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Preface

The 2nd International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2005) was held in Prague, Czech Republic, during May 31–June 1, 2005.

The conference is intended primarily as a forum to focus on the integration
and hybridization of the approaches of constraint programming (CP),
artificial intelligence (AI), and operations research (OR) technologies for solving
large-scale and complex real-life optimization problems. Therefore, CPAIOR is
never far from industrial applications.

The high number of submissions received this year, almost 100 papers, in
witness to the interest of the research community in this conference. From these
submissions, we chose 26 to be published in full in the proceedings.

This volume includes summaries of the invited talks of CPAIOR: one from
industry, one from the embedded system research community, and one from the
operations research community. The invited speakers were: Filippo Focacci from
ILOG S.A., France, one of the leading companies in the field; Paul Pop, professor
in the Embedded Systems Lab in the Computer and Information Science De-
partment, Linköping University; and Paul Williams, full professor of Operations
Research at the London School of Economics.

The day before CPAIOR, a Master Class was organized by Gilles Pesant,
where leading researchers gave introductory and overview talks in the area of
metaheuristics and constraint programming. The Master Class was intended for
PhD students, researchers, and practitioners. We are very grateful to Gilles who
brought this excellent program together.

For conference publicity we warmly thank Willem Jan van Hoeve and
Petr Viĺım who did a great job with the high number of submissions received.
We are very grateful to Michel Rueher who took care of the non-trivial task of
finding funds for covering speakers’ expenses, proceedings, and student grants.

Many thanks to the Program Committee, who reviewed all the submissions
in detail and discussed conflicting papers deeply. Due to the unexpected number
of submissions, their load was almost double that expected and their effort was
repaid with nothing more than a free dinner.

A special thanks goes to Ondřej Čepek from Charles University and Milena
Zeithamlová from Action M Agency who spent time in budgeting, planning,
booking, and making it all work.

Finally, we would like to thank the sponsors who make it possible to organize
this conference: the ARTIST Network of Excellence for sponsoring the talk by
Paul Pop and making an interesting cross-fertilization possible; Carmen Systems,
Sweden; CoLogNet, Network of Excellence; IISI (Intelligent Information Systems
Institute, Cornell), USA; ILOG S.A., France; and SICS, Sweden.

June 2005 Roman Barták and Michela Milano
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Integration of Rules and Optimization in
Plant PowerOps

Thomas Bousonville, Filippo Focacci, Claude Le Pape, Wim Nuijten,
Frederic Paulin, Jean-Francois Puget, Anna Robert, and Alireza Sadeghin

ILOG S.A, 9 rue de Verdun, 94253 Gentilly, France
{tbousonville, ffocacci, clepape, wnuijten, fpaulin, jfpuget,

anrobert, asadeghin}@ilog.fr

Abstract. Plant PowerOps (PPO) [9] is a new ILOG product, based
on business rules and optimization technology, dedicated to production
planning and detailed scheduling for manufacturing. This paper describes
how PPO integrates a rule based system with the optimization engines
and the graphical user interface. The integration proposed is motivated
by the need to allow business users to manage unexpected changes in
their environment. It provides a flexible interface for configuring, main-
taining and tuning the system and for managing optimization scenarios.
The proposed approach is discussed via several use cases we encountered
in practice in supply chain management. Nevertheless, we believe that
most of the ideas described in this paper apply in almost any area of
optimization application.

1 Introduction

Most manufacturing companies are organized today around integrated programs
called Enterprise Resource Planning (ERP) systems. ERP systems provide the
information backbone needed to manage the day-to-day execution handling the
many transactions that document the activity of a company. Since the begin-
ning of the new century, Advanced Planning and Scheduling (APS) systems have
been increasingly adopted to plan the production taking into account capacity
and material flow constraints in order to meet customer demand. APS systems
embed algorithms for planning and scheduling spanning from the application of
very simple priority rules to complex optimization algorithms depending on the
needs of each customer. Although rule-based scheduling and simulation-based
scheduling are still widely used, today the best APS systems offer scheduling al-
gorithms based on Meta-heuristics, Constraint Programming and Mathematical
Programming.

The highly competitive marketplace on the one hand pushes to improve the
production efficiency; on the other hand it pushes to increase the flexibility
necessary to adapt to the continuous variations of customer demand. Today
manufacturing companies need to produce a higher variety of products and cus-
tomized products. The increasing needs for flexibility are pushing today’s APS

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 T. Bousonville et al.

systems to their limits. Many companies are struggling with the limitation of
the first generation of APS systems and are looking for new solutions.

A company that needs to implement advanced supply chain optimization
tools has two possible choices: either it will implement an APS package or it
will build it using optimization components and technology via often long and
costly custom development. The drawback of buying an existing APS package
is that it provides a generic optimization model which will not take into con-
sideration all production constraints and policies characteristic of the company.
Often the company is forced to fit into the predefined model. The bottom line
can be a very high total cost of ownership combined with unhappy end users
who, in some cases, replace the system with their previously developed Excel
spreadsheet. The alternative of developing a custom solution is only viable for
few companies (often with large OR departments). And even in this case the
usability of custom development is not guaranteed. In both cases, changing the
supply chain optimization system to follow the rapidly evolving business condi-
tions is an issue.

The challenge for APS packages vendors is therefore to provide enough gen-
erality to avoid developing an optimization engine for each and every customer
and to build a flexible and configurable enough system to meet the real needs of
the customer. Ideally, such package should be configurable by its business users.
These are the people that actually solve a business problem, such as producing
the production plan for a plant. These business users usually do not possess the
IT skills that are needed for adapting an APS package to the peculiarities of
their plant.

There are many ways in which an IT package could be made more flexible.
One could add a scripting language to it for instance. Unfortunately, even script-
ing languages are deemed to be too complex to be learned and used by business
users. Another possibility could be to use tools that business users use, such as a
spreadsheet. However, a spreadsheet interface is not powerful enough to express
complex use cases such as business policies. A third approach to flexibility is
emerging nowadays. It is called business rules. This approach let business users
make statements about their business in a friendly way. These rules are then
used to preprocess (or postprocess) the input (or output) of an optimization
application. This use of rules is quite different than the so called rule inference
systems that were used in expert systems in the 80’s. Indeed, rules aren’t used
here to solve a problem. Rather, they are used to state what the problem is really
about. This difference is at the root of the current success of business rules in
the market place.

We are convinced that advances and the increased popularity of Business
Rules create the opportunity to provide the flexibility the lack of which was
limiting the applicability of APS systems. In this paper we describe how Plant
PowerOps [9] takes advantage of this technology and we claim that the proposed
rules interface can be generalized to the vast majority of optimization applica-
tions. Indeed, although this paper does not propose any advance in either rule
based systems or operations research, it presents a new, extremely pragmatic,
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way of applying and integrating rule based systems to optimization models and
algorithms.

The structure of the paper is as follows: in section 2 we present an overview
of Plant PowerOps briefly describing the types of problems solved by PPO
and its architecture. Section 3 is devoted to present different use cases where
the integration of rules and optimization is demonstrated to be a powerful
combination to overcome the limits of today’s optimization software. Section
4 explains the reasons behind some of the design decisions taken in the de-
velopment of the proposed integration, discusses open questions and future
work. Section 5 presents some related approaches. Section 6 concludes the
paper.

2 Plant PowerOps Overview

Plant PowerOps (PPO) is a new Advanced Planning and Scheduling (APS) sys-
tem dedicated to production planning and detailed scheduling for manufacturing.
It enables users to plan the production taking into account capacity and material
flow constraints to meet customer demand.

Although Plant PowerOps provides production planning, lot sizing, and de-
tailed scheduling engines, due to space limitations, we will concentrate the ex-
amples to the detailed scheduling features of PPO. The scheduling engine is used
to schedule production activities (such as chemical reactions, mixing, forming,
assembling or separating), and setup activities (such as cleaning or preparing)
on different machines or production lines in order to efficiently produce quality
finished products in a timely manner, while satisfying customer demand for the
finished product.

User Interface

Engines

Object model

Middleware

Algorithms Data Model

Input Output

Interactive
Graphical Planning 

Board

Rule-based interface
(maintenance, configuration, 

what-if)

Fig. 1. Architecture
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As shown in figure 1, Plant PowerOps provides

– a pre-defined data model to capture intricacies of the manufacturing op-
erations. The pre-defined data model represents, for example, production
recipes, production orders, calendars (e.g. breaks, shifts, productivity pro-
files), resources, customer demands.

– effective optimization models and algorithms based on Mathematical Pro-
gramming, Constraint Programming and Local Search. These algorithms
automatically generate feasible, cost-effective detailed schedules minimizing
a combination of objective functions such as total tardiness, total earliness,
total setup cost, makespan, processing cost, etc.

– a graphical planning board to visualize, analyze, manually adjust and update
production schedules.

– a rule-based customization interface to configure and maintain over time
the graphical user interface and the parameters of the model and of the
algorithm. The rule-based interface provides also the ability to define opti-
mization scenarios and to modify problem data and solutions.

– an integration framework to connect PPO to a database, to an existing
ERP (Enterprise Resource Planning), or to an existing MES (Manufacturing
Execution System).

2.1 Rule-Based Interface

The integration between the business rules and the optimization model and
between the business rules and the graphical user interface is loose. Rules apply
either in a pre-processing step (i.e. before the execution of the engine) or in a
post-processing step (i.e. after the execution of the engine).

The rule interface of PPO is based on ILOG JRules [8] which parses and
interprets production rules and executes them in forward-chaining using the Rete
algorithm [5].

The typical syntax of the production rules interpreted by PPO is the follow-
ing:

when
conditions

then
actions

Conditions (or left hand side of the rule) are methods returning booleans on
objects of the PPO data model. For example, a condition looking for all activi-
ties which are due on Jan 1st is translated as evaluate(theActivity.getDueDate()
equals ”Jan 1, 2005”). Actions (or right hand side of the rule) can be (i) any
method (returning void) typically modifying the state of the objects, (ii) in-
sertion in the working memory, (iii) retraction from working memory. We use
actions to produce side effects on the model or on the solution. On top of the
rule language, JRules provides a syntax in natural language like flavor that is
used in all the examples shown in this paper.
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The rule engine and the optimization engine are fully independent and com-
municate only through modification of the model and of the solutions. The Plant
PowerOps user selects the rules she/he wants to apply in a given scenario before
or after the optimization per se. Moreover, the optimization model is exposed
via a high level closed interface. The interface is closed in the sense that we do
not provide direct access to decision variables so that only predefined constraints
are possible.

The left hand side of a rule checks conditions on the model and its right
hand side produces side effects on the model if the conditions are met. Rules
apply either in a pre-processing step (i.e. before the execution of the engine)
or in a post-processing step (i.e. after the execution of the engine). Typically,
a pre-processing rule can be seen as a way to transform a model (coming from
the legacy system) into a new model upon which optimization is performed. The
optimization engine optimizes the transformed model and has no knowledge of
the rules that applied to generate it. Post-processing rules check the state of the
model and the solutions after optimization has occurred and possibly modify the
solutions. The advantage of the loose integration proposed relies on its simplicity
and modularity.

Note that the way rules are used in PPO is very different from the way
rules are used in expert systems. In expert systems rules are used to solve the
problem at hand. This usually requires complex sequences of rules firing, and
maintenance was a real concern. In PPO the number of rules we expect to
be active is very limited; the rules are often independent from each other and
rarely chained together. This simplifies the maintenance issue while still allowing
business users to understand and manage them.

3 Use Cases

3.1 The Chocolate Factory

In order to demonstrate the interest of integrating business rules and optimiza-
tion algorithms we will describe some use cases that could be faced by supply
chain managers and production planners of an imaginary chocolate factory.

This imaginary factory produces chocolate confections. Many production
steps and machines are required to complete the manufacturing process. The
manufacturing process is driven by customer demands and production orders,
these processes being driven by recipes and the materials they produce. Costly
setup times are required, and multiple process modes (e.g. an activity may be
performed in alterative machines) are possible and may be associated with dif-
ferent process costs. Also, activities have precedence constraints.

The factory produces chocolate eggs, rabbits and squirrels. These can be
made of either dark chocolate or milk chocolate. Each shape of product –egg
(E), rabbit (R), or squirrel (S)– made of either dark (D) or milk (M) chocolate,
can be filled with coconut cream (C), hazelnut cream (H), or filled with nothing
(N). The possible combinations are identified using three-letter acronym such
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as DCE for dark coconut egg, MHR for milk hazelnut rabbit, DNS for dark no
filling squirrel, etc.

The chocolate factory is composed of two production lines located in two
different cities in Switzerland. Each production line has the following production
equipment: a cocoa grinding machine, a chocolate mixing machine, a nut grinding
machine, a cream mixing machine, and a molding machine.

Recipes for the 12 products with cream filling consist of 5 activities (Cocoa
grinding, Chocolate mixing, Nut grinding, Cream mixing andMolding). Recipes
for the 6 products with no cream filling consist of only 3 activities (Cocoa grind-
ing, Chocolate mixing, Molding). For each recipe there are precedence constraints
such as Cocoa grinding must precede chocolate mixing.

There are 5 customer demands:

– One for 3 batches of MNE due Jan. 2, 2005 at 6:00 am
– One for 2 batches of MHR due Jan. 3, 2005 at 6:00 am
– One for 3 batches of DCE due Jan. 4, 2005 at 6:00 am
– One for 4 batches of MHR due Jan. 5, 2005 at 6:00 am
– One for 7 batches of DNE due Jan. 6, 2005 at 6:00 am

These demands result in a total of 19 production orders, one for each batch.
In December, 2004, you are trying to solve a scheduling problem to com-

mence on January 1, 2005, 06:00 am. This example also includes setup times
and setup costs, and processing costs. For example, the chocolate mixer requires
cleaning when changing from mixing milk chocolate to mixing dark chocolate.
The objective is that manufacturing activities should finish as close as possible
to their ideal due dates. There are costs associated with late completion. There
are also costs associated with the choice of alternative resources that activities
are performed in, and with setup times required by those activities. These should
also be kept to a minimum.

Typically, the production planner runs Plant PowerOps once a day in order to
meet customer expectations and keep internal costs to a minimum. In addition,
the production planner runs Plant PowerOps whenever unexpected events (such
as a machine breakdown) occur, in order to repair the schedule adapting it to
the new situation of the factory. The supply chain manager uses Plant PowerOps
to run several simulation scenarios in order to adapt the supply chain business
policies to modifications of the market.

We first describe the activities of the supply chain manager; we will succes-
sively move to the description of the activities of the production planner.

3.2 What-If Analysis

One of the most important tasks of the supply chain manager is to design and
control the production system. A way to achieve supply chain efficiency is to
simulate and study the impact of external events and production policies. A
very first step is to modify the production data. This can clearly be done by
hand on a local copy of the legacy system. A much more effective way to per-
form massive and complex data modifications is to describe the modification
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using a rule-based language. The examples of this section demonstrate how
business rules can be used to simulate events; in the examples of section 3.3
we demonstrate how business rules can be used to define policies to be applied
upon these events. In particular, example 3 represents a business policy appli-
cable to example 1 and example 4 represents a business policy applicable to
example 2.

Example 1. Resource Shutdown. Although resource breakdowns are quite
infrequent, they may have very important consequences to the efficiency of the
production system. Also the supply chain manager may consider the possibility
to close part of the factory on a specific day (e.g. Jan 1st 2005). The simulation of
a resource shutdown is a necessary first step to try several action plans (business
policies) that will be executed upon such an event (see example 3).

Declarations
for the resource, instance of resource

where the name of the resource is Cream mixer 1
or the name of the resource is Chocolate mixer 1,

for the bucket, instance of bucket
where the bucket is between Jan 1, 2005 6:00am and Jan 2, 2005 6:00am

Then
the resource is unavailable in the bucket

Note that the left hand side of this rule is expressed by the Declarations sec-
tion which designates the matching objects. Note also that in this first example
the resource shutdown can easily be coded using a graphical user interface in-
stead of the rules interface. Section 4.3 discusses the relation between GUI and
rules interface.

This rule is automatically translated into a production rule that has a side
effect on the model:

when {
the resource:IloMSResource((getName() equals ”Cream mixer 1”)

or (getName() equals ”Chocolate mixer 1”));
the bucket:IloMSBucket(isBetween(”Jan 1, 2005 6:00am”,

”Jan 2, 2005 6:00am”));
} then

modify the resource.setCapacity(0,the bucket);

Example 2. Important Sales Agreement with a Customer. The con-
ditions of a big sales agreement are going to be negotiated with an impor-
tant customer of the company, which could result in doubling the business
made with this company. During the Sales and Operations Planning meet-
ing, the sales representative asks the supply chain manager to study the im-
pact on the production that would be caused by the deal (e.g. on production
capacity).
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Declarations
for the customer order, instance of demand

where this demand is a customer order
If

the name of the customer for the customer order is ”Hane”
Then

set the quantity of material requested by the customer order to
the quantity of material requested by the customer order × 2

3.3 Business Policies

As mentioned before, simulation in terms of massive and complex data modifica-
tion is only the first step for an effective management of the production system.
Once we are able to simulate events, we want to define those business policies
that enable us to best deal with the events.

Example 3. Reduce Safety Stock During a Resource Shutdown. Safety
stocks are necessary to face unexpected events and stochastic data. A resource
breakdown is one such event and it justifies the usage of safety stock. Combining
the optimization algorithm and the business rules capability of Plant PowerOps
the supply chain manager is able to find the following business policy:

Declarations
for the down bucket, instance of bucket,
for any resource, instance of resource,
for any material, instance of material,
for the impacted bucket, instance of bucket
where the start time of this bucket is greater

than the start time of the down bucket
and the start time of this bucket is less than
the start time of the down bucket + 15

If
the capacity of any resource in the down bucket is 0

Then
set the safety stock of any material in the down bucket to 0
and set the safety stock of any material in the impacted bucket to 0

This rule accounts for the fact that not only during the shutdown time, but also
during a given time that follows the resource unavailability it is appropriate to use
the safety stock in order to fulfill the demand. The rule is telling the optimizer to
accept a lower stock by reducing the desired safety stock level to 0. Note that by
using the rules in example 1 and 3 the supply chain manager is able to define an
appropriate policy to apply in case of resource breakdowns or decided shutdown.

Example 4. Gold Customer Production Policy. In order to obtain a piv-
otal selling agreement (see example 2), the CEO of the company has promised
to never deliver late large orders coming from the gold customer. The supply
chain manager has implemented the following business policy into the system.



Integration of Rules and Optimization in Plant PowerOps 9

Declarations
for the demand , instance of demand

where the demand is a customer order
If

the category of the customer for the demand is gold
Then

set the tardiness variable cost for the due date of the demand to ”high”

3.4 Model Preprocessing

Adding anAPSon top of anERPmeans stepping frompure transactional data pro-
cessing to the more complex optimization tasks. It often turns out that the existing
data in the ERP data base is not sufficient (i) to express all constraints that hold
for the production problem, (ii) to incorporate implicit preferences of the planner,
(iii) to balance between conflicting objectives in the evaluation of a solution.

While adding appropriate fields for static data to the legacy system is not a
big issue, there are numerous cases where this data has to be calculated dynam-
ically (optimization weights, load dependent preferences, etc.). Maintenance of
these data and procedures can become a nightmare.

Preprocessing rules help to express explicitly the necessary transformation
logic and avoid out-of-date and inconsistent data by creating it dynamically.
They also provide an easy way to build a set of preferences the user wants to
apply in a given context.

Example 5. Products for the Same Customer Demand are to be Pro-
duced on the Same Production Line. For some products a high degree in
regularity is important. Let’s assume a nearly identical molding quality can only
be guaranteed when the chocolate is processed on the same line. To dispatch
this constraint we can use the following rule:

Declarations
for the demand, instance of demand,
for order A, instance of production order

where the demand is satisfied by order A,
for order B, instance of production order

where the demand is satisfied by order B,
for activity 1, instance of the activities generated from order A,
for activity 2, instance of the activities generated from order B

If
the name of activity 1 contains Molding
and the name of activity 2 contains Molding

Then
insert in the working memory a new activity compatibility constraint

so that activity 1 and activity 2 are processed on the same line

Note that activity compatibility constraints are part of the object model of
Plant PowerOps [9]. This constraint forces two given activities to be executed in
resources belonging to the same production line.
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3.5 Tune the Engine

An effective plan is always a trade-off between conflicting objectives. For exam-
ple, in order to minimize the setup and production costs we should produce long
campaigns of similar products. Such a production policy will probably lead to
poor customer satisfaction because there is a continuous demand for a mix of dif-
ferent products. After having classified its possible customers in three categories
(normal, silver, gold), the supply chain manager decided to adapt the objectives
of the optimization to the configuration of the customer demands to be satisfied.
In case of large amounts of demands from gold customers, customer satisfaction
should be privileged. Otherwise production efficiency should be more important.

Example 6. Emphasize Customer Satisfaction.

If
the percentage of gold customers is less than 20

Then
set the total setup cost weight to ”high”
and set the total tardiness weight to ”low”

Else
set the total setup cost weight to ”low”
and set the total tardiness weight to ”high”

The last three following scenarios concern the use of the business rules in-
terface during the activity of the production planner. The production planner
uses Plant PowerOps for generating the day to day schedule of the factory and
is not allowed to change the business policies defined by the supply chain man-
ager. He/she is nevertheless able to use the rule based interface to configure the
system for his/her daily activities and to run validation tests.

3.6 Data Validation

Example 7. Minimal Order Quantity. For technical reasons (or by mistake)
the sales department may enter into the system customer orders with low quan-
tity of finished products. To prevent these orders from being considered in the
planning, the following rule enables the production planner to make sure that
only orders with more than two batch units are scheduled.

Declarations
for the demand, instance of demand

where the demand is a customer order
If

the quantity of material requested by it the demand is less than 3
Then

display the name of the demand
and display ”requests less than 3 product units”
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3.7 Solution Checking

In addition to built-in solution checking, PPO allows defining factory specific
checking rules applied to solutions. It does not matter if the solution has been
generated by the optimizer or by hand. This technique is well suited to check soft
constraints or desired properties that are not directly expressed in the constraint
model.

Example 8. Temporal Dispersion of Related Activities. The following
rule keeps the planner informed when two activities belonging to the same pro-
duction order have been scheduled far away from each other.

Declarations
for order A, instance of production order,
for activity 1, instance of the activities generated from order A,
for activity 2, instance of the activities generated from order A,
for the solution is the best scheduling solution

If
the start time of activity 2 in the solution is greater than

the end time of activity 1 in the solution + 15
Then

add in the checker of the solution a violation ”Dispersed activities”

3.8 Graphical Rules

Graphical actions include coloring, filtering and selection. While most of them
are predefined (filtering types of resources, color late activities), others have more
complex parameters.

Example 9. Select Late Activities That Belong to a Gold Customer.
As we have seen above, some orders may have a higher priority than others.
Therefore we would like to refine the information presented by selecting only the
late orders that are produced for a gold customer. Using the rule interface this
can be expressed as follows:

Declarations
for the customer order, instance of demand

where this demand is a customer order,
for the order, instance of production order

where the customer order is satisfied by the order,
for activity 1, instance of the activities generated from the order

If
the category of the customer for the customer order is gold
and the tardiness cost of activity 1 in the solution is greater than 0

Then
add activity 1 to selection

Else
remove activity 1 from selection
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For coloring different types of color schemas make sense: customer type, order
value, material properties, etc. Using a rule based configuration interface the user
can establish a series of commonly used coloring schemas without coding. The
gain against a call for application extension can be measured in money, time and
autonomy 1.

All the scenarios presented demonstrate the flexibility of a rule-based inter-
face on top of optimization algorithms. Note that these scenarios could not have
been done on the any of the most popular APS in the market without a ma-
jor development effort. In fact either they do not provide any form of scripting
language (e.g. Oracle/APS), or the scripting language does not allow modifi-
cations of the optimization model (e.g. the ABAP language of SAP/APO). In
some cases it is possible to write special purpose optimization algorithms re-
placing the ones available in the APS (for example, this is true for both Or-
acle and SAP). However this implies a large project, including writing trans-
formation from and to business model and a brand new optimizer. It would
be overkill to achieve one of the scenarios described by such custom
development.

4 Open Questions and Future Work

4.1 Loose Integration or Tight Integration

Although conceptually interesting, we are convinced that, in general, a tighter
integration where the rules and the optimization engines directly communicate,
would be much more complex without bringing a sensible added value. A tighter
integration would end up being yet another high level optimization language
(based on business rules). Such an imaginary rule-based optimization language
would be far from being practical as supply chain optimization tool dedicated
to people with little optimization experience. Moreover, the interaction of op-
timization and rules engines would generate difficult robustness issues. On the
contrary, in the proposed approach, the robustness of embedded heuristics is en-
forced by the closed model. The end user may enrich the model using predefined
constraints and influence the search procedure, but not interact with it. There-
fore, once we are able to deal with infeasible input data, we do not have to deal
with issues such as rules that could make the optimization problem impossible
to handle as this translates into infeasible input data. Somewhere in between
the loose integration proposed in this paper and a tight integration is applied
in [4] for optimization systems used in the airline and railway industries and is
described in section 5.

1 Note that the manufacturing object model of Plant PowerOps does not provide the
concept of a customer category (normal, silver, gold). Plant PowerOps enables users
to dynamically attach properties to objects. These properties can be used in the left
hand side (the if statement) of business rules thus providing a powerful mechanism
to extend the object model and to write constraints (rules) based on these extensions
as shown in the examples 4 and 9.
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4.2 Use Rules to Guide the Search Heuristics

Although we are convinced that a loose integration of rules and optimization is
better than a tight cooperative integration, nevertheless we are aware that busi-
ness rules may play an important role in a more sophisticated method to guide
the engine towards desired solutions. The design of methods to guide the search
based on business rules is subject of future work. We believe that the following
types of interactions could be highly interesting. Interaction of rules and opti-
mization in constructive search methods; definition of local moves via business
rules; use business rules to describe how to repair an infeasible schedule, and fi-
nally definition of soft constraints (preferences) via business rules. The challenge
of the design of rule-based methods to guide the search will be to keep the clear
separation between the rule based interface and the optimization engines.

4.3 Rules and GUI

Nowadays business rules systems such as ILOG JRules [8] provide a user friendly
interface to write rules in natural language (see all provided examples) or techni-
cal language (see example 1). Rules can be stored in rule repositories and saved.
Moreover, parametric rules or rule templates can be defined to enable users to
generate new rules by modifying (specializing) a given rule template. Despite all
that, writing a rule is always a complex task compared to a sequence of clicks
in a graphical user interface. Consider example 1 of section 3.2 where a rule
defines a machine breakdown or shutdown. This is a typical case where a small
graphical item could provide the very same functionality with a much simpler
user interaction. In our experience, it is not always easy to decide which func-
tionality should be provided as GUI items and which should be provided via a
rules interface. Our current approach is to provide a set of pre-defined rules first,
which may become part of the graphical user interface later upon request.

5 Related Work

The integration of rule-based systems and optimization has been widely investi-
gated in the literature. For example, one of the first constraint-based scheduling
system, SOJA [10], used rules both to select the activities to schedule over the next
day and to heuristically guide the constraint-based search. A more systematic ap-
proach proposing integration of constraints and rules can be found in the program-
ming language LAURE [3] [1]. Caseau and Koppstein propose a multi-paradigm
object-oriented language integrating rule-based and constraint-based technology.
LAURE supports forward chaining production rules and backward chaining. In
LAURE rule-based programming provides deductive capabilities that is merged
with constraint satisfaction for improving the efficiency of constraint satisfaction.
The integration of rules and optimization in LAURE is tight, and the rule technol-
ogy is part of the optimization language used to solve the problems. The program-
ming language LAURE evolved in a new programming language called CLAIRE
[2] which packages the features proved useful in LAURE in a much simpler lan-
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guage. The backward chaining functionality of LAURE was removed, and the for-
ward chaining functionality was basically used to build propagation algorithms.

A different integration of rule technology and problem solving can be found in
the vast literature on Constraint Handling Rules (see e.g. [6]). Constraint Han-
dling Rules is a high-level rule-based language for writing constraint solvers and
reasoning systems. Again, the spirit of the integration of rules and optimization
is very different from the loose integration proposed in this paper.

A rule-based front end to optimization is available in the crew pairing opti-
mization system of Carmen Systems ([4], [7]) where the rule language Rave is
used to define feasible pairings. In the airline and railway industries, legal pair-
ings must satisfy a large number of governmental and collective agreements which
vary from an airline to another. Such rules are not hardwired, but rather speci-
fied by the user using the specific rule language Rave. The interaction between
the optimization engine and the rule engine is tighter than the one proposed in
this paper as the rule engine is called to validate possible pairings during column
generation. It is still a loose integration in the sense that the rule engine behaves
as a black box for the optimization engine and provides simply a yes/no answer
on the feasibility of possible pairings. The advantages of the integration of rules
and optimization of Carmen System are that the rules can be easily changed
and maintained by users and it is easy to perform what-it analysis.

6 Conclusions

We have proposed a new, pragmatic, approach for the integration of business
rules and optimization engines. The proposed integration provides the flexibil-
ity, adaptability and extensibility that was missing in today’s supply chain op-
timization systems. Besides the presentation of the integration framework, one
goal was to present a categorization of pertinent rules for optimization applica-
tions. This classification was done based on the rule purpose in the application
context: what-if analysis, business policies, model preprocessing, engine tuning,
data validation, graphical actions and solution checking. Although the proposed
approach is described on supply chain optimization, we believe it can be ap-
plied to most optimization applications. For example, similar investigation is
conducted at ILOG in the area of transportation. We hope that the flexibility
provided by the interaction of rules and optimization removes many obstacles in
the adoption of Advanced Planning and Scheduling systems.
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Linköping University, Sweden

http://www.ida.liu.se/∼paupo

Embedded systems are everywhere: from alarm clocks to PDAs, from mobile
phones to cars, almost all the devices we use are controlled by embedded systems.
Over 99% of the microprocessors produced today are used in embedded systems,
and recently the number of embedded systems in use has become larger than
the number of humans on the planet.

The complexity of embedded systems is growing at a very high pace and
the constraints in terms of functionality, performance, low energy consumption,
reliability, cost and time-to-market are getting tighter. Therefore, the task of
designing such systems is becoming increasingly important and difficult at the
same time.

New automated design optimization techniques are needed, which are able to:
successfully manage the complexity of embedded systems, meet the constraints
imposed by the application domain, shorten the time-to-market, and reduce
development and manufacturing costs.

In this talk, the presenter will introduce several embedded systems design
problems, and will show how they can be formulated as optimization problems.
Solving such challenging design optimization problems are the key to the success
of the embedded systems design.
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The Travelling Salesman Problem is a classic problem of Combinatorial Opti-
misation and involves routing around a number of cities in order to cover the
minimum total distance. It is notoriously difficult to solve practical sized in-
stances optimally. The classical Integer Programming formulation involves an
exponential number of constraints.

Alternative formulations will be given which use less constraints (a polyno-
mial number). These rely on (often ingenious) ways of introducing extra vari-
ables with a variety of real-life interpretations. The purpose of this talk will be
to suggest the use of ’lateral’ thinking in creating new formulations. These extra
variables can be incorporated in extra ’logical constraints’ which can help the
solution process. The compactness of the formulations and the existence of ex-
tra variables which can be exploited in search strategies suggests they might be
valuable if a Constraint Programming approach is adopted. This aspect is still
to be investigated in detail.

Basically three distinct ideas are used in the different formulations.
Firstly sequence variables are introduced representing the sequence in which

cities are visited. These can be used to prevent subtours by using O(n2) con-
straints (instead of the exponential number needed in the classical formulation).
These extra variables also allow one to specify extra relations which help the
solution process.

Secondly flow variables are introduced together with material balance con-
straints. These force the tour to be connected. O(n2) constraints are needed. If,
however, the flows are split into distinct quantities, leading to a multicommodity
flow formulation then O(n3) extra constraints are needed but the Linear Pro-
gramming Relaxation of the model is of equal strength to that of the classical
(exponential) formulation.

Thirdly staged variables are used with a third index representing the stage
at which an arc is traversed. There are a number of ways of incorporating these
variables into constraints to prevent subtours leading to models with O(n) (re-
markably) and O(n2) constraints. Again the existence of these variables allows
one to specify extra conditions which could aid the solution process.

These formulations can be compared by projecting the polytopes of the Lin-
ear Programming relaxations into the same space. Remarkably the resultant
polytopes are proper subsets of each other. The hierarchy of sizes of the poly-
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topes is independent of problem instance allowing one to rank the quality of
the formulations in terms of the strength of the Linear Programming relaxation.
This does not, however, mean that the relative qualities of the formulations will
be the same if other Search and bounding procedures are used other than Linear
Progaramming.

Finally the possibility of arriving at better formulations syntactically (as
opposed to semantically) will be discussed.
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Abstract. Many combinatorial (optimisation) problems have natural
models based on, or including, set variables and set constraints. This was
already known to the constraint programming community, and solvers
based on constructive search for set variables have been around for a
long time. In this paper, set variables and set constraints are put into a
local-search framework, where concepts such as configurations, penalties,
and neighbourhood functions are dealt with generically. This scheme is
then used to define the penalty functions for five (global) set constraints,
and to model and solve two well-known applications.

1 Introduction

Many combinatorial (optimisation) problems have natural models based on, or
including, set variables and set constraints. Classical examples include set par-
titioning and set covering, and such problems also occur as sub-problems in
many real-life applications, such as airline crew rostering, tournament schedul-
ing, time-tabling, and nurse rostering. This was already known to the constraint
programming community, and constructive search (complete) solvers for set vari-
ables have been around for a long time now (see for example [11, 15, 19, 2]).

Complementary to constructive search, local search [1] is another common
technique for solving combinatorial (optimisation) problems. Although not com-
plete, it usually scales very well to large problem instances and often compares
well to, or outperforms, other techniques. Historically, the constraint program-
ming community has been mostly focused on constructive search and has only re-
cently started to apply its ideas to local search. This means that concepts such as
high declarativeness, global constraints with underlying incremental algorithms,
and high-level modelling languages for local search have been introduced there
(see [12, 25, 22, 16, 10, 7, 13, 23, 14, 6] for instance).

In this paper, we introduce set variables and (global) set constraints to
constraint-based local search. More specifically, our contributions are as follows:

– We put the local-search concepts of penalties, configurations, and neighbour-
hood functions into a set-variable framework. (Section 2)

� This paper significantly extends and revises Technical Report 2004-015 of the De-
partment of Information Technology, Uppsala University, Sweden.
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– In order to be able to use (global) set constraints generally in local search, we
propose a generic penalty scheme. We use it to give the penalty definitions of
five (global) set constraints. Other than their well-known modelling merits,
we show that (global) set constraints provide opportunities for a hardwired
global reasoning while solving, which would otherwise have to be hand-coded
each time for lower-level encodings of set variables, such as integer variables
for the characteristic functions of their set values. (Section 3)

– In order to obtain efficient solution algorithms, we propose methods for the
incremental penalty maintenance of the (global) set constraints. (Section 4)

– The (global) set constraints are used to model and solve two well-known
problems, with promising results that motivate further research. (Section 5)

After this, Section 6 discusses related and future work and concludes the paper.

2 Local Search on (Set) Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple 〈V,D,C〉, where V is a finite
set of variables, D is a finite set of finite domains, each Dv ∈ D containing the
set of possible values for the corresponding variable v ∈ V , and C is a finite set
of constraints, each c ∈ C being defined on a subset of the variables in V and
specifying their valid combinations of values.

The definition above is very general and may be used with any choice of finite-
domain variables. The variables in V may, for example, range over sets of integers
(integer variables), strings, or, as in our case, sets of values of some type (set
variables, defined formally below). Of course, a CSP may also contain variables
with several kinds of domains. As an example, consider a CSP 〈V,D,C〉 in which
some variables {i1, . . . , ik} ⊂ V are integer variables, and some other variables
{s1, . . . , sk} ⊂ V are set variables. These could for instance be connected with
constraints stating that the cardinality of each sj must not exceed ij .

In this paper, we assume that all the variables are set variables, and that all
the constraints are stated on variables of this kind. This is of course a limitation,
since many models contain both set variables and integer variables. However,
mixing integer variables and set variables makes the constraints harder to define,
and we consider this to be future work. Fortunately, interesting applications, such
as the two in this paper, are already possible to model.

Definition 1 (Set Variable and its Universe). Let P = 〈V,D,C〉 be a CSP.
A variable s ∈ V is a set variable if its corresponding domain Ds = 2Us , where
Us is a finite set of values of some type, called the universe of s.

Note that this definition does not allow the indication of a non-empty set of
required values in the universe of a set variable, hence this must be done here
by an explicit constraint. This is left as future work, as not necessary for our
present purpose.

Definition 2 (Configuration). Let P = 〈V,D,C〉 be a CSP. A configuration
for P is a total function k : V → ⋃

s∈V Ds such that k(s) ∈ Ds for all s ∈ V .
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Definition 3 (Delta of Configurations). Let P = 〈V,D,C〉 be a CSP and let
k and k′ be two configurations for P . The delta of k and k′, denoted delta(k, k′),
is the set {(s, v, v′) | s ∈ V & v = k(s)− k′(s) & v′ = k′(s)− k(s) & v �= v′},
where − stands for the set difference.

Example 1. Consider a CSP P = 〈{s1, s2, s3}, {Ds1 , Ds2 , Ds3}, C〉 where Ds1 =
Ds2 = Ds3 = 2{d1,d2,d3} (hence Us1 = Us2 = Us3 = {d1, d2, d3}). One possible
configuration for P is defined as k(s1) = {d3}, k(s2) = {d1, d2}, k(s3) = ∅, or
equivalently as the set of mappings {s1 	→ {d3}, s2 	→ {d1, d2}, s3 	→ ∅}. Another
configuration for P is defined as k′ = {s1 	→ ∅, s2 	→ {d1, d2, d3}, s3 	→ ∅}. Now,
the delta of k and k′ is delta(k, k′) = {(s1, {d3}, ∅), (s2, ∅, {d3})}.
Definition 4 (Neighbourhood Function). Let K denote the set of all pos-
sible configurations for a CSP P and let k ∈ K. A neighbourhood function for
P is a function N : K → 2K . The neighbourhood of P with respect to k and N
is the set of configurations N (k).

Example 2. Consider P and k from Example 1. A possible neighbourhood of P
with respect to k and some neighbourhood function N for P is the set N (k) =
{k1 = {s1 	→ ∅, s2 	→ {d1, d2, d3}, s3 	→ ∅}, k2 = {s1 	→ ∅, s2 	→ {d1, d2}, s3 	→
{d3}}. This neighbourhood function moves the value d3 in s1 to variable s2 or
variable s3, decreasing the cardinality of s1 and increasing the one of s2 or s3.

We will use two general neighbourhoods in this paper, which are defined next.
For both, let s ∈ V , S ⊆ V − {s}, and let k ∈ K be a configuration for a CSP
P = 〈V,D,C〉, where K is the set of all configurations for P . The first one, called
move, is defined by the neighbourhood function with the same name:

move(s, S)(k) = {k′ ∈ K | ∃d ∈ k(s) : s′ ∈ S & d ∈ Us′ − k(s′) &
delta(k, k′) = {(s, {d}, ∅), (s′, ∅, {d})}}

This neighbourhood, given k, is the set of all neighbourhoods k′ that differ from
k in the definition of two distinct set variables s and s′, the difference being
that there exists exactly one d ∈ k(s) such that d ∈ k(s) ⇔ d /∈ k′(s) and
d /∈ k(s′) ⇔ d ∈ k′(s′). Hence, d was moved from s to s′.

The second one, called swap, is defined by the neighbourhood function:

swap(s, S)(k) = {k′ ∈ K | ∃d ∈ k(s) : ∃d′ ∈ Us − k(s) : s′ ∈ S & d′ ∈ k(s′)
& d ∈ Us′ − k(s′) &
delta(k, k′) = {(s, {d}, {d′}), (s′, {d′}, {d})}}

This neighbourhood, given k, is the set of all neighbourhoods k′ that differ
from k in the definition of two distinct set variables s and s′, the difference
being that there exists exactly one pair (d ∈ k(s), d′ ∈ Us − k(s)) such that
d ∈ k(s) ⇔ d /∈ k′(s) and d /∈ k(s′) ⇔ d ∈ k′(s′), and the opposite for d′. Hence,
d and d′ were swapped between s and s′.

We will now define the notion of penalty of a constraint, which, informally, is
an estimate on how much a constraint is violated. Below is a general definition,
followed by a generic scheme for balancing the penalties of different constraints,
which is then specialised for each constraint in Section 3.
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Definition 5 (Penalty). Let P = 〈V,D,C〉 be a CSP and let K denote the
set of all possible configurations for P . A penalty of a constraint c ∈ C is a
function penalty(c) : K → N. The penalty of P with respect to k is the sum∑

c∈C penalty(c)(k).

Example 3. Consider once again P from Example 1 and let c1 and c2 be the
constraints s1 ⊆ s2 and d3 ∈ s3 respectively. Let the penalty functions of c1

and c2 be defined as: penalty(c1)(k) = |k(s1) − k(s2)|, and penalty(c2)(k) =
0, if d3 ∈ k(s3), or 1, otherwise . Now, the penalties of P with respect to the
different configurations in the neighbourhood of Example 2 are penalty(c1)(k1)
+ penalty(c2)(k1) = 1, and penalty(c1)(k2) + penalty(c2)(k2) = 0 respectively.

In order for a constraint-based local-search approach to be effective, different
constraints should have balanced penalty definitions [6]: i.e. for a set of con-
straints C, no c ∈ C should be easier in general to satisfy compared to any other
c′ ∈ C. This may be application dependent, in which case weights could be added
to tune the penalties, see [13] for example. For set constraints, we believe that
one such penalty definition is to let (by extension of the integer-variable ideas
in [10]) the penalty of a set constraint c be the length of the shortest sequence of
atomic set operations (defined below) that must be performed on the variables
in c under a configuration k in order to satisfy c.

Definition 6 (Atomic Set Operations). Let P = 〈V,D,C〉 be a CSP, let k
be a configuration for P , and let s ∈ V . An atomic set operation on k(s) is one
of the following changes to k(s):

1. Add a value d to k(s) from its complement Us − k(s), denoted Add(k(s), d).
2. Remove a value d from k(s), denoted Remove(k(s), d).

Note that no value-replacement operation is considered here; its inclusion
would imply a reduction of some of the penalties in Section 3.

Example 4. Performing Δ = [Add(k(s), d), Remove(k(s), b), Add(k(s′), b)] on
k(s) = {a, b, c} and k(s′) = ∅ will yield Δ(k(s)) = {a, c, d} and Δ(k(s′)) = {b}.
Definition 7 (Operation-Based Penalty for Set Constraints). Let P =
〈V,D,C〉 be a CSP and let K be the set of all configurations for P . Let c ∈ C be a
constraint defined on a set of set variables S ⊆ V . The penalty of c, penalty(c) :
K → N, is the length of the shortest sequence of atomic set operations that must
be performed in order to satisfy c given a specific configuration k.

From this definition it follows that penalty(c)(k) = 0 if and only if c is satisfied
with respect to k. Also, as will be seen, to find a penalty that complies with this
definition for a given set constraint is not always obvious.

3 (Global) Set Constraints and Their Penalties

We now present five (global) set constraints and define their penalties. Through-
out this section, we assume that k is a configuration for a CSP P = 〈V,D,C〉,
and that c ∈ C.
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3.1 AllDisjoint

The global constraint AllDisjoint(S), where S = {s1, . . . , sn} is a set of set
variables, expresses that all distinct pairs in S are disjoint, i.e. that ∀i < j ∈
1 . . . n : si ∩ sj = ∅. The penalty of an AllDisjoint(S) constraint under k is
equal to the length of the shortest sequence Δ of atomic set operations of the
form Remove(k(s), d) that must be performed in order for ∀i < j ∈ 1 . . . n :
Δ(k(si)) ∩Δ(k(sj)) = ∅ to hold. We define the penalty as:

penalty(AllDisjoint(S))(k) =

(∑
s∈S

|k(s)|
)
−

∣∣∣∣∣
⋃
s∈S

k(s)

∣∣∣∣∣ (1)

Indeed, we need to remove all repeated occurrences of any value, and their
number equals the difference between the sum of the set sizes and the size of
their union. Hence the following proposition:

Proposition 1. The penalty (1) is correct with respect to Definition 7.

3.2 Cardinality

The constraint Cardinality(s,m), where s is a set variable and m a natural-
number constant, expresses that the cardinality of s is equal to m, i.e. that
|s| − m. This constraint would of course be more powerful if we allowed m to
be an integer variable. However, as was mentioned earlier, the penalty would be
more complicated if we did this, and we see this as future work.

The penalty of a Cardinality(s,m) constraint under k is equal to the length
of the shortest sequence Δ of atomic set operations of the form Add(k(s), d) or
Remove(k(s), d) that must be performed in order for |Δ(k(s))| = m to hold. The
penalty below expresses this:

penalty(Cardinality(s,m))(k) = abs(|k(s)| −m) (2)

where abs(e) denotes the absolute value of the expression e. Indeed, we need
to add (remove) exactly as many values to (from) k(s) in order to increase
(decrease) its cardinality to m. Hence the following proposition:

Proposition 2. The penalty (2) is correct with respect to Definition 7.

3.3 MaxIntersect

The global constraint MaxIntersect(S,m), where S = {s1, . . . , sn} is a set of set
variables and m a natural-number constant, expresses that the cardinality of the
intersection between any distinct pair in S is at most m, i.e. that ∀i < j ∈ 1 . . . n :
|si∩sj | ≤ m. This constraint expresses the same as an AllDisjoint(S) constraint
when m = 0. However, as will be seen, keeping the AllDisjoint constraint is
useful for this special case. Again, allowing m to be an integer variable would
make the constraint more powerful and is future work.
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The penalty of a MaxIntersect(S,m) constraint under k is equal to the length
of the shortest sequence Δ of atomic set operations of the form Remove(k(s), d)
that must be performed such that ∀i < j ∈ 1 . . . n : |Δ(k(si)) ∩Δ(k(sj))| ≤ m
holds. In fact, finding a closed form for the exact penalty of a MaxIntersect con-
straint with respect to Definition 7 turns out not to be that easy. The following
expression gives an upper bound on this penalty, namely the sum of the excesses
of the intersection sizes:

penalty(MaxIntersect(S,m))(k) ≤
∑

1≤i<j≤n

max (|k(si) ∩ k(sj)| −m, 0) (3)

Example 5. Assume that k(s1) = {d1, d2, d3}, k(s2) = {d2, d3, d4}, k(s3) =
{d1, d3, d4}, and that c = MaxIntersect({s1, s2, s3}, 1). The penalty of c accord-
ing to (3) is 2 + 2 + 2 = 3. Indeed, we may satisfy c by performing the sequence
of 3 operations [Remove(k(s1), d1),Remove(k(s2), d2),Remove(k(s3), d3)]. How-
ever, this is not the shortest sequence that achieves this, since after performing
[Remove(k(s1), d3),Remove(k(s2), d3)], the constraint c is also satisfied.

Proposition 3. The bound of (3) is an optimal upper bound w.r.t. Definition 7.

Proposition 4. The upper bound of (3) is zero iff MaxIntersect(S,m) holds.

However, the upper bound of (3) is not correct with respect to Definition 7
when m = 0. Consider s1 = {d1, d2}, s2 = {d2, d3}, and s3 = {d2, d3}. The
penalty under (3) of MaxIntersect({s1, s2, s3}, 0) is 1 + 1 + 2 = 4 whereas the
one of AllDisjoint({s1, s2, s3}) correctly is 6− 3 = 3 under (1).

We may also obtain a lower bound, by using a lemma due to Corrádi [8].

Lemma 1 (Corrádi). Let s1, . . . , sn be r-element sets and U be their union. If
|si ∩ sj | ≤ m for all i �= j, then |U | ≥ r2·n

r+(n−1)·m .

This lemma can be applied for n ground sets that do not necessarily all
have the same cardinality r, but rather with r being the maximum of their
cardinalities, as is the case with MaxIntersect(S,m) and |S| = n. It suffices to
apply the corrective term δ = n · r −∑

s∈S |k(s)| when using the lower bound
for a configuration k where r = max s∈S |k(s)|. Note that δ is the amount of
distinct new elements (from a sufficiently large fictitious universe disjoint from⋃

s∈S k(s)) that one must add to the sets in {k(s) | s ∈ S} in order to make
them all be of size r.

We now have the following lower bound on the penalty of a MaxIntersect(S,m)
constraint under a configuration k (where |S| = n and r = max s∈S |k(s)|):

penalty(MaxIntersect(S,m))(k) ≥ (4)⌈
r2·n

r+(n−1)·m
⌉
−

(
n · r − ∑

s∈S

|k(s)|
)
−

∣∣∣∣ ⋃
s∈S

k(s)
∣∣∣∣

Example 6. Recall Example 5, where m = 1 and the n = 3 sets are of the same
size r = 3, hence δ = 0, and have a union of 4 elements. We get penalty(c)(k) ≥
� 27

5 � − 0− 4 = 2, which is correct with respect to Definition 7.
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Now, the following proposition follows from Lemma 1:

Proposition 5. The bound of (4) is an optimal lower bound w.r.t. Definition 7.

The next proposition establishes what happens when m = 0, in which case
MaxIntersect(S,m) is equivalent to AllDisjoint(S):

Proposition 6. The lower bound of (4) is correct wrt Definition 7 when m = 0.

Proof. When m = 0, then
⌈

r2·n
r+(n−1)·m

⌉
= r · n and the lower bound of (4)

simplifies into the penalty expression (1). Hence it is correct, by Proposition 1.

Unfortunately, the lower bound is sometimes zero even though the constraint
is violated. Consider n = 10 sets, all of size r = 3 (hence δ = 0), that should
have pairwise intersections of at most m = 1 element and that have a union of
8 elements. Then (4) gives 0 as lower bound on the penalty, but the constraint
is violated as there are no such 10 sets, hence m would have to be at least 2.

However, we may still use (4) for the MaxIntersect constraint, but it would
have to be in conjunction with (3), with the condition that if the lower bound of
(4) is zero, then one uses the upper bound of (3) instead. In our experience, the
lower bound of (4) is frequently correct. This also argues for keeping the explicit
constraint AllDisjoint , since for that constraint (4) gives the correct penalty.

An often tighter upper bound than the one of (3) can be obtained by Al-
gorithm 1. It obtains an estimate of the penalty by returning the length of a
sequence of atomic set operations constructed in the following way: (i) Start
with the empty sequence. (ii) Until the constraint is satisfied, add an atomic set
operation removing a value that belongs to a set variable that takes part in the
largest number of violating intersections. The algorithm uses the upper bound
of (3) as the exit criterion, as it is zero only upon satisfaction of the constraint,
by Proposition 4.

Algorithm 1 Calculating the penalty of a MaxIntersect constraint
function penalty max intersect(S, m)(k)

l ← 0
while penalty(MaxIntersect(S, m))(k) > 0 do � According to (3)

choose d ∈ ⋃
s∈S k(s) s.t. |{(i, j) | i < j & d ∈ k(si) ∩ k(sj) & |k(si) ∩

k(sj)| > m}| is maximised.
choose si ∈ S s.t. |{sj ∈ S | i �= j & d ∈ k(si)∩k(sj) & |k(si)∩k(sj)| > m}|

is maximised.
l ← l + 1 � i.e. an imaginary Remove(k(si), d) operation was added
Replace the binding for si in k by si �→ k(si) − {d}

return l

In the current implementation of the MaxIntersect constraint, we use the
upper bound given by (3). As we have seen, this is not always a good estimate
on the penalty with respect to Definition 7. In the future, we plan to use (4) in
conjunction with (3) or (an incremental variant of) Algorithm 1.
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3.4 MaxWeightedSum

The constraint MaxWeightedSum(s,w ,m), where s is a set variable, w : Us → N
is a weight function from the universe of s to the natural numbers, and m is a
natural-number constant, expresses that

∑
d∈s w(d) ≤ m. Note that we do not

allow negative weights nor m to be an integer variable. Allowing these would
need a redefinition of the penalty below.

The penalty of a MaxWeightedSum(s,w ,m) constraint under k is equal to
the length of the shortest sequence Δ of operations of the form Remove(k(s), d)
that must be performed in order for

∑
d∈Δ(k(s)) w(d) ≤ m to hold. We define

the following penalty:

penalty(MaxWeightedSum(s,w ,m))(k) = (5)
min card

({
s′ ⊆ k(s) | ∑

d′∈s′ w(d′) ≥
(∑

d∈k(s) w(d)
)
−m

})
where min card(Q) denotes the cardinality of a set q ∈ Q such that for all
q′ ∈ Q, |q| ≤ |q′|, or 0 if Q = ∅. Indeed, we must remove at least the smallest set
of values from k(s) such that their weighted sum is at least the difference between
the weighted sum of all values in k(s) and m. Hence the following proposition:

Proposition 7. The penalty (5) is correct with respect to Definition 7.

3.5 Partition

The global constraint Partition(S, q), where S = {s1, . . . , sn} is a set of set
variables and q is a ground set of values, expresses that the variables in S are
all disjoint, i.e. that ∀i < j ∈ 1 . . . n : si ∩ sj = ∅, and that their union is equal
to q, i.e. that

⋃
s∈S s = q. Note that this definition of a partition allows one or

more variables in S to be empty, which is useful in some applications, such as
the progressive party problem below. The set q, called the reference set, could
be generalised to be a set variable. The applications we currently look at do not
expect this but this may change in the future. In that case, the penalty function
below would have to be changed to take this into account.

The penalty of a Partition(S, q) constraint under k is equal to the length
of the shortest sequence Δ of atomic set operations that must be performed in
order for ∀i < j ∈ 1 . . . n : Δ(k(si)) ∩ Δ(k(sj)) = ∅ &

⋃
s∈S Δ(k(s)) = q to

hold. The following penalty expresses this:

penalty(Partition(S, q))(k) =

(∑
s∈S

|k(s)|
)
−

∣∣∣∣∣
⋃
s∈S

k(s)

∣∣∣∣∣ +

∣∣∣∣∣q −
⋃
s∈S

k(s)

∣∣∣∣∣ (6)

Indeed, the first two terms are those in (1) for AllDisjoint and the third term
expresses that all unused elements of the reference set must be added to some
set of the partition for the union to hold. Hence the following proposition:

Proposition 8. The penalty (6) is correct with respect to Definition 7.

Note that this penalty could be reduced by allowing replacement operations.
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4 Incrementally Maintaining Penalties

This section presents how the penalties are maintained for two of the presented
constraints, AllDisjoint and MaxIntersect . For the other three, Partition is sim-
ilar to AllDisjoint , while Cardinality and MaxWeightedSum are rather straight-
forward to maintain. Since in local search one may need to perform many it-
erations, and since each iteration usually requires searching through a large
neighbourhood, it is crucial that the penalty of a neighbouring configuration
is computed efficiently. In order to do this, it is important to use incremental
algorithms that, given a current configuration k, do not recompute from scratch
the penalty of a neighbouring configuration k′, but rather compute the penalty
with respect to the penalty of k and the difference between k and k′.

This technique is used, for instance, in [12, 22] where invariants are used to
get efficient incremental algorithms from high-level, declarative descriptions. In
this paper, the incrementality is achieved explicitly for each constraint, and we
consider it to be future work to implement this in a more general and elegant
way. The aim of this paper is to explore the usefulness of the proposed framework
and penalty definitions for set constraints.

4.1 Incrementally Maintaining AllDisjoint

Recall the penalty (1) for an AllDisjoint constraint in Section 3.1. In order to
maintain this incrementally, we use a table count of integers, indexed by the
values in U =

⋃
s∈S Us, such that count [d] is equal to the number of variables

that contain d. Now, the sum in (1) is equal to
∑

d∈U (count [d]−1) as it suffices to
remove a value d ∈ ⋃

s∈S k(s) from all but one of the set variables in {s ∈ S | d ∈
k(s)} in order to satisfy the constraint. This is easy to maintain incrementally
given an atomic set operation.

4.2 Incrementally Maintaining MaxIntersect

Recall the penalty bound of (3) for a MaxIntersect constraint. In order to main-
tain this incrementally, we use the following two data structures: (i) A table
variables indexed by the values in U =

⋃
s∈S Us, such that variables[d] is the set

of variables that d is a member of; (ii) for each variable si, a table si.intersects
indexed by the values in {i+1, . . . , n} such that si.intersects [j] = |k(si)∩k(sj)|.

The sum in (3) is then equal to
∑

1≤i<j≤n max (si.intersects[j] −m, 0) and
all this may be maintained incrementally in the following way, given an atomic
set operation o. If o = Add(k(si), d) then (i) add si to variables[d]; (ii) for
each variable sj in variables[d] such that j > i: if si.intersects [j] ≥ m then
increase the sum in (3) by 1; and (iii) for each variable sj in variables[d] such
that j > i: increase si.intersects [j] by 1. If o = Remove(k(si), d) then (i) remove
si from variables[d]; (ii) for each variable sj in variables[d] such that j > i: if
si.intersects [j] > m then decrease the sum in (3) by 1; and (iii) for each variable
sj in variables[d] such that j > i: decrease si.intersects[j] by 1.

Implementing these ideas with respect to the lower bound of (4) and Algo-
rithm 1 is future work.
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5 Applications

This section presents two well-known applications for constraint programming:
the Progressive Party Problem and the Social Golfers Problem. They both have
natural models based on set variables. They have previously been solved both
using constructive and local search. See, for instance, the references [21, 10, 25,
13, 6, 24] and [3, 20, 18, 9], respectively. The constraints in Section 3 as well as
the search algorithms were implemented in OCaml and the experiments were
run on an Intel 2.4 GHz Linux machine with 512 MB memory.

5.1 The Progressive Party Problem (PPP)

The problem is to timetable a party at a yacht club. Certain boats are designated
as hosts, while the crews of the remaining boats are designated as guests. The
crew of a host boat remains on board throughout the party to act as hosts, while
the crew of a guest boat together visits host boats over a number of periods. The
crew of a guest boat must party at some host boat each period (constraint c1).
The spare capacity of any host boat is not to be exceeded at any period by the
sum of the crew sizes of all the guest boats that are scheduled to visit it then
(constraint c2). Any guest crew can visit any host boat in at most one period
(constraint c3). Any two distinct guest crews can visit the same host boat in at
most one period (constraint c4).

A Set-Based Model. Let H be the set of host boats and let G be the set of
guest boats. Furthermore, let capacity(h) and size(g) denote the spare capacity
of host boat h and the crew size of guest boat g, respectively. Let periods be
the number of periods we want to find a schedule for and let P be the set
{1, . . . , periods}. Now, let s(h,p), where h ∈ H and p ∈ P , be a set variable
containing the set of guest boats whose crews boat h hosts during period p.
Then the following constraints model the problem:

(c1) : ∀p ∈ P : Partition({s(h,p) | h ∈ H}, G)
(c2) : ∀h ∈ H : ∀p ∈ P : MaxWeightedSum(s(h,p), size, capacity(h))
(c3) : ∀h ∈ H : AllDisjoint({s(h,p) | p ∈ P})
(c4) : MaxIntersect({s(h,p) | h ∈ H & p ∈ P}, 1)

Solving The PPP. If we are careful when defining an initial configuration and
a neighbourhood for the PPP, we may be able to exclude some of its constraints.
For instance, it is possible to give the variables s(h,p) an initial configuration and
a neighbourhood that respect c1. We can do this (i) by assigning random disjoint
subsets of G to each s(h,p), where h ∈ H, for each period p ∈ P , making sure
that each g ∈ G is assigned to some s(h,p) and (ii) by using a neighbourhood
specifying that guests from a host boat h are moved to another host boat h′ in
the same period, and nothing else.

Algorithm 2 is the solving algorithm we used for the PPP. It takes the con-
stant sets P , G, H, and the functions capacity and size as defined above as
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parameters, specifying an instance of the PPP, and returns a configuration k
for a CSP with respect to that instance. MaxIter and MaxNonImproving are
additional arguments as described below. If penalty(〈V,D,C〉)(k) = 0, then a
solution was found within MaxIter iterations. The algorithm uses the notion of
conflict of a variable (line 10), which, informally, is an estimate on how much a
variable contributes to the total penalty of a set of constraints with respect to a
configuration.

Algorithm 2 Solving the PPP
1: procedure solve progressive party(P, G, H, capacity , size)
2: Initialise 〈V, D, C〉 w.r.t. P , G, H, capacity , and size to be a CSP ∈ PPP
3: iteration ← 0, non improving ← 0, best ← ∞
4: k ← ∅, tabu ← ∅, history ← ∅
5: for all p ∈ P do � Initialise s.t. c1 is respected
6: Add a random mapping s(h,p) �→ G′, where G′ ⊂ G, for each h ∈ H to k
7: s.t. penalty(Partition({s(h,p) | h ∈ H}, G))(k) = 0
8: while penalty(〈V, D, C〉)(k) > 0 & iteration < MaxIter do
9: iteration ← iteration + 1, non improving ← non improving + 1

10: choose s(h,p) ∈ V s.t. ∀s′ ∈ V : conflict(s(h,p), C)(k) ≥ conflict(s′, C)(k)
11: N ← move(s(h,p), {s(h′,p) | h′ ∈ H & h′ �= h})(k)
12: choose k′ ∈ N s.t. ∀k′′ ∈ N : penalty(〈V, D, C〉)(k′) ≤

penalty(〈V, D, C〉)(k′′)
13: and ((s(h′,p), d, iteration) /∈ tabu or penalty(〈V, D, C〉)(k′) < best),
14: where delta(k, k′) = {(s(h,p), {d}, ∅), (s(h′,p), ∅, {d})}
15: k ← k′, tabu ← tabu ∪ {(s(h′,p), d, iteration + rand int(5, 40))}
16: if penalty(〈V, D, C〉)(k) < best then
17: best ← penalty(〈V, D, C〉)(k),non improving ← 0,
18: history ← {k}, tabu ← ∅
19: else if penalty(〈V, D, C〉)(k) = best then
20: history ← history ∪ {k}
21: else if non improving = MaxNonImproving then
22: k ← a random element in history
23: non improving ← 0, history ← {k}, tabu ← ∅
24: return k

The algorithm starts by initialising a CSP for the PPP, necessary counters,
bounds, and sets (lines 2 − 4), as well as the variables of the problem (lines
5 − 7). As long as the penalty is positive and a maximum number of iterations
has not been reached, lines 8− 23 explore the neighbourhood of the problem in
the following way. (i) Choose a variable s(h,p) with maximum conflict (line 10).
(ii) Determine the neighbourhood of type move for s(h,p) with respect to the
other variables in the same period (line 11). (iii) Move to a neighbour k′ that
minimises the penalty (lines 12− 14).

In order to escape local minima it also uses a tabu list and a restarting compo-
nent. The tabu list tabu is initially empty. When a move from a configuration k to
a configuration k′ is performed, meaning that for two variables s(h,p) and s(h′,p),



30 M. Ågren, P. Flener, and J. Pearson

a value d in k(s(h,p)) is moved to k(s(h′,p)), the triple (s(h′p), d, iteration + t)
is added to tabu. This means that d cannot be moved to s(h′,p) again for the
next t iterations, where t is a random number between 5 and 40 (empirically
chosen). However, if such a move would imply the lowest penalty so far, it is
always accepted (lines 13 − 15). By abuse of notation, we let (s, d, t) /∈ tabu be
false iff (s, d, t′) ∈ tabu & t ≤ t′.

The restarting component (lines 16 − 23) works in the following way. Each
configuration k such that penalty(〈V,D,C〉)(k) is at most the current lowest
penalty is stored in the set history (lines 16−20). If a number MaxNonImproving
of iterations passes without any improvement to the lowest overall penalty, then
the search is restarted from a random element in history (lines 21−23). A similar
restarting component was used in [13, 24] (saving one best configuration) and [6]
(saving a set of best configurations), both for integer-domain models of the PPP.

5.2 The Social Golfers Problem (SGP)

In a golf club, there is a set of golfers, each of whom play golf once a week
(constraint c1) and always in ng groups of size ns (constraint c2). The objective
is to determine whether there is a schedule of nw weeks of play for these golfers,
such that there is at most one week where any two distinct players are scheduled
to play in the same group (constraint c3).

A Set-Based Model. Let G be the set of golfers and let s(g,w) be a set vari-
able containing the players playing in group g in week w. Then the following
constraints model the problem:

(c1) : ∀w ∈ 1 . . .nw : Partition({s(g,w) | g ∈ 1 . . .ng}, G)
(c2) : ∀g ∈ 1 . . .ng : ∀w ∈ 1 . . .nw : Cardinality(s(g,w),ns)
(c3) : MaxIntersect({s(g,w) | i ∈ 1 . . .ng & w ∈ 1 . . .nw}, 1)

Solving The SGP. Similar to the PPP, we need to define an initial configura-
tion and a neighbourhood for the SGP. This, and a slightly changed tabu list,
are the only changes in the algorithm compared to the one we used for the PPP,
hence the algorithm for the SGP is not shown.

We choose an initial configuration k and a neighbourhood that respects the
constraints c1 and c2, i.e. that each golfer plays every week and that each group
is of size ns. We do this (i) by assigning random disjoint subsets of size ns of G to
each s(g,w) where g ∈ 1 . . .ng for each week w ∈ 1 . . .nw and (ii) by choosing the
neighbourhood called swap, specifying the swap of two distinct golfers between
a given group g and another group g′ in the same week. Given such a swap of
golfers between two different groups s(g,w) and s(g′,w), what is now inserted in
the tabu list are both (s(g,w), d, t) and (s(g′,w), d, t) with t being as for the PPP.

5.3 Results

Tables 1 and 2 show the experimental results for the PPP and SGP, respectively.
For both, each entry in the table is the mean value of successful runs out of 100.
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Table 1. Run times in seconds for the PPP. Mean run time of successful runs (out of
100) and number of unsuccessful runs (if any) in parentheses

H/periods (fails) 6 7 8 9 10

1-12,16 1.2 2.3 21.0
1-13 7.0 90.5
1,3-13,19 7.2 128.4 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 10.3 83.0 (1)
1-9,16-19 18.2 160.6 (22)

Table 2. Run times in seconds for the SGP. Mean run time of successful runs (out of
100) and number of unsuccessful runs (if any) in parentheses

ng-ns-nw time (fails) ng-ns-nw time (fails) ng-ns-nw time (fails)

6-3-7 0.4 6-3-8 215.0 (76) 7-3-9 138.0 (5)
8-3-10 14.4 9-3-11 3.5 10-3-13 325.0 (35)
6-4-5 0.3 6-4-6 237.0 (62) 7-4-7 333.0 (76)
8-4-7 0.9 8-4-8 290.0 (63) 9-4-8 1.7
10-4-9 2.5 6-5-5 101.0 (1) 7-5-5 1.3
8-5-6 8.6 9-5-6 0.9 10-5-7 1.7
6-6-3 0.2 7-6-4 1.2 8-6-5 18.6
9-6-5 1.0 10-6-6 3.7 7-7-3 0.3
8-7-4 4.9 9-7-4 0.8 10-7-5 3.4
8-8-3 0.5 9-8-3 0.6 10-8-4 1.4
9-9-3 0.7 10-9-3 0.8 10-10-3 1.1

The numbers in parentheses are the numbers of unsuccessful runs, if any, for that
instance. We empirically chose MaxIter = 500, 000 and MaxNonImproving = 500
for both applications. For the PPP, the instances are the same as in [25, 6, 24]
and for the SGP, the instances are taken from [9]. For both applications, our
results are comparable to, but not quite as fast as, the current best results
([6, 24] and [9] respectively) that we are aware of. We believe that they can be
improved by using more sophisticated neighbourhoods and meta-heuristics, as
well as by implementing the ideas in Section 3.3 for the MaxIntersect constraint.

6 Conclusion

We have proposed to use set variables and set constraints in local search. In
order to do this, we have introduced a generic penalty scheme for (global) set
constraints and used it to give incrementally maintainable penalty definitions for
five such constraints. These were then used to model and solve two well-known
combinatorial problems.

This research is motivated by the fact that set variables may lead to more
intuitive and simpler problem models, providing the user with a richer set of
tools, as well as more preserved structure in underlying solving algorithms such
as the incremental algorithms for maintaining penalties: (global) set constraints
provide opportunities for hard-wired global reasoning that would otherwise have
to be hand-coded each time for lower-level encodings of set variables.
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In terms of related work, Localizer [12, 22], by Michel and Van Hentenryck,
was the first modelling language to allow the definition of local search algorithms
in a high-level, declarative way. It introduces invariants to obtain efficient incre-
mental algorithms. It also stresses the need for globality by making explicit the
invariants distribute and dcount.

In [10], Galinier and Hao use a similar scheme to ours for defining the penalty
of a constraint in local search: they define as the penalty of a (global) constraint
c the minimum number of variables in c that must change in order for it to be
satisfied. Note, however, that this work is for integer variables only. Nareyek uses
global constraints in [16] and argues that this is a good compromise between low-
level CSP approaches, using only simple (e.g., binary) constraints, and problem-
tailored local search approaches that are hard to reuse.

Comet [13], also by Van Hentenryck and Michel, is an object-oriented lan-
guage tailored for the elegant modelling and solving of combinatorial problems.
With Comet, the concept of differentiable object was introduced, which is an
abstraction that reconciles incremental computation and global constraints. A
differentiable object may for instance be queried to evaluate the effect of local
moves. Comet also introduced abstractions for controlling search [23] and mod-
elling using constraint-based combinators such as logical operators and reifica-
tion [24]. Both Localizer and Comet support set invariants, but these are not
used as variables directly in constraints.

Generic penalty definitions for constraints are useful also in the soft-
constraints area. Petit et al. [17] use a similar penalty definition to the one
of Galinier and Hao [10] as well as another definition where the primal graph of
a constraint is used to determine its cost. This definition of cost is then refined
by Petit and Beldiceanu in [5], where the cost is expressed in terms of graph
properties [4]. Bohlin [6] also introduces a scheme built on the graph proper-
ties in [4] for defining penalties, which is used in his Composer library for local
search. To our knowledge, none of these approaches considers set variables and
set constraints.

Open issues exist as well. Other than fine-tuning the performance of our cur-
rent prototype implementation, further (global) set constraints should be added.
What impact will a change to the penalty of MaxIntersect with respect to Sec-
tion 3.3 have? In what way should the penalties of the (global) set constraints
in this paper be generalised to allow problems containing variables with several
kinds of domains? For instance, it would be useful to be able to replace m with
an integer variable in the Cardinality , MaxIntersect , and MaxWeightedSum con-
straints, to allow negative weights in the latter, and to have a variable reference
set in the Partition constraint.

Overall, our results are already very promising and motivate such further
research.
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Abstract. This paper introduces a problem called the temporal knap-
sack problem, presents several algorithms for solving it, and compares
their performance. The temporal knapsack problem is a generalisation
of the knapsack problem and specialisation of the multidimensional (or
multiconstraint) knapsack problem. It arises naturally in applications
such as allocating communication bandwidth or CPUs in a multiproces-
sor to bids for the resources. The algorithms considered use and combine
techniques from constraint programming, artificial intelligence and op-
erations research.

1 Introduction

This paper defines the temporal knapsack problem (TKP), presents some algo-
rithms for solving it and compares the performance of the algorithms on some
hard instances. TKP is a natural generalisation of the knapsack problem and a
natural specialisation of the multi-dimensional knapsack problem. Nonetheless,
it is—as far as we know—a new problem.

In the TKP a resource allocator is given bids for portions of a timeshared
resource — such as CPU time or communication bandwidth — or a shared-
space resource — such as computer memory, disk space, or equivalent rooms in
a hotel that handles block-booking. Each bid specifies the amount of resource
needed, the time interval throughout which it is needed, and a price offered for
the resource. The resource allocator will, in general, have more demand than
capacity, so it has the problem of selecting a subset of the bids that maximises
the total price obtained.

We were initially drawn to formulating the TKP from our interest in ap-
plying combinatorial optimisation techniques in the context of grid computing.
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Applications that use a grid simultaneously require different resources to per-
form large-scale computations. An advanced-reservation system will be used to
guarantee a timed access to resources through some service level agreement [1].

The agreement is reached via negotiation, where end users present reserva-
tion bids to resource providers. Each bid specifies the resource category, start
time, end time and required quality of service (e.g., bandwidth, number of
nodes) [2]. If end users offer a price they are willing to pay for the resource,
advanced reservation allocation in a grid infrastructure becomes equivalent to
the TKP.

Our algorithms are designed to be used by a resource provider to select ef-
ficiently the right subset of customers with respect to resource requirements
and the provider’s utility. So far advanced reservation is not used in grid in-
frastructures, which still use specialised fifo scheduling policies inherited from
high-performance computing. However, the convergence between web services
and grid computing, combined with the arrival of the commercial grid, make the
efficient use of valuable resources critical [3]. Our algorithms fit well into next-
generation grids and represent the first attempts towards efficient grid resource
schedulers.

2 The Temporal Knapsack Problem

A formal statement of the TKP is given in Figure 1. Here, and throughout,
bids(t) is {b ∈ bids|t ∈ duration(b)}. It is important to notice that TKP is not
a scheduling problem.

Figure 2(a) illustrates an instance of TKP that has seven bids, b1, . . . , b7,
and 10 times, t1, . . . , t10, which are displayed on the x-axis. The instance has a
uniform capacity of 10, which is not shown. The optimal solution to this instance
is to accept bids b1, b4, b5, and b6, yielding a total price of 22.

The traditional knapsack problem, as overviewed by Martello and Toth [4],
is a special case of TKP in which there is only a single time. Since the knapsack
problem, which is NP-hard, is a special case of TKP, TKP is also NP-hard.

Given: times, a finite, non-empty set totally ordered by ≤
for each t ∈ times, capacity(t), a positive integer
bids, a finite set
for each b ∈ bids,

price(b), a positive integer
demand(b), a positive integer
duration(b) = [start(b), end(b)], a non-empty interval of times

Find: a set accept ⊆ bids
Such that: ∀t ∈ times,

∑
b∈(accept∩bids(t)) demand(b) ≤ capacity(t)

Maximising:
∑

b∈accept price(b)

Fig. 1. Definition of the temporal knapsack problem
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Fig. 2. An instance of the temporal knapsack problem to which the reduce operator is

applied

The multidimensional knapsack problem (MKP, also known as the multi-
constraint knapsack problem), as overviewed by Fréville [5], is a generalisation
of TKP. Each time and bid in the TKP corresponds, respectively, to a dimen-
sion and an item in MKP. If t1, . . . , tn are the times in TKP, then every bid
b corresponds to an item in MKP whose size is an n-dimensional vector of
the form 〈0 · · · 0 demand(b) · · · demand(b) 0 · · · 0〉 and the MKP capacity is the
n-dimensional vector 〈capacity(t1) · · · capacity(tn)〉. Since TKP polynomially-
reduces to MKP, which is NP-easy, TKP is also NP-easy.

TKP readily reduces to integer linear programming. An instance of TKP
generates the integer linear program that has a 0/1 variable Xb for each bid b:

Maximise:
∑

b∈bids

price(b) ·Xb

Subject to:
∑

b∈bids(t)

demand(b) ·Xb ≤ capacity(t), for each t ∈ times

Xb ∈ {0, 1}, for each b ∈ bids

Each solution to this integer linear program corresponds to an optimal solution
to the TKP in which bid b is accepted if and only if Xb is assigned 1.
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It shall often be convenient to switch between a TKP formulation, as given
in Figure 1, and its linear programming formulation. To do this readily, it is
important to notice that each time t produces one linear constraint; we shall
refer to this as the constraint at t.

3 The Decomposition Algorithm

A decomposition algorithm for solving the TKP is presented here in three stages
of increasing detail. Sec. 3.1 gives the algorithm as a non-deterministic proce-
dure, which implicitly defines a search tree. Sec. 3.2 presents two methods for
searching the tree for an optimal solution. Finally, Sec. 3.3 explains how linear
programming is used to compute cuts, upper bounds, lower bounds and variable
assignments, all of which are used to prune the search space.

3.1 A Non-deterministic Algorithm

Starting with all bids unlabelled, the decomposition algorithm records the solu-
tion by labelling each bid either “accept” or “reject.” The algorithm employs
three basic operations: reduce, which simplifies a problem instance; branch,
which generates one branch in which an unlabelled bid is labelled “accept” and
another branch in which that bid is labelled “reject”; and split, which decom-
poses a problem instance into smaller, independent problem instances. Let us
begin by exemplifying the three operators.

The reduce operator performs two kinds of simplification. The first kind re-
moves from the problem instance any bid b whose demand exceeds the capacity
available at some time t in the duration of the bid. The operator labels all
removed bids with “reject.” This simplification corresponds to the constraint
programming operation of achieving bound consistency on the constraint at t
by removing the value 1 from the domain of Xb. For example, in the instance
of Figure 2(a), bid b2 has demand 11 at t1, t2 and t3, yet the capacity at these
times is only 10. So, the reduce operator removes b2 from the instance and labels
it “reject,” which results in the instance shown in Figure 2(b).

The second kind of simplification removes unnecessary times from the in-
stance. In the instance of Figure 2(b), at times t1, t5, t6, t7 and t10 the total
demand does not exceed the capacity. Hence the constraints at these four times
are satisfied in all assignments to the variables; in constraint programming ter-
minology, they are entailed. Hence these times can be removed from the instance
and from the durations of all bids. The result of this is that the duration of bid
b5 is now the empty set, meaning that b5 participates in no constraints. Hence,
b5 is accepted in all optimal solutions. (In constraint programming terminology,
any feasible solution that rejects b5 is dominated by another feasible solution
that is identical except that it accepts b5.) Thus, the reduce operator removes
b5 from the instance and labels it “accept,” resulting in the instance displayed
in Figure 2(c).

There is a second method by which the reduce operator removes times from
an instance. It is often the case that two adjacent times have the same bids. In



38 M. Bartlett et al.

such a case the time with the larger capacity imposes a weaker constraint and
therefore can be removed; if the two times have the same capacity, then either
time can be removed. In the instance of Fig. 2(c), t2 and t3 impose the same
constraint as do t8 and t9. Thus, t3 and t9 can be removed from the instance,
resulting in the instance of Figure 2(d).

The split operator decomposes a problem instance into subproblems that can
be solved independently. A split can be performed between any two adjacent
times, t and t′, such that bids(t) ∩ bids(t′) = ∅. In the instance of Fig. 2(d),
a split can be made in between t4 and t8 resulting in two subproblems: one
comprising times t2 and t4 and bids b1, b3 and b4; and a second comprising time
t8 and bids b6 and b7. Splitting is rarely used in constraint programming, though
two recent exceptions are the work of Walsh [6] and of Marinescu and Dechter
[7].

The branch operator is the familiar one from constraint programming, arti-
ficial intelligence and operations research. A bid b is selected, it is then removed
from the problem and two branches are generated: one in which b is labelled
“reject” and the other in which it is labelled “accept.” On the accept branch,
demand(b) must be subtracted from the capacity at all times in duration(b).

The decomposition algorithm, which applies the previous operations, is shown
as Algorithm 1. This performs some initialisation and then calls the recursive
procedure Solve.

Algorithm 1: Decomposition
Input: P , an instance of TKP;
Reduce(P );
Split(P ) into set of problems S;
for (s ∈ S) do Solve(s);

Procedure Solve(P ); (where P is an instance of TKP)
if bids = ∅ then return;
else

Select a bid b from bids;
Non-deterministically do one of;
(1) RejectBid(b);

Reduce(P );
Split(P ) into set of problems S;
for s ∈ S do Solve(s)

(2) AcceptBid(b);
Reduce(P );
Split(P ) into set of problems S;
for s ∈ S do Solve(s)

Let us now turn our attention to the four procedures used in the de-
composition algorithm: RejectBid, AcceptBid, Reduce and Split. The algo-
rithms for these support procedures are given in Algorithm 2. In this discus-
sion, and throughout, let Demand(t) be the total demand at time t—that is
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Algorithm 2: Support Procedures for the Decomposition Algorithm
Procedure RejectBid(b : bids);
label b reject;
remove b from bids;

Procedure AcceptBid(b : bids);
label b accept;
remove b from bids;
for t ∈ duration(b) do subtract demand(b) from capacity(t);

Procedure Reduce(P);
for b ∈ bids do TestForcedReject(b);
for t ∈ times do if Demand(t) ≤ capacity(t) then RemoveTime(t);
if |times| ≥ 2 then

set ta to min(times);
while ta �= max(times) do

set tb to next(ta);
if bids(ta) = bids(tb) then

if capacity(ta) ≥ capacity(tb) then RemoveTime(ta); set ta to tb

else RemoveTime(tb)

else set ta to tb

Procedure Split(P );
Let ta and tb be two times such that next(ta) = tb and bids(ta) ∩ bids(tb) = ∅;
if no such times exist then return(P );
else

Let P1 be the TKP instance with times {t|t ≤ ta} and bids {b|end(b) ≤ ta};
Let P2 be the TKP instance with times {t|t ≥ tb} and bids {b|start(b) ≥ tb};
return(Split(P1) ∪ Split(P2))

Procedure RemoveTime(t : times);
remove t from times;
for b ∈ bids(t) do

remove t from duration(b);
if duration(b) = ∅ then AcceptBid(b)

Procedure TestForcedReject(b:bids);
if for some t ∈ duration(b), demand(b) > capacity(t) then RejectBid(b)

∑
b∈bids(t) demand(b). Also let next(t) be the smallest time strictly greater than

t; next(t) is undefined if t is the largest time.
RejectBid(b) and AcceptBid(b) are simple; both label bid b appropriately and

remove it from the problem instance. In addition, AcceptBid(b) must subtract
the demand of the bid from the resource capacities available. Recall that reduce
performs two kinds of simplification: (1) removing bids that must be rejected
(forced rejects) and (2) removing unnecessary times, which may lead to removing
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bids that must be accepted (forced accepts). This is achieved by performing (1)
to completion and then performing (2) to completion. Once this is done, there is
no need to perform (1) again; doing so would not force any more rejects. In fact,
it can be shown (though space precludes doing so here) that every time Solve is
invoked it is given an instance such that

– ∀t ∈ times ∀b ∈ bids(t) demand(b) ≤ capacity(t),
– ∀t ∈ times capacity(t) < Demand(t),
– ∀b duration(b) �= ∅ and
– ∀t, t′ ∈ times t′ = next(t) =⇒ bids(t) �= bids(t′).

An instance that has these properties is said to be reduced since performing
the Reduce operator on the instance would have no effect. For each the two
occurrences of Reduce in Solve we have implemented a significant simplification
of the operator by considering the context in which it occurs.

As presented, the decomposition algorithm defines an AND/OR search tree.1

Each node consists of a TKP instance. The root node is an AND node and
comprises the initial problem instance. Every leaf node comprises a TKP instance
with no bids. The children of an AND node are the (one or more) instances
generated by applying the Split operator to the AND node. The set of feasible
solutions to an AND node is the cross product of the feasible solutions of its
children. Each child of an AND node is an OR node. Each OR node, other than
the leaves, has two children generated by the branching in the algorithm—one
child in which a selected bid is accepted and one in which that bid is rejected.
The set of feasible solutions of an OR node is the union of the feasible solutions
of its children.

The Decomposition Algorithm is correct in that the feasible solutions of the
AND/OR search tree include all optimal solutions. The feasible solutions of the
tree generally contain non-optimal solutions, which is obvious once one notices
that the non-deterministic algorithm does not use the price of the bids. The next
section considers how to explore the tree to find an optimal solution and how to
use bounds on the objective function to prune the tree during the exploration.

3.2 The Search Strategy

This section explains how the standard branch-and-bound framework for OR
trees can be adapted to handle AND/OR trees, such as those of the previous
subsection. We refer this adapted framework as AOBB. The framework does not
specify how the algorithm should choose the next node to be expanded. To do
this, we currently employ two strategies: the AO* algorithm described by Nils-
son [9] (which is itself based on an algorithm of Martelli and Montanari [10]),
and a depth-first algorithm. The AO* search strategy is an extension of the A*
algorithm to AND/OR search spaces, and retains two important properties of
A*: the first feasible solution found is guaranteed to be an optimal one, and no

1 The idea that a non-deterministic program implicitly defines an AND/OR tree was
used in the very first paper published in the journal Artificial Intelligence [8].



The Temporal Knapsack Problem and Its Solution 41

algorithm that is guaranteed to find an optimal solution expands fewer nodes
than AO* [11]. The drawback of AO* is that it requires a large amount of mem-
ory; the number of nodes in memory is Ω(2|bids|). In contrast, depth-first search
stores only Ω(|bids|) nodes. However, in general, depth-first search explores more
nodes than necessary to determine an optimal solution.

As with other branch-and-bound algorithms, AOBB stores at each search
node an upper and lower bound on the objective function value for the TKP in-
stance at that node. The AOBB algorithm repeatedly (1) selects an unexpanded
OR node, (2) expands the OR node and then its children, and (3) propagates
new bounds through the tree and uses these bounds to prune the tree. It per-
forms this sequence of three stages until the tree contains no nodes to expand,
at which point the result of the pruning is that the tree contains nothing but
an optimal solution. Notice that whenever an OR node is expanded its children
(which are AND nodes) are immediately expanded, producing OR nodes. Thus,
the search tree’s new leaves are always OR nodes. The only time an AND node
is a leaf is at the start when the tree contains only the root node. Let us now
consider the three major stages in more detail.

Stage 1: The node to process next is found. This is where AO* and
depth-first differ. AO* selects a leaf node by descending the search tree, starting
at the root and taking the child with the highest upper bound at an OR node.
AO* allows any child to be taken at an AND node; our implementation takes the
child with the largest spread between its upper and lower bounds. It is important
to notice that successive descents can take different paths from a node since the
node’s bounds may change between the descents.

In contrast, when depth-first search expands a node its children are ordered
from left to right and this ordering is fixed throughout the execution. Depth-
first descends from the root node by always taking the left-most child that has
unexpanded descendants. Depth-first search allows the children to be ordered in
any manner. Our implementation orders the children of an OR node from left to
right so that their upper bounds are non-decreasing and the children of an AND
node so that the spread between their upper and lower bounds is non-decreasing.

Stage 2: The node is processed and expanded. The node found by the
above stage will be either an OR node or the root node.

In the case of the root node, the resulting problem is reduced and split to
form a set of child nodes, which are OR nodes, each containing independent
subproblems. For each of these OR nodes, an upper and lower bound on its
objective function value is obtained through solving the linear relaxation of the
TKP at the node. As explained in the next subsection, at each OR node this
linear program is also used to calculate three cuts (implied constraints in con-
straint programming terminology): a Gomory mixed-integer cut, a reduced costs
constraint and a reversed-reduced-cost constraint. The Gomory cut is added to
the linear programming form of the problem at the node and at all of its future
descendents. This cut reduces the feasible region of the linear program without
removing any integer solutions. Bounds consistency is enforced on all three cuts,
which might determine the value of certain variables, i.e., whether a bid should
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be accepted or rejected. The RejectBid and AcceptBid operators are performed
as appropriate, followed by the Reduce operator.

In the case of the node to expand being an OR node, an unlabelled bid is
chosen to branch on, and two child AND nodes are created, one in which the
bid is labelled “accept” and one in which it is labelled “reject.” Both of these
AND nodes are then processed and expanded in the same way as described for
the root node. By expanding an OR node and both its children in a single stage
in this way, the algorithm gains efficiency.

Stage 3: The new bound values are propagated and the tree is
pruned. Starting at the OR nodes just created and working up the tree to the
root, the value of the upper bound (ub) and the lower bound (lb) are updated
for each node as follows.

ub(n) =

{
maxn′∈children(n)(ub(n′) + a(n, n′)) if n is an OR node∑

n′∈children(n)(ub(n′) + a(n, n′)) if n is an AND node

lb(n) =

{
maxn′∈children(n)(lb(n′) + a(n, n′)) if n is an OR node∑

n′∈children(n)(lb(n
′) + a(n, n′)) if n is an AND node

where a(n, n′) is the sum of the prices of all bids accepted in moving from node
n to node n′, and children(n) is the set of nodes that are children of n.

As this stage assigns and reassigns bounds, it checks to see if any OR node
has one child whose upper bound does not exceed the lower bound of the other
child. In such a case the best solution from the first child can be no better than
that of the second child, so the first child and all its descendants are removed
from the tree.

Having seen how the three stages operate, the last search issue that must
be addressed is that of how bids are chosen for branching in Stage 2. We have
tried two strategies for this. The demand strategy, chooses a bid with the high-
est demand. The intuition behind this is that labelling a bid with high de-
mand is likely to lead to more propagation than one with low demand. The
second strategy, called force-split is designed to yield nodes that can be split,
preferably near the center. This strategy searches the middle half of the times
for a pair of adjacent times, t and t′, that minimises the cardinality of S =
bids(t)∩bids(t′); ties are broken in favour of the time nearest the center. The al-
gorithm then branches on each bid in S in non-increasing order of their demands.
This sequence of branches generates leaf nodes that can each be split between t
and t′.

3.3 Generating Cuts and Bounds

This section explains how we use linear programming to generate cuts and
bounds on the objective function value. The presentation assumes the reader
is familiar with the basic theory underlying linear programming, such as that
which is presented by Chvatal [12].

As shown in Section 2, a TKP instance can be represented as an integer linear
program. This enables us to generate cuts that reduce the size of the feasible
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region for TKP without eliminating any potential integer solutions. To enhance
the given search strategy, we employ the well-known Gomory mixed-integer cut
(GMIC), which is considered one of the most important classes of cutting planes
(see [13]).

Using the results from the linear relaxed TKP model (0 ≤ Xb ≤ 1, ∀b ∈ bids)
and an objective function value z of a known feasible integer solution, a valid
GMIC [14] for the TKP model can be written as

�zU� − z ≥
∑

fi≤f0
i∈N1

�−ri�Xi +
∑

fj≤f0
j∈N2

�rj�(1−Xj) +
∑

fi>f0
i∈N1

(
�−ri�+

fi − f0

1− f0

)
Xi +

∑
fj>f0
j∈N2

(
�rj�+

fj − f0

1− f0

)
(1−Xj) +

∑
fk≤f0
k∈S

�−rk�sk +
∑

fk>f0
k∈S

(
�−ri�+

fk − f0

1− f0

)
sk

where, N1 (N2) is the set of indices for non-basic variables at their lower (up-
per) bounds; S, the set of slack variables s; r, the reduced costs; and zU , the
objective value of the linear relaxation model. It is clear that zU provides an up-
per bound for the linear mixed integer TKP. In this notation, f0 = zU − �zU�;
fi = −ri − �−ri�, ∀i ∈ N1; and fj = rj − �rj�, ∀j ∈ N2.

The generated GMICs are added to the linear relaxed TKP instance and
all its descendants in the search tree. Each added GMIC removes some of the
non-integer solutions from the relaxed feasible region, but none that are integer.
This also helps to improve the upper bound zU .

We also employ the “reduced costs constraints” (RCC ) and “reverse-reduced
costs constraints” (R-RCC ) discussed by Oliva et al. [15]. Following their work,
the “pseudo-utility criterion” is used to obtain a reasonably good feasible so-
lution. This criterion is computationally cheap, especially once the solution to
the linear relaxation is known and the optimal values of the dual variables,
λ, are determined. In this criterion all Xb are sorted in non-increasing order of
price(b)/(demand(b) ·∑t∈duration(b) λt) and the demands are satisfied in this or-
der, as long as there is enough capacity. The resulting objective function value,
denoted by zL, yields a lower bound for the optimum z. From

z −
∑
i∈N1

riXi +
∑

j∈N2

rj(1−Xj)−
∑
k∈S

rksk = zU ,

one can devise two useful constraints: RCC on the right, and R-RCC on the
left.

zU − zU+ ≤ −
∑
i∈N1

riXi +
∑

j∈N2

rj(1−Xj)−
∑
k∈S

rksk ≤ zU − zL

where zU+ represents an upper bound which is stronger than the one provided
by the linear relaxation (zU ). Such an upper bound can be obtained by using a
“surrogate relaxation”. In our case, this relaxation consists of adding together
all of the constraints weighted with their associated dual values.
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The aforementioned cuts and constraints are used for propagation purposes.
By enforcing bounds consistency, the domains of decision variables including
slacks are filtered and in certain cases are reduced to a singleton. Bounds consis-
tency on a RCC/R-RCC constraint of the form a ≤ ∑

i bixi +
∑

j cj(1−xj) ≤ d
gives the following additional bounds on the domains of the variables xp ∈ N1∪S
and xq ∈ N2: ⌈

a−∑
i bi −

∑
j cj + bp

bp

⌉
≤ xp ≤

⌊
d

bp

⌋
and

1−
⌊

d

cq

⌋
≤ xq ≤ 1−

⌈
a−∑

i bi −
∑

j cj + cq

cq

⌉
.

The GMIC works in a manner similar to RCC.

4 Performance Comparison

This section compares the effectiveness of three algorithms at solving a range of
randomly-generated TKP instances. The algorithms considered are:

– the decomposition algorithm using AO* search with the forced-split variable-
selection strategy;

– the decomposition algorithm using depth-first search with the forced-split
variable-selection strategy; and

– the integer linear program solver provided by CPLEX version 8.1 with the
default settings. The solver uses a branch-and-cut algorithm — branch-and-
bound augmented by the use of cuts. After an initial “presolve” phase, which
removes redundant constraints and attempts to tighten the bounds on the
variables, the solver creates a tree, whose root contains the linear relaxation
of the problem, and proceeds to expand nodes of this tree until an optimal
integer solution has been found. At each node, the linear relaxation of the
problem at that node is solved. If this leads to a solution in which some
variables have fractional values, a selection of cuts are generated and added
to the problem. The problem is then solved again, and if some variables are
still non-integer, one is chosen to branch on, producing one child with the
chosen variable set to 1 and another with it set to 0.

Preliminary experiments showed that the decomposition algorithm consistently
performed better with forced-split selection than with demand selection. This
is the case for both AO* search and depth-first search. Consequently, extensive
experiments were not performed for the demand strategy.

Our method for randomly generating TKP instances is controlled by six
parameters: ntimes, max length, max demand, ucapacity, max rate and nbids.
These are all integers, except max rate, which is a floating point number. Given
these parameters, an instance is generated that has times = {t1, . . . tntimes},
ordered in the obvious way, a uniform capacity of ucapacity, and nbids bids.
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Each bid within an instance is generated by randomly choosing its start time,
end time, demand and rate from a uniform distribution over the following ranges:

start(b) ∈ [1, ntimes],
end(b) ∈ [start(b),max(ntimes, start(b) + max length− 1)],
demand(b) ∈ [1,max demand],
rate(b) ∈ [1,max rate].

All of these are integers except that rate(b) is a floating point number. From
these values, we set price(b) to round(rate(b)·demand(b)·(end(b)−start(b)+1)).

Performance was assessed on a set of randomly-generated instances in which
most factors affecting complexity were kept static,

ntimes = 2880,
max length = 100,
max demand = 50,
ucapacity = 400,

while varying the values of two parameters: nbids and max rate. The value 2880
corresponds to the number of 15 minute slots in 30 days. By varying max rate
from 1.0 to 2.0 in increments of .2, and then further increasing its value to 4, 8
and 16, and by varying nbids from 400 to 700 in increments of 50, we generated
63 problem suites, each containing 20 instances. By using these parameter values,
we have focussed the majority of our experiments on instances generated with
max rate between 1 and 2, but also consider instances with larger values of
max rate in order to show the effect this parameter has over a greater range.

Figure 3 shows the mean solution time taken by each algorithm for all gen-
erated instances in which there are a given number of bids and max rate ≤ 2,
The graph reveals that for the problems with the lowest number of bids, both
decomposition algorithms outperform the CPLEX solver. However, as the prob-
lem size increases, the performance of the decomposition algorithms deteriorates
faster than that of CPLEX. The AO* algorithm is unable to solve some instances
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with 600 bids as it encounters memory problems and thrashes badly. The depth-
first algorithm and CPLEX are both capable of solving all instances with up to
and including 650 bids, but encounter problems on some instances with 700 bids;
CPLEX through encountering memory-shortage problems and depth-first search
through the exceptionally long time required to solve some problem instances.

Figure 4, shows the performance of the three algorithms on all instances in
which max rate has a given value and nbids ≤ 550. The graph shows that for
smaller values of max rate, on average the CPLEX solver performs best, followed
by the AO* algorithm, with the depth-first exploration proving worse. However
for larger values of max rate the AO* and depth-first algorithms clearly out-
perform the CPLEX solver. It is worth noting that the performance of CPLEX,
unlike the other two programs, is barely affected by the value of max rate.

While we have reported mean solution time throughout, it should be men-
tioned that these are influenced strongly by the extremely long run times required
for a few of the instances. For most problem suites, the algorithms solve most in-
stances in very short times; however for a few instances substantially longer is
taken, resulting in these instances having a large influence on the mean. Despite
this, we report mean times rather than median times (which would not be affected
by these extreme values) as the frequency of the very hard instances increases with
both increasing numbers of bids and decreasing max rate, and their frequency is
a significant component of the difficulty of a particular problem suite.

5 Conclusion and Future work

This paper has defined the temporal knapsack problem and identified it as a
formalisation of some problems that naturally arise in making advanced reserva-
tions. The TKP specialises the multidimensional knapsack problem by imposing
a temporal structure.

We have designed a special-purpose algorithm for solving the TKP. Its novel
feature is that it exploits the temporal structure to decompose problem instances
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into subproblems that can be solved independently. It also uses a branching
method that is designed to increase the frequency with which decompositions are
made. The decomposition algorithm combines techniques from constraint pro-
gramming (e.g., bound consistency, entailed constraints), artificial intelligence
(e.g., AND/OR search spaces and the AO* and depth-first methods for search-
ing them) and operations research (e.g., linear relaxations, cuts, branch and
bound).

The TKP readily reduces to integer linear programming, which can be solved
with an off-the-shelf system such as CPLEX.

Our experiments compared the time it takes to solve randomly-generated
instances of TKP with three algorithms: CPLEX and the decomposition algo-
rithm with both AO* search and depth-first search. CPLEX and decomposition
with AO* search are effective on instances with approximately 650 and 550
bids, respectively, but encounter space problems on larger instances. Decompo-
sition with depth-first search is effective on instances with approximately 650
bids but runs slowly on larger instances, though it does not encounter space
problems.

In comparing these solution programs one must consider that the algorithms
and implementation of CPLEX have been refined over decades, whereas those of
our decomposition algorithm have been refined over months. With this in mind,
we speculate that with further development—such as that outlined below—the
decomposition algorithm could handle larger instances than CPLEX. We also
have come to appreciate that beating CPLEX requires significant effort.

We see many ways in which believe that the decomposition algorithm and
its implementation could be improved. The most important improvement would
be to employ a search algorithm that takes the middle-ground between time-
efficient, space-hungry AO* and time-hungry, space-efficient depth-first search.
Such an algorithm could be developed by generalising one of the memory-
bounded versions of A*, such as SMA* [16], to operate on AND/OR search
trees. It also is likely that the decomposition algorithm would benefit from a
better heuristic for choosing where to force splits. We conjecture that a better
heuristic could be developed by carefully trading off the advantage of splitting
into equal-sized subproblems and the advantage of minimising the amount of
branching required to force a split. Finally, the algorithm would surely bene-
fit from further development of its data structures. In particular, it should be
possible to efficiently identify a greater number of redundant times.
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Abstract. In face of the unwieldiness of non-monotonic logic engines,
or Prolog/CLP meta interpreters as they are commonly used for model
based reasoning and diagnosis, this paper proposes a simple, but effective
improvement for performing the complex diagnostic task. The chosen ap-
proach is twofold: firstly, the problem of contradicting first order system
descriptions with a set of observations is reduced to propositional logic
using the notion of symptoms, and secondly, the determination of con-
flict sets and minimal diagnoses is mapped to a problem whose technical
solution has experienced a sheer boost over the past years, namely k-
satisfiability using state-of-the-art SAT-solvers. Since the involved prob-
lems are (mostly) NP-complete, the ideas for additional improvements
for a more diagnosis-specific SAT-solver are also sketched and their im-
plementation by means of a non-destructive solver, LSAT, evaluated.

Keywords: model based reasoning, model based diagnosis, SAT-solving,
system monitoring, formal specification.

1 Introduction

Ever since Reiter’s seminal work on diagnosis from first principles [19], the au-
tomated reasoning and model based diagnosis communities have spawned a lot
of work on the implementation and improvement of the proposed as well as on
related ideas. Amongst these, probably the most influential ones have been Re-
iter’s own default logic [19, 4], the concept of abduction [20], or even McCarthy’s
notion of circumscription [16]. While reference implementations such as the Gen-
eral Diagnostic Engine [6] (GDE) realise some of these ideas there is —at least
from a practical point of view — still a lot left to be desired in terms of time and
space complexity of such implementations mainly due to the sheer complexity
of the underlying decision problems.

Given a system S, the diagnostic task is to identify those parts or components
ci ∈ S which are assumed to be faulty in order to explain an observed behaviour
of S. If no such set of components can be isolated, then the system is assumed

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 49–63, 2005.
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to work according to its specification, i. e. is correct. According to the logic- and
consistency-based approaches to diagnosis, this task is performed by detecting a
contradicting behaviour of a system S when compared to its expected behaviour
which is captured by a system description SD ⊂ S. Such a contradiction is then
expressed in terms of a set of conflicts or diagnoses.

Moreover, in order to determine practically useful sets of conflicts and di-
agnoses that would allow hinting to specific, faulty parts of a system, all the
proposed diagnosis methods involve a subsequent task minimising the solutions
which, in itself, is a computationally complex undertaking. In Reiter’s case, for
instance, this task is not separable from the initial determination of conflicts.
However, his method relies on the availability of a suitable first order theorem
prover for finding at least a single conflict set to execute an algorithm for finding
minimal hitting sets of conflicts that constitute the diagnoses.

The hitting set problem, on the other hand, also known as the transversal
problem, is one of the key problems in the combinatorics of finite sets and the
theory of diagnosis per se. It turns out to be a hard problem which also helps
to explain the continuing hesitation of a broader industrial application of model
based diagnosis techniques. Further, partly empirical, results from other authors
regarding the wieldiness of implementations for non-monotonic reasoning (i. e.
default logic, circumscription, etc.) second this conclusion (see § 5, for further
details on non-monotonic reasoning).

Contribution

This paper will show that the recent achievements in solving the k-satisfiability
problem with heuristic search algorithms and pruning using state-of-the-art SAT-
solvers can also be used for consistency based diagnosis and even for those cases
where the task is not related to merely boolean circuits and the likes. More so,
empirical results will show that, using a SAT based approach to diagnosis, one
can handle several thousand variables (i. e. abstract system components) at ease
and —when constrained to an appropriate n-fault assumption (see § 4.1) — even
tens and hundreds of thousands. Clearly, this is much more than non-monotonic
reasoning engines can currently handle in reasonable time and space.

Therefore the contribution of this paper is to introduce an alternative method-
ology (based on simple propositional logic) for diagnosing technical systems,
regardless as to whether these are software- or hardware-based, or both. Specif-
ically, LSAT is presented which is a prototype SAT solver tailored to perform
system’s diagnosis.

Outline

After a brief overview over the theory of consistency- and logic-based diagnosis
using system models in § 2, the transformation of the (non-monotonic) diagnostic
reasoning from first principles to propositional logic is then described in § 3.
LSAT, the main implementation vehicle for the concepts presented in this paper,
is outlined in greater detail in § 4, and an evaluation of the deployed algorithms
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w. r. t. processing large combinatorical benchmarks is given in § 4.2. A section on
related work (§ 5) describes other recent results in complexity measures regarding
non-monotonic reasoning which seconds an important claim of this paper; that
is, diagnosis should be tackled using modern SAT-solvers with specific, problem-
oriented heuristics. Finally, § 6 presents some conclusions.

2 Consistency Based Diagnosis

In model and consistency based diagnosis1, the system to be diagnosed, S, is
determined by a tuple (SD,COMP ), where SD constitutes a finite set of first
order sentences comprising a system description, and COMP a finite set of
components in S. The set of components can be of almost arbitrary granularity;
depending on the properties of the system to be diagnosed, COMP may refer to,
say, Java threads, user session objects within a web application, or even physical
entities such as sensors, actuators, or entire nodes of a computer network. The
overall system behaviour is then defined in terms of the components’ behaviours
and their causal dependencies, represented as shared variables/predicates.

2.1 Definitions

In this section, let us recall some notions, notations and terminology used later
in the paper.

Definition 1 (Observation). An observation for a system S = (SD,COMP )
is a finite set of first order sentences each comprising a mapping of in- and
outputs of S to actual/observed values: inputi, outputi : c ∈ COMP → Num.
The index i denotes the i-th input (resp. output) for component c, whereas Num
represents the class of all numerical sorts. An observation OBS for S is denoted
by (SD,COMP,OBS).

