


Lecture Notes in Computer Science 3384
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Claudio Ferretti Giancarlo Mauri
Claudio Zandron (Eds.)

DNA Computing

10th International Workshop
on DNA Computing, DNA10
Milan, Italy, June 7-10, 2004
Revised Selected Papers

13



Volume Editors

Claudio Ferretti
Giancarlo Mauri
Claudio Zandron
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
via Bicocca degli Arcimboldi 8, 20126, Milano, Italy
E-mail: {ferretti,mauri,zandron}@disco.unimib.it

Library of Congress Control Number: 2005927141

CR Subject Classification (1998): F.1, F.2.2, I.2.9, J.3

ISSN 0302-9743
ISBN-10 3-540-26174-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26174-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11493785 06/3142 5 4 3 2 1 0



Preface

Biomolecular computing has emerged as an interdisciplinary field that draws to-
gether chemistry, computer science, mathematics, molecular biology, and physics.
Our knowledge of DNA nanotechnology and biomolecular computing increases
dramatically with every passing year. The International Meeting on DNA Com-
puting has been a forum where scientists with different backgrounds, yet shar-
ing a common interest in biomolecular computing, meet and present their latest
results. Continuing this tradition, the 10th International Meeting on DNA Com-
puting (DNA10) focused on the current experimental and theoretical results with
the greatest impact.

The meeting took place at the University of Milano-Bicocca, Milan, Italy,
from June 7 to June 10, 2004, and it was organized by the University of Milano-
Bicocca and the Department of Informatics of the University of Milano-Bicocca.
Papers and poster presentations were sought in all areas that relate to biomolecu-
lar computing, including (but not restricted to): demonstrations of biomolecular
computing (using DNA and/or other molecules), theoretical models of biomolec-
ular computing, biomolecular algorithms, computational processes in vitro and in
vivo, analysis and theoretical models of laboratory techniques, biotechnological
and other applications of DNA computing, DNA nanostructures, DNA devices
such as DNA motors, DNA error evaluation and correction, in vitro evolution,
molecular design, self-assembled systems, nucleic acid chemistry, and simulation
tools.

Authors were asked to choose between two different tracks:
Track A — Full paper, for authors who wished to submit a full paper for

presentation at DNA10 (oral or poster), and publication in the conference pro-
ceedings.

Track B — One-page abstract, for authors submitting experimental results,
and who planned to submit their manuscript to a scientific journal, rather than
publish it in the conference proceedings.

We received 67 submissions in track A and 27 in track B. Among them,
30 papers were selected for oral presentation. About 140 people attended the
meeting.

The first day of the meeting, June 7, 2004, was dedicated to the following
tutorials: N. Pavelka (Univ. of Milano-Bicocca), “Gene Expression Studies Using
Microarrays,” H.J. Hoogeboom (Leiden University), “Basic Concepts of Com-
puting for Biologists,” C. Henkel (Leiden University), “Basic Molecular Biology
for Nonspecialists,” and T.H. LaBean (Duke University), “Self-Assembly.”

The next three days were devoted to invited plenary lectures and regular
oral presentations. The invited plenary lectures were by K. Benenson (Weiz-
mann Institute of Science, Israel), “An Autonomous Molecular Computer for
Logical Control of Gene Expression,” C. Flamm (University of Vienna, Aus-



VI Preface

tria), “Computational Design of Multi-stable Nucleic Acid Sequences,” G. Păun
(Institute of Mathematics of the Romanian Academy, Romania), “Membrane
Computing — Power and Efficiency. An Overview,” J. Reif (Duke University,
USA), “DNA-Based Nano-engineering: DNA and Its Enzymes as the Engines of
Creation at the Molecular Scale,” and W.M. Shih (Harvard University, USA),
“Clonable DNA Nanotechnology.”

The editors would like to thank all contributors to and participants in the
DNA10 conference, the Program Committee (A. Carbone, J. Chen, N. Jonoska,
L. Kari, C. Mao, G. Mauri, G. Păun, J. Rose, P. Rothemund, Y. Sakakibara,
N. Seeman, E. Shapiro, L. Smith, R. Weiss, and H. Yan), and the external
reviewers.

Finally, we wish to thank Brainspark plc. Comerson, the Department of In-
formatics, Systems and Communications of the University of Milano-Bicocca,
Etnoteam, the European Commission, STMicroelectronics, and the University
of Milano-Bicocca for the support and sponsorship of the conference.

January 2005 Claudio Ferretti,
Giancarlo Mauri,
Claudio Zandron



Table of Contents

Computing by Observing Bio-systems: The Case of Sticker Systems
Artiom Alhazov, Matteo Cavaliere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

DNA-Based Computation Times
Yuliy Baryshnikov, Ed Coffman, Petar Momčilović . . . . . . . . . . . . . . . . . 14

Computing Beyond the Turing Limit Using the H Systems
Cezar Câmpeanu, Andrei Păun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Biomolecular Implementation of Computing Devices with Unbounded
Memory

Matteo Cavaliere, Nataša Jonoska, Sivan Yogev, Ron Piran,
Ehud Keinan, Nadrian C. Seeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Characterization of Non-crosshybridizing DNA Oligonucleotides
Manufactured In Vitro

Junghuei Chen, Russell Deaton, Max Garzon, Jin Woo Kim,
David Wood, Hong Bi, Dylan Carpenter, Yu-Zhen Wang . . . . . . . . . . . . 50

Error-Free Self-assembly Using Error Prone Tiles
Ho-Lin Chen, Ashish Goel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

On the Computational Complexity of P Automata
Erzsébet Csuhaj-Varjú, Oscar H. Ibarra, György Vaszil . . . . . . . . . . . . . 76

A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric
for DNA Codes

Arkadii G. D’yachkov, Anthony J. Macula, Wendy K. Pogozelski,
Thomas E. Renz, Vyacheslav V. Rykov, David C. Torney . . . . . . . . . . . 90

DNA Extraction by XPCR
Giuditta Franco, Cinzia Giagulli, Carlo Laudanna,
Vincenzo Manca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Method of Error Suppression for Self-assembling DNA Tiles
Kenichi Fujibayashi, Satoshi Murata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Using Automated Reasoning Systems on Molecular Computing
Carmen Graciani Dı́az, Mario J. Pérez Jiménez . . . . . . . . . . . . . . . . . . . 128-

H.



VIII Table of Contents

Parallelism in Gene Assembly
Tero Harju, Chang Li, Ion Petre, Grzegorz Rozenberg . . . . . . . . . . . . . . 138

Splicing Systems for Universal Turing Machines
Tero Harju, Maurice Margenstern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Application of Mismatch Detection Methods in DNA Computing
Christiaan V. Henkel, Grzegorz Rozenberg, Herman P. Spaink . . . . . . . 159

Bond-Free Languages: Formalizations, Maximality and Construction
Methods

Lila Kari, Stavros Konstantinidis, Petr Sośık . . . . . . . . . . . . . . . . . . . . . . 169

Preventing Undesirable Bonds Between DNA Codewords
Lila Kari, Stavros Konstantinidis, Petr Sośık . . . . . . . . . . . . . . . . . . . . . . 182

Testing Structure Freeness of Regular Sets of Biomolecular Sequences
Satoshi Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Minimum Basin Algorithm: An Effective Analysis Technique for DNA
Energy Landscapes

Mitsuhiro Kubota, Masami Hagiya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Efficient Initial Pool Generation for Weighted Graph Problems Using
Parallel Overlap Assembly

Ji Youn Lee, Hee-Woong Lim, Suk-In Yoo, Byoung-Tak Zhang,
Tai Hyun Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Partial Words for DNA Coding
Peter Leupold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Accepting Hybrid Networks of Evolutionary Processors
Maurice Margenstern, Victor Mitrana, Mario J. Pérez-Jiménez . . . . . . 235

Building the Components for a Biomolecular Computer
Clint Morgan, Darko Stefanovic, Cristopher Moore,
Milan N. Stojanovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Methods for Manipulating DNA Molecules in a Micrometer Scale Using
Optical Techniques

Yusuke Ogura, Takashi Kawakami, Fumika Sumiyama, Satoru Irie,
Akira Suyama, Jun Tanida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

From Cells to Computers: Membrane Computing – A Quick Overview
Gheorghe Păun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



Table of Contents IX

The Capacity of DNA for Information Encoding
Vinhthuy Phan, Max H. Garzon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Compact Error-Resilient Computational DNA Tiling Assemblies
John H. Reif, Sudheer Sahu, Peng Yin . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Toward “Wet” Implementation of Genetic Algorithm for Protein
Engineering

Kensaku Sakamoto, Masayuki Yamamura, Hiroshi Someya . . . . . . . . . . 308

Programmable Control of Nucleation for Algorithmic Self-assembly
Rebecca Schulman, Erik Winfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

DNA Hybridization Catalysts and Catalyst Circuits
Georg Seelig, Bernard Yurke, Erik Winfree . . . . . . . . . . . . . . . . . . . . . . . . 329

Complexity of Self-assembled Shapes
David Soloveichik, Erik Winfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Aqueous Computing with DNA Hairpin-Based RAM
Naoto Takahashi, Atsushi Kameda, Masahito Yamamoto,
Azuma Ohuchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

A Programmable Molecular Computer in Microreactors
Danny van Noort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Combinatorial Aspects of Minimal DNA Expressions
Rudy van Vliet, Hendrik Jan Hoogeboom, Grzegorz Rozenberg . . . . . . . 375

A Design for Cellular Evolutionary Computation by Using Bacteria
Kenichi Wakabayashi, Masayuki Yamamura . . . . . . . . . . . . . . . . . . . . . . . 389

An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based
DNA Nanomachine

Hanwen Yan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Designs of Autonomous Unidirectional Walking DNA Devices
Peng Yin, Andrew J. Turberfield, John H. Reif . . . . . . . . . . . . . . . . . . . . 410

Design of an Autonomous DNA Nanomechanical Device Capable of
Universal Computation and Universal Translational Motion

Peng Yin, Andrew J. Turberfield, Sudheer Sahu, John H. Reif . . . . . . . 426

A Clocked DNA-Based Replicator
Bernard Yurke, David Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



X Table of Contents

A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern
Classifiers

Byoung-Tak Zhang, Ha-Young Jang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469



Computing by Observing Bio-systems:
The Case of Sticker Systems

Artiom Alhazov1,2 and Matteo Cavaliere3

1 Research Group on Mathematical Linguistics,
Rovira i Virgili University,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.es

2 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,

Str. Academiei 5, Chişinău, MD 2028, Moldova
artiom@math.md

3 Department of Computer Science and Artificial Intelligence,
University of Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
martew@inwind.it

Abstract. A very common approach in chemistry and biology is to ob-
serve the progress of an experiment, and take the result of this observa-
tion as the final output. Inspired by this, a new approach to computing,
called system/observer, was introduced in [3].

In this paper we apply this strategy to sticker systems, [8, 11]. In
particular we use finite automata (playing the role of observer) watching
the “evolution” of a sticker system and translating such “evolution” into
a readable output.

We show that this way of “computing by observing” brings us results
quite different from the ones obtained when considering sticker systems in
the standard manner. Even regular simple sticker systems (whose gen-
erative power is subregular) become universal when considered in this
new framework. The significance of these results for DNA computing
(by sticker systems) is briefly discussed.

1 Introduction: Observing Sticker Systems

A usual procedure in chemistry and biology is to observe the progress of an
experiment, taking the result of observation as the output. Inspired by this a
new approach to computing, called system/observer, has been introduced in [3].

There it was shown how a computing device can be constructed using two less
powerful systems: the first one, which is a mathematical model of a biological
system, “lives” (evolves), passing from one configuration to the next, producing
in this way a “behavior”; the second system, called “observer”, is placed outside
and watches the biological system. Following a set of specific rules the observer
translates the behavior of the underlying system into a “readable” output: it

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 A. Alhazov and M. Cavaliere

associates a label to each configuration of the bio-system and writes these labels
according to their chronological order onto an output tape; in this way the
pair composed by the biological system and the observer can be considered a
computing (generating) device, as described in Figure 1.

This idea recalls a discussion by G. Rozenberg and A. Salomaa in [12]. They
remarked that the result of a computation can be seen as already present in
nature: we only need to look (in an appropriate way) at it. In their case this
observation is made applying a (generalized) finite state sequential transducer to
the so-called twin-shuffle language, a language closely related to the structure of
DNA molecules. In our case the observer is applied not only to the final result,
but to the entire evolution of the system. In other words, in our architecture,
the computation is made by observing the full “life” of a biological system.

Until now, the system/observer architecture has been applied in different
frameworks; in the first work, [3], the evolution of a membrane system (a formal
model inspired by the functioning of the living cells) has been observed. In
that paper it has been shown how the system composed of a “not powerful”
membrane-system (with context-free power) and a finite state automaton in the
role of observer, is universal. This can be considered the first (surprising) “hint”
of the fact that computing by observing is a very powerful approach.

�� ��Output � Computing
Device

�
�

�
�

Sticker
System

�Observation

Observer

Fig. 1. Conceptual view of a sticker-system/observer architecture

In [5], a finite automaton observes the evolution of “marked” strings of a
splicing system (a formal system inspired by the recombination of DNA strands
that happens under the action of restriction enzymes). Also in this case, the
observation adds much power to the considered bio-system. In particular, it has
been shown that just observing the evolution of marked strings in a splicing
system (using finite axioms and rules) it is even possible to obtain non-recursive
languages (we recall that the generative power of this class of splicing systems,
considered in the standard way, is subregular).

Finally, a more general application of the system/observer framework has
been presented in [4]: the “evolution” of a grammar has been observed using a
finite automaton. In this case, the universality is obtained using a finite state
automaton observing a context-free grammar.

Here, we investigate observable sticker-systems, where the bio-system is a
sticker system.



Computing by Observing Bio-systems: The Case of Sticker Systems 3

The main reason for investigating sticker systems in the system/observer
framework comes from the fact that, using a recent lab-technique named FRET,
[9], it is possible, under biologically relevant conditions, to observe the dynamics
of a single molecule. Therefore we believe that it is extremely interesting to
investigate how much we can compute just by observing the evolution of DNA
molecules and sticker systems might represent an optimal way to formalize this
investigation.

Sticker systems were introduced in [8] as a formal model of the operation
of annealing (and ligation) operation that is largely used in DNA computing
area, since the successful experiment of L.M. Adleman in 1994, [1]. The basic
operation of a sticker system is the sticking operation that constructs double
stranded sequences out of “DNA dominoes” (polyominoes) that are sequences
with one or two sticky ends, or single stranded sequences, attaching to each other
by ligation and annealing.

The informal idea of an observable sticker system can be expressed in the
following way: an observer (for example, a microscope) is placed outside the
“test tube”, where (an unbounded number of copies of) DNA strands and DNA
dominoes are placed together. Some of these molecules are marked (for example,
with a fluorescent particle). The molecules in the solution will start to self-
assemble (to stick to each other) and, in this way, new molecules are obtained.
The observer watches the evolution of the marked molecules and stores such
evolution on an external tape in a chronological order.

For each possible “evolution” of the marked molecules a certain string is
obtained. Collecting all the possible “evolutions” of such marked strands we
obtain a language.

Many different variants of sticker systems can be considered, using different
kinds of dominoes and different restrictions on the sticking operation (see details
in [11]). In this paper we consider a very restricted and simple variant of sticker
system, whose power is subregular, and we show that, when we consider such
variant in the system/observer framework, then we get much more generative
power and even universality.

2 Formal Language Pre-requisites

In what follows we suppose the reader familiar with basic notions of formal
languages (as introduced, for instance, in [13]).

We will denote a finite set (the alphabet) by V , the set of words over V by
V ∗. For x ∈ V ∗, Pref(x) = {y ∈ V ∗ | x = yz2, z2 ∈ V ∗}, Suff(x) = {y ∈ V ∗ |
x = z1y, z1 ∈ V ∗} and Sub(x) = {y ∈ V ∗ | x = z1yz2, z1, z2 ∈ V ∗} are the sets
of all prefixes, suffixes and subwords of x, respectively.

A shuffle of words x1 ∈ T ∗
1 and x2 ∈ T ∗

2 (T1∩T2 = ∅) is a word y ∈ (T1∪T2)∗

such that hTi
(y) = xi, i ∈ {1, 2}, where hTi

are the projection morphisms:
hTi

(a) = a if a ∈ Ti and λ otherwise, for i ∈ {1, 2}.
By CF , CS, and RE we denote the classes of languages generated by context-

free, context-sensitive, and unrestricted grammars respectively.



4 A. Alhazov and M. Cavaliere

We shortly recall the basic notions of a conditional grammar used in the
following theorem (for more details the reader can consult [6]).

A (context-free) conditional grammar is a construct G = (N,T, P, S), where
N and T are nonterminal and terminal symbols, S is the axiom and P is a
finite set of rules of the form (A → α,R), where A ∈ N , α ∈ (N ∪ T )∗ and R
is a regular language over N ∪ T . We say that uAv ⇒ uαv if there is a rule
(A → α,R) ∈ P such that uAv ∈ R.

For every language L ∈ RE there exists a conditional grammar generating
L. Without restricting generality we can assume that the rules of the grammar
are binary (|α| ≤ 2 for every (A → α,R) ∈ P ).

3 Preliminaries: Sticker Systems

We recall the basic notions of sticker systems. As it was already mentioned in
the introduction, sticker systems can be considered a formal (language) model
inspired by the annealing and ligation operations. The basic idea is to have
initially DNA strands, called axioms, and dominoes that are DNA strands with
sticky ends. Starting from the axioms and iteratively using the operation of
sticking, complete double stranded sequences are obtained.

The collection of all the complete double stranded sequences obtained is the
language generated by the sticker system.

Consider a symmetric relation ρ ⊆ V × V over V (of complementarity).
Following [11], we associate with V the monoid V ∗ × V ∗ of pairs of strings.
Because it is intended to represent DNA molecules, we also write elements

(x1, x2) ∈ V ∗ × V ∗ in the form
(

x1

x2

)
and V ∗ × V ∗ as

(
V ∗

V ∗

)
. We denote by[

V
V

]
ρ

= {
[
a
b

]
| a, b ∈ V, (a, b) ∈ ρ} the set of complete double symbols, and

WKρ(V ) =
[
V
V

]∗
ρ

is the set of the complete double-stranded sequences (complete

molecules) also written as
[
x1

x2

]
, where x1 is the upper strand and x2 is the lower

strand.

As in [11], we use single strands – the elements of S(V ) =
(

λ
V ∗

)
∪
(

V ∗

λ

)
and

the molecules with (a possible) overhang on the right, which are the elements

of Rρ(V ) =
[
V
V

]∗
ρ

S(V ), from now on called well-started molecules (upper and

lower strand are defined as in the case of complete molecules).
Given a well started molecule u ∈ Rρ(V ) and a single strand v ∈ S(V ), we

recall in Figure 2 the partial operation µ : Rρ(V )×S(V ) −→ Rρ(V ) of sticking, as
defined in [11]. We point out that we use a case of sticking, restricted to pasting a
single strand to the right side of a well-started molecule (with a possible overhang
on the right), corresponding to the simple regular sticker systems. Furthermore,
we define length of a single strand



Computing by Observing Bio-systems: The Case of Sticker Systems 5

u v

u
v

u
v

u v

u
v

u v

Fig. 2. Sticking operation

u =
(

x
λ

)
(or u′ =

(
λ
x

)
) as |u| = |u′| = |x|, and for a finite H ⊆ S(V ) we say

length(H) = max{|u| | u ∈ H}.
A (simple regular) sticker system is a construct γ = (V, ρ,A,D), where A ⊆

Rρ(V ) is the (finite) set of axioms, and D ⊆ S(V ) is the (finite) set of dominoes
(in this case these are single strands). Given u,w ∈ Rρ(V ), we write u ⇒ w iff
w = µ(u, v) for some v ∈ D. A sequence (wi)1≤i≤k ⊆ Rρ(V ) is called a complete
computation if w1 ∈ A, wi ⇒ wi+1 for 1 ≤ i < k and wk ∈ WKρ(V ).

The language generated by a sticker system γ is the set of upper strands of all
complete molecules derived from the axioms. We remark the fact that the family
of languages generated by simple regular sticker systems is strictly included in
the family of regular languages (see [11] for the proof).

4 The Observer: Automata with Singular Output

For the observer (the “microscope”) as described in the introduction we need a
device mapping DNA molecules (also incomplete) into just one symbol.

For an alphabet V , our double-symbol alphabet constructed over V is

Vd =
[
V
V

]
ρ

∪
(

V
λ

)
∪
(

λ
V

)
.

Therefore, following the idea also used in [3], we define a variant of finite state
automata: the states are labeled by the symbols of the output alphabet Σ or
with λ. Any computation of the automaton produces as output the label of the
state it halts in (we are not interested in accepting computations and therefore
do not consider the final states); because the observation of a certain string
should always lead to a fixed result, we consider here only deterministic and
complete automata.

An automaton with a singular output reads a molecule (element of Rρ(V ))
and outputs one symbol. Every well-started molecule in Rρ(V ) ⊆ V ∗

d is read, in
a classical way, from left to right, scanning one double symbol from Vd at a time.

Formally, an automaton with singular output is a tuple O = (Z, Vd, Σ, z0, δ,
σ) with a state set Z, input alphabet Vd, initial state z0 ∈ Z, and a complete
transition function δ as known from conventional finite automata , that maps
elements of (Vd×Z) into Z. Furthermore, there is the output alphabet Σ and a
labeling function σ : Z −→ Σ ∪ {λ}.



6 A. Alhazov and M. Cavaliere

For a molecule w ∈ Rρ(V ) and an automaton O we write O(w) to indicate
such output; for a sequence w1, . . . , wn of n ≥ 1 of molecules in Rρ(V ) we write
O(w1, . . . , wn) for the string O(w1) · · ·O(wn). For simplicity, in what follows,
we present only the mapping defined by the observer without giving its real
implementation as a finite automaton.

Moreover, we will also want the observer to be able to reject some words.
To do this we simply choose a special symbol ⊥ �∈ Σ and an extended output
alphabet Σ⊥ = Σ∪{⊥}; σ then is a mapping from the set of states Z to Σ⊥∪{λ}.
If a “bad” (not of interest) molecule is observed, then ⊥ is produced and thus
the entire sequence is to be rejected (hence, the criterion of rejecting is exactly
the regular language, recognized by a finite automaton like O described above,
but without output and with a single final state ⊥). Then, using the intersection
with the set Σ∗, it is possible to filter out the strings which contain ⊥.

5 Observable Sticker Systems

An observable sticker system with output alphabet Σ is a construct φ = (γ,O),
where γ is the sticker system with alphabet V , and O is the observer with input
alphabet Vd constructed over V and with output alphabet Σ.

We denote the collection of all complete computations of φ by C(φ). The
language, over the output alphabet Σ, generated by an observable sticker system
φ, is defined as L(φ) = {O(s) | s ∈ C(φ)}. If we want to filter out the words that
contain the special symbol ⊥, then we consider the language L̂(φ) = L(φ)∩Σ∗.

Here is a simple example that illustrates how an observable sticker system
works. At the same time this example shows how one can construct an observ-
able sticker system generating a non regular language (despite the fact that the
power of simple regular sticker systems, when considered in the classical way, is
subregular). Consider the following observable sticker system φ = (γ,O):

γ = (V = {a, c,g, t}, ρ = {(a, t), (c,g), (t, a), (g, c)}, A = {
[
a
t

]
}, D),

D = {
(

a
λ

)
,

(
λ
t

)
,

(
c
λ

)
,

(
λ
g

)
},

with the observer O defined by the following mapping:

O(w) =


b, if w ∈

[
a
t

]∗(
a∗

λ

)
∪
(

λ
t∗

)
,

d, if w ∈
[
a
t

]∗(
a∗c
λ

)
∪
(

λ
t∗g

)
,

λ, otherwise.

The language generated by γ is L1 = {bmdn | m ≥ n,m ≥ 1, n ≥ 0} /∈ REG.
Below is an example of computation of φ (generating bbbbdd):



Computing by Observing Bio-systems: The Case of Sticker Systems 7

Step 0 1 2 3 4 5 6

Added
(

a
λ

) (
a
λ

) (
λ
t

) (
c
λ

) (
λ
t

) (
λ
g

)
Molecule a aa aaa aaa aaac aaac aaac

t t t t t t t t t t t t tg
Output b b b b d d λ

The idea of the system φ is the following: think of symbols c, g as “markers”.

While we stick to the current molecule either
(

a
λ

)
or
(

λ
t

)
, the observer maps the

result (a molecule without markers) to b. As soon as we attach to the current
molecule a marker, the observer maps the resulting molecule to d, until the
strand with a marker is extended or until the molecule is completed.

Suppose that, when the first marker is attached, the length of the strand with
that marker is l1, the length of the other strand is l2 (clearly, l1 > l2), and then
the output produced so far is bl1+l2−2d. To complete the molecule by extending
the strand without the marker, we need to attach l1 − l2 symbols to it, and in
this case the observer outputs dl1−l2−1λ. Thus, the resulting string x consists of
l1 + l2 − 2 b’s and l1 − l2 d’s. Since l2 ≥ 1, the difference between the number of
b’s and the number of d’s is l1 + l2 − 2− (l1 − l2) = 2l2 − 2 ≥ 0. (Recall that in
case we attach a symbol to a string with the marker, the observer only outputs
λ, so the inequality m = |x|b ≥ |x|d = n remains valid, and all the combinations
(m,n), m ≥ n are possible). Hence, L(γ) = L1.

6 Small Observable Sticker Systems

The previous example is a preliminary “hint” on how, observing a sticker sys-
tem, we can get more power with respect to the case when sticker systems are
considered in the classical way.

The idea of the previous example can be extended and it is possible to show
that there exist observable (simple regular) sticker systems, generating non-
context-free languages, even using dominoes of length 1. In other words, the
“simple” observation of the evolution of the sticker system permit us to “jump”
from a subclass of regular language to non-context-free languages.

Theorem 1. There exists an observable sticker system φ = (γ,O), γ = (V, ρ,A,
D), length(D) = 1 such that L(φ) /∈ CF .

Proof. Consider the following observable sticker system φ = (γ,O):

γ = (V = {a, b, c}, ρ = {(a, a), (b, b), (c, c)}, A = {
[
c
c

]
}, D),

D = {
(

a
λ

)
,

(
λ
a

)
,

(
b
λ

)
,

(
λ
b

)
,

(
c
λ

)
,

(
λ
c

)
}

with the observer O defined by the following mapping,



8 A. Alhazov and M. Cavaliere

H1 =
[
c
c

](
U∗a
λ

)
, H2 =

[
c
c

](
U∗b
λ

)
, H3 =

[
c
c

](
U∗c
λ

)
,

H4 =
[
cU∗a
cU∗a

](
U∗c
λ

)
, H5 =

[
cU∗b
cU∗b

](
U∗c
λ

)
, H6 =

[
cU∗c
cU∗c

]
O(w) = a if w ∈ H1 ∪H4, O(w) = b if w ∈ H2 ∪H5, O(w) = c if w ∈ H3 ∪H6,
O(w) = λ, otherwise. , U={a,b}

The language generated by γ is L2 =
⋃

x∈U∗

(
xc ·Pref(xc)∪Pref(x) ·Sub(xc)

)
.

Notice that L2 ∩ U∗cU∗c = {xcxc | x ∈ U∗} /∈ CF , and hence L2 /∈ CF .

The computation of the system starts from the axiom
[
c
c

]
(at this point we

can consider both strands “empty”), and pieces (“symbols”) from D can be
adjoined to the strands of the axiom during the computation. When a complete
molecule is obtained, the computation stops. To understand the explanation,
think of c as a marker.

While the marker is not added to the upper strand and the lower strand is
“empty” (for molecules of the form H1 or H2), the observer outputs, one by one,
the symbols added to the upper strand. After some symbol is added to the lower
strand, the symbols added to the upper strand are not output anymore (i.e., the
observer outputs λ).

As soon as the system adds c to the upper strand (for the molecules of the
form H4 or H5), the observer starts to output the symbols that are adjoined to
the lower strand.

If, at some step, a symbol is added to the upper (or lower) strand to the right
of the marker c, then, starting from such step, the observer will not produce any
input anymore.

We can distinguish three main cases in the way the system φ works. We can
get the string s = xcxc by first adding the symbols of xc to the upper strand until
the marker c is adjoined (letting the observer to output xc, symbol by symbol),
and then adding the symbols of xc to the lower strand (letting the observer to
output xc again). The observer cannot guarantee that, first the upper strand is
completed, and then the lower strand is completed. Therefore, strings different
from xcxc can also be generated.

The system φ can produce strings in the set xc·Pref(xc) in the following case:
suppose the upper strand is completed (obtaining cxc) and the lower strand is
being completed; before it finishes, a symbol might be added to the upper strand,
at the right of the marker c. Starting from this step the observer will output λ
until the computation halts.

On the other hand, the system φ can also generate strings in the set Pref(x)·
Sub(xc). The symbols corresponding to a prefix of x are added to the upper
strand (the observer produces Pref(x) as output of this phase). At some step,
some symbols (i.e., a prefix of xc) are added to the lower strand, and during this
phase the observer outputs λ. At some time the upper strand is completed and
c is added (during this phase no output is produced because the lower strand is
not empty).



Computing by Observing Bio-systems: The Case of Sticker Systems 9

Starting from a certain step, new symbols are added to the lower strand,
obtaining cxc. Because, during this phase, a symbol might be added at any step
to the right of the marker in the upper strand (thus stopping the output), the
string produced during this phase is in Sub(xc). Hence, the full output is in the
set Pref(x) ·Sub(xc). Therefore, the language generated by φ is exactly L2. �

7 Using an Observer with Rejection: Universality

After Theorem 1 it is natural to ask which is the class of sticker systems that is
universal when observed by a finite state automaton. Somehow expected, from
Theorem 2 to get universality we do not need “complicated” sticker systems but
simple regular sticker systems with dominoes of length at most 4 suffice. On
the other hand we need to use an observer that is able to discard any “bad”
evolution, as the one described in Section 4.

Theorem 2. For each L ∈ RE there exists an observable sticker system φ =
(γ,O), γ = (V, ρ,A,D), with length(D) ≤ 4 such that L̂(φ) = L

Proof. (sketch) For a given language L ∈ RE there exists a (binary) con-
ditional grammar G = (N,T, P, S), generating L. We use the following no-
tations: E,F,Z,M1,M2 are new symbols, U = N ∪ T ∪ {E,F,Z,M1,M2},
U ′ = {X ′ | X ∈ U}, U ′′ = {X ′′ | X ∈ U}, U ′′

0 = U ′′ − {M1,M2, E, F},
U1 = U ∪U ′−{M1,M2,M

′
1,M

′
2}, U2 = U ′′∪Lab(P )−{M ′′

1 ,M ′′
2 }. We associate

distinct labels to the productions in P , we write the set of all labels as Lab(P ).
For every rule (r : B → x) we define

cod(r) =


Z ′, if x = λ,
C ′, if x = C ∈ (N ∪ T ),
B′

1M
′
1M

′
2B

′
2, if x = B1B2 ∈ (N ∪ T )(N ∪ T ).

We construct the following observable sticker system φ = (γ,O):

γ = (V = U ∪ U ′ ∪ U ′′ ∪ Lab(P ), ρ, A = {
[

E
E′′

](
M1M2SM1M2E

λ

)
}, D),

ρ = {(X,X ′′), (X ′, X ′′), (X ′′, X), (X ′′, X ′) | X ∈ U}
∪ {(B, r), (r,B), (B′, r), (r′, B) | (r : B → x) ∈ P},

D = {
(

B
λ

)
,

(
B′

λ

)
,

(
λ

B′′

)
| B ∈ U} ∪ {

(
cod(r)

λ

)
,

(
λ
r

)
| r ∈ Lab(P )}.

We consider a morphism h : U ∪ U ′ → U defined for every x ∈ U as

h(x) = h(x′) =
{

λ, if x ∈ {M1,M2, Z},
x, otherwise.

To describe the observer, we define a set H of “molecule blocks” (representing
the sentential forms of G)



10 A. Alhazov and M. Cavaliere

H = {
[

x1E
x2E

′′

]
| ∃(r : B → x,R) ∈ P : h(x1) ∈ R,

x2 ∈ (M ′′
1 M ′′

2 (Lab(P ) ∪ U ′′
0 ))∗ ∩ U ′′∗rU ′′∗},

Finally, the mapping of observer O is given below.

O(w) =



λ, if w ∈
[

E
E′′

]
H∗

[
x1

x2

](
x3Ex4

λ

)
and

((Suff(Ex4), Suff(Ex1)) ∈ U1 × {M ′′
1 }

∪{M1,M
′
1} × {M ′′

1 } ∪ {M1,M
′
1} × {M ′′

2 }
∪{M2,M

′
2} × {M ′′

2 } ∪ {M2,M
′
2} × U2

∪{(X,X ′′) | X ∈ U − {M1,M2}
∪{(cod(r), r) | (r : B → x,R) ∈ P}},

t(X), if w ∈
[

E
E′′

]
H∗

[
x1X
x2

](
x3F
λ

)
and

x1Xx2 ∈ (U ∪ U ′ −N)∗,

λ, if w ∈
[

E
E′′

]
H∗

[
(U ∪ U ′ −N)∗F

(U ′′)∗F ′′

]
,

⊥, otherwise,

where t : U ∪ U ′ −→ T is a morphism defined as t(X) = λ if X /∈ T ∪ T ′

and t(X) = t(X ′) = X if X ∈ T . We now proceed to the explanations of the
construction above.

Simulating G. γ assembles the molecule representing the concatenation of
sentential forms of the derivation in G. Symbol by symbol, we copy the current
sentential form, applying some production once (copying or rewriting a symbol
takes six steps). O checks the regular condition, rejecting “incorrect” molecules.

Symbols used. In the concatenation of sentential forms, E represents the
separator; F marks the final one; Z represents erased symbols. M1 and M2 are
the spacers, used to synchronize the extension of the upper and lower strands.
Elements of N and T are symbols of G.

The union of all the above is denoted by U . In the upper strand, the symbols
in U are the ones copied from the previous sentential form and the symbols in
U ′ represent the result of rewriting some non terminal symbols in the previous
sentential form. In the lower strand, the symbols determine the future behavior:
those in U ′′ are to be copied, while the ones in Lab(P ) represent the production
to be applied.

Regular condition. A sentential form x is represented on the upper strand
by x (shuffled with Z∗, with some symbols primed), where each symbol is pre-
ceded by the spacers M1 and M2 (h is a morphism “recovering” x).

We call a “block” a double strand encoding a sentential form, as described
above. By H we denote the set of “good blocks”: the lower strand contains
exactly one symbol from Lab(P ) - one rewriting rule is applied; the upper strand
satisfies the regular condition, associated to this rule.



Computing by Observing Bio-systems: The Case of Sticker Systems 11

The sticker system. Extending the upper strand corresponds to writing a
new sentential form, while extending the lower one corresponds to reading the
current sentential form. The overhang of the current molecule represents the
unread part of the current sentential form together with already produced part
of the new one.

To the upper strand we can adjoin the symbols of U (if copied from the
previous sentential form), or codes of the right-hand sides of rules in G (defined
by the function cod). To the lower strand we add the symbols of U ′′ (for copying)
or the labels of the rules (for applying them).

The observer checks a few conditions, rejecting the result of the computa-
tion (by writing ⊥) if they are not satisfied.

The “correct evolution” assumes that the lower strand is extended first, and
a strand is never extended twice in a row before F is placed. So, the observer
requires that the spacers (from S1 = {M1,M

′
1}, from S2 = {M2,M

′
2}) and non-

spacers (from U1) alternate in the upper strand (of the form E(S1S2U1)∗({λ} ∪
S1 ∪ S1S2)); M ′′

1 , M ′′
2 and those from U2, respectively, in the lower strand. If

the synchronization fails, then the last symbols of the strands will either be in
S1 × U2, or in S2 × {M ′′

1 }, or in U1 × {M ′′
2 }, and the result is rejected.

After we “read” a symbol, we either copy it, or rewrite it by some production
in G. The observer checks that what we write in the upper strand corresponds
to what we read in the lower strand.

It is also the duty of the observer to check the correctness of the blocks: for
each non-final sentential form x exactly one rule of G is applied, and that x
respects the regular condition, associated to this rule.

When we arrive to the terminal sentential form, F is added to the upper
strand. Starting from this step, only the lower strand is extended, and the ob-
server outputs the result by applying the morphism t to the symbols being
complemented. �

The following example shows the technique used in the previous theorem.
Example. Consider a conditional grammar G = ({S}, {a}, {(r1 : S →

aS, Sa∗), (r2 : S → λ, a∗S)}, S), we illustrate the simulation of the derivation
S → aS → a. The observer outputs the symbol a in step 33, and λ in other
cases, halting at step 39.

Step 0 |2 |4 6 |8 |10 |12 |
Upper|E M1 M2 S M1 M2 E |M1 |M2 |a′ M′

1 M′
2 S′ |M1 |M2 |E |

Lower|E′′|M ′′
1 |M ′′

2 |r1|M ′′
1 |M ′′

2 |E′′|M ′′
1 |M ′′

2 |a′′|M ′′
1 |M ′′

2 |r2 |M ′′
1 |M ′′

2 |E′′|
Step |0 |1 |3 |5 |7 |9 |11 |13 |15 |17|19 |21 |23|25 |27 |29 |

Step |14 |16 |18|20 |22 |24 |26 |28 |30 |
Upper|M1 |M2 |a |M1 |M2 |Z′ |M1 |M2 |F |
Lower|M ′′

1 |M ′′
2 |a′′|M ′′

1 |M ′′
2 |Z ′′|M ′′

1 |M ′′
2 |F ′′|

Step |31 |32 |33|34 |35 |36 |37 |38 |39 |

Using theorem 2, the definition of L̂(φ) and the fact that recursive languages
are closed under intersection with regular languages, we get:



12 A. Alhazov and M. Cavaliere

Corollary 1. There exists an observable sticker system φ = (γ,O), γ = (V, ρ,A,
D), with length(D) ≤ 4 such that L(φ) is a non-recursive language.

