =
u · u′

‖u‖ · ‖u′‖ , (11)

where u is the estimated displacement and u′ is the theoretical displacement.
We also computed the image difference after registration.

When no ground truth is available, measurement of consistency evaluates
the estimated displacements. It can be assessed with the protocol described by
Wierzbicki in [18]. Basically, it consists in tacking into account the periodicity
of cardiac and breathing motions. Once all the transformations of an image
sequence have been estimated, we apply consecutively those transformations on
the initial image of the sequence. The difference between the initial image and
the loop-warped initial image is computed to assess the accuracy of the models.
The error metrics are computed over the same spatial support defined by a
manually segmented binary mask.

3 Results and Discussion

The CFFD method has been implemented in C++ language using the ITK
library1 on a Pentium 4 processor, 1.7 GHz. We arbitrarily chose to stop all
the registration tests at a maximum of 150 iterations in order to compare the
computing times. For both models and for each data set, the evolution of the SSD
criterion was less than 0.0001 times its initial value within the 150th iteration.
For thoracic data sets, the cylindrical grid central point was put on the spine.

3.1 Grid Resolution Impact with Simulated Data

To evaluate the behavior of the proposed method, we estimated the minimum,
the maximum, the mean and the standard deviation of the criterions given in Eq.
(11) and of the image difference after registration. The results given in Table 1
and Fig. 3 lead to the following remarks:

– The tuning of the grid size is different for standard FFD and CFFD. The
grid points are related to the cartesian coordinate system with standard
FFD and to the polar coordinate system with CFFD. The QE criterion
clearly decreases when the radial number of points increases. Similarly, AE
significantly decreases as a function of the number of points in the circum-
ferential domain. In those tests, the center point was manually defined. The
random initialization of this center in a limited window did not change sig-
nificantly the results. With a sensible initialization, SSD criterion is usually
better with CFFD methods than with FFD methods. However, respiration
has been simulated by warping initial data with a cylindrical grid; therefore
the requested motion might be naturally better estimated with the CFFD
than with the classical FFD. This can partially biases the results.

– The same final values can be reached with half the parameters using CFFD.

1 http://www.itk.org/
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Table 1. Angular, quadratic error between estimated and theoretical motion fields

and image intensity difference between the reference image and motion compensated

floating image. For CFFD, the first term in the field ”N. of Par.” stands for the number

of points in the radial direction, the second one, stands for the number of points in the

circumferential direction

AE (degree) QE (mm) Diff. (intensity value)

N. of Par. Min-Max Mean±Std.Dev. Min-Max Mean±Std.Dev. Min-Max Mean±Std.Dev.

CFFD
2 × 4 0-179 8.50 ± 30.74 0-24.49 4.47± 4.13 0-2861 122.76 ± 225.36
3 × 4 0-179 10.04 ± 31.88 0-14.18 3.52 ± 2.63 0-2597 103.63 ± 194.60
4 × 4 0-179 10.73 ± 31.82 0-9.55 2.99 ± 2.25 0-2526 89.87 ± 173.42
4 × 8 0-179 7.27 ± 22.07 0-10.78 2.94 ± 2.74 0-2529 81.02 ± 161.23
5 × 8 0-179 5.41 ± 20.23 0-4.71 0.61 ± 0.67 0-1100 24.97 ± 41.16
7 × 8 0-179 5.62 ± 20.85 0-2.64 0.32 ± 0.32 0-800 14.52 ± 21.1254

FFD
4 × 4 0-179 21.57 ± 27.48 0-24.82 7.96 ± 4.97 0-2731 143.21 ± 250.69
6 × 6 0-179 18.58 ± 32.37 0-13.53 3.06±2.43 0-1923 85.83 ± 153.54
7 × 7 0-179 15.06 ± 28.85 0-10.74 1.74 ± 1.40 0-1749 62.39 ± 111.55
8 × 8 0-179 12.47 ± 34.47 0-9.53 1.07 ± 1.14 0-1146 43.57 ± 72.03