Example 1. The example system S depicted in Fig. 1 contains two multiplication
components, M1 and M2, and two summation components, A1, A2. We use the
more compact representation of an n-tuple 〈i1, . . . , i4,m1,m2, o1, o2〉 to capture
the model’s observed in- and output values in . Hence, S = (SD, {M1,M2, A1,
A2}), with OBS = 〈2, 3, 4, 5, 6, 20, 26, 26〉. Without going much into further
detail at this point, SD basically captures the behaviour and causality of each
component. ♦

Diagnosis can be understood as the process of finding and isolating differences
between a system’s model, i. e. the intended behaviour, and reality, i. e. observed
behaviour. Typically, in order to reason about system models, at least one pred-
icate needs to be introduced for the mere purpose of representing “normal” and

1 From this point forward, the terms consistency-, logic-, and model-based are used
synonymously due to the similarities of these approaches and their common problems
w. r. t. complexity of their realisations.
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SD = {mult(X) ∧ ¬AB(X) ⇒
(output1(X) = input1(X) · in-
put2(X)),
mult(M1),
output1(M1) = input1(A1), . . .},

COMP = {M1, M2, A1, A2},

OBS = 〈2, 3, . . .〉, short for
input1(M1) = i1 = 2, input2(M1) =
i2 = 3, . . .

Fig. 1. A simple system description for a multiplier and adder example

“abnormal” parts of the system: ¬AB(c) denotes a component which works ac-
cording to its specification, while AB(c) denotes an abnormal component. A
diagnosis can now be defined w. r. t. to these predicates which help explain an
observed behaviour.

Definition 2 (Diagnosis). A diagnosis for a system S = (SD,COMP ) is a
minimal set Δ ⊆ COMP such that

SD ∪OBS ∪ {AB(c) | c ∈ Δ} ∪ {¬AB(c) | c ∈ COMP\Δ}

is consistent.

Proposition 1. ∅ is a diagnosis (and the only diagnosis) for (SD,COMP,OBS),
iff

SD ∪OBS ∪ {¬AB(c) | c ∈ COMP}
is consistent, i. e. iff the observation does not conflict with what the system should
do if all its components were behaving correctly. (For a proof, see [19, § 3].)

Using this definition and continuing with what is presented in Ex. 1, it is
self evident that substituting o1 with anything but 26 will lead to the conclusion
Δ = {A1}, i. e. ¬AB(M1), ¬AB(M2), ¬AB(A2), and AB(A1).

Definition 3 (Conflict Set). A conflict set for (SD,COMP,OBS) is a set
{ci, . . . , cj} ⊆ COMP with 1 ≤ i ≤ j such that

SD ∪OBS ∪ {¬AB(ci), . . . ,¬AB(cj)}

is inconsistent.

Hence, {M1, M2, A1, A2}, would be a conflict set for our example, given
o1 �= 26. Further, a conflict set for (SD,COMP,OBS) is called minimal, iff no
proper subset of it is a conflict set for (SD,COMP,OBS) at the same time.
That is, {A1} is a minimal conflict set. Diagnoses are then minimal conflict sets.
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2.2 Reasoning with Incomplete Information

For those cases where obviously only a single component is at fault, finding
minimal conflict sets seems a straightforward task under the gross assumption
that OBS contains all relevant in- and outputs of the system, or its respective
diagnosis model. However, in practice, one cannot always rely on the availability
of complete information, but rather —and more realistically — on a black or grey
box view yielding partial information.

Example 2. If the network depicted in Fig. 1 is modified according to Fig. 2,
there is already a significantly larger amount of possible conflict sets — implicitly
depending on the values of {m1,m2} � OBS:

{M1,M2}, {M1, A1}, {M1}, {M2, A1}, {M2}, {A1}, {M1,M2, A1}.

i4

i3

i2

i1
M1

M2

m1

A1

A2 o2

o1
27

26

m2

2

3

4

5

Fig. 2. Example of a black/grey box view where the values for m1 and m2 cannot be

observed. According to qualitative measures, o1 is faulty

Obviously, incomplete information creates a lot of diagnosis candidates, but
as the above example demonstrates, these are entangled with assumptions re-
garding the missing elements of OBS. In other words, {M2} is a conflict set, iff
the assignment for at least one unobservable connection contradicts the system
specification according to the set SD, e. g. m2 �= 20. ♦

3 A Propositional Solution

Of course, the traditional diagnosis approaches such as applications of default
logic, or abduction, although specifically tailored for dealing with incomplete and
inconsistent information, face increasing difficulties the more in- and outputs
remain unobservable. Reducing this problem to propositional logic, however,
suits this situation perfectly, given a number of prerequisites are fulfilled.
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3.1 Combining Qualitative and Logical Measures

Let us assume we have two different models of the system under consideration,
a) a qualitative model for reasoning about in- and output values of components,
and b) an abstract model representing only causality; we can then use predicates
that indicate whether an observation has been correct, or in error: ok(m1), for
instance, would indicate that a result of M1 is correct according to the qualitative
assertion. Such “micro-evaluations” are realistic in many real-world scenarios,
e. g. where sensor values are checked and compared, sometimes even multiple
times to rule out tampered results due to jitter.

Qualitative assertions are typically made by dedicated monitors which contin-
uously interpret a system component’s in- and output values w. r. t. aberrations
from the specification. However, monitors are not part of SD themselves, but
rather constitute safety properties which ought to be fulfilled by single compo-
nents ci ∈ COMP , respectively.

In our case, these monitors are represented as predicates. That is, if the pred-
icate holds, an observed value is assumed correct, otherwise it hints to existing
aberrations. For example, the result of the boolean monitor β(output1(M1)) =
ok(output1(M1)) would indicate conformance of the observed value output1(M1)
to its specification.

Definition 4 (Symptom). Let S = (SD,COMP,OBS) be a system under
diagnosis. The ok-predicate is then defined over a subset of all in- and outputs,
of a component c ∈ COMP . A negative evaluation of ok(i ∈ OBS) is then called
a symptom for an error in S.

In other words, a negative result of a boolean monitor does not necessarily
indicate that the monitored component is at fault. It merely hints to the fact
that some component is faulty as captured in the following proposition:

¬ok(i ∈ OBS)⇒ ∃c∈COMP¬AB(c)2.

Unlike the AB-predicate which is defined only over ci ∈ COMP , ok is defined
w. r. t. to observable system values. This notion of a symptom is then used to
contradict the merely causal system specification and in order to distil a finite
set of negative AB-predicates; that is, faulty components.

3.2 Reduction of SD

An alternative and, foremost, only causal first order system description for Ex. 1
and 2 could be expressed as follows:

SD = {ok(i1) ∧ ok(i2) ∧ ¬AB(M1) ⇒ ok(m1),
ok(i3) ∧ ok(i4) ∧ ¬AB(M2) ⇒ ok(m2),

2 Of course, c may be the monitored component, but this reasoning is part of the
deductive diagnosis process.
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ok(m1) ∧ ok(m2) ∧ ¬AB(A1) ⇒ ok(o1),
ok(m1) ∧ ok(m2) ∧ ¬AB(A2) ⇒ ok(o2)}

Assuming we can evaluate and thus know when at least some observables
w. r. t. ok hold, we can rewrite SD in terms of boolean variables and without
any predicates:

SD′ = {ok i1 ∧ ok i2 ∧ ¬AB M1 ⇒ ok m1,

ok i3 ∧ ok i4 ∧ ¬AB M2 ⇒ ok m2, . . .}
Notice, both system descriptions SD and SD′ are now comprising only causal

and structural information, contrary to the literature of consistency based diag-
nosis, where SD always includes the behavioural part which we have “sourced
out” in a separate, qualitative model which the monitors are based upon. Notice,
monitor generation itself is an active field of research and not directly scope of
this paper (see § 5).

Obviously, the mapping, Φ : pred ∈ (PL(Σ) → ) → var ∈ , where
PL(Σ) denotes a first order predicate logic formula defined over a signature
Σ, is straightforward: each respective predicate, pred, is mapped to exactly one
distinctive variable vari of type .

3.3 Hitting Sets and Minimality

Finding conflict sets due to contradictions between expected and observed be-
haviour is crucial for failure diagnosis. However, in accordance to Definition 2,
only the minimal diagnoses are of real, practical value. For this purpose, Reiter
proposes a hitting set algorithm which constructs a so called HS-tree [19] that
carries the minimal diagnoses, such that no diagnosis which is already included
as a subset of a previously found diagnosis is chosen.

Formally, the problem addressed by Reiter’s algorithm is as follows: a col-
lection of non-empty sets C = {C1, . . . , Cn} of a set C, representing conflicts, is
given. A hitting set (or transversal) of C is a subset H ⊆ C that meets every set
in the collection C. We call a hitting set minimal, if no proper subset of H is a
hitting set. More in depth information on the algorithm, specific optimisations,
and analyses may also be found in § 5.

Despite well known improvements [8, 19, 14], the minimal hitting set problem
remains generally NP-complete, and it is practically undesirable to perform a
thorough analysis when applied to diagnosis. Therefore, the chosen approach of
this paper is to define a maximum “failure threshold” instead which is reflected
in the diagnosis algorithm laid out in § 4.1. A diagnosis is then determined based
upon minimal cardinality of occurring AB-predicates in the solution set, rather
than upon the theory of set inclusion. Essentially, this allows us to improve on
the determination of conflicts and still yields practically relevant diagnoses using
the same algorithm; no subsequent procedure for minimalisation is required.
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4 LSAT

In the previous section we have demonstrated how diagnosis related tasks such
as fault isolation and conflict set minimalisation are basically reducible to propo-
sitional logic, under the premise that a qualitative model, which can be used to
monitor symptoms, is available. Although the complexity of the involved deci-
sion problems has not shrunk to polynomial time, propositional (system) models
exhibit the advantage of being manageable by using SAT-solvers.

The purpose of a SAT-solver is to accept a formula, P , in clause normal form
(CNF), and to return a variable assignment {α(p1 ∈ P ), . . . , α(pn ∈ P )}, such
that P evaluates to true. If no such assignment can be found, P is not satisfiable.

In recent years, the area of SAT-solving has advanced dramatically: CNF
formulas of hundreds of thousands or even millions of literals can now be handled
by state-of-the-art solvers, such as (z)Chaff [17], or SATO [24] to name just
two of the most popular solvers. These programs more or less are based on
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5] which constructs
semantic trees of CNF formulas. Normally, DPLL is a “destructive” algorithm in
a sense that it recursively splits the semantic tree— based on some heuristics —
and descends until a valid assignment has been found; most SAT-solvers indeed
work this way.

In contrast, LSAT3 is a SAT-solver which uses a non-destructive implemen-
tation of DPLL based on mutually linked lists of atoms and clauses (see Fig. 3)
where variable assignments are not recursively pushed on the runtime stack, but
are encoded in the global data structure itself. This way, LSAT can come up
with more than one truth assignment, if applicable.

Having a single global data structure further improves on the space complex-
ity of the algorithm: rather than keeping the entire semantic tree on the stack,
only linear space for the main data structure is required.

The flag ‘abnormal’ denotes a component c ∈ COMP , and ‘inact’ contains
a pointer to the variable which inactivated the current clause (NULL otherwise).
Initially all clauses are active, i. e. no truth assignment has been made. ‘pos-
clauses’ (resp. ‘neg-clauses’) is a list of pointers to clauses where the variable
occurs with positive sign. ‘pos-literals’ (resp. ‘neg-literals’) is a list of pointers to
variables which occur with positive sign in the clause. The rest is self explaining;
further details can be found in the implementation.

4.1 Computing Single and Multiple Fault Diagnoses

Due to its non-destructive nature and the linear space complexity, LSAT is well
suited for performing the diagnosis task based on propositional models. More
so, if LSAT is able to conclude one diagnosis for a model, it is able to conclude

3 LSAT has been released under the GPL open source license and is available in
terms of C++ code from the author’s home page at http://home.in.tum.de/
∼baueran/lsat/.
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Atoms

Clauses

neg-clauses:List<Clause>

value:int

abnormal:bool

pos-clauses:List<Clause>

Clause

pos-literals:List<Variable>

neg-literals:List<Variable>

inact:Variable

literals:int

. . .

cm

vnv1

c1

. . .

. . .

Variable

index:int

Fig. 3. LSAT’s internal CNF representation visualised with vi:Variable and ci:Clause

all possible diagnoses, i. e. there is no need for a subsequent access to a theorem
prover in order to determine conflict sets, or the likes.

In contrast, the diagnosis related literature frequently proposes the so called
single fault assumption for two reasons: a) it is often realistic to assume merely
single components at fault, rather than a total failure of a whole set of com-
ponents, and b) most operations in non-monotonic reasoning approaches are
sufficiently expensive such that the occurrence of a single fault is often used
as (premature) exit condition. Naturally, the counterpart of the single fault as-
sumption is the multiple fault assumption [6, 12].

Generally speaking, LSAT supports the n-fault assumption (where n ≥ 0) and
uses the ‘abnormal’ flag in the data type Variable in order to determine which
diagnoses are useful, i. e. which are of a minimal cardinality w. r. t. the number
of faulty components. That is, ‘abnormal’ determines the set of potential faults
that are not symptoms (see Definition 4).

If defined, LSAT adheres to the n-fault assumption by keeping track of the
positively assigned “AB-atoms/predicates” and by cutting off the semantic tree
iff AB(ci)+. . .+AB(cj) > n. Trivially, n = 1 selects the single fault assumption,
n > 1 the multiple fault assumption.

Example 4. Given a system and observations S = (SD,COMP,OBS), as it is
depicted in Fig. 2, and an according propositional logic system description similar
to Ex. 3, we may use the presented concepts so far to explain o1 ∈ OBS = 27
as follows:
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SD′′ = {¬[1/ok i1] ∨ ¬[2/ok i2] ∨ [9/AB M1] ∨ [5/ok m1],
¬[3/ok i3] ∨ ¬[4/ok i4] ∨ [10/AB M2] ∨ [6/ok m2],
¬[5/ok m1] ∨ ¬[6/ok m2] ∨ [11/AB A1] ∨ [7/ok o1],
¬[5/ok m1] ∨ ¬[6/ok m2] ∨ [12/AB A2] ∨ [8/ok o2], . . .}

SD′′ is obtained by applying Φ(SD) and performing a subsequent CNF con-
version which can be achieved in polynomial time [18]. Hence, SD′′ represents
the causal dependencies as well as possible states of our system using only natu-
ral numbers for each respective variable; 9, 10, 11, and 12 represent components
in S. Although of no particular semantic value, the substitutions with natural
numbers will be necessary for expressing SD′′ in terms of an extended DIMACS
format.

2-fault assumption: A snapshot of the semantic tree decision procedure for our
example is depicted in Fig. 4. In each “step”, the variables of (SD,COMP,OBS)
are assigned and the set of models expanded. Here, α(AB(11)) = 1 ≡ α(11) = 1
violates the 2-fault assumption since α(9) = 1 and α(10) = 1 on the same
branch. The rounded arrow indicates one backtracking step in order to continue
the algorithm using an alternative assignment, α(11) = −1, i. e. ¬AB(11). In
other words, the n-fault assumption is the pruning criterion for the semantic
tree procedure.

Using LSAT’s extended DIMACS format, this example could be encoded and
automatically solved as follows:

01 p cnf 12 18 Standard DIMACS header.

02 9 -1 -2 5 SD: causal dependencies of S.

03 10 -3 -4 6 (10 ∨ −3 ∨ −4 ∨ 6)

04 11 -5 -6 7
∧

(11 ∨ −5 ∨ −6 ∨ 7)

α(AB(9)) = 0

α(1) = 0

α(AB(11)) = 0

α(1) = 1

2-fault assumption
violated

α(AB(10)) = 1

α(AB(9)) = 1

α(AB(11)) = 1

Fig. 4. Semantic tree for the system of Ex. 2: α(x) are the truth assignments; bold

arrows indicate a valid assignment path, while the left-most path shows a violation of

the 2-fault assumption
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05 12 -6 -5 8
∧

. . .

06 -5 -9
07 -6 -10
08 -7 -11
09 -8 -12
10 a 9 10 11 12 COMP: the directive a defines the components in S.

11 1 OBS: ok(1)

12 2 . . .

13 3
14 4
15 -7 Symptom: ¬ ok(7). (Notice, {5, 6} � OBS.)

16 8
17 -9 9 Our hypotheses, i. e. all components may either be

18 -10 10 normal, or abnormal.

19 -11 11
20 -12 12

Similarly to the procedure shown in Fig. 4, LSAT is then able to determine
all models for S with at most two faulty components; symptoms are underlined,
“real” faults framed:

01 9 10 -11 -12 8 -7 -6 -5 4 3 2 1

02 9 -10 11 -12 8 -7 6 -5 4 3 2 1

03 9 -10 -11 -12 8 -7 6 -5 4 3 2 1

04 -9 10 11 -12 8 -7 -6 5 4 3 2 1

05 -9 10 -11 -12 8 -7 -6 5 4 3 2 1

06 -9 -10 11 -12 8 -7 6 5 4 3 2 1

Each of these six results encodes one valid truth assignment for S, such
that the contradicting observation, i. e. o1 = 27 can be explained under the
assumption that no more than two components are responsible for the failure.
Result #1, for instance, assumes AB(9) ∧AB(10) ∧ ¬AB(11) ∧ ¬AB(12). ♦

4.2 Evaluation

Clearly, the emphasis of LSAT is on model based reasoning and diagnosis, rather
than trying to outperform programs like SATO or (z)Chaff. However, LSAT does
contain a couple of optimisations such as unit propagation and an implementa-
tion of the purity rule in order to deal with far bigger examples than shown in
this paper so far. In order to elaborate on the feasibility of the chosen approach,
a number of more or less standard benchmarks originating from the area of cir-
cuit design are shown in this section. This ISCAS set of benchmark circuits is
widely used by the ECAD community for testing several digital design tools.
The respective combinatorical tests range from several hundred to ca. 20,000
“components” and ca. 60,000 clauses.

Table 1 summarises the results of applying a selection of tests to LSAT on a
Pentium 4 architecture with 512 MB of RAM using either the 5-fault assumption,
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or no restriction at all. If a test could not be finished within 60 seconds, it was
considered to be a timeout.

Not surprisingly, the numbers substantiate the appropriateness of the pre-
sented concepts. Four tests could not be finished using the ∞-fault assumption,
while LSAT had no problems solving these tasks when constrained to five faults.
The variance between CPU time and the performed number of algorithmic steps
can be explained by the heuristic approach and variantly efficient accessor func-
tions in the LSAT tool.

Table 1. Modified ISCAS‘89 benchmarks under the n-fault assumption

∞-fault 5-fault
Name: #COMP : #Var.: #Cl.: #Steps: CPU: #Steps: CPU:

s208.1 66 122 389 84 0.17 sec 60 0.25 sec
s298 75 136 482 27 0.11 sec 58 0.32 sec
s444 119 205 714 20 0.18 sec 105 0.91 sec
s526n 140 218 833 − timeout 295 0.23 sec
s820 256 312 1,335 − timeout 562 0.59 sec
s1238 428 540 2,057 38 0.97 262 0.21 sec
s13207 2,573 8,651 27,067 − timeout 17 0.57 sec
s15850 3,448 10,383 33,189 − timeout 41 0.17 sec
s35932 12,204 17,828 60,399 2,339 11.16 sec 29 0.21 sec

5 Related Work

There are recent works which have used SAT-solvers in order to diagnose and
debug the design of digital circuits, e. g. [1, 23]. However, research in this area
treats the solvers foremost as mere tools, disregarding a) the cardinality of the
models, and b) the adaption of the underlying algorithms and concepts. More
so, in the “digital world”, there is no need to reduce first order problems to
propositional logic, since a circuit is already digestible by the solver as is.

Closer to the ideas presented in this paper is research undertaken by Baum-
gartner et al. such as [3], for instance. They describe the DRUM-2 system which
is based on hypertableaux and can be used for model based reasoning. Their sys-
tem is capable of finding minimal diagnoses based on “abnormal components”,
similar to LSAT. But the (system) descriptions used by Baumgartner remain
first order, and results suggest that the hypertableaux do not seem to scale to
the same extent as SAT-solving does, especially when considering the most re-
cent developments in this area. LSAT, although still in a prototypic condition
outperforms hypertaubleaux, even without fine tuning any heuristics which help
finding “suitable” free variables in a given CNF formula.

Of course, first order systems are more expressive than LSAT models, but
often less efficient for the reasoning algorithms. This is especially striking in
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non-monotonic logic: we call a logic monotonic if the truth of a proposition does
not change when new information, i. e. axioms, are added to the knowledge base.
In contrast, a logic is non-monotonic, if the truth of a proposition may change
when new information is added to or old information is deleted from the base.
Abduction, default logic, and the closed world assumption of Prolog, and many
CLP systems are examples for applications of non-monotonic logic.

Recent complexity results for abductive reasoning and default logic as origi-
nally considered for diagnosis by McCarthy and Reiter (amongst others) indicate
that only specific subsets and “sub-problems” can be dealt with in an efficient
manner [7, 4]. Diagnosis based on these prominent concepts remains subject to
restrictions which do not exist when using a reduced (but less expressive) propo-
sitional model of a diagnosable system along with suitable monitoring mecha-
nisms.

Both diagnosability, i. e. strategic placement of sensors, and generation of
monitors —often called observers —are active fields of research today; see, for
example, [21], [11], [10], and [9]. Hence, the diagnosis approach shown in this
paper should be considered an addition to these activities in order to complement
the reasoning about system failure and corresponding causes for it.

6 Conclusions

This work has presented an efficient approach to model based diagnosis based on
k-satisfiability and models of minimal cardinality. The beauty of the proposed
solution lies in its simplicity, because it combines the advantages of state-of-
the-art SAT-solving and deals with large designs by pruning the search space
according to user defined criteria, i. e. n-fault assumption on AB-predicates.

The evaluation in § 4.2 hints to the scalability of this approach and its poten-
tial impact on system diagnosis and monitoring. More so, the algorithms used
require at most polynomial space and can be examined and tested in detail using
the freely available implementation of the presented LSAT program (see p. 56).

Unlike many other SAT-solvers, LSAT is able to come up with all models
(under the n-fault assumption) yielding sensible conflict sets, hence diagnoses.
Although this notion of minimality is not correlated to Reiter’s original HS-
tree [19], thus set theory, it provides for technically useful diagnoses.

Depending on the system under consideration, the generation of monitors,
however, may vary dramatically. Possible realisations may be purely in software,
e. g. monitoring threads and middleware, or mostly in hardware, e. g. intelligent
sensors as increasingly used in the automotive domain, for instance. Although
this paper has focussed mainly on aspects of diagnosis, the combination with
monitoring techniques provides potential for a broader application of these tech-
niques, especially in scenarios where quality and safety properties are increas-
ingly important, e. g. embedded systems.
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Abstract. This article presents an arc-consistency algorithm for the tree
constraint, which enforces the partitioning of a digraph G = (V, E) into
a set of vertex-disjoint anti-arborescences. It provides a necessary and
sufficient condition for checking the tree constraint in O(|V|+ |E|) time,
as well as a complete filtering algorithm taking O(|V| · |E|) time.

1 Introduction

Graph partitioning constraints were already considered from an early stage of
constraint programming research as natural shortcuts for expressing constraints
on a graph. This was for instance the case of the Hamiltonian circuit and span-
ning tree constraints of ALICE [11]. Later on, this was also the case for the cy-
cle [3] and path constraints [5, 14, 15], which were respectively introduced in some
later version of CHIP [7] and Ilog Solver [12]. But curiously, despite its study
within the Operations Research and algorithm design communities [6, 13], the
problem of partitioning a digraph into a set of vertex-disjoint anti-arborescences1

was so far ignored by the constraint programming community. This problem has
a lot of practical applications, for instance in VLSI circuit design. The applica-
tion that motivated us is the construction of a supertree from given trees with
overlapping leaf sets, such that the ancestor relationships of the given trees are
preserved. This is an important issue in phylogeny and has applications in molec-
ular biology and linguistics [1], such as the construction of the Tree of Life [4].
See the description of future work in Section 4 for how this phylogenetic problem
relates to the problem described here.

1 A digraph A is an anti-arborescence with anti-root r iff there exists a path from all
vertices of A to r and the undirected graph associated with the digraph A is a tree.
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c© Springer-Verlag Berlin Heidelberg 2005



The tree Constraint 65

This paper addresses the mentioned digraph partitioning problem from a
constraint programming perspective.2 We should stress that, as usual within
constraint programming, our goal is not partitioning a given digraph G into
vertex-disjoint anti-arborescences, but rather first to find out whether this is
possible at all or not, and second to detect those arcs of G that do not belong
to any partitioning. Throughout this article, we use for simplicity the term tree
rather than the term anti-arborescence.

The tree constraint has the form tree(NTREE, VERTICES), where NTREE is a
integer variable3 and VERTICES is a collection of n items, each item consisting
of the following attributes:

- index is an integer between 1 and n.
- father is an integer variable whose domain is a subset of the values of the

interval [1, n].

The i-th item of the VERTICES collection is denoted VERTICES[i]. Furthermore,
VERTICES[i].attr represents the value of attribute attr of VERTICES[i]. A col-
lection of n items, each having p attributes a1, a2, ..., ap is denoted by:

{(a1 − v11, ..., ap − v1p), (a1 − v21, ..., ap − v2p), ..., (a1 − vn1, ..., ap − vnp)}
In order to define the tree constraint we first introduce the digraph associated
with any instance of the tree constraint. We then define the meaning of the tree
constraint as a graph property that must hold on the digraph associated with a
ground4 instance of the tree constraint.

Definition 1. Digraph associated with a tree constraint
To any tree(NTREE, VERTICES) constraint we associate the digraph G = (V, E),
where:

- To each item VERTICES[i], (1 ≤ i ≤ n), of the VERTICES collection corre-
sponds a vertex of V denoted by vi. Observe that |V| = n.

- For every pair of items (VERTICES[i],VERTICES[j]), where i and j are not
necessarily distinct, there is an arc from vi to vj in E (i.e., (vi, vj) ∈ E) if
j ∈ dom(VERTICES[i].father). Let:

m = |E| =
n∑

i=1

|dom(VERTICES[i].father)|

Observe that each vertex of the digraph G associated with a ground instance
of the tree constraint has exactly one successor.

2 The term ”tree constraint” exists in the constraint programming community, but
the tree processing problem defined in [1] assembles a set of trees in one single tree
according to some dominance constraints.

3 A integer variable V is a variable that ranges over a finite set of integers denoted by
dom(V ). min(V ) and max(V ) respectively denote the minimum and the maximum
value of V .

4 An instance such that all its integer variables are fixed.
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Definition 2. A ground instance of a tree(NTREE, VERTICES) constraint holds
if VERTICES[i].index = i , (1 ≤ i ≤ n), and if its associated digraph G = (V, E)
verifies the two following conditions:

- G consists of NTREE connected components.
- Each connected component of G does not contain any circuit involving more

than one vertex.

The index and the father attributes of an item can be respectively interpreted
as the unique identifier of that item and as the successor of that item in the
partionning into trees.

Fig. 1. (A) A digraph G and (B) three possible vertex-disjoint tree partitionings of G

Example 1. For the digraph depicted by part (A) of Figure 1, a tree constraint
is stated as tree(NTREE, VERTICES) where:

VERTICES = {(index− 1, father− F1), (index− 2, father− F2),
(index− 3, father− F3), (index− 4, father− F4),
(index− 5, father− F5), (index− 6, father− F6),
(index− 7, father− F7), (index− 8, father− F8),
(index− 9, father− F9), (index− 10, father− F10),
(index− 11, father− F11)},

dom(NTREE), dom(F1), dom(F2), dom(F3), dom(F4), dom(F5), dom(F6), dom(F7),
dom(F8), dom(F9), dom(F10), dom(F11) respectively are {1, 2, 3, 4, 5}, {2, 4, 7, 10},
{1}, {4, 5, 11}, {3, 4}, {6}, {5, 6}, {8, 11}, {7, 9, 10, 11}, {8, 9, 11}, {8, 9, 10}, {8}.

Part (B) of Figure 1 shows three possible solutions of the vertex-disjoint par-
titioning of G with respectively 2, 3 and 4 trees. Observe that, as stated by
the second condition of Defintion 2, there is no circuit involving more than one
vertex. In order to achieve arc-consistency we have to prune NTREE as well as
F1, F2, . . . , F11 in the following way:
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– We want to find out that 1 and 5 are not feasible numbers of trees for
partitioning G, then dom(NTREE) = {2, 3, 4}.

– According to the previous restriction of dom(NTREE), we restrict the do-
mains of F1, F6, F8 respectively to dom(F1) = {4, 7, 10}, dom(F6) = {6} and
dom(F8) = {9, 10}.

Example 1 will be used throughout this article in order to illustrate the different
propositions.

The tree constraint was introduced within a catalogue of global constraints
[2, page 74] but no filtering algorithm was known. The contribution of this
article is an O(n ·m) arc-consistency filtering algorithm for the tree constraint.

The rest of the article is organised as follows: Section 2 provides a necessary
and sufficient condition for partitioning the digraph G associated with a tree
constraint according to a given set dom(NTREE) of potential numbers of trees.
Section 3 shows how to exploit this necessary and sufficient condition in order
to prune NTREE as well as the father variables. Finally, Section 4 concludes this
article and outlines future work.

2 Checking Feasibility

This section first gives a necessary and sufficient condition for the tree constraint
to hold. Second, it sketches an O(n+m) algorithm for evaluating that condition.
Before presenting it, we introduce some terminology regarding the digraph G =
(V, E) associated with a tree constraint, as well as a lower and upper bound on
the number of trees needed for partitioning G:

– To each instance of a tree(NTREE, VERTICES) constraint we associate the re-
duced digraph Gr derived from G in the following way: to each strongly con-
nected component of G we associate a vertex of Gr; to each arc of G that
connects different strongly connected components corresponds an arc in Gr.
A strongly connected component of G that corresponds to a sink of Gr is
called a sink component.

– A vertex v of G = (V, E) such that (v, v) ∈ E is called a potential root. The
arc (v, v) is called a loop. A strongly connected component of G that contains
at least one potential root is called a rooted component.

– A vertex u of G = (V, E) is a door of the strongly connected component
associated with u iff there exists (u, v) ∈ E such that u and v do not belong
to the same strongly connected component of G.

– A connecting arc (u, v) of G = (V, E) is an arc of E such that u and v
do not belong to the same strongly connected component. Similary, a non-
connecting arc (u, v) of E is an arc such that u and v belong to the same
strongly connected component.

– A vertex v of G = (V, E) is a winner if v is a door or if (v, v) ∈ E , i.e., a
potential root.

– Enforcing an arc (u, v) of G corresponds to removing from G all arcs (u,w)
such that w �= v.
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Example 2. Figure 2 illustrates the previous terms according to the digraph
introduced in part (A) of Figure 1. In part (A), the winners correspond to
the doors and potential roots. The connecting arcs and the loops are depicted
by a black line, while the other arcs are depicted by a dotted line. S2, S3, S4

are rooted components while S3, S4 are sink components. Part (B) depicts the
reduced digraph associated with G. To each strongly connected component Si of
G corresponds a vertex Ri of Gr. Observe that R3 and R4 represent sink vertices.

Fig. 2. (A) The digraph G and its strongly connected components S1, S2, S3, S4. (B)

The reduced digraph Gr associated with G

We now present a lower and upper bound on the number of trees that can
possibly cover a given digraph G associated with a tree constraint. For this
purpose, we name by MINTREE the number of sinks of Gr and by MAXTREE the
number of potential roots of G.

Proposition 1. A lower bound on the minimum number of trees for partitioning
the digraph G associated with a tree constraint is the number of sinks in Gr (i.e.,
MINTREE).

Proof. Proposition 1 stems from the fact that there is no path between two
vertices that belong to two distinct sink components of G. ��
Proposition 2. An upper bound on the maximum number of trees for parti-
tioning the digraph G associated with a tree constraint is the number of potential
roots of G (i.e., MAXTREE).

Proof. Since each tree has a distinct root, we cannot have more trees than the
number of potential roots. ��

We now state the necessary and sufficient condition to verify on a tree con-
straint in order to have at least one solution.
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Proposition 3. Necessary and sufficient condition for a tree con-
straint
A constraint tree(NTREE, VERTICES) has at least one solution iff the following
two conditions both hold:

(1) All sink components of G are rooted components,
(2) dom(NTREE) ∩ [MINTREE, MAXTREE] �= ∅.

Proof. We first prove that the conjunction of (1) and (2) is a necessary condition.
If a sink component of G is not a rooted component, then there will be at least one
circuit in G among a subset of vertices associated with this component, and the
tree constraint cannot hold. Moreover, if dom(NTREE) ∩ [MINTREE, MAXTREE] = ∅
then max(NTREE) < MINTREE or min(NTREE) > MAXTREE. And we know, from
Propositions 1 and 2, that the tree constraint then has no solutions. Secondly,
we prove that the conjunction of (1) and (2) is sufficient. For this purpose, we
show, in a two step construction, that for each value t in [MINTREE, MAXTREE],
there exists at least one vertex-disjoint partitioning of G into t distincts trees.
Step 1 selects t root vertices and chooses for each strongly connected component
of G the vertex that will be the root of a tree or that will be attached to another
component. Step 2 constructs for each strongly connected component a spanning
forest.

STEP 1
- We choose one potential root r for each sink component of G and we

enforce the loop (r, r) on r. Let R1 denote the set of thus selected roots.
- If t > MINTREE then we choose a set R2 of t − MINTREE potential roots

in G, distinct from R1, and we enforce a loop for each vertex of R2.
- For all strongly connected components for which we did not enforce a

loop, we choose one vertex v that is a door and we enforce a connecting
arc starting from v. Let R3 denote the set of thus selected doors.

STEP 2
For a given strongly connected component S = (VS , ES) of G:

- Let HS = VS ∩ (R1 ∪R2 ∪R3),
- Let LS = VS −HS .

For each strongly connected component S of G, we call the function intro-
duced in Lemma 1 (see the Appendix), TreeCovering(S,HS ,LS , ∅), in order
to build a vertex-disjoint partitioning of S with |HS | trees and having their
roots in HS .

Thus, we have shown how to build a vertex-disjoint partitioning of G with t
trees, for all t ∈ [MINTREE, MAXTREE]. And, since dom(NTREE)∩[MINTREE, MAXTREE]
⊆ [MINTREE, MAXTREE], we know that there exists at least one solution for the
tree constraint. ��
Proposition 4. The worst-case complexity for checking the necessary and suf-
ficient condition for a tree constraint (i.e., Proposition 3) is O(n + m) time.

Proof. Evaluating the worst-case complexity for implementing Proposition 3 is
done by analysing the following items:
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1- Computing the strongly connected components of G takes O(n + m) time
with Tarjan’s algorithm [16].

2- Checking that each sink component of G contains at least one potential root
takes O(n) time.

3- Checking that dom(NTREE) ∩ [MINTREE, MAXTREE] �= ∅ takes O(1) time.

Observe that the worst-case complexity makes the following hypotheses on the
complexity of the primitives that access the domains of the variables:

- In item 3, we assume that we can get the minimum and maximum values of
a integer variable in O(1) time.

- Since item 1 uses depth-first search, we need to iterate over the successors
of a vertex of G. This is done by iterating through the potential values of a
father variable. In order to achieveO(n+m) time, getting the next successor
(i.e., the next value of a father variable) needs to be done in O(1) time.
Therefore we assume that a domain is represented by a list of intervals. ��

3 Domain Filtering

This section first shows how to prune the domains of the father variables
F1, F2, . . . , Fn and of the variable NTREE from the digraph G associated to a
tree constraint. All the pruning rules are derived from the necessary and suffi-
cient condition given by Proposition 3. Then it proves the completeness of the
previous pruning rules and finally sketches an O(n ·m) arc-consistency filtering
algorithm.

The pruning rules remove some arcs of the digraph G associated with a tree
constraint. Observe that since there is a one to one correpondence between the
arcs of G and the father variables and their respective domains, removing an arc
(u, v) from G is equivalent to removing value v from the domain of variable Fu.

3.1 Filtering for a tree Constraint

We first present a proposition that restricts the domain of NTREE according to
condition (2) of Proposition 3.

Proposition 5. The domain of NTREE is restricted by the two following rules:

- If max(NTREE) > MAXTREE then max(NTREE) = MAXTREE (3)
- If min(NTREE) < MINTREE then min(NTREE) = MINTREE (4)

Proof. Conditions 3 and 4 are respectively derived from Propositions 2 and 1.
��

Example 3. We illustrate how to prune the domain of NTREE according to the
digraph G depicted by part (A) of Figure 1. As G contains 2 sink components
and 4 potential roots, MINTREE and MAXTREE are respectively equal to 2 and 4.
Therefore, assuming that dom(NTREE) = {1, 2, 3, 4, 5}, Proposition 5 removes the
values 1 and 5 from dom(NTREE).
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Before presenting the next proposition, we need to introduce the notion of
strong articulation point given by Gondran and Minoux in [9, page 175].

Definition 3. A strong articulation point of a strongly connected digraph G is a
vertex such that if we remove it, G is broken into at least two strongly connected
components.

The withdrawal of a strong articulation point p, in a strongly connected
component S of the digraph G associated with a tree constraint, creates two
types of strongly connected components:

– let Δp
out =

{S1
out, . . . ,Sl

out

}
be the possibly empty set of new strongly con-

nected components from which we can reach, by a path that does not contain
p, a winner of S.

– let Δp
in =

{S1
in, . . . ,Sq

in

}
be the possibly empty set of new strongly connected

components from which we cannot reach, by a path that does not contain p,
a winner of S.

Property 1. Let p be a strong articulation point of a strongly connected compo-
nent of G. Then p belongs to all paths from any vertex of Δp

in to any vertex of
Δp

out.

Proposition 6. An outgoing arc (p, v) of a strong articulation point p that
reaches a vertex v of a strongly connected component of Δp

in never belongs to
any solution of a tree constraint.

Proof. For any outgoing arc (p, v) of a strong articulation point p, if v belongs
to a strongly connected component of Δp

in, then, by Property 1, every path from
v to any vertex of a strongly connected component of Δp

out contains p. Thus,
enforcing (p, v) creates a circuit with some vertices of Δp

in and p. Therefore,
(p, v) never belongs to any solution of a tree constraint. ��

Fig. 3. Pruning according to a strong articulation point
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Example 4. Figure 3 illustrates Proposition 6 on the strongly connected compo-
nent S4 of the digraph G depicted by part (A) of Figure 1. Vertex 8 is a strong
articulation point since its removal breaks S4 into four strongly connected com-
ponents. 9 and 10 are potential root vertices, and since 7 and 11 have neither
loops nor connecting arcs, we have Δ8

out = {{9}, {10}} and Δ8
in = {{7}, {11}}.

Then, from Proposition 6, the arcs (8, 7) and (8, 11) (drawn in gray in Figure 3)
are infeasible.

We now introduce a final proposition that allows us to prune according to
the fact that we have to build a vertex-disjoint partitioning compatible with
dom(NTREE).

Proposition 7. Let C = dom(NTREE) ∩ [MINTREE, MAXTREE]. For each strongly
connected component S of G:

1. If S is a sink component of G that contains one single potential root r, then
all the outgoing arcs of r, except the loop (r, r), are infeasible.

2. Otherwise:
2.1. If C = {MAXTREE} then, for each potential root r of S, all the non-loop

arcs (r, v) (v �= r) are infeasible.
2.2. If C = {MINTREE} and S is a non-sink component then all the loops of S

are infeasible.
2.3. If there exists a single winner w in S, which is a door, then all the

non-connecting arcs (w, v) are infeasible.

Proof. For item 1, let r be the potential root of S and assume that we enforce
an outgoing arc (r, v) (v �= r). Then, as S does not contain any doors, we cannot
leave S and thus create a circuit involving at least two vertices. Item 2.1 (re-
spectively 2.2) is a direct consequence of Proposition 2 (respectively Proposition
1). For item 2.3, assume that we have a single door w in S and consider that
no potential root belongs to S. If we do not take a connecting arc of w, then we
can never leave S and therefore we create a circuit in S involving at least two
vertices. Thus, the tree constraint cannot hold. ��
Example 5. In order to illustrate Proposition 7 on the digraph depicted by
part (A) of Figure 1, we consider the following three cases:

- First, we do not assume any restriction on dom(NTREE). Then, in this context,
item 1 removes the arc (6, 5), while item 2.3 removes (1, 2).

- If NTREE is equal to MAXTREE (i.e., 4) then, in addition to the arcs removed
by items 1 and 2.3, item 2.1 removes the arcs (4, 3), (9, 8), (9, 11), (10, 8)
and (10, 9) since a loop is enforced for each of the vertices 4, 9 and 10.

- If NTREE is equal to MINTREE (i.e., 2) then, in addition to the arcs removed
by items 1 and 2.3, item 2.2 removes the arc (4, 4).

3.2 Arc-Consistency

Now, we prove that Propositions 5, 6 and 7 characterise all the arcs that do not
belong to any solution of a tree constraint. For this purpose, we assume that the
necessary and sufficient condition of Proposition 3 holds.
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Proposition 8. If Proposition 3 holds then the two following equivalences lead
to the completeness of the pruning rules:

- Let t ∈ dom(NTREE), then t is incompatible with a tree constraint if and only
if t is pruned by Proposition 5.

- Let (u, v) ∈ E, then (u, v) is incompatible with a tree constraint if and only
if (u, v) is removed by at least one proposition among Propositions 6 and 7.

Proof. We first prove that Proposition 5 removes all infeasible values in the
domain of NTREE. Indeed, we have completeness since Proposition 3 enforces for
each t ∈ [MINTREE, MAXTREE] the existence of a vertex-disjoint partitioning of G
with t trees.

Second, we prove that Propositions 6 and 7 remove all infeasible values for the
father variables. Now, for each arc (u, v) that was not pruned by Propositions
6 or 7, we show how to build a vertex-disjoint partitioning of G with t trees,
where t ∈ dom(NTREE) ∩ [MINTREE, MAXTREE].

STEP 1
Let dom(NTREE) ∩ [MINTREE, MAXTREE] = [mintree, maxtree],
A1 Selecting a root in each sink component of G:

For each sink component S of G, if u is a potential root of S and u = v
then (u, v) has to be enforced. Otherwise, we select a potential root r of
S different from u and we enforce the loop (r, r). Observe that item 1 of
Proposition 7 garanties us to find a potential root different from u. Let
R1 denote the set of thus selected roots in the different sink components
of G.

A2 Completing the set of roots in order to get mintree or mintree+1
trees:

CASE 1: mintree > MINTREE
Since we have to build at least mintree trees, we choose to build
exactly mintree trees. Therefore, we enforce a set R2 of mintree−
MINTREE potential roots distinct from R1. Observe that if u = v and
u does not belong to any sink component then u must belong to R2.
CASE 2: mintree = MINTREE
• If u = v and u does not belong to any sink component then
MINTREE < MAXTREE and we have to enforce the loop (u, u), and
R2 = {u}. Therefore, we choose to build mintree + 1 trees.

• Otherwise, we build mintree trees and R2 = ∅.
A3 Selecting a door in the strongly connected components that do

not contain a vertex of R1 ∪R2.
For all the strongly connected components S = (VS , ES) for which no
loops are enforced (i.e., VS ∩ (R1 ∪R2) = ∅):
• If u ∈ VS and (u, v) is a connecting arc, then (u, v) is enforced.

Observe that if u is the only door of S then v /∈ VS by item 2.3 of
Proposition 7.

• Otherwise, if u, v ∈ VS or u /∈ VS then a door w, different from u, is
chosen and we enforce one of its connecting arcs.
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Let R3 denote the set of thus selected doors.
STEP 2
For a given strongly connected component S = (VS , ES):

- Let HS = VS ∩ (R1 ∪R2 ∪R3).
- Let LS = VS −HS .
- Let AS = {(u, v)} if u, v ∈ VS , otherwise AS = ∅.

For each strongly connected component S of G, we call the function intro-
duced in Lemma 1 (see the Appendix), TreeCovering(S,HS ,LS ,AS), in
order to build a vertex-disjoint partitioning of S with |HS | trees that in-
cludes (u, v) if u, v ∈ VS .

Thus, for each arc (u, v) ∈ E that is not pruned by Propositions 6 or 7, we
have shown how to build a vertex-disjoint partitioning of G with t trees, where
t ∈ dom(NTREE) ∩ [MINTREE, MAXTREE]. ��

3.3 Polynomial Arc-Consistency Algorithm

We show how to process all the pruning rules in O(n ·m) time. Two parts are
distinguished, the first one only considers the pruning according to the strong ar-
ticulation points (Proposition 6), the second one considers the pruning of NTREE
(Proposition 5) and the pruning related to Proposition 7.

Then, in the first part, we are interested in Proposition 6 and we propose
the TreeFiltering algorithm below. For this purpose we have to detect all the
strong articulation points of a strongly connected component of G:

- Finding the strong articulation points takes at the maximum O(n ·m) time
because we have not found a more efficient algorithm than withdrawing a
vertex and testing if the remaining subgraph is strongly connected or not.

- Detecting the arcs to be pruned takes O(n ·m) time because for each of the
strongly connected components S we have to withdraw each strong articu-
lation point p detected:
• we have to search Δp

in, thanks to a depth-first search beginning from the
winners of S.

• we mark the vertices reachable from at least one winner as vertices of
Δp

out.
• we remove the arcs, that reach Δp

in vertices from p, according to Propo-
sition 6.

Now, in the second part, it is straightforward that the pruning related to
Proposition 5 is carried out in constant time. Moreover, the pruning related to
the general Proposition 7 consists of four steps:

- Items 1 and 2.3 of Proposition 7: the time complexity of these steps lies in
the construction of the reduced digraph, which takes O(m + n) time.

- Item 2.1 of Proposition 7: all the potential roots have to be detected, that
takes O(n) time.
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- Item 2.2 of Proposition 7: we have to detect all the non-sink components of
G; then the time complexity lies in the construction of the depth-first search
in O(n + m) time.

TreeFiltering(G) : R.
Input : the digraph G.
Output : R the set of prunable arcs of G.
R ← ∅; \\ the set of arcs pruned.

W ← {u |u is a winner};
For each vertex scc of G do

Ψscc ← ∅; \\ the set of the strong articuation points of scc.

\\ we detect the strong articulation points (s.a.p.) of scc.

For each vertex u of scc do

if scc without u is not strongly connected then Ψscc ← Ψscc ∪ {u};
\\ we search infeasible arcs.

For each vertex u of Ψscc do PruneArcs(u, scc, W,R);

PruneArcs(u, scc,W,R) : R
Input : a strongly connected component scc, a strong articulation point
u of scc, the set W of winners and the set R.
Output : R the set of prunable arcs, increased by those discovered in scc.
For each vertex v of scc do reach[v] ← false;

\\ detecting the blocks obtained by the withdrawal of each s.a.p. of scc.

Σu
scc ← {Cu

1 , ..., Cu
m};

\\ we search in each block the infeasible arcs.

For each Cu
i ∈ Σu

scc do

search[Cu
i ] ← false;

For each w ∈ W such that (w ∈ Cu
i ∧ ¬reach[w]) ∨ (w = u ∧ ¬search[Cu

i ]) do

Visit(w, u, reach[ ]);

search[Cu
i ] ← true;

\\ withdrawal of infeasible outgoing arcs of u.

If ∃(u, v) ∈ E such that v ∈ Cu
i ∧ ¬reach[v] then

W ← W ∪ {u};
R ← R∪ {(u, v)};

Visit(v, u, reach[ ]) : reach[ ]
Input : a winner v, a strong articulation point u and a boolean table reach[ ].
Output : the table reach[ ].
reach[v] ← true;

For each v �= u and w ∈ pred[v] such that ¬reach[w] do Visit(w, u, reach[ ]);

TreeFiltering algorithm

Example 6. We present a trace of TreeFiltering according to the strongly con-
nected component depicted by Figure 3:
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– In TreeFiltering:R ← ∅; W ← {9, 10}; ΨS4 ← {8}; PruneArcs(8,S4,W,R).
– In PruneArcs: for each u ∈ {7, 8, 9, 10, 11} do reach[u] ← false; Σ8

S4
←

{{7}, {9}, {10}, {11}}. We process a depth-first search with the recursive
function Visit(). Finally, vertices 7 and 11 are not reachable from 9 or 10,
then Δ8

in = {{7}, {11}} and Δ8
out = {{9}, {10}}, thus R ← {(8, 7), (8, 11)}

according to Proposition 6.

4 Conclusion and Perspectives

This article provides an arc-consistency algorithm description and a necessary
and sufficient condition for the tree constraint.

On the one hand, the necessary and sufficient condition for the tree constraint
consists in two conditions checked in O(n + m) time (Proposition 3). On the
other hand, the key point of the arc-consistency algorithm is the detection and
processing (Proposition 6) of the strong articulation points. Unfortunately, to
our knowledge, the existence of an O(m) algorithm is an open problem, thus
the current complexity is O(n · m) time. Furthermore, note that it would be
possible to get a relaxed O(n + m) time algorithm using a subset of the strong
articulation points. A natural choice for such a subset is the set of articulation
points5 provided without the orientation of the arcs of the digraph associated
with the tree constraint. An implementation of this relaxed algorithm was carried
out in Choco [10] with the version 1.0 available to http://choco.sf.net.

Future work will address the phylogenetic problem of constructing a supertree
from given trees with overlapping leaf sets, such that the ancestor relationships
of the given trees are preserved. This problem can be modelled in terms of a
generalisation of the tree constraint, where the VERTICES collection has been
augmented with an optional attribute giving the direct ancestors of the consid-
ered vertex in the given trees, but with NTREE = 1. Notice that this takes a
number of integer variables that is linear in the number of vertices, and hence
linear in the number of species (the leaves of the given trees), rather than a num-
ber quadratic in the number of species as in a previous constraint-programming
approach to supertree construction [8]. The advantages of deploying constraint
programming on this phylogenetic problem, as opposed to the purely algorithmic
approaches advocated so far (see [4] for instance), are that any combination of
biological side constraints (on branch lengths, speciation dates, nested species,
etc) to the otherwise purely combinatorial problem can be incorporated with-
out having to design a new algorithm each time, that all the supertrees can be
enumerated without having to generalise an otherwise deterministic algorithm,
and that an explanation of why the given trees are incompatible can be provided
when no supertree is found. In the latter case, the supertree problem can also be
re-cast as an optimisation problem, and constraint programming will facilitate
experiments with emerging cost functions.

5 An articulation point [9, page 16] of an undirected graph G is a vertex v of G such that
if we remove it, the number of connected components of G deprived of v increases.
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Appendix

Lemma 1 is used in the proofs of Propositions 3 and 8. It presents a constructive
method for building a vertex-disjoint partitioning into anti-arborescences of a
particular digraph depicted by the assumptions 1, 2 and 3.

Lemma 1. Let G = (V, E) be a digraph such that:

(1) Let H,L ⊆ V such that H ∪ L = V and H ∩ L = ∅.
(2) For each v ∈ L there exists a path from v to at least one vertex of H.
(3) Let A ⊂ E such that |A| ≤ 1 and if |A| = 1 then A = {(u, v)}.
The following algorithm computes |H| vertex-disjoint anti-arborescences and hav-
ing their roots in H:

TreeCovering(G,H,L,A) : F
Input : G,H,L,A.
Output : F , the set of vertex-disjoint anti-arborescences.

F ← ∅;
While L �= ∅ do
If A �= ∅ and ∃h ∈ H such that (v, h) ∈ E then
F ← F ∪ {(v, h), (u, v)};
H ← H ∪ {u, v};
L ← L− {u, v};

Else
Let w ∈ L and h ∈ H such that (w, h) ∈ E;
F ← F ∪ {(w, h)};
H ← H ∪ {w};
L ← L− {w};

Proof. By assumption (2), we know that from every vertex w ∈ L there exists
a path to at least one vertex of H. Thus we make sure that L will become an
empty set, i.e., that all vertices of V are covered. ��

15. M. Sellmann. Cost-based filtering for shortest path constraints. In 9th interna-
tional Conference on the Principles and Practice of Constraint Programming (CP),
volume 2833 of LNCS, pages 694–708. Springer-Verlag, 2003.
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Abstract. The constraint NValue counts the number of different val-
ues assigned to a vector of variables. Propagating generalized arc consis-
tency on this constraint is NP-hard. We show that computing even the
lower bound on the number of values is NP-hard. We therefore study
different approximation heuristics for this problem. We introduce three
new methods for computing a lower bound on the number of values. The
first two are based on the maximum independent set problem and are in-
comparable to a previous approach based on intervals. The last method
is a linear relaxation of the problem. This gives a tighter lower bound
than all other methods, but at a greater asymptotic cost.

1 Introduction

The NValue constraint counts the number of distinct values used by a vector
of variables. It is a generalization of the widely used AllDifferent constraint
[12]. It was introduced in [4] to model a musical play-list configuration problem so
that play-lists were either homogeneous (used few values) or diverse (used many).
There are many other situations where the number of values (e.g., resources) used
at the same time are limited. In such cases, a NValue constraint can aid both
modelling and solving.

Enforcing generalized arc consistency (GAC) on the NValue constraint is
NP-hard [3]. One way to deal with this intractability is to identify a tractable
decomposition or approximation method. The NValue constraint can be decom-
posed into two other global constraints: the AtMostNValue and the Atleast-
NValue constraints. Unfortunately, while enforcing GAC on the AtLeast-
NValue constraint is polynomial, we show that enforcing GAC on the At-
MostNValue constraint is also NP-hard. We will therefore focus on various
approximation methods for propagating the AtMostNValue constraint.

We introduce three new approximations. Two are based on graph theory while
the third exploit a linear relaxation encoding. We compare the level of filtering
achieved with a previous approximation method due to Beldiceanu based on
intervals that runs in O(n log(n)) [1] for finding a lower bound on N , and linear
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for pruning values. We show that the two new algorithms based on graph theory
are incomparable with Beldiceanu’s, though one is strictly tighter than the other.
Both algorithms, however, have a O(n2) time complexity. We also show that the
linear relaxation method dominates all other approaches in terms of the filtering,
but with a higher computational cost. Finally, we demonstrate how all of these
methods can be used in a filtering algorithm for the NValue constraint.

2 Formal Background

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a set of variables, each with a
finite domain of values, and a set of constraints that specify allowed combinations
of values for subsets of variables. We use upper case for variables, Xi, or vectors
of variables, X̄, and lower case for values, v, or assignments, v̄. The domain of a
variable Xi, D(Xi) is a set of values. A full or partial assignment v̄ = 〈v1, . . . , vm〉
of X̄ = 〈X1, . . . , Xm〉 is a vector of values such that vi ∈ D(Xi). A solution to a
CSP is a full assignment of values to the variables satisfying the constraints. The
minimum (resp. maximum) value in the domain of a variable Xi is min(Xi) (resp.
max(Xi)). The cardinality of an assignment v̄ is card(v̄), the number of distinct
values used. For instance if v̄ = 〈a, b, a, b, c〉, card(v̄) = 3. The maximum (resp.
minimum) cardinality of a vector of variables X̄, card↑(X̄) (resp. card↓(X̄)) is
the largest (resp. smallest) cardinality among all possible assignments.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C on the variables X̄, a support for Xi = vj on C
is a partial assignment v̄ of X̄ containing Xi = vj that satisfies C. A value
vj ∈ D(Xi) without support on a constraint is arc inconsistent. A variable Xi is
generalized arc consistent (GAC ) on C iff every value in D(Xi) has support on
C. A constraint C is GAC iff each constrained variable is GAC on C. A bound
support on C is a support where the interval [min(Xi),max(Xi)] is substituted
for the domain of each constrained variable Xi. A variable Xi is bound consistent
(BC ) on C if min(Xi) and max(Xi) have bound support on C. A constraint is
BC iff all constrained variables are BC on C.

In line with [11], we say that a local consistency property Φ on C is as strong
as Ψ (written Φ  Ψ) iff, given any domains, if Φ holds then Ψ holds; Φ is
stronger than Ψ (written Φ ! Ψ) iff Φ  Ψ but not Ψ  Φ; Φ is equivalent to Ψ
(written Φ ≡ Ψ) iff Φ  Ψ and Ψ  Φ; and that they are incomparable otherwise
(written Φ �� Ψ).

2.2 Graph Theoretic Concepts

Given a family of sets F = {S1, . . . , Sn} and a graph G = (V,E) with the set of
vertices V = {v1, . . . , vn} and set of edges E, G is the intersection graph of F iff

∀i, j 〈vi, vj〉 ∈ E ↔ Si ∩ Sj �= ∅
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X1 ∈ {2, 3}
X2 ∈ {3, 4}
X3 ∈ {1, 4, 5}
X4 ∈ {5, 6}
X5 ∈ {6, 7}
X6 ∈ {2, 3, 7}

(a) domains

v2

v6

v1

v4

v5

v3

(b) GX̄

v2

v6

v1

v4

v5

v3

(c) GĪ

Fig. 1. Domains, intersection graph and interval graph

For any graph G, there exists a family of sets F such that the intersection
graph of F is G. Thus, the class of intersection graphs is simply the class of
all undirected graphs [8]. The class of graphs obtained by the intersection of
intervals, instead of sets, is known as interval graphs.

Given a vector of variables X̄ = 〈X1, . . . , Xm〉, we use GX̄ = (V,E) for the
induced intersection graph, i.e the graph where V = {v1, . . . , vm} and ∀i, j ·
〈vi, vj〉 ∈ E ↔ D(Xi) ∩ D(Xj) �= ∅. Similarly, we use Ī for the same vector
of variables, where all domains are seen as intervals instead, i.e., for each i,
D(Xi) = [min(Xi),max(Xi)]. GĪ is the induced interval graph, defined like GX̄ ,
but on the intervals instead. For instance, the domains in Figure (1,a) induce
the intersection graph in (1,b) and the interval graph in (1,c).

Finally, we recall that an independent set is a set of vertices with no edge
in common. The independence number α(G) of a graph G, is the number of
vertices in an independent set of maximum cardinality. A clique is the dual
concept: a set of vertices such that any pair has an edge between. A clique
cover of G is a partition of the vertices into cliques. The cardinality of the
minimum clique cover is θ(G). For instance, the interval graph of Figure (1,c) has
{{v1, v2, v3}{v4, v5, v6}} as a minimal clique cover, hence θ(GĪ) = 2. Similarly,
the intersection graph of Figure (1,b) has {v1, v3, v5} as a maximal independent
set, hence α(GX̄) = 3.

3 The NValue Constraint

In this section we define the NValue constraint and we show that it can be
decomposed into two simpler constraints. Whereas one of these constraints is
polynomial to propagate using a maximum matching algorithm, the second is
NP-hard so we look at approximate methods.

Definition 1. NValue(N, 〈X1, . . . , Xm〉) holds iff N = |{Xi| 1 ≤ i ≤ m}|
Enforcing GAC on the NValue constraint is NP-hard in general [3]. We can,

however, decompose it into two simpler constraints: the AtLeastNValue and
the AtMostNValue constraints.

Definition 2. AtLeastNValue(N, 〈X1, . . . , Xm〉) holds iff N ≤ |{Xi| 1 ≤ i ≤
m}|. AtMostNValue(N, 〈X1, . . . , Xm〉) holds iff N ≥ |{Xi| 1 ≤ i ≤ m}|.
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We can identify precisely when the decomposition of a NValue constraint
does not hinder propagation.

Theorem 1. If AtLeastNValue and AtMostNValue are GAC and |D(N)|
�= 2 or min(N) + 1 = max(N), then NValue is GAC.

Proof. Suppose that the decomposition is GAC. Then we have card↓(X̄) ≤
min(N) and card↑(X̄) ≥ max(N). Thus, by Lemma 1 (see Appendix), N is
GAC for NValue. Furthermore, we know that if |D(N)| > 2, or D(N) contains
a value v such that card↓(X̄) < v < card↑(X̄) then all variables in X̄ are GAC
(see Lemma 2 in Appendix). Therefore we only need to cover three cases:

– D(N) = {card↑(X̄)}. Let v be an arc inconsistent value in X̄. There is no
assignment whose cardinality is greater than card↑(X̄), therefore v is arc
inconsistent because it participates only in assignments of cardinality below
N . Hence v is arc inconsistent for AtLeastNValue, which contradicts the
hypothesis.

– D(N) = {card↓(X̄)}. Analogous to the last case.
– D(N) = {card↓(X̄), card↑(X̄)}: If card↓(X̄) + 1 = card↑(X̄) then NValue

is GAC (see Lemma 2 in Appendix). Otherwise, there is a gap between
the bounds. This is the only case where the decomposition is GAC but
NValue may not be. For instance, consider the domains: X1 ∈ {1, 2, 3}, X2 ∈
{1, 2}, X3 ∈ {1}, N ∈ {1, 3}. Whilst enforcing GAC on NValue(N, 〈X1, X2,
X3〉) will prune X1 = 2, these domains are GAC for the decomposition. ��
If the domain of N contains only card↓(X̄) and card↑(X̄), and these two

values are not consecutive, then NValue may not be GAC even though At-
MostNValue and AtLeastNValue are GAC. However, as we show in sec-
tion 7, we can make GAC on the decomposition equivalent, by performing an
extra pruning in this situation.

3.1 The AtLeastNValue Constraint

We first have a brief look at the AtLeastNValue constraint. It is known [1]
that card↑(X̄) is the cardinality of the maximal matching of the bipartite graph
with a class of vertices representing the variables, another the values, and where
an edge links two vertices if and only if it corresponds to a valid assignment.
Indeed, this is the basic idea behind Régin’s algorithm for enforcing GAC on the
AllDifferent constraint [12]. We can easily derive a propagation procedure
for AtLeastNValue using the polynomial algorithm for the SoftAllDiff
constraint [10] that counts the number of variables that need to be reassigned to
satisfy the constraint. We can use this algorithm to compute card↑(X̄). More-
over, we can use this same algorithm to prune the values in X̄ that do not belong
to a maximal matching. This nearly provides us with an algorithm for enforcing
GAC on AtLeastNValue. One difference is that we do not always want to
prune the values that do not participate in a maximal matching. We shall see
how this algorithm can be used when pruning the variables in X̄ in section 7.



Filtering Algorithms for the NValue Constraint 83

We refer the reader to [10] for more details about this algorithm, and we focus
on the constraint AtMostNValue for the rest of the paper.

3.2 The AtMostNValue Constraint

We adapt the proof of NP-hardness for NValue [3] to also show that enforcing
GAC on an AtMostNValue constraint alone is intractable.

Theorem 2. Enforcing GAC on a AtMostNValue(N, 〈X1, . . . , Xm〉) const-
raint is NP-hard, and remains so even if N is ground.

Proof. We use a reduction from 3SAT. Given a formula in k variables and
n clauses, we construct the AtMostNValue(X1, . . . , Xk+n, N) constraint in
which D(Xi) = {i,¬i} for all i ∈ [1, k], and each Xi for i > k represents one
of the n clauses. If the jth clause is x ∨ ¬y ∨ z then D(Xk+j) = {x,¬y, z}.
By construction, the variables will consume k distinct values, hence if N =
k, the constructed AtMostNValue constraint has a solution iff the original
3SAT problem has a satisfying assignment. The completeness is easy to see as
the support is a polynomial witness. Hence testing a value for support is NP-
complete, and enforcing GAC is NP-hard. ��

Note that this proof is a reduction of 3SAT into the problem of propagating
GAC on X̄ when N is ground. This means that pruning X̄ alone is NP-hard.
Indeed, even computing just the lower bound on N , given X̄ is no easier.

Theorem 3. Computing the value of card↓(X̄) is NP-hard.

Proof. Computing card↓(X̄) is equivalent to finding the cardinality of a mini-
mum hitting set of X̄ seen as a family of sets. A hitting set of a family of sets
F , is a set that intersects each member of F . Computing the cardinality of the
smallest possible hitting set is NP-hard [9]. If we have one variable Xi in X̄ for
each set Si ∈ F , and D(Xi) = Si, then card↓(X̄) is equal to the cardinality of
a minimum hitting set of F . ��

4 Existing Algorithm for the AtMostNValue Constraint

We first recall Beldiceanu’s algorithm, then we introduce a graph theoretic view
of his method. We shall refer to Beldiceanu’s algorithm as OI, for ordered inter-
vals. The first step is to order the domains by increasing lower bound. Then the
following procedure (algorithm 1) can be applied, the value returned (Ndistinct)
is a lower bound on card↓(X̄).

The intervals are explored one at a time, and a new group, i.e. a clique of the
interval graph, is completed when an interval is found that does not overlap with
all previous ones in the group. The time complexity is O(nlog(n)) for sorting,
and then the algorithm itself is linear, the loop visits each domain at most twice
(when this domain is distinct from the previous). Hence, the worst case time
complexity is dominated by O(nlog(n)). This algorithm is proved correct, that
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Algorithm 1: OI: The interval-based algorithm introduced in [1]
Data : X̄ = [X1, . . . Xm]

Result : Ndistinct

Ndistinct ← 1; reinit ← 1; i ← 1; low ← −∞; up ← ∞;
while i < m do

i ← i + 1 − reinit;
if reinit or (low < min(Xi)) then low ← min(Xi);
if reinit or (up > max(Xi)) then up ← max(Xi);
reinit ← (low > up);
Ndistinct ← Ndistinct + reinit;

return Ndistinct;

is, it returns a valid lower bound, by noticing that the intervals with smallest
maximum value for each group are pairwise disjoint. Consequently, at least as
many values as groups, that is, Ndistinct, have to be used. As there was no proof
given in [1], we present one here:

Proposition 1 (given in [1] without proof). Let {C1, . . . , Ck} be a partition
of the intervals, output of OI. If Ī = 〈I1, . . . , Ik〉 is the vector of intervals where
Ii is the element of Ci with least maximum value, then all elements of Ī have
empty pairwise intersections.

Proof. OI scans all intervals by increasing lower bound, partitioning into groups
on the way. When the algorithm ends, we have k groups C1, . . . , Ck. For any
group Ci, consider the interval I1 with least upper bound. This interval does not
intersect any interval in any group Cj such that j > i. Suppose it was the case,
i.e, there exists I2 ∈ Cj which intersects with I1, since the intervals are ordered
by increasing lower bound, I2 cannot be completely below any interval in Ci. It
must then be either completely above or overlapping. However, since I1 has the
least upper bound and intersects I2, all intervals in Ci must also intersect I2. It
follows that I2 should belong to Ci hence the contradiction. The set containing
the interval with least upper bound of every group is then pairwise disjoint, and
is of cardinality k. ��

Moreover, it is easy to see that, when the domains are indeed intervals, this
bound can be achieved. If, for each group, we assign all the variables of this
group to one of the common values, then we obtain an assignment of cardinality
Ndistinct. This argument is used in [1] to show that OI achieves BC on N .

Now, recall that GX̄ is the intersection graph of the variables in X̄, whereas
GĪ is the interval graph of the same variables. It is easy to see that OI computes
at once a clique cover and an independent set of GĪ . Moreover, since for any
graph α(G) ≤ θ(G), if a graph G contains an independent set and a clique cover
of cardinality n, we must conclude that n = α(G) = θ(G). Indeed, interval graphs
belong to the class of perfect graphs, for which, by definition, the independence
number is equal to the size of the minimum clique cover. Therefore, we know
that the output of OI, i.e., Ndistinct is equal to α(GĪ) and also to θ(GĪ). It can
be shown that, in this case, the cardinality of the minimum clique cover on the
interval graph is equal to the cardinality of the minimum hitting set on Ī itself.
This is due to the fact that a set of intervals that pairwise intersect always share a
common interval, any element of this interval hitting all of them. To summarize,
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in the special case where the domains of all variables in X̄ are intervals (denoted
Ī), the following equality holds: α(GĪ) = θ(GĪ) = card↓(Ī)

As a consequence, the value Ndistinct is exact, hence OI achieves bound consis-
tency on N for the constraint AtMostNValue. However, considering domains
as intervals may be in some case a very crude approximation. If we consider the
intersection graph GX̄ instead of the interval graph GĪ , the relation becomes:
α(GX̄) ≤ θ(GX̄) ≤ card↓(X̄)

Any of those three quantities is a valid lower bound, though they are NP-
hard to compute. They are, on the other hand, tighter approximations that do
not consider domains as intervals. Indeed, since GX̄ has more edges than GĪ , it
follows immediately that: α(GX̄) ≥ α(GĪ) (= θ(GĪ) = card↓(Ī))

5 Three New Approaches

We present two algorithms approximating α(GX̄) and a linear relaxation ap-
proximating directly the minimum hitting set problem, and hence card↓(X̄).

5.1 A Greedy Approach

We have seen that OI approximates the lower bound on N by computing the
exact value of α(GĪ), the independence number of the interval graph induced by
X̄. Here the idea is to compute the independence number of GX̄ , α(GX̄).

Whilst computing the exact value of α(GX̄) is intractable for unrestricted
graphs, some efficient approximation schemes exist for that problem. We use
here a very simple heuristic algorithm for computing the independence number
of a graph, referred to as “the natural greedy algorithm”. We denote it MD, for
minimum degree from now on. It consists in removing the vertices of minimum
degree as well as their neighborhood in turn. The number of iterations i is such
that i ≤ α(G). This algorithm is studied in detail in [6]. If we suppose that
the intersection graph is constructed once and maintained during search, then a
careful implementation can run in O(n+m) where n is the number of vertices and
m is the number of edges (linear in the size of the graph). However, computing
the intersection graph requires n(n + 1)/2 tests of intersection. Each of those
may require at most d equality checks, where d is the size of the domains in
X̄ . Notice that efficient data structures, such as bit vectors, are often used to
represent domains and thus allow intersection checks in almost constant time
in practice. This suggests an implementation where the graph is never actually
computed, but an intersection check is done each time we need to know if an edge

Algorithm 2: MD: A greedy algorithm approximating the maximum inde-
pendent set of a graph

Data : G = (V, E)

Result : Ndistinct

if G = ∅ then return 0;
choose v ∈ V such that d(v) is minimum;
return 1+MD(G(V \ (Γ (v) ∪ {v})));
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links two nodes. The worst case time complexity is then O(dn2) if intersection
is linear in the size of the sets or O(n2) if it is constant. We denote Γ (v) the
neighborhood of v, Γ (v) = {w|vw ∈ E}.

5.2 Turán’s Approximation

Alternatively, we can use an even simpler approximation. Turán proposed a
lower bound of n2

2m+n for α(G) in [13], where n is the number of vertices and m
the number of edges. Therefore assuming that m is computed once, and revised
whenever a domain changes or whenever the constraint is called again, this
formula gives a lower bound in constant time. The worst case time complexity
is the same as MD’s (because of the initialization). However, this heuristic can be
much more efficient in practice. We refer to this method as Turan.

5.3 A Linear Relaxation Approach

We have shown the following inequalities: α(GĪ) ≤ α(GX̄) ≤ card↓(X̄).
We have seen that the cardinality of the minimum hitting set problem where

the family of sets is formed by the domains of the variables in X̄ is equal to
the lower bound on N , that is, card↓(X̄). One difficulty is that approximation
algorithms proposed in the literature for minimum hitting set return a set which
may be too large, and so do not provide a valid lower bound. However, we
consider here a linear relaxation that can be solved in polynomial time that
gives a lower bound on the minimum hitting set cardinality, and thus, of N . We
refer to this method as LP.

Given a vector of variables X̄ = 〈X1, . . . Xm〉, let V =
⋃

v∈X̄ D(x) be the
total set of values. Then let {yv| v ∈ V } be a set of linear variables, and LP is
as follows:

min
∑
v∈V

yv subject to
∑

v∈D(Xi)

yv ≥ 1 ∀Xi ∈ X̄

where yv ≥ 0 forall v ∈ V .
The best polynomial linear program solvers based on the interior point meth-

ods run in O(v3L) where v is the number of variables and L is the number of bits
in the input. The number of variables in our linear program is nd (d = |D(Xi)|)
and we have n = |X̄| inequalities of size d. Therefore, the worst case time com-
plexity is O(n4d4). In practice, the simplex method may behave better even
though it has an exponential worst case time complexity.

6 Theoretical Analysis

We will compare local consistency properties applied to the AtMostNValue con-
straint. In our case, the AtMostNValue constraint holds iff the lower bound
returned by the propagation algorithm (consistency) does not exceed max(N).
Thus, given consistency properties Φ and Ψ , Φ  Ψ means that the lower bound
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on N returned by the algorithm enforcing Φ is greater than or equal to the lower
bound returned by the algorithm enforcing Ψ .5 We consider comparing the level
of consistency achieved by the following algorithms: OI, MD, Turan, and LP.

Note that, since only the lower bound on N is considered in this comparison,
OI is then equivalent to BC. We do not compare with generalized arc consistency
either, as this is NP-hard to enforce and all our algorithms are polynomial and
strictly weaker.

Theorem 4. MD ! Turan

Proof. For a proof that MD is as strong as Turan see [6]. Moreover, it is easy to
find an example showing that MD is strictly stronger. For instance consider the
following domains: X1 ∈ {1, 2, 3, 4, 5, 6, 7, 8}, X2 ∈ {1, 2}, X3 ∈ {3, 4}, X4 ∈
{5, 6} , and X5 ∈ {7, 8}.

The induced intersection graph is as follows: v5 v1 v3

v2

v4

When applying MD, we obtain an independent set of size 4. However, Turan
returns:

⌈
n2

2m+n

⌉
=

⌈
25
13

⌉
= 2. and we deduce a lower bound of 2 for N . ��

Theorem 5. Turan �� OI

Proof. To see that Turan is not as strong as OI, consider the example used in
the proof of Theorem 4. The domains being intervals, we know that OI computes
the exact lower bound, 4. However the Turán heuristics gives us 2.

To see that OI is not as strong as Turán, consider the domains in Figure 2. The
induced intersection graph GX̄ has 4 vertices (n = 4) and no edges (m = 0), thus
Turan returns 4. However, the interval graph GĪ induced by the same domains
is a clique and then OI returns 1. ��

X1 ∈ {4, 5}
X2 ∈ {3, 6}
X3 ∈ {2, 7}
X4 ∈ {1, 8}

(a) domains

I2

I1

I3

I4

(b) intervals

v1 v2

v3v4

(c) GX̄

v1 v2

v3v4

(d) GĪ

Fig. 2. Example for OI �� MD(GX̄) and for OI �� Turan

Theorem 6. MD �� OI

Proof. To see that MD � OI, consider the interval graph in Figure (3,a) induced
by the intervals of Figure (3,b). The exact independence number is 4 (for instance
{v2, v3, v8, v9} is an independent set of cardinality 4), and thus OI returns 4.

5 We refer to the level of local consistency achieved by an algorithm A as A as well.
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v3 v1 v2

v5

v7

v9

v11

v4

v6

v8

v10

(a) graph (GĪ)

I1

I2 I3

I4

I6

I8

I5

I9

I7

I11I10

(b) intervals (Ī)

Fig. 3. Example for MD �� OI

However, the vertex with minimal degree is v1, and no independent set of car-
dinality 4 involves v1, therefore MD is not as strong as OI.

To see that OI � MD(GX̄), see Figure 2. It is easy to construct domains where
the interval graph can have arbitrarily more edges than the intersection graph.
For instance the domains in Figure 2,a induce a complete interval graph, or an
unconnected intersection graph. Therefore OI is not as strong as MD. ��

Theorem 7. LP ! MD, LP ! OI and LP ! Turan.

Proof. We first show that the value returned by LP is greater or equal to α(GX̄).
Consider a maximum independent set A of the intersection graph. We know
that any two variables in A have no value in common. However for each variable
Xi ∈ A we have:

∑
v∈D(Xi)

yv ≥ 1. Since the domains of those variables are
disjoint, we have: ∑

v∈⋃
Xi∈A D(Xi)

yv ≥ |A| = α(GX̄)

And thus the total sum to minimize is greater than or equal to α(GX̄). However,
recall that OI, MD and Turan all approximate α(GX̄) by giving a lower bound.
Therefore LP is as strong as OI, MD and Turan. Moreover, the variables X1 ∈
{1, 2}, X2 ∈ {2, 3}, X3 ∈ {1, 3} constitute an example showing that LP is strictly
stronger, as the optimal sum for LP is 1.5, whilst α(GX̄) = 1.

��

LP

MD OI #
≺

≺ ≺
BC

��

��

Turan

GAC
≺

Fig. 4. Relations between algorithms and consistencies on the AtMostNValue con-
straint
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7 A Propagation Algorithm for the NValue Constraint

A template for an approximate propagation algorithm for NValue is given in
Algorithm 3. In this template, one may use any of the methods described in the
previous sections. The pruning on N is straightforward (Line 1 and 2). When
we have max(N) < min(N) (Line 3), there is clearly an inconsistency, and the
algorithm fails. In the following subsections, we consider the cases of Lines 4, 5
and 6, where some filtering may be achieved. All other cases (Line 7) satisfy the
preconditions of Lemma 2 (see Appendix) and the constraint is GAC. Therefore,
either the constraint is GAC, or we are unable to deduce any inconsistency
because the lower bound lb for card↓(X̄) is not tight enough.

Algorithm 3: Algorithm for propagating the NValue constraint
Data : X̄, N

Result :

ub ← card↑(X̄));
lb ← approx(card↓(X̄)));

1 max(N) ← min(max(N), ub);
2 min(N) ← max(min(N), lb);
3 if (max(N) < min(N)) then fail;
4 case (ub = min(N) = max(N) �= lb) : pruning from below;
5 case (lb = min(N) = max(N) �= ub) : pruning from above;
6 case (|D(N)| = 2 and min(N) + 1 < max(N)) : pruning from within;
7 otherwise return;

7.1 Pruning from Below

This pruning is triggered when card↑(X̄) = min(N) and card↓(X̄) < min(N).
In this situation, we know that some assignments may have too small cardinality,
and therefore some values may not participate in assignments of cardinality
card↑(X̄) = min(N), which is the only cardinality satisfying the constraint.
Making AtLeastNValue GAC is then sufficient to make the whole constraint
GAC as this corresponds to the first of the three possible cases discussed in the
proof of Theorem 1. In this situation, we can use a polynomial procedure for
enforcing GAC on the SoftAllDiff constraint which counts the number of
variables that have to be reassigned in order to be all different [10].

7.2 Pruning from Above

This is the dual case, we know that some assignments may have too large cardi-
nality, and therefore some values may participate only in assignments of cardi-
nality above max(N) (and we assume max(N) = card↓(X̄)). This corresponds
to the second case of the proof of Theorem 1. Making AtMostNValue GAC
is then sufficient to make the whole constraint GAC. Note that here we are not
sure to achieve GAC.

In [1] (p. 6), two observations are made in order to prune X̄ which are relevant
here when using MD to compute min(N). We reformulate these observations
consistently to the graph notations we used. First, let A be a set of variables
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that form an independent set of the intersection graph, and let Xi ∈ (X̄ \
A) be assigned to a value v which does not belong to any domain in A. It
follows that the minimum number of values required will be at least α(GX̄) +
1. Hence we can prune the value v from the domain of Xi when N is equal
to α(GX̄). This way of pruning the variables can be used with MD as well as
with OI. There are no further difficulties when going from interval graphs to
intersection graphs. Consequently, given an independent set A, we can propagate
the following constraint: ∀Xi ∈ X̄, ∃Xj ∈ A s.t. Xi = Xj . Second, suppose
that A′ is another distinct independent set. Thus, we have: ∀Xi ∈ X̄, ∃Xj1 ∈
A, ∃Xj2 ∈ A′ s.t. (Xi = Xj1 ∧ Xi = Xj2). Therefore, one can prune values in
X̄ by finding a set of independent sets A = {A1, . . . Ak}. The set of consistent
value V is defined as follows: ∀A ∈ A, UA =

⋃
Xi∈A D(Xi), V =

⋂
A∈A UA.

It may be difficult to compute all independent sets of cardinality equal to N .
One must therefore find a set which is as large as possible. In [1] from the
first one found with OI, each independent set that differs by only one vertex is
deduced. This can be computed in linear time, without increasing the algorithm’s
complexity. As a result this way X̄ is pruned, the algorithm described in [1]
does not enforce BC on AtMostNValue. The following domains are a counter
example: X1 ∈ {1, 2}, X2 ∈ {2, 3}, X3 ∈ {3, 4}, X4 ∈ {4, 5}, and N ∈ {2}.
Only the values 2 for X1, X2 and 4 for X3, X4 are bound consistent. However,
the independent sets considered will be {X1, X3} and {X1, X4}. Therefore, the
values that are consistent are {1, 2, 4}. This way of pruning can make holes in
domains. Therefore the level of consistency achieved on AtMostNValue is
incomparable with bound consistency. Although they are not equivalent, one
can easily derive a procedure to enforce BC from OI. To check the (say lower)
bound of a variable Xi, we assign this bound to Xi and compute N again. If
card↓(X̄) after this assignment is greater than N , this bound is not BC.

With algorithms that do not compute independent sets in order to get a lower
bound on N , like the linear relaxation method or the Turán heuristic, we are
in a different situation. However, we can simply wait until min(N) > max(N)
and fail in this case, without pruning any variable in X̄. Alternatively we could
compute a new lower bound for each value v of each Xi, that is, O(nd) times.
We set yv = 1. and if the objective function fails to be lower than or equal to N ,
then v is arc inconsistent. Since the pruning on X̄ happens in a limited number
of situations, it may be cost effective to use this complete method.

7.3 Pruning from Within

This pruning is triggered when card↓(X̄) = min(N), card↑(X̄) = max(N) and
card↓(X̄) + 1 < card↑(X̄). This is the last of the three cases in the proof of
Theorem 1. In this case AtMostNValue and AtLeastNValue can be GAC
whilst NValue is not. However, we can use a conditional constraint to do some
pruning in this particular case. The idea is, when these conditions are met, to
trigger the following constraint to perform this extra filtering:
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Min = card↓(X̄) ∧Max = card↑(X̄)∧
(AtMostNValue(Min, X̄)∨ AtLeastNValue(Max, X̄))

Min and Max are two extra variables. We have the following theorem:

Theorem 8. If D(N) = {card↓(X̄), card↑(X̄)} and card↓(X̄) + 1 < card↑(X̄)
then NValue(N, X̄) is GAC iff the decomposition and (when the conditions are
met) the conditional constraint are GAC.

Proof. (⇒) The case where D(N) = {card↓(X̄), card↑(X̄)} or card↓(X̄) + 1 <
card↑(X̄) does not hold is covered by Theorem 1. Now suppose this condi-
tion holds, and there is a value vi ∈ D(Xi) which is not GAC for NValue.
By definition, this implies that any assignment such that the ith element is
vi has a cardinality different from card↓(X̄) and from card↑(X̄), since these
values are in D(N). Moreover, there is no assignment with cardinality above
card↑(X̄) or below card↓(X̄). Therefore we deduce that any assignment v̄ in-
volving vi is such that card↓(X̄) < card(v̄) < card↑(X̄). Hence, if Min =
card↓(X̄) ∧ Max = card↑(X̄) holds, then vi would be inconsistent for both
AtMostNValue(Min, X̄) and AtLeastNValue(Max, X̄)).

(⇐) If a value vi belongs to a support, i.e., an assignment whose cardinal-
ity is either card↓(X̄) or card↑(X̄), then either AtMostNValue(Min, X̄) or
AtLeastNValue(Max, X̄)) or both are GAC. ��

Hence, we simply assign card↓(X̄) to N , then we compute B1, the set of
values inconsistent for AtMostNValue. Similarly, we assign card↑(X̄) to N
and compute B2, the set of values inconsistent for AtLeastNValue, In both
cases, we use the methods described in section 7.1 and 7.2. Once this is done, we
restore the domain of N , and prune all values in B1 ∩ B2. Notice that B1 may
be underestimated, hence we do not achieve GAC.

8 Related Work

Two algorithms, on the same line as OI, yet achieving BC, have been introduced
in [2]. In this technical report, the authors also extend the constraint to deal
with weights on values. Observe that filtering on the weighted version of the
constraint can easily be done with the linear relaxation method. Indeed, the
weights on values can be represented as coefficients in the linear equations.

The maximum independent set is a well known problem in graph theory and
a number of approximation algorithms have been proposed. We used two simple
and intuitive algorithms for the sake of simplicity and because MD is successful in
practice. However, algorithms with better approximation ratio exist, for instance
see [7]. Any such algorithm may replace MD into the propagation algorithm.

We have seen that the linear programming approach is always stronger, even
than a complete method for finding a maximum independent set. It is difficult to
identify where the linear relaxation for the minimum hitting was first introduced,
as it is such a simple model. It is certainly given in [5]. One weakness of the linear
programming approach is that it is difficult to deduce which values to prune when
min(N) = max(N).
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9 Conclusion

Propagating generalized arc consistency on the NValue constraint is NP-hard.
In order to filter inconsistent values, one has to obtain tight bounds on the
number of distinct values used in assignments. Whilst the upper bound can
be obtained in polynomial time with a maximal matching procedure, the lower
bound alone is NP-hard to compute. Therefore, our focus is on methods which
achieve lesser levels of consistency. A procedure proposed by Beldiceanu consid-
ers domains as intervals, which allows the independence number of the induced
interval graph to be computed in polynomial time. The independence number
of this graph is a valid lower bound on the number of distinct values. We in-
troduce three new methods for approximating this lower bound. The first two
approximate the independence number of the intersection graph. However, these
algorithms have a quadratic worst case time complexity, and do not guarantee
a tighter lower bound. The last and most promising approach is to use a linear
relaxation of the minimum hitting set problem. The cardinality of the minimum
hitting set is a tight lower bound on the number of distinct values. This al-
ways finds a tighter lower bound than the approaches based on the maximum
independent set problem. In our future work, we will compare these methods
experimentally.

Acknowledgements

Brahim Hnich is currently supported by Science Foundation Ireland under Grant
No. 00/PI.1/C075. Toby Walsh and Emmanuel Hebrard are supported by Na-
tional ICT Australia.

References

1. N. Beldiceanu. Pruning for the minimum constraint family and for the Number of
Distinct Values constraint family. In Proceedings CP-01, 2001.

2. N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-Filtering Algorithms for the two
sides of the Sum of Weights of Distinct Values Constraint. SICS technical report,
2002.

3. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In Proceedings AAAI-04, 2004.

4. P. Roy F. Pachet. Automatic generation of music programs. In Proceedings CP-99,
1999.

5. S. Shahar G. Even, D. Rawitz. Hitting sets when the vc-dimension is small, (sub-
mitted to a journal publication) 2004.
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Appendix: Conditions When NValue Is GAC
In order to show when enforcing GAC on the decomposition of the NValue
constraint enforces GAC on NValue, we used two lemmas. These identify when
the variables in the NValue constraint are GAC. First, N is GAC iff its bounds
are between card↓(X̄) and card↑(X̄).

Lemma 1. Any value in D(N) is GAC for NValue as long as it is lower than
or equal to card↑(X̄) and greater than or equal to card↓(X̄).

Proof. Let S be any assignment of X̄ . Consider assigning X̄ as in S, one variable
at a time. Let X̄k be X̄ at step k, that is, with k ground variables. Hence, since
X̄ involves m values, X̄m corresponds to Sol At a step k, the value of card↓(X̄k)
(resp. card↑(X̄k)) increases (resp. decreases) by at most one with respect to step
k − 1. Moreover, when every variable is assigned, card↓(X̄m) =card↑(X̄m) =
card(S). Therefore, for any value p between card↓(X̄0) and card↑(X̄0), there
exists k such that either card↓(X̄k) = p or card↑(X̄k) = p. Consequently p has
a support for a sub-domain X̄k and is thus GAC. ��

Second, the variables in X̄ are GAC if either D(N) = [card↓(X̄), card↑(X̄)]
or there exists at least one value lower than card↑(X̄) and greater than card↑(X̄).

Lemma 2. If either D(N) = [card↓(X̄), card↑(X̄)] or card↓(X̄)+1 < card↑(X̄)
and [card↓(X̄) + 1, card↑(X̄)− 1] ∩D(N) �= ∅ then X̄ is GAC.

Proof. We first show the first part of the disjunction. Recall that card↓(X̄) (resp.
card↑(X̄)) is the cardinality of the smallest (resp. largest) possible assignment.
Therefore, if the domain of N is equal to the interval [card↓(X̄), card↑(X̄)] it
means that all assignments of X̄ have a cardinality in D(N).

For the second part, we use again the argument that assigning a single vari-
able can affect the bounds by at most one. In other words, for all Xi ∈ X̄,
a value v ∈ D(Xi) (without loss of generality) belongs to an assignment of
cardinality either card↓(X̄), card↓(X̄) + 1, card↑(X̄) or card↑(X̄) − 1. More-
over, let X̄Xi=v be X̄ where the domain of Xi is reduced to {v}. We have
card↓(X̄Xi=v) ≤ card↓(X̄) + 1 and card↑(X̄Xi=v) ≥ card↑(X̄) − 1. Hence, by
assumption D(N)∩ [card↓(X̄Xi=v), card↑(X̄Xi=v)] �= ∅, and by applying Lemma
1, we know that there exists a tuple satisfying NValue with Xi = v. ��
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Abstract. Recent work have exhibited specific structure among com-
binatorial problem instances that could be used to speed up search or
to help users understand the dynamic and static intimate structure of
the problem being solved. Several Operations Research approaches apply
decomposition or relaxation strategies upon such a structure identified
within a given problem. The next step is to design algorithms that adap-
tatively integrate that kind of information during search. We claim in
this paper, inspired by previous work on impact-based search strategies
for constraint programming, that using an explanation-based constraint
solver may lead to collect invaluable information on the intimate dy-
namic and static structure of a problem instance. We define several im-
pact graphs to be used to design generic search guiding techniques and
to identify hidden structures of instances. Finally, we discuss how ded-
icated OR solving strategies (such as Benders decomposition) could be
adapted to constraint programming when specific relationships between
variables are exhibited.

1 Introduction

Generic search techniques for solving combinatorial problems seems like the Holy
Grail for both OR and CP communities. Several tracks are now explored: dynam-
ically analyzing and adapting the way the solver actually solves a combinatorial
problem, identifying specific structures in a given instance in order to speed
up search, etc. The key point is to be able to identify, understand and use the
intimate structure of a given combinatorial problem instance [7, 17, 18].

Refalo [16] recently defined impact-based solving strategies for constraint
programming that dynamically use the structure of a solved problem. In this
paper, we attempt to investigate the relationships between the variables of the
problem. We intend to identify, differentiate and use both dynamic (created
by the search algorithm) and static (relative to the instance) structures of the
problem being solved. We focus on structures intended as subsets of variables
that play a specific role within the problem. We define to this end several fine
grained impact measures and induced impact graphs between variables to:
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– identify hidden structures in problems;
– design generic search guiding techniques;
– pave the way of possible use of the impact analysis into decomposition based

methods such as, for example, Benders decomposition.

Our new impact measures are made possible by the use of an explanation-
based constraint solver that provides inside information about the solver embed-
ded knowledge gathered from the problem.

The paper is organized as follows: Section 2 introduces the basis and motiva-
tions of our work. Several impact measures and associated graphs are presented
in Section 3 distinguishing their respective ability to reflect dynamic and static
structures on a concrete example. Finally, as we believe that the detection of
hidden structures can be explicitly used into CP, we start to show the interest of
those such structures as a guide for searching as well as the design of a dedicated
resolution strategy inspired from a logic based decomposition.

2 The Idea of Exploiting Problem Structures Within
Search Strategies

Efficient constraint programming search strategies exploit specific aspects or
characteristics of a given (instance of a) problem. In Operation Research, relax-
ation or decomposition strategies exploit the fact that part of the problem can
be treated as a classical problem (such as compatible or optimal flow problems,
shortest path problems, knapsack problems, etc.). This is often called structure
in the constraint programming community.

A problem is more generally said to be structured if its components (vari-
ables1 and/or constraints) do not all play the same role, or do not have the
same importance within the problem. In such a problem, the origin of the com-
plexity relies on the different behavior (or impact) for specific components of
the problem. One of the main difficulty in identifying structure in problems is
that this structure is not always statically (at the instance level, before solving)
present. The interplay between a given instance and the search algorithm itself
may define or help to exhibit a hidden structure within the problem. We call it
a dynamic structure. It is related to bad initial choices as well as new relation-
ships due to the addition of constraints during the search. This does not make
things easy when willing understand the complexity of a problem and use this
information to speed up search techniques.

Backdoors, recently introduced in [18], are an interesting concept to charac-
terize hidden structure in problem instances. They are informally defined as sub-
sets of variables that encapsulate the whole combinatorics of a given instance of a
problem: once this core part completely instantiated, the remaining subproblem
can be solved very efficiently. Numerous search strategies are based, knowingly

1 In the following, we will focus our study only on variables as components inducing
a structure.
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or not, upon this principle. The following two were the most influential for our
work:

– Branching heuristics in CP attempt to early guide the search towards the
backdoors variables as they try to perform choices that simplify the whole
problem as much as possible. They are based on a simple idea: select a
variable that lead the possibly smallest search space and that raises con-
tradictions early as possible. This principle (often referred to the first fail
principle [8]) is often implemented by taking the current domain and degree
of constraindness (see [3] for variants) of the variables into account. More
recently, [16] proposed to characterize the impact of a choice and a variable
by looking at the search space reduction caused by this choice in average (an-
other way of identifying a backdoor) and used this information as a guiding
strategy.

– Benders decomposition [2] falls exactly within the range of backdoors tech-
niques. It is a solving strategy based on a partition of the problem among
its variables into two sets x, y. A master problem provides an assignment
x∗, and a sub-problem tries to complete this assignment over the y vari-
ables. If this proves impossible, it produces a cut2 (a constraint) added to
the master problem in order to prune this part of the search space on the
x side. The interesting cuts are those who are able to prune not only the
current x∗ solution from the search space (this is mandatory) but also the
largest possible class of assignments that share common characteristics with
x∗ which make them suboptimal or inconsistent for the same reason. This
technique is intended for problems with special structure. The master prob-
lem is based on a relevant subset of variables that generally verifies the two
following assumptions:
1. the resulting subproblem is easy. In practice, several small independent

subproblems are used, making it easy to perform the required exhaustive
search in order to produce the Benders cut.

2. the Benders cut is accurate enough to ensure a quick convergence of the
overall technique.

In such a decomposition, the master problem can be considered as a back-
doors because, thanks to condition 1, once completely instantiated the re-
maining problem can be solved efficiently. Moreover, if the remaining sub-
problem can be actually solved polynomially (this is referred as strong back-
doors), a powerful cut based on the minimal conflict can often be computed.

For the latter technique, structure needs to be identified before search starts.
Classical structure identification is made through an analysis of the constraint
network. For example, it is common for solving graph coloring problems to look
for maximal cliques in order to compute bounds or to add all-different constraint
to tighten propagation on the problem. But, such an analysis only provides infor-
mation on visible static structures. Nevertheless, hidden structure and dynamic

2 This cut is often referred as the Benders cut.



Identifying and Exploiting Problem Structures 97

one seems to be of very high interest for a lot of search strategies. Of course,
their identification is at least as costly as solving the original problem. We believe
that the propagation performed by the solver during search provides information
that should lead to identify those hidden structures. One way of exploiting that
information is to use explanations.

3 Identifying Problem Structure Using Explanations

Refalo [16] introduced an impact measure with the aim of detecting choices with
the strongest search space reduction. He proposes to characterize the impact of
a decision by computing the Cartesian product of the domains (an evaluation of
the size of the search space) before and after the considered decision. We claim
here that we can go a step further by analyzing where this propagation occurs
and how past choices are involved. We extend those measures into an impact
graph of variables, taking into account both the effects of old decisions and their
effective involvement in each inference made during resolution.

Our objective being to identify variables that maximally constrain the prob-
lem as well as subsets of variables that have strong relationships and strong
impact upon the whole problem (namely a backdoors). We have focused our
study on the following points:

– the impact or influence of a variable on the direct search space reduction;
– the impact of a variable inside a chain of deductions made by the solver even

a long time after the variable has been instantiated;
– the region of the problem under the influence of a variable and the precise

links between variables.

Such information relies on the concept of explanation for CP [11].

3.1 Explanations for Constraint Programming

Explanations have been initially introduced to improve backtracking-based al-
gorithms but have been recently used for many purposes including dynamic
constraint satisfaction problems and user interaction.

Definition 1. An explanation records some sufficient information to justify an
inference made by the solver (domain reduction, contradiction, etc.). It is made
of a set of constraints C ′ (a subset of the original constraints of the problem) and
a set of decisions dc1, ..., dcn taken during search. An explanation of the removal
of value a from variable v will be written: C ′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v �= a.

As the constraint solver always know (although may be not explicitly) why
it removes a value from the domain of a variable, explanations can be computed
within the solver3 [12]. Thus, explanations computed by the solver account for

3 Notice that when a domain is emptied (i.e. a contradiction is identified), an expla-
nation for that situation is computed by uniting each explanation of each removal
of value of the variable concerned.
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the underlying logical chain of consecutive inferences made by the solver during
propagation. In a way, explanations provide an accurate trace of the behavior
of the solver as all operations are explained. In the following, Eval

i will denote
the set of all explanations computed from the start of the search for all differ-
ent removals of the value val of the variable i that have occurred throughout
search.

3.2 Characterizing Impact

The impact of a decision xi = a can be expressed, according to the first fail
principle, through the reduction of the search space implied in average by this
decision. Nevertheless, this reduction does not only occur when the decision is
posted to the problem but also when other (future) deductions that are partially
based on the hypothesis xi = a are made.

The use of explanations can provide more information on the real involvement
of the decision in the reduction. A past decision xi = a has an effective impact
(in the solver’s point of view) over a value val of variable xj if it appears in the
explanation justifying its removal.

We introduce now our new measures whose aim is to characterize the impact
of a decision not only based on the immediate search space reduction. We denote
Iα(xi = a, xj , val) the impact of taking decision xi = a on the value val of a
variable xj . α is an index used to distinguish our different measures.

Our first measure is expressed as the number of times a decision occurs in
a removal explanation for value val from variable xj . The size of the explana-
tion is also taken into account as it reflects directly the number of hypothe-
sis required to deduce the removal. Therefore, small explanations reveal strong
relationships.

I0(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1/ |e|

From this basic measure, we introduced different impact measures based on
the solver activity and the computation of explanations (measures I1 and I2) in
order to exhibit dynamic structures. We also designed a search space reduction
based measure (I3) in order to capture static structures and to help guiding
search. As search obviously direct propagation (and vice-versa), it seamed quite
natural to normalize this basic measure according to search.

– The impact is here normalized according to the number of times a decision
xi = a is taken during search: |xi = a|. We simply intend here to distinguish
frequent decisions (i.e. most likely recent ones) and hardly reconsidered ones
(i.e. most likely quite old ones):

I1(xi = a, xj , val) =

∑
{e∈Eval

j ,xi=a∈e}
1
|e|

|xi = a|
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– Another way to normalize is to consider the age4 ad
e of a decision d when

computing an explanation e with the aim of decreasing the impact of old
decisions. This leads to:

I2(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1
|e| × axi=a

e

– The computation of impacts is spread within the whole resolution process as
it is done during explanation computations. It is a quite different approach to
[16] which analyses each decision separately to get its instantaneous impact.
I3 tries to identify recurrent search space reduction associated to a decision:

I3(xi = a, xj , val) =

∑
e∈Eval

j ,xi=a∈e
1
|e|

|{xi = a active ∧ val ∈ Dom(xj)}|
I3(xi = a, xj , val) can be considered as the probability that the value val
of xj will be pruned if the decision xi = a is taken. It therefore considers
the number of time a removal could have been done and the number of time
it has been effectively done. This measure is therefore updated each time a
new removal occurs and as long as xi = a is active. It takes into account the
frequency as well as the proportion of the involvement of a decision within
explanations of removals.

3.3 From Fine-Grained Impact Measures to Relations Between
Variables

From the previous definitions, we can introduce different directed weighted graphs
of impacts GI(V,E) with weight I(x, y) for any couple (x, y) ∈ E = V × V . In
order to define those weights, fine-grained impact measure introduced above are
aggregated in the following way:

I(xi = a, xj) =
∑

val∈D(xj)

I(xi = a, xj , val)

where I(xi = a, xj , val) can be replaced by any of the 4 measures introduced
before ({Iα | α ∈ [0, 1, 2, 3]}).

We have a special case for I3, as it intends to relate the impact to the domain
reduction generated by a variable over another. Relating a variable and a decision
is therefore normalized considering the domain initial size of the variable:

I(xi = a, xj) = (|D(xj)| −
∑

val∈D(xj)

(1− I3(xi = a, xj , val)))/ |D(xj)|

In this context, 1− I3(xi = a, xj , val) corresponds to the probability of pres-
ence of the value val of the variable xj after taking xi = a.

4 The distance in the search tree from the decision to the resulting removal.
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The weight of an edge can now be computed in the following way :

I(xi, xj) =
∑

v∈D(xi)

I(xi = v, xj)

3.4 Overall Impact of a Given Decision

For measures I1 and I2, the overall impact of a decision is computed by accu-
mulating impacts over variables of the problem:

I(xi = a) =
∑

xj∈V

I(xi = a, xj)

As for measure I3, focus is made on the average search space reduction.
The current size P of the search space is the Cartesian product of the current
domains of variables. Therefore, the overall impact of a decision for the whole
problem is expressed through its effective search space reduction by considering
the probable remaining space after the decision ((Pbefore − Pafter)/Pbefore):

I(xi = a) = (P −
∏

xj∈V

∑
val∈D(xj)

(1− I3(xi = a, xj , val)))/P

3.5 An Illustrative Case

We take here a particular instance5 of the benchmark problems introduced later
in Section 4 in order to illustrate what kind of structures are isolated by our
impact measures. Moreover, we will describe how the retrieved information may
be used at the user level to investigate problems and instances.

We therefore consider a random binary problem in which a structure is in-
serted by increasing the tightness of some constraints in order to design several
subsets of variables with strong relationships. Random instances are character-
ized by the tuple < N, D, p1, p2 > (we use the classical B model [1]) where N
is the number of variables, D the unique domain size, p1 the density of the con-
straint network and p2 the tightness of the constraints. Here we consider N = 30,
D = 10, p1 = 50%. We design three subsets of 10 variables whose tightness is
p2 = 53% while it is set to 3% in the remainder of the network.

The specific instance we chose here to illustrate our different measures is inter-
esting because it seems harder to solve than expected for the mindom [8] classical
variable selection heuristic. Using the different measures of impact introduced
above, we would like to illustrate how several questions may be addressed when
facing a problem:

– is it possible without any network analysis to identify the structure embedded
within the instance ?

– why mindom is not performing as expected on this instance ? Is this due to
the instance or to the heuristic itself ?

5 One of the random generated problem with a given set of parameters.
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Visualizing the Impact Graph. Figures 1 to 4 show the impact graph GI of
the 30 variables involved in our instance. We use here a matrix-based represen-
tation [6]: variables are represented both on the rows and columns of the matrix.
The cell at the intersection of row i and column j corresponds to the impact of
the variable vj on the variable vi. The stronger the impact, the heavier the edge,
the darker the cell. The matrix is ordered according to the order of the hidden
kernel of variables6.

Notice that we start search by applying a kind of singleton consistency prop-
agation (every value of every variable is propagated [15]) to ensure that the
impacts of variables are homogenously initialized. Although the graph is almost
entirely connected, the matrix-based visualization depicted in Figure 1 makes it
possible to see very clearly the structure of the problem, i.e. the three sets of
variables having strong internal links, right after this first propagation step (we
use here the generic impact measure I0).

Fig. 1. The representation of the impact graph of variables at the end of the initial-

ization phase using I0 as measure of impact

Figure 2 depicts the impact graph after two minutes of search using mindom
as variable selection heuristic (using both I0 and I3). One can notice how I0

highly concentrates on dynamic structure (initial clusters are no longer visible
compared to Figure 1) whereas I3 is focused on the original static structure and
interestingly forgets the weak links. The darker area for I0 at the bottom left
corner shows that the variables in the first two sets have an apparently strong
influence on the variables belonging to the third set. This can be accounted
for by the fact that bad decisions taken early on the variables of the first sets
lead the solver into numerous try-and-fail steps on the variables of the third
set.

6 We are currently working on clustering algorithms [5] to discover this particular
ordering from the impact graph alone.
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Fig. 2. The impact graph using I0 (on the left) and I3 (on the right) after two minutes

of computation using the mindom heuristic

Fig. 3. A representation of the impact graph normalized according to the number of

times a decision is taken (I1)

Figure 3 represents a normalized representation of the same graph where
the influence of a decision taken by the solver is divided by the number of
times this decision occurred during the resolution (measure I1). By doing so,
we aim at refining the previous analysis by distinguishing two types of deci-
sions: those having a great influence because they are repeated frequently, and
those having a great influence because they guide the solver in some incon-
sistent branch of the search tree and appear in all inconsistency explanations.
We can thus isolate early bad decisions that seem to involve the second set of
variables.