In other words, also if we do not discard any evolution of the observed sticker
system then we still get something not recursive; that is really surprising because
intuitively the observer’s ability to reject bad evolution could seem a powerful
and essential feature to get something not “trivial”.

8 Concluding Remarks and Research Proposals

In this paper we have presented a new way to look at the generation of languages
in the framework of sticker systems. We have applied the system/observer ar-
chitecture, introduced in [3], to the sticker systems and, in particular, we have
introduced the class of observable sticker systems.

In an observable sticker system we have a simple regular sticker system and
an observer (i.e., a finite state automaton with singular output) that watches
the “evolution” of the molecule, producing as output a label at each step of the
computation. We have shown that the combination of a sticker system with an
observer can be very powerful even using simple components; in fact, “observing”
a simple regular sticker system with elementary (i.e., of length 1) dominoes it is
possible to obtain non context-free languages (the family of languages generated,
in the standard way, by such kind of sticker systems is subregular). If we use
a more “clever” observer, able to reject “bad” computations, then we get the
universality just using simple regular sticker systems with dominoes of length 4.

Such results have a clear significance for DNA computing. Sticker systems
are theoretical models of the annealing operation essentially used in many DNA
computing experiments, starting with the pioneering one of Adleman.

Simple regular simple systems - hence of the same kind as those correspond-
ing to the annealing operation from Adleman experiment - generate only regular
languages. Observing their evolution by other finite state devices leads, surpris-
ingly, to universality. Informally speaking, “simple” experiments, observed in a
clever manner by “simple” tools can thus compute whatever much more complex
processes can compute. This is particularly interesting if we think that there ex-
ist premises for observing the evolution of a (single) DNA molecule using the
already mentioned FRET technique.

Many problems have been left open: we have considered a very restricted (and
then interesting) kind of observable sticker systems, where the underlying sticker
system uses only dominoes of length 1: we do not know what is the lower bound
on the generative capacity of such class. Can we get all the regular languages?
We conjecture the answer is yes. Can every context-free language be generated?

Due to Corollary 1, we know that, also without rejecting any computation,
just observing simple sticker systems with dominoes of length 4, it is possible to
get non-recursive languages. Is it possible to get every RE language? A positive
answer to this question would be quite surprising. Moreover, can the length of
the dominoes used in Theorem 2 be decreased? (and then, what is the minimal



Computing by Observing Bio-systems: The Case of Sticker Systems 13

length to get universality?) We believe that other interesting results can be found
in this direction of research.

Acknowledgements. The first author is supported by the project TIC2002-
04220-C03-02 of the Research Group on Mathematical Linguistics, Tarragona.
The first author acknowledges IST-2001-32008 project “MolCoNet” and also
the Moldovan Research and Development Association (MRDA) and the U.S.
Civilian Research and Development Foundation (CRDF), Award No. MM2-3034
for providing a challenging and fruitful framework for cooperation.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science, 226, 1994, 1021–1024.

2. A.Alhazov, M.Caveliere, Computing by Observing Bio-Systems: the Case of Sticker
Systems. In: C. Ferretti, G. Mauri, C. Zandron (eds.) Preliminary Proceedings of
Tenth International Meeting on DNA Computing (DNA 10), University of Milano-
Bicocca, Milan, 2004, 324–333.

3. M. Cavaliere, P. Leupold, Evolution and Observation – a New Way to Look at
Membrane Systems. In: C. Mart̀ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa (eds.) Membrane Computing, Lecture Notes in Computer Science 2933,
Springer, 2004, 70–88.

4. M. Cavaliere, P. Leupold, Evolution and Observation - A Non-Standard Way to
Generate Formal Languages, Theoretical Computer Science, accepted.

5. M. Cavaliere, N. Jonoska, (Computing by) Observing Splicing Systems,
manuscript, 2004.

6. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, Heidelberg, 1989.

7. R. Freund, Bidirectional Sticker Systems and Representations of RE Languages by
Copy Languages, In: Gh. Păun (ed.) Computing with Bio-Molecules: Theory and
Experiments, Springer-Verlag, Singapore, 1998, 182–199.

8. L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing, sticker
systems, and universality, Acta Informatica, 35, 5 (1998), 401–420.

9. T. Ha, Single-Molecule Fluorescence Resonance Energy Transfer, Methods, 25,
2001, 78–86.

10. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

11. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing Para-
digms, Springer-Verlag, Berlin, 1998.

12. G. Rozenberg, A. Salomaa, Watson-Crick Complementarity, Universal Computa-
tions and Genetic Engineering, Technical Report 96-28, Dept. of Computer Science,
Leiden University, 1996.

13. A. Salomaa, Formal Languages, Academic Press, New York, 1973.



DNA-Based Computation Times

Yuliy Baryshnikov1, Ed Coffman2, and Petar Momčilović3

1 Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
2 Department of Electrical Engineering, Columbia University, New York, NY 10027

3 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract. Speed of computation and power consumption are the two main pa-
rameters of conventional computing devices implemented in microelectronic cir-
cuits. As performance of such devices approaches physical limits, new computing
paradigms are emerging. Two paradigms receiving great attention are quantum
and DNA-based molecular computing.

This paper focuses on DNA-based computing. This paradigm can be ab-
stracted to growth models where computational elements called tiles are self-
assembled one by one, subject to some simple hierarchical rules, to fill a given
template encoding a Boolean formula. While DNA-based computational devices
are known to be extremely energy efficient, little is known concerning the funda-
mental question of computation times. In particular, given a function, we study
the time required to determine its value for a given input. In the simplest in-
stance, the analysis has interesting connections with interacting particle systems
and variational problems.

1 Introduction

The elementary logic unit of DNA computing is the tile modeled as a marked or labeled
square. In the simplest version, the label values are 0 or 1, and they break down into
two input labels on one edge and two output labels on the opposite edge. A compu-
tational step consists of one tile bonding to others according to given rules that match
input labels of one tile to the output labels of one or two adjacent tiles.1 Successive
bonding of tiles performs a computation, e.g., the evaluation of a Boolean formula on
given inputs, in a self-assembly process guided by a template. The tiles are DNA-based
molecular structures moving randomly, in solution, and capable of functioning inde-
pendently and in parallel in the self-assembly process; the template is needed to prop-
erly structure the self-assembly, in particular to impose the sequential constraints on
self-assembly needed to produce the desired computation. In contrast to classical com-
puting paradigms, the random phenomena of self-assembly create a randomness in the
time required to perform a given computation. The research reported here characterizes
stochastic computing times within computational paradigms based on self assembly.

The notion of computing with tiling systems originated with Wang [1] over 40 years
ago, but the modern theory emerged within the last several years in the work of Win-

1 In the DNA lexicon, the notion of bonding is also commonly referred to as gluing, sticking, or
attaching.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 14–23, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



DNA-Based Computation Times 15

free [2], and Rothemund and Winfree [3]. The early theoretical work on general com-
putation focused chiefly on various measures of complexity, in particular, program-size
and time complexity [4, 3, 5], but Adleman et al [4, 6] investigated interesting combi-
natorial questions such as the minimum number of tile types needed for universality,
and stochastic optimization questions such as the choice of concentrations that leads to
minimum expected assembly times.

The analysis of random phenomena of self assembly has produced few results to
date. Adleman et al [7] inaugurated this line of research with an analysis of a baseline
linear model of a random self-assembly process. (See [8] for a variant of the linear
model.) Baryshnikov et al [9] extended the results to incremental self-assembly systems
in which structures grow only one tile at a time, and they introduced a novel control
mechanism for maximizing yield in reversible processes. The scale of tile systems in
the discrete setting is so large that, to date, the techniques of hydrodynamic limits have
shown the most promise. This is further illustrated in the studies of this paper.

To fix ideas, we describe the recently proposed techniques of Carbone and See-
man [10] in Section 2. The next section will then fit this scheme into the abstraction of
growth models. Section 3.1 studies computation times as the times to grow rectangular
constructs, then Section 3.2 generalizes our timing analysis to the growth of arbitrary
structures in two dimensions, and includes a model applicable to error correcting self
assembly.

2 DNA Computation of Boolean Formulas

A model for DNA-based computations was proposed in [10], and is illustrated in Fig-
ure 1 [10]. The template governing computations is a triangular array of nodes with i

nodes at level i, i ≥ 1. Physically, it may be viewed as an array of posts or nodes, called
pawns, glued to a metallic substrate. Boolean formulas in the form of trees are mapped
onto the template by suitably typing the nodes according to function. Such mappings
are not unique in general, but the choice of mapping is of no concern here.

As illustrated in Figure 1, the nodes are of four types: input nodes, where the tiles
representing the input are superimposed on the leaves of the tree; gate nodes, where

L

N

N N

I I I

N

*

*

II

NAND

NAND

NANDNAND

1 2 3 4 5
x x xxx

L R

R

Fig. 1. An example of a template and the Boolean formula it encodes [10]. Under the template of
labeled pawns one can see its vertical section. In this example four N-tiles are used for computa-
tion while ten tiles are needed in total (besides the input)



16 Y. Baryshnikov, E. Coffman, and P. Momčilović

tiles perform a gating function (the gates in Figure 3 are all NAND gates denoted by
N2; forwarding nodes, where information at a tile input is passed down to the diagonally
opposite output; and null nodes, denoted by *, where tiles perform no function at all
(these nodes are introduced in order to meet the technical requirement that all nodes of
the template be involved in the mapping)

The computation begins by pre-assembling the input tiles to the leaves of the tem-
plate. Next, the template is put in solution along with the tiles of the various types.
The template acts as a lower layer; in an upper layer, tiles then glue to the template by
self-assembly; sequential constraints of the hierarchy of gates are ensured by the fact
that a tile can bond only if it bonds to tiles at both of its inputs. Each time a gate tile
bonds, a Boolean operation is effectively performed. Attachment of the root tile signals
completion of the computation and carries the result in its output labels.

3 Growth Models

In a reference theory for self assembly, it is natural to take the times between successive
tile placements as independent, exponential random variables; for convenience, we take
the mean as the unit of time. As described, the tiling assemblies of the last section are
growth processes, although the computations themselves are processes of coalescence
which terminate in a single value at the root of the template. As we shall see, it is more
useful to focus on the equivalent growth times. In the abstraction introduced below, we
relate the times to grow (self-assemble) for constructs or patterns to classical theories
of particle processes; growth is again subject to rules analogous to those governing the
self-assembly process of the previous section.

In the next subsection we examine a computational template of a rectangular shape.
There we outline the basic ideas that will be used in the subsequent section to argue
about the speed of computation on templates having arbitrary shapes.

3.1 Rectangle Computation

Figure 2 (left) shows an example in which an initial set of tiles (input) is placed along
the two lines (white tiles), and growth proceeds outward in the positive quadrant: the
placement of a new tile is allowed only if there are already tiles to the left and below
the new tile’s position which match labels as before. The left-and-below constraint is
equivalent to requiring a newly added tile to bond at both of its input labels. In the
example of Figure 2, new tiles can be added only to the three “notches.” The eventual
output of the computation is represented by the dark tile which can be attached only
after all tiles to its left and below are in place. The tiles that perform computation, i.e.,
non-input and non-output tiles, are lightly colored in Figure 2.

An abstraction of this process operating in the positive lattice is shown on the right
in Figure 2. In this model, in which connections to well understood, cognate processes

2 Recall that a NAND gate with Boolean inputs x and y outputs the value 1 if and only if either
x or y or both have the value 0; and recall that any Boolean function can be implemented using
only NAND gates.



DNA-Based Computation Times 17

1 4

1

2

3

2 3 5

Fig. 2. Growth models of DNA-based computation. The actual process of self assembly (left) can
be equivalently represented as a growth process (right). There is a one-to-one correspondence
between tiles on the left and squares on the right. White tiles (squares) represent the input

are most easily seen, a new square can be added only in vacant positions having a square
both to the immediate left and immediately below the position. Only input squares can
lie along the coordinate axes, so under the placement constraint and any finite initial set
of squares, a growth process terminates in finite expected time in a rectangular shape.
For example, it is easy to see that, after 8 more tiles (squares) are added to the assembly
of Figure 2, a rectangular array results (including the (final) output tile). As in the left
figure, the result of the ”computation” is depicted by the dark square in the upper-right
corner. Clearly, there is a one-to-one mapping between the processes on the left and
right in Figure 2. In particular, the template shown in Figure 1 maps to a triangle.

The fundamental quantity of interest is the computation time, or equivalently, the
time until the final square (represented by the dark square in position (M, N) of Fig-
ure 2) is in place. We denote this random completion time by CM,N. Let Ti,j be the
time it takes for a tile to land at position (i, j) once the conditions are favorable; that is,
once both positions (i, j − 1) and (i − 1, j) are tiled. Recall that our basic assumption is
that the Ti,j’s are independent exponential random variables with unit means. Similarly,
by Ci,j we denote the time until the square (i, j) becomes occupied. Then the comple-
tion times can be written in terms of attachment times Ti,j by means of the following
recursion

Ci,j = max(Ci−1,j, Ci,j−1) + Ti,j,

with initial conditions Ci,1 = 0 and C1,j = 0 for 1 ≤ i ≤ M and 1 ≤ j ≤ N. The
recursion simply reflects the fact that a tile can be attached only if tiles to its left and
below are already in place. By unwinding the recursion one can write the completion
time as

CM,N = max
π: (1,1)→(M,N)

∑
(i,j)∈π

Ti,j,

where the maximum is taken over all paths π from (1, 1) to (M, N) consisting of seg-
ments going north or east only. We remark that the basic recursion formula above can
be thought of as an instance of an iterative multiplication of matrices in the so-called
max-plus algebra, also known as idempotent algebra (see [11, 12]). In this formulation,
the random values of interest, i.e., the completion times of a computation, are analogous
to the matrix elements of the product of a large number of large random matrices.



18 Y. Baryshnikov, E. Coffman, and P. Momčilović

Alternatively, CM,N is the time when the M-th particle and N-th hole exchange
positions in the totally asymmetric simple exclusion process (TASEP) on the integers
starting from the megajam configuration: the positions (integers) to the left of the origin
are all occupied by particles, and all positions to the right of the origin are empty. At
independent, unit-mean exponentially distributed times, particles attempt to move to the
right. A move actually occurs only if the adjacent position is a hole, i.e., is unoccupied.
We further exploit the correspondence between the TASEP process and the assembly
process on the plane in the next subsection.

Remarkably, the exact hydrodynamic-scale behavior of the TASEP process is known.
As the rectangular DNA computer becomes large, or equivalently, as N,M grow to in-
finity such that M/N tends to a positive constant, one has [13–p. 412]

lim
N→∞

CM,N

(
√

M +
√

N)2
= 1. (1)

The preceding formula quantifies the degree of parallelism in the computation. Con-
sider, for simplicity, a square template of size N×N. While the number of tiles is N2,
the computational time is linear in N since CN,N ≈ 4N for large N. Expression (1)
also allows one to estimate required attachment times given the template size and a
constraint on the computation time. For example, let the required computation time be
1 second and let the template consist of 103 × 103 = 106 tiles. Then, given that the
attachment times are i.i.d. exponential random variables their common mean needs to
be 1/(4 · 103) = 0.25 milliseconds.

We conclude this subsection with two observations. First, prior to the computation
the set of input tiles needs to be prefabricated. Potentially, the input can be linear in
N and, therefore, the prefabrication of the input might be the actual bottleneck of the
computation. Second, our analysis assumes that no errors occur in the process of com-
putation, i.e., a tile never bonds to an incorrect place on the template. While the main
trade-off in microelectronic circuits is between the speed of computation and power
consumption, it appears that in DNA-based computational devices it is between the
the speed of computation and the correctness of the output. In particular, higher speed
requires smaller attachment times, i.e., higher molecular mobility, which can result in
higher error rates.

3.2 Computation of Arbitrary Shapes

In this subsection we examine a DNA computation of an arbitrary shape, say λD ⊂
R2, such that some segments on the boundary of D correspond to the data, and some
to an output, or read-off region (see Figure 4; the input area is the bold line in the
southwest, and the output line can be seen in the northeast). We are interested in the
case when λ, the scale parameter, is large. In this regime, the number of tiles, and,
therefore, elementary logic operations in the DNA computer, is large. As in the previous
subsection, the computation is a sequence of attachments of tiles (subject to the left-
below condition) to the original template. Before addressing the computational time on
such a device, we describe an additional property of the TASEP process.

We focus on an unbounded template (lattice), such as the one in Figure 3, to which
tiles can be attached. Consider a profile of the self-assembly process as shown in Fig-



DNA-Based Computation Times 19

p

q

q

p

Fig. 3. Boundary of the tiled and untiled regions and its mapping to the particle process. In
this particular case p = q = 1/2. When the corresponding particle process is in steady state
(Bernoulli distribution of particles), the boundary moves to the right at a long-term average speed
of q (by symmetry, the vertical speed is p). The angle of the boundary remains the same

ure 3. The profile is the staircase created by the sequence of boundary tiles; these are
the dark tiles in Figure 3 that touch, either at a vertex or along a side, the untiled region.
Scan the profile from upper left to lower right in a sequence of steps, each being a move
left to right across the top of a tile at the boundary or down the right side of a tile at
the boundary . In this scan produce a sequence of 0’s and 1’s, a sample of the TASEP,
such that, at each step to the right a 0 is added to the sequence so far, and at each step
downward a 1 is added.

Suppose that at some time instant the boundary between the tiled and untiled regions
is a random set of tiles with parameter p ∈ (0, 1). That is, for every tile on the bound-
ary there exists a boundary tile under it with probability p independent of all other tile
positions. In this case the corresponding TASEP process has a Bernoulli distribution of
particles (ones). Since Bernoulli measure is invariant with respect to TASEP, one con-
cludes that the statistical shape of the boundary remains the same and that the boundary
moves to the right at a long-term average speed of q [14–Theorem 4.17] (by symmetry
the boundary moves upwards at a long-term average speed of p). Let v(x, y) be the
time needed for the boundary to reach point (x, y) (on the hydrodynamic scale). Given
that vx and vy are partial derivatives of v, the preceding implies that vx = q−1 and
vy = p−1 and, thus, since p + q = 1, one has

v−1
x + v−1

y = 1. (2)

Next, in the domain D, consider the function u(x, y), the hydrodynamic limit of
the propagation time from the input region on ∂D to a point (x, y). The claim is that
at a point where u is smooth (i.e., where u is continuously differentiable), function u

satisfies the following PDE (Hamilton-Jacobi equation):

H(ux, uy) := u−1
x + u−1

y − 1 = 0, (3)

where ux and uy are partial derivatives of u. To show that u satisfies this PDE, one
could approximate locally level lines of u by random lines described in this section



20 Y. Baryshnikov, E. Coffman, and P. Momčilović

and representing the (random) Bernoulli configuration with an appropriately chosen
parameter p to match the local slope of the level curve of u. The propagation speed
for such initial configurations is given by (2) and a straightforward coupling argument
implies that u satisfies the Hamilton-Jacobi equation locally.

The classic theory, as it relates to variational problems and partial differential equa-
tions of first order (see, e.g. [15–Section 9.46]), implies that any function which locally
solves H(ux, uy) = 0 can be represented also as the extremal action function extrem-
izing the following functional ∫

L

(
dξ

dz
,

dη

dz

)
dz,

where L is the Legendre dual to H, i.e.,

L(x, y) = inf
(ξ,η): H(ξ,η)=0

(xξ + yη).

Evaluating the infimum for the particular choice of H(ξ, η) = ξ−1 + η−1 − 1 (see (3)),
one obtains

L(x, y) = x

√
x +

√
y√

x
+ y

√
x +

√
y

√
y

= (
√

x +
√

y)2.

The computation above sketches the following result expressing the computational
time in terms of a variational problem:

Theorem 1 The time CλD required to complete computation on a DNA computer of
shape λD is given by

lim
λ→∞ λ−1CλD = sup

γ

∫ (√
dξ

dz
+

√
dη

dz

)2

dz, (4)

where the supremum is taken over all piece-wise smooth increasing curves γ = (ξ(z),
∈ D, 0 ≤ z ≤ 1, starting at the input region and ending at the output region of D.

Remark 1. It is easy to prove that the parts of the extremals in the interior of D are
straight-line segments; see Figure 4 for examples.

Remark 2. The construction of the function L implies that the functional (4) is parametri-
tion invariant. That is, it depends only on the trajectory {γ(z)}0≤z≤1.

Remark 3. An essential element of the proof is a coupling between the “linear” problem
(as represented by the random ragged line on 3) and the original configuration (say, the
complement to the first quadrant in Fig. 2). This coupling has the property that the
ordering of the configurations by inclusion persists: if S1(0) ⊂ S2(0), then S1(t) ⊂
S2(t) for all t > 0.

.

η(z))

za



DNA-Based Computation Times 21

Fig. 4. Two examples of 2D DNA-based computational devices. The one on the right corresponds
to the one proposed in [10]. A few piece-wise linear paths from the input areas to the output areas
are shown. The paths that determine the computational times (maximize the integral in (4)) are
shown with solid lines

In the context of the error-correcting computations, alluded to earlier, the following
model plays a fundamental role: it is again a Markov chain with configurations being
order ideals on the discrete plane; this time, however, a tile T is allowed to depart if it is
attached to only 2 other tiles (necessarily, below and to the left of T ). Again, we assume
independence of all ad- and absorbing events, as long as they are admissible. The rates
of departures we assume to be ρ < 1. In this model, growth is clearly not monotonic.
On the other hand, one can again map this model into the ASEP, the asymmetric simple
exclusion process, whose only difference from TASEP is, predictably, the ability of
particles to jump to the left (with rate ρ), if the corresponding site is vacant. Again, the
coupling mentioned above can be constructed, yielding the following generalization of
Theorem 1 (notations are preserved):

Theorem 2 The time EλD,ρ required to complete computation on a DNA computer of
shape λD with tiles arriving at unit rate and departing at rate ρ is given by

lim
λ→∞ λ−1EλD,ρ =

1

1 − ρ
sup
γ

∫ (√
dξ

dz
+

√
dη

dz

)2

dz. (5)

4 Concluding Remarks

This result allows one to determine the hydrodynamic limits of the computation times
for 2D DNA-based logical devices. The fluctuations around the hydrodynamic scaling
can in fact be estimated. In the particular situation of homogeneous attachment rates,
these fluctuations can be studied using combinatorial methods and the powerful ma-
chinery of Riemann-Hilbert problems [16, 17]. In more general settings, less precise
yet more robust methods are applicable (see, e.g. [18]).

Next we discuss the case when attachment times are not identically distributed ex-
ponential random variables, i.e., attachment rates are nonhomogeneous and/or non-
Markovian. In such a case, coupling methods ([19]) allow one to prove once again a

.



22 Y. Baryshnikov, E. Coffman, and P. Momčilović

convergence of the computation-time function u, in the hydrodynamic scaling, to a
solution of a homogeneous first order PDE. However, recovering the exact structure
of the PDE appears to be out of reach. Nevertheless, the Markovian setting allows
one to bound the corresponding Hamiltonian H if the random attachment times can
be bounded by exponential variables. These bounds can also be used, evidently, to put
some a priori bounds on the solutions of the PDE. In general, in the hydrodynamic
limit, the computation time could be expressed as the extremal value of the following
functional ∫

L

(
ξ, η,

dξ

dz
,

dη

dz

)
dz.

Although the analytic form of L might not be known, the functional can, in principle,
be estimated by simulation. In Figure 5 we show simulation results for two attachment
times.

0  0.2 0.4 0.6 0.8 1  
0  

0.2

0.4

0.6

0.8

1  

(x1/2+y1/2)2 = 1

A 

B 

Fig. 5. Estimated forms of the curve L = 1 when attachment rates are not exponential random
variables. Attachment times are equal in distribution to [(1+α)1{B=0} +(1−α)1{B=1} ]T , where
B is Bernoulli with parameter 1/2 and T is exponential of unit mean. The parameter α is set to
0.5 (A) and 0.9 (B). The curve (

√
x +

√
y)2 = 1 shown with the dashed line corresponds to the

case of homogeneous attachment times (α = 0)

We point out that there is a clear analogy with geometric optics, since we look for
the extremals of a Lagrangian that is homogeneous, and of degree-1 in velocities. The
space in which the extremals are being sought consists of all (piece-wise linear) curves
connecting boundary manifolds. The term reverse-optic law serves as a mnemonic for
remembering the expression for computation times. In particular, when considering the
computation of a single bit one has:

DNA computing sup
∫(√

∂ξ
∂z +

√
∂η
∂z

)2

dz

Geometric optics inf
∫√(

∂ξ
∂z

)2
+
(

∂η
∂z

)2

dz



DNA-Based Computation Times 23

Finally, we note that the idea of using max-plus algebra in software and hardware
design appeared earlier (see [11, 12] and references therein). However, the extension of
this circle of ideas to the case of stochastic local propagation, crucial for the analysis of
DNA computations, is, to our knowledge, new.

References

1. Wang, H.: Proving theorems by pattern recognition, II. Bell System Technical Journal 40
(1961) 1–42

2. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Tech-
nology, Pasadena, CA (1998)

3. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In:
Proc. ACM Symp. Th. Comput. (2001) 459–468

4. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-
assembled squares. In: Proc. ACM Symp. Th. Comput. (2001) 740–748

5. Winfree, E.: Complexity of restricted and unrestricted models of molecular computation. In
Lipton, R., Baum, E., eds.: DNA Based Computing. Am. Math. Soc., Providence, RI (1996)
199–219

6. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espanés, P.M., Rothemund,
P.: Combinatorial optimization problems in self-assembly. In: Proc. ACM Symp. Th. Com-
put., Montreal, Canada (2002) 23–32

7. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Wasserman, H.: Linear self-assemblies:
Equilibria, entropy, and convergence rates. In Elaydi, Ladas, Aulbach, eds.: New progress in
difference equations. (Taylor and Francis, London (to appear))

8. Baryshnikov, Y., Coffman, E., Winkler, P.: Linear self-assembly and random disjoint edge
selection. Technical Report 03-1000, Electrical Engineering Dept., Columbia University
(2004)

9. Baryshnikov, Y., Coffman, E., Momčilović, P.: Incremental self-assembly in the fluid limit.
In: Proc. 38th Ann. Conf. Inf. Sys. Sci., Princeton, NJ (2004)

10. Carbone, A., Seeman, N.: Circuits and programmable self-assembling DNA structures. Proc.
Natl. Acad. Sci. USA 99 (2002) 12577–12582

11. Litvinov, G., Maslov, V.: The correspondence principle for idempotent calculus and some
computer applications. In: Idempotency (Bristol, 1994). Volume 11 of Publ. Newton Inst.
Cambridge Univ. Press, Cambridge (1998) 420–443

12. Gunawardena, J.: An introduction to idempotency. In: Idempotency (Bristol, 1994). Vol-
ume 11 of Publ. Newton Inst. Cambridge Univ. Press, Cambridge (1998) 1–49

13. Liggett, T.: Interacting Particle Systems. Springer-Verlag, New York (1985)
14. Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.

Springer, Berlin (1999)
15. Arnol ′d, V.: Mathematical methods of classical mechanics. Volume 60 of Graduate Texts in

Mathematics. Springer-Verlag, New York (1997) Translated from the 1974 Russian original
by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition.

16. Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000)
437–476

17. O’Connell, N.: Random matrices, non-colliding processes and queues. In: Seminaire de
Probabilites XXXVI. Volume 1801 of Lecture Notes in Math. Springer, Berlin (2003) 165–
182

18. Talagrand, M.: A new look at independence. Ann. Probab. 23 (1996) 1–37
19. Kozlov, S.M.: The method of averaging and walks in inhomogeneous environments. Russ.

Math. Surv. 40 (1985) 73–145 Translation from Usp. Mat. Nauk 40 (1985) 61-120.



Computing Beyond the Turing Limit
Using the H Systems

Cezar Câmpeanu1,� and Andrei Păun2,�

1 Department of Computer Science and Information Technology,
University of Prince Edward Island,

Charlottetown, P.E.I., Canada C1A 4P3
ccampeanu@upei.ca

2 Department of Computer Science,
College of Engineering and Science,

Louisiana Tech University, Ruston, P.O. Box 10348,
Louisiana, LA-71272 USA

apaun@latech.edu

Abstract. We introduce a new variant of the heavily studied model of
H systems. The new variant will use an external factor to determine the
set of the active splicing rules. We improve the best known universality
result for time-varying H systems with respect to the diameter of such
a system and we prove that if the function recording the behavior of
the external factor is uncomputable so is the newly defined model, thus
exceeding the Turing barrier. We also construct an universal system that
is also more powerful than the Turing Machines.

1 Introduction

For more than half a century the Turing machine model of computation was used
to define what it means to “compute” or ‘to be “computable”, notions which are
the foundations of the modern theory of computing. In the last few years several
researchers have started to look “beyond Turing”, i.e., trying to find models of
computation that would be able to compute more than a Turing machine (see
[1], [3], [4], [15]). This is a very important endeavor, since it means that once
such model finds its implementation we would have a computer more powerful
than any silicon computer as we know them today. One might argue that this
is not possible, and we would like to point out that the speed of our current
computers is many times higher than the speed of the biological systems (our
brain, as an example), and still we can perform much better/accurate pattern
matching than computers.

This observation was the starting point of our work and we will present a
model that is capable to compute non-Turing computable languages. The pro-

� The first author is supported by NSERC grant UPEI-600089 and the second author
is supported by a LATECH-CenIT grant.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 24–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Computing Beyond the Turing Limit Using the H Systems 25

posed model is based on the H systems theory, but it will also take in consider-
ation the environment of the system (an idea borrowed from the P systems in
which the environment plays a vital role in the computation). None of the mod-
els known so far in the area of H systems try to deal with the computing power
over Turing computability, therefore, we think it is of real interest to design a
system able to compute languages beyond Turing’s limit in this framework.

The reason for doing so is that in real life we can see that many phenom-
ena cannot be explained, mostly because real life systems are not isolated, but
they interact with the outside world. Temperature, light, radiation, or simply
substance contamination can influence the chemical reactions necessary to re-
combine DNA strands. An uncontrolled chemical reaction may happen in a nor-
mal body when cancerous cells may develop. This kind of reactions are mostly
dependent on external factors. For example, to keep a temperature constant is
a very difficult task for real life systems, since they need very good insulation.
Variation of temperature can speed up or slow down chemical reactions and
sometimes temperature can behave like an activator/inhibitor for some reac-
tions. Therefore, it is natural to consider systems where an external factor like
temperature can influence DNA splicing.

For an H-system this means we have to add a function τ depending on
time, and this function will decide what sets of splicing rules can or cannot
be applied at some moment. Hence, the appropriate model for simulating this
behavior is a time varying H system where the rules are not applied periodi-
cally, but depending on the external conditions, i.e., depending on the value of
function τ . Without restricting the generality, we can consider τ as a function
from IN to {1, . . . , n}, where n is the number of sets of rules that can be acti-
vated/deactivated. So, at the moment t, we can consider that only the τ(t) set
of rules can be used.

Hence, we have a new model of τ -time varying H systems. Some natural
questions will arise:

1. Can this model be universal? In other words, can we reach the computational
power of Turing Machines or other equivalent devices?

2. Is the power of this systems limited to Turing machines? Is the function τ
able to add more power to these machines?

In this paper we prove that we can construct an universal system influenced
by the temperature and moreover, the computational power will exceed the one
of Turing machines in the case that τ is an uncomputable function.

We also improve the best known result for the “usual” time-varying H systems
in terms of their diameter/radius of their splicing rules in an effort to bring these
systems more closely to an actual implementation. The diameter of the splicing
rules is important since the restriction enzymes (that are modeled by a splicing
rule) recognize usually small sites on the DNA strand; having arbitrary alphabets
in our systems means actually that groups of nucleotides would have to codify
one single letter. So, it is clear that there is a significant difference between
splicing rules of diameter (3,2,2,2) and (4,5,4,4). Assuming that the alphabet of
the system is 10 letters long, then each letter has to be codified with at least 2



26 C. Câmpeanu and A. Păun

nucleotides, making the site recognized by the restriction enzyme modeling the
first half of the splicing rule of size 10 for diameter (3,2,2,2) or 18 for diameter
(4,5,4,4).

2 Definitions

Let V be an alphabet and #, $ two symbols not in V . A splicing rule over V is
a string of the form r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗ (V ∗ is the free
monoid generated by V ; the empty string is denoted by λ; for formal language
details we refer to [14]).

For x, y, w, z ∈ V ∗ and r as above, we write

(x, y) �r (w, z) if and only if x = x1u1u2x2, y = y1u3u4y2,

w = x1u1u4y2, z = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

A pair σ = (V,R), where V is an alphabet and R is a set of splicing rules, is
called an H scheme.

For an H scheme σ = (V,R) and a language L ⊆ V ∗, we define:

σ(L) = {w ∈ V ∗ | (x, y) �r (w, z) or (x, y) �r (z, w), for some x, y ∈ L, r ∈ R}.

A periodically time-varying H system (of degree n, n ≥ 1) is a construct

Γ = (V, T,A,R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V (terminal alphabet), A is a finite subset of V ∗

(axioms), and Ri are finite sets of splicing rules over V, 1 ≤ i ≤ n.
Each set Ri, 1 ≤ i ≤ n, is called a component of Γ .
At each moment k = n · j + i, j ≥ 0, 1 ≤ i ≤ n, the component Ri is used for

splicing the currently available strings. Formally, we define

L0 = A, Lk = σi(Lk−1), for i ≡ k(mod n), k ≥ 1, where σi = (V,Ri), 1 ≤ i ≤ n.

The language generated by Γ is defined by L(Γ ) = (
⋃

k≥0 Lk) ∩ T ∗.
One of the aims of this paper is to consider a precise estimation of the size of

the splicing rules in a time-varying H system, in the sense of [12]. Namely, for a
system Γ = (V, T,A,R1, R2, . . . , Rn) we define dia(Γ ) = (n1, n2, n3, n4), where
ni = max{|ui| | u1#u2$u3#u4 ∈ Rj , 1 ≤ j ≤ n}, 1 ≤ i ≤ 4. We say that dia(Γ )
is the diameter of Γ .

The family of languages generated by time-varying H systems with at most
n components having the diameter less than or equal to (n1, n2, n3, n4), ni ≥ 0,
1 ≤ i ≤ 4, is denoted by TV Hn(n1, n2, n3, n4) (the vector ordering is the natural
componentwise one). The family of languages generated by time-varying H sys-
tems with at most n components, n ≥ 1, and of an arbitrary diameter is denoted
by TV Hn. By RE we denote the family of recursively enumerable languages (for
definitions and properties of the RE sets, see [5]).



Computing Beyond the Turing Limit Using the H Systems 27

As we have already mentioned, we consider an external factor recorded by
a function τ that will influence the work of the system. Without loosing the
generality, we may assume that this external factor is the temperature. We will
consider in the current paper a new variant of the H systems, namely time-
varying H systems with temperature; we assume that in the system there are
n sets of splicing rules, each set being activated/deactivated by the temper-
ature of the environment. To model the temperature activation/deactivation,
we will associate with each such system a number from [0,1] written in base
n. The number’s representation will be 0.n1n2n3..., where 0 ≤ n1, n2, n3, ... ≤
n − 1 and will signify that at moment i the active rules are the ones from
Rni+1.

In the following we will study the generating power of this model.
We will consider several cases:

a) the temperature is constant (only one group of rules is continuously acti-
vated, e.g., 0.44444444. . . );

b) after finitely many steps the temperature becomes constant (there will be
several steps when the temperature varies, but after some moment the temper-
ature remains the same, e.g., 0.12543621542222222222222. . . );

c) the temperature is periodic (e.g., there is a smallest “period” through which
the temperature varies, and then becomes as before, e.g., 0.12341234123412. . . );

d) after a while the temperature is periodic,
e.g., 0.43726488472987659876598765. . . ;

e) the temperature has no period, but it is computable,
e.g.,Π−3=0.14159265358979323846264338327950288419716939937510582097. . . .

We will prove now that in the cases a) through e) one cannot go beyond Turing
limit. It was proved that TV H1 = RE in [8], thus there is a TM that will simulate
the work of each possible H system. One can construct for each of the cases a)
through e) a Turing machine that generates each of those temperatures (each of
these cases has the temperature codified as a computable number, so there is for
each of them a Turing machine to generate it). One can easily construct now a
Turing machine that has as input the codification of the H system and also the
codification of the Turing machine generating the temperature and simulate the
work of the two machines.
Let us introduce now the interesting case which will be studied in the Section 4:

f) the temperature has no period and it is an uncomputable number;
example: Chaitin’s Ω constant (see, for example, [2]).

Since temperature is an unknown variable, τ varying in time it can be rep-
resented as a function on IN with values in IN ∩ [0, n − 1]. Therefore, τ behaves
like an oracle allowing rules Rτ(t) to be applied at moment t.

The family of languages generated by temperature time-varying H systems
with at most n components, where n is greater than one, is denoted by τ −
TTV Hn. By τ − RE we denote the family of τ -recursively enumerable lan-
guages [5].