10 × 10 0-179 12.24 ± 30.76 0-9.35 0.8 ± 1.19 0-285 19.55 ± 28.67

Fig. 3. Evolution of the SSD dissimilarity criterion for rectangular and cylindrical grids

in Sim1 data set

– The dynamics of the curves, in Fig. 3, are indeed different between the two
models. CFFD converges faster (especially in the first iterations). Reasonable
transformations are provided in a small number of iterations (this tendency
will be confirmed by tests on true data). However, the CFFD model suffers
from a higher computing time as compared to the standard FFD. The basis
change (Eq. 9) introduces a matrix product for each point in the ROI. In that
case, the computing time took more than 1.5 times the FFD computing time
(this ratio increases with the ROI dimensions). For a good approximation
of the final value ( � 5%), the effective time was more important for CFFD
(≈ 1min for 150 iterations). However it seems possible to take advantage
of the fast evolution of the cylindrical grid during the first iterations in a
specially adapted CFFD mutiresolution process.
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Fig. 4. Difference images provided by registration loop on ABC2 (Up row). Cylindrical

grid (left) with 96 parameters (6 × 8 × 2) vs. Rectangular grid with 98 parameters

(7 × 7 × 2)(right). Bottom row, from left to right, initial MR image on S1, difference

image with CFFD based registration and with FFD based registration. Cylindrical

grid (middle) with 64 parameters (4 × 8 × 2) vs. Rectangular grid with 72 parameters

(6 × 6 × 2)(right)

3.2 Consistency Study with in Vivo Data

Once all the transformations have been found between heart and thorax frames,
we consecutively applied the motion fields on the initial reference images. In
Fig. 4, the difference between an initial reference CT and MR image and the
resulting loop-warped initial image on ABC2 and S1 are shown. The difference
between these two images show that, for a small number of parameters, the mean
error is significantly reduced for CFFD, especially for area far from the center.

Fig. 5. Evolution of the mean of the image difference for the slice S3 after registration.

Similar behavior can be observed for the other slices



Evaluation of Two Free Form Deformation Based Motion Estimators 475

Moreover, with FFD model, between two time points on S1,..,5, the computing
time was only 2 min (150 iterations), whereas CFFD took 3.5 min. As shown
in Fig. 5, this difference between the two models is important at coarse grid
resolutions in favor of CFFD. However, when the grid resolution increases this
difference tends to collapse. Then, the usefulness of the CFFD is not as clear as
with reduce number of parameters.

4 Conclusion

The objective of this paper was to investigate the efficiency of the CFFD-based
non linear registration as motion estimator compared with standard FFD based
method in cardiac and thoracic imaging. This evaluation has been carried out
in 2D and on both simulated and in vivo image sequences. The obtained re-
sults on simulated data set show a good accuracy of the CFFD with a small
number of grid points. With a reasonable initialization, CFFD converges in less
iterations. Nevertheless, for comparable accuracies, the computing time remains
higher with the CFFD method than with the FFD method. So, the advantage for
using this new model is not clearly demonstrated on in vivo thorax CT images
and heart cine-MR images, especially when considering a high number of grid
points. However, specific time-optimized implementations and multiresolution
grids might reduce the computing time and the sensitivity of the initialization.
This study has also to be re-edited in 3D as the motion of the heart and the
thorax structures are truly three-dimensional.
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3 Service d’échocardiographie, HEGP, Paris, France

Abstract. The interpretation of cine-loops and parametric images to
assess regional wall motion in echocardiography requires to acquire an
expertise, which is based on training. To overcome the training phase
for the interpretation of new parametric images, a quantification based
on profiles in the parametric images was attempted. The classification
of motion was performed on a training set including 362 segments and
tested on a second database including 238 segments. The consensual
visual interpretation of two-dimensional sequences by two experienced
readers were used as the ”gold standard”. Mono- and multi-parametric
classification approaches were undertaken. Results show an accuracy of
74% for training and 68% for test in case of mono-parametric approach.
They are 80% and 67% in case of multi-parametric approach. Moreover,
the evaluation protocol enables to understand the limitations of this
approach. The in-depth study shows that a large part of false-positive
segments are apical segments. This suggests that taking into account the
segment location could improve the performances.