Finally, Figure 4 represents the activity within the impact graph where the
effect of old decisions is gradually discarded. As expected, it appears that the
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Fig. 4. A representation of the impact graph normalized according to the age of deci-

sions (I2)

solver keeps going back and forth between the first and third set of variables,
with very negligible involvement of the second set. This must be related to poor
decisions taken on the variables of the second set.

In order to further confirm this interpretation, we adapted our search heuris-
tic so that it takes into account the impact of variables during the resolution and
undoes immediately decisions whose influence increase outstandingly (because
they appear in many explanations but do not provide any valuable pruning).
The problem was then solved almost instantaneously.

4 Using Impacts to Improve Search

In this section, we illustrate how the impact measure introduced above can be
used in order to improve search techniques. We use the impact measure in the
branching heuristics within a tree search: Upon branching, first, we choose the
variable x that maximizes

∑
a∈D(x) I(x = a) and second, for that variable, we

choose the value v that minimizes I(x = a) in order to allow a maximum possible
future assignments (D(x) is here the current domain of x). Ties are randomly
broken. As said earlier, impacts are initialized through the use of a singleton
consistency-like propagation.

Our experiments were conducted on a Pentium 4, 3 GigaHz, running Win-
dows XP. Our constraint solver is the most recent Java version of choco (choco.
sf.net). Notice that as we are using explanations, our tree search is not lim-
ited to standard backtracking but we actually use the mac-cbj algorithm (get-
ting higher in the search tree if it is possible upon encountering a contradic-
tion). In practice, the behavior is very close to mac and behaves as it was
only merely maintaining explanations. We considered three sets of benchmark
problems:
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1. The first set comes from experiments in [16]: a set of multiknapsack problems
modelled with binary variables. For this set a time limit of 1500s is consid-
ered. We focused here on the number of developed nodes7 as it is directly
related the relevance of the measure. Moreover, as randomness is introduced
in the problem solving when breaking ties, we report an average over 10
executions.

2. Our second set consists on random binary problems generated following
the classical B model (see Section 3.5) with the following parameters: <
50, 10, 30, p2 >. We considered here a time limit of 120s. We focus on the
number of unsolved instances within the time limit for each value of p2.

3. Our final set is made of random structured instances made as described in
Section 3.5. A problem < 45, 10, 35, p2 > is structured with three kernels
of 15 variables linked with an intra-kernel tightness p2 and an inter-kernel
tightness of 3%.

As for the impact measure, we compared three measures ({Iα | α ∈ [1, 2, 3]})
and our implementation of the measure introduced in [16] (denoted Iref ). As
the measure completely specifies the search used, we will refer in the following
to the Iα and Iref strategies in the following.

4.1 First Benchmark: Multiknapsack Problems

On this first benchmark (whose results are reported on Table 1), Iref appears
to be the best search strategy. The use of explanations seems to provide good
information but it is a long term learning (it requires a restart policy) and is
much more costly (in time) so that it cannot solve the instance mknap1-6. I3 is
obviously too costly on this problem where near one million nodes need to be
explored. The number of nodes of mindom is given here as a reference.

Table 1. Impacts on multiknapsack problems

mindom Iref I3 I3+restart

Nodes Time Nodes Time Nodes Times Nodes

mknap1-2 38 0 25.9 0 23.1 0 23.1
mknap1-3 385 0.1 188.7 0.3 354.1 0.3 255.2
mknap1-4 16947 0.7 982.7 4.2 2754 3.2 979.5
mknap1-5 99003 11.2 21439.6 229.1 110666.4 112.8 20237.4
mknap1-6 21532776 425.7 612068 > 1500 > 1500

I1 and I2 are not accurate on these instances and maybe need a fine restart
policy as they attempt to detect irrelevant first choices. As mentioned by Refalo,
the use of restart only increases the overall computation time for Iref but seems
to be important for I3. I3 is indeed a fine-grained measure that maybe need
more time to become accurate for the search.

7 In the presented results, when a restart technique is used, only the number of nodes
of the last execution are reported whereas the overall time is indicated.
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Table 2. The number of unsolved instances (left) for each impact strategy on

< 50, 10, 30, p2 > and the percentage of succesfully solved instances (right)
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mindom
mindom + I2
mindom + Iref

strategy % success
Iref 36 %
I1 53.7 %
mindom 79 %
mindom + I2 86 %
mindom + Iref 92.9 %

4.2 Second Benchmark: Random Binary Problems

On this unstructured benchmark, the size of the domains (integer variables in-
stead of binary ones) gives to mindom better chances to make good choices. the
results (depicted in Figure 2) are not in favor of impact measures alone. How-
ever, their combination with mindom as a way of breaking equalities is much
more powerful and allow to solve around 93 % of instances over the whole phase
transition against 79 % for mindom alone. This combination avoids bad choices
for Iref which becomes the best technique whereas it was the worst one alone
(I1 could solve 17 % more instances than Iref ). The use of restart generally
increases the overall computation time.
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Fig. 5. Number of unsolved instances for different impact measures on random struc-

tured binary CSP only with the number of feasible instances (sat)
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4.3 Third Benchmark: Structured Random Binary Problems

On this set of problems, the Iref strategy seems to experience difficulties even
compared to the classical mindom heuristic. Figure 5 reports the number of in-
stances that were not successfully solved within the time limit of 120s. As restart
does not help the Iref strategy again on this problem but is effective for I3, only
the best results (i.e. with or without restart) of each technique are indicated.
The more impressive results here are obtained again by focusing on the dynamic
component of the inherent structure of the instances (i.e. using strategies I1 and
I2). That is the only way that all the instances could be successfully solved.
Notice that I3 gives better results than Iref despite its high cost.

The success of I1 and I2 may be due to the fact that the complexity of
this benchmark does not reside purely in the instances but is more due to the
level of the interaction with the search algorithm. The presence of such artificial
structures favors from our point of view a kind of heavy tailed behavior and
makes initial choices more critical. It can indeed be noticed on Figure 6 that I1

is sometimes subject to bad behavior which does not only appear at the transition
phase. The same phenomenon (on a larger scale) may be the cause of the poor
performance of Iref .

4.4 Impact-Based Heuristics: First Insights

I1 and I2 are strongly based on the solver activity during search (thus focus-
ing on the dynamic component of the instance structure). It generally pays off
using them on problems because (and that may be explains the relatively poor
performance of Iref in our benchmarks) they are able to detect past bad choices
(those whose influence increases outstandingly throughout search without lead-
ing to solutions) do be undone.
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Fig. 6. Resolution time for I1 and I2 on random structured binary CSP with the number

of feasible instances (sat)

I3 is too costly (regarding time consumption) at the present time to be used
as a default heuristic but some interesting compromise between Iref and I3 may
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be designed: taking advantage of the general robustness of Iref while at the same
time avoiding heavy-tailed behavior due to bad initial choices.

5 Perspective: Automated Logic Based Benders
Decomposition in Constraint Programming

We are interested in Benders decomposition as it is intended for problems with
a specific structure and specially, a master-slave relationship between variables.
For us, the master set of variables could be restricted to a subset of variables
exhibiting a strong overall impact over the whole problem.

Usually, classical Benders cuts are limited to linear programming and are
obtained by solving the dual of the subproblem8 and therefore requires that
dual variables or multipliers to be defined to apply the decomposition. However,
[9] proposes to overcome this limit and to enlarge the classical notion of dual by
introducing an inference dual available for all kinds of subproblems. He refers
to a more general scheme and suggests a different way of considering duality: a
Benders decomposition based on logic.

However this inference dual must be implemented for each class of prob-
lems to derive accurate Benders cuts [10, 4]. One way of thinking the dual is
to consider it as a certificate of optimality or an explanation (as introduced
in Section 3.1) of inconsistency in our case. Our explanation-based constraint
programming framework therefore provides in a sense an implementation of the
logic based Benders decomposition in case of satisfaction problems [4]. One can
notice here as the computation of explanations is lazy9, the first explanation
is taken whereas several explanations exist. One cannot look for the minimal
explanation for evident scalability reasons. Therefore, such an inference dual
provides an arbitrary10 dual solution but not necessarily the optimal one. Obvi-
ously, the success of such an approach depends on the degree to which accurate
explanations can be computed for the constraints of the subproblem.

Explanation-based constraint programming as used in algorithms like mac-dbt
[13] or in decision-repair [14] kind of automatically focus on the master prob-
lem of such a decomposition but may be trapped by bad decisions and revert to
a more conventional behaviour. The next step would be here to use the structure
exhibited from the impact graphs presented above in order to apply a Benders
decomposition scheme in a second phase of resolution. The identification of sub-
structures once the master instantiated could guide the generation of cuts for
the master to gather as much information as possible where lies the real combi-
natorics of the problem.

8 Referring to linear programming duality.
9 Not all possible explanations are computed when removing a value. Only the one

corresponding to the solver actual reasoning is kept.
10 This can also be accounted for linear duality where any dual solution is a bound for

the primal problem.
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6 Conclusion

In this paper, we introduced several indicators useful for both identification and
use while searching of key structures at the heart of combinatorial problems. We
focused our study on the relationship between variables and gave new perspec-
tives on the design of generic search heuristics for constraint programming as
well as search algorithms. We believe that the presence of backdoors or subset of
variables exhibiting a strong impact over the whole problem could be explicitly
used by ad hoc decomposition or relaxation strategies inspired from Operation
Research. A concrete example is the Benders decomposition and its generic ex-
tension based on logic. It is indeed exactly a backdoors technique and could be
applied in Constraint Programming as a nogood learning strategy.
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Abstract. This paper presents a hybrid algorithm for a class of re-
source constrained scheduling problems based on decomposition. The
general minimum completion time problem is considered, which has not
been solved in a decomposed way by existing methods. The problem is
first decomposed into an assignment master problem and a number of
scheduling subproblems. The subproblem is formulated as both a con-
straint programming model and an integer programming model. The
hybrid algorithm then combines constraint programming, integer pro-
gramming and linear programming solvers in its three steps: the master
problem solving, the subproblems solving and the cut generation. In par-
ticular, the cut generation method is based on the integer programming
model, and in practice it is done by solving a linear program. Compu-
tational experiments have been carried out for the considered minimum
completion time problems. The results show that the proposed algorithm
could substantially reduce the solving time, compared with directly solv-
ing by mixed integer solvers.

1 Introduction

This paper studies an important class of resource constrained scheduling prob-
lems, where a set of jobs are assigned to and processed by a set of facilities,
subject to resource constraints and release/due date constraints. Depending on
the objective function, there are different versions of the problem, e.g. minimum
cost problem, minimum completion time problem, etc.

These problems have attracted substantial research interests due to its impor-
tance in many application domains. Solution methods based on Benders decom-
position have been proposed recently [12, 8, 13, 9] for some of the problems. A
decomposition method partitions the problem into an assignment master prob-
lem and a number of independent scheduling subproblems, each for one facility.
The master problem and the subproblems are solved iteratively and in particu-
lar the scheduling subproblems are often solved by constraint solvers as strong
reasoning techniques are available. The key step is to generate valid cuts from
the subproblems, guiding the search of the assignment solution in the master
problem.
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c© Springer-Verlag Berlin Heidelberg 2005



Resource Constrained Scheduling Problems 111

For minimum cost problems, Jain and Grossmann (2001), Harjunkoski and
Grossmann (2002) and Hooker (2004) employ the no good cut that excludes sets
of incompatible jobs assigned to a facility. For minimum makespan problems,
a valid cut is proposed by Hooker (2004), but under the assumption of same
release dates for all jobs (and same due dates in the computational study). As
is pointed out in [9, 10], all these cuts are based on the logical explanation of
the individual solution processes for the specific problems, instead of the dual
information from the linear integer formulation of the subproblems.

This paper presents a general approach for tackling the resource constrained
scheduling problems. A hybrid method is proposed where the necessary cuts
are generated based on the dual information from the subproblem’s formula-
tion. The subproblem is formulated as equivalent integer programming (IP) and
constraint programming (CP) models. The IP formulation is used to generate
the integer Benders cuts by exploiting the dual information, while the CP for-
mulation is used to efficiently solve the scheduling subproblems using strong
constraint propagations for cumulative scheduling. To be concrete, this hybrid
approach is instantiated to a solution algorithm for the general minimum com-
pletion time problem, which is not solvable by previous decomposition methods,
as different release/due dates are allowed.

The paper is organized as follows. Section 2 introduces the considered prob-
lems. Section 3 presents the hybrid method. Section 4 details the key step in the
proposed method, i.e., the cut generation. Section 5 presents the computational
experiments and results. Section 6 concludes the paper.

2 The Resource Constrained Scheduling Problems

This section introduces the considered scheduling problems. A formulation of
the general minimum completion time problem is given, which is used for the
subsequent algorithm development and the computational experiments.

Consider a set of jobs, denoted by J , and a set of facilities (machines),
denoted by M. Each job j ∈ J has a release date rj and a due date dj . Each
facility m ∈ M provides a fixed amount of resources specified by Cm. The
processing time of job j on facility m is given by pjm, and the job j consumes
the amount Cjm of resources during its processing time on m.

Following [9], we employ a discrete time formulation (where times are dis-
cretized to integers), instead of the continuous time model used in [12, 8, 15],
because the discrete time formulation is often easier to solve, especially when
the cumulative constraint (instead of the simpler disjunctive constraint) is con-
sidered. Let T denote the whole set of discrete time points in the considered
problem, {minj{rj}, · · · ,maxj{dj}}.

Define binary variables xjmt for any job j, any facility m and any time point
t in Tjm, where Tjm ≡ {rj , · · · , dj − pjm} represents the possible starting times
of job j on facility m. The variables are used to indicate when and on which
facility a job starts, i.e. xjmt = 1 if and only if job j starts from the discrete
time point t at facility m. Variable H denotes the overall completion time of all
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jobs. Using these variables, the following constraint states that each job must be
processed by exactly one facility:

∀j ∈ J :
∑

m∈M
∑

t∈Tjm
xjmt = 1 (1)

and the resource constraints have to be observed on every facility at any time:

∀t ∈ T ,∀m ∈M :
∑

j∈J
∑t

t′=t−pjm+1 Cjmxjmt′ ≤ Cm (2)

By definition, the completion time variable H satisfies:

∀j ∈ J ,∀m ∈M :
∑

t∈Tjm
(t + pjm)xjmt ≤ H (3)

The minimum completion time problem is formulated as:

P : min
xjmt,H

H

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
m∈M

∑
t∈Tjm

xjmt = 1 ∀j ∈ J∑
j∈J

∑t
t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T ,∀m ∈M∑

t∈Tjm
(t + pjm)xjmt ≤ H ∀j ∈ J ,∀m ∈M

xjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈M,∀t ∈ Tjm

H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

3 A Hybrid Algorithm Framework

3.1 Decomposition

To decompose the problem, we first reformulate the problem P by disaggregating
the variables. Introducing the assignment variables yjm, to indicate whether job
j is assigned to facility m or not, we can rewrite the problem as:

P′ : min
yjm,xjmt,H

H

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈M yjm = 1 ∀j ∈ J∑
t∈Tjm

xjmt = yjm ∀j ∈ J ,∀m ∈M∑
j∈J

∑t
t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T ,∀m ∈M∑

t∈Tjm
(t + pjm)xjmt ≤ H ∀j ∈ J ,∀m ∈M

yjm ∈ {0, 1} ∀j ∈ J ,∀m ∈M
xjmt ∈ {0, 1} ∀j ∈ J ,∀m ∈M,∀t ∈ Tjm

H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

A decomposition is based on a partition of variables. For the problem P′,
the variables yjm and H are solved in an assignment master problem. If these
variables are tentatively fixed, the rest of the problem, pertaining the variables
xjmt, further decomposes into |M| smaller subproblems, one for each facility m.
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The master problem is written as:

MP : min
yjm,H

H

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
m∈M yjm = 1 ∀j ∈ J∑
j∈J Cjmpjmyjm ≤ Cm(H −minj{rj}) ∀m ∈M

cuts generated from subproblems
yjm ∈ {0, 1} ∀j ∈ J
H ∈ ZZ[maxj{rj + minm{pjm}},maxj{dj}]

The second constraint is a strengthening valid constraint, asserting that, for each
facility, the total ‘volume’ of resources consumed by the assigned jobs cannot
exceed the available ‘volume’ of resources up to the completion time H.

Based on the idea of Benders decomposition, the master problem is solved
to obtain a tentative assignment ȳjm, and a tentative completion time H̄. Fix-
ing the tentative assignment, the subproblem is obtained, and it is immediately
decomposed according to the facilities. The subproblems try to schedule the
tentatively assigned jobs to minimize the completion time, subject to resource
constraint and release/due date constraint. If at all facilities the jobs are indeed
finished within H̄, then the optimal solution is found. Otherwise, a cut is gener-
ated from each subproblem where a feasible schedule within H̄ is impossible, and
the master problem is resolved with the new cuts added. The algorithm iterates
until the optimal solution is attained.

Given the tentative solution, the subproblem for each facility is a cumulative
scheduling problem for the assigned jobs. In our method, the subproblems have
to be formulated in two different ways, serving different functionalities in the
hybrid scheme.

3.2 Subproblem Formulations

The most parsimonious formulation of the subproblems is the constraint pro-
gramming formulation, where variables tj are defined to denote the starting
time of the job j and Jm denotes the set of assigned jobs {j|j ∈ J , ȳjm = 1}.

∀m : SPm
CP(ȳjm, H̄) : H̄ ≥ min

tj :j∈Jm

max
j∈Jm

{tj + pjm}

s.t.

{
cumulative([tj : j ∈ Jm], [pjm : j ∈ Jm], [Cjm : j ∈ Jm], Cm)
tj ∈ ZZ[rj , dj − pjm] ∀j ∈ Jm

The subproblem minimizes the completion time on facility m subject to the
cumulative constraint on the tentatively assigned jobs, and then the optimal
value of it is compared with the tentative value H̄.

In order to generate cuts based on Benders decomposition, the subproblems
are also formulated as an integer programming model. In problem P′, by fixing
the master problem variables, we obtain the following subproblems:
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∀m : SPm
IP(ȳjm, H̄) : min

xjmt

0

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
t∈Tjm

xjmt = ȳjm ∀j ∈ J∑
j∈J

∑t
t′=t−pjm+1 Cjmxjmt′ ≤ Cm ∀t ∈ T∑

t∈Tjm
(t + pjm)xjmt ≤ H̄ ∀j ∈ J

xjmt ∈ {0, 1} ∀j ∈ J ,∀t ∈ Tjm

In this case the subproblems are feasibility problems as the variables xjmt do
not contribute to the objective function in P′.

Note that the subproblems are obtained based on formulation P′, following
the classic Benders decomposition procedure (ref. [2, 7]). The tentative master
problem solution values only appear in the right hand sides. Yet the only diffi-
culty is that the subproblems are now integer programs.

3.3 Hybrid Algorithm

The hybrid scheme is partitioned into three functional modules: the solution
of the master problem, the solution of the subproblems, and the generation of
cuts. This partition of functionality makes the hybridization of solvers and for-
mulations possible. Different models and solvers are used for different modules:
the master problem, given as an IP model, is solved by an integer programming
solver; the subproblem is solved by a constraint solver using its CP formulation;
the cut generation is based on the IP formulation of the subproblem and it is
done by solving a linear program. The cut generation, which is the key step, will
be detailed in Section 4, while this section presents the hybrid framework, and
discusses the solution method of the master problem and the subproblems.

Algorithm 1 Hybrid Algorithm for Problem P′

1. INITIALIZATION. Setup the initial master problem MP(0) with no cut; set
k = 0.
2. ITERATION.
(1) Master Problem Phase. Solve the integer linear program MP(k) to obtain the

tentative solution ȳ
(k)
jm and H̄(k); if MP(k) is infeasible, then exit with the original

problem infeasible.
(2) Subproblems Phase. For each facility m, solve the corresponding subproblem

using the CP formulation SPm
CP(ȳ

(k)
jm, H̄(k)); if all subproblems are feasible, then exit

with the optimal solution found; otherwise continue to phase (3).
(3) Cut Generation Phase. For each subproblem that is infeasible, generate a

Benders cut based on the IP formulation SPm
IP(ȳ

(k)
jm, H̄(k)); add the new cuts to the

master problem to construct MP(k+1); set k = k + 1 and go back to phase (1).

The hybrid algorithm for the problem P′ is summarized in the Algorithm 1. In
step 2.(1), the master problem is solved by a standard mixed integer program-
ming (MIP) solver, using the formulation MP. In step 2.(2), the subproblem
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is solved by constraint programming. In particular, the edge-finding constraint
propagation algorithm is applied to the cumulative constraint in SPm

CP(ȳjm, H̄).
The edge-finding algorithm reduces the domain of the tj variables by finding the
jobs that have to precede or succeed a set of other jobs, based on the volume of
resources they consume (ref. [1]). Furthermore, the branching search is enhanced
by a probe backtracking technique, which uses a forward probing method (in ad-
dition to the conventional forward local consistency checking) to prune and guide
the search (ref. [6]). The constraint solving algorithms used here are provided
as libraries of the ECLiPSe [11] platform. The step 2.(3) is unspecified in the
Algorithm 1, but it will be completed at the end of Section 4.

4 Cut Generation

4.1 Benders Cuts from Integer Subproblems

The Benders cut generation from integer subproblems is developed in a gen-
eral setting, and it is then applied to the considered scheduling problem. This
approach is based on the earlier idea reported in [4], but here a more general
method is developed and a more efficient way of cut generation is presented.

Consider the following generic program Pg in the general decomposed form.

Pg : min
y,xm

cT y + dT
1 x1 + dT

2 x2 + · · ·+ dT
MxM

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A0y ≥ b0

A1y + B1x1 ≥ b1

A2y + B2x2 ≥ b2

...
...

. . .
...

...
AMy + BMxM ≥ bM

y ∈ Dy, xm ∈ {0, 1}nm

where the vector y represents the master problem variables, and the subproblem
variables are divided to the vectors xm (m = 1, · · · ,M). In Benders decomposi-
tion, when y is fixed, the rest of the problem is decomposed into M subproblems.
The master problem variables belong to a finite domain Dy, while the subprob-
lem variables are considered as binary.

The formulation P′ for the scheduling problem fits into the above generic
model. However we develop the cut generation method in a general setting using
the problem Pg.

According to Benders decomposition, the master problem and the subprob-
lems are written as:

MPg : min
y,zm

cT y + z1 + · · ·+ zM

s.t.

{
A0y ≥ b0

Benders cuts
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∀m : SPm
g (ȳ) : min

xm

dT
mxm

s.t.

{
Bmxm ≥ bm −Amȳ
xm ∈ {0, 1}nm

where variables zm represent the objective value of the subproblems. The master
problem is solved to give a tentative solution (ȳ, z̄1, · · · , z̄M ). For each m, if
the resulting SPm

g is infeasible or the value z̄m cannot be reached by SPm
g ,

then a Benders cut (over the master problem variables y and zm) is generated.
While there is a standard way of generating Benders cut when the subproblem
is continuous, difficulties arise when the subproblem is an integer program. Next
we focus on the Benders cut generation from the mth subproblem SPm

g .
It is essential that the Benders cut to be generated is valid, which means

that it does not cut off any feasible combination of the values of y and zm (i.e.
the value of zm can be reached by the subproblem parameterized by the value
of y). A valid Benders cut is often derived using the dual information from the
subproblem. In order to extract dual information from the integer subproblem
SPm

g , we define the fixed subproblems by fixing the integer variables xm to a
given value x̃m:

∀x̃m ∈ {0, 1}nm : SPm
g F(ȳ, x̃m) : min

xm

dT
mxm

s.t.

⎧⎨
⎩

Bmxm ≥ bm −Amȳ
xm = x̃m

xm ≥ 0

For each subproblem there are totally 2nm number of fixed subproblems. As
xm is fixed to an integer value, the integrality constraint is dropped. The fixed
subproblems are dualized to DSPm

g F(ȳ, x̃m) in order to elicit dual values.

∀x̃m ∈ {0, 1}nm : DSPm
g F(ȳ, x̃m) : max

u,v
(bm −Amȳ)T u + x̃T

mv

s.t.

{
BT

mu + v ≤ dm

u ≥ 0, v : free

If SPm
g F(ȳ, x̃m) is infeasible (and thus DSPm

g F(ȳ, x̃m) is unbounded), then we
use the homogeneous dual HDSPm

g F(ȳ, x̃m).

∀x̃m ∈ {0, 1}nm : HDSPm
g F(ȳ, x̃m) : max

u,v
(bm −Amȳ)T u + x̃T

mv

s.t.

{
BT

mu + v ≤ 0
0 ≤ u ≤ 1, −1 ≤ v ≤ 1

In the programs, u,v are dual variables. As SPm
g F(ȳ, x̃m) is a linear program,

strong duality property holds.
Much dual information can be extracted from the above dual programs. From

an arbitrary feasible solution of any DSPm
g F(ȳ, x̃m), we can derive an optimality

inequality over the master problem variables:

(bm −Amy)T ũ + x̃T
mṽ ≤ zm (4)
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From an arbitrary feasible solution of any HDSPm
g F(ȳ, x̃m), we can derive a

feasibility inequality over the master problem variables:

(bm −Amy)T ũ + x̃T
mṽ ≤ 0 (5)

However, not all these inequalities are valid. The following lemmas identify the
valid ones among them1.

Lemma 1. An optimality inequality (4) is valid if the following sign condition
is satisfied: {

ṽi ≤ 0 if (x̃m)i = 1
ṽi ≥ 0 if (x̃m)i = 0 ∀i = 1, · · · , nm (6)

Lemma 2. A feasibility inequality (5) is valid if the sign condition (6) is satis-
fied.

Using the above condition, one can find valid Benders cuts from the large family
of inequalities specified by (4) and (5).

While any valid cut can be added to the master problem, it is desirable to
find one that is as tight as possible with respect to the tentative solution (ȳ, z̄m).
Formally, a tightest valid optimality cut with respect to (ȳ, z̄m) is defined as a
valid cut

(bm −Amy)T ũ∗ + x̃∗T
m ṽ∗ ≤ zm

such that

(bm −Amȳ)T ũ∗ + x̃∗T
m ṽ∗ = max

x̃m,ũ,ṽ
{(bm −Amȳ)T ũ + x̃T

mṽ : s.t.(6)}

The tightest valid feasibility cut is defined similarly. In other words, it is a matter
of choice of x̃m and (ũ, ṽ), to maximize the left hand side value of the cut (with
y instantiated to ȳ), giving a tightest cut with respect to (ȳ, z̄m).

4.2 Cut Generation Programs

To elicit a valid optimality or feasibility cut, one needs to find out an assignment
x̃m and a dual feasible value (ũ, ṽ) such that the sign condition is satisfied. The
sign condition (6) can be expressed as the following constraints:{

(x̃m)iṽi ≤ 0
(1− x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm (7)

To find a tightest cut, one could maximize the left hand side value with y
instantiated to ȳ:

max
x̃m,ũ,ṽ

(bm −Amȳ)T ũ + x̃T
mṽ (8)

1 The proofs of all lemmas are given in the appendix.
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Therefore, a tightest valid optimality cut can be generated using the dual con-
straint from DSPm

g F(ȳ, x̃m), the sign condition constraints (7) and the objective
function (8):

CGPm
g (ȳ) : max

x̃m,ũ,ṽ
(bm −Amȳ)T ũ + x̃T

mṽ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x̃m)iṽi ≤ 0 ∀i ∈ 1, · · · , nm

(1− x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm

BT
mũ + ṽ ≤ dm

ũ ≥ 0, ṽ : free
x̃m ∈ {0, 1}nm

A tightest valid feasibility cut can be generated using the dual constraint from
DSPm

g F(ȳ, x̃m), the sign condition constraints (7) and the objective function (8):

HCGPm
g (ȳ) : max

x̃m,ũ,ṽ
(bm −Amȳ)T ũ + x̃T

mṽ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x̃m)iṽi ≤ 0 ∀i ∈ 1, · · · , nm

(1− x̃m)iṽi ≥ 0 ∀i ∈ 1, · · · , nm

BT
mũ + ṽ ≤ 0

0 ≤ ũ ≤ 1,−1 ≤ ṽ ≤ 1
x̃m ∈ {0, 1}nm

However, the above nonlinear mixed integer programs can be simplified to
linear cut generation programs. Define ṽ+

i ≡ (1 − x̃m)iṽi and ṽ−
i ≡ (x̃m)iṽi.

Obviously, ṽi = ṽ+
i + ṽ−

i . By this way the variables x̃m and ṽ can be eliminated.
A tightest valid optimality cut is generated by the following cut generation
program:

CGP′m
g (ȳ) : max

ũ,ṽ+,ṽ−
(bm −Amȳ)T ũ + 1T ṽ−

s.t.

⎧⎨
⎩

BT
mũ + ṽ+ + ṽ− ≤ dm

ṽ+ ≥ 0, ṽ− ≤ 0
ũ ≥ 0

A tightest valid feasibility cut is generated by the following cut generation pro-
gram:

HCGP′m
g (ȳ) : max

ũ,ṽ+,ṽ−
(bm −Amȳ)T ũ + 1T ṽ−

s.t.

⎧⎨
⎩

BT
mũ + ṽ+ + ṽ− ≤ 0

0 ≤ ṽ+ ≤ 1,−1 ≤ ṽ− ≤ 0
0 ≤ ũ ≤ 1

It is worth noticing that, to generate cuts, it is only necessary to construct
the above cut generation programs, but not the fixed subproblems or their duals.

Although the generated Benders cut is valid, it may not be tight enough to
cut off the current tentative master problem solution. This causes a problem for
an iterative Benders algorithm such as the Algorithm 1. If, in some iteration, the
tentative master problem solution is not cut off by any generated cut, then the
subsequent iterations will stuck at the same tentative solution. Note that there
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is no such problem if a branch-and-cut based Benders algorithm, as is suggested
in [14, 3], is used, where the master problem is only solved once by a branching
procedure and the Benders cuts are accumulated to guide the search.

However, the problem for iterative algorithms can be remedied by excluding
the tentative solution from subsequent master problems with a no-good cut. As
long as the master problem variables have a finite domain Dy, one can formulate
a no-good cut that only excludes (ȳ, z̄m). For example, consider Dy = {0, 1}ny .
When the subproblem SPm

g F(ȳ) is infeasible, the following no-good cut excludes
only ȳ: ∑ny

i=1 ȳi(1− yi) +
∑ny

i=1(1− ȳi)yi ≥ 1 (9)

When the subproblem SPm
g F(ȳ) is feasible but cannot reach the tentative z̄m,

the following no-good cut excludes (ȳ, z̄m):

zm ≥ φSP − (φSP − zL
m)[
∑ny

i=1 ȳi(1− yi) +
∑ny

i=1(1− ȳi)yi] (10)

where zL
m ≡ ∑

(dm)i<0(dm)i is a lower bound of the variable zm in MP, and
φSP is the subproblem’s objective value in the current iteration.

4.3 Generating Cuts from SPm
IP(ȳjm, H̄)

Applying the general method to problem P′, we are now able to generate Ben-
ders cuts based on the subproblem formulations SPm

IP(ȳjm, H̄). In this case the
subproblems SPm

IP(ȳjm, H̄) are feasibility problems, and therefore only feasibil-
ity cuts will be generated based on the homogeneous duals. Let M′ denote the
set of facilities where a cut needs to be generated. The corresponding cut gener-
ation programs can be formulated as is following. Note that in practice the IP
formulations of the subproblems never need to be explicitly setup or solved.

∀m ∈M′ : HCGP′m
IP(ȳjm, H̄) :

max
ũA

j
,ũB

t ,ũC
j

,ṽ+
jt

,ṽ−
jt

∑
j∈J

ȳjmũA
j +

∑
t∈T

CmũB
t +

∑
j∈J

H̄ũC
j +

∑
j∈J

∑
t∈Tjm

ṽ−
jt

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũA
j +

t+pjm−1∑
t′=t

CjmũB
t′ + (t + pjm)ũC

j + ṽ+
jt + ṽ−

jt ≤ 0 ∀j ∈ J ,∀t ∈ Tjm

−1 ≤ ũA
j ≤ 1, −1 ≤ ũB

t ≤ 0, −1 ≤ ũC
j ≤ 0

0 ≤ ṽ+
jt ≤ 1, −1 ≤ ṽ−

jt ≤ 0

The subscript IP is used to emphasize that it is derived based on the IP for-
mulation of the subproblem. Variables ũA

j , ũB
t , ũC

j represent the dual variables
associated with the first, second and third constraint of SPm

IP(ȳjm, H̄) respec-
tively.

Using the optimal values solved from the HCGP′m
IP(ȳjm, H̄), a Benders cut

over the master problem variables can be generated:

∀m ∈M′ :
∑
j∈J

yjmũA
j
∗ +

∑
t∈T

CmũB
t
∗ +

∑
j∈J

HũC
j
∗ +

∑
j∈J

∑
t∈Tjm

ṽ−
jt

∗ ≤ 0 (11)
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The above cut is valid according to Section 4.1 and Section 4.2, and it is eligible
to be added to the master problem MP.

In case the cut (11) is not tight enough, a no-good cut needs to be formulated
if the Algorithm 1 is used. If, on the mth facility, the tentatively assigned jobs
cannot be scheduled in the facility at all (i.e. the optimization problem in SPm

CP

is already infeasible), then the no-good cut is given as:∑
j∈Jm

ȳjm(1− yjm) ≥ 1 (12)

If the assigned jobs can be scheduled but not within the tentative completion
time H̄, then the no-good cut is given as:

H ≥ H∗
SP −H∗

SP

∑
j∈Jm

ȳjm(1− yjm) (13)

where H∗
SP is the minimum completion time can be attained by the optimization

problem in SPm
CP.

The cut generation phase (step 2.(3)) in the Algorithm 1 can now be specified
as the Procedure 2, and the finite convergence of the algorithm is guaranteed.

Procedure 2 Cut Generation Phase for Problem P′
2.(3) Cut Generation Phase.
For each m belonging to M′:
(a) construct the cut generation program HCGP′m

IP(ȳ
(k)
jm, H̄(k)).

(b) generate a valid Benders cut (11) using the solution.

(c) if (11) does not cut off (ȳ
(k)
jm, H̄(k)), then generate a no-good cut (12) or (13).

Add the generated cuts to the master problem to construct MP(k+1); set k = k + 1
and go back to phase (1).

Lemma 3. The Algorithm 1, with its Cut Generation Phase instantiated by
the Procedure 2, converges to the optimal solution of P′ in a finite number of
iterations.

5 Computational Experiments

The proposed algorithm is implemented to solve the general minimum comple-
tion time problem. Problem instances are randomly generated by a similar way
as in [9], but different release and due dates are allowed. The size of a problem
instance is specified by the number of facilities M and the number of jobs J .
For each problem size configuration, 10 problem instances are randomly gener-
ated. The capacity Cm of each facility is set to 10. The consumption of resources
Cjm is drawn from a uniform distribution on [1, 10]. The processing time pjm

for each job j on a certain facility m is drawn from a uniform distribution on
[m, 20m], rounded to the nearest integer. Thus the average processing speeds of
the facilities are different. As the average of 20m over all facilities is 10(M + 1),
the total processing time for the jobs is roughly proportional to 10J(M + 1)/M
per facility (ref. [9]). The release date rj for each job is drawn from a uniform
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distribution on [1, 10], rounded to the nearest integer. The due date dj is calcu-
lated by rj plus a time window wj , which is calculated at one third of the value
10J(M + 1)/M .

The algorithm is implemented in the ECLiPSe 5.8 [11] platform. The ex-
ternal solver used for solving the master problems and the cut generation pro-
grams is the XPRESS-MP 14.27 [5]. The cumulative scheduling subproblems
are solved by constraint programming using the ic_probe_for_scheduling and
ic_edge_finding libraries in the ECLiPSe. For comparison purpose, the test
problems are also solved directly by the same external MIP solver. The formu-
lation used for directly solving is P, instead of P′. To investigate the benefits
of the Benders cuts of the form (11), we also implemented the hybrid algorithm
with only the no-good cuts being generated. To show the effects of the CP com-
ponent of the hybrid scheme, we implemented the decomposition algorithm with
the subproblems solved by the MIP solver using the IP formulation. For all the
algorithms, we set the timeout to 1800 seconds.

The computational results are summarized in Table 1. All numbers except for
those in columns ‘M ’, ‘J ’ and ‘#TO’ are average values. The first two columns
record the problem size. The ‘Optimal’ shows the average optimal objective val-
ues. The computational results of the proposed algorithm are summarized under
the heading ‘Hybrid’. The solving times and numbers of iterations of the hybrid
decomposition algorithm are shown in ‘CPU’ and ‘#Iter’ respectively. In col-
umn ‘CGT%’, we give the percentage of solving time spent in the cut generation
step. The results for the algorithm with no-good cuts only are recorded in ‘Hy-
brid (NGC)’. The solving times and numbers of iterations are shown. The results
for the non-hybrid algorithm without using CP for the subproblems (but still
using the proposed Benders cuts) are shown in ‘Non-hybrid’. As this variation
of the algorithm dose not solve all instances within the time limit, we show the
number of timeout cases (out of 10) in the column ‘#TO’. The solving times
are given in ‘CPU’. For comparison, the performance of directly MIP solving is
summarized under ‘Direct MIP’. Again as the MIP solver does not solve every
problem instance within 1800 seconds, we show in column ‘#TO’ the number of
instances (out of 10) for which the MIP solving times out, and ‘CPU’ gives the
solving time. Note that the values with a plus sign are computed using only the
instances for which the corresponding solver does not time out. All other values
are the average of 10 instances. The unit of times in the table is second.

The results show that the solving times of all methods increase as the problem
scales, reflecting the growing complexity of the problem. Using the proposed
hybrid method, all the tested problem instances are solved to optimality within
the time limit, while directly MIP solving fails finding the optimality for some
instances, and there are more timeout cases as the problem size increases. For
smaller problems where both algorithms can prove optimality, the decomposition
algorithm also spends much less solving time than the MIP solver. The results
suggest that the proposed algorithm could be very useful in solving the minimum
completion time problems efficiently. For other objectives, similar performance
might be expected, but it is subject to further empirical study.
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Table 1. Computational Results

M J Optimal Hybrid Hybrid (NGC) Non-hybrid Direct MIP
CPU #Iter CGT% CPU #Iter #TO CPU #TO CPU

2 8 31.2 0.87 10.7 13.3% 1.02 15.0 0 4.62 0 9.93
2 10 35.8 4.45 15.4 10.7% 6.03 25.3 0 53.06 1 213.29+

2 12 38.9 131.11 48.0 6.3% 159.43 61.2 4 472.02+ 5 600.67+

3 10 32.9 3.89 28.8 14.9% 4.03 33.6 0 19.24 0 115.25
3 12 36.2 19.89 53.0 11.5% 24.85 63.7 0 145.48 4 96.51+

3 14 39.5 129.66 85.0 8.2% 153.59 102.7 3 448.52+ 6 735.87+

4 12 31.6 4.28 19.6 12.6% 7.66 32.6 0 51.14 5 109.46+

4 14 34.6 47.26 54.1 7.8% 135.43 83.3 2 427.69+ 8 132.25+

4 16 34.0 148.97 78.8 7.4% 396.48 105.8 4 209.34+ 7 159.26+

Next, the effects of incorporating the proposed Benders cuts are studied.
Firstly, the results show that the overheads of cut generation account for a
small portion of the total solving time, and the percentage decreases as the
problem scales. Secondly, compared with the alternative algorithm with no-good
cuts only, the algorithm that uses the proposed Benders cuts experiences less
iterations. This difference becomes substantial in some larger problems. In terms
of solving time, the algorithm also consistently outperforms the one with no-good
cuts, in spite of the overheads incurred by solving the cut generation programs.
The comparison indicates that the Benders cuts of the form (11) are indeed
useful in improving the performance, yet without incurring too much overheads.

Finally, to show the effects of the CP component in the hybrid scheme, we
compare the hybrid algorithm with an algorithm that uses MIP to solve both
the master problem and the subproblems. The results show that the non-hybrid
algorithm is substantially slower than the hybrid one, although its performance
is still much better than that of directly MIP solving. Without CP, the algorithm
even fails finding the optimal solution (within 1800 seconds) for a few instances.
This difference could be attributed to the fact that the scheduling subproblems
are often hard to solve, and that the employed CP methods, which are specially
designed for single machine scheduling problems, are much more efficient than
the MIP solver. The results show that the incorporation of CP solution methods
indeed plays an important role in the proposed algorithm, in reducing the solving
times for the considered class of problems.

6 Conclusions

This paper presents a hybrid method for the resource constrained scheduling prob-
lems. Different models and solvers are used in the three components of the hybrid
scheme. In particular, the cut generation uses the dual information based on the
integer programming model under a Benders decomposition framework. The ap-
proach has been instantiated to an algorithm for the minimum completion time
problem. Computational results have shown that the proposed algorithm achieves
substantial reduction of solving times, especially for larger problem instances.
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Appendix: Proofs of Lemmas

Lemma 1:

Proof. To prove the validity, let (ŷ, ẑ1, · · · , ẑM ) be any solution of MPg such
that the value of ẑm can be reached by the subproblem parameterized by ŷ for
each m. We prove that this solution is not cut off by the optimality inequality (4)
Consider the mth subproblem. We have:

ẑm ≥ φ(SPm
g (ŷ)) = min

xm

{dT
mxm : Bmxm ≥ bm −Amŷ,xm ∈ {0, 1}nm} (14)
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where φ(·) is the value function of a program. Then there must exist a value
x̂m such that ẑm ≥ φ(SPm

g F(ŷ, x̂m)) = φ(DSPm
g F(ŷ, x̂m)), i.e., ẑm ≥ (bm −

Amŷ)T û + x̂T
mv̂, where (û, v̂) is an optimal solution of DSPm

g F(ŷ, x̂m).
Note that the feasible region of DSPm

g F(y,xm) is independent of the value
of y and xm. Therefore, the dual value (ũ, ṽ) (used by the optimality in-
equality (4)), which is feasible for DSPm

g F(ȳ, x̃m), is also a feasible solution
of DSPm

g F(ŷ, x̂m). This implies that

(bm −Amŷ)T ũ + x̂T
mṽ ≤ (bm −Amŷ)T û + x̂T

mv̂ ≤ ẑm

Due to the assumption (6), we have x̃T
mṽ ≤ x̂T

mṽ no matter which binary values
the variables x̂m take. Thus,

(bm −Amŷ)T ũ + x̃T
mṽ ≤ (bm −Amŷ)T ũ + x̂T

mṽ ≤ ẑm

i.e. the optimality inequality (4) is satisfied by (ŷ, ẑm). 
�
Lemma 2:

Proof. Similar to the proof of Lemma 1, let (ŷ, ẑ1, · · · , ẑM ) be any feasible solu-
tion of MPg. We prove that it is not cut off by the feasibility inequality (5). Con-
sider the mth subproblem. Since it is feasible, there must exist a value x̂m such
that SPm

g F(ŷ, x̂m) is feasible, and therefore the corresponding homogeneous
dual HDSPm

g F(ŷ, x̂m) has a non-positive optimal value, i.e., (bm−Amŷ)T û+
x̂T

mv̂ ≤ 0, where (û, v̂) is an optimal solution of HDSPm
g F(ŷ, x̂m). Then apply-

ing the same reasoning as in the proof of Lemma 1, the conclusion follows. 
�
Lemma 3:

Proof. First we show that the algorithm terminates in a finite number of itera-
tions. Due to the cut generation procedure, in each iteration except for the last,
the current tentative solution from the master problem is cut off, and the value
of (ȳjm, H̄) is different in different iterations. Since the master problem variables
have a finite domain, the algorithm has to terminate in finite iterations.
Next we show that the algorithm returns the optimal solution of the original
program P′. Note that the master problem MP(k) is always a relaxation of P′

as all the cuts added are valid. If the Algorithm 1 terminates in step 2.(1), then
the original problem has to be infeasible as well. If it terminates in step 2.(2) of
some iteration k, then the tentative assignment in this iteration renders feasible
subproblems on every machine, and the value of H̄(k) can be attained by the
subproblems. As MP(k) is a relaxation of P′, H̄(k) is always a lower bound of
the optimal solution of P′. Thus, H̄(k) is a minimum completion time that can
be achieved. The current assignment is the optimal solution for variables yjm.
The optimal starting times of the assigned jobs can be obtained from the sub-
problems. 
�
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Abstract. The minimal Steiner tree problem is a classical NP-complete
problem that has several applications in the communication and trans-
portation sectors. It has recently emerged as a subproblem in decomposi-
tion techniques such as column generation and Lagrangian schemes. This
has set new computational challenges to the state of the art solving ap-
proaches. Our goal is to improve on existing branch-and-cut algorithms
so that our approach successfully serves as a fast subproblem solver in a
decomposition context. Compared with existing literature, our technical
contributions include 1) a new preflow-push cutting strategy, revisiting
a little known graph algorithm, that halves the runtime of the separa-
tion step, and 2) a branching scheme that fairly balances the search tree
and speeds up the search. An evaluation in a multicast design appli-
cation shows that the algorithm enhances a column generation hybrid.
Moreover, our approach offers a significant speedup factor on a publicly
available set of challenging Steiner tree benchmarks.

Keywords: networks, preflow-push algorithms, branch-and-cut, Steiner
trees.

1 Introduction

The minimal Steiner Tree Problem (STP) consists of determining the least-cost
tree that connects a given set of nodes in a graph. This NP-complete problem
was originally formulated by Hakimi [10]. Since then, it has received considerable
attention in the literature as it has a wide range of applications, e.g. network
optimisation, distribution systems and VLSI layout [10, 18]. It is beyond the
scope of this paper to cover all the STP literature. Surveys can be found in e.g.
[10, 18]. Although useful in its own right, several network design models embed
the STP as a substructure. It then emerges as a subproblem in decomposition
algorithms such as column generation or Lagrangian relaxation.

If the aim is to compute fairly good solutions to the stand-alone Steiner
tree problem within a reasonable time, then it has been recommended to use
a variety of greedy “tree heuristics” [10, 18]. However, if the STP appears as
a subproblem in a branch-and-price setting [6] or Lagrangian context [5, 19],
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existing algorithms require exact STP solvers that deliver an optimal tree. In
branch-and-price for instance, finding the most profitable tree not only offers the
best pricing strategy, but also enables exploiting the lower bound and achieving
early termination and cost-based filtering at any column generation iteration.
This is because the column generation bound plus the subproblem reduced cost
is a valid lower bound even at non-optimal iterations.

Several authors have proposed approaches for solving the minimal STP, in-
cluding Lagrangian relaxation [10] and branch-and-cut [3, 12, 15]. Previous em-
pirical evaluation has suggested that the fastest approach is the branch-and-cut
solver of Koch & Martin [12]. The authors showed that their solver is superior
to other approaches, as it succeeded in solving almost all existing benchmarks
for the first time. Several decomposition methods to solve the multicast net-
work design have embedded [12] as a subproblem solver, e.g. [6] deploys column
generation and [5, 19] exploit a special Lagrangian scheme.

A necessary ingredient for a decomposition method to be sufficiently compet-
itive is an efficient subproblem solver. However, we have noticed that the hybrid
branch-and-price algorithm of [6] spends nearly two thirds of the runtime in solv-
ing the Steiner tree subproblems in the pricing phase. Our performance analysis
has demonstrated that the separation (i.e. cutting) phase of the branch-and-cut
solver [12] is the largest computational bottleneck since the algorithm spends at
least half of its runtime in identifying the inequalities whose addition cuts off
the relaxed solution.

Another drawback of existing literature is that most exact STP algorithms,
[3, 12, 15] included, use traditional Integer Programming (IP) branching on single
arc variables. This is not well-suited, as it potentially leads to an unbalanced
(binary) search tree: the weak branch forbidding an edge often barely changes
the relaxation.

This paper proposes an innovative and non-trivial variation of branch-and-
cut STP algorithms that successfully serves as a subproblem solver in decompo-
sition methods. The solver also substantially improves the best known runtimes
of a publicly available set of benchmarks as a stand-alone Steiner tree solver.

The contents of the paper are as follows. Section 2 outlines related work and
our contributions. Section 3 overviews our branch-and-cut solver, in particular
an enhanced branching scheme and a new cost-based filtering rule that exploits
reduced costs. Section 4 discusses some separation issues and proposes a new
cutting strategy. Section 5 presents a computational discussion of our approach
under two use cases 1) run it as a stand-alone STP solver, 2) invoke it as a
branch-and-price subproblem. Section 6 concludes the paper.

2 Related Work and Overview of Contributions

Exact algorithms for the minimal Steiner tree problem include Lagrangian re-
laxation and branch-and-cut, e.g. [10]. Because [12] is considered the most ef-
ficient algorithm for solving STP to optimality, multicast network design ap-
proaches [5, 6, 19] exploiting decomposition methods have all used it. In [6] it is
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reported that the invocations of [12] are by far the largest bottleneck on some
challenging multicast design datasets. We also note that in the results of [19]
around 45 minutes are spent at the root node of the search tree, even for quite
small networks and reasonable number of multicast groups. This is likely spent
in solving STP subproblems.

Most Steiner tree solvers rely heavily on reduction techniques [10, 12, 18] to
reduce graph size (i.e. edge set and vertex set). These act as a preprocessing step
that includes (resp. excludes) edges/nodes that do (resp. not) belong to at least
one minimal Steiner tree.

The preprocessing, which often requires careful implementation, exploits spe-
cial configurations in the graph. Since those tests often change the set of edges
and/or nodes, they are difficult to accommodate in a decomposition-based search
as they conflict with the much needed incrementality of the subproblem solver:
we may have to re-setup a subproblem model/solver as soon as the graph
changes. Indeed, some changes, such as node contraction, could result in deleting
and adding variables and make several constraints invalid. In the decomposition
methods [5, 6, 19], applying “non-logical” reduction tests every time the sub-
problem is solved can introduce a substantial overhead as the constraint part of
the subproblem is kept unchanged throughout the search: only the cost vector
changes.

Painful reduction techniques are not included in our algorithm. Because we
are losing their strength, it is crucial to somehow compensate for this. It is done
through 1) designing a new separation phase by carefully merging an algorithm
proposed in [9] to compute a generalised form of a cut in a graph, 2) introducing
a harmless cost-based pruning rule that reasons about optimality to exclude
nodes from the solution. In fact, our focus on speeding up the separation phase
began when our experimentation clearly revealed that it is very costly.

Despite the efficiency of [9] for computing the minimum unrestricted cut [14],
this algorithm is not widely known in the literature. Koch & Martin [12] briefly
mention that [9] is modified and used at the separation phase of their STP
solver. However, they gave no details of how the algorithm is to be used within
their solver and failed to provide a computational evaluation whether such an
approach is beneficial. Moreover, recent publications [18, 19] do not seem to be
aware of the idea of using [9].

From this regard, our contributions are two-fold. We demonstrate that us-
ing [9] as a black-box, or through a trivial adaptation, does not work and identify
a straightforward counter-example. Our technical contribution is to detail a care-
ful adaptation of [9]. In fact, the resulting preflow-push cutting strategy could be
used in other areas such as survivable networks [11] and the travelling salesman
methods, e.g. [16].

Strengthening the cutting strategy of the branch-and-cut was useful in en-
hancing the performance of a a branch-and-price method even with “easy” STP
instances. Our evaluation in the stand-alone setting showed that the speedup
factor is much clearer as soon as the instances get harder.
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Yet another serious drawback of existing branch-and-cut approaches lies in
the branching itself. Our runs showed that branching on a binary variable in
the integer programming fashion tends to create search branches that cause
unbalanced changes on the linear relaxation. To overcome this, we suggest a new
branching scheme that leads to branches potentially having the same likelihood
of containing the best solution.

3 Branch-and-Cut Approach

In this section we present our improved branch-and-cut approach. It builds on
top of previous literature such as Koch & Martin [12]. We first introduce some
notation and definitions.

Let G = (V,A) be a directed graph, where V is its node set and A is its set
of arcs. Let n = |V | and m = |A|. An arc in A from node i to node j, is denoted
(i, j). If H is a subset of nodes, then we denote by H̄ = V \H its set complement
in V . A cut (H, H̄) is a non-trivial partition of V . An S − t cut is a cut (H, H̄)
such that S ⊆ H and t ∈ H̄. If S = {s} then we use the shorter notation s − t
cut. Usually H is called the source side and H̄ the sink side of the cut. The set
of arcs in the cut is denoted by δ(H, H̄), so δ(H, H̄) = {(i, j)|i ∈ H, j ∈ H̄}. If
w is a set of weights attached to the arcs A we denote by w(H, H̄) the weight of
the cut, i.e. w(H, H̄) =

∑
a∈δ(H,H̄) wa. The minimum s− t cut problem is that

of finding the minimum weight s− t cut.
The minimal STP consists of determining the least-cost tree in a graph, that

connects a given set of nodes. We use a similar directed version instead since it
is known to give a tighter bound [4]. The directed version is named the Steiner
arborescence problem. The transformation from the undirected Steiner tree prob-
lem to the directed problem is simple: replace, in the obvious way, every edge by
two directed arcs with the same cost and select one terminal as the root. It is well
known that this does not alter the solution set. For convenience we shall refer to
an arborescence with the more general term tree throughout this document.

The Steiner tree problem can be formulated as follows: given a directed graph
G = (V,A), non-negative weights w : A → R+, a non-empty subset T ⊆ V of
terminals, and a root r �∈ T , find a directed subset of arcs R such that there is a
path from r to every terminal and

∑
a∈R ca is minimised. A node not in T ∪{r}

is called a nonterminal.
We introduce decision variables: let xa be a binary variable that is 1 if and

only if arc a is used in the Steiner tree.
The solver uses a standard branch-and-cut approach outlined in Figure 1.

The inner loop is a separation procedure which finds violated inequalities or
proves that none exits. The algorithm calls the reduction technique described in
Section 3.3. The LP is a continuous relaxation of the cut formulation of a tree.
It is initialised with the flow inequalities described in [12]. The search separates
Steiner cuts and adds them to the relaxation. A Steiner cut (H, H̄) is a cut that
separates the root r from at least one terminal: r ∈ H and there exists a t ∈ T
such that t ∈ H̄. To each Steiner cut (H, H̄) in G is associated the following
inequality:
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Branch-and-Cut:
apply reduction techniques
initialise search
repeat

select a leaf from the tree and consider the associated LP
repeat

solve the LP relaxation
separate violated inequalities and add them to the LP

until there are no violated inequalities
branch if necessary otherwise remove the leaf from the tree

until there are no leaves in the branch-and-bound tree

Fig. 1. A general branch-and-cut algorithm

∑
a∈δ(H,H̄)

xa ≥ 1 . (1)

The Steiner cut inequalities (1) ensure reachability from the root to every termi-
nal. At each iteration of the separation algorithm described in Section 3.1, the
LP-relaxation suggests a value x̄ij for every variable xij . These values are then
used to identify violated inequalities to be added to the LP to cut off the current
solution. If no violated inequality exists the search branches as in Section 3.2.

3.1 Separation of Violated Inequalities

The separation algorithm is the most critical step in branch-and-cut. It finds,
if any, relaxed inequalities (1) violated by the suggested solution x̄ of the LP
relaxation. The inequalities (1) can be separated as follows: for each t ∈ T find
the minimum cost r− t cut in G using x̄ as weights. This is commonly done with
any max-flow/min-cut algorithm, see e.g. [1]. If, for some t, the cost w∗

r−t of the
minimum r − t cut in G is below 1 then the associated inequality is violated.
If w∗

r−t exceeds 1 for each terminal t, then there is no violated inequalities and
the search branches. Inequalities are added only if they are violated by a small
tolerance. In fact, we use the “creep-flow” strategy [12] that favours least-cost
r − t cuts having minimum number of arcs. This makes the separation harder,
but in practice is compensated for by the strength of the inequalities.

Note that all Steiner cuts are found in the input graph G. That is because
the graph is not affected by the branching decisions of Section 3.2. Therefore the
cuts generated are valid throughout the branch-and-cut search.

Section 4 describes a fast separation algorithm by adapting [9]. It considerably
enhances the performance of the branch-and-cut search.

3.2 Branching Strategy

Branching is an essential part of the exact algorithm and has to be carefully
designed to reach optimal performance. There are several requirements on the
branching strategy. In particular it has to:

– substantially affect the relaxation and the LP cost
– yield a balanced search tree, with equal likelihood of the best solution being

in the different branches.
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In [12] IP branching is used; it branches on a single arc variable. Disallowing an
arc is unlikely to change the problem significantly since most arcs will not be
in the optimal tree anyway. On the other hand, including an arc has a larger
impact on the LP since it severely restricts the number of feasible (shortest)
trees. This results in an unbalanced search tree in practice.

To overcome this difficulty we apply a new hierarchical branching strategy. It
commits decisions to several variables by first focusing on node membership. This
is motivated by the fact that the difficulty in the STP is to decide which nodes
are to appear in the minimal tree. Vertex oriented branching is also mentioned
in [10] and used in [18]. However, it has not been used in the context of branch-
and-cut.

For each node v, its “likelihood” hv of being a member of the minimal Steiner
tree is estimated by hv =

∑
(j,v)∈A x̄(j,v). In a primal solution, hv is either 0 or 1.

The nonterminal having the maximal integrality violation of hv is selected, i.e.
the node v that minimises |0.5−hv| over the nonterminals for which 1 > hv > 0.
The branching first includes v and excludes v on backtrack. It is accomplished
by posting the following inequality with b = 1 on the forward branch and b = 0
on backtrack: ∑

(j,v)∈A

xjv = b . (2)

The exclusion effectively disallows all arcs having one end in v as a result of
flow inequalities [12]. Note that the branching decision is easily incorporated in
the LP since each branching decision is the same as adding a cut. Clearly both
branches cut off the relaxed solution x̄ provided that there exists a nonterminal
v such that hv is fractional.

Whenever the node branching does not apply, x̄ is often primal feasible.
However, in rare cases it might not be. An example is when there are several
optimal Steiner trees spanning the same nodes but crossing different arc sets. In
such a case, we resort to IP branching for completeness by branching on the arc
variable xa that minimises |0.5 − x̄a| over the set of fractional x̄a. The search
sets xa = 1 and xa = 0 on backtrack.

3.3 A New Cost-Based Reduction Technique

Preprocessing that alters the graph is difficult to implement when the STP is a
subproblem. However, there are still harmless reductions that can be exploited
in a decomposition context. Here, the focus is on a reduction technique that only
removes nodes/arcs that can not participate in any optimal Steiner tree. This
type of reduction can be easily encoded by setting some arc variables to zero in
the LP.

We now introduce a new reduction rule that exploits reduced costs extracted
from solving the linear programming relaxation. We observed that applying stan-
dard reduced cost fixing is weak as the cut formulation of a tree is known to be
highly degenerate. This same observation is supported by the results of [12].
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Our technique is stronger than the standard reduced cost fixing. Its design
has been inspired by our previous work in strengthening optimality reasoning
in network routing [7]. We exploit the additivity of the reduced costs and the
tree structure to infer an estimation of the cost incurred on the relaxation lower
bound LB by including a node into the Steiner tree.

The incumbent cost of the branch-and-cut is denoted by UB. Let ra denote
the reduced cost of variable xa; further let r+

a = max{0, ra}. Consider a nonter-
minal node v that the relaxed solution suggests not to be in the optimal tree,
i.e. hv = 0. If v was to be included in the minimal Steiner tree (i.e. the value of
hv switches from 0 to 1), then some path p from the root r to v must exist in
any feasible tree. All arcs a in p such that x̄a = 0 have to be included. The cost
of including a is ra (resp. 0) if x̄a = 0 (resp. x̄a > 0). Thus, the incurred cost
of ensuring xa is 1 is r+

a . The incurred cost of including the path p is the sum
of r+

a for each a in p. A valid under-estimate of that is the length, say ψv(r), of
the shortest path from r to v in the graph where the weight of an arc a is r+

a .
This is captured by the following reduction test:

if LB + ψv(r) ≥ UB then
∑

(j,v)∈A

xjv = 0 (3)

This rule can be used every time the relaxation is re-optimised. The effect of (3)
can be enhanced by using a CP-relaxation [5]. This would enable the inference
of even more fixings. We have used the same constraint programming store as
have been used in [5]. It makes some significant inference at the root, but less
fixings afterwards. The reduction rule (3) has not been extensively tested and
was therefore switched off in our experimentation.

4 A More Efficient Separation Algorithm

This section describes a new separation algorithm for the branch-and-cut Steiner
tree solver. Normally, as described in Section 3.1, the separation is done by
solving |T | min-cut problems independently. Here we adapt ideas presented by
Hao & Orlin [9] to be able to solve the separation problem much more efficiently
in one go. The speed up is gained by re-using information from previous min-cut
computations.

The rest of this section first briefly presents the Hao & Orlin algorithm (HO)
in Section 4.1 and then explains in Section 4.2 the adaptation needed to find
Steiner cuts.

4.1 Overview of the Hao and Orlin Algorithm

This section briefly describes HO [9]. It is assumed the reader is familiar with
the preflow-push algorithm, first presented by Goldberg & Tarjan [8] to some
extent. For general graph topics we refer the reader to [1]. Most of the materials
in this section are from [9].
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HO is a modified version of the algorithm by Goldberg & Tarjan [8]. It finds
the minimum cut in a directed graph where only a set S of sources are specified
to be in the source side. We denote this by a S − ∗ cut.

The unrestricted min-cut problem is to find the minimum weight cut in the
graph without restrictions on any nodes. It has many applications in network
reliability and is useful as a separation algorithm for the travelling salesman
problem. This can easily be solved by 2(n− 1) s− t cut computations. However,
for a directed graph, the unrestricted min-cut problem can be solved by two
invocations of HO, the second where all arcs are reoriented. The total runtime
is comparable to the time of one s− t computation.

Recall that the preflow-push algorithm works with a preflow. A preflow is a
flow except that the entering flow of a node v can exceed the leaving flow v.
The excess is the difference between the last two. The preflow-push algorithm
pushes flow from active nodes, nodes with positive excess, along estimated short-
est paths in the residual graph, the “remaining flow graph”. The shortest path
estimation is done by distance labels of the nodes. The distance label of a node
is a lower bound on the length of a path from the node to the sink in the residual
graph. An overview of the preflow-push algorithm can be found on the right-hand
side of Figure 2. During a min-cut computation of the preflow-push algorithm
it is first assumed that all nodes, apart from the source node, are on the sink
side W of the cut, but as the computation progresses nodes are transferred to
the source side D. Specifically they are moved to D when there is no longer a
path from the node to the sink in the residual graph. The algorithm maintains
the invariant that there is no arc of the residual graph directed from any node
in D to any node in W .

find-min-cut(G, w, s): preflow-push(G, w, S, t):
S = {s}, Best = ∞ (iii) initialise
repeat repeat

(i) select a node t′ ∈ V \ S (iv) select an active node i
(ii) find minimal S − t′ cut (H∗, H̄∗) push/relabel (i)

z = w(H∗, H̄∗) until there are no active nodes
if z < Best then return (H, H̄)

Cut= (H∗, H̄∗), Best = z
endif
add t′ to S

until S = V
return (Cut, Best)

Fig. 2. Outline of the Hao and Orlin algorithm for computation of the minimum S −∗
cut

HO exploits the preflow-push algorithm to find the least-cost S − ∗ cut.
An overview can be found on the left-hand side of Figure 2. The preflow-push
algorithm is invoked at (ii). The faster runtime of HO stems from the reuse of
information from min-cut computations: the ending state of the last preflow-push
computation is reused (at (iii)). Also, information from the min-cut computation
is used to force an ordering in the selection of sinks at (i). Specifically, the
distance labels are re-used, as well as information about nodes that have been
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transferred to the source side. These nodes are divided into “dormant” layers
according to the time they where moved to the source side. These nodes will be
moved back, “awakened”, in reverse order at a later stage so all nodes will be
selected at (i) during the execution. The new sink is selected as the node in the
source side of the last computation with the smallest distance label. If there is
no awake node then a layer of dormant nodes are woken up and the selection
procedure is repeated. The algorithm terminates when all nodes are in S.

We now present the problems with adapting HO to the context of find-
ing violated inequalities of form (1). In the light of that, we derive a sound
adaptation.

4.2 Adapting HO for Computing Steiner Cuts

First, HO cannot be used as it is, since the cut found is not guaranteed to be a
Steiner cut. Indeed, it is likely that the minimum cut will have weight 0 as is the
case when the sink side consists of a set of nonterminals that are not suggested
should be used. Clearly, this is not a Steiner cut.

A trivial modification is to only consider cuts that are found whenever the
sink is a terminal. However, this does not guarantee finding a violated cut if there
is one [17]. The reason is that the algorithm does not necessarily find the minimal
s− t cut when t is the sink. Instead, properties of the algorithm certify that the
minimal s− t cut has been found in previous iterations, if the current cut is not
the one sought after. However, when considering Steiner cuts these properties
do not hold since there is a difference between terminals and nonterminals. The
example below illustrates this. In fact, it is not enough to consider all Steiner
cuts generated during the execution of the algorithm since the optimal cut can
be missed by moving a nonterminal to S too early.

Example 1. Consider Figure 3. Node s is the root, t is a terminal and v is a
nonterminal. During the execution of HO, v is selected as the first sink. The
minimal r− v cut is found, which is ({s, t}, {v}) with a weight of 3. However, it
is not a valid Steiner cut since there is no terminal on the sink side. Next, v is
moved to the set of sources S and t is selected as the next sink. In this iteration
the cut ({s, v}, {t}) is returned with a weight of 13. The cut is a valid Steiner
cut since t is on the sink side. It is also the minimal Steiner cut found by the
algorithm. However, as can easily be seen in Figure 3, the optimal Steiner cut is
({s}, {t, v}) with a weight of 4. This cut was missed since v was moved into S
too early and the cut found when v was sink was not a Steiner cut. �

It follows from Example 1 that in order for the adaptation to work we need to
make sure that every cut found is a Steiner cut. This is ensured by only selecting
terminals as sinks at step (i). Then every minimum cut found is a valid Steiner cut.
However, there is a problem with this approach. The problem relates to the dis-
tance labels. Recall that preflow-push algorithms use distance labels of the nodes
to approximate the minimum number of arcs to reach the sink. When a terminal
is selected as sink it might not have the minimum distance label, so other awake
nodes may have smaller distance labels. This is a problem for two reasons.
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terminal

non-terminal 1

3

2
10

v

ts

Fig. 3. Counter-example showing how the Hao and Orlin algorithm could miss the

optimal Steiner cut. Arcs are labelled with costs

First, it interferes with the widely used and efficient gap-relabelling heuris-
tic [2], which is included in the relabel procedure in [9]. The heuristic moves
nodes that are known to be disconnected from the sink into the dormant set by
detecting “gaps” in the distance labels. This is much quicker than the naive so-
lution which only moves nodes to the dormant set as the distance label increases
above a limit (usually n). However if nodes are allowed to have a smaller distance
label than the sink, a gap does not guarantee that nodes are disconnected.

Second, the number of nodes that are not in the source set will be larger than
the difference between n and the distance label of the current sink, if it is kept
unchanged. This means that the aforementioned limit is hard to establish. The
result is a bad performance since efficient data structures as well as the runtime
complexity rely on a tight bound on the limit, see [17].

The interference with the gap-relabelling is easy to handle by taking the dis-
tance label of the current sink into account. However, the second problem still
remains. We overcome both difficulties by setting the distance label of the new
sink to 0 and resetting all the awake nodes’ distances by the exact distance, in
terms of number of arcs, to the new sink in the residual graph. This is called
global relabelling and is an important feature in competitive preflow-push algo-
rithms [2].

To speed up the computation even more, we always stop and select a new
sink whenever we detect that the minimum cut for the current sink will not be
the minimum one, for instance when we have already found a smaller cut. Also,
we store all violated sub-optimal cuts found throughout the iterations, since they
may benefit the LP.

To summarise: our change to HO is that we select the terminal in the awake
set with the minimum distance label. We then reset the distance labels for that
node to 0 and recalculate the exact distances for all other awake nodes. We
transfer nodes that do not have a residual path to the new sink into the dormant
set. If necessary we wake up layers from the dormant set when selecting a new
sink until there is a terminal in the awake set, even if there are non-terminal
nodes in the awake set.

It is easy to see that the algorithm is still correct with this modification.
The dormant nodes do not play a role in finding the current minimum cut so
changing the distance labels of the awake nodes does not alter the correctness.
Also, whenever nodes are woken up from the dormant set, they are given a new
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distance label. We note that we might have to wake up several layers before a
terminal is found.

5 Experimental Results

This section presents a computational discussion of our approach under two use
cases 1) in a stand-alone context and 2) invoked in a branch-and-price solver.
The aim is to assess the contribution of the new branching strategy and the
improved separation. The techniques have been implemented in the Constraint
Logic Programming language ECLiPSe.

We evaluate four parameter settings: n-ff, n-ho, a-ff and a-ho, where the first
letter of the parameter setting describes the branching strategy: IP branching
(a) or our branching (n). The second part describes the separation strategy: |T |
max-flow/min-cut computations (ff) or our strategy (ho).

5.1 Evaluation in Stand-Alone Context

Results for 42 instances from SteinLib [13] are reported. SteinLib is a set of
publicly available benchmarks for the Steiner tree problem. The results can be
seen in Table 1. SP-t designates the total separation time in seconds, LP-t is
the total LP time in seconds, #N presents the size of the search tree and the
upper bound UB is labelled with a star if the instance was proved optimal. First,
we compare the contribution of the new separation strategy. Table 1 reveal that
our cutting strategy is clearly superior. Indeed, the results show that the ho-
strategy always enables significantly faster optimality proofs. Compared to a-ff,
the improved algorithm a-ho finds a better primal solution on 2 instances, proves
optimality on 2 instances when a-ff fails to do so. It also proves optimality on
1 instance when a-ff fails to find the optimal solution at all. In fact, the n-ho
strategy manages to significantly improve the best known runtime on one of the
most challenging instances (bipe2u) in SteinLib. The latter instance was only
recently solved to optimality by [18]. It is not surprising that the ho strategy
requires more separation iterations since it only generates the most violated
Steiner cuts. The ff strategy generates almost one r−t cut for each t ∈ T at every
iteration. However, the majority of the latter cuts are useless because for those
examples where both cut strategies proved optimality ho required considerably
less cuts in total. This supports the view that the most violated cut is the most
beneficial.

The ho strategy more than halves the runtime in some cases. The faster
separation enables ho to prove optimality quicker or explore a larger part of the
search tree. This is especially apparent for the instances with a large number of
terminals, suggesting that the gain from the ho strategy is clearer as the number
of terminals increases.

We now turn our attention to the contribution of the branching. The new
branching enables n-ho to prove optimality of 3 instances where a-ho fails to do so.
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The node branching is much faster on some instances and has roughly the same
runtime on other ones. On the larger instances, except one, n-ho often finds a
significantly better solution. This is a clear indication of the benefits of node
branching. Moreover, the results show that the search tree is smaller for n-ho,
compared to a-ho. This may be explained by the fact that the new branching
evenly strengthens LB on both branches which result in stronger pruning of
the search. Also, n-ho requires fewer cuts to prove a test optimal. This may be
explained by the fact that when an arc is included it makes several previously
computed cuts useless.

5.2 Branch-and-Price Evaluation

There are several difficulties that appear during the integration of the Steiner tree
algorithm in a branch-and-price framework. We briefly mention some of them.

The Steiner cuts that are generated are valid not only within the branch-and-
cut tree, but also throughout the branch-and-price tree itself. It is important
that the implementation exploits that by maintaining a “cut pool” containing
all previously generated Steiner cuts. These can be re-used at separation.

It is important to exclude trees that correspond to columns that already exist
in the branch-and-price master. It is easily done with the solver described in this
paper since we can add a linear inequality to the STP for each existing, and
therefore non-improving, tree.

We have included the branch-and-cut solver into the branch-and-price ap-
proach of [6]. The solver was modified to return the first beneficial Steiner tree
to enable fast progress of the column generation. Extra effort in optimising the
subproblem is not necessarily beneficial for reaching global convergence fast. Two
sets of instances occurring in a multicast network design application were con-
sidered. The first one, comprising 28 instances, considers less than 5 multicast
commodities and the second one, with 12 instances, has around 19 commodities.

Curiously, there is little difference between the two branching strategies. Only
in one case did n enable the search to find a slightly better solution. The ex-
planation for this is probably that the emerged Steiner subproblems needed no
branching: the root LP was integral. This is consistent with what appears to be
the case in [19]. It is worth mentioning that commercial Internet topologies, like
the ones we considered, are typically sparse: the number of edges is below 4|V |.
This explains why the branching is not beneficial for Internet-like topologies.

Table 2. Aggregated results for branch-and-price method [6] with instances

UB ratio Time ratio SP-t ratio LP-t ratio #cuts ratio #bp-nodes
|K| avg min max avg min max avg min max avg min max avg min max avg min max

18–20 1.00 0.97 1.00 1.00 1.00 1.00 0.88 0.59 1.27 0.94 0.79 1.18 0.59 0.42 0.84 0.90 0.75 1.13
2–5 0.99 0.80 1.00 1.09 0.99 1.45 0.88 0.56 1.51 0.93 0.77 1.12 0.59 0.30 1.00 0.89 0.40 1.10

We now compare two variants n-ff and n-ho as subproblem solvers. Figure 2
presents an aggregated form of the results. The values are the ratio between n-ho
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and n-ff. For example, the average incumbent n-ho solution was 1% better than
the one found by n-ff for small the instances. The column #bp-nodes describes
the size of the branch-and-price tree.

Although it is marginally slower on average, the ho cutting strategy enables
the branch-and-price algorithm to find slightly better solutions on average. The
results also show that the separation is quicker and the number of cuts is drasti-
cally reduced. Again, this suggests that the most violated cuts are the important
ones.

Interestingly, the ho cutting strategy enables the search to use fewer number
of nodes. This may be because faster subproblem solving enables the encounter-
ing of primal solutions earlier and thus makes bound pruning possible.

6 Conclusion

Motivated by a multicast network design application, our work focuses on tai-
loring an existing Steiner tree approach so that it successfully serves as a fast
subproblem solver in a branch-and-price framework. We adapt a little known
preflow-push approach and demonstrate how to turn it into an effective sepa-
ration algorithm. The search is also enhanced with a vertex oriented branching
rule. We show that they both improve the performance in the decomposition
context. We expect that our techniques will be more beneficial if the Steiner
subproblems are hard to solve, unlike the reported multicast instances.

Even though our work originated in a decomposition framework, its bene-
fits also unfold when solving stand-alone Steiner tree problems. In particular it
succeeds in significantly improving the best known runtime for a test that was
recently solved for the first time by [18].

There are many important applications which admit a natural formulation as
a collection of cut-based covering inequalities similar to the Steiner tree problem.
These include survivable networks e.g. [11]. Such applications often consist of
finding several minimum s− t cuts. It may be possible to adapt and exploit our
cutting strategy in order to efficiently compute violated cuts.
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Abstract. The Employee Timetabling Problem (ETP) is a general class
of problems widely encountered in service organizations (such as call cen-
ters for instance). Given a set of activities, a set of demand curves (spec-
ifying the demand in terms of employees for each activity for each time
period) the problem consists of constructing a set of work shifts such that
each activity is at all time covered by a sufficient number of employees.
Work shifts can cover many activities and must meet work regulations
such as breaks, meals and maximum working time constraints. Further-
more, it is often desired to optimize a global objective function such
as minimizing labor costs or maximizing a quality of service measure.
This paper presents variants of this problem which are modeled with
the Dantzig formulation. This approach consists of first generating all
feasible work shifts and then selecting the optimal set. We propose to
address the shift generation problem with constraint satisfaction tech-
niques based on expressive and efficient global constraints such as gcc

and regular. The selection problem, which is modeled with an integer
linear program, is solved by a standard MIP solver for smaller instances
and addressed by column generation for larger ones. Since a column gen-
eration procedure needs to generate only shifts of negative reduced cost,
the optimization constraint cost-regular is introduced and described.
Preliminary experimental results are given on a typical ETP.

1 Introduction

Employee Timetabling Problems (ETP) form a wide class of optimization prob-
lems encountered in several industries and organizations. Generally, an ETP is
the problem of designing valid employee schedules over a given time horizon
that cover given workforce requirements. The timetabling attempts to optimize
performance criteria such as the overall cost or the quality of service.

In a context where there are numerous possible activities, such as in call
centers, a schedule refers to a sequence of activities performed during fixed time
periods satisfying a given set of rules and regulations (e.g. a break of 15 minutes
is necessary between two different work activities). Various constraints of that
kind arise in real world ETP and their number and complexity quickly make
these problems NP-hard. Furthermore, it is sometimes necessary to take into

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 140–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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account the individual preferences and skills of each employee, which significantly
increases the complexity of the problem.

Because it is a broad modeling methodology, constraint programming (CP)
is well suited to generate the valid individual schedules. Most of the constraints
in this problem are defined in terms of allowed patterns of activities and limits
on the amount of work that is scheduled. These constraints can be efficiently
tackled in a constraint satisfaction model using global constraints such as gcc
[8] and regular [7], together able to restrict the number of occurrences and to
enforce patterns of values in a sequence of variables.

This paper describes a general algorithm based on such a CP framework
for solving several variants of ETP. The basic ETP can be represented as a set
covering problem, where each column is a valid schedule. Our solution method is
based on an integer linear formulation of the whole optimization problem, where
variables represent the different permitted schedules (which are pre-computed
in CP). When the number of valid schedules becomes too large to be generated
and stored, the linear relaxation of the integer program is solved by column
generation. In this case, only a subset of the schedules (with negative reduced
costs) are generated by CP and added iteratively to the master linear program.
In order to generate only negative reduced cost schedules, the regular constraint
is replaced by its extension cost-regular within the CP model.

The interest of this approach is its ability to handle variations of the problem
without major modifications to the algorithm itself. Indeed, comparing with pure
linear programming approaches that are generally developed for ETP, CP offers
a more straightforward way to model complex constraints. Furthermore, the de-
composition of the problem makes the processing of these hard constraints inde-
pendent from the global optimization process. This hybrid constraint-linear pro-
gramming approach also differs from pure constraint programming approaches
by taking more efficiently into consideration the optimization criterion.

CP-based column generation approaches have been proposed for several prob-
lems more or less related to ETP. The general framework was first introduced
in [5]. It has since been applied to airline crew scheduling [3, 12], vehicle rout-
ing [10], and cutting-stock problems [4]. The subproblems solved by CP have
taken the form of constrained shortest path problems and constrained knapsack
problems. In our case we use cost-regular, which bears some similarity to a
constrained shortest path, as we shall see in Section 4. Recently other hybrid
CP-LP algorithms have been advantageously applied to solve ETP. In particu-
lar, Benoist et al. [1] presented a CP-based Benders decomposition for solving
the timetabling problem encountered in a large call center. They use CP includ-
ing the flow global constraint to handle the underlying flow structure of the
problem.

The paper is organized as follows. The next section gives definitions and no-
tation for employee timetabling problems. A typical set of regulation constraints
and the associated CP model is presented in Section 3. Section 4 presents the
optimization constraint cost-regular, an extension of the regular global con-
straint. Section 5 describes the linear formulations for three different ETP as
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well as the column generation process for each of these formulations. Section 6
contains preliminary computational results. The final section presents our con-
clusion and perspectives.

2 Problem Statement

Employee Timetabling Problems come in many forms. The ones adressed here are
essentially divided into two major classes: the anonymous and the personalized
scheduling. In the anonymous version we are only interested in building a set of
valid work schedules — employees are considered interchangeable. This problem
is in fact equivalent to the shift scheduling problem. This paper mostly address
the anonymous case, but gives some insight on how to deal with individual
schedules.

The definitions and notation given in this section apply to ETP where the
planning horizon (ex. one day) can be partitioned as a sequence of T consecutive
time intervals called periods or shifts.

Activities. Different types of activities must be fulfilled by the employees on the
planning horizon. Let W denote the set of these work activities. An estimation
of the workforce requirement of each activity is given on the whole planning
duration. For each activity a and each period t, rat specifies the number of
workers required to achieve activity a during period t. Eventually, cat will denote
the cost of assigning one employee to activity a at period t.

Besides work activities, we distinguish three other activities : break (p), rest
(o) and lunch (l). These activities are not subjected to costs and workforce but
they may be involved in specific constraints. Let A = W ∪ {o, b, l} denote the
set of generalized activities.

Valid Schedules. A schedule is an assignment s : [1..T ] −→ A where s(t) stands
for the activity to perform at period t. Alternatively, schedule s can be expressed
by a binary matrix Bs = (bs

at)a∈A,t∈[1..T ] where bs
at = 1 if s(t) = a and bs

at = 0
otherwise. S denotes the set of valid schedules that are individual schedules
satisfying all regulation constraints.

Cost and Satisfaction. Usual objectives in ETP are the minimization of the
overall cost or the maximization of employee satisfaction. These criteria can be
formulated by considering the cost cs for the company of allocating schedule s
to an employee. Such a cost can also represent the degree of dissatisfaction for
an employee being assigned to schedule s. The objective is then to minimize
the sum of the costs of the schedules assigned to each employee. In this paper,
cs is computed as the sum of the costs of performing activity s(t) at period t:
cs =

∑T
t=1 cs(t)t.

Regulation Constraints. Constraints describing permitted schedules come from
legislation and contractual agreements. Three kinds of constraints are usually
encountered:
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– Some activities are not allowed to be performed at some times.
– Restrictions are imposed on the number of periods or on the number of

consecutive periods an employee is assigned to a particular activity or to a
group of activities during his schedule (e.g. at most 8 hours of work a day,
at least one 15 minute break)

– Some given patterns specify the allowed sequences of activities for the work-
ers (e.g. imposing a break before performing a new activity).

Overcoverage and Undercoverage. In some ETP formulations, the cost of the
staff timetabling may include penalties due to overcoverage or undercoverage.
For each activity a and period t, let ĉat and čat be the additional cost when
the timetabling covers the workforce demand rat with, respectively, one more
employee and one less employee.

Employees. When taking into consideration individual preferences and skills,
the definition of a valid schedule becomes different for each employee (or team).
Additional constraints restrict the assignment of a given employee to activities
following his qualification or to periods following his availabilities.

For each employee e ∈ E , let Se be the set of valid schedules for employee
e. The cost of a schedule s may then also differs between employees (for whom
schedule s is permitted): let ces be the cost of schedule s ∈ Se when assigned to
employee e.

3 Constraint Programming for Shift Scheduling

The subproblem (SP ) of computing valid schedules can easily be modeled as
a Constraint Satisfaction Problem with T decision variables s1, s2, . . . , sT and
finite discrete domains D1, D2, . . . , DT all equal to A. There is an obvious one-
to-one correspondence between complete instantiations of these variables and
schedules s : [1..T ] −→ A by setting s(t) = st for all periods t (i.e. st = a means
that activity a is performed at period t). The set S of valid schedules corre-
sponds then to the set of all the solutions of this CSP including the regulation
constraints.

The high expressiveness and modeling flexibility of constraint programming
allows to formulate a wide variety of complex regulation constraints in terms of
variables s1, . . . , sT (eventually with the help of additional variables). In partic-
ular, a number of global constraints well suited to model such constraints have
been introduced in the constraint programming literature. Some of these global
constraints are quickly described in Section 3.1. We give in Section 3.2 the exam-
ple of a set of typical regulation constraints encountered for example in a large
store where workers may be assigned to any sales activities.

3.1 Global Constraints for Shift Scheduling

A global constraint in constraint programming is both a way of modelling a spe-
cific substructure (common preferably to many decision problems) and a filtering
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algorithm dedicated to this substructure. In the context of ETP some global con-
straints of the literature are of great interest. These constraints mainly relate to
the allowed values taken by a sequence of decision variables X = (x1, . . . , xn)
(in domains D1 × · · · ×Dn) together:

Global Cardinality Constraint [8]. This constraint does not consider the ordering
of the variables but restricts the number of times each value is distributed on a
set of variables. Formally,

gcc(< y1, . . . , ym >,< v1, . . . , vm >,X)

constrains variable yj to be equal to the number of appearances of value vj in
the set of variables X. For the ETP, the gcc constraint is helpful to give lower
and upper bounds on the total amount of work performed over a day.

Stretch Constraint [6]. A stretch refers to a subsequence (xi, xi+1, . . . , xj) of
variables all assigned to a same value v and that is maximal for this property in
terms of inclusion (i.e. xi−1 �= v and xj+1 �= v).

stretch(X,< v1, . . . , vm >,< lmin
1 , . . . , lmin

m >,< lmax
1 , . . . , lmax

m >)

restricts the length of any stretch in X with value vj to be at least equal to value
lmin
j and at most to value lmax

j .
For example in ETP, the stretch constraint is helpful to indicate that ac-

tivities must be assigned to a certain number of consecutive periods. Note that
stretch is more general and can also be applied to cyclic schedules.

Global Sequencing Constraint [9]. This constraint lies somewhere between the
two preceding constraints since it looks like the stretch constraint with the
difference that values do not have to appear consecutively. It can be understood
as a set of global cardinality constraints defined on every subsequence of X of
a given length. It may occur in the ETP if restrictions on the amount of work
performed are also given over a shorter duration, say every three hours.

Regular Constraint [6]. This constraint is able to express complex patterns in
a sequence. Formally, given a deterministic finite automaton Π describing a
regular language, constraint

regular(X,Π)

restricts the sequence of values taken by the variables of X to belong to the
regular language associated to Π. For the ETP, it is useful to enforce sequencing
rules for the activities.

3.2 Example of Regulation Constraints

We based our first experimentations on a mostly generic set of regulation con-
straints. These constraints as well as their formulation in a CSP using global
constraints are presented below.
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The problem consists of generating valid schedules for employees in a shop
with different sales activities a ∈ W . The planning horizon (one day) is de-
composed in periods of 15 minutes (T = 96). A valid schedule is an assignment
s : [1..T ] −→ A, where A includes also activities p (break), o (rest) and l (lunch),
and that satisfies the following constraints:

1. Some activities a ∈ Ft are not allowed to be performed at some periods t.
2. s covers between 3 hours and 8 hours of work activities.
3. If s is worked for at least 6 hours, then it includes exactly two breaks and

one lunch break of 1 hour. Else, it includes only 1 break and no lunch break
is planned.

4. If performed, the duration of an activity a ∈ W is at least 1 hour.
5. A break (or lunch) is necessary between two different working activities.
6. Rest shifts have to be assigned only at the begining and at the end of the day.
7. Work activities must be inserted between breaks, lunch and rest stretches.
8. The maximum duration of a break is 15 minutes.

The first condition simply consists of removing the forbidden activities Ft

from the initial domain of each variable st: Dt = A \ Ft.
The next two regulation constraints need the definition of additional decision

variables. They can then be modeled as explicit constraints as well as, implicitly,
by restricting the initial domain of the variables. One way of modeling the second
condition is to use one additional variable σa for each work activity a ∈ W ,
with domain {0, 1, . . . , 32} and representing the number of periods assigned to
activity a, as well as a variable σ with domain {12, . . . , 32}, standing for the total
number of working periods. Variables σa and st may be linked by the gcc. In the
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Fig. 1. An automaton for two work activities a and b. The leftmost circle represents

the initial state and shaded circles correspond to accepting states
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same manner, we define cardinality variables σp, σo and σl for the non-working
activities (break, rest and lunch, respectively). To model the third condition,
the domains of σl and σp are initialized to {0, 4} and {1, 2} respectively. We can
also logically deduce from the whole set of conditions that any valid schedule
contains a number of rest periods between 58 and 83. As redundant constraints,
we can then reduce the initial domain of σo to {58, . . . , 83}.

The last five constraints can be modeled with the help of only one regular
constraint. Indeed, the values permitted by these constraints together for the
sequence of variables (s1, . . . , sT ) can be described by a single automaton Π.
Figure 1 depicts such an automaton when W contains two activities a and b.

Given automata Π, the shift scheduling problem described above can be
formulated by the following Constraint Satisfaction Problem (CP ):

gcc(< σa|a ∈ A >,< a ∈ A >,< s1, . . . , sT >) (1)

σ ==
∑
a∈W

σa (2)

σ < 24 ⇒ (σl == 0 ∧ σp == 1) (3)
σ ≥ 24 ⇒ (σl == 4 ∧ σp == 2) (4)
regular(< s1, . . . , sT >,Π) (5)
st ∈ A \ Ft, ∀t = 1, . . . , T (6)
σa ∈ {0, . . . , 32}, ∀a ∈W, σ ∈ {12, 32} (7)
σl ∈ {0, 4}, σp ∈ {1, 2}, σo ∈ {58, . . . , 83} (8)

4 cost-regular Global Constraint

As indicated in Section 3.1, a regular constraint is specified using a determin-
istic finite automaton that describes the regular language to which the sequence
must belong. That automaton is then unfolded into a layered directed graph
where vertices of a layer correspond to states of the automaton and arcs rep-
resent variable-value pairs. This graph has the property that paths from the
first layer to the last are in one-to-one correspondence with solutions of the con-
straint. The existence of a path through a given arc constitutes a support for
the corresponding variable-value pair [7].

In the ETP, assigning a given activity at a given period has a cost. For the
CP model, this translates to associating costs to variable-value pairs. For this
purpose, we define cost-regular(X,Π, z, C) constraining X as in regular but
also requiring that z, a bounded-domain continuous variable, represent the cost
of a solution with respect to the constraint, given cost matrix C. This cost is
computed as the sum of the costs of the individual arcs in the solution. 1

1 Note that we could refine the costs by associating one to every combination of
variable, value, and state of the automaton.
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Instead of simply maintaining paths, the filtering algorithm must from now
on consider the cost of these paths. Supports do not come from just any path
but rather from a path whose length falls within the domain of z. To check this
efficiently, it is sufficient to compute and maintain shortest and longest paths
from the first layer to every vertex and from every vertex to the last layer: if
the shortest way to build a path through a given arc is larger than the upper
limit of the interval for z, the arc cannot participate in a solution and can thus
be removed; if the longest way to build a path through a given arc is smaller
than the lower limit of that interval, the arc can again be removed. In this way,
domain consistency is achieved for the variables of X. The domain of z can also
be trimmed using the shortest and longest paths from the first to the last layer.

The time complexity for the initial computation of the shortest and longest
paths is linear in the size of X and in the number of transitions appearing in the
automaton, due to the special structure of the graph. Subsequently these paths
are updated incrementally.

5 Integer Linear Formulations and Column Generation

This section presents linear programs modeling three different ETP. These lin-
ear programs are based on a well-known Dantzig formulation for this kind of
problems, involving integer variables indexed by the set of valid schedules. Solv-
ing these programs yields an optimal staff timetable by selecting the best set
of individual schedules and choosing how many employees (or which employees)
will be assigned to each of these schedules.

The first two problems differ on the definition of the overall cost of the staff
schedule. In the first one, the overall cost equals the sum of the costs of the
schedules assigned to each employees, while in the second one it includes also
an additional cost of overcoverage and undercoverage for each work activity on
each period. Both models assume that employees are interchangeable. In other
words, any schedule in S is valid for any employee. The problem is then to find
how many employees will be assigned to each schedule in S.

On the contrary, the last problem takes into account individual preferences
and skills, which requires to define a different set Se of valid schedules for each
employee e. Here, the problem consists of choosing one schedule in Se for each
employee e (or none if e is not used).

In this kind of formulations, the number of variables grows exponentially with
the number of activities. Beyond two work activities, the set of valid schedules
which is the set of solutions of the CSP presented in Section 3, becomes too large
to be computed. At this point, we use a column generation procedure to solve
the linear relaxation of the integer program.

The column generation algorithm is detailed in Section 5.1 for the first for-
mulation while the corresponding pricing problem alone is described for the two
other variants.



148 S. Demassey, G. Pesant, and L.-M. Rousseau

5.1 Column Generation

The first ETP problem is to minimize the sum of the costs of the schedules
while covering all the workforce requirements. The following linear formulation
(ETP ) uses an integer variable xs for each valid schedule s ∈ S, standing for
the number of employees assigned to schedule s:

min
∑
s∈S

csxs (9)

s.t.
∑
s∈S

bs
atxs ≥ rat ∀ a ∈W,∀ t ∈ [1..T ], (10)

xs ≥ 0 ∀ s ∈ S, (11)
xs ∈ Z ∀ s ∈ S. (12)

Let (P ) :
(
(9)s.t.(10), (11)

)
be the linear relaxation of (ETP ). The dual (D)

of (P ) can be written as:

max
∑
a∈W

T∑
t=1

ratλat (13)

s.t.
∑
a∈W

T∑
t=1

bs
atλat ≤ cs ∀ s ∈ S, (14)

λat ≥ 0 ∀ a ∈W,∀ t ∈ [1..T ]. (15)

Column generation applied to (P ) is an iterative algorithm where, at each
iteration, the so-called master problem (P ′), that is linear program (P ) restricted
to a subset of columns, is solved to optimality. Duality considerations allow to
formulate a pricing problem (SP ) such that: 1) the unfeasiblity of (SP ) proves
that the optimal solution of the master problem can be extended to an optimal
solution of (P ) by setting to 0 any variables xs that are not present in the
restricted master program. 2) if (SP ) is feasible then its solutions correspond
to columns that can improve the solution of the master problem when added at
the next iteration.

More precisely, let S ′ ⊂ S be the subset of valid schedules corresponding to
the restricted set of columns of master problem (P ′) at a given iteration. If x, x′

and λ′ are optimal solutions for (P ), (P ′) and (D′), the dual of P ′, respectively,
then weak duality says that:

∑
a∈W

T∑
t=1

ratλ
′
at =

∑
s∈S′

csx′
s ≥

∑
s∈S

csxs.

Hence, x′ (completed with 0) is an optimal solution of (P ) if λ′ is a feasible
solution of (D), or in other words, if λ′ satisfies all constraints (14), that is if:

{s ∈ S | cs −
∑
a∈W

T∑
t=1

bs
atλ

′
at < 0} = ∅.
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At each iteration, the pricing problem (SP ) is to find valid schedules s ∈ S
with negative reduced costs rc′s, where:

rc′s = cs −
∑
a∈W

T∑
t=1

bs
atλ

′
at.

Section 3.2 gives a CSP formulation (CP ) for the problem of finding valid
schedules. At each iteration, the pricing problem can be solved by adding to
(CP ) a negative reduced cost constraint. One way is to add this constraint to
(CP ) by using global constraint element :

T∑
t=1

(cstt − λ′
stt) < 0.

We propose a more efficient way to tackle this additional constraint by re-
placing in (CP ) the regular constraint (5) by its variant detailed in Section 4:

cost-regular(< s1, . . . , sT >,Π, z,< cat − λ′
at, a ∈ A, t = 1, . . . , T >). (16)

This constraint ensures, as constraint (5), that the sequence of values taken by
< s1, . . . , sT > belongs to the language defined by automaton Π of Section 3.2.
But it also forces variable z to be equal to the sum of the costs of the variable
assignments for s1, . . . , sT , the cost of assigning variable st to activity a ∈ A
being set to cat − λ′

at. In order to model the negative reduced cost constraint
within the (CP ) model we just need to define such an additional variable z with
the appropriate domain:

z ∈ ]−∞, 0[. (17)

Hence, the filtering algorithm of cost-regular processes simultanously the do-
mains of variables s1, . . . , sT and z such that schedules with non-negative reduced
cost are removed from the search space by this algorithm alone.

5.2 Overcoverage and Undercoverage

Overcoverage and undercoverage costs may be taken into account by slightly
modifying the previous formulation of (ETP ) in this way: for each activity a
and period t, let variables x̂at ∈ Z and x̌at ∈ Z represent the overcoverage and
the undercoverage respectively. In other words, when N employees are assigned
to activity a at period t in the timetable, then x̂at = N − rat and x̌at = 0 if N
is greater than the request rat (overcoverage) and x̌at = rat −N and x̂at = 0 in
the other case (undercoverage).
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The modified problem (ETPl) becomes set partitioning problem:

min
∑
s∈S

csxs +
∑
a∈W

T∑
t=1

(ĉatx̂at + čatx̌at) (18)

s.t.
∑
s∈S

bs
atxs + x̌at − x̂at = rat ∀ a ∈ W,∀ t ∈ [1..T ], (19)

xs ∈ N ∀ s ∈ S, (20)
x̂at ∈ N, x̌at ∈ N ∀ a ∈ W,∀ t ∈ [1..T ]. (21)

Since (ETPl) simply contains additional columns (and no more constraints
than ETP ), the pricing problem associated to a Dantzig-Wolfe decomposition
of (ETPl) is identical to the pricing problem for (ETP ) (denoted (SP )).

5.3 Individual Shift Scheduling

Most practical timetabling problems take into consideration the preferences and
skills of the employees, for instance excluding them from specific activities or
work periods. The set Se of possible schedules is thus different for each employee
e ∈ E . Such a variant of the ETP can be modeled by the following binary linear
program (ETPe):

min
∑
e∈E

∑
s∈Se

cesxes (22)

s.t.
∑
e∈E

∑
s∈Se

bs
atxes ≥ rat ∀ a ∈ W,∀ t ∈ [1..T ], (23)

∑
s∈Se

xes ≤ 1 ∀ e ∈ E , (24)

xes ∈ {0, 1} ∀ e ∈ E ,∀ s ∈ Se, (25)

In this model, xes is a binary variable that is equal to 1 if and only if employee
e ∈ E is assigned to schedule s ∈ Se. Constraints (24) enforce that at most one
schedule is assigned to each employee.

Within a column generation approach for this problem, the pricing problem
(SPe) can be written2:

{(e, s) ∈ E × Se | ces −
T∑

t=1

λstt + μe < 0},

where (λ, μ) are the current dual values (associated to constraints (23) and (24),
respectively) of the master problem at a given iteration of the column generation

2 Note that constraints (25) are redundant and that in practice x is simply set to
be greater or equal to 0. Otherwise, (25) requires the introduction of another dual
variable.
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process. (SPe) can clearly be decomposed as several problems (one for each
employee), which are treated in the same way as problem (SP ). The CSP to
solve for each employee e includes the personal constraints for e as well as the
cost-regular constraint and the cost variable z with initial domain equal to
]−∞,−μe[.

6 Computational Results

We ran some preliminary experiments on a set of generated benchmarks. The
data of these instances are based on a realistic ETP for a retail store where
employees can be assigned to many sale activities and the work regulation con-
straints are the ones described in the example of Section 3.2. As a first step, we
evaluate the efficiency of our algorithm on the first formulation of ETP presented
in Section 5.1. In other words, we assume that employees are interchangeable
and that the objective is to minimize the sum of the employee schedule costs
while covering the demand curves on the activities.

Generated benchmarks are distributed into eight groups of instances denoted
ETP1, . . . , ETP8. Each set ETPn contains 10 instances of the timetabling prob-
lem with parameter n indicating the number of work activities. In these in-
stances, the demand curves can require the presence of up to 12 employees at
the same period. Even for instances in group ETP1, the set of valid schedules is
too large to be pre-generated quickly. Remember that for benchmarks in ETP1,
schedules are potentially any assignment from the set T of 96 periods to the set
A of 4 activities.

For this reason, we directly apply the column generation algorithm to the
linear relaxation (P ) of program (ETP ) as described in Section 5.1. In the rest
of this section, we present the details of the implementation of this algorithm,
a summary of the computational results obtained on the 80 generated instances
and a discussion about these results as well as future research directions for
improvements.

Our program was implemented in C++ using ILOG Concert libraries (ILOG
Solver 6.0 to solve the CP models and ILOG Cplex 9.0 to solve the linear re-
laxation), compiled using g++ 3.3 and run on a biprocessor Intel Xeon 2.8GHz
under Gnu/Linux 2.6.

The column generation proceeds as follows: An initial minimal set of columns
is generated in order to make feasible the master linear program (P ) at the first
iteration. These columns correspond to mono-activity shedules worked for only
four consecutive periods (one hour). Since these schedules are not valid (they
violate constraint (7)), we give them “infinite” costs in the LP. At each iteration
of the column generation process, the reduced costs returned by the resolution
of (P ) are used to update the subproblem (SP ) of finding improving columns.
(SP ) is formulated as the CSP of Section 3.2 with the cost constraints (16) and
(17) and it is solved by a backtracking algorithm returning the 50 (or less) first
computed valid schedules of negative reduced cost. These schedules are then
added as new columns to the master program. The algorithm stops when the
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subproblem of a given iteration is unfeasible. The optimal value of the master
problem at the last iteration is then a lower bound LB of the optimal value of the
original problem (equal to the linear relaxation bound). To estimate the quality
of LB we compute an upper bound UB by solving the integer linear program
with the generated columns alone. UB is the value of the best integer solution
obtained by the default branch-and-bound of Cplex ran during one hour.

Table 1. Column generation algorithm results on the generated instances ETP

Groupnb ΔLB/UB nb iterationsnb columns CPU in sec.
av. (max) av. (max) av. (max) av. (max)CPav. (CPmax)

ETP1 10 4.9%(16.6%) 20 (29) 914 (1361) 1.9 (5.7) 0.1 (2.3)
ETP2 10 5.6%(15.6%) 51 (76) 2466 (3722) 6.1 (12.0) 0.1 (3.3)
ETP3 10 5.5% (9.2%) 76 (106) 3749 (5226) 16.7 (45.6) 0.2 (5.8)
ETP4 10 4.6% (8.7%) 137 (204) 6818(10142) 92.9 (452.4) 0.6 (13.9)
ETP5 10 5.4%(12.6%) 132 (207) 6558(10300) 108.4 (354.4) 0.7 (24.6)
ETP6 10 5.0%(11.0%) 203 (337) 10103(16798) 355.6 (884.6) 1.6 (268.8)
ETP7 9 5.6% (7.9%) 244 (337) 12186(16814) 793.6 (2115.1) 3.1 (130.9)
ETP8 9 5.4% (8.5%) 296 (548) 14776(27377) 950.3 (2531.2) 3.0 (159.9)

Table 1 provides details of the algorithm execution on each problem set
ETPn. The first column gives for each set of 10 instances the number of in-
stances among them that have been processed by column generation in at most
one hour. The following columns give, by pair, average and maximal results on
these sets of solved instances. These results are, in order: the deviation of LB to
the upper bound UB, the number of iterations of the column generation process,
the number of generated columns, the total computation time in seconds and
the time spent to solve the subproblem (SP) at one iteration.

Computation results given here come from preliminary experiments but give
some insight on how to improve the general algorithm. In order to decrease the
computational times, we aim to improve the subproblem resolution since the
processing time is mainly spent in the CP phases. A good branching strategy
has to be found for solving the CSP. For instance, it would be interesting to
implement a value ordering heuristic based on the shortest path computed by
the filtering algorithm of cost-regular. Something similar is performed in the
Branch and Price library Maestro [2].

In fact, our random generated instances seem to be really diversified in each
group. While, for some of them, we hardly find schedules at each iteration, some
others contain a large number of valid schedules. For these last instances, the
computation of the (negative reduced cost) schedules is very quick but the num-
ber of iterations of the column generation process can then be more important.
In these cases, a basic backtracking algorithm has a tendency to provide a set
of solutions that are almost identical. Convergence of the column generation
process can then be slower when columns added at each iteration are too simi-
lar. Many stabilization techniques have been proposed to accelerate convergence
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([11]). Another simple way (suggested in [10]) is to add diversity in the set of so-
lutions generated by CP with a multi-start search process, by introducing some
randomization in the variable ordering heuristic or by implementing a dedicated
diversity constraint.

7 Conclusion

This paper presented a hybrid constraint programming-linear programming so-
lution method for employee timetabing problems. The proposed decomposition
applies to several formulations of this kind of problem. By using CP to generate
the permitted shift schedules, it also offers a flexible way to tackle the various
work regulation constraints that arise in real world timetabling problems.

The optimization criterion on the staff scheduling is handled by LP when
assigning shift schedules to employees. With a column generation approach, only
“lowest cost” schedules are iteratively generated by CP. The newly introduced
global constraint cost-regular allows to efficiently take into account the cost
of the schedules within their generation process by CP.

The method has now only been implemented to compute lower bounds on
generated benchmarks for a first formulation of ETP with general regulation
constraints. An obvious continuation of this work is to elaborate branch-and-
price algorithms based on these bounds in order to solve at optimality various
realistic timetabling problems.
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Abstract. The scheduling of social golfers has attracted significant attention in
recent years because of its highly symmetrical and combinatorial nature. In par-
ticular, it has become one of the standard benchmarks for symmetry breaking
in constraint programming. This paper presents a very effective, local search,
algorithm for scheduling social golfers. The algorithm find the first known solu-
tions to 11 instances and matches, or improves, state-of-the-art results from con-
straint programming on all but 3 instances. Moreover, most instances of the social
golfers are solved within a couple of seconds. Interestingly, the algorithm does
not incorporate any symmetry-breaking scheme and illustrates the nice comple-
mentarity between constraint programming and local search on this scheduling
application.