28 C. Câmpeanu and A. Păun

3 Universality Results

In [13] (Theorem 10.8) it is proved that RE = TV Hn, for all n ≥ 7. From
the proof, one can see that, in fact, we have RE = TV H7(2, 3, 2, 3). This
was improved in both the number of components and the diameter in [11]:
TV Hn(2, 1, 1, 1) = TV Hn(1, 2, 1, 1) = TV Hn(1, 1, 2, 1) = TV Hn(1, 1, 1, 2) =
RE, n ≥ 4.. This result is the best one considering only the diameter of the
system. Great effort went into diminishing the number of components in such a
system and recently it was shown that such H systems with only two components
are universal [9], and the current best results (in terms of the number of com-
ponents) is that one component is enough for universality, [10], [8], [7]. The last
two proofs mentioned above have constructions with a diameter of (4,3,4,4) and
(4,5,4,4), respectively. We improve here these results by decreasing the diameter
of an universal time-varying H system to (3,2,2,2), or (2,3,2,2), or (2,2,3,2), or
(2,2,2,3). For our proof we use the universality of type-0 grammars (the previous
two proofs were simulating Turing Machines and Tag systems); we think that
the grammars are a closer model to the H systems than the Turing Machines
and the Tag systems, this being one of the reasons why the diameter could be
reduced significantly with respect to the previous constructions. As a secondary
note, we would like to point out that most of the universality proofs in this area
are simulating grammars, rather than directly the Turing Machines so, other
proof techniques could be combined to the current proof if needed.

First, we give an auxiliary result, which will simplify the subsequent investi-
gations.

Lemma 1. TV Hn(n1, n2, n3, n4) = TV Hn(n3, n4, n1, n2), for all n ≥ 1 and all
ni ≥ 0, 1 ≤ i ≤ 4.

Proof. Consider a time-varying H system Γ = (V, T,A,R1, . . . , Rn) and con-
struct the system Γ ′ = (V, T,A,R′

1, . . . , R
′
n) with

R′
i = {u3#u4$u1#u2 | u1#u2$u3#u4 ∈ Ri}, 1 ≤ i ≤ n.

Because (x, y) �r (w, z) by r = u1#u2$u3#u4 if and only if (y, x) �r′ (z, w) by
r′ = u3#u4$u1#u2, we obtain L(Γ ) = L(Γ ′). Clearly, if dia(Γ ) = (n1, n2, n3, n4),
then dia(Γ ′) = (n3, n4, n1, n2). ��

We pass now the main result of this section:

Theorem 1. RE = TV H1(3, 2, 2, 2) = TV H1(2, 2, 3, 2).
And also RE = TV H1(2, 3, 2, 2) = TV H1(2, 2, 2, 3).

Proof. Consider a type-0 grammar G = (N,T, S, P ) in Kuroda normal form,
that is, with the rules in P of the forms B → x,B → DE,BC → DE, for
B,C,D,E ∈ N , x ∈ T ∪ {λ}.

Let P1 be the set of context-free rules in P and P2 be the set of non-context-
free rules in P . We denote the rules in P1 by j : uj → vj , for 1 ≤ j ≤ m, and the



Computing Beyond the Turing Limit Using the H Systems 29

rules in P2 by j : uj → vj , for m + 1 ≤ j ≤ l. Note that |uj | = 1 for 1 ≤ j ≤ m,
and |uj | = 2 for m + 1 ≤ j ≤ l.

We construct the time-varying H system Γ = (V, T,A,R1), with

V = N ∪ T ∪ {X,Y, F, Z} ∪ {Xi, Yi | 1 ≤ i ≤ l},
A = {XSY,ZF} ∪ {XixYi | 1 ≤ i ≤ m, i : B → x ∈ P1, x ∈ T}
∪ {XixYi | 1 ≤ i ≤ m, i : B → DE ∈ P1, D,E ∈ N}
∪ {XiDEYi | m + 1 ≤ i ≤ l, i : BC → DE ∈ P2, D,E ∈ N},

R1 = {α1#Bα2$Xi#xYi, α1x#Yi$XiB#α2 | i : B→x ∈P1, α1 ∈ N ∪ T∪{X},
α2 ∈ N ∪ T ∪ {Y }, B ∈ N, x ∈ T ∪ {λ}}

∪ {α1#Bα2$Xi#DE, α1DE#Yi$XiB#α2 | i : B → DE ∈ P1,

α1 ∈ N ∪ T ∪ {X}, α2 ∈ N ∪ T ∪ {Y }, B,D,E ∈ N}
∪ {α1#BC$Xi#DE, α1DE#Yi$BC#α2 | i : BC → DE ∈ P2,

α1 ∈ N ∪ T ∪ {X}, α2 ∈ N ∪ T ∪ {Y }, B,C,D,E ∈ N}
∪ {Z#F$α#Y, #ZY $X#β, XZY #$α#F | α, β ∈ T} ∪ {Z#F$Z#F}
∪ {Xi#α1$Xi#α1 | 1 ≤ i≤ m, i : B→α1α2, α1∈N ∪ T, α2 ∈N∪{λ}, B∈N}
∪ {Xi#Yi$Xi#Yi | 1 ≤ i ≤ m, i : B → λ, B ∈ N}
∪ {Xi#DE$Xi#DE | m + 1 ≤ i ≤ l, i : BC → DE∈P2, B,C,D,E ∈ N},

One can easily see that Γ has the diameter (3, 2, 2, 2). We will prove in the
following that the constructed time varying H system Γ has the same language
as the grammar G; i.e., L(Γ ) = L(G).

We first prove that the time-varying H system is capable of generating all
the words that are generated by the grammar G; i.e., L(G) ⊆ L(Γ ). The work
of the system is done in two phases: the first phase is simulating the productions
from the grammar and the second phase is actually producing the word in the
language of L(Γ ) by removing the special markers from the current word.

We start with a “main” axiom, XSY , in fact we have only the start symbol
from the grammar G between two special markers X, and Y which mark the
start and the end of the word. We will replace S with other nonterminal and/or
terminal symbols according to the productions in the grammar G. At some point
we choose (nondeterministically) that the current word that appears between X
and Y is terminal, which means that by removing from that word the special
markers X, Y we generate a word in the language of the H system. This is done
by the rules Z#F$α#Y, #ZY $X#β, XZY #$α#F which compose actually
the phase two of our simulation, but let us focus on the first phase, the simulation
of the grammar productions.

The rules from P1 are simulated in the following way: let us assume that
the current sentential form is XwY , where w is a word over N ∪ T and it
contains the symbol B ∈ N for which we have the rule in the grammar G:
k : B → x, x ∈ T ∪ {λ}. We have the axiom XkxYk present initially in the sys-
tem, and because of the rule Xk#x$Xk#x present in the set of rules it is clear



30 C. Câmpeanu and A. Păun

that the aforementioned axiom “survives” through all the steps of the computa-
tion, so it is available for splicing with the main word using the following rule:
rk : α1#Bα2$Xk#xYk. This will produce in one step (Xw1|Bw2Y,Xk|xYk) �rk

(Xw1xYk, XkBw2Y ), where w = w1Bw2. At the next step in the computation
we can apply to these two strings the rule r′k : α1x#Yk$XkB#α2, which will pro-
duce (Xw1x|Yk, XkB|w2Y ) �r′

k
(Xw1xw2Y,XkBYk). At this moment we have

correctly simulated the rule k : B → x from G producing the word Xw1xw2Y
and the “by-product” XkBYk. The simulation of a rule k : B → DE follows the
same path, the only difference is that in the splicing rules the right marker from
the axiom (Yk) is not appearing, in this way the diameter of the system could
be kept to a low value.

We are now looking at the way the rules from P2 (k : BC → DE) are
simulated. Also this process is done in two steps as before, the first splicing
is using the rule rk : α1#BC$Xk#DE to splice together the main string and
the axiom XkDEYk: (Xw1|BCw2Y,Xk|DEYk) �rk

(Xw1DEYk, XkBCw2Y ).
The second splicing is done according to the rule r′k : α1DE#Yk$BC#α2 and
produces the strings Xw1DEw2Y and XkBCYk. It is easy to see now that all
the rules from the grammar G are simulated by the H system in this manner.

The last step of the simulation is to remove the special markers X and
Y from the “main DNA strand” in the system. This is done by the rules:
Z#F$α#Y, #ZY $X#β, XZY #$α#F which first replace Y by an F . After
this, we produce the word ZY , which is able to remove X from the main word
and, then, XZY (that is just produced by the last splicing) is able to remove
also F from the word. In this way we generate a word in the language of the
L(Γ ) if all the symbols in the main word are terminal at this moment.

We have shown so far the relation L(G) ⊆ L(Γ ), let us now prove the converse
inclusion. We will show that the H system produces no other words than those
generated by G. First we look at the rules used to keep the axioms in the system
and let them “survive” through all the steps of the computation:

{Z#F$Z#F}
∪ {Xi#α1$Xi#α1 | 1 ≤ i ≤ m, i :B→α1α2, α1 ∈ N ∪ T, α2 ∈ N∪{λ}, B∈N}
∪ {Xi#Yi$Xi#Yi | 1 ≤ i ≤ m, i : B → λ, B ∈ N}
∪ {Xi#DE$Xi#DE | m + 1 ≤ i ≤ l, i : BC → DE ∈ P2, B,C,D,E ∈ N}.

It is easy to notice that from their specific form all these rules can only be applied
to the axioms of the system. This is due to the fact that Xi is always the first
letter of a word in the system, and in axioms it precedes the symbol(s) that will
replace the nonterminal(s) (according to the rules in G). In all other instances
words that Xi appears, it will be followed by the symbol(s) replaced by the rule
i from the grammar. This is due the fact that the simulation of such a rewriting
rule first cuts after Xk and before the symbol(s) to be rewritten. Following this
discussion it is clear now that these rules mentioned above will not produce
anything “bad”. Another group of rules can be shown that is only leading to
terminal configurations only if the rules are applied in the preestablished order:
Z#F$α#Y, #ZY $X#β, XZY #$α#F . If we replace the Y with a F in the



Computing Beyond the Turing Limit Using the H Systems 31

main word, then at the next step we have to use the rule #ZY $X#β, otherwise
the word ZY will not survive to the next configuration of the system, since
no other splicing rule can be applied to it, and then X and F will never be
removed (they need the words ZY and XZY respectively), which means that,
in this case, we will not reach a terminal configuration. One can notice that the
removal of X and Y can happen “early” in the simulation, and if we reach a
terminal string, then that terminal string will also be reached in the grammar,
on the other hand, this could lead to the blocking of the simulation, not leading
to any “output”, so in this case nothing new can be produced.

We will discuss now the case when the simulation of a rewriting rule from G
(that should take two steps for all types of rules from G) is interrupted after the
first step and the simulation of yet another rule continues after that. In this case
we would have after the first step two words of the form: Xw1Yk and Xkw2Y ,
k being the rule simulated. At this moment, two more rules could start to be
simulated; k′ in the first word and k′′ in the second word, leading to four words
now: Xw′

1Yk′ , Yk′w′′
1Yk, Xkw′

2Yk′′ and Xk′′w′′
2Y . Now,we can continue “breaking-

apart” the main word or just finish the simulation of the rules k′, k′′. If we chose
to finish the simulation, then at the next step we would have two words that
could finish the simulation of the original rule k and nothing new is produced.
One might notice that if only one “half” is simulating a rule and the other
part cannot simulate any rules, then that particular string cannot use any other
splicing rule, thus disappearing from the system. This will lead to the fact that
the simulation of the production cannot complete, thus no terminal configuration
will be reached due to the special markers Xk, Yk present in the string and which
cannot be removed from now on. This concludes our justification since we showed
that no splicing rule can lead to a terminal configuration that would produce a
word not in L(G).

The equality RE = TV H1(2, 2, 3, 2) follows directly from the Lemma 1.
The second equality mentioned in the theorem: RE = TV H1(2, 3, 2, 2) re-

quires its own construction. We will give only the basic idea of the construction
and leave the details to the reader:

We have to cut after the symbol(s) to be simulated: for a rule i : BC → DE
we would have the splicing rules BC#α1$DE#Yi and α1#BCYi$Xi#DE. The
other rules are simulated in a similar way; the other modification to the previous
construction is the removing of X, Y which should be performed in a reversed
order: first replace X with T and then remove Y , finishing by removing T . The
equality RE = TV H1(2, 2, 2, 3) also follows from Lemma 1. ��

4 Computation Beyond the Turing Limit with H
Systems

We now proceed to study the power of the new model introduced in this paper:
the temperature controlled time-varying H systems. We will start by first noticing
that these systems are universal: consider that all the components in a system
contain the same set of rules, then the temperature makes no difference in the



32 C. Câmpeanu and A. Păun

computation of the system, so they are equivalent in power to the time-varying H
systems. Moreover, since we showed in the previous section that the time-varying
H systems are universal, it follows that the temperature controlled time-varying
H systems are able to generate all RE languages. In the following we show that if
the temperature is an uncountable number (τ), then the time-varying H systems
controlled by the temperature τ are able to generate non-RE languages.

Theorem 2. For τ an uncountable number, ∃Γ ∈ τ − TTV H2 such that L(Γ )
�∈ RE.

Proof. The theorem states that a time-varying H systems with temperature τ is
more powerful than Turing Machines if the temperature is an uncountable num-
ber. We can consider a time-varying H systems with temperature that has only
two components and the temperature is measured with respect to a threshold
(if the temperature is below the threshold, the set 1 is activated, if not, the set
two is activated). If this number written in base 2 is not calculable, then we will
show that there is a τ -H system to compute a language not in RE.

We construct the time-varying τ -H system with temperature Γ = (V, T,A,R1,
R2), with

V = {X,Y,Z,B} ∪ T, where T = {0, 1}
A = {BX,Z0X,Z1X,Y Y },

R1 = {B#X$Z#0X, α1α2#X$Z#0X | α1 ∈ {0, 1, B}, α2 ∈ T} ∪Q,

R2 = {B#X$Z#1X, α1α2#X$Z#1X | α1 ∈ {0, 1, B}, α2 ∈ T} ∪Q,

where
Q ={Z0#X$Z0#X, Z1#X$Z1#X,Y #Y $Y #Y}∪{B#α1$#Y Y |α1∈T}.

The work of this system is basically to copy the temperature into the generated
word; if the temperature activates the set 1, then at that step a “0” is appended
to the current string generated by the system if the set 2 was activated, then a
“1” is appended. We can also choose nondeterministically to stop the work of
the machine by deleting the nonterminal symbol B and, thus, produce a word
in L(Γ ). It is clear now that the language generated is a sequence of words that
approximate the temperature by 1, 2, 3... letters, but since the temperature was
assumed uncomputable, then also this language is uncomputable, which means
that this simple time varying H system generated a language that is not in RE
with the help of the temperature. ��

In the following we will give a sketch of the construction of a universal time-
varying H system that also goes beyond Turing:

Theorem 3. τ − TTV H = τ −RE

Proof. We will show that we can simulate the work of the oracle Turing ma-
chines1 with such a temperature controlled time-varying H system. The oracle

1 for more information on oracle Turing Machines and their states q?, qY , qN , and/or
τ − RE we refer the reader to any of the many good Theory of Computation hand-
books; a good starting point is also [5].



Computing Beyond the Turing Limit Using the H Systems 33

in the Turing machine is assumed the same as the temperature τ . One can sim-
ulate the work of the Turing machine with the time-varying H system, see for
example the construction from [8]. The only part of the Turing machine that
needs to be considered is the actual oracle and the states that “deal” with the
oracle: q?, qY , qN . To do this, one needs to “copy” the temperature into a
word in the system (Theorem 2 did exactly this), then read (and erase) the first
symbol in the word that “remembers” the temperature and move in the cor-
responding state qY or qN in the simulated Turing Machine. The temperature
could be recorded using the symbols qY and qN and to start the word record-
ing the temperature with an arbitrary number of q?. A sequence of two splicing
rules would splice the current configuration word in the Turing machine with the
temperature string and replace the q? with the first symbol in the temperature
string, making thus the choice of the oracle. A more delicate matter would re-
quire to have the temperature copied in two half strings; the first half being used
to simulate the oracle and the second half to just copy the temperature into the
string. When the first half is exhausted, one could create a new second half and
transform the old second half into a new first half. Due to space restrictions, we
will leave the remaining details of the construction to the reader. ��

5 Final Remarks

In this paper we prove that real life systems, such as H systems can be more pow-
erful than classical computers in terms of computational complexity, our model
being able to simulate Turing machines with oracles. Moreover, the descriptional
complexity of our model is the best among all types of time varying H systems.

As future research we would like to continue our investigation for universal
H systems with even smaller diameter, and try to apply the idea of the diam-
eter to the time-controlled H systems. It could also be interesting to look at
these temperature time-varying H systems as acceptors: we are given an infinite
“word” codified as temperature and such a machinery is accepting/rejecting the
(temperature)word according to some final state conditions (a state i could be
considered final if the number of different DNA strands present in the system is
increased (or did not decrease) from the last time that particular set of rules i
was applied, etc.). And then, after having such a definition for the final states,
one could use different types of accepting methods for infinite words, such as
Büchi, Muller, etc.

References

1. C.S. Calude, Gh. Păun, Bio-Steps Beyond Turing, CDMTCS Tech. Rep No 226,
2003, 1–28.

2. G. J. Chaitin, Information, Randomness and Incompleteness, Papers on Algorith-
mic Information Theory, World Scientific, Singapore, 1987 (2nd ed., 1990).

3. B.J. Copeland, Hypercomputation, Minds and Machines, 12, 4 (2002), 461–502.
4. J.-P. Delahaye, La barrière de Turing, Pour la Science, 312 October (2003), 90–95.



34 C. Câmpeanu and A. Păun

5. J.E. Hopcroft and J.D. Ullman,Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, 1979.

6. T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 – 759.

7. M. Margenstern, Y. Rogozhin, Time-Varying Distributed H Systems of Degree 1
Generate All Recursively Enumerable Languages, Proc. of Workshop on Membrane
Computing (WMC-CdeA 2001), Curtea-de-Argeş, România, 2001, 199–207

8. M. Margenstern, Y. Rogozhin, A Universal Time-Varying Distributed H System
of Degree 1, Proc. of 7th Intern. Meeting on DNA Based Computers (DNA7) (N.
Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001 and Lecture Notes in
Computer Science 2340, (N. Jonoska, N.C. Seeman, eds.), Berlin, (2002), 371–380

9. M. Margenstern, Y. Rogozhin, An universal time-varying distributed H system of
degree 2, Preliminary Proc. of Fourth Intern. Meeting on DNA Based Computers,
Pennsylvania Univ., June 1998, 83 – 84.

10. M. Margenstern, Y. Rogozhin, S. Verlan, Time-Varying Distributed H Systems
with Parallel Computations: The Problem Is Solved, Lecture Notes in Computer
Science 2943, (G. Goss, J. Hartmanis, and J. van Leeuwen eds.), Berlin, (2004),
48–53

11. A. Păun, On Time-varying H Systems, Bulletin of the EATCS, 67 (1999), 157–164
12. A. Păun, On controlled extended H systems of small radius, Fundamenta Infor-

maticae, 31, 2 (1997), 185 – 193.
13. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Heidelberg, 1998.
14. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,

Heidelberg, 1997.
15. C. Teuscher, M. Sipper. Hypercomputation: Hyper or computation?, Communica-

tions ACM, 45, 8 (2002), 23–24.



Biomolecular Implementation of Computing
Devices with Unbounded Memory

Matteo Cavaliere1, Nataša Jonoska2, Sivan Yogev3,
Ron Piran4, Ehud Keinan4,5, and Nadrian C. Seeman6

1 Department of Computer Science and Artificial Intelligence,
University of Sevilla, Sevilla, Spain

martew@inwind.it
2 Department of Mathematics, University of South Florida,

Tampa, FL 33620, USA
jonoska@math.usf.edu

3 Department of Computer Science, Technion, Haifa 32000, Israel
4 Department of Chemistry, Technion, Haifa 32000, Israel

{sivan y, ronppy}@techunix.technion.ac.il
5 The Scripps Research Institute, La Jolla, CA 92037, USA

keinan@scripps.edu
6 Department of Chemistry, New York University

New York, NY 10003, USA
ned.seeman@nyu.edu

Abstract. We propose a new way to implement (general) computing
devices with unbounded memory. In particular, we show a procedure
to implement automata with unbounded stack memory, push-down au-
tomata, using circular DNA molecules and a class IIs restriction enzyme.
The proposed ideas are inspired by the results from [1]. The same ideas
are extended to show a way to implement push-down automata with two
stacks (i.e, universal computing devices) using two circular molecules
glued with a DX molecule and a class IIs restriction enzyme. In this case
each computational molecule also contains a DX portion. These devices
can potentially be incorporated in an array of TX molecules.

1 Introduction

A general idea for using successive restriction cuts on a double stranded DNA
in order to simulate a Universal Turing machine was proposed by Rothemund
[10]. This was experimentally achieved by Benenson et. al. [1, 2] who have im-
plemented finite state automata with two states and two input symbols. In
fact, several different automata were constructed by changing the computational
molecules which indicate the state transitions. In [2] they show that the enzyme
FokI can cleave even if the molecule is nicked which removes the necessity of a
ligase.

On the other hand, circular DNA has been proposed for encoding information
and using for computing theoretically [4, 9, 13] and implemented experimentally

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 35–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



36 M. Cavaliere et al.

[5, 8]. In this paper we combine these two ideas and propose using biomolecules
(in particular circular DNA strands) and a class IIs restriction enzyme to imple-
ment computing devices, push-down automata, with unbounded memory. Since
these automata are more powerful than finite state automata, this provides a
feasible way for experimental increase of the computational power.

In Section 2 we present a procedure to implement a push-down automaton,
that is a computing device with stack as an (unbounded) memory. In classical
computation theory (see for ex. [6]), push-down automata are considered the
simplest computing devices with unbounded memory and are strictly more pow-
erful than finite state automata. The technique presented here is based on two
main ideas: the use of circular DNA strands (which contains the information
of the stack and the input symbol) and the use of a unique restriction enzyme,
PsrI, which is able to cut a DNA strand in two places at the same time. Alter-
natively, the use of PsrI could be substituted with two back to back restriction
sites for a class II enzyme similar to FokI (similar use was proposed in [10]). The
theoretical analysis of splicing systems using this type of enzymes have not been
developed and with this paper we hope that such investigations will be initiated.

The potential implementation described here can be considered as a gener-
alization of what was done in [1] where finite state automata were implemented
using linear DNA strands. The use of circular DNA molecules allows addition
of an unbounded memory to the machine. The basic idea is that the circular
DNA contains the instantaneous configuration of the push-down automaton,
that means, in a single molecule, the contents of the stack and the content of
the input yet to be read are encoded. The enzyme PsrI cuts the circular DNA
in two places leaving overhangs (sticky ends) corresponding to the elements on
the top of the stack-memory (on one side) and to the next input symbol to be
read from the input tape (on the other side).

Once the circular DNA has been cut, a “computational” linear DNA strand
encoding the transition of the machine that corresponds to the sticky ends is
inserted into the circular DNA. In this way, a transition of the push-down au-
tomaton is implemented that consists of: an update of the stack memory, a move
of the input-head over the input tape and a change of the state. Following the
idea used in [1, 2] the state and the input symbols of the machine are encoded as
a pair in the sticky end produced by the enzyme cut. To simplify the exposition,
we show in detail how to implement a (simple) push-down automaton using two
states, two input-symbols and two stack-symbols, accepting the (non regular)
language {anbn | n ∈ N}.

In Section 3 we show how to implement push-down automata with two stacks
using two circular molecules that are attached by two DX molecules and the
restriction enzyme FokI. The idea is very similar to the one described for imple-
menting push-down automata with one stack. This implementation is particu-
larly interesting because push-down automata with two stacks are equivalent to
Turing machines ([6]). We also describe a way how the DX molecule connecting
the two “stacks” molecules can be incorporated in a two dimensional array and
in that way potentially the whole computational process scaled up.



Biomolecular Implementation of Computing Devices 37

2 DNA Implementation of Push-Down Automata

2.1 Push-Down Automata with One Stack

In this section, we recall the definition of push-down automata, and some well
known theoretical results. This section is mainly based on the material found in
the classical automata theory book [6].

A push-down automaton (PDA) is a finite state automaton with a stack
memory (called simply, stack). The class of languages recognized (accepted) by
PDA’s is the class of context-free languages that strictly includes the class of
regular languages (recognized by finite state automata).

The PDA has control of both an input tape and a stack (see Figure 1). The
stack is the memory of the machine and it works as a “first in - last out” list.
That is, symbols may be entered or removed only at the top of the list such
that a symbol that is entered (push) at the top pushes the rest of the sym-
bols on the stack one step “down”. Similarly, when a symbol is removed (pop)
from the top of the list, the remaining symbols on the stack move one step
up.

Informally, a transition of a PDA is defined in the following way: at each step,
an input-symbol and the stack-symbol at the top of the stack, are read. According
to these symbols and the current state, the PDA changes its state and updates
the stack, i.e., it either adds a stack-symbol at the top of the stack, removes
one stack-symbol from the top of the stack, or leaves the stack unchanged. The
computation stops when no transitions can be applied anymore. The input is
accepted if (and only if) it has been entirely read and the PDA is in a final state
(similarly as in the case of finite state automata).

a1 ai an

Zk

Z k−1

Zk−2

Z k−3

Z 0

(top)

Z 0

Zm

Z m−1

Zm−2

Z m−3

State  q

Input

... ...

first stack

second stack

(top)

Fig. 1. A Push-down automaton

Well known examples of languages recognized by PDA are the language of
palindrome words and {anbn | n ∈ N}. We give the formal definitions of PDA
following [6].



38 M. Cavaliere et al.

Definition 1. A push-down automaton M is a system (Q,Σ, Γ, δ, q0, Z0, F )
where :
Q is a finite set of states;
Σ is an input alphabet (its elements are called input-symbols);
Γ is a stack alphabet (its elements are called stack-symbols);
q0 in Q is the initial state;
Z0 in Γ is a particular stack-symbol called the start symbol;
F ⊆ Q is the set of final (terminal) states;
δ is the transition mapping from Q× (Σ ∪ {ε})× Γ to finite subsets of Q× Γ ∗.

The interpretation of the move (transition):

δ(q, a, Z) = {(p1, γ1), (p2, γ2), · · · , (pm, γm)},

where q and pi, (1 ≤ i ≤ m), are states, a is in Σ, Z is a stack-symbol, and γi is
in Γ ∗ is the following. The PDA in state q, reading an input-symbol a with Z as
the top stack-symbol, for any i, can enter state pi, replace symbol Z by string
γi, and advance the input-head one symbol.

A PDA may also have empty moves

δ(q, ε, Z) = {(p1, γ1), (p2, γ2), · · · , (pm, γm)}

such that the PDA in state q with Z at the top stack-symbol, independently of
the input-symbol being scanned, can enter state pi and replace Z by γi for any
i, 1 ≤ i ≤ m. We adopt the convention that the leftmost symbol of γi will be
placed at the top of the stack and the rightmost symbol lowest on the stack.

The PDA stops if a transition from state q, reading input-symbol ai, and
stack-symbol Z is not defined.

If M = (Q,Σ, Γ, δ, q0, Z0, F ) is a PDA, we say (q, aw,Zα) → (p, w, βα)
if δ(q, a, Z) contains (p, β). We use →∗ to denote the reflexive and transitive
closure of →. The acceptance of a language by a PDA can be defined in two
(equivalent) ways: by entering a final state or by emptying the stack. In this
presentation we use the first manner.

Accepted languages (by final states). For a PDA M = (Q,Σ, Γ, δ, q0, Z0, F )
we define L(M) the language accepted by final state, to be:

{w | (q0, w, Z0) →∗ (p, ε, γ), for some p ∈ F and γ ∈ Γ ∗}.

We recall some classical results (see for ex. [6]).

Theorem 1. The class of languages accepted by PDA’s is exactly the class of
context-free languages (that strictly includes the class of regular languages).

Theorem 2. For every PDA there is an equivalent two state PDA that accepts
the same language.



Biomolecular Implementation of Computing Devices 39

2.2 Implementing PDA’s: An Example

To simplify the implementation of a PDA, without loss of generality, we suppose
that every input word is inserted with a symbol indicating end of input denoted
with τ . Then a word is accepted by a PDA if, and only if, when reading the end-
of-input symbol τ , the PDA stops entering one of the final states. If the PDA
stops before reading the end-of-input symbol (i.e. no transitions are possible),
then the word is not accepted by the PDA.

In what follows we present a possible implementation of a PDA that accepts
the non regular language L1 = {anbn | n ∈ N}. A PDA accepting the language
L1 is the following: M1 = (Q,Σ, Γ, δ, q0, Z0, F ), with Q = {0, 1}, Σ = {a, b},
Γ = {Z,#}, Z0 = #, F = {1}.

M1 has five transitions

(i) δ(0, a,#) = (0, Z#): in state 0, reading an input-symbol a and stack-symbol
#, remain in state 0 and add (push) a Z at the top of the stack.

(ii) δ(0, a, Z) = (0, ZZ): in state 0, reading an input-symbol a and stack-symbol
Z, remain in state 0 and push a Z at the top of the stack.

(iii) δ(0, b, Z) = (1, ε): in state 0, reading an input-symbol b and stack-symbol Z,
change to state 1 and remove (pop) a Z from the top of the stack.

(iv) δ(1, b, Z) = (1, ε): in state 1, reading an input-symbol b and stack-symbol Z,
remain in state 1 and pop a Z from the top of the stack.

(v) δ(1, τ,#) = (1,#): in state 1, reading end-of-input τ , and # on the top of
the stack, remain in state 1 (the computation halts).

In the initial configuration the stack contains only # and the initial state is
q0 = 0; the input-head scans the first symbol of the input string. It is easy to
see that the language accepted by M1 is L1 = {anbn | n ∈ N}. We show how
to implement this PDA using the enzyme PsrI together with circular molecules
containing the information for the stack and the tape, and linear DNA strands
for the transitions. The enzyme cleaves as depicted in Figure 2 (for further details
see [17]).

Fig. 2. The restriction mode of PsrI

Encoding. The input letters are encoded as a = TTC and b = AAC. Codes
of the stack symbols, using strings of 5 letters can be chosen Z = TCCAG and
# = CAAAC.

The initial circular DNA strand corresponds to the initial configuration of
the PDA: it contains the initial configuration of the stack and the input to be
read. This is “codified” as follows. The input is written such that any pair of



40 M. Cavaliere et al.

G C T T C G C 

(1,a)

(0,a)

(2,a)

Fig. 3. Coding used to simulate three different states

input-symbols are separated with GC, which is also added in front of the first
symbol and after the last symbol. A stop-sequence (the end-of-input) CAGGC,
follows the input. For example, suppose the input is aabb, then it is codified with
GCTTCGCTTCGCAACGCAACGCCAGGC. (the separator GC is indicated
in italics) The sequence GC allows “moving” between different states (following
the idea used in [1]).

This coding allows for three states reading the same symbol to be encoded.
For example, the symbol a surrounded by GC’s is encoded with GCTTCGC.
We can assume that GCTTC encodes “state 0-reading a”, CTTCG encodes
“state 1-reading a” and TTCGC encodes “state 2-reading a” (see Figure 3).

Following this idea, in our example we have (we only mention the codes that
are used): GCTTC for a in state 0; GCAAC for b in state 0; and CAACG for
b in state 1.

The circular DNA strand representing the initial configuration of the PDA is
depicted in Figure 6. The first part CAAAC represents the initial configuration
of the stack (containing only symbol #; virtually an empty stack). The middle

δ a(0,   ,#)= (0, Z#)

δ a(0,   ,Z)= (0, ZZ)

δ b ε(0,   ,Z)= (1,  )

δ b ε(1,   ,Z)= (1,  )
restriction
site

restriction
site

restriction
site

restriction
site

(a)

(b)

(c)

(d)

(e)

GTTTC
short sequence with
no restriction site

sequence
input STOP 

CCAGG
δ τ(1,   ,#)= (1,#)

NN
NN

NNCAACG
NN

NN
NN

NGCAAC
NAGGTC

AGGTC

NN
NNGCTTC

AGGTC
TCCAGNNNNNNN
AGGTCNNNNNNN

GTTTG NN
NNGCTTCTCCAGNNNNNNN

AGGTCNNNNNNN

Fig. 4. Transitions of the PDA



Biomolecular Implementation of Computing Devices 41

portion GAACNNNNNNTAC is the restriction site for the enzyme PsrI. The
final part is the input as described above.

Transitions. Together with the circular molecule that represents the initial
configuration of the PDA five linear DNA strands that encode the transitions
of the PDA are also needed: one strand for each transition. The linear strands
corresponding to the transitions in our example are depicted in Figure 4. These
molecules are added in the solution together with the circular molecules corre-
sponding to the initial configuration of the PDA. The enzyme cuts the circular
molecule and the transition molecules are allowed to connect to the circular
molecule, after which, the enzyme cleaves again and the process is repeated.

Transitions (a) and (b) in Figure 4 add a symbol Z on the stack, but do not
change the states. This is obtained by having NN between the restriction site and
the sticky-end representing the input symbol to the right, and after a sequence
of seven N ’s having the sequence TCCAG representing Z on the left hand side.
Since the enzyme cleaves seven nucleotides away from the restriction site on both
sides, on the right hand side, the next cut will appear at the next input symbol,
in same position (i.e. same state) for reading the input sequence, and on the left
hand side the symbol ‘Z’ will be added to the stack. The transitions (c) and (d)
are similar, except they do not allow for writing Z’s on the stack, but for removing
them (the number of N ’s present between the restriction site and the sticky-end
representing the input symbol depends in the way the state-symbol is encoded).

The strand in Figure 4(e) implements the transition 5 and stops in the final
state if the end-of-input is read.

In each transition, two ligation reactions occur. Ligation on one side of the
transition molecule corresponds to the input, while ligation on the other side cor-
responds to the stack. It is important to know which side is ligated first, since
there is degeneracy in the stack side (it includes only Z or #), and therefore dif-
ferent transition molecules may be ligated at that end at any stage. For example,
when the transition molecule in Figure 4(b) is the correct molecule for the next
step, the molecules in Figure 4(c) and (d) may be ligated at the stack side, caus-

Fig. 5. Two alternative strategies to enhance the ligation rates at the input end relative

to the ligation at the stack end



42 M. Cavaliere et al.

Fig. 6. Accepting of the string aabb



Biomolecular Implementation of Computing Devices 43

ing a halt of the computation process. One way to reduce this problem is to make
sure that the first ligation occurs at the input side. Since intermolecular reactions
are faster than their intramolecular counterparts, once the ligation occurred at
the input side, the probability of correct ligation at the stack side would increase
dramatically. This situation may be achieved by reduction of the length of the
sticky end at the stack side. Kinetically, annealing processes are faster for longer
sticky ends. This goal may be achieved by two alternative ways (see Figure 5):

– Use two different class II restriction enzymes, such as BsgI, which leaves a
2bp sticky end for the stack side, and BsmFI, which leaves a 4bp sticky end
for the input side.

– Use two identical restriction sites, such as BsmFI and add a 2bp molecule
to the mixture, which will correspond to the inner part of the stack sticky
end, causing a need for a 2-step ligation at that end, which will further slow
down the ligation rate at that end.

Figure 6 describes the steps of the PDA for accepting the word aabb. We start
with the initial configuration of the PDA stored in the circular molecule as rep-
resented in Figure 6. The consecutive cuts and inserts of the transition molecules
are presented in the steps that follow. The cuts end when the ‘stop’ transition
molecule recognizes the end-of-input symbol and it ends in the terminal state.
In this case, it has to contain the short sequence without the restriction site.

3 Push-Down Automata with Two Stacks

It is possible to consider push-down automata using two stacks instead of one.
Informally, a transition of a push-down automaton with two stacks (shortly,

2PDA) is defined in the following way: at each step, an input-symbol from the
input tape, and the stack-symbols at the top of the first stack and at the top of
the second stack, are read. According to the current state, the 2PDA updates
both stacks; adds stack-symbols at the top of the stack(s), removes one stack-
symbol from the top of the stack(s), or leaves the stack(s) unchanged. At the
same time it changes its state and, reads the next input-symbol (as in the case
of PDA’s, if there is an empty move, the input-head does not advance).

The 2PDA stops if for a given configuration, the next transition is not defined.
At start, the 2PDA is in an initial state q0, the input is placed on the input tape
and the first and second stack contain the respective initial stack-symbol Z0 and
Z1. When the computation stops, the input is accepted if (and only if) it has
been entirely read and the 2PDA is in a final state.

The class of languages accepted by 2PDA’s is the class of recursively enu-
merable languages (i.e, 2PDA’s are equivalent to Turing machines). The proof
of this result and more formal details on 2PDA’s can be found in [6].

A graphical description of a 2PDA is described in Figure 7 to the left.



44 M. Cavaliere et al.

a1 ai an

Zk

Z k−1

Zk−2

Z k−3

Z 0

(top)

Z 0

Zm

Z m−1

Zm−2

Z m−3

State  q

Input

... ...

first stack

second stack

(top)

DX molecule

DX molecule

DX molecule

Restriction site for Fok I or 
       a similar enzyme

Restriction cuts

Transitional molecules

Fig. 7. A graphical description of 2PDA (left) and molecules used for implementation

of a 2PDA (right). For simplicity, the middle portion of the body of the DX molecule

is not presented

NNNN NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNNNNNN NNNN 

DX portion

Restriction site
Input 

State

First stack

Second stack

NNNN NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNNNNNN NNNN

NNNN NNNN NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNNNNNN NNNN
NNNN NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNNNNNN NNNN

Fig. 8. An encoding of an instantaneous configuration of a 2PDA in a circular DX

molecule

3.1 Implementing 2PDA’s Using DX Molecules

In a similar way as presented in Section 2 we can implement 2PDA’s i.e., push
down automata with two stacks. In this case two circular molecules are “con-
nected” with two DX molecules (called here circular DX molecule) and a class IIs
restriction enzyme similar to FokI (as described in Figure 7, right). The content
of the two stacks is stored in the two strands to the “left” of the “upper” DX
molecule (the symbols of the two stacks are stored exactly as in the case of the
PDA). On the other side of the DX molecule, the symbols of the input string
and the current state of the 2PDA are stored, each on one of the strands.