1 Introduction

Echocardiography is the modality of choice for the detection and the follow-up
of wall motion abnormalities. The global wall motion index which is assessed as
the sum of regional wall motion scores (RWMS) has a high predictive value. At
the present time, the analysis of the contraction is mainly visual and requires
a long training to acquire the necessary expertise. Among the new techniques
which provide an additional information to clinicians to evaluate the RWMS,
the most cited are: ”Color Kinesis”, which displays the timing and magnitude
of endocardial wall motion [1], the ”Tissue Doppler Imaging”, which shows the
instant velocity of the myocardium [2], and the ”Strain-rate Imaging”, which
displays the radial and longitudinal deformation of the myocardium [3]. These
images can be evaluated visually but this evaluation remains subjective. Several
indices are currently studied to quantify these images [4][5][6].

A.F. Frangi et al. (Eds.): FIMH 2005, LNCS 3504, pp. 477–486, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The methods of parametric imaging provide images that represent param-
eters estimated on the temporal variation of intensity curve of each pixel [7]
[8] [9]. These methods do not require specific acquisition or software. In [8], a
qualitative validation of parametric images obtained by the Factor Analysis of
the Left Ventricle in Echocardiography (FALVE) has already been proposed. In
this paper, quantification indices of parametric FALVE images are proposed. A
classification methodology based on ROC curves is applied in order to evalu-
ate the power detection of these indices for regional wall motion abnormalities
of the left ventricle. Cut-off values are optimized on the training data set and
diagnostic performances are studied on a test database.

2 Patients and Methods

2.1 Patients’ Databases

Eighty-six apical two dimensional harmonic gray scale sequences were acquired
using an HDI system (Philips Medical Systems, Best, The Netherlands) and digi-
tally recorded with the use of HDI Lab software. Four-chamber and two-chamber
views were acquired during routine examinations in order to be representative of
in-hospital patients in terms of pathology and echogenicity. Fourty-nine patients
were enrolled in the study. No patient was excluded. The etiology of the left
ventricule dysfunction was coronary artery disease in 28, cardiomyopathy in 7,
valvular disease in 5, and other in 9.

Series of three or four cycles were acquired and separated cycles were iden-
tified by selecting the onset of QRS complex of ECG, and the associated end-
diastolic images. The cycle giving the best superimposed initial and final images
was selected automatically, in order to minimize the global motion.

The consensual visual interpretation of two-dimensional sequences by two
experienced readers were used as the ”gold standard” for comparisons. Each view
was segmented as recommended by the American Society of Echocardiography
[10]. For each patient, endocardial motion in each segment was examined visually
and judged as normal or pathological (hypokinetic, akinetic or dyskinetic).

The patient’s database was divided into two groups : a training database
and a test database. The training database was constituted by 52 sequences in
order to have an equivalent number of normal (n=185) and pathological (n̄=177)
segments. The test database, constituted by 34 sequences, had normal (n = 160)
and pathological (n̄=78) segments. Only 2 segments were unclassified, due to
their extremely bad quality.

2.2 Methods

Parametric Imaging. FALVE is a method used to extract the myocardium
contraction information of an image sequence which corresponds to a cardiac
cycle [8]. It expresses the time signal amplitude p(x, y, t) of each pixel (x, y) at
time t as:

p(x, y, t) = f1(t)I1(x, y)+f2(t)I2(x, y)+e(x, y, t) x = 1, ...,M y = 1, ..., N (1)
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The time functions f1(t) and f2(t) are called the factors, and the weighting
coefficients I1(x, y) and I2(x, y) the factor images; M and N are the row and
column numbers and e(x, y, t) is the residual error.