1 Introduction

The social golfer problem has attracted significant interest since it was first posted on
sci.op-research in May 1998. It consists of scheduling n = g × p golfers into
g groups of p players every week for w weeks so that no two golfers play in the same
group more than once. An instance of the social golfer is specified by a triple g−p−w,
where g is the number of groups, p is the size of a group, and w is the number of weeks
in the schedule.

The scheduling of social golfers is a highly combinatorial and symmetric problem
and it is not surprising that it has generated significant attention from the constraint
programming community (e.g., [5, 12, 6, 11, 10, 2, 9]). Indeed, it raises fundamentally
interesting issues in modeling and symmetry breaking, and it has become one of the
standard benchmarks for evaluating symmetry-breaking schemes. Recent developments
(e.g., [2, 9]) approach the scheduling of social golfers using innovative, elegant, but also
complex, symmetry-breaking schemes.

This paper approaches the problem from a very different angle. It proposes a local
search algorithm for scheduling social golfers, whose local moves swap golfers within
the same week and are guided by a tabu-search meta-heuristic. The local search algo-
rithm matches, or improves upon, the best solutions found by constraint programming
on all instances but 3. It also found the first solutions to 11 instances that were previ-
ously open for constraint programming.1 Moreover, the local search algorithm solves

1 For the statuses of the instances, see Warwick Harvey’s web page at http://
www.icparc.ic.ac.uk/wh/golf.
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almost all instances easily in a few seconds and takes about 1 minute on the remaining
(harder) instances. The algorithm also features a constructive heuristic which trivially
solves many instances of the form odd− odd−w and provides good starting points for
others.

The main contributions of this paper are as follows.

1. It shows that local search is a very effective way to schedule social golfers. It found
the first solutions to 11 instances and matches, or improves upon, all instances
solved by constraint programming but 3. In addition, almost all instances are solved
in a few seconds, the harder ones taking about 1 minute.

2. It demonstrates that the local search algorithm uses a natural modeling and does
not involve complex symmetry-breaking schemes. In fact, it does not take sym-
metries into account at all, leading to an algorithm which is significant simpler
than constraint programming solutions, both from a conceptual and implementa-
tion standpoint.

3. The experimental results indicate a nice complementarity between constraint pro-
gramming and local search, as some of the hard instances for one technology are
trivially solved by the other.

The rest of the paper is organized as follows. The paper starts by describing the basic
local search algorithm, including its underlying modeling, its neighborhood, its meta-
heuristic, and its experimental results. It then presents the constructive heuristic and
reports the new experimental results when the heuristic replaces the random configura-
tions as starting points of the algorithm. Finally, the paper discusses related work and
concludes by giving some preliminary results on generalizations of the problem.

2 The Modeling

There are many possible modelings for the social golfer problem, which is one of
the reasons why it is so interesting. This paper uses a modeling that associates a de-
cision variable x[w, g, p] with every position p of every group g of every week w.
Given a schedule σ, i.e., an assignment of values to the decision variables, the value
σ(x[w, g, p]) denotes the golfer scheduled in position p of group g in week w. There
are two kinds of constraints in the social golfer.

1. A golfer plays exactly once a week;
2. Two golfers can play together (i.e., in the same group of the same week) at most

once.

The first type of constraints is implicit in the algorithms presented in this paper: It is
satisfied by the initial assignments and is preserved by local moves. The second set of
constraints is represented explicitly. The model contains a constraint m[a, b] for every
pair (a, b) of golfers: Constraint m[a, b] holds for an assignment σ if golfers a and b are
not assigned more than once to the same group. More precisely, if #σ(a, b) denotes the
number of times golfers a and b meet in schedule σ, i.e.,

#{(w, g) | ∃p, p′ : σ(x[w, g, p]) = a & σ(x[w, g, p′]) = b},
constraint m[a, b] holds if
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#σ(a, b) ≤ 1.

To guide the algorithm, the model also specifies violations of the constraints. Infor-
mally speaking, the violations υσ(m[a, b]) of a constraint m[a, b] is the number of times
golfers a and b are scheduled in the same group in schedule σ beyond their allowed
meeting. In symbols,

υσ(m[a, b]) = max(0,#σ(a, b)− 1).

As a consequence, the social golfer problem can be modeled as the problem of finding
a schedule σ minimizing the total number of violations f(σ) where

f(σ) =
∑

a,b∈G
υσ(m[a, b]).

and G is the set of g × p golfers. A schedule σ with f(σ) = 0 is a solution to the social
golfer problem.

3 The Neighborhood

The neighborhood of the local search consists of swapping two golfers from different
groups in the same week. The set of swaps is thus defined as

S = {(〈w, g1, p1〉, 〈w, g2, p2〉) | g1 �= g2}.

It is more effective however to restrict attention to swaps involving at least one golfer in
conflict with another golfer in the same group. This ensures that the algorithm focuses
on swaps which may decrease the number of violations. More formally, a triple 〈g, w, p〉
is said to be in conflict in schedule σ, which is denoted by υσ(〈g, w, p〉), if

∃p′ ∈ P : υσ(m[σ(x[w, g, p]), σ(x[w, g, p′])]) > 1.

With this restriction in mind, the set of swaps S−(σ) considered for a schedule σ be-
comes

S−(σ) = {(〈w1, g1, p1〉, 〈w2, g2, p2〉) ∈ S | υσ(〈w1, g1, p1〉)}.

4 The Tabu Component

The tabu component of the algorithm is based on three main ideas. First, the tabu list
is distributed across the various weeks, which is natural since the swaps only consider
golfers in the same week. The tabu component thus consists of an array tabu where
tabu[w] represents the tabu list associated with week w. Second, for a given week w,
the tabu list maintains triplet 〈a, b, i〉, where a and b are two golfers and i represents
the first iteration where golfers a and b can be swapped again in week w. Observe that
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the tabu lists store golfers, not positions 〈w, g, p〉. Third, the tabu tenure, i.e., the time a
pair of golfers (a, b) stays in the list, is dynamic: It is randomly generated in the interval
[4, 100]. In other words, each time a pair of golfers (a, b) is swapped, a random value
ρ is drawn uniformly from the interval [4, 100] and the pair (a, b) is tabu for the next ρ
iterations. At iteration k, swapping two golfers a and b is tabu, which is denoted by

tabu[w](a, b, k)

if the Boolean expression

〈a, b, i〉 ∈ tabu[w] & i ≤ k

holds. As a consequence, for schedule σ and iteration k, the neighborhood consists of
the set of moves St(σ, k) defined as

St(σ, k) = {(t1, t2) ∈ S−(σ) | ¬tabu[w](σ(x[t1]), σ(x[t2]), k)}.
where we abuse notations and use x[〈w, g, p〉] to denote x[w, g, p].

Aspiration In addition to the non-tabu moves, the neighborhood also considers moves
that improve the best solution found so far, i.e., the set S∗(σ, σ∗) defined as

S∗(σ, σ∗) = {(t1, t2) ∈ S−(σ) | f(σ[x[t1] ↔ x[t2]]) < f(σ∗)},
where σ[x1 ↔ x2] denotes the schedule σ where the values of variables x1 and x2 have
been swapped and σ∗ denotes the best solution found so far.

5 The Tabu-Search Algorithm

We are now ready to present the basic local search algorithm SGLS. The algorithm,
depicted in Figure 1, is a tabu search with a restarting component. Lines 2-7 perform
the initializations. In particular, the tabu list is initialized in lines 2-3, the initial schedule
is generated randomly in line 4, while lines 6 and 7 initialize the iteration counter k, and
the stability counter s. The initial configuration σ randomly schedules all golfers in the
various groups for every week, satisfying the constraint that each golfer plays exactly
once a week. The best schedule found so far σ∗ is initialized to σ.

The core of the algorithm is given in lines 8-23. They iterate local moves for a
number of iterations or until a solution is found. The local move is selected in line 9.
The key idea is to select the best swaps in the neighborhood

St(σ, k) ∪ S∗(σ, σ∗),

i.e., the non-tabu swaps and those improving the best schedule. Observe that the expres-
sion

f(σ[x[t1] ↔ x[t2]])

represents the number of violations obtained after swapping t1 and t2. The tabu list is
updated in line 11, where week(〈w,g,p〉) is defined as

week(〈w, g, p〉) = w.



Scheduling Social Golfers Locally 159

1. SGLS(W, G, P )
2. forall w ∈ W
3. tabu[w] ← {};
4. σ ← random configuration;
5. σ∗ ← σ;
6. k ← 0;
7. s ← 0;
8. while k ≤ maxIt & f(σ) > 0 do
9. select (t1, t2) ∈ St(σ, k) ∪ S∗(σ, σ∗) minimizing f(σ[x[t1] ↔ x[t2]]);
10. τ ← RANDOM([4,100]);
11. tabu[week(t1)] ← tabu[week(t1)] ∪ {〈σ(x[t1]), σ(x[t2]), k + τ〉};
12. σ ← σ[x[t1] ↔ x[t2]];
13. if f(σ) < f(σ∗) then
14. σ∗ ← σ;
15. s ← 0;
16. else if s > maxStable then
17. σ ←random configuration;
18. s ← 0;
19. forall w ∈ W do
20. tabu[w] = {};
21. else
22. s++;
23. k++;

Fig. 1. Algorithm SGLS for Scheduling Social Golfers

The new schedule is computed in line 12. Lines 13-15 update the best schedule, while
lines 16-20 specify the restarting component.

The restarting component simply reinitializes the search from a random configura-
tion whenever the best schedule found so far has not been improved upon for maxStable
iterations. Note that the stability counter s is incremented in line 22 and reset to zero in
line 15 (when a new best schedule is found) and in line 18 (when the search is restarted).

6 Experimental Results

This section reports the experimental results for the SGLS algorithm. The algorithm
was implemented in C and the experiments were carried out on a 3.06GHz PC with
512MB of RAM. Algorithm SGLS was run 100 times on each instance and the results
report average values for successful runs, as well as the percentage of unsuccessful runs
(if any).

Tables 1 and 2 report the experimental results for SGLS. Given a number of groups
g and a group size p, the tables only give the results for those instances g − p − w
maximizing w since they also provide solutions for w′ < w. Table 1 reports the number
of iterations (moves), while Table 2 reports the execution times. Bold entries indicate
that SGLS matches the best known number of weeks for a given number of groups and
a given group size. The percentage of unsuccessful runs is shown between parentheses
in Table 2.



160 I. Dotú and P. Van Hentenryck

Table 1. Number of Iterations for SGLS with Maximal Number of Weeks. Bold Entries Indicate
a Match with the Best Known Number of Weeks

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w I w I w I w I w I w I w I w I

6 8 282254.0 6 161530.3 6 16761.5 3 15.8 - - - - - - - -
7 9 12507.6 7 274606.0 5 102.9 4 100.4 3 23.4 - - - - - -
8 10 653.9 8 323141.5 6 423.7 5 1044.9 4 237.5 4 153301.6 - - - -
9 11 128.3 8 84.4 6 52.7 5 55.5 4 44.8 3 27.7 3 43.9 - -
10 13 45849.1 9 100.2 7 80.8 6 110.7 5 94.6 4 61.8 3 36.1 3 53.3

Table 2. CPU Time in Seconds for SGLS with Maximal Number of Weeks. Bold Entries Indicate
a Match with the Best Known Number of Weeks

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w T %F w T %F w T w T w T w T w T w T

6 8 48.93 6 6 47.75 6 107.18 3 0.01 - - - - - - - -
7 9 3.06 7 107.62 8 5 0.07 4 0.09 3 0.03 - - - - - -
8 10 0.23 8 207.77 9 6 0.37 5 1.21 4 0.39 4 360.00 - - - -
9 11 0.08 8 0.09 6 0.09 5 0.13 4 0.14 3 0.09 3 0.19 - -
10 13 30.82 9 0.16 7 0.19 6 0.34 5 0.41 4 0.33 3 0.20 3 0.39

As can be seen from the tables, Algorithm SGLS finds solutions to all the instances
solved by constraint programming except 4. Moreover, almost all entries are solved in
less than a second. Only a few instances are hard for the algorithm and require around
1 minute of CPU time. Interestingly, algorithm SGLS also solves 7 new instances:
9− 4− 9, 9− 5− 7, 9− 6− 6, 9− 7− 5, 9− 8− 4, 10− 5− 8 and 10− 9− 4.

It is interesting to observe that algorithm SGLS does not break symmetries and
does not exploit specific properties of the solutions. This contrasts with constraint-
programming solutions that are often quite sophisticated and involved. See, for instance,
the recent papers [2, 9] which report the use of very interesting symmetry-breaking
schemes to schedule social golfers.

7 A Constructive Heuristic

The quality of SGLS can be further improved by using a constructive heuristic to find
a good starting, and restarting, configuration. The heuristic [3] trivially solves p− p−
(p + 1) instances when p is prime and provides good starting points (or solutions) for
other instances as well. Examples of such initial configurations are given in Tables 3
and 4, which will be used to explain the intuition underlying the constructive heuristic.
The heuristic simply aims at exploiting the fact that all golfers in a group for a given
week must be assigned a different group in subsequent weeks. As a consequence, the
heuristic attempts to distribute these golfers in different groups in subsequent weeks.

Table 4 is a simple illustration of the heuristic with 5 groups of size 5 (i.e., 25
golfers) and 6 weeks. The first week is simply the sequence 1..25. In the second week,
group i consists of all golfers in position i in week 1. In particular, group 1 consists
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Table 3. The initial configuration for the problem 4 − 3 − 3

weeks group 1 group 2 group 3 group 4
week 1 1 2 3 4 5 6 7 8 9 10 11 12
week 2 1 4 7 10 2 5 8 11 3 6 9 12
week 3 1 5 9 10 2 6 7 11 3 4 8 12

Table 4. The intial configuration for the problem 5 − 5 − 6

weeks group 1 group 2 group 3 group 4 group 5
week 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
week 2 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24 5 10 15 20 25
week 3 1 7 13 19 25 2 8 14 20 21 3 9 15 16 22 4 10 11 17 23 5 6 12 18 24
week 4 1 8 15 17 24 2 9 11 18 25 3 10 12 19 21 4 6 13 20 22 5 7 14 16 23
week 5 1 9 12 20 23 2 10 13 16 24 3 6 14 17 25 4 7 15 18 21 5 8 11 19 22
week 6 1 10 14 18 22 2 6 15 19 23 3 7 11 20 24 4 8 12 16 25 5 9 13 17 21

of golfers 1, 6, 11, 16, 21, group 2 is composed of golfers 2, 7, 12, 17, 22 and so on. In
other words, the groups consist of golfers in the same group position in week 1. The
third week is most interesting, since it gives the intuition behind the heuristic. The key
idea is to try to select golfers whose positions are j,j+1,j+2,j+3,j+4 in the first week,
the addition being modulo the group size. In particular, group 1 is obtained by selecting
the golfers in position i from group i in week 1, i.e., golfers 1, 7, 13, 19, 25. Subsequent
weeks are obtained in similar fashion by simply incrementing the offset. In particular,
the fourth week considers sequences of positions of the form j,j+2,j+4,j+6,j+8 and its
first group is 1, 8, 15, 17, 24. Table 3 illustrates the heuristic on the 4-3-3 instance. Note
that the first group in week 2 has golfers in the first position in groups 1, 2, and 3 in
week 1. However, the first golfer in week 4 must still be scheduled. Hence the second
group must select golfer 10, as well as golfers 2 and 5.

Figure 2 depicts the code of the constructive heuristic. The code takes the convention
that the weeks are numbered from 0 to w−1, the groups from 0 to g−1, and the positions
from 0 to p− 1, since this simplifies the algorithm. The key intuition to understand the
code is to recognize that a week can be seen as a permutation of the golfers on which
the group structure is superimposed. Indeed, it suffices to assign the first p positions
to the first group, the second set of p positions to the second group and so on. As a
consequence, the constructive heuristic only focuses on the problem of generating w
permutations P0, . . . , Pw−1.

The top-level function is HEURISTICSCHEDULE which specifies the first week and
calls function SCHEDULEWEEEK for the remaining weeks. Scheduling a week is the
core of the heuristic. All weeks start with golfer 1 (line 7) and initialize the position
po to 0 (line 8), the group number gr to 1 (line 9), and the offset Δ to we − 1. The
remaining golfers are scheduled in lines 11-15.

The key operation is line 12, which selects the first unscheduled golfer s from group
gr of week 0 (specified by P0) starting at position (po + Δ)%p and proceeding by
viewing the group as a circular list. The next three instructions update the position po
to the position of s in group gr of week 0 (line 13), increment the group to select a
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1. HEURISTICSCHEDULE(w, g, p)
2. n ← g × p;
3. P0 ← 〈1, . . . , n〉;
4. forall we ∈ 1..w − 1
5. Pwe ← scheduleWeek(we, g, p, n);

6. SCHEDULEWEEK(we, g, p, n)
7. Pwe ← 〈1〉;
8. po ← 0;
9. gr ← 1;
10. Δ ← we − 1;
11. forall go ∈ 1..n − 1
12. s ← SELECT(gr, (po + Δ)%p);
13. po ← POSITION(s);
14. gr ← (gr + 1)%g;
15. Pwe ← Pwe :: 〈s〉;
16. return Pwe;

Fig. 2. The Constructive Heuristic for Scheduling Social Golfers

golfer from the next group, and extend the permutation by concatenating s to Pwe. By
specification of SELECT, which only selects unscheduled golfers and the fact that the
heuristic selects the golfers from the groups in a round-robin fashion, the algorithm is
guaranteed to generate a permutation.

8 Experimental Results Again

This section discusses the performance of algorithm SGLS-CH that enhances SGLS
with the constructive heuristic to generate starting/restarting points. Although the start-
ing point is deterministic, the algorithm still uses restarting, since the search itself is
randomized, i.e., ties are broken randomly.

8.1 The odd − odd − w Instances

It is known that the constructive heuristic finds solutions for p− p− (p + 1) instances
when p is prime. Moreover, it also provides solutions to many instances of the form
odd−odd−w as we now show experimentally. The results were performed up to odd =
49. For all (odd) prime numbers p lower than 49, the heuristic solves the instances
p − p − w, where w is the maximal number of weeks for p groups and periods. When
odd is divisible by 3, the heuristic solves instances of the form odd − odd − 4, when
odd is divisible by 5, it solves instances of the form odd − odd − 6, and when odd is
divisible by 7, it solves instances of the form odd−odd−8. For instance, the constructive
heuristic solves instance 49-49-8.

It is interesting to relate these results to mutually orthogonal latin squares. Indeed, it
is known that finding a solution for instances of the form g − g − 4 is equivalent to the
problem of finding two orthogonal latin squares of size g. Moreover, instances of the
form g− g−n are equivalent to the problem of finding n− 2 mutually orthogonal latin



Scheduling Social Golfers Locally 163

Table 5. Results on the odd − odd − w Instances

instances CH : w Gol:LB
3-3-w 4 4
5-5-w 6 6
7-7-w 8 8
9-9-w 4 10

11-11-w 12 12
13-13-w 14 14
15-15-w 4 6
17-17-w 18 18
19-19-w 20 20
21-21-w 4 7
23-23-w 24 24
25-25-w 6 26
27-27-w 4 28
29-29-w 30 30
31-31-w 32 32
33-33-w 4 7
35-35-w 6 7
37-37-w 38 38
39-39-w 4 6
41-41-w 42 42
43-43-w 44 44
45-45-w 4 8
47-47-w 48 48
49-49-w 8 50

squares of size g [3, 10]. Instances of the form g − g − 4 can be solved in polynomial
time when g is odd. This provides some insight into the structure of these instances and
some rationale why the constructive heuristic is able to solve many of the odd−odd−w
instances. Table 5 summarizes the results on the odd−odd−w instances. The columns
respectively specify the instances, the largest w found by the constructive heuristic, and
the number of weeks w for the social golfers that corresponds to the best lower bound
on the latin square as given in [4]. Rows in bold faces indicate closed instances.

It is interesting to observe that the lower bounds on the mutually orthogonal latin
squares vary significantly. Indeed, the lower bound for size 17 is 16, while it is 4 for
size 15. These lower bounds give some additional insights on the inherent difficulty of
these instances and on the behavior of the constructive heuristic.

8.2 Hard Instances

Table 6 compares the tabu-search algorithm with and without the constructive heuristic
on the hard instances from Table 2. Note that 7− 7− 7 and 7− 7− 8 are now trivially
solved, as well as 9−9−4 which was also open. SGLS-CH does not strictly dominates
SGLS, as there are instances where it is slightly slower. However, on some instances,
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Table 6. Comparison between SGLS and SGLS-CH

random new
instances I T %F I T %F

6-3-8 282254.07 48.93 6 250572 43.84 4
6-4-6 161530.35 47.75 168000 49.66
7-4-7 274606.00 107.18 200087 124.15
8-4-8 323141.52 107.62 8 316639 141.91 3
8-8-4 153301.61 360.00 8380.45 19.54
8-8-5 – – 100 108654.00 496.82

10-3-13 45849.00 30.82 51015.00 34.28

Table 7. Experimental Results of SGLS-CH on the New Solved Instances

instance I T %solved
7-5-6 487025.0 370.50 10
9-4-9 469156.4 402.55 100
9-5-7 4615.0 5.39 100
9-6-6 118196.7 196.52 100
9-7-5 64283.9 155.16 100
9-8-4 1061.3 2.92 100

10-4-10 548071.6 635.20 100
10-5-8 45895.4 76.80 100
10-9-4 5497.9 24.42 100

it is clearly superior (including on 8 − 8 − 5 which can now be solved). Algorithm
SGLS-CH also closes two additional open problems: 7− 5− 6 and 10− 4− 10. Table
7 depicts the performance of algorithm SGLS-CH on the new solved instances.

8.3 Summary of the Results

Table 8 summarizes the results of this paper. It depicts the status of maximal instances
for SGLS-CH and whether the instances are hard (more than 10 seconds) or easy (less
than 10 seconds). The results indicate that SGLS-CH matches or improves the best
results for all but 3 instances. In addition, it produces 11 new solutions with respect to
earlier results. These results are quite remarkable given the simplicity of the approach.
Indeed, constraint-programming approaches to the social golfer problem are typically
very involved and use elegant, but complex, symmetry-breaking techniques. Algorithm
SGLS-CH, in contrast, does not include any such symmetry breaking.

It is interesting to observe the highly constrained nature of the instances for which
SGLS-CH does not match the best-known results. Hence it is not surprising that con-
straint programming outperforms local search on these instances. Note also that Brisset
and Barnier [2] proposed a very simple constraint-programming model to solve 8−4−9
in a few seconds. So, once again, there seems to be a nice complementarity between
constraint programming and local search on the social golfer problem.
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Table 8. Summary of the Results for SGLS-CH with Maximal Number of Weeks. Bold entries
represent a match or an improvement over existing solutions. The status is new (for improvement),
hard (> 10 seconds), and easy (≤ 10 seconds)

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
#groups w status w status w status w status w status w status w status w status

6 8 Hard 6 Hard 6 Hard 3 Easy - - - - - - - -
7 9 Easy 7 Hard 6 New 4 Easy 8 New - - - - - -
8 10 Easy 8 Hard 6 Easy 5 Easy 4 Easy 5 Hard - - - -
9 11 Easy 9 New 7 New 6 New 5 New 4 New 4 New - -
10 13 Hard 10 New 8 New 6 Easy 5 Easy 4 Easy 4 New 3 Easy

Table 9. Summary of the Results for Atmost Two Meetings. Easy < 10s. Medm > 20s & < 5%
unsolved. Hard < 50% unsolved. Chal > 50% unsolved

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
#groups w status w status w status w status w status w status w status w status

3 8 Easy 6 Easy 6 Easy 6 Easy 4 Easy 4 Easy 4 Easy 2 -
4 11 Easy 10 Easy 8 Chal 6 Easy 6 Easy 7 Chal 6 Easy 6 Easy
5 14 Hard 11 Easy 9 Easy 8 Easy 7 Easy 7 Hard 6 Easy 6 Easy
6 16 Easy 13 Easy 11 Easy 10 Easy 9 Easy 8 Easy 7 Easy 7 Easy
7 19 Easy 15 Easy 13 Easy 12 Easy 11 Medm 10 Easy 9 Easy 8 Easy
8 22 Medm 18 Medm 15 Easy 14 Hard 12 Easy 11 Easy 10 Easy 10 Medm
9 25 Chal 20 Easy 17 Easy 15 Easy 14 Easy 13 Medm 12 Easy 11 Easy
10 27 Easy 22 Easy 19 Easy 17 Easy 15 Easy 14 Easy 13 Easy 12 Easy

9 Related Work

There is a considerable body of work on scheduling social golfers in the constraint pro-
gramming community. References [2, 6, 9] describe state-of-the art results using con-
straint programming and are excellent starting points for more references.2 See also
[10] for interesting theoretical and experimental results on the social golfer problem, as
well as the description of SBDD, a general scheme for symmetry breaking. Reference
[1] describes a tabu-search algorithm for scheduling social golfers, where the neighbor-
hood consists of swapping the value of a single variable and where all constraints are
explicit. The results are very far in quality and performance from those reported here.

10 Conclusion

This paper reconsidered the scheduling of social golfers, a highly combinatorial and
symmetric application which has raised significant interest in the constraint program-
ming community. It presented an effective local search algorithm which found the first

2 Reference [9] contains much more general results on symmetry breaking but the scheduling of
social golfers is one of the main applications in evaluating the new techniques.
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solutions to 11 new instances and matched, or improved upon, all instances solved
by constraint programming solutions but 3. Moreover, the local search algorithm was
shown to find almost all solutions in less than a couple of seconds, the harder instances
taking about 1 minute. The algorithm also features a constructive heuristic which triv-
ially solves many instances of the form odd− odd− w.

It is interesting to conclude with a number of interesting observations. First, the so-
cial golfer is a problem where the properties of the instances seem to determine which
approach is best positioned to solve them. In particular, hard instances for constraint
programming are easy for local search and vive-versa. There are of course other appli-
cations where this also holds. What is interesting here is the simplicity of local search
compared to its constraint programming counterpart and the absence of symmetry-
breaking schemes in local search. Whether this observation generalizes to other, highly
symmetric, problems is an interesting issue for future work. See, for instance, [7, 8] for
early results along these lines.

Second, there are many interesting variations around the social golfer problem that
are generating increasing interest. These variations include the possibility of golfers
to meet more than once, as well as the superimposition of a referee assignment mini-
mizing the number of referees subject to “fairness” constraints. Our preliminary results
with local search on these problems, which are motivated by real-life applications, are
extremely encouraging. In particular, Table 9 reports some very preliminary results on
the generalizations where golfers are allowed to meet more than once. The instances
are classified into easy, medium, hard, and challenging. Hard instances mean that local
search may occasionally fail to find a solution in 100,000 iterations (but in less than
50% of the time), while challenging instances fail in finding a solution more than 50%
of the time within the iteration limit. Once again, given a number of groups g and a
group size p, the tables only give the results for those instances g − p− w maximizing
w since they also provide solutions for w′ < w.

Finally, there are many connections with Latin squares that could be exploited fur-
ther. It is likely that new heuristic solutions based on this connection would close addi-
tional instances and provide good starting points on others.
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Abstract. We propose a natural generalization of arc-consistency, which
we call multiconsistency: A value v in the domain of a variable x is k-
multiconsistent with respect to a constraint C if there are at least k
solutions to C in which x is assigned the value v. We present algorithms
that determine which variable-value pairs are k-multiconsistent with re-
spect to several well known global constraints. In addition, we show that
finding super solutions is strictly harder than finding arbitrary solutions
and suggest multiconsistency as an alternative way to search for robust
solutions.

1 Introduction

A value v in the domain of a variable x is consistent with respect to the constraint
C if there is at least one solution to the constraint in which x is assigned the
value v. Identifying values which are not consistent is a fundamental task for a
constraint solver; it is crucial for reducing the exponential-size search space that
would otherwise need to be explored.

In this paper we generalize the notion of consistency: A value v in the domain
of the variable x is k-multiconsistent with respect to a constraint C if there are
at least k solutions to C in which x is assigned the value v. Intuitively, a value
that appears in many solutions is a “useful” value. Knowing which values are
useful can be helpful in several ways. For example, usefulness can be used as
a heuristic while searching for a solution: While it is not guaranteed, it seems
reasonable to assume that if the constraint program has a solution s, then the
more useful a variable-value pair is with respect to individual constraints that
are defined on it, the more likely it is to be used in s. This implies that it
makes sense to regard the usefulness of the values as a heuristic that guides the
search.

Another possible application is in the search for robust solutions, i.e., solu-
tions that can be repaired if a small change occurs. In their recent paper on the
topic, Hebrard et al. [5] give the example of a schedule: A robust schedule does
not collapse if one job takes slightly longer to execute than planned. Rather, the
schedule changes locally and the overall makespan changes little if at all. In the
same paper, they define the notion of super solutions, which is a generalization of
super models in propositional satisfiability. An (a, b)-super solution is a solution
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such that if a variables lose their values, a new solution can be constructed by
assigning new values to these a variables and changing the values of at most b
other variables.

This is a very strong guarantee of robustness, and Hebrard et al. note that
it is quite rare to have a solution for which all of the variables can be repaired.
Therefore, they formulate the optimization problem of seeking the “most ro-
bust” solution, i.e., the solution that maximizes the number of repairable vari-
ables. They then study several approaches for finding super solutions, and the
super MAC search algorithm that they have developed for this purpose emerged
as the most promising. As for complexity, Hebrard et al. show that it is, in
general, NP-hard to find an (a, b)-super solution for a constraint program, for
any fixed a. They show this by proving that any constraint program P can
be transformed in polynomial time into a second constraint program P ′ such
that P has a solution iff P ′ has an (a, b)-super solution. Thus, finding a su-
per solution is as hard as finding an arbitrary solution, which is NP-hard. We
will show that, in fact, finding a super solution is strictly harder than finding
an arbitrary solution. In particular, we will prove that it is NP-hard to de-
termine whether an AllDifferent constraint has a (1, 0)-super solution. Finding
an arbitrary solution to an AllDifferent constraint can be done in polynomial
time [6, 11].

On the other hand, we will show that there are efficient algorithms to de-
termine which values are k-multiconsistent with respect to AllDifferent and
other global constraints. This information can easily be used to search for a
k-multiconsistent solution, i.e., a solution that uses only k-multiconsistent as-
signments of values to the variables, or, if no such solution exists, a solution that
maximizes the number of k-multiconsistent values. It is not guaranteed that a
k-multiconsistent solution can be easily repaired if some of the variables lose
their values. We are certainly not guaranteed that a local change will give a new
solution, or even that another solution exists. However, with a k-multiconsistent
solution, we do know that the remaining variables are assigned to values that
were once considered “useful”, and our purpose is to show that the computa-
tional price we need to pay for this knowledge is not very high in the case of the
constraints that we consider. We therefore believe that it would be worthwhile
to conduct experimental and theoretical research on the concept of multiconsis-
tency and ways in which it can be applied.

Section 2 contains a formal definition of k-multiconsistency and other notions
that will appear in the following sections. In Section 3 we show that it is NP-
hard to determine whether an AllDifferent constraint has a (1, 0)-super solution.
In Section 4 we describe an algorithm that computes k-multiconsistency for the
AllDifferent constraint when the number of variables is equal to the number of
values. In Section 5 we show that this basic algorithm can be generalized for
the general AllDifferent constraint and for other global constraints. Finally, in
Section 6 we list some open problems that arise from our work.
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2 Multiconsistency and Preliminaries

2.1 Multiconsistency

The formal definition of multiconsistency appears below. It is a straightforward
generalization of the definition of arc-consistency 1 as appears, e.g., in [1].

Definition 1. Let C be a constraint on the variables x1, . . . , x� with respective
domains D(x1), . . . , D(x�) and let S ⊆ D(x1)× . . .×D(x�) be the set of solutions
to C. Then a variable-value pair (xj , vi) is k-multiconsistent with respect to C
if there are at least k tuples in S in which the jth component is vi.

The rest of the paper deals with multiconsistency of individual values. How-
ever, for completeness, we include the definition of a multiconsistent solution.

Definition 2. Let C be a constraint on the variables x1, . . . , x� with respective
domains D(x1), . . . , D(x�). Let s be a solution to C and for all 1 ≤ j ≤ �, let
s(xj) be the value assigned by s to xj. s is a k-multiconsistent solution if for
every 1 ≤ j ≤ �, (xj , s(xj)) is k-multiconsistent with respect to C.

2.2 A Few Global Constraints

The global constraints that we will consider in this paper are:

– The AllDifferent(x1, . . . , xn) [8, 9, 10, 13, 15] constraint is specified on n as-
signment variables. A solution s assigns each variable xi a value s(xi) ∈
D(xi) such that for any 1 ≤ i < j ≤ n, s(xi) �= s(xj).

– The Global Cardinality Constraint GCC(x1, · · · , xn, cv1 , · · · , cvn′ ) [7, 11, 12,
14] is specified on n assignment variables x1, . . . , xn and n′ count vari-
ables cv1 , . . . , cvn′ . A solution s assigns each assignment variable xj a value
s(xj) ∈ D(xj) ⊆ D = {v1, · · · , vn′} and assigns each count variable cvi

a
value s(cvi

) ∈ D(cvi
) such that each value vi is assigned to exactly s(cvi

) as-
signment variables. We will assume that the domains of the count variables
are intervals, each of which is specified by a lower and upper bound, i.e.,
D(cvi

) = [Li, Ui].
– The Same(X = {x1, . . . , xn}, Z = {z1, . . . , zn}) [2] constraint is defined on

two sets X and Z of distinct variables such that |X| = |Z|. A solution s
assigns each variable v ∈ X ∪ Z a value s(v) ∈ D(v) such that the multiset
of values assigned to the variables of X is identical to the multiset of values
assigned to the variables of Z.

2.3 Matchings

The solutions to the global constraints we consider in this paper will be rep-
resented as subsets of the edges of a graph that models the constraint. The
following terms will be used:

1 Some texts refer to hyper-arc-consistency when speaking of global constraints and
reserve the term arc-consistency for the special case of binary constraints.
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Definition 3. Given a graph G = (V,E), a subset M of E is a matching if
every node is incident to at most one edge from M . It is a perfect matching if
every node is incident to exactly one edge from M .

In the case of a bipartite graph we have the following definition:

Definition 4. Let G = (V,E) be a bipartite graph with V = X ∪ Y such that
X is the set of nodes on one side, Y is the set of nodes on the other side, and
|X| ≤ |Y |. Then a subset M of E is called an X-perfect matching if every node
in X is incident to exactly one edge from M , and every node Y is incident to
at most one edge from M .

We turn to the more general case where each node of the graph has a capac-
ity requirement that specifies how many of the edges incident to it should be
included in the matching.

Definition 5. Let G = (V,E,C) be a capacitate graph, where C is a function
that maps every node v ∈ V to an interval C(v) = [Lv, Uv]. We call C(v) the
capacity requirement of v. A generalized matching [7] in G is a subset M of its
edges such that each node v ∈ V is incident to at least Lv and at most Uv edges
in M .

Alternating cycles and paths will appear as an important tool in our algo-
rithms.

Definition 6. Let G be a graph and let M be a subset of its edges. An alternating
path (cycle) in G with respect to M is a simple path (cycle) in G where each
edge belonging to M in the path (cycle) (except the last in the case of a path), is
followed by an edge which is not in M , and vice versa.

2.4 Flows

When the graph is directed and has capacities on the edges, and not on the
nodes, we can view it as a flow network.

Definition 7. Given a directed graph G = (V, E) with lower and upper capaci-
ties le, ue for each arc e ∈ E, a feasible flow in G is a function f : E → R such
that

1. Flow conservation: For each node v ∈ V ,∑
{u|(v,u)∈�E}

f(v, u) =
∑

{w|(w,v)∈�E}
f(w, v).

2. Capacities: For each e ∈ E, le ≤ f(e) ≤ ue.

An integral feasible flow is a feasible flow such that for all e ∈ E, f(e) is an
integer.
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The residual graph, defined below, appears in one of our algorithms:

Definition 8. Given a directed graph G = (V, E) with lower and upper capaci-
ties le, ue for each arc e ∈ E and a flow f in it, the residual graph Gf is defined
as follows: For each e = (u, v) ∈ E, (1) if f(e) < ue then the arc (u, v) appears
in Gf with capacity [0, ue − f(e)]. (2) if f(e) > le then the arc (v, u) appears in
Gf with capacity [0, f(e)− le].

It is not hard to show that for a directed graph G, if f is a feasible flow in G
and f ′ is a feasible flow in Gf , then f ′′ = f⊕f ′ is a feasible flow in G, where the
operation ⊕ is defined as follows: If e has the same direction in G and Gf then
f(e)⊕ f ′(e) = f(e) + f ′(e) and otherwise, f(e)⊕ f ′(e) = f(e)− f ′(e). Thus, the
residual graph enables us to transform one feasible flow into another by finding
a positive-weight cycle.

2.5 Enumeration Algorithms

Generally speaking, given a property π : 2U �→ {0, 1} defined over all subsets of
a ground set U , an enumeration algorithm for π is a procedure that lists, one
by one, all subsets Y of U satisfying π, i.e., for which π(Y ) = 1. For example,
assume that U = E is the edge set of a bipartite graph G = (V,E) and π(Y ) is
the property that the edge set Y ⊆ E is a perfect matching. Since, in general,
the size of the output of an enumeration algorithm (in our case, the perfect
matchings) is typically exponential in the size of the input (in our case, the size
of the graph |V |+ |E|), it is common to measure the efficiency of the algorithm
in terms of the combined size of the input and output. Such an algorithm is
said to be incrementally polynomial if, after generating a subset X of elements
(satisfying π), the time to generate a new element is polynomial in both |X | and
the size of the input. A stronger requirement on an enumeration algorithm is to
run with polynomial delay, in which case, the time to generate a new element
is polynomial only in the size of the input, i.e., does not depend on how many
elements have been generated so far. As we shall see below, the enumeration
algorithms we use are of the latter type.

3 NP-Hardness of Finding a (1, 0)-Super Solution to the
AllDifferent constraint

In this section we show that it is NP-hard to determine whether an AllDifferent
constraint has a (1, 0)-super solution. Since it takes O(n3/2n′) time to deter-
mine whether it has an arbitrary solution [6, 11], this implies that finding super
solutions is strictly harder than finding arbitrary solutions.

Theorem 1. Given n variables, x1, . . . , xn, with respective domains D(x1), . . . ,
D(xn), it is NP-hard to determine whether there exists a (1, 0)-super solution
for the AllDifferent(x1, . . . , xn) constraint, even if |D(xi)| ≤ 4 for all 1 ≤ i ≤ n.
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Proof. We use a polynomial-time transformation from the 3SAT problem: Given
a conjunctive normal form formula φ(y1, . . . , yN ) = C1 ∧ . . . ∧ Cm, where each
Cj is a disjunction of 3 literals in {y1, ȳ1, . . . , yN , ȳN}, determine whether there
exists a truth assignment to y1, . . . , yN which satisfies all clauses of φ(y1, . . . , yN ).

We show that we can construct an instance of AllDifferent that has a (1, 0)-
super solution iff φ(y1, . . . , yN ) is satisfiable. Let n = N + m, and x1, . . . , xn be
n variables, the union of whose domains is D = {a1, b1, . . . , aN , bN , c1, . . . , cm}.
The domains of specific variables are defined as follows. For i = 1, . . . , N ,
let D(xi) = {ai, bi}. For j = 1, . . . , m, let D(xj+N ) = {cj} ∪ {ai : i =
1, . . . , N, and yi ∈ Cj} ∪ {bi : i = 1, . . . , N, and ȳi ∈ Cj} (see Figure 1).

a3b2a2b1a1 b3

x8x7x6x5x4x3x2x1

c3c2c1b5a5b4a4

Fig. 1. The AllDifferent instance generated from the 3SAT formula (y1 ∨ ȳ2 ∨ y3) ∧
(ȳ1 ∨ y3 ∨ y4) ∧ (y1 ∨ ȳ4 ∨ y5)

We claim that there is a (1, 0)-super solution to the AllDifferent(x1, . . . , xn)
constraint with the specified variable domains if and only if the formula φ is
satisfiable. Indeed, given a satisfying assignment σ for φ, we can construct a
(1, 0)-super solution to our constraint as follows. For i = 1, . . . , N , xi is assigned
either the value bi or the value ai, depending, respectively, on whether yi is
assigned True or False by σ. For j = 1, . . . , m, the variable xj+N is assigned the
value cj . Clearly, each variable was assigned a different value so the AllDifferent
constraint is satisfied. Furthermore, for each variable xi, there exists a value
v ∈ D(xi) that has not been assigned to any other variable. This is obvious for
i = 1, . . . , N , and follows, for i = N + 1, . . . , n from the fact that σ is satisfying,
i.e. for each clause Cj , j = 1, . . . , m, there is a literal in Cj that is assigned True
by σ. Conversely, given a (1, 0)-super solution to the AllDifferent constraint,
we define a truth assignment σ to the Boolean variables y1, . . . , yN , by setting
yi = True if xi is assigned the value bi, and setting yi = False if xi is assigned
the value ai. Note that, for j = 1, . . . , m, each variable xj+N is assigned the value
cj by the super solution since otherwise some variable xi, i ∈ {1, . . . , N} would
have all its domain values assigned to variables, contradicting the requirement
of a (1, 0)-super solution. In particular, for each j = 1, . . . , m, variable xj+N

must have at least one value in its domain that is also an unassigned value in
the domain of some variable xi, i ∈ {1, . . . , N}. This implies that each clause Cj

is satisfied by σ. 
�
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4 Multiconsistency for a Restricted Case of the
AllDifferent Constraint

In this section we consider the following problem: Given an integer k and an
AllDifferent(x1, . . . , xn) constraint where the domains of x1, . . . , xn are all con-
tained in the set {1, . . . , n}, determine which values are k-multiconsistent with
respect to the constraint2.

It is common to represent the AllDifferent constraint by a bipartite graph G
with a node for each variable on one side, a node for each value on the other
side, and an edge between the node representing the variable xj and the node
representing the value vi iff vi is in the domain of xj . Then, there is a one-to-
one correspondence between the solutions to the constraint and the matchings
of cardinality n in G. In the restricted case that we consider in this section, a
matching of cardinality n is also a perfect matching.

The k-multiconsistency problem for the restricted AllDifferent constraint,
then, is the following: Given a bipartite graph G with n nodes on each
side and m edges, determine which edges of G belong to at least k perfect
matchings.

The algorithm in Figure 2 uses a recursive reformulation of an algorithm
by Fukuda and Matsui that enumerates the perfect matchings in a bipartite
graph [4]. For each edge e in G, the algorithm attempts to enumerate k perfect
matchings that contain e. If it fails, it determines that e is not k-multiconsistent.
The algorithm uses the following operations on graphs.

Definition 9. Let e = (u, v) be an edge in G. Then G− e is the graph obtained
by removing the edge e from G and G\e is the graph obtained by removing from
G the nodes u and v and all edges incident to them.

Clearly, there are k perfect matchings in G\e iff there are k perfect matchings
in G that contain the edge e. Hence, checking whether e is k-multiconsistent is
equivalent to checking whether G\e contains k perfect matchings.

Let T (n, n′,m) be the time required to find a maximum cardinality matching
in a bipartite graph with n nodes on one side, n′ nodes on the other, and m
edges. In the n′ = n case, the enumeration algorithm by Fukada and Matsui
needs T (n, n,m) time to find the first perfect matching and then O(n + m)
time to generate each additional perfect matching. We get that given a single
perfect matching that contains the edge e, we can check in O(k(m + n)) time
whether e is k-multiconsistent. Note that once we have a perfect matching M ,
we can find, in linear time, a perfect matching M ′ that contains a specified
edge e which is not in M : All we need is an alternating cycle that contains e.
Thus, the total running time required to check k-multiconsistency for all edges
is T (n, n,m) + O(mk(m + n)) time.

2 This restriction of the AllDifferent constraint is also equivalent to a special case of
the Sortedness constraint [3, 9].
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Enumerating k Perfect Matchings

The basic idea of Fukuda and Matsui’s enumeration algorithm is the following:
First, it finds two perfect matchings M and M ′ in the graph. Then, it selects an
edge e which belongs to one but not the other. e is used to partition the problem
into two subproblems: The first is to generate all perfect matchings that contain
e and the second is to generate all perfect matchings that do not contain e.
Clearly, the outputs of the two subproblems are disjoint.

The procedure NextPerfectMatchings shown in Figure 2 implements this al-
gorithm, with the additional upper bound k on the number of perfect matchings
that should be generated. It receives a graph G, a perfect matching M in G and
an integer k that indicates how many more perfect matchings should be gen-
erated. If k > 0, the procedure searches for an alternating cycle and generates
a new perfect matching M ′. Then it selects an edge e ∈ M ′ \ M and makes
two recursive calls to itself: The first receives the graph G− e and the matching
M . It generates all matchings in G that do not contain the edge e. The second
recursive call receives the graph G\e and the matching M ′ \{e}. It generates the
matchings in G that contain the edge e. The procedure returns the number of
matchings it has generated, which is k if it was successful and an integer smaller
than k otherwise.

5 Generalizations for Other Constraints

In this section we show that the basic algorithm described in Section 4 can be
generalized for the (unrestricted) AllDifferent , GCCand Same constraints.

5.1 AllDifferent

The bipartite graph representing the AllDifferent constraint is defined similarly
to that of the restricted AllDifferent constraint, with one difference: Instead of n
nodes on each side, there are n variable nodes and n′ value nodes, with n′ ≥ n.
Of course, when n′ > n the graph does not contain any perfect matching. A
solution to the constraint now corresponds to a matching that matches all of
the variable nodes, i.e., an X-perfect matching where the set of variable nodes
is denoted by X.

The algorithm of Figure 2 can be modified for this case as follows: Replace
all references to perfect matchings by X-perfect matchings. Algorithmically, this
means that a new matching can be generated from an existing matching in one of
two ways: By an alternating cycle as in the previous section, or by an alternating
path from a matched value node to an unmatched value node.

5.2 GCC

The graph with which we represent the GCC constraint is a capacitated graph,
i.e., a bipartite graph which topologically looks like the graph used for
AllDifferent , but which has a capacity associated with each node. The capacity
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Procedure kMultiConsistency(G,k)
(* Initialization and tests for trivial inputs: *)
foreach edge e in G do kCons[e] ← TRUE
if k ≤ 0 then return
if there is no perfect matching in G then

foreach edge e in G do kCons[e] ← FALSE;
return

end if
M ← a perfect matching in G
k ← k − 1

(* The main loop: *)
foreach edge e in G do

M ′ ← a perfect matching in G which contains e
k′ ← NextPerfectMatchings(G\e, M ′ \ {e}, k)
if k′ < k then kCons[e] ← FALSE

end for
end

Procedure NextPerfectMatchings(G, M, k)
if k ≤ 0 then return 0
else if there is an alternating cycle C in G then

M ′ ← M ⊕ C
k ← k − 1

e ← an edge from M ′ \ M
(* First recursive call: perfect matchings without e *)
k′ ← NextPerfectMatchings(G − e, M, k)
(* Second recursive call: perfect matchings containing e *)
k′′ ← NextPerfectMatchings(G\e, M ′ \ {e}, k − k′)
return k′ + k′′ + 1

else
return 0

endif
end

Fig. 2. k-multiconsistency for the restricted AllDifferent constraint

of a node v, denoted Cv = [Lv, Uu], is an interval. With capacity [1, 1] for each
variable node and [Li, Ui] for the value node that corresponds to the value vi, we
get that there is a one-to-one correspondence between the generalized matchings
in G and the solutions of the GCC . Note that the different generalized matchings
in G do not, in general, have the same cardinality.

To modify the algorithm of Figure 2 for the GCC constraint, we generalize
the G\e operation that Fukuda and Matsui use with uncapacitated graphs, to the
case of capacitated graphs. For a capacitated graph G and an edge e = (u, v)
in G, G\e is the graph obtained by subtracting 1 from the lower and upper
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capacities of each of u and v. Note that reducing the upper capacity of a node to
0 is equivalent to removing the node and all edges incident to it from the graph.

We also need to generalize the manner in which the algorithm searches for
M ′. Given the capacitated graph G = (V,E) and a generalized matching M in
it, another generalized matching can be found by searching for a directed cycle
in the directed graph G = (V , E) defined as follows: V = V ∪{s}. For each edge
e = (x, v) ∈ E between a variable node x and a value node v, {x, v} ∈ E if
e ∈ M and {v, x} ∈ E otherwise. Finally, for each value node v, {v, s} ∈ E if v

is incident to more than Lv edges in M and {s, v} ∈ E if v is incident to less
than Uv edges in M [7, 14].

5.3 Same

The basic algorithm can also be modified to support the Same constraint, but
in this case the changes are more substantial.

The Same(X = {x1, . . . , xn}, Z = {z1, . . . , zn}) constraint [2] is modelled by
a graph with three sets of nodes: One set for the variables of X (called x-nodes),
a second set for the variables of Z (called z-nodes) and a third set for the values
(called y-nodes). For each variable u ∈ X ∪Z and for each value v in the domain
of u, there is an edge in the graph between the node that represents u and the
node that represents v. Let M be a subset of the edges and let y be a y-node. We
denote by MX(y) (MZ(y)) the set of x-nodes (z-nodes) adjacent to y by edges
in M . An edge between an x-node (z-node) and a y-node is called an xy-edge (a
yz-edge). A parity matching in such a graph is a subset M of the edges such that
every x-node or z-node is incident to exactly one edge from M and for every
y-node y, |MX(y)| = |MZ(y)| [2]. There is a one-to-one correspondence between
the parity matchings and the solutions to the Same constraint.

In the previous cases, after removing an edge from the graph we remained
with a subproblem of the same type as the original problem. However, with the
Same constraint the situation is slightly different. Suppose that we wish to enu-
merate all parity matchings that contain the xy-edge e = (x, y). Then the algo-
rithm will explore the graph G\e for sets of edges which are almost parity match-
ings. More precisely, we are interested in subsets M such that (1) |MZ(y)| =
|MX(y)| + 1, (2) |MX(y′)| = |MZ(y′)| for all y′ �= y and (3) every variable
in X ∪ Z except for x is matched. Then, M ∪ {e} is a parity matching which
contains e. Since the algorithm recursively removes edges from the graph, the
desired difference between |MX(y)| and |MZ(y)| can change in each recursive
step, and not necessarily for the same y-node every time.

To support such demands, the algorithm of Figure 3 associates an imbal-
ance requirement I(y) to each y-node y, which is equal to the desired value of
|MZ(y)| − |MX(y)|. Initially, I(y) = 0 for all y. When the algorithm makes a
recursive call, there are three cases:

1. The recursive call needs to enumerate all solutions in which an xy-edge
e = (x, y) is contained. Then e is removed from the graph along with all
other edges incident to x, and I(y) is incremented.
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Table 1. Domains of the variables for our example

j D(xj) D(zj)

1 {1,2} {2,3}
2 {3,4} {4,5}
3 {4,5,6} {4,5}

2. The symmetric case for a yz-edge e = (y, z). e is removed from the graph
along with all other edges incident to z, and I(y) is decremented.

3. The recursive call needs to enumerate all solutions in which an edge e = (v, y)
is not contained, for some x-node (or z-node) v and y-node y. Then e is
removed from the graph and I(y) remains unchanged.

Definition 10. Let G = (X ∪ Z, Y,E) be a bipartite graph with |X| = |Z| and
an integer I(y) associated with every y ∈ Y . A generalized parity matching is a
subset M ⊆ E such that for all y, |MZ(y)|−|MX(y)| = I(y) and each v ∈ X∪Z,
is incident to exactly one edge in M .

The algorithm needs to find a generalized parity matching from scratch only
once, when I(y) = 0 for all y. Since in this case a generalized parity matching is
just a parity matching, there already exists an algorithm for this task [2], which
is based on finding a flow in the following network: We direct the arcs from
x-nodes to y-nodes and from y-nodes to z-nodes, and place a capacity of [0, 1]
on each of them. In addition, we add two nodes s and t to the graph, add an
arc with capacity [1, 1] from s to each x-node, an arc with capacity [1, 1] from
each z-node to t and an arc with capacity [n, n] from t to s, where n = |X|.
There is a one-to-one correspondence between the integral feasible flows in this
network and the parity matchings in the graph. Figure 4 shows the network
constructed for the following example: |X| = |Z| = 3, |Y | = 6 and the domains
of the variables of X ∪ Z are as in Table 1. Figure 5 shows an integral feasible
flow in this network.

It remains to show how, given a generalized parity matching M , we can
determine in linear time whether another generalized parity matching M ′ exists
in the graph. To do this, we show how to generalize the graph described above
such that there is a one-to-one correspondence between integral feasible flows
and generalized parity matchings. Then, we can use the standard flow theory
technique of finding another integral feasible flow by searching for a cycle in the
residual graph (see Section 2).

As shown in Figure 6, we add an additional node I and connect it to the
y-nodes with arcs that enforce the imbalances: For each y such that I(y) > 0, we
add the arc {I, y} with capacity [I(y), I(y)] and for each y such that I(y) < 0, we
add the arc {y, I} with capacity [−I(y),−I(y)]. Since in a feasible flow, the flow
into each y-node is equal to the flow out of this y-node, the required imbalances
must be respected.
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Procedure kMultiConsistencySame(G,k)
(* Initialization and tests for trivial inputs: *)
foreach edge e in G do kCons[e] ← TRUE
foreach value node y do I(y) ← 0
if k ≤ 0 then return
if there is no parity matching in G then

foreach edge e in G do kCons[e] ← FALSE;
return

end if
M ← a parity matching in G
k ← k − 1

(* The main loop: *)
foreach edge e = (v, y) in G do

M ′ ← a parity matching in G which contains e
if e is an xy-edge then I(y) ← 1 else I(y) ← −1
k′ ← NextParityMatchings(G\e, I, M ′ \ {e}, k)
if k′ < k then kCons[e] ← FALSE
I(y) ← 0

end for
end

Procedure NextParityMatchings(G, I, M, k)
if k ≤ 0 then return 0
else if there is another generalized parity matching M ′ in G then

k ← k − 1

e = (v, y) ← an edge from M ′ \ M
(* First recursive call: matchings without e *)
k′ ← NextParityMatchings(G − e, I, M, k)

(* Second recursive call: matchings containing e *)
(* Update I(y) *)
if e is an xy-edge then I(y) ← I(y) + 1
else I(y) ← I(y) − 1
k′′ ← NextParityMatchings(G\e, I, M ′ \ {e}, k − k′)
(* Restore the previous I(y) *)
if e is an xy-edge then I(y) ← I(y) − 1
else I(y) ← I(y) + 1

return k′ + k′′ + 1
else

return 0
endif

end

Fig. 3. k-multiconsistency for the Same constraint
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Fig. 4. The directed network for the example in Table 1
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Fig. 5. A feasible flow in the graph of Figure 4

6 Discussion and Future Directions

In this paper, we have defined multiconsistency in the natural way and argued
that the term corresponds to the intuitive notion of a “useful” value. Therefore,
we believe that determining which values are k-multiconsistent with respect to a
global constraint can be a component of reasonable heuristics for finding a solu-
tion to a constraint program, or for preferring solutions that can be expected to
be more robust. In the realm of the search for robust solutions, we noted that the
super solutions as defined by Hebrard et al. [5] seem to offer a better guarantee
of robustness than k-multiconsistent solutions. However, we show that while it is
NP-hard to determine whether an AllDifferent constraint has a (1, 0)-super so-
lution, computing k-multiconsistency for the AllDifferent , GCC and Same con-
straints can be performed in time T (n, n′,m)+O(mk(m+n)), where T (n, n′,m)
is the time required to find a single solution, and is upper bounded by O(n3/2n′)
for AllDifferent and GCC [6, 11] and to O(n2n′) for Same [2]. The complex-
ity of computing arc-consistency (which we can now call 1-multiconsistency) for
these constraints is O(T (n, n′,m)). Thus, while there is a computational cost for
k-multiconsistency, for constant k the algorithms can still be considered useful.
We are currently working to further reduce the complexity of these algorithms.

There are many questions that remain to be explored in the context of mul-
ticonsistency. On the theoretical level, one would hope that efficient specialized
algorithms can be found for many global constraints, whether exact algorithms
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Fig. 6. Example: I(y1) = I(y2) = I(y3) = I(y6) = 0, I(y4) = −1 and I(y5) = 1. A flow
in the augmented graph corresponds to a generalized parity matching

such as the ones in this paper, or faster approximation algorithms (i.e., algo-
rithms that determine k-multiconsistency correctly for edges that participate in
much fewer or much more than k solutions, but might make errors regarding
edges that participate in approximately k solutions). In addition, it would be
good to have a theoretical analysis that will better clarify the meaning of mul-
ticonsistency. An example of such a result could be a probabilistic analysis that
correlates the robustness of the solution to a random AllDifferent constraint
with the level of consistency of this solution, i.e., the maximal k for which this
solution is k-multiconsistent. A third type of theoretical result could be the fol-
lowing: Given a constraint, efficiently compute a “reasonable” value of k for this
constraint, where “reasonable” could mean a k such that at least 1/4 and at most
3/4 of the edges are k-multiconsistent. It seems desirable to determine such val-
ues, because we do not gain much information by computing k-multiconsistency
with an “unreasonable” k: Most of the edges fall into the same set (consistent
or inconsistent), so we cannot conclude any preferences among them.

Finally, there are questions that will need to be explored experimentally.
What is the practical value of the heuristics we propose? Does a constraint
solver really find a solution faster if it prefers to assign the “useful” values? Does
the robustness increase in practice (even if there does not exist a theoretical
guarantee?) Are there other heuristics that can be conceived and which use
multiconsistency?
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Abstract. We describe the problem of scheduling astronomy observations for
the Stratospheric Observatory for Infrared Astronomy, an airborne telescope. The
problem requires maximizing the number of requested observations scheduled
subject to a mixture of discrete and continuous constraints relating the feasibil-
ity of an astronomical observation to the position and time at which the obser-
vation begins, telescope elevation limits, Special Use Airspace limitations, and
available fuel. Solving the problem requires making discrete choices (e.g. se-
lection and sequencing of observations) and continuous ones (e.g. takeoff time
and setup actions for observations by repositioning the aircraft). Previously, we
developed an incomplete algorithm called ForwardPlanner using a combination
of AI and OR techniques including progression planning, lookahead heuristics,
stochastic sampling and numerical optimization, to solve a simplified version of
this problem. While initial results were promising, ForwardPlanner fails to scale
when accounting for all relevant constraints. We describe a novel combination of
Squeaky Wheel Optimization (SWO), an incomplete algorithm designed to solve
scheduling problems, with previously devised numerical optimization methods
and stochastic sampling approaches, as well as heuristics based on reformula-
tions of the SFPP to traditional OR scheduling problems. We show that this new
algorithm finds as good or better flight plans as the previous approaches, often
with less computation time.

1 Introduction

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA’s next gener-
ation airborne astronomical observatory. The facility consists of a 747-SP modified to
accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 sci-
ence flights per year over its 20 year lifetime, and will commence operations in 2005.
The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is
articulated through a range of 20◦ to 60◦ of elevation. The telescope has minimal lateral
flexibility; thus, the aircraft must turn constantly to maintain the telescope’s focus on an
object during observations. A significant problem in future SOFIA operations is that of
scheduling Facility Instrument (FI) flights in support of the SOFIA General Investiga-
tor (GI) program, called the SFPP (Single Flight Planning Problem). GIs are expected
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to propose small numbers of observations, and many observations must be grouped to-
gether to make up single flights. Approximately 70 GI flight per year are expected, with
5-15 observations per flight.

Flight planning for the previous generation airborne observatory, the Kuiper Air-
borne Observatory (KAO), was done by hand; planners had to choose takeoff time,
observations to perform, and decide on setup-actions called “dead-legs” to position the
aircraft prior to observing. This task frequently required between 6-8 hours to plan one
flight 1. The scope of the flight planning problem for supporting GI observations with
the anticipated flight rate for SOFIA makes the manual approach for flight planning
daunting. There has been considerable success in automating observation scheduling
for ground-based telescopes [1], space-based telescopes such as Hubble Space Tele-
scope [2], Earth Observing Satellites [3] and planetary rovers [4]. However, the SOFIA
flight planning problem differs from these problems in a variety of ways. Observa-
tions are feasible over large, continuous regions of space and time; observations that
can’t be done at the current position and time may have an infinite number of setup
actions enabling them. The principal feasibility condition for observations is goverened
by a nonlinear function over the solution to the equations of motion, complicating the
task of finding good heuristics. Temporal constraints are implicit in these continuous
constraints; bounding above approximations are hard to calculate and generally weak,
making temporal constraint propagation unlikely. Finally, the expense of checking fea-
sibility conditions impacts the speed of automated planning.

The SFPP is an intractable constrained optimization problem, containing both an
exponential discrete sub-problem (selecting and ordering observations) as well as con-
tinuous choices (takeoff time and setup steps). Previously, we developed an algorithm
to solve a simplified version of the SFPP, called ForwardPlanner [5, 6]. ForwardPlan-
ner is a novel combination of AI and OR techniques, including progression planning,
lookahead heuristics, biased stochastic sampling, approximations and continuous op-
timization methods. Initial results with ForwardPlanner on a simplified version of the
SFPP were promising; however, we show in this paper that ForwardPlanner fails to scale
as more and more constraints (Special Use Airspace (SUAs), runway and airway selec-
tion, high-fidelity fuel consumption on takeoff and landing, in-flight altitude changes,
calculation of initial fuel load) on valid flight plans are added to the problem descrip-
tion. Computationally expensive lookahead search is needed to obtain good results from
ForwardPlanner. Introducing approximations to reduce the costs of lookahead improves
runtime, but ultimately leads to poor quality flight plans. Consequently, we seek a new
approach to solving the problem.

Squeaky Wheel Optimization (SWO) [7] was originally developed for scheduling
problems with an optimization objective. SWO accepts as input a permutation of tasks
to schedule, and a fast procedure called a Constructor that treats each task in order, ul-
timately scheduling tasks or rejecting them. The permutation and its resulting schedule
are then analyzed by a Critic to determine a new permutation that might schedule tasks
that were previously rejected. The cycle repeats until all tasks are scheduled or for a
fixed number of iterations. SWO was originally evaluated on Graph Coloring [7], and

1 Anecdotal evidence provided from conversations with SOFIA staff who worked with KAO.
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has since been employed for satellite observation scheduling [8] and range scheduling
[9], as well as project scheduling with temporal constraints [10]. The promise of SWO
for solving the SFPP is that good plans can be found using fewer expensive feasibility
checks than ForwardPlanner.

The rest of the paper is organized as follows. We first formally describe the SFPP,
the constraints on flight plans, and the optimization criteria used to compare valid flight
plans. We then briefly describe the ForwardPlanner and discuss its problems. We then
introduce Squeaky Wheel Optimization (SWO) and discuss how to apply it to the SFPP
using numerical optimization methods and approximate solutions to OR problems. We
show that SWO improves upon ForwardPlanner on a small set of examples. We then
discuss a variety of ways to improve the performance of SWO. We describe experiments
to validate the approach. Finally, we conclude and discuss future work.

2 Describing SOFIA’s Choice

The input to the Single Flight Planning Problem (SFPP) consists of a set of observa-
tion requests, each consisting of the Right Ascension (RA) α and Declination (Dec) δ,
observation duration, priority; a flight date; maximum fuel load; an altitude profile map-
ping flight time to maximum altitude; earliest takeoff time θl and latest landing times
θu; the designated takeoff and landing airports (which need not be the same); predicted
wind and temperature; and a list of SUAs. For a flight plan to be valid, the aircraft must
take off from the takeoff airport, land at the landing airport, avoid all SUAs, and con-
sume less than the available fuel at takeoff. The objective is to find a flight plan that
maximizes the number of requested observations performed. During flight, Flight-legs
require tracking an object for a period of time, and are only valid if the object stays
within the telescope elevation limits for the requested duration. The observation must
also take place in darkness (the sun must be below the horizon). Dead-legs, when no
observations are performed, can be used to reposition the aircraft to enable flight-legs.
A distinguished class of dead-legs are used to take off and return to the landing airport.
Since it is intractable to find the best possible plan, we limit ourselves to searching for
good plans that perform many observations of high priority. Solving the SFPP requires
choosing a takeoff time, selecting the set of observations to service, ordering them and
inserting necessary dead-legs to ensure that all flight legs are valid.

2.1 Constraints on Valid Flights

In this section we describe the constraints on valid solutions to the SFPP in more detail.
The telescope is carried aboard a Boeing 747-SP aircraft. The fuel consumption of each
engine depends on the aircraft weight, mach number, outside air temperature, initial
altitude and final altitude. The fuel consumption constraints are represented in a lookup
table provided by Boeing. The aircraft follows a pre-determined altitude profile that
describes the maximum permitted altitude at an absolute time after takeoff. Climbs are
allowed periodically to decrease fuel consumption. At the end of a leg, if the aircraft is
allowed to climb, it climbs to the maximum altitude permitted by the fuel performance
table or the altitude profile. The profiles used in this paper were developed assuming
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standard atmosphere [11]; actual atmospheric conditions and aircraft weight may force
the aircraft to fly lower than the altitude profile permits. Predicted wind and temperature
are used to calculate the ground track and fuel consumption. Finally, SUAs constrain
the ground track of the aircraft by forcing dead-legs to reposition the aircraft. Space
precludes describing the fuel consumption constraint in more detail.

V

N

H

TP

TS

E

P
p

h

Fig. 1. The Cartesian formulation of the instan-
taneous equations of motion of the aircraft and
the elevation

The constraints linking aircraft motion
and observation feasibility are the most
complex and important component of the
problem, so we describe them further here.
SOFIA can view objects between 20◦ and
60◦ of elevation (from the plane of flight).
If an observation is scheduled, then it must
be performed for the requested duration
without interruption, and the object must
stay within the elevation limits throughout
the observation. The elevation of an ob-
ject depends on the object’s coordinates,
the aircraft’s position and the time.

Checking this constraint requires computing the aircraft’s ground track throughout
the course of the observation. Figure 1 shows the interaction between the object’s coor-
dinates, the aircraft’s position, the time, and the telescope elevation. The Earth is mod-
eled as an oblate spheroid E, whose surface is defined by the equation x2

a2 + y2

a2 + z2

c2 = 1
where c < a. Let p be the aircraft’s current position, (latitude γ and longitude L) and
θ be the (Sidereal) time that the aircraft is at p. Let S be the vector from the center of
E to p. Let T be the vector to an astronomical object o at time θ, and P as the plane
tangent to E at p. Let î, ĵ, k̂ be the unit vectors in the x, y, z directions respectively. Let
N be the vector normal to P: N = px

a2 î+
py

a2 ĵ+ pz

c2 k̂ (Note that S and N are generally
not parallel since E is a spheroid.) Let TP be the projection of T onto P; this is the
object azimuth at p, and is given by TP = T − T N

||N ||2 N . Let V be the desired heading
of the aircraft. The observatory must track the object inducing T , subject to the con-
straint that the angle between V and TP is 270◦, because the telescope points out the
left-hand side of the aircraft. Let RN (270◦) be a rotation matrix that rotates a vector
270◦ around N , and v be the airspeed of the aircraft; then V = vRN (270◦) TP

||TP || . Let
H be the elevation vector with respect to P. We also require the angle h between H
and TP obey the constraint 20◦ ≤ h ≤ 60◦ throughout an observation. Most targets are
sufficiently far from Earth that we can assume H = T + S. From vector calculus we

then get the equation for the elevation: h = cos−1
(

HTP

||H|| ||TP ||
)

. The angle r between

Vd and the object azimuth at the new position TP is given by: r = cos−1
(

VdTP

||Vd|| ||TP ||
)

.

Now, T is a function of o and θ; this is because the Earth rotates on its axis. The vector
T traces a circle of radius x2 + y2 = c2−d

c2 , where d = | δ
90◦ | in 24 hours (see [12] for

an explanation of this).
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The instantaneous change in p as the aircraft tracks o is dp
dθ = V . Since V is a

function of T , it is a function of o,p and θ. Solving for the ground track is necessary
to compute h over the entire duration of the observation and check the elevation con-
straints. It is worth noting that this formulation also makes it easy to add the effect of
winds by adding the appropriate vectors to V , and also correct for aircraft pitch by
rotating about V ×N , but we omit these for brevity.

3 ForwardPlanner and Its Discontents

The first fully automated approach to solving the SFPP was ForwardPlanner [5, 6].
We originally assumed no SUAs and ignored runway and airway selection, ascent and
descent, thus simplifying the fuel consumption constraint. ForwardPlanner combines
progression based search, continuous numerical optimization, dispatch heuristics and
stochastic sampling, resulting in an incomplete randomized algorithm. The ground track
and elevation constraints are solved using a specialized 5th-order Runge-Kutta [13]
with error-adaptive step sizing. ForwardPlanner evaluates the feasible observations at
each phase of a flight, and selects one observation to add to the flight. When checking
feasibility, rather than considering all possible setup actions, ForwardPlanner only con-
siders the shortest dead-leg making an observation visible for long enough and allowing
the aircraft to subsequently fly to the landing airport. If the shortest dead-leg crosses an
SUA, the heading is shifted minimally left or right from the heading of the shortest dead
leg until the dead leg misses all SUAs. The duration of the leg is then adjusted to ensure
the object is visible for the required duration. If the resulting dead leg is longer than
D (an operational limitation on the longest permissible dead-leg), then the observation
is rejected. If the flight-leg following this dead-leg crosses any SUA, the observation
is rejected. If the observation begins before sunset or ends after sunrise at the local
position, the observation is rejected. (Remember, changing your position changes the
time at which the sun rises or sets.) Finally, if the aircraft cannot return to the landing
airport after the observation is performed, the observation is rejected. If the observation
survives all of these checks, ForwardPlanner considers it is feasible.

Each feasible observation is then evaluated by first adding it to the flight plan, then
heuristically adding a fixed number of additional observations. This ”lookahead” is per-
formed to estimate the best flight plan possible after adding each observation. These
short extensions are evaluated using a weighted sum of the priority of the observations
performed so far, the efficiency (ratio of time spent observing to total flight time) of
the (incomplete) flight, the estimated time to return to the designated landing airport,
and the total time spent in turns. The heuristic rank of each observation is treated as
the mass of a probability distribution used to select the next observation. Thus, if we
have a set of choices C and heuristic values of of these choices v(c), we choose an el-
ement c ∈ C with probability v(c)∑

d∈C
v(d)

. This technique is similar to Heuristic Biased

Stochastic Sampling (HBSS), a technique used for scheduling ground based telescopes
[1]. This means that the ”best” candidate need not be selected at any stage of the pro-
cess, but has the highest probability of being selected. The process of evaluating the
feasible observations and adding the next observation to a flight is shown pictorally
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in Figure 2. ForwardPlanner is a stochastic algorithm, and can be run several times to
generate better flights; the ForwardPlanner algorithm sketch is shown in Figure 3.
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Fig. 2. ForwardPlanner’s Evaluate() routine.
Each feasible observation in the current plan
1) is added to the plan 2). A fixed number of
observations are used to extend the plan 3).
Each of these observations is evaluated in-
dividually, and the values are used to form
a probability distribution; this distribution is
sampled 4) to determine how to extend the
flight. Once the maximum number of obser-
vations in lookahead (2 in this example) is
reached, the resulting flight is used to deter-
mine how good it is to add the first observa-
tion to the current flight 5)

ForwardPlanner()
# F is (initially empty) current flight plan
for MaxRepeats

Select takeoff time
while not done

# E is set of feasible observations
for each unscheduled observation o

if Feasible(o, p, θ)
Add p to F ; update p, θ
v=Evaluate(o, F )
Add (o, v) to E
Remove o from F

end for
if E is not empty

Use values v to select e from E
Extend F by e; empty E

else done
end for

return F
end

Fig. 3. A sketch of the ForwardPlanner Algo-
rithm. At each step, all feasible observations
are considered as the next observation in the
plan. For each feasible observation, the Eval-
uate() routine builds an extension of the plan
to evaluate how good a flight will result. Feasi-
ble() is described in Figure 7

The principal cost of ForwardPlanner is in the lookahead phase, where many legs
are constructed to test observation feasibility solely to evaluate an observation, and then
are thrown away. Let N be the number of observation requests, let K be the lookahead
depth, and let M be the maximum number of observations that can be in any flight
plan. Each of MaxRepeats loops in ForwardPlanner makes O(N2KM) calls to Feasi-
ble(); a proof of this appears in [5]. It was found empirically that K = 4 struck a good
balance between computational cost and flight plan quality [5]. ForwardPlanner was
improved upon in [6] by observing that many expensive dead-leg construction steps
could be eliminated. Suppose an observation is not visible at the current position and
time. If we drop the condition on reaching the landing airport, an approximation of
the shortest dead leg b, d (b is the heading and d is the duration) has the property that
F1(b, d) =< f1(b, d), f2(b, d) >=< 0, 0 > where f1 is the difference between the
object azimuth and the final heading of the aircraft after flying the dead-leg defined by
b, d, and f2 is the difference between the object elevation after flying the dead-leg and
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Fig. 4. Comparison of solution quality for
ForwardPlanner (with and without Euler’s
method approximation of flight dynamics)
and SWO
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Fig. 5. Comparison of average CPU time
for ForwardPlanner (with and without Eu-
ler’s method approximation of flight dynam-
ics) and SWO

the telescope elevation limit closest to the initial object elevation. A similar formulation
exists for the shortest dead leg ensuring an observation is visible throughout a flight leg
[6]. We solve for b, d using a Secant Method2; the final version of Feasible() used in
FowrardPlanner appears in Figure 7. The resulting algorithm is a novel combination of
AI progression planning and stochastic sampling and OR numerical optimization tech-
niques for solving a complex constrained optimization problem. This approach reduces
the runtime of ForwardPlanner without impacting the value of the flight plans found.

Initial results on solving the simplified version of SFPP with ForwardPlanner were
promising [6]. However, adding requirements to avoid SUAs, calculate initial fuel loads
in the face of predicted weather, runway and airway selection, and calculating fuel
consumption based on altitude changes (especially complex for takeoff and landing).
made ForwardPlanner too slow. In particular, SUA evasion and fuel consumption dur-
ing climb vastly increase the expense of the feasibility check. This is problematic, given
that large lookahead and many samples are needed to find good quality plans. Further re-
ductions in runtime can be accomplished by approximately calculating aircraft position
after flight legs in the lookahead phase using Euler’s Method instead of Runge-Kutta.
Euler’s Method approximates the solution to the ground track by flying a constant head-
ing for a fixed (small) duration relative to the total observation time. The approximation
we used does not adequately account for the ellipsoid Earth, wind speed and direction,
change of altitude, and estimates fuel consumption based on the last calculated fuel con-
sumption rate. Our intuition was that these approximations would permit a good, fast
estimate of the value of inserting an observation. Unfortunately, the heuristic quality de-
grades too much and leads to poor quality plans. Figures 4 and 5 compare performance
on 6 sample problems (we will discuss the SWO results later in the paper). In these ex-
periments, ForwardPlanner was run with MaxRepeats = 20. ForwardPlanner finds good
quality plans, but takes 8-20 minutes per flight generated. Employing Euler’s Method

2 The previous work incorrectly identified the method used as Newton’s Method; since numeri-
cal derivatives are used, we actually use a Secant Method, which is the term we will use in this
paper.
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reduces ForwardPlanner’s computation time considerably, but leads to plans with fewer
scheduled observations in 4 of 6 cases. While some of the cost savings is in lookups to
outside air temperature and the fuel table, as well as the switch in integration methods,
the vast increase in software complexity required to correct these problems led us to
search for new solutions to the problem that allow us to generate good quality flights
fast.

4 Squeaky Wheel Optimization for the SFPP

SWO takes as input a permutation of tasks to schedule, and a fast procedure called a
Constructor that treats each task in order, ultimately scheduling tasks or rejecting them.
The permutation and its resulting schedule are then analyzed by a Critic to construct
a new permutation that might schedule tasks that were previously rejected. The cycle
repeats until all tasks are scheduled or for a fixed number of iterations. Figures 6 and 7
describe a family of SWO algorithms specialized for solving the SFPP. We discuss the
features of this specialized SWO in more detail below.

The constructor assumes that the flight begins at the takeoff time, and that the per-
mutation P imposes a precedence ordering on the observations, and attempts to con-
struct a schedule. If an observation is not trivially visible for the requested duration, the
shortest dead-leg is constructed by solving the zero finding problem. If this leg is short
enough, SUAs can be avoided, and sufficient fuel remains the observation is added, oth-
erwise it is rejected. This is identical to the procedure used in ForwardPlanner, and is
shown in Figure 7. Rejecting the ith observation in P does not imply rejection of j > i;
all observations are processed. The best flight B is the flight maximizing s

2 + e
2 , where

s is the percentage of requested observations scheduled, and e is the efficiency of the
flight (the ratio of time spent observing to flight time) 3. The final flight plan is checked
for SUA violations on the return leg; if there are any, the flight is rejected.

In order to modify the permutation P , a critic must both select a rejected observation
r in R and decide where in P to move r. We use the flight plan F built with permutation
P to decide how to modify P . Each observation in a flight plan defines a ”slot” in which
a new observation could be placed. Unlike SWO approaches taken in [9] and [8], we
do not perform ”blind” migration of jobs in the permutation that might not lead to a
new flight plan. Rather, we identify where in the permutation we can move rejected
observations to ensure that the resulting schedule is modified. Since we guarantee that
a rejected observation will be scheduled during the next construction phase, we run the
risk that some observations later in the flight might be displaced. Thus, it is important
to estimate how much we ”regret” moving an observation to a particular place. Critics
must both be fast and produce good quality flights by moving rejected observations
without displacing many scheduled observations.

To ensure rejected observations are scheduled, SWO checks the feasibility of every
rejected observation at every slot in the flight. At worst, this might require O(N2)
feasibility checks to determine which slots rejected observations can occupy. While
each of MaxRepeats calls in ForwardPlanner makes O(N2KM) flight leg feasibility

3 Efficiency is a secondary criteria for good quality flights.
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SWO(MaxFlights,MaxRepeats)
# F is current flight plan
# B is best flight plan
# P is a permutation of observations
# R is rejected observations
for MaxRepeats

1. Generate permutation P
for MaxFlights

2. Select the takeoff time θ
# Construct flight from P
# p is the current position of F
for observation o ∈ P

if Feasible(o, p, θ)
Add p to F
Update p, θ

else add p to R
end for
Update best flight plan B
if R = ∅ return F
else

3. Modify P by analyzing F and R
end for

end for
if dead leg home does not violate SUA

return B

Fig. 6. A sketch of the family of SWO-
based Flight Planning Algorithm. Later
sections elaborate on options for 1.
Generate permutations, 2. Select the
takeoff time, and 3. Modify P by analyz
ing F and R

Feasible(o, p, θ)
# o is the observation
# p is the current position
# D is maximum dead leg duration
(b, d, z) = FindDeadLeg(o, p, θ)
# b = heading, d = duration, z = SUA zone
if the dead-leg crosses any SUA zone z

#Revise dead legs to avoid SUA
b′ is closest heading s.t. all z not crossed
d′ is new duration
d = d′; b = b′

if d > D return false
if observation starts and ends in darkness

if dead leg home possible following o
return true

return false

FindDeadLeg(o, p, θ)
#e is the elevation limit o violates at p, θ
Guess dead-leg b, d; calculate r, h after dead-leg
#f1(b, d) = r, f2(b, d) = e − h
while 〈f1, f2〉 �= 〈0, 0〉

J =

(
∂f1
∂b

(b, d) ∂f1
∂d

(b, d)
∂f2
∂b

(b, d) ∂f2
∂d

(b, d)

)
≡
(

p q
r s

)
|J | = ps − qr
if |J | < t then |J | = t (preserve sign of |J |)
db = qf2−sf1

|J| and dd = pf1−rf2
|J|

b = b + db, d = d + dd
Update r,h

Fig. 7. The feasibility test with the Secant
Method for finding dead legs. t, db, dd are
tuning parameters. Derivatives are all calcu-
lated numerically. r and h are calculated as
discussed in Section 2.1

checks, each such call in SWO makes O(MaxFlights(N + N2)) feasibility checks.
As long as MaxFlights < KM , SWO costs less per invocation than ForwardPlanner;
this seems likely since, to ensure good performance of ForwardPlanner. MaxFlights,
M and K likely scale with N . This makes SWO a good candidate for improving upon
ForwardPlanner.

In SWO, there is a complex interplay between the permutation modification and
takeoff time selection. It is possible to construct very bad flight plans by poor selection
of the takeoff time. Also, the combination of the takeoff time, permutation and the
fast scheduler implicitly schedules a subset of the observations. Finally, the fact that
permutations are constantly modified allows reconsideration of the takeoff time based

-
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on the new permutation. For these reasons, this version of SWO ensures that new takeoff
times can be chosen after each modification of the permutation.

4.1 Useful Concepts

In preparation for building our SWO, we introduce some useful concepts.
Time windows during which an object o at Right Ascension α and declination δ is

visible at a fixed position can be constructed as follows. If the aircraft is at position
p = γ, L, the earliest and latest times θr,p(o), θs,p(o) at which the observation is visible

by SOFIA at p are given by θr,s(o) = cos−1
(

sin(20)−(sin δ)(sin γ)
(cos δ)(cos γ)

)
+ L + α [12]. The

sin(20) term arises from the fact that SOFIA’s lower elevation limit is 20◦. Note that
cos−1(x) has 2 solutions, which provide the earliest rise time θr,p(o) and latest set time
θs,p(o) of the object at this position. The time of sunset and sunrise at this position can
be used to further tighten this window. There can be at most 2 feasible windows since
all objects period is 24 (sidereal) hours and the aircraft stays aloft less than 10 hours.
For example, an object can rise above the maximum elevation limit, then drop back into
view. In our critics, by default we use the first feasible window. We will also use the
time at which an object reaches its maximum elevation (above the local horizon), called
the transit time. This is simply θs,p(o)+θr,p(o)

2 .
The SFPP can be relaxed by approximating time windows for observations as de-

scribed in the previous paragraph, effectively pretending that the observatory is fixed
at some location. This leaves a problem in which observations have release times (ear-
liest rise times), due dates (latest set times), occupy a unary resource (the telescope).
This approximation is not bounding, because objects may rise earlier and set later at
different positions than the one used to calculate the time windows. Since SOFIA has a
maximum and maximum telescope elevation limit, the true feasibility windows of ob-
jects may not be convex. Additionally, objects could set then rise during the night, but
usually objects are observed at times of year when they are visible all night (and thus
achieve their maximum elevation sometime during the night). The resulting problem is
1|ri; pi; di|

∑
wiUi according to Graham’s hierarchy, a well-studied problem in AI and

OR which Karp proved NP-complete [14]. Note that pi are generally not equal and
that tasks are not interruptible. The relaxation is too crude to use directly; we will use
approximate solutions of this problem in our takeoff-time selection method.

4.2 Generating Initial Permutations

We considered the following ways of generating the initial permutation:
Random selection Uniform: If there are N observations, one of the N ! permutations

is chosen uniformly at random.
Sort by Earliest Start Time Rise at the takeoff airport: We calculate θr,p(o) as de-

scribed in the previous section. The intuition behind this ordering is that flights often
occupy the whole night, so beginning observations as early as possible is a good initial
guess. Furthermore, this allows the largest time window to observe any object.
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Sort by Latest Start Time Set at the takeoff airport: We calculate θs,p(o) as described
in the previous section. Observing an object as late as possible may be a cheap method
of ensuring enough time remains to schedule necessary dead-legs.

Sort by Transit Time Transit at the (landing) airport: The intuition here is that this
allows observing very nearby the airport; while one object is being observed, the next
object moves closer to the landing airport, allowing the aircraft to ”loiter” nearby.

4.3 Generating Takeoff Time

As we previously observed, due to the complex nature of the visibility constraints,
choosing a good takeoff time is important to constructing good flight plans. We con-
sidered several takeoff time methods:

Estimated flight duration FlightDur: If we simply assume that the aircraft will stay
aloft as long as possible, we can estimate the flight duration f from the initial fuel load
and flight profile. The takeoff time range is [θl, θu − f ]. Since this quantity is indepen-
dent of the permutation, it needs be calculated only once. However, this approach will
usually overestimate the actual flight duration. Furthermore, especially in the summer-
time for long flights, f will exceed the duration of the night and reduce the takeoff time
range to one time (roughly half an hour before sunset).

Minimum of Earliest Start Times Min Rise: We can calculate the minimum over all
o of θr,p(o) at the takeoff airport, and ”pad” this by the amount of time needed to climb
to operational altitude. Since this quantity is independent of the permutation, it needs
be calculated only once. Only one takeoff time is generated by this approach.

Optimize First-Observation in Permutation: It is clear that θr,p(o) is a bounding
above approximation to the earliest time when an observation can be performed; to see
why, observe that flying towards the observation makes it possible to observe it earlier.
If we assume that the first observation in a permutation is meant to be observed, we can
calculate the earliest time at which this observation can be performed and takeoff at that
time. Binary search over takeoff times is performed to find the takeoff time leading to
the earliest feasible observation time for the first observation. Only one feasible take-
off time is generated by this approach. As the first observation in the permutation can
change, the takeoff time will need to be recalculated each time the permutation changes.

Approximate solution to the relaxed scheduling problem Feas-Sched: We use the
θr,p(o) and θs,p(o) calculated at the takeoff airport to approximate the time windows for
the observations and induce the relaxed scheduling problem 1|ri; pi; di|

∑
wiUi. Solv-

ing this problem optimally is pointless, since it is a crude approximation of the original
problem. A feasible solution to the relaxed scheduling problem can be generated using
the permutation as an ordering heuristic, and either greedily scheduling from the begin-
ning or the end of the permutation. It is trivial to see that different feasible schedules,
and different takeoff time ranges, can be generated by scheduling forwards or back-
wards; this leads to two methods, Feas-Sched (Fwd) and Feas-Sched (Bkwd). Once
a feasible solution is generated, we calculate the slack of the first feasible observation,
again ”padding” for the time to climb to altitude.

If a range of takeoff times is generated, we select from them uniformly at random.
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4.4 Modifying the Permutation with Critics

In what follows, assume the problem instance contains N observation requests. All of
our critics use the biased sampling approach described earlier to make selections. Recall
that if we have a set of choices C and values of of these choices v(c) ∈ C, we choose
an element c ∈ C with probability v(c)∑

d∈C
v(d)

.

We explored the following five critics to modify the permutation:

1-Phase: We first determine for each rejected observation o whether it is feasible in
each slot s. This test uses the feasibility test in Figure 7 assuming the aircraft begins at
the position and time at the beginning of slot s. For each feasible pair (o, s) we examine
the time at which the new observation o ends. Since the new observation is guaranteed
to be feasible, successive observations will be delayed, both due to the duration of the
new observation and its dead leg (if any). We then evaluate the rate of change of the
elevation of each successive observation to find out if it would still be visible at the same
position at the later time. This is obviously an approximation, since the aircraft position
would change after the newly inserted observation. Furthermore, we don’t consider
the possibility that unscheduled observations in the permutation could be added, so it
is a conservative regret estimate. Let Xo,s be the set of observations we estimate are
made infeasible by performing o in slot s. We then calculate v(o, s) for the sampling
probabilities as follows. If s is the first or last slot or one for which Xo,s = ∅, then

v(o, s) = N . Otherwise, v(o, s) =
(∑

x∈Xo,s
u(x)

)−1

, where u(x) = 0.5 if x had a

dead-leg before it, and u(x) = 1 if not. This penalizes choices that incur more regret,
with the assumption that replaced observations with dead-legs are regretted less.

Obs-Slot: We first determine for each rejected observation o whether it is feasible in
each slot s. We then randomly choose a feasible observation o from those that could
go into some slot s. We calculate sampling probabilities as follows: if an observation
is visible in s slots, the heuristic is v(o) = N + 1 − s. (Observations visible nowhere
are not chosen.) We then calculate v(o, s) as described above for those s in which o is
feasible, and randomly choose the slot for o.

Slot-Obs: We first determine for each rejected observation o whether it is feasible in
each slot s. We then randomly choose a slot in which at least one rejected observation
is feasible. We calculate sampling probabilities as follows: if v observations are visible
in a slot, and the problem instance contains N observations the heuristic is v(s) =
N + 1 − v. We then calculate v(o, s) as described above for those o feasible in s, and
choose randomly the observation to move to s.

Timet: For this critic, we use θs,p(o) and θr,p(o) at the takeoff airport, which can be
calculated once and needs never be repeated. The critic first chooses a feasible observa-
tion o. We calculate sampling probabilities as follows: v(o) = 1

θs,p(o)−θr,p(o) . We then
determine which slots s are feasible for o, and calculate v(o, s) as described above.
Finally, we randomly choose the observation to move to s using v(o, s).

Timef : Calculating θr,p(o), θs,p(o) at the takeoff airport is clearly inaccurate. We can
instead calculate θs,p(o) and θr,p(o) at each slot in the current flight, but at a higher
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computational cost. We calculate sampling probabilities as follows: if P is the set of
positions at the beginning of the slots in the flight, v(o) = minp∈P

1
(θs,p(o)−θr,p(o)) . We

then choose o according to v(o). We then determine which slots s are feasible for o,
and calculate v(o, s) as described above. Finally, we randomly choose the observation
to move to s using v(o, s).

As a final wrinkle, we can modify the permutation by moving k rejected objects
rather than just one. The idea here is that multiple rejected observations could be re-
ordered independently and potentially improve the flight plan using fewer construction
steps. This idea was successfully employed by [8] and [9] to speed up SWO.

5 Identifying the Right SWO Features

Our approach to finding the best SWO features is to begin with a baseline algorithm:
Flight-Duration based takeoff time range selection, Uniform random initial permu-
tation, and the Timet critic. We will use the Wilcoxon Signed Ranked Test [15] to
determine whether using one feature is superior (finds better quality flights) to the base-
line SWO; we will select a small subset of promising algorithms to generate the next
algorithm. In the presentation of the Wilcoxon test results, X indicates the tests leading
to different values, positive z indicates an algorithm variant is likely to perform better
than the baseline, while a negative z indicates an algorithm variant is likely to perform
worse than baseline. Criticality measurements are typically given in ranges; criticalities
of > 0.05 are not considered statistically significant.

6 Empirical Results

In this section we present empirical results for varying facets of SWO in order to find
the best overall algorithm for solving the SFPP.

6.1 Sample Problems

We used as a benchmark flights previously flown on KAO, described in [5], to determine
the utility of our new techniques. In Figure 8 we tabulate the number of observations,
he archived flight duration, and the airport. Flights from Moffett Field, CA are denoted
with an M; flights originating in Moffett and ending in Hawaii are denoted MH; flights
from Hawaii are denoted H, and flights from New Zealand are denoted N. Takeoff
time is between sunset and sunrise (calculated for each day and year of flight). Wind
and temperature data from European Center for Medium Range Weather Forecasting 4

are used to calculate ground tracks and fuel consumption. The initial fuel load is also
calculated for each flight, and is based on the altitude profile 4 from [11]. This profile
conforms to realistic expectations that good observing will require an altitude of at least
39000 ft. Finally, SUAs impact flights from Moffett and Hawaii; we use data from the
National Geospatial Intelligence Agency’s Digital Aeronautical Flight Information File.

4 www.ecmwf.int
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Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Airport H H H H M M M M M M M M M M M M

Date 8/6 8/8 8/10 8/12 1/9 1/10 1/16 6/16 6/18 6/19 6/30 7/6 8/12 8/16 4/4 4/5
# Obs 9 9 10 10 7 8 8 6 10 8 8 6 11 10 9 9

Index 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Airport M M M M M M M M M M M M M M M M M

Date 4/6 4/11 4/12 4/14 4/19 5/4 5/8 7/1 7/6 8/2 8/22 8/24 8/26 8/29 9/1 9/19
# Obs 10 8 8 8 10 10 6 7 4 6 9 8 11 10 8 7

Index 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Airport M M M M M M M MH MH MH N N N N N

Date 9/20 9/21 9/23 9/26 9/28 9/29 10/4 6/21 7/12 8/4 11/25 4/22 5/11 5/15 5/19
Obs 7 3 10 8 8 8 4 8 7 7 10 8 8 8 8

Fig. 8. Characteristics of Single Day Instances

The priorities of all observations are identical, and all observations could be sched-
uled for the KAO flights. While SOFIA’s performance characteristics differ from KAO
and its elevation limits are different, we found ForwardPlanner was able to schedule
all observations for most of the tests we constructed [6]. Thus, the principal goal is to
find an efficient flight with all of the observations scheduled. The maximum dead-leg
duration D was set to 4 hours. For the dead-leg search using Secant Method we used a
step cutoff of 150 and error tolerance t = 10−6. The step parameters used in the Secant
Method were: s1 = 0.01◦ and s2 = 60 seconds. When CPU times are reported, these
experiments were run on a Sun Workstation with dual 600 MHz CPUs and 2048 Mb
memory. Unless otherwise stated, MaxFlights = 20 and MaxRepeats = 10.

6.2 Choosing Takeoff Times

The results of varying the takeoff time selection while holding all other aspects of the
baseline SWO algorithm the same are shown in Figure 9. In this figure we present the
Wilcoxon Ranked Sign test output for the best percentage of the observations found by
SWO. Recall that we compare each new SWO variant to the baseline SWO described in
the previous section according to the quality of the flights. In what follows, our ”best”
SWO variants are those ”most likely to exceed the quality of the baseline SWO”.

Takeoff Range X Z Crit.

Min Rise 17 -2.218 [0.01,0.025]
First Observation 18 -2.057 [0.01,0.025]
Feas-Sched (Fwd) 12 1.313 >0.05

Feas-Sched (Bkwd) 16 1.822 [0.025,0.05]

Fig. 9. Wilcoxon Ranked Sign Test results
comparing SWO Takeoff Time variants to
SWO Baseline

Backwards scheduling to produce
a relaxed feasible schedule Feas-
Sched(Bkwd) did best. The least ”in-
formed” approach, Min Rise, performs
worst. Optimizing the takeoff time range
of the first observation also did not per-
form well. Both of these approaches per-
form worse than the baseline SWO, which
uses Flight-Duration.
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Curiously, Feas-Sched(Fwd) did not perform as well as Feas-Sched(Bkwd). It is
possible that scheduling backwards produces a larger takeoff time range, thereby in-
creasing flexibility, but more work is needed to understand this result.

6.3 Generating Initial Permutations

For this series of tests, we tested the Feas-Sched (Bkwd) variant of takeoff time se-
lection with the different initial permutation methods. The results of varying the per-
mutation selection while using the baseline critic are shown in Figure 10. Notice that
Uniform is our baseline permutation method, and thus the first line of Figure 10 repeats
the last line from table 9.

Permutation X Z Crit.
Uniform 16 1.822 [0.025,0.05]

Rise 14 2.055 [0.01,0.025]
Set 14 1.428 > 0.05

Transit 14 1.490 > 0.05

Fig. 10. Wilcoxon Ranked Sign Test results
comparing SWO Initial Permutation ordering
variants to SWO Baseline

Previous work indicates that ”in-
formed” initial permutations improve the
performance of SWO when compared to
random permutations. We find this to be
the case as well; Rise coupled with the
Feas-Sched (Bkwd) performs best when
compared to the baseline SWO. Surpris-
ingly, Uniform performs second best, but
is not as good as Rise.

6.4 Modifying Permutations

For this series of tests, we tested the Feas-Sched (Bkwd) takeoff time generation
method and Rise initial permutation generation method with each critic method. In
each case, only one rejected observation was moved per critic application. The results
of varying the critics are shown in Figure 11. Notice that Timet is our baseline critic
method, and thus the first line of Figure 11 repeats the second line from table 10.

As expected, 1-Phase is quite good. Also as expected, we see that Timet is not
as good as Timef . Somewhat surprisingly, though, Timet and Timef are superior to
Obs-Feas and Slot-Feas, even though the former do not correctly identify the feasible
observation-slot combinations, while the latter do not. This suggests that even crude
estimates of time are important when building the critics, and demonstrates that simply
using slot counts is not good enough.

Our final critic experiments use Feas-Sched (Bkwd) takeoff time generation, Rise
based initial permutation selection, and 1-Phase critic. In this experiment we vary the
number of rejected observations that are moved. The regret values are still used to sam-
ple, and are renormalized between samples. The number of observations is moderately
low, so we limited ourselves to experiments moving 2, 3 or all rejected observations. As
we see, we don’t always benefit from increasing the number of rejected observations
that are moved; moving 2or 3 rejects is worse than moving 1, but moving all rejects is
clearly better than moving 1.
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Critic X Z Crit.

Timef 16 2.210 [0.01 0.025]
Timet 14 2.055 [0.01,0.025]

Obs-Feas 14 1.710 [0.025 0.05]
Slot-Feas 16 1.641 >0.05
1-Phase 14 2.338 [0.005 0.01]

Fig. 11. Wilcoxon Ranked Sign Test results
comparing SWO Critic variants to SWO Base-
line

Rejects N Z Crit.

1 14 2.338 [0.005, 0.01]
2 13 2.148 [0.01, 0.025]
3 13 2.253 [0.01, 0.025]
all 15 2.541 ≈ 0.005

Fig. 12. Wilcoxon Ranked Sign Test results
comparing critics moving variable numbers of
rejected observations to SWO Baseline

6.5 The Best Algorithms

First, we revisit Figures 4 and 5. The baseline SWO generates plans of as good or better
quality as ForwardPlanner. It runs at a fraction of the time of ForwardPlanner without
the Euler’s Method approximation speedup, and often is faster than ForwardPlanner
with Euler’s Method. The results show that, for these 6 problems, the baseline SWO is
capable of producing quality plans.

We next compare the CPU performance of the SWO algorithms. In order to make
sense of this analysis, it is important to note that SWO terminates if all observations are
scheduled. We compare algorithm performance in Figure 13 using the mean and stan-
dard deviation in CPU times for all 20 runs of the different algorithms; CPU times are
given in seconds. We also reproduce the Wilcoxon signed rank test results comparing
the quality of the flights of each SWO version to the SWO baseline. Overall, adding fea-
tures that further improve the quality of flights leads to roughly a factor of two increase
in CPU time. The takeoff time selection method imposes a significant computational
burden on SWO, as can be seen by the increase in the mean CPU time. While the critics
also impose a computational burden on SWO, we actually see a reduction in CPU time
compared to those methods without the intelligent critics; this is likely due to the early
termination of SWO when all observations are scheduled.

Analyzing the CPU time on a case by case basis, we find that our worst-case perfor-
mance hit is roughly a factor of 10 increase in CPU time between the baseline SWO and

Name Baseline T/O Perm. Critic Swaps

Takeoff Range FlightDur Feas-Sched (Fwd) ⇒ ⇒ ⇒
Permutation Uniform ⇒ Rise ⇒ ⇒

Critic Riset ⇒ ⇒ 1-Phase ⇒
Swaps 1 1 1 1 all
Mean 63.728 113.071 187.612 166.486 145.501
Sdev 29.976 77.623 144.755 108.985 86.427

X - 16 14 14 15
Z - 1.823 2.055 2.338 2.541

Crit - [0.025,0.05] [0.01,0.025] [0.005,0.01] ≈ 0.005

Fig. 13. Comparison of mean and variance of SWO CPU times for all ”incremental best” SWO
variants identifying best SWO features
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the best SWO, which is moderately high. Howerver, the vast majority of the time the
CPU time hit is under a factor of 2. The resulting SWO algorithms deliver significantly
better quality flights than ForwardPlanner with Euler’s Approximation, at roughly com-
parable run times.

7 Conclusions and Future Work

We described the SFPP, a difficult mixed discrete and continuous constrained optimiza-
tion problem. ForwardPlanner, an initially promising approach mixing techniques from
AI and OR, ultimately fails to scale for the SFPP. We have described the application
of SWO to the SFPP problem. As with our previous approach, ForwardPlanner, the
resulting algorithm combines AI and OR techniques to solve a difficult constrained op-
timization scheduling problem. Our results indicate that SWO is a powerful technique
that delivers higher quality flight plans in less time than ForwardPlanner, our previ-
ous approach to the SFPP. The quality of flights found by SWO can be increased even
further, at a reasonably increase in CPU time.

SWO utilizes numerous techniques in a novel combination to solve the SFPP. The
combination of relaxations and continuous optimization method used in ForwardPlan-
ner to reduce the infinite space of setup actions lead to an efficient constructor for our
SWO algorithm. We also show that relaxations of the SFPP lead to traditional OR prob-
lems, and employ heuristic solutions to these problems in our SWO approach to good
effect. In particular, the takeoff time selection method based on greedy solutions to
1|ri; pi; di|

∑
wiUI proved to be an important component of the best quality SWO

algorithm. The use of critics that guarantee each step of SWO produces a change in
schedule is a novel contribution that we believe is an important component of our algo-
rithm. Finally, we verify two conclusions from previous work in SWO. First, informed
permutation construction techniques improve SWO performance over random permu-
tation generation. Second, swapping many rejected observations per critic application
pays off well in terms of both the quality of solutions and speed of SWO. These lessons
may serve others working on complex constrained optimization problems with mixes
of discrete and continuous variables.

There is considerably work left to do on the SFPP. Our experiments assumed all
observations were of equal value; it is easy to generalize our SWO to handle variable
priority, but empirical studies are needed to ensure SWO finds high quality flights. Our
benchmark included problems for which it was always possible to schedule all obser-
vations. SWO can be modified for problems where this is impossible. Ongoing work
shows SWO works well even when this is not the case; again, further tests are required
to ensure good performance. In particular, CPU times will likely increase when early
termination is no longer likely. Additionally, for each observation, minimizing aver-
age line-of-sight water vapor is an important objective. Initial results with SWO show
promise, but more work is needed. Finally, the SFPP also requires that we build series
of flights rather than just a single flight. Preliminary flight series testing indicates that
SWO is a promising technique for building flight series, but the basic algorithm requires
some modifications to ensure good performance.
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Abstract. Recently, new cost-based filtering algorithms for shorter-path con-
straints have been developed. However, so far only the theoretical properties of
shorter-path constraint filtering have been studied. We provide the first extensive
experimental evaluation of the new algorithms in the context of the resource con-
strained shortest path problem. We show how reasoning about path-substructures
in combination with CP-based Lagrangian relaxation can help to improve signifi-
cantly over previously developed problem-tailored filtering algorithms and inves-
tigate the impact of required-edge detection, undirected versus directed filtering,
and the choice of the algorithm optimizing the Lagrangian dual.

1 Introduction

Path constraints play a key role in many applications. Examples range from airline crew
scheduling [8, 14] and vehicle routing [20] to the traveling salesman [2] and the resource
constrained shortest path problem [1, 4, 6, 7, 12]. Of special interest in the context of
combinatorial optimization are path constraints that incorporate the objective function.
Shorter path constraints do exactly that by stating that a set of binary variables that are
semantically linked to the edges of a graph must form a path from some designated
source to a designated sink, whereby the length of this path must not exceed a given
threshold value. Unfortunately, in [17] it was shown that achieving generalized arc-
consistency for shorter path constraints is NP-hard. Consequently, filtering algorithms
were developed that achieve weaker, so called relaxed consistency in the same time
that it takes to solve the shortest path problem itself. This work was purely theoreti-
cal, though. Therefore, we consider it of interest to evaluate the performance of these
filtering algorithms in practical experiments.

For this purpose, we focus on the resource constrained shortest path problem (RC-
SPP) that consists in finding a shortest route from some given source to a designated
sink such that some given resources that are consumed while traversing the edges are
not exhausted. While the RCSPP is of interest in itself, for example in the context of
traffic guiding systems and route planners for cars and trucks, the problem also evolves
as a natural subproblem in the context of even more complex problems like vehicle
routing [20].

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 201–216, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Based on the new filtering algorithms presented in [17], we provide an evaluation
of relaxed consistency for shorter path constraints in the context of the resource con-
strained shortest problem. In the following section, we briefly review the filtering al-
gorithms developed in [17]. In Section 3 we define the resource constrained shortest
path problem formally and present a filtering approach that considerably outperforms
previous filtering algorithms for this problem, as we will then see in Section 4.

2 Relaxed Consistency for Shorter Path Constraints

Before we review the filtering algorithms that we are going to use for the RCSPP later,
let us start out by defining what shorter path constraints are. In words, they express
our wish to search for paths in a (directed or undirected) graph such that the length is
smaller than some given threshold value. Formally, we define:

Definition 1. Denote with G = (V,E, c) a weighted (directed or undirected) graph
with ||c||∞ ∈ O(poly(|E|, |V |))1, and let h ∈ IN.