FokI was used in [1] for implementation of a finite state automaton, and we
use it in our description for implementing 2PDA. However, any similar enzyme
can be used as well.

The restriction site for FokI is placed in four places of the strands, connected
with the “upper” DX molecule, to be read away from the DX portion of the
molecule (see Figure 7 to the right and in a more detail Figure 8 that also
depicts the way FokI works). As described in Figure 8, the enzyme cleaves the
molecule in these four places, and a new computational molecule with sticky
ends corresponding to a particular transition of the automaton is inserted. This



Biomolecular Implementation of Computing Devices 45

new molecule has two linear strands with four sticky ends “connected” with a
DX portion in the middle. In this way a transition of a 2PDA is simulated.

If the circular DX molecule cannot be cut anymore, or no DX molecule with
sticky ends can be inserted in the circular DX molecule, then the computation
halts and the circular DX molecule obtained is considered final. The final circular
DX molecule contains a specific sequence which indicates whether the molecule
has been accepted.

The circular DX molecule, containing the initial configuration of a given
2PDA is essentially the same for all 2PDA’s. The computation differs only in
the set of molecules representing the transitions of the automaton.

Example of one Transition
We present the idea of implementing 2PDA on a simple example simulating a
single transition of a 2PDA.

Consider the 2PDA M2 = (Q,Σ, Γ, δ, q0, Z0, Z1, F ) with states Q = {0, 1},
input alphabet Σ = {a}, initial state q0 = 0, alphabet of the stack-symbols
Γ = {Z,#}, final state F = 1 and Z0 = Z1 = # are the stack-symbols present
at the beginning of the computation in the first and second stack, respectively.
Suppose that one of the transitions present in δ is: δ(0, a,#,#) = (1, Z#, Z#)
meaning, when the 2PDA is in state 0, reads # on both stacks, and a as input-
symbol, then, the 2PDA push Z on top of both stacks and changes to state 1.

The symbols and the states used by M2 can be encoded similarly to the case
of PDA M1 in Section 2. We fix a code composed of 4 letters for the symbols in
Σ and Γ . Choose: a = GTTG, Z = TCCA, and # = GCTG.

Notice that in this implementation the coding of the states is in a “direct”
way. There is no need to use the “shift” technique as described in the implemen-
tation of M1. Choose: 0 = TGGT , and 1 = ACTC.

The implementation starts with a circular DX molecule corresponding to
the initial configuration of the 2PDA M1. The “upper” part of the circular DX
molecule containing the initial configuration is described in Figure 9. Suppose
that the input is aτ , where τ is the end-of-input symbol. Set the code of τ to be
CCAG.

The molecule that corresponds to the transition δ(0, a,#,#) = (1, Z#, Z#)
is depicted in Figure 10. The idea can be generalized to other transitions; it
is very similar to the idea used in the implementation of the transitions of a
PDA.

The enzyme FokI cuts the circular DX molecule in four places and this can
be considered as reading the input-symbol, the current state and the symbols
on the top of the two stacks. Once the circular DX molecule is cut, one of the

DX portion

CGAC NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNNNNNN ACCA

CGAC NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNNNNNN CAAC GGTC

a τ

State 0

#

#

     GCTG NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNNNNNN GTTG CCAG

GCTG NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNNNNNN TGGT

Fig. 9. Initial configuration of the circular DX molecule



46 M. Cavaliere et al.

# Z

Z
#

DX portion

state 0state 1

a
AGGT NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNN CAAC

GCTG TCCA NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNN

AGGT NNNNNNNNN GTAGG NN .. NN .. NN .. NN CCTAC NNNNNNNNN TGAG ACCA
GCTG TCCA NNNNNNNNN CATCC NN .. NN .. NN .. NN GGATG NNNNNNNNN ACTC

Fig. 10. DX molecule for the transition: δ(0, a, #, #) = (1, Z#, Z#)

molecules representing the transitions is inserted into the circular DX molecule.
This “insertion” simulates the application of a transition of the 2PDA.

The transition δ(0, a,#,#) = (1, Z#, Z#) is applied to the initial configu-
ration of the 2PDA, M2, by having all four sticky ends connected with a corre-
sponding transition molecule. In our example, the DX molecule inserted is the
one represented in Figure 10, and the new configuration obtained is such that
the next four cuts will correspond to “reading” the end-of-input symbol τ and
stack-symbol Z on both stacks and “being” in state 1.

Different transitions can be implemented introducing different transition
molecules (with different sticky ends). As in the case of PDA’s, the sticky ends
can be adjusted to simulate both push and pop over the stacks, and also the
empty moves. Similarly, when no cuts can be done on the circular DX molecule
or no transition molecule with corresponding sticky ends can be inserted then
the circular DX molecule obtained is final. Checking the presence of some spe-
cial terminal sequence in the final DX molecule determines whether the input is
accepted or not.

3.2 2PDA in an Array

Double and triple cross-over molecules have been used as tiles and building blocks
for large nanoscale arrays [7, 14, 15]. The assembly of such two-dimensional array
can be used to incorporate the circular DX molecules of a 2PDA. The body
of the “bottom” DX portion of the circular DX molecule used for storing the
instantaneous configuration of a 2PDA can be incorporated in a triple cross-over
molecule, such that the sticky ends of the third duplex, from each side, diagonally
opposite, are used for connecting the molecule in a TX based array. Schematically
this is presented in Figure 11. The drawing aims to give an impression of the
means by which the 2PDA units could be inserted into the array; we recognize
that it will be much larger than shown, and the C tiles attached to the 2PDA
units will need to be much less densely packed.

By including the 2PDA molecules in an array we can potentially (a) scale up
the computational process and (b) avoid mutual interactions between the circular
DX molecules and formation of dimers and faulty computation that could lead
to a wrong result. This process, however, in order to determine precise positions
of the 2PDA molecules will require careful coding of the two dimensional array
similarly as was done in the bar-code design [16] or in the case of the design of
the Sierpinski triangle [11].



Biomolecular Implementation of Computing Devices 47

Fig. 11. Insertion of circular DX molecule storing instantaneous configuration of a

2PDA in an array. C is drawn in the same plane as TX molecules A and B, but C’ has

been rotated nearly perpendicular to the AB array. D is linear duplex filler

4 Concluding Remarks

We have presented a possible way to implement push-down automata (i.e., fi-
nite state automata with unbounded stack memory), using a class IIs restriction
enzyme, circular and linear DNA strands. In the hierarchy of classical com-
puting devices, push-down automata are the simplest computing devices using
unbounded memory and are strictly more powerful than finite state automata.

In particular, an implementation of a small PDA, with two states, two input-
symbols, and two stack-symbols, accepting the non regular language {anbn | n ∈
N} was shown. Using the same idea the implementation of a PDA that checks if
a string is palindrome is straight forward. Palindromes are a standard example
of non regular languages that may be of interest from biological point of view.

From the theoretical point of view, it is easy to describe implementation of
a general (non deterministic) PDA with two states and two input-symbols, even
using empty-moves in the same manner. Due to Theorem 2 this is enough to
implement every PDA, but, the number of stack-symbols may increase. In the
implementation presented here, the number of possible stack-symbols is lim-
ited to 45 as the code of each symbol uses 5 nucleotides. This bound is even
smaller since other coding constrains may apply. There are methods to reduce
the number of stack symbols ([3]) but in this case the number of states increases.



48 M. Cavaliere et al.

Therefore it is significant to determine how many stack-symbols can be really
codified for a DNA implementation using one enzyme PsrI or FokI.

The paper also includes a way to implement push-down automata with two
stacks. This implementation uses again a class IIs restriction enzyme and cir-
cular DX molecules. This result is of particular interest because such class of
computing devices is equivalent to Turing machines. Although we used an iden-
tical coding for both stacks in our example, this should be avoided such that
no cross annealing of the stacks and the transition molecule occurs. It can be
adjusted similarly as in the case of PDA when three symbol alphabet is used for
the symbols followed by a GC or AT indicating the two different stacks.

Incorporating circular DX molecules in an array may be a challenging task
experimentally, in particular, encoding and assembling the two-dimensional ar-
ray such that the sticky ends for annealing with the 2PDA molecule appear in
the right positions.

Acknowledgment

Parts of this research was performed while the first author was visiting University
of South Florida during the Fall of 2003.

The first author is supported by a grant from the Spanish Ministry of Culture,
Education and Sport under the Programa Nacional de Formación de Profeso-
rado Universitario (FPU). Seeman has been supported by grants GM-29554 from
the National Institute of General Medical Sciences, N00014-98-1-0093 from the
Office of Naval Research, grants DMI-0210844, EIA-0086015 (also supporting
Jonoska), DMR-01138790, and CTS-0103002 from the National Science Foun-
dation. Keinan is supported by the German-Israeli Project Cooperation (DIP)
and by the Skaggs Institute for Chemical Biology.

References

1. Y. Benenson, T. Paz-Elizur, R. Adar, Eh. Keinan, Z. Livneh, Eh. Shapiro, Pro-
grammable and autonomous computing machine made of biomolecules, Nature, 414
(2001), 430-434.

2. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, Eh. Shapiro, DNA molecule pro-
vides a computing machine with both data and fuel, Proc. Nat. Acad. Sci. (PNAS)
100 5 (2003), 2191-2196.

3. J. Goldstine, J.K. Price, D. Wotschke, On reducing the number of stack symbols in
a PDA, Math. Systems Theory 26 4 (1993), 313-326.

4. T. Head, Splicing schemes and DNA, in Lindenmayer Systems: Impact on Theo-
retical Computer Science and Developmental Biology (G. Rozenberg, A. Salomaa,
eds.), Springer, Berlin, 1992, 371-383.

5. T. Head et.al, Computing with DNA by operating on plasmids, BioSystems 57
(2000), 87-93.

6. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.



Biomolecular Implementation of Computing Devices 49

7. T. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, N.C. Seeman, The
construction, analysis, ligation and self-assembly of DNA triple crossover com-
plexes, J. Am. Chem. Soc. 122 (2000), 1848-1860.

8. Liu Q. et al. DNA computing on surfaces, Nature 403 (2000), 175-179.
9. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing

Paradigms, Springer-Verlag, Berlin, 1998.
10. P.W.K. Rothemund, A DNA and restriction enzyme implementation of Turing

machines, DNA Based Computers AMS DIMACS series 27 (1998), 75-119.
11. P. Rothemund, N. Papadakis, E. Winfree, Algorithmic Self-assembly of DNA Sier-

pinski Triangles, Preproceedings of 9th DNA Based Computers, Madison, Wiscon-
sin June 1-4 (2003), 125.

12. J. Sakamoto et al., State transitions by molecules, Biosystems 52 (1999), 81-91.
13. Y. Sakakibara, H. Imai, A DNA-based Computational Model Using a Specific Type

of Restriction Enzyme, Proceedings of the 8th DNA Based Computer, (M. Hagiya,
A. Ohuchi eds.), LNCS 2568, 315-325.

14. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-
dimensional DNA crystals, Nature 394 (1998), 539-544.

15. E. Winfree, X. Yang, N.C. Seeman, Universal computation via self-assembly of
DNA: some theory and experiments, DNA computers II, (L. Landweber, E. Baum
eds.), AMS DIMACS series 44 (1998), 191-214.

16. H. Yan, T.H. LaBean, L. Feng, J.H. Reif, Directed Nucleation Assembly of Barcode
Patterned DNA Lattices, Proc. Nat. Acad. Sci. (PNAS) 100 No. 14 (2003), 8103-
8108.

17. http://rebase.neb.com/rebase/rebase.html.



Characterization of Non-crosshybridizing
DNA Oligonucleotides Manufactured

In Vitro

Junghuei Chen1, Russell Deaton2, Max H. Garzon3,
Jin Woo Kim4, David Wood5, Hong Bi1, Dylan Carpenter4,

and Yu-Zhen Wang1

1 Chemistry and Biochemistry,
University of Delaware, Newark, DE, USA 19716

junghuei@udel.edu
2 Computer Science and Engineering,

University of Arkansas, Fayetteville, AR, USA 72701
rdeaton@uark.edu

3 Computer Science,
University of Memphis, Memphis, TN USA 38138

mgarzon@memphis.edu
4 Biological Engineering,

University of Arkansas, Fayetteville, AR, USA 72701
jwkim@uark.edu

5 Computer and Information Sciences,
University of Delaware, Newark, DE, USA 19716

wood@mail.eecis.udel.edu

Abstract. Libraries of DNA oligonucleotides manufactured by an In
Vitro selection protocol were characterized for their non-crosshybridizing
properties. Cloning and sequencing after several iterations of the
protocol showed that the sequences, in general, became more non-
crosshybridizing. Gel electrophoresis of protocol product, also, indi-
cated non-crosshybridization, and showed evolution in the population of
molecules under the non-crosshybridization selection pressure. Melting
curves of protocol product also indicated non-crosshybridization when
compared to control samples. Thus, it appears that the protocol does
select populations of non-crosshybridizing sequences.

1 Introduction

The template-matching hybridization reaction between DNA oligonucleotides
is an increasingly important technology, not only for biological applications,
such as disease detection with DNA microarrays[1], but also for computations
with DNA[2, 3] and formation of DNA-based nanostructures[4, 5, 6]. In solution,
single-stranded DNAs randomly diffuse, and when a sufficiently complemen-
tary sequence is encountered, a double-stranded molecule (duplex), in which
some fraction of base pairs are Watson-Crick complements, is formed. Thus,

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 50–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Characterization of Non-crosshybridizing DNA Oligonucleotides 51

thermodynamically stable duplexes can form that are not perfect Watson-
Crick complements. The difficulty is that DNA computations and nanostructures
are designed to form via hybridizations between perfect Watson-Crick
complements.

The DNA word design problem is to design DNA oligonucleotide sequences
that hybridize as planned and minimize problematic, non-Watson-Crick crosshy-

Fig. 1. Protocol to select maximally mismatched oligonucleotides



52 J. Chen et al.

bridizations. Solution of this problem is difficult[7], and computationally expen-
sive. Many approaches using digital computers and software have been tried
(for a recent review, see [8]), and several designs have been experimentally
confirmed[9, 10], though the library sizes have been relatively small. All computer-
aided design methods suffer an inability to scale the size of the designed sets,
and to capture enough of the chemistry to make the results realistic without
long design times.

In response to the limitations of computer-based techniques, a protocol was
developed to manufacture non-crosshybridizing libraries of oligonucleotides in
vitro (Figure 1)[11]. The potential advantages are that the oligonucleotides are
selected in the conditions under which computations will be done, and the
potential for very large libraries. The starting population of molecules consist
of interior random regions to which designed sequences are attached at either
end. The protocol works by controlling reaction conditions such that maximally
mismatched oligonucleotides melt, while better matched ones do not. Then,
using the specified end sequences as primers, the maximally mismatched
oligonucleotides are copied by polymerase. Thus, the non-crosshybridizing
oligonucleotides are selected through the relative thermodynamic stability of the
duplexes that they form. By repeating this process, the percentage of non-
crosshybridizing oligonucleotides in the population should increase over time.
In previous work[11], it was shown experimentally that the protocol actually
selected for maximally mismatched pairs. In addition, simulations of the
protocol[12] suggest that selection of noncrosshybridizing sequences occurs over
a relatively few rounds of the protocol.

Subsequent to verifying that the protocol works at a basic level, the next
challenge was to characterize the libraries produced by the protocol. This re-
quires that their non-crosshybridizing properties be confirmed, and that the
number of distinct sequences in the library be estimated. In this paper, the non-
crosshybridizing characteristics of the manufactured libraries are investigated
experimentally. First, protocol product was cloned and sequenced in order to
test for non-crosshybridization. Protocol product was analyzed using gels to de-
termine the overall degree of hybridization in the libraries, and the progress of
the selection. Finally, spectroscopic techniques are used to check for crosshy-
bridization. In summary, iteration of the protocol seems to produce sets of non-
crosshybridizing sequences. Further work is needed to determine the exact num-
ber is unknown.

2 Cloning and Sequencing of Library Oligonucleotides

Starting material, and product from 1 to 4 cycles of the protocol were cloned
and sequenced. These sequences were then analyzed using the nearest-neighbor
model of duplex thermal stability[13], and a software design tool implemented
by the authors[7]. Sequences designed with this tool have been experimentally



Characterization of Non-crosshybridizing DNA Oligonucleotides 53

Table 1. Sample of Sequences cloned at various iterations of the protocol

Starting Material

0 GTCATCAGAAAACCACTTTC
1 CCCCATATAGTCTCACGTAC

Cycle 1

2 TAGGTTCTTTAAGTAACGAT
3 AAAAAATAAGGCTGACCATC
4 TGCTAGAGCGCTATGTTAAG
5 CGTCCCAGCAAACACGCCTG

Cycle 2

6 TTCCGATCAGATAAGAACTT
7 ATGAAAGCCTGCCTTGCACG
8 TCATGCGATAACGAAACGAC
9 TTCTTCATGCAGAACGCAAC

Cycle 3

10 CAGACCTGGGTTCGGCCTTA
11 ATAAATTAATGTATCCTAAA
12 CCCAGATAGTGTCAAGTAGG

Cycle 4

13 TTCCGATCAGATAAGAACTT
14 GTGAGACCATACAGTTAACT
15 TACGGCTCTATGGGAAGCAG

verified to be non-crosshybridizing[9]. The sequences are given in Table 1, and
the results of the analysis are shown in Tables 2.

Though the sample of sequences was too small to state any definitive
conclusions, the purpose was to gage the overall ability of the protocol to
select non-crosshybridizing oligonucleotides, and to eliminate pathological re-
sults, such as one or relatively few sequences being selected, or total lack of
non-crosshybridization. Because theoretically the starting population contains
every possible 20-mer, the chances of picking two sequences at random that
crosshybridize is very small. Nevertheless, as the selection protocol was iter-
ated, the non-crosshybridizing properties of the sequences seemed to improve.
For example, after cycle 1, there were two crosshybridizations, sequence 2 to
sequences 7 (2-7) and 5-7, and after cycle 2, there were three (1-7, 3-7, and 4-7).
In cycles 3 and 4, there were no crosshybridizations. All cycles had examples
of self-hybridization (hairpins). The protocol does not explicitly select out self-
hybridization. Most of the crosshybridizations, including the self-hybridizations,
would have been marginally stable at the selection temperature of 43◦C. The
exceptions are for cycle 1 (4-4 and 5-5), and for cycle 2 (1-1, 4-6, 6-6,
and 7-7). Thus, based upon this sample, the protocol seems to be accomplish-
ing its purpose of selecting populations that are progressively more non-
crosshybridizing.



54 J. Chen et al.

Table 2. Pairwise comparison of energetics of cloned sequences. Melting temperature

(Tm and minimum Free Energy of Formation ∆G calculate at 1 µM DNA concentration

and 1 M NaCl concentration using nearest-neighbor model of duplex thermal stability.

Melting temperatures that are less than zero indicate no crosshybridization. Energies

and melting temperatures of Watson-Crick pairs (consecutive numbers starting with

even) are included for comparison

Seq 1 Seq 2 Tm (◦C) ∆G (kcal/mole)

Starting Material

0 0 -42.30 -1.98
0 1 65.50 -27.34
0 2 -72.58 -1.10
0 3 -17.91 -2.74
1 1 -42.30 -1.98
1 2 -16.71 -2.75
1 3 -72.58 -1.10
2 2 -22.61 -3.77
2 3 67.48 -28.05
3 3 -22.61 -3.77

Cycle 1

0 0 -3.40 -3.37
0 1 61.08 -24.57
0 2 -66.07 -1.77
0 3 -48.93 -2.32
0 4 -14.94 -1.84
0 5 -24.87 -2.79
0 6 -48.93 -2.32
0 7 -49.13 -2.50
1 1 -14.69 -2.75
1 2 -70.05 -1.59
1 3 -47.86 -2.06
1 4 -24.87 -2.79
1 5 -45.58 -1.69
1 6 -53.48 -2.20
1 7 -53.48 -2.20
2 2 -24.42 -3.50
2 3 64.73 -26.85
2 4 -59.28 -2.05
2 5 -59.28 -2.05
2 6 -22.64 -4.11
2 7 8.63 -5.99
3 3 -92.43 -0.93
3 4 -59.28 -2.05
3 5 -59.28 -2.05
3 6 -65.59 -1.78
3 7 -22.64 -4.11
4 4 21.66 -8.46
4 5 67.60 -28.60
4 6 -25.68 -3.64
4 7 -31.52 -3.56
5 5 21.66 -8.46

Seq 1 Seq 2 Tm (◦C) ∆G (kcal/mole)

Cycle 1

5 6 -41.37 -3.14
5 7 0.33 -4.02
6 6 -53.48 -2.20
6 7 78.09 -33.68
7 7 0.73 -5.19

Cycle 2

0 0 -24.20 -2.53
0 1 63.83 -26.59
0 2 -67.40 -1.17
0 3 -72.14 -1.11
0 4 -99.82 -0.926
0 5 -1.18 -3.80
0 6 -18.66 -3.52
0 7 -15.08 -3.96
1 1 16.19 -7.34
1 2 -55.81 -1.14
1 3 -66.03 -1.56
1 4 -11.89 -4.46
1 5 -69.93 -1.28
1 6 -15.08 -3.96
1 7 12.94 -5.42
2 2 -23.07 -3.83
2 3 74.85 -32.00
2 4 -40.35 -2.27
2 5 -34.30 -2.25
2 6 -23.07 -3.83
2 7 -23.07 -3.83
3 3 21.55 -8.21
3 4 -50.78 -2.27
3 5 -40.35 -2.27
3 6 -23.07 -3.83
3 7 9.56 -5.98
4 4 -22.56 -2.83
4 5 68.90 -29.73
4 6 -13.23 -4.73
4 7 30.62 -10.73
5 5 -33.97 -2.87
5 6 29.93 -10.27
5 7 -13.23 -4.73
6 6 21.81 -8.26
6 7 69.73 -29.82
7 7 30.75 -10.24



Characterization of Non-crosshybridizing DNA Oligonucleotides 55

Table 2. Continued

Seq 1 Seq 2 Tm (◦C) ∆G (kcal/mole)

Cycle 3

0 0 2.94 -5.80
0 1 74.47 -31.29
0 2 -131.09 -0.19
0 3 -70.05 -1.59
0 4 -4.84 -5.39
0 5 -35.90 -2.69
1 1 -11.30 -4.85
1 2 -70.05 -1.59
1 3 -63.28 -0.90
1 4 -34.79 -2.84
1 5 -4.84 -5.39
2 2 9.77 -5.67
2 3 54.40 -22.04
2 4 -41.03 -2.44
2 5 -68.23 -1.29
3 3 -0.93 -4.02
3 4 -42.85 -1.44
3 5 -70.05 -1.59
4 4 -42.01 -0.92
4 5 68.06 -28.11
5 5 -50.41 -1.26

Seq 1 Seq 2 Tm (◦C) ∆G (kcal/mole)

Cycle 4

0 0 -24.20 -2.53
0 1 63.83 -26.59
0 2 -39.09 -2.38
0 3 -18.48 -2.80
0 4 -4.99 -3.83
0 5 -72.09 -1.11
1 1 16.19 -7.34
1 2 -19.78 -2.56
1 3 -39.09 -2.38
1 4 -64.55 -1.43
1 5 -34.98 -2.91
2 2 18.68 -7.77
2 3 64.66 -26.88
2 4 -18.16 -3.75
2 5 -72.09 -1.11
3 3 18.68 -7.77
3 4 -21.26 -2.66
3 5 -35.89 -2.90
4 4 -59.28 -2.05
4 5 72.08 -29.34
5 5 -59.28 -2.05

3 Library Characterization with Gels

The primers on either end of the library sequences (Figure 1) interfere with tests
for crosshybridizations by trapping duplexes into mismatched configurations.
Thus, to remove the primers, an polymerase extension was done with a single
RNA base at the end of the primer sequence. Then, RNAse was used to degrade
the ribonucleotide, and thus, cut off a primer. Then, the protocol oligonucleotides
could align in the desired hybridization frame (Figure 2). To track the progress
of the protocol, a densitometer was use to compare intensities of different gel
bands (Figure 2). The protocol products are in lanes 2 - 6, for 0 to 4 cycles of
the protocol, respectively. The intensities of the bands in the dotted box, which
contains the double-stranded molecules from the protocol (i. e. the extended
product), were compared to the total intensity in the lane. Thus, the fraction
of extended product is given by (Intensity of band in dotted box) divided by
(Intensity of band in dotted box plus intensity of lower band). As the cycles
progress, the proportion of selected product increases. Though the number of
distinct sequences cannot be estimated from this technique, Figure 2 indicates
that progressively larger fractions of the oligonucleotide population are being
selected.

To further test the non-crosshybridizing properties of the manufactured se-
quences, a gel-based technique[9] to check for crosshybridization was applied



56 J. Chen et al.

Fig. 2. Gel electrophoresis characterization of selection protocol progress. Protocol

product for 0 to 4 cycles are in lanes 2 - 6, respectively. Using a densitometer, the

percentage of reannealed product was 0% Cycle 0, 8.8% Cycle 1, 10.7% Cycle 2, 15.4%

Cycle 3, and 22.9% Cycle 4. Lane 7 contains a single-stranded 40-mer marker, Lane 8

a double-stranded 60-mer marker, lane 9 a single-stranded 60-mer marker, and lane 10

the re-annealed protocol product from cycle 4

to the protocol product. The protocol product after 4 cycles was isolated, and
PCR amplified. Then, the top strands and bottom strands were isolated from
each other, and purified (Bottom gel in Figure 3). Then, separately, the top and
bottom strands from the protocol product were allowed to anneal. These prod-
ucts are shown in lanes 4 and 5 of Figure 3. By comparing to the single-stranded
marker in lane 3, the top and bottom strands exhibit no duplexes. In addition,
the lack of a smear in the gel lanes indicates, that at least on the time scale of
the electrophoresis, the top and bottom strands show no secondary structure.

4 Library Characterization with Spectroscopy

When oligonucleotides are heated, their ultraviolet absorbance at certain wave-
lengths increases. Double-stranded molecules undergo a phase transition as they



Characterization of Non-crosshybridizing DNA Oligonucleotides 57

Fig. 3. Gel Electrophoresis results to test for crosshybridization. Lane 2 of top gel

contains protocol product after 4 cycles of selection. The double-strands were extracted,

and PCR amplified. Then, top and bottom strands were isolated and purified (Bottom

Gel), and run separately in lanes 4 and 5. A single-stranded marker is in lane 3

become single-stranded, and a S shaped curve is observed in the UV absorbance
at 260 nm as temperature increases. This melting curve gives an indication of
the fraction of single-stranded base pairs in the mixture. In addition, as temper-
ature increases, single-stranded oligonucleotides unstack, and a slow increase in
absorbance is observed [14].

Melting curves were used to characterize the hybridization properties of
the selection protocol product. The melting curves of protocol product (SP)
were compared to curves from several standards, DNA samples of random
20-mers, forty non-crosshybridizing 20 mers (#1-#40) from [9], a Watson-



58 J. Chen et al.

Crick complement pair of sequences (#5 and #41 from [9]), and a single-
stranded oligonucleotide of length 20. The random 20-mers represent the start-
ing population for the protocol, though without the primers. The non-
crosshybridizing set from [9] and the single-stranded oligonucleotide give a stan-
dard for non-crosshybridization, and the Watson-Crick pair for
hybridization.

DNA samples of selection products (SP) were prepared by PCR
amplifying the selection products after appropriate cycles of the selection pro-
tocol, with DNA primers (Primer #1 (DP#1) = 5′ - CATCGAAGGGGT-
GTTTTTT - 3′ and Primer #2 (DP#2) = 5′ - TCTTCATAAGTGATGC-
CCG - 3′) to obtain enough concentration of DNA for Tm experiments. The
amplified DNA samples were purified using the MiniElute PCR Purification
Kit (QIAGEN Inc., Valencia, CA, USA) before Tm experiments. DNA was
purchased from Integrated DNA Technologies (Coralville, IA). The purities of
DNA samples were checked using denaturing TBE-urea polyacrylamide gel
electrophoresis. Tm experiments were carried out using DU 800 UV/visible
spectrophotometer equipped with the micro Tm analysis accessory (Beckman
Coulter Inc., Futterton, CA, USA). The reaction mixtures for Tm experiments
contain appropriate amounts of DNA samples, which give absorbance read-
ing values at 260 nm of about 1.5, in Tris-EDTA buffer (pH 8.0;10 mM Tris
and 1 mM Na2EDTA) with NaCl (1 M). Before Tm experiments, the reaction
mixtures were degassed and equilibrated. Degassing was performed by quickly
heating and cooling the reaction mixtures between 0 and 85◦C.
Equilibrations were performed by repeatedly heating from 25 to 95◦C and hold-
ing at 95◦C for 5 min until constant absorbance readings at 260 nm were
achieved. Once equilibrated, Tm experiments were started at desired
temperatures.

The results of the melting curve experiments are shown in Figure 4. The
controls for the experiment were a single 20-mer (+), a Watson-Crick pair of
20-mers (�), and a set of 40 non-crosshybridizing 20-mers (�) that had been
designed with the tool of [7] and experimentally tested in [9]. In addition, a
set of random 20-mers (�) were included, which approximated the starting
population. The single 20-mer and the set of 40 non-crosshybridizing 20-mers
are standards for non-crosshybridization. In addition, the set of random 20-
mers, also, has little hybridization in it because of the complexity of the space
and the slow kinetics to find Watson-Crick complements. These samples show
a slow rate of increase indicating single-strand unstacking. The Watson-Crick
pair represents a control for hybridization, exhibiting the expected S shaped
curve. The top strands from Cycle 1 (�) and 4 (�) of the protocol were ex-
tracted, and melting curves generated. These curves are similar to the single-
stranded 20-mer, the 40 non-crosshybridizing 20-mers from [9], and the mixture
of random 20-mers. This indicates that the top strands from cycles 1 and 4
are non-crosshybridizing, at least on the time scale of the melting curve. When



Characterization of Non-crosshybridizing DNA Oligonucleotides 59

Fig. 4. Melting and annealing curves. Key is in Table 3



60 J. Chen et al.

top and bottom strands from Cycle 1 (�) were mixed together and measured,
a curve similar to the Watson-Crick control was generated. This indicates that
the primers are hybridizing, since the melting temperatures were close to the
Watson-Crick 20-mer, and not a 60-mer, as expected if the whole molecule were
duplex.

Table 3. Key for Figure 4

+ Non-crosshybridizing 20-mer
� 40 non-crosshybridizing 20-mers
� Mixture of random 20-mers
� Top Strands only from Cycle 1
� Top Strands only from Cycle 4
� Top & Bottom Strands - Cycle 1
� 20-mer Watson-Crick Complements

In the forward direction (i. e. melting curve), the characteristic S-shaped
curve for the melting transition was only observed for the Watson-Crick pair
(�), and the combined top and bottom strands from cycle 1 (�). The other
curves showed a gentler increase in absorbance that might result from single-
strand unstacking. In the backward direction (i. e. re-annealing), likewise the
Watson-Crick pair and combined top and bottom strands from cycle 1 were the
only curves exhibiting the S-shape. The top strands alone from cycles 1 and 4 (�
and �, respectively) were most similar to the single-stranded oligonucleotide (+)
and the non-crosshybridizing library of 20-mers (�). Thus, the results indicate
non-crosshybridization in the selected libraries.

5 Conclusion

Though any one test was not conclusive, the clone sequencing, gels, and melt-
ing curves all consistently indicated that the protocol was selecting for pop-
ulations of non-crosshybridizing sequences. Even though in a starting popula-
tion of random 20-mers, there is probably little annealing at all taking place, it
does appear that the selection protocol selects a subset of the starting popula-
tion, and progressively increases its size in subsequent iterations (Figure 2).
This subset seems to be more non-crosshybridizing than the initial starting
population and for increasing rounds of the protocol (Figure 4). Current ef-
forts are focused on estimating the number of distinct sequences present in the
population.

Acknowledgments

This work was supported by NSF Award EIA-0130385.



Characterization of Non-crosshybridizing DNA Oligonucleotides 61

References

1. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J.,
Lockhart, D.J., Morris, M.S., Fodor, S.P.A.: Acessing genetic information with
high-density DNA arrays. Science 274 (1996) 610–614

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266 (1994) 1021–1024

3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: So-
lution of a 20-variable 3-sat problem on a DNA computer. Science 296 (2002)
499–502

4. Mirkin, C., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for
rationally assembling nanoparticles into macroscopic materials. Nature 382 (1996)
607–609

5. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394 (1998) 539–544

6. Mao, C., Sun, W., Shen, Z., Seeman, N.: A DNA nanomechanical device based on
the b-z transition. Nature 397 (1997) 144–146

7. Deaton, R., Chen, J., Bi, H., Rose, J.A.: A software tool for generating non-
crosshybridizing libraries of DNA oligonucleotides. [15] 252–261 Lecture Notes in
Computer Science 2568.

8. Mauri, G., Ferretti, C.: Word design for molecular computing: a survey. In Chen,
J., Reif, J., eds.: DNA Computing: 9th International Workshop on DNA-Based
Computers, Berlin, University of Wisconsin-Madison, Madison, WI, June 2003,
Springer-Verlag (2004) 37–46 Lecture Notes in Computer Science 2943.

9. Deaton, R., Kim, J.W., Chen, J.: Design and test of non-crosshybridizing oligonu-
cleotide building blocks for DNA computers and nanostructures. Appl. Phys. Lett.
82 (2003) 1305–1307

10. Penchovsky, R., Ackermann, J.: DNA library design for molecular computation.
Journal of Computational Biology 10 (2003) 215–229

11. Deaton, R., Chen, J., Bi, H., Garzon, M., Rubin, H., Wood, D.H.: A PCR-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. [15] 196–204
Lecture Notes in Computer Science 2568.

12. Nuser, M., Deaton, R.: Simulations of dna computing with in vitro selection. Ge-
netic Programming and Evolvable Machines 4 (2003) 173–183

13. SantaLucia, Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide
DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95 (1998)
1460–1465

14. Bloomfield, V.A., Crothers, D.M., Tinoco Jr., I.: Nucleic Acids: Structures, Prop-
erties, and Functions. University Science Books, Sausalito, CA (2000)

15. Hagiya, M., Ohuchi, A., eds.: DNA Computing: 8th International Workshop on
DNA-Based Computers, Berlin, University of Tokyo, Hokkaido University, Sap-
poro, Japan, June 2002, Springer-Verlag (2003) Lecture Notes in Computer Science
2568.



Error Free Self-assembly
Using Error Prone Tiles

Ho-Lin Chen1,� and Ashish Goel2,��

1 Department of Computer Science, Stanford University
2 Department of Management Science and Engineering and (by courtesy) Computer Science,

Stanford University, Terman 311, Stanford CA 94305
{holin, ashishg}@stanford.edu

Abstract. DNA self-assembly is emerging as a key paradigm for nano-
technology, nano-computation, and several related disciplines. In nature, DNA
self-assembly is often equipped with explicit mechanisms for both error preven-
tion and error correction. For artificial self-assembly, these problems are even
more important since we are interested in assembling large systems with great
precision.

We present an error-correction scheme, called snaked proof-reading, which
can correct both growth and nucleation errors in a self-assembling system. This
builds upon an earlier construction of Winfree and Bekbolatov [11], which could
correct a limited class of growth errors. Like their construction, our system also
replaces each tile in the system by a k × k block of tiles, and does not require
changing the basic tile assembly model proposed by Rothemund and Winfree [8].

We perform a theoretical analysis of our system under fairly general assump-
tions: tiles can both attach and fall off depending on the thermodynamic rate pa-
rameters which also govern the error rate. We prove that with appropriate values
of the block size, a seed row of n tiles can be extended into an n × n square of
tiles without errors in expected time Õ(n), and further, this square remains stable
for an expected time of Ω̃(n). This is the first error-correction system for DNA
self-assembly that has provably good assembly time (close to linear) and prov-
able error-correction. The assembly time is the same, up to logarithmic factors,
as the time for an irreversible, error-free assembly.

We also did a preliminary simulation study of our scheme. In simulations,
our scheme performs much better (in terms of error-correction) than the earlier
scheme of Winfree and Bekbolatov, and also much better than the unaltered tile
system.

Our basic construction (and analysis) applies to all rectilinear tile systems
(where growth happens from south to north and west to east). These systems in-
clude the Sierpinski tile system, the square-completion tile system, and the block
cellular automata for simulating Turing machines. It also applies to counters, a
basic primitive in many self-assembly constructions and computations.

� Research supported in part by NSF Award 0323766.
�� Research supported by NSF CAREER Award 0339262 and by NSF Award 0323766.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 62–75, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Error Free Self-assembly Using Error Prone Tiles 63

1 Introduction

Self-assembly is the ubiquitous process by which objects autonomously assemble into
complexes. Nature provides many examples: Atoms react to form molecules. Molecules
react to form crystals and supramolecules. Cells sometimes coalesce to form organ-
isms. It is widely believed that self-assembly will ultimately become an important tech-
nology, enabling the fabrication of great quantities of small complex objects such as
computer circuits. DNA has emerged as an important component to use in artificial
self-assembly of nano-scale systems due to its small size, its incredible versatility, and
the precedent set by the abundant use of DNA self-assembly in nature. Accordingly,
DNA self-assembly has received significant attention over the last few years, both by
practitioners [13, 15, 10, 11], and by theoreticians [5, 6, 12, 1, 7, 8, 2, 3, 4]. The theoret-
ical results have focused on efficiently assembling structures of a controlled size (the
canonical example being assembly of n × n squares) and shape. In this paper, we are
interested in simultaneously achieving robustness and efficiency.

