

ADVANCES IN DESIGN AND SPECIFICATION
LANGUAGES FOR SoCs

Advances in Design and

for SoCs

Pierre Boulet, Universit des Sciences et Technologies de Lille,
Villeneuve d Ascq, France

Selected Contributions from FDL 04

Specification Languages

,

,

Edited by

é

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-10 0-387-26151-6 (e-book)

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

ISBN-10 0-387-26149-4 (HB)

Published by Springer,

www.springeronline.com

© 2005 Springer

ISBN-13 978-0-387-26149-2 (HB)

ISBN-13 978-0-387-26151-5 (e-book)

Contents

Preface ix

Part I Analog and Mixed-Signal Systems

Introduction 3
Alain Vachoux

1
Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 5
Christoph Grimm, Rüdiger Schroll, Klaus Waldschmidt

2
Mixed Nets, Conversion Models, and VHDL-AMS 21
John Shields and Ernst Christen

3
Monte Carlo Simulation Using VHDL-AMS 41
Ekkehart-Peter Wagner and Joachim Haase

4
Prediction of Conducted-Mode Emission of Complex IC’s 55
Anne-Marie Trullemans-Anckaert, Richard Perdriau, Mohamed Ramdani and
Jean Luc Levant

5
Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 69
Elena Martín, Laura Barrachina,Carles Ferrer

Part II UML-Based System Specification and Design

Introduction 87
Piet van der Putten

6
Metamodels and MDA Transformations for Embedded Systems 89
Lossan Bondé, Cédric Dumoulin and Jean-Luc Dekeyser

vi ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

7
Model Based Testing and Refinement in MDA Based Development 107
Ian Oliver

8
Predictability in Real-time System Development 123
Jinfeng Huang, Jeroen Voeten, Oana Florescu, Piet van der Putten and Henk
Corporaal

9
Timing Performances and MDA Approaches 141
Mathieu Maranzana, Jean-Francois Ponsignon, Jean-Louis Sourrouille, and
FranckBernier

10
UML-Executable Functional Models in ViPERS 161
P.F. Lister, V. Trignano, M.C. Bassett and P.L. Watten

Part III C/C++-Based System Design

Introduction 181
Eugenio Villar

11
Designing for dynamic partially reconfigurable FPGAs with SystemC

and OSSS
183

Andreas Schallenberg, Frank Oppenheimer and Wolfgang Nebel

12
Heterogeneous System-Level Specification in SystemC 199
Fernando Herrera, Pablo Sánchez, Eugenio Villar

13
217

Miguel A. Sánchez Marcos, Ángel Fernández Herrero, Marisa López-Vallejo

14
SystemC Models for Realistic Simulations Involving Real-Time Operat-

ing System Services
237

Prih Hastono, Stephan Klaus, and Sorin A. Huss

15
SystemC and OCAPI-xl Based System-Level Design for RSoCs 255

Potamianos, Yang Qu, Luc Rynders, Geert Vanmeerbeeck, Nikos
Voros Yan Zhang

xHDL: Extending VHDL to Improve Core Parameterization and Reuse

Kari Tiensyrjä, Miroslav Cupak, Kostas Masselos, Marko Pettissalo,

and
Konstantinos

Contents vii

Part IV Invited Contributions

Introduction 273
Wolfgang Müller, Christoph Grimm

16
Symbolic Model Checking and Simulation with Temporal Assertions 275
Roland J. Weiss, Jürgen Ruf, Thomas Kropf and Wolfgang Rosenstiel

17
Automotive System Design and AUTOSAR 293
Georg Pelz, Peter Oehler, Eliane Fourgeau, Christoph Grimm

Preface

This book is the sixth in the ChDL (Chip Design Languages) series. Year
2004 has seen many efforts in the field of electronic and mixed technology
circuit design languages. The industry has recognized the need for system
level design as a way to enable the design of the next generation of embed-
ded systems. This is demonstrated by the “ESL Now!” campaign that many
companies are promoting. This year has also seen many interesting stan-
dardization efforts for system level design, such as SystemC TLM (http:
//www.systemc.org/) for transactional level modeling with SystemC, AU-
TOSAR (http://www.autosar.org/) for automotive embedded system ap-
plications, or SPIRIT (http://www.spiritconsortium.org/) for IP inter-
change. In the field of modeling languages, the Model Driven Architecture of
the OMG (http://www.omg.org/mda/) has given rise to model driven engi-
neering, which is a more general way of software engineering based on model
transformations. As embedded systems are more and more programmable and
as the design abstraction level rises, model driven methodologies are also con-
sidered for electronic system level design. In this context, the OMG has re-
cently published a call for propositions for a UML 2.0 profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE).

The constraints on the design process of these next generation embedded
systems are considerable: Real-time, power consumption, complexity, mixed
technology integration, correctness, time to market, cost, . . . , all contribute to
the now famous “design gap”. The existing tools are pushed to their limits
when designing complex systems-on-chip (SoCs) and reuse has become one
of the major ways to fill the gap.

In this very exciting moment in the field of electronic system design lan-
guages, the Forum on Specification and Design Languages (FDL’04) has been
once again the main European event for this community. This book is a col-
lection of the best papers from FDL’04 selected by the program chairs, Alain
Vachoux, Piet van der Putten, Eugenio Villar and Wolfgang Müller.

x ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

This book is structured in four parts:

Part I, Analog and Mixed-Signal Systems, presents five chapters cover-
ing issues in mixed-signal modeling.

Part II, UML-Based System Specification and Design, is composed of
five chapters with emphasis on model transformation approaches to sys-
tem modeling.

Part III, C/C++-Based System Design, is also structured as five chapters
with SystemC as its main topic.

Part IV, Invited Contributions, concludes the book with two invited chap-
ters presenting the important topic of system verification, and the AU-
TOSAR initiative.

Together, the 17 chapters of this book present recent research advances in
design and specification languages for SoCs. I hope that this book will be a
thought provoking read to researchers, students and practitioners in the field of
languages for electronic system design.

Pierre Boulet

General Chair of FDL’04
Université des Sciences et Technologies de Lille
Lille, France, April 2005

Previous books

Christoph Grimm (Editor), “Languages for System Specification”, Kluwer,
2004.

Eugenio Villar & Jean Mermet (Editors), “System Specification & Design Lan-
guages”, Kluwer, 2003.

Anne Mignotte, Eugenio Villar & Lynn Horobin (Editors), “System on Chip
Design Languages”, Kluwer, 2002.

Jean Mermet (Editor), “Electronic Chips & Systems Design Languages”, Klu-
wer, 2001.

Jean Mermet, Peter Ashenden and Ralf Seepold (Editors), “System-on-Chip
Methodologies ans Design Languages”, Kluwer, 2001.

ANALOG AND MIXED-SIGNAL SYSTEMS

I

Introduction

Alain Vachoux
Microelectronic Systems Laboratory
Swiss Federal Institute of Technology Lausanne, Switzerland

alain.vachoux@epfl.ch

This part includes a selection of five papers that have been presented in the
AMS workshop of the FDL’04 conference. The papers have been revised to
achieve book level quality and provide a good coverage of up-to-date mixed-
signal modeling issues.

The first paper, “Refinement of Mixed-Signal Systems: Between HEAVEN
and HELL”, from Christoph Grimm et al., presents a mixed-signal design
framework supporting the modeling of signal processing systems through a
consistent refinement process from abstract descriptions (executable specifica-
tions) to pin-accurate models. The framework is based on a prototype exten-
sion of SystemC that supports the modeling and the simulation of mixed-signal
systems. It uses the object-oriented capabilities of the language to provide
so-called polymorphic signals, i.e. signals that may have different semantic
interpretations depending on the level of abstraction or the model of computa-
tion considered (e.g., single-rate or multi-rate dataflow, continuous-time signal
flow, discrete-event). The major benefits of the approach are twofold: artificial
converters are no more required to couple modules in the modeled system and
the complexity of coupling different models of computations or simulation ker-
nels can be hidden from the modeler. The paper illustrates the approach with a
case study from the automotive domain.

The second paper, “Mixed Nets, Conversion Models, and VHDL-AMS”,
from John Shields and Ernst Christen, addresses a similar issue but deliber-
ately limited to the use of the VHDL-AMS language when it comes to develop
mixed-signal structural models. The current definition of the VHDL-AMS lan-
guage does not provide specific language elements and semantics to efficiently
describe hierarchical structures involving components from different signal do-
mains (i.e. continuous-time and event-driven), although it does provide all the
elements to describe converter components and conversion behavior. The pa-
per discusses possible modeling strategies and details one proposal that could
be eventually formally integrated in the VHDL-AMS language definition. In-
terestingly enough, the proposal defines a new object, called a wire, that has
some similarities with the polymorphic signals discussed in the first paper,
essentially since there is a separation between module’s behavior and commu-
nication.

The third paper, “Monte Carlo Simulation Using VHDL-AMS”, from Ek-
kehart-Peter Wagner and Joachim Haase, proposes the development of VHDL-
AMS packages to support statistical simulation of VHDL-AMS models. Re-

© 2005 Springer. Printed in the Netherlands.

3

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 3–4.

4 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

quirements to support statistical modeling and simulation have been defined
during the VHDL-AMS language definition phase but they appeared to not
require the support of specific language elements. This paper presents a first
implementation of some of these requirements and discusses issues related to
the support of different statistical continuous-time and discrete distributions
as well as correlations between statistical values. Some remaining open is-
sues have to be addressed at the simulation tool level (e.g. multi simulation
runs, post-processing capabilities), but a solid foundation can be built by pro-
viding specific VHDL-AMS declarations and subprograms. Such a proposal
could even be developed further to culminate as a new VHDL-AMS compan-
ion standard.

The fourth paper, “Prediction of Conducted-Mode Emission of Complex
IC’s”, from Anne-Marie Trullemans-Anckaert et al., presents a top-down de-
sign methodology that allows for taking into account physical effects due to
the distribution of power in integrated circuits in order to meet electromagnetic
compatibility (EMC) compliance as early as possible in the design phase. The
approach uses behavioral VHDL-AMS models to allow full-chip simulations
(including IOs) in a reasonable amount of time by abstracting the real behavior,
but still allowing the modeling of physical effects such as current distribution
and current spike density. The paper validates the methodology through its ap-
plication to the design of an 8-bit microcontroller. One interesting outcome of
the approach is the definition of modeling guidelines for developing IP blocks
that may be included in a library and reused in many designs without the need
to use detailed transistor-level netlists and to perform long electrical simula-
tions.

The fifth and last paper in this part, “Practical Case Example of Inertial
MEMS Modeling with VHDL-AMS”, from Elena Martin et al., shows how to
use a model-based top-down design methodology to design complex integrated
systems including non-electrical parts such as sensors or actuators. Similarly
to the previous paper, this paper discusses the modeling of physical effects,
here mechanical and thermal effects, in abstract behavioral models of a mi-
crosystem and its associated electrical front-end and interface with a central
processing unit. The use of a mixed-signal multi-domain hardware description
language such as VHDL-AMS allows for obtaining a consistent model of the
complete system, evaluating the influence of physical effects and adding proper
compensation. The paper raises the need to develop model libraries which in-
clude multi-domain parameterized component models at various abstraction
levels which can be characterizable from physical realizations.

It is my hope that this short introduction will incite you to go through the
details of these five very interesting papers and to keep an attentive eye, or even
contribute, to future editions of the AMS workshop in the FDL conference.

Chapter 1

REFINEMENT OF MIXED-SIGNAL SYSTEMS:

BETWEEN HEAVEN AND HELL1

Christoph Grimm, Rüdiger Schroll, Klaus Waldschmidt
University of Frankfurt, Professur Technische Informatik

Abstract Very complex system are designed by stepwise refinement. This means that an
abstract model is successively augmented with components and properties of
an implementation. For signal processing, mixed-signal systems the refinement
from block diagram level to analog or digital circuit requires a significant mod-
eling effort: The means for description of abstract models (e.g. synchronous
dataflow) and physical implementation (e.g. networks) are different and cannot
be combined in a direct way. In this chapter, we introduce polymorphic signals
which solve this problem, and give an overview of a framework for the refine-
ment of Mixed-Signal Systems: HEAVEN/HELL.

Keywords: Mixed-Signal Systems, Design Methodology, Refinement.

1. Introduction

A key issue of system design is the analysis of different architectures. Es-
pecially for signal processing systems the ‘design space’ is often huge. Design
issues such as partitioning (analog, digital ASIC, DSP+Software), determina-
tion of sample frequencies, bit widths, or precision of analog components de-
termine quality, performance and costs of the system. In order to analyze and
to verify the behavior of different architectures, models of each architecture
are created and simulated. Unfortunately, this is a time consuming issue.

In model based design, the availability of many different modeling platforms
(models of computation, MoCs) simplify the creation of models. A model of
computation can be seen as an ‘abstract processor’ that can be programmed by
a ‘language’, and that defines means for communication and synchronisation.

1This work has been partially supported by funds of the BMBF/edacentrum Project SAMS under Reference
Number 01M3070D.

5

© 2005 Springer. Printed in the Netherlands.

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 5–20.

6 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Examples for MoCs are finite state machines which are ‘programmed’ by states
and transitions, or electrical networks that are programmed by components that
are connected with nodes. Particular research on the use of different MoCs has
been done within the design framework Ptolemy [Lee et al., 2003]. Although
model based design supports the creation of new models, it does not support
the re-use and modification of models within a design process.

The idea of refinement is to support the interactive, stepwise design process
that leads from an abstract, executable specification to an implementation by

integrating and modifying existing components, and

augmenting the abstract, executable specification with new properties.

Figure 1.1 gives an overview of the design framework HEAVEN (HEtero-
geneous Systems Refinement, Analysis and Verification ENvironment) that is
used to demonstrate refinement of block diagram to a mixed-signal system, and
which allows evalutation of different partitioning, bit widths, sample frequen-
cies, noise and nonlinearities of analog circuits, etc. HEAVEN is supported by
HELL (HEterogeneous Systems modeling Library; figure 1.1 right). HELL
provides behavioral models of physical effects that can be added to the ‘ideal’
behavior assumed in HEAVEN.

Executable

specification

computation

accurate

model

pin-precise

model

Refinement of

computation

Refinement of

interfaces

adapter

classes

models of

physical
effects

Design of analog or digital circuits

HEAVEN HELL

Figure 1.1. Refinement of signal processing applications to mixed-signal circuits with
HEAVEN/HELL.

In HEAVEN/HELL, refinement of signal processing systems is enabled by
polymorphic signals and adapter classes. Polymorphic signals automatically
translate communication mechanisms used in the MoCs applied for modeling
different realizations at different levels of abstraction. Therefore, polymorphic

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 7

signals allow designers to compose models in an intuitive and interactive way,
just by connecting blocks.

Related work. The use of polymorphism for modeling heterogeneous sys-
tems is not new. Basic ideas for polymorphic models and signals in HEAVEN
are also found in hybrid data-flow graphs [Grimm et al., 1996, Grimm et al.,
1998], where signal types are converted implicitly, and the semantics of nodes
is defined by firing rules. An implicit conversion of different signal types is
also provided by Matlab/Simulink. However, Matlab/Simulink is restricted to
block diagrams with discrete or continuous signals, and does not support mod-
eling of analog or digital circuits or software.

SystemC 2.0 introduces a very generic approach, where signals are accessed
via interfaces which can be realized in different ways. This allows one to in-
troduce different models of computation by using different implementations of
the interface [Swan, 2001]. However, the type checking between the interfaces
is very strict, and in order to combine different models of computation, one has
to use converter modules, for example.

In Ptolemy II/Chess, behavioral types [Lee et al., 2004] provide basically
the same functionality as the signal interfaces in SystemC 2.0. In extension
to SystemC 2.0, interface automata permit the coupling of different models
of computation provided there is a subtype relation between them [Lee et al.,
2004]. Note that the subtype relation applies to the value types, and to the
protocols that implement a model of computation (‘behavioral types’). Un-
fortunately, a subtype relation often does not exist, or can even be misleading
because semantic is not considered.

In [Grimm, 2003], we introduce polymorphic signals for signal process-
ing systems. Polymorphic signals provide methods that translate communica-
tion in different MoCs and at different levels of abstraction. However, the im-
plementation described in [Grimm, 2003] is restricted to discrete event (DE)
and static dataflow (SDF) MoCs. In the following we introduce application
specific semantic types and a polymorphic signal class, that cover the MoCs
used in signal processing applications at different levels of abstraction. Com-
pared to Ptolemy, polymorphic signals are application specific, and are not a
generic modeling property. The restriction to a domain of applications such
as signal processing applications has the advantage, that we can assume that
all (polymorphic) signals are approximations of an ‘ideal’, continuous-time
signal. This gives all conversions an intuitive understanding.

Section 2 gives a rough overview of SystemC-AMS, describes the refine-
ment methodology, and introduces general requirements of polymorphic sig-
nals for the refinement of signal processing systems. Section 3 describes a
polymorphic signal class for the modeling of signal processing systems. Sec-
tion 4 describes the application of polymorphic signals in a case study.

8 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2. Refinement with HEAVEN

HEAVEN is built on top of SystemC and SystemC-AMS [Einwich et
al.,2003, Vachoux et al., 2004]. SystemC-AMS, resp. an early prototype,
the ASC-Library [Grimm, 2003], permits the modeling and simulation of sig-
nal processing systems. In the following we first give a brief description of
SystemC-AMS. Then, we describe the refinement of signal processing applica-
tions to different mixed-signal architectures, and motivate polymorphic signals
which support such a refinement.

2.1 SystemC-AMS

Layered approach. In SystemC 2.0 systems are specified by a structure
of modules. The modules are connected by directed signals. Modules access
signals via an interface, which is accessed via ports. SystemC-AMS provides
means for the modeling of signal processing systems in SystemC. SystemC-
AMS extensions are structured in three layers[Einwich et al.,2003]:

The view layer allows the designer the specification of behavior in different
models of computation such as transfer functions, netlists, or a cluster of signal
processing functions in the static dataflow MoC.

The solver (simulator) layer provides means which execute a specification
given at the view layer, e.g. a coordinator which implements the static dataflow
MoC, or which solves linear and non-linear differential equations.

The synchronization layer couples different solvers (simulators). For cou-
pling different simulators, the static/synchronous data-flow (SDF) model of
computation is used. Note, that both synchronization layer and solver layer
introduce an underlying model of computation, but with different aims and re-
quirements: The synchronization layer couples simulators which might also
be external simulators such as SPICE. The solver (simulator) layer provides
different means for the modeling and simulation of signal processing systems
in SystemC.

Coordinator-Interface. Instances at the view layer have a unique interface
(coordinator-interface). This interface allows the coordinator to control the ex-
ecution of these objects, as well as their communication and synchronization.

Figure 1.2 gives an overview of a SystemC-AMS model which consists of
discrete-event processes (left), and a cluster in SDF model of computation
(modules 1-3, right). Before simulation starts, the SDF coordinator sched-
ules the blocks of the SDF cluster. During simulation, the SDF coordinator
executes the modules for each time step. In order to control execution of each
module, the coordinator has access to all modules via the coordinator interface.
Different simulators (here: SDF coordinator, and SystemC 2.0) are coupled via
static data-flow MoC at the synchronization layer.

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 9

Static data-flow (SDF) cluster

Module 3

Module 2Module 1
discrete-

event

processes

of

SystemC

coordinator - static data-flow with constant step width

Port

Signal

coordinator

interface

Synchronization:

Figure 1.2. A model in SystemC-AMS.

2.2 Refinement of Computation in Signal Processing
Systems

Executable specification. The design of signal processing systems begins
with a block diagram which describes basic principles of the system. Sample
frequencies, range of values, and bit widths are not yet known. For the first
simulations, designers use the MoC ‘continuous-time (CT) signal flow’. This
model of computation assumes that all connections between modules have the
semantics of mathematical equations, and that there is no order of execution or
width of time steps that comes with this model of computation. Furthermore,
signals have no limitation, and no quantization. Table 1.1 gives an overview of
the modeling properties used in the executable specification.

Executable specification
Signal value type No limitation

No quantization
sampling No sampling

MoC Continuous-time signal flow

Table 1.1. Executable specification: model of computation and signals.

Note, that for simulation of the CT signal-flow model of computation, a dis-
crete algorithm is required. This algorithm solves the mathematical equations,
and determines the width of time steps. The time steps introduce an error. This
error can be reduced by reducing the time steps, depending on the estimated
error. Then, all blocks are simulated in the signal flow’s direction. Cyclic de-
pendencies can be broken by insertion of a delay. This is basically the static
dataflow MoC, where the execution of the blocks is controlled by the estimated
error.

10 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Computation-accurate model. One aspect of system design is the evalu-
ation of deviations introduced by different realizations. For signal processing
systems, there are realizations with fundamentally different behavior: digi-
tal signal processing using a DSP or an ASIC, and analog realization. We
can easily model the behavior of these implementations by replacing the MoC
and/or the signal types of the executable specification by more appropriate
ones, which implicitly include properties of a realization.

Properties of digital signal processing systems that have to be evaluated are
sampling frequencies fs, quantization steps Q, and range of values (limitation).
A useful MoC for modeling digital signal processing is static dataflow with
constant time steps 1/fs. Appropriate signal values are integers that model Q
and the realization’s range of values.

Properties of analog circuits that are modeled are limitation, limited band
width and precision. Table 1.2 gives an overview of the modeling properties
used in a computation accurate model.

DSP behavior
Signal type value type Limitation [lb, ub]

Quantization Q
time steps ts

MoC Static dataflow with constant time steps ts

Analog behavior
Signal type value type Limitation [lb, ub]

Precision S/N
(time steps) min. time step ts,min

MoC Continuous-time signal-flow
(simulated by static dataflow with adaptive time steps)

Table 1.2. Analog and DSP behavioral model: models of computations and signal types.

The refinement of computation successively replaces modules of the exe-
cutable specification by modules that model the implementation. The modules
that model the implementation use a maybe different model of computation
and a different signal type in order to model properties of the implementation.
This especially affects the interaction with other blocks via ports, and may
introduce incompatibilities or inconsistencies. Potential changes affect

Value types: Range and quantization/precision are restricted, e.g. from gen-
eral ‘real’ to an ‘integer’ representation with limitation.

Interfaces: Changing the model of computation requires use of other inter-
faces and different protocols for the transport of data.

Semantics: Data is not only transported, but also might have different mean-
ings, e.g. a sequence of bank account numbers, or an approximation of
an continuous-time signal, or even nodes with Kirchhoff laws.

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 11

Because of these changes, the intuitive composition of a new model by just
replacing a module by a more detailed one will not work: In most cases the
resulting models are inconsistent, and require further actions to convert signal
types, protocols, and semantics. Figure 1.3 gives an example for such incon-
sistencies due to refinements: The left two blocks have been replaced by mod-
els of a DSP implementation, and the right block models the continuous-time
environment. Furthermore, the value type ‘real’ has been replaced by 8-bit
numbers modeling the range of values from 0 to 255 (Q = 1) with limita-
tion. Note, that the semantics of the signals remains unchanged: the signals
are approximations of a continuous-time and continuous-value signal.

CT signal flowSDF

Module 3
(SDF)

Module 1
(SDF)

SDF coordinator, const ts

Module 2
(CT)

CT signal flow
coordinator

8 bit, ts

12 bit, ts

8 bit, ts

Real Real

!

!

Figure 1.3. Computation-accurate model with inconsistencies due to refinement steps.

Polymorphic signals. Of course, designers can manually write converters
that adapt value types, interfaces and consider changing semantics. In a limited
range, this can be done automatically considering that range of values (and in-
terfaces) are compatible with subtypes. Behavioral types in Ptolemy II convert
protocols by construction of a common automata, but without considering the
meaning of signals. This extends compatibility, but does not consider seman-
tics of the data transported via a signal. Semantic issues can only be treated in
an implicit or automatic way, if we know the semantics. In order to allow us to
convert signals in a more general way, we assume that signals have semantic
types. A semantic type of a signal is an abstract interpretation of a signal. In
the following, we consider signal processing applications. The knowledge of
the semantics allows us to formulate different views of one signal, that depends
on the signature (interface, value type) used to access the signal. We call such
signals polymorphic signals (for a domain of applications).

12 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.3 Refinement of Interfaces

A second aspect of system design is the explicit realization of the commu-
nication/synchronization which is implicitly specified by a model of compu-
tation. This can be done by the refinement of interfaces. The refinement of
interfaces transforms the computation-accurate model to a model that has all
ports of the implementation.

In digital ASICs, communication is realized by a clock signal and a con-
troller that uses enable signals to control the communication and synchroniza-
tion of the single modules. For specification of the ASIC itself at the register
transfer level, the discrete event model of computation is used. Note, that
there are already approaches for the refinement of communication, such as
SystemCSV [Siegmund et al., 2001], and the Master-Slave Library. However,
they do not consider the fact that – at least in the ASC library and SystemC-
AMS – the execution of the modules is controlled via a coordinator interface.

inherited Adapter

Module

coordinator (MoC)

coordinator
interface

Module

Controller

clock

e
n

ab
le

Figure 1.4. Refinement of interfaces by an inherited adapter class that uses the coordinator
interface.

Figure 1.4 shows the refinement of interfaces. A module inherits an ‘adapter
class’. The adapter class translates clock and enable signals to an activation of
the module via its coordinator interface.

3. Polymorphic signals for signal processing applications

In the following, we describe a polymorphic signal for signal processing
applications. In signal processing applications, signals are more or less good
approximations of continuous-time signals. Such systems are specified with
the following models of computation, depending on the level of abstraction,
and the implementation:

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 13

Continuous-time signal flow (simulated by static dataflow with adaptive
time steps).

Static dataflow with constant time steps, but very often with different
data rates resp. time steps (multi-rate systems).

Discrete event system.

Netlists.

As motivated in section 2, the refinement of signal processing systems is
characterized by modules with different sample rates, ranges of values, etc.
The polymorphic signal for signal processing applications supports this refine-
ment by providing the following functionality:

It implicitely adapts the range of values: The range of values of the
writing port is adapted to the range of values of the reading port.

It implicitely converts sample rates: The signal can have different sam-
ples rates for writing and reading ports.

It implicitely converts different models of computation: The polymor-
phic signal can be read or written from the above mentioned models of
computation.

The polymorphic signal provides means for specification (or modeling)
of noise and deviations for semi-symbolic analysis in HELL [Grimm et
al., 2004].

Polymorphic signals can actually be used to couple modules in the supported
models of computation without requiring the insertion of additional converters.
In case that analog netlists are coupled, the polymorphic channel might even
hide the complexity of simulator coupling — a designer just sees the channel
in SystemC-AMS, and an additional node in the analog simulator.

Implementation. In SystemC, signals are accessed via ports with an in-
terface that specifies a set of methods. Modules call these methods. A signal
that is connected to a port must provide concrete methods that implement the
methods called from the modules via the ports.

For each model of computation a port class is provided, for example asc_

sdf_const_in for static dataflow with constant time steps. At the ports of
the modules, attributes are specified that give additional information about the
semantic interpretation of the signal to be accessed, such as:

value unit and value size can specify a physical size that is associ-
ated with the abstract value at port.

14 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Boundaries for the range of values [lb, ub].

Time steps and rates of static (multi-rate) data flow.

max deviation and max noise can specify allowed deviations of sig-
nals (for use in HELL [Grimm et al., 2004]).

If there are inequalities or incompatibilities between the ports that access a
polymorphic signal, a conversion has to occur in order to permit a simulation.
By default, virtual methods are called. These methods give a warning, and call
simple conversion methods. The conversion methods can be overloaded by
more appropriate ones, if needed.

value unit and value size of the reading port are compared with the
writing port.

The range of values is checked and converted as follows: Let lbwrite and
ubwrite be the lower and upper bounds of the writing port and lbread and ubread

the lower and upper bound of the reading port. If the bounds are not equal,
there might be a problem in the design; therefore, a warning is given. Then,
by default, the polymorphic signal maps a written value vi ∈ [lbwrite , ubwrite]
from the range of values of the writing port to a value vi,read from the range of
values of the reading port [lbread , ubread] as follows:

vi,read = vi ∗mult − lbwrite ∗mult + lbread with: mult =
(ubread − lbread)

(ubwrite − lbwrite)

The polymorphic signal can be written/read from ports of different models
of computation. We use the following approach: The polymorphic signal in-
herits and implements the interfaces of all port types that are compatible with
the signal as shown in figure 1.5. The methods that implement the interfaces
translate read- or write- accesses into an internal, abstract representation.

Module 1

P
o

rt
 S

D
F

Polymorphic signal

Internal,

abstract

representation

In
te

r-

fa
c

e

D
E

In
te

r-

fa
c

e
 D

E

writing

method

calls from

SDF Port

In
te

r-

fa
c

e

S
D

F

In
te

r-

fa
c

e

C
T

Module 2

In
te

r-

fa
c

e

D
E

In
te

r-

fa
c

e

S
D

F

In
te

r-

fa
c

e

C
T

P
o

rt
 C

T

In
te

r-

fa
c
e
 C

T

reading

method

calls from

CT Port

Figure 1.5. Implementation of polymorphic signals in SystemC-AMS.

In the internal, abstract representation, signals are represented by a queue of
tuples (value, time) (‘events’, ‘samples’). An event (vi, ti) describes the point

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 15

of time ti in sc time and vi is the into double converted value that was written
at point of time ti.

The size of the queue n is bounded and determined as follows:

n =
ts,max ∗ k

ts,min

where ts,max is the maximum possible time step, k the factor of multi-rate
dataflow, and ts,min is the smallest possible time step.

If there are more than n events in the queue the oldest event leaves the
queue. Writing processes from all models of computation are converted to this
abstract representation of a signal. Then, the queue of n events (value, time)
describes the development of a signal in a time frame that covers at least the
ts,max of the past.

Figure 1.6. Abstract representation in polymorphic signal class by a queue of events
(value, time).

In general, a queue of a signal is given by:

(vi, ti), (vi+1, ti+1), (vi+2, ti+2), ..., (vj, tj)

Figure 1.6 shows an example of a queue. In the following, we describe the
methods that modify (read/write) the abstract representation of signals. Syn-
chronization and simulator coupling are implemented in SystemC-AMS resp.
the ASC library (see [Grimm, 2003, Vachoux et al., 2004]). This synchroniza-
tion first executes the modules of the AMS extensions using the last values
from the discrete event simulation, and then executes the discrete event simu-
lator.

The following methods are used for writing the queue; the size of the queue
is limited, and adding a newer element automatically removes the oldest ele-
ment:

Writing from SDF port: An event is added to the queue. For multi rate
dataflow, several events can be added at once.

16 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Writing from DE port: The value of the event to be written is compared with
the last event’s value. If the values are different, request update()

is called and triggers an event in the DE model. If the times are equal,
the last event is deleted. Finally, the new event is added to the queue.
This ensures that writing DE processes only add one event (ti, vi) to the
queue.

Writing from CT port: An event is added to the queue. This method is appli-
cable to CT signal flow model of computation. For netlists, additional
actions are required that convert a physical size to a value of the events.

Note, that writing from SDF or CT model of computation might also trigger
an event in the DE model of computation. However, this might not be useful
or even cause problems. Usually, DE models are not activated by events at the
data signals. DE models are usually activated by explicit control signals such
as clock or enable signals, which is done by adapter classes that also provide
such signals, and require an explicit controller.

For reading the queue of events that models the abstract signal, we use the
following methods:

Reading from SDF ports: The value of the newest event is returned. For
multi-rate dataflow, a conversion function is called which performs sam-
ple rate conversion. Sample rate conversion computes a weighted aver-
age of the values since the last call. Because time steps are constant, the
time of the last call is the actual time minus the time step.

Reading from DE ports: The value of the newest event is returned.

Reading from CT ports: The value of the newest event is returned. This is
applicable to the CT signal-flow model of computation, and for netlists.
For netlists, additional actions are required that convert the abstract value
to a physical size in a netlist.

Netlists and external simulators, Open issues. The implementation of
polymorphic signals covers signals in SystemC-AMS, but not yet nodes in
netlists. Actual work is to implement interfaces that support the coupling of
external simulators, such as VHDL-AMS or SPICE, that also support simu-
lation of netlists. For coupling external simulators of netlists, we extend the
polymorphic signal using the following concept:

Netlists can write to polymorphic signals. This can be done by a port that
leaves the netlist, and that specifies the physical sizes (e.g. a current, or a volt-
age), and its conversion to an abstract, non-conservative size. After conversion,
this value is treated like a value from the CT signal-flow model of computation.

Netlists can ‘read’ from polymorphic signals, but require a small conversion
circuit that is added to the netlist. This small conversion circuit is e.g. a cur-

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 17

rent or voltage source, and is also specified by attributes at the port (e.g. 1.7).
Current work is to automatically insert such a circuit by a polymorphic signal
into an external simulator.

(value, time)
from queue

RL

to
CT-network

Figure 1.7. Simple: Connection of polymorphic signals with continuous-time network (CT-
NET).

4. Case studies

For evaluation we have refined a PWM driver from an automotive applica-
tion shown by Figure 1.8. The PWM driver is a control loop that controls the
voltage of a power driver. The voltage is an average of pulses generated by a
pulse generator. The voltage is measured, and a difference between the actual
value and the programmed value is computed. Then, a PI controller computes
a new pulse width. Figure 1.8 shows the executable specification, for which
we used the model of computation continuous-time signal flow(CT-SF), as for
example in Simulink block diagrams.

Figure 1.8. PWM driver: Executable specification.

For the refinement of computation we successively exchanged single mod-
ules with modules that are closer to implementation, and that use other models
of computation (CT-signal flow → SDF → DE). We evaluated different par-
titionings of the design (e.g. using an analog implementation of the design),
different sample rates, value ranges and bit widths. Most of these parameters
have a tremendous impact to the dynamic behavior due to the nonlinear nature
of the system. Figure 1.9 shows the design after refinement of interfaces.

Polymorphic signals were especially useful for the determination of sample
rates, bit widths and value ranges: They allowed us to modify these param-
eters, or to replace single blocks by analog netlists — required sample rate

18 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

CT

Pulse
former
(DE)

+
PI

controller
(DE IF+ SDF)

R

C U(C)

T1

T2-

Vb

Bus interface,
registers, controller, ...

A/D

A
D

re
q

ue
st

A
D

re
a

dy
Figure 1.9. PWM driver: After refinement.

converters, A/D converters, etc. were automatically imitated by the polymor-
phic signals. Especially for design space exploration this has saved a lot of
time for adapting models. Figure 1.10 shows two different output signals that
are produced by changing the sample frequencies and models of computation.

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

time

low bit rate
high bit rate

Figure 1.10. Output of PWM driver with different sample frequencies.

5. Discussion

SystemC provides a very generic approach for modeling digital systems.
However, all models of computation are simulated by a discrete event simu-
lator. Models of computation that have different interfaces or value types can
only be converted, if they are subtypes. SystemC-AMS extends SystemC for
modeling analog and mixed-signal systems. Semantic types resp. polymorphic
signals as proposed in this paper permit an implicit conversion of different sig-

Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 19

nal types and automatically treat semantic issues in the right way, e.g. the
conversion of value ranges or sample rate reduction in signal processing appli-
cations.

Feedback from HELL. In first experiences, polymorphic signals allowed
us to model and modify even complex systems with very little effort. How-
ever, modeling of mixed-signal systems at block diagram level negotiates many
problems that occur in analog circuit design, and that have impact on system
behavior. Therefore, HELL [Grimm et al., 2004] provides a framework for the
semi-symbolic modeling and analysis of uncertainties introduced by the phys-
ical implementation. The aim of future work is to build a design framework
that integrates HEAVEN and HELL of circuit design.

References

Karsten Einwich, Peter Schwarz, Christoph Grimm, and Klaus Waldschmidt.
Mixed-Signal Extension for SystemC. In Eugenio Villar and Jean Mermet,
editors, System Specification and Design Languages. Kluwer Academic
Publishers, Apr 2003.

Christoph Grimm. Modeling and Refinement of Mixed Signal Systems with
SystemC. In SystemC – Methodologies and Applications. Kluwer Academic
Publisher (KAP), June 2003.

Christoph Grimm, Wilhelm Heupke, and Klaus Waldschmidt. Semi-Symbolic
Modeling and Analysis of Noise in Heterogeneous Systems. In Forum on
Specification and Design Languages (FDL ’04), Lille, France, September
2004.

Christoph Grimm and Klaus Waldschmidt. KIR – A graph-based model for de-
scription of mixed analog/digital systems. In European Design Automation
Conference, Geneva, Switzerland, September 1996.

Christoph Grimm and Klaus Waldschmidt. Repartitioning and technology-
mapping of electronic hybrid systems. In Design, Automation and Test in
Europe ’98 (DATE), Paris, France, February 1998.

Edward Lee, Stephen Neuendorffer, and Michael Wirthlin. Actor-Oriented De-
sign of Embedded Hardware and Software Systems. Journal of Circuits,
Systems, and Computers, June 2003.

Edward Lee and Yuhong Xiong. A Behavioral type system and its application
in Ptolemy II. Formal Aspects of Computing, 2004.

Robert Siegmund and Dietmar Müller. SystemCSV : An Extension of SystemC
for Mixed Multi-Level Communication Modeling and Interface-Based Sys-
tem Design. In Design Automation and Test in Europe ’01 (DATE 2001),
Munich, 2001.

Stuart Swan. An Introduction to System-Level Modeling in SystemC 2.0.
Technical report, Open SystemC Initiative, 2001.

20 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Alain Vachoux, Christoph Grimm, and Karsten Einwich. Towards Analog
and Mixed-Signal SoC Design with Systemc-AMS. In IEEE International
Workshop on Electronic Design, Test and Applications (DELTA’04), Perth,
Australia, 2004.

Chapter 2

MIXED NETS,

CONVERSION MODELS,

AND VHDL-AMS

John Shields
Lynguent, Inc.
P.O. Box 19325
Portland, OR 97280-0325

jshields@ieee.org

Ernst Christen
Synopsys, Inc.
2025 NW Cornelius Pass Rd.
Hillsboro, OR 97124

Ernst.Christen@synopsys.com

Abstract AMS hardware description languages like VHDL-AMS provide features for
modeling at discrete and continuous domains of abstraction and communicat-
ing between them. A mixed net arises in mixed-signal design as the result of
interconnecting components modeled in different domains, in particular when
connecting a discrete and a continuous port. Hardware description languages do
not support such connections directly. They require the insertion of an appro-
priate conversion model between the dissimilar ports. Using conversion models
correctly, a mixed net can be successfully partitioned and modeled with the de-
sired blend of accuracy and performance.

This paper explains mixed nets and their various configurations, setting the
requirements for needed conversion models. Conversion models are explained,
including criteria for what makes a good one. Strategies for partitioning a mixed
net and inserting conversion models are discussed. A proposal is made for ex-
tending VHDL-AMS to handle mixed nets and automatic insertion at elabora-
tion.

Keywords: VHDL-AMS,Verilog-AMS,mixed signal,conversion models,elaboration

© 2005 Springer. Printed in the Netherlands.

21

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 21–39.

22 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

1. Introduction

Our goal is to describe and simulate a mixed-signal system design with the
required accuracy. By reducing model complexity, more of the overall system
can be verified. But in order to verify some aspects, the most complex imple-
mentation models are needed. Mixed-signal HDLs like VHDL-AMS were de-
signed to support these modeling tradeoffs. The design process using VHDL-
AMS still leads to structural problems when switching between two models
designed to represent the same component in different domains. Solving these
problems efficiently requires conversion models to be systematically inserted.

1.1 Background and Motivation

Mixed-signal modeling involves using models in the discrete domain with
models in the continuous domain. With VHDL-AMS, one can create rich mod-
els of physical systems of many different energy domains. In an electrical sys-
tem, for example, the discrete domain is modeled by concurrently executing
processes that communicate through signals of some logic type like std logic.
The electrical nature in the continuous domain is modeled with differential-
algebraic equations of voltages, currents, and other unknowns. These models
may be conservative systems, i.e., a circuit obeying Kirchoff’s laws. They may
also be signal flow models, where a non-conservative quantity (most likely
voltage or current) flows through transfer functions.

A complete set of electrical components that can be used together for model-
ing a mixed-signal system will include digital models and both types of analog
models. One component may have a set of models in different domains de-
signed to be equivalent. Models that are from different domains have both dif-
ferent implementations and interfaces. Nevertheless, the interfaces are closely
related. There is an equivalence between corresponding ports, i.e., a given
logic signal port is equivalent to its corresponding electrical pin, voltage input,
etc. At the same time, the analog model interface may have additional ports
that are not relevant in the discrete model, such as power/ground connections.

Any component from the mixed-signal set may be connected to others to
form a system model. Component models from different domains may be
used interchangeably and should support flexible and efficient design styles.
It follows that suitable conversions must exist between the discrete, the signal
flow, and the conservative analog domains. Indeed, such conversion behavior is
at the heart of languages like VHDL-AMS. The system model can be modeled
in VHDL-AMS today. It turns out that suitable domain conversions must be
designed as models themselves and be part of the component set. Effective
system design styles can be supported if it is possible to specify reasonable
rules to insert conversion models automatically and to bind implementations
of such models to each instance of a conversion model.

Mixed Nets, Conversion Models, and VHDL-AMS 23

1.2 Design Styles

Composing mixed-signal systems from a set of components is a structural
task typically done best graphically, for example in a schematic entry system.
Nevertheless, portions may be written directly in the HDL or generated from
other design tools. A top-down design methodology leads from a high level
of design abstraction at the system or behavioral level to a lower level of ab-
straction going toward the physical implementation level. Moving top-down
in abstraction does not necessarily mean crossing modeling domain. Some
components may move from behavioral to rtl to gate level to switch level and
remain discrete models. The models ultimately exist as continuous models
at the analog circuit level, yet there may be no need to use them in a system
model for verification. If one can safely avoid using the circuit level model
in the system model, the designer asserts that the digital model is equivalent
to its analog counterpart. The designer further asserts that the component is
sufficiently decoupled at this level in the system such that its analog aspects
are accounted for and can be ignored.

There are few straightforward paths in top-down design for mixed-signal
systems. Digital subsystems are decomposed with significant synthesis sup-
port. Analog subsystems have comparatively little synthesis. If your mixed-
signal component set has analog components with a high level behavioral
model and low level implementation model, it supports both top-down and
bottom-up modeling. Designing an analog model may start with circuit topol-
ogy at the implementation level and be modeled upwards, or from a top-down
behavioral model and be modeled downwards. You adjust the parameteriza-
tion to meet specifications. If you require an equivalent model at another ab-
straction level, there are two cases to consider. From the behavioral model,
there is a creative leap to the implementation model and bottom-up verifica-
tion to establish their equivalence. From the implementation model, there is
a more organized and potentially automated transition upwards to the behav-
ioral model. Bottom-up verification for equivalence is the same task, but here
it takes the form of calibrating the behavioral model parameters to the imple-
mentation model.

Back at the system level, it may be ideal to simulate the entire system at the
analog implementation level. When you choose not to, there is no substitute
for bottom-up verification. As you proceed upwards in subsystem validation,
component models start at the lowest level of abstraction and are swapped for
equivalent models that are at higher levels of abstraction and/or cross domains
from analog conservative to analog signal flow to discrete.

The common denominator of the top-down and bottom-up design styles is
the need for a design composition system that is effective for hierarchical struc-
ture by providing flexible configuration of components and their underlying

24 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

simulation models. Schematic entry systems are effective, in part. They com-
pose the structure flexibly and may be made configurable enough, but there is
a difficult netlisting problem into the underlying HDL. VHDL-AMS can rep-
resent the structure provided the conversion models are explicitly included in
the system model. VHDL-AMS also has the underlying features for design
configuration that were intended to meet these needs. Unfortunately, they are
not usable where component interfaces change across domains.

1.3 Problem Definition

Design styles suitable for mixed-signal systems need interchangeable com-
ponent models from different domains, methods to efficiently switch between
them, and automatic conversions between domains in order to meet the sim-
ulation accuracy and performance goals. VHDL-AMS supports the modeling
needs for such components and the conversions, but lacks support to efficiently
describe the hierarchical structure of the resulting systems so they can be re-
configured easily. After reviewing the mixed net modeling and conversion
concepts, a solution to this problem will be proposed.

2. Mixed Nets and Conversion Models

A net consists of a root, typically a terminal, quantity or signal declared in a
block, and all ports connected to the root, including transitive connections. Its
structure is a tree. A mixed net is a net whose root and connected ports belong
to different object classes. In a typical mixed net, some leaves of the tree may
be terminal ports, other leaves may be quantity ports, and still others may be
signal ports. The root and the ports higher up in the tree typically only define
the connectivity between component instances; their semantics are usually not
of much concern. Nonetheless, these ports and the root must be declared to be
objects of a particular class: in VHDL-AMS, a terminal, a quantity, or a signal.

During simulation, it is the simulator’s task to determine a value for each
net, taking into consideration the contributions from the various ports that form
the net (or more precisely, the contributions from the behavioral statements
in which the names of the ports appear). VHDL-AMS defines semantics for
uniform nets, that is, nets whose root and ports are either all terminals, or all
quantities, or all signals. Other AMS languages have similar uniformity rules
for nets. Therefore, to perform a simulation, a mixed net must be split into
uniform portions using some partitioning strategy, and suitable code must be
inserted at the boundaries of the different portions of the net to convert between
the semantics of, for example, a terminal and a signal. The preferable way to
manage such conversion code is to place it in conversion models, which then
are instantiated such that they link the different portions of the net.

Mixed Nets, Conversion Models, and VHDL-AMS 25

2.1 Net Partitioning Strategies

There are many different ways to split a mixed net into uniform portions,
each with different properties. We discuss four strategies that embody different
ideas, using VHDL-AMS terminology.

User-Defined Partitioning. In this strategy, the user defines the root of the
net and each port of the net to have a particular object class: terminal, quantity,
or signal. The object classes represent different modeling domains. Instances
of conversion models are inserted between the formal and the actual of a port
association element if the formal and actual are of different object classes.
The benefit of this approach is that supporting it in VHDL-AMS requires few
language changes. Its drawback is that even in simple situations it may be too
difficult for a user to determine how to declare the ports in different parts of the
net to achieve a certain goal (performance, accuracy). For example, it is easily
possible that a mixed net might have several disjoint terminal nets (or nodes),
each with a different potential.

The remaining three strategies have two aspects in common: We ignore the
object class of the root and the intermediate ports and only honor the object
class of the ports that are leaves of the tree forming the net. We also consider
the object classes to correspond to abstraction levels, with a terminal being the
most detailed and a signal being the most abstract.

Partitioning Driven by Elaboration. This strategy considers, for each ver-
tex in the tree describing the net, the object class of the vertex and its immediate
children and converts this portion of the net to the most detailed of these object
classes. If the result is different from the object class of the vertex, then an
instance of a conversion model is inserted between the vertex and its ancestor.
The benefit of this approach is its simple elaboration rules. Its drawback is the
sensitivity of its result to changes of a leaf port: replacing a leaf port connected
higher up in the tree has more dramatic effects on the result than replacing a
leaf port lower in the tree. That is, a structural design change may lead to an
unexpected change in the mixed net representation and surprising behaviour.

Partitioning for Performance. The goal of this strategy is to minimize the
number of instances of conversion models. Sub strategies include: a) simu-
lating each mixed net as two or three uniform nets, each having a subset of
the topology of the mixed net, and inserting instances of conversion models
between the net replicas, and b) separating the signal net into two nets, one
connecting all ports with mode in, the other, connecting all other signal ports,
and inserting instances of conversion models between the terminal net (if any)
and each signal net. The advantage of this strategy is performance. Its draw-
backs are the complexity inherent in having multiple representations of a single
net and the difficulty of incorporating drive and load characteristics in the con-

26 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

version models without adding significant features to the language, such as the
capability to determine the fanins and fanouts of a port from inside a model.

Partitioning for Accuracy. In this strategy, a mixed net is converted in its
entirety to a uniform net whose object class is that of the most detailed object
class of the root or any port of the net. For example, if any terminal is con-
nected to the net, then the net is converted to a terminal. Instances of conver-
sion models are inserted between the net and any leaf port whose object class
is different from the object class of the net. The benefits of this approach are
its ability to accurately model drive and load characteristics at ports of a higher
abstraction level and its predictability, which makes it easy to understand. Its
drawback is the potentially large number of instances of conversion models,
and performance may be affected by the models of the lowest abstraction con-
nected to the net as well as by the number of conversion model instances

2.2 Categories of Conversion Models

The discussion about partitioning strategies yields the result that there is a
need for conversion models that convert between the semantics of terminals,
quantities, and signals. To also satisfy the VHDL-AMS rules about port asso-
ciation elements, which are based on the mode of the formal port, we end up
with seven categories of conversion models:

Terminal to signal with mode in (conservative to event-driven, com-
monly called a2d)

Signal with mode out to terminal (event-driven to conservative, com-
monly called d2a)

Signal with mode inout or buffer and terminal (commonly called bidi-
rectional)

Terminal to quantity with mode in (conservative to signal flow, called
TQ below)

Quantity with mode out to terminal (signal flow to conservative, called
QT below)

Quantity to signal with mode in (signal flow to event-driven, called QS
below)

Signal with mode out to quantity (event-driven to signal flow, called SQ
below)

Note that there is no possibility to have a bidirectional conversion model be-
tween quantity and signal because of the semantics of a quantity net.

Mixed Nets, Conversion Models, and VHDL-AMS 27

It is apparent from this list that a conversion model always has a direc-
tion, even in the case of a bidirectional conversion model, where the direction
changes over time, driven either by the operation of the conversion model or
by control information such as switching (on the signal end of the conversion
model) between high impedance (input) and driving (output) state.

Each category of conversion models is further parameterized by the type of
the signal or quantity or the nature of the terminal on either end of the conver-
sion model. Regardless of the partitioning strategy, any mechanism to bind a
category of conversion models to a particular implementation of a conversion
model must be rich enough to support this parameterization.

2.3 Implementation of Conversion Models

The language elements of VHDL-AMS are sufficient to implement any con-
version model, regardless of the particular combination of input and output
object and the corresponding types and/or natures. For an input or output ob-
ject of class terminal, this includes the possibility of converting between its
reference quantity (for an electrical terminal: the voltage w.r.t. ground) or its
contribution quantity (for an electrical terminal: the current flowing through
the terminal) and the value of the object at the other end of the conversion
model.

Conversion models between terminals and quantities are straightforward to
implement because of the closeness of the semantics of the two object classes.
A TQ conversion model is essentially a quantity source whose value is con-
trolled by the reference or contribution quantity of the terminal. Similarly, a
QT conversion model is either a quantity controlled across source or a quantity
controlled through source.

Conversion models between signals and quantities or terminals have some
similarities in that they involve converting between discrete time semantics
and continuous time semantics. For an a2d or a QS conversion model, this can
be accomplished, in general, using a threshold based approach that involves a
signal of the form Q’Above(E), where Q is a quantity and E is the threshold.
For a d2a or an SQ conversion model, the general approach is that of a con-
trolled source whose value is driven by the value of the signal. A bidirectional
conversion model combines the functionality of an a2d and a d2a conversion
model, possibly with some extra code to switch its direction. In the remainder
of this section, we will focus on a2d and d2a conversion models; SQ and QS
conversion models are essentially subsets of a2d and d2a. We further restrict
the discussion to conversion models with an electrical terminal and a signal of
type std logic.

The specific implementation of an a2d or a d2a conversion model can be
rather ideal, taking into consideration only the voltage (or current) and pos-

28 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

sibly the impedance at the terminal end, or very detailed, modeling the load
or driving characteristics of a particular technology such as cmos. In either
case, the conversion model can be parameterized to match the properties of a
particular physical device.

Ideal conversion models are the easiest to implement. As examples, we
show the implementation of ideal a2d and d2a conversion models converting
to or from a voltage. The a2d conversion model is based on a finite state
machine that drives the output to ‘1’ if the input voltage exceeds a threshold
vhi, to ‘0’ if the input voltage is below vlo, and to ‘X’ if the input voltage stays
between vlo and vhi for longer than a timeout. A possible implementation of
the model and the corresponding FSM are shown in Figure 2.3 and Figure 2.1
respectively [Christen, 1999].

The corresponding ideal d2a conversion model can be implemented as a
voltage source with an output resistance where both the output voltage and the
resistance are controlled by the signal value. A possible implementation of the
model is shown in Figure 2.2 [Christen, 1999].

To better reflect the load and driving characteristics of a particular tech-
nology, a model writer can write technology specific conversion models that
implement the load (for a2d) or the driving (for d2a) characteristics of the
technology. For example, the driving characteristics of a conversion model for
the cmos technology can be modeled by describing the channel properties of
the two transistors at the output of a cmos gate, with its operation controlled
by the input signal value. Conversion models with such detail typically need
additional ports that provide the power supply for the model and the reference.
They also have parameters that let the user parameterize an instance of the
model to reflect the driving properties of a particular port of a physical device.
The mechanism to bind a particular instance of a conversion model to a de-
sign unit with the necessary detail must therefore support the specification of
appropriate parameter values for that instance and the connection of its power
and reference terminals (and any other port that may be required, for example a
port that controls the direction of a bidirectional conversion model) to suitable
objects in the block in which the conversion model is instantiated.

3. Current Approaches to Automatic Insertion of
Conversion Models

Once appropriate conversion models have been designed and components
that give rise to their use are available, the designer focuses on the system
design task. The designer is engaged in structural composition tasks, and au-
tomatic insertion of conversion models is very desirable for improved produc-
tivity, repeatability, and correctness. There are automated solutions today, but
none that is well integrated with the VHDL-AMS language.

Mixed Nets, Conversion Models, and VHDL-AMS 29

library ieee;
use ieee.std logic 1164.all; use ieee.electrical systems.all;
entity a2d is

generic (vlo, vhi: REAL; – thresholds
timeout: DELAY LENGTH);

port (terminal ain, ref: electrical; signal dout: out std logic);
end entity a2d;
architecture Hysteresis of a2d is

type st4 is (unknown, zero, one, unstable);
quantity vin across ain to ref;
function level(vin, vlo, vhi: REAL) return st4 is

begin

if vin < vlo then return zero;
elsif vin > vhi then return one;
else return unknown;
end if;

end function level;
begin

process

variable state:st4 := level(vin, vlo, vhi);
begin

case state is

when one =>
dout <= ’1’;
wait on vin’Above(vhi);

state := unstable;
when zero =>

dout <= ’0’;
wait on vin’Above(vlo);

state := unstable;
when unknown =>

dout <= ’X’;
wait on vin’Above(vhi), vin’Above(vlo);

state := level(vin, vlo, vhi);
when unstable =>

wait on vin’Above(vhi), vin’Above(vlo) for timeout;
state := level(vin, vlo, vhi);

end case;
end process;

end architecture Hysteresis;

Figure 2.1. Ideal a2d Conversion Model

30 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

unkn
own

unsta
ble

zero

timeout

vin < vhi

vin > vlo

vin > vhi
dout = '1'

dout = 'X'

dout = '0'

vin > vhi

vin < vlo

vin < vlo

one

Figure 2.2. FSM For Ideal a2d Conversion Models

library ieee;
use ieee.std logic 1164.all;
use ieee.electrical systems.all;
entity dac is

generic (vlo : REAL := 0.2;
vx : REAL := 2.5;
vhi : REAL := 4.8;
ron : REAL := 0.1;
rwk : REAL := 1.0e4;
rof : REAL := 1.0e9;
tt : REAL := 1.0e-9)

port (signal din: in std logic;
terminal aout: electrical);

end entity dac;
architecture ideal of dac is

type rt is array(std logic) of REAL;
constant r table: rt := (ron, ron, ron, ron, rof, rwk, rwk, rwk, rof);
constant v table: rt := (vx, vx, vlo, vhi, vx, vx, vlo, vhi, vx);
quantity vout across iout through aout;
signal r, v: REAL;

begin

r <= r table(din);
v <= v table(din);
vout == v’ramp(tt) + iout * r’ramp(tt);

end architecture ideal;

Figure 2.3. Ideal d2a Conversion Model

Mixed Nets, Conversion Models, and VHDL-AMS 31

3.1 Netlisting

A common approach to automatic insertion of conversion models is based
on extending netlisting tools in a schematic-based design environment. A
schematics-based design is one captured and maintained using a schematic en-
try system. The schematics database is the master representation of the design.
A netlister converts the information in the schematic database to an HDL repre-
sentation. The netlister may insert conversion models automatically in the gen-
erated HDL source code. Often, annotation conventions in the form of global,
sheet, symbol, and wire properties may be defined to drive the netlister’s choice
of conversion models, actual parameters, and location of insertion. An exam-
ple of a robust implementation is the Synopsys Saber® Designer product. The
inherent limitation here is that the master representation of the design must be
in the schematics database in its entirety. Netlisting cannot insert conversions
within portions of the design described in the HDL.

3.2 Verilog-AMS

The second approach involves insertion of conversion models during the
elaboration phase of an HDL simulator. It is the more general and favored ap-
proach and applies equally well to schematics-based and HDL-based design.
In this approach, the identification of conversion models, definition of mixed
nets that require them, and specific locations for insertion are driven by fea-
tures supported by the HDL. Verilog-AMS is the first AMS HDL with such
features, and the discussion uses the terminology of this paper with Verilog-
AMS terminology in parenthesis.

Verilog-AMS provides a straightforward mechanism to define a conversion
model (connect module). It is distinct from a normal model (module) and re-
lies on imposing a direction to a port of a continuous nature (discipline). The
selection of a conversion model is driven by the explicit declaration of connect
rules, and a mechanism exists to bind parameter actuals to the model in that
declaration. These rules allow specifying conversion models between continu-
ous and discrete disciplines. Conversion between signal flow and conservative
disciplines does not require a conversion model; the meaning of such connec-
tions is defined by the discipline compatibility rules. The conversion model
insertion between continuous and discrete disciplines can be configured to in-
sert one model for all connections to/from discrete ports (merged rule) or one
model per port (split rule). This capability to insert one model for all connec-
tions depends on the ability of a conversion model to look outside itself at the
fanin/fanout of a port.

There are some lessons to learn. One shortcoming of the Verilog-AMS ap-
proach is due to its lack of strong typing in the base language. It is essential for
a user to understand the nature of every object (net) connected together in a hi-

32 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

erarchical net (signal) to understand the impact of automatic conversion model
insertion. Since it is possible to declare objects which are not strongly typed
with respect to their nature (discipline), Verilog-AMS provides a capability to
impose (force) a nature (discipline) on such objects. However, this discipline
resolution is complex to understand and allows one to coerce relationships that
may not make sense. It may lead to automatic model insertion in a manner not
related to domain conversion.

More significant issues exist with the definition of the discipline resolution
algorithm. There are two different algorithms that may be used by an imple-
mentation, basic and detailed, each allowing the insertion of conversion models
that depend on looking outside the model at the fanin/fanout of a port for rea-
sonable accuracy. (The basic algorithm virtually requires it.) This is a powerful
feature, but not required to produce an accurate model of the mixed net (sig-
nal). A tool may support either algorithm, although they produce significantly
different results. Therefore, Verilog-AMS designs that employ automatic in-
sertion of conversion models are not portable.

4. Automatic Insertion of Conversion Models in
VHDL-AMS

The following outline proposes new language features for VHDL-AMS
structural modeling and automatic insertion of conversion models. Broad re-
quirements are stated and the structural wire is introduced. Mixed nets may be
constructed with wires with good semantics for all connections. User config-
ured conversion models are inserted automatically where needed during elab-
oration. Open issues are noted.

4.1 Requirements

We believe that the following requirements must be met to provide robust
support in the language for structural composition of designs containing in-
stances of models at various abstraction levels.

1 Ability to configure a design with versions of components that differ in
modeling domain, but represent the same device, easily.

2 Ability to structurally connect to ports of such components such that
equivalent ports do not have to be re-connected, when models of differ-
ent domains are swapped in.

3 Ability to automatically insert conversion models between domains to
preserve an accurate representation of the design

4 Ability to model conversion at various abstraction levels (e.g. ideal, sim-
ple mos, detailed mos, etc.)

Mixed Nets, Conversion Models, and VHDL-AMS 33

5 Ability to specify additional interface elements of a conversion model to
be connected to model things like power supply accurately.

6 Ability to configure precisely and succinctly what conversion model is
instantiated at each instance of a mixed connection in the design.

7 Preserve all VHDL-AMS semantics for strong type and nature checking.

The first requirement is outside the scope of conversion model insertion, but
has a close relationship to it. With the current language definition, the instanti-
ation statement must be rewritten when its component interface changes, which
is what happens across domains.

4.2 The Structural Wire

The first feature needed for robust support of design composition provides
the ability to create mixed nets while preserving the strong typing of the lan-
guage. We propose to introduce a structural wire as a new object class into
the language. The kinds of objects of interest are the terminal, the quantity,
the signal and the wire. A wire is declared and may be used to connect to a
port of a model. The corresponding port formal may be any object (i.e., sig-
nal, quantity, terminal, or another wire). While the other object classes have
a specific subtype or subnature, a wire is purely structural and one is allowed
to connect a wire to anything. A wire does have a shape. The concept of its
shape refers to whether it is a scalar or a composite wire. A composite wire
may be an array or a record. The declaration of the shape of a wire has same
flexibility for arrays and records as subtypes and subnatures, as it builds on
the current language features cleanly: one thinks of declaring a wire to be of
the same shape as an existing subtype or subnature. The elements of a wire
are named in a similar fashion as the elements of an object of the associated
subtype or subnature: indexed names and selected names whose prefix is a
composite wire are supported. A subelement of a wire is a wire.

The proposed language extensions to support wires include the semantics of
wires and shapes, two attribute names that define the shape of a type or nature,
the syntax of a wire declaration, and trivial enhancements to the object and
interface declarations to include wires. The relevant new syntax elements are
as follows:

T’SHAPE
Kind: Shape.
Prefix: Any type denoted by the static name T.
Result: The shape of the type denoted by T.

N’SHAPE
Kind: Shape.

34 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Prefix: Any nature denoted by the static name N.
Result: The shape of the nature denoted by N.
wire declaration ::=

wire identifier list : shape indication ;
interface wire declaration ::=

wire identifier list : shape indication
shape indication ::=

type mark ’ SHAPE | nature mark ’ SHAPE

4.3 The Behavioral View of a Wire

There is a need to reference a wire as if it were a signal, quantity, or ter-
minal in behavioral code, but that is not allowed due to the strong typing of
the language. One workaround is to re-factor the design to always isolate the
behavioral code from its structural interfaces at the block interface level. But
that is as onerous as manual insertion of conversion models!

We believe that a better approach is to provide such access to a wire through
the concept of a view of a wire. A wire view specifies sufficient information
about the class, typing, and mode of access to satisfy all strong typing rules
of VHDL-AMS. In effect, one is saying this wire is viewed as an object of
the desired type or nature. Of course, this may ultimately imply automatic
insertion of an appropriate conversion model in the block where the wire view
is referenced. The proposed definitions for wire views are as follows:

W’TERMINAL(N)
Kind: Terminal.
Prefix: Any wire denoted by the static name W.
Parameter: A nature mark denoted by the name N.
Result nature: The nature defined by the nature mark N.
Result: A terminal whose nature is N.
Restrictions: N’SHAPE must match the shape of W

W’QUANTITY(T, mode)
Kind: Quantity.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the quantity defined
by the wire view is used. Must be either in or out.

Result type: The type defined by the type mark T.
Result: A quantity whose type is T and whose mode is

as specified.
Restrictions: T’SHAPE must match the shape of W

W’SIGNAL(T, mode)

Mixed Nets, Conversion Models, and VHDL-AMS 35

Kind: Signal.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the signal defined by
the wire view is used. Must be in, out, inout, or buffer.