– A sequence of nodes P = (i1, . . . , ih) ∈ V h with (if , if+1) ∈ E for all 1 ≤ f < h
is called a path from i1 to ih in G.

– A path P is called simple iff P visits every node at most once. For all i, j ∈ V ,
denote with π(i, j) the set of all simple paths from i to j.

– For all paths P , nodes i ∈ V and edges (i, j) ∈ E, we write i ∈ P or (i, j) ∈ P
iff P visits node i or the edge (i, j), respectively. For a set of nodes or edges S, we
write S ⊆ P , iff s ∈ P for all s ∈ S. Correspondingly, we write P ⊆ S iff s ∈ S
for all s ∈ P .

– The cost of a path P = (i1, . . . , ih) is defined as cost(P ) :=
∑

1≤j<h cijij+1 .
Accordingly, for any set S ⊆ E we define cost(S) :=

∑
(i,j)∈S cij .

Definition 2. Let G = (V,E, c) denote a (directed or undirected) graph with n = |V |
and m = |E|, a designated source v1 ∈ V and sink vn ∈ V , and arc costs cij ∈ Z.
Further, assume we are given binary variables X1, . . . , Xm, and an objective bound
B ∈ Z.

– A constraint SPC(X1, . . . , Xm, G, v1, vn, B) that is true, iff
1. the set {ei | Xi = 1} ⊆ E determines a simple path in the graph G from the

source v1 to the sink vn, and
2. the cost of the path defined by the instantiation of X is lower than B

is called a shorter path constraint.
– We call every simple path in G from source to sink with costs less than B admissi-

ble.
– A path P is called a k-simple path in G iff for all j ∈ V the path P visits j at most

k times. Note that a 1-simple path is a simple path in G.
– Given a shorter path constraint, a k-simple path P from v1 to vn is called a k-

admissible path iff cost(P ) < B.

1 This is the common similarity assumption that states that the largest cost is bounded by some
polynomial in |E| and |V |.
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As mentioned before, it can be shown that achieving generalized arc consistency
for shorter path constraints is an NP-hard task. Therefore, in [17] filtering algorithms
for shorter path constraints on arbitrary undirected and directed graphs were developed
that achieve relaxed consistency. With that term we denote filtering algorithms for min-
imization constraints [9] that only guarantee that those variable assignments are iden-
tified that would cause a bound rather than the optimal solution in the current subtree
itself to exceed the current best known upper bound.

The formal relaxations considered in [17] are very technical and do not give a par-
ticularly useful insight into the task of filtering shorter path constraints. Therefore, we
do not to repeat them here but just outline the filtering algorithms that we will use
later.

1. On both directed and undirected graphs, the filtering algorithm starts with two
shortest path computations once from the source and the other starting at the sink
node whereby, in the directed case, the computation is performed in the reverse
graph.

2. As a result, we get the shortest path value from source to sink. If this value exceeds
the objective bound B, the constraint fails.

3. Otherwise, as a byproduct of the shortest path computations we get the shortest
path distances from the source and to the sink of every node for free. We use this
information to identify those nodes and arcs of the graph for which the shortest
2-simple path that visits them is above the threshold B. For the nodes, we get this
value by adding the shortest path distance from the source and that to the sink, for
edges, we add the weight of the edge to that value.

2.1 Exploiting Bridges in Undirected Graphs

After having shrunk the graph in step 3, as a last step of our filtering algorithm we
try to identify those edges that must be visited by all paths having a length below the
given threshold. This step will be different for undirected and directed graphs. In the
undirected case, there exists a simple exact classification of the edges that must be
visited. In [17], it was shown that the edges to be required are exactly the bridges2 in
the reduced graph that fall onto the shortest path:

4a. We compute the set of bridges in the reduced graph. The bridges that are also on
the shortest path from source to sink must be visited by all admissible paths, and
we mark them as required.

On top of this last step of the filtering procedure that was proposed in [17], we
add one more idea: We observe that bridges that are not on the shortest path cannot be
visited by any simple path from source to sink. Therefore, we can remove those bridges
and the entire part of the graph behind them as well:

5a. Remove all bridges from the graph that are not on the shortest path.

2 A bridge is an edge whose removal disconnects the graph.
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2.2 Required Arcs in Directed Graphs

Unfortunately, we do not know a similar classification of required arcs as we have it for
undirected graphs where the edges to be required are exactly the bridges in the reduced
graph that we get after step 3. The algorithm in [17] tries to bound the shortest path
distance when having to detour around an arc on the shortest path. When implementing
this algorithm, we realized that actually we do not need to compute this bound after
having reduced the graph in step 3 of the algorithm. While preserving the same filtering
effectiveness of the original algorithm, we can save the overhead of using a heap data
structure, because it is completely sufficient to know whether such a detour still exists;
since the arc that we use in our detour has not been deleted, we know already that the
value of the detour will not exceed the given path-length threshold.

In order to state the last step of our filtering algorithm for directed graphs, we briefly
repeat some of the terminology introduced in [17]. Let T ⊆ E denote a shortest-path

vn

Se
C

v1 r

Se

ji

s
e

Fig. 1. The figure schematically shows a shortest-path tree T rooted at v1. Solid lines denote arcs
in G, dashed lines mark parts of the shortest path P (v1, vn) from v1 to vn. The triangles sym-
bolize shortest-path subtrees. For an edge e = (r, s) ∈ P (v1, vn), the nodes in V are partitioned
into two non-empty sets Se and SC

e . If e is removed from the graph, the shortest path from v1 to
vn must visit an edge (i, j) ∈ (Se × SC

e ) \ T

tree in G rooted at v1. Without loss of generality, we may assume that every node in the
graph G = (V,E) can be reached from the source node v1. Obviously, when e ∈ E is
removed from T , the nodes in V are partitioned into two sets: the set v1 ∈ Se ⊂ V of
nodes that are still connected with v1 in T \ {e}, and the complement of Se in V , SC

e

(see Fig. 1). Using these naming conventions, the last step of our filtering algorithm for
directed graphs reads:

4b. Denote with ER the reduced arc set after step 3. For all arcs e = (r, s) on the
shortest path from v1 to vn, check whether there exists any other arcs e �= f =
(i, j) ∈ (Se × SC

e ) ∩ER. If not, then e must be visited by all paths from source to
sink and it is therefore required.

Note that this last step can be implemented with the help of a simple set data structure
for an asymptotic cost of O(m + n).



Shorter Path Constraints for the Resource Constrained Shortest Path Problem 205

3 A Filtering Approach for Resource Constrained Shortest Paths

In order to evaluate the filtering algorithms for directed and undirected graphs as de-
scribed in the previous section, we apply them in the context of resource constrained
shortest path:

Definition 3. Given a (directed or undirected) graph G = (V,E), n = |V |, m = |E|,
with R+1 edge-weight functions lk : E → IN, 0 ≤ k ≤ R, R resource limits L1, ..LR,
and two designated source- and sink-nodes v1, vn ∈ V , the resource constrained short-
est path problem (RCSPP) consists in the computation of a path P ⊆ E such that∑

e∈P lke ≤ Lk for all 1 ≤ k ≤ R and
∑

e∈P l0e is minimal.

When we denote the best known solution value found with B and set L0 := B,
any RCSPP-instance can be modeled as a conjunction of R + 1 shorter path constraints
SPC(X1, . . . , Xm, (V,E, lk), v1, vn, Lk) for 0 ≤ k ≤ R.

Of course, we could use these constraints to perform an ordinary tree search. How-
ever, for the RCSPP it was found that tree search approaches perform rather poorly.
Instead, to solve the RCSPP, state-of-the-art solvers compute lower and upper bounds
on the problem first and then close the duality gap. The latter task is carried out by an
enumeration procedure such as dynamic programming [15] or labeling approaches [6].
The tightening of the initial problem is vital for an effective gap closing procedure and
is therefore essential for the overall performance and the practical success of the entire
approach.

Following this framework, we assume that an initial upper bound B has been com-
puted before the filtering phase that will, as a byproduct, also provide a lower bound
on the problem. Instead of having the shorter path constraints communicate via vari-
able domains only, we use the CP-based Lagrangian relaxation framework as pub-
lished in [16, 18, 19]. Precisely, we relax all linear constraints

∑
1≤i≤m lki Xi ≤ Lk,

1 ≤ k ≤ R, and penalize their violation in the objective function. Given any vector of
Lagrangian multipliers 0 ≤ λ ∈ QR, we consider the constraint

SPC(X1, . . . , Xm, (V,E, l0 +
∑

1≤k≤R

λklk), v1, vn, L0 +
∑

1≤k≤R

λkLk).

As usual, the question arises how to compute good Lagrangian multipliers that will
yield a good lower bound on the problem and allow us to filter effectively. In general,
we can use any subgradient, bundle, or volume algorithm for this purpose [3, 5, 10, 11].
Since most benchmark sets for the RCSPP contain only one resource (i.e., R = 1), we
use a specialized algorithm for the optimization of the Lagrangian dual with only one
multiplier.

3.1 Maximizing One-Parameter Piecewise Linear Concave Functions

A schematic view on the Lagrangian dual for RCSPP-instances with R = 1 is given in
Figure 2. Assume that we know an interval [A,B] in which the function (let us denote
it with f ) must take its maximum.
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λ
B1A1
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Y1X1

Y2X1 B2 λ
B1A1 B2A2

Fig. 2. Maximizing a piece-wise linear concave function by interval partitioning (left) or by cut-
ting planes (right)

Interval Partitioning One way to find the function’s maximum in the given interval
is to trisect the interval by introducing two interior points A < X < Y < B. When
we evaluate the function at X and Y and find that f(X) > f(Y ) (f(X) < f(Y )), due
to its concaveness we can deduce that f must take its maximum in the interval [A, Y ]
([X,B]). Thus, we have found a smaller interval in which the function must take its
maximum. We can repeat this process until the width of the interval has become small
enough. Of course, in every iteration we could choose new interior points in the current
interval. However, in order to save some evaluations of the function f we should try to
reuse one of the former inner points. If we partition the current interval according to the
golden section, we know that the interval length will decrease geometrically and that
one inner point can always be reused, which means that we need to perform only one
evaluation of f in each iteration. The procedure is sketched graphically in Figure 2.

For the optimization of the Lagrangian dual this means that we can ε-approximate
the best Lagrangian multiplier λ in O(log L

ε ) iterations, whereby L denotes the width of
the initial interval. Each iteration involves the solution of only one Lagrangian subprob-
lem. In the context of the RCSPP, the subproblem is a shortest-path problem. Moreover,
assuming that there exists a path that obeys the resource restriction (i.e., when a primal
solution exists at all and consequently the dual is not unbounded), it is easy to show
that the optimal Lagrangian multiplier cannot be greater than n||l0||∞. Consequently,

we can solve the Lagrangian dual in time O(log n||l0||∞
ε (m + n log n)).

With this method, the proposed filtering algorithm for the RCSPP with one resource
works as follows: We choose an initial interval [0, n||l0||∞]. Denote with L the length
of the current interval with left end-point l. Then, we solve the Lagrangian shortest-
path subproblem for interior points X = l +

√
5−1
2 L and Y = l +

√
5+1
2 L. While

solving the shortest-path problem, we also apply our filtering algorithm as described in
the previous section. Depending on the point that achieves a larger shortest-path value,
we cut off either the right or the left part of the interval and proceed by solving one
more Lagrangian dual and filtering in each successive iteration of the algorithm.

Cutting Planes Another way of computing the function’s maximum in the given in-
terval is to use a cutting plane algorithm [13]. Clearly, if the function has a negative
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slope on the left end point of the interval, then this is the point where the function takes
its maximum in the given interval. Analogous reasoning holds for the right end point
of the interval if the slope there is positive. Now, if the left end point has a positive
slope and the right end point a negative one, then the two lines intersect for some point
in the middle of the interval. We evaluate the function at that point and check whether
the slope is positive or negative (if it is horizontal then we are obviously done). If it is
positive (negative), then this point becomes the new left (right) end point of our search
interval, and we continue until the computed inner point does not change anymore.

With this method, the proposed filtering algorithm for the RCSPP with one resource
works as follows: We choose an initial interval [0, n||l0||∞]. We solve the Lagrangian
subproblem at the two end points and perform cost-based filtering. Then we repeatedly
intersect the slopes at the end points of our interval to determine inner points for which
we process the Lagrangian subproblem again. Depending on whether the solution to the
subproblem exceeds the resource limit or not, the corresponding Lagrange multiplier
becomes the new left or right end point of our search interval (see Figure 2).

Note that our filtering routine is actually changing the problem while we are solv-
ing the Lagrangian dual. In general, this is problematic since really both algorithms
designed for maximizing concave functions over convex polytopes are not designed to
cope with changes in the problem during the optimization. Instead, one could just mark
the changes to be made. However, we found that both our algorithms for maximizing
the Lagrangian dual were very robust and yielded good results even when incorporating
the changes “on the fly”. As a matter of fact, this was very beneficial since the succes-
sive calls to the shortest path algorithm become cheaper and cheaper, since the graph
size reduces considerably during filtering, as we will see in the following section.

4 Numerical Results

We have outlined the shorter-path filtering algorithms and described how CP-based La-
grangian relaxation can be applied for two-shorter-path-constraint problems. The latter
correspond to resource constrained shortest path problems (RCSPPs). We have cho-
sen to base our experimentation on the RCSPP for various reasons. Of course, when
evaluating the practical efficiency of shorter-path constraint filtering, we would like
to eliminate all possible side effects caused by other constraints of the problem under
consideration. Therefore, the purest evaluation would be to consider the shortest path
problem. However, since all filtering algorithms for shorter-path constraints are actually
based on efficient shortest-path algorithms, this is not a feasible choice.

Note also that the application of filtering algorithms usually only makes sense for
NP-hard problems. So the natural idea is to consider a problem that consists in the con-
junction of two shorter-path constraints, which corresponds to the search of improving
solutions for the RCSPP with one resource. This problem is NP-hard and filtering meth-
ods for it have been studied a long time before the idea of constraint programming was
developed [1, 4]. Therefore, it is of particular interest to investigate how CP performs
in comparison with those problem-tailored filtering algorithms.

This being said, it is important to note here that we do not aim at providing a com-
plete state-of-the-art algorithm for the RCSPP itself. Our goal is instead to evaluate the
practical performance of shorter-path constraint filtering, and the RCSPP appears as a
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very reasonable benchmark for such an evaluation. There exist very efficient algorithms
for the optimization of the RCSPP [1, 4, 6, 7, 12]. Most of them incorporate a filtering
component, but it could be interweaved with the specific algorithm. Note also that an
upper bound is required to perform filtering. Now, in order to avoid that we are actu-
ally measuring the performance of an upper bounding procedure and not the quality
of shorter-path filtering, we do not provide a primal heuristic for the RCSPP. Instead,
we base our experimentation on upper bounds of predefined and controlled accuracy,
so that we are able to evaluate the performance of the existing and the new filtering
algorithms when the quality of the primal heuristic varies.

Thus, when interpreting the following experimental results, keep in mind that shorter-
path filtering is just one component in an RCSPP solver, and that we do not provide a
complete solver for this problem here. Especially, we do not provide algorithms for the
computation of good upper bounds.

4.1 Overview of Experiments and Benchmark Sets Used

In our experiments, we run tests to determine under which parameters our algorithms,
that combine shorter-path filtering with CP-based Lagrangian relaxation (SPFCP), per-
form best. The performance of the algorithms is measured by the number of edges
filtered and the CPU time taken. We seek to answer the following questions. Is there
any advantage towards using the undirected version (marked by SPFCP-U) over the di-
rected version (SPFCP-D) of our filtering method? Does using required-arc (-RE) and
bridge detection (-BD) as part of the filtering have any benefit? And, which method
for optimizing the Lagrangian dual is better, interval partitioning (-IP) or cutting plane
(-CP)? Finally, we add a comparison of the SPFCP algorithm with two existing filtering
algorithms when used for the RCSPP.

For the optimization of the RCSPP after the initial filtering phase, we use our own
implementation of a standard RCSPP label setting algorithm (LSA) or our implementa-
tion of the RCSPP algorithm by Mehlhorn and Ziegelmann (MZ) [15]. The experiments
measure CPU time in seconds and were performed on an Intel Pentium 4 2.5GHz, 1Gb
RAM machine running Red Hat Linux 9. The filtering programs, LSA, and MZ were
compiled using gcc version 3.2.2 with the optimizing flag.

We use the RCSPP benchmark files provided by Mehlhorn and Ziegelmann [15]3.
All input graphs specify a designated source and a sink, edge cost and resource, and a
resource limit. We use two variants of the benchmark files: the original directed files
and converted undirected versions. The latter were generated by viewing the arcs as
undirected and flipping a coin in case of multi-edges. Files that were generated in that
way are marked with an extra ’*’. Note that an undirected graph can be viewed as
a bi-directed graph where resource and cost coefficient for all edges are the same in
both directions. This interpretation allows us to use the directed version of our filter-
ing algorithm on this benchmark set as well, so that we can compare the undirected
and the directed filtering variants on this benchmark set. Table 1 shows information
on the size of the graphs as well as the time needed to solve them using MZ and
LSA. The following is a description of the types of RCSPP problems the input graphs
represent.

3 Data files are available at http://www.mpi-sb.mpg.de/˜mark/cnop/.
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Table 1. The table shows the initial number of edges in the undirected and directed versions of
the test files and the time needed by LSA and MZ to solve them. A ’-’ indicates a solver was
unable to compute a solution due to exhaustive memory consumption

Austria S Austria B Scotland S Scotland B Road S Road B

Undirected 46160 165584 65024 252432 50826 171536
LSA 7.589 252.590 7.784 - 0.651 3.472
MZ 0.492 2.186 0.891 12.378 0.791 3.273

Directed 46160 165584 65024 252432 50826 171536
LSA 6.489 257.361 7.581 - 0.651 3.461
MZ 0.474 2.339 2.914 11.053 0.792 3.283

Curve 1 Curve 2 Curve 3 Curve 4 Curve 5 Curve 6

Undirected 19890 39580 99890 199580 199890 399580
LSA 5.607 18.603 155.749 - - -
MZ 0.055 1.436 2.438 0.596 0.797 -

Directed 9945 19790 49945 99790 99945 199790
LSA 3.537 12.286 29.939 - - -
MZ 0.039 1.128 2.078 0.394 0.594 183.034

Digital elevation models (DEM): These graphs are grid graphs representative of ele-
vation data over areas of Austria and Scotland. The problem is to find the path with the
minimum total height difference while satisfying a constraint on distance.
Road graphs: This benchmark set contains US road graphs. Edges in these graphs
are weighted by distance and congestion. The problem is to find the route that takes
minimal time while satisfying constraints on fuel consumption.
Curve approximation:In some applications, such as computer graphics programs, it is
necessary to represent infinitely detailed curves with less complex functions. In this
benchmark set, curves are estimated by many straight lines/edges joined at break-
points/nodes which lay on the original curve. It is desirable to reduce the number of
breakpoints used to estimate the curve while satisfying a constraint on the amount
of error introduced. Modeled as an RCSPP, solutions to these instances minimize the
number of sampling points when approximating a curve by a piecewise linear
function.

4.2 Undirected and Directed SPFCP

In Section 2, we proposed two implementations of the SPFCP algorithm, one that filters
on directed graphs and one that filters on undirected graphs. We explained how the
undirected version has the advantage of being able to reason via the detection of bridges.
We now want to compare the two variants by using the bi-directed benchmark set. We
varied the upper bound on the objective from optimal to +5% optimal to examine how
the performance of the SPFCP algorithms degrade. Table 2 shows the results of the
comparison using both the directed and undirected versions of SPFCP with required-
arc and bridge detection used.
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Table 2. The table shows the number of remaining edges and the CPU-time in seconds taken to
filter the bi-directed graphs using both the directed and undirected versions of the SPFCP algo-
rithm with bridge and required-arc detection. We vary the quality of the upper bounds between
optimal and 5%. The Lagrangian dual is optimized using the cutting plane algorithm

Optimal +5%
Graph SPFCP-D-RE SPFCP-U-BD SPFCP-D-RE SPFCP-U-BD

# Edges Time # Edges Time # Edges Time # Edges Time

Austria Small* 213 0.367 426 0.153 3667 0.443 6882 0.260
Austria Big* 436 1.650 872 1.017 8903 1.860 14742 1.243

Scotland Small* 652 0.547 1304 0.287 6879 0.613 11258 0.347
Scotland Big* 494 2.793 988 1.927 24155 3.170 30584 2.377
Road Small* 899 0.610 1596 0.320 1559 0.627 2180 0.340
Road Big* 1278 1.807 2476 0.997 2755 1.870 3904 1.000
Curve 1* 301 0.107 602 0.040 13555 0.127 15896 0.053
Curve 2* 300 0.193 600 0.063 15824 0.247 20138 0.110
Curve 3* 811 0.660 1622 0.287 99865 0.837 99886 0.430
Curve 4* 810 1.150 1620 0.423 188321 1.293 191684 0.577
Curve 5* 2018 1.380 4036 0.647 199890 1.820 199890 0.990
Curve 6* 2091 2.387 4182 0.953 392448 3.243 393974 1.697

When comparing the raw numbers, the directed version is capable of filtering more
edges than the undirected version on the same graphs. However, on most of the tests
where the algorithms were given an optimal bound on the objective the filtered graphs
from the directed algorithm has exactly half as many edges as the graphs from the undi-
rected algorithm. This is because the undirected algorithm must meet the constraint of
leaving a bi-directed graph after filtering whereas the directed version does not. So,
the filtered graphs from both algorithms when given an optimal bound on the objective
are relatively the same, the directed version just additionally filters out return edges on
the shortest path. The undirected version runs faster though, by 53% on average when
given an optimal upper bound. When the value of the upper bound is 5% above the op-
timal value, the directed version filters on average 20% more edges than the undirected.
However, the undirected version is still 45% faster on average.

In general, the time taken by the SPFCP algorithms to perform the filtering increases
as the quality of the upper bound decreases. This phenomenon can easily be explained
in that successive iterations of the filtering algorithm during the optimization of the
Lagrangian dual require more time when previous iterations were not as effective at
removing edges. While the undirected version works twice as fast as the directed variant
of the SPFCP, the directed version is more effective and more general since it can filter
both directed and undirected graphs.

4.3 Required-Arc and Bridge Detection

Next, we would like to investigate what the benefit of identifying edges that must be
visited by any improving path is. Note that this aspect was one of the main contribu-
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Table 3. The table shows the number of remaining edges and the CPU-time, in seconds, taken to
filter the bi-directed road graphs using both the directed and undirected versions of the SPFCP
algorithm with and without bridge and required-arc detection. The Lagrangian dual is optimized
using the interval partitioning algorithm

Optimal +1% +3% +5%
Graph Algo # Edges Time # Edges Time # Edges Time # Edges Time

-D 1181 1.457 1314 1.460 1597 1.487 2294 1.657
Road Small -D-RE 899 1.570 965 1.560 1171 1.563 1813 1.770

SPFCP- -U 1718 1.357 1812 1.360 2046 1.383 2640 1.583
-U-BD 1596 1.137 1658 1.143 1852 1.153 2332 1.323

-D 1414 2.097 1493 2.093 1717 2.127 2100 2.127
Road Big -D-RE 1278 2.217 1307 2.217 1385 2.243 1672 2.223
SPFCP- -U 2528 1.417 2584 1.423 2724 1.427 3178 1.460

-U-BD 2476 1.360 2506 1.360 2574 1.373 2980 1.407

tions in [17]. We found that, in the DEM and curve approximation graphs the required-
arc and bridge detection algorithms were ineffective. This is caused by the structure
of these graphs that have many alternate optimal routes. However, on the road graph
test files required-arc and bridge detection turned out to be quite effective and also
caused the filtering of more edges than just using the SPFCP algorithm without the
detection of required arcs. Table 3 shows the results for running both the undirected
and directed versions of the SPFCP algorithm on the bi-directed road graphs with and
without required-arc and bridge detection.

Fig. 3. This figure shows the remaining size of the Road Small* instance after each iteration of
the interval partitioning algorithm
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The test results show how required-arc and bridge detection improve the SPFCP al-
gorithm’s ability to filter edges on all of the road graph test files. They also show that, as
the value of the initial upper bound on the objective deviates from optimality required-
arc and bridge detection becomes more valuable. In the case of using the undirected
SPFCP on the Road Small* test file, bridge detection filters 7% more edges with an
optimal upper bound and 13% more with an upper bound of +5% from optimal. Gener-
ally, SPFCP-U-BD takes less time to complete than SPFCP-D-RE and SPFCP-U. This
can be attributed to the bridge detection being most effective in the early iterations of
the filtering algorithm and is illustrated in Figure 3.

4.4 Interval Partitioning Versus Cutting Plane

In the following experiments, we compare the performance of SPFCP-D while using
the two algorithms for closing the duality gap, cutting plane and interval partitioning.
Table 4 summarizes our results. Using the cutting plane algorithm improves the speed
of the SPFCP filtering algorithm dramatically over using interval partitioning: SPFCP-
D-CP is 63% faster on average when given an optimal upper bound and 65% faster
on average when given an upper bound of +5% from optimal. In the optimality proof,
both methods filtered roughly the same amount of edges, while interval partitioning is
slightly more effective than the cutting plane algorithm.

The faster computation times and the slightly diminished effectivity of the cutting
plane algorithm are explained by the fact that the method is able to close the dual-
ity gap in far fewer iterations, which can be seen by comparing Figures 4 and 5. We
can see clearly how the cutting plane algorithm considers more meaningful Lagrangian

Table 4. The table shows the number of remaining edges and the CPU-time, in seconds, taken
by SPFCP-D-RE using the cutting plane and interval partitioning algorithms for solving the La-
grangian dual. The quality of the upper bound was varied from optimal to +5% from optimal

interval partitioning cutting plane
Graph Optimal +5% Optimal +5%

# Edges Time # Edges Time # Edges Time # Edges Time

Austria S 229 1.293 3150 1.750 231 0.367 3341 0.430
Austria B 410 7.623 7097 8.160 410 1.607 7323 1.767
Scotland S 304 2.040 3864 2.317 263 0.537 4737 0.607
Scotland B 494 14.113 17220 14.970 494 2.770 21578 3.113

Road S 899 1.563 1813 1.767 899 0.607 1559 0.620
Road B 1278 2.217 1672 2.223 1278 1.793 2755 1.813
Curve 1 306 0.217 7948 0.300 301 0.067 7948 0.090
Curve 2 300 0.270 10067 0.403 300 0.107 10069 0.170
Curve 3 836 1.090 49943 1.797 811 0.447 49943 0.600
Curve 4 803 1.643 95842 2.673 810 0.710 95842 0.847
Curve 5 2018 2.587 99945 4.067 2018 0.953 99945 1.310
Curve 6 2034 3.953 196987 5.947 2091 1.553 196987 2.263
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Fig. 4. This figure shows the percentage of edges filtered by SPFCP-D at each iteration of the
cutting plane algorithm used to solve the Lagrangian relaxation

Fig. 5. This figure shows the percentage of edges filtered by SPFCP-D at each iteration of the
interval partitioning algorithm used to solve the Lagrangian relaxation

multipliers much earlier in the search, which results in a much quicker computation of
the lower bound as well as more filtering at earlier stages of the optimization. Also,
it needs less iterations close to the optimal multipliers where the interval partitioning
algorithm considers quite a few very near optimal multipliers before the desired ap-
proximation quality is achieved. The cutting plane needs just one iteration once that it
is close enough to the optimum. We believe it is for that reason that the algorithm is
slightly less effective in its filtering abilities. Still, we prefer the cutting plane algorithm
over interval partitioning since it is able to filter almost as many edges in a fraction of
the time.
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4.5 Filtering for the RCSPP

In this section we compare the performance of the SPFCP algorithm against previously
developed filtering algorithms for the RCSPP. Particularly, we compare against the algo-
rithm from Aneja et al. (AN) and the algorithm from Beasley and Christofides (BC) [1,
4]. Both AN and BC only remove edges from the graph without detecting those edges
that must be visited by all improving paths. AN considers the pure shorter-path con-
straints on the objective and the resource only, without integrating them in a Lagrangian
fashion. BC performs filtering for the optimal Lagrangian multiplier. It is important
to note here that suboptimal Lagrangian multipliers can have stronger filtering abili-
ties than the optimal ones [16]. Therefore, the idea of CP-based Lagrangian relaxation
makes sense, i.e. it is a reasonable approach to filter even during the optimization of the
Lagrangian dual and not just for optimal multipliers only.

Table 5 shows the results for experiments using the directed input graphs and SPFCP-
D-BD versus AN and BC. Comparing BC and AN first, we find that BC filters much
better, but also takes significantly more time to do so. This is not surprising, since BC
needs to solve the Lagrangian dual whereas AN works by just four shortest-path compu-
tations. We observe that SPFCP can increase the filtering effectiveness further (by 40%
on average) while using less computation time than BC but still about twice as much
as AN. The fact that SPFCP runs faster than BC has to be attributed to the algorithm’s
ability to filter out most of the edges in the first few iterations of solving the Lagrangian
dual, thereby reducing the graph size and making successive iterations quicker. While
SPFCP filtering works slower than AN, from the solution times of the RCSPP algo-
rithms LSA and MZ on the filtered graphs we see that the additional effort is very worth-
while in the context of the RCSPP. Since this problem, though NP-hard, is still relatively
easy to solve, we conjecture that the improved filtering power of shorter-path filtering
in combination with CP-based Lagrangian relaxation will probably pay off even more
in the context of more complex problems that incorporate shorter-path constraints.

5 Conclusions

We provided an experimental evaluation of shorter-path filtering by applying it to the
resource constrained shortest path problem. We have compared the undirected and the
directed versions of shorter-path filtering and found that the undirected version, where
applicable, works about twice as fast while the directed version is more effective and
enjoys wider applicability. Regarding the identification of edges that must be visited by
all improving routes, we found that this ability is of use only in rare special cases where
no alternative improving paths exist.

Further, we have seen that, in the context of CP-based Lagrangian relaxation, the
choice of the algorithm solving the Lagrangian dual can have a significant impact on
the overall performance of the filtering algorithm. For one-parameter relaxations, we
have found that a method based on cutting planes can be much more efficient than an
interval partitioning algorithm.

Finally, our experiments showed that, even for this comparably simple problem, an
increase in filtering power can yield to significant performance improvements and that
shorter-path constraint filtering outperforms previously developed filtering algorithms
for the RCSPP.
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Abstract. Constraint programming (CP) based column generation uses
CP to solve the pricing subproblem. We consider a set partitioning for-
mulation with a huge number of variables, each of which can be gener-
ated by solving a CP subproblem. We propose two customized search
strategies to solve the CP subproblem, which aim to improve the coor-
dination between the master problem and the subproblem. Specifically,
these two strategies attempt to generate more promising columns for the
master problem in order to counter the effect of slow convergence and the
difficulty of reaching integer solutions. The first strategy uses the dual
variables to direct the search towards columns that drive the relaxed
master problem faster to optimality. The second strategy exploits the
structure of the constraints in the master problem to generate columns
that help to reach integer solutions more quickly. We use a physician
scheduling problem to test the strategies.

1 Introduction

Constraint programming (CP) based column generation uses CP to solve the
pricing subproblem in a column generation algorithm. First introduced by Junker
et al. [10], it has been subsequently used for various applications such as airline
crew scheduling [6, 17] and vehicle routing [15]. In these applications, the master
problem corresponds to a set partitioning model and the pricing subproblem
is formulated as a constrained shortest path problem. Although dynamic pro-
gramming is generally used to solve constrained shortest path problems, some
complex constraints can be difficult to handle within this framework. In this
context, CP allows more flexibility and can extend the scope of applicability
of column generation algorithms. It is also worthwhile to note that not all
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practical applications give rise to constrained shortest path subproblems. For
example, in a constrained cutting-stock problem, the pricing subproblem is a
constrained knapsack problem. Again, in this context, CP can be useful since
the subproblems can include complex constraints in addition to the knapsack
structure [7].

Column generation for linear programming (LP) [4] and integer programming
(IP) [8, 9] dates back to the 60s. During the last 20 years or so, it has been
used extensively to solve IP problems with a huge number of variables. In this
context, the LP relaxation is solved by column generation and integer solutions
are obtained by branching. When column generation is repeated at each node of
the branch-and-bound tree, we obtain the so-called branch-and-price algorithm
[1, 5, 18, 19]. As pointed out by many authors, the main difficulty when solving
these huge IPs by column generation is to achieve the right balance between
two different objectives: 1) try to solve the LP relaxation of the master problem,
and 2) try to obtain an integer solution to the master problem. In branch-and-
price algorithms, the second objective is attained by clever branching rules, while
the first one is achieved through the coordination between the master problem
and the pricing subproblem provided by the dual variables associated to the
constraints of the LP relaxation.

The goal of this paper is to show that, in the context of CP based column
generation, these objectives can also be reached by selecting an appropriate
branching scheme in the pricing subproblem, e.g., by devising customized se-
lection strategies in a standard CP based tree search algorithm. These selection
strategies will guide the search towards “good” columns and thus help the master
problem to reach LP relaxation optimality, as well as integrality. Note that using
such customized selection strategies in solving the pricing subproblem makes the
CP based column generation framework even more attractive.

The paper is organized as follows. First, we present the formulation of the
master problem: we consider a set partitioning formulation with different restric-
tions on the subsets. Since many applications found in the literature fall into this
category (many others are also set partitioning models, but with the same re-
strictions on the subsets), we will use this framework to develop our selection
strategies. The next section discusses how to model the pricing subproblem and
describes two selection strategies: the first one uses the dual variables to direct
the search towards columns that drive the LP master problem to optimality;
the second strategy exploits the structure of the constraints in the master prob-
lem to generate columns that help to reach integer solutions. We illustrate these
strategies on a difficult personnel scheduling problem, dealing with the planning
of work schedules for physicians in the emergency room of a major hospital.
Section 4 presents the particular CP model used in this case. In Section 5, we
present computational results that illustrate the behavior of the search strate-
gies in the context of a price-and-branch implementation (column generation
to solve the LP, followed by branch-and-bound on the limited set of variables
obtained after column generation). We conclude by summarizing our results and
by discussing extensions to our work.
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2 The Master Problem

Suppose we have a set of shifts K to assign to a set of employees I. Each shift
must be assigned to exactly one employee. There are several constraints that
limit the number of feasible schedules for each employee (see Section 4 for an
illustrative example). To model this problem, we introduce a set Pi of feasible
schedules for each employee i ∈ I. Each feasible schedule p ∈ Pi is made of
a number of shifts; we let δp

k equal 1, if shift k belongs to schedule p, and 0
otherwise. Assuming that there is a cost cp

i for assigning schedule p to employee
i, we obtain one of the most common forms of huge IP models amenable to
solution by column generation, the set partitioning formulation with different
restrictions on the subsets [1]:

min
∑
i∈I

∑
p∈Pi

cp
i y

p
i (1)

∑
i∈I

∑
p∈Pi

δp
kyp

i = 1, k ∈ K, (2)

∑
p∈Pi

yp
i = 1, i ∈ I, (3)

yp
i ∈ {0, 1}, i ∈ I, p ∈ Pi. (4)

The partitioning constraints, (2), simply state that each shift must be assigned
to exactly one employee. Constraints (3), often called convexity constraints, as-
sure that each employee gets one schedule, when combined with the integrality
constraints (4). This model is the column generation formulation of a classical
scheduling problem, where each shift must be assigned to exactly one employee
and there are several constraints for each employee. In some applications, mul-
tiple employees can be assigned to the same shift, in which case the partitioning
constraints (2) are simply rewritten with a right-hand side corresponding to
the number of employees assigned to that shift. This model arises in many ap-
plications, such as airline crew scheduling [6, 17] and the classical generalized
assignment problem [16] (the pricing subproblem in this case is a collection of
knapsack problems). When the pricing subproblems are identical for all employ-
ees, we can aggregate the yp

i variables and replace them by yp =
∑

i∈I yp
i . The

convexity constraints are then often removed because it is common in many ap-
plications to have |I| not fixed. Examples of this type of master model arise in
vehicle routing [15], as well as in the classical cutting-stock problem [8, 9].

Since the number of variables in this set partitioning formulation is huge, they
are generated dynamically by solving the LP relaxation of a restricted model
(with only a subset of the variables) and by collecting the values of the dual
variables associated to the constraints of the problem. These dual values are then
transfered to the pricing subproblem that will try to find at least one variable
with negative reduced cost (such variables have not yet been generated, since at
optimality of the restricted LP relaxation, all variables have non negative reduced
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costs). In our case, if we denote by λk and μi the dual variables corresponding
to constraints (2) and (3), respectively, the reduced cost for variable yp

i is given
by

cp
i = cp

i −
∑
k∈K

δp
kλk − μi. (5)

The pricing subproblem decomposes into one problem for each employee, de-
fined by the constraints corresponding to that employee. The objective of that
employee subproblem is to find the solution with the least reduced cost. In prac-
tice, we do not want to solve this subproblem optimally; it is generally enough
to identify a small number of negative reduced cost solutions. Once these vari-
ables have been identified, they are added to the restricted LP relaxation and
we proceed with another iteration, until the LP relaxation is solved (to prove
optimality, we need an exact algorithm for solving the pricing subproblem) or a
maximum number of iterations has been reached. Typically, the LP relaxation of
such huge set partitioning formulations are very difficult to solve as they exhibit
degeneracy and slow convergence (see [11] and [14] for recent contributions on
improving the solution of the LP relaxation in column generation algorithms).

Once the LP relaxation is solved (in an exact or heuristic way) an integer
solution can be found by branching. One alternative is to perform branch-and-
bound using the set of columns obtained after solving the LP relaxation, but
this is a heuristic method, as some non generated columns might appear in an
optimal solution. If the column generation scheme is repeated at each node of the
search tree, we obtain a branch-and-price algorithm, which is an exact method,
provided the pricing subproblem can be solved to optimality.

3 Search Strategies for the Pricing Subproblem

Recall that the pricing subproblem decomposes by employee. In each employee
subproblem, we will assume that the schedule can be decomposed by day because
no more than one shift can be assigned to the employee on any given day. This
allows us to define one variable xj for each day j ∈ J in the employee subproblem;
thus we have a vector of variables X = (x1, x2, ..., xn), where n is the number of
days in the planning horizon. The domain of each variable xj , D(xj), is defined
as the set of shifts required on day j, plus a dummy shift that represents the
outcome that the employee does not work on day j. One can take this dummy
shift into account in the master problem by adding partitioning constraints for
each day corresponding to the dummy shift, with a right-hand side equal to
(number of employees - number of shifts required on that day). In this way, dual
values associated to these dummy shift constraints can be taken into account
when solving the pricing subproblem.

Another alternative for modeling the employee subproblem is to use a set
variable representing the shifts that can be assigned over the whole planning
horizon [6]. In this setting, a constraint such as “no more than one shift per day”
would be modeled using a shift graph, where each node corresponds to a shift on
a given day and each arc connects two possible consecutive shifts; thus, in this
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graph, there would be no arc connecting two shifts on the same day. With our
formulation, these constraints are implicitly taken into account. Moreover, we
will use them to define global constraints specialized to the physician scheduling
problem that we consider in our study (see Section 4). Note that adapting our
search strategies to the model with set variables is a straightforward task.

Often, the dominant terms in the reduced costs, (5), are the dual values
corresponding to the λk variables (since feasibility in the master is an issue).
Moreover, the costs associated to the assignment of a particular shift do not
differ significantly by employee (this is the case in the application presented in
Section 4). In this situation, by solving the employee subproblems independently
with the same search strategy, we would end up with many schedules that are
similar from one employee to another. This implies that reaching an integer
solution that satisfies the partitioning constraints (2) is a difficult issue because
several columns for many employees would share the same shifts.

The first search strategy, based on the values of the dual variables, attempts
to drive the search towards solutions with negative reduced costs. The objective
of this Dual strategy is thus to speed up the resolution of the LP relaxation of
the master problem. A similar strategy, called Lowest Reduced First, has been
proposed by Fahle et al. [6]. In this strategy, the shift with the smallest reduced
cost over the whole planning horizon is selected and assigned to the employee.
In our approach, we aim to introduce more variability in the selection strategy
from one employee to another to avoid generating similar schedules. We achieve
this objective by scanning the days and, for each day, by selecting the shift with
the lth largest dual value λk (which is the dominant term in the reduced cost),
where l is randomly chosen, with a bias towards the largest values. By choosing
different seed values for the random number generator, we obtain variability in
the schedules generated for different employees.

The second strategy tries to speed up the search for integer solutions in the
branch-and-bound (-and-price) phase; we call it the Master strategy, since the
idea is to take into account the partitioning constraints (2) of the master problem
in the selection process. We simply store Nsj , the number of times each shift
s on any given day j has been assigned to another employee when solving the
current pricing subproblem. When solving an employee subproblem, we scan the
days, and for each day j, we choose the first shift s (in arbitrary order) for which
Nsj is less than the right-hand side of the partitioning constraint corresponding
to shift s (note that this definition allows for right-hand side values larger than
1). If there is no such shift, we choose a shift arbitrarily. In addition, to avoid
generating similar schedules from one column generation iteration to the next,
we change the order for solving the employee subproblems. Note that, instead of
choosing the shifts in arbitrary order, we could have biased the selection towards
the shifts with the largest dual values, as in the dual strategy. However, we first
wanted to examine the effects of each strategy independently.

We will present computational results of these two strategies on a physician
scheduling problem, to be described in the next section. Before examining the
particular constraints of that problem, we comment on how we have modeled
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the negative reduced cost constraint. As in [6], we have used a simple version
where the constraint is used only for pruning and not for domain reduction. As
shown by these authors, this version of the reduced cost constraint is clearly
inferior, especially for large-scale instances, to the shortest path constraint they
developed, which performs domain reduction in an efficient way. Since we focus
on the search strategies in the pricing subproblems and their impact on solv-
ing the master problem, we expect that our conclusions will hold as well if we
use shortest path constraints instead of the simple version of the reduced cost
constraints.

4 Illustrative Example: A Physician Scheduling Problem

As illustrative example of our approach, we use a simplified version of the physi-
cian scheduling problem described in [2] (a similar problem, also modeled with
CP, can be found in [3]). In this problem, a group of physicians must be as-
signed to a predefined set of shifts in order to satisfy the requirements of an
emergency room of a major hospital. The schedules are planned for the next n
days; typically, the planning horizon varies between two weeks and six months.

Several types of rules must be satisfied in order to obtain acceptable working
schedules. First, there are a few compulsory rules, e.g., rules that must absolutely
be enforced. Demand rules are the most basic in this category. They define how
many physicians should work at different periods of a day and which responsi-
bilities are attached to particular shifts. Each day is divided into three periods
of eight hours: day, evening and night. Three physicians (two on weekends or
holidays) work during day and evening shifts, including one exclusively in charge
of traumas (“heavy” emergencies). “Trauma” shifts are considered heavier than
“regular” shifts (which mostly involve the treatment of “light” cases and patients
in stabilized condition). At night, there is only one night shift, the physician as-
suming the responsibilities of trauma and regular shifts. Three days per week,
one physician works a four-hour shift, the “follow-up” shift, when he receives by
appointment patients that have recently been treated at the emergency room.
Other compulsory rules include: vacations, days-off, or particular shifts requested
by the physicians, and the basic ergonomic rule: “there must be at least 16 hours
between the end of one shift and the beginning of another one”.

The demand rules are implicitly taken into account in the definition of our
variables. The other rules dealing with preassigned shifts are easily modeled, as
well as the basic ergonomic rule, which is formulated as follows:

xj = s⇒ xj+1 �= t, j ∈ {1, 2, ..., n− 1}, s ∈ Sj , t ∈ Fsj , (6)

where Sj is the set of required shifts on day j and Fsj is the set of forbidden
shifts once shift s is assigned on day j (all forbidden shifts are located on day
j+1). Another way to model this constraint is by using the shift graph described
in Section 3.

In addition to these basic constraints, the physicians have their own require-
ments regarding the number of consecutive night shifts they accept to work: some
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prefer to work three consecutive nights, while others do not want to work more
than one night at a time, and some others accept any number of consecutive
nights, as soon as it never exceeds three. These specific requirements can be eas-
ily modeled using the stretch constraint [12]. If we denote by S = {1, 2, . . . ,m}
the set of shifts that can be assigned on any given day (e.g., S = ∪j∈JSj),

stretch(X,S,L−, L+) (7)

ensures that, in any instanciation of the variables X = (x1, x2, . . . , xn), the
length of any sequence of consecutive days assigned to shift s ∈ S is between l−s
and l+s , where L− = (l−1 , l−2 , . . . , l−m) and L+ = (l+1 , l+2 , . . . , l+m). The stretch con-
straint also serves to limit to four (in some cases, five) the number of consecutive
shifts of any type.

In addition, there are constraints on the minimum and maximum num-
ber of hours each physician can work every week. These constraints are mod-
eled using the two global constraints distribute [13] and ext. The constraint
distribute(C,S,X) ensures that each value s ∈ S appears exactly cs times in
X, where C = (c1, c2, . . . , cm). The constraint ext(M,Γ ) lists all the admissible
d-tuples of variable M = (m1,m2, . . . , md). Let

– H, an m-dimensional vector such that Hs equals the number of hours worked
during shift s (there are only three possible values: 0, for the dummy shift,
4, for the follow-up shift, and 8, for all other shifts);

– Y = (y1, y2, . . . , yn), an n-dimensional vector of variables defined as yj =
Hxj

;
– M = (m0,m4,m8) a 3-dimensional vector of variables representing the num-

ber of times 0-hour, 4-hour and 8-hour shifts appear in Y .

The constraint on the minimum (minH) and maximum (maxH) number of
working hours every week can then be written as:

Y = HX ∧ distribute(M, {0, 4, 8}, Y ) ∧ ext(M,Γ ), (8)

where the set of admissible triples Γ is given by Γ = {(m0,m4,m8) ∈ [0,m0]×
[0,m4] × [0,m8] | minH ≤ 4m4 + 8m8 ≤ maxH, m0 + m4 + m8 = 7}, with
m4 = �maxH/4�, m8 = �maxH/8� and m0 = 7− (m4 + m8).

Many other rules exist in the application described in [2], but our simplified
version contains only the constraints described so far. This choice allows to
capture enough of the complexity of the problem, and to illustrate as well the
flexibility of the modeling approach.

The objective function is defined so as to ensure that different types of shifts
are fairly distributed among physicians. In our simplified version, we try to
achieve a fair distribution of two types of antagonist shifts: days versus evenings,
and regular versus trauma. Positive and negative deviations with respect to an
ideal ratio are penalized, thus defining the cost of a schedule over the whole
planning horizon.
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5 Computational Results

The objective of our computational experiments is to compare the two search
strategies, Dual and Master, when embedded within a simple column generation
algorithm that proceeds in three phases:

– Initialization: During this phase, an initial set of columns is generated. For
this purpose, we use a CP engine to solve a global problem containing all
the constraints of the subproblem, as well as the partitioning constraints;
this method ensures that at least one globally feasible set of schedules is
generated (a similar approach is presented in [17]).

– Column generation: This phase is the CP based column generation method,
with either the Dual or the Master search strategy being used to solve the
subproblem; the search is stopped for each employee subproblem when one
solution with negative reduced cost is obtained. We stop this phase after a
predetermined number of iterations (40 in our tests).

– Branch-and-bound: We invoke a branch-and-bound algorithm that solves the
formulation obtained at the end of the column generation phase. This allows
to evaluate if the columns generated during the column generation phase are
sufficient to improve the initial integer solution.

The overall method is programmed with ILOG Concert (version 1.1). ILOG
Solver (version 5.1) is used for solving the subproblems and the global problem
in the initialization phase. ILOG CPLEX (version 7.1) solves the restricted LP
relaxations in the column generation phase, as well as the restricted IP model in
the branch-and-bound phase. The default parameters are used for all software
packages.

We tested the approach on an instance of the physician scheduling problem
with 18 physicians over a period of two weeks. Table 1 compares the results
obtained with the two search strategies, Dual and Master, as well as the default
search strategy implemented in Solver. For each strategy, five values are dis-
played: Z(INIT ), the objective function value of the integer solution obtained
after the initialization phase; Z(LPCG), the objective function value of the best
solution to the restricted LP relaxation of the master problem obtained at the
end of the column generation phase (recall that we stop this phase after 40 iter-
ations); Z(IPBB), the value of the best integer solution obtained at the end of
the branch-and-bound phase; Avg.CPU/iter, the average CPU time in seconds
spent per iteration during the column generation phase; Avg.Fail/iter, the av-

Table 1. Comparing the Default, the Dual and the Master Search Strategies

Strategy Z(INIT ) Z(LPCG) Z(IPBB) Avg.CPU/iter Avg.Fail/iter

Default 28816 28816 28816 3.68 200.41

Dual 28816 12028 28816 1.84 0.12

Master 28816 13481 13952 2.28 37.27
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erage number of failures per iteration when solving the employee subproblems
during the column generation phase.

These results indicate that both the Dual and Master strategies improve sig-
nificantly upon the default strategy. The Dual strategy quickly identifies negative
reduced cost solutions, as shown by the low number of failures and the modest
CPU time required. This strategy also exhibits the lowest objective value of
Z(LPCG), which indicates that it is the most effective for solving the LP relax-
ation. However, with the set of columns obtained after the column generation
phase, the branch-and-bound algorithm is unable to identify an improving in-
teger solution. By contrast, the Master strategy is less effective at solving the
LP relaxation, but identifies a significantly better integer solution during the
branch-and-bound phase.

Figure 1 presents, for the three search strategies, the evolution of the objec-
tive value during the column generation phase. The default strategy generates
negative reduced cost solutions at every iteration but these added columns do
not contribute to change the objective value. The Dual strategy is unable to
improve the objective for the first 25 iterations, but then exhibits a sudden
drop and a constant improvement at every iteration. These observations are
consistent with the common knowledge in the column generation literature that
the dual information is relatively poor during the first iterations. The Master
strategy improves the objective value very early and then continues to make
progress, although it is outperformed by the dual strategy in the last iterations.
These results suggest that a hybrid method combining the Dual and Master
strategies would be indicated to take advantage of the relative merits of both
approaches.
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6 Conclusion

In this paper, we have presented and compared two search strategies for solving
the pricing subproblem in CP based column generation. The dual strategy aims
to accelerate the solution of the LP relaxation of the master problem, while the
master strategy drives the search towards integer solutions. We have presented
computational results on an instance of a physician scheduling problem. These
results show that these two strategies are promising and suggest that combining
them might be even more effective. Further tests on other classes of problems
would confirm the interest of such customized search strategies in CP based
column generation. In addition, several other comparisons might be instructive:

– A comparison of the search strategies using the shortest path-based negative
reduced cost constraint [6] rather than the simple pruning version used here;

– A comparison of the relative gains in terms of CPU time and branch-and-
bound tree size obtained by sophisticated master problem branching rules
(instead of the CPLEX default strategy used in our experiments) versus
subproblem search strategies;

– An investigation of whether the subproblem search strategies can add to the
gains achieved by more sophisticated master problem branching rules in a
branch-and-price algorithm.
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Abstract. Producing work schedules for airline crew normally results in 
individually different schedules. Some airlines do however want to give the 
same schedule to groups of people. The construction of such groups must 
respect certain rules, provide a good matching of certain factors and fit well into 
the normal process of producing anonymous trips starting and ending at the 
home base and assigning these to the crew. In this paper we present an 
application, implemented and delivered to a large European airline, which 
addresses these needs. The problem is challenging to solve for certain cases. 
Hence two different approaches have been applied, one using constraint 
programming and the other using column generation. These two methods are 
described and compared – along with computational results. 

1   Introduction 

Constructing work schedules for airline crew is typically divided into a crew pairing 
problem and a crew rostering problem. In the pairing problem anonymous pairings, or 
trips starting and ending at the home base, are constructed from the flight legs such 
that the crew need of each flight is covered. Following the pairing construction, the 
pairings are assigned to individual crew together with other activities such as ground 
duties, reserve duties and off-duty blocks, to form rosters. For more information on 
crew pairing and rostering we refer to the surveys of Andersson et. al. [1] and Kohl 
and Karisch [7]. 

Some airlines want to give the same work schedule/roster to a group of cabin crew 
members (purser and cabin attendants). This is to ease planning, increase the 
robustness of the schedule and for social reasons. Constructing such groups can be 
done before the rostering step. Then, a representative person from each group 
(normally the purser) is assigned a roster by the crew rostering system, which is then 
copied to the rest of the group members. If the group has been poorly formed, it will 
not be possible to copy all pairings. For example, if one crew member has a pre-
assigned duty (e.g. course), a pairing touching that day cannot be assigned. Such 
“drop-out” pairings must be resolved manually. 
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The construction of crew groups should therefore be solved so that the number of 
problems to handle in successive steps is minimized (both for the current scheduling 
period and future ones). Thus we want to achieve “homogenous” groups. 

An application solving the crew-grouping problem has been developed and 
delivered to the Spanish airline Iberia as an addition to the Carmen Crew Rostering 
system. It has been used in production since spring 2002. Each problem instance 
solved includes 300-1200 crew and results in 30-200 groups of 3-13 persons each. 

There are several approaches to formulating and solving this problem. The first 
delivered version used pure Constraint Programming (CP) [2]. During spring 2004 a 
second version was delivered based on Column Generation (CG) where the 
generation makes use of CP techniques (enumeration with some simple look-ahead 
domain reduction). The idea of combining CG and CP is not new (see e.g. Junker et. 
al. [6]) and many papers have been dedicated to comparing Integer Programming and 
CP methods for various applications. Grönkvist [4, 5] for instance, compares the 
methods on the Aircraft Scheduling Problem. 

The initial reasons for choosing CP were the uncertainty of the problem 
formulation and constraints involved. Further the initial descriptions indicated a 
highly constrained problem including non-linear constraints and objectives. The need 
for modeling flexibility and a restricted budget were also important factors. 

During the elaboration and development of the CP version the problem proved to 
be less constrained than anticipated and turned out to be more of an optimization 
problem than a feasibility problem. The idea of a mathematical programming 
formulation started to evolve and was investigated in a master’s thesis work [3]. The 
results were good, however not all issues were considered. Hence it was decided to 
develop a CG version. The normal cases (January-November) to be introduced in the 
following were easily solved, but the “December” problem for the medium and large 
fleets proved to be surprisingly hard to solve. Thus the development of several 
advanced features was needed, such as stabilized column generation [8], and branch 
and price using constraint branching [9]. All these features along with a careful tuning 
of parameters have been necessary in order to achieve the goal of finding better 
solutions within similar or shorter execution times.  

After giving a problem description, the pure CP model is described followed by the 
CG model. In sections 4 and 5 the solution procedures are outlined. In section 6 we 
describe the special considerations for the month of December. Computational results 
are presented in section 7 along with discussions on the suitability of the different 
methods, properties of the problem and alternative approaches. We end with a 
conclusion in section 8. 

2   Problem Description 

The problem is basically to assign crew members to groups such that the best possible 
matching is achieved minimizing the exceptions to handle when assigning schedules 
to the groups. The number of crew per group depends on the aircraft type. The cost 
factors in the matching problem are: 
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• Preferred days off: Match crew with the same or overlapping wishes for days off. 
The matching is done towards the purser if she has any preferred days off, 
otherwise towards the crew with maximum number of preferred days off. 

• Pre-assignments: Match crew with the same or overlapping pre-assignments 
(courses etc). This matching is also done towards the purser if she has any pre-
assignments, otherwise towards the crew with the most pre-assignments. 

• Historic values: Match crew with excess or deficit for selected fairness values 
(e.g. flights to certain destinations, overtime etc). 

• Work reduction: Match crew with the same work reduction together. Specifically 
it should be avoided to mix fulltime and reduction crew in the same group. 

For the month of December there are special considerations described in section 6. In 
the normal problem (January - November), the minimum number of groups shall be 
constructed. The total cost for the constructed groups, which we define later, shall be 
minimized. 

A number of rules are considered: 

• Buddy Bids. The crew members give buddy bids saying that two or more people 
want to fly together. These buddy bids are “closed”, meaning that one person can 
only participate in one bid. The buddy bids must be respected. Crew in buddy bids 
must be placed in a group while other crew can supplement groups if necessary.  

• Pursers. There must be exactly one purser in each group.  
• Incompatibles. There can also be crew forbidden combinations, which must be 

avoided. 
• Granted Days Off. The number of granted days off is limited and certain patterns 

of granted days off are not allowed: Before and after a sequence of two or more 
consecutive granted days off there must be a stretch of at least 3 working days. 
Allowed patterns where × is a granted day off are: 
 ×000××  ××000× 
Not allowed patterns are: 
 ×00××   ×0××    ××00×   ××0× 

• Inexperienced/transitions. Limits can be set on the number of inexperienced crew 
per group, or crew in a transition phase from one type of aircraft to another.  

• Work reduction. Cabin attendants must have less or the same work reduction as 
the purser. 

3   Model Formulation 

For modeling purposes we consider all crew to be in a so-called subgroup. A 
subgroup can consist either of all crew in a buddy bid or a single crew in no buddy 
bid. A crew member belongs to only one subgroup. Further since a group must have 
exactly one purser, each subgroup with a purser is associated with exactly one group. 
Let S be the set of subgroups. Further S is partitioned into two parts: SB containing 
subgroups that must be in a group (buddies) and SC containing subgroups that do not 
necessarily have to be in a group (single crew). Let F denote the set of fairness 
factors. 
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3.1   The CP Model 

We first present the normal model and then in section 6.1 present the additions 
necessary for handling the special considerations in December. 

Each subgroup i has the following basic properties, calculated from its set of crew: 

iN  Number of crew in the subgroup. 

iD  A set of preferred days off. 
G

iD  A set of granted days off, which is a subset of Di. 

iP  A set of pre-assigned days. 
H

fi

L

fi HH ,  Lowest and highest historic value (integer) for fairness factor f∈F. 

+−
fififi NNN ,, 0  Number of crew with negative, zero and positive historic value for 

fairness factor f∈F. 
T

i

I

i NN ,  Number of inexperienced crew and crew in transition phase 

iR  Work reduction factor (takes values 5, 3, 2, 1 or 0, where 5 is half-
time and 0 is full-time) 

Let Sj denote the set of subgroups for group j, with the initial domain S. Thus the 
following properties can be calculated for the group: 
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Let Nj, Dj, etc denote the properties for the purser subgroup associated with group j. 
Then the cost cj for group j is calculated, using weight factors WD, WP, WHS, WHR, WR 
and cost factors as follows: 
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− Days Off. Limit the number of non-matching days off compared to crew with max 
number (use purser as max if she has any days off). 
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− Pre-Assignments. Same as for days off. 
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− Historic Values – Sign. Try to get all crew on excess or deficit. 
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− Historic Values – Range. Minimize the span in historic values. 
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− Reduction. 1) Don’t mix full-time and reduction. 2) Avoid spread in reduction. 
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The first row in (6) is used when both full-time crew and crew with reduction are 
placed in the same group. Since this is considered especially bad, an extra penalty of 3 
is added. The other row is used when all crew are full-time or have reduction. 

The formulation of these costs has been designed in close collaboration with the 
customer and reflects what they consider as a desirable group construction. However, 
this formulation has several numerical problems, since factors (2) and (3) are non-
additive (the cost does not increase monotonically when adding subgroups). This 
makes it difficult to calculate a good lower bound for the cost during the construction 
of a group and hence the possibility of pruning the search tree. The applied lower 
bound calculation for days off is given below. 
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Let I

kS  denote the set of subgroups that should not be put in the same subgroup 

according to incompatibility k. Then the following constraints must hold for each 
group j: 

− Incompatibilities 

kSS I

kj ∀≤ 1  (7) 

− Limit number of inexperienced crew and crew in Transition 

II

j Ln ≤ , TT

j Ln ≤ , TITI

j Ln ++ ≤  (8) 

− Limit number of granted days off 

GG

j Ld ≤  (9) 
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− No illegal patterns for granted days off 

NoIllegalPattern ( )G

jd  (10) 

− Reduction. Same or less work reduction as the purser. Let SCR ⊆ SC denote the set 
of single crew with reduction. Single crew with reduction cannot join a purser 
without reduction. 
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0 if
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Of the above constraints, (9) has the most limiting effect. 
During the construction of a group the above constraints will reduce the domain of 

Sj. This domain reduction is however rather weak, mainly due to the non-additive 
property of factors (2) and (3) – these values will therefore be bounded late in the 
construction. Moreover, since all constraints apply per group they will not propagate 
any domain reduction to other groups. 

When solving a pure CP version of the problem, we also need the following global 
constraints: 

− Each subgroup is used only once 

∅≡
j

jS  (12) 

− All crew in buddy bids must be assigned to a group 

j
j

B SS ⊆  (13) 

This CP model does not take advantage of the fact that several subgroups may have 
the same characteristics that permits us to strengthen (12) and (13). 

3.2   The CG Model 

Let G be the set of all feasible groups that can be constructed from the subgroups. 
Now we can formulate the problem as the following Set Partitioning/Set Packing 
problem: 
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where cj is the cost of group j and M is a large negative number if we are maximizing 
the number of groups, large positive if we are minimizing and 0 if we are only 
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focusing on costs. Further, aij is 1 if subgroup i is in group j, and 0 otherwise. When 
several subgroups have similar characteristics it is possible to aggregate the model so 
that the bi’s represent the number of similar subgroups of type i. Each subgroup type 
can then participate in the same group more than once and some subgroups can be 
used more than once resulting in the following limitations: 

iij ba ≤≤0 and ( )ijiSij abx /min0
∈

≤≤  (15) 

The size of the set G is potentially exponential in the number of subgroups. The 
model is hence solved for a restricted number of groups where the values of the dual 
variables of the LP-relaxed model are used for finding new groups that correspond to 
columns with negative reduced cost. When no group exists with negative reduced cost 
the LP-relaxation is optimal. The problem of finding these groups is very similar to 
the problem formulated in section 3.1. Here we are searching for one feasible group at 
a time resulting in a new column in the model. The optimal solution to the LP-
relaxation is however very unlikely to be integer. To get optimal integer solutions, the 
column generation needs to be embedded in a Branch & Bound procedure where 
columns can be generated in every node of the Branch & Bound tree. This procedure 
is referred to as Branch & Price. 

4   Solving the CP Model 

To solve the pure CP model, a customized constraint NoIllegalPattern ( )G

jd  was 

implemented. The filtering algorithm applies the following propagations whenever 
the domain of G

jd  changes. 

Remove impossible values at start or end of a sequence 
(0 means not in domain, ? means possible in domain, × 
means required in domain. Affected values are underlined.) 

0?××   00×× 
??0××   000×× 
××?0   ××00 
××0??   ××000 

Add required values at start or end of a sequence ×?××   ×××× 
×??××   ××××× 
××?×   ×××× 
××??×   ××××× 

We then apply the following three-step approach: 

1. Initial solution plus refinement. The search strategy selects a group (variable Sj) 
and then finds a suitable subgroup (value) to assign to that group. This continues in 
a depth-first search. Having found an initial solution, the refinement process adds 
additional constraints that improve the quality of the solution by setting limitations 
on the max values of D

jc  (days off), P

jc  (pre-assignments), HS

fjc  (historic values, 

sign) and then resolving the problem. This approach has been used to reduce the 
size of the problem and increase the domain reduction. 

2. Global search for cheaper solutions. The solution found in step 1 is further 
improved by adding a constraint that forces the total cost to decrease for each new 
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solution and then search for better solutions. The same search strategy is used as in 
step 1. When the cost decreases slowly, some additional constraints are added that 
forces very expensive groups to get a lower cost (and hence be modified). Due to 
the very large search tree this step cannot be completed within reasonable time. 
Thus early decisions made in the search strategy are not likely to be altered. 

3. Local search for cheaper solution. In this final step, groups are picked in pairs from 
the current solution and all possible solutions for these two groups with their used 
subgroups are calculated to see if a cheaper solution can be found. All pairs of 
groups are treated in this way. This step is repeated until no better solution can be 
found. 

It should be noted that the pure CP model does not assume minimizing/maximizing 
the number of groups. Instead this is built into the search heuristic by first assigning 
buddy bids (large before small) and then filling up the groups to the desired size. If 
the minimum number of groups is wanted, no more groups are constructed. If the 
maximum number of groups is wanted, the algorithm continues constructing groups 
until the available groups or subgroups are exhausted. This method does not guarantee 
to produce the minimum possible number of groups, but will come reasonably close. 

The order in which groups and subgroups are picked and assigned is crucial, since 
that will set the quality of the solution after step 1 and 2. The ordering is a trade-off 
between greediness (to find high-quality/low-cost solutions) and feasibility (to 
actually find solutions). Since the domain reduction is rather poor (see the end of 
section 3.1) we get a very large search tree. Therefore a very greedy approach can 
easily result in not finding feasible solutions within a reasonable computation time. 

The search heuristic gives special consideration to granted days off, since that is 
crucial for finding feasible solutions (due to constraint (9) and (10)). Apart from that, 
it looks at the domain of the cost (cj) and the lower bound of the additional cost when 
adding different subgroups. If a good solution has been found after step 2, the local 
search will only make minor adjustments, but if the solution has poor quality after 
step 2, the last step will repeat many times and can therefore be very time-consuming 
(although it is surprisingly effective in decreasing the cost). 

Several drawbacks can be noted regarding the local search in step 3: It only uses 
subgroups that are already in the solution (not unused subgroups); it cannot achieve 
modifications that include swapping subgroups between three or more groups; it 
cannot escape from local minima. 

5   Solving the CG Model 

To solve the CG model we apply the following three-step approach: 

1. Set-up an initial problem matrix with a) columns from a simple initial construction 
heuristic, which ensures the existence of at least one IP-feasible solution and gives 
an upper bound, b) columns from an initial generation.  

2. Solve the LP-relaxation and perform pricing (column generation) to generate better 
columns based on the dual values until no better columns can be constructed. 

3. Perform branch & price until no better solution can be found or the time limit is 
reached. When the time limit is reached a final IP is solved consisting of all 
obtained columns and no variables fixed. 
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5.1   The Pricing Problem 

A constraint handling procedure is implemented for testing legality of a group. With 
this procedure a subgroup infeasibility table is set-up: For each subgroup we have a 
set of subgroups for which the subgroup is pair-wise infeasible. During the 
construction of groups this infeasibility table is used to reduce the domain of the 
problem. The constraint handling is used to verify the legality of each group before 
and after adding a subgroup to it. 
The generation of columns is done by considering one group at a time and assigning 
subgroups from a list of feasible subgroups in a depth first search procedure. The list 
of subgroups to consider is randomized (to increase search coverage) and sorted 
according to dual value (positive before zero before negative). During the assignment 
of subgroups two pruning techniques are applied: 

• Cost cuts: When assigning a subgroup with dual value  0 we know that the sum 
of duals cannot increase (due to the sorting applied). Then we calculate a lower 
bound for the group cost, which is also a lower bound on the reduced cost. When 
the lower bound becomes positive, we stop exploring the current node and 
backtrack. 

• Pattern cuts: The constraint NoIllegalPattern ( )G

jd  can be used to check whether 

any specific values must be added to G

jd  in order to maintain legality. For 

example: if { }10,9,8,5=G

jd  we know that 6 and 7 must be added – otherwise the 

constraint will not hold. In such situations we loop over the remaining subgroups to 
see if these needed additions can be found. If not, there is no need to explore the 
current node any further and we backtrack. During the looping over remaining 
subgroups we can also remove all subgroups that are infeasible with the currently 
assigned ones according to the infeasibility table and any subgroups that would 
result in breaking any constraints. If this results in an empty list of remaining 
subgroups we backtrack. 

Apart from the above no special domain reductions are used. We have investigated 
the use of no-goods, forward-checking etc, but the computational effort is not 
worthwhile. Solving the CP model in a CP framework as in [3] could also have been 
used, but the domain reduction did not seem to be sufficient for introducing the extra 
overhead. 

Only columns that will improve the LP solution (according to the reduced cost) 
will be used. In addition the number of backtracks in each node is limited and the 
generation reverts to the top node as soon as a valid column has been found. Thus we 
get a form of backtrack-bounded search that will get a broad coverage of the search 
tree instead of going deep into the search tree. This will improve the quality of the 
dual information. A limited time of a few seconds is spent on constructing columns 
for each group. There is hence no guarantee of finding a column with negative 
reduced cost even if such exists and we cannot prove that no column exists with 
negative reduced cost. To speed up the generation, we stop generating for a group, if 
no columns were generated for the group in the previous iteration. When no groups 
remain, we restart generating for all groups again. This greatly reduces the wasted 
time of unsuccessful search for columns. 
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The above handling relies heavily on the dual values from the previous LP 
solution. For some problem instances the dual values can fluctuate substantially, 
resulting in larger uncertainty and more iterations needed to converge. To remedy 
such cases, stabilized column generation due to du Merle et. al. [8] has been 
implemented. An alternative to this approach is to use an interior point or subgradient 
solver resulting in more well-behaved duals. 

As can be seen from the above, the column generation does not have any problem 
specific considerations.  

5.2   Branch and Price 

Branching is performed if no columns were generated in the last pricing loop or the 
reduced cost of the best column is above a certain threshold. Note that this only 
applies if the search for columns is done for all groups. 

Constraint branching according to Ryan and Foster [9] is applied for pairs of 
subgroups that have the partitioning constraint =1. The interpretation in this context is 
that either two subgroups must be in the same group or they must not be in the same 
group. When branching on the packing constraints 1, at least one of the constraints 
must be a partitioning constraint. Otherwise we cannot force them to be together since 
only one of them has to be used. 

When finding the best branching candidate (a pair of subgroups) and its fractional 
sum f, the following branching scheme is applied:  

Find f closest to 1. If f is larger than some threshold value (parameter setting) then 
apply the 1-branch, which bans columns with only one of the two subgroups, and 
continue branching. The 0-branch is not investigated upon backtrack.  

If f is smaller than the threshold value then pricing is performed both in the 1-
branch and the 0-branch. Continue branching, first in the branch that has the best LP 
objective and in the other when backtracking. When applying the 0-branch columns 
are banned which include both subgroups. 

When no more branching candidates are found, we search for an improving IP 
solution and backtrack. 

To fathom a node in the tree the lower bound of the node must be equal or larger 
than the best upper bound found so far. The LP bound is however only a valid lower 
bound if no column with a negative reduced cost exists. To establish this fact would 
require a complete enumeration of the pricing problem, which is generally not 
possible. Since we have no ambition of solving the problem to optimality by 
completely enumerating the branching tree, we can cut off a branch, which could 
contain an improving solution by assuming that the LP objective is a valid lower 
bound. So, if the LP objective in a node is worse than the best found upper bound, 
that node is fathomed and we backtrack. 

The branching tree is only explored to a limited depth. If the max depth or time 
limit is reached we call the IP solver to search for a better IP solution and backtrack to 
the top of the tree. At the end of the search we finally call the IP solver to search for 
an improving solution on all generated columns. 

After a branching decision the pricing procedure must ensure that columns are 
generated which follows earlier made branching decisions. For a specific group and 
corresponding purser subgroup we can identify branching decisions, which force a set 
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of other subgroups to be together with this subgroup. These can be added a priori. 
Given the remaining branching decisions a number of clusters of subgroups can be 
identified, which are forced to be together. During the pricing search procedure, 
clusters are added before individual subgroups not in clusters. When adding both 
clusters and individual subgroups, we check that this does not violate any branching 
decision that two subgroups must not be together. This procedure guarantees that all 
branching decisions are fulfilled. 

The constraint branching scheme does not apply for constraints where bi>1, i∈S. In 
that case one could use the general branching scheme of Vanderbeck and Wolsey 
[10]. Both the branching and the pricing procedure would however be even more 
complex and has hence not been implemented. 

6   Special Considerations in December 

We have in this section collected all problem specifics for the month of December. In 
December the following changes apply compared to the normal case:  

• The number of groups shall be maximized.  
• There is special consideration to pre-assignments – any pre-assignments on New 

Years Day (called day32) must be very well matched. 
• Due to the strong focus on day32, buddy bids containing both persons with and 

without day32 will be split in two parts. If possible, perfect matching of day32 is 
wanted. If not, it is preferred that split bids are rejoined. 

6.1   Modeling the December Problem 

First we introduce an additional basic property per subgroup 

iB  Other subgroup (the one without day32) from split buddy bid 

and then calculate the following parameters per group: 
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To avoid combining crew with and without day32, and achieve rejoining of buddies 
from split bids, the cost factor and lower bound for pre-assigned day32 are calculated 
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6.2   Solving the CG Model in December 

The search heuristic is modified for this problem, taking the day32 factor into 
consideration. The crucial thing is to decide whether to go for rejoining buddy bids or 
not, however the demand for always obtaining a feasible solution restricts the amount 
of greediness. 

6.3   The Pricing Problem for December 

A few tricks are applied in the pricing phase to make it work better for the December 
problem. The sorting of subgroups during generation is slightly refined, and as soon 
as a possible rejoining of buddy bids is found, that rejoining is tried as well. 

7   Computational Results 

The application has been implemented in C++. The CP version uses ILOG Solver 5.2 
as the constraint solver library, while the CG version uses XPress-MP 2003F as the 
optimization engine (with Coin/Osi as the programming API). 

The system has been run for all fleet types used at Iberia – the below table show 
some basic data. 

Fleet name Group size No. of crew No. of subgroups Produced no. of groups 
MD87 3 ~350-500 ~180-230 ~100-150 
A320 4 ~700-900 ~310-450 ~150-200 
B757 5 ~300-400 ~150-200 ~40-80 
A340 10 ~1000-1200 ~350-420 ~90-110 
B747 13 ~400-500 ~40-200 ~30-40 

In the following table computational results are presented for a series of instances. For 
the CG version three execution times are reported: time for first solution, best solution 
and total execution time (a time limit of 60 minutes for the normal instances and 180 
minutes for the large December instances (A340 and B747) has been used). 

Some comments concerning the results: 

• CG is generally able to find better solutions than CP. It minimizes the number of 
groups if possible and it yields better matching of day32 in December. 

• Instances for small groups (group size <= 5) are generally solved faster with CG. 
• Instances for large groups (group size > 5) require substantial amount of time and 

are generally slower with CG. 
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Num groups  
Total cost cj 

Execution time (min)1 CP CG CG-CP 

MD87 
104 
985,278 
3.7 

104 
870,356 
0.1/0.1/0.1 

 
-11.7 % 
-3.6/-3.6/-3.6 

A320 
150 
1,966,488 
14.2 

150 
1,643,148 
0.2/0.2/0.2 

 
-16.4% 
-14.0/-14.0/-14.0 

B757 
38 
437,446 
1.5 

35 
425,913 
0.1/4.3/4.3 

-3 groups 
-2.6% 
-1.4/+2.8/+2.8 

A340 
82 
521,000 
9.1 

73 
502,000 
13.6/61.1/61.1 

-9 groups 
-3.6% 
+4.5/+52.0/+52.0 

B747 
30 
476,335 
2.2 

26 
445,554 
0.8/30.1/30.1 

-4 groups 
-6.5% 
-1.4/+27.9/+27.9 

MD87, December 
120 
148,966 
3.9 

120 
113,985 
0.2/0.2/30.1 

 
-23.5% 
-3.7/-3.7/+26.2 

A320, December 
198 
3,309,710 
32.0 

198 
3,042,610 
2.4/55.0/55.0 

 
-8.1% 
-29.6/+23.0/+23.0 

B757, December 
68 
249,204 
2.4 

68 
173,245 
1.1/15.2/15.3 

 
-30.5% 
-1.3/+12.8/+12.9 

A340, December 
110 
560,935 
67.6 

110 
470,909 
51.0/70.5/181.1 

 
-16.0% 
-16.6/+2.9/+113.5 

B747, December 
31 
285,880 
1.3 

31 
241,046 
1.3/129.9/129.9 

 
-15.7% 
-0.0/+129/+129 

B747, December with 
no crew excess 

39 
909,892 
4.6 

39 
1,076,933 
76.9/181.5/181.5 

 
+18.4 
+72.3/+177/+177 

 
• For cases where there is no or very little excess of crew for group construction (last 

example), CP finds better solutions more quickly than CG. 
• A340 is the hardest since it both has a large number of subgroups and has a large 

group size, which gives a large combinatorial complexity. 

                                                           
1 The results have been produced on the following platforms: SunOS 2.7 on a SparcServer 

10000 with 16 UltraSparcII, 250MHz each, (CP) and Linux on a PentiumIII, 1300 MHz. The 
SPECint2000 figures are about 130 for the Sparc and 600 for the Pentium. Thus the times in 
the CP column are a result of dividing the actual CP times by 4.6. 
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• To achieve good matching for day32 for December, the tuning of parameters is 
crucial. The application has parameters for setting tolerance, min/max number of 
columns to generate per group and iteration, branching depth, threshold, max 
number of backtracks per generation node etc. 

Another difference is that the CP version will improve the solution over the execution 
time and stop when it fails to do so. The CG version however will find a very good 
solution early, which can be slightly improved, but it will take very long time to do so 
– see Fig.. Therefore the user has the possibility to stop the execution whenever an 
acceptable solution has been found. 

A320, December
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Fig. 1. Solution progress 

8   Conclusion 

First it should be noted that the numerical properties of the cost factors and 
constraints are a major cause for the difficulties of this problem. Reformulating some 
of these factors would probably be beneficial but such a redesign together with the 
customer was not possible to perform. Also, it is not obvious that alternative 
formulations exist that fulfills the needs of the customer. 

There are some additional properties that make this problem hard to solve even 
with decomposition: It is a Set Partitioning/Packing Problem where there is no natural 
ordering (like connection time in crew pairing/rostering and distance in vehicle 
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routing). Instead there are multiple factors that should be matched well, and these 
factors have no correlation between subgroups. 

When comparing CP and CG for this problem it is not easily said that one is better 
than the other. The expressiveness and ease of modeling was beneficial for the 
development of the CP version. The CG version does however perform better – after 
the inclusion of some rather sophisticated techniques. Further enhancements could of 
course be applied to the CP version. For example, it could consider subgroups with 
similar properties (which reduce both domains and symmetries), taking advantage of 
the mirrored formulation/channeling constraints (letting the subgroup have a variable 
for which group to belong to) and using a meta-heuristic like Tabu search instead of 
the simple local search adopted. 

On the other hand the CG formulation is more general, since it only has one 
problem specific consideration (day32) built into the solving methods while the CP 
search heuristic is much more tailored to the specific problem properties. Thus the CG 
version should be more stable to future additions and changes, which was also a 
reason for choosing that method. And there are of course further enhancements that 
could be considered to the CG version. 
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Abstract. We present an algorithmic framework for integrating solu-
tion methods that is based on search, inference, and relaxation and their
interactions. We show that the following are special cases: branch and
cut, CP domain splitting with propagation, popular global optimization
methods, DPL methods for SAT with conflict clauses, Benders decom-
position and other nogood-based methods, partial-order dynamic back-
tracking, various local search metaheuristics, and GRASPs (greedy ran-
domized adaptive search procedures). The framework allows elements of
different solution methods to be combined at will, resulting in a variety of
integrated methods. These include continuous relaxations for global con-
straints, the linking of integer and constraint programming via Benders
decomposition, constraint propagation in global optimization, relaxation
bounds in local search and GRASPs, and many others.

1 Introduction

The constraint programming and optimization communities have developed a
wide variety of effective methods for solving combinatorial optimization prob-
lems. Yet they are described in different literatures using different terminology
and implemented in a growing collection of different solvers. Recent advances in
hybrid methods show how to integrate algorithmic ideas from several sources,
but hybrid methods themselves are multiplying, since there are so many ways to
hybridize. Practical application would be much more effective if a single solver
could bring a wide variety of methods under one roof, not only to allow the user
to select the best one, but to allow the integration of techniques from different
methods.

We suggest that the goal of integration should be addressed at a fundamental
and conceptual level rather than postponing it to the software design stage. The
growing repertory of combinatorial optimization methods should be interpreted
as special cases of a single solution method that can be adjusted to exploit the
structure of a given problem. This overarching method would then dictate the
architecture of a general-purpose solver.

One approach, some elements of which are proposed in [4, 10, 11, 12, 13, 15,
17], is to view solution methods as instances of a search-infer-and-relax algo-
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rithm. The search phase enumerates restrictions of the problem, perhaps by
branching, neighborhood search, or creation of subproblems. Inference may take
the form of cutting planes, filtering, or nogood generation. Relaxation provides
bounds on the optimal value that can reduce the search space.

We show in this paper that a wide variety of solution methods have this
structure, including branch and cut, standard CP methods, popular global op-
timization methods, DPL methods for the propositional satisfiability problem,
generalizations of Benders decomposition and other varieties of nogood-based
search, partial-order dynamic backtracking and related methods, local search
metaheuristics, and GRASPs (greedy randomized adaptive search procedures).

However, it is one thing to observe in a general way that solution algorithms
tend to have a search-infer-and-relax structure, and another thing to demon-
strate it in precise algorithmic terms. While such methods as branch and cut or
standard CP methods readily fit into this framework, it is less obvious how to
treat some of the other methods. The main contribution of this paper, relative to
previous work, is to extend the range of solution methods that can be viewed as
having common structure, while trying to make their commonality more precise.

In particular, we extend the analysis to “heuristic” methods, such as local
search and GRASPs. Although one can distinguish exact from inexact methods,
this distinction need not imply a fundamental distinction of the algorithmic
approach. We view them as special cases of the same search strategy, adjusted
in some cases to be exhaustive and in other cases to be inexhaustive.

Some aspects of the integration scheme described here are implemented in the
solution and modeling system SIMPL [1], which combines integer and constraint
programming but has not yet been extended to other methods.

2 The Basic Ideas

– Search is an enumeration of problem restrictions, each of which is obtained
by adding constraints to the problem. The motivation for examining problem
restrictions is that they may be easier to solve than the original. In branching
search, for example, the problem restrictions correspond to nodes of the
search tree. In Benders decomposition and its generalizations, the restrictions
are subproblems. In local search, each neighborhood is the feasible set of a
problem restriction.

– Inference derives valid constraints that were only implicit in the constraint
set. They can rule out infeasible or suboptimal restrictions that would oth-
erwise be solved. Popular forms of inference include the identification of
valid inequalities in integer programming, the generation of nogoods (such
as Benders cuts and conflict clauses), and domain filtering in constraint pro-
gramming.

– Relaxation, like restriction, is motivated by the desire to solve a problem
that is easier than the original. Solution of a relaxation may provide an
optimal solution of the original problem, but more often it provides a bound
on the optimal value. Popular forms of relaxation include the constraint
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store in constraint programming, continuous relaxations of 0-1 inequalities
or global constraints, and the master problem in Benders decomposition and
its generalizations.

The interaction of these elements is key to problem solving.

– Search and inference. Inference reduces the number of restrictions that must
be enumerated in the search. For instance, domain filtering reduces branch-
ing by eliminating values on which one must branch. Conversely, restricting
the problem can make inference more effective. Branching on variables, for
example, reduces domains and triggers further domain reduction through
propagation.

– Search and relaxation. Relaxation provides valuable information for directing
the search. For instance: the solution of a continuous relaxation suggests how
to branch (perhaps on a variable with a fractional value); the solution of a
master problem can define the next subproblem (in Benders-like methods);
and the result of a neighborhood search can provide the center of the next
neighborhood to be searched. Conversely, problem restriction during search
can yield a tighter relaxation, perhaps one whose optimal solution is feasible
in the original problem. Relaxation and restriction also interact in a bounding
mechanism that is used by branch-and-relax methods but has much wider
application. If the relaxation of a restriction has an optimal value that is no
better than that of the best solution found so far, then the restriction need
not be solved.

– Inference and relaxation. The solution of a relaxation can help identify use-
ful inferences, such as separating cuts in integer programming. Conversely,
inference can generate constraints that strengthen the relaxation, as cutting
planes strengthen a continuous relaxation.

Inference and relaxation are most effective when they exploit problem struc-
ture. For instance, specialized cutting planes or domain filtering methods can be
developed for constraints or subsets of constraints that have special character-
istics. Arguably the success of combinatorial optimization relies on the identifi-
cation of structure, and the problem formulation should indicate to the solver
where the structure lies.

3 Overview of the Solution Method

For the purposes of this paper, an optimization problem P can be written

min f(x)
S(x)
x ∈ D

where f(x) is a real-valued function of variable x and D is the domain of x. The
function f(x) is to be minimized subject to a set S(x) of constraints, each of
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which is either satisfied or violated by any given x ∈ D. Generally x is a vector
(x1, . . . , xn) and D a Cartesian product D1 × · · · ×Dn, where each xj ∈ Dj .

Any x ∈ D is a solution of P . A feasible solution is one that satisfies all the
constraints in S(x), and the feasible set of P is the set of feasible solutions. A
feasible solution x∗ is optimal if f(x∗) ≤ f(x) for all feasible x. An infeasible
problem is one with no feasible solution and is said to have optimal value ∞.

3.1 Search

Search is carried out by solving a series of problem restrictions P1, P2, . . . , Pm of
P and picking the best candidate solution. The search is complete if the feasible
set of P is equal to the union of the feasible sets of P1, . . . , Pm. In incomplete
search the restrictions may not be solved to optimality.

The most basic kind of search simply enumerates elements of the domain D
and selects the best feasible solution. This is can be viewed as a search over
problem restrictions Pk, each of which is defined by fixing x to a particular
value. It is generally more practical, however, to define restrictions by branching,
constraint-directed search, or local search.

3.2 Inference

Search can often be accelerated by inference, that is, by inferring new constraints
from the constraint set of each Pk. The new constraints are then added to Pk.
Constraints that can be inferred from P alone are added to Pk and all subsequent
restrictions.

Inference procedures are typically applied to individual constraints or small
highly-structured groups of constraints rather than the entire problem. As a
result, implications of the entire constraint set may be missed.

One can partially address this problem by propagating constraints through
a constraint store S. When inferences are drawn from constraint C, they are
actually drawn from {C}∪S. Processing each constraint enlarges S and thereby
strengthens the implications that can be derived from the next constraint. Prop-
agation of this sort is practical only if the constraint store contains elementary
constraints that all of the inference algorithms can accommodate. Constraint
programming solvers typically store in-domain constraints, and mixed integer
solvers store linear inequalities.

3.3 Relaxation

Relaxation is often used when the subproblems Pk are themselves hard to solve.
A relaxation Rk of each Pk is created by dropping some constraints in such a
way as to make Rk easier than Pk. For instance, one might form a continuous
relaxation by allowing integer-valued variable to take any real value.

The optimal value v of the relaxation Rk is a lower bound on the optimal
value of Pk. If v is greater than or equal to the value of the best candidate
solution found so far, then there is no need to solve Pk, since its optimal value
can be no better than v.
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Let vUB = ∞ and S = {P0}. Perform Branch.
The optimal value of P0 is vUB.

Procedure Branch.
If S is nonempty then

Select a problem restriction P ∈ S and remove P from S.
If P is too hard to solve then

Add restrictions P1, . . . , Pm of P to S and perform Branch.
Else

Let v be the optimal value of P and let vUB = min{v, vUB}.
Fig. 1. Generic branching algorithm for solving a minimization problem P0. Set S

contains the problem restrictions so far generated but not yet attempted, and vUB is

the best solution value obtained so far

The relaxation, like the constraint store, must contain fairly simple con-
straints, but for a different reason: they must allow easy optimal solution of
the relaxed problem. In traditional optimization methods, these are generally
linear inequalities in continuous variables, or perhaps nonlinear inequalities that
define a convex feasible set.

4 Branching Search

Branching search uses a recursive divide-and-conquer strategy. If the original
problem P is too hard to solve as given, the branching algorithm creates a series
of restrictions P1, . . . , Pm and tries to solve them. In other words, it branches
on P . If a restriction Pk is too hard to solve, it attacks Pk in a similar manner
by branching on Pk. The most popular branching mechanism is to branch on
a variable xj . The domain of xj is partitioned into two or more disjoint sub-
sets, and restrictions are created by successively restricting xj to each of these
subsets.

Branching continues until no restriction so far created is left unsolved. If the
procedure is to terminate, problems must become easy enough to solve as they
are increasingly restricted. For instance, if the variable domains are finite, then
branching on variables will eventually reduce the domains to singletons. Figure 1
displays a generic branching algorithm.

4.1 Branch and Infer

Inference may be combined with branching by inferring new constraints for each
Pk before Pk is solved. When inference takes the form of domain filtering, for
example, some of the variable domains are reduced in size. When one branches
on variables, this tends to reduce the size of the branching tree because the
domains more rapidly become singletons. Constraint programming solvers are
typically built on a branch-and-infer framework.
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Let vUB = ∞ and S = {P0}. Perform Branch.
The optimal value of P is vUB.

Procedure Branch.
If S is nonempty then

Select a problem restriction P ∈ S and remove P from S.
Repeat as desired:

Add inferred constraints to P .
Let vR be the optimal value of a relaxation R of P .

If vR < vUB then
If R’s optimal solution is feasible for P then let vUB = min{vR, vUB}.
Else add restrictions P1, . . . , Pm of P to S and perform Branch.

Fig. 2. Generic branching algorithm, with inference and relaxation, for solving a mini-

mization problem P0. The repeat loop is typically executed only once, but it may be executed

several times, perhaps until no more constraints can be inferred or R becomes infeasible.

The inference of constraints can be guided by the solution of previous relaxations

4.2 Branch and Relax

Relaxation can also combined with branching in a process that is known in the
operations research community as branch and bound, and in the constraint pro-
gramming community as branch and relax. One solves the relaxation Rk of each
restriction, rather than Pk itself. If the solution of Rk is feasible in Pk, it is opti-
mal for Pk and becomes a candidate solution. Otherwise the algorithm branches
on Pk. To ensure termination, the branching mechanism must be designed so
that Rk’s solution will in fact be feasible for Pk if one descends deeply enough
into the search tree.

Branch-and-relax also uses the bounding mechanism described earlier. If the
optimal value of Rk is greater than or equal to the value of the best candidate
solution found so far, then there is no point in solving Pk and no need to branch
on Pk.

The addition of inferred constraints to Pk can result in a tighter bound when
one solves its relaxation Rk. This is the idea behind branch-and-cut methods,
which add cutting planes to the constraint set at some or all of the nodes.
Conversely, the solution of Rk can provide guidance for generating further con-
straints, as for instance when separating cuts are used. A generic branching
algorithm with inference and relaxation appears in Fig. 2.

It is straightforward to combine elements of constraint programming and in-
teger programming in this framework. Domain filtering can be applied to integer
inequalities as well as global constraints at each node of the search tree, and tight
relaxations can be devised for global constraints as well as specially-structured
inequalities.

4.3 Continuous Global Optimization

A continuous optimization problem may have a large number of locally optimal
solutions and can therefore be viewed as a combinatorial problem. The most pop-
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ular and effective global solvers use a branch-and-relax approach that combines
relaxation with constraint propagation [21, 22, 24]. Since the variable domains are
continuous intervals, the solver branches on a variable by splitting an interval into
two or more intervals. This sort of branching divides continuous space into increas-
ingly smaller “boxes” until a global solution can be isolated in a very small box.

Two types of propagation are commonly used: bounds propagation, and prop-
agation based on Lagrange multipliers. Bounds propagation is similar to that
used in constraint programming solvers. Lagrange multipliers obtained by solv-
ing a linear relaxation of the problem provide a second type of propagation. If
a constraint ax ≤ α has Lagrange multiplier λ, v is the optimal value of the
relaxation, and L is a lower bound on the optimal value of the original problem,
then the inequality

ax ≥ α− v − L

λ

can be deduced and propagated. Reduced-cost-based variable fixing is a special
case.

Linear relaxations can often be created for nonlinear constraints by “fac-
toring” the functions involved into more elementary functions for which linear
relaxations are known [24].

5 Constraint-Directed Search

A ever-present issue when searching over problem restrictions is the choice of
which restrictions to consider, and in what order. Branching search addresses
this issue in a general way by letting problem difficulty guide the search. If a
given restriction is too hard to solve, it is split into problems that are more highly
restricted, and otherwise one moves on to the next restriction, thus determining
the sequence of restrictions in a recursive fashion.

Another general approach is to create the next restriction on the basis of
lessons learned from solving past restrictions. This suggests defining the current
restriction by adding a constraint that excludes previous solutions, as well as
some additional solutions that one can determine in advance would be no better.
Such a constraint is often called a nogood.

Restrictions defined in this manner may be hard to solve, but one can solve
a more tractable relaxation of each restriction rather than the restriction itself.
The only requirement is that the relaxation contain the nogoods generated so
far. The nogoods should therefore be chosen in such a way that they do not
make the relaxation hard to solve.

More precisely, the search proceeds by creating a sequence of restrictions
P0, P1, . . . , Pm of P , where P0 = P and each Pk is formed by adding a nogood
Nk−1 to Pk−1. It solves a corresponding series of relaxations R0, R1, . . . , Rm of
P to obtain solutions x0, x1, . . . , xm. Each relaxation Rk contains the nogoods
N0, . . . , Nk−1 in addition to the constraints in R0.

Step k of the search begins by obtaining a solution xk of Rk. If xk is infeasible
in P , a nogood Nk is designed to exclude xk and possibly some other solutions
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Let vUB = ∞, and let R be a relaxation of P .
Perform Search.
The optimal value of P is vUB.

Procedure Search.
If R is feasible then

Select a feasible solution x = s(R) of R.
If x is feasible in P then

Let vUB = min{vUB , f(x)}.
Define a nogood N that excludes x and possibly other solutions x′

with f(x′) ≥ f(x).
Else

Define a nogood N that excludes x and possibly other solutions
that are infeasible in P .

Add N to R and perform Search.

Fig. 3. Generic constraint-directed search algorithm for solving a minimization problem

P with objective function f(x), where s is the selection function. R is the relaxation of

the current problem restriction

that are infeasible for similar reasons. If xk is feasible in P , it may or may not be
optimal, and it is recorded as a candidate for an optimal solution. A nogood Nk

is designed to exclude xk and perhaps other solutions whose objective function
values are no better than that of xk. The search continues until Rk becomes
infeasible, indicating that the solution space has been exhausted. An generic
algorithm appears in Fig. 3.

The search is exhaustive because the infeasibility of the final relaxation Rm

implies the infeasibility of Pm. Thus any feasible solution x of P that is not enu-
merated in the search is infeasible in Pm. This is possible only if x has been ex-
cluded by a nogood, which means x is no better than some solution already found.

If the domains are finite, the search will terminate. Each relaxation excludes
a solution that was not excluded by a previous relaxation, and there are finitely
many solutions. If there are infinite domains, more care must be exercised to
ensure a finite search and an optimal solution.

Interestingly, there is no need to solve the relaxations Rk to optimality. It is
enough to find a feasible solution, if one exists. This is because no solution is
excluded in the course of the search unless it is infeasible, or an equally good or
better solution has been found.

There is normally a good deal of freedom in how to select a feasible solution
xk of Rk, and a constraint-directed search is partly characterized by its selection
function; that is, by the way it selects a feasible solution s(Rk) for a given Rk.
Certain selection functions can make subsequent Rk’s easier to solve, a theme
that is explored further below.

We briefly examine three mechanisms for generating nogoods: constraint-
directed branching, partial-order dynamic backtracking, and logic-based Benders
decomposition.
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5.1 Constraint-Directed Branching

Constraint-directed branching stems from the observation that branching on
variables is a special case of constraint-directed search. The leaf nodes of the
branching tree correspond to problem restrictions, which are defined in part by
nogoods that exclude previous leaf nodes. The nogoods take the form of “conflict
clauses” that contain information about why the search backtracked at previous
leaf nodes. Well-chosen conflict clauses can permit the search to prune large
portions of the enumeration tree.

Search algorithms of this sort are widely used in artificial intelligence and
constraint programming. Conflict clauses have played a particularly important
role in fast algorithms for the propositional satisfiability problem (SAT), such
as Chaff [20].

Branching can be understood as constraint-directed search in the following
way. We branch on variables in a fixed order x1, . . . xn. The original problem
P corresponds to the first leaf node of the branching tree, and its relaxation
R contains only the domain constraints of P . The branching process reaches
the first leaf node by fixing (x1, . . . , xn) to certain values (v1, . . . , vn), thereby
creating P1. If the search backtracks due to infeasibility, typically only some of
the variables are actually responsible for the infeasibility, let us say the variables
{xj | j ∈ J}. A nogood or conflict clause N is constructed to avoid this partial
assignment in the future: ∨

j∈J

(xj �= vj) (1)

If a feasible solution with value z is found at the leaf node, then a subset of
variables {xj | j ∈ J} is identified such that f(x) ≥ z whenever xj = vj for
j ∈ J . A nogood N of the form (1) is created.

Each of the subsequent leaf nodes corresponds to a relaxation Rk, which con-
tains the nogoods generated so far. A feasible solution s(Rk) of Rk is now selected
to define the next solution to be enumerated. A key property of constraint-based
branching is that the selection function s is easy to compute. The solution s(Rk)
sequentially assigns x1, x2, . . . the values to which they are fixed at the current
leaf node, until such an assignment violates a nogood in Rk. At this point the
unassigned variables are sequentially assigned any value that, together with the
assignments already made, violates none of the nogoods in Rk. Constraint-based
search does not actually construct a search tree, but the values to which xj is
fixed at the current leaf node are encoded in the nogoods: if one or more nogoods
in Rk contain the disjunct xj �= vj , then xj is currently fixed to vj (all disjuncts
containing xj will exclude the same value vj).

It is shown in [12] that this procedure finds a feasible solution of Rk without
backtracking, if one exists, provided the nogoods are processed by parallel reso-
lution before computing s(Rk). Consider a set S = {Ci | i ∈ I} where each Ci

has the form ∨
j∈Ji

(xj �= vj) ∨ (xp �= vpi)
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and where p is larger than all the indices in J =
⋃

i∈I Ji. If {vpi | i ∈ I} is equal
to the domain of xp, then S has the parallel resolvent∨

j∈J

(xj �= vj)

Thus parallel resolution always resolves on the last variable xp in the clauses
resolved. (In constraint-directed branching, Ji is the same for all i ∈ I, but this
need not be true in general to derive a parallel resolvent.) Parallel resolution is
applied to Rk by deriving a parallel resolvent from a subset of nogoods in Rk,
deleting from Rk all nogoods dominated by the resolvent, adding the resolvent
to Rk, and repeating the process until no parallel resolvent can be derived. In
the context of constraint-based branching, parallel resolution requires linear time
and space.

The Davis-Putnam-Loveland (DPL) algorithm for SAT is a special case of
constraint-directed branching in which the unit clause rule is applied during the
computation of s(Rk). The SAT problem is to determine whether a set of logical
clauses is satisfiable, where each clause is a disjunction of literals (xj or ¬xj).
The unit clause rule requires that whenever xj (or ¬xj) occurs as a unit clause
(a clause with a single literal), xj is fixed to true (respectively, false) and the
literal ¬xj (respectively, xj) is eliminated from every clause in which it occurs.
The procedure is repeated until no further variables can be fixed. During the
computation of s(Rk), the unit clause rule is applied after each xj is assigned a
value, and subsequent assignments must be consistent with any values fixed by
the rule.

An infeasible assignment (x1, . . . , xn) = (v1, . . . , vn) for the SAT problem
is one that violates one or more clauses. A conflict clause (1) is obtained by
identifying a subset of variables {xj | j ∈ J} for which the assignments xj = vj

for j ∈ J violate at least one clause. Thus if setting (x1, x2) = (true, false)
violates a clause, the conflict clause is ¬x1 ∨ x2.

5.2 Partial-Order Dynamic Backtracking

Partial-order dynamic backtracking (PODB) is a generalization of branching
with conflict clauses [3, 8, 9]. In a conventional branching search, one backtracks
from a given node by de-assigning the assigned variables in a certain order.
In PODB, this complete ordering of the assigned variables is replaced by a
partial ordering. Thus the search cannot be conceived as a tree search, but it
remains exhaustive while allowing a greater degree of freedom in how solutions
are enumerated.

PODB can be viewed as constraint-based search in which the selection func-
tion s(Rk) is computed in a slightly different way than in constraint-based
branching. In constraint based branching, there is a complete ordering on the
variables, and s(Rk) is computed by assigning values to variables in this order.
In PODB, this ordering is replaced by a partial ordering.

The partial ordering is defined as follows. Initially, no variable precedes an-
other in the ordering. At any later point in the algorithm, the partial ordering
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is defined by the fact that some variable xj in each nogood N of Rk has been
designated as last in N . Every other variable in N is penultimate and precedes
xj in the partial ordering. The ordering is updated whenever a new nogood is
created. Any variable xj in the new nogood can be chosen as last, provided the
choice is consistent with the current partial ordering. Thus if xk is a penultimate
variable in the nogood, xj must not precede xk in the current partial ordering.

The nogoods are processed by parallel resolution exactly as in constraint-
based branching, which as shown in [], again consumes linear time and space.
The selection function s(Rk) is computed as follows. It first assigns values to
variables xj that are penultimate in some nogood. As before, it assigns xj the
value vj if the disjunct xj �= vj occurs in a nogood (all penultimate disjuncts
containing xj exclude the same value vj). The remaining variables are assigned
values as in constraint-based branching, but in any desired order.

5.3 Logic-Based Benders Decomposition

Benders decomposition [2, 7] is a constraint-directed search that enumerates pos-
sible assignments to a subset of the variables, which might be called the search
variables. Each possible assignment defines a subproblem of finding the optimal
values of the remaining variables, given the values of the search variables. So-
lution of the subproblem produces a nogood that excludes the search variable
assignment just tried, perhaps along with other assignments that can be no bet-
ter. Since the subproblems are restrictions of the original problem, a Benders
algorithm can be viewed as enumerating problem restrictions.

Benders is applied to a problem P of the form

min f(x)
C(x, y)
x ∈ Dx, y ∈ Dy

(2)

where x contains the search variables and y the subproblem variables. C(x, y) is
a constraint set that contains variables x, y. To simplify exposition we assume
that the objective function depends only on x. The more general case is analyzed
in [12, 16].

In the constraint-directed search algorithm, each problem restriction (sub-
problem) Pk is obtained from P by fixing x to the solution xk−1 of the previous
relaxation Rk−1. Pk is therefore the feasibility problem

C(xk−1, y)
y ∈ Dy

(3)

where C(xk−1, y) is the constraint set that remains when x is fixed to xk−1 in
C(x, y).

Unlike many constraint-directed methods, a Benders method obtains nogoods
by solving the restriction Pk. If Pk has a feasible solution yk, then (x, y) =
(xk−1, yk) is optimal in P , and the search terminates. Otherwise a nogood or
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Benders cut Nk(x) is generated. Nk(x) must exclude xk−1, perhaps along with
other values of x that are infeasible for similar reasons.

In classical Benders decomposition, the subproblem is a continuous linear or
nonlinear programming problem, and Nk(x) obtained from Lagrange multipliers
associated with the constraints of the subproblem. In a more general setting,
Nk(x) is based on an analysis of how infeasibility of the subproblem is proved
when x = xk−1. The same proof may be valid when x takes other values, and
these are precisely the values that violate Nk(x). The result is a “logic-based”
form of Benders.

The Benders cut Nk(x) is added to the previous relaxation Rk−1 to obtain
the current relaxation or master problem Rk:

min f(x)
Ni(x), i = 0, . . . , k − 1
x ∈ Dx

(4)

If the master problem is infeasible, then P is infeasible, and the search termi-
nates. Otherwise we select any optimal solution s(Rk) of Rk and denote it xk,
and the algorithm proceeds to the next step. A Benders method therefore re-
quires solution of both Pk and Rk, the former to obtain nogoods, and the latter
to obtain Pk+1.

Logic-based Benders decomposition can be combined with constraint pro-
gramming in various ways [5, 6, 12, 14, 16, 18, 19, 26]. One type of integration is
to solve the subproblem by constraint programming (since it is naturally suited
to generate Benders cuts) and the master problem Rk by another. Planning and
scheduling problems, for example, have been solved by applying integer program-
ming to Rk (task allocation) and constraint programming to Pk (scheduling)
[12, 14, 19, 26]. This approach has produced some of the largest computational
speedups available from integrated methods, outperforming conventional solvers
by several orders of magnitude.

6 Heuristic Methods

Local search methods solve a problem by solving it repeatedly over small subsets
of the solution space, each of which is a “neighborhood” of the previous solution.
Since each neighborhood is the feasible set of a problem restriction, local search
can be viewed as a search-infer-and-relax method.

In fact, it is useful to conceive local search as belonging to a family of local-
search-and-relax algorithms that resemble branch-and-relax algorithms but are
inexhaustive (Fig. 4). A number of other heuristic methods, such as GRASPs,
belong to the same family. The analogy with branch and relax suggests how
inference and relaxation may be incorporated into heuristic methods.