The Tile Assembly Model, originally proposed by Rothemund and Winfree [8], and
later extended by Adleman et al. [2], provides a useful framework to study the efficiency
(as opposed to robustness) of DNA self-assembly. In this model, a square tile is the
basic unit of an assembly. Each tile has a glue on each side; each glue has a label and
a strength (typically 1 or 2). A tile can attach to a position in an existing assembly if at
all the edges where this tile “abuts” the assembly, the glues on the tile and the assembly
are the same, and the total strength of these glues is at least equal to a system parameter
called the temperature (typically 2). Assembly starts from a single seed crystal and
proceeds by repeated accretion of single tiles. The speed of an addition (and hence the
time for the entire process to complete) is determined by the concentrations of different
tiles in the system. Details are in Section 2.

Rothemund and Winfree [8] gave an elegant self-assembling system for constructing
squares by self-assembly in this model. Their construction of n×n squares requires time
Θ(n log n) and program size Θ(log n). Adleman et al. [2] presented a new construction
for assembling n × n squares which uses optimal time Θ(n) and optimal program
size Θ( log n

log log n ). Both constructions first assemble a roughly log n × n rectangle (at
temperature 2) by simulating a binary counter, and then complete the rectangle into a
square. Later, Adleman et al. [3] studied several combinatorial optimization problems
related to self-assembly. Together, the above results are a comprehensive treatment of
the efficiency of self-assembly, but they do not address robustness.

In nature, DNA self-assembly is often equipped with explicit mechanisms for both
error prevention and error correction. For artificial self-assembly, these problems are
even more important since we are interested in assembling large systems with great
precision. In reality, several effects are observed which lead to a loss of robustness
compared to the model. The assembly tends to be reversible, i.e., tiles can fall away
from an existing assembly. Also, incorrect tiles sometimes get incorporated and locked
into a growing assembly, much like defects in a crystal. However, for sophisticated
combinatorial assemblies like counters, which form the basis for controlling the size of
a structure, a single error can lead to assemblies drastically larger or smaller (or different
in other ways) than the intended structure. Finally, the temperature of the system can



64 H.-L. Chen and A. Goel

be controlled only imperfectly. Experimental studies of algorithmic self-assembly have
observed error rates of 1% to 10% [11].

The work towards robustness has focused so far on two broad approaches. The
first approach is to identify mechanisms used by nature for error-correction and error-
prevention in DNA self-assembly and study how they can be leveraged in an algorithmic
setting. One example of this approach is strand invasion [4]. The other approach is to
design more combinatorial error-correction mechanisms. This is closest in spirit to the
field of coding theory. One example of this approach, due to Winfree and Bekbola-
tov [11], is proof-reading tiles. They suggest replacing each tile in the original system
with a k × k block. This provides some redundancy in the system (hence the loose
analogy with coding theory). Their approach can correct growth errors, which result
from an incorrect tile attaching at a correct location, i.e., a location where some other
tile could have correctly attached. However, their approach does not reliably correct nu-
cleation errors, which result from a tile (correct or incorrect) attaching at a site which
is not yet active. Their proof-reading scheme is explained in section 3, along with the
difference between growth and nucleation errors.

We present a modified proof-reading system which can correct both kinds of errors;
we call it a snaked proof-reading system. Our scheme provably (under some mild as-
sumptions) results in error-free assembly of an n × n square in time Õ(n) with high
probability (whp). Further, our system results in the final assembly remaining stable
for an Ω(n) duration whp. Hence, there is a large window during which there is a
high probability of finding complete assemblies. The best-possible assembly time for
an n×n structure is linear even without errors and even in the irreversible model. Thus,
our system guarantees close to optimum speed. To the best of our knowledge, this is the
first result which simultaneously achieves both robustness and efficiency.

Our snaked system is explained informally in section 3 using an illustrative example.
We prove that the error-rate in this illustrative example is much better for our system
than for that of Winfree and Bekbolatov. We give a formal description of our system
in section 4 and prove the properties of error-correction and efficiency. Section 4 also
provides simulation evidence with both our illustrative example and the Sierpinski tile
system [10]; in both cases, we demonstrate that our system resulted in a significant
reduction in errors.

Our analysis uses the thermodynamic model of Winfree [10]. We assume that the
forward and reverse rates as well as the error-rates are governed by underlying thermo-
dynamic parameters. We first analyze the performance of k×k proof-reading blocks in
terms of the error-rate and efficiency, and then let k grow to O(log n). Our Õ notation
hides polynomials in log n. We believe that our analysis is slack, and can be significantly
improved in terms of the dependence on k. We make some simplifying assumptions to
allow our proofs to go through; our simulations indicate that these assumptions are just
an artifact of our analysis and not really necessary.

Our basic construction (and analysis) applies to all rectilinear tile systems (where
growth happens from south to north and west to east). These systems include the Sier-
pinski tile system, the square-completion tile system, and the block cellular automata
for simulating Turing machines. It also applies to counters, a basic primitive in many



Error Free Self-assembly Using Error Prone Tiles 65

self-assembly constructions and computations, but we omit the discussion about coun-
ters from this paper.

2 Tile Assembly Model

2.1 The Combinatorial Tile Assembly Model

The tile assembly model was originally proposed by Rothemund and Winfree[8, 2]. It
extends the theoretical model of tiling by Wang [9] to include a mechanism for growth
based on the physics of molecular self-assembly. Informally, each tile of an assembly
is a square with glues of various types on each edge. Two tiles will stick to each other
if they have compatible glues. We will present a succinct definition, with minor modifi-
cations for ease of explanation.

A tile is an oriented unit square with the north, east, south and west edges labeled
from some alphabet Σ of glues. For each tile t, the labels of its four edges are denoted
σN (t), σE(t), σS(t), and σW (t). Sometimes we will describe a tile t as the quadruple
(σN (t), σE(t), σS(t), σW (t)). Consider the triple < T, g, τ > where T is a finite set of
tiles, τ ∈ Z>0 is the temperature, and g is the glue strength function from Σ × Σ to
Z≥0, where Σ is the set of glues. It is assumed that for all x, y ∈ Σ, (x �= y) implies
g(x, y) = 0 and there’s a glue null ∈ Σ, such that g(null, x) = 0 for all x ∈ Σ. A
configuration is a map from Z2 to T

⋃
empty.

Let C and D be two configurations. Suppose there exist some t ∈ T and some
(x, y) ∈ Z2 such that D = C except at (x, y), C(x, y) = null and D(x, y) = t. Let
fN,C,t(x, y) = g(σN (t), σS(C(x, y+1)). Informally fN,C,t(x, y) is the strength of the
bond at the north side of t under configuration C. Define fS,C,t(x, y), fE,C,t(x, y) and
fW,C,t(x, y) similarly. Then we say that tile t is attachable to C at position (x, y) iff
fN,C,t(x, y)+fS,C,t(x, y)+fE,C,t(x, y)+fW,C,t(x, y) ≥ τ , and we write C →T D to
denote the transition from C to D in attaching a tile to C at position (x, y). Informally,
C →T D iff D can be obtained from C by adding a tile t such that the total strength of
interaction between t and C is at least τ .

A tile system is a quadruple T =< T, s, g, τ >, where T, g, τ are as above and
s ∈ T is a special tile called the “seed”. We define the notion of a derived supertile of
a tile system T =< T, s, g, τ > recursively as follows:

1. The configuration Γ such that Γ (x, y) = empty except when (x, y) = (0, 0) and
Γ (0, 0) = s is a derived supertile of T, and

2. if C →T D and C is a supertile of T, then D is also a derived supertile of T.

Informally, a derived supertile is either just the seed (condition 1 above), or obtained
by legal addition of a single tile to another derived supertile (condition 2). We will often
omit the word “derived” in the rest of the paper, and use the terms “seed supertile” or
just “seed” or s to denote the special supertile in condition 1.

A terminal supertile of the tile system T is a derived supertile A such that there
is no supertile B for which A →T B. If there is a terminal supertile A such that for
any derived supertile B, B →∗

T A, we say that the tile system uniquely produces A.
Given a tile system T which uniquely produces a supertile, we say that the program size
complexity of the system is |T | i.e. the number of tile types.



66 H.-L. Chen and A. Goel

2.2 The Kinetic Model: Rates and Free Energy

Adleman et al. presented a model for running time of reversible self-assemblies [2]. In
this paper, we use a kinetic model proposed by Winfree which computes the forward
and reversed rate as functions of thermodynamic parameters [10]. It has the following
assumptions:

1. Tile concentrations are held constant throughout the self-assembly process.
2. Supertiles do not interact with each other. The only two reactions allowed are addi-

tion of a tile to a supertile, and the dissociation of a tile from a supertile.
3. The forward rate constants for all tiles are identical.
4. The reverse rate depends exponentially on the number of base-pair bonds which

must be broken, and the mismatched sticky ends make no base-pair bonds.

There are two free parameters in this model, both of which are dimensionless free
energies: Gmc > 0 measures the entropic cost of putting a tile at a binding site and
depends on the tile concentration, Gse > 0 measures the free energy cost of breaking a
single strength-1 bond. Under this model, we can approximate the forward and reverse
rates for each of the tile-supertile reactions in the process of self-assembly of DNA tiles
as follows:

The rate of addition of a tile to a supertile, f , is pe−Gmc .
The rate of dissociation of a tile from a supertile, rb, is pe−bGse , where b is the

strength with which the tile is attached to the supertiles.
The parameter p simply gives us the time scale for the self-assembly.
Winfree suggests using Gmc just a little smaller than 2Gse for self-assembly at

temperature two. We use the same operating region.

3 An Illustrative Example

While the ideas that we develop in this section are applicable to general self-assemblies,
a simple one dimensional example will be used for illustrative purposes. The tile sys-
tem is one that can compute the parity of a bit string and we will refer to it as the parity
system. The tiles are essentially a simplification of the tiles in the Sierpinski tile sys-
tem [10] and are obtained by making the top side of each tile in the Sierpinski system
inert. The tiles for the parity system are illustrated below in figure 1(a). The temperature
is 2. The “input” will consist of a structure of n + 2 tiles. The “input” tiles are assumed
to be arranged in two rows. The bottom row has n + 1 tiles. The rightmost tile on the
bottom row is inert on the right, the leftmost is inert on the left, and they are all inert on
the bottom. Each tile in the bottom row except the leftmost has a glue labeled either 0
or 1 on the top. The second row has just one input tile, sitting on top of the leftmost tile
in the bottom row. This second row tile is inert on the left and the top, and has a glue
labeled 0 on the right. Thus the input codes a string of n bits. With this input, the tiles
in the parity system will form a layer covering the n exposed glues in the bottom row.
Further, the rightmost tile in the top row will leave a glue labeled 0 on the right if the
parity of the bit string is 0 (i.e. the number of ones is even) and 1 otherwise. Figure 1(b)
illustrates this construction for n = 4 and the input string 1111. The glues are written
on the edges of the tiles and the input tiles are shaded.



Error Free Self-assembly Using Error Prone Tiles 67

0

0

000

1

0

110 0

1

101

1

1

011

01 11 01 110

1 1 1 1

1 0 1 0

(a) (b)

Fig. 1. (a) The parity tile system. (b) Illustrating the action of the parity tile system on the ”input”
string 1111. The arrow at the top represents the order in which tiles must attach in the absence of
errors

In this setting, tiles in the top row attach from left to right, if there are no errors.
Hence, in the absence of errors, there is always a correct “next” position

3.1 Growth Errors and the Winfree-Bekbolatov Proof-Reading System

An error is said to be a “growth” [11] error if an incorrect tile attaches in the next
position. The proof-reading approach of Winfree and Bekbolatov [11] can correct such
errors by using redundancy. They replace each tile in the system with four tiles, arranged
in a 2×2 block. Figure 2(b) depicts the four tiles that replace a 10 tile. The glues internal
to the block are all unique. This added redundancy results in resilience to growth errors.
The details are described in their paper.

10

10

10

C

DB

A

RL

B

TT

B 1

11

1

00

10

(a) (c)(b)

C

DB

A

RL

B

TT

B 1

11

1

00

10

10

10

10

10 1

0

1

Fig. 2. (a) The original 10 tile. (b) The four proof-reading tiles for the 10 tile, using the construc-
tion of Winfree and Bekbolatov [11]. (c) The snaked proof-reading tiles for the parity tile system.
The internal glues are all unique to the 2× 2 block corresponding to the 10 tile. Notice that there
is no glue on the right side of 10A or the left side of 10C and that the glue between the top two
tiles is of strength 2. This means that the assembly process doubles or “snakes” back onto itself,
as demonstrated by the arrow

3.2 Nucleation Errors and Improved Proof-Reading

However, there is another, more insidious kind of error that can happen. A tile may
attach at a position other than the correct “next” position using just a strength one glue.
This would be the incorrect tile, and hence an error with probability 50%, and such
an error will propagate to the right ad infinitum even if we are using the proof-reading
tile set of Winfree and Bekbolatov. We call such errors “nucleation” errors1. In more

1 Winfree and Bekbolatov call these facet roughening errors and reserve the term nucleation
errors for another phenomenon.



68 H.-L. Chen and A. Goel

complicated systems, these errors can also happen on the boundary of a completed
assembly, making it very hard to precisely control the size of an assembly. Both growth
errors and nucleation errors are caused by what we term an insufficient attachment –
the attachment of a tile to an existing assembly using a total glue strength of only 1
(even though the temperature is 2) and then being “stabilized” (i.e. held by strength
2) by another tile attaching in the vicinity. Insufficient attachments are unlikely at any
given site (say they happen with probability x) but over the course of n attachments,
the probability of getting at least one insufficient attachment may become as large as
O(nx). We will now show a design that requires two insufficient attachments in close
proximity to have an error that can propagate, and significantly reduces the chances of
getting an error (either growth or nucleation). Figure 2(c) shows the 2 × 2 block that
replaces a single tile (say tile 10), and the arrow shows the order in which the sub-
tiles attach at a site when there have been no insufficient attachments. Notice that there
is no glue between tiles 10A and 10C . This is what prevents nucleation errors from
propagating without another insufficient attachment. We call this the “snaked” proof-
reading system, since the assembly process for a block doubles back on itself.

It is easy to show that the above approach can be extended to arbitrary k × k sized
blocks, to get lower and lower error rates. The above idea can also be extended to Sier-
pinski tile systems [10] and counters [8, 2], though for technical reasons, a 3× 3 block
is needed at a minimum to take care of nucleation errors in these more complicated
systems. Detailed analysis is given in section 4. However, the following lemmas are
useful to illustrate the kind of improvements we can expect to get. The quantities f ,
r and Gse are as defined in section 2.2. An insufficient attachment at temperature two
is the process that a tile attaches with strength one, but, before it falls off, another tile
attaches right next to it and both tiles are held by strength at least two.

Lemma 1. The rate at which an insufficient attachment happens at any location in a

growing assembly is f2

r e−Gse = O(e−3Gse).

Proof. The rate of an insufficient attachment can be modeled as the Markov Chain
shown in figure 3. For a nucleation error to happen, first a single tile must attach
(at rate f). The fall-off rate of the first tile is reGse and the rate at which a second
tile can come and attach to the first tile is f. After the second tile attaches, an insuf-
ficient attachment has happened. So the overall rate of an insufficient attachment is
f ∗ f

f+reGse
≈ f2

r e−Gse

Without proof-reading, or even using the proof-reading system of Winfree and Bek-
bolatov, a single insufficient attachment can cause a nucleation error, and hence the

C C C C C C

E E

p

qeGse

p
error propagates

C C C C CC C C C C C C

E

Fig. 3. The C tiles represent the existing assembly, and the E tiles are new erroneous tiles



Error Free Self-assembly Using Error Prone Tiles 69

rate of nucleation error at any location is also O(e−3Gse). The next lemma shows the
improvement obtained using our snaked proof-reading system. The difference is even
more pronounced if we compare the nucleation error rate to the growth rate, which is
a natural measurement unit in this system. The ratio of the nucleation error rate to the
growth rate is O(e−Gse) in the original proof-reading system, whereas it is O(e−2Gse)
in our system, a quadratic improvement.

Lemma 2. The rate at which a nucleation error takes place in our snaked proof-reading
system is O(e−4Gse).

Proof. In the snaked system, two insufficient attachments need to happen next to each
other for a nucleation error to occur. According to lemma 1, the first insufficient at-
tachment happens at rate O(e−3Gse). After the first insufficient attachment, the error
will eventually be corrected unless another insufficient attachment happens next to the
first. The second insufficient attachment happens at rate O(e−3Gse); but the earlier in-
sufficient attachment gets “corrected” at rate O(e−2Gse) (remember that a ≈ 1 and
hence a tile attached with strength 2 falls off at roughly the growth rate). Hence, the
probability of another insufficient attachment taking place before the previous insuffi-
cient attachment gets reversed is O(e−Gse), bringing the nucleation error rate down to
O(e−4Gse).

For growth errors, the proof-reading system of Winfree and Bekbolatov achieves a
reduced error rate of O(e−4Gse), a property preserved by our modification.

4 The General Snaked Proofreading System

The system shown in the previous section only works for prevention of nucleation errors
in one direction (west to east). The system we describe in this section can improve any
rectilinear tile system 2 and prevents nucleation errors in both growth directions.

First, we look at rectilinear systems in which all glues have strength 1. To improve
this kind of system, each tile T in the original system is replaced by a 2k × 2k block
(k ≥ 2) T1,1, T1,2, . . . , T2k,2k. Each glue Gi in the original system is replaced by 2k
glues Gi,1, Gi,2, . . . , Gi,2k with strength 1 on the corresponding boundary of the block.
All glues internal to the block have strength 1 except the following:

1. The east sides of tiles T1,2i−1 are inert, as well as the west sides of tiles T1,2i for
i = 1, 2, . . . , k − 1.

2. The north sides of tiles T2i,1 are inert, as well as the south sides of tiles T1,2i+1 for
i = 1, 2, . . . , k − 1.

3. The glues on the north sides of tiles T2i,2i+1 have strength 2, as well as the glues
on the south sides of tiles T2i+1,2i+1 for i = 1, 2, . . . , k − 1.

4. The glues on the east sides of tiles T2i,2i−1 have strength 2, as well as the glues on
the west sides of tiles T2i,2i for i = 1, 2, . . . , k.

2 A rectilinear tile system is one where growth occurs in a rectilinear fashion - from south to
north and from west to east.



70 H.-L. Chen and A. Goel

5. The east side of the tile T2k−2,2k−1 is inert, as well as the west side of the tile
T2k−2,2k.

6. The glue on the north side of the tile T2k−2,2k has strength 2, as well as the south
side of the tile T2k−1,2k.

The glues internal to the block are unique to that block and don’t appear on any other
blocks. Informally, the blocks attach to each other using the same logic as the original
system.

An illustrative example with k = 2 is shown in figure 4(a). The numbering of the
tiles in figure 4(b) denotes the sequence of the tile attachment in the assembly process.
It is worth noticing that all the tiles on the northern and eastern side of the block are held
by strength at least 3. So whenever all the tiles on a block are attached, it is unlikely for
them to fall off.

GG

G

G

G

1,1 1,2 1,41,3

2,4

2,3

2,2

2,1

3,43,33,23,1

4,1

4,2

4,3

4,4 T

G

G1

G

G

G 2

3

4 T

(a) (b)

G G G G

GGGG

G

G

T

3,3 3,4

4,1 4,2 4,3 4,4

1

9

4 5

3 62

8 7

1110 12 13

14

16

15

3,1T T T

T T

T

TTTT

T T T T

3,2

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

Fig. 4. (a) The structure of 4x4 block. (b) The order of the growth

Recall that f denoted the forward rate of a tile attaching, and r denotes the backward
rate of a tile held by strength 2 falling off. In the rest of the section, we assume that
f = r and tiles held by strength three do not fall off. We need to make this assumption
for our proof to go through, but we don’t believe they are necessary.

Here are some definitions we will use in this section: a k-bottleneck is a connected
structure which requires at least k insufficient attachments to form. A block error oc-
curs if all the tiles in a block have attached and are all incorrect (compared to perfect
growth).It is easy to prove that a block error is just an example of a k-bottleneck.

We are going to consider an idealized system where the south and west boundary
is already assembled and the tiles in the square are going to assemble in a rectilinear
fashion. The following theorems represent our main analytical result:

Theorem 1. With a 2k× 2k snaked tile system (for some fixed k), assuming we can set
eGse to be O(n

2
k ), an n × n square of blocks can be assembled in time O(n1+ 4

k ) and
with high probability, no block errors happen Ω(n1+ 4

k ) time after that.



Error Free Self-assembly Using Error Prone Tiles 71

Theorem 2. With a 2k × 2k snaked tile system, k = O(log n), assuming that we can
set eGse to be O(k6), an n × n square of blocks can be assembled in time Õ(n) and
with high probability, no block errors happen for Ω̃(n) time after that.

Here, the Õ notation hides factors which are polynomial in k and log n. Informally,
Theorems 1 and 2 say that snaked proofreading results in tile systems which assembly
quickly and remain stable for a long time.

In fact, we believe that our scheme achieves good performance without having to set
eGse to be as high as O(k6) and the ratio between forward and backward rate can be set
to some constant for getting a good performance. The simulation results are described
at the end of this section confirm our intuition.

4.1 Proof of the Main Result

Since all tiles in a correctly attached block are held by strength three, once a correct
block attaches at a location, none of its tiles ever fall off. So, it suffices to only consider
the perimeter of the supertile. For ease of exposition, we are going to focus on errors
that happen on the east edge of the assembly.

Lemma 3. Consider any connected structure caused by m insufficient attachments
(1 ≤ m ≤ k). Then the width of the structure can be at most 2m, and the height
of the structure can be at most 2k (i.e., this connected structure can only span two
blocks). This structure will fall off in expected time O(k5

r ) unless there’s a block error
somewhere in the assembly or an insufficient attachment happens within the (at most
two) blocks spanned by the structure.

PROOF OUTLINE: The proof of this lemma involves a lot of technical details. Due to
space constraints, we only present a sketch in this version. In the structure of 2k × 2k
snaked tiles, all the glues between the (2i)-th row and (2i+1)-th row have strength 1 for
all i. So, to increase the width from 2i to 2i + 1, we must have at least one insufficient
attachment. So, with m insufficient attachments, the width of the structure can be at
most 2m. Using similar arguments, the height of the structure can be at most 2k. Also,
the attached tiles can be partitioned into O(k) parts. Each of these parts can be viewed
as a 2×O(k) rectangle with every internal glue having strength 1. The process of tiles
attaching to and detaching from each rectangle can be modeled using two orthogonal
random walks and hence, each rectangle will fall off in expected time O(k4

r ). The dif-
ferent rectangles can fall off sequentially, and after one rectangle falls off completely,
none of its tiles will attach again unless an insufficient attachment happens. Thus, the
structure will fall off in expected time O(k5

r ) unless there’s a block error (anywhere in
the assembly) or an insufficient attachment happens (within the two blocks) before the
structure has a chance to fall off. ��

Theorem 3. Assume that we use a 2k × 2k snaked tile system and Gmc = 2Gse. Then
for any ε, there exists a constant c such that, with probability 1− ε, no k-bottleneck will

happen at a specific location within time c 1
f eGse( e−Gse+1/k6

e−Gse
)
k−1

.



72 H.-L. Chen and A. Goel

Proof. By definition, k insufficient attachments are required before a k-bottleneck hap-
pens. After i insufficient attachments take place, one of the following is going to hap-
pen:

– One more insufficient attachment. Consider any structure X caused by i insufficient
attachments. By Lemma 3, the size of X cannot exceed two blocks, hence the
number of insufficient attachment locations that can cause this structure to grow
larger is at most 4k. So, the rate of the (i + 1)-th insufficient attachment happening
is at most 4kfe−Gse .

– All the attached tiles fall off. By Lemma 3, the expected time for all the attached
tiles to fall off is O(k5

r )

So, after i insufficient attachments happen, the probability of the (i + 1)-th insufficient

attachment happening before all tiles fall off is O( kfe−Gse

kfe−Gse+r/k5 ) = O( e−Gse

e−Gse+1/k6 ).
So, after the first insufficient attachment takes place, the probability of a k-bottleneck

happening before all the attached tiles fall off is less than O(( e−Gse

e−Gse+1/k6 )
k−1

). As

shown in Lemma 1, the expected time for the first insufficient attachment is O( 1
f eGse).

So, the expected time for a k-bottleneck to happen at a certain location is at most

O( 1
f eGse( e−Gse+1/k6

e−Gse
)
k−1

). Hence, for any small ε, we can find a constant c such that,
with probability 1 − ε, no k-bottleneck will happen at a specific location within time

c 1
f eGse( e−Gse+1/k6

e−Gse
)
k−1

.

Theorem 4. If we assume there are no k-bottlenecks, and the rate of insufficient at-
tachments is at most O( f

k6 ), then an n× n square of 2k× 2k snaked tile blocks can be

assembled in expected time O(k5n
f ).

Proof. With the snaked tile system, after all the tiles in a block attach, all the tiles
are held by strength at least 3 and will never fall off. Using the running time analy-
sis technique of Adleman et al. [2], the system finishes in expected time O(n × TB),
where n is the size of the terminal shape and TB is the expected time for a block to
assemble. Without presence of k-bottlenecks, when we want to assemble a block, the
erroneous tiles that currently occupy that block are formed by at most k− 1 insufficient
attachments. By Lemma 3, without any further insufficient attachments happening, the
erroneous tiles will fall off in time O(k5

f ) and the correct block can attach within time

O(k4

f ). By assumption, the rate of insufficient attachment happening is at most O( f
k6 ),

and there are at most O(k) locations for insufficient attachments to happen and affect
this process. So, there’s a constant probability that no insufficient attachments will hap-
pen during the whole process and thus the time required to assemble a block, TB , is at
most O(k5

f ).

Theorems 1 and 2 follow from the above two theorems. Notice that there is a lot of
slack in our analysis.



Error Free Self-assembly Using Error Prone Tiles 73

4.2 Simulation Results

We use the simulation program xgrow written by Winfree et al. [14].
We first use three different systems to build a square of 20×20 blocks with the Sier-

pinski pattern [10]. The column “snaked” refers to the system described in this paper;
the column “proofreading” corresponds to the original proofreading system described
by Winfree and Bekbolatov; the column “original” refers to the system without any
error correction. The results are summarized in table 1. The block size for our snaked
system as well as the original proofreading system is 4 × 4. Similar results were ob-
served for a wide range of simulation scenarios. As is clear, our snaked tile system has
a much lower error rate, has a much higher stability time, and is only two-three times
slower than the proofreading system of Winfree and Bekbolatov [11]. The original sys-
tem only needs to assemble a much smaller structure (since it uses a 1 × 1 block);
hence the “reversal” in the error-rates for the original and the proofreading system in
the second simulation.

Table 1. Assembling a 20×20 Sierpinski block. A stability time of 0 indicates that the final square
became unstable (i.e., an extra block of tiles attached on the periphery of the desired supertile)
even before the complete supertile formed. The values represent averages over 100 runs

Gmc = 15, Gse = 7.8 Gmc = 15, Gse = 8.0

Original Proofreading Snaked Original Proofreading Snaked
Time to assemble (seconds) 550 2230 6020 350 1750 3780

Error Probability 52% 24% 0% 63% 75% 0%
Time it remains stable 0 0 >400000 0 0 5700

(seconds) after completion

Also, for the 2×2 snaked tile system and the original proofreading system, we took
a straight line boundary of 200 tiles (i.e., 100 blocks) and tested the average time (in
seconds; virtual time) for a block error to happen under different Gse’s. Here, 2Gse −
Gmc is set to be 0.2. Theoretically, the expected time for a block error to happen in
the snaked tile system is O(e4Gse), and the expected time for a block error to happen
in the proofreading system is O(e3Gse). The result is shown in figure 5(a); the y-axis
uses a log-scale. Clearly, the slope of the curve for the snaked tile system confirms
our analysis – the slope is very close to 4, and significantly more than the slope for the
original proofreading system. For the larger values of Gse, we could only plot the results
for the original proof-reading system, since the simulator did not report any errors with
the snaked tile system for the time scales over which we conducted the simulation.

We also tested the error rate for parity systems of different seed lengths. We called
an experiment an error if the final supertile was different from the one we expect in the
absence of errors. We used Gse = 7.0, Gmc = 13.6. The result is shown in figure 5(b);
again, a significant reduction in error rate is observed. For both figures 5(a) and 5(b),
qualitatively similar results were observed for widely varying simulation parameters.

Our simulation results show that our analysis is very close to reality even without
idealized parameter conditions. For example, we did not use Gmc = 2Gse but instead
used Gmc slightly smaller than 2Gse as suggested by Winfree [10]. Also, the simulator



74 H.-L. Chen and A. Goel

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10

1

10
2

10
3

10
4

10
5

snaked tiles
slope=4.01

proof−reading

G
se

e
xp

e
ct

e
d

 t
im

e
 f

o
r 

b
lo

ck
 e

rr
o

r

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

proofreading

snake

length of the seed row

e
rr

o
r 

p
e

rc
e

n
ta

g
e

Fig. 5. (a) The first figure shows the relation between the average time for a block error to happen
and Gse (average over 100 runs). (b) The second figure shows that the error rate for snaked tiles
is much smaller than proofreading tiles (average over 200 runs)

allows tiles held by strength 3 to fall off, contrary to our assumption. Thus, we believe
that our snaked system works much better (and under a much wider set of conditions)
than we have been able to formally prove.

5 Future Directions

It would be interesting to extend our analysis to remove some of our assumptions. Also,
we believe that the total assembly time for our system should just be O(k2n) for as-
sembling an n× n square using k× k snaked blocks. One of the biggest bottlenecks in
proving this bound is an analysis of the assembly time of an n×n square assuming that
there are no errors but that the system is reversible, i.e., tiles can both attach and detach.
We believe that the assembly time for this system should be O(n) along the lines of the
irreversible system [2], but have not yet been able to prove it.

Acknowledgments

We would like to thank Qi Cheng and Erik Winfree for many useful discussions. We
would also like to thank Erik Winfree for loaning us his tile simulator, xgrow, which
was an indispensable aid in this research.

References

1. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722,
Department of Computer Science, University of Southern California, 2000.

2. L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program size for self-
assembled squares. In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 740–748. ACM Press, 2001.



Error Free Self-assembly Using Error Prone Tiles 75

3. L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. Moisset de Espans, and
P. Rothemund. Combinatorial optimization problems in self-assembly. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 23–32. ACM Press,
2002.

4. H. Chen, Q. Cheng, A. Goel, M.-D. Huang, and P. Moisset de Espans. Invadable self-
assembly: Combining robustness with efficiency. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 883–892, 2004.

5. M. Lagoudakis and T. LaBean. 2D DNA self-assembly for satisfiability. In Proceedings
of the 5th DIMACS Workshop on DNA Based Computers in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 54. MIT: Cambridge, 1999.

6. J. Reif. Local parallel biomolecular computation. In H. Rubin, editor, Third Annual DI-
MACS Workshop on DNA Based Computers, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1998.

7. P. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, Univer-
sity of Southern California, 2001.

8. P. Rothemund and E. Winfree. The program-size complexity of self-assembled squares (ex-
tended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 459–468. ACM Press, 2000.

9. H. Wang. Proving theorems by pattern recognition II. Bell Systems Technical Journal, 1961.
40:1-42.

10. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technol-
ogy, Pasadena, 1998.

11. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-
assembly. In Proceedings of the Ninth International Meeting on DNA Based Computers.
Madison, Wisconsin, June 2003.

12. E. Winfree, F. Liu, L. Wenzler, and N. Seeman. Design and self-assembly of two-dimensional
DNA crystals. Nature, (394):539–544, Aug 1998.

13. E. Winfree, X. Yang, and N. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In Proceedings of the Second Annual Meeting on DNA Based
Computers. Princeton University, June 1996.

14. E. Winfree et al.. The xgrow simulator. http://www.dna.caltech.edu/Xgrow/xgrow www.html.
15. B. Yurke, A. Turberfield, A. Mills Jr, F. Simmel, and J. Neumann. A DNA-fuelled molecular

machine made of DNA. Nature, (406):605–608, Aug 2000.



On the Computational Complexity of
P Automata�

Erzsébet Csuhaj-Varjú1, Oscar H. Ibarra2, and György Vaszil1

1 Computer and Automation Research Institute, Hungarian Academy of Sciences,
Kende utca 13-17, 1111 Budapest, Hungary

{csuhaj, vaszil}@sztaki.hu
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract. We characterize the classes of languages described by P au-
tomata, i.e., accepting P systems with communication rules only. Mo-
tivated by properties of natural computing systems, we study compu-
tational complexity classes with a certain restriction on the use of the
available workspace in the course of computations and relate these to the
language classes described by P automata. We prove that if the rules of
the P system are applied sequentially, then the accepted language class
is strictly included in the class of languages accepted by one-way Tur-
ing machines with a logarithmically bounded workspace, and if the rules
are applied in the maximal parallel manner, then the class of context-
sensitive languages is obtained.

1 Introduction

Membrane systems, or P systems, are biomolecular computing devices working
in a distributed and parallel manner inspired by the functioning of the living
cell. The main ingredient of a P system is a hierarchically embedded structure
of membranes with rules associated to the regions describing the evolution of the
objects present in the membranes. The evolution of the system corresponds to
a computation. P systems have intensively been studied in the past few years,
the interested reader might consult the monograph [10] for a systematic study
of the area.

The introduction of P automata in [1] was motivated by an idea recently
attracting researchers, namely, to use P systems as language acceptors. The ob-
jects in a P automaton may move through the membranes from region to region,
but they may not be modified during the functioning of the systems, and further-
more, the described languages are obtained as the set of accepted sequences of

� The research of E. Csuhaj-Varjú and Gy. Vaszil was supported in part by the
Hungarian Scientific Research Fund “OTKA” grant no. T 042529. The research of
O. H. Ibarra was supported in part by NSF Grants IIS-0101134 and CCR02-08595.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 76–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Computational Complexity of P Automata 77

multisets containing the objects entering from the environment during the evo-
lution of the system. The environment is considered to have an infinite supply
of objects, any number of symbols may be requested by the application of one
or more rules associated to the skin membrane, and these symbols may traverse
this membrane and enter when they are requested to do so.

A result on the accepting power of P automata was already established in
[1] stating that for any recursively enumerable language, there is a P automaton
accepting the image of the language under a certain mapping. Similar results
were also obtained in [3], [4], and [7], for P automata with different features and
different mappings to obtain the recursively enumerable language.

In the present paper we continue the study of the power of P automata,
but this time we are interested in the exact characterization of the languages of
the multiset sequences entering the system through the skin membrane during
a computation. We do this by establishing a correspondence between the sym-
bols of an alphabet and the multisets that might ever enter the P automaton,
and characterize the set of words corresponding to the set of accepted multiset
sequences. This approach differs from the ones mentioned above because we do
not allow erasing, that is, each nonempty multiset corresponds to a symbol of
the alphabet when defining the string represented by the multiset sequence. This
means that the workspace of the P automaton is provided only by the objects
of the input obtained from the environment during a computation, which is a
very natural way of restricting the use of the resources: As the processing of the
input progresses, additional parts of the workspace become available with each
step. Thus, the workspace which can be used in the course of the computation
is provided in accordance with the number of symbols actually read from the
input, in other words, the computation is made possible by manipulating what is
already obtained from the input. This idea agrees very well with the behaviour
of natural systems where the result of a computation is also obtained by using
the resources provided by the input, the object of the computation itself.

We consider the sequential and the so-called maximal parallel way of rule
application. In the sequential case, the number of different multisets that may
ever enter the system is finite which means that there is a natural one-to-one
correspondence between these multisets and the symbols of a finite alphabet.
This is not necessarily so when the rules are applied in the maximal parallel way,
in this case P automata can be considered as devices accepting finite strings over
an infinite alphabet. In this paper we do not study the case of infinite alphabets,
we use instead a mapping that maps the infinite set of different multisets to
a finite alphabet, thus we will be able to speak of languages accepted by P
automata using the rules in the sequential or in the maximal parallel manner,
the languages being in both cases over a finite alphabet.

We show that the languages which can be characterized by P automata in
this sense using the rules in the sequential manner are strictly included in the
class of languages accepted by one-way Turing machines using logarithmically
bounded workspace, while if the rules are used in the maximal parallel way, the
class of context-sensitive languages is obtained.



78 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

2 Definitions

We first recall the notions and the notations we use. Let V be an alphabet, let
V ∗ be the set of all words over V , and let V + = V ∗ − {ε} where ε denotes the
empty word. We denote the length of a word w ∈ V ∗ by |w|, and the number
of occurrences of a symbol a ∈ V in w by |w|a. The set of natural numbers is
denoted by N.

A multiset is a pair M = (V, f), where V is an arbitrary (not necessarily
finite) set of objects and f : V → N is a mapping which assigns to each object its
multiplicity. The support of M = (V, f) is the set supp(M) = {a ∈ V | f(a) ≥ 1}.
If V is a finite set, then M is called a finite multiset. The set of all finite multisets
over the set V is denoted by V ◦.