The first factor f1(t) estimates the continuous component of the curves. The
pixels (x, y) which show only small variations of the signal during the cardiac
cycle (those which stay inside the myocardium or the left cavity during the whole
cycle) present an intensity I1(x, y) larger than I2(x, y). The second factor f2(t)
estimates the contraction-relaxation component: it increases during systole, then
decreases during diastole. The pixels which have a significant variation in inten-
sity, for example the points located in the cavity and close to the endocardium
in the initial image of the cycle, present a larger intensity I2(x, y). While I1(x, y)
is always positive, I2(x, y) is either positive or negative.

The three-color superposition of these images (green color for I1, red color for
the positive values and blue color for the negative values of I2), called parametric
FALVE image (see Fig. 1(b)), was interpreted by the clinicians in order to detect
the contraction abnormalities [8].

Left Ventricle Segmentation. Parametric FALVE images were partitioned
according to the guidelines of the American Heart Association [10]. A fast
method of myocardial segmentation was implemented. Three anatomic land-
marks P1, P2 and P3 (apical, left and right mitral valves points) and a distance
d were manually located on an image of the sequence (see Fig. 1(a)). In the apical
two- and four-chamber views, the image was divided into two regions separated
by a line (defined as the long axis) connecting the apical point P1 to the the
mid-point P4 between the mitral valves points. The long axis was divided into
three thirds using two orthogonal lines, dividing the image into apical, medium
and basal sections. Intersection points were noted P5 and P6. Apical section was
divided into three equiangled regions by two radial lines. Outside points were
defined on the orthogonal and radial lines at the distance d.

These points delimit a global mask (ROIg) located on the left ventricle ex-
cluding the mitral valves. This mask was divided into seven regions of interest
corresponding to the seven segments of the left ventricle (see Fig. 1(b)). Global
mask was applied on images sequence to reduce the influence of the mitral valves
motion in the estimation of the factors (see Fig. 1(a)).

Long Axis Distance Map. An image where intensity represented the Eu-
clidian distance between the pixel location and the long axis [P5P6] of the left
ventricle was computed (see Fig. 2). Using this coordinate system, inspired by
[11], it was assumed that the decomposition of the local motion depended on
the pixel location : a pixel belonging to the medium wall contracts towards the
long axis, a pixel close to the apex contracts towards the point P5, a pixel close
to the base contracts towards the point P6.

Let P5=(xP5, yP5) and P6=(xP6, yP6) be the extreme points on the long axis
and n = (xn, yn) the perpendicular vector to the [P5P6] segment. The long axis
distance map was expressed as follows :
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Fig. 1. Points of interest and global mask superimposed on one image of the sequence

(a); manual landmarks (P1, P2, P3 and d) and seven segments on the corresponding

parametric FALVE image (b)
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)
x.xn + y.yn else

(2)

Finally, the distance values were rounded to integer values.

0 50 100 150 200

P5 

P6

Distance (pixels) 

Fig. 2. Long axis distance map

Extraction of Segmental Profiles in Parametric Images. In [8], it has
been shown that for a given segment, the color and the width of the band
oriented towards the interior of the cavity in the parametric FALVE images
were related to the RWMS. The values of the pixels in each parametric FALVE
image corresponding to a segmental ROI were transformed into two mean profiles
averaging the intensity of pixels located at the same distance. Thus, mean profiles
p1

i (r) and p2
i (r) corresponding to segment i on factor images I1(x, y) and I2(x, y)

were computed by formula:
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Fig. 3. Parametric FALVE image and contraction-relaxation (red-blue curves) and

background (green curves) profiles corresponding to the seven segments

p1
i (r) =

1
Nr

∑
(x,y)/R(x,y)=r

(x,y)∈ROIi

I1(x, y), p2
i (r) =

1
Nr

∑
(x,y)/R(x,y)=r

(x,y)∈ROIi

I2(x, y), (3)

where r = 1, ..., Rmax, Nr being the number of pixels such as R(x, y) = r and
Rmax the maximal distance in ROIi. The mean profiles p1

i (r) and p2
i (r) were

called respectively background and contraction-relaxation profiles. The figure 3
shows the background and the contraction-relaxation profiles associated with a
parametric FALVE image.