The generic local-search-and-relax algorithm of Fig. 4 “branches” on a prob-
lem restriction Pk by creating a further restriction Pk+1. For the time being, only
one branch is created. Branching continues in this fashion until a restriction is
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Let vUB = ∞ and S = {P0}.
Perform LocalSearch.
The best solution found for P0 has value vUB.

Procedure LocalSearch.
If S is nonempty then

Select a restriction P = from S.
If P is too hard to solve then

Let vR be the optimal value of a relaxation of P .
If vR < vUB then

Add a restriction of P to S.
Perform LocalSearch.

Else remove P from S.
Else

Let v be the value of P ’s solution and vUB = min{v, vUB}.
Remove P from S.

Fig. 4. Generic local-search-and-relax algorithm for solving a minimization problem P0

created that is easy enough to solve, whereupon the algorithm returns to a previ-
ous restriction (perhaps chosen randomly) and resumes branching. There is also
a bounding mechanism that is parallel to that of branch-and-relax algorithms.

Local search and GRASPs are special cases of this generic algorithm in which
each restriction Pk is specified by setting one or more variables. If all the vari-
ables x = (x1, . . . , xn) are set to values v = (v1, . . . , vn), Pk’s feasible set is a
neighborhood of v. Pk is easily solved by searching the neighborhood. If only
some of the variables (x1, . . . , xk) are set to (v1, . . . , vk), Pk is regarded as too
hard to solve.

A pure local search algorithm, such as simulated annealing or tabu search,
branches on the original problem P0 by setting all the variables at once to v =
(v1, . . . , vn). The resulting restriction P1 is solved by searching a neighborhood
of v. Supposing P1’s solution is v′, the search backtracks to P0 and branches
again by setting x = v′. Thus in pure local search, the search tree is never more
than one level deep.

In simulated annealing, Pk is “solved” by randomly selecting one or more
elements of the neighborhood until one of them, say v′, is accepted. A solution
v′ is accepted with probability 1 if it is better than the currently best solution,
and with probability p is it is no better. The probability p may drop (reflecting
a lower “temperature”) as the search proceeds.

In tabu search, Pk is solved by a complete search of the neighborhood, where-
upon the best solution becomes v′. In this case the neighborhood of v′ excludes
solutions currently on the tabu list.

Each iteration of a GRASP has two phases, the first of which constructs a so-
lution in a greedy fashion, and the second of which uses this solution as a starting
point for a local search [25]. In the constructive phase, the search branches by
setting variables one at a time. At the original problem P0 it branches by setting
one variable, say x1, to a value v1 chosen in a randomized greedy fashion. It then
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branches again by setting x2, and so forth. The resulting restrictions P1, P2, . . .
are regarded as too hard to solve until all the variables x are set to some value
v. When this occurs, a solution v′ of P is found by searching a neighborhood of
v, and the algorithm moves into the local search phase. It backtracks directly to
P0 and branches by setting x = v′ in one step. Local search continues as long as
desired, whereupon the search returns to the constructive phase.

A GRASP provides the opportunity to use the bounding mechanism of the
local-search-and-relax algorithm, a possibility already pointed out by Prestwich
[23]. If a relaxation of Pk has an optimal value that is no better than that of the
incumbent solution, then there is nothing to be gained by branching on Pk.
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Abstract. This paper presents a CSPs filtering method combining arc-
consistency and dual Lagrangean relaxation techniques. First, we model
the constraint satisfaction problem as a 0/1 linear integer program (IP);
then, the consistency of a value is defined as an optimization problem on
which a dual Lagrangean relaxation is defined. While solving the dual
Lagrangean relaxation, values inconsistencies may be detected (dual La-
grangean inconsistent values); the constraint propagation of this inconsis-
tency can be performed by arc-consistency. After having made the CSP
arc-consistent, the process iteratively selects values of variables which
may be dual Lagrangean inconsistent. Computational experiments per-
formed over randomly generated problems show the advantages of the hy-
brid filtering technique combining arc-consistency and dual Lagrangean
relaxation.

Keywords: Arc-Consistency, Lagrangean Relaxation, Subgradient Al-
gorithm.

1 Introduction

Constraint Programming (CP) and Integer Linear Programming (ILP) are two
approaches to model and solve combinatorial optimization problems. From a
modeling point of view, constraint programming is in general preferable to In-
teger Linear Programming. However, from a solving time point of view, the
two approaches can claim different success, but none of them can claim to be
universally the best.

Several works have discussed the synergy between the two approaches, leading
to the conclusion that using them together can be quite beneficial [5] [6] [12] [13].

In ILP, the most used algorithm is the Branch and Bound one. It is a com-
plete tree based search algorithm in which the branching is intertwined with a
relaxation, which sterilizes nodes for which the relaxation is infeasible or which
lead to solutions of worst value than the best known. Lagrangean relaxation [11]
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is one of the most widely used relaxations. It consists in dualizing a subset of the
constraints and defining a dual problem which is then solved by a convergent
iterative method, like the subgradient algorithm [4].

Like ILP, CP relies on branching to enumerate regions of the search space.
While ILP solves a relaxed problem at each node, CP uses deductive methods
to reduce the amount of choices to explore. This process is called constraint
propagation, domain filtering, pruning or consistency technique [15] [18].

It is now recognized that integrating propagation and relaxation techniques
do yield to substantial results. One issue to do this is the development of opti-
mization constraints [9] [17].

Some recent works [19] [8] [2] have discussed how optimization constraints
can strengthen their propagation abilities by the way of Lagrangean relax-
ation.

Other works propose mathematical programming models for CSPs. A
quadratic formulation has been presented in [1] and used to define the weighted
arc-consistency for MAX-CSP. In [14] a 0-1 programming model has been pro-
posed and used to solve efficiently some instances of the frequency assignment
problem.

In this work, we are interested in the binary Constraint Satisfaction Prob-
lem. We propose a new 0-1 formulation for binary CSPs on which we study
the combination of arc-consistency technique and Lagrangean relaxation. We
propose a technique combining arc-consistency and dual Lagrangean relaxation
to reduce efficiently CSPs. First, arc-consistency is achieved on the CSP, then
some arc-consistent values are selected. For each selected value we check its
consistency by solving an associated dual Lagrangean relaxation. If the solv-
ing of the dual problems detect inconsistent values, then constraint propagation
of these inconsistencies is performed by arc-consistency. Computational experi-
ments performed over randomly generated problems show the advantages of the
hybrid filtering technique.

The remainder of this paper is organized as follows. In section 2 we recall
some notions of CSPs and we describe the Lagrangean relaxation of integer
programming problems. Section 3 describes the proposed new 0-1 formulation
for CSPs. In section 4, we describe how the Lagrangean relaxation technique can
be exploited for filtering CSPs; the presented computational experiments show
that this technique can be of a great interest when it is judiciously exploited.
Section 5 presents the hybrid technique to reduce CSPs and the computational
experiments performed over randomly generated problems. Finally, section 6
concludes.

2 Preliminaries

In this section, we recall some notions of CSPs and we describe Lagrangean
relaxation of integer programming problems.
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2.1 Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSPs) involve the assignment of values to
variables which are subject to a set of constraints. Formally, a binary CSP is
defined by a quadruplet (X,D,C,R) where:

– X is a set of n variables {X1, X2, . . . , Xn};
– D is a set of n domains {D1, D2, . . . , Dn} where each Di is a set of di possible

values for Xi;
– C is a set of m binary constraints where each constraint Cij involving vari-

ables Xi and Xj (i �= j) is defined by its relation Rij ;
– R is a set of m relations, where Rij is a subset of the Cartesian product

Di ×Dj .
The predicate Rij(k, l) holds iff the pair (vk, vl) belongs to Rij .
We will restrict our study to problems which verify : (vk, vl) ∈ Rij ⇔
(vl, vk) ∈ Rji.

A solution of the CSP is a total assignment which satisfies each constraint.
The constraint graph represents the variables and the constraints of the CSP
within a network, where each variable is represented by a vertex and each con-
straint by an edge.

– A value vk ∈ Di is consistent iff there exists a solution such that Xi = vk.
– A CSP is consistent iff it has a solution.

We recall that:

1. A domain Di is arc-consistent iff ∀vk ∈ Di, vk is arc-consistent, ie: ∀Xj ∈ X
such that Cij ∈ C, there exists vl ∈ Dj such that Rij(k, l).

2. A binary CSP is arc-consistent iff ∀Di ∈ D, Di �= ∅ and Di is arc-consistent.

2.2 Lagragean Relaxation

Consider the following integer programming problem:

(IP )

⎧⎪⎪⎨
⎪⎪⎩

max cx
subject to Ax ≤ a

Bx ≤ b
x ∈ S ⊂ INn

where c and x are vectors of order 1 × n, a is a vector of order 1 × m, b is a
vector of order 1 × p, A is a matrix of order m × n and B is a matrix of order
p× n; V (IP ) will denote its value.

It is well known that the efficiency of a Branch-and-Bound scheme to solve
(IP ) depends on the quality of the bounds used to evaluate V (IP ).

To define a better bound (i.e. a smaller value) than the value provided by the
linear relaxation, one can use Lagrangean relaxation which consists in dualizing
a subset of constraints [11].
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Suppose that the problem (IP ) becomes (relatively) easy to solve if we re-
move complicating constraints Ax ≤ a, the associated Lagrangean function is
classically defined as follows, for a given u ∈ IRm

+ :

l(x, u) = cx + u(a−Ax) = ua + (c− uA)x.

The corresponding Lagrangean relaxation problem is given by:

(LR(u))

⎧⎨
⎩

max ua + (c− uA)x
s.t. Bx ≤ b

x ∈ S ⊂ INn

and the Lagrangean dual problem is defined by

(D)
{

min LR(u)
s.t. u ∈ IRm

+ .

V (D), the value of (D), is an upper bound for (IP ) which may be approxi-
mately computed, by any convergent method solving nondifferentiable optimiza-
tion problems, like subgradient algorithm.

The aim of the subgradient algorithm is to provide in an iterative way the
vector u of multipliers for which the value V (LR(u)) is as close as possible to
the optimal value of (IP ). Given an initial Lagrangean multiplier vector u0, a
sequence (uk)k∈IN is generated. More precisely, at iteration k:

– The subgradient sk is given by

sk = a−Axk

where xk is an optimal solution of
(
LR(uk)

)
.

– The new step direction is given by

dk = (1− μ)sk + μdk−1

The direction (dk) at iteration k is a convex combination of the subgradient
sk and the previous direction dk−1 ( = 0 if k = 1) with μ is a real parameter
chosen in [0,1[ (CFM method [4]).

– The new Lagrangean multiplier vector is defined by

uk+1
i = max

{
0, uk

i − tkdk
i

}
, i = 1, ...,m,

where the step size tk > 0 is given by the commonly used formula

tk = ρk
vk − v

||dk||2 .

The value of the step size parameter ρk is a scalar satisfying 0 < ρk ≤ 2; v is
the lower bound on V (IP ) available at iteration k, whereas vk = V

(
LR(uk)

)
is the value of the Lagrangean function at iteration k.
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3 Modeling

In this section, we describe a new 0-1 formulation for CSPs. First, we introduce
for each variable Xi, di binary variables xk

i , k = 1, ..., di (where di is the size of
Di), such that

xk
i =

{
1 if Xi = vk (vk ∈ Di)
0 otherwise.

We will denote by x the vector of components xk
i , x =

(
xk

i

)k=1,di

i=1,n
.

It is well known that any incompatible pair of values (vk, vl) of two variables
(Xi, Xj) can be written as a 0-1 linear inequality as follows:

xk
i + xl

j ≤ 1.

The expression of each incompatible pair of values may require a huge number
of inequalities. To reduce this number, let us denote, for each variable Xi and
each value vk ∈ Di, by ak

i the number of variables Xj (j �= i) that contain in
their domain at least one value which is incompatible with vk,

ak
i =

∑
j 
=i:∃vl∈Dj∧¬Rij(k,l)

1.

Then, we can write:

ak
i xk

i +
∑
j 
=i

∑
vl∈Dj ,¬Rij(k,l)

xl
j ≤ ak

i . (1)

This means that if Xi, is set to vk, then a variable Xj will not be set to each
value vl such that ¬Rij(k, l).

Remark 1. The inequality (1) is violated if and only if xk
i = 1 and there is at

least one binary variable xl
j , (j �= i) such that ¬Rij(k, l) and xl

j = 1.

Thus, if we associate one inequality of type (1) to each couple (Xi, vk), then
we express all the incompatible pairs of values.

Remark 2. The number of inequalities of type (1) required is bounded by n.d,
where n is the number of variables and d is the size of the largest domain.

To express the fact that each variable Xi must take exactly one value, we
state: ∑

vk∈Di

xk
i = 1 (2)

Now, we consider the following 0-1 integer problem:

(IP )
{

Ak
i x ≤ ak

i i = 1, n, k = 1, di

x ∈ S

such that:
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– Ak
i x ≤ ak

i is a simple expression of the inequality of type (1) associated to
the value vk of the variable Xi;

– S is the set of solutions of the system

{ ∑
vk∈Di

xk
i = 1 i = 1, n

xk
i ∈ {0, 1} i = 1, n, vk ∈ Di

To simplify the presentation, we will denote the previous system (IP ) by:

(IP )
{

Ax ≤ a
x ∈ S

where Ax ≤ a is the system of the inequalities Ak
i x ≤ ak

i : i = 1, n, k = 1, di.

Theorem 1. The CSP is satisfiable iff the 0-1 integer problem (IP) has a
solution.

Proof. We only need to show that to each solution of the CSP corresponds a
solution of the system (IP) and conversely. Let I = (v1, v2, . . . , vn) be a solution

of the CSP and x̄ =
(
x̄k

i

)k=1,di

i=1,n
be a vector

were x̄vi
i = 1 and x̄k

i = 0,∀vk ∈ Di − {vi}.
x̄ is a solution of the system S because, by construction, its components are

all 0 or 1 and for each i(1 ≤ i ≤ n), only the component x̄vi
i has the value 1, the

values of the other components are 0. Let us now consider the constraint of type
(1) associated to x̄k

i (i = 1, n, k = 1, di). This constraint is violated iff x̄k
i = 1, i.e.

k = vi, and there is at least one component x̄l
j (j �= i) of x̄, such that ¬Rij(k, l)

and x̄l
j = 1, i.e. l = vj . However, since I is a solution of the CSP, the couple

(vi, vj) belongs to Rij . This means that the constraint is satisfied. Hence, x̄ is a
solution of (IP ).

Conversely, let x̄ be a solution of (IP ) and consider the instanciation I =
(v1, v2, . . . , vn) of the CSP such that x̄vi

i = 1. Since x̄ is a solution of (IP ), the
couple (vi, vj)(1 ≤ i, j ≤ n, i �= j) belongs to Rij , otherwise the constraints of
type (1) associated to x̄vi

i and x̄
vj

j would not be satisfied. Hence, I is a solution
of the CSP. 
�

Remark 3. In (IP ), every constraint of the CSP is expressed twice. For in-
stance, if we have ¬Rij(k, l), then the constraint of type (1) associated to the
value vk of Xi will express that ¬Rij(k, l) and the constraint of type (1) associ-
ated to the value vl of Xj will express that ¬Rji(l, k). Such a redundancy can be
avoided by ordering the variables of the CSP.

Our model is linear and requires a smaller number of constraints than the
classical model whose constraints are of form xk

i + xl
j ≤ 1. This may lead to

reduce the resolution processing time.
Thanks to this formulation, some well known techniques of relaxations can

be exploited in the CSP context.
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4 Lagrangean Relaxation as Filtering Technique

In this section, we will show how the previous (IP ) model can be exploited for
filtering CSPs.

Consider the following system :

(IP k
i )

⎧⎪⎪⎨
⎪⎪⎩

max xk
i

s.t. Ax ≤ a
Ak

i x ≤ ak
i

x ∈ S

It is an optimization problem focusing on an individual assignment.

Remark 4. The constraint Ak
i ≤ ak

i in (IP k
i ) is a redundant constraint. It is

introduced to simplify the presentation.

Theorem 2. A value vk of a variable Xi is consistent iff the system (IP k
i ) has

a solution with value 1.

Proof. To each solution of the CSP in which the variable Xi takes the value vk

corresponds a solution of (IP k
i ) in which the binary variable xk

i takes the value
1. Hence, the value vk of a variable Xi is consistent iff the system (IP k

i ) has a
solution with value 1. 
�

The exact resolution of (IP k
i ) enables to answer the question : is there a

solution to the CSP in which the variable Xi takes the value vk? This prob-
lem is known to be NP-complete. Therefore, one can only solve a relaxation of
(IP k

i ). Any relaxation allows to define an upper bound on the value of (IP k
i ).

Thus, if this bound is lower than 1, one can conclude that the value vk of Xi is
inconsistent.

In this paper, we consider the Lagrangean relaxation which consists of du-
alizing the constraints Ax ≤ a of (IP k

i ). It is motivated by its similarities with
the relaxation considered in Constraint Programming (individual consideration
of the constraints).

Let us denote by u the vector of Lagrangean multipliers associated to the
relaxed constraints. Then, the Lagrangean relaxed problem is the following:

(LRk
i (u))

⎧⎪⎪⎨
⎪⎪⎩

max ua + c(u).x = ua +
n∑

j=0

∑
vl∈Dj

cl
j(u).xl

j

s.t. Ak
i ≤ ak

i

x ∈ S

where c(u).x = xk
i − uAx.

The Lagrangean relaxed problem is easy to solve, since the constraint asso-
ciated to xk

i is the only remaining constraint.

Remark 5. A is a square matrix of order less or equal to n.d, where n is the
number of variables of the CSP and d is the size of the largest domain. Thus,
the complexity of computing the vector c(u) is at worstO(n2d2).
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The Lagrangean dual problem is defined by

(Dk
i ) : minuV (LRk

i (u))

where V (LRk
i (u)) is the optimal value of LRk

i (u).

4.1 Lagrangean Relaxation Versus Arc-Consistency

Consider the vector of multipliers with zero components u0. For this special case
of multipliers, the relaxed problem is the following:

(LRk
i (u0))

⎧⎨
⎩

max xk
i

s.t. Ak
i ≤ ak

i

x ∈ S

The system (LRk
i (u0)) is reduced to the single type (1) constraint associated to

the value vk of Xi; then, it is clear that it has a solution with value 1 iff there
exists an instanciation in which Xi = vk and Xj �= vl if¬Ri,j(k, l),∀j �= i; in
other words, iff the value vk of Xi is viable. Thus, we can conclude that checking
the viability of the value vk of Xi is equivalent to solving the problem (LRk

i (u0)).
This means that the arc-consistency uses, in some extent, the same relaxation
to check a value viability.

To achieve arc-consistency, several algorithms are proposed and the AC-6
[3] algorithm is one of the most commonly used. The principle of the AC-6
algorithm consists in proving that all values of the CSP are viable: it checks, for
each value, one support per constraint, looking for another one only when the
current support is removed from the domain. In other words, it ensures that for
any not yet removed value vk of each variable Xi, the relaxed problem (LRk

i (u0))
has a solution with value 1 (the value vk of Xi is viable). The vector uo is not
necessarily the optimal solution for the dual problem (Dk

i ). An approximate
resolution of (Dk

i ) can lead to the removal of the value vk from Di, if this value
is proved to be inconsistent.

The value of LRk
i (u0) is less than or equal to 1. This means that the difference

between the optimal value of the dual Lagrangean and the optimal value of the
0-1 model is bounded by 1.

4.2 Dual Problem Resolution

The subgradient algorithm implemented to solve the dual problem (Dk
i ) has the

following structure.

procedure1(in i, k, μ,K,N ; out result)

1. it = 0; ρ = 2; d = 0;% dl
j = 0, j = 1, n, j = 1, dj.

2. initialize(it, u, d, ρ);% multiplier vector initializing.
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3. repeat

3.1. it = it + 1;
3.2. procedure2(i, k, u, x, result); % resolution of the relaxed problem LRk

i (u).
3.3. s = a−Ax; % subgradient vector computing.
3.4. d = μ.d + (1− μ).s; % direction vector computing.

3.5. t = ρ
result

||d||2 ; % step size computing (v = 0).

3.6. ul
j = max{0, ul

j − t.dl
j}, j = 1, n, vl ∈ Dj ; % muliplier vector updating.

3.7. update(ρ); % step size parameter updating.

until (result < 1)or (it > N).

The update procedure consists in dividing the step size parameter ρ per 2
if the subgrdient algorithm carry out K iterations without decreasing the value
of the dual problem. The lower bound used to compute the step size is fixed to
0 (v = 0 is a lower bound of (IP k

i )). The procedure2 is described below:

procedure2(in i, k, u; out x, result)

1. c = −Au, ck
i = ck

i + 1;% cost vector computing
(
c = (cl

j)
l=1,dj

j=1,n

)
.

2. result = u.a;% fixed term computing.
3. Xi = vk; result = result + ck

i ; % variable Xi assigning.
4. ∀j �= i, % searching of the best support of the vk value of Xi in Dj ;

4.1. y = −M %M is a big integer;
4.2. ∀vl ∈ Dj : Rij(k, l), if cl

j > y then {y = cl
j ;Xj = vl; }

4.3. result = result + y.

Since we are interested in consistency of the value vk of the variable Xi,
the procedure procedure2 only considers the solutions of LRk

i (u) in which the
variable Xi is set to vk. The other solutions of (IP k

i ), if they exist, have a null
value for xk

i (xk
i = 0).

If the value vk of the variable Xi has a single support vl in Dj , the variable
Xj always takes the value vl in the solutions returned by procedure2. This
implies that the component sl

j of the subgradient is always negative or null
(al

j −Al
jx ≤ 0) and ul

j(it + 1) ≥ ul
j(it), where ul

j(it) is the component ul
j of the

multiplier vector u at iteration it of the subgradient algorithm (procedure1).
Then, it is more probable that the value of ul

j will be strictly positive at the end
of the last iteration of procedure1. For this reason, ul

j is initialized (procedure
initialize) to 1 if vl is a single support of the value vk of the variable Xi and to
0 otherwise.

Remark 6. The complexity of the procedure procedure2 is O(n2d2) and the
complexity of the procedure procedure1 is O(Nn2d2), where N is the number
of iterations allowed.
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4.3 Experimental Evaluation (AC Versus Lag)

Achieving arc-consistency on CSP is performed within two phases: the checking
phase and the constraint propagation one. In order to study its performances,
the Lagrangean relaxation is integrated into the checking phase: for each value
vk of each variable Xi we solve the corresponding dual problem (Dk

i ). If this
resolution shows that vk is inconsistent, then the value vk is removed from the
domain Di. We denote this process by Lag and we denote by AC the filtering
process using AC-6 algorithm.

Our experiments have been carried out on a set of randomly generated prob-
lems. The generator used involves four parameters: the number n of variables,
the common size d of all domains, the number c of constraints and the number
p of the forbidden value pairs in a given constraint.

We have fixed n = 16, d = 8, p = 32 and we have varied c from 24 to 120
(complete graph) per step of 12. For each value of c we tested 100 different
problems. The computed results are the average of the percentage of filtered
values as well as the average time spent in filtering a value. 1

Fig.1 gives a comparison between the Lag and the AC techniques. The results
of Lag are obtained by giving to the parameters μ,K and N of the procedure
procedure1 the values 0.6, 5 and 20, respectively. The time taken to filter a
value by Lag is not presented for c < 60. It is of 81, 31 and 13 milliseconds for
c equal to 24, 32 and 48 respectively.
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Fig. 1. AC and Lag comparison on randomly generated CSPs with n = 16, d = 8, p =

32, 24 ≤ c ≤ 120

We note that Lag allows us to remove more inconsistent values than AC.
Moreover, the power of Lag increases when the constraint graph density grows.
However, Lag is unable to dismount the inconsistency of any problem. This is
due to the fact that the propagation of the values deletion is not performed.

1 The time spent to filter a value is obtained by dividing the total running time per
the number of filtered values.
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When the constraint graph density is weak, the average process time neces-
sary for Lag to detect an inconsistent value is too large compared to that of AC.
This is due to the following reasons :

1. the complexity (O(n2d2)) of a single iteration of the subgradient algorithm
is higher than that of the whole AC-6 algorithm (O(md2)), where m is the
number of constraints of the CSP;

2. the most of the values are consistent and the subgradient algorithm consumes
the allowed number of iterations: it looks for an instantiation with a small
number of violated constraints2.

The average time spent by Lag to remove a value decreases when the con-
straint graph density grows and becomes interesting. This can be explained by
the fact that when the constraint graph density is high, the majority of values are
inconsistent. In this case, Lag removes much more values than AC and consumes
often few iterations, since it is stopped when the inconsistency is demonstrated.

These results convinced us that this Lagrangean relaxation technique can be
of a great interest if it is well exploited. Its performances can be ameliorated by:

– reducing the number of dual problems that are solved;
– combining it with deductive methods (constraint propagation techniques).

5 Combining Arc-Consistency and Lagrangean
Relaxation

In this section we present a technique combining arc-consistency and Lagrangean
relaxation to filter CSPs. It keeps the good features of AC (i.e. changing the do-
mains of variables) and increases the pruning power of AC by solving the dual
problems defined on some selected values of variables. The algorithm consists in
the following procedure.

procedure3(in μ,K,N)

1. ACfiltering();% filtering the problem by AC-6.
2. E ← X;% E is initialized by the set of CSP variables.
3. repeat

3.1 domdeg(E, i);% A variable Xi is selected from E.
3.2 E ← E − {Xi} ;% Xi is marked as considered.
3.3 if Di �= ∅ then repeat

3.2.1 suspectvalue(i, k);% A value vk is selected from Di.
3.2.2 procedure1(i, k, μ,K,N, result);% Dk

i solving
3.2.3 if result < 1 then

{ Di ← Di − {vk}; ACpropagate(i, k);}% propagation phase
until result ≥ 1 or Di = ∅;

until E = ∅;

2 This is the aim of the subgradient algorithm.
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After making the CSP arc-consistent (ACfiltering procedure), a variable
Xi is selected (domdeg procedure) and a suspect3 value vk is selected from its
domain (suspectvalue procedure), then the Dual problem Dk

i is solved. If this
resolution shows that this value is inconsistent, it is removed. The propagation
of this deletion is performed by arc-consistency (ACpropagate procedure) and
the same process is repeated for another suspect value. When the suspect value
is not deleted by the dual problem resolution, a not yet considered variable is
selected and the process is repeated. The algorithm stops when all the variables
of the CSP have been considered. We denote this technique by AC+Lag.

We use the minimum domain maximum degree heuristic to select a variable
(domdeg procedure) [7] [10] and the suspect value heuristic (suspectvalue
procedure) to select a value for this variable.

5.1 Experimental Evaluation (AC Versus AC+Lag)

We have tested the performance of the combining method on different classes
of randomly generated problems (100 problems per class). For each class, we
give a comparison between the AC+Lag and the AC techniques. The computed
results are the average of the percentage of filtered values and the average time
spent in filtering a value. The results of AC+Lag are obtained by giving to the
parameters μ,K and N of the procedure procedure3 the values 0.6, 5 and 10
respectively.

Fig. 2 gives the comparison between the AC+Lag and AC techniques applied
to the same problems as those of the previous section (n = 16, d = 8, p = 32, 24 ≤
c ≤ 120).
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Fig. 2. AC and AC+Lag comparison on randomly generated CSPs with n = 16, d =

8, p = 32, 24 ≤ c ≤ 120

We can see that the pruning power of AC+Lag is increased compared to that
of Lag (see Fig. 1 and Fig. 2). AC+Lag dismounts the inconsistency for many

3 The suspect value is determined by an heuristic method which selects first the values
that have the minimum number of supports with another variable.
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problems, even if the allowed number of iterations to solve the dual problem in
AC+Lag is twice less than those of Lag.

When the constraint graph density is not under-constrained (c > 48), AC+Lag
removes much more values than AC and dismounts the inconsistency of many
problems. In this case, the average time taken to remove a value by AC+Lag is
almost equal to that of AC. This can be explained by the fact that most of the
values are removed during the propagation phase.

We have also tested this technique on the randomly generated problems with
two other tightness of constraints : p = 26 and p = 38. The other parameters
are unchanged.

Fig. 3 and Fig. 4 summarize the results on the comparison between AC+Lag
and AC. We can see that AC+Lag always removes more values than AC. How-
ever, for the under-constrained problems, the average time spent to remove a
value by AC+Lag is large compared to that of AC.

Then for these experimental results, we notice that our method (combining
AC and Lag) is quite beneficial for the not under-constrained CSPs. Naturally,
the experiments can be extended to other classes of CSPs, in particular the
non-random CSP benchmarks.
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Fig. 3. AC and AC+Lag comparison on randomly generated CSPs with n = 16, d =

8, p = 26, 24 ≤ c ≤ 120
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Fig. 4. AC and AC+Lag comparison on randomly generated CSPs with n = 16, d =

8, p = 38, 24 ≤ c ≤ 120
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6 Conclusion

In this paper, a new formulation is proposed for CSPs. Thanks to this formula-
tion, we show that Lagrangian relaxation and arc-consistency are two techniques
which can cooperate very well.

Our experimental results show that the Lagrangean relaxation is a powerful
technique when it is judiciously exploited. However its weakness is the worst
case complexity of the dual problem resolution.

To keep the good features of Lagrangean relaxation and work out its weak-
ness, a technique combining arc-consistency and Lagrangean relaxation is pro-
posed. The experimental results show that this technique is very interesting
on the not under-constrained CSPs. However, under-constrained CSPs are easy
to solve. In this case, the technique combining arc-consistency and Lagrangean
relaxation can be good if the CSP is provided with an objective function to
optimize, i.e. when we have to solve a Constraint Satisfaction and Optimization
Problems (CSOPs). One can solve only one dual problem after each branching
and constraints propagation. This can lead to eliminate the exploration of unin-
teresting branches. This also provides interesting Lagrange multipliers useful in
defining new heuristics to select the first branch to explore.

The performance of the hybrid technique can be also ameliorated by:

– searching another relaxation;
– reinforcing the model by valid inequalities;
– solving dual problems in more precise way, using other techniques such as

column generation [16] or Bundle method [20].

The presented formulation can be extended to represent Valued Constraint
Satisfaction Problems (VCSPs).

Naturally, since we have showed that combining arc-consistency and La-
grangean relaxation technique is very interesting on the not under-constrained
CSPs and since the formulation can be extended to represent VCSPs, the topic
of our future research is to study this cooperation within the VCSPs framework.
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Abstract. The effects of combining search and modelling techniques can be
complex and unpredictable, so guidelines are very important for the design and
development of effective and robust solvers and models. A recently observed phe-
nomenon is the negative effect of symmetry breaking constraints on local search
performance. The reasons for this are poorly understood, and we attempt to shed
light on the phenomenon by testing three conjectures: that the constraints create
deep new local optima; that they can reduce the relative size of the basins of at-
traction of global optima; and that complex local search heuristics reduce their
negative effects.

1 Introduction

Symmetry-breaking has proved to be very effective when combined with complete
solvers [3, 16]. This can be explained by observing that symmetry-breaking constraints
considerably reduce the search space. Nevertheless, the use of symmetry-breaking con-
straints (hereinafter referred to as SB constraints) seem to have the opposite effect on
local search-based solvers, despite the search space reduction. In [12, 13] some exam-
ples of this phenomenon are reported. When the problem is modeled with SB con-
straints, the search cost1 is higher than the one corresponding to the model with sym-
metries.

The reasons for this phenomenon are poorly understood. Improving our understand-
ing may aid both the modelling process and the design of future local search algorithms;
in an effort to achieve this, we pose and test some conjectures. In Sec.2, we test the
conjecture that SB constraints create deep new local optima, by first providing a formal
example and then by showing (indirectly) empirical evidence of this phenomenon. In
Secs.3 and 4, we reinforce the conjecture by exhaustively analysing small instances.
Furthermore, we extend the previous conjecture by investigating more complex char-
acteristics of the search space and we show that, in most cases, SB constraints reduce
global optima reachability. We also observe that these negative effects can be tempered
by using complex search strategies.

1 Measured as runtime or number of variable assignments.

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 273–287, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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2 SB Constraints and Local Minima

SB constraints may generate new local minima, which might also have a negative effect
on local search performance. We explain the intuition behind this idea using Boolean
satisfiability (SAT). The SAT problem is to determine whether a Boolean expression has
a set of satisfying truth assignments. The problems are usually expressed in conjunctive
normal form: a conjunction of clauses

∧
i Ci where each clause C is a disjunction of

literals
∨

lj and each literal l is either a Boolean variable x or its negation x̄. A Boolean
variable can be assigned either T (true) or F (false). A satisfying assignment has at
least one true literal in each clause. Now consider the following SAT problem:

a ∨ b a ∨ c a ∨ b a ∨ c

which is the formula (a ↔ b) ∧ (a ↔ c) in conjunctive normal form. There are two
solutions: [a=T, b=T, c=T] and [a=F, b=F, c=F]. Suppose that a problem modeler realises
that every solution to the problem has a symmetrical solution in which all truth values
are negated. Then a simple way to break symmetry is to fix the value of any variable
by adding a clause such as a to the model. Denote the first model by M and the model
with symmetry breaking by Ms. Now suppose we apply a local search algorithm such
as GSAT [19] to the problem. GSAT starts by making a random truth assignment to all
variables, then flipping truth assignments (changing an assignment T to F or vice-versa)
to try to reduce the number of violated clauses. In model M the state [a=F, b=F, c=F] is
a solution, but in Ms the added clause a is violated. Moreover, any flip leads to a state
in which two clauses are violated: flipping a to T removes the unit clause violation but
causes the first two binary clauses to be violated; flipping b [c] to T preserves the unit
clause violation and also violates the third [fourth] binary clause. In other words this
state has been transformed from a solution to a local minimum. (The unit clause does
not preclude this as a random first state, nor does it necessarily prevent a randomized
local search algorithm from reaching this state.) In contrast M has no local minima:
any non-solution state contains either two T or two F assignments, so a single flip leads
to a solution (respectively TTT or FFF).

GSAT (and other algorithms) will actually escape this local minimum because it
makes a “best” flip even when that flip increases the number of violations, but exam-
ples can be constructed with deeper local minima. The point is that a new local min-
imum has been created, and local minima degrade local search performance. We can
also construct examples in which propagating the SB constraints through the model
still leaves a model containing new local minima. Deep local minima require a greater
level of noise (the probability of making a move that increases the objective function
being minimized) in the search algorithm, so the creation of new local minima might be
indirectly detected by analysing the performance as a function of noise. We look for this
phenomenon in vertex colouring problems, encoded as SAT problems. SAT is a useful
form because there are a variety of publicly-available local search algorithms.

2.1 Vertex Colouring as SAT

A graph G = (V,E) consists of a set V of vertices and a set E of edges between vertices.
Two vertices connected by an edge are said to be adjacent. The aim is to assign a colour
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to each vertex in such a way that no two adjacent vertices have the same colour. The
task of finding a k-colouring for a given graph can be modeled as SAT by defining a
Boolean variable for each vertex-colour combination, and adding clauses to ensure that
(i) each vertex has at least one colour, (ii) no vertex has more than one colour, and (iii)
no two adjacent vertices take the same colour. Colouring problems have a symmetry: the
colours in any solution can be permuted. A simple but effective way of partially breaking
this symmetry, used in an implementation of the DSATUR colouring algorithm [7], is
to find a clique and assign a different colour to each of its vertices before search begins.
Using a k-clique breaks k! permutation symmetries. DSATUR uses a polynomial-time
greedy algorithm to find a clique, preferring to spend time on colouring. We aim to test
the effects of SB so we use a competitive clique algorithm described in [14].

We use the UBCSAT system [21] as a source of local search algorithms and experi-
ment with three of them. Firstly the SKC (Selman-Kautz-Cohen) variant of the Walksat
algorithm described in [18], which has become something of a standard algorithm in
the SAT community. Its random walk approach was a significant advance over previous
local search algorithms for SAT. However, advances in local search heuristics have been
made since the invention of SKC. The Novelty and R-Novelty heuristics [6] use more
sophisticated criteria for selecting variables to be flipped. These were later elaborated to
the Novelty+ and R-Novelty+ variants [4] which have an extra noise parameter to avoid
stagnation, and perform very well on many problems. The second algorithm we use is
Novelty+. The third is SAPS (Scaling And Probabilistic Smoothing) [5] which incorpo-
rates further techniques: an efficient method for dynamically changing clause weights,
an idea first used in [9] to escape local minima and since used in several algorithms;
and subgradient optimization [17] inspired by Operations Research methods.

2.2 Experiments

We applied SKC to benchmark graphs from a recent graph colouring symposium. 2 On
several graphs SKC moved more or less directly to a solution (using fewer steps than
the problem has Boolean variables), which is quite surprising as these are considered
to be non-trivial colouring problems. On such problems SB constraints often improved
performance, counter to expectations. A typical example is shown in Fig. 1. Best per-
formance is obtained with high noise, showing that a simple random walk algorithm
finds the problem trivial. Adding SB constraints seems to give the algorithm a head
start, transforming a trivial problem into an even more trivial one. Some other graphs
gave similar results, including the mulsol.i.n graphs.

The timetabling graph school1 is nontrivial but not very hard for SKC, taking about
twice as many flips as there are Boolean variables. But adding SB constraints makes the
problem at least 4 orders of magnitude harder in most SKC runs, (though performance is
better with frequent random restarts). Novelty+ also finds this problem extremely hard
with SB constraints. SAPS finds the problem trivial without SB constraints, solving it in
fewer flips than there are Boolean variables. With SB constraints it takes several times
longer but is far more robust than SKC and Novelty+.

2 http://mat.gsia.cmu.edu/COLOR04
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Fig. 4. SAPS results for the flat graph

It turns out that many colouring benchmarks are either too trivial to show the effects
we are looking for (like anna) or too intractable to study in detail (like school1). We
therefore created our own graphs using J. Culberson’s graph generator. 3 We chose a flat
graph, which is a randomly generated graph containing a hidden colouring. We chose
an edge density of 0.5, flatness 0, 100 vertices, with a hidden 10-colouring, and found
an 8-clique. The results are shown in Fig. 2 (each data point is the median over 100
runs) and confirm the effect we are looking for. Without SB constraints the problem
is non-trivial, taking several times more flips than there are Boolean variables. Best
results are obtained with low noise. With SB constraints the problem is about 2 orders
of magnitude harder using optimal noise, which is higher than without SB constraints.
In case this result is an artefact of SKC’s heuristics we repeated the experiment with
Novelty+, shown in Figure 3. This algorithm is often more efficient than SKC but the
same pattern emerges. We believe that this indicates the increased ruggedness of the
search space, caused by new local minima.

Next we tried SAPS on the same graph, which has 3 parameters besides the usual
noise parameter p. SAPS performance is reported to be robust with respect to the default
values of p and two of the other parameters, but less so for the smoothing parameter ρ.
The greater the value of ρ the more rapidly recent history is forgotten, and the less likely
the algorithm is to escape from a local minimum. Thus ρ can be viewed as a form of
inverse noise parameter. Fig. 4 shows the results for the flat graph, this time varying
ρ. Without SB constraints the performance is independent of ρ. With SB constraints

3 http://web.cs.ualberta.ca/˜joe/Coloring/index.html
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performance is worse, especially for high ρ values, but it is much more robust than
SKC or Novelty+. This is still consistent with our conjecture that SB constraints add
new local minima. It also suggests that complex local search, with heuristics designed
to escape local minima, are less affected by SB constraints — though they are still
adversely affected.

The above examples show that SB constraints can have a huge impact on local
search performance. These results are clearer and more extreme than those in [12, 13].
We conjectured that the cause is the creation of new, deep local minima, and our results
support this conjecture but do not provide direct evidence. Ideally, we should analyse
the search spaces of colouring problems, for example to count the number of local
optima with and without SB constraints. Unfortunately, the search spaces are too large
for an exhaustive enumeration, but in the following we analyse the search space of
a hard optimization problem suitable for this kind of study. Before this, we formally
define the search space explored by local search.

3 The Search Graph and Its Main Characteristics

The number of local minima can be taken as an indicator of the ruggedness of the
search space explored by local search. In turn, it is usually recognized that the more
rugged a search space is, the poorer is local search performance. Nevertheless, this
parameterization of the search space might be sometimes insufficiently explicative or
predictive. In this section, we provide a simple model of the search space which not
only considers local and global optima, but also their basins of attraction, i.e., the set
of states from which the optima can be reached.

The local search process can be viewed as an exploration of a landscape aimed at
finding an optimal solution, or a good solution, i.e., a solution with a quality above
a given threshold.4 We define the search space explored by a local search algorithm
as a search graph. The topological properties of such a graph are defined upon the
neighborhood structure, that generate the neighborhood graph.

3.1 Neighborhood and Search Graphs

A Neighborhood Graph (NG), is defined by a triple: L = (S, N , f), where:

– S is the set of feasible states;
– N is the neighborhood function N : S → 2S that defines the neighborhood struc-

ture, by assigning to every s ∈ S a set of states N (s) ⊆ S.
– f is the objective function f : S → IR+

The neighborhood graph can be interpreted as a graph (see Fig. 5) in which nodes are
states (labeled with their objective value) and arcs represent the neighborhood relation

4 For the rest of this paper, we will suppose, without loss of generality, that the goal of the search
is to find an optimal solution. Indeed, the same conclusions we will draw can be extended to a
set including also good solutions.
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Fig. 5. Example of undirected graph representing a neighborhood graph (fitness landscape). Each
node is associated with a solution si and its corresponding objective value f(si). Arcs represent
transition between states by means of ϕ. Undirected arcs correspond to symmetric neighborhood
structure

between states. The neighborhood function N implicitly defines an operator ϕ which
takes a state s1 and transforms it into another state s2 ∈ N (s1). Conversely, given an
operator ϕ, it is possible to define a neighborhood of a variable s1 ∈ S:

Nϕ(s1) = {s2 ∈ S \ {s1} | s2 can be obtained by one application of ϕ on s1}
In most cases, the operator is symmetric: if s1 is a neighbor of s2 then s2 is a neigh-

bor of s1. In a graph representation (like the one depicted in Fig. 5) undirected arcs rep-
resent symmetric neighborhood structures. A desirable property of the neighborhood
structure is to allow a path from every pair of nodes (i.e., the neighborhood is strongly
optimally connected) or at least from any node to an optimum (i.e., the neighborhood
is weakly optimally connected). Nevertheless, there are some exceptions of effective
neighborhood structures which do not enjoy this property [10].

The exploration process of local search methods can be seen as the evolution in
(discrete) time of a discrete dynamical system [1]. The algorithm starts from an initial
state and describes a trajectory in the state space, that is defined by the neighborhood
graph. The system dynamics depends on the strategy used; simple algorithms generate
a trajectory composed of two parts: a transient phase followed by an attractor (a fixed
point, a cycle or a complex attractor). Algorithms with advanced strategies generate
more complex trajectories which can not be subdivided in those two phases.

It is useful to define the search as a walk on the neighborhood graph. In general, the
choice of the next state is a function of the search history (the sequence of the previously
visited states) and the iteration step. Formally: s(t + 1) = φ(〈s(0), s(1), . . . , s(t)〉, t)
where the function φ is defined on the basis of the search strategy. φ could also depend
on some parameters and can be either deterministic or stochastic.

For instance, let us consider a deterministic version of the Iterative Improvement
local search. The trajectory starts from a point s0, exhaustively explores its neighbor-
hood, picks the neighboring state s′ with minimal objective function value5 and, if s′ is
better than s0, it moves from s0 to s′. Then this process is repeated, until a minimum ŝ
(either local or global) is found. The trajectory does not move further and we say that

5 Ties are broken by enforcing a lexicographic order of states.
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the system has reached a fixed point (ŝ). The set of points from which ŝ can be reached
is the basin of attraction of ŝ. Note that, especially in the case of deterministic local
search algorithms, not every initial state is guaranteed to reach a global optimum.

Once we have introduced also the search strategy, the edges of the neighborhood
graph can be oriented and labeled with transition probabilities (whenever it is possible
to evaluate them). This will lead to the definition of concepts such as basins of attraction,
state reachability and graph navigation. In the following, this resulting graph will be
referred to as the search graph.

3.2 Basins of Attraction

The concept of basin of attraction (BOA) has been introduced in the context of dynam-
ical systems, in which it is defined referring to an attractor. Concerning our model of
local search, we will use the concept of basin of attraction of any node of the search
graph. For the purposes of this paper we only consider the case of deterministic sys-
tems, even if it is possible to extend the definition to stochastic ones.6

Definition Given a deterministic algorithmA, the basin of attraction B(A|s) of a point
s, is defined as the set of states that, taken as initial states, give origin to trajectories
that include point s. The cardinality of a basin of attraction represents its size (in this
context, we always deal with finite spaces).

Given the set Sopt of the global optima, the union of the BOA of global optima
Iopt =

⋃
i∈Sopt

B(A|i) represents the set of desirable initial states of the search. Indeed,
a search starting from s ∈ Iopt will eventually find an optimal solution. Since it is
usually not possible to construct an initial solution that is guaranteed to be in Iopt,
the ratio rGBOA = |Iopt|/|S| can be taken as an indicator of the probability to find an
optimal solution. In the extreme case, if we start from a random solution, the probability
of finding a global optimum is exactly |Iopt|/|S|. Therefore, the higher this ratio, the
higher the probability of success of the algorithm.

Given a local search algorithm A, the topology and structure of the search graph
determine the effectiveness of A. In particular, the reachability of optimal solutions
is the key issue. Therefore, the characteristics of the BOA of optimal solutions are of
dramatic importance.

4 SB Constraints and Basins of Attraction

We now analyse the search space of an optimization problem to examine whether the
number of local minima is indeed increased. We also test another conjecture: that SB
constraints harm local search by reducing rGBOA defined on the basis of a simple iter-
ative improvement local search. In fact, even the most complex local search algorithms
incorporate a greedy heuristic which is the one that characterizes iterative improvement.

6 In this case, not only probabilistic basins of attraction are of interest, but also the probability a
given state can be reached. Some studies in this direction are subject of ongoing work.
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Therefore, if SB constraints reduce rGBOA, then the more a local search is similar to
iterative improvement, the more it should be affected by SB constraints. Furthermore,
we should also observe that local search algorithms equipped with complex exploration
strategies are less affected by SB constraints. In this work, we aim at experimentally
verifying this conjecture. By relating local search performance with rGBOA we con-
sider a more general case than only counting local optima.7

We test our conjectures on the LABS optimization problem, which is to find an
assignment to binary variables such that an energy function defined upon them is mini-
mized. Given n binary variables x1, . . . , xn, which can assume a value in {−1,+1}, we
define the k-th correlation coefficient of a complete variable assignment s = {(x1 =
d1), . . . , (xn = dn)} with di ∈ {−1,+1}, i = 1, . . . , n, as Ck(s) =

∑n−k
i=1 xi xi+k,

k = 1, . . . , n− 1 and the total function to be minimized is E(s) =
∑n−1

k=1 C2
k(s).

4.1 Analysis of the Space

We exhaustively explored the search space of LABS, for n ranging from 6 up to 18.8

As neighborhood function we chose the one defined upon unitary Hamming distance,
that is the most used one for problems defined over binary variables. (We emphasize
that this choice determines the fundamental topological properties of the search space.)

In the model with SB constraints, only a subset of symmetric solutions has been cut,
by enforcing constraints on the three left-most and right-most variables [8]. In these
experiments the SB constraints are enforced instead of used to modify the objective
function. In the SAT examples SB constraints were handled like any other clauses:
when they were violated they increased the objective function being minimized (the
number of violated clauses). In our LABS experiments the SB constraints are never
violated so the local search space is smaller. Our experiments are therefore also a test
of whether the observed negative effects still occur when SB constraints are used to
restrict the search space.

It is first interesting to study how the neighborhood graph changes upon the appli-
cation of SB constraints. In M , the neighborhood graph induced by single variable flips
is a hypercube in which each node is connected to n other nodes. This graph has a
constant degree equal to n. The neighborhood graph associated to Ms is characterized
by a node degree frequency that varies in a small range, around a mean value slightly
smaller than n (see an example in Fig. 6). The topological characteristics of this graph
are not affecting the search, since the reachability of nodes is not significantly per-
turbed. Therefore, we can exclude that SB constraints in LABS affect local search by
perturbing the topological properties of the neighborhood graph.

We consider now the features of the search graph, which, in general, can be algorithm-
dependent. (This is the case for basins of attraction, while local and global optima only
depend on the objective function and the neighborhood.) The search space characteris-
tics of interest are the number of feasible states, the number of global and local optima
and the value rGBOA. These values are reported in Tab.1. We first observe that the

7 Indeed, rGBOA can be decreased even if the density of local optima is not increased.
8 The size limit is due to the exhaustiveness of the analysis.
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Fig. 6. Node degree frequency of the neighborhood graph in the case of the model with SB con-
straints (n = 10)

Table 1. Search space characteristics of LABS instances

n feasible states global optima local optima global BOA

no SB with SB no SB with SB no SB with SB no SB with SB
6 64 12 28 5 0 0 1.0 1.0
7 128 24 4 1 24 5 0.40625 0.33333
8 256 48 16 3 8 2 0.86328 0.77083
9 512 96 24 4 84 16 0.42969 0.37500

10 1024 192 40 7 128 29 0.54590 0.45833
11 2048 384 4 1 240 52 0.03906 0.04427
12 4096 768 16 3 264 61 0.07544 0.06901
13 8192 1536 4 1 496 111 0.01831 0.01953
14 16384 3072 72 11 664 177 0.21240 0.15202
15 32768 6144 8 2 1384 326 0.01956 0.01742
16 65536 12288 32 8 1320 332 0.05037 0.04972
17 131072 24576 44 9 3092 721 0.05531 0.04073
18 262144 49152 16 2 5796 1372 0.02321 0.01068

search space reduction yielded by applying SB constraints is 5.33, independently of the
instance size, while the global optima ratio is on average 5.19 (std.dev. is 1.22) and the
local optima ratio is 4.36 (std.dev. is 0.40). Therefore, the number of local optima is
reduced by a factor which is less than the search space reduction. An interesting per-
spective of the search space can be given by plotting the global (resp. local) optima
density, i.e., the ratio of the number of global (resp. local) optima to the search space
size. The density of optima is plotted in Figs. 7 and 8. These plots show that the density
of local optima is always higher in the model Ms, proving that SB constraints increase
the search space ruggedness. By enumerating the whole search space, we also observed
that new local optima are created in Ms: some feasible states in Ms are local optima in
Ms, but not in M . Note also that the density of global optima decreases exponentially
with n. (The relation between number of global optima and n can be fitted with a good
approximation by a line in a semi-logarithmic plot.) On the other side, the density of
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Fig. 8. Ratio of local optima w.r.t. search
space size for n = 6, . . . , 18

local optima decreases much more slowly for the highest values of n. This provides an
explanation for LABS being particularly difficult for local search.

Finally, we consider the basins of attraction of global optima. The basins of attrac-
tion are defined with respect to deterministic iterative improvement. We note that in all
the cases, except for n = 11 and n = 13, rGBOA(Ms)<rGBOA(M).

4.2 Experiments

We attacked LABS (with n = 6, . . . , 18) with four different local search algorithms:
Best improvement with randomly broken ties (BI), First improvement with random or-
der among neighbors (FI), Simulated annealing (SA) and Tabu search (TS).9 From the
perspective of search space exploration, the algorithms chosen exhibit a varying explo-
rative attitude, starting from the lowest of BI to the highest of TS, while all keeping a
‘greedy’ character.10 We run each algorithm on the original model and on the model
with SB constraints. The algorithms are stopped after 10n non-improving moves. This
termination condition enables us to compare the algorithms on the basis of the best solu-
tion they returned once a steady state is reached. (In the literature of metaheuristics, this
state is also commonly called stagnation.) Tab.2 gives a synoptic view of the algorithm
performance in term of success ratio (out of 1000 runs).

A graphic comparison of the performance of each algorithm on the two problem
models is given in Figs. 9, 10, 11, 12, in which we plotted the difference of solved
instances (perc.) against n, i.e., Δ% = 100× (solved(noSB)−solved(SB))/1000. Note
that the performance on M dominates the one on Ms in all but the TS case.

The correlation between number of successes and rGBOA is particularly interesting.
From the plots in Figs. 13, 14, 15 and 16, we observe that for BI and FI the number of
successes is proportional to the size of the global optima basin of attraction. In the case

9 The initial temperature in SA has been set after a simple trial-and-test procedure. The tabu
tenure in TS is randomly restarted each iteration in a range between 1 and n/2, in the spirit of
robust tabu search [20].

10 A deep discussion on this topic, involving also intensification and diversification, can be found
in [2].



Symmetry Breaking and Local Search Spaces 283

Table 2. Synopsis of the number of solved instances (out of 1000 runs) of the four local search
algorithms on the original model and the model with SB constraints

n BI FI SA TS

no SB with SB no SB with SB no SB with SB no SB with SB
6 1000 1000 1000 1000 1000 1000 1000 1000
7 417 324 530 484 1000 999 1000 1000
8 875 751 825 728 1000 960 1000 1000
9 438 342 266 267 913 834 1000 1000

10 561 426 995 720 996 920 1000 1000
11 42 41 47 30 101 136 528 928
12 77 63 39 37 308 318 835 895
13 16 17 3 5 105 111 283 251
14 200 125 202 142 857 731 992 1000
15 25 24 22 20 157 179 363 599
16 66 52 29 39 336 307 819 919
17 60 43 71 45 508 388 909 916
18 25 6 35 8 270 131 678 412
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Fig. 10. First improvement. Percentage of
the difference between solved instances in
the original model and solved instances in
the model with SB constraints

of SA and TS, while the correlation is still observable, we note that the performance
remains quite high even for low values of rGBOA, especially in the case of TS. The
value of rGBOA have been measured on the basis of deterministic best improvement,
therefore it is not surprising that both BI and FI show a proportional relation between
successes and fraction of states that make the search converging to a global optimum.
SA performs a more effective search space exploration than iterative improvement pro-
cedures, and even more TS, therefore the number of successes they achieve is much
higher than that of BI and FI. It is interesting to note that the performance of both SA
and TS starts to degrade (quite abruptly) when the normalized size of the global optima
basin of attraction approaches a threshold value. Moreover, for TS this value is smaller
than for SA, in other words, the more sophisticated an exploration strategy is, the lower
the value of rGBOA at which the performance starts to be strongly affected.
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4.3 Discussion

The available data are still not sufficient to draw strong conclusions, but we have exper-
imental results to support our conjectures. First of all, we have directly observed that
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new local optima are created and their density is higher in Ms. This is one of the reasons
why rGBOA is reduced in the model with SB constraints. Another important observa-
tion is that local search performance is strongly affected by the size of the global optima
basin of attraction. This relation is in the form of a positive correlation (i.e., the smaller
the BOA, the lower the performance) and it is well approximated by a linear relation
in the case of simple local search algorithms (BI and FI), while it is nonlinear in the
case of more complex search strategies (SA and TS). The nonlinearity of this relation
plays a big role when we compare the performance of local search algorithms (in terms
of success ratio). In fact, large differences in rGBOA imply large deviations of the per-
formance. But on the other side, when the difference is quite small, other factors come
into play.

It is important to note that these effects occur even when SB constraints are used to
restrict the search space. In the SAT experiments the search spaces with and without
SB constraints were the same size: the SB constraints merely modified the objective
function (number of violated constraints). It was therefore possible for the search to
approach an excluded solution that has become a local minimum. But in the LABS
experiments this was not possible: the search never strayed into the excluded subspaces,
yet the SB constraints still had negative effects on local search performance. This is
perhaps more surprising than the SAT results.

5 Conclusion

We showed, both empirically and by analysis, that SB constraints have two distinct
negative effects on a local search space: they increase the relative size of local optima,
and they reduce the relative size of global basins of attraction. These effects were ob-
served using two different symmetry breaking methods: using SB constraints to modify
an objective function, and using them to restrict the search space. The effects can be
extremely strong, slowing down local search performance by several orders of magni-
tude. However, the effects are reduced by using more complex local search algorithms
with heuristics for escaping local minima and with diversification strategies.

We believe that more research into both modelling and local search is necessary.
Several lines of research are possible. Firstly, it has been suggested that, because SB
constraints can have such a strong effect on local search, performance might be greatly
improved by adding symmetry [13, 15]. We have so far found only one application of
this idea (Golomb rulers [13]) but the technique seems promising. Secondly, there is a
startling difference in performance between local search algorithms with and without
mechanisms for escaping local minima, and our problems with SB constraints provide a
useful test for such mechanisms. By focusing on such problems we might discover even
better mechanisms, such as effective weighting procedures for SB constraints. (These
mechanisms may include also the use of SB constraints in a TS fashion and the iterative
relaxation of some of them during the search.) Thirdly, we still lack a general model
(or, at least, general criteria) to both explain the phenomenon and guide the modelling
phase. For example, it would be important to know if there are specific classes of SB
constraints which induce a search space that is particularly unfavourable for exploration
by local search. Fourthly, the effects another symmetry breaking technique have yet to
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be explored: reformulation, that is formulating a new model of the problem that does
not contain the symmetry. Negative effects here would be even more surprising, and
have important implications for problems modeling.

Finally, it should be noted that these negative effects are caused by symmetry break-
ing, but symmetry can be exploited in other ways to improve local search perfor-
mance [11].
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Abstract. A cardinality constraint imposes that each value of a set V
must be taken a certain number of times by a set of variables X, whereas
an among constraint imposes that a certain number of variables of a set
X must take a value in the set V.

This paper studies several combinations of among constraints and
several conjunctions of among constraints and cardinality constraints.
Some filtering algorithms are proposed and they are characterized when
it is possible. Moreover, a weak form of Singleton arc consistency is
considered. At last, it is shown how the global sequencing constraint and
the global minimum distance constraint can be easily modeled by some
conjunctions of cardinality and among constraints. Some results are also
given for the global minimum distance constraint. They show that our
study outperforms the existing constraint in ILOG Solver.

1 Introduction

Cardinality and among constraints are common to almost real-life problems. For
instance, they are present in car sequencing (only some cars of a sequence can
take a given option), radio frequency allocation problems (only one node of a
pair of adjacent nodes can take a frequency in a set), rostering problems... The
resolution of these applications can be improved if we are able to better combine
these constraints.

This paper proposes to study in detail the among constraint and the combina-
tion of among constraints. We prove that the general problem of the combination
of among constraints is NP-Complete. Thus, we propose to study some specific
combinations which are tractable and for which we give a filtering algorithm
establishing arc consistency.

Then, we consider the conjunction of cardinality constraints and among con-
straints and give arc consistency algorithms for two types of conjunction that are
useful in practice. We also propose an original algorithm which can be viewed
as a weak form of Singleton arc consistency.

At last, we will show how to model the global sequencing constraint and
the global minimum distance constraint by some conjunctions of cardinality and
among constraints. We also give some results for the global minimum distance
constraint that outperform the existing constraint in ILOG Solver.
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2 Preliminaries

2.1 Graph Theory

These definitions are based on books of [1], [2], and [3].
A directed graph or digraph G = (X,U) consists of a node set X and

an arc set U , where every arc (u, v) is an ordered pair of distinct nodes. We
will denote by X(G) the node set of G and by U(G) the arc set of G. A path
from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that (vi, vi+1) is
an arc for i ∈ [1..k − 1]. An undirected graph is connected if there is a path
between every pair of nodes. The maximal connected subgraphs of G are its
connected components. A directed graph is strongly connected if there is
a path between every pair of nodes. The maximal strongly connected subgraphs
of G are its strongly connected components.

Let G be a graph for which each arc (i, j) is associated with two integers lij
and uij , respectively called the lower bound capacity and the upper bound
capacity of the arc. A flow in G is a function f satisfying the following two
conditions1 :

• For any arc (i, j), fij represents the amount of some commodity that can
“flow” through the arc. Such a flow is permitted only in the indicated di-
rection of the arc, i.e., from i to j. For convenience, we assume fij = 0 if
(i, j) �∈ U(G).

• A conservation law is observed at each node: ∀j ∈ X(G) :
∑

i fij =∑
k fjk.

A feasible flow is a flow in G that satisfies the capacity constraint, that
is, such that ∀(i, j) ∈ U(G) lij ≤ fij ≤ uij .

Definition 1. The residual graph for a given flow f , denoted by R(f), is the
digraph with the same node set as in G. The arc set of R(f) is defined as follows:
∀(i, j) ∈ U(G):

• fij < uij ⇔ (i, j) ∈ U(R(f)) and upper bound capacity rij = uij − fij.
• fij > lij ⇔ (j, i) ∈ U(R(f)) and upper bound capacity rji = fij − lij.

All the lower bound capacities are equal to 0.

2.2 Constraint Programming

A finite constraint network N is defined as a set of n variables
X = {x1, . . . , xn}, a set of current domains D = {D(x1), . . . , D(xn)} where
D(xi) is the finite set of possible values for variable xi, and a set C of con-
straints between variables. D0 = {D0(x1), . . . , D0(xn)} to represent the set of

1 Without loss of generality (see p.45 and p.297 in [3]), and to overcome notation
difficulties, we will consider that if (i, j) is an arc of G then (j, i) is not an arc of G,
and that all boundaries of capacities are nonnegative integers.
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initial domains of N . Indeed, we consider that any constraint network N can
be associated with an initial domain D0 (containing D), on which constraint
definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir
) is

a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir
) that specifies

the allowed combinations of values for the variables x1, . . . , xr. An element of
D0(x1)× · · · ×D0(xr) is called a tuple on X(C). τ [x] denotes the value of x in
the tuple τ .

Let C be a constraint. A tuple τ on X(C) is valid if ∀x ∈ X(C), τ [x] ∈ D(x).
C is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x �∈ X(C) or there exists a valid tuple τ of T (C)
with a = τ [x]. A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) �= ∅ and
∀a ∈ D(xi), a is consistent with C.

An instantiation of all variables that satisfies all the constraints is called a
solution of a CN. Constraint Programming (CP) proposes to search for a solu-
tion by associating with each constraint a filtering algorithm that removes some
values of variables that cannot belong to any solution. These filtering algorithms
are repeatedly called until no new deduction can be made. Then, CP uses a
search procedure (like a backtracking algorithm) where filtering algorithms are
systematically applied when the domain of a variable is modified.

We will use the following notations:

• x (resp. x) denotes the maximum (resp. minimum) value of D(x).
• D(X) denotes the union of domains of variables of X (i.e. D(X) =
∪xi∈XD(xi)).

• #(a, τ) is the number of occurrences of the value a in the tuple τ .
• #(a,X) is the number of variables of X such that a ∈ D(x).

2.3 Element Constraint

The element constraint has been introduced in [4]. It defines a functional link
between two variables. We propose a definition which is convenient for our
purpose.

Definition 2. Let f be a function2 from a set S1 to a set S2. An element con-
straint C is a binary constraint defined on two variables x and y and associated
with f and such that
T (C) = {τ s.t. τ is a tuple on {x, y} and τ [y] = f(τ [x])}
It is denoted by element(y, f, x).

We will say that a variable y is created by an element constraint element
(y, f, x) if y is defined with a domain equal to ∪a∈D(x)f(a)3 and if the element
constraint is added to the problem.

2 In mathematics, a function is a relation, such that each element of a set is associated
with a unique element of another set (possibly the same).

3 This means that the domain of x is not altered by the propagation after the definition
of y and the addition of the element constraint.
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Note that it is easy to maintain arc consistency for an element constraint be-
cause it is a functional constraint. This operation can be done in O(d), where d
is the size of the largest domain of x and y [5].

2.4 Cardinality Constraints

The Global Cardinality Constraints (GCC) has been proposed by
[6]. It constraints the number of times every value is taken to be in an interval. In
this initial definition, the intervals are statically given by their lower and upper
bounds. Then, it has been proposed by [7] and [8] to deal with variables instead
of intervals. This version is more convenient for our purpose:

Definition 3. A global cardinality constraint involving cardinality vari-
ables defined on a set of variables X and a set of cardinality variables K and
associated with a set of values V is a constraint C in which each value a ∈ V is
associated with the cardinality variable K[a] and
T (C) = {τ s.t. τ is a tuple on X(C) and ∀a ∈ V : K[a] = #(a, τ)}
It is denoted by gcc(X,V,K).

This constraint has been called cardVar-GCC, but we think that there is no
reason to differentiate it from a GCC because there is no ambiguity to differen-
tiate the parameters, this is why we will use the same name.

A GCC C is consistent iff there is a flow in an directed graph N(C) called
the value network of C [6]:

Definition 4. Given C = gcc(X,V,K) a GCC; the value network of C is the
directed bipartite graph N(C) in which each arc is associated with a lower and
an upper bound. The node set of N(C) is defined by:

• the set of variables X called the variable set of N(C);
• the set D(X) ∪ V called the value set of N(C);
• a node s called the source and a node t called the sink.

The arc set of N(C) is defined as follows:

• there is an arc from a variable x to a value a of (D(X) ∪ V ) if and only if
a ∈ D(x). For every arc (x, a) we have lxa = 0 and uxa = 1;

• there is an arc from s to every variable x ∈ X. For every arc (s, x) we have
lsx = usx = 1.

• there is an arc from each value a ∈ D(X) ∪ V to the sink t. If a ∈ V then
lat = K[a] and uat = K[a] else lat = 0 and uat = |X|.

• there is an arc from t to s with lts = uts = |X|.

Proposition 1. [6] Let C be a GCC. Then,

• C is consistent if and only if there is a feasible flow in N(C).
• Let f be a feasible flow in N(C). A value a of a variable x ∈ X is not

consistent with C if and only if fxa = 0 and a and x do not belong to the
same strongly connected component in R(f).
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The strongly connected component can be identified in O(n + m) for a graph
having n nodes and m arcs [9], thus arc consistency for the variables of X and for
a GCC can be established with the same complexity. With the previous definition
of N(C) we have n = |X|+ |D(X) ∪ V | and m = (

∑
x∈X |D(x)|) + n + 1. Note

that we can merge all values of D(X) that does not belong to V into a single
value representing the fact that a variable can be assigned to a value which is
not in V . This information can be easily maintained and in this case we have
m = (

∑
x∈X |D(x) ∩ V |+ 1) + n + 1 which less than the previous value.

Arc consistency for the variables of K can be much more difficult to compute
as shown by [8]:

Proposition 2. [8] If the domain of each variable of K is a range of integers
then arc consistency for the variables of K can be established in O(nm + n2.66),
else the problem is NP-Complete.

However, a simple filtering algorithm based on constraints addition can be
associated with the variables of K [7]:

Proposition 3. Let C = gcc(X,V,K) be a GCC, and f be any feasible flow in
N(C). Then, we have:

• ∀ai ∈ V K[i] ≤ #(ai, X)
•
∑

ai∈V K[i] ≤ |X| and if D(X) ⊆ V then
∑

ai∈V K[i] = |X|
• for every connected component CC of GV (X) we have:

if vals(CC) ⊆ V then
∑

ai∈vals(CC)) K[i] = |vars(CC)|,
else

∑
ai∈vals(CC)) K[i] ≤ |vars(CC)|,

where vals(CC) denotes the values of V belonging to CC and vars denotes
the variables of X belonging to CC and GV (X) is the value graph of X that
is GV (X) = (X,∪xi∈XD(xi), E) where (x, a) ∈ E iff a ∈ D(x).

Bound consistency of a sum constraint involving p variables can be established
in O(p). The strongly connected components of the residual graph are computed
to establish arc consistency of the variables of X, thus bound consistency of the
constraints of Proposition 3 can be implemented in O(|K|).

3 The Among Constraint

Definition 5. An among constraint defined on a set of variables X and a
cardinality variable k and associated with a set of value V is a constraint C such
that
T (C) = {τ s.t. τ is a tuple on X(C) and k =

∑
a∈V #(a, τ)}

It is denoted by among(X,V, k).

It is straightforward to design a filtering algorithm establishing arc consis-
tency for this constraint. For instance, we can associate with each variable x of
X a (0,1) variable xV defined as follows: xV = 1 if and only if x = a with a ∈ V .
Then the constraint can be rewritten

∑
xV = k.
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Definition 6. Let C1 = among(X1, V1, k1) and C2 = among(X2, V2, k2) be two
among constraints. If X1 ∩ X2 = ∅ we will say that C1 and C2 are variable
disjoint. If V1 ∩ V2 = ∅ we will say that C1 and C2 are value disjoint.

We propose to study whether it is possible to design some efficient filtering
algorithms associated with a conjunction of among constraints. Three possible
relations between among constraints:

1. the among constraints are variable disjoint.
2. the among constraints are value disjoint.
3. none of the previous property is satisfied.

Variable disjoint among constraints are totally independent and therefore it is
trivial to study their conjunction.

3.1 Value Disjoint Among Constraints

Consider A = {A1, A2, ..., An} a set of n among constraints that are pairwise
value disjoint where every Ai is equal to among(Xi, Vi, ki). This set of constraints
can be efficiently combined by transforming the conjunction into another con-
junction for which arc consistency can be efficiently established. This transfor-
mation requires to define new variables from the initial variables involved in the
among constraints.

First, since all the Vi sets are disjoint, we can define the following function
ndx:

Definition 7. For any value a if there exists vi such that a ∈ Vi, then ndx(a) =
i, else ndx(a) = −1.

Then, we associate every variable xi involved in an among constraint with a
more complex function denoted by f Ind

i :

Definition 8. Let Ind be the triplet (A, U, α) where A is a set of value disjoint
among constraints, each of them defined on a subset of X and associated with a
subset of V ; U = {u1, u2, ..., un} is a set of pairwise distinct values with U ∩(V ∪
D(X)) = ∅, and α is a value s.t. α �∈ (U ∪V ∪D(X)). For each variable xi ∈ X
we define function f Ind

i as follows: ∀a ∈ D(x) with k = ndx(a) if k �= −1 and
x ∈ Xk then f Ind

i (a) = uk else f Ind
i (a) = α.

Now, for each variable xi ∈ X a variable yi is created by the element constraint
element(yi, f

Ind
i , xi). Let Y be the set of these newly created variables.

Example. Consider seven variables x1, x2, ..., x7, each having a domain equal
to [0..7] and 3 among constraints A1=among({x1, x2, x3, x4},{0,1},k1), A2 =among
({x2, x4, x5, x6},{2,3},k2), A3 =among({x3, x4, x6, x7},{4,5},k3). We have
A = {A1, A2, A3} and we define Ind = (A, {u1, u2, u3}, α). Then, we obtain
D(y1)={u1, α}, D(y2)={u1, u2, α}, D(y3)={u1, u3, α}, D(y4) = {u1, u2, u3, α},
D(y5) = {u2, α}, D(y6) = {u2, u3, α}, D(y7) = {u3, α}. For instance, we have
D(y2) = {u1, u2, α} because x2 belongs to X(A1) and X(A2) and so the values
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of {0, 1} of x2 correspond to the value u1 of y2 and the values of {2, 3} of x2

correspond to the value u2 of y2 and the other values of x2 are associated with
the value α of y2.

All the variables created by element constraints take their values from the set
{u1, u2, ..., un}∪ {α}, then by constraining the number of times these values are
taken, we constrain at the same time the number of times any value of a set Vi is
taken, and due to the definition of the variables created by element constraints
we count only the variables of Xi that take a value in Vi.

The following proposition formally shows the link between a conjunction of
among constraints and only one GCC:

Proposition 4. The establishment of the arc consistency for the conjunction of
value disjoints among constraints constraints {A1, A2, ..., An} is equivalent to es-
tablishing arc consistency for the constraint network containing the element con-
straints {element(yi, f

Ind
i , xi), xi ∈ X} and the GCC: gcc(Y,U, {k1, k2, ..., kn}).

Proof. We can establish arc consistency for the conjunction of the constraints
{element(yi, f

Ind
i , xi), xi ∈ X} and gcc(Y,U, {k1, k2, ..., kn}) by establishing arc

consistency of the constraint network (CN) consisting of these constraints, be-
cause the constraint graph associated with this constraint network is an hyper-
graph without any cycle and whose every pair of edges have at most one node
(i.e. variable) in common. Thus, arc consistency for this CN is equivalent to arc
consistency for the constraint equals to the conjunction of all the constraints in
the network. Moreover, from any solution of the CN defined by {A1, A2, ..., An}
we can build a solution of the CN define by the element constraints and the
GCC, and conversely. Therefore the proposition holds. 
�

3.2 General Conjunction

Proposition 5. Finding a tuple on the variables of X involved in among con-
straints is an NP-Complete problem in general.

Proof. This problem is obviously in NP (easy polynomial certificate). We trans-
form the NP-Complete problem Tripartite Matching (see [10]) to this prob-
lem. Tripartite Matching is:
Instance: Three sets B, G and H each containing n elements and a ternary re-
lation T ⊆ B × G ×H. Question: find a set of n triples in T , no two of which
have a component in common.
We define a set X of n variables, each having a domain equal to [1..|T |]. For
every pair {ti, tj} of elements of T having a component in common we define the
among constraint: among(X, {i, j}, {0, 1}). This constraint ensures that at most
one of the element of {ti, tj} can be assigned to a variable of X. This model
exactly solves Tripartite Matching. 
�

However, it is possible to define some links between the cardinality variables
of two among constraints.

Proposition 6. Let A1 =among(X1, V1, k1) and A2 =among(X2, V2, k2) be two
among constraints such that X1 ∩ X2 �= ∅ and V1 ∩ V2 �= ∅. Then, we have:
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k1 = k(X1∩X2)→(V1∩V2) + k(X1∩X2)→(V1−V2) + k(X1−X2)→V1

k2 = k(X1∩X2)→(V1∩V2) + k(X1∩X2)→(V2−V1) + k(X2−X1)→V2

where: kY →W is the number of times the values of W are taken by the variables
of Y .

The proof of this proposition is straightforward. The sum constraints introduced
by this proposition can be easily added to the constraint network and then
the filtering algorithms associated them reduce the domain of the cardinality
variables. This idea is more general and easier to understand than the algorithm
proposed by [11] to combine sequences.

4 Integration of Some Among Constraints into
Cardinality Constraints

We have seen that under some conditions it is possible to establish arc consis-
tency for some conjunctions of among constraints. In this section we show that
the same kind of result can be obtained by adding a GCC to some conjunctions
of among constraints.

Definition 9. Let X be a set of variables and V be a set of values.

• an X-among constraint is an among constraint defined on the set X of vari-
ables and on another variable q, that is of the form among(X,W, q).

• a V-among constraint is an among constraint associated with the set of value V .

4.1 Cardinality Constraint and Value Disjoint X-Among
Constraints

We propose a filtering algorithm establishing arc consistency for the variables
of X for a conjunction of a GCC and a set of value disjoint among constraints
defined on the same set of variables X.

The efficient algorithm of the GCC is based on the flow theory and uses a
specific network. The X-among constraints only introduce new constraints on
the cardinality variables of the GCC. Since the among constraints are pairwise
value disjoint there is no problem to take into account these new constraints: a
slight modification of the value network is sufficient.

Definition 10. Given G = gcc(X,V,K) and A = {A1, A2, ..., An} a set of value
disjoint among constraint such that Ai = among(X,Vi, ki); the value network
of C = (G ∪ A) is the directed bipartite graph N(C) obtained from N(G) (the
bipartite network associated with G), as follows:
For each set of values Vi of an among constraint:

• a new node wi is defined
• for each value a in Vi, the arc (a, t) is replaced by the arc (a,wi) which has

the same lower and upper bounds as (a, t)
• an arc (wi, t) with lwit = ki and uwit = ki is added.

Then we immediately have a proposition similar to Prop.1:
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Proposition 7. Given G = gcc(X,V,K), A = {A1, A2, ..., An} a set of value
disjoint X-among constraints, C = G∪A the conjunction of G and A, and N(C)
be the bipartite value network associated with this conjunction. Then,

• C is consistent if and only if there is a feasible flow in N(C).
• let f be a feasible flow in N(C). A value a of a variable x ∈ X is not

consistent with C if and only if fxa = 0 and a and x do not belong to the
same strongly connected component in R(f).

The previous proposition is dedicated to the variables of X. We can obtain
a filtering algorithm for the cardinality variables by adding for each among con-
straint Ai =among(X,Vi, ki) the constraint

∑
a∈Vi

K[a]= ki.
Note that it is possible to take into account some among constraints de-

fined on a superset Y of X. In this case, we can transform the problem into an
equivalent one for which all constraints are defined on the very same set. This
transformation uses function f Ind

i (See Def.8.) For every variable yi of Y −X,
a variable zi is created by the element constraint element(zi, f

Ind
i , yi). Let Z

be the set of newly created variables. Then, the initial GCC is replaced by the
gcc(X ∪ Z, V,K) and each among constraint Ai is replaced by the constraint
among(X ∪ Z, (Vi ∩ V ) ∪ {ui}, ki).

4.2 Cardinality Constraint and Variable Disjoint V-Among
Constraints

We propose a filtering algorithm establishing arc consistency for the variables of
X for a conjunction of a GCC and a set of variable disjoint among constraints
associated with the same set of values V . We will assume that the GCC is also
associated with V and that the V-among constraints are defined on subset of
variables of X.

This conjunction of constraints can be efficiently taken into account by trans-
forming it into another conjunction for which arc consistency can be efficiently
established. This transformation has been proposed by [11] and requires the
definition of new variables called abstract variables. In this section, we give a
simpler version of this transformation.

Definition 11. Let Red be the pair (A, U) where A is a set of n variable disjoint
among constraints, each of them defined on a subset of X and associated with V ;
U = {u1, u2, ..., un} is a set of pairwise distinct values with U ∩(V ∪D(X)) = ∅.
For each variable xi ∈ X we define function fRed

i as follows: ∀a ∈ D(xi) if a ∈ V
then fRed

i (a) = a else fRed
i (a) = uk, where k is the index of the among constraint

involving xi.

Now, for each variable xi ∈ X a variable yi is created by the element constraint
element(yi, f

Red
i , xi). Let Y be the set of these newly created variables. The

following proposition is a reformulation of the proposition given in [11]:

Proposition 8. Given G = gcc(X,V,K) and A = {A1, A2, ..., An} a set of n
V-among constraints that are pairwise variable disjoint. For each among con-
straint Ai = among(Xi, V, ki), we define the variable KA[ui] = |Xi| − ki. In
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addition, we denote by X the set of variables of X that do not belong to any Xi.
Then, we have:
The establishment of the arc consistency for the conjunction of variable disjoint
V-among constraints {A1, A2, ..., An} and a gcc(X,V,K) is equivalent to es-
tablishing arc consistency for the constraint network containing the element con-
straints {element(yi, f

Red
i , xi), xi ∈ X} and the GCC: gcc(X∪Y, V ∪U,K∪KA).

It is possible to take into account some among constraints defined on Y ⊇ X
by applying a transformation similar to the one of the previous section. We only
need to change the definition of function f Ind

i as follows: ∀xi ∈ ∪i=1..nXi,∀a ∈
D(xi) if a �∈ V then f Ind

i (a) = α else f Ind
i (a) = uk where k is the index of the

among constraint containing xi.

5 Stronger Filtering Algorithm

In this section we propose an efficient algorithm to study some of the conse-
quences of the instantiation of a variable for a GCC combined with some among
constraints. In general, the conjunction of some among constraint is an NP-
Complete problem. However, we have shown in the previous sections that under
some conditions, we can efficiently establish arc consistency for the conjunction
of a GCC and some among constraints.

Therefore, in practice, a set of GCCs and a set of among constraints will be
modeled by a set of such conjunctions of constraints in addition to some among
constraints and some GCCs. The conjunction of all constraints is managed by
the propagation mechanism. It is sometimes worthwhile to try to deduce more
information by using techniques like Singleton Arc Consistency, shaving or prob-
ing. The common idea of these methods is to instantiate some variables and to
trigger the propagation mechanism after such an instantiation while expecting
that a failure will occur. In this case, indeed, we know that the instantiation
does not lead to any solution and so we can remove the value that was assigned
from the domain of the selected variable. Unfortunately, these methods have a
cost which is often too high in practice and prevent us from using them, at least
if we consider all the possible instantiations. In fact, if we have n variables and
d values in the domains of the variables, then nd instantiations will have to be
considered and possibly several times because after a modification the constraint
network has changed. Thus, some methods propose to consider only a subset of
the variables and/or a subset of values and/or a subset of constraints.

In this section we will consider a problem containing C = gcc(X,V,K) a
GCC and some other constraints mainly dealing with the cardinality variables
of the GCC. Our goal is to perform a stronger level of consistency, that is to
prune more the domains of the variables of X, but we would like to avoid to
be too much systematic. We aim to study the consequences for the cardinality
variables of all possible instantiations of the variables of X.

A possible algorithm consists of successively trying all the possible instantia-
tions of the variables of X and then to use the most powerful filtering algorithm
associated with a GCC involving cardinality variables. However, this method
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requires to call nd times an algorithm in O(nm + n2.66) (see Prop. 2) which
certainly prevent us from using it.

Another possibility is to use a weaker filtering algorithm for the cardinality
variables. For instance, the algorithm based on Proposition 3. The advantage of
this algorithm is that it has the same complexity as the establishment of the arc
consistency for the GCC (i.e. O(m)). Thus, we will have an new algorithm in
O(ndm) if we try each possible instantiation once.

In this section we present another algorithm with an O(dm) time complexity,
which is much more acceptable in practice.

The filtering algorithm of a GCC is based on the concepts of Hall variable
set and Hall value set:

Definition 12. Let gcc(X,V,K) be a GCC.

• An Hall variable set is a set of variables A ⊆ X such that
|A| =

∑
a∈D(A)

K[a]

• An Hall value set is a set of values V ⊆ D(X) such that∑
v∈V

K[v] = |vars(V )|, where vars(V ) is the set of variables having a value

of V in their domain.

Proposition 9. Let C = gcc(X,V,K) be a GCC.

• if A is an Hall variable set then every value (x, a) with x ∈ (X − A) and
a ∈ D(A) is not consistent with C.

• if V is an Hall value set then every value (x, a) with x ∈ vars(V ) and a �∈ V
is not consistent with C.

• if a value (x, a) is not consistent with C then one of the previous property
can prove that (x, a) is not consistent with C.

The last property of the previous proposition proved that the application of the
two first properties is sufficient to remove all the values that are not consistent
with C. We have the straightforward proposition:

Proposition 10. Let C = gcc(X,V,K) be a GCC, f be a feasible flow in N(C),
A be an Hall variable set and V be an Hall value set.

(1.a) ∀a ∈ D(A) K[a] = K[a].
(1.b) the variables of A belong to strongly connected components of R(f) that

do not contain t.
(2.a) ∀v ∈ V K[v] = K[v].
(2.b) the variables of vars(V ) belong to strongly connected components of

R(f) that do not contain t.

We propose to add to the problem some new among constraints or in some
cases immediate deletions of values. For this purpose, we introduce the concept
of pseudo Hall set:



Combination of Among and Cardinality Constraints 299

Definition 13. • A pseudo Hall variable set is a set of variables A ⊆ X

such that |A| = (
∑

a∈D(A)

K[a])− 1

• A pseudo Hall value set is a set of values V ⊆ D(X) such that
∑
v∈V

K[v] =

|vars(V )| − 1

Then, suppose that A is a pseudo Hall variable set. If a variable of X − A is
instantiated with a value of D(A) then the set A will become an Hall variable
set and by Prop.10 the cardinality variables associated with the values of D(A)
can be set to their maximum value. So, the instantiation of one variable may
imply the instantiation of some other variables that can have a huge impact on
the problem. Similarly, suppose that V is a pseudo Hall value set. If a variable
of vars(V ) is instantiated to a value which is not in V then V will become an
Hall value set and by Prop.10 the cardinality variables associated with the values
of V can be set to their minimum value. Once again, the instantiation of one
variable may imply the instantiation of some other variables.

Pseudo Hall sets can be identified by removing values from the domains of
some variables. Once a pseudo Hall set is identified we know that by instantiat-
ing some variables we can also instantiated some cardinality variables. Then, we
propose to instantiate these cardinality variables and to trigger the propagation.
If a failure occurs then we know that the creation of this Hall set is not possi-
ble and we introduce a constraint preventing its creation. More precisely, if we
identify a pseudo Hall variable set A with b ∈ D(A) and if the problem has no
solution when b is taken by y �∈ A then we can introduce the constraint ensuring
that at least one variable of A will take the value b. Similarly, if we identify V
a pseudo Hall value set with a set of variables Y ∈ vars(V ) and if the problem
has no solution when the variables of Y are instantiated to a value b �∈ V then
we can introduce the constraint ensuring that at least one variable of Y must
take a value of V .

In order to identify some pseudo Hall sets we propose to remove in turn
each value. When a value is removed the variables instantiated to it are also
removed. Therefore the current flow of the GCC is still a feasible flow in the new
residual graph and we can establish arc consistency for the GCC in O(m). This
procedure will compute new strongly connected component in R(f) and from
Prop.10 we can identify some Hall sets from them. Then, we need to identify
among these Hall sets which ones are pseudo Hall sets in the original GCC. This
step is necessary because a newly created Hall sets can be independent from
any pseudo Hall set. Note that it is useless to consider values belonging to the
domain of variables of an Hall set.

Algorithm 1 contains an implementation of the procedure we have described
and a specific procedure when the GCC is an alldiff constraint. In fact, this
algorithm is complex in general, but it can be simplified when the GCC is an
alldiff constraint (like for the allMinDistance constraint), because there is no
Hall value set when all the lower bound capacities are equal to 0. In addition,
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Algorithm 1:
StrongerFilteringAlgorithm(C, f)

Let Scc(t) be the strongly connected component containing t in R(f)
for each value a ∈ Scc(t) do

Q(f) ← R(f)
remove from Q(f) the value a and the set of variables Y = {y s.t. fya = 1}
compute the strongly connected components of Q(f)
for each strongly connected component S with t �∈ S do

if vars(S) is a pseudo Hall variable set of C then
instantiate the cardinality variables of S to their maximal value
trigger the propagation
if a failure occurs then

add the constraint among(vars(S), {a}, [1..|vars(S)|])

if vals(S) is a pseudo Hall value set of C then
instantiate the cardinality variables of S to their minimal value
trigger the propagation
if a failure occurs then

add the constraint among(Y, vals(S), [1..|Y |])

StrongerConsistencyWithAlldiff(C, f)
Let Scc(t) be the strongly connected component containing t in R(f)
for each value a ∈ Scc(t) do

Q(f) ← R(f)
remove from Q(f) the value a and the variable y with fya = 1
compute the strongly connected components of Q(f)
for each strongly connected component S with t �∈ S do

if vars(S) is a pseudo Hall variable set of C then
instantiate the cardinality variables of S to 1
trigger the propagation
if a failure occurs then

remove b from the domain of the variables of X − vars(S)

instead of adding an among constraint we can directly remove the value a from
the domain of the variables that are not in the pseudo Hall variable set.

An example of this algorithm is presented in next section.

6 Application to the Global Minimum Distance
Constraint

This constraint has been proposed by [12] and is mentioned in [13, 14, 15]. A
global minimum distance constraint defined on X, a set of variables, states that
for any pair of variables x and y of X the constraint |x−y| ≥ k must be satisfied.

Definition 14. A global minimum distance constraint is a constraint C
associated with an integer k such that
T (C) = {τ s.t. τ is a tuple of X(C) and ∀ai, aj ∈ τ : |ai − aj | ≥ k}

This constraint is present in frequency allocation problems.
A filtering algorithm has been proposed for this constraint [12]. Note that there
is a strong relation between this constraint and the sequence constraint. A 1/q
sequence constraint constrained two variables assigned to the same value to be
separated by at least q− 1 variables, in regard to the variable ordering. Here we
want to select the values taken by a set of variables such that are all pairs of
values are at least k units apart.

This constraint is simply a conjunction of X-among constraints. For each
value a ∈ D(X) we define the among constraint among(X, [a..a + k], [0, 1]).
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Then the global minimum distance constraint is equivalent to the conjunction
of these X-among constraints. If we define a GCC C stating that each value
of D(X) has to be taken at most once by a variable of X (in other words an
alldiff constraint) then we can model the global minimum constraint by using
any several conjunctions of C and a set of value disjoint X-among constraints.
Of course the model also uses the general conjunction of among constraints
that we have proposed. The model will be equivalent to the global minimum
distance constraint provided that each X-among constraint belongs to at least
one conjunction. Note that it is possible to use in the conjunction less constrained
among constraints for instance the constraint among(X, [a..a + k], [0, 1]) can be
replaced by any among constraint among(X,V, [0, 1]) where V ⊆ [a..a + k].
This can be useful to ensure that every value of D(X) is covered by an among
constraint in the conjunction with C.

This model is powerful. For instance, consider a global minimum distance
constraint involving 3 variables x, y and z with D(x) = D(y) = {1, 2, 3}, D(z) =
{0, 1, 2, 3, 4, 5} and a minimal distance equals to 2. The constructive disjunction
will obtain the new domains: D(x) = D(y) = {1, 3} and D(z) = {0, 1, 3, 4, 5}.
This constraint is equivalent to the among constraints: among(X, {0, 1}, {0, 1}),
among(X, {1, 2}, {0, 1}), among(X, {2, 3}, {0, 1}), among(X, {3, 4}, {0, 1}),
among(X, {4, 5}, {0, 1}). Thus, we propose to model the constraint by the con-
junction of an alldiff constraint on X and the among constraints:
among(X, {0, 1}, {0, 1}), among(X, {2, 3}, {0, 1}), among(X, {4, 5}, {0, 1}), and
by the conjunction of an alldiff constraint on X and the among constraints:
among(X, {0}, {0, 1}), among(X, {1, 2}, {0, 1}), among(X, {3, 4}, {0, 1}),
among(X, {5}, {0, 1}). The first conjunction will deduce that z cannot be as-
signed neither to {0, 1} nor to {2, 3}. In addition, the propagation between the
among constraints leads to D(x) = D(y) = {1, 3}, and D(y) = {5}.

Moreover, if the domains are D(x) = {0, 4}, D(y) = {1, 3} and D(z) =
{2, 3, 4, 5}, then only the stronger filtering algorithm we have presented is able
to deduce that the only one solution is x = 0, y = 3 and z = 5, and so it
outperforms the allMinDistance constraint of ILOG Solver.

We have also tested our algorithm on some problems for instance the Radio
Link Frequency Allocation Problem. In order to build some global minimum dis-
tance constraints some cliques with a good distance value have been identified.
Then, with the filtering algorithm that we have proposed we have seen dramatic
improvement for some instances and mainly without specific strategies for se-
lecting the next variable and the next value. For instance, Problem 11 is solved
in 1s instead of 150s.

7 Application to the Global Sequencing Constraint

These constraints arise in many real-life problems such as car sequencing and
rostering problems where a lot of min/max constraints have to be verified for
each period of q consecutive time units. Sequencing constraints are useful for
expressing regulations such as:
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– each sequence of 7 days must contain at least 2 days off.
– A worker cannot work more than 3 night shifts every 8 days.

A global sequencing constraint is a gcc for which for each sequence Si of q
consecutive variables of X, the number of variables of Si instantiated to any
value vi ∈ V ⊆ D(C) must be in an interval [min,max].

Definition 15. [11] A global sequencing constraint is a constraint C asso-
ciated with three positive integers min,max, q and a subset of values V ⊆ D(C)
in which each value ai ∈ D(C) is associated with two positive integers li and ui

and
T (C) = { t such that t is a tuple of X(C)

and ∀ai ∈ D(C) : li ≤ #(ai, t) ≤ ui

and for each sequence S of q consecutive
variables: min ≤∑vi∈V #(vi, t, S) ≤ max}

It is noted gsc(X(C), V,min,max, q, l, u), where l = {li, i = 1..|V |} and u =
{ui, i = 1..|V |}.

This constraint is simply a conjunction of V-among constraints.
For each variable xi ∈ X we define the among constraint among({xi, ..., xi+q},
V, [min,max]). Then the global sequencing constraint is equivalent to the con-
junction of these X-among constraints and the GCC C = gcc(X,V,K), where
K[i] = [li, ui]. We can model the global sequencing constraint by using several
conjunctions of C with a set of variable disjoint V-among constraints. Of course
the model also uses the general conjunction of among constraints that we have
proposed. The model will be equivalent to the global sequencing constraint pro-
vided that each V-among constraint belongs to at least one conjunction. Note
that it is possible to use in the conjunction less constrained among constraints for
instance the constraint among({xi, ..., xi+q}, V, [min,max]) can be replaced by
any among constraint among(Y, V, [min,max]) where Y ⊆ {xi, ..., xi+q}. This
can be useful to ensure that every variable of X is covered by an among con-
straint in the conjunction with C.

8 Conclusion

In this paper we have studied several combinations of among constraints and
several conjunctions of among constraints and cardinality constraints. For each
considered combination we have proposed an efficient filtering algorithm estab-
lishing arc consistency when it was possible. We have also shown that in general
the combination of among constraints is an NP-Complete problem. In addition,
we have proposed an original algorithm which can be viewed as a weak form
of Singleton arc consistency. At last, we have proposed to model the global se-
quencing constraint and the global minimum distance constraint by conjunctions
of cardinality and among constraints. We have also given some results for the
global minimum distance constraint that outperform the existing constraint in
ILOG Solver.
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Abstract. We identify a property of constraints called smoothness, and
present an extremely simple randomized algorithm for solving smooth
constraints. The complexity of the algorithm is much less than the lower
bound for establishing path-consistency, and because smoothness is shown
to be identical to connected row-convexity (CRC) for the case of binary
constraints, the time and space complexity of solving CRC constraints
is improved. Central to our algorithm is the relationship of smooth con-
straints to random walks on directed graphs. We also provide simple
deterministic algorithms to test for the smoothness of a given CSP un-
der given domain orderings of the variables. Finally, we show that some
other known tractable constraint languages, like the set of implicational
constraints, and the set of binary integer linear constraints, are special
cases of smooth constraints, and can therefore be solved much more ef-
ficiently than the traditional time and space complexities attached with
them.

1 Introduction

While the task of solving constraint satisfaction problems (CSPs), in general, is
NP-hard, much work has been done on identifying tractable subclasses. Broadly,
these subclasses have resulted from restrictions imposed on: (1) the topology of
the associated constraint network (see [3]), (2) the structure of the constraints
themselves (see [10], [7], [5] and [1]), or (3) a combination of both (see [4]). While
the notions of minimum induced-width, adaptive consistency and hypergraph
acyclicity play a key role in characterizing the complexity of solving a given CSP
by looking only at the topology of its associated constraint network (see [3]), row-
convexity is an important property that, among others, has been identified in
the context of exploiting the structure of the constraints themselves (see [10]).
Row-convex constraints generalize other types of constraints like monotone and
functional constraints (see [11]), and together with relational path-consistency,
ensure the global consistency of a constraint network.

More specifically, if a binary constraint network is path-consistent, and all
of the binary relations can be made row-convex by finding suitable domain or-
derings for the variables, then the network is globally consistent—enabling us
to find a solution in a backtrack-free manner. Although row-convexity can be

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 304–319, 2005.
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tested and exploited in a given binary CSP, row-convex relations do not consti-
tute a tractable language since further conditions are necessary to ensure that
the additional constraints resulting from enforcing path-consistency also remain
row-convex. Connected row-convexity (CRC) is a slightly different property of
binary constraints that, contrary to row-convexity, ensures the closure over com-
position, intersection and transposition, the basic operations of path-consistency
algorithms—hence making the language of CRC constraints tractable (see [5]).
Other tractable constraint languages include implicational constraints (see [2]),
max-closed constraints (see [7]), binary integer linear constraints, etc.

Fig. 1. Shows the basic algorithm for enforcing path-consistency in a binary constraint
network. Here, Π indicates the projection operation, and �	 indicates the join operation
(similar to that in database theory)

In this paper, we identify a property of constraints called smoothness, and
present an extremely simple randomized algorithm for solving smooth constraints.
The complexity of the algorithm is much less than the lower bound for estab-
lishing path-consistency, and because smoothness is shown to be identical to
CRC for the case of binary constraints, the time and space complexity of solv-
ing CRC constraints is improved. Central to our algorithm is the relationship
of smooth constraints to random walks on directed graphs. We also provide
simple deterministic algorithms to test for the smoothness of a given CSP under
given domain orderings of the variables. Finally, we show that some other known
tractable constraint languages, like the set of implicational constraints, and the
set of binary integer linear constraints, are special cases of smooth constraints,
and can therefore be solved much more efficiently than the traditional time and
space complexities attached with them.

2 Preliminaries and Background

In this section, we will set up some preliminary definitions, notation and other
background results that will be used (or alluded to) in the rest of the paper.

A CSP is defined by a triplet 〈X ,D, C〉, where X = {X1, X2 . . . XN} is a set
of variables, and C = {C1, C2 . . . CM} is a set of constraints between subsets of
them. Each variable Xi is associated with a discrete-valued domain Di ∈ D, and
each constraint Ci is a pair 〈Si, Ri〉 defined on a subset of variables Si ⊆ X ,
called the scope of Ci. Ri ⊆ DSi

(DSi
= ×Xj∈Si

Dj) denotes all compatible

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network

〈X ,D, C〉.
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:

(a) For k = 1, 2 . . . N :
(i) For i, j = 1, 2 . . . N :

(A) Rij = Rij ∩
Πij(Rik �� Dk �� Rkj).

END ALGORITHM
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tuples of DSi
allowed by the constraint. A solution to a CSP is an assignment

of values to all the variables from their respective domains such that all the
constraints are satisfied.

A network of binary constraints is path-consistent if and only if for all vari-
ables Xi, Xj and Xk, and for every instantiation of Xi and Xj that satisfies
the direct relation Rij , there exists an instantiation of Xk such that Rik and
Rkj are also satisfied. Conceptually, path-consistency enforcing algorithms work
by iteratively “tightening” the binary constraints as shown in Figure 1. The
best known algorithm that implements this procedure exploiting low-level con-
sistency maintenance is presented in [9], and has a running time complexity of
O(N3K3) (K is the size of the largest domain). This algorithm is optimal, since
even verifying path-consistency has the same lower bound.

When binary relations are represented as matrices, path-consistency algo-
rithms employ the three basic operations of composition, intersection and trans-
position. The (0,1)-matrix representation of a relation Rij (denoted MRij

) be-
tween variables Xi and Xj consists of |Di| rows and |Dj | columns when orderings
on the domains of Xi and Xj are imposed. The ‘1’s and ‘0’s in the matrix re-
spectively indicate allowed and disallowed tuples.1

A binary relation Rij represented as a (0,1)-matrix, is row-convex if and only
if, in each row, all of the ‘1’s are consecutive. If there exists an ordering of the
domains of X1, X2 . . . XN in a path-consistent network of binary constraints,
such that all the relations can be made row-convex, then the network is globally
consistent. A globally consistent network has the property that a solution can
be found in a backtrack-free manner. A (0,1)-matrix is connected row-convex if,
after removing empty rows and columns, it is row-convex and connected (i.e.
the positions of the ‘1’s in any two consecutive rows intersect, or are consecu-
tive). A binary relation Rij constitutes a CRC constraint if both MRij

and MT
Rij

are connected row-convex. Contrary to row-convex constraints, CRC constraints
are closed under composition, intersection and transposition—hence establishing
that path-consistency over CRC constraints is sufficient to ensure global consis-
tency (see [5]). An instantiation of the generic path-consistency algorithm, that
further exploits the structure of CRC constraints, has a running time complexity
of O(N3K2) and a space complexity of O(N2K) (see [5]).

Other tractable constraint languages include the set of implicational con-
straints, the set of max-closed constraints, the set of binary integer linear con-
straints, etc. In [8], an algebraic theory of maximal tractable constraint languages
is developed, with the complexity of constraint languages being characterized in
terms of solutions to indicator problems.

In this paper, we will revisit implicational constraints and binary integer lin-
ear constraints. The tractability of the former is reported in [2], and the latter is
discussed as an example in [10]. An implicational relation, by definition, is either
complete, a permutation, or a two-fan. For any A ⊆ Di, B ⊆ Dj , A×B is called

1 An extension of this representation mechanism to non-binary constraints is also
straightforward.
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complete; for any bijection π : A → B, {〈a, π(a)〉 : a ∈ A} is called a permutation;
and for any values x ∈ A and y ∈ B, {x×B} ∪ {A× y} is called a two-fan. Any
CSP instance over implicational constraints can be solved by first establishing
path-consistency, and then searching for a solution in a backtrack-free manner.
A binary integer linear constraint is a linear constraint between 2 variables, each
of whose domains are some finite subsets of the integers. Such constraints can
be solved by enforcing path-consistency, and repeated “compaction” (removal of
empty rows and columns) of the intermediate matrices to retain row-convexity.

3 Random Walks and Expected Arrival Times

In this section, we will provide a quick overview of random walks, and the the-
oretical properties attached with them. Figure 2(A) shows an undirected graph
with weights on edges. A random walk on such a graph involves starting at a
particular node, and at any stage, randomly moving to one of the neighboring po-
sitions of the current position. The probability with which we move to a specific
neighbor of the current node is proportional to the weight on the edge that leads
to that neighbor. One of the properties associated with such random walks on
undirected graphs is that if we denote the expected time of arrival at some node
(say L) starting at a particular node (say R) by T (R,L), then T (R,L)+T (L,R)
is O(mH(L,R)). Here, m is the number of edges, and H(L,R) is the “resis-
tance” between L and R, when the weights on edges are interpreted as electrical
resistance values (see [6]).

Figure 2(B) shows a particular case of the one in Figure 2(A), in which
the nodes in the graph are connected in a linear fashion, and the edges are
unweighted—i.e. the probabilities of moving to the left or to the right from a
particular node are equal (except at the end-points). In this scenario, it is easy
to note that by symmetry, T (L,R) = T (R,L). Further, using the property of
random walks stated above, if there are n nodes in the graph, then both T (L,R)
and T (R,L) are O(n2).

Figure 2(C) shows a slightly modified version of that in Figure 2(B), where
the graph is directed, although it is still linear. Moreover, there are weights

R
2

(A)

5

2

p <= 0.5

L R

Rq => 0.5L

(B)

(C)

L

2

3

1 1

4

Fig. 2. Shows three scenarios in which random walks are performed. In an undirected
graph (weighted as in (A), or unweighted as in (B)), for any two nodes L and R,
T (R, L)+T (L, R) is related to the “resistance” between them. In case (C) (when p ≤ q
at every node), T (R, L) is less than that in (B) because of an increased “attraction”
towards L at every node
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associated with edges which are interpreted as probabilities in the random walk;
and the weight on 〈s, sleft〉 is, in general, not equal to that on 〈s, sright〉. Here,
s is some node in the graph, and sleft and sright are respectively the nodes
occurring immediately to the left and right of it. However, we are guaranteed
that the probability of moving to the left at any node is greater than that of
moving to the right (i.e. p ≤ q). Given this scenario, it is easy to see that the
expected time of arrival at the left end point (L), starting at the right end point
(R), is also O(n2) (if there are n nodes in all). Informally, this is because at every
node, there is an increased “attraction” to the left compared to that in Figure
2(B); and the expected arrival time can only be less than that in the latter.

4 The Tractability of Smooth Binary Constraints

In this section, we will define the notions of smooth binary constraints and
smooth binary CSPs. We will generalize these notions to non-binary constraints
in the next section.

Definition 1: Given an ordering on the domains of variables Xi and Xj—i.e.
if Di is ordered as 〈d(i,1), d(i,2) . . . d(i,|Di|)〉 and Dj as 〈d(j,1), d(j,2) . . . d(j,|Dj |)〉,
the ordered distance between two entries 〈Xi = d(i,ki1 ), Xj = d(j,kj1 )〉 and
〈Xi = d(i,ki2 ), Xj = d(j,kj2 )〉, in the (0,1)-matrix representing the binary con-
straint between Xi and Xj , is defined to be equivalent to the manhattan distance
between the two entries—i.e. it is equal to |RN (d(i,ki1 ), Di)−RN (d(i,ki2 ), Di)|+
|RN (d(j,kj1 ), Dj) − RN (d(j,kj2), Dj)|. Here, RN (d,D) denotes the rank of the
element d in D (using the chosen ordering of elements in D).

Note that the ordered distance depends on the ordering chosen for the values
in the domains of Xi and Xj , and could potentially be different for different
orderings. Definition 4 gives a more general definition of the ordered distance
between two complete assignments of values to all the variables.

Definition 2: A binary constraint between Xi and Xj (under an ordering of
their domains) is said to be smooth if the following property is true of its 2D
(0,1)-matrix representation: “At every ‘0’, there exist two directions such that
with respect to every other ‘1’ in the matrix, moving along at least one of these
directions (by 1 unit) decreases the ordered distance to it”.