We say that a ∈ M = (V, f) if a ∈ supp(M), and M1 = (V1, f1) ⊆ M2 =
(V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1, f1(a) ≤ f2(a). The union of
two multisets is defined as (M1 ∪M2) = (V1 ∪ V2, f

′) where for all a ∈ V1 ∪ V2,
f ′(a) = f1(a) + f2(a), the difference is defined for M2 ⊆ M1 as (M1 − M2) =
(V1−V2, f

′′) where f ′′(a) = f1(a)−f2(a) for all a ∈ V1−V2, and the intersection
of two multisets is (M1 ∩M2) = (V1 ∩ V2, f

′′′) where for a ∈ V1 ∩ V2, f ′′′(a) =
min(f1(a), f2(a)), min(x, y) denoting the minimum of x, y ∈ N. We say that M
is empty, denoted by ε, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string w
over the alphabet V with |w|a = f(a), a ∈ V , and with ε representing the empty
multiset ε. In the following we sometimes identify the finite multiset of objects
M = (V, f) with the word w over V representing M , thus we write w ∈ V ◦, or
sometimes we enumerate the elements of w = a1 . . . at ∈ V ◦ in double brackets
(to distinguish from the usual set notation) as {{a1, . . . , at}}.

Now we present the basic notions of membrane computing; the interested
reader may find more detailed information on the theory of P systems in the
monograph [10]. A P system is a structure of hierarchically embedded mem-
branes, each having a label and enclosing a region containing a multiset of ob-
jects and possibly other membranes. The out-most membrane which is unique
and usually labelled with 1, is called the skin membrane. The membrane struc-
ture is denoted by a sequence of matching parentheses where the matching pairs
have the same label as the membranes they represent. If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗
is such a string of matching parentheses of length 2n, denoting a structure where
membrane i contains membrane j, then x = x1 [i x2 [j x3 ]j x4 ]i x5 for some
xk ∈ {[l, ]l | 1 ≤ l ≤ n, l �= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains membrane
j, and there is no other membrane, k, such that k contains j and i contains k
(x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j, denoted by i = parent(j), and at
the same time, membrane j is one of the child membranes of i.

By the contents of a region we mean the multiset of objects which is contained
by the corresponding membrane excluding those objects which are contained by
any of its child membranes.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,



On the Computational Complexity of P Automata 79

the system performs a computation by passing from one configuration to another
one. In the following we concentrate on communication rules called symport or
antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule
is present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, parent(i). An antiport rule is of
the form (x, in; y, out), x, y ∈ V ◦, in this case, objects of x enter from the parent
region and in the same step, objects of y leave to the parent region. All types
of these rules might be equipped with a promoter or inhibitor multiset, denoted
as (x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, in
which case they can only be applied if region i contains the objects of multiset
z, or if Z = ¬z, then region i must not contain the elements of z. (For more on
symport/antiport see [9], for the use of promoters see [8].)

The rules can be applied in the maximal parallel or in the sequential manner.
When they are applied in the sequential manner, one rule is applied in each
region in each derivation step, when they are applied in the parallel manner, as
many rules are applied in each region as possible. See Definition 2 for the formal
description of these modes.

The end of the computation is defined by halting: A P system halts when
no more rules can be applied in any of the regions. In the case of P automata,
however, we consider predefined accepting configurations called final states, by
associating a finite set of multisets to each region. The P automaton accepts the
input sequence when the contents of each region coincides with one element of
these previously given finite sets of multisets.

The result of the computation can also be given in several ways, see [10] for
more details. In the case of P automata, the result of the computation is an ac-
cepted multiset sequence, the sequence of multisets entering the skin membrane
during a successful computation.

Now we present the formal definition of a P automaton.

Definition 1. A P automaton with n membranes is defined as Γ =
(V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)) where n ≥ 1, V is a finite alphabet of ob-
jects, µ is a membrane structure of n membranes with membrane 1 being the
skin membrane, and for all i, 1 ≤ i ≤ n,

– wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite
multiset of all objects contained by region i,

– Pi is a finite set of communication rules associated to membrane i, they can
be symport rules or antiport rules, with or without promoters or inhibitors,
as above, and

– Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states
of region i. If Fi = ∅, then all the states of membrane i are considered to be
final.

To simplify the notations we denote symport and antiport rules with or without
promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦} where
we also allow x, y, z to be the empty string. If y = ε or x = ε, then the notation



80 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

above denotes the symport rule (x, in)|Z or (y, out)|Z , respectively, if Z = ε,
then the rules above are without promoters or inhibitors.

The n-tuple of finite multisets of objects present in the n regions of the
P automaton Γ describes a configuration of Γ ; (w1, . . . , wn) ∈ (V ◦)n is the
initial configuration.

Definition 2. The transition mapping of a P automaton is a partial mapping
δX : V ◦× (V ◦)n → 2(V ◦)n

, with X ∈ {seq, par} for sequential or for parallel rule
application. These mappings are defined implicitly by the rules of the rule sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′
1, . . . , u

′
n) ∈ δX(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′

1, . . . , u
′
n) ∈ (V ◦)n, if there exist rules as follows.

– If X = seq, then for all i, 1 ≤ i ≤ n, there is a rule (xi, in; yi, out)|Zi
∈ Pi

with z ⊆ ui for Zi = z ∈ V ◦, and z ∩ ui = ε for Zi = ¬z, z ∈ V ◦, satisfying
the conditions below, or

– if X = par, then for all i, 1 ≤ i ≤ n, there is a multiset of rules Ri =
{{ri,1, . . . , ri,mi

}}, where ri,j = (xi,j , in; yi,j , out)|Zi,j
∈ Pi with z ⊆ ui for

Zi,j = z ∈ V ◦, and z ∩ ui = ε for Zi,j = ¬z, z ∈ V ◦, 1 ≤ j ≤ mi, satisfying
the conditions below, where xi, yi denote the multisets

⋃
1≤j≤mi

xi,j and⋃
1≤j≤mi

yi,j , respectively. Furthermore, there is no r ∈ Pj , for any j, 1 ≤
j ≤ n, such that the rule multisets R′

i with R′
i = Ri for i �= j and R′

j =
{{r}} ∪Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2.
⋃

parent(j)=i xj ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′
i = ui ∪ xi − yi ∪

⋃
parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

We define the sequence of multisets of objects accepted by the P automaton as
an input sequence which is consumed by the skin membrane while the system
reaches a final state, a configuration where for all j with Fj �= ∅, the contents
uj ∈ V ◦ of membrane j is “final”, i.e., uj ∈ Fj .

Note that in the case of parallel rule application, the set of multisets which
may enter the system in one step is not necessarily bounded, thus, this type of
automata may work with strings over infinite alphabets. In this paper however,
we study languages over finite alphabets, so we apply a mapping to produce
a finite set of symbols from a possibly infinite set of multisets, and in order
not to “encode” the computational power in this mapping, we assume that it is
computable by a linear space bounded Turing machine.



On the Computational Complexity of P Automata 81

Definition 3. Let us extend δX to δ̄X , X ∈ {seq, par}, a function mapping
(V ◦)∗, the sequences of finite multisets over V , and (V ◦)n, the configurations of
Γ , to new configurations. We define δ̄X as

1. δ̄X(v, (u1, . . . , un)) = δX(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄X((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δX(vs+1, (u′

1, . . . , u
′
n))

for all (u′
1, . . . , u

′
n) ∈ δ̄X((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s + 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in
order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

Definition 4. Let Γ be a P automaton as above with initial configuration
(w1, . . . , wn) and let Σ be a finite alphabet. The language accepted by Γ in
the sequential way of rule application, Lseq, or in the maximal parallel way of
rule application, Lpar, is

LX(Γ ) =
{f(v1) . . . f(vs) ∈ Σ∗ | (u1, . . . , un) ∈ δ̄X((v1) . . . (vs), (w1, . . . , wn))

with uj ∈ Fj for all j with Fj �= ∅, 1 ≤ j ≤ n, 1 ≤ s},

for X ∈ {seq, par}, and for a linear space computable mapping f : V ◦ −→
Σ ∪ {ε} with f(x) = ε if and only if x = ε. Let us denote the class of languages
accepted by P automata with sequential or parallel rule application as LX(PA),
X ∈ {seq, par}.

3 The Power of P Automata

Now we consider the accepting power of P automata. We follow ideas from [5]
and [6] in relating this power to well-known machine based complexity classes.
There, among other similar models, the so-called symport/antiport P system
acceptors are studied. These are accepting membrane systems similar to P au-
tomata, the main difference in the two models is the fact that the alphabet
of symport/antiport acceptors is divided into a set of terminals and nontermi-
nals. During the work of these systems both types of objects may leave or en-
ter the membrane structure but only the objects which are terminal constitute
the part of the input sequence which is accepted in a successful computation.
Thus, the nonterminal objects are used to provide additional workspace for the
computation.

This feature motivated the introduction of so-called S(n) space bounded
symport/antiport acceptors, systems where the total number of objects used in
an accepting computation on a sequence of length n is bounded by a function
S(n). As shown in [5] and [6], a language L is accepted by an nk space bounded
symport/antiport acceptor, if and only if, it is accepted by a nondeterministic
log n space bounded one-way Turing machine, or by a cn space bounded sym-
port/antiport acceptor, if and only if it is accepted by a one-way linear space
bounded Turing machine, that is, if and only if it is context-sensitive.



82 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

Since in P automata the workspace is provided by the objects of the accepted
or rejected input only, the maximal number of objects present inside the mem-
brane structure during a computation is bounded by the length of the input
sequence. Furthermore, even this “space” can only be used with a strong restric-
tion since it becomes available step-by-step, as more and more symbols of the
input are read. Thus, when looking for a Turing machine model corresponding to
P automata, some restriction on the use of the available workspace is necessary.

Definition 5. A nondeterministic one-way Turing machine is restricted S(n)
space bounded if for every accepted input of length n, there is an accepting
computation where the number of nonempty cells on the work-tape(s) is bounded
by S(d) where d ≤ n, and d is the number of input tape cells already read, that
is, the distance of the reading head from the left end of the one-way input tape.

Let L(1LOG), L(1LIN), L(restricted−1LOG), and L(resticted−1LIN) denote
the class of languages accepted by one-way nondeterministic Turing machines
with logarithmic space bound, linear space bound, restricted logarithmic space
bound, and restricted linear space bound, respectively.

Let L denote the language

L = {xy | x ∈ {1, 2, . . . , 9}{0, 1, . . . , 9}∗, y ∈ {#}+, with val(x) = |y|}

where val(x) is the value of x as a decimal number.
As we shall see later, L(restricted − 1LIN) = L(1LIN), but the class

L(restricted − 1LOG) is strictly a subclass of L(1LOG) since L, the language
defined above, is in the latter class but not in the former. Still, L(restricted −
1LOG) contains some very interesting languages, e.g., {anbncn | n ≥ 1} and
{a2n | n ≥ 0} are both in L(restricted − 1LOG), as they can be accepted by
Turing machines capable of recording the distance of the reading head from the
left-end of the one-way input tape which can be achieved in restricted logarithmic
space.

Theorem 1.

Lseq(PA) = L(restricted− 1LOG) and Lpar(PA) = L(restricted− 1LIN).

Proof. First we prove the inclusions from left to right in both equations. Con-
sider the P automaton Γ = (V, µ, (w1, P1, F1), . . . , (wn, Pn, Fn)), n ≥ 1, with
L(Γ ) ⊆ Σ∗ where f : V ◦ −→ Σ ∪ {ε} is a linear space computable mapping
with f(x) = ε if and only if x = ε. We show how to construct a one-way Turing
machine M which simulates the work of Γ using restricted logarithmic space if
Γ applies the rules sequentially, or restricted linear space if Γ applies the rules
in the maximal parallel manner. Let M = (k,Σ,A,Q, q0, qF , δM ) be a Turing
machine with a one-way read only input tape where

– k = (|V | · n2 + |V |) is the number of work-tapes,
– Σ is the finite input alphabet,
– A = {0, . . . , 9} is the work-tape alphabet,



On the Computational Complexity of P Automata 83

– Q is the set of internal states, q0, qF ∈ Q are the starting and the final states,
and

– δM is the transition function of M .

Let M have n work-tapes assigned to each region and symbol pair (i, a) ∈
{1, . . . , n} × V , and an additional tape for each symbol of V . Using the digits
of the tape alphabet, {0, . . . , 9}, M keeps track of the configurations of Γ by
having an integer written on the first one of the work-tape n-tuple assigned to
(i, a) denoting the number of a objects present in region i.

Let these configurations of M be denoted as

(q, w, α1,1, 0n−1, . . . , αn,|V |, 0n−1, 0|V |)

where q ∈ Q is the current state, w ∈ Σ∗ is the part of the input that is not yet
read, (αi,j , 0n−1) ∈ (A+)n, 1 ≤ i ≤ n, 1 ≤ j ≤ |V |, are the values written on
the work-tape n-tuple corresponding to region i and symbol aj ∈ V , the value
of αi,j denoting the number of such objects present in region i. For the sake of
notational convenience, in the following we will use αi,j to represent both the
string of digits on the work-tape and the decimal value of this string.

Now let us consider the transitions of Γ . Let δΓ be δseq or δpar as defined
above for the case of sequential or maximal parallel way of rule application. The
transition function of M is defined in such a way that if and only if

(u′
1, . . . , u

′
n) ∈ δΓ (v, (u1, . . . , un)),

then

(q, w, α1,1, 0n−1, . . . , αn,|V |, 0n−1, 0|V |) −→
(q, w′, α′

1,1, 0
n−1, . . . , α′

n,|V |, 0
n−1, 0|V |)

is a possible transition in M where αi,j = |ui|aj
and α′

i,j = |u′
i|aj

for all 1 ≤
i ≤ n, 1 ≤ j ≤ |V |, and if f(v) = a then w = aw′, or if v = ε, then w = w′.
Note that this is possible because the finite set of rules can be encoded in the
finite control, and all the information necessary to record a configuration of the
P automaton is stored on the work-tapes. First, for each region and symbol pair,
(i, a), M writes the number of a objects leaving from region i to region j to the
jth tape of the work-tape n-tuple corresponding to (i, a), and also records the
number of symbols entering from the environment using the |V | additional work-
tapes. Then in a final round, it creates the description of the new configuration
by adding the appropriate values to the integers stored on the first tapes of each
work-tape n-tuple, and using the collection of objects, v ∈ V ◦, which enter from
the environment, M computes f(v) = a ∈ Σ and reads a from the input tape.

If Γ is a sequential P automaton, then this whole process can be realized
in restricted logarithmic space since the number of cells used on the work-tapes
is the logarithm of the number of objects present in the P system which is at
most c · d where c is some constant and d is the number of nonempty multisets
read by the P automaton, or in terms of the Turing machine, the distance of
the reading head from the left end of the input tape. Furthermore, the function



84 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

f maps a finite domain to a finite set of values, so its computation does not
require any additional space. If Γ works in the maximal parallel manner, then
the computation of M requires restricted linear space because the number of
symbols inside the P systems is at most cd with c, d as above, so the integers
describing the configurations can be represented by decimal numbers in restricted
linear space. The values of f(x) ∈ Σ ∪ {ε} can also be computed inside the
restricted linear space bound, since the cardinality of any x ∈ V ◦ for which the
computation is needed is at most cd, and the computation of f(x) itself uses
linear space measured in the size of the argument, so it is still restricted linear.

The transition function of M should also enable an initialization phase,

(q0, w, ε, . . . , ε) −→ (q, w, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |)

where αi,j = |wi|aj
, 1 ≤ i ≤ n, 1 ≤ j ≤ |V |.

The input is accepted by M if and only if it is accepted by Γ , that is,

(q, ε, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |) −→
(qF , ε, α1,1, 0n−1, . . . , αn,m, 0n−1, 0|V |)

where for each Fi �= ∅, there is an ui ∈ Fi such that for all aj ∈ V, αi,j = |ui|aj
.

The precise construction of M is left to the reader.
Now we prove the inclusions from right to left. To do this we need the notion

of a two-counter automaton. A two-counter machine is an automaton with a
one-way read only input tape and two counters capable of storing any non-
negative integer. Formally it can be given as M = (Σ,Q, q0, qF , δM ) where Σ is
an input alphabet, Q is a set of internal states containing the initial and accepting
states q0, qF ∈ Q respectively, and δM is a transition function which maps the
quadruple of state, input symbol, and zero or non-zero counter contents to the
triple of a new state and two instructions to increment, unchange, or decrement
the counters. As the work-tapes of any Turing machine can be simulated with
two counters, two-counter machines accept the class of recursively enumerable
languages (see [2]).

However, if the sum of the counter contents is bounded, that is, the two-
counter automaton has limited workspace, then its power is decreased. If we
define S(n) space bounded two-counter machines as S(n) being the bound on
the sum of the counter contents during any accepting computation on an input
of length n, then we obtain a model equivalent to log S(n) space bounded one-
way Turing machines because an integer i stored in a counter can be written
on the work-tapes using log i tape cells. We may also introduce the restricted
S(n) space bounded variant exactly as above, in which case we obtain a machine
equivalent to restricted log S(n) space bounded one-way Turing machines.

Consider now a two-counter machine M . If x is an element of the domain of
δM , then a transition is given by the pair (x, δM (x)). Let these pairs be labelled
by elements of the finite set of labels TRANS .

Let Γ = (V, µ, (w1, P1, ∅), (w2, P2, F2), (w3, P3, ∅), (w4, P4, ∅)) be a P automa-
ton with the membrane structure µ = [1 [2 ]2 [3 ]3 [4 ]4 ]1. Inside the skin
membrane, it has a controlling region, region 2, for storing and manipulating



On the Computational Complexity of P Automata 85

symbols corresponding to the states of M , and a pair of membranes, 3 and 4,
for maintaining the values of the two counters.

Let V = Σ ∪ {〈q〉, 〈t〉, 〈t〉a | q ∈ Q, t ∈ TRANS , a ∈ Σ}. The symbols of
V − Σ govern the work of Γ . The presence of 〈q〉 ∈ V in the skin membrane
indicates that Γ simulates a configuration of the two-counter machine when it
is in state q ∈ Q. While simulating a transition from state q to state q′ labelled
by t ∈ TRANS , Γ needs extra steps for reading the input and manipulating
the symbols which keep track of the counter values. During these steps the skin
membrane contains one of the symbols 〈t〉, 〈t〉a, for some a ∈ Σ, and when the
simulation of the transition is complete, 〈q′〉 ∈ V appears in the skin membrane.

The simulation of M starts in the initial state with w1 = 〈q0〉〈q0〉〈q0〉a, for
some a ∈ Σ, and for 2 ≤ i ≤ 4, wi = {{ 〈q〉, 〈t〉, 〈t〉a | q ∈ Q, q �= q0, t ∈
TRANS , a ∈ Σ }}. The rule sets belonging to the regions are as follows. Let

P1 = {(ε, in)|〈q〉〈q〉〈q〉, (ε, in)|〈t〉a〈t〉a〈t〉a
| q ∈ Q, t ∈ TRANS , a ∈ Σ} ∪

{(xk, in; y, out)|〈t〉〈t〉〈t〉 | x ∈ Σ, y ∈ Σ, t ∈ TRANS , x is read
during the transition t} ∪

{(ε, in)|〈t〉〈t〉〈t〉 | t ∈ TRANS , ε is read during the transition t},

and k ≥ 1 is a suitable constant. In the case of sequential rule application, if
transition t is simulated, as indicated by the presence of 〈t〉, then k copies of
the corresponding input symbol are read into the skin membrane, and one other
symbol is sent out in the first simulating step. If the rules are applied in the
maximal parallel manner, then after the first simulating step, the number of
symbols in the skin region is k times as much, as the number that was already
present.

Before the simulation starts, that is, when a state symbol 〈q〉 is present, or in
the later simulating steps, when the symbols 〈t〉a, for some a ∈ Σ, are present,
then nothing is read from the input.

In what follows, let us assume that Σ = {a1, . . . , am}. Now let

P2 = {(〈q〉, in; 〈t〉, out), (〈t〉, in; 〈t〉a1 , out), (〈t〉ai
, in; 〈t〉ai+1 , out),

(〈t〉am
, in; 〈q′〉, out) | 1 ≤ i ≤ m− 1, t ∈ TRANS is a

transition from q to q′},

and let F2 = { {{ 〈q〉, 〈t〉, 〈t〉a | q ∈ Q, q �= qF , t ∈ TRANS , a ∈ Σ }} }.
The second region is responsible for keeping track of the simulated states and
transitions. The simulation is finished if qF , the final state is exported from this
region to the first one as indicated by F2 above. Now for 3 ≤ i ≤ 4, let

Pi = {(〈q〉, in; 〈t〉x, out), (〈t〉, in; 〈t〉a1 , out), (〈t〉aj
, in; 〈t〉aj+1 , out),

(〈t〉am
, in; 〈q′〉, out) | x ∈ Σ, 1 ≤ j ≤ m− 1, t ∈ TRANS

is a transition from q to q′ decreasing the ith counter } ∪
{(〈q〉, in; 〈t〉, out), (〈t〉, in; 〈t〉a1 , out)|Z1 , (〈t〉aj

, in; 〈t〉aj+1 , out)|Zj+1 ,

(〈t〉am
x, in; 〈q′〉, out) | 1 ≤ j ≤ m− 1, t ∈ TRANS is a transition



86 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

from q to q′, and
x ∈ Σ if the (i− 2)th counter is increased during t, or
x = ε if the (i− 2)th counter is not changed during t, or
Zj = ε for all aj ∈ Σ if the (i− 2)th counter can be nonempty
before t, or
Zj = ¬aj for all aj ∈ Σ if the (i− 2)th counter must be empty
before t}.

Region 3 and 4 keep track of the values stored in the counters of M by the
help of the rules above. Together with moving the transition symbols 〈t〉a, for
some a ∈ Σ, they import and export the symbols originating from the input as
necessary to maintain the correct counter contents, the emptiness of the counters
are checked by the use of the forbidding promoters.

In the case of sequential rule application, the possible inputs are the mul-
tisets containing the elements of Σ in k copies, so we can use the mapping
fseq({{xk}}) = x, x ∈ Σ to map V ◦ to Σ. In the parallel case, the input multi-
sets are of the form xik for some x ∈ Σ, i ≥ 1, so we might use fpar(xik) = x,
for all i ∈ N, to produce the string corresponding to an input sequence.

Now, if M is restricted S(n) space bounded with S(n) = c ·n for a constant c,
then it can be simulated by the P automaton Γ with sequential rule application,
since if k ≥ c + 1, then the number of objects (the bound on the sum of the
counter values) is d(k − 1) + 1 ≥ d · c where d is the number of already read
nonempty multisets. If M is restricted S(n) space bounded with S(n) = cn for
a constant c, then it can be simulated by Γ with parallel rule application, since
if k ≥ 2 · c, then the amount of imported objects during the computation is
sufficient to make sure that in each step the number of available objects which
can be used to keep track of the counter values is cd, where d is the number
of nonempty multisets read. Since restricted S(n) space bounded two-counter
machines are equivalent to restricted log S(n) space bounded one-way Turing
machines, our statement is proved. �

Based on this theorem, we can show that the class of languages accepted by
P automata in the sequential way is strictly included in the class of languages
accepted by logarithmic space bounded one-way Turing machines, that is, in
L(1LOG).

Theorem 2. Lseq(PA) ⊂ L(1LOG).

Proof. To prove our statement we show that L(restricted − 1LOG) is strictly
included in L(1LOG). The inclusion is obvious, so it is enough to show that the
difference of the two classes is nonempty. Consider the language L as defined
above in Section 2. It is clear that L can be accepted by a one-way Turing
machine using logarithmic space: First the initial part, x ∈ {1, . . . , 9}{0, . . . , 9}∗,
of the input is copied to a work-tape then the number of # symbols are checked
against this integer by reading further and decreasing the stored integer by one
in each step.



On the Computational Complexity of P Automata 87

To see that L cannot be accepted by a one-way restricted logarithmic space
bounded Turing machine, suppose that M is such a machine accepting L. With-
out loss of generality, assume that M has only one work-tape. Then there is a
constant c (which only depends on the specification of M) such that for every k,
after reading k input symbols, M uses at most c·log k cells on the work-tape. (All
logarithms are base 10.) Also, the number of possible configurations on a work-
tape of at most c · log k cells (a configuration is a triple consisting of the state,
work-tape contents, work-tape head position) is at most dlog k = klog d ≤ ke for
some constants d and e. Now for any given k, consider the set of all strings of
the form: w#val(w), where |w| = k. Clearly, k ≤ g · log n for some constant g,
where n = |w#val(w)|. Since the machine is one-way restricted logarithmic space
bounded, there exist an n (and therefore k) big enough and two inputs w#val(w)

and w′#val(w′) with |w| = |w′| = k and w �= w′ for which M will be in the same
configuration after reading w and after reading w′. This is because M can be in
one of at most ke ≤ (g · log n)e configurations after reading a string of length
k. Now there are 10k ≥ h · n strings w whose lengths are k for some positive
constant h. If we choose n big enough, (g · log n)e < h · n. It follows that the
machine when given the string w′#val(w) will also accept. This is a contradiction
since w′#val(w) is not in L. �

It is interesting to look at the closure properties of Lseq(PA) which, as shown
in Theorem 1 is identical to L(restricted− 1LOG).

Theorem 3. Lseq(PA) is closed under union, intersection, concatenation,
Kleene ∗ and +, inverse homomorphism, and ε-free homomorphism. It is not
closed under (unrestricted) homomorphism, reversal, and complementation.

Proof. It is straightforward to verify that Lseq(PA) = L(restricted − 1LOG)
is closed under union, intersection, concatenation, Kleene ∗ and +, inverse ho-
momorphism, and ε-free homomorphism. By using L′ = {xyz | x ∈ {&}+, y ∈
{1, . . . , 9}{0, . . . 9}∗, z ∈ {#}+, |x| = |z| = val(y)}, a variant of the language de-
fined above, it is easy to see that L(restricted−1LOG) is not closed under unre-
stricted homomorphism, since erasing the symbol & produces L from L′. It is also
not closed under reversal since the reverse of L is clearly in L(restricted−1LOG),
but as we have seen, L is not. To see that L(restricted − 1LOG) is not closed
under complementation, consider L̄, the complement of L. L̄ can be accepted
by a one-way Turing machine M ′ using restricted logarithmic space, as follows.
Inputs that do not have the form xy with x ∈ {1, . . . , 9}{0, . . . , 9}∗, y ∈ {#}+
can easily be accepted by M ′. For an input of the form xy, M ′ needs to check
that val(x) �= |y|. To do this, M ′ scans the segment x using its work-tape as
a counter (in base 10) to record the position of the input head as it scans x.
At some point, nondeterministically chosen, M ′ stops incrementing the counter
and remembers the symbol d under the input head. Note that at this point, the
counter has value log i and d is the i-th symbol of x. M ′ then scans the segment
y while recording the length of y on another work-tape (again use as a counter in
base 10). Let w be the count after processing y. M ′ then checks that the symbol



88 E. Csuhaj-Varjú, O.H. Ibarra, and Gy. Vaszil

in position i of w is not equal to d. Clearly M ′ accepts L̄. Since L is not in
L(restricted− 1LOG), it follows that L(restricted− 1LOG) is not closed under
complementation. �

Now consider the deterministic version of a one-way restricted logarithmic space
bounded Turing machine. It is easy to show that L(restricted−1DLOG) is closed
under complementation. Hence, from Theorem 2 we have L(restricted−1LOG)−
L(restricted− 1DLOG) �= ∅. This is an interesting example of nondeterminism
being better than determinism for a restricted type of space-bounded Turing
machine.

Unlike in the case of the logarithmic space bound, the restricted use of linear
space does not influence the power of a linear space bounded Turing machine.
To see this, consider the machine which first copies its input to an additional
work-tape, then works with it as with the input tape, and with the rest of its
work-tapes exactly as before. This machine uses restricted linear space, and
it clearly accepts the same set of input words as before. Thus, since linearly
bounded Turing machines characterize the class of context-sensitive languages,
we have:

Theorem 4. Lpar(PA) = L(1LIN) = L(CS).

References

1. Csuhaj-Varjú, E., Vaszil, Gy.: P Automata. In: Păun, Gh., Zandron, C. (eds.): Pre-
Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002. Pub. No. 1 of MolCoNet-IST-2001-32008
(2002) 177-192, and also in
Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing.
Lecture Notes in Computer Science, Vol. 2597. Springer, Berlin (2003) 219-233

2. Fischer, P. C.: Turing Machines with Restricted Memory Access. Information and
Control 9 (1966) 364-379

3. Freund, R., Mart́ın-Vide, C., Obtu�lowicz, A., Păun, Gh.: On Three Classes of
Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.): Developments in Lan-
guage Theory. 7th International Conference, DLT 2003, Szeged, Hungary, July
2003. Proceedings. Lecture Notes in Computer Science, Vol. 2710. Springer, Berlin
(2003) 292-303

4. Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the
EATCS 78 (October 2002) 231-236

5. Ibarra, O. H.: On the Computational Complexity of Membrane Systems. To appear
in Theoretical Computer Science C

6. Ibarra, O. H.: The Number of Membranes Matters. In: Alhazov, A., Mart́ın-Vide,
C., Păun, Gh. (eds.): Workshop on Membrane Computing, WMC-2003, Tarragona,
July 17-22, 2003. Technical Report 28/03 of the Research Group on Mathematical
Linguistics, Rovira i Virgili University, Tarragona, Spain (2003) 273-285

7. Madhu, M., Krithivasan, K.: On a Class of P Automata. Submitted
8. Mart́ın-Vide, C., Păun, A., Păun, Gh.: On the Power of P Systems with Symport

Rules. Journal of Universal Computer Science 8(2) (2002) 317-331



On the Computational Complexity of P Automata 89

9. Păun, A., Păun, Gh.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20(3) (2002) 295-306

10. Păun, Gh.: Computing with Membranes: An Introduction. Springer, Berlin, (2002)
11. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin, vol. 1-3, (1997)



A Weighted Insertion-Deletion Stacked Pair
Thermodynamic Metric for DNA Codes

Arkadii G. D’yachkov1, Anthony J. Macula2,�,
Wendy K. Pogozelski3,��, Thomas E. Renz2,
Vyacheslav V. Rykov4, and David C. Torney5

1 Dept. of Probability Theory, Moscow State Univ.,
Moscow 119899, Russia

dyachkov@artist.math.msu.su
2 Air Force Research Lab, IFTC,

Rome Research Site,
Rome NY 13441

thomas.renz@rl.af.mil, macula@geneseo.edu
3 Department of Chemistry, SUNY Geneseo, Geneseo NY 14454

pogozels@geneseo.edu
4 Dept. of Mathematics,

University of Nebraska-Omaha,
Omaha NE, 68182

vrykov@mail.unomaha
5 Theoretical Biology and Biophys.,

Los Alamos Natl. Lab,
Los Alamos NM 87545
dct@lanl.gov.edu

Abstract. Thermodynamic distance functions are important compo-
nents in the construction of DNA codes and DNA codewords are struc-
tural and information building blocks in biomolecular computing and
other biotechnical applications that employ DNA hybridization assays.
We introduce new metrics for DNA code design that capture key aspects
of the nearest neighbor thermodynamic model for hybridized DNA du-
plexes. One version of our metric gives the maximum number of stacked
pairs of hydrogen bonded nucleotide base pairs that can be present in any
secondary structure in a hybridized DNA duplex without pseudoknots.
We introduce the concept of (t-gap) block isomorphic subsequences to
describe new string metrics that are similar to the weighted Levenshtein
insertion-deletion metric. We show how our new distances can be calcu-
lated by a generalization of the folklore longest common subsequence dy-
namic programming algorithm. We give a Varshamov-Gilbert like lower
bound on the size of some of codes using our distance functions as
constraints. We also discuss software implementation of our DNA code
design methods.

� Corresponding author and supported by AFOSR F30602-03-C-0059.
�� Partially supported by AFOSR-36062-2-0086.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 90–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 91

1 Introduction

Biomolecular computing often requires oligonucleotides that do not produce er-
roneous cross-hybridizations and synthetic DNA is proposed for use as an infor-
mation storage media and structural material in nanotechnology. There is a need
to efficiently create large collections of non-crosshybridizing oligonucleotides and
the process of designing sets of non-crosshybridizing oligonucleotides has come
to be known as DNA code (word) design. Both combinatorial and biological
methods have been suggested as a means by which DNA codes can be found and
programs exist that generate DNA codes. See [1], [2], [3], [4], [7], [8], [14], [16],
[22] and the many references contained within.

In this paper, we introduce new metrics for DNA code design that capture
key aspects of the nearest neighbor thermodynamic model for hybridized DNA
duplexes. Our thermodynamically weighted distance functions are metrics in
the rigorous mathematical sense. To construct our thermodynamic distance
functions, in Section 2, we introduce the concept of (t-gap) block isomorphic
subsequences and use it to describe new abstract weighted string metrics that
are similar to the weighted Levenshtein insertion-deletion metric. In Section
4, we show how our new distances can be calculated by a generalization of the
folklore dynamic programming algorithm for the longest common subsequence.
In Theorems 1 and 2, we give a Varshamov-Gilbert like lower bound on the size
of some of codes using these distance functions as constraints. Our method is a
generalization of the ideas in [3], [5], [9], [10] where all potential secondary struc-
tures (i.e., common subsequences) in cross-hybridized duplexes are considered.

In this paper, all variables are nonnegative integers unless otherwise stated.
[n] denotes the set {0, ..., n− 1} and (n) denotes the sequence 1, 2, ..., n. Given
two sequences α and β, we write α ≺ β if and only if α is a subsequence of β.
The length of sequence α is denoted by |α|. We call α ≺ (n) a string if and
only if it is a subsequence of consecutive integers, e.g., α = i, i + 1, ..., i + k.
For a ≤ b, we use the notation [a, b] for the string of integers between and
including a and b. If a = b, we sometimes write [a] for [a, b]. When we write
σ = [a1, b1], [a2, b2], ..., [ai, bi], ...[ak, bk] where ai ≤ bi < ai+1, we mean σ =
a1, a1 + 1, ..., b1, a2, a2 + 1, ...b2, ..., ai, ai + 1, ...bi, ...ak, ak + 1, ...bk. For σ ≺ (n),
τ ≺ (m) with |σ| ≤ |τ |, we write f : σ → τ to indicate an increasing function
f : {i : i ∈ σ} → {i : i ∈ τ}. Given σ = i1, i2, ..., ik and f : σ → τ , we define
f (σ) ≡ f(i1), f(i2), ..., f(ik). If |σ| = |τ |, then f : σ → τ is unique. We
let [q]ndenote the set of sequences of length n with entries in [q]. For x =
x1, ..., xn with x ∈ [q]n and σ = i1, i2, ..., ik where σ ≺ (n), we let xσ ≺ x be the
subsequence xi1 , xi2 ..., xik

. Given a non-negative real-valued function, Ω, on [q],
we define ‖xσ‖Ω ≡

∑
i∈σ

Ω(xi).

2 Block Isomorphic Subsequences

Definition 1. For σ ≺ (n) , a substring β ≺ σ is called a block of σ if β is
not subsequence of any substring α of σ with β �= α. A subsequence xβ ≺ xσ



92 A.G. D’yachkov et al.

is called a block of xσ if β is a block of σ. For σ ≺ (n), let (βi(σ)) be the
sequence of blocks of σ, where each element of βi(σ) is less than every element
of βi+1(σ). Let bi(σ) and Bi(σ) be the left and right endpoints of βi(σ). When
the context is clear, we just write bi, Bi and βi respectively. When we write
σ = ([bi, Bi]) = (βi) , we say that it is the block representation of σ. When we
write xσ = x(βi)

we say that it is the block representation of xσ.

Block representations are unique. Let x ∈ [4]14 and let σ ≺ (14). Suppose
x = 2, 0, 1, 2, 2, 3, 0, 3, 2, 0, 0, 1, 3, 2 and σ = 2, 3, 4, 7, 9, 10, 13, 14. Then xσ =
0, 1, 2, 0, 2, 0, 3, 2 and the block representations are: σ = [2, 4] , [7, 7] , [9, 10] ,
[13, 14] and xσ = x[2,4],[7,7],[9,10],[13,14].

Definition 2. For 2 ≤ t ≤ n − 1, we define Gt(n) ≡ {σ ≺ (n) : bi+1 (σ) −
Bi (σ) ≥ t}. We call Gt(n) the set of t-gap sequences of (n).

Note that σ ≺ (n) ⇒ σ ∈ G2 (n) and 2 ≤ t1 ≤ t2 ≤ n−1 ⇒ Gt2(n) ⊆ Gt1(n).

Example 1. Let x ∈ [4]14 and let σi ≺ (14). Then: σ1 = [1, 4], [7, 7], [9, 10],
[12, 14] ∈ G2 (n) ; σ2 = [1, 4], [7, 7], [10, 10], [13, 14] ∈ G3 (n) ; σ3 = [1, 4],
[13, 14] ∈ G4 (n) .

Definition 3. Let σ ≺ (n), τ ≺ (m) with |σ| = |τ |. Let f : σ → τ be unique.
We say that σ and τ are block isomorphic and write σ ∼= τ if: α ≺ σ is a
string ⇐⇒ f(α) ≺ τ is a string. For x ∈ [q]n, y ∈ [q]m we say that xσ and yτ

are block isomorphic, denoted by xσ
∼= yτ , if xσ = yτ and σ ∼= τ .

Proposition 1. [12] Suppose σ ∼= τ and f : σ → τ is unique. Then β ≺ σ is a
block in σ if and only if f(β) is a block in τ .

Definition 4. Let 2 ≤ t ≤ min(n,m) − 1 and suppose σ ≺ (n), τ ≺ (m) with
|σ| = |τ |. We say that σ and τ are t-gap block isomorphic and write σ ∼=

t
τ if

and only if σ ∈ Gt(n), τ ∈ Gt(m) and σ ∼= τ . For x ∈ [q]n, y ∈ [q]m,we say
that xσ and yτ are t-gap block isomorphic, denoted by xσ

∼=
t

yτ , if and only if

xσ = yτ and σ ∼=
t

τ . We say that x and y have a common t-gap block isomorphic

subsequence if and only if there are σ ≺ (n), τ ≺ (m) with xσ
∼=
t

yτ . Note that

σ ∼= τ ⇔ σ ∼=
2

τ and σ ∼=
t2

τ ⇒ σ ∼=
t1

τ when t1 ≤ t2. So we just write σ ∼= τ and

xσ
∼= yτ to denote σ ∼=

2
τ and xσ

∼=
2

yτ respectively.