Result type: The type defined by the type mark T.
Result: A signal whose type is T and whose mode is as specified
Restrictions: T’SHAPE must match the shape of W

4.4 The Elaborated Model of the Mixed Net

The wire object forms a part of a mixed net. When a VHDL-AMS design
is elaborated, the mixed net is elaborated. After semantic checks, a simulat-
able model will be produced, complete with automatically inserted conversion
models wherever needed.

The elaboration of a mixed net involves:

1 Insertion of wire views at each port association element where either the
formal or the actual, but not both, is a wire

2 Overall classification of the mixed net, which determines how it is mod-
eled.

3 Determining the specific type or nature of each of its wires.

4 Mode propagation and semantic checks of each connection to determine
validity

5 Binding of conversion models to each wire view

In a first step to classify a wire implementing a mixed net, each wire that is as-
sociated with an actual or formal that is not a wire is replaced by a wire view.
The object class, type or nature, and mode are obtained from the object associ-
ated with the wire. After this replacement has been made, each connection has
a formal and an actual that match in object class and type or nature, thereby
satisfying the strong typing of the language.

In the second step, each wire is converted to a terminal, a quantity, or a sig-
nal. If any wire view anywhere in the mixed net is a terminal, the entire mixed
net will be classified as a node. If not, but if there is a wire view that is a quan-
tity, the mixed will be classified as a quantity net. There are rules governing the
formulation of quantity nets to account for solvability. Finally, if all wire views
are signals, the entire mixed net will be classified as a signal net. In either case,
the nature of the node or the type of the quantity or signal net is obtained from
the appropriate wire views. The result of following these precedence rules

36 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

is to create a net that preserves the accuracy of the connected objects. Wire
conversion fails if a mixed net has incompatible wire views, for example two
wire views that are terminals of different natures, or two wire views that are
quantities of different types. In other words, automatically inserted conversion
models may only serve to convert between different domains. They are not a
back door to subvert strong typing.

When a mixed net has been classified to be of a particular class and type or
nature, it is elaborated as if it were a net of that class and type or nature. If it is
a quantity net or a signal net, each formal port that was converted from a wire
must be given a mode. The mode is determined using the modes of all wire
views of this port and of all formal ports with which this port is associated as an
actual. The rules guarantee that the language rules about modes at a connection
are satisfied.

The result of these steps is a consistent implementation of each mixed net at
the accuracy requested, and clearly identified locations where conversion mod-
els must be inserted. These locations are the locations of the wire views. Since
the properties of the converted wire are known as well as the properties of the
other end of each wire view, we have enough information to bind one repre-
sentative of a collection of conversion models to each wire view. Of course,
if the two ends of a wire view are type or nature compatible, no conversion is
needed.

4.5 Automatic Conversion Models and Wire
Configuration Rules

The remaining issue is the specification of a particular entity/architecture for
each instance of a conversion model and its proper instantiation. A wire con-
figuration specification identifies a collection or a class of wires and associates
binding information with the wire views of these wires. The wires may appear
in the port association list or the declarative region of the block in which the
wire configuration specification appears and any block nested within the block.

wire configuration specification ::=
for wire object specification

{ conversion specification }
end for ;

object specification ::=
terminal name list : nature mark
| quantity name list : [in | out] type mark
| signal name list : [mode] type mark

name list ::=
simple name { , simple name }
| others

| all

Mixed Nets, Conversion Models, and VHDL-AMS 37

A conversion specification associates binding information with wire views
of the wires identified by the enclosing wire configuration specification.

conversion specification ::=
for object specification binding indication ;

The binding indication of a conversion specification supports binding any
entity/architecture pair with a wire view specified by the combination of its
object specification and wire object specification of the enclosing wire config-
uration specification. For an a2d, d2a or bidirectional conversion model, this
includes architectures converting between the reference quantity or the contri-
bution quantity of the terminal involved and the object at the other end of the
conversion model. Additionally, the generic map and port map of the bind-
ing indication provide the means to associate the formal arguments and ports
of the conversion model specified by the binding indication with actual argu-
ments and ports. Semantically, the existing definition of a binding indication
must be extended slightly.

Wire configuration specifications may appear anywhere a configuration
specification may appear, and additionally in the declarative region of an entity.
They may also be separately specified in a configuration declaration. A wire
configuration specification applies to the elaboration of the region in which it
has been declared and in the sub hierarchy of the design rooted at that region,
unless it is superseded by a more specific rule. (It is a detail to state carefully
that there is a similar mapping of a rule declared in a block of configuration
declaration to sub hierarchies of the design.). A wire configuration specifi-
cation supersedes a prior rule if it specifies the same wire view, but appears
lower in the design hierarchy. There are other possible ways to map rules to
the design hierarchy, but that is a usability issue we don’t discuss here.

4.6 Examples

Digital and analog implementation of inverter model using explicit wire
views:

library ieee;
use ieee.electrical systems.all;
entity inverter is

port (wire input, output: REAL’SHAPE;
terminal supply: electrical);

end entity inverter;
architecture digital of inverter is

begin

output’SIGNAL(BIT, out) <= not input’SIGNAL(BIT,in);

38 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

end architecture digital;
architecture analog of inverter is

quantity vin across input’TERMINAL(electrical);
quantity vout across iout through output’TERMINAL(electrical);
quantity vcc across supply;

begin

vout == vcc – vin;
end architecture analog;

Wire configurations:
for terminal w1, w2: electrical

– named wires converted to terminals with nature electrical
for signal all: in std logic use entity work.mosa2d

port map (a=>wire, d=>signal);
end for;
for terminal others: electrical

– other wires converted to terminals with nature electrical
for signal all: in std logic use entity work.a2d

port map (a=>wire, d=>signal);
for signal all: out std logic use entity work.d2a

port map (d=>signal, a=>wire);
for quantity all: in REAL use entity work.tq

port map (a=>wire, q=>quantity);
end for;

4.7 Open Issues

There are open issues at several levels. Conceptually, we believe there is in-
sufficient information if a wire as a formal is assiciated with a quantity or signal
as an actual and the wire is converted to a node. In this situation, no informa-
tion is available as to what the mode of the corresponding wire view should be.
It is unresolved whether it is possible to support a connection association ele-
ment whose formal is a wire and whose actual is not a wire. Definitionally, we
have not worked out the semantics to make a wire configuration specification
applicable across a sub hierarchy of a design. The definition of the elaboration
semantics that involve the steps after a wire has been classified as either a ter-
minal, or a quantity, or a signal, are incomplete. Initialization of a net needs
further analysis. Many other places in the LRM need minor changes to support
the described functionality; these places have not been identified.

We chose a mixed net partitioning model for accuracy and rejected addi-
tional requirements that may improve performance by reducing conversion
model count. The complexity in language definition as well as for user, model
writer, and simulator implementor is judged not to be worth the potential gain.

Mixed Nets, Conversion Models, and VHDL-AMS 39

Perhaps there are some important use cases that we are overlooking. In any
case, adding support for such a partitioning strategy is not likely to invalidate
any of the proposed language changes, only to extend them.

5. Conclusion

There is need to support structural design methodologies in mixed-signal
modeling that lead to the creation of mixed nets. VHDL-AMS is effective
at describing a wide range of mixed systems, but structural decomposition or
bottom-up composition of mixed-signal components is not well supported. In
particular, connections across domains, that is, mixed nets, are not allowed.
The proposed language extensions provide the needed support for these me-
thodologies using the concept of a wire and automatically inserted conversion
models. It is possible to design good conversion models to effectively balance
accuracy and performance of the mixed net. The wire object class adds im-
portant structural flexibility to the language while, through the wire resolution
rules, preserving the strong semantics of the language type and nature system.
Rule-based automatic conversion model insertion supports accuracy with very
fine discrimination of what conversion model to use in any mixed connection,
yet makes it very simple to generalize about model choice. Overall, there is
a good opportunity to improve VHDL-AMS to support the re-configuration of
mixed-signal systems effectively. The authors are working through a formal
language change proposal for VHDL-AMS and welcome feedback.

References

P. Ashenden, G. Peterson, D. Teegarden: The System Designer’s Guide to
VHDL-AMS. Morgan-Kaufman Publishers; 2003.

E. Christen, K.Bakalar, A.M. Dewey, E. Moser: Analog and Mixed-Signal
Modeling Using the VHDL-AMS Language; Tutorial at 36th Design Au-
tomation Conference, 1999

IEEE Std. 1076.1 - 1999 IEEE Standard VHDL Analog and Mixed-Signal Ex-
tensions

Verilog-AMS language Reference Manual, Version 2.0. Open Verilog Interna-
tional; February, 2000.

Chapter 3

MONTE CARLO SIMULATION

USING VHDL-AMS

Ekkehart-Peter Wagner
Siemens VDO Automotive AG
Regensburg, Germany

ekkehart-peter.wagner@siemens.com

Joachim Haase
Fraunhofer-Institut Integrierte Schaltungen
Branch Lab EAS Dresden, Germany

Joachim.Haase@eas.iis.fraunhofer.de

Abstract Monte Carlo simulation is widely used in Spice-like circuit simulators. It allows
to obtain statistical information derived from estimates of the random variability
of circuit parameters. Multiple simulation runs are carried out with different sets
of parameters. VHDL-AMS provides flexible possibilities to specify nominal
and tolerance values and their distributions. Correlation between parameters can
easily be taken into account. This is especially important if behavioral models
are considered. The paper describes requirements and implementation aspects
of the Monte Carlo simulation using VHDL-AMS.

Keywords: Monte Carlo simulation, VHDL-AMS

1. Introduction

Within industrial applications the tolerance- and worst-case-analysis con-
sidering all known influencing factors of design parameters are required very
often. Reliability and yield of electronic circuits depend on the statistical char-
acteristics of such parameters. One method for analyzing the effects of toler-
ances is simulation using Monte Carlo methods. In a Monte Carlo simulation,
a mathematical model of a system is repeatedly evaluated. Each run uses dif-
ferent values of system parameters. The selection of the parameter values is

© 2005 Springer. Printed in the Netherlands.

41

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 41–54.

42 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

made randomly with respect to given distribution functions [O’Connor, 2002].
Monte Carlo simulation is very time consuming. A lot of simulation runs are
required to investigate the behavior of a system subject to the statistical dis-
tribution of parameters. Nevertheless, Monte Carlo simulation is very favored
simulating electrical circuits and systems. It is widely supported by Spice-like
simulation engines. Monte Carlo features are usually available for frequency
and time domain analysis [Vlach and Singhal, 1994].

In VHDL-AMS [IEEE Std 1076.1, 1999] applications it becomes increas-
ingly interesting to make Monte Carlo features available. The basic require-
ments for statistical simulation linked to VHDL-AMS are summarized by
Christen in [Christen, online]. His paper concludes that support for statistical
modeling can be provided using VHDL packages. He discusses the require-
ments for Monte Carlo and time series simulation support during the phase of
the VHDL-AMS language design. However, at the moment, eight years later,
a uniform standard approach to solve these problems in existing VHDL-AMS
simulators still does not exist to the knowledge of the authors. Some ideas con-
cerning time series simulation were reported in [Monnerie et al, 2003]. In this
paper we present first experiences how to implement some of the requirements
for Monte Carlo simulation [Christen, online]

Usage of the same model for nominal and Monte Carlo analysis

Assignment of different statistical distributions that are parameterizable
to each constant

Support of continuous and discrete distributions

Possibility to specify correlation between constants

From a practical point of view the following points should also be mentioned

Independent random number generation for any constant

Reproducibility of Monte Carlo simulation within the same simulation
tool

Reproducibility of Monte Carlo simulation in different VHDL-AMS simula-
tion tools would be desirable. We will start with a discussion of the implemen-
tation of random number generators for Monte Carlo simulation. Afterwards,
we will show how to implement these generators in VHDL-AMS. We will
continue with a simple example and conclude with some remarks about further
directions.

Monte Carlo Simulation Using VHDL-AMS 43

2. Random Number Generators

2.1 Basic Problems

Initialization of the Pseudo-Random Number Generator. One of the
basic problems in Monte Carlo simulation is the generation of random num-
bers. In Monte Carlo simulations of electrical circuits pseudo-random numbers
are typically used. Different approaches to generate such numbers exist. The
MATH REAL package [IEEE Std 1076.2, 1996] of the IEEE library provides a
procedure UNIFORM that returns a pseudo-random number with uniform dis-
tribution in the open interval (0, 1). The procedure is declared in the following
way:

procedure UNIFORM(variable SEED1,SEED2:inout POSITIVE;

variable X:out REAL);

The algorithm is based on the combination of two multiplicative linear con-
gruential generators. It was published by L’Ecuyer [L’Ecuyer, 1988]. An ad-
vantage of the L’Ecuyer generator is its long period [Graham, 1992]. The
VHDL implementation requires the seed values (SEED1, SEED2) to be ini-
tialized before the first call to UNIFORM. The seed values are modified after
each call to UNIFORM. In order to generate a chain of pseudo-random num-
bers, the seed values shall be set only in the first call of the procedure (see
Annex A.3 of [IEEE Std 1076.2, 1996]). In the next call the seed values from
the previous call have to be used. A different chain of numbers is started every
time the seed values are set.

The Ada implementation of the L’Ecuyer generator provides an INITIAL-
IZE procedure that sets two global initial seed values that are updated during
every call of the random number generator [8]. An equivalent procedure is
not available in the MATH REAL package. However, a similar functional-
ity is needed in Monte Carlo simulations. Thus, the pseudo-random generator
is used to initialize constant objects declared in different design units. The
state of the generator has to be passed from one call to the next one by using
seed values from a previous call. This can be done in a well-defined way for
instance inside a PROCESS statement. The seed values can be held in VARI-
ABLE objects. This approach can not be used e.g. during initialization of
generic constants or constants that are declared in different design units. Thus,
another approach has to be used. The state of the random number generator
can be held for example in a

SHARED VARIABLE or a

FILE

IEEE DASC P1076a Shared Variable Working Group specified mutually ex-
clusive access semantics for shared variables [IEEE PAR 1076a, online]. If this

44 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

work could be the base for an extension of the capabilities of random number
generation in the IEEE packages. The seeds could be global variables, func-
tions to initialize their values (INIT SEED) could be provided, and the UNI-
FORM procedure would have to be modified accordingly. But shared variables
are currently not implemented in all available VHDL-AMS simulators.

Due to these existing limitations concerning shared variables we followed
the second approach. Seed values are read and written into a file before and
after a call of the UNIFORM procedure in the context of Monte Carlo simula-
tion. If at the beginning of a Monte Carlo simulation run the same file is used
then the same results will be produced by the simulator. It is assumed that
in the elaboration phase (see [IEEE Std 1076.1, 1999], chapter 12) the calls
of the UNIFORM procedure will be carried out in a sequential manner. The
elaboration is carried out in the same way prior to the execution phase in every
simulation run. Thus, reproducibility is assured if the elaboration phase starts
with the same file. On the other hand, every run during Monte Carlo simula-
tion starts with a different file and can work with a different parameter set. The
next simulation run starts with the updated file of the last run. This procedure

UNIFORM procedure call

read seed values write updated values seed

output (0,1) distributed random number

Figure 3.1. UNIFORM procedure call in the elaboration phase.

only sufficiently works in the elaboration phase. It is evident that it is not cy-
cle pure. Thus, it can not be applied in the execution phase of a VHDL-AMS
simulation.

Transformation of Uniform Random Distribution. Many process and
device model parameters are not (0, 1) uniform distributed. Generally applied
distributions used in Monte Carlo simulation are for example:

Uniform distribution between a and b (a < b)

Monte Carlo Simulation Using VHDL-AMS 45

Gaussian distribution N(µ, σ) (also called normal distribution) with
mean value µ and standard deviation σ

Bernoulli distribution having two possible outcomes with probability
p = 0.5.

Other distributions as triangular and lognormal distributions can also be im-
plemented. Furthermore, the support of user-defined discrete and continu-
ous distributions is expected. Non-uniform distributed random numbers can
be generated using von NeumannÆs method of generating random samples
by evaluating the position of uniform random numbers in a given rectangle
or by transformation. The first methods generate samples from any distribu-
tion whose probability density function is piecewise continuous and monotonic
[Forsythe, 1972]. It can be used to take user-defined continuous distributions
into account. In the second approach, a (0, 1) uniform distributed value is
transformed through a function to a new value that follows a non-uniform dis-
tribution. How this works will be shown in the following examples. Let X be
a (0, 1) uniform random distributed number then

Y = a + (b − a) · X (3.1)

is a uniform distributed number between a and b. Let X1 and X2 be indepen-
dent (0, 1) uniform distributed numbers then

Y1 = µ + σ ·
√

−2 · ln(X1) · cos(2π · X2) (3.2)

Y2 = µ + σ ·
√

−2 · ln(X1) · sin(2π · X2) (3.3)

are N(µ, σ) normal distributed numbers [Box and Muller, 1958]. Another way
is to start with 12 (0, 1) uniform distributed numbers Xi(i = 1 to 12) then

Y = µ + σ ·

(
n∑

i=1

Xi − 6

)
(3.4)

is also N(m, σ) normal distributed [Schrüfer, 1990]. Let X be a (0, 1) uniform
distributed number then

Y =

{
v1 ∈ R for X ≤ 0.5
v2 ∈ R otherwise

(3.5)

is a Bernoulli distributed number with the two real values v1 and v2 that oc-
cur with the same probability. We can interpret v1 and v2 as minimum and
maximum of a parameter. We use the name worst case distribution for this
distribution in the following. In the same way, random numbers with other dis-
tributions can be generated. Figure 3.2 shows how to combine these random

46 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

branching w.r.t. required distribution

read seed values from file

call procedure UNIFORM from IEEE
package MATH_REAL

write seed values to file

RNDUniformDist RNDNormalDist RNDWorstCase

UNIFORM

see Fig. 1

Figure 3.2. Principle of non-uniform random number generation.

number generators in VHDL-AMS. The mean value of the random numbers
is the nominal value of the random constant that has to be initialized during
Monte Carlo simulation. Figure 3.2 describes the main structure of a function
RND that can be used to initialize random constants in Monte Carlo simulation
runs. The function will be introduced in the next section. Figure 3.2 can be
extended by further general distributions.

Correlation between Random Numbers. In some cases, statistical cir-
cuit simulation requires the consideration of the correlation between random
variables. This correlation is described by the correlation matrix R. The corre-
lation matrix is a symmetric positive (semi-)definite matrix. Only in the case of
Gaussian random numbers it is easy to generate correlated Gaussian random
numbers [Esbaugh, 1992]. It is assumed that Y1, Y2, . . . , Yn shall be Gaus-
sian random numbers with mean values µ1, µ2, . . . , µn and standard deviation
σ1, σ2, . . . , σn. R is the correlation matrix. The element rij (−1 ≤ rij ≤ 1)
describes the correlation between Yi and Yj . To make Y1, Y2, . . . , Yn available,
N(0, 1) normal distributed independent random numbers X1, X2, . . . , Xn are
generated. A Cholesky decomposition of R is carried out, i.e. R = GT · G.

Monte Carlo Simulation Using VHDL-AMS 47

Then it follows⎛
⎜⎜⎜⎝

Y1

Y2
...
Yn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

µ1

µ2
...
µn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

...
0 0 . . . σn

⎞
⎟⎟⎟⎠ · GT ·

⎛
⎜⎜⎜⎝

X1

X2
...
Xn

⎞
⎟⎟⎟⎠ (3.6)

That means in the general case, an algorithm that carries out Cholesky decom-
position has to be implemented. In simple cases (i.e. for small n) the equation
(3.6) can be solved analytically.

Example Y1 and Y2 are Gaussian random numbers with mean values
m1 and m2,and standard deviation σ1 and σ2. The correlation between Y1 and
Y2 is r12. We get

R =

(
1 r12

r12 1

)
=

(
1 0

r12

√
1 − r2

12

)
·

(
1 r12

0
√

1 − r2
12

)
(3.7)

and(
Y1

Y2

)
=

(
µ1

µ2

)
+

(
σ1 0
0 σ2

)
·

(
1 0

r12

√
1 − r2

12

)
·

(
X1

X2

)
(3.8)

That means

Y1 = µ1 + σ1 · X1 (3.9)

Y2 = µ2 + σ1 · r12 · X1 + σ2 ·
√

1 − r2
12 · X2 (3.10)

The equations (3.9) and (3.10) can easily be implemented. In practice, non-
Gaussian data have to be considered in numerous applications. Their proba-
bility density function can be expressed in many cases by a truncated Gram-
Charlier series expansion using central moments. Different algorithms are
proposed to generate correlated non-Gaussian random variables. A special
approach that uses the first four central moments is suggested in [Karvanen,
2003]. The handling of correlated random parameters depends on a lot of re-
quirements that may differ from application to application. VHDL-AMS pro-
vides a lot of facilities to support these requirements. However, it seems to be
difficult or requires a high effort to make some general methods available to
generate correlated non-Gaussian numbers beside trivial cases (e.g. two cor-
related Gaussian variables). This is, we do not consider these methods in the
following.

2.2 Implementation in VHDL-AMS

To realize the functionality described in section 2.1 two VHDL-AMS pack-
ages were developed:

48 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

package STATISTIC_GLOBAL

package STATISTIC

Both should be compiled into a logical library symbolically named MONTE
CARLO LIB.

Package STATISTIC GLOBAL. In the header of the package STATIS-
TIC GLOBAL two deferred constants are declared

constant GLOBAL_STATISTIC : GLOBAL_STATISTIC_TYPE;

constant GLOBAL_FILE_NAME : STRING;

The first constant allows to decide whether an analysis with nominal values or
a Monte Carlo simulation shall be carried out. The enumerated type GLOBAL
STATISTIC TYPE consists of the values GLOBAL NOMINAL and GLO-
BAL MONTE CARLO. The initialization of the constant is done in the pack-
age body (see also [Christen, online]). The constant GLOBAL FILE NAME
has to be initialized with the relative or full name of the file that carries the seed
values (compare Figure 3.1). The values are saved in ASCII format. Prior to
the first simulation, the initial values must meet the requirements concerning
SEED1 and SEED2 that are parameters of the UNIFORM procedure [IEEE
Std 1076.2, 1996].

Package STATISTIC. In the package body a function is declared that re-
alizes a random generator with (0, 1) distribution:

impure function UNIFORM01

return REAL is

variable RESULT : REAL;

variable SEED : INTEGER_VECTOR (0 to 1);

begin

SEED := READ_SEED;

UNIFORM (SEED(0), SEED(1), RESULT);

WRITE_SEED (SEED);

return RESULT;

end function UNIFORM01;

READ SEED and WRITE SEED are two further functions to read and write
from a file characterized by the constant GLOBAL FILE NAME. The function
UNIFORM01 corresponds to Figure 3.1. At the moment, the functions RN-
DUniformDistDIST, RNDNormalDist, and RNDWorst Case that correspond
with the equations (3.1), (3.4), and (3.5) resp. are declared. Other distributions
will be supplemented in the future. The code of the function RNDUnifor-
mDist demonstrates the implementation of (3.1). The first parameter is NOM-
INAL VALUE that corresponds to the mean value µ. The second parameter

Monte Carlo Simulation Using VHDL-AMS 49

TOL determines a = µ · (1−TOL) and b = µ · (1 + TOL) in (3.1). The third
parameter RND01 is transferred from the result of a call of the random number
generator UNIFORM01:

function RNDUniformDist

(NOMINAL_VALUE : REAL; TOL : REAL; RND01 : REAL)

return REAL is

variable A : REAL;

variable B : REAL;

variable RESULT : REAL;

begin

A := NOMINAL_VALUE*(1.0 - TOL);

B := NOMINAL_VALUE*(1.0 + TOL);

RESULT := A + RND01*(B - A);

return RESULT;

end function RNDUniformDist;

In the header of the package STATISTIC, the functions SET TOL Uniform-
Dist, SET TOL NormalDist, SET TOL WorstCase, and RND are made avail-
able:

-- Set tolerances for uniform distributed values equ. (1)

function SET_TOL_UniformDist (

TOL : REAL -- A = NOMINAL_VALUE*(1.0-TOL)

) -- B = NOMINAL_VALUE*(1.0+TOL)

return TOL_DATA;

-- Set tolerances for normal distributed values equ. (4)

function SET_TOL_NormalDist (

SIGMA : REAL -- standard deviation

)

return TOL_DATA;

-- Set tolerances for Bernoulli distribution equ. (5)

function SET_TOL_WorstCase (

TOL : REAL -- V1 = NOMINAL_VALUE*(1.0-TOL)

) -- V2 = NOMINAL_VALUE*(1.0+TOL)

return TOL_DATA;

-- Function that changes NOMINAL_VALUE w.r.t. tolerances

50 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

function RND (

NOMINAL_VALUE : REAL;

TOL : TOL_DATA)

return REAL;

Using the SET TOL functions a value can be assigned to a data object of the
type TOL DATA that is also declared in the package STATISTIC. By evalu-
ating the data object the type of the distribution and the tolerance values can
be determined. The function RND realizes the flow given by Figure 3.2. If
the constant GLOBAL STATISTIC from the package STATISTIC GLOBAL
is set to GLOBAL NOMINAL then the function RND returns the NOMI-
NAL VALUE. Otherwise, it generates a random number with a mean value
that equals the NOMINAL VALUE and with a distribution given by the sec-
ond parameter TOL. The TOL parameter can be initialized with the SET TOL
functions.

Usage of Packages. The functions can be used together with existing
models. Let us have a look at the VHDL-AMS model of a resistor. P and M
are the electrical terminals. The value of the resistance is given by the generic
parameter R:

library IEEE;

use IEEE.ELECTRICAL_SYSTEMS.all;

entity RESISTOR is

generic (R : REAL);

port (terminal P, N : ELECTRICAL);

end entity RESISTOR;

architecture BASIC of RESISTOR is

quantity V across I through P to N;

begin

V == R*I;

end architecture BASIC;

This model can be instantiated in a VHDL-AMS architecture. The functions
that are declared in the header of the package STATISTIC can be used to assign
random values to the generic parameter R. This may look like

library MONTE_CARLO_LIB;

use MONTE_CARLO_LIB.STATISTIC.all;

...

R1: entity RESISTOR (BASIC)

generic map (R => RND(5.0E3, SET_TOL_WorstCase(0.01))

port map (P => ..., N => ...)

Monte Carlo Simulation Using VHDL-AMS 51

The nominal value of the resistance is 5.0 kΩ. During Monte Carlo Simulation
5.0 kΩ± 1% are used. Following this approach, existing models can be used
in Monte Carlo simulation. Furthermore, it is also possible to define special
architectures that describe elements with given tolerances. For instance, the
following architecture TEN PERC describes a resistor with 10 % tolerance:

library MONTE_CARLO_LIB;

use MONTE_CARLO_LIB.STATISTIC.all;

architecture TEN_PERC of RESISTOR is

constant TOL : TOL_TYPE := SET_TOL_WorstCase(0.1);

constant RES : REAL := RND(R, TOL);

quantity V across I through P to N;

begin

V == RES*I;

end architecture TEN_PERC;

This model can then be instantiated without special knowledge of the statistical
packages:

...

R1: entity RESISTOR (TEN_PERC)

generic map (R => 5.0E3)

port map (P => ..., N => ...)

...

3. Example

One of the advantages of using Monte Carlo simulation with VHDL-AMS is
the possibility to apply it on mixed-signal circuits. Figure 3.3 shows a typical
example.

DIN
AOUTDAC

Rload

VHDL-AMS model (extract)

-- 1 % tolerance

constant t1 : TOL_DATA

:= SET_TOL_WorstCase(0.01);

...

constant Rload : REAL

:= RND (1.0E6, t1);

constant Cload : REAL

:= RND (1.0E-12, t1);

Values of load resistor and load capacitor are random parameters. The sta-
tistical influence of output resistors of the DAC is investigated in the Monte
Carlo simulation.

52 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 3.3. DAC with input signal DIN and voltages at AOUT.

4. Further Directions

We gained first experiences with Monte Carlo simulation using VHDL-
AMS. Further work will include other probability distributions. We will also
include user-defined discrete and piecewise-linear distributions. We also have
to check the quality of the generated numbers. To our opinion, it should be
checked whether the definition of statistical packages for Monte Carlo simula-
tion could be part of further activities of the 1076.1 working group. A problem
to be solved in a unified and easy way particularly concerns the initialization of
UNIFORM or an equivalent procedure and the update of the seed values in the
Monte Carlo simulation runs. It should be assured that Monte Carlo simula-
tion using VHDL-AMS delivers the same results in different simulators. Sim-
ulators should support Monte Carlo simulation of VHDL-AMS descriptions.
Some aspects are for instance

Supplement of multi-run-simulations into the list of available analyses.
The simulation program should know that the Monte Carlo feature is
used. This could avoid unnecessary repetition of some of the stages of
the evaluation phase as for instance reading the netlist.

Support of the initialization of (global) seed values in an easy way

Implementation of statistical post-processing-tools (for generating his-
tograms, calculating envelopes, mean values, variances, ...)

Monte Carlo Simulation Using VHDL-AMS 53

Furthermore, the usage of Monte Carlo simulation together with the behav-
ioral modeling language VHDL-AMS opens a lot of other opportunities. For
instance, results from Monte Carlo simulation could be used for the generation
of response surface models [Box and Draper,1987]. In this case, parameters
and selected simulation results of each run should be saved and evaluated af-
terwards. One could also influence the generation of parameters for different
simulation runs by some add-on tools. There is no limit to other ideas.

References

Box, G.E.P., and Draper, N.R. (1987). Empirical Model-Building and Respon-
se Surfaces. New York: John Wiley & Sons.

Box, G.E.P., and M.E. Muller. “A Note on the Generation of Random Normal
Deviates,” Annals Math. Stat. 29(1958), pp. 610–611.

Christen, E. “Statistical Modeling,” Available: http://www.vhdl.org/

analog/wwwpages/language_proposal/STAT.html

Esbaugh, K.S. “Generation of correlated parameters for statistical circuit sim-
ulation,” Trans. on CAD 11(1992)10, pp. 1198–1206.

Forsythe, G.E. (1972). Von Neumann’s comparison method for random sam-
pling from the normal and other distributions. Report CS-TR-72-254. Stan-
ford University. Available: ftp://reports.stanford.edu/pub/cstr/
reports/cs/tr/72/254/CS-TR-72-254.pdf

Graham, W.N. “A Comparison of Four Pseudo Random Number Generators
Implemented in Ada,” ACM SIGSIM Simulation Digest 22(1992)2, pp. 3–
18.

IEEE Standard VHDL Analog and Mixed-Signal Extensions (IEEE Std
1076.1-1999). Approved 18 March 1999. Available: http://www.

designers-guide.com/Modeling/1076.1-1999.pdf

IEEE Standard VHDL Mathematical Packages (IEEE Std 1076.2-1996). Ap-
proved 19 September 1996.

Karvanen, J. “Generation of Correlated Non-Gaussian Random Variables from
Independent Components,” Proc. 4th Int. Symposium on Independent Com-
ponent Analysis and Blind Signal Separation ICA 2003, April 2003, Nara
(Japan), pp. 769–774.

L’Ecuyer, P. “Efficient and Portable Combined Random Number Generators,”
Communications of the ACM 31(1988)6, pp. 742–774.

Monnerie, G., N. Lewis, D. Dallet, H. Levi, and Robbe, M. “Modelling of
transient noise sources with VHDL-AMS and normative spectral interpreta-
tion,” Proc. Forum on Specification & Design Languages FDL’03, Septem-
ber 23–26, 2003, Frankfurt/M., pp. 108-119.

O’Connor P.D.T. (2002). Practical Reliability Engineering. Chichester: John
Wiley & Sons Ldt.

54 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Schrüfer, E. (1990). Signalverarbeitung. München-Wien: Carl Hanser Verlag.
Shared Variable WG (IEEE PAR 1076a) Homepage. Available: http://www.

eda.org/svwg/

SystemVision. Mentor Graphics Corp. Product Information. Available: http:
//www.mentor.com/system

Vlach, J., and K. Singhal (1994). Computer Methods for Circuit Analysis and
Design. New York: Van Nostrand Reinhold.

Chapter 4

EARLY PREDICTION OF

CONDUCTED-MODE EMISSION

OF COMPLEX IC’S

Anne-Marie Trullemans-Anckaert1, Richard Perdriau2, Mohamed Ramdani2

and Jean-Luc Levant3
1UCL-DICE Louvain-la-Neuve Belgium, 2ESEO Angers France, 3ATMEL Nantes France

Abstract A new design methodology is presented for predicting the conducted-mode
emission generated by an integrated circuit. Using the Integrated Circuit Electro-
magnetic Model (ICEM) developed by the International Electro-technical Com-
mission (IEC), the influence of the internal power supply distribution is mod-
eled, and the sensitivity to design options or external factors such as supply
voltage variations may be studied. Using ICEM models written in VHDL-AMS
leads to efficient simulation, from the early steps of the design process, of self-
perturbation and self-immunity of a complex integrated circuit. These ICEM
models may be part of an IP-block definition, preserving confidentiality. Provid-
ing an early stage information on the EMC quality of the chip facilitates the way
to a first-time working silicon. A full 8-bit micro-controller with core, memo-
ries and I/O blocks, from an existing industrial design, is used to validate the
methodology.

Keywords: Electromagnetic compatibility, ICEM, VHDL-AMS, prediction, modeling, sim-
ulation.

1. Introduction

Early performance estimation and quality validation remains a key concern
in the design of complex IC’s. IP’s definition and design reuse solve partly
that problem for area, delay and even power, but characteristics like Electro-
magnetic compatibility (EMC) compliance is rarely addressed. Industrial de-
signs are directly concerned with electromagnetic compatibility, particularly
for portable equipments: an electronic system must be certified for given emis-
sion and susceptibility levels. Traditionally EMC compliance was only con-

© 2005 Springer. Printed in the Netherlands.

55

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 55–67.

56 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

sidered at the board level. This includes of course radiating effects but also
simple supply transients: the di/dt of supply currents will directly pollute the
environment. And the higher complexity, lower dimensions and higher switch-
ing rates of modern chips will produce higher spike density on the supply rails.
It becomes a real necessity to be able to estimate, from the first steps of the
design process, the effect of architecture choices on EMC properties.

Till recently, the classical approach to this problem was to measure produced
chips, generally in packages, to certify the design. The only correction action
may be to choose another package, change some lumped elements or even
re-design the chip, with a new silicon, but without any real help for the chip
designer. Only recently [Steinecke et al., 2004] some comparison between
models and measures, using gate level models was presented. But of course
this leads to huge simulations, and requires to know the precise gate structure
and routing details at the time of each simulation.

The focus of this research is to address the problem at the architecture level,
as early as possible during the design process, to efficiently estimate current
supply transients of a full chip, in a given package. At this level, each block is
better handled as a macro-function, without precise detail of the internal struc-
ture, even if the structure is already frozen, as for example when reusing IP’s.
Therefore we need an EMC model for each basic block. The model chosen is
directly inspired from the ICEM model [IEC EMC Task Force, 2001]. Classi-
cally, this model is derived from measures on a packaged chip in activity, and
is used to analyze the effect of the package itself on the CEM performances.
Defining ICEM models at the level of the macro-function basic blocks, and
assembling them in a mixed-mode simulation environment, we got a full chip
CEM model. As for the classical ICEM model, the basic block CEM models
are constructed to model the activity dependent current supply transients of
the particular block, the digital functionality itself being modeled by classical
VHDL code. The full chip simulation is then run in a VHDL-AMS environ-
ment, to allow complex stimuli to be applied, corresponding to a given digital
activity. Interconnections of blocks are modeled by lumped parasitic elements,
according to place and route of the blocks. To validate this model approach, the
results were compared to measures in the precise case of an industrial chip, an
8-bit micro-controller. The results gives good correspondence, at reasonable
computer cost.

2. Modeling IC conducted emission

The ICEM proposal developed in 2001 [IEC EMC Task Force, 2001] was
developed to model the effect of parasitic elements of board, package and chip
itself, on the spike shape of supply currents, and so helps to analyze the elec-
tromagnetic compatibility of a chip in its environment, in the domain of con-

Prediction of Conducted-Mode Emission of Complex IC’s 57

ducted emission. The parameters of the model are obtained by standard mea-
sures [IBIS 4.0] on a chip after foundry.

Figure 4.1 gives the principle of the measure, along with the equivalent
model which is extracted. In this model, the activity of the chip itself is mod-

Figure 4.1. Principle of the ICEM measure and equivalent model

eled by a complex switched current source Ib, and the internal power distribu-
tion is modeled with lumped elements, R, L and Cmetal . CMOS globalizes the
capacitance effect of the active elements. The power supply connector is mod-
eled by Rsma and Lsma , and the PCB wiring by Rpcb , Lpcb and Cpcb . This
approach uses a simple lumped model1, limited here to the VDD rail effect.
Rmeas is a small value resistance added to measure the supply current with a
differential probe. It should be noted that the Ib current is not directly measur-
able, but the values of the lumped elements can be derived by special analysis
techniques [Levant et al., 2002]. This approach is an efficient way to analyze
the effect of supply decoupling or a particular package on di/dt for example,
and is actually used in the final step of a PC board design.

3. The proposed methodology

In a top-down approach based on design reuse, the design itself is viewed
as an assembly process of well defined structures, characterized in terms of
silicon area, signal delays and power consumption, but generally with no in-
formation on the internal details, for confidentiality reasons. Moreover, con-
sidering all the details in a simulation will lead to excessive computer cost.
VHDL has solved part of the simulation bottleneck for digital systems, and
gives good evaluation of signal delays. Some extensions allow the estimation
of power, but no information is generally available in the digital domain for
transients on the supply rails. One objective of this research is to facilitate the
full chip simulation of supply transients, using high-level VHDL-AMS models
for the basic blocks, and ICEM models for the floor plan and package parasitic
elements.

58 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The global model is build by assembling the basic block models: each block
is modeled with an ICEM model representing its internal activity and parasitic
elements, and interconnections of the blocs are modeled by lumped elements.
Of course here the basic blocks are macro-functions which may be very com-
plex: these are classically of the level of complexity of what is stored as mem-
ory or core IP’s in an IP library.

To obtain the ICEM parameters of a block, a good practice may be to simu-
late this block as a SPICE model, in the particular environment of a given chip
(or any realistic environment), the rest of the chip being modeled by pure dig-
ital VHDL, in order to stimulate the block with realistic patterns. The ICEM
model is then derived by fitting the current source parameters to match the time
transients of the supply currents. Passive elements are mainly metal line and
parasitic MOS capacitances, which may be obtained from the SPICE net list,
knowing the internal structure. This structure is then summarized in a lumped
model, masking its details.

This job has to be done only once, and the result is stored in the IP library,
within the IP model. If the block itself is structured, a structured model may
be similarly derived. The practical example here after will give some strategy
to derive particular models.

On the top of the full chip, a lumped model, derived from measures, is
added for the package and the printed board. Every switched current source
is parametrized by the digital stimuli of the block, and a VHDL-AMS model
is used to model the current source. The interest to use a VHDL-AMS model
for the transient current of a given digital part is to produce an activity model
driven by the actual applied signals, generated by simple VHDL digital models,
which are efficient in simulation. This leads to a light mixed-mode model for
complex chips, just fitted to the exact desired characteristics.

4. A practical example

The example of a particular micro-controller, the 8-bit µC 80C51 ‘VIPER’
from ATMEL, in a 0.35µ technology [Perdriau et al., 2002], is used to present
the proposed methodology. Figure 4.2 shows the 4 main blocks of the internal
structure of this µC: the CPU core, the EEPROM memory storing the program
code, the SRAM memory for data, and the I/O drivers.

Figure 4.3 shows the VDD supply current measured in four different opera-
tional modes, from which spectral characteristics can be derived. These modes
are chosen to see the effect of the different architectural blocks on the supply
consumption and transients: in the RESET mode, only the CPU core is ac-
tive; in the NOP mode, the opcode address decoder is added; in the instruction
RRA (rotate right accumulator) the ALU is active; the MOV instruction uses
the address generator and the SRAM.

Prediction of Conducted-Mode Emission of Complex IC’s 59

CORE
I/O

driver

SRAM
data

EEPROM
program

code

VDD
I(t)

I(t)

CORE
I/O

driver

SRAM
data

EEPROM
program

code

VDD
I(t)

I(t)I(t)

Figure 4.2. Example of IC structure under test for ICEM measures

Figure 4.3. Measurement of the VDD supply current of an 8-bit µcontroller in 4 activity modes
(8-bit µcontroller 80C51 ‘VIPER’ from ATMEL, in a PLCC 44 pins package, techno 0.35µ)

From these experiments, it is clear that the ALU action and the memory ac-
cesses are negligible, and that no instruction dependence is visible : only very
little spikes or offset changes can be observed. The main reason is probably
that in the case of such a CISC processor, all these spikes come from the clock
tree distribution, the ALU and the memories being much more slower. So the
first idea to focus on the CORE activity, and the I/O drivers, in order to derive a
model for this internal activity, which will be used to build the full chip model.

A general global model (Figure 4.4) is used to simulate the full chip for
EMC characterization. Each basic block is here represented by a transient
current source which models its dynamic internal activity. This can be obtained
from full SPICE-level simulation, which is of course very time-consuming.
The main blocks to be modeled as VHDL-AMS models are the CPU Core and

60 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 4.4. Block-based model of an IC for ICEM characterization

the I/O modules, which are dominant here. Passive components are derived
from floor plan and P&R information, or could be simple prospective values.
To derive the model, every block is successively simulated in its environment,
the others being simulated by simple digital VHDL models. So the analyzed
block is simulated in a realistic environment, corresponding to the complex
behavior.

Example of a general block model:

ENTITY ICEM IP Model IS

GENERIC (Tr : real); -- rising time

PORT (controls : IN std logic; -- * N inputs

TERMINAL Vdd, Vss : electrical);

END ENTITY ICEM IP Model;

ARCHITECTURE ICEM OF ICEM IP Model IS

-- CONSTANT definitions for internal R, C and L

TERMINAL Vddgen : electrical;

QUANTITY Vb ACROSS Isw,Ic THROUGH Vddgen TO Vss;

QUANTITY Vrl ACROSS Irl THROUGH Vdd TO Vddgen;

BEGIN

-- Isw computation : to be adapted

Ic == (Cmos + Cmetal) * Vb’dot;

Vrl == Rint * Irl + Lint * Irl’dot;

END ARCHITECTURE ICEM;

Each block is modeled by an entity connected between the internal Vdd
and Vss rails (PORTs defined as electrical TERMINALs), with digital control
inputs (PORT signals IN). GENERICs are used to have the input rise time
delay as a parameter to the model. Local wiring parameters (Rm, Lm) and
metal and MOS capacitances (global value in Cm) are here constants internal

Prediction of Conducted-Mode Emission of Complex IC’s 61

to the architecture (GENERICs could also be used). The internal switching
current source has to be adapted to the particular blocks modeled. Here too,
parameters may be internal constants or GENERICs.

5. The CPU core model

From a complete SPICE simulation of the core in RESET mode, an event-
driven, piecewise linear (PWL) model, matching the simulated waves, is de-
rived [Levant et al., 2002], and used to model the supply current activity of the
core, in response to the digital inputs.

Example of the structure of the entity and architecture definitions:

ENTITY CoreGenerator IS

GENERIC (Tr : real); -- rise time for control signals

PORT (XTAL1A : IN std logic;

TERMINAL Vdd, Vss : electrical);

END ENTITY CoreGenerator;

ARCHITECTURE a OF CoreGenerator IS

-- CONSTANT and local SIGNAL definitions

BEGIN

PROCESS

BEGIN

LOOP -- for waiting driving signal XTAL1A

-- compute PWL parameters and activates Tstart

END LOOP;

END PROCESS;

IF domain = quiescent domain USE

-- starting values in DC

ELSE

-- compute currents

END USE;

BREAK ON Tstart;

END ARCHITECTURE a;

In this model, XTAL1A is a simple digital VHDL signal, but Vdd and
Vss are VHDL-AMS terminals (electrical), to model the current activity. The
generic map gives the particular rising delay of the signal, which is used in the
model.

As expected, the internal current spikes produce external reduced spikes,
due to the smoothing effect of packaging and supply decoupling. Compared
to measures in RESET mode, this gives acceptable results (Figure 4.5): peak
values and transition times, compared to the top left screen of Figure 4.3 are

62 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

in the same range, and very close. The main difference is the lack of the small
additional pulse in each clock period, which comes from the clock driver. The
simulation time goes down from 3 hours for the SPICE net list simulation to 4
seconds for the VHDL-AMS model.

Figure 4.5. Core current in the RESET phase - Left: complete SPICE simulation: internal
(top) and external (bottom) current - Right: VHDL-AMS model: internal (top) and external
(bottom) current

6. The memory blocks

A VHDL-AMS model for the SRAM memory block was developed, and is
detailed in [Perdriau et al., 2002, Perdriau, 2004]. The model is derived from
the analysis of the internal architecture of the 1280-byte SRAM block from
ATMEL. Separate models are given for the address decoder, which activity
is address-dependent, and for the memory cells, which are not (only small
differences are observed due to the output drivers). This allows to fit well with
complete SPICE simulations, but in this application the spike current values
are in the order of 1/20 of the CORE currents. Even if not really significant
in this analysis, the VHDL-AMS model will be added to the standard VITAL
model of the SRAM in the complete simulation. A simulation example of a
memory access takes 2 seconds for this model, compared to 1 hour for the
equivalent SPICE net list.

Example of the structure of the entity and architecture definitions:

ENTITY RAM1280Generator h IS

GENERIC (Tr : real); -- rising time

PORT (ADD : IN std logic vector(10 DOWNTO 0);

Prediction of Conducted-Mode Emission of Complex IC’s 63

DATA : IN std logic vector(7 DOWNTO 0);

ME, WEN : IN std logic;

TERMINAL Vdd, Vss : electrical);

END ENTITY RAM1280Generator h;

ARCHITECTURE a OF RAM1280Generator h IS

QUANTITY Vb ACROSS Ib THROUGH Vss TO Vdd;

CONSTANT DecPulseTiYZ:real vector... -- Intensity vectors

CONSTANT DecPulseIiYZ01:real vector... -- 0->1 transition

CONSTANT DecPulseIiYZ10:real vector... -- 1->0 transition

-- local CONSTANT and SIGNAL definitions

BEGIN

...

PROCESS -- address decoder

...

BEGIN

LOOP

WAIT UNTIL ADD’event;

-- compute Hamming distances for X and YZ decoders

PeriodStart := now;

FOR n IN DecPulseTiYZ’low+1 TO DecPulseTiYZ’high LOOP

Istartd <= ...; -- Current at start point

deltaId <= ...; -- Current variation between points

IF n = DecPulseTiYZ’low+1 THEN

-- time for start and end points

ELSE

Tstartd <= ...; Tendd <= ...;

WAIT FOR DecPulseTiYZ(n)-DecPulseTiYZ(n-1);

END IF;

END LOOP;

deltaId <= 0.0; Istartd <= 0.0; previousADD <= ADD;

END LOOP;

END PROCESS;

-- idem for X decoder and cells

-- Current pulse generation memory cell activity

IF domain = quiescent domain USE

Ib == Istartd;

ELSE

Ib == Istartd + deltaId*(now-Tstartd)/(Tendd-Tstartd)

+ Istartm + deltaIm*(now-Tstartm)/(Tendm-Tstartm);

64 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

END USE;

BREAK ON Tstartd, Tstartm;

...

SPICE analysis of the EEPROM leads to even lower values: access to one
memory cell gives spike values of the current in the order of 1/35 of the value
for the same operation on an SRAM cell. For this part, only a digital simula-
tion, based on the VITAL model, will be used, and produces the digital signals
driving the rest of the chip.

7. The I/O drivers

The I/O buffers are modeled by an IBIS [IBIS 4.0] model, adapted for ICEM
simulations. The main changes are that, in the buffer, the MOS drain currents
are functions of gate/source and gate/drain voltages, and must take into ac-
count the non ideal transient times of the control signals generated by the core.
Moreover, concerning the supply currents, the limiting diodes must be consid-
ered, in the case of excessive I/O voltages. Values obtained may be in the order
of the CORE current spikes, and are very dependent on the I/O data itself.

Figure 4.6. IBIS I/O Models: input (left) and output (right)

The VHDL-AMS model of the buffer [Perdriau, 2004], with generic param-
eters, implements table lookup and interpolation functions for MOS and diode
characteristics. Parameters are the MOS tables, IBIS passive parameter values,
and rise and fall times of the control signals. The MOS characteristics are split
into 3 regions: one triode and two saturated regions.

Example of the structure of the entity and architecture definitions:

ENTITY totempole IS

GENERIC (-- generic for MOS and diode parameters);

PORT (io : in std logic;

TERMINAL Tvdd, Tvss, pad : electrical);

END ENTITY totempole;

ARCHITECTURE behavioral OF totempole IS

Prediction of Conducted-Mode Emission of Complex IC’s 65

QUANTITY vpmos ACROSS ipmos THROUGH Tvdd to pad; -- PMOS

QUANTITY vnmos ACROSS inmos THROUGH pad to Tvss; -- NMOS

SIGNAL in realP, in realN : real := 0.0;

QUANTITY in rampP, in rampN : real := 0.0;

BEGIN

-- NMOS and PMOS grid signals

-- and quantity with rising time

in realP <= 1.0 WHEN io = ’1’ ELSE 0.0;

in realN <= 1.0 WHEN io = ’0’ ELSE 0.0;

in rampP == in realP’ramp(tr,tr);

in rampN == in realN’ramp(tr,tr);

-- Currents from the parametric MOS tables

ipmos == interpolate mos(...);

inmos == interpolate mos(...);

END ARCHITECTURE behavioral;

Using these pad and buffer models, it is now possible to model the influence
of the input and output of the clock driver. A real clock signal is generated,
with a rise time of 3 ns, as in the experimental conditions. Putting these models
directly on the supply rails results in the external current shown at Figure 4.7.

Figure 4.7. External current with I/O switching and clock driver

With this added I/O models, the intermediate pulse appears, correlated with
the clock driver activity. On this simulation, the effect of I/O switching on the
supply current is also visible. Their rise time and period are higher, and will
produce low frequency perturbations. A complete simulation of the I/O ports
in the system environment takes no more than 10 seconds.

8. Conclusion

The basic idea of the methodology presented here to address the ICEM eval-
uation, is to model the dynamic activity of each block with a transient current

66 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

source driven by the digital inputs, and, adding lumped elements for the pas-
sive components, focus on the supply rail currents of the whole chip, using
high level mixed-mode simulation. These models have to be developed for
each of the blocks which have a significant impact on the global behavior, in
terms of supply currents.

Detailed SPICE simulations requires the knowledge of the internal struc-
ture, including precise implementations and place and route information, only
accessible by parameter extraction on the mask data. This can only be done
by the original designer of the block itself. From the experiments presented
here, it seems possible to define a higher level model, in VHDL-AMS lan-
guage, which could be put in the library of the IP block, for the final designer.
Integrated in signal integrity tools, and supplied to PCB and system designers,
these will allow fast board-level simulations of parasitic conducted emission.

The system designer may then even specify the expected EMC performance
of the IC and verify the sensitivity of the design to previously described param-
eters, speeding up the design flow and supplying a "correct-by-design" circuit.

The example chosen here is a CISC µcontroller, which dynamic activity is
mostly dominated by the clock tree activity, and not by the actual program run-
ning. For a RISC processor for example, it should be mandatory to implement,
in the VHDL-AMS model of the core, an activity model for the input and out-
put instruction bus activity for example. Defining activity classes based on
instruction classes is a possible approach to this problem. The analysis of the
effect of pipelining of instructions are future possible extensions of this work.

This work was done in close cooperation with ATMEL, to analyze the CEM
properties of a chip after foundry in order to validate the methodology. It was
then used by ATMEL during the re-design of a bad run of another project
[Levant et al., 2004]: the good predictions of this modeling approach would
have given a first-time correct chip, thus reducing foundry costs.

Standardization of this approach will be based on the new version of the
IBIS model (version 4.1), which includes I/O VHDL-AMS descriptions, and
on the work of the ICEM normalization group of UTE.

Notes

1. The model used here is limited to a lumped R-L-C approach, acceptable for this precise IC. For
higher clock rates and future chips, a transmission line model will be necessary.

References

IBIS (I/O Buffer Information Specification) version 4.0. ANSI-EIA. http:
//eda.org/pub/ibis/ver4.0/ver4_0.pdf

IEC EMC Task Force. IEC62014-3: Integrated circuit electromagnetic
model. Draft technical report, IEC, November 2001. http://intrage.
insatlse.fr/~etienne/icemcdv.PDF

Prediction of Conducted-Mode Emission of Complex IC’s 67

J. L. Levant, M. Ramdani, and R. Perdriau. Power supply network modeling.
EMC Compo 2002, pp. 75-78, November 2002.

J. L. Levant, M. Ramdani, and R. Perdriau. PLL Jitter Improvement using the
ICEM Model. EMC Compo 04, pp. 129-137.

R. Perdriau, D. Lambert, A.M. Trullemans, M. Ramdani, and J.L. Levant. A
VHDL-AMS simulation methodology for transient supply current extraction.
EMC Compo 2002, pp. 99-104, November 2002.

R. Perdriau. Méthodologie de prédiction des niveaux d’émission conduite dans
les circuits intégrés, à l’aide de VHDL-AMS. Thèse de doctorat UCL, mars
2004.

T. Steinecke, H. Köhne, M. Schmidt. Modeling, Simulation and Measurement
of Conducted Emissions on Chip Level. EMC Compo 04, pp. 21-26.

Chapter 5

PRACTICAL CASE EXAMPLE OF

INERTIAL MEMS MODELING

WITH VHDL-AMS

Elena Martín1,2, Laura Barrachina1,2,Carles Ferrer1,2

1Institut de Microelectrònica de Barcelona (IMB-CNM, CSIC)

2Departament d’Informàtica, Universitat Autònoma de Barcelona
Campus Universitari, Bellaterra 08193 (Barcelona), Spain
Telephone: (+34) 93 594 77 00 (ext 1205,1206)
Fax: (+34) 93 580 14 96

Abstract Considering the evolution of the development of Sensors and Actuators a differ-
ent learning curve between MEMS and integrated circuits is found. One of the
possible solutions is to extend the use of design and simulation tools and lan-
guages design to integrate electromagnetic, thermal systems, etc. The modelling
becomes a complex task, due to the fact that each component of the system can
belong to different physical domains and can present a different better repre-
sentation level. After that phase, the fabrication has to be done to assemble all
the parts (device, analogue, mixed and digital) to finally do the test and quali-
fication. The example that will be presented is a modelling of a Smart Sensor
using VHDL-AMS. The system is composed by an accelerometer, its associated
output circuitry and a sensor’s bus interface.

Keywords: Modelling, VHDL-AMS, MEMS, Accelerometer

1. Introduction

Present world market on research and development on Sensors and Actua-
tors is about US $ 1010. This is an "insignificant" amount of money compared
to US $ 30 1010 market for Microelectronics. In the same way, the learn-
ing curve of MEMS(Micro Electro Mechanical Systems) does not follow the
growth for integrated circuits. One of the possible solutions could be the ex-

© 2005 Springer. Printed in the Netherlands.

69

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 69–84.

70 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

tension of the use of integrated circuit design to Microsystems design thanks
to the addition of new design and simulation tools that help the integration of
electromagnetic systems, thermal systems, etc. with the integrated circuits in
only one design EDA environment.

This will permit to simplify the design process in order to obtain a more
reliable Microsystems and to reduce the design time and cost. A simplified
design flow for mixed models, will start from initial specifications including
environment and technical characteristics [Ferrer, 2003].

The next step is partitioning into basic components (include sensors, actu-
ators, analogue and digital circuitry) to design an abstract structure that meets
the initial requirements. The modelling becomes a complex task, due to the
fact that each component presents a better representation level (system, device,
physical and process), in the case of MEMS also particular physical domain
should be considered. Depending on their nature, energy and signal domains
values will be calculated. The natural values are obtained using the concepts
of continuum theory which couple different domains in terms of partial differ-
ential equations [Voigt, 1998].

However, despite the computational power of modern computers and the
availability of highly efficient finite-element codes and related numerical meth-
ods, it is hardly feasible to solve the model equations in their continuous form
for realistic Microsystems in their full size and complexity. Therefore, to keep
the computational effort for such problems within acceptable limits, the proper
and adequate level of simulation is analog circuit simulation based on a net-

work theory which, on the one hand preserves the basic conservation laws
expressed in the continuum models and, on the other hand, reduces the set of
state variables to a number that is still manageable with one of the circuit sim-
ulation tools as they are commonly used in the microelectronic community.

After that phase, the fabrication has to be done to assemble all the parts to
finally do the test and qualification.

The example that will be presented is a modelling of a Smart Sensor us-

ing VHDL-AMS. The system is composed by an accelerometer, its associated
output circuitry and a sensor’s bus interface.

2. Design Methodology

Methodology for integrated digital circuits design is achieved with a top-

down methodology, associated to standard language modelling languages like
VHDL. It can be extended for the use to Microsystems design thanks to the
analogue extensions of new languages (like VHDL-AMS for VHDL), that al-
low to apply similar techniques to design and model systems.

A design flow methodology for mixed models will be based in methodolo-
gies of scalable functionality, robust design and feedback techniques. It will

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 71

MEMS

COMPONENT

DAE MODELS

REDUCED-ORDER MODELS

FINITE-ELEMENT MODELS

MIXED TECHNOLOGY

MICRO-SYSTEM

ELECTRONICS

NETWORK

Figure 5.1. Model hierarchy.

start from initial specifications, including environment and technical charac-
teristics.

The next step is partitioning into basic components. The Digital design can
be automated made through the use of VHDL hardware description language,
while the mixed-signal design can be developed using the new VHDL-AMS
extension. After that phase the fabrication has to be done to assemble all the
parts and finally do the test and qualification.

Including MEMS design in this general flow design methodology is a new
challenge [Hanna, 1999] due to the fact that different physical domains and lev-
els of abstraction have to be considered, from component to system, through
subsystem, see Fig 5.1. The development of a design hierarchy allows the de-
signer to mix levels of abstraction to observe and evaluate interactions between
interdependent subsystems. Systems described hierarchically using multiple
mixed levels of abstraction can employ different combinations of top-down
and bottom-up techniques.

There are different ways to describe a microsystem, like as a geometrical
structure or like a mathematical description. The geometrical structure is
based on generalized Kirchoffian networks which are based on parameterizable
analytical elements models. The mathematical description is based on the
discretization of the system using DAE, ODE or algebraic equations and can
be summarized in two: numerically generated based in order reduction that
produces reduced system matrices and behavioral models obtained with black-
box models [Schwarz, 2001].

72 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 5.2. Example of Kirchhoff’s in different domains [Voigt, 1998]

2.1 MEMS Behavior Characterization

Developing component models for MEMS represents a great challenge due
to the complexity of modelling their behavior [Dewey, 1999], [Schleger, 2003].
Their behavior can not be considered a simple addition of separate mechan-
ical (fluidic, etc.) and electrical behavior, because they are a simultaneous
combination. New component modelling, analysis and design techniques are
required to obtain it.

Generalized networks can be considered in MEMS modelling because
many physical quantities are compared to flow or difference quantities and
generalized Kirchhoff’s laws can be applied. To obtain it, large systems can
be interpreted as decomposition into network basic elements, as can be found
in [Voigt, 1998]. This network concept is valid in many and different domains,
like electrical, fluidic, mechanical, etc.. The network elements definition is
based on generalized Kirchhoff’s laws. These laws are basically two, the first
is the mesh law and the second is the node law, see Fig 5.2.

Another way to obtain the model is using order reduction. Modelling strat-
egy the real system can be described using partial differential equations for the
entire system, producing reduced system matrices. The last way is to obtain
behavioral models with black-box models, coming from simulation results in
time or frequency domain. Once the model is developed and included in the
complete system, the simulation and the optimization process must be consid-
ered. The simulation system must interact using an optimization/simulation
algorithm thanks to the setting of parameters and adjustment of them.

A more general MEMS’ modelling approach is based in the creation of

a model ready for simulation coming from a generic model. The simula-

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 73

tion results will be obtained depending on simulation parameter sweep, always
comparing the initial results with the desired results. Once the comparison is
done, the initial parameters are changed to consider a more real model. There
are many simulators that can be used, like the following ones. For circuit simu-
lation: Saber, ELDO, Spice, for control systems there is Simulink/Matlab, for
FEM there is ANSYS or FLOTHERM and for Math-Codes, there is Mathe-
matica and C or Java routines.

All modeling tools that can be considered and multi-domain libraries are
usually very incomplete. Standardized modeling languages like VHDL-AMS
will be supported by many system simulators.

2.2 VHDL-AMS

Considering a higher level of abstraction in modeling at device level, is like
equaling MEMS component modeling to Very Large Scale Integration (VLSI)
component modeling. It will be the step from three-dimensional electrical and
mechanical effects into a two-dimensional network of lumped parameter ele-
ments governed by a system of ordinary differential and algebraic equations
(DAEs). Circuit network topology defines the global structure of the mi-

croelectromechanical equations.
To develop the modeling characterization including differential and alge-

braic equations a new modeling language can be used. VHDL-AMS is a
new IEEE standard (IEEE 1076.1(1999) focused to the analogue and mixed-
signal modeling and simulation. It appears as an extension of VHDL (VH-
SIC (Very High Speed Integrated Circuits) Hardware Description Language),
but enabling description of continuous time systems. The suffix AMS of the
VHDL extension means Analog and Mixed Signal, considering that a mixed
signal system presents coupled time-based or coupled energy-based models. It
allows the description of non-electrical (like mechanical), or electrical signals
and also the combination of discrete and continuous time language construc-
tions and can also be used to describe a system that can be simulated at different
levels of complexity. The commercial EDA tools permit also the co-simulation
of VHDL-AMS, VHDL, SystemC, SPICE, ELDO,...

The main characteristics of this language are:

VHDL-AMS provides a constructs for defining sets of simultaneous

ordinary differential and algebraic equations (DAEs) at any level
of abstraction and support both conservative and non-conservative sys-
tems. This implies that any physical system that exhibits strictly ana-
log behavior or a mixture behavior can be modeled and simulated us-
ing VHDL-AMS. VHDL-AMS uses a declarative dynamical model of
tightly-coupled simultaneous relations influencing each other’s solution
by linked unknowns.

74 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The unknowns are called quantities and are a new class of objects of
VHDL and they take their values of solving the set of simultaneous or-
dinary differential and algebraic equations.

These models considered to be in a real world can be described using dif-
ferent domains. Each domain is defined when are specified by 3 objects:
nature, across and through. The possibility of defining new domains
gives the opportunity of modelling new systems that can be described in
a compact way.

3. Inertial MEMS

One MEMS-based design accelerometer solutions is used to develop the
modelled microsystem. It is a Piezorresistive accelerometer, its associated
output circuitry and the interface to a sensor’s bus.

The accelerometer that is going to be used was manufactured in CNM [Col-
lado, 2003], but presented some problems because of general temperature

dependence. One of the proposed solutions was to develop a complete "the-

oretical" study to check what kind of sources provokes the problems, to pro-
pose solutions and implement them. Now, the first results obtained in this study
will be presented in the following sections.

3.1 Accelerometer

The accelerometer is a MEMS’s stress-measurement based in the Piezor-

resistive effect. One of the main features that presents is a large temperature
dependence of the piezoelectric coefficients. The accelerometer can be de-
scribed as cantilever design in a SOI wafer and it can be mechanically de-
scribed as a second order system.

The value of the main parameters of the dynamic system is obtained from
technological parameters, the static and the dynamic characterization. Due
to the higher stress located in the lateral bridges, the piezoresistors are located
there to obtain a greater output signal from the Wheatstone bridge. Even so,
the signal obtained has an amplitude in the order of mV, fact that makes taking
special care with the effects of noise in the final signal.