Figure 3 shows two examples to illustrate the notion of a smooth binary con-
straint. One of these is a smooth binary constraint, and the other is not. In case
(A), every ‘0’ is marked with two directions—indicating that no matter which ‘1’
we have in mind (encircled in figure), moving along at least one of these direc-
tions reduces the ordered distance between the ‘0’ and the ‘1’. In other words, if
we randomly choose to move in one of these directions, we decrease the ordered
distance between the ‘1’ and the ‘0’ by at least 1 with a probability at least
0.5, and increase it by at most 1 with a probability at most 0.5. In case (B), no
such pair of directions exist for one of the ‘0’s (marked with a cross), and it is
therefore not smooth. Note that a binary constraint could be smooth under one
ordering of the domains of Xi and Xj , but not so under another ordering.
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Fig. 3. Shows two examples to illustrate the notion of smooth constraints. (A) is a
smooth constraint, and (B) is not

Definition 3: A smooth binary CSP is one in which all the constraints are
smooth (under chosen domain orderings for all the variables).

We will now present algorithms for: (1) recognizing a smooth binary con-
straint, (2) finding the required pair of directions for each ‘0’ in a smooth binary
constraint, and (3) solving a smooth binary CSP efficiently (in randomized poly-
nomial time).

4.1 Validating Smooth Binary Constraints

In this subsection, we will present a simple deterministic algorithm for checking
whether a given binary constraint between variables Xi and Xj (under a chosen
ordering of their domains) is smooth or not. We will assume that the domain
values of Xi constitute the rows, and that the domain values of Xj constitute
the columns. Figure 5 shows the procedure for verifying the smoothness of the
given binary constraint, while Figure 6 acts as a running example. (Figure 4 is
a subroutine used by the procedure in Figure 5.)

Since there are only C4
2 = 6 pairs of directions possible for a binary constraint,

the idea is to choose these pairs one at a time, and potentially eliminate their
possibility for every ‘0’. Figure 4 (‘ELIM-DRCTNS’) shows the procedure for
eliminating a specified pair of directions {e1, e2} (e1, e2 ∈ {LF ,RT ,DN ,UP}).
(We will use LF , RT , DN and UP to respectively indicate the directions left
(decreasing the rank of the value of Xj), right (increasing the rank of the value
of Xj), down (increasing the rank of the value of Xi), and up (decreasing the
rank of the value of Xi).) As an example, consider eliminating the directions
{LF ,DN} as shown in Figure 6(F). The idea is to pick the right-most ‘1’ in
every row (see step (4) in Figure 4), and mark the infeasibility of the directions
{LF ,DN} for every ‘0’ that occurs in a rectangle (its edges inclusive) with its
top-right edge rooted at that ‘1’ (see steps (5) and (6) in Figure 4). This is
because for any position in this rectangle, moving along both these directions
increases the ordered distance to the ‘1’. The elimination of all other pairs of
directions are symmetric to this case (except the more straightforward cases of
(B) and (C) in Figure 6).

Lemma 1: Algorithms ‘CHECK-SMOOTH’ and ‘ELIM-DRCTNS’ are correct.

Proof: Let us first prove the correctness of ‘ELIM-DRCTNS’. Given a certain
pair of directions {e1, e2}, we first consider the case when e1 and e2 are opposite
directions (steps (1) and (2) in Figure 4, and cases (B) and (C) respectively in
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ALGORITHM: ELIM-DRCTNS
INPUT: A 2D (0,1)-matrix C repre-
senting a constraint over variables XI

(domain values constituting rows) and
XJ (domain values constituting columns)
with chosen domain orderings; and a pair
of directions e1, e2 ∈ {LF ,RT ,DN ,UP}.
RESULT: Eliminates the pair of di-
rections {e1, e2} for certain ‘0’s (in ac-
cordance with the property required for
smoothness).

(1) If {e1, e2} = {LF ,RT }:
(a) For 1 ≤ j ≤ |DJ |:

(A) If ∃i s.t. 1 ≤ i ≤ |DI | and
C[i][j] = 1:

(i) Eliminate {e1, e2} for all ‘0’s
in that column.

(2) If {e1, e2} = {DN ,UP}:
(a) For 1 ≤ i ≤ |DI |:

(A) If ∃j s.t. 1 ≤ j ≤ |DJ | and
C[i][j] = 1:

(i) Eliminate {e1, e2} for all ‘0’s
in that row.

(3) If neither (1) nor (2), let e1 ∈
{LF ,RT } and e2 ∈ {DN ,UP}.
(4) For every row C[i][. . .]
(1 ≤ i ≤ |DI |):

(a) Mark the right-most (left-most)

‘1’ if e1 is LF (RT ).
(b) Let the column index of this ‘1’
be ri.

(5) If e2 = UP:
(a) Let R|DI | = r|DI |.
(b) For i = |DI | − 1, |DI | − 2 . . . 1:

(A) Let Ri = max(min){Ri+1, ri}
if e1 = LF (RT ).
(B) For 1 ≤ j ≤ Ri

(Ri ≤ j ≤ |DJ |) if e1 = LF (RT ):
(i) Eliminate the directions
{e1, e2} for C[i][j] (if it is a ‘0’).

(6) If e2 = DN :
(a) Let R1 = r1.
(b) For i = 2, 3 . . . |DI |:

(A) Let Ri = max(min){Ri−1, ri}
if e1 = LF (RT ).
(B) For 1 ≤ j ≤ Ri

(Ri ≤ j ≤ |DJ |) if e1 = LF (RT ):
(i) Eliminate the directions
{e1, e2} for C[i][j] (if it is a ‘0’).

(7) Eliminate the directions {e1, e2} for
C[i][j] (if it is a ‘0’) if:

(a) (e1 = LF ∨ e2 = LF) ∧ j = 1.
(b) (e1 = RT ∨e2 = RT )∧j = |DJ |.
(c) (e1 = DN ∨e2 = DN )∧ i = |DI |.
(d) (e1 = UP ∨ e2 = UP) ∧ i = 1.

END ALGORITHM

Fig. 4. A simple deterministic algorithm for potentially eliminating a given pair of
directions {e1, e2} at all possible ‘0’s in a 2D matrix representing a binary constraint

ALGORITHM: CHECK-SMOOTH
INPUT: A 2D (0,1)-matrix C represent-
ing a constraint over the variables Xi (do-
main values constituting the rows) and Xj

(domain values constituting the columns)
with chosen domain orderings.
OUTPUT: ‘yes’ if the constraint is
smooth, and ‘no’ otherwise.

(1) For every e1, e2 ∈
{LF ,RT ,DN ,UP} and e1 �= e2:

(A) ELIM-DRCTNS (C, {e1, e2}).
(2a) If there is a ‘0’ with all pairs of
directions eliminated:

(A) RETURN: ‘no’.
(2b) Else: RETURN: ‘yes’.

END ALGORITHM

Fig. 5. A simple algorithm to check the smoothness of a given 2D (0,1)-matrix repre-
senting a binary constraint

Figure 6). Consider case (B) (case (C) is exactly symmetric), and consider a ‘0’.
At least one of moving to the left or to the right decreases the ordered distance
between the ‘0’ and any other ‘1’, except in the case when the ‘1’ happens to
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be in the same column as the ‘0’. Thus, in step (1) of Figure 4, we eliminate
all ‘0’s that occur in non-empty columns. Now consider case (3), where one of
the directions (say e1) is always in {LF ,RT }, and the other (say e2) is always
in {DN ,UP}. For any ‘1’ in the matrix, we should conceptually eliminate all
‘0’s falling within or on the edges of a rectangle defined by that ‘1’ as one of its
corners—with the direction vectors indicating which of these corners it is. This
is because for any position in this rectangle, moving along both these directions
increases the ordered distance to the ‘1’. As an example, in Figure 6(D), for each
‘1’, we have to eliminate all ‘0’s falling within the rectangle defined with this
‘1’ being its bottom-left corner. Computationally, however, we need not have to
do this for all possible ‘1’s because the rectangles defined by some of them are
subsumed by the others (see Figure 7). It therefore suffices for us to consider the
right-most or left-most ‘1’ in every row, depending on whether e1 is LF or RT
respectively (see steps (4), (5) and (6) in Figure 4). Finally, step (7) in Figure 4
rules out all ‘0’s that lie on the edges of the matrix, and for which moving along
e1 or e2 is not possible. The correctness of ‘CHECK-SMOOTH’ then follows
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Fig. 6. Illustrates the working of the algorithms in Figure 4 and Figure 5. (A) shows the
original constraint. (B)-(G) show the elimination of the 6 pairs of directions possible
(each case annotated appropriately with the directions). (H) shows that there exists a
‘0’ for which all 6 pairs of directions have been eliminated (shown by a cross)—because
of which we can conclude that the constraint is not smooth
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Fig. 7. Illustrates the elimination of the directions {LF ,DN} for a 2D matrix. The
figure shows the overlapping nature of the rectangles defined for each ‘1’. It is this
observation that allows us to look at every entry in the matrix only a constant number
of times. In particular, the ri and Ri values computed for every row (shown in figure)
are employed to exploit this property (see Figure 4)
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immediately from that of ‘ELIM-DRCTNS’ because there are only 6 pairs of
directions possible for a binary constraint.

Lemma 2: The running time complexity of the procedure ‘CHECK-SMOOTH’
is O(|Di||Dj |).
Proof: Procedure ‘CHECK-SMOOTH’ makes 6 calls to the procedure ‘ELIM-
DRCTNS’. All the steps (cases) in the latter procedure examine every entry in
the matrix at most twice. This is true even for steps (5) and (6) (see Figure 4 and
Figure 7). Here, a single pass through all the entries determines all the left-most
or right-most ‘1’s in every row—from which the Ris can be easily computed.
Further, in just one more pass through all the entries, all the qualifying ‘0’s
can be appropriately marked. Since there are |Di||Dj | entries in the matrix, the
truth of the Lemma is established.

4.2 Solving Smooth Binary CSPs

Figure 8 provides a simple randomized algorithm for solving smooth binary
CSPs. The idea is to start with an initial random assignment to all the variables
from their respective domains, and use the violated constraints in every iteration
to guide the search for the true assignment A∗ (if it exists). In particular, in every
iteration, a violated constraint is chosen, and the rank of the assignment of one
of the participating variables is either increased or decreased. Since we know
that the true assignment A∗ satisfies all constraints, and therefore the chosen
one too, randomly moving along one of the directions associated with the ‘0’
corresponding to the current assignment A, will reduce the ordered distance to
A∗ with a probability≥ 0.5. Much like the random walk in Figure 2(C), therefore,
we can bound the convergence time to A∗ by a quantity that is only quadratic
in the maximum ordered distance between any two complete assignments.

Definition 4: Let A1 = 〈X1 = d(1,i1), X2 = d(2,i2) . . . XN = d(N,iN )〉 and
A2 = 〈X1 = d(1,j1), X2 = d(2,j2) . . . XN = d(N,jN )〉 be two different complete as-
signments. Given orderings on the domain values of all the variables, the ordered

ALGORITHM: SOLVE-SMTH-BIN-CSP
INPUT: A smooth binary CSP over N vari-
ables {X1, X2 . . . XN}.
OUTPUT: A solution to the CSP.

(1) Let the ordered domain of variable
Xi be Di = 〈d(i,1), d(i,2) . . . d(i,|Di|)〉.
(2) Start with an initial random
assignment I to all the variables.
(3) While the current assignment A
violates some constraint C(Xi, Xj):

(a) Let d(i,k1) and d(j,k2) be the
current assignments to the variables

Xi and Xj respectively.
(b) Let {e1, e2} be the direction
pair associated with the entry
〈Xi, Xj〉 = 〈d(i,k1), d(j,k2)〉 in
C(Xi, Xj).
(c) Choose p uniformly at random
from {e1, e2}.
(d) If p = LF : set Xj to d(j,k2−1).
(e) If p = RT : set Xj to d(j,k2+1).
(f) If p = DN : set Xi to d(i,k1+1).
(g) If p = UP: set Xi to d(i,k1−1).

END ALGORITHM

Fig. 8. A simple randomized algorithm for solving smooth binary CSPs
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distance between A1 and A2 is defined as |RN (d(1,i1), D1)−RN (d(1,j1), D1)|+
|RN (d(2,i2), D2) − RN (d(2,j2), D2)| . . . |RN (d(N,iN ), DN ) − RN (d(N,jN ), DN )|.
Here, RN (d,D) denotes the rank of the element d in D (under the chosen or-
dering for D).

Lemma 3: The ordered distance between two complete assignments A1 and A2

is at most |D1|+ |D2| . . . |DN |, and 0 if and only if A1 = A2.

Proof: Consider the ordered distance |RN (d(1,i1), D1) − RN (d(1,j1), D1)| +
|RN (d(2,i2), D2) − RN (d(2,j2), D2)| . . . |RN (d(N,iN ), DN ) − RN (d(N,jN ), DN )|.
Inside the ith term, the difference in the ranks of any two elements can be at
most |Di|. Hence, the ordered distance is always ≤ |D1|+ |D2| . . . |DN |. Further,
since each term can only be ≥ 0, the ordered distance can be 0 only when all
the individual terms are 0—which happens only when A1 and A2 are identical.

Lemma 4: The expected number of iterations of ‘SOLVE-SMTH-BIN-CSP’ is
only O((|D1|+ |D2| . . . |DN |)2).
Proof: From Lemma 3, the maximum ordered distance between the initial as-
signment I, and the true assignment A∗, is |D1|+ |D2| . . . |DN |. Further, in each
iteration, we perform a random walk exactly analogous to that in Figure 2(C)—
with the left end-point being A∗, I being only as far as the other end-point,
and a maximum of O(|D1| + |D2| . . . |DN |) nodes in between. The truth of the
Lemma then follows from the properties of random walks on directed graphs.

From Lemma 2 and Lemma 4, the expected running time of ‘SOLVE-SMTH-
BIN-CSP’ is O(MK2 +MN2K2) = O(MN2K2). (N is the number of variables,
M is the number of constraints, and K is the size of the largest domain.) We
note that although Lemma 4 is only an expected case analysis, Markov’s in-
equality yields that the probability that we do not terminate even after k (say a
constant 100) times the expected number of iterations is ≤ 1/k (≤ 1/100). (It is
also possible to establish tighter bounds on the tail probabilities when restarts
are employed.) We also note that like any Monte-Carlo algorithm, the above
algorithm will find A∗ (if it exists) with a very high probability, and will not
report any solution if in fact none exist.

4.3 Reducing the Running Time Complexity

In the above analysis of the running time, we notice that the factor M arises
due to the inner loop of the procedure SOLVE-SMTH-BIN-CSP (see step (3)
in Figure 8), where we are required to repeatedly check for the presence of
a violated constraint. In this subsection, we will show how we can reduce this
factor significantly by employing appropriate data structures. We exploit the fact
that it is sufficient for us to consider any violated constraint in every iteration.
This is because every violated constraint is smooth, and gives us a chance to
move closer to the solution with a probability ≥ 0.5.

Figure 9 presents a diagrammatic illustration of the required data structures.
A series of doubly linked lists are maintained. The list ‘All’ contains all the con-
straints, and for every variable Xi, a list Li is maintained. Li contains exactly
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Fig. 9. Illustrates the data structures (and the operations performed on them) to reduce
the running time of the randomized algorithm for solving smooth binary CSPs. (1)
shows the constraint network of an example binary CSP on 5 variables. (A) shows two
doubly linked lists, ‘All’ and ‘L4’. The pointers in ‘L4’ are distinguished from those
of ‘All’ by using a small horizontal mark on them. (B) shows the two doubly linked
lists, ‘Sat’ and ‘Unsat’. The pointers in ‘Unsat’ are distinguished from those of ‘Sat’
by using a small horizontal mark on them. (C) shows how the lists ‘Sat’ and ‘Unsat’
are updated when the first unsatisfied constraint in (B) (viz. C(X1, X4))) is chosen,
and the variable X4 happens to be reassigned, possibly now satisfying C(X1, X4). (D)
shows what happens when C(X2, X4) remains unsatisfied, but C(X3, X4) changes from
being satisfied to being unsatisfied. (E) shows the final lists of satisfied and unsatisfied
constraints. Note that the ordering of the constraints is inconsequential in all the lists

those constraints that variable Xi participates in. Further, a list of satisfied con-
straints (‘Sat’), and a list of unsatisfied constraints (‘Unsat’) are also maintained.
These lists are updated incrementally in every iteration, and in the beginning,
are built in accordance with the initial assignment I. Additions to ‘Sat’ or ‘Un-
sat’ are always made at the beginning of the lists, and therefore take constant
time. Similarly, deletion from ‘Sat’ or ‘Unsat’ (given a pointer to the element to
be deleted) takes constant time (because the lists are doubly linked, and deletion
can be realized by linking together the neighbors of the element to be deleted).

In every iteration, the first constraint in ‘Unsat’ is chosen, and the assignment
of one of the two variables participating in it is changed. The only constraints
that can be affected by this are the ones in which this variable appears. Walking
through the corresponding list of all such constraints, we check each one of them
for being satisfied or not. If a constraint under consideration was originally sat-
isfied and is now unsatisfied (or vice-versa), we perform the appropriate addition
and deletion operations on the ‘Sat’ and ‘Unsat’ lists. Both these operations can
be done in constant time, and the complexity of the update procedure is there-
fore equal to the number of elements in the list (that contains all the constraints
the chosen variable participates in).

If the maximum number of constraints any variable participates in is d (corre-
sponds to the degree of the constraint network), the running time of the random-
ized algorithm for solving smooth constraints can now be reduced to O(N2K2d).
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Fig. 10. Shows a 3-ary smooth constraint. The three 2D (0,1)-matrices on the left
are respectively the three layers of a 3D (0,1)-matrix, with the top-most matrix corre-
sponding to the bottom-most layer. For clarity, only the ‘1’s are explicitly shown in the
matrices. The required pair of directions is indicated against every other entry (which
is implicitly a ‘0’). A circled ‘+’ indicates the outward direction (out of the page), and
a circled ‘-’ indicates the inward direction (into the page). The right side of the figure
shows the same constraint with all the ‘1’s (its feasible region) appropriately enclosed

This is less than that of the deterministic algorithm for solving smooth binary
constraints (see [5]). In the worst case too, d is only as large as N , and the run-
ning time is O(N3K2) (equaling that of the deterministic algorithm, but with a
much lesser space complexity).

5 Generalization to Non-binary Constraints

Smoothness for general r-ary constraints is defined in a manner very similar to
that for binary constraints. In the (0,1)-matrix representation of the constraint,
the following property is required to hold: “At every ‘0’, there exist two directions
such that with respect to every other ‘1’ in the matrix, moving along at least
one of these directions decreases the ordered distance to it”.

The only difference is that the number of dimensions in r-ary constraints
is r, and checking for smoothness requires us to consider C2r

2 possible pairs of
directions. Figure 10 shows an example of a 3-ary constraint that is smooth. We
also note that convex constraints (like hyperplanes) are not necessarily smooth.

A smooth CSP is one in which all the constraints are smooth for chosen
orderings on the domains of variables (irrespective of whether or not different
constraints are of different arities). The procedure for solving a smooth CSP
remains the same as in the binary case, and (as before) is related to random
walks on directed graphs.

We note in passing, that the generalization of row-convexity (and its as-
sociated implications on tractability) to the non-binary case is rather compli-
cated (see [10]). An r-ary relation R on a set X ′ of variables {X1, X2 . . . Xr}
is row-convex if for any subset of r − 2 variables Z ⊆ X ′, and for every in-
stantiation z of the variables in Z, the binary relation Π(X ′−Z)(σz(R)) is row-
convex (σ indicates the selection operation—i.e. only those entries consistent
with Z = z). If R is a network of relations whose arity is r or less, and if R is
strongly 2(r − 1) + 1 consistent, then if there exists an ordering of the domains
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D1, D2 . . . DN such that the relations are row-convex, the network is globally
consistent. Enforcing strong 2(r − 1) + 1 consistency, however, will not ensure
global consistency because we may need to record constraints whose arity is
greater than r.

6 Properties and Examples of Smooth CSPs

In this section, we will provide some illustrative examples of smooth CSPs. In
particular, we will show that 2-SAT constraints, CRC constraints, implicational
constraints and binary integer linear constraints are all smooth.

A 2-SAT instance consists of Boolean variables, and a set of constraints with
every constraint relating at most 2 variables. It is easy to see that no matter
how the ‘1’s are placed in a 2 × 2 (0,1)-matrix (and irrespective of how many
‘1’s there are), it will always be smooth—hence proving the tractability of 2-
SAT.

In the case of CRC constraints, we argue that they are smooth binary con-
straints. Clearly, any empty row or column in a CRC constraint can be ignored
because the required pair of directions for all ‘0’s in an empty row (column) is
just {UP,DN} ({LF ,RT }). Suppose that there were a ‘0’ for which no such
pair of directions existed. By the property of connected row-convexity, it must
be the case that either the row or the column in which it lies does not have
‘1’s appearing contiguously—hence leading to a contradiction. Therefore, such
a pair of directions exists for every ‘0’, and CRC constraints are smooth. Fig-
ure 11 shows an example to illustrate the equivalence between CRC constraints
and smooth binary constraints. The foregoing arguments suggest an extremely
simple randomized algorithm for solving CRC constraints—the time and space
complexity of which is much less than that of the corresponding best known
deterministic algorithm (see [5]). We also note that the randomized algorithm
circumvents the use of complex data structures otherwise required for optimally
implementing path-consistency subroutines.

Similarly, a simple way to solve implicational constraints is to first argue that
the complete constraints and two-fans are smooth, irrespective of the orderings

dj1 dj3 dj5 dj6 dj7dj4
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di2
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Xj
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1

1

1

1

Fig. 11. Shows the equivalence between smooth binary constraints and CRC con-
straints. The left side of the figure shows an example of a CRC constraint with the
required pair of directions marked against each ‘0’ (not shown explicitly for clarity).
The right side of the figure illustrates the general pattern of the required pair of direc-
tions for ‘0’s in a CRC constraint
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chosen for the domains of the variables. Consider complete constraints. By defi-
nition, every ‘0’ is either in an empty row or in an empty column—making the
required pair of directions to be {UP,DN} or {LF ,RT } respectively. Now con-
sider two-fans. Ignoring all the empty rows and columns, it is easy to see that
the ‘1’s fall along a ‘+’ sign, dividing the ‘0’s into 4 quadrants. The required di-
rections for any ‘0’ in any quadrant are then those that lead towards the “axes”
(‘1’s). Figure 12 presents examples that illustrate the above arguments. Permu-
tation constraints, however, are not necessarily smooth; but can be dissolved in
a pre-processing step. The idea is to choose orderings on the domain values of
all the variables so that all the permutation constraints begin to resemble iden-
tity matrices—barring empty rows and columns. Since two-fans and complete
constraints remain so for any domain orderings of the participating variables, all
the constraints can then be made simultaneously smooth.

1
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Fig. 12. Illustrates why implicational constraints are special cases of smooth con-
straints. (A) shows the case of a complete constraint, and (B) shows the case of a
two-fan constraint. All the permutation constraints are assumed to be dissolved

Finally, consider an integer linear program, where the domains of the vari-
ables are finite subsets of the integers, and all the linear constraints are bi-
nary. That is, the constraints are of the form: aXi + bXj ≤ c (where a, b
and c are integer constants). A network of binary integer linear constraints
can be solved in polynomial time (although general integer linear programs
are NP-hard to solve). It can be shown that each element in the closure un-
der composition, intersection, and transposition of the resulting set of (0,1)-
matrices is row-convex, provided that when an element is removed from a do-

2

2

3

5

4 7 9
X

Y

A*

A X/6 + Y/4 <= 1

Fig. 13. Illustrates why binary integer linear constraints are smooth. A is the current
assignment, and A∗ is the true assignment (if it exists). The domains of variables X
and Y are indicated using dark circles on the corresponding axes
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main by arc-consistency, the associated (0,1)-matrices are “compacted”—i.e. all
the empty rows and columns occurring in intermediate matrices (while estab-
lishing path-consistency) are removed (see [10]). A much more straightforward
approach, however, is to notice that when the domains of the variables are or-
dered according to their values (i.e. when they are sorted), all the constraints
turn out to be convex. Further, since all the constraints are binary, at every
infeasible point, there always exist two directions, at least one of which de-
creases the ordered distance to the true solution (no matter where it is in
the feasible region). Figure 13 shows a small example to illustrate this. Note,
however, that the ordered distance is still measured using the ranks of the do-
main elements, instead of their absolute values. Similarly, the moves also em-
ploy the ranks instead of the absolute values, hence explaining why we would
randomly choose to decrease X by 3 units, or decrease Y by only 1 unit in
Figure 13.

7 Conclusions and Future Work

We identified a property of constraints called smoothness, and presented an ex-
tremely simple randomized algorithm for solving smooth constraints. The com-
plexity of the algorithm was shown to be much less than the lower bound for
establishing path-consistency (which is employed by most deterministic algo-
rithms that establish the tractability of many different constraint languages).
Central to our algorithm was the idea of exploiting the relationship between
smooth constraints and random walks on directed graphs. We provided sim-
ple deterministic algorithms to test for the smoothness of a given CSP under
given domain orderings of the variables. We also showed that some other known
tractable constraint languages, like the set of implicational constraints, and the
set of binary integer linear constraints, are special cases of smooth constraints,
and can therefore be solved much more efficiently than the traditional space-time
complexities attached with them. As part of our future work, we are interested in
automatically finding domain orderings for the variables in a CSP (if one exists)
so as to make it smooth (at least in certain special cases).
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Mixed Logical/Integer Linear Problems
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Abstract. In this paper, we present a method for solving Mixed Logi-
cal/Integer Linear Programming (MLILP) problems that integrates a
polynomial-time ILP solver for the special class of Unit-Two-Variable-
Per-Inequality (unit TVPI or UTVPI) constraints of the form

, where , into generic Boolean SAT solv-
ers. In our approach the linear constraints are viewed as special literals
and replaced by binary “indicator” variables to generate a pure logical
problem. The resulting problem is subsequently solved using a SAT
search procedure which invokes the linear UTVPI solver to incremen-
tally check the consistency of the UTVPI constraints whenever any of
the indicator variables are assigned to true. The linear UTVPI solver,
on the other hand, can possibly pass implications or no-good con-
straints to the Boolean SAT solver. Checking the consistency of the
UTVPI constraints incrementally enables the UTVPI solver to effi-
ciently interact with the different components of the SAT solver. Ad-
ditionally, several heuristics and encoding methods are proposed to ac-
commodate the special circumstances of activating UTVPI constraints
by the SAT solver. Empirical evidence is presented that demonstrates
the advantages of our combined method for large problems.

1 Introduction

In the past several years, there have been numerous efforts aimed at solving
problems of Mixed Logical/Integer Linear Programming (MLILP) or Mixed
Integer Nonlinear Programming (MINLP) where continuous and discrete vari-
ables and nonlinearities are involved in the objective function and constraints.
In practice, these problems are applied in areas as diverse as process design and
synthesis, planning and scheduling, process and batch control and, recently,
bioinformatics. A complete collection of MINLP applications can be found in
[15]. Several different approaches to solve these problems have been widely
investigated in operations research and programming, among which are
Branch-and-Bound (BB), Outer Approximation (OA), Generalized Benders'
Decomposition (GBD), Extended Cutting Plane (ECP) and Branch-and-Cut
methods. The reader is referred to [14] for a survey of these various schemes.
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disjunctions and logic propositions are used to represent discrete decisions in
the continuous space and constraints in the discrete space, respectively. This
model consists of algebraic constraints, logic disjunctions and logic relations
and is generally formulated as follows:

(1)

where  is a Boolean variable that establishes whether constraint 
is true and if so, the variable  will be activated to a value . 
corresponds to logic propositions expressed in Conjunctive Normal Form
(CNF). Note that this model can always be reformulated back into general
Mixed Integer Programming (MIP) by replacing the disjunctions with Big-M
constraints.

In addition to Big-M conversion followed by standard MINLP methods,
other techniques including Disjunctive Branch-and-Bound, logic-based OA and
GBD have been proposed for solving GDP problems. An overview of these
methods can be found in [16].

On the other hand, many applications in hardware and software verification
as well as in artificial intelligence are cast as decision problems which are, basi-
cally, special cases of GDP in which both logical and integer/real variables are
involved. The ever-increasing strength of SAT solvers in addressing such prob-
lems has made SAT-based techniques the method of choice in these applica-
tions. These methods are concerned with determining the satisfiability/
unsatisfiability of quantifier-free formula consisting of Boolean variables and
Integer Linear Inequality predicates. Recently, there has been a growing inter-
est in applying SAT-based methods to the general class of optimization prob-
lems as well. The two common methods for solving such problems are to either
integrate the SAT algorithm into a Branch-and-Bound procedure [6] or to
encode the objective function into the SAT solver as a constraint with an
adjustable right-hand-side and iteratively solve a sequence of increasingly
“tighter” SAT problems [1].

In order to be able to utilize SAT-based methods to solve these problems,
they are represented in Mixed Logical/Integer Linear Conjunctive Normal
Form (MLIL-CNF) where a Boolean variable (or its negation) or an integer
inequality predicate constitutes a literal. In particular, Two-Variable-Per-Ine-
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On the modeling front, Generalized Disjunctive Programming (GDP) [23]
has been recently introduced and studied as an alternative to MINLP. In GDP
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scheduling and several other logic programming applications. In this paper, we
address the special class of unit TVPI, or UTVPI, constraints of the form

 where  and propose a hybrid method to solve such
problems by integrating Jaffar’s polynomial-time algorithm [19] within a mod-
ern CNF SAT solver.

Current methods for solving such hybrid problems rely mostly on an
abstraction/refinement [4] scheme in which each linear constraint is replaced
with a Boolean indicator variable. As soon as the SAT solver finds a solution to
the Boolean problem, an ILP solver is activated to verify the consistency of
that solution. This is done by constructing and solving a system of simulta-
neous linear constraints corresponding to the satisfying assignments found for
the indicator variables. The algorithm terminates if the ILP solver proves the
consistency of the SAT solution or all the satisfying solutions to the SAT prob-
lems are proved to be inconsistent. The overall method is illustrated in
Figure 1.

In this paper, we introduce another method where the linear constraints are
checked for consistency on demand upon assignment to their corresponding
indicator variables. This was made possible by utilizing an incremental algo-
rithm for solving the UTVPI problem. Additionally, our combined method also
facilitates an efficient interaction between the two solvers via the indicator
variables. In other words, the UTVPI solver can yield implications and gener-
ate “no-good” (learned) constraints in the SAT solver as soon as such combina-
tions of UTVPI constraints are detected.

The remainder of this paper is organized as follows. In Section 2 we cover
some preliminaries. Section 3 and Section 4 describe our method for encoding
and solving the hybrid problem. Experimental results are reported in Section 5
and we conclude in Section 6.

ax by+ d a b 1 0 1,,–,

abstraction

original problem

SAT 
Solver

concretization ILP 
Solver

UNS

SAT
SAT

UNS Refinement

quality (TVPI) linear constraints have already proven useful in different areas
such as program verification [24], buffer over-run vulnerability detection [26],

Fig. 1. Solution of MLIL-CNF problems by abstraction/refinement
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ger Linear Conjunctive Normal Form (MLIL-CNF) satisfiability instance is a
conjunction of clauses. Note that if the set of UTVPI atoms is empty, the
MLIL-CNF instance reduces to a pure Boolean CNF instance. On the other
hand, if the set of Boolean atoms is empty, it reduces to a UTVPI program-
ming problem with logical combinations.

The Boolean satisfiability problem (SAT for short) is a decision problem that
seeks to find a set of truth assignments to the literals in a Boolean CNF for-
mula such that the entire formula evaluates to true, or to prove that no such
assignments exist, i.e., the formula is unsatisfiable.

Every Boolean formula can be transformed to CNF in linear time and its
satisfiability can be checked using modern backtrack search algorithms based
on the DPLL procedure of Davis, Putman, Logemann and Loveland [10,11].
The major computational steps of these algorithms are the following proce-
dures:

Procedure 1: Decision. This procedure is called whenever no assignments
(implications) is forced by BCP procedure, explained below. In that case, the
next literal to be assigned is decided based on a heuristic. The most common
and particularly effective heuristic in most problems is Variable State Indepen-
dent Decaying Sum (VSIDS) heuristic introduced in [22]. In this method, for
each variable, the frequency of occurrence in conflict-induced (learned) clauses
or “no-goods” is stored in a counter and the variable with highest counter is
selected for next assignment. These counters are periodically scaled down to
emphasize recent conflicts.

Procedure 2: Boolean Constraint Propagation (BCP). After each decision, the

Note  that  single-variable constraints  are easily accommodated by introducing
a dummy variable with a zero coefficient.

2.1 Boolean Satisfiability Solver

2 Preliminaries

We define an atom to be either a Boolean variable or a UTVPI constraint
 where . A literal is an atom or

its negation. A clause is a disjunction of literals. Finally, a Mixed Logical/Inte-
i jax bx d+ , {0, 1} and , ,i ja b x x d±

current assignment is extended to find any clause where at most one of its liter-
als is non-false. If all literals but one in a clause are assigned to false, that is,
the condition for that clause to be unit, the remaining literal is implied to true.
If all literals are false, the procedure has detected a conflict and should trigger
a backtrack to an earlier decision level. Considering that modern conflict-based
backtracking SAT solvers spend most of their run-time in this step, a signifi-
cant optimization in this regard was made by the introduction of watched liter-
als [22]. It was noted that watching just two literals per clause, regardless of
clause size, is sufficient to detect when the clause becomes unit. A clause is pro-
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search space thus avoiding a recurrence of the same conflict. Additionally, con-
flict-induced clauses enable the solver to backtrack non-chronologically in the
search tree without compromising completeness [21]. The conflict-induced
clause is obtained by backward traversal of the implication graph starting from
the conflict and examining the literals at each cut. The procedure terminates
when a unique implication point (UIP) is reached. The UIP is a cut in which
only one literal is assigned in the conflict-level and the rest were assigned in
previous decision levels. The learned clause will be the disjunction of literals on
the UIP cut with opposite polarities.

Procedure 4: Random Restarts and Backtracking. Recent studies [22] show
that using random restarts and backtracking can be very effective in helping
the SAT solver extricate from hard regions in the search space and exploring a
different subtree. This is achieved by either periodically resetting all variable
assignments and randomly selecting a new sequence of decisions, or randomly
backtracking to a decision level involving any literal in the conflict-induced
clause. (The overall SAT algorithm is depicted in Figure 2)

Problems consisting of conjunctions of UTVPI constraints can be decided using
generic ILP solvers such as CPLEX [18] or XPRESS-MP [9]. However, the full-

loop
  propagate()- BCP procedure
  if not conflict then
    if all variables assigned then
      return SAT
    else
      decide() - choose new assignment
  else
    learn() - conflict based learning
    if conflict in root decision level
      return UNSAT
    else
      backtrack() - undo assignments

Fig. 2. Modern SAT algorithm

2.2 UTVPI Integer Constraint Solver

that just became false. The clause becomes unit if the only remaining unas-
signed literal is the other watched literal which must now be implied to true to
satisfy the clause.

Procedure 3: Conflict-based Learning. As soon as the BCP procedure detects
a conflict in a clause, a so-called conflict-induced clause or a “no-good” is gen-
erated and recorded [21]. This enables the solver to prune away a portion of the

assignment triggers the search for another unassigned literal to replace the one
cessed only when either of its two watched literals is set to false; such an
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we say that  is implied by  and . In the
MLIL-CNF context, we will be interested in a dynamically-changing set of
UTVPI constraints. To keep such a set transitively closed, whenever a new con-
straint is added to the set, all its implied constraints must be derived and
added. When an implied constraint ends up involving a single variable, it may
need to be tightened in order to maintain the unit coefficient property. Specifi-
cally, the constraint implied by  and (recall that

) is  whose tightening yields . It is
easy to show that the overall complexity of maintaining a tightened and transi-
tively-closed set of UTVPI constraints is cubic in time and quadratic in space. 

To illustrate, consider the following set of UTVPI constraints:

(2)

The transitively-closed and tightened set of constraints derived from (2) is eas-
ily shown to be:

(3)

Jaffar et al. [19] showed that a set of UTVPI integer constraints C is satisfi-
able iff Tighten(Trans(C)) does not contain a constraint of the form 
where . An example of an unsatisfiable constraint set is:

(4)

Our MLIL-CNF SAT solver maintains a database of transitively closed and
tightened constraint sets. Specifically, suppose that in the course of searching
for a solution the sequence of UTVPI constraint sets  is gener-
ated. As each such set  is produced, the corresponding 
set is computed incrementally by adding/removing any implied constraints
when a new constraint is added/removed.

x z+ d d+ x y– d x y z d+,

ax by d+ ax by d
, {0, 1}a b ± 2ax d d+ ( ) 2ax d d+

C y z 4 x y– 5 x y+ 2,,+=

Trans C C x z+ 9 2x 7,=

Tighten Trans C C x z+ 9 x 3,=

0 d
d 0<

C y z– 1 x y– 1 z x– 3–,,=

Tighten Trans C C x z– 2 0 1–,=

C1 C2 C3 …, , ,
Ci Trans Tighten Ci

The solution method we adopt in this paper for deciding systems of UTVPI
integer linear constraints is a polynomial-time transitive closure algorithm pro-
posed by Jaffar et al. [19] which, in turn, is an extension of Shostak’s method
for TVPI real constraints [24].

A set of UTVPI constraints is said to be transitively closed if for each pair of
constraints sharing a variable with opposite signs there exists an inequality
constraint between the two remaining variables. For instance, the transitive
closure of  is  andx y– d y z d+, x y– d y z d+ x z+ d d+, ,

scale Simplex techniques adopted in these solvers do not take advantage of the
simple structure of UTVPI constraints and cannot be efficiently integrated
within the backtrack search process of modern SAT solvers.
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(6)

Boolean Indicator variables, ’s, are used to replace each linear inequality
in the Boolean representation of the problem and consequently produce a pure
logical problem of the form: . The model of the
form (6) is a conservative abstraction of the more straightforward encoding of
the linear constraint where they are linked to indicator variables by equality
relation and therefore resulting in the following model:
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Fig. 3. (a) Simple hybrid problem (b) Lazy representation of UTVPI constraints (c)

Assignments without instant UTVPI constraint satisfiability checking (d) Assignments

with instant UTVPI constraint satisfiability checking

the continuous and discrete elements of the problem are linked by conditionals
in each constraint. Specifically, let

(5)

denote a Boolean constraint function defined over n Boolean variables
 and k UTVPI constraints . Therefore, an MLIL

SAT problem would have the following form:

( ) ( )1 1( , , , , , )n kg A A C X C X=

A1 … An, , C1 X … Ck X, ,

3 Encoding UTVPI Constraints into the SAT Solver

Our framework for solving the Mixed Logical/Integer Linear Programming
(MLILP) problem is similar to the one proposed by Hooker et al. [17] where
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a true indicator variable and can be put in the conditional form
.

The practical effect of this optimization is that the linear solver need only
process those constraints that are “active,” i.e. those whose indicator variables
are true. We also never have to consider constraints whose indicator is false.
Figure 3 demonstrates an example of this process, comparing with abstraction/
refinement technique of Figure 1.

4 Solving the Hybrid Satisfiability Problem

The linear constraint solver or in this case the UTVPI solver works in close
conjunction with the Boolean SAT solver, as shown in Figure 4. The communi-
cation between the two solvers is through the indicator variables which are
linked to linear constraints and recognized by both solvers. The Boolean SAT
solver performs as the primary solvers and communicates with the linear solver
every time an indicator variable is assigned to true. The linear solver, on the
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Fig. 4. Hybrid Solver

Obviously, forms (6) and (7) are equi-satisfiable due to the fact that g is pos-
itive unate in all indicator variables, . In other words, when is unsat, so is

, and when is sat, it is possible that  is unsat; however, the only situa-
tion in which this happens is when at least one  is assigned to false and the
corresponding linear constraint is forced to be satisfied. Such a solution can be
changed so that  restoring consistency between the linear constraint
and its indicator variable without affecting the satisfiability of the original for-
mula. A linear constraint which is enforced unconditionally will be written with
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ment. For instance, if  is a Boolean indicator variable for , generat-
ing  will imply B to true and generating  implies B to false.
In case of detecting infeasibility, the Boolean solver is notified of a conflict.
Figure 3d is an instance of the collaboration between the two solvers. Upon
assigning  to true, the corresponding UTVPI constraint, , is added
to the set of activated constraints which at that point only contains .
In order to maintain the transitively closure of the constraint set, the new con-
straint  is also generated. As soon as  is implied to true by the
Boolean solver and consequently  is activated, the UTVPI solver
detects a conflict and forces the Boolean solver to backtrack.

The learning algorithm is invoked as soon as the hybrid propagation detects a
conflict in a Boolean clause or in the set of activated UTVPI constraints. The
UTVPI solver participates in the learning process in two different cases: first
the case when a conflict is the result of activating a new UTVPI constraint,
and second when an indicator variable needed for conflict-analysis is implied by
the UTVPI solver. In both cases, the reason should be prepared in terms of
indicator variables to be passed to the learning engine of the Boolean solver.

Therefore, the complete learning process in case of a UTVPI inconsistency
detection can be divided into two separate procedures, as follows:.

Finding Infeasible Set of UTVPI Constraints. The incremental property of
the UTVPI satisfiability checking algorithm makes it straight-forward to gener-
ate the exact subset of inconsistent constraints causing the conflict. Together
with each constraint, either the reason for its generation being two other con-
straints each sharing one variable with the current constraint, or an assignment
to its corresponding Boolean indicator variable is stored. Upon detecting an
inconsistent UTVPI constraint, the reason for each of the two conflicting con-

B x y– 5
x y– 3 y x– 6–

A2 x y– 5
y z+ 4

x z 9+ A3
x z+ 10

4.2 Hybrid Learning

Upon true assignment to an indicator variable by the Boolean solver, if no con-
flict is detected in the Boolean problem, the assignment is passed to the
UTVPI solver where it is interpreted as activation of a constraint which should
be added to the already transitively-closed and tightened set of UTVPI con-
straints.

The role of UTVPI solver at this point is to generate all implied constraints
to maintain the transitively-closed and tightened property of its set of con-
straints. An indicator variable is implied in case of generating a constraint
equal to or stronger than its corresponding UTVPI constraint or its comple-

4.1 Hybrid Constraint Propagation

other hand, performs independently from the Boolean SAT solver and has the
capability to produce implications due to current assignments to indicator vari-
ables and/or produce no-goods in case of detecting a conflict. Both these proce-
dures are explained below.
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(a)

Generating Conflict-Induced Learned Clause. Upon receiving a set of con-
flicting assignments to indicator variables from the UTVPI solver, the Boolean
solver performs the exact learning procedure according to [21]. The conflict-
induced clause is generated by traversing Boolean implication graph and is
recorded to prune current conflict. Backtrack level is computed by analyzing
the learned clause. The backtrack level should be also passed to the UTVPI
solver to update its data structure and remove deactivated constraints and
their children.

straints is traced back until a set of Boolean indicator variables is obtained and
transferred to the Boolean SAT Solver learning engine as the conflicting assign-
ment. The same procedure will be adopted for finding the implying assignment
sequence for an indicator variable, which is implied by the UTVPI solver. The
learning engine of the Boolean solver uses this information to construct the
implication graph.

A SAT-Based Decision Procedure for Mixed Logical/Integer Linear Problems 329

Fig. 5. (a) Implication graph at decision level (@)3 for Boolean problem: ∧ wi in which
λ1 ≡ ¬B4 ∨B5 ∨A8 is already learned. At decision level 3, A2 is assigned (decided) to
false which would ultimately result in conflict detected by UTPVI solver. (b) resolution
graph demonstrating UTVPI solver incremental procedure to detect a conflict in set
of integer constraints



The first set of benchmarks [7] used for this evaluation is the problem of find-
ing the worst-case propagation delay of a circuit, that is, the maximum elapsed
time between a change in the inputs and stabilization of the outputs. In this
model, for each gate in the combinational model of the circuit, a gate-delay is
also taken into account and therefore, the gates, rather than performing as an
instantaneous Boolean functions, are viewed as functions whose inputs are
gradually propagated to the outputs.

Determining the worst-case delay has several important practical application
in industry, for instance in calculating the frequency of the clock with which
the circuit can operate. The width of the clock needs to be large enough to
cover the maximum stabilization time of the circuit in order to guarantee suc-
cessful propagation of all admissible inputs to the outputs. Current methods
practiced in industry, rely on calculating the path with maximum accumulated
delay from the inputs to the outputs without considering the logical relations
between circuit components. The result of such methods would be over pessi-
mistic due to the fact that some paths in the circuit might be logically impossi-
ble to be exercised.

We consider the class of bi-bounded inertial delay models [8] where each
propagation delay associated with a gate is characterized by lower and upper
bounds as illustrated in the example of Figure 6. The delay operator  where

 on each gate is a non-deterministic function with following charac-
teristics:

DI
I l u,=

5.1 Timing Analysis of Combinational Circuits

obtained by tracing the conflict back in the implication graph which is
recorded by the UTVPI solver (dotted lines in Figure 5b). The conflicting
assignment, being , is returned to the Boolean solver
which  by  backward  traversal of implication  graph  (Figure 5a)  learn the
following clause at the UIP:

5 Experimental Results

We conducted several experiments to evaluate our hybrid method using our
SAT solver, Pueblo, augmented with a UTVPI solver engine. Pueblo is built on
top of MiniSAT [13] and inherits its strategy for random restarts, VSIDS and
clause removal. All experiments were conducted on a Pentium-IV 2800MHz
machine with 1 GB of RAM running Linux 2.4.20.

B1 B2 B3 B4 B5

B¬ 1 B¬ 2 B3¬ A8 A7 A4¬

their parent constraints are added. At decision level 3, implying indicator vari-
ables  and  adds constraints ,  to set of UTVPI constraints which
ultimately results in a conflict. The reason for this conflict can easily be

B4 B5 c4 c5

An example of the complete procedure is demonstrated in Figure 5. In this
example, constraints ,  and  are activated upon true assignments to
their indicator variables ( ,  and  at decision levels 0, 0 and 2, respec-
tively). Constraints ,  and  are generated and recorded as soon as both

c1 c2 c3
B1 B2 B3

c6 c7 c8
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problem will reduce to checking the satisfiability of the combined formula. For
details on model checking of timed automata, the reader is referred to [2].

To compute the maximum stabilization time in the circuit, an auxiliary
clock is considered which is never reset to zero and at each reachable configura-
tion, represents the total time elapsed. The circuits modeled in these bench-
marks are combinational bit-adder circuits constructed from gates and the
satisfiable problem is concerned with the question that “whether there is a run
of the automaton with k transitions which remains in an unstable state after d
time”. The problem would be checking the satisfiability of a logical combina-
tion of a set of Boolean variables and difference linear inequalities. Three differ-
ent methods/solvers are used to solve this problem:

1. Hybrid online method used in Pueblo as described in this paper and adopting
encoding methods of (6) and (7) separately,

2. Translation to MIP using Big-M method and solving it using XPRESS-MP
[9]. In this method, each difference inequality of the form  is
replaced by a fresh binary variable  in its corresponding Boolean clause
and linear constraint , where M is the Big-M parame-
ter, is added to the set of constraints. Note that each clause can be
transformed to a linear constraint using  where all com-
plemented literals are replaced by ,

x y– d
Bk

x y– d M 1 Bk–+

11
1n n

i iii
x x==

1i ix x=

A separate clock variable is associated with each delay element (gate) and
will reset by its state transition. The system’s behavior is modeled using a
Timed Automaton (TA) [2] which is a tuple  where Q is a finite
set of states, C is a finite set of clock variables, I is a staying condition, assign-
ing a conjunction of inequalities over C to every state, and  is a state-transi-
tion relation. The basic verification problem is to determine whether a state
with given properties is reachable within exactly k transitions. There are two
types of transitions: Elapse of time when only the clock variable increments,
and Location switch when a new state is reached and its clock is reset to zero.
The set of states, state-transition relation and the properties in the TA can be
modelled by Boolean functions together with Difference Linear Inequalities of
the form  that represent time pass and therefore, the model checking

( , , , )Q C I=

x y– d

1. changes in the input should be propagated to the output if they persist for u
time

2. changes in the input that persist for less than l time, are not propagated at
all to the output 

[10,30] [10,50]

[20,40]

y1

y2

Fig. 6. A timed Boolean circuit
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performance of SAT-based methods are much better than LP relaxation
method of XPRESS-MP and BDD-based method of SVC. It is also clear that
for UNSAT problems, the advantages of SAT-based methods is more evident
over MIP method of XPRESS-MP. The better performance due to encoding
based on (6) rather than (7) is also evident for these benchmarks.

The Job-Shop Scheduling Problem (JSSP) consists of a finite job sets to be
processed on a finite number of machines. Each job must be processed on every
machine and each operation has to be scheduled according to its precedence
and capacity constraints. The decision problem in this case is to find “whether
there exists a schedule with makespan of L for the problem that satisfies all
constraints”. It can also be stated as an optimization problem to find the mini-
mum makespan by iteratively solving the decision problem. This problem has
been thoroughly studied for the past several decades in both OR and CLP and

5.2 Job-Shop Scheduling

Table 1 shows a comparison of these methods conducted on 4-bit adder
benchmarks with different numbers of state transitions and duration. As it is
obvious, mainly due to dominance of binary variables in these benchmarks, the

benchmark 
(bits, k, d)

SAT/
UNS

Variables 
num/bin

Run-Time (sec.)

Pueblo(6) Pueblo(7) MIP SVC

ba(4, 5, 5) SAT 151/3104 0.3 2.43 6.88 328.18

ba(4, 5, 10) UNS 151/3104 0.3 1.01 236.66 769.02

ba(4, 6, 5) SAT 176/3710 0.42 4.41 27.96 >1000

ba(4, 6, 10) UNS 176/3710 0.4 0.96 361.28 >1000

ba(4, 7, 5) SAT 201/4306 1.36 14.37 15.17 >1000

ba(4, 7, 10) UNS 201/4306 0.6 6.11 >1000 >1000

ba(4, 8, 5) SAT 226/4922 3.78 35.23 199.26 >1000

ba(4, 8, 10) UNS 226/4922 1.94 5.52 >1000 >1000

ba(4, 9, 5) SAT 251/5528 3.22 69.19 62.38 >1000

ba(4, 9, 10) UNS 251/5528 5.03 17.11 >1000 >1000

ba(4, 10, 5) SAT 276/6134 2.99 51.89 212.4 >1000

ba(4, 10, 10) UNS 276/6134 9.71 20.72 >1000 >1000

Table 1. Comparisons of different methods on bit-adder benchmarks

3. Stanford Validity Checker [5] using Shostak-style [24] method in combination
with Binary Decision Diagrams (BDD).
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(8)

The encoding of the problem into our framework will result in Boolean CNF
clauses with one or two literals and their corresponding UTVPI constraints in
the form of difference inequalities. Table 2 provides the results obtained with
our solver on well-known JSSP benchmarks of [20] when proving the satisfiabil-
ity of their best known makespan. This table clearly illustrates the advantages
of main algorithms of SAT solvers, namely the conflict learning, non-chronolog-
ical backtracking and VSIDS variable ordering, on these benchmarks. Particu-
larly, these methods help the search algorithm to focus on the bottlenecks that
is proven to be the best heuristic in solving JSSP. 

6 Conclusions and Future Work

In this paper, we introduced a combined method in solving problems of Bool-
ean propositions and a special class of linear inequalities. The integration of
logic-based reasoning and linear programming methods promises to be a
vibrant area of research for the next several years in various research communi-

1 2 1 2 2 1 1

1 2 1 2 2 1 1

1 2 2

, ,  ( , ) ( ) ( ) ( )

, ,  ( ) ( ) ( ) ( ) ( )

 ( ) ( ) ( )

t t T precede t t time t time t d t

t t T r t r t time t time t d t

time t time t d t

+

= +

+

A scheduling problem can be stated with two families of constraints,
expressed as follows, where precede(t1, t2), represents when task t2 cannot be
performed before t1, d(t) denotes the duration of task t and r(t), the resource
that it uses. The problem then can be expressed as follows:

Our hybrid method presented in this paper does not intend to compete with
those specialized JSSP techniques and heuristics and rather should be viewed
as a framework to benefit current algorithms and make it possible to couple
those with advances made in SAT.

ties ranging from OR and CP to Artificial Intelligence and Software and Hard-
ware Verification. Recent advances in SAT-based algorithms such as
introduction of efficient techniques to compute Minimally Unsatisfiable Subfor-
mula (MUS) or several new decision heuristics can be utilized in LP and ILP
problems, given an efficient hybridization methodology. As we learn more
about the trade-offs involved, we will be able to develop effective integration
strategies that outperform individual techniques.

One promising direction of future research involves extending the techniques
described above to include a more general class of constraints, specifically inte-
ger or real linear or nonlinear constraints. Since in most hybrid problems, inte-
ger solvers act as the bottleneck in the SAT-based algorithms and considering
that non-UTVPI constraints comprise a small portion of integer constraints in

several efficient algorithms and heuristics have been developed that solve JSSP
with high level of performance. Such methods include Edge-Finding techniques
[3], and meta heuristics such as Tabu Search [12].
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those application [25], methods described in this paper when combined with
other ILP methods that does not negatively impact performance, sounds a via-
ble option. Specifically, the independent characteristics of our method together
with its ability to collaborate with the SAT solver during the search, makes it
more practical for large problems and more friendly to parallel algorithms.
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Abstract. An optimization problem arising in the design of optical fibre net-
works is discussed. A network contains client nodes, each installed on one or
more SONET rings. A constraint programming model of the problem is described
and compared with a mixed integer programming formulation. In the CP model
the search is decomposed into two stages; first partially solving the problem by
deciding how many rings each node should be on, and then making specific as-
signments of nodes to rings. The model includes implied constraints derived by
considering optimal solutions to subproblems. In both the MIP and CP models,
it is important to deal with the symmetry of the problem. In the CP model, two
sources of symmetry are separated; one is eliminated dynamically during search
and the other by assigning ranges rather than explicit values to one set of decision
variables. The resulting CP model allows optimal solutions to be found easily for
benchmark problems.

1 Introduction

In this paper, the development of constraint programming models for an optimization
problem arising in the design of optical fibre networks is discussed. The problem was
introduced by Sherali, Smith and Lee [8], who discuss the practical scenario that the
problem is abstracted from and described mixed integer programming (MIP) formula-
tions. In both the MIP and CP models, it is important to deal with symmetry; Sherali
and Smith [7] discuss different ways of dealing with the symmetry in one of the MIP
models.

A CP model of a simplified version of the problem (ignoring the demand capacities
of the rings), using similar variables and constraints to the MIP model and passed to
a CP solver, could solve only small instances. An earlier paper [9] describes how this
model evolved into one that could solve larger instances of the full problem; further
improvements are presented here. In this paper, Section 2 describes the problem and the
MIP model, with the methods in [7] for dealing with symmetry. The following sections
describe a CP model for the simplified problem in which the traffic capacity of the rings
is ignored; solving this simplified problem is a precursor to solving the full problem. It
is useful to separate two sources of symmetry in the problem: Section 7 describes how
the symmetry due to the fact that the rings are interchangeable can be eliminated in the
CP model. The full problem, taking the traffic capacity into account, is returned to in
section 8; this introduces further symmetry from the fact that demand can often be split
between rings in different ways. The CP model of the previous sections is adapted, and
equivalent solutions are avoided by assigning ranges rather than specific values to the

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 336–350, 2005.
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decision variables. Results are presented showing that optimal solutions for the largest
instances in [8, 7] can be found easily. Section 9 draws conclusions.

2 Problem Description and MIP Model

Sherali, Smith and Lee [8] describe a network design problem arising from the deploy-
ment of synchronous optical networks (SONET). The network contains a number of
client nodes and there are known demands (in terms of numbers of channels) between
pairs of nodes. (It is explained in [8] that when the model is used for planning, the
value assigned to each demand takes account of the uncertainty in predicting the actual
demand over the planning horizon.) A SONET ring joins a number of nodes; a node
is installed on a ring using an ‘add-drop multiplexer’ (ADM) that is capable of adding
and dropping the traffic. Each node can be installed on more than one ring, and traffic
can be routed between a pair of client nodes only if they are both installed on the same
ring. In this scenario, there is no traffic allowed between rings, but the demand between
a pair of nodes can be split between two or more rings. There are capacity limits on
the rings (in terms of both nodes and channels). The objective is to minimise the total
number of ADMs required, while satisfying all the demands.

The largest test instances used in [8] have 13 nodes, with 24 demand pairs. The rings
can accommodate 5 nodes and 40 traffic channels, and there are 7 rings available. (It
appears that the cost of SONET rings is negligible, so that there is no practical limit on
the number of rings used. The limit is specified in order to model the problem.) 80% of
the demand pairs were uniformly generated between 1 and 5, and 20% between 1 and
25. There are also two smaller sets of 15 problems each, one set having 7 nodes and 8
demand pairs and the other 10 nodes and 15 demand pairs.

The data for one of the large instances is given below. The first line gives the origin
nodes, the second the destination nodes, and the third the demands in terms of number
of channels.

1 1 2 2 2 2 2 3 4 4 4 4 5 5 7 7 7 8 8 8 9 10 11 12
9 11 3 5 9 10 13 10 5 8 11 12 6 7 9 10 12 10 12 13 12 13 13 13
8 2 25 5 2 3 4 2 4 1 5 2 5 4 5 2 6 1 4 1 5 9 3 2

For this instance, an optimal solution ignoring the traffic levels uses 22 ADMs on 5
rings. The sets of nodes installed on the rings are: {4, 8, 10, 12, 13}, {4, 5, 6, 11}, {1,
2, 9, 11, 13}, {2, 3, 5, 7, 10}, {7, 9, 12}. However, this is not a feasible solution if the
level of demand is taken into account, because the fourth ring requires 41 channels. The
demand pairs on this ring are not on any other ring, so that the demand cannot be split
between two rings. An optimal solution respecting the traffic limit uses 23 ADMs.

The Mixed Integer Programming (MIP) model in [8, 7] is as follows. Let N =
{1, ..., n} be the set of nodes, and dij be the traffic demand between nodes i and j.
This defines a set of edges E = {(i, j), i < j, dij > 0} and a demand graph G(N,E).
Let M = {1, ..,m} be the set of rings, r be the maximum number of nodes that can
be installed on any ring, and b be the capacity of a ring in terms of the number of
channels. Let Si be the set of neighbours of i in G, i.e. the set of nodes j such that there
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is a demand between nodes i and j, so that Si = {ρ ∈ E : ρ = (i, j) or ρ = (j, i)
for some j}.

The model has two sets of decision variables: xik, ∀i ∈ N, k ∈M , where xik = 1 if
node i is assigned to ring k, 0 otherwise; fρk ∀ρ = (i, j) ∈ E, k ∈ M , representing the
fraction of the demand between the nodes i and j that is assigned to ring k. The model
can be stated as:

minimize
∑
i∈N

∑
k∈M

xik

subject to:
∑
k∈M

fρk = 1 ∀ρ ∈ E (1)

∑
ρ∈E

dρfρk ≤ b ∀k ∈M (2)

∑
i∈N

xik ≤ r ∀k ∈M (3)

0 ≤ fρk ≤ xik ∀i ∈ N, k ∈ M,ρ ∈ Si (4)

xik ∈ {0, 1} ∀i ∈ N, k ∈M (5)

This basic model, RD1, has many alternative optimal solutions, because given any
feasible network design, equivalent designs can be obtained by “simply reshuffling the
demand allocations made to the various individual rings” [7]. Sherali and Smith de-
veloped a number of alternative models in which the problem symmetry was reduced
by introducing hierarchy into the model. The most successful model, RD3, replaced
constraints (3) by:

r ≥
∑
i∈N

xi1 ≥
∑
i∈N

xi2 ≥ ... ≥
∑
i∈N

xim

i.e. ring 1 has the largest number of ADMs, followed by ring 2 and so on. In their
experiments, this model gave the shortest average run-time, even though it does not
eliminate all the symmetry: each ring can accommodate only 5 nodes, and most rings
that are used at all will have 4 or 5 nodes allocated to them. The average run-time for
the 15 largest instances was just over 21,200 sec., compared with nearly 196,000 sec.
for RD1 (on a Sun Ultra 10 Workstation, running CPLEX).

Another model, RD2, which gave an average run-time of over 40,000 sec., replaced
constraints (2) by:

b ≥
∑
ρ∈E

dρfρ1 ≥
∑
ρ∈E

dρfρ2... ≥
∑
ρ∈E

dρfρm

i.e. ring 1 has the largest demand, followed by ring 2, and so on. Although this model
was not as good as the previous model, RD3, by itself, Sherali & Smith found that using
the demand allocated to successive rings to break ties in the case that two successive
rings have the same number of nodes allocated was promising, and in experiments gave
the second smallest average run-time (just under 23,000 sec. on average).
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Although even the worst model with symmetry breaking constraints (RD2) did
much better than the original model, it is surprising that RD3, using a simple set of
constraints which leave much of the symmetry intact, did so well. Sherali and Smith
concluded that this was because the constraints added tended to encourage integral so-
lutions, since the nonzero coefficients are all 1s. In CP, on the other hand, experience
is that as much as possible of the symmetry in the problem should be eliminated. In
CP models of the SONET problem, as shown later, all the symmetry can be eliminated
quite easily and this contributes to its successful solution.

3 The Unlimited Traffic Capacity Problem

This section describes a CP model for a simplified version of the problem in which the
demand capacity of the rings is ignored. The problem initially proved difficult to solve
using CP, so that it was helpful to start with a simplified problem. Moreover, solving
the simpler problem gives a good lower bound on the solution to the full problem, in
fact often a feasible solution, so that it is useful to solve the simpler problem even now
that better models have been developed. Finally, considering the simpler problem and
the full problem separately makes explicit the two sources of symmetry in the problem,
since one arises only in the full problem. These sources of symmetry can be eliminated
in different ways. Solution of the full problem will be described in section 8.

For the simplified problem, the relevant data can be represented by the demand
graph, G(N,E). Figure 1 gives an example, representing one of the large instances.
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Fig. 1. Demand pairs in a sample instance of the SONET problem

It is possible to build a CP model the unlimited traffic capacity problem using only
the xik variables of the MIP model. However, it was found that the resulting model
could only be solved in a reasonable time (using ILOG Solver) for the 15 smallest
instances. In any case, the expression of the constraint that if there is a demand between
a pair of nodes they must both appear on the same ring is somewhat awkward for CP.
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Partly to make it easier to express this constraint, two dual sets of set variables were
introduced: variable Rk represents the set of nodes assigned to ring k, ∀k ∈M , and Ni

is the set of rings that node i is assigned to, ∀i ∈ N .
The model can then be written as:

minimize t =
∑
i∈N

∑
k∈M

xik =
∑

k

|Rk| =
∑

i

|Ni|

subject to: |Ni ∩Nj | ≥ 1 ∀(i, j) ∈ E (6)

|Rk| ≤ r ∀k ∈ M (7)

(xik = 1) = (i ∈ Rk) = (k ∈ Ni) ∀i ∈ N, k ∈ M (8)

xik ∈ {0, 1} ∀i ∈ N, k ∈ M (9)

The first constraint expresses that if there is a demand between nodes i and j, there
must be at least one ring that they are both assigned to. The second could alternatively
be expressed as:

∑
i xik ≤ r, and so is equivalent to (3) in the MIP model. The third

constraint is a set of channelling constraints linking the old and new variables.
The xik variables are used as the search variables and an optimal solution is found

using the branch-and-bound optimization provided in ILOG Solver: whenever a solu-
tion is found, Solver adds a constraint that in future solutions, the value of t (the objec-
tive variable) must be smaller. Hence, when there is no solution satisfying the current
constraint on t, the last solution found is known to be optimal.

4 How Many ADMs for Each Node?

The approach described in the last section can solve the small and medium SONET in-
stances to a limited extent. With suitable variable ordering heuristics, good, and some-
times optimal, solutions for these instances can be found very quickly, but proving op-
timality is slow; as before, of course, we are still dealing only with the unlimited traffic
capacity problem.

Part of the difficulty is that very little can be deduced from the assignment of a value
to one of the xik variables, or even from several such assignments. In particular, when
it comes to proving optimality, it is hard to tell from such assignments whether the
current bound on the objective can be met. Thus, the search explores many unprofitable
branches, with no means of pruning them.

As described in [9], the proof of optimality can be speeded up by focusing on the
number of ADMs each node needs. Hence, for each node, an integer variable ni is
introduced, where ni = |Ni|, i.e. ni is the number of rings that node i is installed on.

Deciding how many rings each node should appear on is not sufficient to solve
the problem, so the ni variables cannot be used alone as search variables. After the
ni variables have been assigned, the search continues by assigning values to the xik

variables. Once it has been decided how many rings each node should appear on, it is
easy to find a consistent assignment of nodes to rings, or prove that there is no such
assignment. This is still a complete search, since if no assignment to the xik variables
can be found, the search backtracks to the ni variables.
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Hence, the problem is decomposed into first deciding how many rings each node
should be on, and then assigning each node to a specific set of rings. A similar approach
is common in scheduling and has proved useful for other problems, for instance in [4].

A further improvement comes from assigning increasing values of the objective
variable until a solution is found, rather than using the branch-and-bound procedure de-
scribed earlier. This is easily implemented by making t a search variable and assigning
it first. One benefit is that, since the objective t is equal to the sum of the ni variables,
fixing t reduces their domains. Once again, if no feasible assignment to the ni variables
can be found, the search backtracks to try a larger value of t; hence, the first solution
found must be optimal.

This would not be a useful solution strategy if finding the optimal solution were
very difficult and we were prepared to settle for a good solution and forgo the proof of
optimality. Alternatively, if there were a large gap between the smallest value of t found
by propagating the constraints and the optimal value, proving that every intervening
value is infeasible might take too long. For these instances of the SONET problem, the
minimum value of t which need be considered is between 18 and 20 (given the implied
constraints on the ni variables described in the next section) and the optimal value is
between 20 and 24, so that there are only a few infeasible values of t to consider before
the optimal value is reached.

5 Implied Constraints

It has proved much easier to reason about the number of rings that each node must be
installed on than whether or not node i should be installed on ring k. Consequently,
the ni variables have been a fruitful source of implied constraints, allowing infeasible
assignments to be detected early.

The simplest constraint is that if the degree δi of node i ≥ r, it must be placed on
more than one ring: for instance, in Figure 1, nodes 1, 3 and 6 must each appear on at
least 2 rings. In general, ni ≥ ! δi

r−1".
A similar constraint was used in [8], but only for the node with largest degree in

the demand graph: this node is assigned to the first ni rings in order to reduce the
symmetry in the problem. Here, we do not need such a constraint to deal with symmetry
(as discussed below in section 7), but the set of constraints is useful in detecting when
the current value of the objective cannot be attained.

The remaining implied constraints have been derived by considering subproblems
consisting of pairs of nodes with a demand between them, and their neighbours in the
demand graph.

– if two nodes i and j are connected, and each of them is connected to fewer than r
other nodes (so that, considered individually, it appears that each could be placed
on just one ring), but together they are connected to at least r− 1 other nodes, then
at least one of them must be on at least two rings i.e. ni + nj ≥ 3.
In Figure 1, nodes 9 and 11 are connected to nodes 1, 3, 8 and 13, and to each other.
There must be a ring that both nodes are installed on, since they are connected, and
both sets of neighbours cannot fit onto this ring as well. Hence, one of nodes 9 and
11 must be installed on another ring.
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– if two nodes i and j are connected, and one is connected to at least r nodes (so that
the last constraint does not apply), but the other is not, and they are connected to a
total of more than 2r−3 other nodes between them, then nodes i and j require at
least four ADMs, i.e. ni + nj ≥ 4.
For instance, for the example of Figure 1, node 3 must be on at least 2 rings, whereas
node 13 could be installed on a single ring, with its neighbours. One more of node
3’s neighbours could be on the same ring, but this would leave 5 of the demand
pairs involving node 3 not yet accommodated, and this would require at least 2
more rings. Hence n3 + n13 ≥ 4.

– Suppose that two nodes i, j are not connected; that each could be installed on just
one ring but they could not both be installed on the same ring (i.e. δi ≤ r − 1,
δj ≤ r − 1, δi + δj ≥ r − 1); and they have a mutual neighbour k which has
more than r−1 neighbours. (In Figure 1, nodes 2, 11 and 1 meet these conditions.)
If nodes i and j appear on just one ring each, then node k must also be installed
on these rings; if the three nodes have more than 2r−4 other distinct neighbours
in total, then node k must also appear on a third ring. We can add a constraint to
reflect this: if ni = 1 and nj = 1 then nk ≥ 3.
For instance, nodes 2, 11 and 1 have more than 2r−4 neighbours (nodes 3, 4, 7, 8,
9, 10, 13). The ring with nodes 2 and 1 could also accommodate two more of node
1’s neighbours; the ring with nodes 11 and 1 could accommodate another; but this
still leaves one of the demand pairs involving node 1 unplaced, requiring another
ring. Hence, if n2 =1 and n11 = 1 then n1 ≥ 3.

In [8], valid inequalities are derived which similarly express a lower bound on the
number of ADMs required by a subset of the nodes. The inequalities are generated by
selecting subsets of at least r nodes (where r is the maximum number of nodes on any
ring), or a set of nodes with total demand between them greater than b (where b is the
maximum demand capacity of a ring). For instance, any connected set of r+ 1 nodes
requires at least r+ 2 ADMs. In [8], these inequalities are reported to reduce runtime
by about one-third, with some care in selecting appropriate sets of nodes. However, in
the CP model, they would be weaker than the implied constraints listed earlier.

The foregoing implied constraints would still be valid in the full problem, i.e. taking
into account the traffic capacity of the rings. The following constraint would not then
be valid, but is useful in the simplified problem:

– the number of rings that a node is installed on should be no more than its degree,
i.e. ni ≤ δi.

The following dominance rules can also be added. They are not true of every consis-
tent solution, and so are not logical consequences of the existing constraints, as implied
constraints are, but they will be satisfied by at least one optimal solution:

– a ring cannot have just one node on it, i.e. |Rk| �= 1, for 1 ≤ k ≤ m. In fact, any
ring must have two connected nodes on it.

– the total number of nodes allocated to two non-empty rings must be more than the
number that can be accommodated on one ring, i.e. if |Rk| > 0 and |Rl| > 0 then
|Rk| + |Rl| > r , for all k, l with 1 ≤ k < l ≤ m. Otherwise there is an equally
good solution in which the two rings are combined into one.
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All these additional implied constraints and dominance rules are useful: they reduce
both search and runtime.

Once a complete assignment to the ni variables has been found, consistent with
all these constraints, the following constraints are useful while the xik variables are
being assigned. They help to complete the solution quickly or decide that it cannot be
completed.

– if ni = 1, and node i is installed on ring k, then all the neighbours of node i must
also be on ring k, i.e. if Si is the set of neighbours of node i:

if ni = 1 and xik = 1 then {i} ∪ Si ⊆ Rk for 1 ≤ i ≤ n, 1 ≤ k ≤ m

– similarly, if ni = 2, once node i has been allocated to two rings, all its neighbours
must be on these two rings as well, i.e.

if ni = 2 and xik = 1 and xil = 1 then {i} ∪ Si ⊆ Rk ∪Rl

for 1 ≤ i ≤ n, 1 ≤ k < l ≤ m

6 Variable Ordering Heuristics

The search strategy described earlier requires two variable ordering heuristics, one for
the ni variables and one for the xik variables. The heuristics described in this section
are used both for the simplified problem and the full problem that includes the traffic
capacities of the rings.

Devising variable ordering heuristics for the first stage of search i.e. for assigning
the ni variables, is more complicated than when there is only one set of search variables.
The aim is not just to find an assignment to satisfy the direct constraints on the first-
stage search variables (which is easily done), but to find one that can be extended to the
second-stage variables. This makes it difficult to predict the behaviour of a proposed
heuristic.

Three variable ordering heuristics have been compared: smallest domain, minimum
degree and maximum degree. (The last two are static orders, using the original degrees
in the demand graph.) When the objective variable is assigned first, any variable order-
ing will generate the same set of sub-optimal complete assignments to the ni variables
(i.e. assignments for which the value of t is less than its optimal value). This is be-
cause all sub-optimal assignments satisfying the implied constraints on the ni variables
must be found, whatever heuristic is used, and will fail only when the second stage tries
to assign the xik variables. The different heuristics tested sometimes require slightly
different numbers of backtracks to explore the suboptimal assignments; however, they
principally differ in the number of complete assignments to the ni variables that they
consider at the optimal value of t, before finding one that leads to a solution. On aver-
age, minimum degree is the best of the three heuristics, with smallest domain slightly
worse, and maximum degree significantly worse. Clearly, the total number of complete
assignments to the ni variables at the optimal value of t is the same for all three heuris-
tics, but they each consider them in a different order, and hence find a solution earlier
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or later. Poor performance of a heuristic indicates that the assignments it considers first
are those that are less likely to be successfully extended to the xik variables, but it is
difficult to identify the reason.

A number of variable ordering heuristics have been investigated for the xik vari-
ables, which are assigned once a complete assignment to the ni variables has been
found. In all cases, the smallest numbered ring not yet fully occupied is chosen, and
then a node chosen to place on this ring. The value ordering is to choose 1 before 0,
i.e. when considering variable xik, choose to place node i on ring k before choosing
not to place it. The best heuristic found chooses the node i assigned to fewest rings
(i.e. for which ni is smallest), breaking ties by choosing the node with largest degree.
This means that any node that is only on one ring (i.e. ni = 1) is placed first. The con-
straint in section 5, that if ni =1 and xik =1, then every neighbour of node i must
be on ring k, will then be triggered. By choosing the node with maximum degree, the
largest number of neighbouring nodes will be placed as a result of this constraint. Since
all these nodes have to be on the same ring as node i, given the first-stage assignment,
postponing placing them is likely to lead to future failure and wasted search.

The heuristics investigated were selected largely by trial and error; although those
chosen have been found to be superior to the others considered, it is unlikely that they
are the best possible heuristics for these models. Nevertheless, the selected heuristics
are giving good results.

7 Symmetry Breaking

Sherali & Smith’s aim in [7] was to investigate ways of dealing with symmetry in MIP
models in order to speed up solution time: the SONET problem was one of several con-
sidered. Symmetry also causes difficulties for search in constraint programming. The
symmetry in the SONET problem partly arises because the available rings are indistin-
guishable: a solution is unchanged by permuting the rings, with their associated nodes.
This symmetry could be eliminated in a similar way to [7] by adding constraints to the
model to distinguish them; for instance, constraints that the set of nodes installed on ring
k is lexicographically greater than the set of nodes on ring k+1 (so that any empty rings
are the largest numbered). However, it is important to ensure that symmetry-breaking
constraints do not conflict with the variable ordering. If they do, it can happen that the
solutions in a symmetry equivalence class which the constraints eliminate are those that
would be found earlier, given the variable and value ordering, than the solutions al-
lowed by the constraints. Thus, finding a solution can be hindered rather than helped by
the symmetry breaking. As discussed earlier, a dynamic variable ordering heuristic is
used when assigning nodes to rings, and this makes it difficult to ensure that symmetry-
breaking constraints are consistent with the variable ordering.

An alternative approach is to eliminate the symmetry using SBDS (Symmetry Break-
ing During Search) [5]. This adds constraints during search, on backtracking to a choice
point, to ensure that no partial assignments symmetrically equivalent to those already
considered will be considered in future. Since the constraints are added dynamically, de-
pending on the choices already made, SBDS is compatible with any variable ordering,
including dynamic orderings. SBDS requires the user to supply a function describing
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the effect of each symmetry on the assignment of a value to a variable. It is particu-
larly simple to use when the symmetry is equivalent to permuting the rows or columns
of a matrix of variables, since in that case the symmetry functions need only describe
the transpositions of pairs of rows/columns, not all their permutations. Here, if the vari-
ables xik are thought of as corresponding to the elements of a 2-dimensional matrix, the
columns of the matrix (corresponding to the 2nd subscript) can be permuted and hence,
SBDS only requires functions describing the effects of transposing pairs of rings.

The symmetry breaking functions required by SBDS were first written for the orig-
inal CP model, using only the xik variables. With the two-stage search described in
section 4, the symmetry between the rings can be broken in the same way, using the
same SBDS functions. Symmetry breaking is only needed when assigning values to the
xik variables; the symmetry does not affect the ni variables. This demonstrates once
again the usefulness of having a symmetry breaking method that does not depend on
the search order: with the two-stage search, it would be even more difficult than before
to use symmetry-breaking constraints and ensure compatibility with the variable order-
ing, since the order in which the xik variables are assigned depends on the previous
assignments to the ni variables, as described in section 6.

The effect of using SBDS on the effort required to solve the SONET problem (ignor-
ing the traffic capacity) is shown in Table 1. The model used includes the search strategy
and variable ordering heuristics described earlier. The 15 medium-sized instances (10
nodes, 15 demand pairs, 6 available rings) are trivial if the symmetry is eliminated; if
not, some of them take much longer to solve. For the larger instances, with 13 nodes,

Table 1. Solving medium-sized SONET instances, with and without symmetry-breaking, using
ILOG Solver 6.0. ‘Value’ is the minimum number of ADMs required. ‘Backtracks’ is the number
of times the search backtracks following failure, reported by Solver. ‘Time’ is the cpu time in
seconds on a 1.7GHz Pentium M PC

With SBDS No symmetry breaking
Instance Value Backtracks Time Backtracks Time

1 14 14 0.03 596 0.21
2 14 11 0.02 27 0.03
3 14 25 0.03 292 0.12
4 13 43 0.04 917 0.31
5 15 49 0.04 7,423 2.35
6 14 19 0.02 20 0.03
7 13 9 0.03 17 0.02
8 14 12 0.02 13 0.02
9 15 33 0.03 499 0.18
10 14 50 0.05 2,270 0.70
11 12 1 0.02 9 0.03
12 15 50 0.03 776 0.27
13 15 104 0.05 2,361 0.74
14 15 270 0.18 28,960 9.14
15 15 28 0.02 667 0.21

Average 47.86 0.04 2,989.13 0.96
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24 demand pairs and 7 available rings, it is essential to break the symmetry in order
to solve them in a reasonable time: being larger, these problems are more difficult to
solve even when the symmetry is eliminated, and the larger number of available rings
means that the number of symmetrically equivalent solutions is up to 7!, rather than 6!.
(Given m available rings, there are fewer than m! symmetrically equivalent solutions,
since swapping a pair of empty rings does not change the solution.)

8 Modelling Traffic Capacity and Demand Splitting

As stated earlier, in solving the problem ignoring the traffic capacity we can at least get
a lower bound on the number of ADMs required in the full problem. In fact, several
of the solutions found for the large instances are still feasible, and therefore optimal,
when the demand levels between pairs of nodes and the traffic capacities of the rings
are added. Hence, developing a model to solve the simpler problem is not simply a stage
on the way to solving the full problem: the solutions found can be useful.

As in the MIP model, the demand capacity of the rings can be modelled by intro-
ducing variables fρk for ρ = (i, j) ∈ E and k ∈ M . fρk is the fraction of the demand
between nodes i and j that is assigned to ring k, and 0 ≤ fρk ≤ 1.

The constraints of these variables from the MIP model can be used without change.
In the CP model, most fρk variables are set to 0 or 1 by these constraints as the xik

variables are assigned. If neither node in a demand pair, corresponding to ρ ∈ E, ap-
pears on ring k, the corresponding fρk variable will be set to 0; if a demand pair appears
on only one ring, the fraction of the demand on that ring is 1. Relatively few demand
pairs appear on more than one ring, and so require reasoning about the fraction of the
demand allocated to each.

In the MIP models, the variables fρk are decision variables. However, this creates
another source of alternative equivalent solutions, since there are usually several ways
of splitting the demand between rings, given a feasible allocation of nodes to rings.
For instance, the optimal solution for the example in section 2, taking the demand lev-
els into account, uses 23 ADMs. The sets of nodes on each ring are: {4,8,10,12,13},
{1,4,9,11,13},{4,5,6}, {2,3,7,10,13}, {2,5,7,9,12}. The total traffic demand between
the nodes on the fourth ring is 45 channels, whereas the capacity of a ring is 40. How-
ever, this solution is feasible, because nodes 10 and 13, with a demand of 9 units be-
tween them, are also both installed on the first ring, which has enough spare capacity to
take all the demand between these two nodes. Hence, a feasible solution can allocate 0,
1, 2, 3 or 4 channels on the first ring to the demand between nodes 10 and 13 and the
remaining demand from this pair to the fourth ring.

Some of the formulations in [7] attempt to reduce the effects of this form of sym-
metry. For instance, RD2, discussed in section 2, has constraints to ensure that the to-
tal demand on successive rings is non-increasing, and these constraints reduce both
forms of symmetry in the problem, to some extent. However, this model does not
give as good performance as RD3, which only reduces the symmetry between the
rings.

Constraint programming offers a different way to avoid considering equivalent al-
ternative solutions in this case; it is not necessary to decide how the demand between a
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pair of nodes is to be split between rings, but simply to ensure that it can be done feasi-
bly. This can be done in ILOG Solver: the bounds on the fρk variables can be reduced
until they are consistent with the constraints acting on them. For instance, in the exam-
ple given earlier where the nine channels required between nodes 10 and 13 can be split
between two rings, with up to four channels on one ring and the remainder on the other,
the domain of the relevant variables would be reduced to [0, .., 0.4444] and [0.5555, ..,
1]. To take another simple case, if two nodes forming a demand pair are installed on two
rings, both of which can accommodate all the demand between the pair, the ranges of
the demand fraction variables will both be left as [0, .., 1], indicating that any fraction
of the demand can be accommodated on one ring and the rest on the other. In this way,
the alternative solutions from splitting the demand in different ways are not explicitly
considered. When the bounds of the variables have been reduced, any value remaining
(that gives an integral number of channels as a fraction of the total demand between
a pair of nodes) can form part of a feasible solution consistent with the traffic capac-
ity of the rings. It is straightforward then to construct a solution by choosing say the
smallest value in some variable’s domain (which must be one of the allowed fractions),
re-establishing consistency and continuing in this fashion until every variable has been
assigned.

A few other minor changes to the previous model are required to deal with the
traffic capacity. The constraint that any two rings must have a total of more than r
nodes installed on them is no longer correct, but can be modified so that two rings
either have more than r nodes or more than b channels between them. Further, it is no
longer necessarily true that a node with degree δi should appear on at most δi rings, and
this constraint is dropped.

Table 2. Solving the SONET problem for the large instances, either ignoring the traffic capacity
of the rings, or taking it into account. ‘Optimum’ is the minimum number of ADMs in each case

Without traffic capacity With traffic capacity
Instance Backtracks Time Optimum Backtracks Time Optimum

1 543 0.41 22 990 0.95 22
2 445 0.42 20 451 0.65 20
3 401 0.42 22 417 0.62 22
4 680 0.55 23 1,419 1.52 23
5 150 0.07 20 922 0.70 22
6 948 0.85 22 306 0.29 22
7 86 0.11 20 982 1.15 22
8 40 0.07 20 34 0.09 20
9 2,280 2.11 22 35,359 45.13 23
10 2,280 1.77 23 4,620 6.75 24
11 349 0.35 22 352 0.54 22
12 48 0.05 20 1,038 1.09 22
13 88 0.09 21 105 0.14 21
14 558 0.45 23 1,487 1.66 23
15 1,038 0.97 22 13,662 19.59 23

Average 662.27 0.58 4142.93 5.39
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Table 2 shows the results with this strategy. When taking the traffic capacity into
account, the revised model was used to find a new optimal solution from scratch in all
cases, even when the solution already found was still feasible and therefore optimal.
The average solution time for the instances used in the Sherali & Smith paper is now
only a few seconds. The average is dominated by just two of the problems (9 and 15)
for which satisfying the traffic capacity requires a larger number of ADMs than the
simpler problem; further improvements to the CP model will focus on problems of this
kind. In [7], the average solution time (with the level of symmetry breaking giving best
performance) was 21,220 sec., although on Sun Ultra 10 (a much slower machine), and
the corresponding average number of nodes in the branch and bound tree using CPLEX
was about 600. It is hard to compare the performance of the CP model and the MIP
model, but it is clear that these instances are now easy to solve using the CP model and
search strategy described.

9 Conclusions

Sherali and Smith [7] investigated different possible ways of reducing the symmetry
in the MIP model of the SONET problem. The most successful reformulation of those
that they compared (RD3) leaves much of the symmetry intact: it imposes constraints
that the number of nodes installed on successive rings is non-increasing. Optimal so-
lutions for their sample instances have several rings with the same number of nodes,
which will not be distinguished by these constraints. Furthermore, the RD3 mode does
not address the symmetry due to the fact that when a demand is split between two or
more rings it can often be done in different ways. In the CP model, the symmetry due
to the rings being interchangeable can be eliminated using SBDS: this can reduce the
run-time to solve the simplified problem for the medium-sized instances by more than
an order of magnitude, as shown in Table 1. In view of the importance of eliminating
the symmetry in the CP model, it is surprising that in the MIP approach reducing the
symmetry, rather than eliminating it completely, is sufficient to achieve the best results.
It is not clear what the implications are for hybrid MIP/CP algorithms for problems
with symmetry.

The remaining symmetry in the problem, from splitting the demand in different
ways, can also easily be eliminated in the CP model by finding feasible ranges of
values for the fraction of demand on each ring, rather than choosing specific values.
For a demand fraction variable, fρk, whose domain is still an interval after the do-
mains are made consistent with the constraints, the values in the interval that corre-
spond to integral numbers of channels can be seen as partially interchangeable, as
defined by Choueiry and Noubir [2]. In their definition, two values for a (discrete-
valued) variable in a constraint satisfaction problem are partially interchangeable with
respect to a subset A of variables if and only if any solution involving one value im-
plies a solution involving the other, with possibly different values for variables in A.
The set A for a variable fρk consists of the variables fρk′ for k′ ∈ M , k′ �= k,
whose domain is an interval rather than a fixed value after its bounds have been re-
duced, i.e. A consists of the fraction variables for the same demand pair on other rings
whose values are neither 0 nor 1. Choueiry and Noubir give an algorithm to iden-



Symmetry and Search in a Network Design Problem 349

tify and exploit partially interchangeable values, but in this case, it is not required:
the method described in section 8 is sufficient. This demonstrates that partially inter-
changeable values can in some problems be easily exploited to allow the possible alter-
native solutions to be implicitly found, without enumerating them or choosing between
them.

The CP model explicitly represents more features of the problem than the MIP mod-
els (the set of nodes on each ring, the set of rings each node is on, the number of rings
each node is on), using multiple sets of variables, linked by channelling constraints.
This richer model allows the decomposition of the search into two stages: first deciding
how many rings each node should be on, and then assigning the nodes to specific rings,
backtracking to the first stage if the assignment in the second stage fails. Although a
similar decomposition has been used in other problems, it is worth noting that much
previous work in CP using redundant models linked by channelling constraints [1] has
used one model as a primal model, providing the search variables. The CP model of the
SONET problem is an example of the more complex possibilities in using redundant
models.

Modelling the problem in this way also allows implied constraints to be derived
on the variables representing the number of rings each node is on. The implied con-
straints have been derived by hand from considering subgraphs of the demand graph,
consisting of pairs of connected nodes and their neighbours, and finding lower bounds
on the number of rings the pair of nodes must be installed on. It would be possible
to extend these constraints to take account of the level of demand between the nodes,
and not just the existence of a demand. This was done, for instance, in deriving valid
inequalities for the MIP model [8]. It would also be possible to derive further implied
constraints systematically by solving subproblems consisting of two or three connected
nodes and their neighbours in the demand graph. The implied constraints already used
have proved invaluable, and such a systematic approach, taking the demand levels into
account, could lead to further improvements. Generating implied constraints from solu-
tions to subproblems could also be a useful approach in CP models for other problems.

Considerable effort has been put into developing the CP model from the initial sim-
ple model based on the MIP model. Remodelling currently requires expertise in con-
straint programming, and it would be preferable if the process could be automated or
at least supported. A proposal for a system to do this is presented by Frisch et al. [3],
using models of the SONET problem as an illustration.

The SONET problem initially appeared intractable for constraint programming; re-
modelling has eventually resulted in a CP model that appears competitive with Sherali
& Smith’s MIP model. The largest instances that they solved can be solved with the CP
model in an average of 30 sec. on a 600 MHz Celeron PC. Optimization is generally
considered to be difficult for CP, but this experience suggests that successful CP models
could be developed for other initially unpromising optimization problems too. Régin
[6], for instance, has developed a CP approach to solving the maximum clique problem
and has shown that it is competitive with existing methods, achieving new solutions to
benchmark problems. Improved CP models might improve overall performance even
for problems that are eventually solved using a CP/IP hybrid.
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Abstract. We present the tree-of-BDDs approach, a decomposition
scheme for compiling configuration problems. Methods for minimum ex-
planations and full interchangeable value sets detection are also given.
Experiments show that the techniques presented here can drastically re-
duce the time and space requirements for interactive configurators.

1 Introduction

A configuration problem (CP) will list the number of parameters (variables)
defining a product, their possible values and the rules by which those values
can be chosen. It can be viewed as a Constraint Satisfaction Problem (CSP),
where the solutions to the CSP are equivalent to valid configurations. An inter-
active configurator is a tool, that takes a CP as input and interactively helps
the user to choose his preferred valid configuration. The Binary Decision Dia-
gram (BDD) [1] based symbolic CSP compilation technique [2] can be used to
compile all solutions of a CP into a single (monolithic) BDD. Once a BDD is
obtained, the functions required for interactive configuration can be efficiently
implemented. Such approaches do not exploit the fact that CPs are specified in
hierarchies. Due to this the BDD could be unnecessarily large. Such hierarchies
are close to trees in shape. Hence, the tree decomposition techniques for CSPs
could be used to enhance compilation. The contributions of this work are

1. A compilation scheme using the hinge decomposition technique [3] and BDDs.
In the experiments the scheme results in upto 96% reduction in space.

2. Efficient minimum explanation (see Section 2) algorithms.
3. Methods to detect full interchangeable values for problem reformulations.
4. Efficient implementation and evaluation of the above techniques.

The space reduction is of great importance in online configuration applications,
and also in embedded configuration, where one needs to embed the configuration
details on a product itself, so that it could be reconfigured as and when required.
Reductions in space and time enable the tree-of-BDDs scheme to scale high.
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The necessary background is given in Section 2. The tree-of-BDDs compi-
lation scheme, and the algorithms for explanations and detection of full inter-
changeable values are presented in the subsequent sections. Discussion on exper-
iments and related work, followed by concluding remarks, finish this paper.

2 Background

Some of the definitions in this section are based on the definitions in [2, 4, 5]. Let
X be a set of variables {x1, x2, . . . , xn} and D be the set {D1, D2, . . . , Dn}, where
Di is the domain of values for variable xi. A relation R over the variables in M ,
M ⊆ X, is a set of allowed combinations of values for the variables in M . Let
M = {xm1, xm2, . . . , xmk}, then R ⊆ (Dm1×Dm2×. . . Dmk). R restricts the ways
in which the variables in M could be assigned values. A constraint satisfaction
problem instance CSP is a triplet (X,D,C), where C = {c1, c2, . . . , cm} is a set
of constraints. Each constraint, ci, is a pair (Si, Ri), where Si ⊆ X is the scope
of the constraint and Ri is a relation over the variables in Si. Without loss of
generality, we assume that the variables whenever grouped in a set are ordered
in a fixed sequence. The same ordering is assumed on any set of the values of
variables and the pairs with variables in them.

An assignment is a pair (xi, v), where xi ∈ X and v ∈ Di. The assignment
(xi, v) binds the value of xi to v. A partial assignment, PA, is a set of assignments
for all the variables in Y , where Y ⊆ X. A partial assignment is complete when
Y = X. The notation PA|xs, where xs is a set of variables, means the restriction
of the elements in PA to the variables in xs. Similarly, R|xs, where R is a relation,
means the restriction of the tuples in R to the variables in xs. Let var(PA) =
{x|(x, v) ∈ PA}, the set of variables assigned values by a PA. Let val(PA) =
{v|(x, v) ∈ PA}, the set of values assigned for var(PA). A partial assignment
PA satisfies a constraint ci, when val(PA|var(PA)∩Si

) ∈ Ri|var(PA)∩Si
. A complete

assignment CA is a solution S for the CSP when CA satisfies all the constraints in
C. Let SOL denote the set of all solutions of the CSP.

A configuration problem instance CP is given by the available options in a
product and the rules in which the choices for those options can be selected. In
this paper, we only consider the static CP. In case of dynamic CP [6], some of
the choices for the available options might add new options and rules to the CP.
Methods for static CP can be easily extended to dynamic CP [7]. A CP can be
modelled as a CSP instance, in which options, choices, and rules, in the CP, will
correspond to variables, domains, and constraints, in the CSP. The SOL of the
CSP will then denote the all valid-configurations of the CP. Hereafter, the terms
CSP, and SOL may be used directly in place of the corresponding configuration
terms. Fig. 1 shows a T-shirt configuration problem [7]. The first constraint in
it implies that a T-Shirt with MIB (Men-in-Black) print is black in color. The
second constraint implies that a T-shirt with STW (Save-the-Whales) print is
not small in size.

A configurator is a tool that helps an user in selecting his preferred valid
product. An interative configurator IC is a configurator which interacts with the
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X = {color, size, print}
D = {{black ,white, red , blue}, {small ,medium, large}, {MIB ,STW }}
C = {({color, print}, {(black ,MIB), (black ,STW ), (white,STW ), (red ,STW ),

(blue,STW )}) +({size, print}, {(small ,MIB), (medium,MIB), (medium,STW ),
(large,MIB), (large,STW )})}

Fig. 1. A T-shirt configuration problem as a CSP instance

user as and when a choice is made by the user. After each and every choice
selection by the user the IC shows a list of unselected options and the valid
choices for each of them. The IC only shows the list of valid choices to the user.
This prevents the user from selecting a choice, which along with the previous
choices made by the user, if any, will result in no valid product according to the
specification. The configurator, hence, automatically hides the invalid choices
from the user. The hidden choices will still be visible to the user, but with
a tag that they are inconsistent with the current PA. When the current PA is
extended by the user, some of the choices might be implied for consistency. Such
choices are automatically selected by the configurator and they are called implied
choices. Let us assume that the SOL of a CP can be obtained. Given SOL, the three
functionalities required for interactive configuration are: Display, Propagate, and
Explain.

Display is the function, which given a CSP and a corresponding SOL’, SOL’
⊆ SOL, lists X, the options in CSP and CDi, the available valid choices, for
each option xi ∈ X, where CDi = {v|(xi, v) ∈ S, S ∈ SOL’}. CDi is the cur-
rent valid domain for the variable xi. Propagate is the function, which given
a CSP, a corresponding SOL’, and (xi, v), where v ∈ CDi, restricts SOL’ to
{S|(xi, v) ∈ S, S ∈ SOL’}. Propagate could also be written as restricting SOL’ to
SOL’|(xi,v). Sometimes the restriction might involve a set of assignments, which
is equivalent to making each assignment in the set one by one. Let (xih, vih)
be an implied or hidden choice. Explain(xih, vih) is the process of generating,
E, a set of one or more selections made by the user, which implies or hides
(xih, vih). The E is called an explanation for (xih, vih). An explanation facility
is required when the user wants to know why a choice is implied or hidden.
Let PA be the current partial assignment that has been made by the user. By
the definition of explanation, Display(CSP, SOL|PA\E) will list vih as a choice for
the unselected option xih. Each selection, (xi, v), made by the user could be
attached a non-negative value as its priority, P (xi, v), and the explain function
can be required to find a minimum explanation. The cost of an explanation is
Cost(E) =

∑
(xi,v)∈E P (xi, v). An explanation E is minimum, if there does not

exist an explanation E’ for (xih, vih), such that Cost(E’)<Cost(E). Minimum
explanations are useful when different options in a product model have different
priorities. For example, in a car configuration problem the main options like
engine could be given high priority. Once the user decides on an option of high
priority, minimum explanations will try to protect the high priority decision as
much as possible.
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InteractiveConfigurator(CP)
1 SOL:=Compile(CP)
2 SOL’:=SOL, PA:={ }
3 while |SOL’| > 1
4 Display(CP, SOL’)
5 (xi,v) := ’User input choice’
6 if (xi,v)∈ CDi

7 SOL’:=Propagate(CP,SOL’,(xi,v))
8 PA:=PA∪{(xi,v)}
9 else
10 E:=Explain(CP, SOL’, (xi,v))
11 if ’User prefers (xi,v)’
12 PA:=(PA\ E)∪{(xi,v)}
13 SOL’:=SOL|PA
14 return PA

Fig. 2. The Interactive Configurator
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Fig. 3. BDD for SOL of the T-shirt

The algorithm for interactive configuration is given in Fig. 2. The Compile
function will return a BDD encoding all the valid solutions for the input CP.
Since a CP will not change quite often, the Compile function need not have to
do the entire compilation everytime the interactive configurator is used.

A BDD [1] is a rooted directed acyclic graph with two terminal nodes marked
1 and 0, respectively. All the non-terminal nodes will be associated with a
Boolean variable. Each non-terminal node will have two outgoing edges: low
and high. The nodes in a BDD will be ordered based on a linear variable order.
BDDs can be used to represent Boolean functions. A BDD for a given func-
tion can be obtained by standard composition functions on BDDs representing
atomic elements of the function. Given an assignment to the variables in the
function, there exists a unique path from the root node to one of the terminal
nodes, defined by recursively following the high edge, when the associated vari-
able is assigned true, and the low edge, when the associated variable is assigned
false. If the path leads to the 1-terminal, then the assignment is a solution,
otherwise not. Although the size of a BDD can be exponential in the worst
case, the BDDs are small for many practical functions. Due to this BDDs have
been successfully used in several research areas, including: verification, CSP, and
planning. The size of the BDDs are very sensitive to the used variable ordering.
Further details on BDDs can be obtained from [1]. When solution space of a
non-Boolean function needs to be represented by a BDD, each variable xi with
domain Di will be represented by li Boolean variables, where li = !lg |Di|". Each
value of xi will be represented by an unique combination of Boolean values for
the corresponding Boolean variables. A BDD corresponding to any constraint
can be obtained by the composition function on BDDs representing the atomic
elements of the constraint. In case of CSP, the conjunction of the constraints
represent SOL, and hence the conjunction function when applied to the BDDs
obtained for all the constraints in the CSP will give a monolithic-BDD, represent-
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ing the SOL. As li Boolean variables could represent 2li values, in cases where
|Di| < 2li , additional rules need to be added to maintain domain integrity. The
BDD representing the solution space of the T-shirt example is shown in Fig. 3.
In the example there are three variables: color (x1), size (x2), and print (x3). As
explained, each variable is represented by a list of Boolean variables. For exam-
ple, the variable x2 is represented by the Boolean variables (x1

2, x
0
2). In the BDD

any path from the root node to the terminal node 1, corresponds to one or more
valid configurations. For example, the path from the root node to the terminal
node 1, with all the variables taking low values represents the valid configuration
(black , small ,MIB). Another path with x1

1, x
0
1, and x1

2 taking low values, and x0
2

taking high value represents two valid configurations: (black ,medium,MIB) and
(black ,medium,STW ), respectively. In this path the variable x0

3 is a don’t care
variable, and hence leads to two valid configurations. Any path from the root
node to the terminal node 0 corresponds to one or more invalid configurations.

Let b be a BDD. V ar(b) denotes the set of variables in b. The notation b
might also denote the function represented by b. The three operations required
for interactive configuration – display, propagate, and explain – are implemented
using the following BDD-operations:

1. Restrict(b,xi=v): Restrict will return a function obtained by substituting
each occurence of xi in b by v. The complexity of restrict is linear in the size
of the given BDD. A non-Boolean variable restriction is done by a sequence of
restrictions on the Boolean variables that encode the non-Boolean variable.

2. Exist(b,xi): Exist(b,xi)=Restrict(b,xi=0)∨ Restrict(b,xi=1). The exist func-
tion will existentially quantify xi from b. The complexity of exist is quadratic.
Usually existential quantifications result in a smaller BDD. When a non-
Boolean variable or a set of them is given as second argument, all the corre-
sponding Boolean variables will be existentially quantified out.

3. Conjoin(b1,b2): Conjoin operation will give the result of AND-operation be-
tween b1 and b2.

4. Proj(b1,b2): Proj(b1,b2)=Exist(Conjoin(b1,b2),Var(b2)\Var(b1)).
5. (b1=b2): Equality testing of BDDs could be done in constant time.

Display is implemented by a polynomial algorithm [2] that traverses the paths
from the root to the 1-terminal. Propagate is implemented by restrictions. In
Section 5, algorithms for minimum explanations will be presented.

3 Tree Decomposition for CSP Compilation

The constraint graph (V ,E) of a given CSP will contain a node for each constraint
in the CSP and an edge between two nodes if their corresponding constraints
share at least one variable in their scopes. Each edge will be labelled by the
variables that are shared by the scope of the corresponding constraints. A subset
of the edges, (E′ ⊆ E), in a constraint graph is said to satisfy the connectedness
property, if for any variable v shared by two constraints, there exists a path
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between the corresponding nodes in the constraint graph, using only the edges
in E′ with v in their labels. A join graph of a constraint graph contains all the
nodes in the constraint graph, but the set of edges in the join graph is a subset
of the edges in the constraint graph such that the connectedness property is
satisfied. If the join graph does not have any cycles, then it is called a join tree.
Given a constraint graph of a CSP, it has a join tree if its maximum spanning
tree, when the edges are weighted by the number of shared variables, satisfies
the connectedness property [8]. A CSP with a join tree is called an acyclic CSP.
Several tree decomposition techniques [8, 3] convert any CSP into an acyclic one:
CSP’. All the tree decomposition techniques create clusters of constraints in a
CSP, such that all the constraints in the CSP will be in at least one of the clusters.
In the CSP’, the conjunction of the original constraints in each of the clusters will
be a constraint. A solution for CSP or CSP’ will also be a solution for the other. A
constraint of a CSP is said to be minimal when all the solutions of the constraint
can be extended to a solution for the CSP. Acyclic CSPs can be efficiently solved.
The nice property of an acyclic CSP is that, mutual projections (arc-consistency)
between constraints adjacent in its join tree, makes all the constraints minimal.
Minimality of constraints is enough to obtain the efficient functions required for
interactive configuration. Since each constraint is minimal, a valid choice for a
variable in a constraint will also be a valid choice for the variable in the entire
CSP, and the display function will use this. Given an assignment, the propagate
function just needs to restrict all the constraints in which the variable is present,
and propagate the effect to other constraints through projections. Hence, instead
of compiling the conjunction of all the constraints in a CSP into a monolithic-
BDD, the tree decomposition based compilation scheme just requires a BDD for
each constraint in the corresponding CSP’. We call the BDDs representing the
constraints of CSP’ as the tree-of-BDDs.

Since the configuration specifications have a hierarchical description, they
might be amenable for CSP decomposition techniques. As the sum of sizes of the
BDDs in a tree-of-BDDs is potentially smaller than the size of the corresponding
monolithic BDD, decomposition schemes might lead to significant space savings
in CSP compilations.

4 Configuration Functions on Tree-of-BDDs

Given a CP, we obtain an equivalent acyclic CP’ using the hinge decomposition
algorithm [3]. Then, we compile each constraint in CP’ into a BDD. The re-
sulting set of BDDs form the tree-of-BDDs. The tree-of-BDDs is made minimal
by imposing arc-consistency. Due to acyclicity of the CP’, this could be done
efficiently. The data-structures used for implementing the display and propagate
functions, DisplayDe and PropagateDe, on a tree-of-BDDs are:

1. TreeNodes(TN): A list of nodes (BDDs) in the join tree.
2. TreeNodeVars(TV): A list of sets of variables. One set for the variables that

occur in each node of TN.
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PropagateDe(AL, V NL, (xi,v))
MQ.Clear()
∀N ∈ V NL[xi]

N :=Propagate(N ,(xi,v))
MQ.Push(N)

while MQ.NotEmpty()
CURR:=MQ.Pop()
∀N ∈ AL[CURR]

N ′:=Proj(N ,CURR)
if (N ′ �= N)

N :=N ′

MQ.Push(N)
return

Fig. 4. The PropagateDe

DisplayDe(TN , TV , R)
V D:={}
∀N ∈ TN

if (R[N ]=false)
V D:=V D ∪ Display(N)|TV [N ]

print V D
return

Fig. 5. The DisplayDe

3. AdjList (AL): A list of adjacency list for each node in TN. Adjacency list of
a node n is the list of nodes that are adjacent to n in the join tree.