Example 2. Let x, y, z, w ∈ [4]13 and σi ≺ (13) with x=1, 1, 2, 0, 2, 3, 3, 0, 1,
1, 2, 0, 1; y=2, 0, 2, 3, 3, 0, 1, 1, 1, 1, 2, 0, 3; z=3, 2, 0, 2, 1, 1, 1, 1, 1, 0, 3, 2,
0; w=1, 1, 1, 2, 0, 3, 2, 0, 2, 0, 3, 3, 3. Let σ1 =[3,5], [8,8], [11,12]; σ2 =[1,3],
[6,6], [11,12]; σ3 =[2,4], [10,10], [12,13]; σ4 =[4,5], [7,10]. Then xσ1 = yσ2 =
zσ3 = wσ4 = 2, 0, 2, 0, 2, 0. Since σ1

∼= σ2
∼= σ3 �∼= σ4, we have that xσ1

∼= yσ2
∼=

zσ3 �∼= wσ4 . Since σ1, σ2 ∈ G3(n) and σ3 �∈ G3(n), we have that xσ1
∼=
3

yσ2 �∼=
3

zσ3 .



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 93

3 Block Insertion-Deletion Codes

Definition 5. For x, y ∈ [q]n, we define: ρΩ,q(x, y) ≡ max{‖z‖Ω : z ≺ x and
z ≺ y} and LΩ,q(x, y) ≡ min (‖x‖Ω , ‖y‖Ω) − ρΩ(x, y). We say that ρΩ(x, y) is
the maximum weight of a common subsequence to x and y and LΩ(x, y) is called
the weighted Levenshtein insertion-deletion distance. LΩ(x, y) is a metric. When
‖xσ‖Ω = |xσ| , we write L(x, y) for LΩ(x, y).

Note that metrics similar to LΩ(x, y) are used in DNA sequence analysis. See
[24] and [15]. The proof that LΩ(x, y) is a metric is a modification of an argument
in [17] where it is indicated that L∗(x, y) is a metric when L∗

Ω(x, y) ≡ ‖x‖Ω +
‖y‖Ω − 2ρΩ(x, y). The following definition is analogous to that in Definition 5.

Definition 6. For 2 ≤ t ≤ n− 1 and x, y ∈ [q]n. We define:

φt
Ω,q(x, y) ≡ max{‖xσ‖Ω : xσ

∼=
t

yτ}. (1)

Φt
Ω,q(x, y) ≡ min (‖x‖Ω , ‖y‖Ω)− φt

Ω,q(x, y). (2)

When the context for q is clear, we simply write Φt
Ω(x, y) and φt

Ω(x, y). We
say that φt

Ω(x, y) is the weight of the longest common t-gap block subsequence of
x and y. When ‖xσ‖Ω = |xσ| , we write Φt(x, y) and φt(x, y) for Φt

Ω(x, y) and
φt

Ω(x, y) respectively. For t = 1, we define φ1
Ω(x, y) ≡ LΩ(x, y) and φ1(x, y) ≡

L(x, y).

Proposition 2. [12] Φt
Ω(x, y) is a metric on [q]n.

Definition 7. A t-gap block insertion-deletion q-ary code of weighted Ω distance
d is a subset C, of [q]n, such that: x �= y ∈ C =⇒ Φt

Ω(x, y) ≥ d.

Theorem 1. [12] Let ‖xσ‖Ω = |xσ| . In [q]n, there is a 2-gap block insertion-
deletion C of d = n− k with

|C| ≥ qk

(
k∑

j=1

(
k−1
j−1

)(
n−k+1

j

)2)−1

.

4 Computing φt
Ω(x, y)

For 1 ≤ m < n, consider the string [m + 1, n]. For x, y ∈ [q]n, let suf(x,y) be
the length of the longest common suffix between x and y. Then suf(x, y) = 0 if
xn �= yn and suf(x, y) = n−m if x[m+1,n] = y[m+1,n] and xm �= ym. For x ∈ [q]n,
we have that x[1,i] is the first i entries of x and x[1,n] = x. Proposition 3 gives
a dynamic programming method of computing φt

Ω(x, y) that is a generalization
of the folklore algorithm for the longest common subsequence.



94 A.G. D’yachkov et al.

Proposition 3. [12] Let 1 ≤ t ≤ n− 1. For x, y ∈ [q]n and t < i, j ≤ n, define
M t

Ω,i,j ≡ φt
Ω(x[1,i], y[1,j]). Let ω(r) ≡

∥∥x[n−r+1,n]

∥∥
Ω

and suf(x, y) = k. Define
Dt

Ω,i,j ≡ max{ω(r) + M t
Ω,i−r−t+1,j−r−t+1 : 1 ≤ r ≤ k}} if k ≥ 1 and Dt

Ω,i,j ≡ 0
if k = 0. Then

M t
Ω,i,j = φt

Ω(x[1,i], y[1,j]) = max{M t
Ω,i−1,j ,M

t
Ω,i,j−1, D

t
Ω,i,j}. (3)

When either i or j is less than or equal to t, the initial conditions needed for the
computation of φt

Ω(x, y) are φt
Ω(x[1,i], y[1,j]) =

∥∥x[1,i]

∥∥
Ω

if and only if x[1,i] is a
substring of y[1,j].

Example 3. Let x = 0, 1, 2, 3, 1, 3, 0, 1 and y = 3, 0, 1, 3, 2, 0, 3, 1. Figure 1 and
Figure 2 are M2 and M3 where ‖xσ‖ = |σ| . Figure 3 and Figure 4 are M2

Ω and
M3

Ω where ‖xσ‖Ω ≡
∑
i∈σ

(xi + 1) . Below each figure, we give an example of t-gap

isomorphic subsequences with ‖xσ‖ = ‖yτ‖ = ϕt(x, y) (ϕt(x, y).)

5 Sequences of t-Strings

In this section, we apply the results Sections 2 and 3 to sequences of strings of
length t (with particular attention to t = 2) that naturally arise from x ∈ [qn].
The goal is to then apply these results to the modeling of DNA hybridization
distances. This is discussed in Section 6.



0 1 1 1 1 1 1 1
0 1 2 2 2 2 2 2
0 1 2 2 2 2 2 2
1 1 2 2 2 2 3 3
1 1 2 2 2 2 3 4
1 1 2 2 2 2 3 4
1 2 2 2 2 3 3 4
1 2 3 3 3 3 3 4


Fig. 1. x[1,2],[4,5]

∼= y[2,3],[7,8]



0 1 1 1 1 1 1 1
0 1 2 2 2 2 2 2
0 1 2 2 2 2 2 2
1 1 2 2 2 2 2 2
1 1 2 2 2 2 2 3
1 1 2 2 2 2 3 3
1 2 2 2 2 3 3 3
1 2 3 3 3 3 3 3


Fig. 2. x[1,2],[8,8]

∼=
3

y[2,3],[8,8]

0 1 1 1 1 1 1 1
0 1 3 3 3 3 3 3
0 1 3 3 4 4 4 4
4 4 4 5 5 5 7 7
4 4 4 5 5 5 7 9
4 4 4 8 8 8 9 9
4 5 5 8 8 8 9 9
4 5 7 8 8 9 9 10


Fig. 3. x[4],[6],[8]

∼= y[1],[4],[7]



0 1 1 1 1 1 1 1
0 1 3 3 3 3 3 3
0 1 3 3 3 3 3 3
4 4 4 4 4 4 4 4
4 4 4 4 4 4 5 7
4 4 4 6 6 6 7 7
4 5 5 6 6 6 7 7
4 5 7 7 7 7 7 7


Fig. 4. x[1],[4,5]

∼=
3

y[2],[7,8]



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 95

Definition 8. For σ, τ ≺ (n) and 1 ≤ t ≤ n − 1, let σt ≺ σ be defined by:
i ∈ σt ⇔ [i, i + t− 1] ≺ σ. If |σ| = |τ | , then for the unique f : σ → τ , we
define σt

τ as: i ∈ σt
τ ⇔ [i, i + t− 1] ≺ σ and [f (i) , f (i) + t− 1] ≺ τ . We define

τ t
σ ≺ τ by τ t

σ ≡ f (σt
τ ) .

Example 4. Let σ, τ ≺ (16) be given in their block representations with σ =
[1, 4], [7, 10], [12, 15] and τ = [2, 8], [12, 16] . Then σ2, τ2, σ2

τ and τ2
σ are:

σ2 = [1, 3], [7, 9], [12, 14] ; τ2 = [2, 7] , [12, 15] ; σ2
τ = [1, 3] , [7, 8] , [12, 14] ; τ2

σ =
[2, 4] , [6, 7] , [13, 15]. Then σ3, τ3, σ3

τ and τ3
σ are: σ3 = [1, 2] , [7, 8] , [12, 13] ;

τ3 = [2, 6], [12, 14] ; σ3
τ = [1, 2] , [7, 7] , [12, 13] ; τ3

σ = [2, 3] , [6, 6] , [13, 14]. A care-
ful inspection of σ2

τ , τ2
σ and σ3

τ , τ3
σ demonstrates the general result that σt

τ
∼=
t

τ t
σ

[12].

For x, y ∈ [q]n with xσ = yτ , we have that i ∈ σt
τ if and only if i is the

first index in a common t-string , x[i,i+t−1] = y[f(i),f(i)+t−1], of the common
subsequence xσ = yτ of x and y. Thus |σt

τ | is the number of common t-strings
that occur in the common subsequence xσ = yτ of x and y. In particular,

∣∣σ2
τ

∣∣ is
the number of common 2-strings that occur in the common subsequence xσ = yτ

of x and y. This measure is of interest to us because when two DNA strands have
a secondary structure in a duplex, the thermodynamic weight (e.g., free energy)
of nearest neighbor stacked pairs of that secondary structure is a measure (not the
measure) of the thermodynamic stability of the duplex with the given secondary
structure. Since every secondary structure in the DNA duplex x :

←−
y between x

and the complement, y, of y corresponds to a common subsequence, xσ = yτ ,
between x and y, we have that

∣∣σ2
τ

∣∣ gives us the number of nearest neighbor
stacked pairs in the x :

←−
y duplex with the secondary structure associated with

xσ = yτ . In general, |σt
τ | gives us the number of common t-stems in the x :

←−
y

duplex with the secondary structure associated with xσ = yτ . See Section 6.
We now show how we compute the ”total weight” of the common 2-strings that
occur in the common subsequence xσ = yτ of x and y.

Definition 9. Suppose 2 ≤ t ≤ n − 1. Given a string [a, b] ≺ (n) and x ∈
[q]n, let dq(x[a,b]) be the unique number in [qt] whose q-ary decimal represen-
tation is xaxa+1xa+2...xb. For x ∈ [q]n, let x(t) ∈ [qt]n−t be defined as x(t) ≡(
dq(x[i,i+t−1])

)n−t+1

i=1
. For example, if x =2, 3, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0,

2∈ [4]13, then x(2) =11, 15, 12, 3, 12, 2, 10, 9, 5, 6, 8, 2∈ [16]12 and x(3) =
47, 60, 51, 12, 50, 10, 41, 37, 22, 24, 34∈ [64]11.

Definition 10. Suppose 2 ≤ t ≤ n−1 . Let Ω be a weight function on [qt]. Then
for x, y ∈ [q]n , we define: ψt

Ω(x, y) ≡ max{
∥∥∥x(t)

σt
τ

∥∥∥
Ω

: xσ = yτ} and Ψ t
Ω(x, y) ≡

min
(∥∥x(t)

∥∥
Ω

,
∥∥y(t)

∥∥
Ω

)
− ψt

Ω(x, y). If ‖xσ‖Ω = |σ| ,then we write ψt(x, y) and
Ψ t(x, y) for ψt

Ω(x, y) and Ψ t
Ω(x, y) respectively.

Proposition 4. [12] Suppose 2 ≤ t ≤ n−1 . Let Ω be a weight function on [qt].
Then for x, y ∈ [q]n , we have:

ψt
Ω(x, y) = φt

Ω,qt(x(t), y(t)) (4)



96 A.G. D’yachkov et al.

The application of Proposition 4 is that structural and thermodynamic as-
pects of DNA duplexes can be determined by means of Proposition 3. Consider
the situation for t = 2. For a weight function, Ω, on [q2], when we think of a
2-string in [q]2 as an element in [q2], we have that

∥∥∥x(2)
σ2

τ

∥∥∥
Ω

is the sum of the Ω

weights of the common 2-strings x[i,i+1] = y[f(i),f(i)+1] of xσ = yτ . Therefore
ψt

Ω(x, y) is maximum Ω weighted sum of the common 2-strings that can occur
in any common subsequence of x and y. So Proposition 4 leads to two results:
From Equation 4 in Proposition 4, we can, by virtue of Equation 3 in Proposition
3, calculate ψt

Ω(x, y). By application of Proposition 2, we have that Ψ t
Ω(x, y) is

a metric.

Definition 11. A q-ary code of Ω weighted t-stem distance d is a subset C of
[q]n such that: x �= y ∈ C =⇒ Ψ t

Ω(x, y) ≥ d. If t = 2, we call such a C a q-ary
code of Ω weighted stacked pair distance d. Thus if C is a Ω weighted code
of t-stem distance d, then: x �= y ∈ C =⇒

∥∥x(t)
∥∥

Ω
− φt

Ω,qt(x(t), y(t)) ≥ d and∥∥y(t)
∥∥

Ω
−φt

Ω,qt(x(t), y(t)) ≥ d. If ‖xσ‖Ω = |xσ| , we simply call such a C a t-stem
code of distance d.

From a DNA duplex point of view, with Ω ≡ � being the thermodynamic
weight of the (virtual) stacked pairs of nucleotides (see Table 1,)

∥∥x(2)
∥∥

Ω
is the

absolute value of nearest neighbor free energy of the duplex x :
←−
x . Thus, if

C is a (A,C,G,T) quaternary code of � weighted stacked pair distance d, then
x �= y ∈ C implies that the thermodynamic stability of each of the duplexes
x :

←−
x and y :

←−
y is at least ”d greater than” the thermodynamic stability of the

duplex x :
←−
y . Moreover, if C is a (A,C,G,T) quaternary t-stem code of distance

d, then x �= y ∈ C implies x :
←−
x and y :

←−
y each have at least ”d more” common

t-stems than are in any secondary structure for duplex x :
←−
y . The main point

of application is that ψ2
�(x, y) is a measure of the nearest neighbor stability of

the DNA duplex x : ←−y and ψt(x, y) is the maximum number of t-stems that
can form in any secondary structure of x : ←−y . For a 2-stem code C of distance
d = (n − 1) − k, we have for x �= y ∈ C, that the maximum number of stacked
pairs in a secondary structure of the duplex x :

←−
y is at most k while the number

of stacked pairs in each of the x :
←−
x and y :

←−
y duplex is n− 1. See Section 6.

Theorem 2. [12] In [q]n, there is a 2-stem code, C, of distance d = (n− 1)− k

with: |C| ≥ qk

(
k∑

j=1

q−j
(
k−1
j−1

)(
n−k

j

)2)−1

.

6 Applications to DNA Hybridization Distance Modeling

Single strands of DNA are, abstractly, (A,C,G, T )-quaternary sequences, with
the four letters denoting the respective nucleic acids. DNA sequences are ori-
ented; e.g., 5′AACG3′ is distinct from 5′GCAA3′, but it is identical to 3′GCAA5′.



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 97

The orientation of a DNA strand is usually indicated by the 5′ → 3′, 3′ → 5′ no-
tation that reflects the asymmetric covalent linking between consecutive bases in
the DNA strand backbone. In this paper, when we write DNA molecules without
indicating the direction, it is assumed that the direction is 5′ → 3′. Furthermore,
DNA is naturally double stranded. That is, each sequence normally occurs with
its reverse complement, with reversal denoting that two strands are oppositely
directed, and with complementarity denoting that the allowed pairings of letters,
opposing one another on the two strands, are {A, T} or {G,C}—the canonical
Watson-Crick base pairings. Therefore, to obtain the reverse complement of a
strand of DNA, first reverse the order of the letters and then substitute each
letter with its complement. For example, the reverse complement of AACGTG
is CACGTT . If x = AACGTG, then we let x denote it reverse complement
CACGTT . We let←−x denote x listed in reverse 3′ → 5′ order. As DNA se-
quences, x and ←−x are identical, i.e., x = 5

′
x1, ..., xn3

′ ≡ ←−x = 3
′
xn, ..., x15′

A Waston-Crick (WC) duplex results from joining reverse complement se-

quences in opposite orientations, e.g., x:
←−
x =

5′AACGTG3′

3′TTGCAC5′
. Whenever two,

not necessarily complementary, oppositely directed DNA strands ”mirror” one
another sufficiently, they are capable of coalescing into a DNA duplex. The
process of forming DNA duplexes from single strands is referred to as DNA hy-
bridization. The greatest energy of duplex formation is obtained when the two
sequences are reverse complements of one another and the DNA duplex formed
is a WC duplex. However, there are many instances when the formation non-WC
duplexes are energetically favorable. In this paper, a non-WC duplex is referred
to as a cross-hybridized (CH) duplex.

An n−DNA code is a collection of single stranded DNA sequences of length n.
In DNA hybridization assays, the general rule is that formation of WC duplexes
is good, while the formation of CH duplexes is bad. A primary goal of DNA code
design is be assured that a fixed temperature can be found that is well above the
melting point of all CH and well below the melting point of all WC duplexes that
can form from strands in the code. (It is also desirable for all WC duplexes to
have melting points in a narrow range.) Thus the formation of any WC duplex
must be significantly more energetically favorable then all possible CH duplexes.
A DNA code with this property is said to have high binding specificity. High
binding specificity is akin to a high signal-to-noise ratio. See [1], [2], [3], [4], [9],
[10], and [21] for more comprehensive discussions of DNA codes.

A natural simplification for formulating binding specificity is to base it upon
the maximum number of WC (inter-strand, non-covalent hydrogen) base pair
bonds between complementary letter pairs which may be formed between two
oppositely directed strands. Then for x, y ∈ C, an upper bound on this maximum
number of base pair bonds that can form in the x : ←−y duplex is the maximum
length of a common subsequence to x and y. In short, two single stranded DNA
sequences x and y of length n can form d base pairs bonds in a duplex only if
φ1(x, y) ≤ n − d. (See Definitions 5 and 6.) This doesn’t mean that x and ←−y
will form d base pair bonds in a hybridization assay, it just says they could never
form more than d base pair bonds.



98 A.G. D’yachkov et al.

If the binding specificity were solely dependent on the number of base pair
bonds, then n-DNA codes constructed by using Φ1(x, y) as the distance function
could be used in hybridization assays with assured high binding specificity. This
is because if n−d is large enough, then one could find a temperature that exceeds
the d base pair bonding threshold of all x : ←−y CH duplexes, but is below the
melting point of each x :

←−
x WC duplex in which n base pair bonds form. Such

a method was experimentally implemented in [5].
However, while the melting point of DNA duplexes depends, in part, on the

number of base pair bonds, the state of the art model of DNA duplex thermody-
namics is the Nearest Neighbor Model (NN). In the NN model, thermodynamic
(e.g., free energy) values are assigned to loops rather than base pairs. We now
briefly discuss some key aspects of the NN model. See [2], [23] and [25] for more
comprehensive discussions about the NN model.

Consider two oppositely directed DNA strands x = 5
′
x1, x2, ..., xi, ..., xn3′

and
←−
y = 3

′
y1, y2, ..., yj , ..., yn5

′
where yj denotes the complement to base yj . A

secondary structure of the DNA duplex x :
←−
y is a sequence of pairs of comple-

mentary bases ((xir
, yjr

)) where (xir
) and (yjr

) are subsequences of x and
←−
y

respectively. Clearly the duplex x :
←−
y can have many secondary structures. An

important issue is to understand which secondary structure in the most energet-
ically favorable.

The collection of complementary pairs in a given secondary structure of a
duplex partitions the duplex in to pairs of substrings (or subduplexes) that have

the (xir
), (yjr

) and (xir+1), (yjr+1) as endpoints. For example, in the x :
←−
y

duplex presented as:
5
′
x1, x2, ..., xi13

′∗, ..., ∗5′
xir

, ..., xir+13
′∗, ..., ∗5′

xik
, ..., xn3

′

3′y1, y2, ..., yj15
′∗, ..., ∗3′yjr

, ..., yjr+15
′∗, ..., ∗3′yjk

, ..., yn5′

each pair
5
′
xir

, ..., xir+13
′

3′yjr
, ..., yjr+15′

of substrings (separated by *) is an elementary sub-

structure called a loop of the given secondary structure ((xir
, yjr

)) of the given

duplex x :
←−
y . If each of the strings in a loop are of length 2, e.g.,

5
′
xir

, xir+13
′

3′yjr
, yjr+15

′ ,

then that loop is called a stacked pair.

Example 5. We use mix of lower case and upper case letters to help identify

the secondary structure. Consider the duplex
5′ggCaTaTcatACt3′

3′TccAAttGgtaGa5′
where the

secondary structure is (g, c), (g, c), (a, t), (a, t), (c, g), (a, t), (t, a), (t, a). Loops are

E1, ..., E8 and are listed left to right:
g ∗ gg ∗ gGc ∗ aTa ∗ aTc ∗ ca ∗ at ∗ tACt

Tc ∗ cc ∗ cAAt ∗ tt ∗ tGg ∗ gt ∗ ta ∗ aGa
= E1

∗
∗ E2

∗
∗ E3

∗
∗E4

∗
∗ E5

∗
∗ E6

∗
∗ E7

∗
∗ E8. The free energy, ∆G, of the

duplex predicted by the NN model is approximately
8∑

i=1

∆Gi where ∆Gi is the

free energy assigned to loop Ei. However, in many cases, the most stabiliz-
ing features of the structure come from the stacked pairs i.e., E2, E6, and E7,
and the free energies of stacked pairs are the most accurately measured. See



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 99

[23]. The free energies for most non-stacked loops are approximated from the
free energy for stacked pairs with the same terminal pairs. See [25] For ex-

ample, the free energy of E3 =
5′gCa3′

3′cAAt5′
would be approximated by adding a

”penalty” to the free energy for the measured free energy for the stacked pair
5′ga3′

3′ct5′
(that does not appear in the above secondary structure.) In most cases,

the penalty takes on a positive value while all of the free energies for stacked
pairs are negative. It is therefore reasonable to assume that if one only con-
siders the free energies for the stacked pairs, then their sum would be a lower
bound for the NN free energy for the given duplex with the given secondary
structure.

Consider two identically directed DNA strands x = 5
′
x1, x2, ..., xi, ..., xn3′

and y = 5
′
y1, y2, ..., yj , ..., yn3

′
. For computational purposes, we define the idea

of a virtual secondary structure between these two identically directed strands
even thought no such structure would naturally form. A virtual secondary struc-
ture of the virtual DNA duplex x : y is a sequence of pairs of identical bases
((xir

, yjr
)) where (xir

) and (yjr
) are subsequences of x and y respectively. In

other words, a virtual secondary structure of the virtual duplex x : y is a com-
mon subsequence xσ = yτ of x and y. Then the virtual duplex x : y has the vir-
tual secondary structure ((xir

, yjr
)) if and only if the actual duplex x :

←−
y (where

x = 5
′
x1, x2, ..., xi, ..., xn3′ and

←−
y = 3

′
y1, y2, ..., yj , ..., yn5

′
) has the actual sec-

ondary structure of pairs of complementary bases ((xir
, yjr

)) where (xir
) and

(yjr
) are subsequences of x and

←−
y respectively. A stacked pair,

5
′
xir

, xir+13
′

3′yjr
, yjr+15

′ ,

exists in the actual secondary structure ((xir
, yjr

)) if and only if the correspond-

ing virtual stacked pair,
5
′
xir

, xir+13
′

5′yjr
, yjr+13

′ , exists in the virtual secondary structure

of the virtual duplex x : y. Thus, there exists a virtual stacked pair in a virtual
secondary structure xσ = yτ if and only if (xi, xi+1) = (yf(i), yf(i)+1) is a com-
mon 2-string of the common subsequence xσ = yτ where f : σ → τ is unique.
Now the connection to Section 5 is clear.

In [23], the free energies (all negative) of natural stacked pairs are given.
Identifying virtual stacked pairs with their natural representation, the virtual
free energy (�) values can be associated to the negative of their corresponding
values (∆G) for actual stack pairs. The actual values are given in KCAL/mole

Table 1. Thermodynamic weight of virtual stacked pairs

� A C G T

A 1.00 1.44 1.28 0.88

C 1.45 1.84 2.17 1.28

G 1.30 2.24 1.84 1.44

T 0.58 1.30 1.45 1.00



100 A.G. D’yachkov et al.

measured at 37C and with specified ionic concentrations. In Table 1, give the
values (from [23]) with their corresponding virtual stacked pairs. Since the vir-
tual stacked pair is a pair of identical 2-strings (xi, xi+1) = (yf(i), yf(i)+1),
we can represent this virtual stacked pair by (xi, xi+1) and denote its virtual
free energy by �(xi, xi+1). The (i, j)th entry of Table 1 is the value of �(i, j),
e.g., �(C, T ) = 1.28. (So �(C, T ) denotes the free energy associated with the
5′CT3′

3′GA5′
naturally occurring stacked pair. We take � as our weight function on

[42].
Let x :

←−
y be an actual duplex and let ∆G(x :

←−
y ) be the NN computation

of the free energy of the x :
←−
y duplex. The main point of all of this is that it is

quite reasonable to assume that in most cases: −ψ2
�(x, y) ≤ ∆G(x :

←−
y ). From

a DNA duplex point of view, with � being the thermodynamic weight of the
virtual stacked pairs of nucleotides, we have:

∥∥x(2)
∥∥

�
= −∆G(x :

←−
x ). Thus if C

is a � weighted stacked paired (A,C,G, T ) quaternary code of distance d, then:
x �= y ∈ C =⇒ Ψ2

�(x, y) ≥ d. This implies that the thermodynamic stability,
−∆G(x :

←−
x ) and −∆G(y :

←−
y ), of each (all) of the WC duplexes x :

←−
x and

y :
←−
y , respectively would each be at least ”d greater than” the thermodynamic

stability ,−∆G(x :
←−
y ), of the (any) x :

←−
y CH duplex where x �= y ∈ C. Thus,

n-DNA codes closed under complementation (x ∈ C ⇔ x ∈ C) constructed by
using Ψ2

�(x, y) as the distance function could be used in hybridization assays
with high binding specificity.

Example 6. Given DNA sequences x = GTTATAGGCCGAG and y = CGTC
GTGTATATT of length 13, consider the virtual secondary structure xσ = yτ

with σ = [1, 6] and τ = [5, 6], [8, 11]. We have that σ2
τ = [1, 1], [3, 5] and

τ2
σ = [5, 5], [8, 10]. We use lower case letters to exhibit the common subse-

quences that represent the virtual secondary structures represented by xσ = yτ :
gttataGGCCGAG

CGTCgtGtataTT
. Identify 0 ≡ A, 1 ≡ C, 2 ≡ G and 3 ≡ T and convert the

DNA sequences accordingly. Then x(2) = 11, 15,12,3,12, 2, 10, 9, 5, 6, 8, 2 and
y(2) = 6, 11, 13, 6, 11, 14, 11,12,3,12, 3, 15 where the (bold faced) block isomor-
phic subsequence, x

(2)
σ2

τ

∼= y
(2)
τ2

σ
,represents the four virtual stacked pairs gt, ta, at, ta

in the displayed virtual secondary structure xσ = gttata = yτ . Using the � in
Table 1, we have that

∥∥∥x(2)
σ2

τ

∥∥∥
�

= 3.48. However, ψ2
�(x, y) = 3.61. This is be-

cause the virtual secondary structure xα = yβ with α = [1, 2] , [10, 11] , [13, 13]

and β = [2, 5] , [7, 7] depicted using lower case letters as:
gtTATAGGCcgAg

CgtcgTgTATATT

has α2
β = [1, 1] , [10, 10] and β2

α = [2, 2] , [4, 4] . Then x
(2)

α2
β

= 11, 6 = y
(2)

β2
α

rep-
resents the virtual stacked pairs gt and cg in the virtual secondary structure
xα = gtcgg = yβ . Finally, we have that ψ2

Ω(x, y) =
∥∥∥x(2)

α2
β

∥∥∥
Ω

= 3.61.

Example 7. Given DNA sequences x = AATCCAACATTATTGC and y =
GTCACATCATCAAGCC and using the � in Table 1, we have

∥∥x(2)
∥∥

�
=



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 101

18.39,
∥∥y(2)

∥∥
�

= 20.7 and ψ2
�(x, y) = 8.19. Thus Ψ2

�(x, y) = 10.20. We also
have that x(2) =0,3,13,5,4,0,1,4,3,15,12,3,15,14,9; y(2) = 11, 13, 4, 1, 4, 3, 13, 4, 3,
13, 4, 0, 2, 9, 5. There are at most six stacked pairs in any virtual secondary
structure between x and y, i.e., ψ2(x, y) = φ2(x(2), y(2)) = 6. A virtual sec-
ondary structure that has six stacked pairs is xσ = x[3,4],[7,10],[12,13],[15,16] =
y[2,6],[8,9],[14,15] = yτ . These six stacked pairs are represented by the common
block isomorphic subsequence x

(2)
σ2

τ
= x

(2)
[3,3],[7,9],[12,12],[15,15]

∼= y
(2)
[2,2],[4,6],[8,8],[14,14]

= y
(2)
τ2

σ
. In this case, ψ2

�(x, y) = φ2
�(x(2), y(2)) =

∥∥∥x(2)
[3,3],[7,9],[12,12],[15,15]

∥∥∥
�

=

8.19. We also have that x(3) = 2, 9, 36, 20, 16, 1, 4, 18, 10, 39, 33, 10, 42, 45 and
y(3) = 57, 35, 17, 4, 18, 9, 35, 18, 9, 35, 16, 3, 13, 53. Since ψ3(x, y) = φ3(x(3), y(3))
= 2, we have that most number of 3-stems in any secondary virtual secondary
structure between x and y is 2. Note thatx(3)

[7,8]
∼=
3

y
(3)
[4,5]. Note that the virtual sec-

ondary structure xσ = x[3,4],[7,10],[12,13],[15,16] = y[2,6],[8,9],[14,15] = yτ has exactly
two 3-stems, namely x[7,9] = y[4,6] = ACA and x[8,10] = y[5,7] = CAT.

7 t-Stem DNA Code Generation Software

We briefly describe a program which we make freely available. (Contact the
corresponding author for instruction on how to access this program or go to:
http://cluster.ds.geneseo.edu:8080/ParallelDNA/ ) The program(s) generates
DNA codes. Some of the inputs are:

1. Length of DNA codewords: n; 2. Stem sizes checked: t1, t2, ...; 3. Corre-
sponding thresholds for each stem size: s1, s2, ...; 4. Maximum CH free energy
parameter: ∆GCH ; 5. Nearest neighbor WC free energy lower bound parameter:
∆Gwc 6. Nearest neighbor WC free energy upper bound parameter: ∆Gwc.

What is generated is a DNA code C such that:
1. x ∈ C ⇒ |x| = n and x ∈ C. Thus the WC complement of each strand in

the code is also in the code.
2. x �= y ∈ C ⇒ ψti(x, y) ≤ si. Thus the maximum number of ti − stems in

each CH duplex from C is at most si.
3. x �= y ∈ C ⇒ ψ2

�(x, y) ≤ ∆GCH . Thus each CH duplex in C has a free
energy of formation above −∆GCH

4. x ∈ C ⇒ ∆Gwc ≤
∥∥x(2)

∥∥
�
≤ ∆Gwc. Thus each WC duplex in C has a

free energy of formation between −∆Gwc and −∆Gwc.

Example 8. Below is a DNA code generated by one of our programs with the
inputs: n=16; t1,t2,t3=1,2,3; s1,s2,s3=10,6,2; ∆GCH=8; ∆Gwc = 18; ∆Gwc =
22. No codeword contains GGG or CCC as a substring. The complement of any
strand is either to the immediate right or left of the given strand. There are 30
codewords in the code below.



102 A.G. D’yachkov et al.

GGCCAAAAAAAAAAAA, TTTTTTTTTTTTGGCC, GGCAAAGGTTTTCCAA,

TTGGAAAACCTTTGCC, CATTTTAAGGAACCGG, CCGGTTCCTTAAAATG,

TCCTCTTTCTTTACCA, TGGTAAAGAAAGAGGA, TAGAATCCGTCAATTT,

AAATTGACGGATTCTA, GGTTACGGTGGTGTTT, AAACACCACCGTAACC,

TTTGTCACTTGTGGAG, CTCCACAAGTGACAAA, AGTATTTCGATCTTCC,

GGAAGATCGAAATACT, CAGGCGTTGATGAACA, TGTTCATCAACGCCTG,

TAACTATGTAGCATGG, CCATGCTACATAGTTA, CAACAATAGGAGGCTT,

AAGCCTCCTATTGTTG, GGACTTAGGCAGACGT, ACGTCTGCCTAAGTCC,

GAGCGAGGTAGATTAG, CTAATCTACCTCGCTC, GATACACACGGCATAT,

ATATGCCGTGTGTATC, CGAGTGGCTCTCTCAT, ATGAGAGAGCCACTCG,

References

[1] M. Andronescu, A. Condon and H. Hoos, RNAsoft, submitted to NAR for the
web-based software special issue, available at http://www.rnasoft.ca/

[2] M. Andronescu, Algorithms for predicting the secondary structure of pairs and
combinatorial sets of nucleic acid strands, Masters Thesis, University of British
Columbia, (2003.)

[3] E. Baum. DNA sequences useful for computation, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 44, 235-242, (1999.)

[4] A. Brenneman and A. Condon, Strand Design for biomolecular computation, The-
oretical Computer Science, 287, 39-58, (2002).

[5] H. Cai, et al., Flow Cytometry-Based Minisequencing: A New Platform for High
Throughput Single Nucleotide Polymorphism Scoring, Genomics, 66, 135-143,
(2000.)

[6] A. D’yachkov and D. Torney, On Similarity Codes, IEEE Trans. on Information
Theory 46, 1558-1564, (2000.)

[7] R. Deaton, et al., A PCR Based Protocol for in Vitro Selection of Noncrosshy-
bridizing Oligonucleotides, DNA Computing, DNA 8, M. Hagiya, A. Ohuchi (eds.),
LNCS 2568, Springer, Berlin 196-204 (2002.)

[8] R. Deaton, et al., A Software Tool for Generating Noncrosshybridizing Libraries
of DNA Oligonucleotides, DNA Computing, DNA 8, M. Hagiya, A. Ohuchi (eds.),
LNCS 2568, Springer, Berlin 252-261 (2002.)

[9] A. D’yachkov, et al., On a Class of Codes for Insertion-Deletion Metric, 2002
IEEE Intl. Symp. Info. Th., Lausanne, Switzerland, (2002.)

[10] A. D’yachkov, et al., Exordium for DNA Codes, Journal of Combinatorial Opti-
mization, 7, no.4, 369-380 (2003.)

[11] A. D’yachkov, et al., Reverse-Complement Similarity Codes, IEEE Trans.on In-
formation Theory to appear

[12] A. D’yachkov, et al., An Insertion-Deletion Like Metric, manuscript

[13] P. Erdos, D. Torney, and P. Sziklai, A Finite Word Poset, Elec. J. of Combina-
torics, 8, (2001.)

[14] M. Garzon, et al., A new metric for DNA computing, in Genetic Programming
1997: Proceedings of the Second Annual Conference, pp. 479-490, AAAI, 1997.
Stanford University, July 13-16, 1997.

[15] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge, (1997.)



A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric 103

[16] Hartemink, A., Gifford, D., A thermodynamic simulation of deoxyoligonucleotide
hybridization for DNA computation, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 48, 25-37 (1999.)

[17] H. Hollman, A relation between Levenshtein-type distances and insertion and
deletion correcting capabilities of codes, IEEE Trans. on Information Theory, 39
1424-1427, (1993.)

[18] V. Levenshtein, Efficient reconstruction of sequences from their subsequences or
supersequences, Journal of Combinatorial Theory, Series A, 93, 310-332 (2001.)

[19] V. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals, Soviet Phys.–Doklady, 10 707-710, (1966).

[20] V. Levenshtein, Bounds for Deletion-Insertion Correcting Codes, 2002 IEEE Intl.
Symp. Info. Th., Lausanne, Switzerland, (2002).

[21] A. Macula, DNA-TAT Codes, USAF Technical Report, TR-2003-57, AFRL-IF-RS
http://stinet.dtic.mil/cgi-bin/fulcrum main.pl (2003.)

[22] A. Macula, et al., DNA Code Gen., available at https ://community.biospice.org
[23] J. SantaLucia Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA

nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. USA, Vol. 95, pp 1460-
1465 (1998.)

[24] M. Waterman, Introduction to Computational Biology, Chapman-Hall, London,
(1995.)