The strategy that was followed to obtain the final model of the accelerom-
eter was to consider all the different kind of representations, see Fig 5.3. The
different representations were the following ones:

A Behavioral Description, based on experimental measurement . These
results present a linear relation between the applied acceleration and
the output voltage obtained of the accelerometer. It doesn’t consider
any physical process, like the existence of the piezoresistance, which
presents high temperature dependence. The development of this "basic

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 75

Figure 5.3. Different models developed for the accelerometer.

and simple" model is to test the complete output circuitry at an ambi-
ent temperature, without considering any variation at temperature (like
self-heating, temperature distribution in the accelerometer, or different
ambient temperature).

This model can also allow the develop of a more complex system like
several sensors with a distributed architecture, due to the simplicity of
the single element. One of the problems that this simulation presents is
that can take too much time if a complex description of the components
is used. So in order to simulate a more complex global system, it is more
useful to work with the behavioral descriptions.

B Physical Description, based on Piezorresistive effect. It describes the
model as a Wheatstone bridge with 4 variable resistances. These re-
sistances are a region of a semiconductor type p over a type n. The main
characteristic of a piezoresistance is that presents a variation on its value
if it suffers a stress. The model includes the relation between acceler-
ation and the variation of the resistance, and also the relation between
the variation of the resistance and the final output value of the voltage.
The physical description is showed in Fig 5.4. The system described
here is excited with an acceleration, which is given as a sinusoidal wave.
The next step is calculating the stress that piezoresistances suffer due to
this acceleration. This calculation is done by applying a linear relation

76 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

library ieee;

library work;

library disciplines;

use ieee.math_real.all;

use disciplines.electromagnetic_system.all;

use disciplines.physical_constants.all;

use disciplines.thermal_system.all;

use disciplines.kinematic_system.all;

use disciplines.rotational_system.all;

use disciplines.fluidic_system.all;

use work.resist.all;

use work.accel.all;

use work.all;

-------- Modelling of the accelerometer D2U-2.5g. The experimental -----

-------- results used here have been obtained from the tesis "Un nou ---

-------- encapsulat multixip per a acceleròmetres piezoresistius"-------

entity wheatstone_bridge is

generic

(r0 :real :=1888.0);

port

(terminal voltage1,voltage2: electrical;

terminal accelerat: acceler);

end wheatstone_bridge;

architecture total of wheatstone_bridge is

terminal voltagedd: electrical;

terminal deltar1,deltar2: res_v;

terminal sigma_t,sigma_l: kinematic;

quantity vdd across i_alim through voltagedd to electrical_ground;

quantity vout across voltage2 to voltage1;

quantity v1 across i1 through voltagedd to voltage1;

quantity v2 across i2 through voltagedd to voltage2;

quantity v3 across i3 through voltage1 to electrical_ground;

quantity v4 across i4 through voltage2 to electrical_ground;

quantity delta1 across deltar1 to gnd_r;

quantity delta2 across deltar2 to gnd_r;

begin

applied_acceleration: entity acc_gen1(behav)

generic map(freq=>50.0,Ampl=>1.0,Delay=>0.0)

port map(accelerat);

applied_stress:entity accstress(total)

port map(sigma_t,sigma_l,accelerat);

rvariationA: entity accpiezo(total)

port map(kinematic_ground,sigma_l,deltar1);

rvariationB: entity accpiezo(total)

port map(sigma_t,kinematic_ground,deltar2);

vdd == 5.0;

v1 == i1*(r0+delta1);

v2 == i2*(r0+delta2);

v3 == i3*(r0+delta2);

v4 == i4*(r0+delta1);

end architecture total;

Figure 5.4. Physical Description of the accelerometer.

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 77

Figure 5.5. Simulation of the physical description of the accelerometer.

78 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

between acceleration and stress, which has been obtained thanks to ex-
perimental measures. The longitudinal and transversal stress applied

to the resistances is calculated given the acceleration. In this configu-
ration of Wheatstone bridge, there are two piezoresistances placed along
the direction of the applied acceleration, and the other two piezoresis-
tances placed transversally to this direction. So for a pair of parallel
piezoresistances, only the stress in one direction will affect its value.
Due to this fact, two different variations in the resistors value have been
calculated depending on the direction of the applied stress. This feature
can be seen in entities accpiezo. Finally, it is only needed to use the
characteristic equations of the Wheatstone bridge electrical components
to solve the system. The simulation of this model is showed in Fig 5.5.

C Mathematical Description based on the operation principle of the Pie-
zoresistive accelerometers. The accelerometers, as an acceleration sen-
sor, can be described as a system composed by a mass-spring. It can be
described by the second Newton law including the damping force. The
value of all constants included in the equations can be extracted from the
physical values and the experimental measurement results. The capacity
of VHDL-AMS to describe systems including derivatives and integra-
tions allows the possibility of obtaining the value of the displacement
due to an applied acceleration. This description is useful in the dynamic

characterization of the accelerometer.

3.2 Output Circuitry: General Description and Models

A general description of the output circuitry is included in the intelligent
MCM substrate. It presents three parts, the first one corrects the offset in the

Wheatstone bridge and the second are some temperature sensor element
incorporated to extrapolate the temperature of the sensor. The third part is
composed by the output circuitry that should amplify the signal coming from
the accelerometer.

Offset effects in a Wheatstone bridge are common because, although the
resistances are generally located close, sometimes its value can be slightly dif-
ferent, and also there may be an initial stress on the system. The different value
of the resistances is due to small inhomogeneities of impurities implantation
process along the wafer. To correct this imperfection, the resistances are placed
as close as possible without modify sensor features. About initial stresses, they
are a consequence of the existence of different materials and the temperature
phases in the fabrication process. These two facts provoke the undesirable
offset in the final signal. To solve this problem, when the accelerometer was
built, resistances were place parallel to the ones of the Wheatstone bridge. So,
if there was an important difference with the value of one resistance of the

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 79

A
Vin

Oscillator

Vout

Low Pass

Filter

Output

Modulator
Passband

Filter
Pre-amplification

Input

Modulator

Figure 5.6. Schematic corresponding to the amplification circuit.

bridge, it could be used its parallel resistance to make up for compensating its

deviation just managing the connections. This compensation has not been
initially included because only one device will be described, although it will
appear in any description including any high quantity of devices because it will
highly affect the global performance of the system.

The next element contained in the intelligent MCM substrate was a tem-

perature sensor to extrapolate the response of the sensor at different tem-

peratures. These features have not been captured by the VHDL-AMS model
yet.

The models developed for the the output circuitry consists in (see Fig 5.6) a
pre-amplification circuit based in Chopper Stabilization (CHS). This tech-
nique has been chosen due to the need of decrease the effect of noise in the
readout circuitry. In this configuration the noise and offset is entering in the
circuit after the first modulation. So, the frequency spectrum is displaced, and
the noise, with lower frequency, does not affect so much the amplification.

The circuit is composed by t
¯
wo modulators (Input/Output, which are con-

trolled by oscillator signal), a pre-amplification, a pass band filter, oscillator

and a low pass filter (40dB/decade and 10 kHz Butterworth filter). All the cir-
cuitry that has been described in previous paragraph has been modeled using
element models provided from ADVanceMS in the library CommLib and a
general description of the elements can be:

The Oscillator is composed by an astable multivibrator (square-wave
generator) and a comparator. It was designed to obtain the filter reso-
nance frequency and oscillator frequency as close as possible. The fre-
quency of oscillation is defined by the relation between R1 and R2 and
presents a value of 110 KHz.

The modulator is composed by different logic gates (see Fig 5.7), and
provides two square signals with a delay of 180 degrees and the fre-
quency of the oscillator.

80 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

NOR2

1

2

3

NOR2

1

2

3

INV

1
2

INV

1 2

INV

1 2

INV

1 2

INV

1 2

1n

C2

1n

clk1

clkin

clk2

Figure 5.7. Schematic corresponding to the Modulator.

-
2

+
3

V
-

1
1

OUT
1

V
+

4

-
2

+
3

V
-

1
1

OUT
1

V
+

4

-
2

+
3

V
-

1
1

OUT
1

V
+

4 -
2

+
3

V
-

1
1

OUT
1

V
+

4
R5

R6

R7

R8

R9

R10

Vdd

Vdd

Vdd

Vdd

Vin-

Vin+

Vou

Vou

Figure 5.8. Schematic corresponding to the Pre-amplificator.

+
3

-
2

V+
8

V-
4

OUT
1

U2A

+
3

-
2

V+
8

V-
4

OUT
1

R0_1

R1_1

R1R1

R0R0

C0

C1

vout2

vout1

ref

vin+

vin-

vddC1

C1

+
3

-
2

V+
8

V-
4

OUT
1

U2A

+
3

-
2

V+
8

V-
4

OUT
1

R0_1

R1_1

R1R1

R0R0

C0

C1

vout2

vout1

ref

vin+

vin-

vddC1

C1

+
3

-
2

V+
8

V-
4

OUT
1

U2A

+
3

-
2

V+
8

V-
4

OUT
1

R0_1

R1_1

R1R1

R0R0

C0

C1

vout2

vout1

ref

vin+

vin-

vddC1

C1

+
3

-
2

V+
8

V-
4

OUT
1

U2A

+
3

-
2

V+
8

V-
4

OUT
1

R0_1

R1_1

R1R1

R0R0

C0

C1

vout2

vout1

ref

vin+

vin-

vddC1

C1

+
3

-
2

V+
8

V-
4

OUT
1

U2A

+
3

-
2

V+
8

V-
4

OUT
1

R0_1

R1_1

R1R1

R0R0

C0

C1

vout2

vout1

ref

vin+

vin-

vddC1

C1

Figure 5.9. Schematic and simulation for the low pass filter.

The Pre-Amplificator is composed by a differential amplifier with two
amplification stages (see Fig 5.8). The gain that presents the operational
amplifiers is 100dB.

The Low Pass filter is a differential filter based on a 40 dB/decade But-
terworth filter. The cut frequency of the filter is 10 KHz, and the model
developed and the simulation results of the Filter can be seen in Fig
5.9a,5.9b.

The Band Pass Filter is a differential filter based on a narrow band’s
band pass filter. The most important characteristics are the resonance

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 81

R1

R2

R3

R4

C3

C4

C5

C6

Vout+

Vin+

Vout-

Vin-

R1

R1

Vdd

Vdd

Ref

-
2

+
3

V
-

1
1

OUT
1

V
+

4

U11A

-
2

+
3

V
-

1
1

OUT
1

V
+

4

Figure 5.10. Schematic and simulation for the Band pass filter.

Figure 5.11. Simulation results obtained for the output circuitry.

frequency of 110 KHz and a 40 KHz bandwidth. These features can be
seen in the results shown in Fig 5.10.

The previous results have been obtained by running the simulation of
the complete output circuitry. The excitation signal (see Fig 5.11) is
a sinusoidal wave with the amplitude within the range expected by the
accelometer. The output signal has a linear relation with the incoming
signal, and amplifies it in two orders of magnitude.

3.3 Complete Circuit Model

The last part studied is the digital connection with a sensor’s serial bus in-
terface by using VHDL and allowing the possibility of modelling an intelligent
sensor (Smart Sensor).

The models have been developed mainly using models given by the library
of ADVanceMS of Mentor. The evolution of this models has been the follow-
ing one: first use as many digital components as possible (like in the Modula-
tor) to start changing all possible elements by analog models.

The addition of the VHDL-AMS model (MEMS and Output Circuitry) and
the VHDL model (Sensor’s bus), gives the possibility of obtaining previous

82 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

library ieee;

library work;

library disciplines;

use ieee.math_real.all;

use disciplines.electromagnetic_system.all;

use disciplines.thermal_system.all;

use disciplines.kinematic_system.all;

use work.resist.all;

use work.all;

entity wheatstone_bridge_etapa_ampl is

generic

(value_r:real :=1000.0);

port

(terminal v_out: electrical;

terminal deltar: res_v);

end wheatstone_bridge_etapa_ampl;

architecture total of wheatstone_bridge_etapa_ampl is

terminal v_out1,v_out2: electrical;

begin

wb: entity wheatstone_bridgev0(total)

generic map(value_r)

port map(v_out1,v_out2,deltar);

etap: entity amplifier_total(total)

port map(v_out1,v_out2,v_out);

end architecture total;

--

Figure 5.12. Behavioral description of the accelerometer.

simulation and modelling results before continuing the development of the mi-
crosystem and also giving the possibility of enlarge this model to include the
thermal description.

A final model can be done by combining the accelerometer model based
on the architecture of the wheatstone bridge and output circuitry model. Two
different entities have been used in this model (see Fig 5.12). The first instan-
tiation refers to the accelerometer described as a wheatstone bridge. The effect
of piezoelectricity can be described by varying the resistances a value of incre-
ment of them. The second instantiation refers to the output circuitry explained
in the previous section.

3.4 Results and Discussion

The models that have been used have to be improved to include a more de-
tailed description of the system, and more precise results can be obtained. But
several problems have appeared during the modelling and simulation of the
circuits. The use of quantities across and through means in practice that prob-
lems related with non invertible matrix may appear, as well as convergence
problems in the iterations of the simulations. Particularly, the modelling of the
multivibrator in the output circuitry has involved difficulties to obtain correct
values in frequency and amplitude in the output signal. However the simula-

Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 83

ACCELEROMETER

SIGNAL

INPUT MODULATOR

OSCILATOR

SIGNAL

OSCILATOR

Entity modulator with different

architectures, depending on behavior

MODULATED

OUTPUT SIGNAL

library ieee;
library disciplines;
library mgc_commlib;
library work;

use ieee.math_real.all;
use ieee.std_logic_1164.all;
use disciplines.electromagnetic_system.all;
use mgc_commlib.all;

use work.all;

entity modulador1 is
port (terminal clk_in : electrical;

 terminal clk1, clk2 : electrical);
end entity modulador1;

architecture total of modulador1 is
terminal osc, s_1,s_2,s_3,s_4,s_5, vref: electrical;
quantity v_ref across iref through vref to electrical_ground;
begin

v_ref == 10.0;

v_reloj: entity oscil2(total1)
port map(osc, clk_in, electrical_ground);

puerta_nor1:entity ana_nor(A1)
generic map(Rout=>100.0)
port map(clk_in, s_4, clk2);

puerta_inv1:entity ana_INV(A1)
port map(clk_in, s_5);

...
cond_2: entity c(arq)

port map(electrical_ground,s_3);

end architecture total;

MODEL FOR

SIMULATION, USING

MODELS PROVIDED

BY ADVanceMS

………………..

c
lk

in

c
lk

1
c
lk

2

SIMULATION RESULTS,

OBTAINED WITH ELDO

AND ZVIEWER

Figure 5.13. Example of results corresponding to a subsystem of the output circuit.

tions of the other modules of the output circuitry have obtained the expected
results according to the schematic of the circuit (see Fig 5.6, 5.10, 5.13.

4. Conclusions

The modelling of the accelerometer Inertial MEMS show the great advan-
tages of using VHDL-AMS in mixed signal/multiple domain modelling. It
may help the design process permitting to simulate not just electrical features
of the microelectronics applications in early phases of the design process. The
work presented in this abstract is a description of a work in progress that show
all the important features related with the using of new modelling languages.

This work will continue by improving the existing models of the accelerom-
eter, including the physical processes that take place related with piezoelectric
features. The models of the output circuitry will also be improved by develop-
ing different models of the active elements of the circuit, instead of using the
ones provided by ADVanceMS.

Acknowledgments

Presented work has been founded by the Spanish CICYT project n◦ TIC-
2002-01048.

84 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

References

A. Collado. Un nou encapsulat multixip per a accelerometers piezoresistius
PhD. thesis, Universitat Autònoma de Barcelona January 2003.

A. Dewey, H. Dussault and J. Hanna, E. Christen, G. Fedder, B. Romanowicz,
and M. Maher. Energy-Based Characterization of Microelectromechanical
Systems(MEMS) and Component Modeling Using VHDL-AMS. MSM99,
Technical Proceedings of the 1999 International Conference on Modelling
and Simulation of Microsystems pp. 139-142, Puerto Rico, USA, April 19-
21 1999.

C. Ferrer Design & Development of semiconductors MOEMS and the require-
ment of International Standardization with a focus on Architecture and De-
sign on Microsystems. International Seminar MEMSTAND.pp. 118-129.
Barcelona, 24-26 February, 2003.

J. Hanna and R. Hillman. A Common Basis for Mixed-Technology Micro-Sys-
tem Modeling.Technical Proceedings of the 1999 International Conference
on Modeling and Simulation of Microsystems.

M. Schlegel, G. Herrman, D. Müller. A system level model in VHDL-AMS for a
micromechanic vibration sensor array.First IEEE International Conference
on Sensors, Proceedings of IEEE 2002.Vol. 2, pp. 1208-1213.

P. Schwarz, P. Schneider. Model Library and Tool Support for MEMS Simula-
tion. International Symposium on Microelectronics and MEMS Technolo-
gies, SPIE Proceedings Series. Volume 4407, Edinburgh, Scotland, May-
June 2001.

P. Voigt, G. Schrag, G. Wachutka. Electrofluidic full-system modeling of a flap
valve micropump based on Kirchhoffian network theory. Sensors and Actu-
ators A 66 (1988), pp. 9-14.

II

UML-BASED SYSTEM SPECIFICATION
AND DESIGN

Introduction

Piet van der Putten
Department of Electrical Engineering
Technische Universiteit Eindhoven, Eindhoven, The Netherlands

p.h.a.v.d.putten@tue.nl

This part II of the book contains a selection of the most interesting work
presented in the FDL’04 workshop on UML-based system specification and
design. This workshop explores the use of the Unified Modeling Language
(UML) in design methods for next generations of complex embedded systems
and Systems-on-Chip.

UML is a very flexible notation for analysis and is necessarily less formal
than required for automatic transformations. Adding semantic information is
crucial for enabling automatic transformations. Chapter 6, “Metamodels and
MDA Transformations for Embedded Systems”, written by Lossan Bondé, Cé-
dric Dumoulin and Jean-Luc Dekeyser, presents an MDA transformation en-
gine, where transformations can be defined on the metamodel level, such that
reuse is enabled. This chapter describes three successive transformations steps
from UML to SystemC.

The Model Driven Approach is also a challenging research area because the
path from Platform Independent Model (PIM), to Platform Specific Models
(PSM) is far from paved. Chapter 7, “Model Based Testing and Refinement in
MDA Based Development”, written by Ian Oliver, brings structure in the MDA
world by proposing a taxonomy for MDA mappings. The paper describes the
relationships between mappings in the context of MDA and model based test-
ing, such as development by refinement (vertical mappings), transformation
mappings (horizontal mappings), Code generation.

The question what role can UML play for predictable design of real-time
systems, led to research in more fundamental problems. Chapter 8, “Pre-
dictability in Real-time System Development” by Jinfeng Huang, Jeroen Voe-
ten, Oana Florescu, Piet van der Putten, and Henk Corporaal, describes such
research results. The deficiencies, w.r.t. predictable support in existing design
approaches and tools clearly show the need for new approaches. This chap-
ter focuses on compositionality and property preservation in the context of
predictability. A case description shows how a new approach for predictable
design is used for a real-time control system.

Chapter 9 focuses on both the MDA approach and design of real-time sys-
tems. “Timing Performances of Automatically Generated Code Using MDA
Approaches” written by Mathieu Maranzana, Jean-François Ponsignon, Jean-
Louis Sourrouille, and Franck Bernier, describes the effect on timing properties
of the transformations in an MDA approach from UML to automatic code gen-
eration for embedded software. This chapter also contains a nice overview of

© 2005 Springer. Printed in the Netherlands.

87

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 87–88.

88 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

some popular commercial tools and their properties w.r.t. the MDA approach.
The actual work aimed mainly at two questions. To what extent are mod-
els, written during system development, platform independent, and secondly
to what extent does automatic code generation reduce timing performance of
applications?

Chapter 10 is the last one in this UML part of the book. “UML-Executable
Functional Models of electronic systems in the VIPERS Virtual Prototyping
Methodology” written by , P. Lister, V. Trignano, M. Bassett, P.L. Vatten,
shows an interesting graphical validation environment that transforms UML
specifications into virtual prototypes.

Chapter 6

METAMODELS AND MDA TRANSFORMATIONS

FOR EMBEDDED SYSTEMS

Lossan Bondé, Cédric Dumoulin and Jean-Luc Dekeyser
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
Villeneuve d’Ascq, France

Abstract Embedded system design needs to model together application and hardware ar-
chitecture. For that a huge number of models are available, each one proposing
its own abstraction level associated to its own software platform for simulation
or synthesis. To produce a co-design framework, we are obviously obliged to
support different models among all possible ones. Between these models we
should produce automatic transformations. Each time a new model is included
in the framework, we should develop a new transformation.

To improve transformation engine development, Model Driven Architecture
(MDA) techniques are useful. This approach permits to define the transforma-
tions at the metamodel level. It guaranties to the framework the reuse of models
and unifies the definition of the transformation rules.

We present the application of MDA in the context of Intensive Signal Pro-
cessing (ISP) applications deployed on System on Chip (SoC) platforms. For
that purpose, we have developed a new MDA Transformation engine: Mod-

Transf. We apply this engine on UML profiles to generate SystemC Trans-
action Level Model dedicated to ISP. A particular rule will be presented to il-
lustrate the interest of this approach in a multi model embedded system design
environment.

Keywords: metamodel, MDA, Model transformations, Embedded Systems

1. Introduction

The MDA is based on models describing the systems to be built. A system
description is made of numerous models, each model representing a different
level of abstraction. The modeled system can be deployed on one or more

© 2005 Springer. Printed in the Netherlands.

89

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 89–105.

90 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

platforms via model to model transformations. A key point of the MDA is
the transformation between models. The transformations allow to go from one
model at a given abstraction level to another model at another level, and to keep
the different models synchronized. Related models are described by their meta-
models, on which we can define some mapping rules describing how concepts
from one metamodel are to be mapped on the concepts of the other metamodel.
From these mapping rules we deduce the transformations between any models
conforming to the metamodels. The MDA model to model transformation is
in a standardization process at the OMG [OMG, 2003]

The MDA is based on proven standards: UML for modeling and the MOF
for metamodel expression. The new coming UML 2.0 [OMG, 03-07-06] is
specifically designed to be used with the MDA. It removes some ambiguities
found in its predecessors (UML 1.x), allows more precise descriptions and
opens the road to automatic exploitation of models. The MOF (Meta Object
Facilities [OMG, 00-04-03] is oriented to the metamodel specifications.

Our proposal is partially based upon the concepts of the Y-chart [Gajski
and Kuhn, 1983]: application, hardware architecture and then association to
map one application on one hardware architecture. The MDA contributes to
express the model transformations which correspond to successive refinements
between the abstraction levels, from PIM to PSM. In this paper we present the
transformation of the association PIM to SystemC PSM for a System on Chip
design. For this transformation we use the tool ModTransf developed in our
research group in respect of the QVT proposal.

2. The Transformation Engine : ModTransf

Model to model transformations are at the heart of the MDA approach. Any-
one whishing to use MDA in its projects is soon or later facing the question:
how to perform the model transformations? There are not so much publicly
and freely available tools, and the OMG QVT standardization process is not
completed today. To fulfil our needs in model transformations, we have devel-
oped ModTransf, a simple but powerful transformation engine. ModTransf

was developed based on the recommendations done after the review of the first
QVT proposals [Gardner et al., 2003]. Based on these recommendations and
on our needs, we have identified the following requirements for the transfor-
mation engine:

Multi models as inputs and outputs

Different kind of models: MOF and JMI based, XML with schema
based, graph of objects

Simple to use

Easy modification of rules to follow metamodel changes

Metamodels and MDA Transformations for Embedded Systems 91

Hybrids: Imperative and declarative rules

Inheritance for the rules

Reversible rules when possible

Customizable, to do experimentations

Free and Open-Sources.

The proposed solution fulfil all these needs: ModTransf is a rule based en-
gine taking one or more models as inputs and producing one or more models as
outputs. The rules can be expressed using an XML syntax and can be declar-
ative as well as imperative. A transformation is done by submitting a concept
to the engine. The engine then searches the more appropriate transformation
rule for this concept and applies it to produce the corresponding result concept.
The rule describes how properties of the input concept should be mapped, after
a transformation, to the properties of the output concept.

2.1 Basic Principle

Transforming a model can be a very complex task. ModTransf helps to re-
duce this complexity by allowing the specification of a model transformation
rule by rule. A rule specifies how to transform one or few input concepts to one
or few output concepts. This divide and conquer approach allows focusing on
simple transformations, improves the readability, open the road to rule inher-
itance and eases the maintenance. In the XML rule language, a rule specifies
the source concepts it uses, the concepts it produces in the destination model,
and which properties of the source concepts are used to populate the properties
of the destination concepts. The rule does not specify how to transform these
properties; it only specifies which properties must be transformed and where
to store the result. It is the engine responsibility to search and execute the more
appropriate rule.

This way of expressing the rules induces recursive calls to the engine, and
provides a natural scan of the model to transform. By default a rule is called
only once for a given set of inputs. Subsequent calls will return the same
results than the first call. This allows breaking the recursivity and avoids mul-
tiple transformations of an object: if a source object is referenced by several
properties, it will be transformed only once.

The transformation of a model or an object is performed by submitting it
to the engine. The engine looks for the most appropriate rule which in turn
call the engine to transform the child objects. Thus the entire graph of objects
associated to the first object is transformed by using the most appropriate rule
for each node of the graph.

92 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The rules can be organized in rule sets used as search unit by the engine. It
is then possible to specify which rule set should be used for a transformation.
If no rule set is specified, the current one is used by default. Rule sets can be
used to reduce the scope of a search or to provide several rules transforming
the same input concepts, but used in different contexts. It is also possible
to specify explicitly which rule should be used by the engine. In this case,
the transformation is imperative and the engine uses directly the rule without
performing any search.

The rules are searched in the order of their declarations in the rule set. By
default, only the first matching rule is executed. This behaviour can be changed
by specifying that all matching rules should be executed. Input and output
models are submitted to the engine as graphs of objects. The engine and the
rules access to the graph of a model through a well known API defining the
basic methods they need: attribute access, concept creation, ...

The access API allows making use of different technologies to manipu-
late the models: JMI and its different implementations (MDR, NsUML, CIM,
ModFact, ...); EMF; DOM representation of XML files; models generated from
XML schema or DTD with tools like Jaxb, Castor; or any kind of object graph.
An implementation of the API is linked to the particular technology used to
represent models. Generally it should be developed only once for this technol-
ogy.

The rules understood by the engine are very simple: they are made of only
one guard and one action. The guard is evaluated to select the rule, and the
action is executed when the rule is selected. More complicated rules can be
built on top of this basic interface. Thus it is possible to write rules directly in
Java, as well as in a dedicated high level language with a dedicated interpreter
or compiler. One can develop its language and compiler or interpreter. To
avoid the burden of such development, we propose a language written using
XML, and allowing complex rules.

2.2 The XML Rules

Rules defined in XML use a concept of left and right instead of source and
destination. This does not presuppose on the direction of the transformation,
allowing writing transformation rules potentially reversible.

The left and right notions will be translated to sources and destinations ac-
cording to the direction of the transformation. If the transformation flows from
left to right, the left will become the source and the right the destination. If the
transformation is performed in the other direction, right becomes the source
and left the destination.

The reversibility of the rules is possible only in certain cases. The complete
transformation is reversible only if all the rules are reversible. Actually, this

Metamodels and MDA Transformations for Embedded Systems 93

feature is only for experimentation. In the remaining of this paper we suppose
that the transformation flows from left to right.

An XML rule is made of left conditions, right conditions, and actions. The
conditions are used to describe the pattern of source concepts used by the rule,
and the concepts that the rule should produce. The description of a condition is
the same though it is used as source or as destination: it generally specifies the
type of the concept, and optionally the conditions expected on some properties
of the concepts or on any sub-properties. Simple conditions like type checking
are easy to express: you just specify the expected type. To ease the transforma-
tion of models described in UML with an associated profile, some dedicated
conditions are provided, like testing or setting a stereotype or a tagged value.
More complex conditions like checking the presence or absence of an object
with specified values in a collection can be expressed by using an expressions
language similar to OCL [OMG, 03-10-14].

When the transformation is performed, the source condition becomes a
guard testing the concept while the destination condition becomes an action
creating the expected concept. The actions are used to populate the properties
of the destinations concepts from the properties of the source concepts, with
eventually a transformation. Two main actions are used: The first copy primi-
tive types, with eventually a conversion between the types; the second specifies
one or few properties of the source concept that should be transformed to one
or few properties of the destination concept by calling the transformation en-
gine to select the more appropriate rule.

Action arguments are specified by using accessors allowing to express the
source and the destination arguments in exactly the same way. The more com-
mon accessors uses the expressions language.

A rule being invoked has a context holding various objects like the param-
eters, the metamodels and user defined variables. All this objects are visible
to accessors through their declared names. The metamodels are used to query
models for concept instances.

The same expression language based on OCL 2 is used in conditions and
in accessors. It allows to describe simple properties access, nested properties
access, literals (string, integer, real, Boolean), method calls, metamodel ob-
jects access, operation on collection (selection, union, iterate. . .), operation on
expressions (and, or, +, -. . .). . .

94 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Expression Meaning

src Access to the attribute named src.
A rule has a context holding various
attributes like the parameters, the
models and user defined variables.

src.name Access to property name
of the object src.

src.attribute If attribute denote a
collection, return this collection.

src.attribute.select Select the object from
(i | i.isDerived = true) attribute having the attribute

isDerived set to true.
Return a subcollection of matching
object. The operation
select(iteratorNames | expression)
is available on all collection.

src.name + + x.name Concatenation of string
src.method(src.name) Method call

The XML language provides basic conditions, actions and accessors that
should cover current needs in model transformations. Should you encounter
a special need that is not cover yet, or should you want to propose a special
behavior to simplify your transformation, you can provide your own condition,
action, accessor or even complete rule. This is done by implementing a Java
class providing the desired behavior. Likely all elements of the language accept
customized behavior in place of the default behavior.

The ModTransf engine is an Open Source project available on the net [Du-
moulin, 2004]. We will now see how it is used in our Embedded Application
for Soc Design project.

3. PIM and PSM Metamodels for Embedded Systems

We propose a construction of metamodels to support a co-design methodol-
ogy [Dumoulin et al., 2003]. This proposal is partially based on the concept of
Y-chart. We have defined and formalized our concepts in MOF and these MOF
specifications have been implemented in UML profiles using Tau G2.

In our approach we design a system starting from two initial models: the
application part defines functions and services provided by the system and
the hardware architecture part represents an abstraction of the hardware ma-
terial on which the application will be executed. These two models are then
mapped to make the association model. This latter expresses associations be-
tween the functional components and the hardware components. Each of these
three models are instances of their corresponding metamodels, they are Plat-
form Independent Models. To realize a simulation of this embedded system,
we propose the Platform Specific Model for Transaction Level Simulation in

Metamodels and MDA Transformations for Embedded Systems 95

SystemC. ModTransf will produce the transformation from PIM association
to PSM SystemC.

Our metamodels are too large to be exhaustively presented in this article.
We will therefore give an overview of the main concepts, leaving out details.

3.1 The Application Metamodel

The application metamodel is defined in the ISP-UML profile. It is based
on the Array-OL language (Array Oriented Language) designed by Thomson
Marconi Sonar and dedicated to Intensive Signal Processing. Array-OL intro-
duce the notions of local model and global model. In the ISP-UML metamodel,
we propose a set of concepts to specify the application part of a system. An
application is described by assembling component wich can be of three types:
CompoundComponent, DataParallelComponent, and ElementaryCompo-

nent.

A CompoundComponent can contains other sub-components. It ex-
presses the global model of Array-OL and shows component intercon-
nections.

The DataParallelComponent is the heart of intensive signal process-
ing (similar to the local model of Array-OL). It is made of a unique
nested component (eventually an ElementaryComponent) and of one
tiler component for each of its connections. The tilers are used to de-
scribe how the data are spraid among the instances of the nested compo-
nent.

The ElementaryComponent directly refers to an external implementa-
tion. It is a computation unit which has no further detailed structure. It
gets its input data from input tilers and the result of the computation is
carried out through an output tiler.

In the metamodel a Tiler instance is represented by an AolTilerPart which
is introduced to add some tagged values necessary to specify the origin, the
fitting and the paving vectors.

Ports represent proxies for data handled by components. They are used as
endpoints of connections. A port specifies the type of data it carries, itself
defined by an interface in the Object Oriented sense. In ISP UML, all AOL
arrays are defined by inheriting from an interface called AolArray providing
basic attributes: element type, number of dimensions and size of each dimen-
sion.

A broad description of the application metamodel in given in figure 6.1.

96 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 6.1. Overview of the application metamodel

3.2 The Hardware Architecture Metamodel

The architecture metamodel is similar to the ISP-UML metamodel: it pro-
vides components to describe a hardware architecture. The overview of the
metamodel is shown on figure 6.2. The hardware component represents ab-
stractions of physical hardware architecture elements. We propose to classify
the resources according to two criteria: a functional and a structural (see figure
6.2).

Structural concepts: ElementaryHwComponent, CompoundHw-

Component and RepetitionHwComponent are used to describe the
structural aspect of the architecture.

– The ElementaryHwComponent is a component without an inter-
nal structural description. For example, it could be used in the case
where we have an hardware IP for this component, or in the case
where we don’t want to model the component more finely.

– The CompoundHwComponent is a component with an internal
structure description. The interest in using such a concept is to
provide a means for hiding details that are not necessary at a cer-
tain level of specification, and also the reuse of existing blocks in
modelling other architectures.

– The RepetitionHwComponent is a kind of particular Compound-

HwComponent, which contains a repetition of the same hardware
component. This kind of component is well suited to the modelling

Metamodels and MDA Transformations for Embedded Systems 97

of massively parallel architectures and is motivated by the recent
introduction of such architectures in the design of SoC such as the
picoChip PC101 and PC102 [picoChip, 2003].

Functional concepts : PassiveHwComponent , ActiveHwComponent

and InterconnectHwComponent are used to specify the functions of
the architecture elements.

– The PassiveHwComponent is a storage unit. It stores the data of
the application. We typically use it as a representation of elements
such as RAMs, ROMs, sensors, or actuators.

– The ActiveHwComponent is a processing unit, it reads or writes
into passive resources. This category includes CPUs, DMAs or
SMP nodes inside a parallel machine.

– The InterconnectHwComponent is a hardware unit used to spec-
ify connections between active and passive components or active
and active in the case of a distributed memory architecture. This
category includes elements such as bus or an interconnection net-
work.

Each hardware component should be tagged with these two aspects, each
one representing a different view on the component. This lead to 9 possible
types of hardware components.

Figure 6.2. Overview of the architecture metamodel

3.3 The Association Metamodel

The aim of the association model is to point out where each software com-
ponent will be executed, the location of the data used by the software, and the

98 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

channels used for the communication between the different hardware compo-
nents. It is also intended to show how the different executable components
are scheduled. This scheduling is static, and decided at the association level.
In other words the association metamodel defines a mapping of the applica-
tion specification and the architecture specification. Therefore the association
metamodel imports the application and architecture metamodels and adds to
them the following concepts: TaskAllocation, DataAllocation and Schedul-

ing.
The overall view of the metamodel is given in figure 6.3. It is important

to note that the Part concept stands for an instance of either a application
component or an hardware component.

The TaskAllocation specifies on which hardware components the different
software components are assigned. The runnables attribute references software
components that are executed on the hardware component referenced by the
activeComponent attribute which practically is a reference to a processor (or a
group of processors).

The DataAllocation concept specifies where the application data (arrays)
are placed in the architecture. It is mainly the specification of the mappings of
the data (arrays) on the memory.

The Scheduling concept is used to define the order in which components are
processed in the case where several application components are assigned to the
same architecture unit. This scheduling is local to each hardware component.

Figure 6.3. Association metamodel.

3.4 The SystemC based simulation Metamodel

SystemC is a C++ class library and a simulation kernel for hardware, soft-
ware and system modeling. It is particularly suited to:

propose a methodology for SoC designs consisting of DSPs, ASICs, IP-
Cores, Interfaces, ...

Metamodels and MDA Transformations for Embedded Systems 99

extend C/C++ by providing concurrency, timing, reactivity, communica-
tion, signal/data types,...

simulate up to le level of cycle-accurate.

In our SystemC TLM metamodel, an application contains a Main concept
which contains a set processors, Memories, Interconnection units and a set of
signals. This metamodel is oriented towards SystemC code generation for the
particular case of Intensive Signal Processing mapped on a SoC. It is designed
to fit our particular needs, and should not be considered as a general SystemC
metamodel. we intend to later use any standardized SystemC metamodel, for
example the UML for SoC metamodel proposed in [Hasegawa, 2004].

The metamodel is provided in figures 6.4 and 6.5. its main concepts are :
Main, Processor, ComputationModule, Memory, Interconnect, Bridge
and Signal.

The Main is the top level component of a SystemC specification. It
holds a set of Processors, Interconnects, Memories, Bridges and signals
to model communications between these instances.

The Processor refers to a hardware computation unit. To Each processor
is assigned a set of compution Modules, and signals for synchronization
between the modules.

The ComputationModule is a software unit.

The Memory is a hardware storage unit.

The Interconnect is a hardware unit used to link processors and memo-
ries; for example a Bus.

The Bridge is a hardware unit used to link two Interconnects in com-
plexe hardware architectures.

The Signal is used for synchronisation between computation modules
either running on the same processor or on differents processors.

4. PIM Transformation to PSM

The transformation of our PIM association metamodel to our PSM Sys-
temC TLM simulation metamodel requires the development of a set of dedi-
cated mapping rules. This development requires the identification of the main
mapping rules, and then the detail of each of these mappings. In this section
we will show the main rules of our transformation, and the details of one of
these rules. Then we will explain the implementation of the selected rule with
ModTransf.

100 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 6.4. SystemC simulation metamodel : Overview

Figure 6.5. SystemC simulation metamodel : ComputationModule

Metamodels and MDA Transformations for Embedded Systems 101

4.1 Main Mapping Rules

The ModTransf tool allows a development rule by rule, where, ideally, each
rule focus on a simple concept to concept transformation (even if the tool sup-
ports a one to one, one to many, and many to one mappings). Thus a complete
transformation is made of basic rules. Our transformation main rules (map-
ping concepts from the association metamodel to concepts of our SystemC
TLM metamodel) are given in the following table:

Rules Input concepts Output concepts

ElementaryComponent (Ec) ComputationTask
R1 TaskAllocation (Ta)

ElementaryHwComponent (Ehc) Processor
AolTilerPart (At) Tiler

R2 TaskAllocation (Ta)
ElementaryHwComponent (Ehc) Processor
ElementaryComponent (Ec) Memory

R3 DataAllocation (Da) DataPath
ElementaryHwComponent (Ehc)
ElementaryComponent (Ec1)

R4 Scheduling (Sc) Signal
ElementaryComponent (Ec2)

R5 ElementaryHwComponent (Ehc) Interconnect
R6 Port (P) ControlPort
R7 Port (P) DataPort
R8 AolArray Array

Given the input and output concepts mapping, we will now specify the con-
ditions required on the input concepts.

Rules Conditions

Ehc is an ActiveHWComponent
R1 Ta.Task = Ec

Ta.Processor = Ehc
Ehc is an ActiveHWComponent

R2 Ta.task = At
Ta.processor = Ehc
Ehc is a PassiveHWComponent

R3 Da.Task = Ec
Sc.first = Ec1

R4 sc.second = Ec2
R5 Ehc is an InterconnectHWComponent
R6 P.ownerElement.Type = ispComponent
R7 P.ownerElement.Type = Memory
R8 none

In the above tables we have given the different elements in the Y-model

that are used to create the TLM SystemC output metamodel and the conditions

102 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

under which the transformation rules are applied. This top level mapping is
not sufficient. We need now to detail each rule to specify how properties of a
source concept map to properties of the destination concept. Each attribute or
feature will be either copied (for simple data types) or transformed from the
source concept to the target one. We will now take as example the Rule R2 and
give more details about that transformation.

Rule R2:

The TaskAllocation concept (class) contains two attributes : task which
holds a reference to an AolTilerPart and the processor holding a reference
to an ElementaryHwComponent which is instance of ActiveHwComponent
(see figure 6.6).

The AolTilerPart (At) is transformed into a Tiler (Tr),

the ElementaryHwcomponent (Ehc) is transformed into a Processor

(P),

the Processor concept in the systemC TLM model has an attribute
named ownedComputationModule which contains a collection of all the
ComputationTask allocated to that Processor. In this rule, the Task-
Allocation is used to add into that attribute of the created Processor

instance, the Tiler (Tr) generated from the AolTilerPart.

Figure 6.6. Example of Transformation

Once the concept mapping and the details of the mappings are defined, the
next step is to implement them with ModTransf.

Metamodels and MDA Transformations for Embedded Systems 103

4.2 Transformation Rule in ModTransf

Here is the implementation of Rule 2 using ModTransf. The xml Rule is as
shown below:

1. <rule ruleName="TaskAllocation" leftParam="src" rightParam="dst">

2. <description> Transform a TaskAllocation </description>

3. <leftConditions>

4. <concept property="src" type="TaskAllocation" model="y-model">

5. <concept property="task" type="AolTilerPart" model="y-model"/>

6. <concept property="processor" type="Ehc" model="y-model">

7. <conditionExpr expr = "function =’ACTIVE’ "/>

8. </concept>

9. </concept>

10. </leftConditions>

11. <rightConditions>

12. <concept property="dst" type="systemC.Processor" model="sysc"/>

13. </rightConditions>

14. <actions>

15. <transform ruleName="EHwC2Processor"

16. leftProperty ="src.processor"

17. rightProperty beanName="dst"

18. </transform>

19. <transform ruleName="AolTilerPart2Tiler"

20. leftproperty ="src.task"

21. rightproperty ="dst.ownedComputationModule"

22. </transform>

23. </actions>

24. </rule>

In the actions part of this rule (lines 14 to 23), the two transform ac-
tions (line 15 and 19), call the rules named EHwC2Processor and AolTiler-
Part2Tiler to transform the ElementaryHwComponent into a Processor and
the AolTilerPart into a Tiler.

Conclusion

In our co-design environment, the transformation from UML to SystemC
is a flow of successive transformations. In order to help in understanding our
transformations, we have provided an example of transformation. The com-
plete process from UML to SystemC simulation code is a set of three steps:

From the application and the hardware architecture models to the as-
sociation model. The mapping of the application onto the architecture
is performed automatically by refactoring of a default mapping to sat-
isfy some constraits expressed by the designer. It is an in-built transfor-
mation. This transformation aims at generating the association model
according to the association metamodel.

104 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

From the association model to SystemC simulation model. This trans-
formation takes as input the association model generated at the previous
level, the rules for transformations are expressed using ModTransf. The
transformation engine generates the SystemC simulation model. Each
concept in the input model is transformed to its corresponding concept
in the SystemC simulation metamodel. This part was studied in this
paper.

From the SystemC simulation model to SystemC code. This last transfor-
mation is rather a code generation process. The same ModTransf tool
is used too. The transformation here takes as input the previous model,
some rules and some code templates. Theses templates are called by the
rules. They contains placeholders replaced by values of the concepts.

Model oriented co-design environment are widely used in the embedded
system community. All the transformations between models could benefit of
MDA techniques and ModTransf like tools. The reuse of models becomes a
reality, add new models becomes feasible.

References

Cédric Dumoulin, ModTransf: A Model to Model Transformation Engine, 2004,
http://www.lifl.fr/west/modTransf.

Cédric Dumoulin, Pierre Boulet, Jean-Luc Dekeyser and Philippe Marquet,
UML 2.0 Structure Diagram for Intensive Signal Processing Application
Specification, INRIA, 2003, http://www.inria.fr/rrrt/rr-4766.

html.
D. D. Gajski and R. Kuhn, Guest Editor Introduction: New VLSI-Tools, IEEEC,

1983, vol.16, pages 11-14.
T.Gardner, C.Griffin, A. Koehler and R.Hauser, A review of OMG MOF 2.0

Query / Views / Transformations Submissions and Recommendations to-
wards the final Standard, OMG document 03-08-02, 2003, OMG document.
Review of QVT proposals.

Takashi Hasegawa, An Introduction to the UML for SoC Forum in Japan,
USOC’04@DAC2004, San Diego, California, 2004.

Object Management Group, Inc., MOF : Meta Object Facility, Specification,
Version 1.3, Jan-2000, http://www.omg.org/cgi-bin/doc?formal/

00-04-03.
Object Management Group, Inc., MOF 2.0 Query/View/Transformations RFP,

2003, http://www.omg.org/techprocess/meetings/schedule/

MOF_2.0_Query_View_Transf._RFP.html.
Object Management Group, Inc., (UML 2.0): Superstructure Draft Adopted

Specification, Jul-2003, http://www.omg.org/cgi-bin/doc?ptc/

03-07-06/.

Metamodels and MDA Transformations for Embedded Systems 105

Object Management Group, Inc., UML 2.0 OCL Final Adopted specifica-
tion, document ptc/03-10-14, http://www.omg.org/cgi-bin/doc?ptc/
2003-10-14.

picoChip, PC101 and PC102 Datasheets, 2003, http://www.picochip.
com/technology/picoarray.

Chapter 7

MODEL BASED TESTING AND REFINEMENT IN

MDA BASED DEVELOPMENT

Ian Oliver
Nokia Research Center
Helsinki
Finland

Abstract The Model Driven Architecture’s key principle is that of the mapping. An algo-
rithmic or otherwise mechanical way of generating new more platform specific
models from platform independent models with respect to some platform. These
mappings are always presented as devices driving the software development.
However it is clear that there are a number of uses for mappings and that the
idea can be extended to take into consideration not only software development
but transformation between differing underlying representations.

Mappings also have a key rôle in the methodology and in the way tests are
conducted. Development is coupled with the notion of refinement - that is a
mathematically strict way of ensuring certain (critical) properties from the ab-
stract to concrete models. To fully understand and utilise the mappings it is
necessary to construct and formalise a framework for these mappings and their
meanings (particularly in testing with refinement).

1. Introduction

Testing is probably the most critical issue with regards to software develop-
ment but is one of the most lacking areas in terms of practise [Binder, 2000].
Technologies such as model based testing [Offutt and Abdurazik, 1999], re-
finement and so on, are all well known; integrating these together is a critical
task for software engineering. There are a number of issues particularly when
integrating refinement that need to be discussed.

Model Driven Architecture (MDA) is a proposal by the Object Manage-
ment Group1 for a development framework in which the logic of the system
is separated from the logic of the underlying platform. The key points about
the MDA is that it formalises the relationship between that of a model and
that of the mapping between a pair or more of models by encoding algorith-

© 2005 Springer. Printed in the Netherlands.

107

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 107–122.

108 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mically methodological ideas and concepts. The idea, while arguably not rev-
olutionary is now practical because of the existence of a standard, extensible
modelling language (UML), domain specific meta-models and thus languages,
a meta-modelling framework (MOF) and standardised model interchange for-
mats (nominally based upon XML). This notwithstanding the development of
sophisticated processes, methods and experience of the software engineer.

Model Based Testing (MBT) is a development concept where the validation
and verification tests are generated directly from the models of the system un-
der development. Refinement is a well known, formally defined method for
ascertaining whether certain properties of a system are preserved across devel-
opment. However refinement as seen in methods such as the B-Method is very
strict and tied to one particular aspect of the model. Model based testing on
the other hand deals with many aspects of a model.

In this paper we describe how model based testing, model driven architec-
ture and the notion of refinement combine. We do not attempt to provide a full
mathematical treatment of this composition but to outline a number of impor-
tant issues when working with these technologies.

2. MDA Taxonomy

The MDA is a complex structure which takes into consideration many as-
pects of modelling such as the language, semantics and model management. In
figure 7.1 we show a simplified representation of the MDA meta-model written
using UML.

Model Language

Notation SemanticsMapping

* *
srctarg

written in

* *
composed ofcontains

* *

Figure 7.1. MDA Meta-Model

From this model we can clearly see the separation of concerns provided
by the MDA and embodied in the technologies on which it is based. For ex-
ample the UML [OMG, 2002b] makes the distinction between notation and
semantics. The UML is supplied with a weak semantics enough to suit nearly

Model Based Testing and Refinement in MDA Based Development 109

all development tasks and extensible enough for it to be customised to most
domains.

The meta-model shown here we have reconstructed from our experiences in
using the MDA and MDA-like approaches [Oliver, 2002b]. The primary issues
are the creation of a structure of mappings and the explicit representation of the
structure of a language.

2.1 Mapping Taxonomy

The mapping is the fundamental construct of MDA. The key point about
the mappings in the MDA is that they are of semantic nature and not syntactic
nature - that is they map the concepts in one language to the concepts in an-
other preserving the meaning. This in unlike the traditional syntactic mappings
found in many tools, for example, those that map UML classes to C++ or Java
classes - this is of course fine if the semantic gap between the diagram and the
code is almost non-existent.

The MDA as it stands does not define any taxonomy of mappings, this we
feel leads to some confusions about what a mapping is and what can be per-
formed by a mapping.

We therefore introduce a simple taxonomy2 of MDA mappings based upon
the idea that mappings can be broadly classified into three types: development,
transformational and code-generation. These can be seen in figure 7.2 - taxon-
omy in black, MDA meta-model in grey.

Development Transformation CodeGeneration

* contains

Mapping

Figure 7.2. MDA Mapping Taxonomy

Mappings may contain other mappings - particularly in the case of devel-
opment mappings which may utilise a number of transformational mappings
to produce their result. This relationship also solves the problem (discussed
below) of the transformation vs code-generation mapping - a transformation
mapping may contain a (or many) code-generation mapping(s).

Of course there can be much discussion about the structure of this taxonomy
and its classifications. One point certainly relates to code generation mappings:
are they development, transformational or some subtype of a transformational

110 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mapping? We do not discuss these issues here as classifications have too much
of a philosophical nature.

Refactoring [Fowler, 1999] we consider the situation where we wish there
to be no formal mathematical connection between the source and target models
of the mappings. Refinement is the strongest of all the properties and insists
that strict relationships between the models exist. Retrenchment is presented as
a generalisation of refinement that deals with the situation where requirements
may change but we wish to preserve the ideas of refinement.

In this paper we concentrate more on the notions of refinement and retrench-
ment and what it means within the context of an MDA development process
that requires those properties to hold.

In [Oliver, 2002a] is a description of the space in which a model exists
known as the model matrix shown in figure 7.3. Here we can clearly see that
a model exists in a many dimensional space corresponding to various aspects
of the state and meaning of that model at any particular time. We concentrate
here on just the ‘vertical’ and ‘horizontal’ axes to which we give the names

Development or Vertical Mappings (shown in the model axis)

Transformation or Horizontal Mappings (shown on the support axis)

PI
M

PS
M

(RMA, Model Checking etc...)

M
od

el

Support

Version Control

x

y

z

Product Data Management
w

Figure 7.3. Model Matrix

We consider vertical mappings those that are conventionally in MDA par-
lance thought of as platform independent models (PIM) to platform specific
models (PSM) mappings, that is, those that change the abstraction level. Hor-
izontal mappings we consider not to change the abstraction level. Mappings
into programming languages are discussed separately.

Model Based Testing and Refinement in MDA Based Development 111

2.2 Development Mappings

Development mappings are those which change the abstraction level of the
model. That is they map platform independent models to platform specific
models. It is important to note that the terms ‘platform independent’ and ‘plat-
form specific’ are adjectives - they describe the relationship between any pair
of models in the development process rather than what a particular model is.

An important property of the development mappings is that they do not nec-
essarily imply any change of language in which the models are written. It
is conceivable that a model written using, for example UML 1.5 Core, will
continue to be written in UML 1.5 Core complete with the same semantics
throughout the development process - in this case the development mapping
only adds more detailed information into the model.

Normally it is the case that the language - or at least the semantics of the
language - changes to reflect the increasing concreteness of the model. For
example very platform independent models talk of classes in the broad object
oriented sense while platform specific models may introduce more concrete
semantics such that the notion of a class becomes closer to that of a database
table, VHDL process [Marchetti and Oliver, 2003] or C++ class [Stroustrup,
2000] for example. There is still much open research on development map-
pings and how they are implemented and what information is supplied. Broad-
ly speaking they can be considered the mapping of the structure, behaviour
and other aspects onto the architecture of system (at that level of abstraction)
[Boulet et al., 2004, Siikarla et al., 2004].

2.3 Transformation Mappings and Model Based Testing

Transformation mappings are those which do not change the abstraction
level of the model but rather extract information from the model. This is a sep-
arate issue from a development mapping where the semantics of the language
remains relatively comparable (eg: UML to UML-RT [OMG, 2002b, OMG,
2002a]). In transformational cases we have the situation where the language
change can be very great. We can show two interesting examples of this and
both relate to the issues surrounding ‘model based testing’ [Offutt and Abdu-
razik, 1999] and aspect-orientation [Elrad et al., 2002].

In the first example we can map models written using UML-RT into schedu-
lability analysis models [Oliver, 2003] which may be analysed by using a tech-
nique such as rate monotonic analysis [Klein et al., 1993]. Here the nature
of the mapping is defined such that each unit of execution (method, transition
etc) is mapped into an RMA task along with certain dependencies. This model
then requires the presence of another source model detailing the deployment
architecture of the UML system model. From this deployment model we can
ascertain where the scheduling points are in the model.

112 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

In the second example we map UML to a different modelling formalism -
the formal specification language B [Abrial, 1995]. B however is not object
oriented and its major constructor is that of a ‘machine’. This machine con-
struct fits neither the concepts of class, object nor component directly. The
transformation mapping between UML and B as described in [Snook et al.,
2003]. An example of an application of this mapping can be seen below as B
code and the class diagram in figure 7.43

MACHINE DSP0

/*" U2B3.6.12 generated this component from Package DSP0 "*/

SETS

DSP={thisDSP}; CELL; CHANNEL; DSP_STATE={boot,init,idle,traffic}

CONSTANTS

threshold

PROPERTIES

threshold : DSP --> INT

DEFINITIONS

disjoint(f)==!(a1,a2).(a1:dom(f) & a2:dom(f) & a1/=a2 => f(a1) union (a2)=0)

VARIABLES

dsp_state, current,dspChannels,powerlevel,cellChannels, broadcasting

INVARIANT

dsp_state : DSP --> DSP_STATE & current : DSP +-> CELL ...

INITIALISATION

dsp_state := DSP * {boot} || current :: DSP +-> CELL || ...

OPERATIONS

gotoinit =

BEGIN

SELECT dsp_state(thisDSP)=boot

THEN dsp_state(thisDSP):=init ||

ANY xx WHERE xx:CELL THEN current(thisDSP):=xx END

END;

...

END

Figure 7.4. Simple Class Diagram

Model Based Testing and Refinement in MDA Based Development 113

A desirable property of transformation mappings is the reversal of the map-
ping. While moving from one representation to another presents us with the
opportunity to explore different aspects of the model, the relaying of the re-
sults in these models back to the original is necessary to allow full round-trip
modelling between the two representations. In the examples given this means
that the underlying semantics between the two representations is isomorphic
with respect to the transformed aspects.

The ideas of model based testing can be clearly seen in the above example
and how these ideas integrate. Each transformation mapping is a way of gen-
erating the test models from one or more aspects of the model. While utilising
these models is generally simple for testing purposes, showing how these test
models and their results fit together is more complex. This is where the ideas of
refinement help in defining how the test models should be utilised with regards
to the development of the system under test.

2.4 Programming Language Mappings

Programming language mappings present an interesting difficulty in this
taxonomy as it is unclear exactly whether their are developmental or trans-
formational in nature. If we take the case of a traditional UML modelling tool
where class diagrams are annotated with methods, types, syntax and code that
are of a given programming language, then certainly the mappings are transfor-
mational in nature. This is primarily because the mappings do not increase the
concreteness of the model but just translate it in to a pure C++ or Java form -
the model then is a just a graphical form of the programming language and the
mapping purely syntactic in nature. A syntactic mapping places a fixed set of
semantics on the nature of the relationship while a semantic mapping requires
more information (this may be fixed of course) to resolve into what structure
the relationship may be. In the case of Java this could mean Vector, Hashtable
etc.

If the mapping requires information (from the architecture or platform defi-
nitions) to generate the more platform specific model in order to complete the
mapping then the mapping is vertical in nature. Here the mapping is more
semantic in nature usually.

3. Example of a Refinement Based Methodology

The PUSSEE project4 constructed a methodology for the development of
hardware systems using UML and formal development processes. The metho-
dology discussed can be placed into an MDA context where the relationships
between the models being produced are realised as MDA mappings. Pictorially
the development process can be seen in figure 7.5

114 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Developed to

Refines

Code Generated To

Refines
Refines

Transformed To

Model Checker

Theorem Prover

processed by

processed by

<<model>> <<model>>

<<model>>

<<model>>

<<model>>

<<model>>

<<model>>

<<development>>

<<code generation>>

<<transformation>>

<<transformation>>

Refines

Developed to
<<development>>

<<development>>
Developed to

RIL

RIL

B

B

VHDL

SystemC
<<model>>

C

UML+HW/B Model
<<model>>

UML+B Model
Transformed To

Figure 7.5. The PUSSEE Process

The formal aspects of the methodology are realised by utilising a profile
of the UML [OMG, 2002b] known as UML-B [Snook et al., 2003] which in-
tegrates the B formal specification language [Abrial, 1995] into the UML as
its action and constraint languages. These UML-B models are then verified
for internal consistency and refinement properties [Morgan, 1990] by theorem
proving mapping from the UML-B to a pure B form (which the user does not
necessarily see). Subsequently this is then code generated into a target lan-
guage such as SystemC, C or VHDL [Hallerstede, 2003]. In addition to this
the models may also be mapped to the Raven Input Language (RIL) for model
checking with Raven [Ruf, 2001]. Refinement is ensured between the B and
RIL models. If both refine then this implies refinement of the UML-B model.

4. Refinement in MDA

Refinement [Morgan, 1990] is a property between models that states that
one model is a) linked to a former, less-refined model and that b) the refined
model reduces the state-space and non-determinism of the former model. Of
course in reality the refinement link between any pair of models is more com-
plex [Back, 1998].

Refinement therefore is a property of a relationship between two models
(and not a development tactic as is sometimes believed). Referring back to the
process described in figure 7.5 refinement is preserved if the following is true:

∀m1, m2 : Model | m2 ∈ DevelopedFrom(m1) • m1 � m2

However this simple equation contains not enough detail - we must consider
precisely which aspects of the model we wish to consider for refinement. This

Model Based Testing and Refinement in MDA Based Development 115

is particularly necessary in the case of UML which has no in-built method nor
refinement semantics. In the case of embedded systems, only a few critical
aspects at certain stages of development are amenable to refinement. For an
embedded system this might be just the schedulability characteristics [Klein
et al., 1993] or performance constraints. In the methodology described earlier
this might then be described:

As the PUSSEE-method is based upon the B-Method then the refinement
semantics are take directly from the B-Method. Here the refinement operator
takes its semantics directly5 from B-Method (specifically defined between the
B models).

Given a model M1 in UML-B we transform that model into its correspond-
ing B representation, that model we denote B1. Usage of a suitable B theorem
prover proves the consistency of the model (but not necessarily its validity). If
we develop M1 to M2 with some development mapping d which has the prop-
erty that its target model(s) must refine the source model we are stating that
any B representation of M2, ie: B2 must refine B1 in the sense defined by the
B-Method. Therefore we can state that M1 � M2 iff B1 � B2.

The case is similar when we map to our second target aspects - RIL. Again
the method is similar: M1 is mapped to R1, M2 is mapped to R2, and the
development step d preserves refinement iff R1 � R2.

However the refinement property of the development step d and thus M1 �
M2 is only true if we are only considering single aspects of the model. The
notion of refinement therefore has to be extended to take into consideration the
multiple-aspects that may be explored during the development of the model.

5. Model Refinement Generalisation

We have so far presented the semantics of refinement of a model based upon
the refinement of particular models that are transformed via an MDA mapping
from the source model. We can generalise this approach and thus define firstly
a number of types of refinement, that is refinement of particular aspects, and
then a more global idea of refinement based upon the whole set of aspects
being modelled and investigated.

Given a model M at any point in time we have a set of transformations T
that extract particular aspects from the model. Not all available transformations
need be applied to a model at every level of abstraction; deciding which to
apply is governed by the development method employed.

We define a development mapping d : Model → Model over which re-
finement is preserved,ie: m � d(m). We also define model Mn where n
denotes some point in time. For simplicity here we assume that n is an in-
teger greater than zero and that time is a set of discrete values 1,2,3 and so
on: Mn+1 = d(Mn). At any point in time we extract using a transformation

116 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mapping on a model a number of aspects of that model. For example given a
model M where the set of transformation mappings T is {B,RIL} we obtain
AB and ARIL as models describing those particular aspects.

Our previous definition of refinement:

Mn � Mn+1 ⇒ ∀t : T • t(M1) � t(M2)

is too strong and can not take into account that not all transformations are
applied. At any point in time we have a model Mn and a set of transformation
applications An where An ⊆ T . Then refinement can be defined as:

(Mn, An) � (Mn+1, An+1) ⇒

An ⊆ An+1 ∧ ∀a ∈ An · a(Mn) � a(Mn+1)

If An+1 contains more transformation mappings than An these can not be
checked themselves for refinement as those members do not have any meaning
in Mn and thus across the pair of models.

This definition also ensures that as more aspects are checked then their prop-
erties must refine across all subsequent model pairs ensuring the property that
refinement is transitive.

This now gives us the definition of refinement across multiple aspects. Of
course what refinement means for a particular aspect of the model still depends
upon the methodology being employed for that aspect. In the case of B and B-
method this is already defined. In the case for schedulability analysis [Klein
et al., 1993] then as timing figures for a model decrease then refinement is
preserved. Some aspects do not necessarily have a well defined semantics for
refinement.

As we shall now see there are other considerations to make when working
with refinement and the interaction between aspects when working with mul-
tiple aspects.

6. Other Considerations

Refinement as a property of development is highly desirable, however there
are circumstances when the requirements do change and this then causes re-
finement to break. There are two particular tactics for dealing with this situa-
tion.

Also we have to consider the interaction between aspects. Aspects are often
considered to be orthogonal in nature, however, there are situations where a
change in the model which affects one aspect has repercussions for another
aspect - this can be seen for example when working with schedulability and
performance characteristics.

Model Based Testing and Refinement in MDA Based Development 117

6.1 Requirements Volatility

One of the major problems with refinement is that it assumes that the models
in question can be built in such a way that the final concrete model is a refine-
ment of the first, most abstract model. While this approach has some very real
advantages it is often the case that the initial set of requirements changes so
that one model may not refine the previous source abstract model.

One solution to this is that of retrenchment [Poppleton and Groves, 2003,
Poppleton and Banach, 2002] which introduces a relaxation of the rules of
refinement to allow for the situation where the models do not refine. This
situation can be easily catered for with MDA by providing information about
the retrenchment through a separate model.

Retrenchment requires the use of the notion of concession which defines
how the refinement relationship is weakened. In [Popplpeton and Banach,
2004] a semantics for retrenchment is given such that the retrenchment can
be expressed in terms of a refinement with respect to some universal model
in which the concessions are expressed. We can utilise this by creating an
addition model which contains the concessions. This approach though is still
experimental and support for dealing with the concession model does not exist
at this time.

Another approach is to rebuild the models by layering the features that have
been specified in the model [Back, 2002, Back, 2003]. A situation where the
refinement property of the development step can not be attained then the model
must be refactored [Fowler, 1999]. These techniques represent methods by
which one can overcome certain refinement restrictions. It may be possible
in the case of retrenchment to factor in the retrenchment ideas into the MDA
structure and refinement definition given in this paper. At present we have not
explored this in detail but the ideas are presented here to outline the future
areas of research.