4. VarNodeList(VNL): A list of list of nodes, where each list of nodes corre-
sponds to a variable, and stores the nodes in which the variable occurs.

5. ModifiedQueue(MQ): A queue to store the nodes whose BDDs were changed
due to a propagation. The queue is maintained, so that the changes are
propagated to the neighbours of the corresponding node.

6. ValidChoices(VC): A set of pairs. Each pair is made up of a variable xi and
its CDi consistent with a PA.

7. Redundant(R): A list of Boolean values, one for each node in TN. Since a
variable, xi, could be present in more than one node of the tree, the display
procedure on one among the nodes in which xi is present is enough to obtain
CDi. The values in R are such that calling the display function on the nodes
with R value set false is enough to obtain VC. The R is heuristically popu-
lated to maximize the number of nodes with R value set true. Experiments
showed that several nodes could be redundant.

The PropagateDe function, listed in Fig. 4, makes a tree-of-BDDs consistent with
an assignment (xi,v). Due to acyclicity of CP’, once a node is changed during an
assignment, it will not change again due to projections on it by its neighbours.
Hence, the propagation is one way, and the complexity of the function is poly-
nomial. The DisplayDe function, listed in Fig. 5, calls the Display function on
all non-redundant nodes in the tree-of-BDDs, and prints the valid choices. The
complexity of DisplayDe is also polynomial.

5 Algorithms for Minimum Explanations

Explanations have been of interest to both AI and CSP fields [9, 10, 11, 4]. In
this section we present two algorithms for minimum explanations: one each for
the monolithic-BDD and the tree-of-BDDs schemes.
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5.1 Minimum Explanations in the Monolithic-BDD Scheme

Let the Explain function be called with (xih,vih) as argument. Let b be the
BDD representing SOL. An explanation would correspond to a path from the
root node of the BDD b to the 1-terminal node. Such a path must contain the
assignment (xih,vih), and the path is said to violate an assignment (xi,v)∈PA,
if ψ �(xi,v), where ψ is the conjunction of the literals designating the path. A
minimum explanation would then correspond to such a path in which the sum
of the costs of the violated assignments in PA is minimum. A minimum cost path
could be obtained by using a variant of a shortest path algorithm for directed
acyclic graphs(DAG) [12].

For simplicity the cost for violating each user assignments is assumed to be
one. The general case is discussed later. We also assume that all the Boolean
variables representing a variable in a CSP are placed consequently in the variable
order of the BDDs. This is a meaningful assumption, as such Boolean variables
are highly related, and it is advisable to keep them together in the variable order
for minimizing the size of the BDDs. Let n be a node in the BDD b, Var(n) denote
the Boolean variable xk

i associated with the node, and CSPVar(n) denote the
CSP variable xi corresponding to Var(n). The CSPVar of terminal nodes will
be a null value. If the variable xk

i is assigned true (false) in PA, then the high
edge of node n will have a cost one (zero), and the low edge cost zero (one).
If xk

i is unassigned in PA, then both of its outgoing edges will have cost zero.
Given a path from the root node to the 1-terminal node, the cost for violating
a variable xi needs to be counted only once. But, when two Boolean variables
corresponding to xi differs from the corresponding values assigned in PA, then
the cost will be counted twice in a path. To prevent this, we use a flag, is added,
associated with each node in the BDD. Once a cost is added for violating a
variable xi, then is added flag of the subsequent nodes will be set to true, until
the path moves into a node belonging to a variable other than xi. As in the
classical shortest path algorithms, we also have two more values associated with
each node in the BDD: cost and parent.

Now, the problem resembles closely to the shortest path problem in a DAG.
Such an algorithm is presented in Fig. 6. The algorithm uses Relax, an algorithm
listed in Fig. 8. Given a node n, if either of the child nodes could be reached in
lesser cost through n, the values of the corresponding child node will be changed
by the relax procedure. The conjunction in line 9 of the Relax procedure is neces-
sary, because if the left.is added is set to false and both the costs are the same,
the current path to left could potentially be costlier than the path through the
corresponding n. AssignedVal (AV) is an array containing a value for all the
Boolean variables in the BDD b. The values in AV will be true (false) if the
corresponding variable is assigned true (false) in PA. Otherwise d, a don’t care
value. The TopologicalSort function returns a topologically sorted ordering of
the nodes in an input BDD. In a topologically sorted order, if a node a appears
before node b, then there will not be any path from b to a in the input BDD. The
Initialize function will assign an infinite cost to all the nodes in the BDD. For the
root node, it will assign a zero cost, a null parent, and set is added flag to false.
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Explain(b,PA,(xih,vih))
b := b|(xih,vih)

NQ := TopologicalSort(b)
Initialize(b)
while NQ.NotEmpty()

n := NQ.Pop()
Relax(n)

E := ’Explanation corresponding
to the path to 1-terminal’

return E

Fig. 6. The Explain

ExplainDe(PA, (xih,vih))
TN ′ := SOL|(xih,vih)

while (TN ′.size() �=1)
b1 := TN ′.Pop()
b2 := TN ′.Pop()
b12 := Conjoin(b1,b2)
QuantifyUnnecessaryVars(b12)
TN ′.Push(b12)

E := Explain(TN ′.Pop(),PA,(xih,vih))
return E

Fig. 7. Sketch of the ExplainDe

Relax(n)
1 if (n.is added=true ∨ AV [Var(n)]=d)
2 leftcost := 0, rightcost := 0
3 else if (AV [Var(n)]�= d ∧ AV [Var(n)]=true)
4 leftcost := 1, rightcost := 0
5 else
6 leftcost := 0, rightcost:=1
7 left:=LOWCHILD(n), right:=HIGHCHILD(n)
8 if ( (left.cost > n.cost+leftcost) ∨
9 (left.cost=n.cost+leftcost ∧ left.is added=false) )
10 left.cost := n.cost+leftcost
11 left.parent := n
12 if (leftcost=1 ∧ CSPVar(left)=CSPVar(n))
13 left.is added := true
14 else if (leftcost=0 ∧ CSPVar(left)=CSPVar(n))
15 left.is added := n.is added
16 else
17 left.is added := false
18 if ( (right.cost > n.cost+rightcost) ∨
19 (right.cost=n.cost+rightcost ∧ right.is added=false) )
20 right.cost:=n.cost+rightcost
21 right.parent := n
22 if (rightcost=1 ∧ CSPVar(right)=CSPVar(n))
23 right.is added := true
24 else if (rightcost=0 ∧ CSPVar(right)=CSPVar(n))
25 right.is added := n.is added
26 else
27 right.is added := false
28 return

Fig. 8. The Relax procedure used by the Explain algorithm

Since each node in a BDD has exactly two outgoing edges, the complexity of
topological sorting is linear in the BDD size. The relax procedure is also called
linear number of times. Hence, the complexity of the explanation algorithm is
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linear. In the general case, when the cost need not be one and may be any positive
value, then two paths might have to be remembered by each node. When the
relax procedue is called for a node, a path to one of its child nodes with is added
flag set to true may be costlier than another path with the flag set false. But
still, the cheaper path with flag set false could potentially violate the PA in the
consecutive nodes belonging to the same CSPVar. Until a CSPVar boundary is
crossed, or the difference between the cost of two such paths is larger than the
cost of the corresponding assignment, both the paths have to be remembered.
To handle this problem two paths, one with is added flag set false, and another
with is added set true, needs to be remembered. When the paths cross a CSPVar
boundary, only the best one among them will be selected. The algorithm would
still remain linear.

This algorithm was inspired by a similar algorithm discussed in [13]. However,
the problem in [13] was made easier by adding an additional Boolean variable
for each dynamic constraint added to a BDD. The additional variables will be
used as switches to turn on or off the corresponding dynamic constraints. The
additional variables will significantly increase the size of the BDD.

5.2 Minimum Explanations in the Tree-of-BDDs Scheme

Given a tree-of-BDDs representing SOL|(xih,vih), adjacent BDDs in the tree-of-
BDDs can be conjoined together until a single BDD is obtained, which can be
given as input to the Explain algorithm to obtain a minimum explanation. But
the problem with this approach is that the BDD obtained at the end will be as
large as the corresponding BDD in the monolithic case, and hence, we lose the
benefit of using decompositions for reducing space usage. But we know that:

1. In CPs, just assigning values for less than half of the variables, will imply
a value for the rest, and result in a CA. We have observed this during our
previous experiments [2].

2. When all the variables other than those in the var(PA) are existentially
quantified from the BDD representing SOL|(xih,vih), the Explain algorithm
will still be able to produce a minimum explanation. Hence, the unnecessary
variables (X\var(PA)) can be abstracted away.

Using the above listed facts, unnecessary variables could be abstracted away by
existential quantifications, as and when they appear in only one BDD of the
tree-of-BDDs. The sketch of the explanation procedure, ExplainDe, based on
this technique is listed in Fig. 7. For simplicity, the changes made to the other
datastructures, like TV and VNL, are not shown in the algorithm.

6 Methods for Full Interchangeability Detection

In this section, we present methods to detect full interchangeable (FI) values of
a CSP in both the monolithic-BDD and the tree-of-BDDs scheme. A value a for a
variable xi is fully interchangeable [14] with a value b if and only if every solution
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in which xi=a remains a solution when b is substituted for a and vice-versa. In
a monolithic-BDD representing SOL, two values of a variable xi are fully inter-
changeable, when all the paths from the root node of SOL to its 1-terminal node,
containing either one of the values, has a companion path containing the other
value. The later path shares the first path in nodes corresponding to all vari-
ables other than xi. Based on this observation, a polynomial procedure similar
to the Display function, which traverses all solution paths in a BDD can be used
to find FI values. But, we describe here a simpler algorithm using existential
quantifications.

Theorem 1. A value a for a variable xi is FI with a value b if and only if
Exist(SOL|(xi,a),xi)=Exist(SOL|(xi,b),xi) and vice-versa.

The proof of the above theorem is based on the definition of restrict function
and existential quantification. Given a variable xi with domain {a1, . . . , an}, the
BDDs corresponding to ∀n

k=1Exist(SOL|(xi,ak),xi) can be used to find FI value sets
of the variable xi. After that, the corresponding CSP could be reformulated by
choosing a representative value for each FI value sets. Such reformulations could
simplify the problem. Reformulations could be made transparent to the user by
appropriately changing the Display function. This method could be extended to
the tree-of-BDDs scheme as follows. A value a for a variable xi is neighbourhood
interchangeable (NI) [14] with a value b if and only if for every constraint on
xi, the values compatible with xi=a are exactly those compatible with xi=b. By
the definitions of FI and NI, NI⇒FI, while FI�NI.

Theorem 2. When all the constraints in a CSP are minimal, FI⇔NI

The proof of the above theorem is simple as any solution of a minimal constraint
can be extended to a solution for the entire CSP. In the tree-of-BDDs scheme the
minimality of a join tree is maintained. Hence, for a given variable xi, the NI
value sets can be deduced by using the algorithm, explained for finding FI value
sets in the monolithic-BDD scheme, on all the nodes in which xi is present. By
the above theorem, the obtained NI value sets are equivalent to the FI value sets.
An example illustrating the benefit of FI value sets detection and reformulation
is shown in Fig. 9. This example is taken from a PC configuration problem [15].
In this example, the variable GraphicsCardId has six values in its domain. But
after FI value sets detection and reformulation, the domain size reduces to two,
and hence just a single Boolean variable is enough to encode the variable. This
will reduce the size of the BDD. The extent of the space reduction depends on
the position of the variable in the BDD variable order and the structure of the
PC instance.

7 Experimental Results

Experiments are done by implementing the techniques presented so far, on top of
CLab [16], an open source interactive configurator based on the monolithic-BDD
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GraphicsCardId = {Asus, Diamond, Creative, ATIRage, Matrox, ATIBulk}
FI value sets for GraphicsCardId are {Asus, Diamond, Creative, Matrox}

and {ATIRage, ATIBulk}

Domain of GraphicsCardId in the reformulated model is {Asus, ATIRage}

Fig. 9. An example for FI value sets detection and reformulation

scheme. CLab does not have an explanation facility, and the linear minimum
explanation algorithm was implemented in it. The tree-of-BDDs scheme is im-
plemented as a tool called iCoDE (interactive Configurator with Decompositions
and Explanations). The iCoDE source code, which includes CLab with explana-
tions, is available at [17]. A Pentium Xeon machine with 4GB RAM and 1MB
L2 Cache is used in the experiments. The default variable ordering, the order in
which variables appear in the input file, is used. Four configuration instances are
used in the experiments: PC, Renault [4], psr-1-32-1 and psr-1-32-2. First two
of them are publicly available on the web [15]. PC instance is a personal com-
puter configuration problem. Renault instance is a car configuration problem,
and it was the only instance used in the experiments of [4]. Renault instance is
quite large, the input file size is around 23 Megabytes, and it has totally around
200,000 tuples in 113 constraints of it.The other two instances are power supply
restoration problems modelled as configuration problems. The characteristics of
the benchmarks are listed in Table 1.

∑ |Di| refers to the sum of the domain
size of the variables in the instance. Arity of a constraint is the size of its scope.
Max a refers to maximum arity of the constraints.

∑
ai refers to the sum of the

constraint arities.
The compilation details are listed in Table 2. CLab and iCoDE refer to

the monolithic-BDD and the tree-of-BDDs scheme, respectively. The column
”Hinge(sec)” refers to the time taken by the Hinge CSP Decomposition algo-
rithm. Cyclicity is the size of the maximum-sized cluster in the output of the
hinge decomposition. Lower cyclicity is preferable and higher cyclicity means
a large cluster size and it will require more space. As specified in [3], cyclic-
ity is an invariant for a given instance. Shuffling the constraints sequence in
an input instance will not change the cyclicity of the instance. The following
columns list the time taken for compilation in both the schemes. In the larger
instance, Renault, iCoDE takes only around 50% of the time taken by CLab.
The iCoDE timings could be considerably improved by making the BDDs cor-
responding to the original constraints arc-consistent, before building the BDDs
for each cluster in the join tree. In the present implementation, arc-consistency
is done only after the BDDs for each cluster is obtained. The compilation tim-
ings include the time taken for finding FI values. Reformulating the instances,
by removing FI values, resulted in decreasing the space requirement by around
10% in the instances. In case of iCoDE, the instance will be reformulated by
exploiting the fully interchangeable values. BDD-nodes for CLab, refers to the
number of nodes in the monolithic-BDD obtained after compilation. In case of
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Table 1. Configuration Benchmarks

Benchmark Variables
∑ |Di| Constraints Max a

∑
ai |SOL|

PC 45 383 36 16 107 1.19x106

Renault 99 402 113 10 588 2.84x1012

psr-1-32-1 110 258 222 9 913 1.72x1011

psr-1-32-2 110 296 222 9 913 1.76x1013

Table 2. Compilation Details

Benchmark Hinge Cyclicity |TN| Compile (sec) BDD-nodes Peak BDD-nodes
(sec) CLab iCoDE CLab iCoDE CLab iCoDE

PC 0.04 21 16 0.11 0.19 16494 4458 0.08M 0.04M

Renault 0.25 25 73 119 77 455796 17602 2.5M 0.08M

psr-1-32-1 2 74 114 0.46 4 56923 8917 0.6M 0.6M

psr-1-32-2 2 74 114 2 9 246775 22101 1.2M 1.2M

Table 3. Response and explanation time comparison

Benchmark ART(sec) WRT(sec) AET (sec) WET (sec)
CLab iCoDE CLab iCoDE CLab iCoDE CLab iCoDE

PC 0.004 0.0001 0.050 0.006 0.004 0.010 0.010 0.030

Renault 0.070 0.0003 0.452 0.020 0.160 0.088 0.440 0.921

psr-1-32-1 0.016 0.0010 0.057 0.038 0.031 1.208 0.067 2.155

psr-1-32-2 0.037 0.0002 0.618 0.107 0.122 5.38 0.329 10.78

iCoDE, BDD-nodes refers to the total number of nodes in the tree-of-BDDs. As
in any standard BDD package, there is a chance for two BDDs in the hinge tree
to share some BDD-nodes, and such shared nodes will be counted only once.
Hinge decomposition(iCoDE) for Renault instance results in 96% decrease in
the number of BDD-nodes required. Peak BDD-nodes refers to the number of
nodes used by CLab (iCoDE), to finish the compilation process. Even if the final
BDD is small, the intermediate BDDs required during the compilation process
may be very large, and hence the interest in Peak BDD-nodes. For the Renault
instance, iCoDE uses only 80,000 BDD-nodes to finish the compilation process,
which is 97% less than that used by CLab. Response and explanation times of
both the schemes are compared in Table 3. The values listed are obtained from
10,000 random interactions. Each response is the sum of the time taken for a
call to the Propagate function and a subsequent call to the Display function.
During the random interactions, the time taken for calls to Explain function was
also measured. ART and WRT refers to the average and worst response time,
respectively. AET and WET refers to the average and worst time taken for min-
imum explanations, respectively. In case of Renault instance, iCoDE results in
200X speedup for ART and 20X speedup for WRT. In explanation results for
Renault instance, even though the ExplainDe function is not linear like Explain,
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in average case it takes less time to generate an explanation. This is due to 96%
decrease in the BDD-nodes value. The WET by iCoDE is around twice the time
taken by CLab. We believe that WET of iCoDE could be improved well, as the
quantification scheduling of ExplainDe is naive. Several non-naive approaches
like [18], could be used to improve the WET for iCoDE. Efficient techniques for
building BDDs [19] could also be used to reduce the WET of iCoDE. Also, the
explanation function in CLab is a contribution of this work. Results on the last
two instances show the same phenomenon as the Renault.

8 Related Work

We are not aware of any work detecting FI values for problem reformulation.
In [20], a scheme without decomposition, and with NI detection, was presented.
An automaton-based scheme, similar to the monolithic-BDD scheme, without
decomposition was presented in [4]. In [5], a scheme combining tree cluster-
ing [8] and cartesian product representation was presented. That work did not
have minimum explanations. In [21], Tree-Driven Automata, a scheme combining
automata and tree decomposition, was presented without experimental results.
It did not focus on the required functionalities, like explanations.

9 Conclusion

A decomposition scheme, tree-of-BDDs, for compiling models for interactive con-
figurators was presented. The decomposition scheme results in a drastic reduc-
tion in space required for storing the compiled solutions. A linear algorithm
for minimum explanations in the monolithic-BDD scheme was given. Using ab-
stractions, the explanation algorithm was extended to work in the tree-of-BDDs
scheme. Procedures for exploiting full interchangeable values was given. All the
techniques presented here were experimentally evaluated as useful. Altogether,
we believe that this work improves the state-of-the-art in configurators and CSP
compilation techniques.

Future work include: precise complexity analysis of the techniques presented
here, experiments on BDD variable orderings, hybrid representations instead of
just BDDs, using multi-valued decision diagrams instead of BDDs [22], efficient
quantification scheduling for explanations in the tree-of-BDDs scheme, and com-
paring other tree decomposition techniques with hinge decomposition technique.
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Abstract. Creating good integer programming formulations had, as a
basic axiom, the rule “Find formulations with tighter linear relaxations”.
This rule, while useful when using unsophisticated branch-and-bound
codes,is insufficient when using state-of-the-art codes that understand
and embed many of the obvious formulation improvements. As these
optimization codes become more sophisticated it is important to have
finer control over their operation. Modelers need to be even more cre-
ative in reformulating their integer programs in order to improve on the
automatic reformulations of the optimization codes.

1 Introduction

Integer programming has shown itself to be an effective mechanism for solving
a wide variety of difficult combinatorial optimization problems of practical in-
terest. While no technique can solve every instance of such problems quickly,
integer programming has been robust and effective enough to play a key role
in solving problems in applications such as airline crew scheduling, combinato-
rial auction winner determination, telecommunications network design, sports
scheduling and many other applications.

Despite the practical success of integer programming, initial forays into this
area are often full of frustration: seemingly obvious formulations “don’t work”,
leading to excessive computation time for even small instances. Success with
integer programmming seems to be a hit-or-miss proposition, with more misses
than hits.

In this note, I examine two problems of practical interest: a transportation
design problem and a sports scheduling problem. We will show that key to the
successful application of integer programming to these problems is the choice of
formulation. In both cases, initial formulations lead to intractible instances, while
“good” formulations can be solved very quickly with modern software. However,
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the “good” formulations have to be very creative, since modern software embeds
most of the obvious formulation improvements.

The general issue of formulations in integer programming has been little stud-
ied. Textbooks generally provide lots of examples in the hope that readers will
be able to find generalizations. One exception is the book by Williams [6], which
does concentrate on formulations and provides some broad perspective on in-
teger programming formulations. Otherwise the integer programming literature
contains a vast number of formulations, many with computational experience,
with few generalizations on what leads to a successful formulation. The few gen-
eralizations we have are so well understood that they are included in modern
software (as we will see) to the extent that model formulations do not need to
include the “improvements”: the software will generate them itself.

So, integer programming formulations often “don’t work”, taking excessive
time to find and prove optimal solutions, but modern software already includes
some of the obvious improvements. What is a modeler to do?

By closely examining these two cases, I believe that there are general things
to be learned. First, I think the integer programming paradigm where models are
given by the variables, objective, and linear constraints can be greatly enhanced
by learning from the constraint programming field whereby models are often
given by higher-level constructs. As we will see, within integer programming,
there is a huge difference between the linear constraint

4x1 + 10x2 + 7x3 + 5x4 + 8x5 ≤ 17

and what might be denoted the “knapsack” constraint

knapsack([4, 10, 7, 5, 8], x, 17)

with all the implications that come from our understanding of knapsack con-
straints. Constraint programmers understand this difference, while integer pro-
grammers tend to muddy up the distinction (or leave it to software to handle).

Second, there is still room to provide better formulations to software in the
standard integer programming sense: formulations with better relaxations. It
must be understood, however, that software is already pretty good at “tighten-
ing” formulations, so the modeler has to be quite creative to get beyond what the
software can do. This leads to the interesting question of what can be embedded
in software: in the race between modelers and software, will there always be a
role for modelers or will software be able to include everything a modeler can
think of?

Third, one area where modelers have a advantage is in the creation of prob-
lems with a huge number of constraints or variables. Such formulations can be
very powerful, but are difficult for integer programming codes to generate since
they involve the concept of a cut (or variable) generation algorithm, rather than
generating the cuts or variables themselves. Given the power of such formula-
tions, is there any mechanism for automatically generating these models, or will
human modelers always be required to provide guidance here?
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2 Example 1: Transportation Design

My first example is a transportation design problem that came from a consulting
project I did a year or two ago. The company sends packages between pairs of
cities. The amount it sends is high volume (multiple trucks per day), so its
trucks go simply between pairs (there are no complicated routing issues) in one-
way trips. For a pair of cities (A,B), the company has a set of packages to be
sent from A to B. Each package has a size, a time for which is available to
load at A, and a time for which it is needed at B. Trucking firms have provided
the company with a set of truck choices. Each “choice” consists of a truck of a
particular size, leaving A at a particular time, and arriving at B at a particular
time. Each choice has a cost. The goal of the company is to choose a set of trucks
that can hold all of the packages and gets them to B on time. A package cannot
be split among multiple trucks.

Naturally the real problem is more complex, with more cities, complicated
routing, multiple capacity constraints, splittable packages, and other aspects,
but this simplified model has most of the critical features.

The natural integer programming formulation for this has a set of binary
(0-1) variables for the decision on whether to use a particular truck (indexed
by i) and a binary variable for whether package j goes onto truck i. We handle
the timing issues by an array can use(i,j) which is 1 if truck i can handle
package j (that is, j is available at A before i departs, and i arrives at B before
j is required there). This results in the formulation in Figure 1 (written in the
language Mosel [7]).

Don’t worry if you are not familiar with Mosel: this is a straightforward in-
teger programming formulation. Constraints (1) ensure that the total size of
the packages assigned to a truck is no more than the capacity of the truck.
Constraints (2) ensure that x(j,i) is 0 whenever y(i) is (NUM PACKAGE is the
number of packages in the instance). While (2) might look to be a strange for-
mulation of the constraint, this is a “standard” integer programming approach
to handling this requirement. Constraints (3) for every package to go on some
truck. (4) and (5) enforce the integrality restrictions.

I will illustrate the effect of various formulations with a single 10 truck, 20
package instance (the real examples are at least an order of magnitude larger).
The formulation above with this instance solved with XPRESS-MP [7] (Opti-
mizer version 15.20.05) results in 11.2 seconds of computation time (3Gz, In-
tel/Windows machine, 2Gb memory, default settings), with 31,825 nodes in the
branch-and-bound tree. This time is not extreme, but it is much larger than we
would want with such a small instance.

Now, it is a fundamental tenet of integer programming that the key to a
successful formulation is a “tight” linear relaxation. The linear relaxation of the
above model replaces (4) and (5) with

forall (i in TRUCKS)
y(i) <= 1 ! (4’)

forall (i in TRUCKS, j in PACKAGES)
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model "Transportation Planning"

uses "mmxprs"

declarations

TRUCKS = 1..10

PACKAGES = 1..20

capacity: array(TRUCKS) of real

size: array(PACKAGES) of real

cost: array(TRUCKS) of real

can_use: array(PACKAGES,TRUCKS) of real

x: array(PACKAGES,TRUCKS) of mpvar

y: array(TRUCKS) of mpvar

end-declarations

capacity:= [100,200,100,200,100,200,100,200,100,200]

size := [17,21,54,45,87,34,23,45,12,43,

54,39,31,26,75,48,16,32,45,55]

cost := [1,1.8,1,1.8,1,1.8,1,1.8,1,1.8]

can_use:=[1,1,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,0,0, 1,1,1,1,1,1,1,0,0,0,

0,1,1,1,1,0,0,0,0,0, 0,1,1,1,1,1,1,0,0,0,

0,0,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,0,0,

0,0,1,1,1,1,0,0,0,0, 0,0,0,1,1,1,1,1,1,0,

0,0,0,1,1,1,1,0,0,0, 0,0,0,1,1,1,0,0,0,0,

0,0,0,0,1,1,1,1,1,0, 0,0,0,0,1,1,1,1,0,0,

0,0,0,0,1,1,1,1,1,1, 0,0,0,0,0,1,1,1,1,1,

0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,1,1,1,1,

0,0,0,0,0,0,0,1,1,1, 0,0,0,0,0,0,0,0,1,1]

Total := sum(i in TRUCKS) cost(i)*y(i)

forall(i in TRUCKS)

sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)

! (1) Packages fit

forall (i in TRUCKS)

sum (j in PACKAGES) x(j,i) <= NUM_PACKAGE*y(i)

! (2) use only

! paid for trucks
forall (j in PACKAGES)

sum(i in TRUCKS) can_use(j,i)*x(j,i) = 1

! (3) every

! package on truck

forall (i in TRUCKS)

y(i) is_binary ! (4) no partial trucks

forall (i in TRUCKS, j in PACKAGES)

x(j,i) is_binary !(5) no package splitting

minimize(Total)

end-model

Fig. 1. Transportation formulation
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x(j,i) <= 1 ! (5’)

(Note that nonnegativity of the variables is assumed). This results in a linear
program (the x and y variables can take on fractional values). A formulation
with linear relaxation F1 is tighter than another with relaxation F2 if every
fractional feasible solution to F1 is also a fractional feasible solution to F2 and
the reverse is not true. Note that tightness is a property of the linear relaxation
of a formulation.

Every integer programmer will look at the formulation given and immedi-
ately identify improvements. The main issue is in the constraints (2). These are
well-known “weak” constraints. For example, it is straightforward to see that a
package can be assigned to a truck whose corresponding y value is as small as

1
NUM PACKAGE . We can “cut off” this sort of solution by replacing (2) with the
constraints

forall (i in TRUCKS, j in PACKAGES) x(j,i) <= y(i)
!(2’) tighter formulation

Now, if x(j,i) = 1 for a particular i,j then the corresponding y(i) must
also be 1. The addition of these constraints leads to a tighter formulation. Note
that the new formulation is quite a bit larger: instead of one constraint for every
truck, we have a constraint for every (truck,package) pair. While this makes it
slower to solve the linear program at each node of the branch-and-bound tree,
the resulting decrease in size of the tree far outways this.

Further improvements can be had by replacing

forall(i in TRUCKS)
sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)

! (1) Packages fit

with

forall(i in TRUCKS)
sum(j in PACKAGES) size(j)*x(j,i) <= capacity(i)*y(i)

! (1’) Packages fit

Again, depending on the exact coefficients, this can lead to a tighter formu-
lation.

At this point, integer programmers step back, look self-satisfied, and move
on to other problems.

Unfortunately, when put into XPRESS-MP (other sophisticated codes will
work similarly), the results are not what was expected. The time for our instance
goes up, doubling to 22.1 seconds with 50,631 nodes in the branch-and-bound
tree.

What has happened? The primary point is that the relaxation solved by
XPRESS-MP or any other top-quality code is not the same as the naive relax-
ation. The code already has the ability to identify “obvious” tightenings. In the
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case of constraints (2), there is a technique during preprocessing that sets each
binary variable to 1 and determines any variable fixing that might occur (ex-
actly as would happen with constraint propagation in constraint programming).
If variable y must be 1 once x is 1, then the constraint y ≥ x can be added. This
will generate constraints (2’) from (2) automatically. From a modeler’s point of
view, there is no need to add (2’): that “trick” is already known to the software.

Now, if the code is unsophisticated, it is important to add tightenings such
as 2’. Turning off preprocessing and cut generation from XPRESS-MP leads to
a formulation and solution code that takes 1851 seconds and 2.4 million nodes
with 2’. Without 2’, after the same 1851 seconds, branch-and-bound has taken
5 million nodes (since the linear program is smaller) but still has a duality gap
with a lower bound of 1.22 and an upper bound (feasible solution) of 8.4 (8.2 is
optimal). Time to optimality is measured in days.

Why does adding 2’ to the sophisticated code actually slow things down for
this instance? Only some of the 2’ constraints are relevant, while the others sim-
ply make the instance larger. XPRESS-MP is able to generate only the relevant
constraints by including only those that are violated by the linear relaxation.
This leads to smaller, equally tight, formulations. Such formulations solve quicker
than the larger formulation.

This interaction of formulation with solution code is shown even stronger
with the addition of the constraint:

sum(i in TRUCKS)
capacity(i)*y(i) >= sum (j in PACKAGES)size(j)

! (6) Have sufficient capacity

This constraint says simply: the total capacity of the trucks chosen must be
sufficient to handle the total size of the packages to be transported.

This constraint does not tighten the linear relaxation: it is a linear combina-
tion of previous constraints, so it cannot improve the relaxation. Standard IP
formulation approaches would therefore not include the constraint.

Aardal [1] noted the surprising result that if you include this redundant
constraint into the formulation, sophisticated codes solve instances much faster
(they worked on a closely related location problem, where the timing aspects of
the packages do not come into play).

For our instance, solution is instantaneous, and no branching is done: the
problem is solved at the initial relaxation. How can adding a constraint that
does not improve the relaxation affect the solution process to such an extreme
extent?

Again, the key is that XPRESS-MP (or any other sophisticated code) does
not solve the naive relaxation. In this case, the constraint (6) is recognized
as a specially structured constraint, called a knapsack constraint. A tremen-
dous amount is known about knapsack constraints (they form the basis for the
ground-breaking work of Crowder, Johnson and Padberg [3] who used an under-
standing of knapsack constraints to solve general integer programs, a fundamen-
tal breakthrough in computational integer programming), and that knowledge
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is embedded in current codes. In particular, a set of constraints called cover
inequalities are known to provide a much tighter formulation than just the lin-
ear knapsack constraint alone. The constraints are added “automatically” by
XPRESS-MP, resulting in an extremely tight formulation that is solved without
branching.

This is an example of an interaction between the human modeler and the soft-
ware. The modeler is needed to identify the knapsack inequality (at least current
software does not automatically identify the redundant knapsack) but then the
software is able to bring in all of its knowledge about knapsack constraints.

This development is not surprising (I believe) for constraint programmers. In
constraint programming, it is common to add redundant constraints in order to
improve propagation. In integer programming, however, it is unusual to add a
constraint that doesn’t improve the linear relaxation in order to take advantage
of the automatic cut generation available in the software.

This would be more obvious to integer programmers if the solution codes
offered more flexibility in the handling of cover and other inequalities. Currently,
for every code I am aware of, you can do no more than set a level of aggressiveness
in searching for cover inequalities (0=no inequalities, 1=1 round of search, etc.).
It is not possible to identify some constraints as good prospects for finding
cover constraints and others as poor areas. If integer programming codes were
like constraint programming codes, then it would be possible to write (6) as
something like

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with STRONGCUTS

or

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with FASTCUTS

or

knapsack(capacity,y,’>’,sum(j in PACKAGES) size(j))
with NOCUTS

where the ’>’ denotes a “≥” knapsack and STRONGCUTS, FASTCUTS, and
NOCUTS tell the optimizer which cut generation routine to us. This will guide
software in the amount of cuts to generate for this particular constraint, rather
than the current approach of setting the generation for all constraints at once.

To review for this problem, a naive software implementation of branch-and-
bound for a simple formulation doesn’t work: solutions take hours or days. Tight-
ening the formulation in the traditional sense only works for simple codes: sophis-
ticated codes already include standard tightening. The best formulation requires
understanding the capabilities of the software and adding a seemingly irrelevant
constraint.
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3 Example 2: Sports Scheduling

For our second problem, I will discuss some experiments on the Traveling Tour-
nament Problem. The Traveling Tournament Problem (TTP), introduced by
Easton, Nemhauser, and Trick [4], is a simplification of a sports scheduling
problem that arose in the scheduling of Major League Baseball (MLB). The
requirements for MLB take many pages to describe, but the key aspects of a
“good” MLB schedule is flow (the number of consecutive home or away series
a team plays) and distance traveled (how far teams must fly in the schedule).
Additional “real world” constraints include stadium availability, the scheduling
of key rivals, holiday requirements and much more. The TTP ignores most of
these requirements and concentrates on flow and distance.

Given n teams with n even, a double round robin tournament is a set of games
in which every team plays every other team exactly once at home and once away.
A game is specified by an ordered pair of opponents. Exactly 2(n − 1) slots or
time periods are required to play a double round robin tournament. Distances
between team sites are given by an n by n distance matrix D. Each team begins
at its home site and travels to play its games at the chosen venues. Each team
then returns (if necessary) to its home base at the end of the schedule.

Consecutive away games for a team constitute a road trip; consecutive home
games are a home stand. The length of a road trip or home stand is the number
of opponents played (not the travel distance).

The Traveling Tournament Problem is defined as:

Input: n, the number of teams; D an n by n integer distance matrix; L, U
integer parameters.

Output: A double round robin tournament on the n teams such that

– The length of every home stand and road trip is between L and U inclusive,
and

– The total distance traveled by the teams is minimized.

The parameters L and U define the trade off between distance and pattern
considerations. For L = 1 and U = n− 1, a team may take a trip equivalent to
a traveling salesman tour. For small U , teams must return home often, so the
distance traveled will increase. In this paper, we will concentrate on L = 1 and
U = 3, which corresponds with the MLB ideal.

In addition, a “no-repeaters” constraint can be added: if team A plays at
team B in slot t, then B does not play at A in slot t + 1.

Instances of the TTP seem very difficult, even for relatively small n. For
n = 4, optimal solutions are relatively easy to find, but even n = 6 is nontrivial.
The largest instances solved to optimality are at n = 8 (in contrast, MLB has
two leagues: one with n = 14 and one with n = 16).

Many researchers have worked on heuristics for this problem, but there has
been relatively little work on complete (or provably optimal) approaches.

The most direct formulation for this problem as an integer program defines a
variable plays(i,j,t) which equals 1 if team i plays at team j in slot t. In this
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way, we can ensure a double-round robin structure with constraints like (where
TEAMS is defined to be the range 1 . . . n and SLOTS is 1 . . . 2n− 2:

forall (i in TEAMS, t in SLOTS)
plays(i,i,t) = 0 ! (1) no team plays itself

forall (i in TEAMS, t in SLOTS)
sum(j in TEAMS) (plays(i,j,t)+plays(j,i,t)) = 1

! (2) team i plays one team in each slot

forall (i,j in TEAMS | i <> j)
sum (t in SLOTS) plays(i,j,t) = 1

! (3) team i plays at team j exactly once

Handling the “no more than 3 home or away in a row” can be handled with
constraints like

forall (i in TEAMS, t in 1..2*n-5)
1 <= sum(j in TEAMS) (plays(i,j,t)+plays(i,j,t+1)+

plays(i,j,t+2)+plays(i,j,t+3)) <= 3
! (4) no more than 3 away in a row

These variables are not sufficient for the objective function, however. To get
the distance traveled, additional variables are needed. Define location(i,j,t)
to be 1 if team i is in location j in slot t (so location(i,i,t)=1 implies i is home
in slot t. Define follows(i,i1,i2,t) to be 1 if team i travels from location i1
to location i2 between slots t and t + 1. Then the following constraints links all
the variables together:

forall (i,j in TEAMS, t in SLOTS)
if (i=j) then
location(i,i,t) = sum(k in TEAMS) plays(k,i,t)

else
location(i,j,t) = plays(i,j,t)

end-if
! (5) define location in terms of plays

forall (i in TEAMS)
forall (j1,j2 in TEAMS, t in 1..2*n-3)
follows(i,j1,j2,t) >=

location(i,j1,t)+location(i,j2,t+1) - 1
! (6) define follows in terms of location

Now the total distance traveled is

Total := sum(i,j,k in TEAMS, t in 1..2*n-3) DIST(j,k)*follows
(i,j,k,t)+

sum(i,j in TEAMS) DIST(i,j)*location(i,j,1)+
sum(i,j in TEAMS) DIST(j,i)*location(i,j,9)

! (7) Distance traveled
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The “no-repeaters” requirement is

forall (i,j in TEAMS, t in 1..2*n-3)
plays(i,j,t)+plays(j,i,t)+

plays(i,j,t+1)+plays(j,i,t+1) <= 1
! (8) no repeaters

This gives a complete formulation for the TTP. Unfortunately, putting this
formulation into XPRESS-MP gives very poor result, even for n = 6. The initial
relaxation value for that instance (letting XPRESS-MP be aggressive in adding
initial cuts) is only 2186, while the optimal value is 23,916. After 1800 seconds,
the lower bound has improved to only 5434 , while the best feasible solution
found is 25650 . Again, running to optimal takes days.

To improve this formulation, it might be possible to add constraints to give
a better linear relaxation. For instance, since the assignment for every week
corresponds to a matching problem, Trick [5] suggests adding the “odd-set”
constraints for each week.

An alternative (and better) approach is to reformulate by redefining the vari-
ables. The formulation given seems quite complicated because multiple types of
variables are needed to correctly model the “distance traveled” aspects. Instead
of using plays(i,j,t) as a fundamental variable, we can formulate this prob-
lem using variables corresponding to each road trip and home stand. Define
trips1(i,i1,t) to be 1 if team i makes a trip to team i1 in slot t, and then
returns home. Let trips2(i,i1,i2,t) be 1 if team i makes a trip to i1 in slot t
then on to team i2 in slot t+1 and then returns home. trips3(i,i1,i2,i3,t)
is the corresponding variable for length-3 trips: first to i1, then i2, then i3 be-
fore returning home. Similarly, home1(i,t) corresponds to a length-1 homestand
in slot t; home2(i,t) a length-2 homestand in t and t + 1; and home3(i,t) a
length-3 homestand beginning at t.

Each road-trip variable has a cost, corresponding to the distance traveled.
This gives an objective function of

Total := sum(i,i1 in TEAMS,t in SLOTS) cost1(i,i1,t)*trips1(i,i1,t)+

sum(i,i1,i2 in TEAMS, t in SLOTS) cost2(i,i1,i2,t)*trips2(i,i1,i2,t)+

sum(i,i1,i2,i3 in TEAMS, t in SLOTS) cost3(i,i1,i2,i3,t)*trips3

(i,i1,i2,i3,t)

For constraints, we still have constraints that require each team to play at
most one game in each slot. This looks like the following (the constraint for slots
1 and 2 is slightly different, based on which trips are feasible for the slot):

forall (i in TEAMS, t in 3..10)

sum(i1 in TEAMS) trips1(i,i1,t) +

sum (i1,i2 in TEAMS) (trips2(i,i1,i2,t)+trips2(i,i1,i2,t-1)) +

sum (i1,i2,i3 in TEAMS) (trips3(i,i1,i2,i3,t)+trips3(i,i1,i2,i3,t-1)+

trips3(i,i1,i2,i3,t-2)) +

home1(i,t) +

home2(i,t)+home2(i,t-1) +

home3(i,t)+home3(i,t-1)+home3(i,t-2) = 1
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H H
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@ATL @PHI

Slot t Slot t+1

≤ 1

Fig. 2. Constraint: One Game per Slot

This is illustrated in Figure 2.
There are also constraints that either i is away in slot t or some team is away

and playing i in that slot (the subscripts get a little messy):

forall (i in TEAMS, t in 3..10)

sum(i1 in TEAMS) trips1(i,i1,t) +

sum (i1,i2 in TEAMS) (trips2(i,i1,i2,t)+trips2(i,i1,i2,t-1)) +

sum (i1,i2,i3 in TEAMS) (trips3(i,i1,i2,i3,t)+trips3(i,i1,i2,i3,t-1)+

trips3(i,i1,i2,i3,t-2)) +

sum(i1 in TEAMS) trips1(i1,i,t)+

sum(i1,i2 in TEAMS) trips2(i1,i2,i,t-1)+

sum(i1,i2 in TEAMS) trips2(i1,i,i2,t)+

sum(i1,i2,i3 in TEAMS) trips3(i1,i2,i3,i,t-2) +

sum(i1,i2,i3 in TEAMS) trips3(i1,i2,i,i3,t-1) +

sum(i1,i2,i3 in TEAMS) trips3 (i1,i,i2,i3,t)= 1

It is also necessary to ensure that no away trip for team i is followed imme-
diately by another away trip:

forall (i,i1 in TEAMS, t in 3..2*n-3)

trips1(i,i1,t)+trips1(i1,i,t)+

trips1(i,i1,t+1)+trips1(i1,i,t+1)+

sum(i2 in TEAMS) (trips2(i,i2,i1,t-1)+trips2(i1,i2,i,t-1)) +

sum(i2 in TEAMS) (trips2(i,i1,i2,t+1)+trips2(i1,i,i2,t+1)) +

sum(i2,i3 in TEAMS) (trips3(i,i2,i3,i1,t-2)+trips3(i1,i2,i3,i,t-2)) +

sum(i2,i3 in TEAMS)(trips3(i,i1,i2,i3,t+1)+trips3(i1,i,i2,i3,t+1))<= 1

Figure 3 illustrates this constraint.

Additional constraints preclude a home-stand after a home-stand and re-
peaters.

This formulation is inspired by the “variable generation” formulations useful
in airline crew scheduling and many other applications (see Barhart et al. [2] for
a fine survey). By encapsulated complicated structure (in this case, the distance
traveled) in an expanded variable definition, we can create formulations with
tight relaxations. In this case, we do not have to resort to branch-and-price since
the number of variables is still relatively small (4400 for the n = 6 case).
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Fig. 3. Constraint: No away after away

The strength of this formulation is shown immediately by XPRESS-MP. The
initial relaxation value for n = 6 is 21624.7, an order of magnitude larger than
that of our initial formulation. In fact, we obtain the optimal solution for this
instance after “merely” 4136 seconds and 66,000 nodes in the tree.

Despite the improvement, the time required is still quite long, and does not
bode well for solving larger instances. There are some “obvious” strengthenings
available. For instance, for the “no away trip after away trip” constraint, it is
possible to add more variables to the constraint. This is illustrated in Figure 4.

@NYM @PHI

@ATL

@FLA @MON

@NYM

≤ 1

H H

H H H

Slot t Slot t+1

Fig. 4. Constraint: No away after away (strengthened)

This clearly is a strengthening, and resulted in significant improvement in
previous versions of XPRESS-MP. Putting this constraint in the current version
of XPRESS-MP, however, leads to another nasty surprise: the initial relaxation
value is identical, and the overall solution trajectory is a little worse (taking 15
seconds longer to find and prove an optimal solution).
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What has happened? Again, I have added a strengthening that the system
already knows about: the “strengthened” constraint is known as a “clique in-
equality” and is part of the XPRESS-MP repertoire. XPRESS-MP can generate
that strengthening on its own: my strengthening of the constraint did not help.
In fact, it slightly slowed the solution, for reasons that are unclear. If I want to
improve my formulation, I need to find constraints or other reformulations that
the sophisticated software package does not know about.

To summarize this example, again we have an initial formulation that is
hopeless, and XPRESS-MP (other any other package, I believe) cannot improve
on it. By reformulating the model using different variables, we ended up with a
much better formulation. Trying to improve that model, however, let to overlap
with the optimization package’s knowledge, and led to no improvement.

4 Conclusions

Through two examples, I have argued that traditional approaches to “reformu-
lation” in integer programming are not practical, since modern, sophisticated
software already understands and implements obvious modeling “tricks”. In or-
der to improve on a formulation it is necessary to understand what the software
knows and to provide insight beyond that knowledge base. For the transporta-
tion problem, this insight was in the form of a “redundant” but very important
knapsack constraint that was “hidden” in the formulation. Adding this con-
straint allowed the software to add additional constraints, greatly improving the
formulation. For the sports scheduling problem, the added knowledge was in the
form of reformulating the variables of the problem to better encapsulate compli-
cated structure. This reformulation was much better than the initial approach,
though still not sufficient to solve even small instances (like the n = 8 instance).

These experiences suggest that, at least for integer programs, the art of im-
proving formulations is getting more complicated: the simple rules of the past
(“find formulations with better relaxations”) are becoming less relevant as the
relaxation used by the software is often not the relaxation given by the model.
Understanding the software sufficiently to provide improved relaxation relative
to the solved-relaxation requires highly sophisticated knowledge, and knowledge
that can go out of date with every version released of the software.

But there still is room for the modeler to improve the formulations. Is it pos-
sible that the software packages will eventually “find” the knapsack constraint
needed for the transportation problem? Probably. Can the software do the vari-
able reformulation needed for the sports scheduling problem? Probably not, and
almost certainly not if the integer program is only given the formulation in terms
of variables, linear constraints, and linear objective. This sort of reformulation
requires a deeper understanding of the problem structure.

In order to further develop “reformulations” as a research area and an area
of practical interest, it would be useful to have more control over the solving of
models. It is in that spirit that I proposed the concept of defining some linear
constraints as knapsack constraints while others are just linear constraints: this
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would define to the solver where the modeler thinks it is likely there are useful
strengthenings (such as cover constraints).

Further, while most work in integer programming formulations has tried to
find one integer programming formulation based on a higher level description of
a problem, perhaps it is useful to come up with approaches that can generate
multiple formulations for experimentation. Can we create a system that begins
with a high level description of a problem and generates a series (or continuum)
of formulations, perhaps based on the number of variables or constraints?

At this point, sophisticated software has embedded a lot of the simple refor-
mulation rules integer programmers have developed. We now are challenged to
find more sophisticated approaches to spur on the software.
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Abstract. Hybrid algorithms combining local and systematic search
often use nondeterminism in fundamentally different ways. They may
differ in the strategy to explore the search tree and/or in how com-
putation states are represented. This paper presents nondeterministic
control structures to express a variety of hybrid search algorithms con-
cisely and elegantly. These nondeterministic abstractions describe the
search tree and are compiled in terms of first-class continuations. They
are also parameterized by search controllers that are under user control
and specify the state representation and the exploration strategy. The
resulting search language is thus high-level, flexible, and directly exten-
sible. The abstractions are illustrated on a jobshop scheduling algorithm
that combines tabu search and a limited form of backtracking. Prelim-
inary experimental results indicate that the control structures induce
small, often negligible, overheads.

1 Introduction

In the last decade, hybridizations between local and systematic search have re-
ceived increased attention and contributed many interesting results. Such hy-
bridizations include the use of limited backtracking to intensify local search
algorithms around elite solutions [7], variable-depth search procedures that ex-
plore trees of moves to select neighbors [1], as well as large neighborhood search
where systematic search performs the neighborhood exploration (e.g., [2, 9, 12]).

These hybridizations often lead to fundamentally different search algorithms
which may use trailing, copying, incremental checkpointing, or a combination
of them in order to restore computation states appropriately. It is therefore a
challenge to design flexible, efficient, and elegant search languages to support
local and systematic search, as well as their hybridizations.

This paper originated as an attempt to address this challenge in Comet, an
object-oriented programming language supporting a constraint-based architec-
ture for local search [5, 14, 15, 16]. It led to the design and implementation of
novel nondeterministic abstractions addressing the specificities of hybridizations
between local and systematic search, while encompassing the wealth of results
in search languages (e.g., [4, 8, 10, 13, 17]).

From a programming standpoint, the nondeterministic control structures of
Comet specify the search tree to explore and closely resemble those of OPL.
However, these control structures are also parameterized by a search controller

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 380–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Nondeterministic Control for Hybrid Search 381

that specifies both the search strategy, i.e., how the search tree should be ex-
plored, and how search nodes must be stored/restored. Hence, together with
other control abstractions of Comet, they provide a rich and flexible search
language with several desirable properties.

Perhaps the most significant property is the novel separation between con-
trol and state. Indeed, the control structures only specify nondeterminism. How
to explore the resulting search tree and how to store/restore the search nodes
are decisions left to the search controller and thus under programmers’ control.
This functionality is critical for hybrid search where the state restoration is not
necessarily performed using trailing. Instead, state restoration may be based on
concepts such as solutions and checkpoints that restore previously saved states
with various degrees of incrementality. Note that the separation between con-
trol and state also enables different implementation technologies for systematic
search (e.g., [11]) to coexist in the same system.

Equally important is the implementation of the nondeterministic control
structures which are compiled into continuations in Comet. First-class con-
tinuations provide an elegant and efficient abstraction to specify the control flow
of nondeterministic abstractions. Moreover, continuations may be implemented
to induce no overhead when nondeterminism is not used, which is important for
pure local search applications.

Finally, the search language is open and extensible, thanks to continuations
and the separation between control and state. Search controllers elegantly im-
plement a variety of systematic search procedures, as well as incomplete search
algorithms typically found in hybridizations. Moreover, different state represen-
tations, such as trailing, copying, and checkpointing, can be encapsulated inside
search controllers, allowing the same nondeterministic abstractions to be used
for fundamentally different search procedures.

The rest of this paper introduces the nondeterministic abstractions of Comet.
Thegoal is to convey the rationaleunderlying their designand implementation, and
to illustrate them on a complex application. Section 2 recalls the concept of contin-
uations and illustrates their use in Comet. The nondeterministic abstractions are
described in Section 3 and various search controllers are presented in Section 4. The
abstractions are illustrated on a hybrid algorithm for jobshop scheduling in Section
5. The last two sections present the experimental results and conclude the paper.

2 Continuations

Continuations provide a flexible control structure to implement several higher-
level abstractions such as exceptions, coroutines, and nondeterminism. Infor-
mally speaking, a continuation is a snapshot of the runtime data structures that
allows the execution to restart from this point at a later stage of the computation.
More precisely, a continuation is a pair 〈I, S〉, where I is an instruction pointer
and S is a stack to execute the code starting at I. In Comet, continuations are
obtained through instructions of the form
continuation c 〈body〉
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0. function int fact(int n) {if (n==0) return 1;else return n*fact(n-1);}
1. int i = 4;

2. continuation c { i = 5; }
3. int r = fact(i);

4. cout << "fact(" << i << ") = " << r << endl;

5. if (i == 5) call(c);

Fig. 1. Continuations in Comet

that binds c to a continuation 〈I, S〉, where I is the next instruction in the code
and S is the stack when the continuation is captured. It then executes its body
and continues in sequence. The resulting continuation can be invoked with the
call call(c) that restores the stack S and restarts execution from I. Consider
the code displayed in Figure 1. The code outputs

fact(5) = 120

fact(4) = 24

Indeed, the continuation c in line 2 consists of an instruction pointer to line 3
and a stack whose entry for i stores the value 4. The Comet implementation
first calls the factorial function with argument 5 (since i = 5 is executed when
the continuation is taken). Since i has value 5, the implementation calls the
continuation (line 5), which restarts execution in line 3 with a stack whose entry
for i has value 4. The Comet implementation thus calls fact(4), displays its
result, and terminates (since i is 4).

Consider now the code displayed in Figure 2. The code has the same effect but
it clearly illustrates the complex control/stack patterns that may be induced by
continuations. Indeed, the continuation is taken in line 3, i.e., inside the function
getContinuation that returns the continuation. The instruction pointer is on
line 4 (the return instruction) and the stack contains two frames for the global
and the function scopes. When the continuation is called on line 9, the stack is
restored, the execution restarts in line 4, returns the correct continuation c, and
proceeds to compute fact(4), displays its results, and terminates. Note that
continuations, like closures, are first-class objects that can be stored in data
structures, used as arguments, and returned as values.

0. function int fact(int n) {if (n==0) return 1;else return n*fact(n-1);}
1. int i = 4;

2. function Continuation getContinuation() {
3. continuation c { i = 5; }
4. return c;

5. }
6. Continuation c = getContinuation();

7. int r = fact(i);

8. cout << "fact(" << i << ") = " << r << endl;

9. if (i == 5) call(c);

Fig. 2. Continuation in Comet Again
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3 Nondeterminism

This section describes some of the nondeterministic abstractions of Comet. It
assumes initially that nondeterminism is implemented through depth-first search
before relaxing this assumption.

The Try Instruction. Figure 3 depicts a nondeterministic program that generates
all binary arrays of size 4 and displays their decimal values, i.e., 0 1 2 3 4 5
6 7 8 9 10 11 12 13 14 15. Line 1 simply declares the array and lines 2-7
specify the core of the nondeterministic search. A depth-first search controller is
created in line 2 and used in all subsequent nondeterministic control structures.
Lines 4-5 specify the nondeterministic choices: They iterate over all variables
and assign them nondeterministically either to 0 or 1. These lines, as well as
the output instruction, are encapsulated into an exploreall instruction (line
3) in order to produce all solutions. These solutions are obtained by depth-first
search, since this is the search controller used in the instruction.

0. include "SearchController";

1. int x[1..4] = 0;

2. DFS sc();

3. exploreall<sc> {
4. forall(i in 1..4)

5. try<sc> x[i] = 0; | x[i] = 1;

6. cout << 8 * x[1] + 4 * x[2] + 2 * x[3] + x[4] << " ";

7. }
Fig. 3. A Simple Nondeterministic Program in Comet

The Exploreall Instruction. The exploreall instruction is used to find all solu-
tions to a nondeterministic program. Its implementation simply fails each time
it finds a new solution. It is possible to exit an exploreall instruction early by
using the exit method on the search controller.

The Tryall Instruction. Consider now Figure 4 that features a simple backtrack-
ing program for the 8-queens problem. The Comet program declares the queens
array and the depth-first search controller (lines 1-3) and specifies the search us-
ing a tryall instruction (lines 4-6). The instructions

forall(q in 1..8)

tryall<dfs>(v in R: !attack(queen,q,v))

queen[q] = v;

iterate over all variables and nondeterministically assign them a value so that
the queen in column q does not attack the queens in columns 1..q-1. Ob-
serve the iterative style for nondeterminism that is traditionally appreciated by
programmers [3]. Observe that the tryall instruction performs a nondetermin-
istic choice and then continues the execution normally. Hence it is not only the
body of the tryall but also the “continuation” of the execution that is nonde-
terministic.
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0. include "SearchController";

1. int queen[1..8];

2. DFS dfs();

3. forall(q in 1..8)

4. tryall<dfs>(v in 1..8: !attack(queen,q,v))

5. queen[q] = v;

6. function bool attack(int[] queen,int i, int v) {
7. forall(k in 1..i-1)

8. if (queen[k]==v || queen[k]+k==v+i || queen[k]-k==v-i)

9. return true;

10. return false;

11. }
Fig. 4. A Comet Program for the Queens Problem

4 Search Controllers

The nondeterministic instructions only define the search tree to explore. It is
the role of the search controller to specify how to explore it, including how to
store/restore computation states. This section reviews the interface of search
controllers, shows how to compile nondeterminism in terms of the interface and
continuations, and reviews a variety of controllers.

The Interface of Search Controllers. Search controllers in Comet are subclasses
of SearchController which is (partially) described in Figure 5. Several of the
methods were informally described earlier. Method start is called by exploreall
to specify what to do when no choice points are left to explore. It receives a con-
tinuation that is generally executed in method exit that terminates the search.
Methods addChoice and fail constitute the core of the interface and are typ-
ically overridden in specific controllers. Method addChoice adds a new choice
point, while method fail restarts execution from an earlier choice point. Ob-
serve that choice points are continuations: They primarily specify the control
flow, not the computation states.

class SearchController {
Continuation exit;

Event closeChoice;

SearchController() { exit = null; }
void start(Continuation e) { exit = e; }
void exit() { call( exit); }
void addChoice(Continuation c) {}
void fail() { exit(); }
. . .

}
Fig. 5. The Search Controller Interface in Comet (Partial Description)

Compiling Nondeterminism. It is interesting to sketch how nondeterminism is
implemented in terms of search controllers and continuations. The try instruc-
tions are compiled in terms of continuations. A try instruction
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try<sc> 〈left〉 | 〈right〉
is compiled into
bool rightBranch = true;

continuation c { sc.addChoice(c); rightBranch = false; 〈left〉 }
if (rightBranch) 〈right〉
The implementation creates a continuation c, transfers it to the search con-
troller as a new choice and then executes the left branch of the choice point.
On backtracking, i.e., when the continuation c is invoked, the right branch is
executed since rightBranch is true in that context. The compilation of a tryall
instruction is essentially similar but uses iterators to assign its parameter that
is represented as a local variable. An exploreall instruction
exploreall<sc> 〈body〉
is compiled into
continuation c { sc.start(c); 〈body〉; sc.fail(); }
The implementation takes a continuation c representing what must be executed
when no more choice points are left unexplored, i.e., when all the solutions of its
body have been explored. It stores the continuation in the search controller, ex-
ecutes the body of the instruction, and fails, which induces the search controller
to consider unexplored choices. Note also that method exit on the controller
invokes the continuation c by default.

A Simple Search Controller. Figure 6 depicts the depth-first search controller
used so far. The controller maintains a stack of continuations. Method addChoice
pushes the continuation on the stack, while method fail pops and invokes the
top continuation. Nothing else is necessary for solving the queens problem. In-
deed, the continuation automatically saves the parameters of the forall and
tryall instructions as they are stored on the stack. Moreover, the values of the
queens do not need to be restored because of the depth-first strategy.

0. class DFS extends SearchController {
1. Stack{Continuation} stack;

2. DFS(): SearchController() { stack = new Stack{Continuation};}
3. void addChoice(Continuation f) { stack.push(f); }
4. void fail() { if (stack.empty()) exit() else call(stack.pop()); }
5. }

Fig. 6. The Depth-First Search Controller

(Re)storing Search Nodes. In more complex applications or with other strategies,
the search controllers must save and restore additional data structures. Figure 7
revisits the simple nondeterministic program presented earlier. It now declares a
local solver (line 1) and incremental variables (line 2), since this is the underlying
technology for the jobshop scheduling application described subsequently. Note
the try instruction that assigns incremental variables using := instead of =.
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0. include "LocalSolver";

1. LocalSolver mgr();

2. var{int} x[1..3](mgr) := 0;

3. SDFS sc(mgr);

4. exploreall<sc> {
5. forall(i in 1..3)

6. try<sc> x[i] := 0; | x[i] := 1;

7. cout << 8 * x[1] + 4 * x[2] + 2 * x[3] + x[4] << endl;

8. }
Fig. 7. The Simple Nondeterministic Program Revisited

The program also declares a depth-first search controller whose implemen-
tation is depicted in Figure 8. The controller stores, not only continuations,
but also the states of the incremental variables. Line 2 in Figure 8 declares a
stack of continuations and a stack of solutions. Solutions in Comet capture a
snapshot of the incremental variables, which can then be restored at a later
computation stage [5]. When a choice point is created (method addChoice), the
controller captures a solution (new Solution(m)) and pushes it onto the solu-
tion stack. On backtracking, the instruction sol.pop().restore() restores the
solution.

Observe the decoupling between the control and data aspects of choice points.
The control flow is abstracted by continuations that are used by the controller
to implement the search strategy. The representation of search nodes is under
user control and may use abstractions such as solutions, checkpoints, and com-
putation spaces [10]. In other words, the controller describes how to save and
restore the nodes independently of the specifications of search tree and the search
strategy. As a consequence, the node representation can be changed by replac-
ing or modifying the controller without affecting the rest of the program. For
instance, to use checkpoints [14] instead of solutions, it suffices to store check-
points on the stack using instructions such as new Checkpoint(m). Checkpoint
restorations undo and, possibly reexecute, operations on incremental variables as
described in [14]. Similar issues arise in CP systems. Trailing-based systems may

0. class SDFS extends SearchController {
1. LocalSolver m; Stack{Continuation} cont; Stack{Solution} sol;

2. SDFS(LocalSolver mgr): SearchController() {
3. m = mgr;

4. cont = new Stack{Continuation}; sol = new Stack{Solution};
5. }
6. void addChoice(Continuation f) {
7. cont.push(f); sol.push(new Solution(m)); }
8. void fail() {
9. if (cont.empty()) exit();

10. else { sol.pop().restore(); call(cont.pop()); }
11. }
12. }

Fig. 8. The Depth-First Search Controller with Solutions
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0. class SDS extends SearchController {
1. LocalSolver m; Queue{Continuation} cont; Queue{Solution} sol;

2. SDS(LocalSolver mgr): SearchController() {
3. m = mgr;

4. cont = new Queue{Continuation}; sol = new Queue{Solution};
5. }
6. void addChoice(Continuation f) {
7. cont.push(f); sol.push(new Solution(m)); }
8. void fail() {
9. if (cont.empty()) exit();

10. else { sol.pop().restore(); call(cont.pop()); }
11. }
12. }

Fig. 9. The Discrepancy Search Controller

use CP checkpoints that capture trail pointers and use semantic decomposition
for strategies [6], while copy-based systems only save the state of the solver.

A Simple Discrepancy Controller. Figure 9 describes a controller where the stack
was replaced by queue, implementing a search strategy where the choices are ex-
plored by increasing number of discrepancies. By replacing SDFS by SDS in line 3
of Figure 7, the program displays 0 8 4 2 1 12 10 9 6 5 3 14 13 11 7 15.
Observe the simplicity of moving from depth-first search to this new search strat-
egy thanks to the high-level control and state abstractions of Comet. The control
and the states are fully abstracted by continuations and solutions, providing a
concise and elegant specification of the search strategy.

An Iterative Discrepancy Controller. Figure 10 depicts a search controller for an
iterative implementation of limited discrepancy search. The exploration strategy
consists of a sequence of searches, where the i-th search allows at most i dis-
crepancies. The controller maintains a variable discr to count the number of
discrepancies that is incremented in method fail each time a new choice is ex-
plored. Method fail only calls a continuation whenever the maximum number
of discrepancies is not exceeded (line 22). Otherwise, the controller recursively
fails to explore another choice with fewer discrepancies. Note that line 20 pops
the continuation and restores the values of the incremental variables, including
the number of discrepancies.

The discrepancy phases are initiated in the overridden start method. In-
terestingly, it also uses a tryall instruction to explore all the discrepancies up
to the maximum depth (line 14). Observe that, like in the queens problem, the
nondeterminism operates not only on the body of the tryall but also on what-
ever follows the start method (e.g., the body of an exploreall instruction).
The first two phases of the resulting program display 0 1 2 4 8 0 1 2 3 4 5
6 8 9 10 12.

A Memento Controller. Figure 11 depicts the search controller to be used in
jobshop scheduling. The key idea underlying the controller is to only store the
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0. class IDS extends SearchController {
1. LocalSolver m;

2. Stack{Continuation} cont;

3. Stack{Solution} sol;

4. var{int} discr;

5. int maxDiscr;

6. int maxDepth;

7. SIDS(LocalSolver mgr,int d) : SearchController() {
8. m = mgr; maxDepth = d;

9. cont = new Stack{Continuation}(); sol = new Stack{Solution}();
10. discr = new var{int}(mgr) := 0;

11. }
12. void start(Continuation e) {
13. super.start(e);

14. tryall<this>(d in 1.. maxDepth) { discr := 0; maxDiscr = d; }
15. }
16. void addChoice(Continuation f) { cont.push(f); sol.push(f); }
17. void fail() {
18. if (cont.empty()) exit();

19. else {
20. Continuation c = cont.pop(); sol.pop().restore();

21. discr := discr + 1;

22. if ( discr > maxDiscr) fail(); else call(c);

23. }
24. }
25. }

Fig. 10. The Iterative Discrepancy Search Controller

0. class Memento extends SearchController {
1. LocalSolver m;

2. Stack{Continuation} cont;

3. Stack{Solution} sol;

4. int maxSize;

5. Memento(LocalSolver mgr,int maxSize) : SearchController() {
6. m = mgr; maxSize = maxSize;

7. cont = new Stack{Continuation}; sol = new Stack{Solution};
8. }
9. void addChoice(Continuation f) {
10. if (cont.getSize() == maxSize) { cont.drop(); sol.drop(); }
11. cont.push(f); sol.push(new Solution(m));

12. }
13. void fail() {
14. if (cont.empty()) exit();

15. else { sol.pop().restore(); call(cont.pop()); }
16. }
17. }

Fig. 11. The Memento Search Controller
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last k choice points. If a new choice point f is available, and there are already
k choice points, the controller first drops the earliest stored choice point before
pushing f onto the stack. This controller, called Memento in the following, is
a simple modification to the depth-first controller. Indeed, method addChoice
now tests whether the maximum number of choices is reached, in which case the
earliest choice is dropped from the stack before the push. Once again, observe the
simplicity of the controller and the flexibility of the abstractions to implement
incomplete search procedures in a natural fashion.

5 An Hybrid Search for Jobshop Scheduling

This section presents an implementation in Comet of the hybrid algorithm of
Nowicki and Smutnicki for jobshop scheduling [7]. The algorithm is a tabu-
search procedure with a very interesting intensification component based on a
limited form of backtracking. Informally speaking, the algorithm maintains the
k best solutions found so far. Whenever the tabu search completes, it backtracks
to one of these k solutions and explores all its neighbors by restarting a tabu
search from each of them. Of course, these new tabu searches may introduce new
choice points that will be explored subsequently on backtracking. The rest of this
section presents the core of this hybrid search, using the control and scheduling
abstractions presented in [14, 16].

Figure 12 presents the core of the algorithm. The search procedure is orga-
nized as a series of phases (lines 6-16). Each phase terminates after curIter
iterations (line 16) or whenever a new best solution is found (line 11). A phase
(lines 7-15) consists in exploring the neighborhood and selecting the best move
(lines 3, 8-9). Observe the declaration of a MinNeighborSelector object (line

1. void JobshopAlgorithm::search() {
2. memento = new Memento(mgr,mementoSize);

3. MinNeighborSelector N();

4. int li = 0;

5. exploreall<memento> {
6. do {
7. int oldBest = bestSoFar;

8. if (exploreNeighborhood(N)) {
9. call(N.getMove());

10. if (oldBest > makespan.value()) {
11. li = 0; bestSoFar = makespan.value(); curIter = maxIter;

12. visitAllNeighbors();

13. }
14. } else memento.exit();

16. } while (li++ < curIter);

17. }
18. }

Fig. 12. Hybrid Search for Jobshop Scheduling
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1. void JobshopAlgorithm::visitAllNeighbors() {
2. AllNeighborsSelector neighborhood();

3. exploreNeighborhood(neighborhood);

4. tryall<memento>(i in 1..neighborhood.getSize()-1)

5. call(neighborhood.getMove(i));

6. }
Fig. 13. Jobshop Scheduling: The Intensification

3) that is passed to the neighborhood exploration (line 8) to return the best
move. The selected move, which is a closure, is executed in line 9: It performs
the moves and updates the tabu list. If it improves the best solution, the phase
is terminated in line 11 (ignore line 12 for the time being). The neighborhood
exploration may return false, meaning that the current solution is optimal (i.e.,
it satisfies a necessary condition for optimality). When this is the case, the search
terminates by calling method exit on the memento declared in line 2.

As mentioned earlier, one of the most innovative aspects of this algorithm is
its intensification: Its goal is to explore the search space around elite solutions
more extensively. The algorithm maintains a stack of the best k solutions found
during the search. When the tabu search completes, the algorithm pops the best
solution from the stack and restarts a phase of the tabu search from each of its
neighbors. The algorithm terminates when the stack is empty. Observe however
that each additional phase may find new best solutions that are themselves
pushed onto the stack. The intensification is featured in line 12 of Figure 12 and
the implementation is depicted in Figure 13.

The implementation declares another neighbor selector to retrieve all neigh-
bors (line 2). Method exploreNeighborhood, called with this selector, collects
all neighbors sorted by decreasing quality (line 3). Once the neighbors are avail-
able, the nondeterministic instruction tryall explores all of them nondeter-
ministically, except the best one that has been explored by the tabu search
previously.

This implementation is particularly elegant for several reasons. First, it cap-
tures the essence of the intensification concisely and naturally. It only needs four
lines of code to express a sophisticated intensification component. Second, the
search strategy is completely disconnected from the intensification. If a differ-
ent search strategy (e.g., depth-first search) is desired, it suffices to replace the
memento by a depth-first search controller. Third, the implementation is com-
pletely generic: It does not explicitly refer to the neighborhood and changes to
the neighborhood (in method exploreNeighborhood) do not affect the intensifi-
cation. Finally, observe that method exploreNeighborhood is used both to find
the best neighbor (line 8 in Figure 12) and all the neighbors (line 3 in Figure
13) by passing different neighbor selectors.

The original algorithm in [7] also includes another interesting feature: It re-
duces the length of the phases each time all neighbors of a choice point have
been explored. This functionality can be elegantly accommodated in the search
procedure by adding the instruction
whenever memento@closeChoice() curIter = curIter - 400;
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Fig. 14. The Neighborhood of the Jobshop Algorithm

between lines 4 and 5 in Figure 12. This instruction features an event [14] that
specifies that, whenever all alternatives of a tryall instruction are exhausted
(event closeChoice of the search controller class), curIter must be reduced
by 400. Observe the compositionality of the search language and the synergy
between the existing and novel control abstractions of Comet.

For completeness, it is useful to discuss the neighborhood briefly. The neigh-
borhood focuses on one critical path from the source to the sink only. Moreover,
only the critical arcs at the start or at the end of a critical block are considered
for swapping. In other words, the neighborhood identifies the activities at the
start (resp. at the end) of a critical block on the selected path and considers the
moves that swap such activities with their successors (resp. predecessors). The

1. bool JobshopAlgorithm::exploreNeighborhood(NeighborSelector N) {
2. set{Activity} SB();

3. set{Activity} EB();

4. bool optimal = collectBlockEdges(SB,EB);

5. if (!optimal)

8. forall(v in SB) {
9. Activity s = v.getSucc();

10. int eval = makespan.estimateMoveForward(v);

11. if (acceptMove(v,s,eval)) {
12. found = true;

13. neighbor(eval,N) { v.moveForward(); tl.makeTabu(s,v); }
17. }
18. }
19. forall(v in EB) {
20. Activity p = v.getPred();

21. int eval = makespan.estimateMoveBackward(v);

22. if (acceptMove(p,v,eval)) {
23. found = true;

24. neighbor(eval,N) { v.moveBackward(); tl.makeTabu(v,p); }
28. }
29. }
32. return !optimal;

33. }
Fig. 15. Jobshop Scheduling: The Neighborhood Exploration
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resulting neighborhood is not connected, although it is very effective in practice.
Moreover, if there is only one critical block on the selected path, then the moves
cannot decrease the length of the makespan and the solution can be shown to
be optimal. The neighborhood is described visually in Figure 14. In the figure,
the machines are depicted horizontally and the job precedences are shown by
dashed arcs. The large bold arrows show the two moves associated with the first
block. Figure 15 describes parts of the neighborhood exploration which speci-
fies what the neighborhood is, not how to use it. The key for this separation of
concerns is the neighbor construct [14] which uses closures to represent moves
(lines 13-16).

6 Experimental Results

This section presents some preliminary results on the performance of nondeter-
ministic control structures. The first test compares the nondeterministic program
in Figure 4 (N in the following) with the “traditional” recursive algorithm R de-
picted in Figure 16 (the function noattack is similar and not shown here). Since
no state information is saved in the traditional implementation, this experiment
captures the cost of the control structures. It is a worst-case scenario since, in
sophisticated applications, the control cost is typically amortized by the state
saving and restoration, as well as by propagation and/or the maintenance of
incremental data structures. Table 1 depicts the CPU times of the recursive and
nondeterministic algorithms for various n. The results indicate that the overhead
of the nondeterministic implementation is small and ranges from 7 to 25% which
is very reasonable for such a worst case scenario. Observe also the contrast be-
tween the iterative style of the nondeterministic program and the recursive style
of the traditional program.

0. int n = 8;

1. range R = 1..n;

2. int queen[R];

3. function bool search(int[] queen,int i) {
4. if (i > n) return true;

5. forall(v in R: !attack(queen,i,v)) {
6. queen[i] = v;

7. if (search(queen,i+1)) return true;

8. }
9. return false;

10. }
11. search(queen,1);

Fig. 16. A Recursive Backtracking Algorithm for the Queens Problem

Table 2 presents some experimental results on jobshop scheduling. It reports
the quality and performance of the algorithm on the LA instances. Each line
correspond to 50 runs of the algorithm and report statistics on the best, worst,
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Table 1. Performance Evaluation of the Nondeterministic Control Instructions

n 16 18 20 22 24 26

R 0.18 0.79 4.78 51.71 14.11 15.52
N 0.20 0.98 5.57 56.80 15.20 16.76
(N − R)/R 11.11 24.05 16.53 9.84 7.73 7.99

Table 2. Performance Results on Jobshop Scheduling

Bench B(V ) m(V ) M(V ) μ(V ) σ(V ) m(B) M(B) μ(B) σ(B)

LA19 842 842 (40) 846 842.4 1.0 0.31 13.45 4.20 3.19
LA20 902 902 (50) 902 902.0 0.0 0.17 2.97 0.95 0.62
LA21 1047 1047 ( 4) 1061 1052.8 2.7 1.05 19.29 6.56 4.39
LA22 927 930 ( 6) 939 934.4 2.2 1.53 11.26 5.45 2.72
LA23 1032 1032 (50) 1032 1032.0 0.0 0.34 1.01 0.60 0.14
LA24 935 938 ( 1) 944 943.3 1.5 0.93 12.39 4.54 2.96
LA25 977 977 ( 8) 986 980.0 2.6 1.42 17.59 6.14 4.01
LA26 1218 1218 (50) 1218 1218.0 0.0 1.61 6.55 3.24 1.21
LA27 1235 1236 ( 1) 1269 1251.2 6.9 3.30 23.37 9.66 4.64
LA28 1216 1216 (46) 1225 1216.5 1.9 1.95 23.07 7.46 4.07
LA29 1157 1163 ( 3) 1190 1174.8 7.1 3.12 33.78 11.77 5.68
LA30 1355 1355 (50) 1355 1355.0 0.0 0.68 2.01 1.40 0.36
LA31 1784 1784 (50) 1784 1784.0 0.0 1.59 5.80 3.26 0.78
LA32 1850 1850 (50) 1850 1850.0 0.0 1.41 6.23 3.66 1.00
LA33 1719 1719 (50) 1719 1719.0 0.0 0.27 3.58 1.19 0.69
LA34 1721 1721 (50) 1721 1721.0 0.0 2.73 7.29 4.91 1.32
LA35 1888 1888 (50) 1888 1888.0 0.0 0.27 4.24 2.03 0.73
LA36 1268 1268 (24) 1291 1272.4 5.7 2.25 20.51 9.53 4.55
LA37 1397 1402 ( 3) 1428 1412.8 5.6 3.28 32.31 13.35 6.55
LA38 1196 1196 (13) 1208 1200.7 3.1 3.14 29.83 9.39 6.12
LA39 1233 1233 (23) 1251 1237.0 5.2 3.66 28.50 13.49 6.74
LA40 1222 1226 ( 5) 1234 1231.2 2.8 2.93 24.24 10.36 5.89

average, and standard deviation of the solution quality and CPU times. The
number of times the best solution was found is also reported. On this algorithm,
the overhead of nondeterminism is not noticeable, since restoring a solution
amounts to recomputing the makespan and critical arcs, which is much more
costly than creating and restoring continuations.

7 Conclusion

This paper presented nondeterministic control structures for hybrid search pro-
cedures which often differ in their underlying node selection strategies and their
implementation of search nodes. From a modeling standpoint, the main contri-
bution of the abstraction is to decouple the specification of the search tree, the
node selection, and the node representation. In particular, the nondeterministic
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abstractions separate the specification of the search tree (i.e., the computations
to be explored), the control flow (i.e., how the computations are actually ex-
plored), and the node representation (i.e., how the search nodes are stored and
restored). All these aspects of search procedures remain under programmers’ con-
trol, combining a high-level iterative style with the flexibility and extensibility
necessary to implement a variety of search procedures. From an implementation
standpoint, the nondeterministic control structures are compiled into first-order
continuations, inducing no overhead when nondeterminism is not used. The ex-
pressiveness and practicability of the abstractions was demonstrated by present-
ing several search controllers, a tabu procedure for job-shop scheduling featuring
an intensification based on backtracking search, and unit performance tests to
estimate the cost of continuations.

Acknowledgments. This work was partially supported by NSF ITR Awards
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Abstract. Integration of explanations into a CSP solver is a technique
addressing difficult question “why my problem has no solution”. More-
over, explanations together with advanced search methods like directed
backjumping can effectively cut off parts of the search tree and thus
speed up the search.

In order to use explanations, propagation algorithms must provide
some sort of reasons (justifications) for their actions. For binary con-
straints it is mostly easy. In the case of global constraints computation
of factual justifications can be tricky and/or computationally expensive.

This paper shows how to effectively compute explanations for the
unary resource constraint. The explanations are computed in a lazy way.
The technique is experimentally demonstrated on job-shop benchmark
problems. The following propagation algorithms are considered: edge-
finding, not-first/not-last and detectable precedences. Speed of these fil-
tering algorithms and speed of the explanation computation is the main
interest.

1 Introduction

To show a typical usage of the unary resource constraint, let us consider the
following shop-scheduling problem. We are given a set of machines and a set of
jobs which must be processed. A job consists of a set of operations, each operation
requires exclusive usage exactly one machine. Processing of an operation cannot
be interrupted by any other operation. Exact processing time of each operation
is known in advance. In the case of jobshop problem, operations in a job must
be processed in a certain order. In openshop an order of operations in a job is
arbitrary. The problem is to find a schedule with minimal completion time of all
jobs, i.e. a schedule with minimal makespan.

Shop-scheduling problems can be modeled as a constraint satisfaction prob-
lem (CSP). In this case unary resource1 constraints are typically used as ab-
stractions of machines. In case of openshop, unary resource constraints are also
used to model jobs.

1 In this paper, a resource always denotes a unary resource.

R. Barták and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 396–409, 2005.
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In relation to a resource operations are called activities. Each activity i has
following requirements:

– earliest possible starting time esti

– latest possible completion time lcti

– processing time pi

A purpose of the resource constraint is to reduce a search space by tightening
the time bounds esti and lcti. This process of elimination of unfeasible values
is called propagation, an actual propagation algorithm is often called filtering
algorithm. Interval 〈esti, lcti〉 is called a time window of the activity i. Thus the
role of the resource constraint can be seen as a process of tightening of these
time windows.

There are several filtering algorithms for unary resources, in this paper we
focus on the edge-finding [7, 8], not-first/not-last [10, 9, 3] and detectable prece-
dences [10]. Each of these algorithms filters out different inconsistent values,
therefore these algorithms can be used together to achieve better pruning.

There are only a few attempts to combine explanations with unary resource
constraint. The author is aware of the paper [6] where Guéret et. al. solved
several open openshop problems using explanations. This result was achieved by
very simple explanations for unary resource constraints. This paper focuses on
computing more accurate explanations. In paper [2] explanations are used for
solving dynamic schedule problems.

This paper differs from the previous work in two main aspects: explanations
are computed in a lazy way and justifications are very tightly connected with
filtering algorithms. This way the computation is very fast and resulting expla-
nations are more accurate.

2 Explanations

The purpose of the explanation is to capture a reason why a search (sub)tree
failed. Advanced search methods (directed backjumping, dynamic backtracking
[5]) can exploit such information and speed up the search. The idea is to identify
a reason of fail and cut off other branches of the search tree which are known to
fail for the same reason.

An explanation has to describe all properties of the subproblem which leads
to the infeasibility. This way the explanation can be seen as a relaxation of
the original unfeasible subproblem. The important point is that this relaxation
remains unfeasible. Our intention is to find as general relaxation (explanation)
as possible. More general explanation can cover more subproblems and dismiss
them as unsolvable.

Let us precisely define a specific type of explanations which is used in this
paper:
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Definition 1. An fail explanation is an unfeasible CSP2 which is a relaxation
of the current search node. The explanation consists of:

1. A subset Υ of initial constraints and search decision constraints valid in the
current search node.

2. Conflict windows 〈esti, lcti〉 for activities. A conflict window for an activity
i is a superset of the current time window: 〈esti, lcti〉 ⊆ 〈esti, lcti〉. I.e. the
conflict window is a relaxation of the current time window.
If no conflict window is given for an activity i then we consider the time
window to be 〈−∞, ∞〉.
The idea of this definition follows. In explanation we relax constraints which

are not in the set Υ . We also relax domains by replacing time windows by conflict
windows. And still the problem remains unfeasible. Conflict window 〈−∞, ∞〉
is special, it says that the activity is irrelevant: can be processed at any time
and yet the problem has no solution.

The explanation can be compared with state in any other search node. A
problem has no solution as long as all constraints from the set Υ remain in the
system and all time windows are covered by associated conflict windows.

i

piesti lcti
esti lcti

Fig. 1. Activity i, its time window and conflict window

b

estb

lctb
a

esta

lcta
esta = estb lcta = lctb

Fig. 2. Two activities a and b in conflict, their time windows and conflict windows

2.1 Initial Explanation

When propagation comes to a dead end, an initial explanation must be com-
puted. This initial explanation simply describe the reason of the fail which was
found.

For shop-scheduling problems, the usual reason why propagation generates
fail is overloading. Let us consider a subset Ω ⊆ T of activities on one resource.

2 Constraint Satisfaction Problem.
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We can define processing time, earliest starting time and latest completion time
of the set Ω as:

estΩ = min{esti, i ∈ Ω}
lctΩ = max{lcti, i ∈ Ω}
pΩ =

∑
i∈Ω

pi

All activities from the set Ω must be processed during the interval 〈estΩ , lctΩ〉.
However, if pΩ > lctΩ − estΩ then no solution exists. Empty domain for an
activity i is a special case of overloading for Ω = {i}.

The explanation for overloading consists of the unary resource constraint and
conflict windows for activities i ∈ Ω. These conflict windows can be 〈estΩ , lctΩ〉.
However conflict windows can be little bit wider, as long as lcti − esti ≤ pΩ −1.
Let Δ is defined as:

Δ = pΩ −(lctΩ − estΩ)− 1

Conflict windows for i ∈ Ω can be set the following way:

〈
estΩ −

⌊Δ

2

⌋
, lctΩ +

⌈Δ

2

⌉〉

2.2 Justifications

It is likely that the infeasibility of the problem cannot be simply detected by
the overloading. Some propagation or even search must be done first. Initial
explanation provided by overloading is just a beginning. The explanation must
be refined during the way back in the search tree.

For this purpose, a justification must be remembered for each domain reduc-
tion. The justification captures the reason which justifies the realized reduction:

Definition 2. Justification is a CSP which is a relaxation of the state just before
the reduction. Filtering algorithm would generate exactly the same reduction for
the relaxed CSP as for the original one.

Justification consists of the propagated constraint and a set of conflict
windows.

Justifications are written on the stack during constraint propagations and
used for explanation (re)computation during way back in the search tree. Nat-
urally, we are looking for as general justification as possible – more general
justifications result in the more general explanation.

Let us describe more formally how justifications are used to refine explana-
tions during way back in the backtrack:

1. Once a fail is found, an initial explanation is created.
2. One by one the reductions made by the constraint propagation are undone

in the reverse order than they were originally made. For that, all realized
reductions and their justifications are stored in a stack.
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failed child failed child

propagation,
recording justifications

way back,
explanation recomputation

choicepoint,
combining explanations

Fig. 3. Operations on the search tree

3. After undoing a particular reduction, it can happen that the explanation
is not the relaxation of the current problem any more. For example esti

may become greater than esti and thus the conflict window does not cover
the time window any more. In that case, the explanation must be repaired
using the justification associated with the undone reduction. It is done in
the following way:

i. esti is set to −∞.
ii. Constraint which generated the reduction is added into the explanation:

Υ := Υ ∪ {c}.
iii. Conflict windows from the justification are “merged” into the conflict

windows of the explanation. Let 〈est′k, lct′k〉 be the conflict window for
the activity k in the justification. Then the resulting conflict window for
the activity k in the explanation is:

〈estk, lctk〉 := 〈max{estk, est′k}, min{lctk, lct′k}〉
4. In a choicepoint, the explanation is a combination of explanations from all

child nodes. For example, let us suppose that the branching was done by
addition of a constraint a in the first child node and the negation of this
constraint ¬a in the second child node. The resulting explanation consists
of:

i. Subset of current constraints Υ :

Υ =
(
Υ a \ {a}) ∪ (

Υ¬a \ {¬a})
ii. Conflict windows for activities 〈estk, lctk〉:

〈estk, lctk〉 := 〈max{estak, est¬a
k }, min{lctak, lct¬a

k }〉
Justifications are similar to explanations, however justifications are much

more simple. For each particular filtering algorithm, justification can be held
in a specialized data structure which exploit a particular method of filtering.
Detailed descriptions of justifications for different algorithms are provided in
following sections 4–7.
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3 Directed Backjumping

Before going into details about justifications, let us show how to implement
directed backjumping using explanations.

Consider a the choicepoint from the item 4 above. If a �∈ Υ a then the ex-
planation for the first branch a is valid also for the second branch ¬a. And
so the second branch can be skipped because it would fail anyway. This way,
explanations can speed up the search.

4 Precedence Justification

Together with resource constraint, binary precedence constraints are used to
model shop-scheduling problems. A precedence constraint i # j assures that
the activity i finish before the activity j starts. Precedence constraints can be
used to model ordering of operations within a job in jobshop. They are also often
used as search decisions.

Let us introduce a notation convention. Whenever a reduction of a domain is
made (i.e. esti is increased or lcti is decreased), then esti and lcti denote values
before the reduction, est′i and lct′i denote values after the reduction.

Propagation of the precedence constraint i# j is quite simple: whenever esti

is increased, the constraint propagates this change into the value estj :

est′j := max{estj , esti + pi} (1)

Similarly, when lctj is decreased, lcti can be adjusted:

lct′i := min{lcti, lctj −pj} (2)

All propagation algorithms considered in this paper have two symmetric ver-
sions. One of them increase values esti (in this case the rule (1)), the second one
decrease values lcti (the rule (2)). Since propagation algorithms and their justi-
fications are symmetrical, we will always consider only one of these symmetric
versions – the one which changes esti.

Justification for a reduction made by the rule (1) is quite simple: precedence
constraint itself and the conflict window 〈esti, ∞〉 for the activity i.

Now let us now focus on the usage of such justification. Explanation must
be recomputed only if3 estj < estj . In that case, explanation is recomputed the
following way:

i. Precedence constraint i# j is added into the explanation.
ii. esti must be changed. According to justification it is enough to set esti :=

esti. However, it is possible that estj < est′j , i.e. to put the activity j into
the conflict, it is enough to increase estj to estj . Thus it is enough to set
esti := estj − pi.

3 Note that estj is value before the reduction, i.e. the value after undo of this reduction.

iii. Conflict window of the activity j is enlarged: estj := −∞.
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Recording and using one justification for a precedence constraint has both
time complexity and space complexity O(1).

5 Not-First/Not-Last Justifications

Filtering algorithm not-first/not-last [10, 3, 9] is based on the following rule not-
first and its symmetric variant not-last. Let us consider an activity i and a set
Ω ⊂ T such that the activity i cannot start before the set Ω. We denote such
property i �# Ω:

∀Ω ⊂ T,∀i ∈ (T \Ω) : lctΩ − esti < pΩ + pi ⇒ i �# Ω (3)

If i �# Ω, some activity j from the set Ω must finish before the activity i can
start. This allows to increase esti:

i �# Ω ⇒ est′i := max
{
esti, min

{
estj + pj , j ∈ Ω

}}
(4)

A justification for such change of esti must guarantee that if all activities
remain inside conflict windows, inequality (3) remains valid and the value est′i
in the rule (4) remains the same or it is even greater.

The inequality (3) remains valid as long as lctΩ does not increase too much.
Hence for each activity j in the set Ω, the bound of the conflict window lctj

must fulfill the following inequality:

∀j ∈ Ω : lctj < esti + pΩ + pi

Similarly, as long as min{estj + pj , j ∈ Ω} does not decrease, the rule (4)
still justifies the reduction. Therefore:

∀j ∈ Ω : estj ≥ est′i−pj

To fulfill both last inequalities, the conflict windows for activities from the
set Ω are assigned in the following way:

∀j ∈ Ω : 〈est′i−pj , esti + pΩ + pi−1〉
Also, the conflict window 〈esti,∞〉 must be assigned to the activity i.
Just constructed justification has time and space complexity O(n) because

all activities from the set Ω must be enumerated into the justification. However,
only some special types of sets Ω can be considered in order to find all reductions
resulting from the rule not-first.

Let us consider one particular reduction according to the rule not-first (3),
(4). Let Ψ be the set constructed the following way:

Ψ = {j, j ∈ T & estj + pj ≥ est′i & lctj ≤ lctΩ & j �= i} (5)
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If we exchange the set Ω by the set Ψ in the rules (3) and (4), these rules would
raise exactly the same change of the esti. In fact, all not-first algorithms [10, 3, 9]
consider only sets in this form. I.e. whenever a change of a esti is made, Ω = Ψ .

Thanks to this special form of the set Ω, the set Ω can be characterized only
by the values est′i and lctΩ . Using the rule (5), the set Ω can be reconstructed
in time O(n). Thus the justification has size only O(1) and can be recorded
in the time O(1). All three not-first/not-last algorithms [10, 3, 9] can be easily
modified to record such justifications without changing their time complexities,
i.e. O(n log n) for [10] and O(n2) for [9, 3].

Usage of each one not-first justification takes time O(n). One run of the
not-first algorithm can generate only n changes maximum. Thus the way back
“through” the not-first/not-last propagation takes O(n2) maximum. In addition,
a lot of justifications can be skipped because they do not interfere with the
current explanation (i.e. esti ≥ esti).

Finally, let us consider usage of a not-first justification. Let us suppose that
esti < esti. I.e. we are in a situation when the current explanation is valid
after the change (i.e. esti ≤ est′i), but not before it. Thus some repair of the
current explanation is necessary. The justification captures the reason why esti

was increased to est′i. However in order to make the current explanation valid, it
may not be necessary to increase the esti so much. It is enough to increase esti

to esti. I.e. the justification can be weakened before it is merged into the current
explanation. This weakening can be achieved by using esti instead of est′i in all
conflict windows.

6 Edge-Finding Justifications

Edge-finding is well known filtering algorithm for unary resource constraint. The
algorithm is based on the following rules (6), (7) and their symmetric versions
[3, 7]. Consider a set Ω ⊆ T and an activity i �∈ Ω. The activity i has to be
scheduled after all activities from the set Ω if:

∀Ω ⊂ T, ∀i ∈ (T \Ω) : min {estΩ , esti}+ pΩ + pi > lctΩ ⇒ Ω # i (6)

The reason follows: if the activity i is not scheduled after the set Ω then the last
activity from the set Ω cannot finish before min {estΩ , esti}+ pΩ + pi, what is
more than the allowed maximum lctΩ .

Once it is known that the activity i must be scheduled after the set Ω, esti

can be adjusted:

Ω # i ⇒ est′i := max {esti, ECTΩ} (7)

Where ECTΩ denotes a lower bound of the earliest completion time of a set Ω.
ECTΩ is defined by the following formula:

ECTΩ = max {estΩ′ + pΩ′ , Ω′ ⊆ Ω} (8)
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There are several implementations of edge-finding algorithm, [4] presents a
O(n log n) algorithm, another two O(n2) algorithms can be found in [7, 8].

We are interested in providing justifications for reductions made by edge-
finding. Naturally, a justification consists of the unary resource constraint itself
and some set of conflict windows. These conflict windows have to assure, that
while the time windows of activities remain inside the conflict windows, the
reduction made according to the rules (6) and (7) would be at least the same.

Lets start with the inequality (6). There are several ways how to extent time
windows to conflict windows. Lets look at one of them: we allow an extension
only on the right side of the time windows. Thus to satisfy the inequality (6),
the conflict windows can be:

∀j ∈ Ω : 〈r, r + pΩ + pi−1〉 (9)
i : 〈r, ∞〉

where r = min {estΩ , esti}.
Sure, such conflict windows are not sufficient for the rule (7). This rule de-

mands that for one particular set Ω′ ⊆ Ω, the value estΩ′ remains the same:
estΩ′ = est′i−pΩ′ . Putting that together with previous conflict windows (9), the
final conflict windows are:

∀j ∈ Ω′ : 〈est′i−pΩ′ , r + pΩ + pi−1〉
∀j ∈ (Ω \Ω′) : 〈r, r + pΩ + pi−1〉

i : 〈r, ∞〉
These conflict windows are sufficient for both rules (6) and (7).

Enumeration all activities from the set Ω in the explanation would again slow
down the justification generation to O(n). Fortunately, a trick similar to not-first
justification can be used here. Let us consider one particular reduction of esti.
Let the set Ω′ be such a subset of the set Ω that ECTΩ = estΩ′ + pΩ′ . Note
that the set Ω′ must exists thanks to the definition (8) of the ECTΩ . Further,
let the sets Φ and Θ are defined the following way:

Φ = {j, j ∈ T & estΩ ≤ estj & lctj ≤ lctΩ}
Θ = {j, j ∈ T & estΩ′ ≤ estj & lctj ≤ lctΩ}

These sets are in the form of so called task intervals. We can use the set Φ in the
rule (6) instead of the set Ω and the inequality stays holding. The set Θ can be
used to estimate a lower bound of ECTΦ:

Θ ⊆ Φ ⇒ ECTΦ ≥ estΘ + pΘ ⇒ est′i ≥ max{esti, estΘ + pΘ}
Because estΘ = estΩ′ and pΘ ≥ pΩ′ :

ECTΩ = estΩ′ + pΩ′ ≤ estΘ + pΘ

Therefore the set Ω can be replaced by the set Φ in the justification and the set
Ω′ can be replaced by the set Θ. In fact, edge-finding algorithms consider only
sets Ω and Ω′ in a form of task intervals, i.e. Ω = Φ and Ω′ = Θ.
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Thus the result is very similar to the not-first justification. Instead of the
enumeration of the sets Ω and Ω′ in the justification, it is sufficient to record
only the values estΩ , lctΩ and estΩ′ . Both the sets can be reconstructed from
these values within the time complexity O(n). The justification has size only
O(1) and can be recorded in time O(1). Both edge-finding algorithm [7, 8] can be
easily modified to generate justifications without changing their time complexity
O(n2).

Before using the justification, we can weaken it the same way as not-first
justification: it is not necessary to increase esti to est′i to reach the infeasibility.
Sufficient value of est′i is esti. However this time we must be more careful. Simple
replacement of est′i by esti in the definition of the conflict windows leads to invalid
justifications. Conflict windows for the activities j ∈ Ω′ should be:

∀j ∈ Ω′ : 〈max {esti − pΩ′ , r} , r + pΩ + pi−1〉
This way the conflict window cannot run out from the conflict interval (9).

7 Justifications for Detectable Precedences

Detectable precedences is another propagation algorithm which can be used
together with the edge-finding and not-first/not-last [10]. Let i and j be two
different activities on the same resource. The precedence j # i is said to be
detectable, if the following inequality holds:

esti + pi > lctj −pj (10)

Simply when the previous inequality holds then it is not possible to schedule
the activity i before the activity j. The filtering algorithm builds a set Θ of all
activities j, which precede the activity i according to detectable precedences:

Θ = {j, j ∈ T & j # i is detectable}
The activity i cannot start until all of the activities from the set Θ finish, thus
esti can be adjusted:

est′i := max{esti, ECTΘ}
Let Ω′ be a subset of the set Ω such that ECTΩ = estΩ′ + pΩ′ . The justifi-

cation has to assure two things: that Ω′ # i and that the value estΩ′ + pΩ′ does
not decrease. Note that activities from the set Ω \ Ω′ are not included in the
justification at all.

Lets start with estΩ′ + pΩ′ . Because this value cannot decrease, estj must
fulfill the following inequality:

∀j ∈ Ω′ : estj ≥ estΩ′

Also it has to be assured that Ω′ # i. For each j ∈ Ω′ the precedence j # i
is detectable. And it remains detectable as long as the inequality (10) remains
valid:

esti + pi > lctj −pj
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To assure that, conflict windows can be set the following way:

i :
〈

esti−
⌈

Δ

2

⌉
, ∞

〉

∀j ∈ Ω′ :
〈

estΩ′ , esti + pi + pj −
⌈

Δ

2

⌉
− 1

〉
where Δ = esti + pi−max

{
lctj −pj , j ∈ Ω′}− 1

Again, we do not have to enumerate all activities from the set Ω′ in the expla-
nation. The set Ω′ can be easily reconstructed using value estΩ′ . The justification
has space complexity O(1) and it can be recorded within time O(1). Therefore
recording of justifications do not change time complexity of the filtering algo-
rithm. Processing of each relevant justification during way back takes time O(n).

Like other justifications, a justification for the detectable precedences can be
weakened before it is used. The idea is still the same: to reach the conflict, it is
not necessary to increase esti to est′i, value esti is enough. However this time est′i
does not occur in the conflict window definition directly. But estΩ′ = est′i−p′

Ω .
Hence conflict windows for the activities j from the set Ω′ can be enlarged the
following way:

∀j ∈ Ω′ :
〈

esti − pΩ′ , esti + pi + pj −
⌈

Δ

2

⌉
− 1

〉

8 Experimental Results

The ideas presented in this paper were implemented in a C++ jobshop solver.
Several jobshop problems of sizes 10x10 to 15x15 from the OR library [1] were
used as a benchmark problems. The task is to find and prove the minimal
makespan. Problems were solved using backtracking with directed backjump-
ing based on explanations.

In order to make number of backtracks small, initial upper bound was set to
the known optimal makespan. The solver has to find a solution first and then
prove that there is no better solution.

The experiments shows that computation of explanation is very fast, it takes
only 3–5% of the CPU time. The reason follows: propagation algorithms find a
reduction only in 4–31% of runs (exact ratio depends on the filtering algorithm
and an order in which the algorithms are called). From the recorded justifica-
tions, only 25–80% are really used (again, the ratio depends on the filtering
algorithm).

The problems were solved twice. First time using explanations, second time
without it. Tables 2 and 1 show the results. Columns CH1 and CH2 are number
of choicepoints (i.e. nodes of a search tree without leaves), columns T1 and T2
shows the computation time.

Note that not all explanation computation was excluded in the second run.
However, as said before, no more than 3–5% time could be saved by that.
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Table 1. Jobshop instances: first branching strategy

Problem Size Makespan CH1 CH2 CH Saving T1 T2 T Saving

ft10 10x10 930 11478 14192 19.12% 13.112s 16.068s 18.40%
abz5 10x10 1234 5294 6445 17.86% 5.358s 6.538s 18.05%
abz6 10x10 943 3033 3807 20.33% 3.025s 4.077s 25.80%
la16 10x10 945 119 151 21.19% 0.147s 0.189s 22.22%
la17 10x10 784 26 27 3.70% 0.045s 0.045s 0.00%
la18 10x10 848 2429 2641 8.00% 2.422s 2.697s 10.20%
la19 10x10 842 14107 14989 5.89% 14.910s 16.058s 7.15%
la20 10x10 902 2623 2912 9.92% 2.812s 3.220s 12.67%
la36 15x15 1268 962 33749 97.15% 2.556s 40.214s 93.64%
la37 15x15 1397 61 61 0.00% 0.158s 0.157s -0.64%
orb01 10x10 1059 16268 17137 5.07% 19.808s 20.927s 5.35%
orb02 10x10 888 10937 13818 20.85% 11.987s 15.348s 21.90%
orb03 10x10 1005 44152 50820 13.12% 48.051s 55.384s 13.24%
orb04 10x10 1005 1220 1319 7.50% 1.525s 1.618s 5.75%
orb05 10x10 887 2587 3312 21.89% 2.717s 3.587s 24.26%
orb06 10x10 1010 9838 10397 5.38% 11.709s 12.337s 5.09%
orb07 10x10 397 16476 20745 20.58% 16.251s 21.231s 23.46%
orb08 10x10 899 15 15 0.00% 0.039s 0.037s -5.41%
orb09 10x10 934 491 515 4.66% 0.615s 0.641s 4.06%

Table 2. Jobshop instances: second branching strategy

Problem Size Makespan CH1 CH2 CH Saving T1 T2 T Saving

ft10 10 x 10 930 5931 6246 5.05% 4.928s 5.255s 6.23%
abz5 10 x 10 1234 2188 2963 26.16% 1.500s 2.093s 28.34%
abz6 10 x 10 943 840 863 2.67% 0.618s 0.659s 6.23%
la16 10 x 10 945 1025 1231 16.74% 0.604s 0.786s 23.16%
la17 10 x 10 784 45 45 0% 0.037s 0.037s 0%
la18 10 x 10 848 828 838 1.20% 0.606s 0.626s 3.20%
la19 10 x 10 842 5088 5447 6.60% 3.783s 4.085s 7.40%
la20 10 x 10 902 1353 1369 1.17% 1.076s 1.096s 1.83%
la36 15 x 15 1268 2636 2890 8.79% 5.477s 6.123s 10.56%
la37 15 x 15 1397 2554 6398 60.09% 2.869s 6.763s 57.58%
la39 15 x 15 1233 251 276 9.06% 0.554s 0.597s 7.21%
la40 15 x 15 1222 23606 26408 10.62% 49.816s 56.019s 11.08%
orb01 10 x 10 1059 5214 5220 0.12% 4.903s 4.931s 0.57%
orb02 10 x 10 888 3200 3448 7.20% 2.339s 2.620s 10.73%
orb03 10 x 10 1005 12603 12699 0.76% 10.214s 10.422s 2.00%
orb04 10 x 10 1005 1938 1969 1.58% 1.584s 1.658s 4.47%
orb05 10 x 10 887 1625 1771 8.25% 1.134s 1.248s 9.14%
orb06 10 x 10 1010 6145 6618 7.15% 4.493s 4.867s 7.69%
orb07 10 x 10 397 2066 2190 5.67% 1.552s 1.673s 7.24%
orb08 10 x 10 899 45 45 0% 0.040s 0.041s 2.44%
orb09 10 x 10 934 532 535 0.57% 0.443s 0.451s 1.78%
orb10 10 x 10 944 146 146 0% 0.157s 0.160s 1.88%
ta04 15 x 15 1175 115525 185278 37.65% 2m 33s 4m 12s 39.42%
ta07 15 x 15 1227 763719 1290715 40.83% 20m 10s 35m 47s 43.67%
la38 15 x 15 1196 1381989 1596715 13.45% 37m 57s 45m 34s 16.71%

Two different branching schemes were used to show the influence of the
branching strategy to the directed backjumping:

1. The first branching strategy finds a resource with a smallest slack time. Then
all yet unscheduled activities on the resource are taken and branching is done
on a decision which of them will be the first. For results, see table 1.
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2. The second branching strategy is taken from [11]. The resource with the
relatively smallest slack is taken and branching is done by ordering two
longest unordered activities on this resource. The results are in the table 2.

As can be seen, in case of quickly solvable instances (∼ 1000 choicepoints)
backjumping does not significantly improve the performance. However for harder
instances, the savings of time and choicepoints reach 20% for the first branching
strategy and 40% for the second branching strategy. The problem la36 in table
1 is quite exceptional: 97.15% of choicepoints are eliminated.

9 Conclusions and Further Work

Experimental results shows that explanations can significantly speed up the
search, especially for hard problems. Also lazy computation of explanations
seams to be quite effective.

In the future work we would like to explore more advanced search methods:
dynamic backtracking, MAC-DBT or decision-repair.

Another technique often used to prune a search space is shaving [7]. For
scheduling problems, shaving turned out to be quite effective. It could be inter-
esting to combine explanations with shaving.
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