Two types of parameters per segment were proposed for the classification
task:

– A normalized signed area (An) was estimated from the profile p2
i (r) to quan-

tify color and width of the band oriented towards the interior of the cavity
from the image corresponding to the contraction-relaxation factor. Distance
rmax was defined as the distance corresponding to the maximum value in
p1

i (r) profile. Positive and negative areas of contraction-relaxation profile
from 0 until rmax distance were then computed. The maximum of these ar-
eas was normalized by the difference of the maximum value and the cavity
value of the background profile to take into account the echogenicity of the
segment: (p1

i (rmax) − p1
i (r0)) (see Fig. 4(b)).

– A composite profile was estimated from the profiles p1
i (r) and p2

i (r). As the
length of profiles Rmax depended on the distance d that was different for
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Fig. 4. Mean profiles (a), area and normalization coefficient of contraction-relaxation

profile (b) and length-normalized profiles (c) of the segment 7 from the figure 2

each view, two length normalized profiles were computed by changing the
sampling rate of the profiles. This was performed in the spectral domain
by applying a cascade of three operators: up-sampling (zero padding) by
integer factor q1, filtering by an anti-aliasing (low-pass) FIR filter, and down-
sampling by integer factor q2. A study was performed to determinate the
minimal sampling rate : spatial resolution of the factor images I1(x, y) and
I2(x, y) was reduced similarly in order to keep visible the useful information
for the diagnosis of contraction. Five points were retained for the profile
p1

i (r) and fifteen points for the profile p2
i (r) (see Fig. 4(c)). A composite

profile was constructed by juxtaposing the 5 values and the 15 values.

Classification. Two types of classification of segments were then proposed:

– A mono-parametric approach based on An index: it was computed for the
normal and pathological segments of the training database. The ROC (Re-
ceiver Operating Characteristic) curve corresponding to this index was traced
(Cut-off, Sensitivity,1-Specificity) [12]. Optimal cut-off was defined as the
value of An that minimized the difference between the sensitivity and the
specificity. Optimal cut-off was finally applied to the classification of the
segments of the test database.

– A multi-parametric approach based on logistic regression applied to compos-
ite profiles. Logistic regression parameters were estimated from the training
database. For each segment, the probability of belonging to the normal (PN )
and pathological class (1-PN ) was computed. The parameters of the logis-
tic regression model were finally applied to the composite profiles of the
segments of the test database in order to infer the classification of these
segments.

Comparisons of mono-parametric and multi-parametric approaches were per-
formed for the training and the test databases. A non-parametric comparison
of the ROC curves was carried out. The sensitivity and the specificity in test of
both approaches were compared by McNemar’s statistics.
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3 Results

The empirical ROC curves corresponding to An and PN indices are shown in
Fig. 5(c). The empirical areas under ROC curve (AUC) were respectively 0.82
and 0.89. The difference of AUCs was statistically significantly different from 0
(p=0.001).
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Fig. 5. Distributions of the (a)normalized area and (b) probability of belonging to the

normal class for both normal and pathological segments. Corresponding ROC curves (c)

For the optimal cut-offs (An=8.6 and PN=0.5), the sensitivity and the speci-
ficity of An and PN indices were respectively 74%, 74% and 80%, 80% on the
training database (see Table 1 and Table 2).

Table 1. Training results for An

Number of segments Gold Standard

Classification Normal Pathological

Normal 137 46
Pathological 48 131

Table 2. Training results for PN

Number of segments Gold Standard

Classification Normal Pathological

Normal 149 35
Pathological 36 142

For the test database, the sensitivity and the specificity were respectively
67%, 69% for the An index and 62%, 70% for the PN index (see Table 3 and
Table 4).

Table 3. Diagnostic test results for An

Number of segments Gold Standard

Classification Normal Pathological

Normal 111 26
Pathological 49 52

Table 4. Diagnostic test results for PN

Number of segments Gold Standard

Classification Normal Pathological

Normal 112 30
Pathological 48 48
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4 Discussion

Echocardiography is the most widely used imaging modality to assess regional
wall motion. The evaluation of RWMS is commonly performed by visual inspec-
tion, which is subjective and experience dependent. The use of a consensus of
two expert readers seems to be the best ”gold standard”. This gold standard is
conventionally used by clinical evaluation studies [4].