6.2 Aspect Interaction

Our definition of refinement so far assumes that the aspects of the model are
orthogonal in nature. Some pairs (or more) of aspects may interact in such a
way that a change in one aspect may cause a failure of the refinement obligation
in another, seemingly, unrelated aspect.

This can trivially be seen if we are dealing with extracting memory usage
information where an change of functional specification may cause the amount
of memory consumed to increase, thus breaking the trivial memory refinement
property.

Aspect interaction is one thing that makes model based testing and the ap-
proach discussed here more difficult. It is always necessary to examine the
interactions. Categorically [Barr and Wells, 1990] this can be achieved by for-

118 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mulating a universal structure that describes the interaction between the two
aspects. This is done by constructing a forgetful functor to each of the as-
pects to build the model of interaction. This is analogous to the retrenchment
universal model in [Popplpeton and Banach, 2004].

In most situations we can avoid the necessity of constructing such models
by ordering the transformation mappings for testing in such a way that cer-
tain aspects are only meaningful for refinement (of the particular system under
development) after certain amounts of development have already been com-
pleted.

For example, for schedulability analysis or memory usage analysis, these
aspects may need to be kept until later stages of development before refinement
can be utilised.

7. Methodology

MDA places much more emphasis on method rather than just notation or
process. The current MDA releases do not discuss in detail6 the relationship
between method and mappings which in our opinion is critical to the uptake
and use of MDA principles.

We are developing a model of this relationship which is used to help in the
development of methods which support MDA. The outline of this modelling
framework can be seen in figure 7.6.

Mapping

Model

Step Working Testing

Abstraction
Level

Method

targ src
**

*

*

*

*

*

*

defines

defines

utilises

can apply

used in

links

Mapping Taxonomy...

Figure 7.6. Method Meta-Model

We consider a method to consist of a number of method steps which act upon
various abstraction levels (at least one or two). At each abstraction level there
are a number of mappings that can be sensibly applied in that context. This is
the first step towards a ‘component based methodology’ - an idea where meth-

Model Based Testing and Refinement in MDA Based Development 119

ods are composed of a number of discrete techniques that can be composed
together [Ambler, 2003].

We divide the concept of model into two parts, one for models of the sys-
tem being built and one for models that facilitate some kind of testing. These
basically correspond to those models generated by development mappings and
those generated by transformation mappings respectively and thus demonstrat-
ing the relationship between the two basic types of mapping and the types of
model produced.

The development properties related to formality becomes more interesting
as we can assert on the sets of mappings for each abstraction level properties
about how strict the mappings have to be with regard to more abstract models.
It can be seen that weaker mappings (refactorings mainly) are best placed at
very high abstraction levels where prototyping and very exploratory work can
be carried out while stronger mappings such as those implying refinement are
used at more concrete levels.

8. Conclusions

We have presented here the outline of how one may utilise and add the
concept of refinement into MDA mappings to construct a formal development
method and described a simple taxonomy of MDA mappings, their basic prop-
erties and their relationship to methodology. Model Driven Architecture is
a very young and immature field although the concepts behind MDA can be
traced back to the CASE idea of the 1970/80s. One of the reasons behind this
immaturity is a large number of preconceived and unworked ideas regarding
what a model is and what a mapping is.

Two areas of particular interest at the moment are extending the taxonomy
to take into consideration operations [Alanen and Porres, 2003] such as model
union, intersection and so on.

The secondary area of interest is the semantics of (a) method. In figure 7.6
we only define a structure state desirable properties of commutativity across the
models produced with respect to the refinement and development relationships
[Barr and Wells, 1990]. As the number of methods that do exist are plentiful
the material to draw from here is large. One area of contention is that of the
idea of a method step and a mapping - it is not clear whether these terms are
actually different or whether they are isomorphic in nature.

Refinement offers much advantages when developing systems (usually in
software) with regards to the ensured preservation of necessary requirements
of the system being modelled. The addition of this concept into the MDA
framework provides a placeholder to introduce the ideas of formal develop-
ment in an MDA context. This we feel makes the idea more acceptable to the
engineer who can still work with familiar notations and if truth be said in a de-

120 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

sired rigorous way. Techniques such as retrenchment can be applied similarly
and offer a weaker approach when required.

The problem of feature interaction can be overcome in two ways, one by let-
ting the methodology take care of things and the other more rigorously through
defining what is the interaction between two aspects. Both approaches we be-
lieve are complimentary and still require work before advances can be made.

For the developer of a method a placeholder for the semantics of the re-
finement required in a given context provides the chance to introduce formal
development into a given MDA based method.

9. Acknowledgements

This work is partially supported by the EU Project PUSSEE - IST 2000-
30103. Many thanks to Jean-Raymond Abrial for some useful comments re-
garding refinement and methodology.

Notes

1. http://www.omg.org/mda

2. This by no means is a complete or “one true” taxonomy - many variations do exist but have yet
to be either documented or demonstrated. We defer the argument about what constitute a good or correct
taxonomy here to concentrate on the basic framework rather than a philosophical discussion

3. NB: B code listing is shown only partially for space reasons and the ellipses (...) show the missing
code):

4. EU Project: IST-2000-30103,Paradigm Unifying System Specification Environments for proven
Electronic design, http://www.keesda.com

5. actually only in part but we shall discuss this later
6. and nor should they possibly

References

Abrial, J-R (1995). The B-Book - Assigning programs to Meanings. Cambridge
University Press. 0-521-49619-5.

Alanen, Marcus and Porres, Ivan (2003). Difference and union of models. In
Lecture Notes in Computer Science 2863: <<UML>> 2003 Conference.
Springer. October 20-24.

Ambler, Scott W. (2003). The right tool for the job. Software Development,
11(12):50–52.

Back, Ralph (1998). Refinement Calculus: a Systematic Introduction. Springer-
Verlag. 0387984178.

Back, Ralph-Johan (2002). SFI: A refinement based layered software architec-
ture. In George, C and Miao, H, editors, Formal Methods and Software En-
gineering: 4th International Conference on Formal Engineering Methods,
ICFEM 2002 Shanghai, China, October 21-25. Lecture Notes in Computer
Science 2495. Springer.

Model Based Testing and Refinement in MDA Based Development 121

Back, Ralph-Johan (2003). Software construction by stepwise feature introduc-
tion. In Bert, D., Bowen, J.P., Henson, M.C., and Robinson, K., editors, ZB
2002: Formal Specification and Development in Z and B: 2nd International
Conference of B and Z Users, Grenoble, France, January 23-25. Lectures
Notes in Computer Science 2272. Springer.

Barr, Michael and Wells, Charles (1990). Category Theory for Computing Sci-
ence. International Series in Computer Science. Prentice Hall. 0-13-120486-
6.

Binder, Robert V (2000). Testing Object-Oriented Systems - Models, Patters
and Tools. Addison-Wesley. 0-201-80938-9.

Boulet, P., Cuccuru, A., Dekeyser, J.-L., Dumoulin, C., Marquet, Ph., Samyn,
M., Simone, R. De, Siegel, G., and Saunier, Th. (2004). MDA for SoC de-
sign: UML to SystemC experiment. In Müller, Wolfgang and Martin, Grant,
editors, Proceedings of UML-SoC 2004, DAC2004, San Diego, California,
June 6.

Elrad, Tzilla, Aldawud, Omar, and Bader, Atef (2002). Aspect-oriented mod-
eling: Bridging the gap between implementation and design. In Batory,
D, Consel, C, and Taha, W, editors, Generative Programming and Com-
ponent Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002,
Pittsburgh, PA, USA, October 6-8, 2002. Lectures Notes in Computer Sci-
ence 2487, pages 189–201. Springer.

Fowler, Martin (1999). Refactoring: Improving the Design of Existing Code.
Addison Wesley. 0201485672.

Hallerstede, Stefan (2003). Parallel hardware design in B. In Bert, Didier,
Bowen, Jonathan P, King, Steve, and Waldén, Marin, editors, Proceedings
of ZB2003: Formal Specification and Development in Z and B. Lecture
Notes in Computer Science 2651. Third International Conference of B and
Z Users, Turku, Finland, June 2003, pages 101–102. Springer.

Klein, Mark H., Ralya, Thomas, Pollak, Bill, Obenza, Ray, and Harbour, Mi-
chael González (1993). A Practitioner’s Handbook for Real-Time Analy-
sis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Aca-
demic Publishers.

Marchetti, Michele and Oliver, Ian (2003). Towards a conceptual framework
for UML to hardware description language mappings. In Proceedings of
FDL03, Frankfurt, Germany, Sept 2002.

Morgan, Carroll (1990). Programming from Specifications. Prentice-Hall.
Offutt, Jeff and Abdurazik, Aynur (1999). Generating tests from UML specifi-

cations. In The Second International Conference on The Unified Modeling
Language, Fort Collins, Colorado, USA, October 28-30. Springer.

Oliver, Ian (2002a). Experiences of model driven architecture in real-time em-
bedded systems. In Proceedings of FDL02, Marseille, France, Sept 2002.

122 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Oliver, Ian (2002b). Model driven embedded systems. In Lilius, Johan, Balarin,
Felice, and Machado, Ricardo J., editors, Proceedings of Third International
Conference on Application of Concurrency to System Design ACSD2003,
Guimarães, Portugal. IEEE Computer Society.

Oliver, Ian (2003). A UML profile for real-time system modelling with rate
monotonic analysis. In Villar, Eugenio and Mermet, Jean, editors, System
Specification and Design Languages. Kluwer Academic Publishers. 1-4020-
7414-X.

OMG (2002a). Response to the OMG RFP for Schedulability, Performance
and Time. Object Management Group, revised submission edition.

OMG (2002b). Unified Modelling Language Specification). Object Manage-
ment Group, version 1.5 edition. OMG Document Number ad/02-09-02.

Poppleton, Michael and Banach, Richard (2002). Controlling control systems:
an application of evolving retrenchment. In Lecture Notes in Computer Sci-
ence 2272. Springer-Verlag.

Poppleton, Michael and Groves, Lindsay (2003). Software evolution with re-
finement and retrenchment. In Refinement of Critical Systems Workshop,
RCS03. Department of Computer Science, Åbo Akademi University, Turku,
Finland.

Popplpeton, M R and Banach, R N (2004). Requirements validation by lifting
retrenchments in B. In Proceedings of ICECCS2004: IEEE International
Conference on Engineering of Complex Computer Systems, Florence, Italy.

Ruf, J. (2001). RAVEN: Real-Time Analyzing and Verification Environment.
Journal of Universal Computer Science, 7(1):89–104.

Siikarla, Mika, Koskimies, Kai, and Systä, Tarja (2004). Open MDA using
transformational patterns. In Model Driven Architecture: Foundations and
Applications MDAFA 2004, June 10-11 Linköping, Sweden.

Snook, Colin, Butler, Michael, and Oliver, Ian (2003). Towards a UML profile
for UML-B. Technical Report 8351, University of Southampton.

Stroustrup, Bjarne (2000). The C++ Programming Language - Special Edition.
Addison-Wesley. 0-201-70073-5.

Chapter 8

PREDICTABILITY IN REAL-TIME

SYSTEM DEVELOPMENT

Jinfeng Huang, Jeroen Voeten, Oana Florescu, Piet van der Putten and Henk
Corporaal
Faculty of Electrical Engineering Eindhoven University of Technology
5600MB Eindhoven, The Netherlands

J.Huang@tue.nl

Abstract The large gap existing between requirements and realizations has been a perti-
nacious problem in complex system design. This holds in particular for real-
time systems with strict timing constraints and critical-safety requirements. De-
signers have to rely on a multi-step design process, where design decisions are
made at different modelling levels. To ensure the effectiveness of this design
process, predictability should be well-supported by design approaches, allow-
ing designers to predict properties of future design outcomes based on exist-
ing design results. In this chapter, we first discuss the role of the semantics of
design languages and investigated how they can support a predictable design
process. Then, the deficiencies, w.r.t. predictability support, of existing design
approaches for real-time systems are illustrated by an example. Finally, a pre-
dictable design approach for real-time systems is introduced to overcome this
problem.

Keywords: Real-time, predictability, semantics, compositionality, composability

Introduction

The aim of real-time system design is to fill the gap between requirements
and the realization. However, due to the continuous increase of the functional
complexity of real-time systems, and because of stringent timing requirements
they have to satisfy, the design gap has increased tremendously. Since tra-
ditional code-centric design approaches are obviously not capable of coping
with this increasing complexity, designers have to resort to a multi-step design
process, where the system is specified and analyzed at different levels of ab-
stractions (see Figure 8.1). This design process usually involves requirement

© 2005 Springer. Printed in the Netherlands.

123

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 123–139.

124 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Requirement

capture

System

modelling

System

synthesis

Figure 8.1. The multi-step design

capture, system modelling, and system synthesis. During requirement capture,
the system is specified at the most abstract level, which defines the needs and
constraints of the system. During system modelling, designers explore the de-
sign space at different abstraction levels, make design decisions through suc-
cessive design steps and finally propose a proper design solution, which serves
as a blueprint to synthesize a realization. During system synthesis, a model is
transformed into a realization, which is expected to meet desired properties.

To smoothen the design process and improve productivity, consistency be-
tween design outcomes has to be maintained during each design step. In other
words, predictability should be well-supported by design approaches, allow-
ing designers to predict properties of future design outcomes based on existing
design results.

The remainder of the paper is organized in four sections. In Section 1, We
show that semantics of a design language plays an important role for the multi-
step design process and has a direct impact on the support for predictability.
In Section 2, we will briefly explain the deficiencies of existing approaches in
supporting predictability during the design of real-time systems. To solve the
problem presented in Section 2, we introduce a predictable design approach
for real-time systems in Section 3. Section 4 concludes this chapter.

1. Semantics of design languages

Semantics of design languages has a direct impact on the thinking pattern
of developers and the meaning of design outcomes. According to the differ-
ent abstraction levels of design thoughts, three categories of design languages,
requirement, modelling and implementation languages, are involved in the de-
sign process.

Predictability in Real-time System Development 125

1.1 Requirement languages

Requirements express the needs and constraints that are put upon a system,
each of which is a property that must be present in realizations in order to
satisfy the specific needs of some real-world application [Kotonya and Som-
merville, 1998]. Usually, requirements are written in natural languages. How-
ever, due to the ambiguity of natural languages, complex concepts are usually
very difficult to specify precisely. This can result in errors and iterations during
the design process. Formal semantics is proposed as a solution to solve the am-
biguity problem. It is embedded in requirement languages to promote under-
standability of requirement specification, to facilitate the automatic checking
of requirement consistency and completeness, and to improve the traceability
of requirements during the multi-step design process 1.

1.2 Modelling languages

System modelling is the most challenging and creative activity of the design
process. During system modelling, designers need first to understand thor-
oughly the requirements, carefully explore the design space and finally devise
a design solution (model). The design model serves as the basis for later sys-
tem synthesis, the success of which depends to a large extent on the model
itself.

Due to the potential complexity of real-time systems, the modelling of such
a system is often accomplished by taking a number of steps. Each step only
considers a part of the system that is relevant to address some specific de-
sign problems. In addition to possessing adequate expressive power to assist
designers to specify desired aspects of the system and to analyze the system
behavior of interest at each design step, the semantics of a modelling language
should also support effective model transformations, which preserves proper-
ties of interest during the multi-step design process.

Model transformations: abstraction and refinement. Abstraction and
refinement are two elementary transformations performed during the design
process (as shown in Figure 8.2). Abstraction is the activity that tries to remove
(or hide) irrelevant information, which improves the comprehensibility of ex-
isting design models and facilitates the evaluation of different design solutions.
The major goal of the abstraction activities is to improve the understandability
of the design, enabling design decisions to be made. Refinement is the activ-
ity that adds more implementation details to models, thereby reducing the gap
between models and realizations. The major goal of refinement activities is
the implementability. Intuitively speaking, abstraction activities intend to clar-
ify what the system (component) can do, while refinement activities intend to
clarify how the functionality of the system (component) can be achieved.

126 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 8.2. Basic design activities

A design process can be considered as a set of abstraction/refinement ac-
tivities, which intends to fill the gap between the desired properties (what the
system should be) and the realization (how the system functions). The effec-
tiveness of model transformations can significantly affect the required design
time and cost. This holds in particular for large-scale systems.

In practice, compositionality (or composability) is often regarded as an im-
portant characteristic that the semantics of a modelling language should pos-
sess, in order to facilitate model transformations for complex systems, where
model transformations can be carried out on its subsystems.

Compositionality. The well-known principle of compositionality [Partee
et al., 1990] states that the meaning of a design description is a function of the
meanings of its parts and of the syntactic rules by which they are combined. It
is originally proposed to guide the association of the semantics and the syntax
of a design language and to assist designers in understanding the meaning of a
complex design description in a structured way.

Consider that a system (or subsystem) is represented by a tree structure,
where each leaf is a syntactic primitive and other nodes are combination rules.
Compositionality ensures that each syntax sub-tree can be understand indepen-
dently without the consideration of other parts of the tree. Due to the potential
complexity of the syntax tree, the semantic interpretation of a complex design
description can be far from simple. We can easily foresee that the interpretation
of a syntax tree with hundreds of levels, which is not unusual for a complex
design description, could easily grow beyond human’s understanding. There-
fore, compositionality alone does not promise that the meaning of a recursively
composed syntax tree can be understood easily.

However, when compositionality is applied to model transformations (ab-
straction/refinement), it offers many benefits to reduce design complexity and
to improve design efficiency. Compositional semantics divides a complex sys-

Predictability in Real-time System Development 127

Figure 8.3. Abstraction/refinement based on the compositional semantics

tem into a set of semantic components and ensures the semantical indepen-
dency of each component in the system. Thus, abstraction/refinement con-
cerning of the whole system can be achieved by local abstraction/refinement
for each component and the mapping of combinators to corresponding ones in
the other abstraction/refinement level (see Figure 8.3). Furthermore, the cor-
rectness of the abstraction/refinement activities can also be verified locally.

One example of design languages equipped with compositionality seman-
tics is CCS (Calculus of Communicating Systems) [Milner, 1989]. Based on
the compositional semantics of CCS, observation equivalence is defined, which
states that two models are observational equivalent if and only if both models
exhibit the same communication behavior to the external observer. The se-
mantic equivalence relation provides the theoretical basis for transformational
design approaches, where components of a high-level model are iteratively re-
fined into equivalent components with more details. In this way, observation
equivalence can effectively assist the abstraction/refinement of a design de-
scription. More detailed discussion about transformational design approaches
can be found in [van der Putten and Voeten, 1997], [Koomen, 1991]. Example
8.1 illustrated how abstraction/refinement activities can be carried out in CCS.

Example 8.1 Suppose that system S consists of two components P and Q,
which are depicted by:

P ≡ (a.b ‖ b)\b, Q ≡ (c.d ‖ c)\c and S ≡ P ‖ Q. (8.1)

The semantics of CCS allows designers to consider the abstraction of P and
Q independently from each other. In other words, no matter in what context
that P or Q are embedded, P can always be abstracted as P ′ ≡ a and Q as
Q′ ≡ d. An abstraction of S can be S′ ≡ a ‖ d. Conversely, P , Q and S are
possible refinements of P ′, Q′ and S′ respectively.

In summary, suppose S ≡ P1 ⊕ P2... ⊕ Pn is a system expressed by a lan-
guage with a compositional semantics, where P1, P2... Pn are components of

128 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

S and where ⊕ is a combinator of components. The compositional semantics
guarantees that abstraction or refinement P ′

1, P ′

2... P ′

n of P1, P2... Pn can be
carried out independently. Therefore an abstraction or refinement of S can be
S′ ≡ P ′

1P ′

2...P ′

n, where is the corresponding mapping of combinator ⊕
in S. In Example 8.1, ⊕ and are both the parallel compositional combinator
‖. In practice, S′ can be expressed in the same language as that used for S or
in a totally different language. For example, properties of a system written in
a requirement language can be abstractions of a system written in a modelling
language (see the next subsection composability).

Composability. The concept of compositionality is intuitively useful in
achieving effective abstraction/refinement during the design of complex sys-
tems. However, in practice, it is not always as effective as expected. An im-
portant reason is that it does not put any restrictions on the assignment of mean-
ing to combinators. As a consequence, semantical independency can always
be achieved by assigning trivial semantics to combinators [Zadrozny, 1994].
In practice, the combinator semantics for both abstractions and refinements
should be simple enough. For example, the semantics of the combinators ‖
and + in CCS is defined in a natural way and can be understood easily. The
abstraction/refinement of sub-processes in CCS also retains the original com-
binators.

In the context of concurrent systems, a more restricted “version" of compo-
sitionality is sometimes called composability. Composability states that prop-
erties satisfied by individual components of a system should be satisfied by
their parallel compositions [Sifakis, 2001]. For example, assume reactive sys-
tem S consisting of two parallel components P and Q has a timing response
property ϕ, which states that every environmental stimulus p must be followed
by a response q within 3 seconds. If P satisfies ϕ and the design language
supports composability, then S ≡ P ‖ Q should also satisfy ϕ.

More generally, consider a system S ≡ P1 ‖ P2... ‖ Pn expressed by a
language supporting composability, where P1, P2... Pn are components of S
and ‖ is the parallel combinator. Assume each component Pi satisfies property
ϕi respectively. Composability of a design language states that S satisfies the
simple logical conjunction of these individual properties (ϕ1 ∧ ϕ2... ∧ ϕn).
We can see that only the parallel operator (‖) and the logic conjunction (∧) are
used in composability and their semantics are defined independently from the
semantics of composed components.

1.3 Implementation languages

System synthesis is an activity that converts a model into a complete sys-
tem implementation while preserving the correctness of the model. During
this stage, the system is often depicted by an implementation language (such

Predictability in Real-time System Development 129

as Java, C and C++), the semantics of which is usually related with and con-
strained by the target platform. Due to the different notions and assumptions
made at the modelling stage and at the implementation stage, it is not always
straightforward to correctly transform a model into a realization. As a con-
sequence, it is difficult to guarantee the validity of the realization w.r.t. the
satisfaction of the desired properties, which have been verified in the model.

The difficulty of maintaining correctness between a model and its realiza-
tion is attributed to several reasons. First, during the modelling stage, certain
assumptions are often made about the semantics of modelling languages in
order to effectively explore the design space. These assumptions are valid at
certain abstraction levels, but they do not always hold for the semantics of
implementation languages. For example, to facilitate the analysis of the tim-
ing behavior of a model, it is often assumed that actions are instantaneous.
However, every action does take a certain amount of execution time in every
implementation language. Without carefully considering this difference during
system synthesis, the realization may exhibit an entirely different behavior than
the model does. Second, some primitives and operations defined in modelling
languages do not have direct correspondences in implementation languages.
For example, during system synthesis, parallel operations in the model is often
implemented by means of a specific thread mechanism offered by the target
operating system, which semantics is not always consistent with that of the
modelling language.

In most existing design approaches for real-time systems, system synthesis
is achieved mainly by a syntactic mapping, instead of by a semantic mapping
between the modelling and the implementation language. As a result, the syn-
thesized realization may exhibit a different system behavior than the design
model does. A more detailed investigation of real-time system synthesis will
be presented in Section 2.

2. Real-time system design approaches

In this section, we are going to evaluate whether existing design approaches
have adequate semantic support for real-time systems. We classify existing
approaches into two categories, platform-dependent approaches and platform-
independent approaches, based on the different timing concepts adopted. This
is a justifiable classification because approaches adopting the same concept
of timing often provide similar predictability support during the design pro-
cess. Briefly speaking, platform-independent approaches use a system vari-
able to represent time (denoted as the virtual time), while platform-dependent
approaches adopt the machine time to represent time progress. This implies
that the timing behavior of a system depends on the underlying computing
platform.

130 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.1 Platform-dependent design approaches: ineffective
model transformations

Platform-dependent approaches take platform computation constraints into
considerations at the modelling stage, and use the machine time to specify the
timing behavior in their modelling languages. Examples of these languages are
Rose-Rt [RoseRT], [Selic et al., 1994] and SDL-96. One major advantage of
using the machine time is that no extra (or new) timing concepts are introduced
other than those adopted in imperative languages such as C and Java. These
approaches are readily accepted by designers, who are familiar with imperative
languages. However, this timing semantics is often too ambiguous to support
model transformations. This is illustrated by the following example.

Example 8.2 Two synchronized processes P and Q: Consider a simple
real-time system (shown in Figure 8.4) consisting of two parallel processes P
and Q (P ‖ Q), each of which comprises an iterative code segment involving
timed actions. At the beginning of each iteration, P and Q synchronize with
each other. Then process P sets a timer with a 3-second delay and process
Q sets a timer with a 2.999-second delay. After the timer of Q expires, Q
sends a “rpl-sig" message to P . For process P , there are two possibilities:
1)P receives the timer expiration message and outputs the message “wrong";
2)P receives the reply message from Q, resets its own timer and outputs the
message “correct".

Figure 8.4. A system with two parallel processes P and Q

Here, we use a graphical modelling language based on SDL-96 to describe
the system (shown in Figure 8.4). In SDL-96, the timing semantics is given
in such a way that each action takes an undefined amount of physical time 2

[Graf, 2002] and the interpretation of timing expressions (such as timers) relies
on an asynchronous timer mechanism provided by underlying platforms [Leue,
1996].

Predictability in Real-time System Development 131

0S
syn_sig

x:=t1
1S

x=t1+t2
2S

suspend

x=t1+t2+t3 3Sx=t1+t2+t3+2.999

4S

0S
syn_sig

x:=0
1S

4S

Out

x=0

'
0S

syn_sig

x:=0

'
1S

rly_sig

x<3.00 and x:=0

'
2S

4

'S '
5S

Out

x=3.00

(a) Process Q

(b) An abstraction of process Q
(c) An abstraction of process P

Figure 8.5. The semantics of process P and Q

Suppose two processes P and Q are designed separately, which is often the
case in complex system design. Now, let us first look at the timing semantics
of process Q depicted in Figure 8.5(a), where x is a clock used to express
timing constraints on actions and x := 0 represents the setting of clock x
to zero3. The process first receives a “syn-sig” message, which takes time
duration t1. Before the next statement (set(qtimer ,now +2.999)) is executed,
the operating system might switch to other processes taking a total amount of
time t2, before it switches back to process Q. Then the timer is set and the
process is suspended (taking time t3) to wait for the timer expiration message.
Between the time that the timer expires and the time that process Q responds
to the time out message, again the operating system might take a total amount
of time t4 for the execution of other processes.

Execution times t1, t3 and t5 are neglectable w.r.t. most of real-time prop-
erties of interest in a modern computing platform. In the case that process
Q is the only active process running on the platform, t2 and t4 are zero. As
a consequence, Figure 8.5(b) can be considered to be a proper abstraction of
process Q. In a similar way, an abstraction for process P can be obtained,
which is depicted in Figure 8.5(c). In design practice, it is often assumed that
compositionality (or composability) is well supported. That is, the integration
of parallel processes can preserve the properties of the integration of their ab-
stractions. Therefore, the integrated system (P ‖ Q) is often reasoned about
through the abstractions. This would indicate that P should never output the
”wrong" message when it is integrated with process Q.

However, in certain circumstances, the platform-dependent semantics of
both processes does allow process P to output the “wrong" message in the
integrated system. For example, in Figure 8.5(a), when process Q is in state
S1, the underlying operating system can first make P the active process, then P
can set the timer and suspends itself, after which the operating system switches

132 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

back to Q, which sets a timer with an expiration of 2.999 seconds. If one con-
text switch, one timer setting, suspending one process together with the other
necessary scheduling execution take more than 0.001 seconds in total 4, the
timer of process P might expire before that of process Q. As a result, P out-
puts the “wrong" message.

From the above example, we can see that the abstraction of the integration
of a set of components cannot always be correctly reasoned about from the
abstraction of its components. To eliminate the unexpected behavior, designers
have to rely on ad-hoc way to tune the behavior of each component, involving
a tremendous number of design details of other components to be considered.
As a result, the design process is often time consuming and prone to errors.

Real-time scheduling is often adopted in practice to alleviate the problems
mentioned above for platform-dependent design approaches.

Real-time scheduling:. In the research domain of real-time scheduling, a
system is viewed as a set of concurrent tasks. A scheduler is used to manage
the activation and execution of tasks concurrently running in the system. It
assigns the computation time by giving different priorities to tasks. In general,
the task with a higher priority is scheduled before those with lower priorities.
The goal of real-time scheduling is to devise a priority assignment scheme to
ensure that every task can be accomplished in time. In principle, a feasible
schedule can eliminate unwanted interferences from other tasks, reducing the
ambiguity of the timing semantics of each task. However, real-time scheduling
lacks a consistent framework to integrate functionality and timing [Liu and
Joseph, 2001], and it is only suitable for a particular set of real-time systems,
such as periodic systems. Hence they are not a general solution to the design of
complex real-time systems. Especially interaction-intensive real-time systems
are difficult to design with scheduling theory.

2.2 Platform-independent design: ineffective system
synthesis

Contrary to platform-dependent design approaches, platform-independent
design approaches often adopt a virtual timing concept, which is independent
of any underlying execution platforms. Furthermore, the semantics of their
modelling languages often treats the time progress and the action execution
in an orthogonal way [Nicollin and Sifakis, 1991], which can reduce the am-
biguity of the timing semantics and improve the understandability of design
descriptions. In this semantic framework, system actions (such as communi-
cations and data computations) are timeless (taking zero time) and time passes
without any action being performed. On one hand, such semantics can pro-
vide sufficient expressive power to describe the timing behavior of a system.

Predictability in Real-time System Development 133

On the other hand, compositionality (or composability) is supported by the se-
mantics of their modelling languages and effective abstraction/refinement can
be supported during the design process. Furthermore, since actions are instan-
taneous, additional analysis code does not take up time, keeping the original
timing behavior of the system unchanged. A typical modelling language based
on this semantic framework is SDL-2000 [Z.100, 2000], which is supported by
the TAU Generation 2 tool (TAU G2 in short) released by Telelogic [TAU G2].
Other examples often used in academic contexts are timed automata or process
algebra, such as timed CCS.

The timing semantics of the design descriptions in Example 8.2 can also
be given in platform-independent semantic frameworks. In these frameworks,
t1 till t5 are all zero and we can always consider the semantics depicted in
Figure 8.5(b) for process Q to be a proper abstraction of that in Figure 8.5(a),
and the same holds for the abstraction of process P depicted in Figure 8.5(c).
Consequently, the abstraction of the combined system P ‖ Q can be captured
by combination of Figure 8.5(b) and Figure 8.5(c), in which process P should
never output the “wrong" message. We made the same model in TAU G2, and
the behavior of the system (P ‖ Q) was indeed as expected.

Although most platform-independent approaches provide sufficient support
in their modelling languages for predictable design, bridging the large semantic
gap between these modelling languages and implementation languages is still
not solved adequately (see Section 1, Implementation languages).

Automatic transformation of design models to realizations is a superced-
ing technique to manual transformation, the latter of which is inefficient and
prone to errors. In current practice, the automatic transformation is achieved
mainly by the syntactic mapping of syntax primitives and constructs between
two design languages, instead of by a semantic mapping. As a result, incon-
sistencies can be observed between the design model and the realization. For
example, actions are usually assumed to be instantaneous in the model, while
they do take a certain amount of physical time in the realization. Without care-
ful considerations of this semantic difference, the realization can exhibit faulty
behavior. Although the model in Example 8.2 made in TAU G2 is proven to
be correct, errors are observed in the automatically synthesized realization (see
Figure 8.6).

3. A predictable design approach

In the previous section, we have investigated the deficiency of the exist-
ing design approaches in supporting predictability for real-time systems. In
this section we introduce a design approach which can overcome this problem.
This approach has two distinct characteristics. First, the POOSL language is
adopted at the modelling stage, which is a platform-independent modelling

134 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 8.6. The output of a realization of two parallel processes P and Q

language. Second, the Rotalumis tool is used to automatically synthesis re-
alizations (C++) from POOSL models. Most importantly, the synthesis pro-
cedure is based on a formal linkage between between the semantics of the de-
sign language (POOSL) and that of the implementation language (C++), which
guarantees property-preservation between models and realizations.

3.1 The design language POOSL

In this section, we give a brief overview of the POOSL language (Parallel
Object-Oriented Specification Language), which is employed in the SHESim
tool and developed at the Eindhoven University of Technology. POOSL lan-
guage integrates a process part based on a timing and probability extension of
CCS and a data part based on a traditional object-oriented language [Voeten
et al., 1998]. For example, the system in Example 1 can be modelled by the
POOSL code shown in Figure 8.7(a). The expressive power of POOSL enables
designers to describe concurrency, distribution, communication, real-time and
complex functionality of a system using a single executable model. We have
successfully applied it to the modelling and analysis of many industrial sys-
tems such as a network processor [Theelen et al., 2003], a microchip manufac-
ture device [Huang et al., 2002] and a multimedia application [van Wijk et al.,
2002].

Similar to some other recent design languages equipped with adequate pre-
dictability support, the semantics of the POOSL language [van der Putten and
Voeten, 1997], [van Bokhoven, 2002] is also based on a two-phase execution
model, which guarantees the predictability support during system modelling.

The implementation of the two-phase execution model in simulation tool
SHESim is achieved by adopting so-called process execution trees (PETs). The
state of each process is represented by a tree structure where each leaf is a
statement or a recursively defined process method (an example is the PET of
P ‖ Q shown in Figure 8.7(b)). During the evolution of the system, each PET
provides its candidate actions to the PET scheduler and dynamically adjusts its
state according to the choice made by the PET scheduler. More details about
PET can be found in [van Bokhoven, 2002]. The correctness of PETs with

Predictability in Real-time System Development 135

Init()()

 a ! syn_sig;

 sel

 delay 3;

 out ! “wrong”

 or

 a ? rly_sig;

 out ! “right”;

 Init()()

 les.

Process P

Init()()

 a ? syn_sig;

 delay 2.99;

 a ! rly_sig;

 Init()().

Process Q

Scheduler

root

;

a!syn_sig
 sel

;

delay 3
out!“wrong”

;

a?rly_sig

out!“right”

;

Init()()

root

;

a?syn_sig ;

Init()()

;

a!rly_sig

delay 2.99

(a) POOSL code (b) Process execution trees

Figure 8.7. The P ‖ Q system in POOSL

respect to the semantics of the POOSL language is formally proven in [Geilen,
2002].

3.2 Rotalumis

The generation tool Rotalumis takes the POOSL model acquired during the
modelling stage as its input and automatically generates the executable code for
the target platform. To ensure property-preservation during the transformation,
a formal linkage between two semantic domains of the modelling and imple-
mentation languages is built based on the ε-hypothesis [Huang et al., 2003].
The ε-hypothesis requires that:

1 A model and its realization should have the same observable execution
sequence.

2 Time deviations between activations of corresponding actions in the
model and the realization should be less than ε seconds.

In the case that the ε-hypothesis is complied with during the transformation,
we could predict properties of the realization from those of the model. More
specifically, if the model satisfies a property P formally specified by MITL
(Metric Interval Temporal Logic)[Alur et al., 1991], we know that the real-
ization satisfies a 2ε relaxed property R2ε(P) of P [Huang et al., 2003]. For
example, a typical response property that “every input p must be followed by a
response q between 3 and 5 time units" is defined by formula �(p → ♦[3,5]q).
Its 2ε relaxed property is �(p → ♦[3−2ε,5+2ε]q). In case an upper bound
of the time deviation between the realization and the model is 0.01 seconds
and �(p → ♦[3,5]q) is satisfied in the model, we can conclude that property
�(p → ♦[2.98,5.02]q) holds in the realization.

136 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The Rotalumis tool tries to satisfy the hypothesis by applying the following
techniques:

Process execution trees. POOSL language provides ample facilities to
describe system characteristics such as parallelism, nondeterministic choice,
delay and communication that are not directly supported by C++ or other im-
plementation languages. In order to provide a correct and smooth mapping
from a POOSL model to a C++ realization, PETs are used to bridge the se-
mantic gap between two languages. The data part of a POOSL model is di-
rectly translated into corresponding C++ expressions since no large gap exists
between their semantics. The process part of a POOSL model is interpreted
as a C++ tree structure whose behavior is the same as the PET implemented
in SHESim. As a result, the synthesized realization exhibits exactly the same
behavior as that in the model, if we interpret it in the virtual time domain.

On the other hand, the realization of a system needs to interact with the out-
side world and its behavior has to be interpreted in the physical time domain.
Since the progress of the virtual time is monotonically increasing, which is
consistent with the progress of the physical time, the event order observed in
the virtual time domain should be consistent with that in the physical time do-
main. That is, the PET scheduler ensures that the realization always has the
same event order as observed in the POOSL model. Therefore, any qualitative
timing property (such as safety and liveness) satisfied in the model also holds
in the realization.

Synchronization between virtual time and physical time. To obtain the
same (or similar) quantitative timing behavior in the physical time domain as
in the virtual time domain, the PET scheduler tries to synchronize the virtual
time and the physical time during execution. This ensures that the execution of
the realization is always as close as possible to a trace in the model with regard
to the distance between timed state sequences5.

Due to the physical limitations of the platform, the scheduler may fail to
guarantee that the realization is ε-close to the model (for some fixed ε value).
In this case, designers can get the information about the missed actions from
the scheduler. Correspondingly, they can either change the model and reduce
the computation load at a certain virtual time moment, or replace the target
platform with a platform of better performance.

With the aid of the Rotalumis tool, a property-preserving realization of Ex-
ample 1.2 can be automatically synthesized from a POOSL model.

4. Conclusions

To smoothen the system design process and improve design productivity, the
semantics of design languages should provide sufficient support for predictable

Predictability in Real-time System Development 137

design. More precisely, two aspects should be supported by the semantics of
design languages. 1) The semantics of design languages should support com-
positionality (and composability), thereby facilitating the design of complex
systems. 2) A formal linkage between the semantics of modelling and im-
plementation languages is necessary, which can serve as a basis for automatic
system synthesis.

In this paper, we investigate the support of the existing design approaches
for the above two aspects. The investigation is carried out in two categories
of real-time design approaches: platform-dependent approaches and platform-
independent approaches. Platform-dependent approaches adopt the physical
time as their basic timing concept, often lack sufficient support to model and
analyze complex real-time systems, and predictability is not well supported
during system modelling. On the other hand, platform-independent approaches
adopt the virtual time as their basic timing concept, which improves predicta-
bility during system modelling. But they are often ineffective in system syn-
thesis, due to the large semantic gap between modelling and implementation
languages.

To cope with the problems of existing design approaches, a predictable ap-
proach is proposed, which has two distinct characteristics. First, the POOSL
language is adopted during the modelling stage, the semantics of which pro-
vides adequate predictability support for real-time system modelling. Second,
the Rotalumis tool is used to automatically synthesis realizations (C++) from
POOSL models. Most importantly, the synthesis procedure complies with the
ε-hypothesis, which ensures that realizations keep the same qualitative and
quantitative (up to 2ε) timing properties as models. In paper [Huang et al.,
2004], a rail-road crossing system is presented, which is designed by applying
this approach. The analysis of property-preservation between the model of the
rail-road system and its realization is presented in [Florescu et al., 2004].

Notes

1. Although it is often unrealistic to formalize all the requirements of the desired system in practice,
we believe that critical timing and safety requirements should be precisely specified.

2. Physical time can be considered as machine time here.
3. Since the timing semantics of process Q is influenced by the underlying platform and other processes

running on the same platform, in general it is too ambiguous and (almost) impossible to be accurately
illustrated by state diagrams. Figure 8.5(a) only shows a part of the semantics of Q, which is already
sufficient to show the deficiencies of platform-dependent semantics.

4. In a complex concurrent real-time (software) system, the cost can far exceed 0.001 seconds due to
frequent context switches between many processes.

5. A timed state sequence is an execution of a system, in which a time interval is attached to every
state. If two timed state sequences are ε-neighbouring, they have the same state sequence and the least
upper bound of the absolute difference between the left-end points of corresponding intervals is less than or
equal to ε. For more information, see [Huang et al., 2003].

138 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

References

Alur, R. Feder, T. and Henzinger, T.A. (1991). The benefits of relaxing punctu-
ality. In Proceedings of the tenth annual ACM symposium on Principles of
distributed computing, pages 139–152. ACM Press.

Florescu, O. Voeten, J.M.P. Huang, J. and Corporaal, H. (2004). Error estima-
tion in model-driven development for real-time software. In In Proceedings
of Forum on specification and Design Language, FDL’04, Lille, France.

Geilen, M.C.W (2002). Formal Techniques for Verification of Complex Real-
time Systems. PhD thesis, Eindhoven University of Technology, The Nether-
lands.

Graf, S. (2002). Expression of time and duration constraints in sdl. In 3rd SAM
Workshop on SDL and MSC, University of Wales Aberystwyth, LNCS.

Huang, J. Voeten, J.M.P. and Geilen, M.C.W. (2003). Real-time Property Pre-
servation in Approximations of Timed Systems. In Proceedings of First
ACM & IEEE International Conference on Formal Methods and Models
for Codesign, Mont Saint-Michel, France. IEEE Computer Society Press.

Huang, J. Voeten, J. van der Putten, P.H.A. and Ventevogel, A. (2004). Pre-
dictability in real-time system development (2) a case study. In In Proceed-
ings of Forum on specification and Design Language, FDL’04, Lille, France.

Huang, J. Voeten, J.P.M. van der Putten, P.H.A. Ventevogel, A. Niesten, R.
and van de Maaden, W. (2002). Performance evaluation of complex real-
time systems, a case study. In Proceedings of 3rd workshop on embedded
systems, pages 77–82, Utrecht, the Netherlands.

Koomen, C. J. (1991). The design of communication systems, volume 147
of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston; London; Dordrecht.

Kotonya, G. and Sommerville, I. (1998). Requirement Engineering: Processes
and Techniques. John Wiley & Sons, Inc., New York.

Leue, S. (1996). Specifying real-time requirements for sdl specifications - a
temporal logic-based approach. In Proceedings of the Fifteenth Interna-
tional Symposium on Protocol Specification, Testing, and Verification, vol-
ume 38 of IFIP Conference Proceedings, pages 19–34. Chapman & Hall.

Liu, Z. and Joseph, M. (2001). Verification, refinement and scheduling of real-
time programs. Theoretical Computer Science, 253(1):119–152.

Milner, Robin (1989). Communication and Concurrency. Prentice Hall. ISBN
0-13-114984-9 (Hard) 0-13-115007-3 (Pbk).

Nicollin, X. and Sifakis, J. (1991). An overview and synthesis on timed process
algebras. In K. G. Larsen, A.Skou, editor, Proceedings of the 3rd Workshop
on Computer-Aided Verification, LNCS 575, pages 376–398, Alborg, Den-
mark. Springer-Verlag.

Predictability in Real-time System Development 139

Partee, B., ter Meulen, A., and Wall, R. (1990). Mathematical Methods in Lin-
guistic. Kluwer Academic Publishers.

Rational Rose RealTime. http://www.rational.com/tryit/rosert/

index.jsp.
Selic, B., Gullekson, G., and Ward, P.T. (1994). Real-time object-oriented mod-

eling. John Wiley & Sons, Inc.
Sifakis, J. (2001). Modeling real-time systems-challenges and work directions.

In Proceedings of the First International Workshop on Embedded Software,
pages 373–389. Springer-Verlag.

TAU Generation 2. http://www.taug2.com/.
Theelen, B.D., Voeten, J.P.M., and Kramer, R.D.J. (2003). Performance Mod-

elling of a Network Processor using POOSL. Journal of Computer Net-
works, Special Issue on Network Processors, 41(5):667–684.

van Bokhoven, L.J. (2002). Constructive Tool Design for Formal Languages
from semantics to executing models. PhD thesis, Eindhoven University of
Technology, The Netherlands.

van der Putten, P.H.A. and Voeten, J.P.M. (1997). Specification of Reactive
Hardware/Software Systems. PhD thesis, Eindhoven University of Technol-
ogy, The Netherlands.

van Wijk, F.N., Voeten, J.P.M., and ten Berg, A.J.W.M. (2002). An abstract
modeling approach towards system-level design-space exploration. In Pro-
ceedings of the Forum on specification and Design Language, Marseille,
France.

Voeten, J.P.M., van der Putten, P.H.A., Geilen, M.C.W., and Stevens, M.P.J.
(1998). System Level Modelling for Hardware/Software Systems. In Pro-
ceedings of EUROMICRO’98, pages 154–161, Los Alamitos, California.
IEEE Computer Society Press.

Zadrozny, W. (1994). From compositional to systematic semantics. Linguistics
and Philosophy, 17:329–342.

Z.100 Annex F1: Formal Description Techniques (FDT)–Specification and De-
scription Language (SDL) (2000). Telecommunication standardization sec-
tor of ITU.

Chapter 9

TIMING PERFORMANCES OF

AUTOMATICALLY GENERATED CODE

USING MDA APPROACHES∗

Mathieu Maranzana,1 Jean-Francois Ponsignon,1 Jean-Louis Sourrouille,1 and
Franck Bernier2

1INSA Lyon
Bât. B. Pascal, Lab. PRISMa
F-69621 Villeurbanne Cedex, France

{Mathieu.Marazana, Jean-Francois.Ponsignon, Jean-Louis.Sourrouille}@insa-lyon.fr

2Schneider Electric, A2 plant
Electronic and Software Research Division
F-38050 Grenoble Cedex 9, France

Franck.Bernier@mail.schneider.fr

Abstract

To improve usual software development in the C programming language, a
model-driven approach seems very promising. Writing generic models, inde-
pendent of any platform, is attractive and will reduce the work to implement
software on multiple platforms. Another very attractive feature of the MDA ap-
proach is complete and automatic code generation. Within the very concrete
context of an industrial example, this article aims to answer two questions: “To
what extent models written during development are platform independent?” and
“To what extent does automatic code generation reduce timing performances of
applications?”. To answer these questions, the study focuses on the sequence of
models needed to transform a system specification into an implementation, and
then on the timing performances of the code generated by CASE tools supplying
different level of services.

Keywords: MDA, Timing Performance, Automatic Code Generation, Embedded systems.

∗This work was partly supported by Schneider Electric under grant 008686.

© 2005 Springer. Printed in the Netherlands.

141

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 141–159.

142 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

1. Introduction

Most embedded systems software are still developed in the C language
while application complexity increases continually (100 000 lines and several
processors for a middle range circuit breaker at Schneider Electric). To reduce
development effort, a promising way is to adopt a MDA (Model Driven Archi-
tecture) approach with two great advantages: writing generic models, indepen-
dent of any platform, will reduce the work to implement software on multiple
platforms, and automatic code generation using CASE tools (Computer-Aided
Software Engineering) will reduce the implementation effort. The additional
time required by modeling will be greatly counterbalanced by the reduction of
the implementation effort.

The advantages of such an approach are well known, but a main obstacle in
the area of embedded systems is the assumed decrease of performances (time,
space, etc.). Thus a first issue is: “To what extent does automatic code genera-
tion deteriorate timing performances?”. To answer this question, a comparison
of the performances of the code generated by several tools has been achieved,
in partnership with Schneider Electric, using an industrial example. The refer-
ence is the corresponding program directly written in C. The tested CASE tools
all are based on the UML (Unified Modeling Language [UML 1.5, 2003]), and
supply at least behavior modeling and automatic generation of the associated
code. However they are very different regarding their approach, synchronous
or asynchronous, and the offered services, for instance the management of tim-
ing constraints.

A promise of MDA is to reuse models in different platform implementation,
but the meaning of platform independent must be made clear: for instance, may
a platform independent model depend on the target programming language?
Thus the second issue of this work is: “To what extent models written during
development are platform independent?”. Of course, software development
based on modeling has numerous other major interesting features, but within
the concrete context of our industrial experiment, the scope of the work is
limited to these issues.

The rest of the article is organized as follows. Section 2 first examines the
refinement of models from specification to an automatic code generation using
a MDA approach; the section 3 presents the tools used to model the industrial
experiment, and gives a classification based on service levels; in section 4, the
industrial example is described and timing performances are discussed.

2. MDA approach

The MDA approach [MDA, 2001] for software development is model-cen-
tered, focusing on models instead of programs, while the code is generated
from the model. We assume that code generation is automatic and complete

Timing Performances and MDA Approaches 143

therefore the code should not be modified directly and manually. That way the
contribution of the MDA approach is the most meaningful.

A model is a representation of a system in a given formalism. In the sequel
we call model the set of points of view on the system, e.g., requirement view,
dynamic view. Each view may be based on several UML diagrams such as
use case diagram, activity diagram and sequence diagram for the requirement
view.

In broad outline, the core of the MDA approach is a specification using a
PIM (Platform Independent Model), then the transformation of this PIM into a
PSM (Platform dependant model), and finally the translation of the PSM into
code. This is a well-known and long established way to deal with software
development. According to tools, to application domains, and to platforms,
the benefit induced by MDA varies. This section studies the use of MDA in
the context of our experimentation.

2.1 PIM and PSM

The really promise of the MDA approach is kept only when the code is
generated automatically and completely for different execution contexts, OS
and/or platforms. The ideal would be to hide context and platform specific de-
tails using a virtual machine, but except in some particular cases this situation
is not very realistic.

Figure 9.1. Properties used by models.

The truly nature of a PIM is not to be completely platform independent but
to be as independent as possible. A PIM becomes a PSM when it relies on
properties subjectively viewed as platform specific. This position is justified
from the fact that a PIM may require properties (e.g., priority levels, timer) or
even a programming language that some platforms do not provide (P1 and P2

excluded on Figure 9.1). When these properties are necessary to specify the
system, no model can be strictly platform independent. From a practical point
of view, a model that includes all the common aspects of the potential target
execution contexts (P3, P4, P5 on Figure 9.1) could be seen as a PIM, while
the specialization for a platform is a PSM (P3 on Figure 9.1).

144 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.2 From PIM to PSM

For automatic code generation to be possible, the model should be precise
enough and include all information related to the platform described in the
Platform Model (PM). The ideal solution would be to merge the PIM and the
PM to build the PSM, thus keeping a great independency. However, the simple
following example shows that additional steps are required.

Let assume a model in which the execution time of the operations should
be provided. The association of the operation with its duration directly within
the PIM would transform immediately the PIM into a PSM. If the duration
of the operation opi is 10ms on a platform and 15ms on another one, a most
generic solution is achieved marking in the PIM the operation opi with the
name durationOpi, which should be interpreted as “ opi has a duration of du-
rationOpi ” (Marking in [MDA, 2003]). During the transformation of the PIM
into a PSM, durationOpi will be replaced by the value given in the PM of the
target context. As a result, the link between opi declared in the PIM (whose
name may be changed) and its duration defined in the PM (e.g., durationOpi =
10) should be kept continuously and automatically: to make again this link at
each transformation of the PIM into a PSM is not acceptable..

A model becomes a PSM when adding details such as an OS call to change
thread priority. The sequence of models on Figure 9.2 is in line with usual
software development using refinement:

The PIM specifies the application, including system constraints (e.g.
deadlines) without hypotheses about the platform, and takes logical de-
cisions only (for instance, the choice between thin and heavy client).

Marking means to add adornments that define precisely the nature of
notions, e.g. a Port, the name of a variable for a duration, and also a tag
to force the generation of a constructor.

When platform specific information is added to the PIM it becomes a
PSM: at least the target platform characteristics, but other examples are
calls to primitives of the target OS, the use of processor or clock prop-
erties. When a tool provides a powerful and complete virtual machine,
the PSM is more platform independent, but in return the timing perfor-
mances of the generated code may be reduced.

When the marked PSM is translated into code, marks are interpreted
according to the target PM.

Remarks:

The order given Figure 9.2 is the most normal course of events, but mark-
ing is not mandatory to go from PIM to PSM.

Timing Performances and MDA Approaches 145

Figure 9.2. Development cycle and models sequence.

To avoid platform dependency, the developer may build its own piece of
virtual machine. Thus, the priority change of a thread remains generic,
while a library is implemented on each target.

2.3 Interpretation of UML expressions

Automatic translation into code implies that the PSM provides all the needed
information. Although the PM gives additional details (e.g. OS services calls),
there is a gap between the level of abstraction of models and the level of details
required to generate code (Figure 9.3). This gap can be explained in terms of
interpretation.

Figure 9.3. Gap between models and code.

Usually, language constructions are associated with notions in a semantic
domain. In this semantic domain, an expression (i.e., any sentence built using
the words of the language) can be false even when its syntax is valid (e.g.,
t[i] has no meaning when i is out of the range of t). The semantic domain
from which the UML takes its meaning is the modeling domain (not to con-
fuse with the modeled system domain in which a model takes its meaning).
Valid expressions should have a meaning in the modeling domain. The result
of the mechanism by which sense is given to a model is commonly called an
interpretation. In a formal language, an expression is associated with a known
set (very often one) of licit interpretations in the semantic domain (a model
is inconsistent when it has no interpretation). In the UML, the semantics of
the notions is often not precise enough and incomplete. Hence, several in-

146 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

terpretations can be associated with expressions. Moreover, the UML claims
that it is a universal language implementation-independent, and interpretations
are intentionally kept open [UML 1.5, 2003]: “Although the intent is to define
the semantics of state machines very precisely, there are a number of semantic
variation points to allow for different semantic interpretations that might be
required in different domains of application” (open interpretations are called
Semantic Variation Points in [UML 2.0, 2004]).

The many interpretations are an advantage for a modeling approach. First,
the developer delimits a set of a priori acceptable interpretations, and then,
as far as his/her knowledge of the system increases, details are added and in-
terpretations are removed. The abstraction level should remain high not to be
overburdened with details and to reduce the cost of changes at the development
beginning.

2.4 Code generation

A model implemented in a programming language (PL) has only one in-
terpretation, thus the many interpretations are a drawback for automatic code
generation. For instance, here is the way events are processed in a UML 1.5
state machine: “Events are dispatched and processed by the state machine,
one at a time. The order of dequeuing is not defined, leaving open the possi-
bility of modeling different priority based schemes”. Each tool has to define its
interpretation among all the licit ones.

In some case, an interpretation is frozen, for instance “links implementing
1 to 1 associations are created automatically”. But, very often, users need to
choose the interpretation, and the UML extension capabilities such as Stereo-
types and taggedValues become indispensable. For instance a class marked
with a stereotype Capsule will be interpreted as an active object (object +
thread of control) with additional properties such as a message queue, an au-
tomatic transition at creation time, etc. These extensions allow adding details,
but also increase the expressive power adding notions that the UML does not
supply such as Port or mechanisms such as broadcast.

The Figure 9.4 summarizes the different ways to translate UML into a pro-
gramming language. All UML expressions are not translated into code, for
instance the tested tools ignore the sequence diagrams (area a on Figure 9.4).
In Figure 9.4, the area b varies according to the target programming language
but above all according to the UML extensions provided. To avoid each tool to
choose its own extensions, the UML profiles play an essential part since they
standardized these extensions (e.g., Schedulability, Performance, and Time
[SPT, 2002]).

Timing Performances and MDA Approaches 147

Figure 9.4. Translation of UML into PL (Programming Language).

3. CASE tools classification based on service levels

In order to develop an application, at least an IDE (Integrated Develop-
ment Environment) supplying tools to assist programming is needed. From
this basic level, it is not possible to detail the numerous additional services
that a COTS (Commercial Off-The-Shelf) CASE tool and a model-centered
approach may provide. However, we have considered useful to classify the
different tools used for our study, according to the supplied services. The list
(Table 9.1) gives a sample of COTS tools, among the best known and covering
a wide solution domain, and which has been dictated by the industrial partner
(except ARTO). Obviously, dozens of other tools (Artisan, Objecteering, Tau,
etc.) could have been added to extend our comparative study. The discussed
services are related to development in the area of embedded systems, subject
to performance constraints, which explain the choice of the C language as a
basis for comparing timing performances of each solution.

3.1 UML extensions

Compared with a development in C (Table 9.1a), object-oriented ap-
proaches enforce an organization of data and operations that masks implemen-
tation and favors the discovering of independent components.

At the second level (Table 9.1b), classes and their relationships are described
in the UML, and the corresponding code, limited to the structure, is generated
automatically. This step represents an improvement, but there are still draw-
backs because it is difficult to maintain the consistency between the model and
the code (two different points of view of the same system).

At the next level (Table 9.1c), the implementation of the state diagram is
done automatically. In comparison to the previous level the progress is impor-
tant since active objects are introduced and asynchronous events are processed
using queues. As a natural extension, behavior simulation of state machines

148 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Table 9.1. Classes of COTS CASE tools.a

Level [Class] COTS Tool Description

a [IDE]
Microsoft Visual C++

A well-known IDE for a "usual" development with ed-
itors, debugger, browser, etc.

b [Standard UML] Any visual modeling tool based on the UML. The de-
veloper builds the class diagram (structure description)
which is used to undertake a partial code generation
(headers).

c [Extended UML]
Rose-RT
[IBM-Rational, 2002]

Rhapsody
[I-Logix, 2002]

From the only UML state diagrams, the tools provide
a complete and automatic code generation, often in C
or C++, as well as the simulation of the associated state
machine. This code generation can be done for sev-
eral platforms, according to parameters (virtual OS).
A comparison between actual traces and specified se-
quence diagrams can take place.

d [Synchronous]
Esterel
[Esterel-Technologies,
2002]

Esterel is a synchronous language very convenient for
the specification and the programming of reactive sys-
tems. Its strong points are the static checking and the
proof of properties.

e [QoS]
ARTO
[Contreras et al., 2001]

In addition to the services of the Extended UML class,
it supplies QoS management and behavior adaptation
when the system is overloaded. The code is automat-
ically generated from a description in the UML (Ra-
tional Rose© with Add-in) adorned with QoS data and
degradation policies. Messages between objects convey
the QoS requirements, and are scheduled dynamically
aiming to avoid temporal faults, if needed degrading the
system behavior.

aAll these tools are available on the market except ARTO (framework for Adaptable Real-Time Objects),
which is a research prototype.

brings a higher level of abstraction than usual debuggers, and allows users to
focus on logical aspects rather than implementation ones.

The UML is used as a modeling language throughout the software develop-
ment process. This process should be, at least, described at level 3 (defined)
or more in the CMM (Capability Maturity Model [Paulk et al., 1993]), for in-
stance using USDP (Unified Software Development Process [Jacobson et al.,
1999]). Such a process allows checking of model inconsistencies, hence in-
creases the quality, although current UML COTS tools do not make all the
needed checks [Kuzniarz et al., 2002]. Increasing automation requires to go
beyond the UML limits and to extend it. As the UML provides all the ele-

Timing Performances and MDA Approaches 149

ments needed to describe a language, the extensions are described into UML
profiles.

3.2 Synchronous approach

It is difficult to ensure behavior determinism for asynchronous systems, i.e.,
to prove that the same input event sequence always leads to the same result.
In reactive systems, i.e., that react to stimuli coming from their environment,
an alternative is to use synchronous languages such as Esterel [Berry, 2000]
or Lustre [Halbwachs et al., 1991] (Table 9.1d). From the Esterel point of
view, the time is a logical notion composed of a sequence of instants. At each
instant the program reads the inputs and builds the outputs. Esterel allows
static checking of behavior consistency and behavioral properties, for instance
to prove that the lift cannot move while its door is open. Esterel is not actually
a UML extension since transition firing is based on SyncCharts [André et al.,
2002]: there is no notion of run to completion and within the same instant
all the enabled transitions fire, while in the UML this instant corresponds to a

sequence of interactions. For example, let s1
e/o′.e′

−−−−→ s2 be a transition in o with

e′ that triggers s′1
e′
−→ s′2 in o′: the two transitions will fire at the same instant

in Esterel while in the UML the first one will be completed before starting the
second one. To analyse Esterel temporal behavior is reasonably easy insofar
as it only requires measuring the maximum duration of an instant.

3.3 QoS management

The temporal behavior of asynchronous programs is hard to control. A solu-
tion is to manage dynamically timing constraints, and more generally the QoS
(Quality of Service) directly within the application (Table 9.1e). The needed
QoS (e.g., deadline or result accuracy) and the QoS characteristics (e.g., opera-
tion duration) are first described, for instance using the Schedulability, Perfor-
mance and Time profile [SPT, 2002]. Then, at run time, a middleware sched-
ules the tasks according to the required QoS in order to maximize the quality
of the supplied services. A multithreaded layer increases reactivity and avoids
low importance activities in progress to block critical activities. A static tem-
poral analysis should prove that timing constraints are met (out of the scope of
this study).

Within a system, not all timing constraints are necessarily hard. When all
timing constraints cannot be met, a solution is to degrade the behavior in a
controlled manner to find, for all the running applications, a satisfactory work-
ing point. In addition to QoS needs, the accepted degradation policies and the
application degree of freedom must be specified, for instance alternative op-
erations or operations that may be cancelled when the system becomes over-

150 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

loaded. According to this knowledge, the system automatically adapts its be-
havior to its execution context. Temporal analysis is required only to verify
the remaining hard timing constraints. As the QoS optimization problem is
NP-Hard [Lee et al., 1998], most of the current proposals aim to find a good
solution based on feedback adaptation or heuristics (numerous works, e.g.,
[Cardei et al., 2000, Abdelzaher et al., 2000]).

3.4 MDA and tools

To ease model construction, tools increase the expressive power of UML
adding notions (e.g., for Rose-RT, Port, Protocol) and mechanisms (e.g., for
Rose-RT, message broadcast and priorities, periodic timer, etc.). New prop-
erties are also added to models to achieve a complete code generation (e.g., a
logical thread is associated to a physical thread). Moreover, many tools rely-
ing on UML choose directly the target platform language, for instance C++ or
Java, as action language. Does this choice convert irremediably the PIM into a
PSM? In fact, these languages are often target independent, but as all the tar-
gets do not provide all those languages, the potential targets are immediately
limited (Figure 9.1). Furthermore, there is a good reason to choose very early
the target language: to avoid using constructions with no equivalence in the
target language.

Figure 9.5. Model translation between tools: examples from our experiments.

Starting from the same initial formalism (UML), Figure 9.5 clearly shows
that tools, using extensions and choosing the target platform language as ac-

Timing Performances and MDA Approaches 151

tion language, give rise to significant differences. These differences make the
change difficult from one tool to another one or from one target language to
another one in the same tool. For instance, to change from Rose-RT C++ to
Rose-RT C, all the areas marked ai on Figure 9.5 require a transformation,
e.g., all synchronous messages (a2) must be changed into asynchronous ones.
In addition, the C++ code for all the actions must be translated into C code (no
class notion any more). Changing from Rose-RT C++ to Rhapsody C++ may
be equally awkward due to Rose-RT specific extensions, such as Port and mes-
sage broadcast. Another problem comes from the interpretation of the UML
extensions, for instance, Rose-RT and Esterel share the same Port notion but
with a different semantic. Of course, Esterel, based on the synchronous ap-
proach, is far away from the other tools used for our case study: no timer, no
thread, no asynchronous message, etc. Therefore, changing a non Esterel based
model to a model relying on Esterel requires a great effort from the developer.

3.5 Discussion

Does the MDA approach really allow writing platform independent mod-
els? We have assessed this approach in the context of an industrial example,
and written models with several COTS CASE tools. These experiments allow
drawing some conclusions.

Most of CASE tools provide a virtual machine quite independent from the
target OS and hardware. Thus, very little system calls are necessary to com-
plete the models, and a quick and easy configuration in the deployment dia-
gram allows changing the implementation. From this point of view, platform
independence seems satisfactory.

On the other hand, choice of the used CASE tool is very important: each
tool brings its set of extensions and constraints, and early forces an action
language. Since models rely on a tool they are de facto less generic. Finally,
models appear more dependent on CASE tools than on target platforms.

4. Experiments

The MDA approach aims to automatically generate code from the model.
However, and this is especially true in the embedded field, the developers often
express several reasons to refuse this new approach:

They do not trust the code generator and the quality of its code;

They think that the generated code is inefficient (time and space);

They do not master exactly the code architecture to undertake a debug-
ging session at the code level etc.

152 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Using concrete measures on an industrial example (the software development
of protection functions for the mains supply at Schneider Electric), we tried to
answer the following question: “Does a full automatic code generation dete-
riorate the timing performances?”. Obviously, other criteria could have been
taken into account such as the readability of the generated code, its size, its
maintainability, its safety (e.g., ability to statically ensure the respect of timing
constraints, essential in an embedded context), but they are clearly out of the
scope of our article. In order to refine our timing performance measures, a set
of additional experiments, in particular based on a multithreaded execution,
has been developed. Each experiment deals with a specific point of view (such
as asynchronous or synchronous messages in a mono or multithread context,
etc.), and a representative one is examined in detail in section 4.2.

4.1 Industrial example

Short description of the circuit breaker. The modeled system includes
four main actors: (i) the mains electricity; (ii) the safety device made up of N
separate protection functions; (iii) the circuit breaker; (iv) and the end-user.

The mains supply provides the safety device with its two typical outputs,
the voltage and the strength of the current. Periodically, the safety device reads
these two values and compares them to predefined thresholds. In case of over-
run, the safety device starts to be faulty. If this fault persists until the validation
timeout expires, it is a genuine fault, and the circuit breaker must be triggered.
Afterwards, a user intervention may be required to reset the safety device. If
it was a transient fault (no more thresholds overrun for the voltage and the
strength as the timeout expires), the safety device goes back to usual waking
state.

Measure explanation. The initial model was made up of 17 classes, firing
fifty or so transitions. To carry out the measures, classes have been added to
instrument the model (timing aspects), and to simulate and manage failures all
along the experiment: no user’s intervention is required during the complete
sequence of measures.

The sequence diagram (Figure 9.6) describes the scenario from the time-
out t1 expiration, which confirms the fault (asynchronous message, stick ar-
rowhead on Figure 9.6), to the circuit breaker triggering (asynchronous mes-
sage trigger). After the validation timeout expiration, the safety device re-
quests an update of the current configuration (update then scanState, which is
spread to the N protection functions). When a protection function is enabled, it
initiates the synchronous reading of the new state (readState, filled solid arrow-
head on Figure 9.6), and propagates the fault (propagate). The defect treatment
goes on with a release request (triggerRequest) and the physical release com-

Timing Performances and MDA Approaches 153

Figure 9.6. UML sequence diagram for the measure.

mand of the circuit breaker (trigger). Finally, a timer is reset (reinitTimer).
The execution order of the sequences A and B (Figure 9.6) is respectively:

Defined by the priority of both messages, triggerRequest and reinit-
Timer, for Rose-RT and Rhapsody;

Unspecified for Esterel;

Defined by the sequence of calls for Visual C;

Defined by the deadline of messages for ARTO.

The required time to release the circuit breaker from the expiration of the timer
timeout t1 (fault confirmation) is measured (Table 9.2). For the Extended UML
class, the time γ – β is considered, since the instant α is inaccessible. For all
the other classes, the time γ – α is measured.

Inherently, the circuit breaker example does not require concurrency. We
implement it in a single thread whenever it was possible: C, Esterel C++/C
and Rose-RT C. The timer needed in the model is simulated with an infinite
loop in C and Esterel, and managed in the same thread in Rose-RT C. Rose-RT
C++ always uses a separate thread to implement the timer, therefore the gen-
erated code is multithreaded even if it was designed to run in a single thread.
All the ARTO implementations are multithreaded since each active object owns
at least two threads, one for the controller and one to execute methods. This
essential difference explains the gap between the results Table 9.2. Additional
measures are given in section 4.2 to deal with the multithreaded context.

154 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Table 9.2. Time for the triggering.

Class Measure Tool/Language Average in µs Standard Deviation

IDE γ - α Visual/C 2.4 0.2
Synchronous γ - α Esterel/C 12.7 0.7
Synchronous γ - α Esterel/C++ 14.6 0.2
Ext. UML γ - β Rose RT/C 45.6 1.2
Ext. UML γ - β Rose RT/C++ 103.6 4.2
QoS γ - α ARTO/C++ 299.0 5.0

Comments. The measures, shown in Table 9.2, were carried on a Pen-
tium II 333MHz, under Windows NT SP5, running with the highest priority
class. All the programs were compiled using Visual C++ 6.0 and the compiler
option maximize speed. As the UML class tools do not provide a complete
code generation, measures concerning that class were not carried out. No spe-
cial fine tuning were done for the measures. The models were never adapted to
the best possible advantage of each specific tool. Therefore, the figures do not
represent a best case, and are average results achieved without any optimiza-
tion effort.

For the Extended UML class, we only mentioned one specific tool, namely
Rose-RT, but with a code generation in both C and C + +. It is worthwhile
to notice that the figures for Rhapsody are of the same order. As expected, the
measures clearly indicate that the number of provided services impacts on the
overall temporal performance: increasing services consumes time. However, it
is worthy of note that Esterel’s performances are outstanding, and yet Esterel
provides a high level of services.

4.2 Sender / receiver example

WaitSending
MessageSendingstart()

WaitReceiving

processing() /
sender.send (ack)

sender

EndReceiving

endProcessing() /
test.send (endTest)

Thread 2

receiver

Thread 3

entry / t0:=now;
 receiver.send
 (processing)

[i ≥ Nb] [else]

EndSending
entry/ receiver.send
 (endProcessing);
 test.send (endTest)

ack() / t1:=now;
 i:=i+1

Testing

EndTesting

Thread 1

endTest()

endTest()
[end==0] / end = 1;

test

Figure 9.7. UML state diagrams of the sender / receiver example.

Timing Performances and MDA Approaches 155

To analyze and explain the previous results, additional single measures have
been achieved on ad hoc examples, each example underlining a special point
of view (message broadcast, hierarchical states, timer, etc.). Of course, all
these different examples have been executed in the same environment (proces-
sor, operating system, and compiler) as the industrial example. As the differ-
ent tools carry out various optimizations when applications are monothreaded
(e.g., removal of critical sections), it is interesting to undertake measures in
a multithreaded execution context, in order to reduce the influence of these
uncontrolled optimizations. Among all these examples, we have chosen the
sender / receiver example (Figure 9.7), which brings out the accurate sequence
of messages (Figure 9.8) and the overhead due to the messaging system in a
multithreaded execution context.

sender
Thread 2

High priority

receiver
Thread 3

Medium priority

Entry action
MessageSending

t0
processing()

Transition
processing()

ack()

Transition ack()
t1

endProcessing()

Transition
endProcessing()

Management and
synchronisation of

the sender and
receiver

endTest()

endTest()

Entry action
EndSending

A

test
Thread 1

Low priority

OS + tool
Rough

activities

Context switch

Message queuing

Message queuing
+ Context switch

Message queuing

Message queuing

Transition endTest()
Context switch Transition

processing()

Message queuing
+ Context switch

start()

Message queuing

Context switch

≈ ≈ ≈

≈ ≈ ≈

Figure 9.8. Sequence of activities when receiver’s priority less than sender’s priority (RPS).

Measurement of a full cycle. This example measures the time required
for a full cycle (t1 − t0 on Figure 9.7): sending the message processing() to
the receiver, handling this message in the receiver and sending back to the
sender a reply message ack(). In order to comply with a multithreaded context,
the sender and the receiver are each executed in their own thread, and the
two following possibilities are considered: (i) the receiver’s priority is smaller

156 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

than the sender’s one (RPS), and (ii) the receiver’s priority is greater than the
sender’s one (RPG). A third thread, called test, is introduced to manage and
synchronize both the sender and the receiver threads. As this last thread has the
lowest priority among all the threads, it does not upset the measured sequence.
In the first case (i), the sender goes on with its execution once the message
processing() was sent to the receiver (Figure 9.8). On the contrary, as soon as
the ack() message is sent by the receiver, a context switch is performed, and the
sender begins immediately its execution. The conclusion of the processing()
transition is executed later (part labeled A on Figure 9.8) by the receiver. A
similar sequence diagram can be done for the RPG configuration.

Comments. (Table 9.3). Each measure t1 − t0 is an average over Nb
cycles, which explains the choice point on Figure 9.7. The measures for the
Synchronous class are not given, since multithread programming does not ful-
fill the basic principles of the synchronous approach: all inputs and outputs can
not be evaluated within the same instant.

Table 9.3. Duration for a full cycle in a multithreaded context: measure t1 – t0.

Class Tool/Language Priority Average in µs Standard Deviation

IDE Visual/C RPS 12.7 0.25
Ext. UML Rose RT/C RPS 38.8 0.4
Ext. UML Rose RT/C++ RPS 44.5 0.4
QoS ARTO/C++ RPS 61.2 0.8

For the IDE class (Visual C), we made several implementations to enlarge
the comparison:

Using the standard Windows messaging to communicate between the
sender and the receiver: the average time for the complete cycle is of
22.0µs for the RPS configuration;

Using a homemade message queue whose concurrent access were pro-
tected by a Windows mutex: the average time for the complete cycle is
of 30.9µs for the RPS configuration;

Using a homemade queue whose concurrent access were protected by a
critical section: the average time for the complete cycle is of 12.7µs for
the RPS configuration.

We choose to mention the critical section figures in Table 9.3 because both
Rose-RT and ARTO use the same kind of protection to manage their own mes-

Timing Performances and MDA Approaches 157

sage queue. In fact, these few figures clearly show that technical choices have
a great incidence on the timing performances.

Table 9.3 provides only the figures for the RPS configuration. The results
are quite similar for the RPG configuration since the only thing to do in the
final part, labeled A on 9.8, is to assign a value to an array, which leads to
a marginal temporal costs. This final part is measured in a RPG execution
because the treatment of the processing() message is not split.

4.3 Discussion

It is not worth focusing on the precise timing values, but simply on their
rough estimate, because they are slight modification-sensitive. The use of sys-
tem calls during the interval of measure, the compiler’s options, the choice of
libraries etc. change the results, but fortunately preserve the rough estimate.

Measures related to the full cycle duration are unambiguous, but it is not
advisable to hastily generalize from the industrial example measures. As tran-
sitions hold few instructions, the whole CPU time is consumed by the messag-
ing system. A detailed analysis of message sending shows that in fact, CPU
time is spent running system calls, e.g., to manage the critical section needed to
left messages in a shared queue (see comments above). That explains the best
results for both classes IDE and Synchronous in the industrial example, which
does not require concurrency. This remark is confirmed by the following: the
IDE class is twenty times quicker than the Extended UML class (Rose-RT C)
for the industrial example, but only three times quicker for the full cycle mea-
sure of the sender / receiver example, which takes place in a multithreaded
execution context. These results are congruent with [Becker et al., 2001]. It
is worth to notice that, in practice, an overhead of 30µs can be negligible with
treatments covering milliseconds. The QoS class is always slower due to addi-
tional system calls (multithreading, events, data sharing for scheduling, etc.),
but also to CPU time spent providing services such as scheduling and adapt-
ability. Due to the difference in the provided services, it may be advised to use
COTS CASE tools for the development of new software, since the timing per-
formances of the automatically generated code is not as awful as the embedded
developers often claim it, in particular in a multithreaded context.

5. Conclusion

This work mainly was aiming to deal with two issues. First, “To what ex-
tent models written during development are platform independent?”. In fact,
models are dependent on tools due to their specific extensions, and moreover
they are dependent on the target programming language. On the other hand,
the virtual machine supplied by tools is not (cannot be) perfect but hides most
platform specific details. Of course, when a service is not supplied the devel-

158 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

oper has to add a library or some additional code. Therefore, in addition to the
initial question, tool dependency should be taken into account when starting a
MDA approach and may be more important than platform dependency.

The second issue was: “To what extent does automatic code generation re-
duce timing performances of applications?” The answer depends on the con-
text. The automatically generated code for programs running in a single thread
is meaningfully slower. For multithreaded programs, the gap cuts down, and
the advantages of a model-centered approach are to take into account. Beyond
performances, the positive aspects of object-oriented approaches and tools are
well known. On the one hand it would be very expensive to implement, for
a specific application, the services supplied by tools such as property proof,
graceful degradation or dynamic scheduling. On the other hand the benefits of
modeling are widely acknowledged.

Finally, as expected there is no best choice. First the tool is to choose ac-
cording to the available platforms. Then the emerging choice criteria based on
performance are:

To choose a tool according to the required services, when CPU resource
is not a restrictive factor, but also when messaging system is insignifi-
cant compared with operation execution time (according to the execution
context).

To choose, when resources are critical, either the IDE or Synchronous
classes for monothreaded applications or the IDE class for multithreaded
applications.

References

T. F. Abdelzaher, E. M. Atkins, K. G. Shin: QoS Negotiation in Real-Time
Systems and its application to Automated Flight Control, IEEE Trans. on
Computers, Vol. 49(11), pp.1170-1183; 2000.

C. André, M.-A. Peraldi-Frati, J.-P. Rigault: Integrating the Synchronous Pa-
radigm into UML: Application to Control-Dominated Systems. UML 2002,
LNCS 2460, (p.163-178).

L. B. Becker, M. Gergeleit, E. Nett: Approach for Implementing O-O RT Mod-
els on Top of Embedded Targets. OMER-2 - Workshop on O-O Modeling of
Embedded RT Systems; 2001.

G. Berry: The Foundations of Esterel. in Proof, Language and Interaction: Es-
says in Honour of Robin Milner, ed. G. Plotkin, C. Stirling and M. Tofte,
MIT Press; 2000.

I. Cardei, R. Jha, M. Cardei, A. Pavan: Hierarchical Architecture for Real-
Time Adaptive Resource Management. Middleware 2000, LNCS 1795, pp.
415-434; 2000.

Timing Performances and MDA Approaches 159

J.L. Contreras, J.L. Sourrouille: A Framework for QoS Management.
TOOLS’39, USA, IEEE press (pp.183-193); 2001.

Esterel-Technologies: Esterel studio Version 3.1.6. http://www.

esterel-technologies.com.
N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud: The synchronous dataflow

programming language Lustre. Proceedings of the IEEE, 79(9): 1305-1320;
1991.

I-Logix: Rhapsody Version 4.0.1. http://www.ilogix.com.
IBM-Rational: Rose Real-Time Version 2002.05.01. http://www.rational.

com.
I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Pro-

cess. Addison-Wesley; 1999.
L. Kuzniarz, G. Reggio, J.L. Sourrouille, Z. Huzar (eds.). Worshop on Consis-

tency Problems in UML-based Software Development. RR 2002:06 Blekinge
Institute Of Technology; 2002.

C. Lee, D. Siewiorek: An Approach for QoS Management. CMU-CS-98-165;
1998.

MDA: Model Driven Architecture. Document number ormsc/2001-07-01, Ar-
chitecture Board ORMSC; 2001.

MDA: MDA Guide Version 1.0.1. Document number omg/2003-06-01; 2003.
M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber: Capability Matu-

rity Model for Software. Version 1.1,CMU/SEI-93-TR-24, DTIC Number
ADA263403; 1993.

SPT: Profile "Schedulability, Performance and Time". Final adopted specifica-
tion available at OMG: http://www.omg.org; 2002.

UML: OMG Unified Modeling Language Specification. Version 1.5; 2003.
UML: Unified Modeling Language (UML) Specification. Version 2.0; 2004.

Chapter 10

UML-EXECUTABLE FUNCTIONAL

MODELS OF ELECTRONIC

SYSTEMS IN THE VIPERS

VIRTUAL PROTOTYPING METHODOLOGY

P.F. Lister, V. Trignano, M.C. Bassett and P.L. Watten
Centre of VLSI and Computer Graphics,
University of Sussex,
Brighton, BN1 9QH, UK
Tel: +44 1273 678050
Fax: +44 1273 678030

P.F.Lister@sussex.ac.uk

Abstract

This paper presents the use of UML-Executable Functional Models (UML-
EFM) in the context of the ViPERS virtual prototyping methodology [Lister et
al., 2004a, Lister et al., 2004b] for System-on-Chip design. The concepts, the
implementation and the experiments presented in this paper were developed at
the University of Sussex (UoS) in the Centre of VLSI and Computer Graphics
as part of an EU project [VIPERS]. The ViPERS methodology and its employ-
ment of the executable functional models have been developed to face the con-
temporary challenges of System-On-Chips by integrating key design method-
ologies with the graphical and interactive features of virtual prototyping. The
fast evolution in silicon technology and its consequences on the market of hand
held electronic products, is making the adoption of new design methodologies
mandatory, with modern techniques for the design, development and manufac-
turing of consumer electronics. Executable functional models provide a means
to simulate the target device in different phases of the design flow and analyse
its requirements (behaviours, interfaces, etc), architecture (HW/SW partitioning)
and finally its digital implementation. A key contribution includes the combi-
nation of an interactive 2D photorealistic model with its functional executable
model implemented as a UML state machine; the experiment is applied to an RF
home-based remote control used to control a cooking stack.

© 2005 Springer. Printed in the Netherlands.

161

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 161–178.

162 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Keywords: Virtual Prototyping; UML; SystemC; executable specification; handheld de-
vices; SoC modelling; ViPERS methodology.

1. Introduction

A close look at the market of consumer electronics reveals that nowadays
a significant slice of it is occupied by hand-held devices. The rapid advance
in silicon technology is enabling a substantial increase in the number of tran-
sistors per chip [ITRS, 2003]. This growth in complexity is parallel to other
phenomena, for example the shortened time to market, and the high competi-
tion among manufacturing companies. Designers and engineers are therefore
facing the dilemma of having to produce highly technological and complex
systems in a limited time. To reduce the gap between complexity and time to
market new design methodologies are being proposed. The ViPERS method-
ology links key trends in SoC design with modern interactive and graphical
features of virtual prototyping. At the heart of this methodology is the desire
to test virtual prototypes of electronic products at different stages of the design,
development and manufacturing processes.

The first step in the ViPERS methodology is the analysis phase and the con-
sequent derivation of an UML-executable functional specification. It is clear
from the research in the field of requirements and specification development
[RUP] that the specification work is unlikely to be confined to the period before
implementation begins. Determining accurate product requirements and spec-
ifications is a vital stage in the development of a commercially viable device
and executable functional models can help extend the value and meaning of the
requirements and specification phase to further ensure the validity of this work
prior to implementation [Kimura and Verlag, 2002]. Hence there is a need to
rapidly feed changes in the requirements into the implementation tool chain in
an evolutionary way. It is common for a design house to be given a written
specification for a prototype device. Often the specification is not complete
enough for the first resultant prototype to be satisfactory to the client, resulting
in some design iterations. If the design house were to build a virtual proto-
type or even several alternative schemes, the client can clarify the functional
specification before any hardware or software is built. The virtual prototype
is a form of communication and reference in addition to the functional speci-
fication and any other requirements of the design [Preece et al., 2002]. A key
aspect being highlighted is to ensure that effort spent in the early product defi-
nition phase should be reused as much as possible in the later implementation
and test of the device. Several methods of requirements gathering have been
explored including traditional written reports and UML based tooling. UML
[OMG, 2003] provides the means to document detailed requirements which
can lead, with the aid of software tools such as Rational Rose RealTime and

UML-Executable Functional Models in ViPERS 163

the use of state machines, to the production of the first behavioural model of
the electronic device. Rational Rose RealTime is built on the UML-RT profile
[Selic and Rumbaugh, 1998], which, due to its limited architecture and per-
formance modelling capabilities, should be considered complimentary to the
UML Profile for Schedulability, Performance and Time [OMG, 2002] (also
called the Real-Time UML Profile) standardised by the Object Management
Group (OMG). Rational Rose RealTime was chosen upon other UML real-
time software tools because of the intention by Rational Rose to implement a
SystemC profile [Sardini, 2002], which would simplify the route to hardware
for the ViPERS methodology.

If the graphical model has been implemented at this stage then the require-
ments can be explored through the connection of the graphical model to its
behavioural correspondent in UML as shown in Figure 1 and feedback from
the stakeholders can be gathered.

Figure 1 shows the refinement steps related to the ViPERS methodology
and the consequent creation of virtual prototypes that result from the four main
phases (analysis, design, implementation and test). Virtual prototypes are dis-
tinguished based on which phase of the design flow they are generated from,
and therefore which features of the target device they incorporate; each virtual
prototype implements an EFM. The virtual prototypes are:

1 Functional Prototype; this is a product of the analysis phase, where the
requirements and specification of the target product are analysed and
defined.

2 Architectural Prototype; this is a product of the design phase, where
architectural design takes place and hardware/software partitioning is
defined.

3 Digital Prototype; this is a product of the implementation and test
phases, where all the hardware and software blocks that constitute the
target electronic device are implemented and then tested.

To explore the use of UML-EFMs in the context of the ViPERS method-
ology this paper presents the combination of an interactive 2D photorealistic
model with its functional executable model implemented as a state machine in
UML with the support of Rational Rose RealTime. The SxUMLSocket Pack-
age is employed to link the state machine of the EFM to its correspondent
graphical model. Communication between the functional and the graphical
model conforms to a XML-like communication protocol which defines the cri-
teria that models need to be consistent with, in order to establish a connection
with each other and communicate.

Traditional UML techniques are used to explore the requirements of the tar-
get electronic product. Once the system has been specified purely by means of

164 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.1. EFMs allocation in the ViPERS methodology.

UML-Executable Functional Models in ViPERS 165

UML diagrams (class, sequence, use-case, activity, etc), Rational Rose Real-
Time is used to implement a state machine that describes the functionality of
the system. The ViPERS methodology suggests the use of UML state machines
for the creation of the functional model in this analysis phase. The model can
optionally be described in SystemC [SystemC], using the freely downloadable
toolkit or taking advantage of the graphical interface and automatic code gen-
eration that software tools as CoCentric System Studio from Synopsis offer.

The advantages offered by the use of UML-EFMs are clear when the simula-
tion environment is running and the functional model is linked to the graphical
model; the first analysis of the functionality of the target product can then com-
mence. Designers as well as investors, hardware engineers as well as end-users
with no technical background can test the usability of the product; interaction
is achieved, for example, by pressing a button or moving a slider on the graph-
ical model and viewing in real-time the changes on the display or other output
means. The designer can also view the progress of the simulation through
the graphical state machine at run time, and track the changes between states
that result from the interaction with the graphical model implemented in VDM
[Lister et al., 2004a] (virtual device model). VDM is an integrated develop-
ment environment which enables designers to create photorealistic models of
the target electronic product and define its interactivity through the scripting of
the graphical objects that constitute the model.

The interaction of the executable functional model with the graphical model
is a very effective approach to test features such as the graphical user interface
and user interactivity issues of the device prior to any implementation. The two
elements that make up the virtual prototype (graphical and functional model)
can be packaged together in order to be distributed between stakeholders or
end-users for feedback.

2. Executable Functional Model (EFM)

For the purpose of this paper we define the Executable Functional Models as
descriptions of a number of properties associated with the functionality of an
electronic system. They are independent executables which contain the means
to communicate with an external application for simulation purposes. The
nucleus of the ViPERS prototyping environment is VDM. Figure 1 shows that
executable functional models connected to a VDM graphical model constitute
the simulation environment of the ViPERS methodology.

The aim of the executable functional models is to simulate the behaviour of
the virtual prototype (functional, architectural and digital) through the design
and implementation stages. Based on a modified version of the ROPES pro-
cess [Douglas, 1999], as shown in Figure 2, the ViPERS methodology with

166 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

its environment provides the specific tools, libraries, packages, and services
needed to connect EFMs to the target graphical model.

EFMs are developed to test various features of the target electronic product;
features include: Itemized lists:

Functional properties,

Graphical User Interfaces and User Interactivity properties,

Architectural issues such as HW/SW partitioning,

Digital properties, explored through the verification of the completed
hardware/software implementation.

The ViPERS methodology currently provides support for two types of
EFMs, these are:

1 UML-EFM, which use Rational Rose RealTime and Visual Studio ver-
sion 6.0.

2 SystemC-EFM, which uses either:

(a) The SystemC free-toolkit and Visual Studio version 6.0 (Windows-
based),and

(b) CoCentric System Studio from Synopsys (Linux-based)

The first type of SystemC-EFMs was demonstrated in [Lister et al., 2004b]
and uses a SystemC-container application, developed by the ViPERS team, for
the communication of the SystemC free toolkit with the VDM model. The sec-
ond type uses a SystemC library for CoCentric, SxSockets Library [Trigano et
al., 2003] and a Linux-based application server - the local communication con-
trol service (LCCS). Drawbacks and advantages of the different approaches in
different stages of the methodology will be described in the following section
of this paper.

The communication framework which allows real-time simulations provides
a fast interaction mechanism between the functional and graphical model; the
framework relies on the passing of small tagged messages. Further considera-
tions on time-related issues for the simulation are explored later in this paper.

2.1 Executable Functional Models in UML (UML-EFM)

UML-EFMs are allocated in the analysis phase of the ViPERS methodol-
ogy to take advantage of the many aspects that a description language such as
UML. With its vast tooling support, it can bring to the definition of a system
when details of the implementation have yet to be defined [Douglass, 1999].
The models are developed as state machines using Rational Rose RealTime,

UML-Executable Functional Models in ViPERS 167

Figure 10.2. ViPERS modification of the ROPES process.

which provides a familiar framework for windows programmers. State ma-
chines are defined graphically and C++ code is added to the various states
and transitions. The model created represents a very high level description of
the system, the state machine in fact is supported by various diagrams (class,
structure, sequence, etc), as well as communication protocols to communicate
with other threads. UML-RT profile also introduces the use of capsules, which
are differentiated from classes by their dynamic behaviour; capsules are active
objects that represent system components, their internal behaviour is defined
by state machines and they communicate with each other through stereotyped
objects called ports which implement interfaces. The suggested approach for
the development of a functional description is to create the various classes and
diagrams which represent the initial high level description of the system. Once
the first design of the system is achieved, it can be refined by adding attributes
and operations that will be eventually used for the behavioural description of
the model. A capsule is then developed to incorporate the classes and give
dynamic support to the system; the behaviour is described with the use of state
machines. The communication protocol of the capsule needs to be defined so
that the designer can commence testing the capsule by injecting signals at sim-
ulation time. As soon as the model functions as expected the SxUMLSocket
package is integrated into the system to provide the means to communicate
with outside applications. The integration of the two capsules and the structure
of a basic UML-EFM are shown in Figure 3.

168 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.3. UML-EFM structure.

At this stage the functional model is an independent executable which is
ready to communicate with the VDM graphical model. The state machine
can be tested through enhanced visual means allowing users to interact with
the graphical model of the electronic model and view how the state machine
processes the input and output. The designer no longer needs to follow the
simulation through a visual representation of the state machine, which requires
a technical knowledge, but can actually interact with the virtual product as the
end user would.

Changes on the display of the graphical model or other outputs that the
model might possess are now the means by which the designer tests the func-
tionality of the target product.

Some of the benefits of using a UML state machine are:

Easy to implement

Fast to simulate

Can be used as an independent executable

Parts of the state machine can be reused in later stages of the implemen-
tation

The power of this approach during the analysis phase of the methodology is
substantial. UML-EFMs provide a very high level description of the target de-
vice, plus Rational Rose RealTime provides various tools to help the designer

UML-Executable Functional Models in ViPERS 169

in the development and debugging stages. Designers are provided with all the
means to test the usability of the target system, graphical user interfaces and in-
teractivity issues; the model can easily be modified or new ones can be created
to test different possibilities or to fix unexpected behaviours. Ideally designers
would develop a set of possible candidate solutions for the target product, from
which one would be chosen as the final design. The life of UML-EFMs in the
methodology is not over at this stage and there is a good possibility that the
designer will need to come back to it when technical constraints or unexpected
bugs make mandatory the redesign of certain features. The nature of the model
provides fast and ease means to achieve this goal. UML-EFMs have another
two possible major uses in the ViPERS methodology, these are:

1 Automatic translation to SystemC-EFM; issues related with the transla-
tion mechanism are outlined in the final section of this paper.

2 Reuse of state-machines parts in later stages of the design flow as embed-
ded code; this is highly dependent on the implementation of the state ma-
chine of the EFM, however Rational Rose RealTime provides the means
to create code for both platform-specific models (PSMs) and platform-
independent models (PIMs).

SxUMLSocket Package. SxUMLSocket Package is a UML Rational Rose
RealTime package that provides the classes, the communication protocol, and
the capsule needed to link the state machine describing the behaviour of the
system to an external application. The package was developed using Rational
Rose RealTime and Visual Studio version 6.0, and the generated code is C++.
The package includes the class diagram, the structure diagram, the sequence
diagram, and the state diagram that visually describe static and dynamic fea-
tures of the socket capsule.

Figure 4 shows three type of UML diagrams:

1 Class diagrams; which show the classes and their relationship, with rel-
ative attributes and operations, that are used in the socket capsule to
implement the server and its functionality. The class diagram contains
all the classes needed to support the socket capsule plus other classes to
support new developments. The class diagram includes:

Socket Capsule Stereotype. It is a stereotype capsule which repre-
sents the active object of the TCP/IP socket and therefore imple-
ments its behaviour.

Sock Class. It is the base class for both the server and the client
class.

Server and Client Classes. They define the functions and attributes
that are specific for the server and the client implementation.

170 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.4. SxUMLSocket Package, sequence and structure diagrams.

SockExcept Class. This class defines the exception cases for the
socket.

2 Sequence diagrams; these show the sequence of events, by the passing
of signals, between the socket capsule and the functional capsule (i.e.
the capsule that describes the behaviour of the target device)

3 Structure diagrams; which show the structure of the socket capsule. The
diagram shows the presence of a conjugate wired end port (remotecomm)
which represents the means for this capsule to communicate with other
capsules.

The socket capsule is implemented as a non-blocking server thread and the
dynamic features of it are described in its state machine, visually shown in the
state diagram of the capsule. Figure 5 shows that the state diagram consists
of one state and two transitions; the “waiting for messages” state, the “initial”
transition, and the “sending message” transition.

The operation of the socket capsule was purposely kept simple to allow de-
signers to change features when needed. After the initial transition, determined
by the initialisation of the socket capsule, the state machine enters the state and
waits through a non-blocking receive function call for messages from the client
model (VDM).

The non-blocking feature allows the capsule to perform other operations
while waiting for the client to send a message. Once the socket capsule receives
a message, it sends it to the EFM capsule to be processed by its state machine.
The sate machine will output a signal carrying the message to be sent back
to the VDM model, this signal will trigger the socket capsule to go through
the “sending message” transition, which will force the socket capsule to send

UML-Executable Functional Models in ViPERS 171

Figure 10.5. SxUMLSocket Package, state diagram.

Figure 10.6. Interaction between UML-EFM and VDM.

172 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

the message to the graphical model. Details of the sequence of events and
interaction that take place during a simulation between the two capsules (socket
and EFM), and the VDM model are shown in Figure 6.

3. Comparing EFMs

This section compares the use of the UML-EFMs previously described, with
the SystemC-EFMs in the context of the ViPERS virtual prototyping method-
ology. The aim of this comparison is to justify the specific allocation of each
model in the methodology and to reason a suggested approach over another
one in different phases. At present, the only SystemC-EFM that have been
built and tested by the ViPERS team and therefore supported in the ViPERS
prototyping environment are implemented in behavioural SystemC.

Previous work included the implementation of executable models in Sys-
temC [Vanderperren et al., 2002] with the aid of UML diagrams. However,
UML was not used to construct executable models, but only for architectural
modelling and therefore to demonstrate that the design could meet the require-
ments. One of the drawbacks of that approach was that engineers needed a
UML background in order to understand the design. In our approach the UML
model serves two purposes; first it can be used to graphically describe the sys-
tem, in which case a UML knowledge is needed, and secondly it can be used
in conjunction with a graphical model to execute its functionality in a real time
simulation. In the second case no knowledge is needed; the user simply in-
teracts with a photorealistic representation of the target product and studies its
behaviour.

UML-EFMs present substantial differences with SystemC-EFMs. The de-
velopment and use of UML-EFMs is almost entirely devoted to the first phase
of the methodology, the analysis, while the SystemC model can be refined to
RTL level within the same environment. A SystemC model offers the advan-
tage that it can be implemented at very different levels of abstraction, and each
level can be allocated in the methodology as part of the refinement process.
Another advantage (a consequence of the previous one) is the reusability of the
SystemC-EFMs; these models can ideally be reused from their first high level
implementation down to the timed (cycle accurate) models, by the refinement
process shown in the design flow for SoCs in Figure 1. But UML-EFMs have
two major advantages over SystemC-EFMs, which drove the ViPERS team to
explore their use in the analysis phase. These advantages are:

1 Ease of implementation. UML-EFMs are very easy to implement and
to modify which makes it a much better candidate when, in the analysis
phase, designers need to quickly put together and test the device and
possibly implement modified version of it.

UML-Executable Functional Models in ViPERS 173

2 Simulation speed. UML-EFMs provide real-time simulation speed,
which can ideally be achieved only by a high level SystemC descrip-
tion; that would strongly depend on the framework used (free-toolkit,
CoCentric, etc) and on the implementation style.

3 Industrial Standard. UML, as well as SystemC, descriptions conform to
an industrial standard and therefore are not tied to any particular propri-
etary tool.

The ViPERS team encountered considerable speed limitation when trying
to simulate a behavioural SystemC-EFM implemented in CoCentric; consid-
ering the issues related with the different platform (Linux), the model was
similarly re-implemented using the SystemC free-toolkit and the container ap-
plication [Lister et al., 2004b]. The new model performed better giving a near
to real-time simulation performance, but still not comparable with the simula-
tion speed of a corresponding UML-EFM.

From these comparison considerations we concluded that the best possible
solution for the ViPERS prototyping methodology was to employ both mod-
els in different phases in order to maximise their qualities and minimise their
weakness. However different routes from this are possible.

4. UML-EFMs and ViPERS Virtual Prototyping
Methodology

The final aim of EFMs is to be used in the context of a graphical simulation,
where the user does not need to know any detail about the underlying pro-
cessing of the EFM. At this stage of the development the benefits that virtual
prototyping can bring to standard SoC design methodology can be appreciated.
In the experiment presented here we linked together a UML-EFM of an RF re-
mote control to its graphical counterpart; the simulation with both VDM and
Rational Rose RealTime are shown in Figure 7. The experiment started with
a design team writing a requirement document for the remote control. The
document was simply a written document that attempted to describe the func-
tionality of the device and all the possible action the user could undertake. It
was clear from the start that an imagination gap was created between the un-
derstanding of the reader and the conceiver; another phenomenon was the fact
that some scenarios were accidentally missed by the author of the document
when trying to imagine all the possible scenarios.

Taking into consideration the popularity of UML in the field of require-
ments and specifications we produced a UML-type description document of
the system; the description was more detailed and some ambiguity that natu-
ral languages can easily introduce was eliminated but the imagination gap was
still not bridged. As described earlier in this paper, the adoption of UML to
describe a system has an advantage in the fact that it is an industry standard

174 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.7. A Virtual Prototyping Experiment.

but a drawback since a UML knowledge is needed in order to understand the
system. For this reason we decided to create a UML description that could be
executed, so that the system could be seen running while interacting with a vi-
sual model, which represents the input/output means of the UML model. The
UML description was then used as the basis for producing the UML-EFM of
the device, while graphics designers were developing the photorealistic model
of the remote control and determining its interactivity means.

The two models were then simulated, producing a fully functional virtual
prototype, which is referred to as a ‘functional prototype’ in the context of
the ViPERS methodology (to be distinguished from ‘architectural and digital’
prototypes shown in Figure 1). The team was able to test the behaviour of
the device by interacting with the graphical prototype, pressing buttons and
viewing the display updating. Considerations were made on the functionality
and interaction means of the remote, and the imagination gap was eliminated.
Figure 7 shows a use-case type diagram, where a user is interacting with the
remote control. At this stage of the simulation anyone can test the functionality
of the remote control since the mean is simply an interaction with the photo-
realistic model. Figure 7 also shows that the graphical representation of the
remote control is linked to a state machine. The state diagram shown in the
figure is running on Rational Rose RealTime and provides the functionality to
the graphical model. Users with a knowledge of UML are also able to follow
the simulation from the state changes and transitions in the state machine of
the remote control.

UML-Executable Functional Models in ViPERS 175

The practical experiment illustrated in this paper was conducted at the Uni-
versity of Sussex. Both the functional and the graphical model were built and
simulated on a windows-based PC with a 2GHz processor. The models com-
municate through TCP/IP sockets and therefore they can run on separate ma-
chines on a network to take advantage of the processing power; however the
experiment showed that in this particular case this was not necessary due to the
simple nature of the functional model.

5. Conclusions and Future Work

The experiment demonstrated the benefits that UML-EFMs can bring in the
analysis phase of an electronic product. The advantages of using an industry
standard such as UML were realised from the early stages of implementation.
The standard diagrams provided the means for communication and understand-
ing between the members of the team when trying to establish the requirements
of the product. The major benefit though was introduced by the simulation of
the EFM in conjunction with the VDM graphical model. The simulation envi-
ronment provided all the means for the team to test the behaviour, the graphical
interface and the input/output means of the target product. In the experiment
only the final virtual prototype is showed. This was the result of many changes
and iteration of both the graphical and the functional features of the initial pro-
totype. Comparisons with the SystemC models enabled the team to establish
the strength and the weakness of each approach and therefore locate their use
in a specific stage of the methodology.

The requirement for virtual prototyping to become part of a wide rang-
ing stakeholder evaluation process has driven the development of the ViPERS
methodology. Early feedback from the application example suggests signifi-
cant improvements can be made once stakeholder interaction is possible. The
visual realism of the remote has allowed discussion beyond the engineering
domain to more diverse stakeholders such as marketing and users. Although
more rigour is required to evaluate the benefits, it seems the narrowing of the
leap of imagination required to visualise the final product is a positive feature
of this approach.

Inevitably the ViPERS environment contains similar features to existing vir-
tual prototyping tools [Cybelius Software, Alita, RAPID], but our focus is on:

The nature of the graphics (photorealism)

– Alpha blending

– Sub-pixel investigation

– Special rendering

Route to hardware

176 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Our longer term research will be to apply the virtual prototyping of embed-
ded systems to the entire system environment.

The ViPERS environment successfully demonstrated the viability of link-
ing virtual prototyping to a SoC methodology. At present the linking can be
applied at every level but simulation might fail to be in real-time for low level
implementations. Further research will focus on the simulation of complex
systems and RTL implementations, and therefore deal with concurrency, time
constraints, scheduling and performance issues; emulation might be used to
speed simulation with low level models.

The ViPERS environment and the use of UML-EFMs successfully increased
the capability of separating user interfaces from behaviour; this allows testing
different interfaces without having to modify the functional description of the
prototype.

It is intended by the ViPERS team to further explore the link between UML
and SystemC for platform based designs. Companies such as Rational are pre-
dicting an imminent development of a UML.SystemC profile [Sardini, 2002].
It is included in the future work the development and design of other EFMs
at different abstraction levels. In particular the ViPERS team will implement
Transaction Level models (TLM) and Register Transfer Level (RTL) models,
perhaps with mixed HDL languages. TLMs will be produced to prove how a
substantially detailed model can still produce fast simulation in the ViPERS
environment, while RTL models will prove the link of the methodology down
to synthesisable code.

Future work includes the integration of the simulation in virtual environ-
ments [Lister et al., 2002] in order to enhance the experience and obtain a
more natural interaction of the user with pervasive electronic devices. Graphi-
cal models (2 and 3 dimensional) will be placed in their natural environments,
where users will be able to navigate through and interact with the devices and
view the changes not only through device outputs but also through the changes
in the virtual environment (e.g. the light in the oven being switched on).

Acknowledgments

This work was funded as part of the ESPRIT framework 5 VIPERS project
IST-2000-30023. We are grateful to our project colleagues for their construc-
tive interaction, particularly Javier Mendigutxia of IKERLAN SA. The cooper-
ation of our colleagues Teresa Riesgo and Eduardo de la Torre of Universidad
Politécnica de Madrid and Sabastian Pantoja of Celestica Valencia is acknowl-
edged. System TM is a trademark of the Open SystemC Initiative. CoCentric®

System Studio is a registered trademark of Synopsys, Inc. Windows XP®, Vi-
sual Studio® and Visual Basic® are a registered trademark of Microsoft Cor-

UML-Executable Functional Models in ViPERS 177

poration. Rational® Rose Real Time Studio is a product of IBM® Kylix TM
is a trademark of Borland® Software Corporation

References

Altia, Inc., http://www.altia.com [last accessed 29/07/04]
Cybelius Software, http://www.cybelius.com [last accessed 29/07/04]
Douglass, B.P. Doing Hard Time: Developing Real-Time Systems using UML,

Objects, Frameworks and Patterns, Addison-Wesley, 0201498375, 1999.
Douglass, B.P.Real-Time UML Second Edition, Developing Efficient Objects

for Embedded Systems, Addison-Wesley, 0201657848, 1999.
International Technology Roadmap for Semiconductors (ITRS), 2003 Edition.
Kimura, I. and Verlag, S. Product Development with Mathematical Modeling,

Rapid Prototyping, and Virtual Prototyping, ISBN 3-8322-0896-8, Chapter
1, June 2002.

Lister, P.F. Newbury, P.F. Watten, P.L. Senkoro, L. Dountsis, A. Midha, M.
Banerjee, I. Trignano, I. and White, M.Virtual Reality in Electronic Sys-
tems, Proceedings of 5th International Conference on Business Information
Systems, Poznan, Poland, April 2002. Pp. 390-394.

Lister, P.F. Watten, P.L. Lewis, M.R. Newbury, P.F. White, M. Bassett,M.C.
Jackson, B.J.C. and Trignano, V. Electronic Simulation for Virtual Real-
ity: Virtual Prototyping, Theory and Practice of Computer Graphics 2004
(TPCG04), Southampton, UK, June 2004.

Lister, P.F. Watten, P.L. Newbury, P.F. Bassett, M.C. Jackson, B.J.C. and Trig-
nano, V. Virtual Reality for Electronic Product Development of Hand Held
Devices, Design Automation and Test in Europe (DATE’04), Paris, February
2004.

Object Management Group, UML profile for Schedulability, Performance, and
Time, OMG document ptc/03-02-03, Needham MA, 2002.

Object Management Group, Unified Modelling Language (UML) – Version
1.5, OMG document formal/2003-03-01, Needham MA, 2003.

Open SystemC Initiative. See http://www.systemc.org/ [last accessed
29/07/04]

Preece, J. Rogers, Y. and Sharp, H. Interaction Design, beyond human-compu-
ter interaction, John Wiley and Sons, Inc. ISBN 0-471-49278-7, 2002.

RAPID virtual prototyping tools, e-SIM LTD, http://www.e-sim.com/ [last
accessed 29/07/04]

Rational Unified Process® for Systems Engineering, http://www.

rational.com/ [last accessed 29/07/04]
Sardini, A. SoC Design with UML and SystemC, European SystemC, 6.Users

Group Meeting, Lago Maggiore, October 2002.

178 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Selic, B. and Rumbaugh, J. Using UML for modelling Complex Real-Time Sys-
tems, white paper, rational (Object Time), march 1998.

Trignano, V. Bassett, M.C. Watten, P.L. and Lister, P.F. Extending SystemC for
high-level multi-platform SoC simulations, IEE Postgraduate Colloquium
on System-on-Chip Design, Test and Technology, September 2, 2003, Car-
diff University.

Vanderperren, Y. Sonck, G. van Oostende, P. Pauwels, M. Dehaene, W. and
Moore, T. A Design Methodology for the Development of a Complex System-
on-Chip using UML and Executable System Models, Forum on Specification
and Design Languages (FDL’02), Marseille, France, September 2002.

VIPERS Project references and web pages, http://www.upmdie.upm.es/
projects/vipers/ [last accessed 29/06/04]

III

C/C++-BASED SYSTEM DESIGN

Introduction

Eugenio Villar
E.T.S.I.Industriales y Telecom
University of Cantabria, Santander, Spain

villar@teisa.unican.es

Increasing system complexity demands system-level languages supporting
specification and design methods above RT-level. Among the different lan-
guages proposed, SystemC is currently the language with a wider acceptance
from the design community. SystemC provides the hardware and software, that
is, the system development team with an executable specification of the sys-
tem that can be used to quickly simulate, explore various algorithms, validate
and optimize the design. System modeling, simulation and verification at the
different abstraction levels are currently the most important applications of the
language. Transaction-Level Modeling (TLM) is becoming a wide accepted
industrial standard for system modeling and design verification.

Nevertheless, SystemC is committed to provide the modeling framework for
a complete design flow from specification to implementation. Achievement of
this goal is still the objective of an active research activity. Although SystemC
could be the dominant design language in this design methodology, interoper-
ability with other languages would be required.

FDL served again as the main European forum for technical presentations
and discussion on system-level languages and their application to electronic
systems design. As in previous events, a selection of the best contributions to
the CSD workshop have been selected for the FDL’04 book in the series. The
five selected papers cover some of the most important research topics to-day.

So, Chapters 11 and 15 address the design of reconfigurable systems. In
the former, an extension to SystemC called OSSS is proposed. The objective
is to support polymorphism avoiding a pointer-based mechanism. Pointers are
problematic to synthesize efficiently and there is no synthesis tool support-
ing them. A library is provided to simulate the proposed polymorphic objects
and a high-level synthesis tool to translate OSSS into synthesizable SystemC.
The design methodology allows the programmer to implement a reconfigurable
system using a well-known concept such as polymorphism. In the latter, re-
quirements to C++-based languages supporting co-design methodologies for
reconfigurable SoC are defined. Extensions to SystemC and OCAPI-XL are
proposed supporting those requirements. The use of these languages in three
reconfigurable scenarios is presented.

In its current version, SystemC is based on a strict-timed, discrete-event
computational model including δ-time transactions. Nevertheless, there is a
need for heterogeneous specification under several, more abstract models of
computation. Chapter 12 proposes SystemC to model different computational

© 2005 Springer. Printed in the Netherlands.

181

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 181–182.

182 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

models. This is made possible by exploiting the abstraction capabilities of
C++. Border processes and channels are proposed to serve as interfaces among
different subsystems described using different models of computation.

RT-level description and design using VHDL is a mature, industrial design
methodology. Nevertheless, there are still areas for further improvement of
current practices. So, in Chapter 13, xHDL, a meta-language improving VHDL
providing flexible mechanisms for component customization, instantiation and
interconnection is presented. xHDL improves VHDL code description and
reuse. A tool has been developed for automatic code generation with parameter
selection.

Finally, Chapter 14 addresses real-time (RT) SW modeling, a SystemC ap-
plication with an increasing interest. The RT behavior of software is managed
by a RT operating system (RTOS). One of the main services provided by the
RTOS is the implementation of the required multi-task concurrency by apply-
ing a chosen scheduling policy. The current version of the SystemC kernel
lacks of the required features for a direct modeling of many of the RTOS char-
acteristics. In the paper, the modeling capabilities of SystemC 2.0 are extended
to model SW decomposition, dynamic process creation and deletion, process
control, preemption, static and dynamic process prioritization and scheduling
and inter-process communication and synchronization.

Chapter 11

DESIGNING FOR DYNAMIC PARTIALLY

RECONFIGURABLE FPGAS

WITH SYSTEMC AND OSSS

Andreas Schallenberg,1 Frank Oppenheimer2 and Wolfgang Nebel1

1Carl von Ossietzky University Oldenburg

Andreas.Schallenberg@Uni-Oldenburg.de

Wolfgang.Nebel@Informatik.Uni-Oldenburg.de

2OFFIS Institute, Oldenburg

Frank.Oppenheimer@OFFIS.de

Abstract This paper presents a new approach to design embedded systems based on dy-
namic partial reconfigurable FPGAs. The approach is intended to allow design-
ing of systems with runtime reconfiguration without explicit specification by the
designer. The design entry point is the HDL OSSS, a SystemC extension allow-
ing for synthesizable object orientation and polymorphism.

Keywords: Embedded Systems, HDL, Object Orientation, SystemC, OSSS

Introduction

Dynamic partial reconfigurable FPGAs (DFPGA from now on) are avail-
able in the market for quite some time. They combine characteristics of two
worlds since they are hardware on one hand and can be changed after manufac-
turing like software on the other. Previously designing for a hardware execu-
tion model meant having the design fixed after delivery. However the require-
ment to modify systems after delivery forced designing for software execution
models. So the choice was basically between ASIC-like circuits and proces-
sors/DSPs. FPGAs in general and dynamic partial reconfigurable FPGAs in
particular have blurred this HW/SW borderline. Final design microstructure
can now be modified after shipping and the circuit still has the basic advan-

© 2005 Springer. Printed in the Netherlands.

183

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 183–198.

184 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

tages of a hardware execution model like massive parallelism. Examples for
such devices are Xilinx Virtex II [Lim and Peattie, 2002] [Xilinx, 2003] and
Atmel At40k [Atmel, 2002].

This way of designing reconfigured systems today has a major drawback:
Some essential things regarding reconfigurations have to be done by hand, be-
cause there is no adequate design flow to support this. The possibility of chang-
ing hardware behavior requires the reconfiguration step itself to be designed
manually. Current hardware description languages (HDL) do not support this
process. The goal of automated synthesis is to avoid tedious and error-prone
tasks to be done by the designer. The motivation for this is to save time and
to reduce the risk of design flaws. Along with this goes the trend to raise the
level of abstraction for design entry and the usage of new HDLs like behav-
ioral level VHDL or SystemC. Consequently the reconfiguration step should
be supported by an inherent concept of the language as well.

Recent work

In [Agosta, 2004] and [Bruschi, 2004] an approach to model reconfigurable
systems based on the Java programming language is introduced. The dynamic
class loading mechanism is used to modify the set of available classes during
runtime. The set of classes may be extended or classes may be updated.

For our solution the OSSS [Grimpe and Oppenheimer, 2001] [Grimpe et al.,
2002] [Radetzki, 2000] extension to the SystemC [SystemC, 2003] HDL is
used as a basis to create language constructs which naturally map to dynamic
partial reconfigurable FPGAs. This will be explained in more detail in Section
11.4.

This paper presents a new approach to design for DFPGAs and to make
use of their partial dynamic reconfigurability. Characteristics of the invented
methodology are:

It allows for a timing accurate simulation to analyze the reconfiguration
process. This is already implemented.

All language concepts are designed with a hardware semantic in mind
although the synthesis is not implemented yet.

Outline

The rest of this paper is organized as follows. The following section gives a
motivation for building reconfigurable systems using a design example consist-
ing of real world application benchmarks. Section 2 specifies desired proper-
ties for language constructs to support the design process. Afterwards the basic
OSSS language constructs proposed in this paper are presented along with a set
of requirements the system must meet to be conflict-free. This is followed by

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 185

an introduction of more sophisticated methodologies to achieve a more conve-
nient way of describing reconfigurable systems. Section 6 concludes the paper
and describes the future work that is forseen.

1. Motivation

Figure 11.1. Cryptography module implementation using ASIC

On a standard ASIC every functionality which may be needed sometime
during runtime is required to be constantly present on the circuit. For a stream
based data cryptography module supporting three different algorithms and two
different basic operations (encrypt, decrypt) this could lead to a design like
in Figure 11.1. It shows a block diagram of a system consisting of input and
output buffers, a control circuit and three cryptography submodules: Blowfish
[Schneier, 1993], triple DES[DES, 1993] and AES (Rijndael)[Daemen and Ri-
jmen, 1999]. The overall module reads data streams through its input buffer
and decides which codec to use on the type of the input data. This input data
additionally contains encryption keys which introduce a new data block to be
processed and may also lead to a switch in the algorithm used. The shaded
boxes indicate unused codecs at a specific point in time, while the blowfish en-
cryption is performed currently. They waste chip area, making the design more
expensive and usually more power consuming, too. Using a DFPGAs recon-
figuration capability could change the situation as depicted in Figure 11.2. The
submodules (Blowfish, DES3, AES) have been replaced by a reconfigurable
area holding the single needed circuit. To store the inactive submodules an
external memory device (e.g. PROM, Flash, ...) is required.

2. Language support

The lifetime of one specific algorithm in the example is bounded by the
time of its creation and its replacement by its successor. It does not make sense
to allow accesses to a specific algorithm outside its lifetime. Classes and ob-
jects are appropriate language elements to describe those submodules because

186 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

triple des

ou
tp

ut
 b

uf
fe

r

in
pu

t b
uf

fe
r control

en
cr

yp
te

d
da

ta

pl
ai

n
da

ta

static interface reconfigured area

configuration storage

Figure 11.2. Cryptography module implementation using FPGA

the concept of lifetime of objects can be applied to describe the lifetime of an
algorithm. Objects are combinations of variables and their associated meth-
ods. A second observation is that a certain area within the DFPGA housing
the algorithm consists of both logic functionality and storage elements. This
is reflected in the object oriented world by objects having both methods and
attributes to provide functionality and store data.

Communication between the dynamically reconfigured objects on the DF-
PGA and other parts of the chip advises a static interface. The reason is
twofold: First, from an implementation centric point of view the environment
of a dynamic object is static and therefore cannot adopt a different interface to
the changing area on the DFPGA. Second, from the modeling point of view
polymorphism suggests that the environment may or even should not know
which forming the dynamically reconfigured object currently has. Therefore it
cannot rely on extensions to the interface introduced by derived classes.

In object oriented languages a common base class may be defining the in-
terface and derived classes may provide the actual implementation. From an
environmental point of view the object has the base classes’ type but the cur-
rent implementation originates from a derived class. The root class correlates
with the static interface of the object so just knowing its root class only allows
accesses though the root classes’ methods.

The advantage of this restriction is a simplified synthesis step since the inter-
face of each possible content in the reconfigured area is known to the synthesis
tool at compile time. Moreover designing new objects after delivery of the
system to the customer and exchanging pattern streams in the configuration

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 187

storage would be possible since the old and new objects described would be
guaranteed to be interface compatible.

However, even with this restriction applied it is still possible to include
method interfaces in the root class which are implemented by a subset of de-
rived classes only. Given that situation knowing the current forming of the
dynamic object would allow making use of those methods.

CryptoAlgorithm

AES DES3

CryptoModule

Blowfish

Figure 11.3. Cryptography classes

Figure 11.3 describes one possible class tree of the example system contain-
ing three different algorithms each described by derived classes of a common
cryptography base class. During runtime objects have to be created and de-
stroyed according to the type of the input stream. Therefore a supervising
instance (it will be referred to as reconfiguration controller) has to
detect which objects are required at a certain point in control flow and to ini-
tiate necessary reconfigurations. The goal is to let the designer describe this
reconfiguration controller implicitly and not requiring him to implement its
behavior.

One extract of this supervising instance’s behavior is depicted in Figure
11.4. There are two changes in the incoming data stream detected, namely
a switch to a DES stream and afterwards a switch to a Blowfish stream. These
events cause reconfigurations of the DFPGA area holding the decoder object.

SystemC and OSSS

SystemC is the only prominent and widely available hardware description
language that contains, borought from it’s C++ roots, a class and an inheritance
concept. It even supports polymorphism using a pointer concept. However,
since pointers are problematic[Seméria and Micheli, 1998] [Seméria et al.,
2000] to synthesize efficiently and there is no synthesis tool supporting it, the
SystemC synthesis subset itself lacks polymorphism. The OSSS language ex-

188 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

des
detect create

destroy

create

destroy

detect
blowfish

des blowfishcrypto_object

Figure 11.4. Scheduling

tension introduces synthesizable polymorphic objects avoiding a pointer based
mechanism. There is a library provided to keep the ability of SystemC to
execute specifications and a high level synthesis tool1 to translate OSSS into
register transfer / behavioral level SystemC being processed by commercial
tools. Therefore OSSS is an object oriented HDL for which a synthesis tool
flow for ASICs is available. The target technology for OSSS descriptions used
to be ASICs. Therefore the concept of polymorphic objects needs to be ex-
tended to be applicable to DFPGAs and their dynamic reconfiguration ability.
Another important aspect of the OSSS language is the concept of shared ob-
jects2 which provide mutual exclusion and arbitration of accesses. They can
also be used to provide communication interfaces for different modules within
a hierarchy. Describing OSSS in more detail would exceed the available space
for this paper.

2.1 Terminology

In this paper the terms class, (member) attribute and object are used like
they are common to a C++ programmer. They describe items from a descrip-
tion language point of view. An object is a combination of class type, member
attribute values and a unique identification (like a memory address in the soft-
ware execution model).

From a hardware point of view a content of a reconfigurable area is referring
to the logic implemented and the signal values within that area of the DFPGA.

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 189

The gate logic structure in a reconfigurable area is the pendant of a C++ class
definition and the CLB3 register values correspond to member attribute values.

We will introduce objects which have an ability of being reconfigured. They
contain some content object being the current forming of that reconfigurable
object. In the crypto example this forming could be an instance of a crypto-
graphic algorithm. It is called context of the reconfigurable object. The hard-
ware counterpart of a context is a pair consiting of a certain gate logic structure
(programming of the device area) along with the register values.

3. Basic language concepts

On top of the OSSS environment additional language constructs are intro-
duced to describe the reconfigurable objects.

ReconObject

First, a statement provides the ability to denote the candidate objects for
being reconfigured on a DFPGA. The following code shows the declaration of
a class which includes one reconfigurable object within a standard SystemC
module:

class CryptoModule : public sc_module {

ReconObject< CryptoAlgorithm > crypto_object;

... };

Since the basic concept depends on polymorphism it is required to have a
common base class for the different algorithms. The base class defines the
objects method interface to the environment. This is done with the Crypto-

Algorithm class which serves as the root class for the Blowfish and DES3

classes containing the desired implementations.

Assignment to ReconObject

The syntax of such an assignment is known from normal C/C++ assign-
ments. The following code fragment shows three examples:

Blowfish my_algorithm;

ReconObject< CryptoAlgorithm > my_second_recon_object;

// Three ways for assignments

crypto_module.crypto_object = Blowfish();

crypto_module.crypto_object = my_algorithm;

crypto_module.crypto_object = my_second_recon_object;

The set of classes which may be assigned to a ReconObject4 is determined
by a common base class which is given as the template argument to the Re-
conObject. Note that it is possible to assign a reconfigurable object to another

190 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

one. Assigning any object of one class to a ReconObject which currently holds
an object of a different class is equivalent with an explicit reconfiguration re-
quest. To be brief we say that the ReconObject is being reconfigured. This
means that a specific area represented by that ReconObject is going to have a
new logic structure. Assigning an object of the same class causes the ReconOb-
jects attribute values to be replaced but does not lead to a reconfiguration of the
ReconObject. This is also known as a separation into class switches and object
switches in literature [Noguera and Badia, 2002].

The C++ polymorphism is implemented using pointers which do not need
to have types that match the exact types of the objects they are pointing to. As-
signing such variables to each other causes the addresses to be copied and not
the objects contents. Assigning polymorphic objects in OSSS means copying
its content, not a reference to it.

Access to ReconObject

Accesses to ReconObjects are done using one of those two statements:

RECON_OBJECT_PROCEDURE_CALL(crypto_object,

encrypt(dataword));

RECON_OBJECT_FUNCTION_CALL(crypto_object,

encrypt(dataword),

return_value);

The first argument is the ReconObject itself, the second one the method call
and the third one a return value, if the method provides one.

Consistency criteria

There are several possible situations in which a reconfigurable system may
run into conflicts since there are limited resources (e.g. only one reconfigura-
tion port per DFPGA) or even mutual exclusive lifetimes (e.g. two objects are
to reside in the same area on the DFPGA). To avoid such conflicts some rules
are required which have to be obeyed.

R1 There are no overlapping configuration processes of two objects allowed
even if their locations on the DFPGA differ. This is required due to to-
days DFPGAs having just one configuration port allowing one configu-
ration at a time.

R2 There is no access to an reconfigurable object until its configuration pro-
cess is completed.

R3 All accesses to a specific ReconObjects content have to finish before the
ReconObject is being reconfigured with different content.

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 191

R4 Assignments to ReconObjects are only allowed if the new object’s type
is derived from the base type the ReconObject symbol was declared with.

Figure 11.5. No overlapping configurations (R1)

Figure 11.6. No accesses outside life (R2, R3)

There maybe attribute save- or restore phases around an objects presence on
the DFPGA which are considered as being part of the reconfiguration for these
rules. Those two phases are expained in Section 4 in detail. Rules R2 and R3
restrict accesses to an object to its lifetime.

ReconfigurationController

Rules R1 to R4 require the existence of a supervising instance which avoides
violations at runtime. This is done using a reconfiguration controller. It has
to keep track of which objects exist at a time and possibly delay accesses to
them as long as the desired object is not functional. Furthermore its task is to
decide which reconfiguration is required next and initiate those reconfiguration

192 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

processes. A reconfiguration controller is instantiated explicitly in the code,
e.g. in the sc main part:

ReconfigurationController< RoundRobin > controller_one;

The template parameter (in this case RoundRobin) defines the scheduling
policy for concurrent reconfiguration requests. This mechanism is described
in detail in [Grimpe and Oppenheimer, 2001] [Grimpe et al., 2002] [Radetzki,
2000]. Since there may be multiple reconfiguration controllers and reconfig-
urable objects in the design a binding mechanism has to be provided:

CONTROLLED_BY(crypto_module.crypto_object, controller_one);

This puts the reconfigurable object crypto object which is a member of
crypto module under control of controller one.

Timing

The duration of reconfiguration processes is mainly dependent on the size
of the pattern stream which itself somehow correlates to the area being occu-
pied by the object for which the stream is to be written. This area is unknown
before synthesis but since it affects the systems timing we need to model re-
configuration times in the simulation:

DECLARE_TIME(controller_one, Blowfish,

sc_time(26, SC_US), sc_time(200, SC_US))

This statement makes reconfiguration times for a Blowfish implementation
known to the reconfiguration controller named controller one. Each of
the statements is describing reconfiguration times of one specific non-abstract
class by two numbers. The first number is the attribute save-and-restore time
and the second one the logic reconfiguration time. The latter one is the amount
of time spent for reconfiguring the hardware resources in the specific area of
the DFPGA.

The member attribute save-and-restore time is included here since there is
a mechanism provided to prevent object attribute data from being lost during
reconfiguration. This will be described in more detail in Section 4.

Up to now each reconfiguration controller represents one DFPGA. The con-
troller has to be included in the DECLARE TIME statement since the DFPGAs
in the system may be of different types and therefore have different reconfigu-
ration times for each class.

Recap

The language constructs introduced so far show how to to implicitly control
the reconfiguration process. The content of the reconfigurable area is described

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 193

with an object and a reconfiguration controller takes care for all potential con-
flicts and schedules accesses and reconfigurations.

4. Advanced language constructs

Using the language constructs introduced so far only one context of a Re-
conObject can be alive at a certain point in program flow. The lifetimes of
different contexts for a single ReconObject do not overlap. Accessing a Re-
conObject can be seen as accessing this context whatever object that may be at
that time. The reconfiguration controller already disburdens the programmer
of the need to explicitly care for the consistency criteria described in Section 3.
However he still has to make sure the ReconObject always contains the right
context for the functional correctness of the design. We now introduce a mech-
anism to automatically handle different contexts which may have overlapping
lifetimes but still guarantee mutual exclusion regarding the occupation of the
ReconObject.

Multiple identities

An identity object provides a special view to a ReconObject. There may
be multiple identites for a single ReconObject and each of them represents a
different context. Identities allow to separate the lifetime of a context from the
time it is implemented in the assigned reconfigurable area on the DFPGA.

Accessing a ReconObject using an identity object means accessing one spe-
cific context. One may think of identites as named contexts which can be
explicitly referenced. When initialized, the programmer may assume that the
identity is accessible all the time. This is true from a functional point of view
but wrong when referring to the timing. This aspect will be explained in more
detail later.

Identites are used like a ReconObject which means that both method calls
and assignments are written the same way as ReconObjects.