A new quantification method of wall regional left ventricular motion based
on profiles derived from parametric FALVE images was presented. To achieve a
correct classification, a crucial step is the reduction of the information. This was
performed successively as follows : first, using Principal Component Analysis
based techniques : FALVE reduces the sequence of images corresponding to one
cardiac cycle to 2 factors images; then, by the extraction of 14 mean regional
profiles, 2 per segment. Finally, two types of parameters were estimated per
segment: one normalized area index, that represented magnitude of the regional
wall motion, and two length normalized profiles (20 parameters per segment).
The length reduction of the profiles was necessary for the logistic regression
because of the reduced number of segments in the training database. Such a
reduction avoids learning by heart.

To reduce the inter-patient variability of the area parameter, a normaliza-
tion was required. Different normalization coefficients were tested : normaliza-
tion by the length of the profiles, normalization by the maximum value of the
contraction-relaxation profile, and normalization by the difference between the
maximum value and the cavity value of the background profile. The latter was
retained because it gave the best results.

Some regional indices to quantify regional wall motion in echocardiography
have been proposed and tested in the literature [4]. Validation of the ”color kine-
sis” index was performed by cut-off determination on a training database. In the
cited study, the training database was exclusively composed of normal subjects
and the cut-off was defined as one standard deviation around the mean of the
normal control group. This provides a specificity greater than the sensibility. In
our study, healthy subjects and patients composed training database, presenting
a similar number of normal and pathologic segments, and the optimal cut-off
was estimated to minimize the sensitivity and specificity difference.

Using the training database, diagnostic performances are significantly better
with the index PN than with the index An. But diagnostic performances of PN

and An are no more significantly different for the test database. The large dif-
ference between training and test performances that is observed for PN suggests
a case of ”overtraining” : this could be solved either by reducing the number of
parameters or by increasing the number of segments in the training database.

Moreover a large part of the misclassified segments concern the apical seg-
ments. These results can be explained by the regional heterogeneity of wall mo-
tion amplitude, which has not yet been introduced in the learning phase. Indeed,
some major variations of mean indices values could be observed according to the
localization of the segment (see Table 5 and Table 6), showing that the motion
magnitude is considerably reduced at the apex.
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Table 5. Localization effect on An

Mean Values of An

Region Normal Pathological

Basal 15.94 4.98
Medium 16.51 7.40
Apical 14.78 3.39
Apex 8.74 -1.38

Table 6. Localization effect on PN

Mean Values of PN

Region Normal Pathological

Basal 0.73 0.35
Medium 0.75 0.31
Apical 0.78 0.26
Apex 0.56 0.16

The modelling of the localization as a covariate factor could improve the
performances of the diagnostic test largely [12], but this would require a larger
valued database. This is currently under construction, using the same criteria
for patients’ selection as those presented here. Indeed, the construction of an
appropriate database and the collection of medical expertise is a key point of
any evaluation approach. Using acquisitions from in-hospital patients enables us
to have a good estimate of difficult cases and to be strict with tested indices.

The classification of contraction into four classes is also under study in order
to have an approach similar to the clinicians’ evaluation. This requires to gener-
alize the ROC approach to 4 classes (normal, hypokinetic, akinetic, dyskinetic)
in order to optimize the estimation of thresholds.

5 Conclusion

A methodological approach was developed to test the discrimination power of
any quantitative method, aiming at detecting regional wall motion abnormal-
ities. Some encouraging results have been observed for indices derived from a
regional analysis based on parametric FALVE images. However the location of
the segments being classified should be introduced as an complementary infor-
mation to improve the performances of the classification. Moreover, several other
methods of parametric imaging, such as [7][13] are already planed to be evalu-
ated in the future, using this protocol and an augmented database. Some others
methods [1][2][3] could be tested using the same protocol, but would require a
modification of the acquisition.
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Delouche, Annie 477
Deng, J. 123
Diebold, Benôıt 477
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