Identity<CryptoAlgorithm> blowfish_alg(crypto_object);

Identity<CryptoAlgorithm> des3_alg(crypto_object);

Using the keyword Identity two declarations are made which are simi-
lar to a ReconObject declaration except for the constructor argument which is
the ReconObject for which this identity shall be used. The template parame-
ter CryptoAlgorithm must be identical to that of the ReconObject which is
provided as the constructors argument.

blowfish_alg = Blowfish();

des3_alg = DES3();

194 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The first assignment to such an identity makes the identity valid and allows
to access the newly created contents of the identity. It is not allowed to access
an identity prior to this. In the example above both contents reside in the same
ReconObject which was given at declaration time of the identity. Since the
contents cannot be present at the DFPGA at the same time (and the overall
goal is to describe reconfiguration abilities) they are swapped in and swapped
out when necessary. For simulation the identity object provides an attribute
backup storage which preserves the ReconObjects attribute values belonging to
that identity while not being present in the simulated DFPGAs reconfigurable
area. At synthesis step this could be implemented in swapping out this data to
a SRAM or flash chip or a dedicated storage area on the DFPGA.

The two assignment operations shown above both create new contents in the
ReconObject. When the assignment to des3 alg is made the previous mem-
ber attributes of the ReconObject crypto object are saved into the identity
blowfish alg.

Attribute handling

Each access to an identity causes the reconfiguration controller to make sure
the ReconObject holds the desired contents, possibly saving objects’ mem-
ber attributes in a backup storage, reconfiguring the logic structure and restor-
ing different member attributes which belong to the upcoming identity. This
process of saving and restoring attributes will take some time in the final
circuit and the simulation has to reflect this. In Section 11.6 the keyword
DECLARE TIME was introduced which provided one time value for logic recon-
figuration and an additional one for attribute save-and-restore. This additional
one is used once for saving the attributes and a second time for restoring them.

It may be desired that not all of an objects member attributes are being saved
since excluding them from this save-and-restore process may reduce both area
and runtime of the final implementation on the DFPGA. Therefore classes
which are suitable to be placed in an ReconObject are required to provide one
of the following specifiers as a member in the class definition:

DURABLE_RECONFIGURABLE(Blowfish);

TRANSIENT_RECONFIGURABLE(Blowfish, myClear);

The first one states that every attribute should be preserved during the save-
and-restore processes while the second one allows excluding certain attributes.
The second argument myClear contains a user-defined member method which
resets attributes to constant values which they should contain after restore.
There are no other statements allowed in this method than assignment of con-
stants, in particular no function calls.

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 195

Recap

The main difference between accesses to a ReconObject in the direct way
and accesses using an identity is that the former one works on any context there
possibly is when the access is started while the latter one assures the presence
of a certain context. A part of the system (e.g. a thread) may always use the
same identity to access a certain context since that is swapped in on demand by
the reconfiguration controller. From a functional perspective the thread does
not see any interference caused by different identities. On the other hand a
process which does not need or want to know which contexts are present in
the ReconObject can still communicate or exchange data with processes using
identities by utilizing the ReconObject directly. This leads to the following
properties:

1 It is possible to access contexts belonging to an identity using the Re-
conObject directly.

2 It is not possible to access contexts belonging to an identity using a dif-
ferent identity.

5. Modeling and simulation experiment

The setup consists of one ReconObject with two possible contents: A Blow-
fish identity which has attributes to be saved and restored and a DES3 identity
without such attributes. The Blowfish identity has to perform an init opera-
tion when being supplied with new keys to perform some preprocessing.

time

Config. Config. Config. Config.

Config.Config. Encrypt

Encrypt Encrypt Encrypt

EncryptEncryptInit

Init

Save Restore Save

Save

Attribute save or restore Blowfish DES3

Figure 11.7. Two possible executions (different cases)

Two possible timelines are shown in Figure 11.7. The taller boxes represent
times of real operation while the others (described with "configure") denote
reconfiguration times. The black boxes show attribute save-and-restore times
which are only required for the Blowfish identity. The reconfiguration and
attribute handling times (provided by the DECLARE TIME statement) are chosen
manually. However, the length of the boxes in Figure 11.7 is derived from a
simulation so their relative length to the normal operation (Init and Encrypt)
is reflecting the simulation process.

196 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The upper timeline in the diagram shows the crypto module initializing both
identities with objects, starting with Blowfish. When Blowfish is operational
its attributes have to be saved before the triple DES may be inserted. The first
datastream to be processed is a Blowfish one so the third reconfiguration has
to be performed which includes an attribute restore phase. To improve this
startup overhead the lower timeline shows a simulation where the identites are
constructed at their first use. Therefore two reconfiguration and one pair of
attribute save/restore phases may be skipped.

The second datastream is a triple DES encrypted one. It requires a different
identity to be accessible which supersedes the old Blowfish one. This causes a
saving of member attributes and a different configuration pattern stream to be
loaded onto the FPGA for this area (object and class switch). The third one is
another triple DES stream which can be processed without reconfiguration.

The example was executed on a Linux PC using GNU gcc 3.3.2 along with
the SystemC 2.0.1 simulation library. The simulation (2nd horizontal bar in
Figure 11.7) lasted 75 seconds on an Athlon XP 1700+ and processed 1000
64-bit datawords on both Blowfish and DES3. The file sizes were:

Table 11.1. Source file sizes

Module Header size Implementation size
(bytes) (bytes)

Encryption algorithms

cryptoalgorithm 487 786
blowfish 881 43672
des3 3991 64273

Core module

cryptomodule 645 7236

Test environment, helper

testbench - 3950
examplenetworkpacket 2093 -
producerconsumermodule 688 2957
helper - 2690

Where the CryptoModule was performing input, output, data packet type
detection and processing steps using the cryptographic algorithms.

Designing for dynamic partially reconfigurable FPGAs with SystemC and OSSS 197

6. Conclusion

In this paper we presented a novel way of modeling and simulating recon-
figuration processes in a high level hardware description language. It signifi-
cantly reduces the efforts for the designer to model reconfigurable systems and
disburdens him of several error-prone design tasks.

The approach provides the capability of easily modifying design decisions,
e.g. binding from reconfigurable objects to DFPGAs supervised by a single
controller or binding of an identity to a certain reconfigurable object. This
allows fast design space exploration. Another advantage is the ability for the
programmer to implement a reconfigurable system using well known concepts
like polymorphism. All concepts presented here are designed to be completely
synthesizable.

Future work

The only ressource limitating parallelism so far is the single configuration
port of each DFPGA. But there may also be multiple DFPGAs competing for a
single configuration pattern source or an attribute value storage (e.g. SRAM).
Such further ressource handling will be investigated in.

Another topic is the introduction of a prefetch mechanism. The designer
may then point at an identity which is required next. If possible, that identity
is going to be preloaded using a background process.

Furthermore it is intended to extend the ODETTE synthesiser to cover this
language extension in future, making it a synthesizable description.

Notes

1. The ODETTE synthesiser [Grimpe and Oppenheimer, 2001] [Grimpe et al., 2002] [Radetzki, 2000]
2. Formerly named global objects.
3. Component Logic Block [Lim and Peattie, 2002] [Xilinx, 2003]
4. Reconfigurable object.

References

Agosta, Bruschi and Sciuto (2004). Synthesis of dynamic class loading
specifications on reconfigurable hardware. Proceedings of the Second
IEEE International Workshop on Electronic Design, Test and Applications
(DELTA’04).

Atmel Corporation (2002). Datasheet AT40K. www.atmel.com.
Bruschi, Francesco (2004). Methodological Issues in the System Level Design

of Embedded Systems. PhD thesis, Politecnico di Milano, Politecnico die
Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da
Vinci 32, I 20133 Milano.

198 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Daemen, Joan and Rijmen, Vincent (1999). AES proposal: Rijndael. Tech-
nical report. daemen.j@protonworld.com, vincent.rijmen@esat.

kuleuven.ac.be.
DATA ENCRYPTION STANDARD (DES), (1993). Federal Information Pro-

cessing Standards Publication, fips pub 46-2 edition. http://www.itl.
nist.gov/fipspubs/index.htm.

Grimpe, Eike and Oppenheimer, Frank (2001). Aspects of Object-Oriented
Hardware Modelling with SystemC-Plus. In Forum on Design Languages
FDL’01.

Grimpe, Eike, Timmermann, Bernd, Fandrey, Tiemo, Biniasch, Ramon, and
Oppenheimer, Frank (2002). SystemC Object-Oriented Extensions and Syn-
thesis Features. In Forum on Design Languages FDL’02. Marseille.

Lim, David and Peattie, Mike (2002). Two Flows for Partial Reconfiguration:
Module Based or Small Bit Manipulations. Xilinx, Inc. www.xilinx.com.

Noguera, Juanjo and Badia, Rosa M. (2002). HW/SW Codesign Techniques for
Dynamically Reconfigurable Architectures. In IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 10, No. 4, pages pp 399–415.
IEEE.

Radetzki, Martin (2000). Synthesis of Digital Circuits from Object-Oriented
Specifications. PhD thesis, Carl von Ossietzky Universität Oldenburg,
http://odette.offis.de.

Schneier, Bruce (1993). Description of a New Variable-Length Key, 64-Bit
Block Cipher (Blowfish). In Fast Software Software Encryption, Cam-
bridge Security Workshop Proceedings. http://www.schneier.com/

paper-blowfish-fse.html.
Seméria, Luc and Micheli, Giovanni De (1998). Encoding of Pointers for Hard-

ware Synthesis. In Proc. International Workshop on IP-based Synthesis and
System Design IWLAS’98, pages pp.57–63.

Seméria, Luc, Sato, Koichi, and Micheli, Giovanni De (2000). Resolution of
Dynamic Memory Allocation and Pointers for the Behavioral Synthesis
from C. In Proc. Design Automation and Test in Europe DATE’00, pages
pp.312–319.

SystemC 2.0.1 Language Reference Manual (2003). Open SystemC Initiative,
1177 Braham Lane 302, San Jose, CA 95118-3799, revision 1.0 edition.
www.systemc.org.

Virtex-II Platform FPGAs: Complete Data Sheet (2003). Xilinx, Inc. www.
xilinx.com.

Chapter 12

HETEROGENEOUS SYSTEM-LEVEL

SPECIFICATION IN SYSTEMC

Fernando Herrera, Pablo Sánchez, Eugenio Villar
University of Cantabria
E.T.S.I. Industriales y de Telecomunicación
Avda. Los Castros s/n, 39005
Santander, Spain

fherrera,sanchez,villar@teisa.unican.es

Abstract A specification methodology for embedded system design should provide a ca-
pacity for heterogeneous specification. This would give the designer an effective
tool to build a specification with different expressiveness needs, required by the
multidisciplinary character of embedded systems, which, in turn, is due to their
wide range of applications and an increasing integration capability. This spec-
ification methodology should be suitable for design tasks in order to improve
design productivity. In this context, this paper deals with the general solution
of the system-level heterogeneous specification in the framework of a specifica-
tion methodology based on SystemC. This specification methodology is suitable
for system-level modeling, but also for design procedures such as system-level
profiling and single-source generation. Specifically, we study and propose a so-
lution for a system-level SystemC specification which combines several untimed
models of computations, (MoCs), namely CSP, PN and KPN. In order to situate
clearly the heterogeneous specification methodology we will use a general study
framework called Rugby metamodel.

1. Introduction

Embedded systems are becoming more common in our daily lives. This
fact is reflected in the solid growth of the embedded market, (for instance,
49% for Embedded Micros, and 94% for Embedded Software Development
Tools, RTOS and Services) [Forecast, 2004].

This trend is accompanied by a tendency towards an ever-increasing com-
plexity in embedded components and systems. Components are more and more
complex and powerful (for example, in 2001 already 67.5% of the processor

© 2005 Springer. Printed in the Netherlands.

199

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 199–216.

200 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

architectures for embedded development were of 32 bits [Forecast, 2004]. In
addition, one single chip is able to cope with the integration of more com-
ponents, reaching the complete system (System-on-Chip, SoC) [Chang et al.,
1999]. The increase of integration drives the evolution from the SoC to the
NoC (Network-on-Chip) [Jantsch et al., 2003], where networks are the top
connection between the main components (systems) inside the same chip. All
these facts underline the importance of devising new design paradigms.

Another fact that is widely accepted is the variety of applications of em-
bedded systems (telecom, home, automotive, medical, industrial, etc...), which
are normally composed of parts that require design techniques from different
fields. This fact, together with the increasing ability of integration leads to a
global heterogeneity of embedded systems that will probably continue in the
future.

Global heterogeneity means that heterogeneity is not restricted to the ar-
chitecture of the system (composed of elements such as general purpose pro-
cessors, DSPs, application specific HW modules,...), but also affects its func-
tionality (reactive, data dominated, control dominated, etc...). For either archi-
tectural modeling or functional specification, depending on the characteristics
of each component or part of the system, one or another Model of Computa-
tion (MoC) [Lee et al., 1998] may be more or less suitable. A MoC fixes the
abstraction level and relationships between the different aspects of a system
specification. As this complexity and heterogeneity grows, the choice of an
adequate MoC becomes more important. An incorrect abstraction-level in one
of the MoC features can lead to inefficiency, even unfeasibility, in modeling
and design. Therefore, in order to allow the designer to use the most appro-
priate specification method for each domain, the design methodology should
support heterogeneous specification.

Important advances have been made to cope with the growing complexity
and heterogeneity. In order to handle complexity the abstraction level has been
raised to what is called system-level. This rise can include one or more aspects
(or, as we will see, domains of the Rugby metamodel) of the system descrip-
tion, which becomes a system-level specification, and lets us focus on the key
aspects of a design or a model. Thus, system-level specification constitutes
the initial and essential step of the design and it has a central role in the new
integrated design framework [Allan et al., 2002]. New specification languages
for system-level specification have been proposed. Among them, SystemC has
been widely accepted by the user community as a system-level specification
language [Grötker et al., 2002][Müller et al., 2003].

Heterogeneous specification is also an active research field. One of the most
important contributions is represented by Ptolemy [Ptolemy], a Java-based
modeling and simulation environment able to support heterogeneous specifi-
cations. Under the same Java framework, the specification can be composed

Heterogeneous System-Level Specification in SystemC 201

of different components, where each one can correspond to a different domain,
each of them characterized by a different MoC. This work is based on the
denotational framework established in [Lee et al., 1998]. This denotational
framework is also called metamodel.

The Rugby metamodel [Jantsch, 2004] enables an objective and system-
atic analysis of different models of computation by fixing their coordinates in
a rugby ball-shaped diagram (Figure 12.1 and 12.2). The Rugby metamodel
considers two basic concepts in order to classify any language or specification
method: domain and abstraction. Domain is a feature of the model that can
be independently analyzed. The metamodel distinguishes four basic domains,
namely Computation, Time, Communication and Data. The abstraction level
determines the level of detail used in each domain. In the diagram, each line
represents a domain. Each domain line goes from the highest abstraction (left)
to the maximum specificity (right). A coordinate in each domain is fixed by
the abstraction level used. A MoC coordinate is represented by the set of co-
ordinates used in each domain. The Rugby metamodel does not include the
hierarchy concept since this usually does not depend on the MoC considered.

In this paper, we address the heterogeneous specification in SystemC. The
proposed technique is based on a specification methodology able to support
different models of computation [Herrera, et al., 2003] and suitable for dif-
ferent automatic design steps, as SW implementation [Herrera, Posadas et al.,
2003]. Firstly, Section 2 uses the Rugby Metamodel in order to systematically
situate the design and the specification methodology that we are assuming and
extending. The suitability of the whole methodology for a heterogeneous in-
put in a design framework will be demonstrated. Section 3 reviews the two
main existing approaches for MoC interfaces. Section 4 deals with the hetero-
geneous specification in our specification methodology. Firstly, in subsection
4.1, we explain the MoC interface framework for the specification method-
ology and introduce some new concepts for the analysis and design of those
interfaces. Subsection 4.2 deals with the case of untimed MoC interfaces, that
is, those involving the untimed MoCs studied in [Herrera, et al., 2003]. Section
5 summarizes the aims, main conclusions and contributions of our work.

2. Specification methodology in the Rugby metamodel

This section aims to clarify our methodology of system-level heterogeneous
specification and its position in the design methodology from the point of view
of the Rugby metamodel.

First of all, Figure 12.1 highlights the suitability of SystemC for heteroge-
neous specification, as well as for system-level specification. The shadowed
region shows the flexibility of the current language release (2.x) in the dif-
ferent domains, since it allows different abstraction levels in the domains.

202 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

For example, by using Rugby terminology, SystemC 2.0 covers coordinates
((Alg-LB),(IPC-Top/PC),(Sym-LV/PDT),(Caus-CT/PCT)). This is really a co-
ordinate range where slashes separate the SW/HW options at low abstraction
level. For example, for the Computation domain, the range goes from the Al-
gorithmic level (Alg), typical of C/C++ programming, to Logic Block in HW.
The Rugby metamodel can also illustrate the current limitations. These are
basically in not reaching the highest and lowest abstraction domain limits. For
instance, SystemC does not enable the direct capture of a specification as ab-
stract as only one set of relations and constraints in computation, interfaces,
data types and time. It is expected that lower resolution levels will be available
in Data and Time domains (if, for example, analog extensions are provided in
future SystemC releases). Outside the scope of the Rugby metamodel, hierar-
chy is supported in SystemC through modules and ports. Forthcoming exten-
sions (sc export) will improve this. Summarizing, SystemC provides consid-
erable flexibility for specification under different MoCs.

Figure 12.1. Flexibility of SystemC for heterogeneous specification.

The highest abstraction level in this specification methodology is placed
under the (Symb, IMC, Alg, Caus) coordinates. It is represented as the shad-
owed region in Figure 12.2. It involves the highest abstraction level that can be
reached in each domain with SystemC 2.x. This corresponds to untimed MoCs
(i.e., PN (Process Networks), KPN (Kahn Process Networks) [Kahn, 1974],
CSP (Communicating Sequential Processes) [Hoare, 1978] in [Herrera, et al.,
2003]). In more detail, those coordinates correspond to Causality in the Time
domain (time information can be abstracted to only partial order of events),
Algorithmic in the Computation domain (process composed of sequential ex-
ecution of statements), Inter-Process Communication in the Communication
domain (through Interface Method calls, IMC) and Symbolic at Data domain
(basically, supporting abstract data types).

The specification could incorporate parts with at least one domain at a lower
abstraction level. For example, a part specified under a Synchronous MoC

Heterogeneous System-Level Specification in SystemC 203

Figure 12.2. System-level specification in the design.

involves greater detail in the Time domain. This detail would be higher, not
only in the Time domain, but also in the Data domain if certain parts contain
HW descriptions.

Reaching the implementation involves one or more design steps (repre-
sented by the bold arrow), which through refinement in one or more domains
(and more or less automatic), remove abstraction.

The MoC interface problem must be considered both at the specification
(especially when we connect parts managing domains at different abstraction
levels) and also at the design steps (which translate at least part of the system
to lower abstraction levels).

3. General Resolution of MoC Interfaces

A fundamental problem in heterogeneous specification is the communica-
tion and synchronization of events among the system parts under different
models of computation. This implies the development or use of a MoC inter-
face. Taking into account the metamodel, this involves an adaptation (including
or extracting information) in one or more domains. In some cases, this adap-
tation does not necessarily involve changing the abstraction level. Then, some
other features (that differentiate one MoC from another) have to be considered.
This will be seen in this paper when considering untimed PN, KPN and CSP
MoCs. The adaptation has different complexities in each domain. The adap-
tation in the Time Domain can, in many cases, be considered more complex.
However, in each domain, complexity depends on the decisions about which
adaptation actions are finally performed (for example, at data domain, truncate
or round, extend to 0 or interpolate) irrespective of whether the abstraction
level is raised or lowered.

204 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

In [Jantsch, 2004], two main approaches for MoC interface solutions are
shown:

Interface definition for each MoC pair connection with separate frame-
works (Figure 12.3a).

Usage of a common framework for the communication of the parts spec-
ified under different MoCs (Figure 12.3b).

Before further discussion, we introduce two concepts: the specification and
execution frameworks. The specification framework gives the specifier a set of
elements with their own semantics and properties and rules for their intercon-
nection. By using them, the specifier constructs a system specification, from
which specific behavior and properties are expected to be obtained (system se-
mantics). An execution framework sustains the specification framework and
allows the structure and elements of the system specification to be executed
without ambiguity respect to their semantics in order to perform a functional
and/or performance verification of the specification without the need of the
final platform. As can be seen, in this case we are basically referring to the
simulation engines running over a general purpose OS (linux, unix, windows,
etc,...), which runs in a host machine (PC, workstation). In this context, several
types of simulation engines can be found, for execution (SystemC kernel), in-
terpretation (i.e., a java runtime machine) or simulation (usual case of a VHDL
simulator) of the specification. An execution framework for implementation
provides the elements (technological libraries, embedded RTOS, etc,...) sup-
porting the execution over the final platform. Notice that a physical distinction
has been avoided. A simulation is actually running over a physical platform,
the host machine. In a similar way, it is still usual to find physical platforms
intended for development instead of final usage. They are also called target
platform and are quite close to the final platform.

It is important for the correction of the design flow that the design steps
maintain the semantics when passing from a simulation to an implementation
execution framework. This is especially important when those steps become
automatic (since the specifier loses control over the less abstract design repre-
sentations).

With these concepts we will review these two MoC interface approaches. In
the first MoC interface approach (Figure 12.3a), connection is more specific,
explicit and localized. It usually deals with separate specification and execu-
tion frameworks. There are several examples. A typical one would be the
traditional cosimulation of SW with HDL modules. Each part has quite differ-
ent specification (i.e., HDL contrasting with a SW code style) and execution
(discrete event HDL simulator versus instruction set simulator) frameworks.
These differences are translated into different coordinates in Rugby domains

Heterogeneous System-Level Specification in SystemC 205

Figure 12.3. Two approaches for MoC link.

(i.e., bit types versus symbolic types in Data domain). The communication
between them is usually performed by adaptation functions/processes that nor-
mally use a C-like interface provided by the HW simulator. These functions
enclose and mask the necessary adaptations performed in the different Rugby
domains.

The most representative example of the second approach is Ptolemy, which
provides a common specification framework. It is a component-based specifi-
cation framework where the specifier manages actors (components) with ports.
Actors communicate among themselves through receivers (a common type of
channel of the send-rev type). This has one important advantage: each time
a new MoC is added, it only requires the implementation of the interface be-
tween the new MoC and the framework. Below and somehow hidden, several
different (although managed with the same interface) execution frameworks
are provided. In Ptolemy, those execution frameworks for simulation are called
domains (note that here the meaning of ’domain’ is different than in the Rugby
metamodel) and their main element is the director class and its interaction with
receivers. These domains are associated with a composite actor and control the
execution of actor components (other atomic or composite actors). In this way,
there can be a domain hierarchy matched with a component hierarchy. Because
of this, Ptolemy is said to support hierarchical heterogeneity. The MoC inter-
face task focuses on receivers and, as commented, the adaptation task avoids
considering each MoC combination. A possible disadvantage for the manage-
ment of this kind of "common channels" is that it could be too general for some
MoC channels or too restrictive for others.

A difficult barrier that these approaches have to overcome (especially in
the first case, where neither the specification nor the execution framework is
common), is the separation of the different parts of the system in different
frameworks, not only for writing MoC interfaces, but also for the rest of design
tasks [Jantsch, 2004].

206 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

4. Heterogeneous Specification in SystemC

4.1 MoC Interfaces in the SystemC specification
methodology

The main difference between previous methodologies (Figure 12.3) and the
proposed methodology (Figure 12.4) is that the last one provides common
specification and implementation frameworks.

Figure 12.4. Specification and Execution frameworks in our SystemC methodology.

A system-level heterogeneous specification methodology based on SystemC
provides the common specification framework. The homogeneity of the speci-
fication framework is due to the use of the same language for all the MoCs and
the systematic use of processes and channels for specifying concurrent func-
tionality. The heterogeneity is achieved through the definition of each MoC by
the different set of channels and process styles. Therefore, the issue of MoC in-
terfaces will basically deal with the nature of the processes and channels on the
border of the parts specified under different MoCs. In this approach, suitable
MoC interfaces will be provided for each MoC pair. Hierarchy at several levels
is also supported. However, although possible, no match between components
and MoC is necessary. We can find one module containing parts under two or
more MoCs or a MoC distributed in several modules. Therefore, hierarchy will
not be relevant (a flattening is considered) in terms of MoC location. This does
not mean that hierarchy is completely discarded in the MoC study. The capac-
ity for hierarchical composition from the MoC primitives will be considered
when several MoCs are involved in the specification.

The common execution framework for simulation is based on a strict-timed
discrete event simulation kernel. Due to the abstraction provided by the OO
capabilities of C/C++, the underlying SystemC MoC can be hidden and other
more abstract MoCs can be built on top [Grötker et al., 2002]. This enables
the construction and execution of a SystemC specification combining several
MoCs, and thus a heterogeneous specification. For instance, the same simula-
tion can execute some processes where only causality relations are taken into
account, while other processes are being triggered by a timed clock source.

Heterogeneous System-Level Specification in SystemC 207

The specifications constructed and executed in this way show amorphous
heterogeneity (instead of hierarchical). That is, the SystemC simulation kernel,
the topology of processes and channels and their blocking semantics control
the execution, obliging a partial or a total order, or a time placement. Because
of this, no match between component hierarchy and distribution of MoCs is
needed.

As commented before, communication and synchronization of events is an
important main problem to be solved in heterogeneous specification.

Figure 12.5. MoCs taking into account Time domain.

Figure 12.5 shows how the MoC interface problem is confronted in our
methodology. It starts by considering a MoC classification that takes Time
domain information into account [Jantsch, 2004]. Three basic MoC groups are
distinguished, namely, untimed, synchronous and timed.

The classification can be interpreted in our SystemC methodology by means
of the abstraction of the necessary time properties from the whole set of time
information that the strict-timed discrete event simulation kernel maintains
during the execution (basically coordinates (ti, δi)). In [Herrera, et al., 2003],
the PN, KPN and CSP untimed MoCs and the synchronous reactive (SR) MoC
[Benveniste et al., 1991] (which assumes the perfect synchrony hypothesis)
were treated.

The basic feature which defines untimed MoCs is that process events are re-
lated by a partial order (their time tags are partially ordered Ti = (ti, δj) >=<
Tj = (tm, δn)). In our methodology, each δi represents an evaluation-update
SystemC cycle. Therefore, an untimed specification could be executed at the
same time (ti constant) over a δ-axis (a partial order imposed by a δi coordi-
nate could be enough). Nevertheless, the order relationship between event time
tags is the only information considered, regardless of whether the environment
separates input stimuli in time (thus, having events in different ti coordinates)
or not. In both cases, an untimed MoC is considered.

The SR MoC is based on the perfect synchrony hypothesis, which considers
that outputs are synchronous with the inputs, that is, an instantaneous reaction.
In our methodology, this is interpreted as input and output events having the

208 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

same ti tag (ti inputs = tj outputs). In order to achieve this, the SR MoC in
SystemC assumes a certain separation between what is considered a generation
process/event (usually, in the environment) or a reactive process/event (gener-
ally, part of the reactive system). It assumes that no generator process generates
more than one generation event per channel at each ti, therefore, the generation
events are separated by an arbitrary (tj − ti) time. Each of these events at ti
provokes the execution in a δ-axis with ti constant of an SR evaluation and sta-
bilization cycle of a reactive chain composed of reactive processes. A SystemC
evaluation cycle is the first part of the evaluation-update cycle (called δ here)
in the context of SystemC simulation. That is different from the SR evaluation
cycle, which involves one or several δ. Each of these SR evaluation cycles is
also called a slot. Thus, we have only one slot per ti, arbitrarily separated in
time, although the only important information is the total slot ordering (which
can be represented by natural numbers, ℵ). The existence of concurrence in
the generator processes provokes the existence of several reactive chains.

From this MoC classification we can derive a MoC interface taxonomy.
This will enable a systematic study and generation of the interfaces. One
group of interfaces do not involve time adaptation, that is, untimed-untimed,
synchronous-synchronous and timed-timed MoCs Interfaces (in Figure 12.5,
lines coming back to the same circle). For these, adaptations in other domains
must be considered. Another group will consider interfaces that involve time
adaptation. These are untimed-synchronous, untimed-timed and synchronous-
timed interfaces (lines from one circle to another). In the next section, untimed
MoC interfaces (highlighted line) will be presented. These represent the MoC
connections with the highest abstraction level in our methodology. In this case,
adaptation will not be necessary for Time domain, nor for the Computation and
Data domains (Alg and Sym coordinates are maintained respectively). There-
fore, the adaptation work will focus on communication. As shown in Section 2,
the maximum abstraction level reached here is IPC (or what is called IMC, in-
terface method call, in SystemC). In SystemC, processes/threads access chan-
nels, the elements that concentrate communication semantics, by means of ac-
cess methods. Even a signal is conceptualized as a channel. Therefore, inter-
face treatment for this case has to do with the different synchronization and
data transfer semantics of the channels used in these MoCs, without affecting
the process style. When interfaces with other less abstract models, such as SR,
are handled, adaptations involve modifications even in the way the processes
are written.

We shall now introduce two specific concepts useful for the treatment of
MoC interfaces in this methodology. They originate from an effort to locate the
MoCs and their interfaces in our SystemC heterogeneous specification frame-
work. The MoC interfaces can appear in either of the two basic elements for
concurrency and communication, process and channel. These concepts are:

Heterogeneous System-Level Specification in SystemC 209

Figure 12.6. MoC links in SystemC by means of border channels and processes.

Border Process (BP) (Figure 12.6a) is a process accessing channels belong-
ing to different MoCs. The border process is a highly flexible mechanism. By
means of the same process, the specifier can mix two or more MoCs. The BP is
just an extension in the use of the channels and specification style already pre-
sented in [Herrera, et al., 2003]. No more channels need to be considered and
defined than those presented there. Because of this, the BP is suitable when-
ever only adaptations at the communication domain (channels) are needed (as
has been seen, this was the case of untimed MoCs interfaces). It must be taken
into account that if other domains should require adaptation, then this must
be done explicitly in the border process. Then, for example, one part of the
border process could have an algorithmic style where a rendezvous channel is
accessed and another part a FSM style for implementing a protocol accessing
signal channels. Taking into account that in our methodology, the specifier
basically instantiates channels and writes processes, it could be interesting not
to force the specifier to write this adaptation code, but to concentrate only on
describing the concurrent functionality. In this case, the next concept may be
more interesting.

Border Channel (BC)(Figure 12.6b) is a SystemC channel where the MoC
interface is concentrated. The processes that this channel communicates be-
long to different MoCs (MoC 1 and MoC 2) with their own properties and
characteristics. Adaptation mechanisms are hidden and performed inside chan-
nel implementation (and are thus implicit for the specifier in our methodology).
The border channel presents two access interfaces Here we refer to SystemC
interfaces, different from the general concept of MoC interface. We indiffer-
ently use the term interface and the meaning used should be clear from the
context. One interface provides access methods to the MoC 1 and another to
the MoC 2. From each MoC side, the channel is seen as if it were a channel
proper of the MoC itself.

There are several reasons for its use. The first is that a BC saves the specifier
the work of explicitly describing the adaptation by means of a BP. The BC has,
in principle, its own semantics, different from other channels, which solves the
MoC interface issue. Sometimes, they may require no more than a SystemC

210 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

interface addition. When the specifier includes this BC, he clearly separates
MoCs, but doing this within the same language and framework (seamless).
The BC also enables the direct connection of modules specified with different
MoCs and different access interfaces (component-MoC match). This can be
useful in the context of intellectual property (IP) exchange.

Up to now, for the sake of simplicity, it has been assumed that when referring
to border channels we were talking about primitive channels. However, there
is another derived possibility. This is the hierarchical border channel (Figure
12.6c). It is a hierarchical SystemC channel, which uses processes internally
for the adaptation.

4.2 Untimed MoC Interfaces: CSP, PN and KPN MoC
interfaces

Following the Rugby terminology, in this methodology, untimed MoC in-
terfaces only require adaptation in the Communication domain. In the case of
SystemC this is translated basically to the use of different channels accessed
by a BP or a BC. In a SystemC channel, basically the management of synchro-
nization events and transfer of data is considered. Since both sides handle the
same kind of data, a Data domain adaptation is not necessary.

As seen in Figure 12.7, both kind of solutions, BP and BC are possible,
without disturbing properties such as determinism in the connected MoCs. To
this respect, the dynamic checking shown in [Herrera, et al., 2003] remains
valid in the MoC sides, since it is performed at each channel instance, which
only monitors which processes access the channel.

Figure 12.7. KPN-CSP equivalent specifications by means of border processes and channels.

As mentioned in the previous section, a solution of the BP type is very
suitable for these kinds of MoCs, and rendezvous, and fifo channels can be
easily mixed in the specification, without requiring the introduction of new
elements.

The possibilities for BC have also been addressed. This gives a clear sepa-
ration between the untimed MoCs. Each MoC part will have, apart from their
own processes and channels, at least one process accessing the BC. The BC
is asymmetrical, that is, it has a rendezvous access interface (for CSP side)
and another for fifo access (for PN/KPN side). The semantic of each access

Heterogeneous System-Level Specification in SystemC 211

interface corresponds to the semantic content assumed for that type of access
in the channel proper of that MoC. Therefore, the BC necessarily has an im-
plementation intersecting the semantics of these different channels (fifo and
rendezvous).

Figure 12.8. Possible accesses of the Border Process in the KPN-CSP MoC.

Before presenting the BC provided for those untimed MoC, some assump-
tions will be explained in order to restrict the problem. With respect to the
Data domain in communication, generic data types will be transferred (so we
really provide BC templates). As for synchronization semantics, we will deal
only with the cases of channels with blocking accesses (except for the case of
KPN), in general, guided by the maintenance of determinism properties. The
basic questions to be solved in these channels have to do with blocking seman-
tics (considering data availability and process arrivals), data transfer sense and
the need for internal storing (infinite elements, limited, 1, 0,...).

Bearing this in mind, there are basically two options. The first is to
write one general adapter channel (uc rv fifo/uc rv inf fifo for the CSP/PN and
CSP/KPN cases respectively) supporting the rendezvous and the fifo read/write
interface. Its SystemC implementation requires either a dynamic checking or
a static checking, by restricting the channel access through ports, in order to
confirm the coherence of accesses in terms the sense of transference.

Figure 12.9. PN-CSP MoC interfaces with border channels.

In order to not to force always this check and let the specifier manage chan-
nels with easier semantics, another option has been considered. This consists in
providing a set of four BC, one for each fifo/rendezvous interface combination

212 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

which keeps the coherence with the sense of data transfer through the chan-
nel. Therefore, there will be four versions for PN-CSP, uc fifo2rv, uc rv2fifo,
uc rv fifo and uc rv fifo sync and another four for KPN-CSP, uc inf fifo2rv,
uc rv2inf fifo, uc rv inf fifo and uc rv inf fifo sync. We will explain them si-
multaneously and considering the differences involved by the write unblocking
access of infinite fifo.

uc fifo2rv<T>, uc inf fifo2rv<T>: This is a unidirectional channel where
the data go from KPN, through a fifo write interface, to the CSP part, which
reads through a rendezvous read interface, uc rv read if. This interface con-
tains all the read methods of the unidirectional rendezvous provided in [Her-
rera, et al., 2003], call read and accept read. On the PN side (write access)
the process will not block while it is possible to leave data tokens in the
queue. Thus, blocking appears once the fifo is full in uc fifo2rv and never in
uc inf fifo2rv. In the read interface of the RV, the blocking condition requires
an arrival in the PN/KPN to unblock, as would occur in the fifo read interface
if we where talking about a fifo/inf fifo channel. Therefore, uc fifo2rv<T>/
uc inf fifo2rv<T> channel is basically a fifo/inf fifo that offers a read interface
of the rendezvous type. This means that its SystemC implementation basically
consists in inheriting the fifo channel implementations and the read interface
of rendezvous, making the read interface rendezvous methods call the fifo read
interface methods. It must be noted that this implementation does not provide
to the CSP side a strict-rendezvous behavior, since a writing on the PN/KPN
side can leave access the channel without waiting for the arrival on the CSP
side. The other choice would have been a pure rendezvous synchronization
forcing in this case the KPN side to see a 1-size fifo and preventing the KPN.
This occurs because a total compatibility in the intersection of the fifo and
rendezvous synchronization semantics cannot be found. In cases like these,
a decision must be taken and our criteria was to unblock as soon as possible
while preserving determinism conditions.

Another question is to consider when the CSP access is call read or ac-
cept read. This affects the dynamic analysis that checks whether one or more
processes access the channel. In the accept read case, only one can access. In
the call read access, a concurrent access can be allowed (explicit acceptance
of this possible indeterminism source). This also involves the combination
of several types of checks (SEVERAL CALLERS and SEVERAL WRITERS) in
the same channel.

uc rv2fifo<T>, uc rv2inf fifo<T>: These are unidirectional channels where
data go from the CSP side through a rendezvous write interface, uc rv write if,
which includes the methods call write and accept write, towards the KPN side,
which reads through a fifo read interface. Now, the intersection of the blocking

Heterogeneous System-Level Specification in SystemC 213

semantics for reading the fifo and writing the rendezvous are considered. The
KPN will block if there is not at least one arrival on the CSP side. The CSP
requires the arrival of a reading access in the KPN side in order to unblock.
From this, we deduce that the maximum storing size will be 1 and the behavior
is that of a unidirectional rendezvous. In this case we do not find any incompat-
ibility and the BC will basically be a unidirectional rendezvous plus a fifo read
interface which calls those methods for reading data from rendezvous channel.
At this time, SEVERAL CALLERS and SEVERAL READERS checks must be
implemented.

uc fifo rv<T1,T2>, uc inf fifo rv<T1,T2>: In this channel a bidirectional
data transfer is given. It is a more general channel and has its own seman-
tics. On the PN/KPN side it offers a write/read interface. On the CSP side, it
is accessed by means of a read/write rendezvous interface, uc rv read write if.
This contains the methods call and accept with two parameters, covering the
two transfer senses. The semantics implemented is as follows. From the
PN/KPN side it performs as two fifo accesses. The read access requires at
least (and at most) one arrival at the CSP side, so that "internal read fifo" needs
a storing capacity of 1 item. The write access performs as a finite/infinite fifo,
thus requiring an N or an infinite storing capacity (PN/KPN cases). On the
CSP side, the rendezvous is consumed (unblocked) when both a write and read
is performed in the PN/KPN. Here we should consider new situations. Firstly,
while only one process can access rendezvous for preserving determinism, on
the KPN side, now, one or two processes (one accessing as writer and another
as reader) can access without provoking indeterminism. This means only that
SEVERAL WRITERS, SEVERAL READERS (for the PN/KPN part) and SEV-
ERAL CALLERS dynamic checking variables must be included in the BC to
preserve determinism. Secondly, new deadlock conditions appear depending
on the fifo size, on the number of accessing processes on the PN/KPN side
(1 or 2), and on the sequence of the accesses. Basically, on the PN side, for
an N-size (including the case of N=infinite) a burst of M writings before no
readings (N ≥ M) is always possible. A later burst of M reads will enable M
rendezvous potential consumptions on the CSP side.

Figure 12.10. A KPN process access conditions in uc fifo rv border channel for deadlock
study.

214 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

There is a new deadlock condition when considering one process accessing
the (PN/KPN) part. For example, assuming N=1 in Figure 12.10, cases a) and
b) would have deadlock, but not c) and d). If, for example, N=infinite, then
case b) will not present deadlock. A new check (CHECK SINGLE KPN PRO-
CESS DEADLOCK) is necessary for detecting this case.

uc fifo rv sync<N>: This channel has a fifo read/write interface on the PN/
KPN side and a synchronization interface (sync access method) on the CPS
side. It ignores data arriving at the KPN interface, only the data arrival events
being relevant. There is synchronization with both read and write methods
on the KPN side and it allows any number of synchronizing processes, freely
distributed on any of the sides, PN/KPN and CSP, although N will be the limit
which guarantees determinism. Note that there is no infinite version since no
storing capacity is required.

Regarding the connection of KPN-PN, it is clear that, functionally, it is pos-
sible to combine infinite and finite fifos in the specification. It is not necessary
to consider a uc fifo inf fifo BC, since this channel would not require interface
adaptation.

As for the capacity for hierarchical composition, there is no more limitation
than that of the correct use of interfaces of the module ports. Assuming mod-
ules M1 and M2, a match M1-KPN and M2-CSP is possible and modules can
be connected by means of some of the BC shown. If no BC is used, a module
M3 could include M2 and a BP. Then M3 would act as a wrapper and M1-M3
is seen as a KPN, where a fifo channel joins them. The future sc export primi-
tive will allow the M3 wrapper to include only a BC (rather than a BP) and the
CSP M2 module.

5. Conclusions

Embedded system design is undergoing a methodological change. In this
context, an important issue is the support of higher abstraction levels and het-
erogeneity in the specification methodology.

In this paper, the basis for establishing a methodology for system-level
heterogeneous specification in SystemC has been shown. The Rugby meta-
model enabled us to situate the specification methodology in the context of
an integrated design methodology and generate some useful concepts, mainly
for the solution of a basic problem in the heterogeneous specification; the
MoC interface generation. This problem is attenuated in our methodology
since it is based on a common specification and execution framework. A
taxonomy of MoC interfaces, based on the required adaptation in the Rugby
Time domain lets us identify the main groups of MoC interfaces to be solved.
These are those no-requiring time adaptation (untimed-untimed, synchronous-
synchronous, timed-timed) and those requiring it (untimed-timed, untimed-

Heterogeneous System-Level Specification in SystemC 215

synchronous, synchronous-timed). In the context of SystemC, the concepts of
border process (BP) and border channel (BC) have been introduced.

Finally, applying all these concepts, the analysis and generation of untimed-
untimed MoC interfaces for the untimed MoCs PN, KPN and CSP have been
presented. These represent the highest abstraction level in our methodology.
This level basically requires adaptation only at the Rugby Communication do-
main. The analysis of the possibilities with BP and the development of a set of
BC demonstrates this relative simplicity.

This work opens some future lines. In the short term, these concepts can
be applied to solve untimed-synchronous SR interfaces. In the longer term,
interfaces with timed MoCs can be studied. In this way, the potential of the
hierarchical border channel for communicating MoC with quite different time
properties can be analyzed, especially if different simulation engines (for ex-
ample, for analog extensions) are added to the simulation kernel of SystemC.

References

A. Allan, D. Edenfeld, W. Joyner, A. Kahng, M. Rodgers, Y. Zorian. "2001
Technology Roadmap for Semiconductors". IEEE Computer. January 2002.

A. Benveniste, and G. Berry. "The Synchronous Approach to Reactive and
Real-Time Systems". Proceedings of the IEEE, V.79, N.9, September 1991.

H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd."Surviving
the SoC Revolution: A guide to platform-based design". Kluwer; 1999.

T. Grötker, S. Liao, G. Martin, and S. Swan. "System Design with SystemC".
Kluwer.2002.

F. Herrera, H. Posadas, P. Sánchez, E.Villar. "Systematic Embedded Software
Generation from SystemC". Proc. of DATE, IEEE, 2003.

F. Herrera, P. Sánchez, E. Villar. "Modeling of CSP, KPN and SR Systems with
SystemC". Proc. of FDL, ECSI, 2003.

C.A.R. Hoare. "Communicating Sequential Processes". Communications of
the ACM, V.21, N.8, August 1978.

A. Jantsch. "Modeling Embedded Systems and SoC’s". Morgan Kaufmann,
2004. ISBN:1-55860-925-3.

A. Jantsch, H.Tenhunen. "Networks on Chip". Kluwer Academic Publishers.
2003. ISPN:1-4020-7392-5.

G. Kahn. "The Semantics of a simple Language for Parallel Programming".
Proc. of the IFIP Congress 74, North-Holland, 1974.

E. Lee, and A. Sangiovanni-Vincentelli. "A Framework for comparing Models
of Computation". IEEE Trans. on CAD of ICs and Systems, V.17, N.12,
December 1998.

W. Müller, W. Rosenstiel, and J. Ruf. "SystemC: Methodologies and Applica-
tions". Kluwer. 2003.

216 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Ptolemy. http://ptolemy.eecs.berkeley.edu
Worldwide Shipments growth forecasts (2000-2004). Electronic Market

Forecasters. Gartner Dataquest 2001 from www.embedded.com/advert/

update.htm

Chapter 13

xHDL: EXTENDING VHDL TO IMPROVE CORE

PARAMETERIZATION AND REUSE

Miguel A. Sánchez Marcos, Ángel Fernández Herrero, Marisa López-Vallejo
Dpto. Ingeniería Electrónica, E.T.S.I. Telecomunicación
Ciudad Universitaria s/n, 28040 Madrid, Spain

{masanchez,angelfh,marisa}@die.upm.es

Abstract Traditional hardware description languages are currently limited in their use to
build complex systems through parameterization and reuse. In this chapter, we
present xHDL, a meta-language designed to improve VHDL that provides flex-
ible mechanisms for component customization, instantiation and interconnec-
tion. It has been conceived to ease the specification of highly parameterized
cores and the reuse of already designed ones, keeping the currently available
methodologies and synthesis tools. At the same time, it can help on parame-
ter and component selection through the evaluation of functions that report on
estimated characteristics of the design before the long synthesis phase. Finally,
an FFT core illustrates the use of the meta-language for the specification of a
complex design.

Keywords: HDL, IP, reuse, parameterization, component-based design

Introduction

Current VLSI designs are characterized by their increasing complexity and
performance, while the design environment must ensure as short as possible
development time. In this context, only the reuse of previous designs allows
meeting such strong design constraints [Gajski, 1999]. Reused components,
known as cores, may come from former designs or may be obtained from third
parties. In the last case, they are qualified as Intellectual Property (IP), based
on licensing reasons.

The design of systems can be significantly simplified by the proper assembly
of already available components. However, integrating cores into a system is
mostly manual, and consequently error prone. Designers must rightly know all

© 2005 Springer. Printed in the Netherlands.

217

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 217–235.

218 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

the characteristics of complex cores, as they are functionality, interfaces, and
basic parameters.

Hence, there is a clear need of tools that help during component assembly
and core generation tasks, while providing quality assessment measures (area,
speed, power, accuracy) to ease the selection of cores and their key param-
eters. These goals can only be accomplished if the cores are specified with
a language that allows subcomponent customization, instantiation and inter-
connection, with the corresponding simplification of the design of hierarchical
collections of modules.

In this sense, conventional HDLs, as VHDL or Verilog, do not satisfy all
the requirements that IP reuse may have. For instance, these languages exhibit
serious limitations to parameterize a design or do not allow the specification of
additional attributes to drive a design space exploration process.

To overcome these limitations, in this work we present xHDL (Extended
HDL), a meta-language that helps the designer in the difficult task of IP core
description and reuse. Our goal when creating xHDL was not to develop a
new HDL, but to improve some aspects of existing ones (currently VHDL) to
easy both the parameterization of designs and the reuse of previous works. In
this way, xHDL provides a simple and clear way to describe complex systems,
while being easy to learn and use. Since a traditional language is used as base,
not only previous designs can be reused, but also tools and methodologies.

The main advantages of the proposed meta-language are the following:

It is conceived to emphasize reuse.

It allows a high degree of parameterization of the cores.

It simplifies specification due to the definition of new constructs.

No conditions are imposed to the HDL used to describe the designs.

It is easy to learn, since it stays close to conventional HDLs.

Design space exploration is allowed based on feedback information.

The meta-language is accompanied by a compiler that generates VHDL
source code. In this sense, the designer can write customizable code in what-
ever style is necessary, to simulate or synthesize, both architectures or test-
benches, as the meta-language is effectively independent of the target technol-
ogy considered for a final implementation.

The conception of xHDL allows its use in many applications, as the im-
plementation of core-generation tools, automated design space exploration or
generation of testbenches.

The chapter is organized as follows. Next, other related works will be re-
viewed. Section 2 provides the description of the basic constructs of xHDL,

xHDL: Extending VHDL to improve core parameterization and reuse 219

while section 3 illustrates the use of the meta-language through an example.
Finally, some applications are described and some conclusions are drawn.

1. Related work

Previous work on languages for IP reuse has been addressed from very dif-
ferent points of view, tackling many different aspects. In this section, we will
contrast the key points of these approaches with the present work.

First, some languages conceived for other purposes have been previously
used in IP environments. For instance, SystemC [Panda, 2001] can support
modelling at the register-transfer, behavioral and system levels. However,
these languages do not provide the parameterization facilities that xHDL ex-
hibits. XML has also been used for IP-based design [Zhang et al., 2001], but
this language was not devised to be directly used by a designer. It requires a
long learning time when used to describe hardware, and is not the best way to
express some particularities required for IP specification. Finally, other lan-
guages have also been used targeting reuse, as is the case with SpecC [Dömer
and Gajski, 2000], which deals specially with the protection of IPs.

Important efforts have been carried out in the field of interface description
and synthesis. Rowson et al. [Rowson and Sangiovanni-Vincentelli, 1997] in-
troduced the concept of “interface-based design”. The authors state that IPs
should be designed in two parts, behavior and communication. Regular ex-
pressions are used to describe interface circuits, and an algorithm for their
synthesis is presented in [Passerone et al., 1998]. Another interesting work
on interface specification and verification is presented in [Suzuki et al., 1999].
Here, OwL is an interface language defined for IP reuse, providing multiple
applications. It is is devised to work at a very low level, what makes difficult
its application for the specification of complex systems.

Confluence [Confluence, 2004] is a declarative, functional language that
eases RTL code generation. This language combines the dataflow and compo-
nent-based methodologies of HDLs with the expressiveness of modern func-
tional programming. Some key ideas behind the language are shared by our
proposal, but Confluence does not allow the definition of functions to evaluate
internal parameters of the IP core and provide feedback about its suitability.

Finally, the component composition framework BALBOA [Doucet et al.,
2003] is a bottom-up approach for SOC construction using reusable IPs. The
framework includes a component integration language (CIL) which can be
translated into a C++ implementation. In this case, as happened with Con-
fluence, a new language is fully defined, making necessary to learn the new
syntaxis and features and provide a complete and new set of tools to deal with.

Nowadays, there are workgroups upgrading traditional HDLs as Verilog or
VHDL [EDA, 2004]. However, the time required to change a standard is too

220 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

long, and designers need tools to overcome language limitations even before
the changes required by the language have been addressed.

In this chapter, we present a meta-language defined on top of VHDL to spec-
ify and generate IP cores. Our approach supports hierarchical implementation
of complex designs, with emphasis on providing parameterization, module in-
terconnection and reuse capabilities.

2. Fundamentals of xHDL

Source files for xHDL are known as templates. They contain the code for
the available cores as embedded VHDL. The meta-language uses a reduced
set of well defined types to symplify the learning process. This set is based
in VHDL types, extended with new ones to implement specific functionalities.
Arithmetic is performed by function calling, and a mechanism is provided to let
the designer implement new functions and access them through the templates.

To allow reuse, xHDL implements a flexible way of communication be-
tween subcomponents, a calling mechanism. This helps in parameter fixing
(e.g. a module can report to the core on the number of iterations needed for
some computation), and also in getting feedback information from a subcom-
ponent (e.g. multiplier latency that determines some buffer latency).

In the meta-language there are two different concepts for functions: as el-
ements for expressions (introduced above) or as feedback information from a
template. The last will be described later, and both can be identified in each
context.

Similarly to VHDL, templates are divided into three sections: generics,
ports and architecture.

2.1 Generics

This section allows the designer defining the basic data items for the core:

1 Parameters. They hold input values to customize the core. They can be
provided directly, but also by an upper level calling core (if the current
one is needed as a subcomponent), what allows passing parameters along
the hierarchy. An example declaration with default value is:

parameter width = 8;

Differently from VHDL, where the generics are interpreted by the syn-
thesizer, in xHDL the parameters will disappear after code generation,
being substituted with their values. This greatly helps in a synthesis
stage.

2 Functions. These are a set of output values to report on characteris-
tics of the core, previously to the generation process. They can provide

xHDL: Extending VHDL to improve core parameterization and reuse 221

bounds or recommended values for parameters, depending on the values
chosen for some others, or they can also be simple estimates on core
characteristics that help in the selection of parameter values:

function max_nstages = Add(width, 2);

As it happens to properties, their calculation is determined by the de-
signer by using (expression) functions with parameters as arguments.

3 Properties. They are similar to functions, but calculated during the gen-
eration process, and reported afterwards. They can be used for estima-
tors that strongly depend on how the core is created, or which subcom-
ponents are finally selected for it, as throughput, timing, area, power or
accuracy (expected quality magnitudes).

In the template, this type behaves as a global variable, so that, when
declared, properties must be initialized with proper values:

property latency = 0;

In this example, the latency takes a null initial value and will be subse-
quently updated in the template, probably depending on specific gener-
ation options. The resulted value is stored to be recovered when needed.

2.2 Ports

The ports section is devoted to declare the interface for the core. In this
sense, the statement:

XI: IN word;

is equivalent to the VHDL one:

XI: IN STD_LOGIC_VECTOR (word-1 DOWNTO 0);

where the type STD LOGIC is considered as a base to interface definitions, be-
ing unnecessary its insertion in the declaration statements.

The meta-language introduces several facilities over VHDL, as is the possi-
bility to conditionally declare ports:

(PIPELEVEL != 0) CLK: IN 1;

or the use of arrays, which are declared and accessed by using brackets:

DIR [Log2(word)]: IN 1;

222 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.3 Architecture

The meta-language aims to simplify the tasks that are difficult or limited in
VHDL. For instance, even with the use of generate sentences, VHDL parame-
terization and generalization possibilities are awful and complex. In this sense,
xHDL can be used to automate VHDL code insertions and subcomponent in-
terconnection during core generation.

In xHDL, signals and components are declared only when needed, while
variables allow carrying references to out-of-scope objects between different
control structures, and can be used in embedded VHDL source code.

In this section, the architecture description takes place, and thus, it is where
actual VHDL source code will be inserted. The constructions that can be used
are within several types: declarations, control structures and references.

Declarations. In a template, it is possible to use data items declared in
the generics or ports sections, but it is also possible to declare new ones for
internal use. Differently from VHDL, declarations can be placed anywhere, but
always before the object is used. Variables, signals, entities and components
can be declared.

When a core reuses another one as subcomponent, it can use information
provided by feedback functions and facilities for conditional declaration to
declare only the types really needed at each moment.

Variables The variables allow storing values or references in a section:

variable var_word = word;

Variables are internally stored as strings, but their actual types depend
on the use (integer, floating, etc.). They are similar to properties, as their
values can be updated along the template:

latency = Add(latency, 1);

However, they are conceived as intermediate holders during component
specification and are declared as needed in the architecture part,
while properties are introduced in the generics section, as they keep
important characteristics of the core that will be exposed to the user.

Variables in xHDL, which have no correspondence in VHDL, allow both
store intermediate values in a template and keep references to ports and
signals, which helps in the generalization of a core specification.

As mentioned before, it is possible to use functions, both tool predefined
(Add, Sub, Max, Log2, Dec2Bin, etc.) and user defined. For calculations,
constant values are also allowed.

xHDL: Extending VHDL to improve core parameterization and reuse 223

Signals This type, together with entities, is closely related to the correspond-
ing in VHDL. The keyword signal will insert a signal declaration into
the declarative part of the VHDL component generated, keeping at the
same time a reference to that signal into the meta-language:

signal mem2add[radix] var_word;

Variable and signal declarations have scope, the control structure where
they are defined. Hence, out of there, references are lost. This simplifies
name tracking during specification, differently from VHDL, where the
signals must be declared at the beginning of the architecture. If needed,
variables can be used to keep references to out-of-scope signals.

At the same time, signals are only generated if their control structure
is accessed during component generation. Moreover, the same xHDL
signal can produce several VHDL ones, as is the case with iterative sen-
tences, simplifying declarations.

Entities and components Entity declarations are key in the reuse context.
They allow refering to already described subcomponents.

To reuse a component, it is first necessary to provide its name and the
library where it is stored. Then, we can initialize some of its parame-
ters, differently from their default values, and get the value of feedback
functions for the combination of parameters that results:

entity cordic lib.arith.Cordic;

cordic.generics (NVBITS = 16);

variable N = cordic->function ("NROTS_MAX");

The last two statements can be performed as many times as necessary,
allowing an iterative process to search for the right values in each appli-
cation (a process of inter-component communication for negotiation of
parameter values). The component will not be generated. The strength
of xHDL to perform design space exploration is partly due to this ability.

Then, it is possible to set again the same parameter or others, and finally
declare the component, triggering its source code generation. This also
inserts the declarative part of the subcomponent into the current one:

cordic.generics (NROTS = N);

component i_cordic = cordic->generate;

Now, we can access component properties defined by the designer:

variable L = i_cordic->property ("NREGS");

224 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

In summary, several entities can be evaluated within the meta-language
to finally choose only the most convenient of them, or even several ones
to be placed in different locations into the architecture.

Since our final goal is core reuse and automatic generation, in xHDL
there is a way to nest templates for architectures, similar to function
calling for expressions. It allows automatically generating code for the
port-to-signal mapping for a subcomponent, ensuring at the same time
the correct use of conditional ports:

i_cordic.ports (CLK = CLK, ..., Y0 = rot_y0);

var_temp_y = rot_y0;

The use of variables in the meta-language is very advantageous, giving a
great flexibility to the generation process, as they are not declared in the
finally generated component, what is different from the case of signals
and subcomponents. Variables can transport signal references between
control structures at the meta-language level.

Control Structures. In VHDL, the if construction does not allow else,
being therefore necessary to reevaluate conditions. Moreover, the VHDL for

has a closed range, which must be fixed from the beginning.
In this sense, conditional structures in xHDL are if-else based:

if (...) { ... }

if (...) { ... } else { ... }

if (...) { ... } else if (...) { ... }

On the other hand, iterative structures are based in while constructs, with
condition evaluation previous to loop execution:

while (...) { ... }

Conditions have been already introduced in port declarations, and can be
simple (relational operators: ==, != , >, >=, <, <=) or composed (logical opera-
tors: &&, ||). Finally, it is possible to use meta-language functions to evaluate
complex conditions.

Code insertions. As was previously stated, xHDL is not a new language,
but it is conceived to ease the creation of parameterizable designs based on
other description languages. In this sense, control structures and data types
available in xHDL have already been described, but to properly describe a
component, it is also necessary to perform source code insertions in the middle
of the meta-language. Those insertions can be customized by using data types,
through the substitution of their actual values during generation.

xHDL: Extending VHDL to improve core parameterization and reuse 225

Source code insertions are performed by using reserved words in the meta-
language, one for each possible location. In this way, to insert code into the
VHDL library declarations section, we will use:

lib { LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; }

To insert code into the declarative part of VHDL architectures:

decl { CONSTANT MEM_[index] : STD_LOGIC_VECTOR ([var_msb] DOWNTO 0) :=

"[Dec2Bin(lib.arith.cordic.ATRCoeff(index, word))]"; }

Finally, to insert code into the implementation part of VHDL architectures:

code { MEM_[index] WHEN DIR = "[Dec2Bin(index, word_index)]" ELSE ... }

In code insertions, VHDL is interpreted as plain text, but accepts substi-
tutions anywhere, triggered with brackets around meta-language expressions,
which use formerly defined types (e.g. parameters, functions, properties, vari-
ables). This allows getting extensive code customization.

In this sense, the decl example above illustrates the use of variable substi-
tutions and function calling, both tool predefined and user defined.

3. Design Example

To check the usefulness of xHDL, showing its customization and intercon-
nection capabilities, a set of cores has been implemented and integrated into a
meta-lenguage library. This contains from simple cores, as adders, registers,
etc., to more sophisticated ones, as general KCM’s or CORDIC rotators.

The library can be used as the base for new cores, as it is with the selected
example for this chapter, the FFT. This core has been developed both reusing
the library and building new components.

3.1 FFT specification

The chosen implementation follows Cooley-Tukey’s algorithm [Rémon-
deau, 1999], with an online pipelined and parallel architecture. This archi-
tecture results from a regular repetition of several non-identical stages, so it is
good to illustrate hierarchical design and parameterizable reuse of the compo-
nents needed in the stages.

The VHDL code embedded in the templates for this example has been opti-
mized to target the Xilinx Virtex II architecture, as is the case with the feedback
information provided in properties.

The main parameters of the FFT core are the number of stages and the radix,
which determine the final length. Other basic parameters are wordlength for
input samples and scaling, providing the last one the growing policy after but-
terfly calculations:

226 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

B
U

T
T

E
R

F
L
Y

T
W

ID
D

L
E

M
E

M
O

R
Y

B
U

T
T

E
R

F
L
Y

T
W

ID
D

L
E

M
E

M
O

R
Y

B
U

T
T

E
R

F
L
Y

M
E

M
O

R
Y

R
A

D
IX

STAGES

1 N-1 N

Figure 13.1. Structure of the FFT

FFT

Stage 1 Stage 2 Stage N

Butterfly MemoryTwiddle

...

Figure 13.2. Hierarchy of the FFT

generics {

parameter STAGES = 4;

parameter RADIX = 4;

...

}

These parameters are introduced in the top template of the design, which is
based on the structural description of the selected algorithm (see figure 13.1)
and built around three sub-cores: memory, butterfly and twiddle multipliers.
These new cores are also implemented as xHDL templates with their own set
of parameters, though related to those of the top template.

The top template merely specifies where and when the sub-cores are in-
serted, and how to customize (with xHDL functions and properties) and inter-
connect them (with xHDL variables and signals). Figure 13.2 shows the way
these sub-cores are hierarchically instantiated into the specification.

The sub-cores are instantiated within a while control structure, which is
used to unroll the algorithm into parameterized stages. In each one, first a
butterfly is customized and inserted, then a twiddle multiplier and the memory
core are generated, if needed:

variable fft_index = STAGES;

while (fft_index > 0) {

entity butterfly = fft.online.butterfly.dif;

...

if (fft_index > 1) {

entity twiddle = fft.online.ffwd.twdarray;

xHDL: Extending VHDL to improve core parameterization and reuse 227

RADIX-2

BUTTERFLY

RADIX-2

BUTTERFLY

TWIDDLE & LATENCY

EQ

TWIDDLE & LATENCY

EQ

R
E

O
R

D
E

R
IN

G

BUTTERFLY STAGE

Figure 13.3. Components in a general butterfly element

entity memory = fft.online.ffwd.datamem;

...

}

...

fft_index = Dec(fft_index);

}

3.2 Butterfly

In this subcomponent, a key parameter is RADIX, which can only take power-
of-two values. This parameter not only defines the inner structure but also
provides the number of ports needed:

ports {

...

IN_REAL [RADIX] : in WIDTH;

IN_IMAG [RADIX] : in WIDTH;

OUT_REAL [RADIX] : out OUT_WIDTH;

OUT_IMAG [RADIX] : out OUT_WIDTH;

}

The template is internally implemented as Log2(RADIX) stages, and hence,
two variable arrays are declared to store the references to intermediate signals:

variable data_real [RADIX];

variable data_imag [RADIX];

The mapping of input ports into these variables is made as in:
variable index = 0;

while (index < RADIX) {

data_real [index] = IN_REAL [index];

data_imag [index] = IN_IMAG [index];

index = Inc(index);

}

Now, they are used inside a main while loop, which creates the structure of
the butterfly (shown in figure 13.3):

228 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

while (index < RADIX) {

pipereg.ports (

CLOCK = CLOCK,

RESET = RESET,

ENABLE = ENABLE,

DATA_IN = data_real [index],

DATA_OUT = real_pipereg [index]);

data_real [index] = real_pipereg [index];

index = Inc(index);

}

Finally, variables are again used to connect the output of the last component
to the output ports:

while (index < RADIX) {

code {

[OUT_REAL [index]] <= [data_real[index]];

[OUT_IMAG [index]] <= [data_imag[index]];

}

index = Inc(index);

}

In each stage of the main loop, radix-2 butterflies are firstly performed be-
tween pairs of ordered input samples. In these butterflies, the arrays are used as
inputs, whereas local signals are declared for outputs. When the components
are inserted, the variables are updated with these output signals. In this process,
a bit is added if the scaling option is set, otherwise the result is truncated:

signal real_r2a [RADIX] : WIDTH;

...

// radix-2 butterflies

...

if (SCALE != 0) {

data_real [i] = real_r2a [i];

...

} else {

data_real [i] = vhdl.Range(real_r2a[i], width, Dec(width), 1);

...

}

Next, a twiddle for each sample is calculated using xHDL functions, and the
most suitable rotator for each one is chosen, together with the pipeline level for
every radix-2 butterfly stage.

variable twiddle_term = fft.Twiddle(base_radix, index_radix);

if ((twiddle_term == "360.0") || (twiddle_term == "0.0")) {

...

} else if (twiddle_term == "315.0") {

...

} else { // general twiddle rotator

...

}

Finally, the samples, which are stored in the array, are reordered by changing
their positions:

xHDL: Extending VHDL to improve core parameterization and reuse 229

while (index < Div(RADIX, 2)) {

variable i1 = index;

variable o1 = Mult(index, 2);

...

tmp_real [o1] = data_real [i1];

tmp_imag [o1] = data_imag [i1];

index = Inc(index);

}

During component generation, the template updates their own properties, as
latency (which is used in the top FFT to synchronize all the sub-cores), with
those of the subcomponents that built it (adders, subtracters, etc.).

3.3 Twiddle multipliers

This template acts a wrapper for the rotators which will be inserted in each
FFT stage during source code generation. The choice of the rotator is based on
the value of the angle associated with the twiddle position into the FFT. When
the rotators are inserted, the template also has to equalize every output so that
all of them have the same final wordlength, gain and latency.

For trivial rotations, a set of simplified sub-cores is available that implement
them with great savings of resources with respect to a general rotator.

On the other hand, the general rotator chosen is based on CORDIC [An-
draka, 1998]. This component is already available in the xHDL library, so that
it only has to be instantiated with proper values for its parameters, some of
them with recommended values obtained by using feedback information func-
tions:

cordic.generics (KWIDTH = WIDTH, ...);

variable cordic_nrots = cordic->function ("NROTS_MAX");

cordic.generics (NROTS = cordic_nrots);

The CORDIC lets implement a twiddle rotator in two ways. First, as a
completely general rotator with a register and an adder to internally generate
the twiddle angle. Second, for fixed angles, the rotation sequences can be
externally supplied from a ROM, which is a new sub-core whose coefficients
are calculated by meta-language functions at generation time (figure 13.4).

Selection among the different rotator alternatives is determined by an input
parameter to the core. This parameter can be fixed to one of the possible alter-
natives, or it can take the value automatic, in which case the template tries to
minimize resources:

// TYPE 0 Automatic

// TYPE 1 Fixed-angle rotations

if ((TYPE == 1) || ((NUM_DATA < 512) && (TYPE == 0))) {

entity cordic = arith.cordic.online.fixrots;

...

} else { // General rotator

entity cordic = arith.cordic.online.basic;

...

}

230 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

decl {

CONSTANT rom_[i] :

STD_LOGIC_VECTOR ([Dec(WIDTH)] DOWNTO 0) :=

[fft.CordicRots(i, POINTS, STAGE, WORDLENGTH)];

}

a) source xHDL code for a ROM

CONSTANT rom_0 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "011110100"; -- "0.0"

CONSTANT rom_1 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100010001"; -- "-5.625"

CONSTANT rom_2 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100010111"; -- "-11.25"

CONSTANT rom_3 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100011101"; -- "-16.875"

CONSTANT rom_4 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100100100"; -- "-22.5"

CONSTANT rom_5 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100101011"; -- "-28.125"

CONSTANT rom_6 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100110001"; -- "-33.75"

CONSTANT rom_7 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100110111"; -- "-39.375"

CONSTANT rom_8 : STD_LOGIC_VECTOR (8 DOWNTO 0) := "100111110"; -- "-45.0"

...

b) generated VHDL code for a ROM

Figure 13.4. Example of code generation from xHDL

MEMORY

CELL

MEMORY

CELL

MEMORY

CELL

MEMORY

CELL

MEMORY

CELL

MEMORY

CELL

INPUT

DATA 0

INPUT

DATA 1

INPUT

DATA R-1

OUTPUT

DATA 0

OUTPUT

DATA R-1

RADIX

R
A

D
IX

Figure 13.5. Structure of the memory template.

3.4 Memory

The function of this element is to keep and reorder intermediate samples
between stages. Consequently, it needs a set of parameters that determine the
amount of space which is necessary, and are passed from the upper template
depending on their own parameters and variables.

xHDL: Extending VHDL to improve core parameterization and reuse 231

The memory sub-core collects input samples from an FFT stage and sends
ordered ones to another stage. To implement this function, the memory is
arranged as R×R matrices, and the template describes this structure by using
a double loop and a sub-template (memory cell):

variable index_in_radix = 0;

while (index_in_radix < RADIX) {

...

variable index_out_radix = 0;

while (index_out_radix < RADIX) {

memory_cell.ports(...);

...

}

...

}

The template for the memory cell provides the type of memory (block or
distributed RAM, registers) through an internal parameter. The template for
the top memory performs both cell interconnection and generation of the read/
write and addressing signals from the available set of input control signals.

4. Applications

The formerly described meta-language is mainly oriented to the specifica-
tion and reuse of IP-cores, but it has many more applications in the IP domain:

Design space exploration,

Description of general IP-cores,

Generation of testbenches,

RTL code generation.

For instance, a system designer can make design space exploration from the
very early stages of the development cycle, especially if it is based on the reuse
of components from a library. If these components have well defined feedback
functions and properties, they can be instantiated into a structural design and
characteristics like estimated area, speed, etc. can be obtained even without a
synthesizable design.

At the same time, design space exploration lets a core designer to select
between different alternatives for subcomponents. Once the final components
and their parameters have been chosen, the design can be fully specified with
the meta-language to obtain a new parametric IP-core. Now, it can be added to
the library to be reused in further designs.

On the other hand, during hardware design, it is also mandatory to take into
consideration a set of testbenches to verify correct operation. Using xHDL,
several parametric testbenches can be automatically added to the core and gen-
erated within the synthesizable source code.

232 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

0 0.2 0.4
0

2

4

6

8

0 0.2 0.4
0

5

10

15

0 0.2 0.4
0

5

10

15

20

0 0.2 0.4
0

20

40

60

80

64−point FFT

512−point FFT 1024−point FFT

4096−point FFT

Figure 13.6. Design points of different FFT implementations (area vs. performance).

We address some considerations about the design space exploration and a
core generation tool in the following sections.

4.1 Design Space Exploration

A design process is usually iterative, where different options need to be
checked to finally get the best option. In this sense, the meta-language allows
getting several core configurations by parameterization, while providing design
feedback by functions and properties.

Based on these concepts, the designer can choose parameters within the
bounds fixed by some of the functions, while checking the values from others
to decide if the core meets restrictions. Finally, he can perform several tentative
generations to check properties, which can give a more accurate or elaborated
information, and then choose the best option. This is far cheaper than several
complete synthesis stages.

Figure 13.6 illustrates the process of design space exploration for different
FFT implementations. Four figures are shown for different N -point FFTs.
The horizontal axis shows the inverse of the radix, which is proportional to
the throughput for the same clock frequency, while the vertical one depicts
area related values (thousands of LUTs for our FPGA implementation) for the
resulted architecture.

The typical area-time tradeoff can be observed, and these results can be
employed by the designer while choosing a core architecture.

4.2 Core Generation Tool

We have implemented an interactive tool to provide easy access to every
possible configuration of a target core described with xHDL, and also to man-
age the available feedback functions [Fernández et al., 2004]. The tool collects
the necessary information for the generation of a subcomponent from two main
sources:

Meta-language templates and some configuration files.

Parameter values obtained from the user through the interface.

xHDL: Extending VHDL to improve core parameterization and reuse 233

Figure 13.7. Second panel of the interface window for a CORDIC core.

The GUI is composed of a window with three panels, selectable by tabs
placed in the upper part (figure 13.7). The first panel (Select) gives a list of
the available cores by using a tree graph, while also shows some description
information for the selected one.

The second panel (Config), shown in figure 13.7, consists of two parts. On
the right, it displays the available component parameters, with bounds and a
field to provide the desired value, and the feedback functions, with name, cur-
rent value and unit. On the left, a block diagram for the core instance, together
with HTML formatted help information. Both are automatically generated us-
ing the template contents.

The last panel (Output) includes fields to provide the final instance name
and destination email address for the generated files, and buttons to begin core
generation.

5. Conclusions

This chapter has dealt with the definition of xHDL, a meta-language for IP
core description and reuse. This meta-language allows extensive VHDL source
code parameterization and simplifies the specification phase, automating many
awful tasks, as subcomponent instantiation and interconnection. It also pro-
vides several complex code manipulations, as conditionals and loops, many of
them dependent on input parameters.

The underlying template concept is general enough to cope with guided
source code generation of any hardware component whose implementation,
parameters and feedback functions are available. In fact, the modular descrip-

234 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

tion allows the reuse of whatever component previously implemented as tem-
plates, and this is widely used to instantiate simpler components, as registers,
multiplexers, arithmetic, or more complex sub-cores.

There are many interesting applications for xHDL. In this sense, a tool for
core generation with parameter selection has been built as demonstrator. The
meta-language can also be used to perform design space exploration, which is
guided by the evaluation of feedback functions and properties that report on
selected characteristics of the resulted components.

Acknowledgements

This work has been supported by the Spanish Government under Research
Projects TIC2003-07036 and TIC2003-09061-C03-02.

References

Andraka, R. (1998). A survey of CORDIC algorithms for FPGA based com-
puters. In Proc. ACM/SIGMA 6th Int. Symposium on FPGAs.

Confluence (2004). Confluence language. http://www.confluent.org.
Dömer, R. and Gajski, D. (2000). Reuse and Protection of Intellectual Property

in the SpecC System. In Proc. ASP-DAC.
Doucet, F., Shukla, S., Otsuka, M., and Gupta, R. (2003). BALBOA: a Compo-

nent-based Design Environment for System Models. IEEE Trans. on Com-
puter-Aided Design of Integrated Circuits and Systems.

EDA (2004). Electronic Design Automation Industry Working Groups. http:
//www.eda.org.

Fernández, A., Sánchez, M. A., and López-Vallejo, M. (2004). A Web-based
Environment for the Evaluation and Generation of Complex IP Cores. In
IP-SOC.

Gajski, D. (1999). IP-based Design Methodology. In Design Automation Con-
ference (DAC).

Panda, P. R. (2001). SystemC – A Modeling Platform Supporting Multiple
Design Abstractions. In 14th Intl. Symposium on System Synthesis.

Passerone, R., Rowson, J. A., and Sangiovanni-Vincentelli, A. (1998). Auto-
matic Synthesis of Interfaces between Incompatible Protocols. In Design
Automation Conference (DAC).

Rowson, J. A. and Sangiovanni-Vincentelli, A. (1997). Interface-based Design.
In Design Automation Conference (DAC).

Rémondeau, J.-M. (1999). Scalable parallel architecture for ultra fast FFT in
an FPGA. In Proc. ICSPAT.

Suzuki, K., Ara, K., and Yano, K. (1999). Owl: An interface description lan-
guage for IP reuse. In IEEE Conf. on Custom Integrated Circuits.

xHDL: Extending VHDL to improve core parameterization and reuse 235

Zhang, T., Benini, L., and Micheli, G. De (2001). Component selection and
matching for IP-based design. In Design Automation and Test in Europe
(DATE).

Chapter 14

SYSTEMC MODELS FOR REALISTIC

SIMULATIONS INVOLVING REAL-TIME

OPERATING SYSTEM SERVICES

Prih Hastono, Stephan Klaus, and Sorin A. Huss
Integrated Circuits and Systems Laboratory
Technische Universität Darmstadt
Hochschulstr. 10 , 64289 Darmstadt

{hastono|klaus|huss}@iss.tu-darmstadt.de

Abstract The paradigm shift on embedded systems synthesis currently brings the design
exploration towards higher levels of abstraction. Consequently, a need arises for
an early and realistic assessment of system-level design decisions as well as its
support from the design language used. Moreover, while execution properties
of embedded software processes, which more and more dominate the function-
ality of embedded systems, can considerably vary, the chosen scheduling policy
influences distinctly the execution properties. Unfortunately, the current version
of SystemC is still lacks of that software modeling support. Therefore, the mod-
eling capability of SystemC is being extended in this paper by generic real-time
operating system services thus providing more realistic software modeling fea-
tures. System and software design alternatives can thus be early explored and
different scheduling policies can be easily validated.

Keywords: SystemC, Embedded Systems, Simulation, Real-Time Operating Systems

1. Introduction

The application of embedded systems in human life are rapidly spreading
in many fields - from small and simple devices used in kitchens up to complex
systems, which are part of highly dependable and safety-critical systems such
as nuclear power plants and aircraft flight control systems. Due to the growing
complexity of such systems, the design process considering software and hard-
ware in concert (co-design) is constantly moved towards higher levels of ab-
straction. The proposed co-design flow starts from an abstract specification and

© 2005 Springer. Printed in the Netherlands.

237

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 237–253.

238 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

results in a final implementation as illustrated in Figure 14.1. The system-level
synthesis step constitutes first design decisions for the fundamental synthesis
problems. Implementation alternatives should be validated as early as possi-
ble in the design flow. Therefore, a realistic system-level simulation support
is mandatory for a successful design methodology. The tight time-to-market
window imposes an automatic generation of these simulation models based on
the specification and on first design decisions.

Especially safe-critical systems, but many other embedded systems too, be-
long to the class of real- time (RT) systems. As defined in literature, e.g.,
[Kopetz, 1997], an RT system is characterized by the fact that its overall cor-
rectness not only depends on the correctness of its functionality, but also on the
timing of the response of the corresponding functionality. The RT behavior of
software parts is managed by a real-time operating system (RTOS). The RTOS
provides particular services required for composing the RT system that need
to be considered during software design and analysis. The services provided
by the operating system are mainly intended to support the implementation of
the required multi-tasking or job concurrency by applying a chosen schedul-
ing policy. Different policies can be explored for RT execution of embed-
ded software including static event-driven, priority-based, and time-triggered
scheduling. These features are of utmost interest, because the execution times
of software tasks can vary considerably due to modern processor architectures,
which heavily exploit pipelines and caches. Thus, it is obvious that some con-
structs or services are necessary, which are to be used for process creation or
destruction and for communication and synchronization purposes. The model
of RTOS simulation presented in this paper provides such generic services and
allows to easily explore and validate both embedded software design alterna-
tives and different task scheduling policies. SystemC 2.0 [SystemC, 2001], a
system-level description language based on C++, was selected as the underly-
ing modeling language and as implementation means for the executable com-
putational models. The fundamental C++ class library of SystemC provides a
cycle-based simulation kernel as well as all the necessary constructs required to
create a cycle-accurate system model. Just one SystemC model is necessary to
specify both the hardware and software parts of an embedded system. When a
gradual refinement of the specification is performed, then an executable model
will be available at the any point in time. However, SystemC must also be
able to provide realistic assessment for develop-validate-and-test cycles of em-
bedded software before any decisions with respect to processor and operating
system are finalized, as well as before an executable platform model and proto-
type board becomes available. The SystemC community still intends to extend
SystemC to software modeling features. Unfortunately, the current version of
SystemC is still lacks support of those facilities. Therefore, the modeling ca-
pabilities of SystemC 2.0 is being extended in this paper by generic services of

SystemC Models for Realistic Simulations Involving RTOS Services 239

RTOS providing constructs to model software decomposition, dynamic process
creation and deletion, process control, preemption, static/dynamic process pri-
oritization, static/dynamic scheduling, and inter-process/tasks communication
and synchronization. Embedded software (architecture) design alternatives can
thus be easily explored and validated at any point in time.

So far, the proposed approach considers both a stochastic timing model and
the effects of different scheduling policies, which can easily be observed and
validated from the execution of the associated SystemC models. The figures of
merit of the proposed approach are demonstrated by means of the embedded
information processing of a mobile robot.

2. Related Work

The basis of any appropriate design process is the specification model. Task
graphs are a general and powerful specification concept for data-flow domi-
nated embedded systems at system-level. This holds especially for concurrent
software functions. Extensions to control-flow modeling of task graphs are
introduced in [Eles et al., 1998, Klaus et al., 2003]. SystemC provides valida-
tion or simulation by the concept of executable specifications. A first approach
for automatic generation of SystemC simulation models based on an abstract
specification is presented in [Klaus et al., 2003].

Modeling of embedded systems at transaction level and a definition of this
abstraction level can be found in [Yu et al., 2003]. Other concepts for modeling
RTOS may be found in [Gerstlauer et al., 2003]. Proposals in [Guthier et al.,
2001] are targeting application-specific operating systems. The main differ-
ence to the presented work is that we are working on system-level exploiting
SystemC. Moreover, current version of SystemC is still lack of support of such
a generic RTOS model and other facilities required to model software espe-
cially for real-time embedded systems. An idea to improve this situation was
presented in [Moigne et al., 2004]. However, we are more focused on providing
an environment for a highly flexible schedulability analysis by providing not
only basic RTOS services, but also by implementing the model of scheduler for
static and dynamic scheduling as well as processes control, preemption and dy-
namic priority assignment. Another important aspect for realistic simulations
is the problem of run-time estimation of functional blocks. These difficulties
arise from modern processors featuring pipelining and cache hierarchies. Be-
havioral intervals for the non-functional parameters are discussed in [Wolf,
2002]. In addition to pure intervals, [Manolache, 2002] considers a stochas-
tic distribution of the execution times for schedulability analysis. In [Petters,
2002] the Gumbel distribution is introduced as a realistic metric to assess soft-
ware execution times. In addition, different scheduling policies are explored
for RT execution of the embedded software. Finally, Rate monotonic schedul-

240 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

ing (RMS) [Liu and Layland, 1973] algorithm, dynamic scheduling, such as
earlier deadline first scheduling (EDF) [Liu and Layland, 1973], and static ap-
proaches are being covered by the proposed RTOS services.

3. Design Flow and System Modeling

The general design process starts from an abstract system specification. For
this purpose a task graph based specification model is advocated. Task graphs
capture the intended behavior by means of functional blocks and data depen-
dencies between them. At system-level a task consists of complex functions,
e.g., described by algorithms. Thus tasks represent the computational units
that must be operated either sequentially or concurrently thus defining a num-
ber of computational jobs to be performed within an embedded system. This
basic approach of using task graphs can be easily adopted to more complex
specification models such as eTG [Klaus et al., 2003] or hCDM [Klaus and
Huss, 2003], which capture to some extent control-flow information, too. Af-
ter specifying the system with such an abstract model the initial assignment
and optimization steps concerning the fundamental synthesis problems alloca-
tion, scheduling, and binding are to be performed next. Based on the results
of these initial design decisions an executable model is highly desirable, be-
cause it allows an early assessment of the timed system behavior by simulation
before implementing the core functionality. The system level synthesis pro-

Refined SystemC Model

System Specification
Task Graph

System Level Synthesis
Partitioning, Allocation,

Binding

Automated, Considering RTOS
Services

SystemC Model
Generation

SystemC Model Validation

Refine HW
Task models

Refine
Communication

Refine SW
Task models

HW
Synthesis

Communication
Synthesis

SW & RTOS
Compilation

Integration

Figure 14.1. Proposed co-design flow for embedded systems

cess results in partitioning of system. Certain tasks may be implemented as
hardware modules, whereas other tasks are best candidates for software im-
plementations. Some already available hardware IP and third-party software
code for re-use may inspirit this decision. The next step in the design flow is
aimed to a translation of the result from system level synthesis processes into
a corresponding SystemC model. In this model each task is assigned either to

SystemC Models for Realistic Simulations Involving RTOS Services 241

hardware or software domain. Each processing element running software code
is implemented as a distinct SystemC module. Such models can be automat-
ically generated and afterwards refined by the support of the proposed RTOS
services into fully compilable and synthesisable code.

The software tasks, which are allocated into some processing elements of
the embedded system (ES) architecture, are modeled according to the function-
ality that is provided by the single SystemC module. The module (Main PE
module in Figure 14.3) is an abstraction of a single processor, so all software
tasks inside this module will be executed in a pseudo-parallel manner. As illus-
trated in Figure 14.2 due to system timing requirements and to specified quality
of services, the tasks must be in general ordered in the time domain according
to a certain scheduling algorithm. This means that an RTOS is required to pro-
vide such services for the software execution. Figure 14.3 illustrates, where the
model of a generic RTOS is located within the SystemC model of a processing
element. The example visualized in Figure 14.3 contains three software tasks
P3, P4 and P5 surrounded by four hardware tasks. Figure 14.3 also illustrates
that the RT operating system model along with its services, which support the
inter-task communication refinement. The RT operating system is responsi-
ble to provide a viable means such that tasks can be synchronized in order to
be able to communicate with each other. The synchronization between soft-
ware tasks needs some specific constructs as detailed in Section 4. In case of
communication requirements between a hardware task and a software task, the
RTOS provides the driver library of the hardware accessed by software tasks.
The operating system has in addition to offer some kind of bus driver services
such that software tasks can communicate with other tasks that are running
on another processing element. This service is mandatory for the support of
distributed embedded systems, which involve several processing elements. In
order to get more realistic models, variable task execution times exploiting a
stochastic timing model are introduced. The Gumbel probability density func-
tion [Petters, 2002] is applied for this purpose in order to denote the distribution
of the software execution times. The distribution trend of the timing behavior
of a task within some timing interval is illustrated in Figure 14.4. Such an
execution time distribution is represented by its mean value µ and statistical
deviation σ. A problem arises in general since it is impossible to provide an
absolute value for the worst-case execution time (WCET) for a task consid-
ering such a distribution. Even if the probability if very low, the WCET can
be infinite in this model. However, the WCET can be approximated by a 10σ
model at a failure rate of just 105, which may be viewed as sufficient for most
practical applications. Based on this model of task execution timing the effects
of different scheduling policies may be assessed by means of the introduced
RTOS model. The implementation of scheduling policies in our generic RTOS
model covers both static and dynamic scheduling policies: Static event-driven

242 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 14.2. System specification as at-
tributed task graph

Figure 14.3. Refinement of SystemC
model and inter-task communication

Figure 14.4. Task execution times model by Gumbel density function g(t)

scheduling, Static priority based scheduling, Static time-triggered scheduling,
and Preemptive scheduling.

4. Extensions to SystemC

While Verilog and VHDL are being extended in order to improve their
system-level capability, the community of SystemC intends to expand the us-
age of SystemC into software modeling. The usage models of SystemC in this
sense outlined in [Grötker, 2002]:

(a) Design/Analyze system architecture

i. HW/SW interface (partitioning, memory, bus access, etc.)

ii. SW architecture (scheduling, preemption, priorities, communica-
tion, synchronization, etc.)

(b) Develop and validate/test SW well before

i. Decision w.r.t. processor and RTOS have been finalized

ii. Executable platform models (ISS, peripherals) are available

SystemC Models for Realistic Simulations Involving RTOS Services 243

iii Prototype boards are available

However, [Grötker, 2002] also addresses a number of necessary SystemC soft-
ware modeling capabilities that are not present in the current available ver-
sion [SystemC, 2001] of SystemC such as: dynamic process creation, process
control (suspend, resume, kill, etc.), scheduler modeling, and preemption.

The generic RTOS services presented in this paper provide these missing
capabilities to overcome the weakness of SystemC for software modeling in
the system design and analysis domains. Furthermore, the proposed RTOS
model also provides the capabilities for scheduling assessment for both static
(event-driven, time-triggered, priority based ordering) and dynamic scheduling
(RMS, EDF). In order to support software modeling for the case of software
coding towards a specific RTOS API, the advocated generic RTOS model also
features a POSIX-like interface along with the process ID (PID) model.

Figure 14.5. Enhancement of SystemC
by generic RTOS

Figure 14.6. Model of task state tran-
sitions diagram managed by the RTOS
model

4.1 Architecture of Generic Services

Many embedded applications for safety critical systems require the use of
RT operating systems as an inherent part of their software architecture. For a
realistic system-level simulation it is thus mandatory to capture the fundamen-
tal features of such an operating system. Therefore, SystemC is extended by
the new library detailed in the sequel that provides basic scheduling and inter-
process communication services. The resulting generic RT operating system is
placed on top of SystemC 2.0 as illustrated in Figure 14.5. It provides most of
the fundamental services commonly available in usual RT operating systems,
especially those services, which are required for task creation, for task man-
agement and for inter-task synchronization. By means of these considerable

244 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

extensions to SystemC, the overall modeling capabilities become more suited
to design space exploration as well as for early performance analysis of de-
sign decisions. The proposed model of the RTOS is implemented in the core
SystemC as a module that encapsulates all threads instances and the scheduler,
as well as both the simulation time and the scheduling policy. The operating
system is thus responsible to provide associated services as illustrated in Fig-
ure 14.3. Because the software tasks have to be scheduled according to the
selected schedule (time table, task order) or to a certain scheduling algorithm,
additional services for this purpose are required. Models of task priority, pre-
emption, and inter-task synchronization in the RTOS support efficiently the
implementation of task scheduling. The scheduling service provides a way to
validate task-scheduling decisions taken for created tasks. The algorithms of
scheduling - both static and dynamic - implemented in this RTOS scheduler
are based on a priority approach as detailed in Section 4.4.

4.2 Modeling Concurrency and Process Control

The notion of a task or process (used interchangeable in this paper) is the un-
derlying concept to model concurrency in the abstract RTOS. It is implemented
by means of the sc thread macro in SystemC and encapsulates the thread as a
task object. Thus, the RTOS model keeps the C++ object-oriented concept that
is inherent in the basic language of SystemC. Task identification is represented
by the task name and is mapped to a module name (sc module) as an impli-
cation of SystemC constructs, where modules implementing the containers are
the building blocks of the SystemC model architecture. The task name as well
as the main code that embodies its functionality and the entry point of the task
have to be passed to the operating system method when a task is being created.
At the same time, some parameters such as task priority, ready time, arrival
periodicity status, arrival period, and simulation time unit have to be passed as
well to characterize the instance of task.

In order to support process control during the simulation run, some addi-
tional services are required in the RTOS model. These services embody the
postpone/resume and the sleep/wake-up mechanisms. The allowed actions re-
garding synchronization are shown in table of Figure 14.6 with respect to the
state of suspended tasks when the active task tries to perform a synchroniza-
tion action by calling some RTOS services. Figure 14.6 also illustrates feasible
task state transitions within the RT operating system model. All possible state
transitions of the tasks are modeled, which exist in the runtime environment
of the operating system. Only a currently running task is allowed to perform a
sleep action. This action is invoked by calling the sleep() method of the RTOS
object. This action will then shift the task to sleep state either until a specified
time interval value passed as a method parameter is elapsed or until the task is

SystemC Models for Realistic Simulations Involving RTOS Services 245

awaked by the currently running task. If the current task has a lower priority,
then the task will be preempted by the awaked task unless some other tasks
with higher priority values get ready to be scheduled.

ReAssPriRM

for each active tasks τi do

assign null priority into task τi

end for

T ← 0
P ← smallest priority
Repeat

for each active tasks τi do

if task τi has 0 priority τi do

if T less than period of τi do

T ← period of τi

end if

end if

end for

for each active tasks τi do

if period of task τi equal to T do

assigned priority P into tasks τi

end if

end for

increment P // higher value for higher priority

until no tasks has null priority value

ReAssDynPriEDF

for each active tasks τi do

assign null priority into task τi

end for

S ← 0 // remaining time

P ← smallest priority
for each active tasks τi do

di ← Di + (CPNi − 1)× period of τi

end for

Repeat

for each active tasks τi do

if task τi has 0 priority τi do

if S less than (di − t) do

s ← (di − t)

end if

end if

end for

for each active tasks τi do

if (di − t) eual to S do

assigned priority P into tasks τi

end if

end for

increment P // higher value for higher priority

until no tasks has null priority value

Figure 14.7. Fixed priority re-assignment
based on RM scheduling

Figure 14.8. Dynamic priority re-
assignment based on EDF scheduling

Other synchronization actions such as postpone() and kill() can be called by
the currently running task to postpone or to kill, respectively, either some other
tasks or the currently active task itself. The resume() and wakeup() methods
can be invoked by currently active tasks to resume and to wake-up postponed
or sleeping tasks, respectively.

4.3 Model of Preemption and Granularity

The preemption model is constructed in conjunction with the timing model,
i.e., by exploiting mainly the await() service provided by the RTOS model.
We assume that it is possible to model atomic actions such that any function-
ality of a task can be constructed from these actions only. In other words,
any function representing the functionality of a task is decomposable into a
number of actions whereas their executions are atomic in the sense of run-

246 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

to-completion. Each atomic action code is assumed to have a fixed current
execution time, which in turn is chosen from a given timing interval for this
action. The timing behavior is implemented by passing the execution time
value as a parameter when calling the await() method of the RTOS module.
As a consequence of this conceptional model, preemption can only happen at
the end of any await() statement, which is denoted as the preemption point that
determines the granularity of preemption. The execution of each atomic action
code provides the run-to-completion property and the associated piece of code
is denoted as atomic block.

4.4 Scheduler and Task Timing Model

The proposed RTOS model implements the scheduler such that the schedul-
ing algorithm can be simulated according to the selected scheduling policy.
The scheduler is implemented as an internal thread that executes scheduler
functionality embodied in its main function. The priority based scheduling for
both static and dynamic operations are implemented by algorithms as shown
in Figure 14.7 and 14.8, respectively. The timing model of task scheduling is
illustrated in Figure 14.8, where the deadline of task i (di) is expressed by an
absolute value (relative to the beginning of simulation). Di denotes the abso-
lute deadline at first period (first instance) at which task i is invocated for the
first time. At this point in time the current period number (CPN) is equal to 1.
The simulation time (current time stamp) is denoted by t.

4.5 Additional Services

Supporting software architecture modeling by means of SystemC toward a
specific RTOS API, the proposed RTOS model also provides a POSIX like
interface too such as handling a task pointer by means of the task identity as
typically referred by process ID or PID in POSIX [IEEE, 1990]. The asso-
ciated services have been implemented in the advocated OS model, they are
highlighted Figure 14.10.

For this purpose the RTOS module contains some methods to access the
pointers to task objects being managed by the operating system model. The
method get pid() requires either a task pointer or a task name, respectively,
to be passed as input parameters, whereas the task PID will then be returned.
The method get task() acts as an inverse operation, i.e., it requires the task
PID to be passed as input parameter and a pointer to the corresponding task
will then be returned. By means this mechanism, an easy handling of all tasks
based on their PIDs as commonly used in POSIX becomes possible. Thus, the
design flow of embedded systems is fully supported even for such applications,
where the exploitation of a POSIX-compatible RTOS is a mandatory part of the
systems specification.

SystemC Models for Realistic Simulations Involving RTOS Services 247

Scheduler main()
Repeat

Call wait(0,SC NS)
until simulation is started
if EMS is selected do

Call ReAssPriRM
end if

Repeat

evaluate tasks current time stamp
evaluate tasks woke up at current time stamp
evaluate tasks resumed at current time stamp
if EDF is selected do

Call ReAssDynPriEDF
end if

schedule active tasks according their pri.
evaluate tasks killed at current time stamp
evaluate tasks that turns to sleep
evaluate tasks that finish
evaluate tasks postponed
call wait(sc get time resolution())

until simulation time is elapsed

class sc rtos posix if:virtual public sc interface{
virtual rt pid get pid(sc module name)=0;
virtual rt pid get pid(rt task *)=0;
virtual rt task * get task(rt pid)=0;
virtual sc module name get name(rt pid)=0;
/* Task creation & termination services */
virtual rt pid create task(

sc module name name,
void (closure *mainfunc)(),
rt priority priority,
rt time first ready time,
rt periodicity periodicity,
rt time period,
sc time unit time unit)=0;

virtual void kill(rt pid)=0;
virtual void abort(rt pid)=0;
/* Task synchronization services*/
virtual void resume(rt pid)=0;
virtual void postpone(rt pid)=0;
virtual void wakeup(rt pid)=0;
}

Figure 14.9. Algorithm embodying the
RTOS scheduler

Figure 14.10. POSIX-like services of the
generic RTOS model

5. System-Level Simulation

The proposed concept of a generic RTOS model built on top of SystemC
is mainly aimed to an assessment of the overall effects of various scheduling
policies by means of executing the associated models of the embedded system.
According to our experience, the results of this model execution, i.e., sim-
ulation of the generated SystemC models, differ extremely, especially when
comparing system-level synthesis results to simulation results exploiting an
RTOS. This is because real task execution times vary considerably due to spe-
cific properties of the architecture of the chosen processor elements, such as
cache structures and data path pipelining.

The assessment of the overall system behavior resulting from different sche-
duling policies and from stochastic task execution timing is demonstrated for
the task graph specification and HW/SW task allocation of Figure 14.2 by
means of Gantt charts. The variety of RT responses is illustrated in Fig-
ure 14.11, where different scheduling policies are applied. An average case
task execution time (ACET) is derived from high-level architectural decisions.
Then, it is assumed that the completion of any previous task generated an event
which, in turn, triggers the invocation of successive tasks. Static event-driven
scheduling takes these events to compose the static schedule. In other words,

248 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 14.11. Assessment of different scheduling policies

there are no idle times between any two tasks in sequence. This means that
a shorter total execution time may be yielded for the overall system behavior.
However, as can be seen from Figure 14.11(b), the event-driven scheduling
policy does not guarantee reliability, determinism, or a faster total execution
time, respectively. The systems reliability is not guaranteed, because of the
possibility of failures, i.e., in case that a task fails to complete on time, then
this will skip the invocation of the successive task (Figure 14.11(b)II). Fur-
thermore, the predictability of total execution time is questionable due to the
unpredictability (statistical distribution) of the actual execution time of each
task. Thus, the total execution time is not guaranteed to be shorter compared
to other scheduling policies.

Time triggered scheduling as illustrated in Figure 14.11(c) shows a better
performance in terms of predictability, i.e., guaranteed total system execution
time, but the assumed WCET causes rather long idle times of the processor.
This means that this policy is in general less efficient in terms of resource uti-
lization. The potential disadvantages imposed by these static-scheduling poli-
cies can be overcome by dynamic scheduling. Priority-based scheduling as
illustrated in Figure 14.11(d) is a typical policy in order to react dynamically
to changed execution conditions, which may be caused by a slower or a faster
execution of tasks as can be found in EDF scheduling. Another scheduling

SystemC Models for Realistic Simulations Involving RTOS Services 249

policy, i.e., scheduling with preemption as illustrated in Figure 14.11(e), can
considerably reduce idle processor time and speed up the overall execution be-
cause the idle time intervals can be utilized to partially execute tasks being in
the ready state without destroying the optimal schedule order on the processing
elements. The main advantage of scheduling with preemption is thus the pos-
sibility to apply scheduling algorithms as found in many dynamic scheduling
techniques. RM scheduling, e.g., exploits both priority-based and scheduling
with preemption policies. It is obvious even from the simple example given
in Figure 14.2 that the results gained from high-level system synthesis given
in Figure 14.11(a) differ considerably from more detailed simulation models
featuring various scheduling policies. This is because these models take task
execution timing intervals into account. This is the reason why simulation and
a thorough validation of its results are mandatory at each refinement stage of
the design process. Especially an introduction of preemption allows a realistic
assessment of the overall system behavior and provides superior implementa-
tions in terms of both reliability and performance.

6. Application Example

Next, a considerably more complex application example - an autonomous
robot equipped with ultrasound distance sensors, a camera, and with a wire-
less communication subsystem - is introduced for the purpose of a demonstra-
tion of the feasibility of the proposed methods to embedded systems design.
The entire specification as depicted in Fig. 14.12 is composed from 25 tasks.
The envisaged generic hardware architecture for information processing of this
robot, i.e., the embedded system to be developed, consist of a micro controller
located in the robot and the controlling host PC, which may be equipped by a
co-processor on top of a PCI FPGA board. The communication between the
mobile and the fixed parts of the embedded system is established by a wireless
RS232 interface between micro controller and PC. Thus, the behavioural speci-
fication denoted as an attributed task graph in the left part of Figure 14.12 has to
be mapped accordingly to these 3 hardware resources as indicated in the right
part of the figure. The execution times for the different resources are assigned
to each communication and computation task. Based on this specification the
system-level synthesis determines implementation alternatives. These alterna-
tives can then be validated by the automatic generated SystemC models of the
distributed information processing of the robot, according to the proposed de-
sign approach. This forms the basis for both the evaluation of system- level
design decisions and for an exploration of the effects of different scheduling
policies.

250 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Synthesis

System−Level

FPGA

US

Stop

mC:40

mC:20
PC:10

Cam

mC:10

C:30

PC:70

Reg

Mot

mC:170
PC:110

C:15
C:15

C:20

Dist

Path

mC:20

PC:90
mC:150

Pic

GUI

C:50

PC:100
FPGA:70

C:10
C:10

GUI

Communication Task

PC:120

C:50(c,T) (c,F)

mC:33

Pos

C:10

B = { (c,(T,F) }G

ExecutionTimes
PC:10 on different resources

Behaviorral Specification

PCI BUS

RS232
wrieless

Generic Architekture

Cµ

PC

Figure 14.12. Behavioral specification and generic architecture of a mobile robot

7. Results

The evaluation results regarding task execution time for different schedul-
ing policies compared to the system-level synthesis result are presented in Ta-
ble 14.1. Based on the previously determined system level specification and
design decisions the simulation models are automatically generated and then
refined by exploring different scheduling policies. Due to stochastic execution
times thousand different runs, i.e. experiments, were executed and evaluated.
The best, average, and worst execution times are determined from this data.
Some of resulted execution time distribution is presented in Figure 14.13.

Table 14.1. Scheduling results

BCET ACET WCET

System-Level Synthesis - 250ms -
Time Triggert 540 ms 540 ms 540 ms
Event Driven 331 ms 357 ms 431 ms

Priority based ordering 335 ms 361 ms 435 ms
Tasks with preemtion 333 ms 370 ms 463 ms

The time-triggered execution policy leads to deterministic execution times
without variation, but on the other hand to the worst overall system perfor-
mance as visible in Table 14.1. When using the 90% timing limit (see Fig-
ure 14.4 instead of WCET, a speed-up of 10% can be reached, but due to the
time-triggered scheduling still 1% system failures occur. Event-driven static
scheduling is faster in terms of overall execution speed compared to the time-

SystemC Models for Realistic Simulations Involving RTOS Services 251

triggered method, but the system behavior is less reliable and, in addition, the
probability for a task to miss its deadline can be higher. However, in average,
the system performance is still better. So far, it can be seen that the implemen-
tation variants differ from the synthesis result and from different scheduling
policies.

Priority based scheduling, as illustrated in Figure 14.11(d) and discussed
before, can provide a way for system execution time optimization. A higher
priority can be given to tasks on which the total execution time is sensitive.
Unfortunately, selecting priority based scheduling for the mobile robot system
will not give better performance in our case and longer execution time may
yield due to overhead of the scheduling algorithm.

Figure 14.13. Performance results stemming from scheduling decisions

The preemptive scheduling method can yield better timing performance be-
cause idle times of some of the tasks can be used in a highly flexible manner.
But for this example the dynamic scheduling doesnot lead to significantly bet-
ter results. So, since the robot is not a highly safe-critical application, event
driven scheduling is considered as the most feasible schedule strategy and re-
sulting the best solution for implementation. In the mobile robot example, the
figure of merit given by preemptive scheduling can not be exploited due to
inter-task dependence affecting the feasibility of task scheduling. In this case,
no tasks can be given higher right to run by preempting current running task

252 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

to proceed because they have lower precedence according to the dependence
implied by task graph as system requirement.

8. Conclusion

A realistic simulation of system-level design decisions is mandatory for a
successful design process, since the assumptions for the system-level synthesis
execution semantics are very general and do not consider any scheduling poli-
cies. Therefore, the proposed approach extends SystemC by the capability of
general RTOS modeling and allows an early and fast validation of different im-
plementation alternatives due to an automatic generation of system-level sim-
ulation models considering the RTOS. The use of the stochastic timing model
leads to realistic system simulations of overall execution properties. Thereby
different scheduling policies can be tested and validated based on the general
SystemC RTOS library.

Future work will adress the granularity of the basic blocks. Fine-grained
blocks lead to a higher accuracy concerning the preemption point, but fine-
grained blocks also increase simulation time required. Application of the
RTOS models for distributed system is another subject for future work to ex-
tend SystemC RTOS servicees by providing support for both an assessment of
inter-nodes task synchronization in a network and for global scheduling anal-
ysis.

References

Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., and Pop, P. (1998). Scheduling
of conditional process graphs for the synthesis of embedded systems. In
Proceedings of the conference on Design, automation and test in Europe,
pages 132–139. IEEE Computer Society.

Gerstlauer, A., Yu, H., and Gajski, D. (2003). Rtos modeling for system level
design. In DATE-Conference, pages 10130–10135.

Grötker, T. (2002). Modeling software with systemc 3.0. OSCI Language
Working Group, Synopsys Inc, In 6th European SystemC Users Group Pre-
sentations.

Guthier, L., Yoo, S., and Jerraya, A. (2001). Automatic generation and target-
ing of application specific operating systems and embedded systems soft-
ware. In DATE ’01: Proceedings of the conference on Design, automation
and test in Europe, pages 679–685. IEEE Press.

IEEE (1990). IEEE, New York.
Klaus, S. and Huss, S. A. (2003). A Novel Specification Model for IP-based

Design. In Proc. of EUROMICRO Symposium on Digital System Design,
pages 190–196, Belek, Turkey. IEEE Computer Society.

SystemC Models for Realistic Simulations Involving RTOS Services 253

Klaus, S., Huss, S. A., and Trautman, T. (2003). Automatic Generation of
Scheduled SystemC Models of Embedded Systems From Extended Task
Graphs. In Villar, E. and Mermet, J. P., editors, System Specification & De-
sign Languages - Best of FDL’02, pages 207–217. Kluwer Academic Pub-
lishers.

Kopetz, Hermann (1997). Real-Time Systems: Design Principles for Distribu-
ted Embedded Applications. Kluwer Academic Publishers.

Liu, C.L. and Layland, J.W. (1973). Scheduling algorithms for multiprogram-
ing in a hard rt environment. Journal of the Association for Computing Ma-
chinery (ACM).

Manolache, S. (2002). Schedulability Analysis of Real-Time Systems with Sto-
chastic Task Execution Times. PhD dissertation, Linköping University, De-
partment of Computer and Information Science.

Moigne, R. Le, Pasquier, O., and Calvez, J-P. (2004). A generic rtos model
for real-time systems simulation with systemc. In DATE ’04: Proceedings
of the conference on Design, automation and test in Europe, page 30082.
IEEE Computer Society.

Petters, S. M. (2002). How much worst case is needed in wcet estimation? In
2nd International Workshop on Worst Case Execution Time Analysis 2002,
Vienna, Austria.

SystemC (2001). Functional Specification For SystemC 2.0. http://www.
systemc.org.

Wolf, F. (2002). Behavioral Intervals in Embedded Software. Kluwer Aca-
demic Publishers.

Yu, Haobo, Gerstlauer, Andreas, and Gajski, Daniel (2003). Rtos scheduling
in transaction level models. In CODES+ISSS ’03: Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 31–36. ACM Press.

Chapter 15

SYSTEMC AND OCAPI-XL BASED

SYSTEM-LEVEL DESIGN

FOR RECONFIGURABLE SYSTEMS-ON-CHIP

Kari Tiensyrjä1, Miroslav Cupak2, Kostas Masselos3, Marko Pettissalo4,
Konstantinos Potamianos3, Yang Qu1, Luc Rynders2, Geert Vanmeerbeeck2,
Nikos Voros3 and Yan Zhang1

1VTT Electronics, P.O.Box 1100, FIN-90571 Oulu, Finland; 2IMEC, Kapeldreef 75, B 3001
Leuven, Belgium; 3INTRACOM SA, P.O. Box 68, GR-19002 Peania, Attika, Greece; 4Nokia
Technology Platforms, P.O.Box 50, FIN-90571 Oulu, Finland

Abstract Reconfigurability is becoming an important part of System-on-Chip (SoC) de-
sign to cope with the increasing demands for simultaneous flexibility and com-
putational power. Current hardware/software co-design methodologies provide
little support for dealing with the additional design dimension introduced. Fur-
ther support at the system-level is needed for the identification and modeling
of dynamically re-configurable function blocks, for efficient design space ex-
ploration, partitioning and mapping, and for performance evaluation. The over-
head effects, e.g. context switching and configuration data, should be included
in the modeling already at the system-level in order to produce credible infor-
mation for decision-making. This chapter focuses on hardware/software co-
design applied for reconfigurable SoCs. We discuss exploration of additional
requirements due to reconfigurability, report extensions to two C++ based lan-
guages/methodologies, SystemC and OCAPI-xl, to support those requirements,
and present results of three case studies in the wireless and multimedia commu-
nication domain that were used for the validation of the approaches.

Keywords: co-design; communication; configuration overhead; context switching; design
space exploration; dynamic reconfiguration; mapping; multimedia; OCAPI-xl;
partitioning; reconfigurable; reconfigurability; SystemC; system-on-chip; wire-
less.

© 2005 Springer. Printed in the Netherlands.

255

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 255–269.

256 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

1. Introduction

Reconfigurable systems have raised a lot of research interest in recent years,
and various reconfigurable architectures and technologies have been proposed
[Compton et al., 2002]. Reconfigurable hardware combines the capability for
post fabrication silicon reuse by different application tasks with computational
efficiency due to the hardware-like spatial computation style. This fact allows
the efficient adaptation to different operating conditions and/or different stan-
dards. The presence of reconfigurable resources on-chip also allows post ship-
ment functionality modifications/upgrades and bug fixing capability similar to
that of software.

Reconfigurability does not however come at no cost. The reconfiguration
introduces extra delays as well as area and energy overheads. A further concern
is technology portability, since embedded reconfigurable blocks are available
only for a limited number of silicon processes. Additionally, current design
methodologies and tools do not provide efficient support for dealing with this
new design dimension at the system level.

A number of reconfigurable technologies are commercially available. Off-
the-shelf Field Programmable Gate Arrays (FPGAs) available by companies
such as Xilinx and Altera offer system-level densities of logic, memories and
hardwired resources including processor cores [Virtex II Pro]. Due to their
high unit costs FPGAs are not suitable for large volume consumer applica-
tions. Embedded FPGAs that can be integrated in customized SoCs are also
commercially available [Varicore]. Coarse grain reconfigurable architectures
include functional units of word level granularity such as PACT XPP technol-
ogy [XPP]. However their commercial presence is limited compared to FPGAs
mainly due to the difficulties in developing efficient mapping tools for such ar-
chitectures.

The cost of deep submicron semiconductor technologies and the increasing
design costs in state of the art semiconductor designs push for a move from
conventional SoCs towards heterogeneous partly reconfigurable SoCs. Espe-
cially for signal processing type applications, coarse grain reconfigurable ar-
chitectures are likely to dominate [Srikanteswara et al., 2003] since bit level
granularity architectures (such as different FPGA flavors) offer high flexibility
at the too high expense of power and area.

The rest of the chapter is organized as follows: The next section describes
related research. Section 3 discusses specific requirements imposed by recon-
figurability on the SoC design flow. Support extensions based on SystemC and
OCAPI-xl languages and tools are described in Section 4. Section 5 summa-
rizes three case studies in the domain of wireless communication that were
used for experimenting and validating the approaches. Conclusions are drawn
in Section 6.

SystemC and OCAPI-xl Based System-Level Design for RSoCs 257

2. Related Research

There have been several approaches researched towards developing recon-
figurable architectures and associated software tools. However, they concen-
trated mainly to develop novel architectures, and their tools do not directly
address the problem of modeling the reconfigurability at system-level. Such
projects include e.g. Garp [Callahan et al., 2000], Xputer [Hartenstein, 2001],
RAW [Taylor et al., 2002] and PipeRench [Goldstein et al., 2000].

Most existing high level design approaches for reconfigurable systems tar-
get compilation of C or C-like descriptions of targeted applications on recon-
figurable architectures. In [Venkataramani et al., 2003] the compilation of a
single assignment C-like language on the Morphosys coarse grained reconfig-
urable architecture is described. In [Cardoso et al., 2003] the compilation of
C programs on the XPP reconfigurable platform is described. The approach
also considers the temporal partitioning of the targeted behavioral description.
Recently also a few co-compilation and co-synthesis type [Becker et al., 2003]
design approaches for reconfigurability have been published.

The reconfigurable hardware brings a new dimension to system partition-
ing. The functional blocks of executable specification are partitioned into parts
that will be implemented with software, hardware or dynamically reconfig-
urable blocks. The dynamic reconfiguration requires partitioning to address
both temporal and spatial dimensions. Such an automatic partitioning is in a
general case still an unsolved problem, but in specific cases solutions for tem-
poral partitioning [Bobda, 2003], for task scheduling [Noguera et al., 2003]
and for context management [Maestre et al., 2001] have been proposed.

3. Reconfigurability Requirements for Design
Methodology

Reconfigurability manifests itself throughout the design flow. The System-
Level Design (SLD) phase is the main focus of this paper and a more detailed
diagram of it is shown in Fig. 15.1. The latter phases of the design flow are
already more or less technology/vendor-specific and design flows and tools
provided by vendors need to be used.

The SLD phase identifies reconfigurability needs, scenarios, constraints, and
functionality in C or C++. It analyses and estimates the functional blocks with
respect to reconfigurable implementation, decides on system partitioning and
performs a system-level simulation to estimate the performance and resource
impacts.

At the SLD phase the handling of reconfigurability requires an approach that
addresses the three possible resource classes, i.e. software, fixed hardware and
reconfigurable hardware. The SLD phase should support the following tasks:

Unified description of system functionality in e.g. C

258 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

System-Level
Design

System
Requirements/
Specification

Capture

Architecture
Definition

System
Partitioning

Mapping

System-Level
Simulation

Architecture
Template

System-Level
IP

Figure 15.1. System-level design.

Analysis and estimation to support justified partitioning decisions

Reuse of architectures and Intellectual Property (IP) blocks

Fast and efficient design space exploration

Modeling of the effects of reconfiguration.

There are three major issues related to the reconfigurable technology that need
to be modeled at the system level in order to get reliable information about
the trade-offs between area, speed and total cost: the computational capacity
requirements of functional blocks, the required resources needed for the largest
reconfigurable context, and the delays and memory consumption caused by the
reconfiguration.

The approach of this work is to take a holistic view to the overall SoC design
flow in order to identify parts of the co-design methodology, where the inclu-
sion of reconfigurability has the largest effects. It should be noted that reconfig-
urability does not appear as an isolated phenomenon, but as a tightly connected
part of the overall SoC design flow. We do not constrain the system-level de-
sign to a specific architecture instance, but the designer defines the granular-
ity by decomposing the functionality and explores reconfigurability through
estimation, modeling, transformation and performance simulation. Reuse is
supported through templates, and design space exploration allows alternatives
to be studied in order to fine-tune the architecture, partitioning and mapping.
The main properties of the explored reconfigurable technology alternatives are
annotated to the system-level design. All the main decisions are already made
at the exit of the system-level design phase.

SystemC and OCAPI-xl Based System-Level Design for RSoCs 259

4. Extending Systemc and OCAPI-xl for Support of
Reconfigurability

SystemC is a standard modeling language based on C++, class libraries and
a simulation kernel that provides the basic mechanisms for the system level
modeling.

We have adopted SystemC language and tools [Grötker et al., 2002] as a
base environment, on top of which we build our extensions for support of mod-
eling, design space exploration and performance evaluation of reconfigurable
parts at the system level.

4.1 SystemC Based Support

For designing of reconfigurable parts at system level, we developed: 1) an
estimation method and tool for estimating execution time and resource con-
sumption of function blocks on dynamically reconfigurable logic to support
system partitioning, 2) a SystemC based modeling method and tool for recon-
figurable parts to allow fast design space exploration through 3) system-level
simulation using transaction-level models of the system.

Estimation Approach. The estimation approach applies basic principles of
high-level synthesis, and is used for selecting candidate components that could
benefit from implementation on a reconfigurable resource [Qu et al., 2003].

The starting point is the functional description given as a C-language algo-
rithm. The designer decides the granularity of partitioning by decomposing the
algorithm down to function blocks. A single function block may then be as-
signed to either software, reconfigurable logic or a fixed functional unit. Each
of the function blocks will be individually studied and the set of estimation
information will be fed into the system-level partitioning decision phase.

Together with the profiling information that is collected by running the exe-
cutable algorithms with certain application data, the C codes of function blocks
are transformed into a control data flow graph (CDFG) using the SUIF com-
piler of the Stanford University [SUIF]. For a selected instruction-set proces-
sor, the software (SW) estimator produces the estimated execution time. The
hardware (HW) estimator produces the estimated HW execution time and the
estimated HW resource utilization for each individual function block. The es-
timates can be used to narrow the design space in order to obtain a satisfactory
solution with a few iterations.

Reconfigurability Modeling. The modeling method and associated tool
transforms candidate components presented as SystemC modules to use a spe-
cial SystemC template called Dynamically Reconfigurable Fabric (DRCF) as
depicted in Fig. 15.2 [Pelkonen et al., 2003].

260 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Modification of
Instance

Creation of
DRCF

component

Analysis
of module

Analysis of
Instance

Figure 15.2. SystemC modeling method.

The template of the DRCF contains a configuration scheduler and an in-
put splitter that routes data transfers to the correct instances. An example of
a DRCF component is shown as part of a SoC model on the right hand side
of Fig. 15.3. The configuration scheduler checks the target of each interface
method call, forwards it if the target is active, or activates a context switch
if the target is not active. This process automatically models context switch-
ing and the memory bus traffic. The automatic model transformer keeps the
functionality of candidate components unchanged. The approach provides the
means to test the effects of implementing some components in dynamically
reconfigurable hardware.

Instruction
set

processor

HW
accelerator Reconfigurable

co-processor

Interconnection bus

shared
memory

configuration
memory

Input
splitter

configuration
scheduler

configuration
memory

F1 F2 Fn

sh
ared

m
em

o
ry

inputclock reset

output

DRCF component

Figure 15.3. SoC model and DRCF template.

System-Level Simulation. As reconfigurability adds a new dimension to
the design space, a method of analyzing performance of the resulting system
in the early phase of design is needed. This can be achieved using SystemC
transaction-level workload operation models. The timing information of com-

SystemC and OCAPI-xl Based System-Level Design for RSoCs 261

putation can be obtained from an estimation tool or from designers’ experience.
The factors related to the communication are architecture-dependent and can
be set as parameters.

4.2 OCAPI-xl Based Support

To allow modeling of reconfigurability features at system level, we devel-
oped: 1) new software process type in OCAPI-xl [Ocapi-XL], 2) coupling of
OCAPI-xl to SystemC for co-simulation, and 3) context switching from one
resource towards another (software, reconfigurable hardware).

Software Processes Scheduling Extension. In the high-level software
model of computation, concurrency is considered at the processor level. This
means that for every process there is a separate processor assumed. Naturally,
in real life this will typically not be the case. In realistic software implemen-
tation an operating system allows all the processes to be assigned to the same
software processing resource. So from the performance point of view, the
processes are not running concurrently, but they are sequentialized by the op-
erating system scheduler onto the processing unit. To model such a behavior in
the OCAPI-xl performance model, a separate process type, procManagedSW,
has been introduced as depicted in Fig. 15.4.

procManagedSW

P1

P2

P3

Figure 15.4. Sequentializing computation over time.

To be able to create a process of the type procManagedSW, the designer
must first create a scheduling object. This scheduler will perform the actual
sequentialization of all the processes that are attached to this object. The way
this is done is defined in one of the member methods of this scheduling object.
The user can define its own scheduling objects to model the behavior of the
scheduler present in the target operating system.

It is important to realize that switching between the different SW tasks is
not penalty-free. In order to come to the most accurate performance results,
context-switching overhead is also considered in the performance model. The
user can define extra context switching time for every process created, which
is then applied to that process during the OCAPI-xl simulation.

262 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

SystemC Implementation of OCAPI-xl Threaded Process Extension.

SystemC provides an implementation of a thread library bundled together with
an event-driven simulation engine with notion of virtual time. Thus SystemC is
used for implementation of the threaded-process extension with the additional
bonus of automatically having an OCAPI-xl/SystemC co-simulation environ-
ment. Such an environment brings together the advantages of OCAPI-xl and
SystemC. The essential idea of the common OCAPI-xl/SystemC environment
is to let the whole OCAPI-xl part run in a single SystemC thread and to use
SystemC synchronization mechanisms inside a modified OCAPI-xl simulation
kernel to synchronize with the rest of the (SystemC) system. Since the OCAPI-
xl kernel is single-threaded there are no thread compatibility problems created
by this setup. The basic structure of the OCAPI-xl/SystemC co-simulation
environment is shown in Fig. 15.5.

SystemC simulation kernel (master)

SC
C++

SC
C++

SC
C++

OXL
EL

OXL
EL

SC SCSC

1. SC simulation environment

OXL
EL

OXL
PRO
XY

OXL simulation kernel (slave)

3. XL/SC process part

2. OXL simulation environment

SC

Figure 15.5. OCAPI-xl/SystemC co-simulation environment structure.

It consists of three domains within the SystemC environment:

1 The native SystemC processes controlled only by the SystemC simula-
tion kernel

2 The OCAPI-xl domain running in a single SystemC thread and con-
trolled by the OCAPI-xl kernel acting as a slave to the SystemC sim-
ulation kernel

3 OXL/SystemC processes running C++/SystemC code with access to
OCAPI-xl’s communication and synchronization primitives. These pro-
cesses contain internally two parts: the SystemC part running the C++
or SystemC code, and a small OCAPI-xl proxy process, which is active
when the process is executing an OCAPI-xl synchronization / commu-
nication primitive.

SystemC and OCAPI-xl Based System-Level Design for RSoCs 263

High-Level Modeling of Context Switching. The ability to reschedule
a task either in hardware or software is an important asset in a reconfigurable
system-on-chip. To support this feature, high-level implementation and man-
agement of hardware/software relocatable tasks in OCAPI-xl have been mod-
eled. The aim is to model a pre-emptive relocation of tasks from the reconfig-
urable logic to the SW and vice versa. The model supports spatial temporal
scheduling in hardware and software.

The OCAPI-xl code below illustrates the example of coding context switch-
ing for a task P1, switching between the different contexts (High-Level HW
and ManagedSW), and simulating its behavior.

procDRCF P1("P1");
//-- initial context: High-Level HW (default period of 10)
P1.context(HLHW);
//-- second context: SW under Round-Robin scheduler(RR)
P1.context(ManagedSW, \&RR);
//-- next context: High-Level HW with period of 2
P1.context(HLHW, 2);

{
//-- here goes "normal" OCAPI-xl task code

//-- upon this operator the task will switch itself to the next context
switchpoint();

//-- here goes some more task code
}
//-- and run the simulation for 2000 cycles

run(2000);

5. Design Cases

The SystemC and OCAPI-xl based approaches and extensions have been ap-
plied in the WCDMA, WLAN and MPEG-4 design cases in order to validate
them at the system level, and to get experiences on the detailed and imple-
mentation design of reconfigurability on selected demonstrator platforms. The
three cases represent different reconfiguration scenarios:

The WCDMA detector case represents a study of applying partial dy-
namic reconfiguration in a mobile terminal

The WLAN case presents a static reconfiguration scenario to allow gen-
eration of a family of wireless networking systems

The MPEG-4 case presents a scenario where tasks are relocated between
software and reconfigurable hardware.

5.1 WCDMA Detector

The application is an adaptive linear minimum mean-square error (LMMSE)
detector [Heikkila, 2001] that is used in the downlink part of the WCDMA
system. When compared to traditional RAKE detectors, it achieves 1- 4 dB

264 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

better performance in challenging channel conditions, uses a channel equalizer
for performing multi-path correction instead of multiple RAKE fingers, and
can be scaled to higher data rates by increasing clocking rates.

In the downlink data channel, each frame has 15 slots (2560 chips/slot) in
a time period of 25 ms. The detector contains an adaptive filter, a channel
estimator, a multi-path combiner and a correlator bank. In addition to the de-
tector part, the searcher (code, frame and slot synchronization), de-interleaver
and channel decoder of the WCDMA receiver are shown in Fig. 15.6. Start-
ing with the C-representation of the WCDMA detector, the SystemC based
approach was applied.

Channel
estimator

Adaptive
FIR

Multipath
combining

Correlator
bank

Frame
& Slot

sync

De-
Interleaver

Detector

Channel
decoder

RF and
Pulse shaping

Searcher

Figure 15.6. WCDMA base-band receiver.

The high-level estimation of the briefly optimized C code show that 1078,
1387, 463 and 287 FPGA look-up tables (LUTs) are required for the adaptive
filter, channel estimator, combiner and correlator respectively. Based on the es-
timated resources, three different SystemC models were created in the system
partitioning, mapping and performance simulation phase. For the fixed system,
the processing time achieved was 1.12 ms per slot in an FPGA running at 100
MHz and the resource consumption was as mentioned above. In the case of dy-
namic partial reconfiguration, the processing was partitioned in two contexts,
one containing the channel estimator and the other the rest three blocks. The
benefit was that almost 50% of resource reduction could be achieved when
compared to the fixed system, but at the cost of 8 times longer processing
time. The pure software system resulted in 30 times longer processing time
than the dynamic partial reconfiguration. In the partial reconfiguration case,
device data such as configuration speed were taken from Xilinx Virtex-II Pro
datasheet, which showed overwhelming reconfiguration latency that is almost
8 times of the processing time.

The WCDMA detector was implemented through the detailed and imple-
mentation design phases on the Memec Design’s Virtex-II Pro FF1152 P20
Development Board using the Xilinx Embedded Development Kit (EDK) and
ISE tools. Controlling of the WCDMA detector was handled by a SW pro-
cess running on a PowerPC hardcore embedded in the FPGA platform. The
run-time reconfiguration is realized using the Xilinx SystemACE solution. In

SystemC and OCAPI-xl Based System-Level Design for RSoCs 265

the implementation, 920 LUTs and 4 Block RAMs are required for the con-
text containing the channel estimator, and 1254 LUTs, 6 Block RAMs and 12
Block Multipliers for the other context.

5.2 WLAN

The WLAN case presents a scenario, where reconfigurability is exploited
to allow generation of a family of wireless networking systems. Specifically a
dual mode WLAN - outdoor fixed wireless access system-on-chip is targeted.
The WLAN was developed first based on the Hiperlan/2 standard [ETSI]. The
system-on-chip realizes both MAC and Physical layer functionalities of the
standard. The Hiperlan/2 physical layer is based on Orthogonal Frequency
Division Multiplexing (OFDM). The MAC layer of Hiperlan/2 is based on a
TDD/TDMA approach. Functionality upgrades/modifications will be devel-
oped in a second step to allow operation of the targeted system-on-chip in out-
door environments under a fixed wireless access scenario (in a non-overlapping
fashion with Hiperlan/2). The simpler choice for the integration of the extra
functionality after fabrication would be in the form of software upgrades. How-
ever due to the complexity of certain parts of the extra functionality (mainly
corresponding to physical layer tasks) acceleration may be required. This can
be achieved by including reconfigurable resources in the targeted system-on-
chip.

The high level exploration for the development of the targeted dual standard
system-on-chip was based on ANSI-C and OCAPI-xl. The Hiperlan/2 system
was explored at the first step. Following an algorithmic exploration for the
physical layer using MATLAB, a unified ANSI-C model of the targeted func-
tionality (physical and MAC layers of Hiperlan/2) was developed. Physical
layer blocks were modeled as parameterized procedures that produce the min-
imum amount of data required by the next procedure in the flow (pipelining).
The procedures are parameterized with respect to different factors such as input
data bit widths. Shared data for the inter module communication are presented
as global variables. Communication between MAC layer modules is activated
when all data produced by each module are ready (no pipelining). The physical
layer part of the ANSI C model has a size of 9000 code lines while the MAC
part includes 10000 code lines. Both parts use a common library of 1000 code
lines.

Using the ANSI C model as input an OCAPI-xl model of the complete tar-
geted functionality was developed. High level exploration was performed us-
ing high level OCAPI-xl processes (HLHW, HLSW) to evaluate different parti-
tioning solutions. The complex tasks that are expected to be upgraded/duplica-
ted in the future, i.e. need to be realized in reconfigurable hardware, were mod-
eled as hardware (HLHW) processes. The physical layer part of the OCAPI-xl

266 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

model has a size of 13000 code lines while the MAC part includes 8000 code
lines. Both parts use a common library of 500 code lines.

A prototype of the targeted system-on-chip was developed on the ARM Inte-
grator platform. The platform hosts the AMBA AHB bus with all the required
support peripherals for its operation (arbiter, interrupt controller etc.). Two
ARM7 TDMI microprocessors on two separate boards - ”core modules” are
included in the platform and realize the software parts of the targeted system-
on-chip. One processor acts as protocol processor while the other runs lower
MAC functionality and controls the modem. The size of the code running on
the protocol processor is 1.4 Mbytes while the size of the code running on
the modem control processor is 50 Kbytes. The tasks that will be realized on
ASIC or reconfigurable blocks in the targeted system-on-chip are mapped on
two FPGAs - ”logic modules”. Each ”logic module” hosts a Xilinx Virtex E
2000 FPGA. The total utilization of the two FPGAs resources is: 405 I/Os,
31450 function generators, 23416 CLBs and 14912 D flip flops.

5.3 MPEG-4 Decoder

The initial C/C++ code was obtained from FDIS (Final Draft International
Standard) sources. First, the ATOMIUM toolset [ATOMIUM] for pruning
of code, data transfer and storage exploration and advanced source-to-source
transformations were applied to increase the performance and reduce the power
of the system. Applying automatic pruning with functionality test bench re-
duced code to 40 % of its original size and further manual reorganization and
rewriting reduced the code size by factor 5.4. The memory optimizations were
driven in two phases, frame-based to macro-block-based data flow transforma-
tion and introduction of block-based data flow, with the aim of reducing the
number of accesses and improvement of the locality of data. In the next steps
of the design, platform dependent optimizations were applied. The targeted
platform for implementing the MPEG-4 decoder was Xilinx’s Multimedia De-
velopment Board containing Virtex-II FPGA with a single embedded MicroB-
laze soft processor, surrounded with external ZBT memory banks.

After the optimization phase, the design proceeded with modeling of per-
formance estimation in OCAPI-xl environment. A number of small tests were
done on the board to find the operator execution times and memory access
times and to select proper memory architecture. Taking into account the
ATOMIUM analysis results from optimization phase, the most CPU time and
memory access demanding blocks of the decoder were selected to become the
candidates for HW acceleration. From the OCAPI-xl point of view, the C/C++
code representing their behavior was rewritten to OCAPI-xl managed SW pro-
cesses and later refined to high-level hardware processes for clock-true sim-

SystemC and OCAPI-xl Based System-Level Design for RSoCs 267

ulation and OCAPI specific processes for HDL code generation. Exploiting
OCAPI-xl Operation Set Simulator, the design was modeled in two flavors:

Configured as pure SW version of MPEG-4 decoder running on soft
processor core

Configured as HW accelerated version, where most cycle demanding
blocks have been implemented in reconfigurable HW.

OCAPI-xl high-level modeling of context switching extension allowed the per-
formance estimation of two reconfigurable scenarios, with the ability to model
the reconfiguration time. The design was mapped on xc2v2000 Virtex-II FPGA
with 46% utilization (5000 slices) for HW accelerator and 71% utilization
(7703 slices) for the whole decoding system. It uses 33% of available 18x18
multipliers, 76% of block RAMs and 52% of LUTs.

6. Conclusions

Reconfigurability is a promising technique in a SoC to obtain software-type
flexibility, while maintaining hardware-type computational capacity. The re-
lated implementation technologies and architectures are still under develop-
ment. It looks obvious that different reconfigurable technologies will become
accepted in different application and business domains. Static reconfiguration
does not change the design methodology radically, but dynamic reconfigura-
tion adds a new dimension to SoC design flow.

We presented support extensions to SystemC and OCAPI-xl that address
the system-level design of reconfigurable parts in the context of the SoC de-
sign flow. The effects of reconfigurability are studied before committing to a
specific reconfigurable technology or architecture instance. Experiences of ex-
tending SystemC and OCAPI-xl show that this is a viable approach and cred-
ible data for system-level decision-making can be produced with reasonable
effort. All the material and tools of SystemC are still valid.

The case studies represented three different reconfigurability scenarios: in
the WCDMA detector case dynamic partial reconfiguration was explored, in
the WLAN case static reconfiguration was applied for obtaining a family of
networking systems, and in the MPEG-4 decoder case task relocation between
software and reconfigurable hardware was studied.

Acknowledgments

This work is partially supported by the European Commission under the
contract IST-2000-30049 ADRIATIC, and partially by the participating orga-
nizations: IMEC, INTRACOM, NOKIA, STMB and VTT.

268 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

References

ATOMIUM: http://www.imec.be/design/atomium.
Becker J., Hartenstein R. (2003). Configware and Morphware Going Main-

stream. Journal of System Architecture, Vol. 49. pp. 127-142.
Bobda C. (2003). Synthesis of Dataflow Graphs for Reconfigurable Systems

using Temporal Partitioning and Temporal Placement. Dissertation. Uni-
versity of Paderborn. 90 p.

Callahan T., Hauser J., Wawrzynek J. (2000). The Garp Architecture and C
Compiler. IEEE Computer., pp 62 - 69.

Cardoso J.M.P., Weinhardt M. (2003). From C Programs to the Configure-
Execute Model. Proc. of 2003 Design Automation and Test in Europe Con-
ference and Exhibition. Munich, Germany, March 3 - 7, 2003, pp. 576 -
581.

Compton K., Hauck S. (2002). Reconfigurable Computing: A Survey of Sys-
tems and Software. ACM Computing Surveys, Vol. 34, No. 2. 171-210.

ETSI: Broadband Radio Access Networks (BRAN). HIPERLAN type 2; Phys-
ical (PHY) layer, V 1.2.1 (2000-11).

Goldstein S.C., Schmit H., Mihai B., Cadambi S., Matt M., Taylor R.R. (2000).
PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer.
April 2000, pp. 70 - 77.

Grötker T., Liao S., Martin G., Swan S. (2002) System Design with SystemC.
Kluwer Academic Publishers, Boston, 240 p.

Hartenstein R. (2001). Reconfigurable Computing - Architectures and Method-
ologies for System-on-Chip. SoC technology seminar "Enabling Technolo-
gies for System-on-Chip Development". Tampere, Finland, November 19-
20.

Heikkila M.J. (2001) A Novel Blind Adaptive Algorithm for Channel Equal-
ization in WCDMA Downlink. 12th IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, Volume:1, pp . A-41 -
A-45.

Maestre R., Kurdahi F.J., Fernandez M., Hermida R., Bagherzadeh N., Singh
H. (2001). A Framework for Reconfigurable Computing: Task Scheduling
and Context Management. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 9, Issue 6, pp. 858 - 873.

Noguera J., Badia R.M. (2003). System-Level Power-Performance Trade-offs
in Task Scheduling for Dynamically Reconfigurable Architectures. Proc. of
the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems. pp. 73 - 83.

Ocapi-XL: http://www.imec.be/design/ocapi.
Pelkonen A., Masselos K., Cupak M. (2003) System-Level Modeling of Dy-

namically Reconfigurable Hardware with SystemC. 17th International Par-

SystemC and OCAPI-xl Based System-Level Design for RSoCs 269

allel and Distributed Processing Symposium (IPDPS 2003). Nice, France,
22 - 26 April 2003. IEEE Computer society, pp. 174 - 181.

Qu Y., Soininen J.-P. (2003) Estimating the Utilization of Embedded FPGA Co-
Processor. 2003 Euromicro Symposium on Digital Systems Design (DSD
2003): Architectures, Methods and Tools. Antalaya, Turkey, 3 - 5 Sept.
2003. IEEE Computer Society. Los Alamitos, pp. 214 - 221.

Srikanteswara S., Palat R.C., Reed J.H., Athanas P. (2003). An Overview
of Configurable Computing Machines for Software Radio Handsets. IEEE
Communications Magazine, pp. 134 - 141.

SUIF: http://suif.stanford.edu/.
Taylor M.B., Kim J., Miller J., Wentzlaff D., Ghodrat F., Greenwald B., Hoff-

man H., Johnson P., Lee J.-W., Lee W., Ma A., Saraf A., Seneski M., Shnid-
man N., Strumpen V., Frank M., Amarasinghe S., Agarwal A. (2002). The
Raw Microprocessor: A Computational Fabric for Software Circuits and
General-Purpose Programs. IEEE Micro, Volume: 22, Issue: 2, pp. 25 - 35.

Varicore: http://www.actel.com.
Venkataramani G., Najjar W., Kurdahi F., Bagherzadeh N., Bohm W., Hammes

J. (2003). Automatic Compilation to a Coarse Grained Reconfigurable Sys-
tem-on-Chip. ACM Transactions on Embedded Computing Systems, Vol. 2,
No. 4, pp. 560-589.

Xilinx Virtex II Pro: http://www.xilinx.com.
XPP: http://www.pactcorp.com.

IV

INVITED CONTRIBUTIONS

Introduction

Wolfgang Müller
Paderborn University, Germany

wolfgang@c-lab.de

Christoph Grimm
University of Frankfurt, Germany

christoph@grimm-www.de

The following two contributions come from invited presentations of the Au-
tomotive Invited Session and LFSV (Languages for Formal Specification and
Verification) workshop. They both give most recent insights to emerging tech-
nologies and to new trends in the respective domains.

In system verification we can currently find several upcoming approaches
for new directions towards the convergence of the classical simulation and for-
mal verification like model checking, equivalence checking, and formal re-
finement. The next chapter compares two complementary approaches for the
checking of properties, which are given by temporal PSL specifications. The
first is a SystemC simulation based approach, whereas the second one intro-
duces a unique checking algorithm for formal verification.

In automotive system design, the AUTOSAR initiative aims at introducing
a standardized middleware for automotive applications. The second chapter
gives a comprehensive introduction to the AUTOSAR initiative.

© 2005 Springer. Printed in the Netherlands.

273

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 273.

Chapter 16

SYMBOLIC MODEL CHECKING

AND SIMULATION

WITH TEMPORAL ASSERTIONS∗

Roland J. Weiss, Jürgen Ruf, Thomas Kropf and Wolfgang Rosenstiel
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
Sand 13, 72076 Tübingen, Germany

{weissr,ruf,kropf,rosenstiel}@informatik.uni-tuebingen.de

Abstract

Assuring correctness of digital designs is one of the major tasks in the system
design flow. In the last decade, traditional functional verification techniques like
simulation with test benches and monitors have been augmented with formal
techniques. Formal techniques can be divided into equivalence and property
checking. Equivalence checking tools at the gate level are now part of most
design flows. However, property checking is still subject to intensive research
efforts due to the omnipresent state explosion problem.

Property checking is performed in two steps. First, a set of property specifi-
cations has to be written in an appropriate formalism. The system model is then
checked against these properties. A property checking tool then either reports
the absence of defects on the explored paths or generates a counter example
trace.

In this work we show that formal property specifications can be reused in
all phases of the verification process, including both functional and formal ap-
proaches. The properties provide the link between these usually rivaling tech-
niques. First, we discuss current formalisms for specifying temporal properties.
Then we present two automata based techniques for checking temporal proper-
ties given in the standardized Property Specification Language (PSL). The first
approach checks the properties during SystemC simulation, whereas the second
approach performs fully formal property checking of the temporal properties
against a transition system employing a unique checking algorithm.

∗The results described in this article have been achieved in the course of the DFG project GRASP within
the DFG Priority Programme 1064.

© 2005 Springer. Printed in the Netherlands.

275

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 275–291.

276 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

1. Introduction

Real-time systems pervade almost every aspect of our daily life. Acceler-
ating a contemporary vehicle initiates a plethora of processes involving micro
controllers: fuel injection should be optimized for economical fuel usage and
for smooth engine operation, wheelspinning should be avoided based on data
provided by special sensors, and so on. The same applies to aerospace industry,
medical systems, home entertainment, telecommunication, large-scale indus-
trial manufacturing, and of course the classical computer industry. Even in
outdoor activities we rely on integrated circuits in equipment like wrist watch
heart rate monitors and GPS receivers.

A study by the Center of Automotive Research (CAR) for ADAC, a ma-
jor german automobile association, revealed that 59.2% of car breakdowns are
caused by faults in the automobiles’ electronics and electricity systems. This
number increased from 50.5% five years ago, whereas the overall figures re-
mained constant. Furthermore, all car brands are affected by this problem.
This observations show that the whole car industry is facing a fundamental
challenge in building reliable products with a substantial amount of integrated
digital hardware and software components. Other industry areas also suffer
from these phenomenons.

Therefore, establishing the correctness of hardware/software systems poses
an increasingly difficult and time-consuming challenge in the design process.
Two aspects primarily motivate the significance of the verification process:

Safety-critical systems. These systems mandate error-free operation because
malfunctioning could endanger human life or the environment. Obvi-
ously, an erroneous circuit in a car controller unit constitutes a major
threat for passengers and road users. Medical systems and power plants
are other important constituents in this category.

Economic risks. It is of primary importance to detect design errors in early
stages of the development process. Once a hardware chip is shipped, it
becomes extremely expensive to fix an overlooked fault. The Pentium
floating point bug has cost Intel millions of dollars because of an insuffi-
cient verification process. A simple overflow handling error in one of the
control systems of the Ariane 5 rocket lead to the loss of the 7 million
dollar rocket.

The ever increasing system complexity and shorter development cycles
make verification the bottleneck in the design process. Nowadays, verifica-
tion consumes up to 80% of the development time.

Simulation of the design under verification is the predominating validation
technique. A testbench provides an executable model with stimuli and moni-
tors the resulting outputs. However, for large systems simulation cannot pro-

Symbolic Model Checking and Simulation with Temporal Assertions 277

vide a complete coverage of the system. Simulation time is becoming a pro-
hibiting factor.

This has ignited interest in formal methods that can provide better coverage
and run more efficiently in certain scenarios. Equivalence checking has be-
come state of the art in verifying evolutionary changes in designs even for very
large hardware circuits.

Unfortunately, if no golden design exists, this technique is not applicable.
Formal property checking is bridging this gap. Property checking tools try to
automatically prove properties extracted from the design description against a
system model, or to generate a counter example trace if the property is violated.
However, linear temporal properties checked by formal tools can also be mon-
itored during traditional simulation runs. Thus, property specifications provide
an important link between functional and formal verification techniques.

The rest of this paper is structured as follows. Next we introduce formalisms
for specifying temporal properties, including CCTL, FLTL and the specifica-
tion language PSL. Thereafter, we explain techniques for checking real-time
properties in more detail. Then we present some experimental results and con-
clude.

2. Property Specification

A property is a description of design intent [Cohelo and Foster, 2004]. This
central statement reveals the importance of property specifications. A property
specification is the formalization of design intent in a human and machine
readable format with a clearly defined semantics. In order to discuss properties
in more detail, it is beneficial to take a layered view on them. Properties are
composed of three layers:

1 The Boolean layer consists of propositions and Boolean connectives.

2 The temporal layer adds operators for temporal reasoning to the Boolean
layer.

3 The verification layer provides indicators for verification tools how to
apply the property.

The third layer is used to control the high-level bahavior of the verification
tools, e.g. if a property violation should stop the verification process or simple
emit a logging message. The first two layers make up the actual property that
relates parts of the system under verification, thus describing desired or error
states.

278 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.1 Temporal Logics

We are mainly dealing with reactive systems, and temporal logic is a formal-
ism for describing transition sequences in such systems. A temporal logic pro-
vides path quantifiers A (all) and E (exists), and temporal operators X (next),
F (eventually/in the future), G (globally), and U (until) additional to the typical
boolean connectives.

The most widely used temporal logics in model checking and related formal
verification techniques are Computation Tree Logic (CTL) and Linear Tem-
poral Logic (LTL). Both describe overlapping subsets of CTL∗, i.e. CTL∗ is
expressive enough to state all formulas from LTL and CTL, but there exist
formulas in LTL that are not expressible in CTL and vice versa. For a more
detailed discussion on these fundamental temporal logics refer to chapter 3 in
[Clarke et al., 1999].

A major characteristic of temporal languages is the underlying model of
time. In branching temporal logics, a moment in time can branch into various
futures. Thus, infinite computation trees describe the systems that are subject
to property checking. CTL is one such temporal logic, and it is well suited for
algorithmic verification. Checking a transition system against a property given
in CTL takes time linear in the length of the property specification. However,
in linear temporal logics like LTL each moment in time has only one possi-
ble future. Therefore, formulas in linear temporal logics are interpreted over
linear sequences that describe one computation of a system. Model checking
takes time exponential in the length of a LTL specification. However, LTL
is commonly regarded as more intuitive. Furthermore, dynamic validation is
inherently linear as computation sequences are generated. This allows linear
temporal logic specifications to be used in contexts ranging from dynamic val-
idation to full formal verification. A thorough discussion on the trade-offs
between branching and linear temporal logics is presented in [Vardi, 2001].

All these logics have in common that they express time only implicitly,
e.g. a property specifies that a state is eventually or never reached. However,
real-time systems such as production automation systems often require confor-
mance to strict time bounds. Time constraints are very important to maximize
throughput times and to minimize wait times. Furthermore, timing constraints
also have a safety aspect, since actions in production automation systems con-
sume time, and they have to be scheduled such that no accident occurs.

In order to make time constraints explicit in property specifications we have
introduced a variant of CTL called Clocked CTL (CCTL), and a variant of LTL
called Finite Linear Time Temporal Logic (FLTL). We will briefly describe
these two temporal logics now.

Symbolic Model Checking and Simulation with Temporal Assertions 279

2.2 CCTL

CCTL [Ruf and Kropf, 2003] is a temporal logic extending CTL with quan-
titative bounded temporal operators. In contrast to CTL its semantics is defined
over interval structures and it contains two new operators which make the spec-
ification of timed properties easier. It is a variant of RTCTL [Emerson et al.,
1991]. The syntax of CCTL is the following:

Definition 1 Let P be a set of atomic propositions, m ∈ N, and n ∈ N ∪
{∞}. The set of all syntactically correct CCTL formulas is the smallest set
satisfying the following properties:

P ⊆ FCCTL

if φ, ψ ∈ FCCTL, then also ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ↔ ψ ∈ FCCTL

if φ, ψ ∈ FCCTL, then also AX[m]φ, AG[m,n]φ, AF[m,n]φ, A(φU[m,n]ψ),
A(φC[m]ψ), A(φS[m]ψ) ∈ FCCTL

if φ, ψ ∈ FCCTL, then also EX[m]φ, EG[m,n]φ, EF[m,n]φ, E(φU[m,n]ψ),
E(φC[m]ψ), E(φS[m]ψ) ∈ FCCTL

We also support the temporal operators C (conditional) and S (successor).
Operator C requires formula ψ to hold if φ was true in the previous m − 1
steps, and operator S is a special case of operator U with m = n.

All interval operators can also be used with a single time-bound. In this
case the lower bound is set to zero by default. If no interval is specified, the
lower bound is implicitly set to zero and the upper bound is set to infinity. If
the EX-operator has no time bound, it is implicitly set to one. A definition of
the formal semantics of CCTL is given in [Ruf and Kropf, 1999].

Example. Signals a and b will become true simultaneously within the next
30 time steps: EF[30]a ∧ b.

2.3 FLTL

FLTL extends LTL with bounded temporal operators. The main difference
however lies in the definition of the formal semantics. LTL is defined over
infinite sequences, whereas FLTL is defined over finite sequences. The reason
for defining FLTL over finite state sequences comes from its application in
simulation for validating formal properties. A simulation run always generates
only a finite trace of the system’s behavior. If the simulation terminates one
does still like to argue about the specification’s state, i.e. if the formula holds
or not. Because this predication is not always decidable with finite sequences,
the definition of the formal semantics of FLTL applies a third state: pending.

280 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

For a detailed discussion and definition of the semantics of FLTL refer to [Ruf
et al., 2001].

Definition 2 Let P be a set of atomic propositions, m ∈ N, and n ∈ N ∪
{∞}. The set of all syntactically correct FLTL formulas is the smallest set
satisfying the following properties:

P ⊆ FFLTL

if φ, ψ ∈ FFLTL, then also ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ, φ ↔ ψ ∈ FFLTL

if φ, ψ ∈ FFLTL, then also X[m]φ, G[m,n]φ, F[m,n]φ, φU[m,n]ψ ∈ FFLTL.

Example. Signal a will become active for the first time at time step 300:
¬aU[300,300]a.

2.4 PSL

The need for a common specification language accross tool and vendor
boundaries culminated in PSL, the Property Specification Language by Ac-
cellera [Accellera, 2004]. PSL is divided into four layers. In addition to the
layers already mentioned above it introduces a modeling layer. This layer con-
tains means to model behavior of design inputs, e.g. the Verilog flavor supports
integer ranges, structures, non-determinism and built-in functions.

PSL provides temporal operators both from branching (CTL) and linear
(LTL) time temporal logics. Of course, it depends on the verification tool and
technique which operators actually apply. However, PSL provides the syn-
tax and semantics for these operators, and tools are free to ignore properties
that make no sense in their verification process. Boolean operators, sequence
expressions and linear time temporal operators comprise the PSL Foundation
Language (FL), branching time temporal operators are subsumed as Optional
Branching Operators (OBEs).

Boolean expressions. are composed of signals and variables available
in the HDL description. Therefore, PSL supports various flavors of Boolean
expressions, depending on the targeted HDL. As of version 1.1, SystemVerilog,
Verilog, VHDL and GDL flavors exist.

Temporal operators. are available both in typical one-letter notation like
X for the next operator and in an extended, readable version, in this case
next. Furthermore, PSL differentiates between weak and strong operator
forms: “The strong form requires that the terminating condition eventually
occur, while the weak form makes no requirements about the terminating con-
dition” [Clarke et al., 1999].

Symbolic Model Checking and Simulation with Temporal Assertions 281

Sequential Extended Regular Expressions. (SEREs) describe sequences
of Boolean conditions that are recursively built from simple Boolean expres-
sions. SEREs can be constructed by concatenation ‘;’, fusion1 ‘:’, parallel
matching (SERE and), and providing alternatives (SERE or). Also, repetition
operators exist that allow various consecutive or nonconsecutive repetitive con-
catenations of SEREs. Finally, SEREs can be grouped using braces and PSL
provides special sequence implication operators: ‘|->’ and ‘|=>’.

2.5 Higher level property specification

Formulating property specifications in temporal logics has turned out to be
difficult even for engineers with a mathematical background. Therefore, efforts
were taken to provide means of specifying properties at a higher abstraction
level such that they are easier to grasp for the human reader.

1 Graphical notations of properties with Live Sequence Charts (LSC).

2 Natural language property specification based on specification patterns.

The brief discussion on higher level property specification in this section
will focus on these two techniques.

Live Sequence Charts. Live Sequence Charts [Damm and Harel, 2001]
were introduced to overcome the major shortcomings of Message Sequence
Charts (MSC) and Sequence Diagrams (SD) from UML [Object Management
Group (OMG), 2003]. The criticism of MSCs and SDs concentrates on these
points:

Only an existential view of the system is supported.

The point of activation of the chart is unclear.

No means to specify the necessity to reach certain points in the chart.

There is no formal semantics for SDs.

In [Klose et al., 2002], an algorithm is detailed that allows extraction of
an automaton from a LSC. This automaton is then checked against a system
model. Thus, LSCs are used as graphical notation for property specifications.

Natural language property specification. Another idea to facilitate prop-
erty specifications is to use natural language expressions and convert them into
temporal logic formulas. The idea originated in the context of specification
patterns [Dwyer et al., 1999]. These patterns classify common property spec-
ifications into categories for later reuse. In [Flake et al., 2002], a predefined
grammar consisting of structured English sentences is introduced with which

282 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Property Patterns

Existence Bounded Existence

Universality Absence

Chain Precedence Chain Response

Precedence Response

Occurrence Order

Figure 16.1. The pattern system hierarchy.

the user can specify properties. These will be translated into CCTL formulas
thereby fixing the semantics of the structured sentences.

RT-OCL. Industrial modeling mostly relies on UML. In accompanying
work [Flake et al., 2004], a state-oriented real-time OCL extension (RT-OCL)
was developed that allows modelers to specify state-oriented real-time con-
straints over UML models. The semantics of RT-OCL is described by mapping
temporal OCL expressions to CCTL formulas. Thus, we have a transition path
from UML to our lower level formalisms.

2.6 Property specification patterns

Property specification patterns represent a slightly different approach to fur-
ther practical usage of formal property specifications [Dwyer et al., 1999].
These patterns try to capture knowledge of specification experts and present
frequent properties in a reusable form. A specification pattern consists of the
following five items:

1 The pattern’s name.

2 A statement of the pattern’s intent.

3 Mappings into specification formalisms. Currently, the following ones
are supported: CTL, LTL, QRE (Quantified Regular Expressions), GIL
(Graphical Interval Logic) and INCA.

4 Examples of known uses.

5 Relationships to other patterns.

The devised pattern system consists of eight basic patterns that are grouped
into two main categories: order and occurrence. Figure Fig. 16.1 shows this
pattern system.

A survey of freely available property specifications was performed to assess
the validity of the proposed pattern system. The survey discovered that from

Symbolic Model Checking and Simulation with Temporal Assertions 283

Verification

Tool

Model Properties

IR IR

Proof Engine

Result

Figure 16.2. Structure of a property checking tool.

the 555 examined specifications 92% of the specifications matched properties
from the 8 base patterns. Furthermore, 80% of specifications were covered by
the three patterns response, universality and absence.

Summarizing, temporal logics are the semantic foundation for formal prop-
erty specification. Several approaches exist to ease creation of new specifica-
tions either by providing higher level abstractions or making available for reuse
often encountered property specifications.

In general, formal property specification improves the understanding of a
system and its requirements, as well as the communication of its design intent
among involved parties.

3. Property Checking

Properties are checked against a given model. In formal verification tools,
this model is typically formulated as a variant of Kripke structures [Clarke
et al., 1999], whereas functional verification works directly on the production
implementation. The property checking tools proceed by optionally converting
specifications and model into an internal representation (IR) such that the proof
engine can apply the verification algorithm efficiently (see Fig. 16.2).

Properties given in specification languages with a linear time model like
LTL or PSL FL can be shared by functional and formal verification tools.
Therefore, we describe two tools and their proof engines that work on such
properties. Both accept specifications in PSL FL, augmented with time bounds
(see section 2.1).

3.1 Time Bounded Property Checking with SymC

In [Ruf et al., 2003] we proposed a formal verification technique for time
bounded property checking2. The technique performs forward image compu-
tation for state traversal, a characteristic shared by forward model checking
[Iwashita and Nakata, 1997]3. Properties are specified with FLTL formulas,
therefore a tight integration with other property checking tools is provided.

284 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Translation to

formal

representation

Translation to

AR-automata

Extended

symbolic

execution

unit

System

description

Property

description

Accept / reject

properties

SymC

On reject:

counterexample

Figure 16.3. Overview of SymC operation.

The temporal logic formulas are converted to special finite state machines, so-
called AR-automata [Ruf et al., 2001], which can then be used in the symbolic
execution phase.

For system description, SymC uses its own input language that captures fi-
nite state machines. Such SymC models can either be written by hand, or they
can be generated from Verilog netlists or RAVEN [Ruf and Kropf, 2003] mod-
els. The automatic transformation from RAVEN to SymC input files allows
us to check one model description with both verification tools. Fig. 16.3 shows
the general operation of SymC, the tool based on this approach.

The current implementation of SymC uses a BDD-based approach, where
one symbolic execution step corresponds to one forward image computation of
the given state set. In contrast to standard state space traversal techniques, in
this method we forget already visited states. The symbolic execution is stopped
if a given time bound k is reached, or the property can either be proven correct
or incorrect in the current state. The time bound k is either predefined by the
user or determined by the formula if no infinite operators are used.

Both, the system description and the AR-automata, are translated to BDDs.
In order to avoid the construction of the complete transition relation we use a
set of transition relation partitions together forming the whole relation T .

The main iteration of our checking algorithm works in two steps. In the
first step we compute the successor states of the AR-automata and we check
whether a formula is accepted or rejected. In the second step of each itera-
tion we perform one symbolic execution step on the system under inspection.
During image computation we build the conjunction of all partitions on-the-fly
to obtain the successor state set. We do not build the complete state space,
a feature shared with bounded model checking [Biere et al., 2003]. Rather,
from a given start set we visit states reachable within a given time bound. The
choice of the start set allows tuning a SymC execution either towards complete
coverage or towards smaller memory footprint and faster runtime.

We apply several standard optimizations like cone of influence reduction
and early quantification [Clarke et al., 1999] to speed up the state space traver-
sal. Also, two optimizations unique to our approach have proven very effective
in speeding up SymC. First, pruning removes already accepted states. This
can be done safely because successors of accepted states stay accepted. Sec-

Symbolic Model Checking and Simulation with Temporal Assertions 285

ond, splitting tracks the size of the current state set. Once it reaches a certain
threshold value, the state set is split and the partitions are handled separately.
Splitting improves the runtime efficiency of SymC in most cases because of
early result detection and because the memory consumption is reduced. How-
ever, for pathological the splitting and state set stacking can even increase the
verification time.

Experimental results [Ruf et al., 2003] show that SymC outperforms other
property checking methods for certain classes of systems and properties. This
technique is well suited for properties with large time bounds.

3.2 Simulation with SystemC

Simulation and modeling with SystemC. SystemC [Grötker et al., 2002]
is a C++ library developed to support modeling at the system level, but also at
other levels of abstraction, such as register transfer level (RTL). The modeled
systems may be composed both of hardware and software components. The
whole library is written in ISO/ANSI compliant C++ [ISO/IEC, 2003] and
therefore runs on all standard compliant C++ compilers. It constitutes a domain
specific language embodied in the library’s data types and methods.

The SystemC core language is built around an event-driven simulation ker-
nel which allows efficient simulation of compiled SystemC models. Processes
in SystemC are nonpreemptive, thus one erroneous process can deadlock the
simulator. The SystemC library provides abstractions for hardware objects that
allow modeling from RTL up to transactional level. These abstractions include:

Processes for modeling of simultaneously executing hardware units.

Channels for modeling the communication of processes, as well as ports
and interfaces for flexible interchangeability of channels.

Events for modeling the interaction between processes and channels.

Modules for modeling the structural and hierarchical composition of the
described system models.

Hardware specific data types like signals, bitvectors, and floating point
numbers of fixed and variable width.

A notion of time is supported with clock objects. Clocks generate timing
signals such that events can be ordered in time.

The SystemC library and reference implementation of the simulation kernel
are available for free [VA Software Corporation and Open SystemC Initiative,
2004] in source code. Companies are encouraged to provide Intellectual Prop-
erty (IP) cores in this standardized description language.

286 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Verification extensions for SystemC. Despite the fact that we are al-
ready able to handle models with SymC where traditional model checkers like
RAVEN are running out of memory, we still run into problems for very large
designs. Here, we try to take advantage of simulation, but enrich it with formal
methods.

The first step was to extend SystemC models with assertions expressed
as temporal logic formulas [Ruf et al., 2001]. Depending on the translation
scheme, these assertions are either compiled into a library that is linked against
the SystemC executable, or they can be added dynamically during execution.
A special intermediate language [Krebs and Ruf, 2003] supports these different
translation schemes. With this technique, checking executable system models
against formal properties can start at the highest abstraction levels. Also, the
same properties can be checked both with SystemC and SymC.

The methodology just mentioned is instrumental in another approach that
combines functional and formal verification. Once the system model has been
converted into a transition system it can be model checked with SymC or
RAVEN. However, for large designs we run into the state explosion problem.
In order to still be able to perform limited checking, we support the following
technique.

The model given as transition system is translated into an executable Sys-
temC model and a temporal formula is checked against this model during sim-
ulation using our checker library. The formula has to conform to this structure
(equation 16.1 is the CTL flavor for RAVEN, equation 16.2 the LTL flavor for
SymC):

AG(trigger state → required temporal behavior) (16.1)

G(trigger state → required temporal behavior) (16.2)

Whenever formula trigger state is true during simulation, the current system
state is dumped to a state file.

After simulation, we use a formal property checking tool to check for-
mula required temporal behavior against the original transition system. The
dumped state files are used to set up the initial states for the model checker.
The checked formula is restricted to a finite time bound tmax , thus we avoid
the construction of the complete state space. Of course, we can now only ar-
gue about the system behavior in this time bounded state space. The state space
in this time bound is examined exhaustiveley according to the given property
required temporal behavior .

Summarizing, the user guides the verification process by pointing out trigger
states from which local state space traversal is performed within a limited time
scope. Fig. 16.4 shows the overall flow of this combined approach, using our
real-time model checker RAVEN as property checking tool.

Symbolic Model Checking and Simulation with Temporal Assertions 287

System

model

System

properties

Accept/reject

behavior r

SystemC simulation

AG(c r)

Trigger states

dump file
RAVEN

SystemC

model

Trigger state

property c

Figure 16.4. Structure of the combined approach using SystemC and RAVEN.

3.3 Experimental Results

In [Ruf et al., 2004] we descibe a holonic material transport system. This
system was coded as transition system in the RAVEN input language (RIL).
The RIL model was translated automatically into a SystemC and a SymC
model. Thus, we have one reference model.

Model. The transport system consists of an input station, three machines,
an output station and automatic transport vehicles, the so-called holons. Two
of the three machines are for workpiece processing, one is for cleaning. All
holons are identical. The task of the holons is to move workpieces to the two
processing units. After processing, the workpieces have to be moved to the
cleaning machine. From this station the workpieces have to be transported to
the output station. Effectively, a workpiece travels from the input station to
the output station, and visits all machines on the way in order. Transportation
of the same workpiece can be accomplished by different holons, because a
holon’s task is renegotiated after it has dropped a workpiece at a unit. We have
a model generator that allows setting the size of the moving area, the position
of machines, and the number and positions of holons.

Properties. We check that a work piece is evetually delivered to the output
station within a certain time bound (P1), and that holons never collide4 (P2).

Results. We tested models with one (M1), two (M2) and three holons
(M3) on a Linux PC with a 2.8 GHz Pentium 4 processor and 1 GB of RAM
installed.

We checked property P1 with RAVEN and SymC and report the results
with different time bounds n in Fig. 16.5 and Fig. 16.6.

We see that RAVEN is unable to check properties for models with more than
one holon in the system. However, once all preparations for model composition
have finished, the actual model checking does not vary significantly depending
on time bound n.

288 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

57

58

59

60

61

62

63

10 50 100 200 500 unbounded

time

bound

s
e
c
o
n
d
s

M1, existentially M1, universally

Figure 16.5. Results for checking P1 with RAVEN.

0.01

0.1

1

10

100

1000

10000

10 50 100 200 500

time

bound

s
e
c
o
n
d
s

M1, existantially M1, universally M2, existantially

M2, universally M3, existantially M3, universally

Figure 16.6. Results for checking P1 with SymC with logarithmic time scale.

Symbolic Model Checking and Simulation with Temporal Assertions 289

We are able to check properties with SymC against all three models within
given time bounds. In most cases, SymC outperforms RAVEN. However, once
SymC has to traverse a huge state space for formulas that are still pending
RAVEN may overtake again, e.g. universal quantification with a time bound
of 500 steps. For results of checking P2 refer to [Ruf et al., 2004].

The experiments show that depending on the checked properties and the
requirements on the checks, different verification tools excel in different areas.
Model checking gives the user complete coverage of the model, however it
suffers from the state explosion problem. Here, semi-formal approaches can
help to validate properties. An important task of the verification engineer is to
select the appropriate tool to handle a specific verification problem.

4. Summary and Future Work

In this paper we have emphasized the importance of formal property spec-
ification as a key ingredient for enhancing modern design flows. These spec-
ifications can be reused in various phases of the development process both by
funtional and formal verification tools.

Property checking enhances system reliability by detecting functional errors
early during system design and implementation. Therfore, it has great potential
to speed up development and regain the investment by creating more reliable
systems. Two property checking techniques were explained in more detail.

We are currently enhancing our property checker SymC in two directions.
A parallel version should allow checking larger models as well as shortening
the verification time. Furthermore, we also add a SAT-based engine to the
already existing BDD-based proof machinery.

Notes

1. Fusing two SEREs means that the first sequence and the second sequence overlap by one clock
cycle.

2. SymC is available at www-ti.informatik.uni-tuebingen.de/~fmg/symc.
3. However, our property checking algorithms are quite different.
4. The holonic system does not contain collision freeness by design.

References

Accellera Organization (2004). Property Specification Language (PSL), ver-
sion 1.1. www.eda.org/vfv.

Biere, Armin, Cimatti, Alessandro, Clarke, Edmund M., Strichman, Ofer, and
Zhu, Yunshan (2003). Bounded model checking. In Zelkowitz, Marvin, ed-
itor, Highly Dependable Software, volume 58 of Advances in Computers.
Academic Press.

Clarke, Edmund M., Grumberg, Orna, and Peled, Doron E. (1999). Model
Checking. The MIT Press.

290 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Coelho, Claudionor Nunes Jr. and Foster, Harry D. (2004). Asserstion-based
verification. In Drechsler, Rolf, editor, Advanced Formal Verification, pages
167–204. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Damm, Werner and Harel, David (2001). LSCs: Breathing life into message
sequence charts. Journal on Formal Methods in System Design, 19(1):45–
80.

Dwyer, Matthew B., Avrunin, George S., and Corbett, James C. (1999). Pat-
terns in property specifications for finite-state verification. In 21. Interna-
tional Conference on Software Engineering, pages 411–420. ACM Press.

Emerson, E. Allen, Mok, Aloysius K., Sistla, A. Prasad, and Srinivasan, Jai
(1991). Quantitative temporal reasoning. In Clarke, Edmund M. and Kur-
shan, Robert P., editors, Computer Aided Verification, 2nd International
Workshop, volume 531 of Lecture Notes in Computer Science, pages 136–
145. Springer.

Flake, Stephan, Müller, Wolfgang, and Ruf, Jürgen (2002). Structured english
for model checking specification. In Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen, 3. GI/
ITG/GMM Workshop, pages 99–108. VDE Verlag.

Flake, Stephan, Müller, Wolfgang, Pape, Ulrich, and Ruf, Jürgen (2004). Spec-
ification and Formal Verification of Temporal Properties of Production Au-
tomation Systems. In: Ehrig, Harmut et al., editors, Integration of Sofware
Techniques for Applications in Engineering, Volume 3147 of Lecture Notes
in Computer Science, pages 206–226. Springer Verlag.

Grötker, Thorsten, Liao, Stan, Martin, Grant, and Swan, Stuart (2002). System
Design with SystemC. Kluwer Academic Publishers.

ISO/IEC (2003). Programming Languages – C++. Number 14882:2003 in
JTC1/SC22 – Programming languages, their environment and system soft-
ware interfaces. International Organization for Standardization, 2. edition.

Iwashita, Hiroaki and Nakata, Tsuneo (1997). Forward model checking tech-
niques oriented to buggy designs. In Proceedings of the 1997 IEEE/ACM
International Conference on CAD, pages 400–4004. ACM and IEEE Com-
puter Society Press.

Klose, Jochen, Kropf, Thomas, and Ruf, Jürgen (2002). A visual approach to
validating system level designs. In 15th International Symposium on Sys-
tems Synthesis, pages 186–191. ACM Press.

Krebs, Andreas and Ruf, Jürgen (2003). Optimized temporal logic compila-
tion. Journal of Universal Computer Science, Special Issue on Tools for
System Design and Verification, 9(2):120–137.

Object Management Group (OMG) (2003). Unified Modeling Language
(UML), Version 1.5. www.omg.org. Document formal/03-03-01.

Ruf, Jürgen, Hoffmann, Dirk W., Kropf, Thomas, and Rosenstiel, Wolfgang
(2001). Simulation-guided property checking based on a multi-valued AR-

Symbolic Model Checking and Simulation with Temporal Assertions 291

automata. In Nebel, Wolfgang and Jerraya, Ahmed, editors, Design, Au-
tomation and Test in Europe, DATE 2001, pages 742–748. IEEE Press.

Ruf, Jürgen and Kropf, Thomas (1999). Modeling and checking networks of
communicating real-time process. In Pierre, Laurence and Kropf, Thomas,
editors, Correct Hardware Design and Verification Methods, volume 1703
of Lecture Notes in Computer Science, pages 256–279. Springer.

Ruf, Jürgen and Kropf, Thomas (2003). Symbolic verification and analysis
of discrete timed systems. Journal on Formal Methods in System Design,
23(1):67–108.

Ruf, Jürgen, Peranandam, Prakash M., Kropf, Thomas, and Rosenstiel, Wolf-
gang (2003). Bounded property checking with symbolic simulation. In Fo-
rum on Specification and Design Languages.

Ruf, Jürgen, Weiss, Roland J., Kropf, Thomas, and Rosenstiel, Wolfgang
(2004). Modeling and formal verification of production automation systems.
In Ehrig, Hartmut et al., editors, Integration of Software Specification Tech-
niques for Applications in Engineering, volume 3147 of Lecture Notes in
Computer Science, pages 541–566. Springer Verlag.

VA Software Corporation and Open SystemC Initiative (2004). Open SystemC
Initiative. www.systemc.org.

Vardi, Moshe Y. (2001). Branching vs. linear time: Final showdown. In Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2001).
Invited paper.

Chapter 17

AUTOMOTIVE SYSTEM DESIGN AND AUTOSAR

Georg Pelz1, Peter Oehler2, Eliane Fourgeau, Christoph Grimm3

1Infineon Automotive & Industrial, 2Continental Teves, 3University of Frankfurt

Abstract Automotive system design demands for new solutions for management of com-
plexity and heterogeneity. Heterogeneity in automotive systems does not only
cover different physical domains that are combined in a complex system. Het-
erogeneity in automotive systems also means optimized, proprietary solutions
and interfaces. The fact that many tiers are involved, and many configurations
have to be maintained is an increasing challenge. This chapter gives an overview
of an approach to hide the heterogeneity behind a common and unique interface:
AUTOSAR.

Keywords: Automotive System Design, AUTOSAR

1. Introduction

The design of automotive systems has changed dramatically. In the last
years, electric and electronic (E/E) components have enriched mechanical and
hydraulical components with additional features. Typical examples are the
electronic brake systems ABS or ESP. In future systems, software components
will provide an increasing share of functions and features in automotive sys-
tems.

The embedded software components are optimized for electronic hardware
platforms and their physical environment. The close relation between hard-
ware and software development is necessary in order to optimize performance
and resource allocation [Salzmann et al.]. This leads to architectures that are
characterized by proprietary solutions.

Both complexity and heterogeneity of automotive systems make their design
to a cost intensive and time consuming challenge that demands for

means for the management of complexity and heterogeneity,

re-use of all kinds of intellectual property, and

© 2005 Springer. Printed in the Netherlands.

293

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 293–305.

294 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

scalability of existing solutions within and across product lines.

This chapter describes current problems of automotive system engineering
and gives an overview of AUTOSAR, a development partnership for an open
standard for automotive E/E architecture. Section 2 gives an overview of the
design process of automotive systems, and introduces the tiers involved in the
design process. Sections 3 and 4 motivate and give an overview of a new
approach for hiding the complexity and heterogeneity of automotive systems
behind a standardized, function-oriented interface: AUTOSAR.

2. Automotive System Design

2.1 Application Fields of Automotive Systems

The complete system of a car can be subdivided into quite a number of sub-
systems performing functions in the domains of safety, power train, body and
navigation/telematics. These fields trigger much different requirements. For
instance, the power train functions often are located close to the engine result-
ing in much higher ambient temperatures, which has to be taken into account
when designing the respective subsystems. Also the weighting of performance
vs. price varies from domain to domain. Moreover, the driving capabilities of
the power electronics may be heavily different from application to application.
In some cases, high-voltage CMOS processes may be sufficient to fabricate
the respective chips, while for others fully-fledged BCD processes (bipolar,
CMOS, DMOS) offer the best solution. Last but not least, in safety critical
applications, the quality requirements may be even more strict, than e.g. for
navigation.

Even after this short overview, it should be clear, that environment, require-
ments, basic technologies etc., are very different from application to applica-
tion. Let’s now take a closer look at the four above domains.

Safety. The safety features include adaptive restraint systems with occupant
detection, belt pretensioners and - of course - quite a number of airbags, which
depending on the crash scenario may or may not be fired. Furthermore, we
have antilock braking system (ABS) and electronic stability program ESP and
many other safety-relevant features.

Power Train. The power train part contains all motor control related fea-
tures together with exhaust fume optimization, but also the brains of gearbox
or automatic transmission.

Body. The applications of body electronics are for instance power-adjus-
table external mirrors, window lifters, HVAC (heating, ventilation, air-condi-
tion), centralized door locking, keyless entry and many more.

Automotive System Design and AUTOSAR 295

Figure 17.1. Electronics for automotive safety features (left) and power train features (right).
(c) Infineon Technologies AG.

Navigation and Telematics. Navigation is about the combination of GPS
position information with electronic maps. This can be refined with traffic
information. Another feature might be an automatic rescue call in case of an
accident.

Figure 17.2. Electronics for automotive comfort functions of the car body (left) and Automo-
tive navigation and telematics (right). (c) Infineon Technologies AG.

2.2 What is Difficult in Automotive Electronics

Heterogeneity. One of the most demanding challenges in automotive elec-
tronics comes with the plethora of physical and logical domains to be managed.
In general, we have both analog and digital electronics. When digital electron-
ics forms microcontrollers, also embedded software has to be taken care of.
As soon as power comes into play, also thermal aspects have to be taken into
account as well. Moreover, mechanics, hydraulics, pneumatics, magnetics and
many other domains can also not be neglected. For all of these domains, dif-
ferent description formats are used and a legacy of single-domain software
tools, e.g. simulators, is at hand. The problem is to reconcile descriptions and
software tools to allow for complete system design.

296 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

R0

HohlraumPlatte

Substrat

Isolator dp

dc
di

Po we r Sou rce

void LIN_Node(void) {
// init. the CapCom

Registers
LIN_vInitCapCom();

// Timer 0
LIN_vInitTimer();
// ASC1 init
LIN_vInitASC();
…

Figure 17.3. Almost Olympic challenge to reconcile the plethora of domains in automotive
engineering.

Environment. Another big challenge in automotive is the rough envi-
ronment in which the circuitry has to be operational. Temperature ranges are
often from -40 ◦C to 150 ◦C ambient temperature. At the transistor junction,
typically even higher temperatures are observed. Also the supply voltage in
a car is 12 V nominal, which immediately kills modern CMOS interface cir-
cuitry. Even more, in some cases, the supply voltage may rise up to 60 V and
higher.

Quality. The quality requirements are extremely tough. A typical qual-
ity requirement may be that only 500 ppm may fail within a given timeframe.
Taking into account, that a modern car has some 50 applications like ABS or
airbag, we get 10 ppm for each application. Each of these applications may
have 300 components, like microcontrollers, power switches, passive devices
but also motors, sensors, mechanical transmissions and many more. If we
distribute the remaining 10 ppm to 300 components, which individually may
cause the failure of the application (otherwise the components would not be
in!), we finally end up with a requested quality of way below 1 ppm. This
leads us to the common quality requirement for automotive components of
zero ppm.

2.3 Roles and Cooperation in the Design Flow

The challenge of system design is not addressed by the car manufacturers
alone. Usually, subsystems are developed by Tier-1 companies, e.g. Bosch
or Continental Teves, which sometimes include Tier-2 companies, i.e. com-
ponent suppliers, which design and manufacture microelectronic circuits (e.g.
TI, Infineon), but also all the other components from electronics, mechanics,
software and many other domains.

Automotive System Design and AUTOSAR 297

One major source of problems is the interfaces between the partners in the
design flow as shown in Fig 17.4. Today, information is transported on the left
wing through paper specs and on the right wing through samples. In the past,
this worked up to some degree, but the current problems in complexity and
heterogeneity cannot be solved in this way.

Specification

Partitioning,
System Design

ASIC and SW
implementation

System
Integration

ASIC / Software
Verification

Validation with
Prototypes

Figure 17.4. Design flow according to V-model

2.4 Design Methodology

Executable Specifications. To improve the interfaces on the left hand
wing, paper specs are supplemented with behavioral models forming execu-
table, i.e. simulatable, specs. These behavioral models can be simulated to
illustrate the specified behavior. In this way, the partners can discuss on wave-
forms rather than about an operating point as in the paper specs. Also the
ability to simulate helps a lot in validating the specification, while paper specs
are at best checked manually. Moreover, it is much easier to make sure that an
executable spec is complete and consistent, than it is for a paper spec.

Virtual Prototypes. On the right hand wing, the samples are supple-
mented with virtual prototypes, which again are formed out of behavioral mod-
els [Meise et al.]; [Pelz et al.]. They may be available even long before sili-
con. Moreover, simulations at least in some cases provide more insight than
measurements, as models are completely controllable and observable. Mea-
surements take much more effort and provide only limited access. Let’s look
at the example of a power switch observing a short circuit. The self-heating
will quickly trigger the heat protection of the switch. This can be simulated in
an electro-thermal way with limited effort, while meaningful measurements of
the quick thermal transients are extremely difficult.

Partitioning and Design. An important issue of design is the system
partitioning. System partitioning distributes tasks to resources and thereby de-
termines costs, quality and performance. However, there are no tools available

298 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

which support the task of partitioning of complex, heterogeneous systems, so
called multi-domain systems, in general. Tools that support the partitioning
of mixed-signal systems (analog and digital electronics) are emerging in aca-
demic research, but they are still far away from industrial applicability at the
moment. Nonetheless, what helps a lot is to use the behavioral models as a
platform to assess partitioning- and design-alternatives. Even more, optimiza-
tions on parameters may even be carried out automatically.

If the scope is restricted to embedded hardware/software systems, partition-
ing here often is the decision about what to implement in hardware and what
in embedded software. This task is the domain of classical hardware/software
co-design. Tools are available but still far away from working in a fully au-
tomatic way. If we restrict the system on functions which are running on a
microcontroller the focus is at embedded software. Then, partitioning means
to decide which functions shall run on which microcontroller. This is still a
challenging task because it is influenced by the problem to distribute software
functions between different available microcontrollers and the communication
mechanisms realized between them. However, the chances to reach satisfying
results are high because of the homogeneity compared with the former tasks.

3. AUTOSAR: Aims and Objectives

Automotive systems like an electronic brake system (ABS, ESP, . . .) are
very heterogeneous. They consist of electric/electronics and a mechanic and/or
hydraulic environment. Software components in automotive systems are devel-
oped by automotive OEMs, suppliers, and independent software companies.
This leads to a number of problems:

Current Automotive electric/electronic architectures are characterized
by proprietary solutions that seldom permit the exchange of applications
between automotive OEMs and their suppliers.

Microcontrollers cannot be exchanged without need for adjustments in
SW functions/applications.

The AUTOSAR development partnership. One approach to deal with
the above mentioned problems is encapsulation of functions in well defined
and standardized Interfaces between Applications and Programs (Application
Program Interface, API). The encapsulation creates independence from com-
munication technology at different levels. Standardized APIs could allow all
tiers to exchange hardware and software components. This would permit a
concentration on functions with competitive value, freeing valuable resources
to focus on innovative new functionalities.

Automotive System Design and AUTOSAR 299

For the development of such a standardized Autmotive Open System ARchi-
tecture, a three tier structure, proven in similar initiatives, has been formed in
mid of 2003. Appropriate rights and duties are allocated to the various tiers:

Core Partner (OEM & Tier 1 Supplier) are BMW Group, Bosch, Con-
tinental AG, DaimlerChrysler, Ford, Opel/GM, PSA Peugeot Citroën,
Siemens VDO Automotive, Toyota and Volkswagen AG,

35 Current Premium Members (incl. Tool Manufacturers),

7 Current Associate Members

The Core Partner have organizational and technical control. Together with the
Premium Partners they can make technical contributions and lead of or involve
in Working groups, respectively. Premium Members have access to current in-
formation where Associate Members have access to finalized documents and
can utilize the standards before release. Other support roles are the Develop-
ment Member Agreement which allows to participate/cooperate in the Work-
ing groups free of charge. An Attendee Agreement allows close connections
to other institutions.

Hence the AUTOSAR partnership is an industry wide alliance of OEM
manufacturers and Tier suppliers working together to develop and establish
a de-facto industry standard for automotive E/E architecture which will serve
as a basic infrastructure for the management of functions within both future
applications and standard software modules. The AUTOSAR milestone plan
was released mid 2003 and foresees the completion of the test and verification
phase in August 2006.

AUTOSAR objectives. In brief, the primary goals are the standardization
of basic system functions and functional interfaces, the ability to integrate and
transfer functions as well as to substantially improve software updates and up-
grades over the vehicle lifetime. The AUTOSAR project goals will be met by
specifying and standardizing the central architectural elements across func-
tional domains, allowing industry competition to focus on implementation,
while cooperating on standard. Figure 17.5 [Autosar] gives an overview of
the AUTOSAR project objectives, and the involved functional domains.

Redundancy activation would mean, for example, that a system from one
supplier could use/read sensors from other suppliers for failsafe reasons.

Topics for the integration of basic system functions and technologies in-
clude:

Bus Technologies (CAN/LIN, FlexRay, . . .)

Operating Systems (OSEK, . . .)

Communication Layer (OSEK/COM, OSEK fault tolerance, . . .)

300 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Functional Domains

Powertrain

Chassis

Multi-
media/

Telematics

AUTOSAR

Safety
(active/
passive)

Man
Machine
Interface

Body/Comfort

Vehicle
‚centric‘

Passenger
‚centric‘

Functional Domains

Powertrain

Chassis

Multi-
media/

Telematics

AUTOSAR

Safety
(active/
passive)

Man
Machine
Interface

Body/Comfort

Vehicle
‚centric‘

Passenger
‚centric‘

Consideration of availability and safety requirements

Redundancy activation

Scalabilty of different vehicle and platform variants

Implementation and standardization of basic
functions as an OEM wide „Standard Core“ solution

Transferability of functions throughout the network

Integration of functional modules from multiple
suppliers

Maintainability throughout the whole „Product Life
Cycle“

Increased use of „Commercial off the shelf
hardware“

Software updates and upgrades over vehicle lifetime

Project Objectives

Consideration of availability and safety requirements

Redundancy activation

Scalabilty of different vehicle and platform variants

Implementation and standardization of basic
functions as an OEM wide „Standard Core“ solution

Transferability of functions throughout the network

Integration of functional modules from multiple
suppliers

Maintainability throughout the whole „Product Life
Cycle“

Increased use of „Commercial off the shelf
hardware“

Software updates and upgrades over vehicle lifetime

Project Objectives

Figure 17.5. AUTOSAR high level project objectives [Autosar].

HW Abstraction Layer

Memory Services (NVRAM manager)

Mode Management (ECU states, sleep mode, error manager, watchdog,
. . .)

Middleware/Interfaces - APIs

Standard Library Functions (CRC checksum, cast operations, mathemat-
ical functions, . . .)

All this leads to the main focus of AUTOSAR: Cooperate on standards, com-
pete on implementation.

Transferability and exchangeability. In the development partnership an
architecture shall be developed which fulfills the system requirements of the
functional domains shown in figure 17.5. AUTOSAR will serve as a platform
from which future vehicle applications will derive and upon which they will be
implemented. The availability of a standardized, functional view of the func-
tional domains enables the transferability of functions and/or features between
the domains. For example, a brake system could use sensor data available
from another domain. Figure 17.6 [Autosar] gives an overview of the intended
transferability of functions with AUTOSAR.

AUTOSAR’s vision is an improved complexity management of highly in-
tegrated E/E architectures through an increased re-use and exchangeability of
SW modules between OEMs and suppliers. This means that, for example, soft-
ware modules developed based on an ECU from supplier A should as well run

Automotive System Design and AUTOSAR 301

System-
Requirements

Future
transferability
of functions

D
riv

e
by

W
ir
e

D
river

Inform
atio

n

M
gt.

Powertrain

Chassis

AUTOSAR

Safety
(active/passive)

Man
Machine
Interface

Body
Comfort

Vehicle

‚centri
c
‘

Passenger

‚centri
c‘ A

ut
op

ilo
t

V
ehicle

C
ondition

R
ecognition

Personalization

Valve Control

Multimedia/

Telematics

Implementation of
OEM-specific
applications based
on AUTOSAR

Figure 17.6. Future transferability of functions with AUTOSAR [Autosar].

Platform m.n

Platform m.2

Platform m.1

Exchangeability
between
manufacturer’s
applications

Platform 2.n

Platform 2.2

Platform 2.1

OEM 2

Exchangeability
between
supplier’s
solutions

Supplier B

�Chassis

�Safety

�Telematics

�Multimedia

Supplier A

�Chassis

�Safety

�Body/Comfort

�Multimedia

Supplier C

�Chassis

�Body/Comfort

�Telematics

�Multimedia

Platform 1.n

Platform 1.2

Platform 1.1

Exchangeability
between

vehicle
platforms

Figure 17.7. Exchangeability of functions between OEM and suppliers [Autosar].

with an ECU from supplier B. Figure 17.7 gives an overview of the intended
exchangeability of functions between OEM and suppliers.

This transferability of application layer software components is enabled
through the AUTOSAR Run Time Environment (RTE, figure 17.8). The AU-
TOSAR runtime environment is abstracted to a Virtual Function Bus (VFB)
that acts as a communication center for inter and intra ECU information ex-
change. All communications run through the AUTOSAR VFB, which provides
a communication abstraction to software components attached to it by provid-

302 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Microcontroller Abstraction

AUTOSAR RTE

Basic Software

O
p

e
ra

tin
g

 S
y
s
te

m
*

ECU Hardware

....................

SW-Component

1

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

SW-Component

2
SW-Component

n

Transfer layers for different communication technologies (e.g. CAN, LIN, …)

Network management

System services (diagnostic protocols, …)

NVRAM management

…

Figure 17.8. Schematic view of AUTOSAR software architecture [Autosar].

ing the same interface and services whether inter ECU communications are
used (such as CAN, LIN, FlexRay, MOST, ...) or intra ECU communication
channels. As the communication requirements of the software components
running on top of the RTE are application dependent, the RTE needs to be
tailored to these communication requirements.

Methodology. The desired transferability and exchangablility also have an
impact on modeling and design methodology. In AUTOSAR, an E/E system
consists of three main parts:

software components,

system constraints (e.g. bus systems / attributes like data rates; cluster-
ing/mapping of software components), and

ECU resources (physical and electronic attributes).

The AUTOSAR methodology combines these three main parts in a process
of five steps. In a first step software components, system constraints and ECU
resources are specified. In a second step the SW components are distributed
or partitioned to the available ECUs considering the system constraints. In a
third step the available information is separated into software tasks for each
single ECU. In step 4, compiler and linker are applied to get binary code.
Finally, system integration permits validation and improvements of the system
in step 5.

Automotive System Design and AUTOSAR 303

OS

OS

SW Com-
ponent n-1

SW Com-
ponent n

Basic system functions

core functions, SPAL

Hardware Drivers

get_v()
SW Com-
ponent 2

...

AUTOSAR-RTE for ECU2

SW Comp.
n+m-1

SW Comp.
n+m

Basic system functions

core functions, SPAL

Hardware Drivers

v_warn()
SW Comp.

n+1
...

uint get_v (void)
{ ...

return v;

} void v_warn (void)

{ ...

vn = get_v();
return;

}

AUTOSAR-RTE for ECU1

Bus system

(FlexRay, CAN, MOST, ...)

Figure 17.9. Implementation on 2 ECUs (upper image not from AUTOSAR). Implementation
of functions independent on distribution on different ECUs as communication will be done via
ECU individual AUTOSAR RTE exclusively.

4. Status Quo of AUTOSAR

The introduction of the AUTOSAR standard is striving to place the future
of E/E development in automotive industry on an industry wide accepted and
stable basis. This will be a key element in order to cope with the functional
and legal requirements in next generation vehicle architectures. It will also be
instrumental in securing market attractiveness and opening new and different
business opportunities for OEMs and their suppliers alike, pushed by increas-
ingly demanding legal and customer requirements, which are often conflicting:

Legal enforcement (environmental aspects, safety requirements . . .)

304 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Passenger convenience and service requirements from the comfort and
entertainment functional domains

Driver assistance and dynamic drive aspects (navigation in high density
traffic surroundings, detection and suppression of critical dynamic vehi-
cle states . . .)

Unlike past attempts where the automotive industry reacted in response
to major technological advances, now a technological breakthrough has been
started in order to keep pace with these requirements and enable industry actors
to face, well armed, their challenging future.

The development of the AUTOSAR standard is organized into a number of
executive technical work packages; any individual work package is the respon-
sibility of an associated working group. They pertain to the following steps:

Specification of the mechanisms and interfaces of the virtual functional
bus

System generation including specification of the descriptions format and
contents and the associated set of tools.

AUTOSAR ECU configuration delivering configuration files of the par-
ticular run time environment modules

ECU software generation: the process of generating software executa-
bles out of the ECU configuration files.

Test and integration including a prototype implementation supporting
representative applications, which will be developed alongside standard
definition.

Data description delivering the formulation of unified functional inter-
faces of all vehicle domains: Body/comfort, Power train, Chassis/driver
dynamics, Safety, Telematics/multimedia, Man-machine interface

Enabling of AUTOSAR exploitation: definition of conformance test and
licensing procedures, version control management and continuous main-
tenance of the AUTOSAR standard.

5. Outlook

Automotive system design will face a number of new techniques in the next
years. Considering design methodology, executable specification and virtual
prototyping are going to find their way into industrial application. However,
this requires new techniques for modeling and simulation, such as SystemC-
AMS [Vachoux et al.].

Automotive System Design and AUTOSAR 305

System partitioning is still a demanding task, which will still require inter-
action with a designer. A major breakthrough might come with standardized
APIs and/or middleware such as AUTOSAR. This allows single components
an access to features or functions provided by other components in the car and
enables both the development of new features and a reduction of costs.

References

The AUTOSAR development partnership. Web Page. www.autosar.org,
Dec. 2004.

Christian Meise and Christoph Grimm. A SystemC Based Case Study of a
Sensor Application using the BeCom Modeling Methodology for Virtual
Prototyping, In 17th Symposium on Integrated Circuits and Systems Design
(SBCCI ’04), Porto de Galinhas, Pernambuco, Brazil, IEEE Press 2004.

Georg Pelz. Mechatronic Systems: Modelling and Simulation with HDLs, John
Wiley & Sons, 2003.

Christian Salzmann and Thomas Stauner. Automotive Software Engineering.
In Languages for System Specification, Kluwer Academic Publishers, June
2004.

Alain Vachoux, Christoph Grimm and Karsten Einwich. Extending SystemC
to support Mixed Discrete-Continuous System Modeling and Simulation
(invited paper), In International Symposion on Circuits and Systems 2005
(ISCAS ’05), Kobe, Japan, IEEE Press 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