[25] A. Zuker, B. Mathews and C. Turner, Algorithms and Thermodynamics for RNA
Secondary Structure Prediction: a Practical Guide



DNA Extraction by XPCR

Giuditta Franco1, Cinzia Giagulli2, Carlo Laudanna2,
and Vincenzo Manca1

1 Department of Computer Science, University of Verona
franco@sci.univr.it, vincenzo.manca@univr.it

2 Section of General Pathology,
Department of Pathology, University of Verona
{cinzia.giagulli, carlo.laudanna}@univr.it

Abstract. The extraction of DNA strands including a given sequence
of bases is a crucial step in the Adleman-Lipton extract model of DNA
computing. In this paper, a special type of PCR is presented with a
related algorithm which performs a specified extraction from a given
pool of DNA double stranded (shortly dsDNA) molecules. This kind of
PCR, called Cross Pairing PCR (shortly XPCR) was tested in several
situations, and used in a biotechnological procedure which implements
the extraction algorithm.

1 Introduction

Since the introduction of the Adleman-Lipton extract model [1, 8], the funda-
mental schema of a DNA algorithm, for solving an instance of a combinatorial
problem, is the following: i) Generation of a pool DNA strands encoding all
possible solutions (the solution space), ii) Extraction of those that are the true
solutions of the given instance. This second step is performed by a sequence of
elementary extraction sub-steps, where at each sub-step all the strands where a
specific sub-strand occurs are selected from the pool and constitute the input for
the next extraction sub-step. These two steps are usually of complexity that is
linear in time with respect to the size of the given instance. This is the concep-
tual strength of DNA computing, because the pools that are elaborated in the
steps of the procedure are of a size that is exponential with respect to the size of
the given instance. Generation of the solution space can be performed in several
manners, by using the power of DNA recombination [1, 10], or by a sequence of
steps according a Mix-and-Split procedure [3]. Extraction remains the critical
point of this paradigm. For example, the method which uses the biotin-avidine
affinity to select some strands by means of the complementary substrands bond
to beads has efficiency 88±3%. Moreover, in the context of the Adleman-Lipton
extract model, as it is reported in [7], if we call p the percentage of sound ex-
tractions (extracting each of the required DNA strands is equally likely) and
we assume that for each distinct string s in a test tube there are 10l (l = 13
proposed by Adleman in [1]) copies of s, then no matter how large l is and no
matter how close to 1 p is, there always exists a class of 3-SAT problems such
that DNA computing error must occur.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 104–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



DNA Extraction by XPCR 105

In this paper we address the following particular problem. Given a specified
sequence γ of bases, and an input pool P of different dsDNA molecules with a
same length n and sharing a common prefix and suffix, we want to produce an
output pool P ′ where only the strands which include the given sequence γ are
represented. We will show that by using PCR in a particular manner, combined
with gel-electrophoresis, we are able to solve this problem.

PCR is one of the most important and efficient tool in biotechnological ma-
nipulation and analysis of DNA molecules. The main ingredients of this reaction
are polymerase enzymes which implement a very simple and efficient duplication
algorithm on double oriented strings. The PCR procedure is based on: i) tem-
plates, ii) a copy rule applied to templates, iii) initial short strings (primers) that
say where the copying process has to start. Polymerase enzyme ‘writes’ step by
step, in the 5′−3′ direction, by coping (in complementary form) the bases of the
template which drives the copy process. The bilinearity of DNA molecules and
the antiparallel orientation of their two linear components are essential aspects
of the logic underlying the whole process [5, 11].

The idea of using PCR as a “very elegant and effective detection method”
to check the existence of a solution was considered in [12], where a theoretic
method ‘blocking’ the wrong sequences with PNA strands is proposed, and a
paper on experimental aspects of DNA computing by blocking was announced.

In thenext sectionwepropose theXPCRprocedure, that is avariantof standard
PCR where two dsDNA molecules and two primers are used in such a way that one
primer hybridizes with one single strand of a DNA molecule, and the other primer
with one single strand of the other DNA molecule. A similar idea, but in a very dif-
ferent context,was considered in [9]. In section 3wepresent an extraction algorithm
based on XPCR, and we give some experimental results that show its validity.

2 Cross Pairing PCR

Firstly we introduce some terminology and notation.
As usual, we intend that upper strands are in the direction from left to the

right (5′ − 3′) and lower strands are in the opposite direction. We use the terms
‘string’ and ‘sequence’ in an almost equivalent manner, however, we speak of
strings when we want to stress their abstract concatenation structure as words
of a free monoid over a finite alphabet (the Watson Crick alphabet in our specific
case). We adopt Greek letters for strings, and ᾱ will indicate the reversed comple-
mentary string of α. Strands are physical (oriented and rotational, single or dou-
ble) DNA instances of strings. We say γ-strand any strand (single or not) which is
an instance of string γ, and γ-superstrand any strand which includes a γ-strand.
Moreover, shortly we say that α ∈ P when α-strands are present in the pool P .

In the following we will explain in an informal manner the steps of the extrac-
tion algorithm we propose in this paper, by using as much as possible a pictorial
language, but it is interesting to note that by extending the bilinear notation
introduced in [5, 11] we could express all the process we consider in a complete
formal way.



106 G. Franco et al.

If one puts in a test tube many copies of α . . . γ-strands and γ . . . β-strands
(that finish and start respectively with a same substring γ), and two primers α
and β̄, then PCR performs the process one can see in figure 1, where α . . . γ . . . β-

α γ γ βα
 
_
β

α

α γ γ β

α γ β

α γ

_ _ _ _

_

_ _ _ _

_ _ _

_ _

α γ γ β

β

α γ γ β

β

γ β

α γ

Melting + hybridization

Polymerase action

Fig. 1. Basic step of XPCR

α

α γ
_ _ _

β

α
_
α γ

α

α
_

γ

_

_

α

α γ
_
γ

_
β β

_
βγ

_
β _

β

β
_

β
_

_
β

γ

γ

β

β
_
β

_
γ

γ
_

α γ

α

α α γ

Fig. 2. Amplification of XPCR. Long strands in the middle are seeds of exponential

amplifications



DNA Extraction by XPCR 107

strands are firstly generated, by a sort of overlapping juxtaposition of the two
initial strands, and then amplified. This step has been verified in laboratory
in different situations and variants, with three sizes of γ (229, 95, 15 bp, see
footnotes 1, 4, 6 in section 3.1).

As one can see in figure 1, differently from standard PCR the primers hybridize
with single strands of two different dsDNA molecules, so liberating the respective
partners in each molecule. At this point, these single strands can hybridize each
other by means of their (reversed) complementary parts γ and γ̄, and the poly-
merase uses the single strand components of this structure as templates in order
to complete the double string. This process is the key point of the extraction algo-
rithm of the next section (see step 4). Note that only the long strings are amplified
in each step (see figure 2); in fact, one of the strands of the initial short pieces in
every step is the template for the generation of another short piece, and the two
generated short pieces will join to form a long string including γ.

3 Extraction Algorithm

Let us start with a pool P which is constituted by dsDNA molecules having same
length n, α-strands at beginning and β-strands at end. Given a string γ, let us
assume that P is γ-invariant, that is, either γ does not occur at the same position
in different strands of P , or if it is not the case, then ατ1γτ2β, ατ3γτ4β ∈ P
implies that ατ1γτ4β, ατ3γτ2β ∈ P . The hypothesis of a common prefix and
suffix and the γ-invariance of the pool are not restrictive assumptions in the
context of DNA computing. The following procedure gives as output a pool P ′

where all the γ-superstrands of P are represented.
In the pictures related to each step of the algorithm we do not mention the

products given by secondary linear amplification, because ignoring them will not
affect the validity of the procedure. We use the notation PCR(α, β) to indicate
a PCR performed with α as forward primer and β as reverse primer.

1. PCR(α, γ̄)
After this step we find in the test tube an exponential amplification of the
dsDNA α . . . γ (see figure 3) that are shorter than the initial molecules (prod-
ucts linearly amplified keep the initial length).

2. PCR (γ, β̄)
After this step we find in the test tube an exponential amplification of the
dsDNA γ . . . β (see figure 4) that are shorter than the initial molecules (prod-
ucts linearly amplified keep the initial length).

3. Gel-electrophoresis for selecting the short strands of lengths l1, l2
such that l1 + l2 − l = n where l is the length of γ
In this step only the strings α . . . γ and γ . . . β are selected.

4. XPCR(α, β̄)
In this step all the γ-superstrands of P , that are the longest ones in the
current pool (see figure 5), are exponentially amplified.

5. Gel-electrophoresis for selecting the n-long strands.



108 G. Franco et al.

PCR

α γ β α

α γ

_ _ _ _

_

α γ β

γ

γ

Fig. 3. First step based on PCR

α γ β

_ _ _ _

_

α γ β

PCR

γ

β

γ β

β

Fig. 4. Second step based on PCR

XPCR

α α γ γ β

α γ

_ _ _ _

_

α γ γ β

γ β

β
_
γ

_
β

_
β

_ _
γ

α

αα

Fig. 5. Fourth step based on XPCR

3.1 Encoding and Experiments

A very important aspect of our method is the type of encoding we need in order
to avoid unexpected phenomena of annealing. In fact, primers have to work in a
very specific manner. We adopted a comma free encoding, following some of the
general principles given in [2, 4], by using a program that checked the strings of
the pool and primers according to the following strategy. A test T (n,m) is pos-
itive when a situation is found such that in a window of n consecutive positions
there are at least m discordance positions This means that when T (n,m + 1) is
negative then a window there exists with more than n−m + 1 concordance po-
sitions (in this case the program localizes and shows all these windows). Several
tests were performed with different values of the parameters n and m related to
the size of our primers.

An important caveat is the ‘primer rotation’ phenomenon. When it occurs,
a forward primer can play the role of another reverse primer or vice-versa. We



DNA Extraction by XPCR 109

Fig. 6. Electrophoresis results. Lane 1: molecular size marker ladder (100b). Lane

2: αφγψ-strands of human RhoA (582bp), lane 3: γψβ-strands (253bp), lane 4: cross

pairing amplification of αφγψβ-strands (606bp): 606 = 582 +253 - 229

collected the outcomes of many experimental trials that suggested us the values
of parameters that ensure a reliable behavior of the primers. However, oligos and
primers we used in the experiment do not have common strings of 5 bases long
(apart the expected annealing part, where the concordance is total in a window
with the same length of the primer).

In order to test the validity of XPCR, a first experiment was carried on
with αφγψ-strands, γψβ-strands, and primers α and β̄ (data are shown in
figure 6)1, where αφγψ was RhoA human gene which regulates many essen-
tial cellular processes and controls cell activation in response to environmental
cues. In the following −n position of a sequence indicates the position n in the
backward direction.

Other experiments were performed with pools of sequences ατ2 . . . τ9β (150
long) generated by a combination of strands X2, X3, . . . , X9, Y3, Y4, . . ., Y8,
Z2, Z4, Z6, Z7, Z9

2 in such a way that τi is equal to Xi or Yi or Zi (for each i we
have at least two choices). In particular, we started from a pool of eight different

1 α = ATGGCTGCCATCCGGAAG, γ = GAAGGATCTTCGGAATGATG . . . at po-
sition -229 of Rho A, and β̄ = GAACAGAAACTTATCTCAGAGGAA.

2 X2 = CAAGATATGG, X3= TCGTCTGCTAGCATG, X4 = TCACGCCACG-
GAACG, X5 = GTGAGCGCGAGTGTG, X6 = ATATGCAATGATCTG, X7 =
ATCCGTCCCGATAAG, X8 = CAAGTCAGATTGACC, X9 = GCACGTAACT,
Y3 = CCCGATTAGTACAGC, Y4 = TACTGATAAGTTCCG, Y5 = TCGCTCC-
GACACCTA, Y6 = TCAGCCGGCTTGCAC, Y7 = AACTGATACGACTCG, Y8 =
TATTGTCACGCATCG, Z2 = CAAGAGATGG, Z4 = TCACGCCACGGAACT,
Z6 = TTAGCCGGCTTGCAC, Z7 = TACTGATACGACTCG, Z9 = GTACG-
TAACT, α = GCAGTCGAAGCTGTTGATGC, β = AGACGCTGCCGTAGTC-
GACG.



110 G. Franco et al.

Fig. 7. Electrophoresis results. Lane 1: molecular size marker ladder (25 bp). Lane

2: amplification of α . . . γ strands (120 bp); lane 3: amplification of γ . . . β strands (45

bp); lane 4: cross pairing amplification of α . . . γ and γ . . . β (150 bp). Lane 5: positive

control by PCR(γ, β̄), with γ at position -45; lane 6: negative control by PCR(γ′, β̄);

lane 7, 8: positive controls by PCR(γ1, β̄) and PCR(γ2, β̄) respectively, with γ1 at

position -125 and γ2 at position -75

types of strands3 where γ-superstrands α . . . γ and γ . . . βδ were obtained by
standard PCRs and again also in this case the expected results: α . . . γ . . . βδ-
strands were produced by XPCR 4.

Finally, the complete algorithm was tested on a pool5 in which γ′ is present
only in all the sequences that are not γ-superstrands6 and all the γ-superstrands
are either γ1-superstrands or γ2-superstrands7; all the steps were proved to be
correctly performed (see lanes 2, 3, 4, 5 of figure 7), in fact all and only γ-
superstrands were extracted from the pool. In order to verify the correctness
of our results we performed three PCRs on the final test tube. The first one
with primers γ′ and β̄ showed that only γ-superstrands were present in the final
pool, because there was no amplification of γ′-superstrands (see lane 6 of figure
7). The last two PCRs with primers γ1, β̄, and γ2, β̄, respectively, showed that
all the initial γ-superstrands were present in the final tube (see lanes 7, 8 of
figure 7).

3 α Z2 X3 X4 X5 X6 X7 Y8 Z9 β, α X2 Y3 X4 X5 Z6 Y7 Y8 Z9 β, α X2 Y3 X4 X5

X6 Z7 X8 X9 β, α Z2 X3 Y4 Y5 Y6 Y7 X8 X9 β, α Z2 X3 Z4 Y5 Y6 X7 Y8 Z9 β, α
X2 Y3 Y4 Y5 Y6 X7 X8 X9 β, α Z2 X3 Y4 Y5 Y6 X7 Y8 Z9 β, α X2 Y3 Y4 Y5 Y6 Y7

X8 X9 β.
4 γ = GAACGGTGAGCGCGAGTGTG . . . in position -95 in all the strands where it

occurs, δ = CTTGTCTTTGAATAGAGTCTCCTT.
5 α Z2 X3 X4 X5 X6 X7 Y8 Z9 β, α X2 Y3 X4 X5 Z6 Y7 Y8 Z9 β, α Z2 X3 Y4 Y5 Y6

Y7 X8 X9 β, α X2 Y3 Y4 Y5 Y6 X7 X8 X9 β, α X2 Y3 Y4 Y5 Y6 Y7 X8 X9 β.
6 γ = Y8, γ′ = Y4.
7 γ1 = GATGGTCGTCTGCTAGCATG , γ2 = TTAGCCGGCTTGCAAACTG.



DNA Extraction by XPCR 111

4 Conclusions

In general and abstract terms XPCR is a method for performing, in a cheap
and efficient manner, the following transformation on strings that is essentially
the splicing combinatorial mechanism in the sense of the original formulation
introduced by Tom Head in [6] (more precisely, a case of null context splicing
rule):

α φ γ ψ β, α δ γ η β −→ α φ γ η β, α δ γ ψ β.

We showed that this method is useful for selecting γ-superstrands from a given
pool, but we think that XPCR could have also a more general relevance in the
context of DNA computing. of solution spaces of In principle, consecutive DNA
extraction from a given pool, by means of XPCR, should work correctly, but
problems could arise if the encoding is not robust enough for avoiding unexpected
annealing. Therefore, we intend to develop, in the next future, encoding methods
that make iterated XPCR reliable. Applications and extensions of cross pairing
amplification and of the extraction algorithm based on it will also be topics of
future researches.

5 Appendix (Experimental Protocols)

Reagents. 25 bp and 1 kb marker DNA ladder (Promega); agarose (Gibco brl);
PCR buffer, MgCl2 and dNTP (Roche); Taq DNA Polymerase (produced in
laboratory); all the synthetic DNA oligonucleotides 150 bases long and all the
primers were from Primm s.r.l. (Milano, Italy).

Annealing of Synthetic DNA Oligonucleotides. Two complementary syn-
thetic 150 bases long DNA oligonucleotides (5′ − 3′ and 3′ − 5′) were incubated
at 1:1 molar ratio at 90◦ for 4 min in presence of 2.5 mM of MgCl2 and then
at 70◦ for 10 min. The annealed oligos were slowly cooled to 37◦, then further
cooled to 4◦ until needed.

PCR Amplification. PCR amplification was performed on a PE Applied
Biosystems GeneAmp PCR System 9700 (Perkin Elmer, Foster City, CA) in
a 50µl final reaction volume containing 1.25U of Taq DNA Polymerase, 1.5 mM
MgCl2, 200 µM each dNTP, PCR buffer, 50 ng DNA template, 0.5-1 µM of for-
ward and reverse primers. The reaction mixture was preheated to 95◦ for 5 min.
(initial denaturing), termocycled 25 times: 95◦ for 1 min. (denaturing), 58◦ for
1 min. (annealing), 72◦ for 15 sec (elongation); final extension was performed at
72◦ for 10 min.

Preparation and Running of Gels. Gels were prepared in 7x7 cm or 6x10 cm
plastic gel cassettes with appropriate combs for well formation. Approximately
20 or 35 ml of 4% agarose solutions were poured into the cassettes and allowed
to polymerize for 10 min. Agarose gels were put in the electrophoresis chamber
and electrophoresis was carried out at 10 volt/cm2, then the bands of the gels



112 G. Franco et al.

were detected by a gel scanner. The DNA bands (PCR products) of interest were
excised from the gel and the DNA was purified from the gel slices by Promega
Kit (Wizard SV Gel and PCR Clean-Up System).

Acknowledgments

We kindly thank Prof. Angelo Spena of the Biotechnological Department of the
University of Verona for his interesting suggestions on PCR phenomenon, and
Luca Bianco of the Department of Computer Science of the University of Verona
for his collaboration in the encoding of sequences.

References

1. Adleman L. M., Molecular Computation of solutions to combinatorial problems,
Science 266, pp 1021-1024, 1994.

2. Arita M., Writing Information into DNA, in: Aspects of Molecular Computing, N.
Jonoska, G. Păun, G. Rozenberg (eds.), LNCS 2950, pp. 23-35, 2004.

3. R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, L. Adleman, Solution
of a 20-Variable 3-SAT Problem on a DNA Computer, Science 296, pp 417-604,
2002.

4. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, L. Adle-
man, Solution of a Satisfiability Problem on a Gel-Based DNA Computer, A.
Condon, G. Rozenberg (eds): DNA Computing, 6th International Workshop on
DNA-Based Computers, Leiden, Netherlands. Lecture Notes in Computer Science,
Springer-Verlag 2054, pp 27-42, 2000.

5. G. Franco, V. Manca, An algorithmic analysis of DNA structure, Soft Computing,
to appear, 2004.

6. T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology 49, pp 737-759,
1987.

7. D. Li, Is DNA computing viable for 3-SAT problems?, TCS 290, pp 2095-2107,
2003.

8. R.J. Lipton, DNA solutions of hard computational problems, Science 268, pp 542-
544, 1995.

9. S. Liu, D. S. Thaler, A. Libchaber, Signal and noise in bridging PCR, BMC
Biotechnology, 2:13, 2002.

10. V. Manca, C. Zandron, A Clause String DNA Algorithm for SAT, N. Jonoska,
N.C. Seeman (eds.): DNA Computing, 7th International Workshop on DNA-Based
Computers, Tampa, Florida. Lecture Notes in Computer Science 2340, Springer,
pp 172-181, 2001.

11. V. Manca, On the logic of DNA bilinearity, Preliminary Proceedings, Masami
Hagiya, Azuma Ohuchi (Eds.): DNA Computing, 8th International Meeting on
DNA Based Computers, Hokkaido, Japan, p 330, 2002.

12. G. Rozenberg, H. Spaink, DNA computing by blocking, TCS 292, pp 653-665, 2003.



A Method of Error Suppression
for Self-assembling DNA Tiles

Kenichi Fujibayashi and Satoshi Murata

Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology,
Yokohama, 226-8502, Japan

fuji@mrt.dis.titech.ac.jp, murata@dis.titech.ac.jp

Abstract. Self-assembling DNA tile is an important method of molec-
ular computation. In this method, DNA tiles self-assemble a large two-
dimensional lattice by the specific hybridization between complementary
strands. Hence hybridization is not a deterministic, but stochastic, pro-
cess which depends on tile concentration and temperature. For that rea-
son, it is difficult to obtain an aggregate with no error. Growth speed
of the aggregate must be very low to obtain an aggregate that contains
less errors. Winfree et al. proposed the Proofreading Tile Model (PTM),
which achieves both a low error rate and fast growth speed by splitting
tiles into pieces to enhance tile specificity. However, it remains difficult
to implement because it requires a large set of completely orthogonal
strands.

This paper presents a novel method called Layered Tile Model (LTM)
to realize the reliable self-assembly of DNA tiles. We introduce layered
tiles which are covered by other tiles called protective tiles. Those pro-
tective tiles verify the correctness of connections of the former tiles. Sim-
ulation and analysis are used to evaluate LTM performance. Results
demonstrate that LTM offers similar performance compared to 2 × 2
PTM. It also has unique properties that are considered to be practical for
implementation.

1 Introduction

Recently, Winfree et al. proposed a method of computation [1] based on DNA tile
self-assembly. DNA tiles self-assemble into a two-dimensional lattice in a process
that is designed to realize some computation. It is demonstrably equivalent to
the computation process of the universal Turing machine. Various methods using
DNA tile self-assembly have been proposed [2, 3, 4, 5, 6, 7, 8]. Those methods are
typically based on correctness of bindings among tiles. However, that assumption
is not valid because thermal fluctuation renders the binding process unreliable.
Winfree proposed a model called kinetic Tile Assembly Model (kTAM) [9] to
address that issue. Using kTAM, and thereby controlling physical conditions
such as temperature and the monomer tile concentration, it was possible to
produce an aggregate that was almost free from binding error. However, growth

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



114 K. Fujibayashi and S. Murata

speed of the aggregate is necessarily sacrificed to maintain a low error rate.
Winfree et al. proposed the the Proofreading Tile Model (PTM) to eliminate
that disadvantage [10]. This model realizes both a low error rate and high-
speed growth by splitting tiles into pieces, thereby improving logical selectivity
among DNA tiles. It requires many orthogonal sticky ends, which complicates
the design.

This paper proposes a method of error suppression, called Layered Tile Model
(LTM), for self-assembly of DNA tiles. It controls erroneous connections among
tiles by introducing an additional layer of tiles which cover those exposed sticky
ends. This mechanism not only reduces erroneous connections, but also sup-
presses random aggregation. This study designs a molecular structure of DNA
tiles for LTM, simulates its self-assembly process, and evaluates the consequent
relationship between its growth speed and error rate.

2 Tile Assembly Model

Winfree proposed the abstract Tile Assembly Model (aTAM) and the kinetic
Tile Assembly Model (kTAM) to describe a computation process using DNA
tiles [9]. The aTAM is the simplest two-dimensional self-assembly model that is
based on Wang’s Tiling [11, 12]. The aTAM comprises a finite set of square tiles:
each edge of these tiles has a specific label and strength bD (Fig. 1a). The total
strength b of each tile is given as the sum of matched labels bD. An aggregate
grows from a seed tile by gathering monomer tiles on its boundary. A monomer
tile is capable of binding at the growth front of the aggregate only if its binding
strength b is greater than the value of a threshold τ . This model allows definition
of a certain tile set which can form a uniquely defined structure. Hereafter, we
specifically address such a tile set which produces an infinite Sierpinski fractal
pattern. The set contains four rule tiles and three boundary tiles (Fig. 1b). At
τ = 2, starting from a corner tile (seed tile), we obtain an errorless aggregation
(Fig. 1c).

The aTAM is extended to kinetic Assembly Model (kTAM: we refer to this
model as Original Tile Model (OTM) in this paper) to consider thermody-
namical factors (e.g. temperature, tile concentrations). In kTAM, tiles corre-
spond to DNA double-crossover (DX) molecules [13]. As illustrated in Fig. 2a,
the DX molecule is a planar molecule composed of two DNA double helices
connected side by side. Four single DNA strands extrude from the tile; they
are called sticky ends. Two sticky ends which have Watson-Crick complemen-
tary oligonucleotides can bind to each other by DNA hybridization. Binding
strengths depend on the number of hydrogen bonds in hybridization; conse-
quently, they depend on the length of the sticky end. That length is equiv-
alent to bD in aTAM (sticky end of length s has bonding strength
bD = 1 1).

1 In Winfree’s models (OTM, PTM), s = 5; in our model (LTM), s = 14.



A Method of Error Suppression for Self-assembling DNA Tiles 115

Fig. 1. (a) Abstract tile. Edges are labeled N (North), E (East), S (South), and W

(West). (b) Tile set for Sierpinski pattern. (c) Growth of Sierpinski pattern from the

corner tile by aTAM at τ = 2. Rule tiles can bind only at concave steps of the boundary

Fig. 2. (a) DX molecule and its representation as an abstract tile. Four sticky ends of

DX molecule correspond to four edges of the abstract tile. (b) Rates for tile addition

and tile dissociation in kTAM: rf is the forward rate for association of any tile at

any site, and rr,b is the reverse rate for dissociation of a tile which has total bonding

strength of b

In kTAM, Winfree made several assumptions for simplification[9]:(i)Monomer
(single tile) concentrations [monomer], measured in M, are always constant; all
monomer types are held at the same concentration. (ii) Interactions (addition
and dissociation) occur only between an aggregate and monomer tiles. Inter-
action among aggregates is neglected. (iii) Forward rate constants kf for all



116 K. Fujibayashi and S. Murata

monomers are identical. In particular, the forward rate constants for correct and
incorrect additions are equal. (iv) Reverse rate constants kr,b depend exponen-
tially on b, where only matched edges are counted as b.

Under these assumptions, the rate of addition is given as

rf = kf [monomer] = kfe
−Gmc , (1)

measured in /sec, where Gmc > 0 is the entropic cost of putting a monomer at
the binding site. It depends on monomer concentration ([monomer] = e−Gmc).
The rate of dissociation rr,b /sec is given as

rr,b = kr,b = kfe
−bGse , (2)

which is also measured in /sec, where Gse > 0 is the free energy to break one
sticky end (bD = 1). Gse depends on temperature T and sticky end length s
(Gse = (4000

T − 11)s, approximately). Rates of addition and dissociation for
various tiles are illustrated in Fig. 2b.

In kTAM, the ratio Gmc
Gse

is equivalent to the threshold τ in aTAM. When
Gse is large and Gmc is small, tiles have a high tendency to associate and a
low tendency to dissociate. In region 0 < τ < 1, aggregates grow quickly, but
engender great error. In contrast, when Gse is small and Gmc is large, tiles
have a low tendency to associate and a high tendency to dissociate. Therefore,
aggregates do not grow in 2 < τ . Optimal growth is realized when τ is close to
2, implying that we must sacrifice growth speed to maintain a low error rate 2.
Winfree estimated the relation between the error rate ε and growth speed rg as
rg ≈ βε2 (β = 1× 105 /M/sec) [10].

Winfree proposed a second model, called the Proofreading Tile Model (PTM),
to improve both the error rate and growth speed [10]. In PTM, these are realized
by splitting each DNA tile into n×n pieces. In the case of 2×2 PTM, the relation
becomes rg ≈ βε, implying that much faster growth is possible at the same error
rate. However, this method requires numerous independent sticky ends, which
complicate the design.

3 Layered Tile Model

We propose the Layered Tile Model (LTM), which improves growth speed and
the error rate. In this model, two different types of tiles (upper tiles and lower
tiles) are superposed: the upper tiles control hybridization of sticky ends of the
lower tiles. Sticky ends of upper tiles protect sticky ends of the lower tiles so
that the addition of subsequently added tiles is allowed only if the lower tile
is connected to the aggregate correctly. This mechanism allows suppression of
deadlocks3, which are engendered by mismatched tiles.

2 At τ = 2, reactions are at a local equilibrium; the aggregate cannot grow. τ = 2 − ε
(0 < ε < 1) is required for correct self-assembly.

3 A deadlock is a situation in which a mismatched tile is buried by other tiles before
it dissociates from the aggregate.



A Method of Error Suppression for Self-assembling DNA Tiles 117

Fig. 3. (a)The original (lower) tiles. (b) The protective (upper) tiles. (c) The layered

tiles

3.1 A Growth Process of the LTM

LTM uses 13 tile types (Fig. 3). Seven of them are the same tiles used in OTM
(composing the lower layer); six of them are protective tiles, which correspond
to each of them except for the corner tile (composing upper layer). Here, we
consider a set of original tiles (a) to form the Sierpinski fractal pattern. They
are protective tiles (b) used to protect the original tiles, and a pair of a protective
tiles superposed on an original tile, called a layered tile (c).

We assume that all tiles, except for the corner tile, are layered at the initial
condition. One of two states – p (protected) or u (unprotected) – is defined on
each edge of the original tiles. p is the state in which the edge of the original tile
is protected by the protective tile. u is the state in which the edge of the original
tile is not protected. When a monomer tile is superposed by the protective tile,
all edges have state p (Fig. 4a).

We apply the following rules:

Rule 1. If the edge S or W of a layered tile matches with other tiles or aggre-
gates, then the state of the matched edge is switched from p to u.

Rule 2. Edges N and E of the layered tile are always protected (p); they allow
no additional bonding.

Rule 3. When both S and W of a layered tile match (p→ u) then the protective
tile dissociates; N and E of the original tile become u.

Fig. 4 illustrates how these rules work.

3.2 Implementation by DNA Tiles

We designed molecular structures shown in Fig. 5a to implement these rules.
Squares (Black) and Diamonds (red) represent the original tile and protective
tile, respectively. The protective tile actually has an identical molecular structure
to the original tile. Lines attached to squares and diamonds represent sticky



118 K. Fujibayashi and S. Murata

Fig. 4. (a)Monomer layered tile. (b)Two-edge matched: states at S and W are switched

to u by Rule 1; the states at N and E are switched to u by Rule 3. Subsequently,

the next connection on this tile is permitted. (c) One edge matched: the matched edge

becomes u by Rule 1, but Rule 3 is not applied. In this case, the layered tile cannot

adhere to the aggregate by a single match. Moreover, burying of the layered tile never

occurs because both N and E are p by Rule 2. (d) No edge matched: the layered tile

cannot remain because all the edges have state p

ends; integers are bond strengths of each sticky end (see Appendix A about
their determination). For rule tiles, the total bonding strength between original
tiles and protective tiles is defined such that it does not become greater than
τ = 2.

Rule 1 ∼ 3 can be implemented as the DNA tiles. The following addresses
only rule tiles (boundary tiles are not discussed here).

Implementation of Rule 1. The switching state at S or W of the original
tile from p to u is realized by removing a sticky end of the protective tile from
the original tile. This process is realized through branch migration4 [14, 15]. Let
the sticky end of the original tile at the growth front of the aggregate be Sa,

4 Branch migration is a process of selective replacement of DNA strands. It occurs
whenever DNA strands have complementary sequences to others. Those strands
compete with each other to achieve longer binding length; the longest matching pair
is allowed to remain. This process is irreversible once it is completed.



A Method of Error Suppression for Self-assembling DNA Tiles 119

Fig. 5. (a) Schemata of layered tiles. The black square and red diamond represent the

original tile and the protective tile, respectively. Integers beside sticky ends represent

their bonding strengths. (b) A sticky end of the protective tile Sp is replaced by a

correct sticky end of the aggregate Sa by branch migration

and the corresponding sticky end at W of the original tile be So. Sp denotes a
sticky end of protective tile which also corresponds to Sa (Fig. 5b). Sp serves to
connect the protective tile to the original tile, whereas Sp is 5-base shorter than
So, which provides a sticky end for Sa. By branch migration, Sa replaces Sp and
releases the protective tile at W (or S).

Implementation of Rule 2. Sticky ends at N and E of the protective tile
protect sticky ends of the original tile. Binding lengths at both N and E must
not be full length. Thereby, they release the protective tile only when sticky
ends at both S and W are correctly engaged. We think the tips of sticky ends of
the original tile should be covered to prevent unnecessary connections. A loop
structure (Fig. 5a) may be effective5 [16] to prevent hybridization with other
sticky ends.

Implementation of Rule 3. Suppose that states at both S and W of the
original tiles are already switched from p to u. The sum of bonding strengths
at N and E is designed to be insufficient to hold the protective tile. Therefore,
the protective tile dissociates and protection at N and E disappears. If only
one matched end remains at S or W, the protective tile has sufficient bonding
strength and remains on the spot (Fig. 4c).

5 To form a double helix, single-strand DNA must twist around the a small loop.



120 K. Fujibayashi and S. Murata

4 Simulations

We have built a simulation system to evaluate LTM. Using the simulator, we
can estimate the error rate and aggregate size. For comparison, we also calculate
them for OTM using the same simulator.

For LTM, the following rules and assumptions are added to Winfree’s OTM
algorithm (Appendix B):
– In the case of on-events, six layered tiles and one corner tile are equally likely

to be chosen.
– We introduce states p and u on the edges of original tiles and apply Rule 1
∼ 3 in Section 3.1.

– The duration for branch migration is neglected6.
– Once protective tiles are dissociated from original tiles, they cannot associate

again.

Fig. 6. Phase plot of OTM and LTM computed by simulations. Each disc represents

the result of a single simulation; the disc size represents the size of the aggregate; the

shading tone represents the error rate (Solid black indicates a zero error rate.)

Simulations were performed for both OTM and LTM to map out parameter
spaces of Gse and Gmc. Fig. 6 shows error rates and aggregate sizes for 1 ≤ Gse,
Gmc ≤ 30. Each disc represents a result of single simulation up to the 20000th
on-event. The disc size represents the size of the aggregate; the shading tone
represents the error rate7. Solid black indicates a zero error rate. Lines with
slopes 1 and 2 represent τ = Gmc

Gse
= 1 and 2.

6 This assumption will be reconsidered in Section 5.
7 The error rate is given as error rate = mismatches

tiles
, where mismatches is a number

of mismatched tiles, and tiles is the number of tiles in the aggregate. A mismatched
tile is one which has four neighboring tiles, some of which have wrong edges.



A Method of Error Suppression for Self-assembling DNA Tiles 121

Fig. 7. Simulation results of OTM(a) and LTM (b) for different τ . From left to right,

τ = Gmc
Gse

= 24
17

= 1.412, 19
17

= 1.118 and 14
17

= 0.824. In the bottom right frame,

protective tiles (red diamonds) cannot dissociate from original tiles; growth has stalled

As shown in this figure, LTM properties differ greatly from those of OTM. In
the 2 < τ region, neither model produces an aggregate. In 1 < τ < 2, aggregates
can grow with low error rates in both models. The region near the line τ = 1,
LTM shows similar performance to that of OTM. The most distinguished dif-
ference between them is in 0 < τ < 1. In this region, OTM produces a random
aggregate; whereas, in LTM, we observe almost no growth. This is because pro-
tective tiles cannot be dissociated from original tiles. For instance, even if two
edges of a layered tile match, total bonding strength between protective tiles and
original tile at N and E is 18

14 , which means no association at τ < 18
14 . Whereas,

in 1 ≤ Gmc ≤ 3, random growth is observed in LTM because tile concentrations
are sufficiently high to produce random aggregation.

Fig. 7 shows snapshots from simulation for different values of τ . At τ = 1.412,
both models show error-free aggregates. At τ = 1.118, LTM has a better error
rate than OTM. OTM produces a random aggregate at τ = 0.824. However, in
LTM, the aggregate does not grow at all. This is regarded as suppressed growth
realized by protective tiles. To dissociate a protective tile, the total strength
of a tile must not exceed τ . For small τ , tiles almost cease assembly because
protective tiles are always attached to original tiles.



122 K. Fujibayashi and S. Murata

5 Analysis

We evaluate LTM analytically using the kinetic trapping model [9]. This model
allows calculation of quantitative properties such as the error rate and growth
speed.

We consider the associate/dissociate process at a single growth site, which
is called a concave step, on the boundary. Initially, a transition diagram that
describes transitions among possible states at a step is required. We define ten
states for the analysis. Four of them are most important: (E) the step is empty;
(C) a tile at the step is correct, namely both S and W are matched; (A) a tile at
the step is partly correct, namely S or W is mismatched; and (I) a tile at the step
is incorrect, namely both S and W are wrong. We also require states LC1, LC2,
LA1 and LA2, where ’L’ denotes layered, i.e., a protective tile is superposed on
an original tile. LC1 and LA1 denote states before branch migration (Fig. 5b-1);
they become LC2 and LA2 after branch migration, respectively (Fig. 5b-3). We
also add two states FC and FI where ’F’ means frozen. In frozen states, a tile is
buried by other tiles at the next event; thereby, it cannot dissociate.

Now, we have to evaluate transition rates between above states (see Fig. 8):

– E → LC1. The rate is rf because only one kind of layered tile is correct in
the tile set of Sierpinski pattern. Similarly, the rate for E → LA1 is 2rf (two
layered tiles) and E → I is 4rf .

– LC1 → LC2 and LA1 → LA2 are branch migration, which is irreversible
once completed. The transition rate of branch migration is given as 1

tbm

/sec, where tbm = 0.001 sec is a rough estimation of duration necessary for
branch migration8.

– For LA2 → E rate is rr,1, because a layered tile can be dissociated from the
aggregate after branch migration.

– For LC2 → C and LA2 → A, a protective tile dissociates from an original
tile. Considering the bonding strength necessary to remove the protective
tile from the original tile, rates for these transitions become rr, 18

14
and rr, 27

14
,

respectively.
– Transitions C, A, I → E represent that an original tile can dissociate from

the aggregate after the protective tile dissociated; these rates are rr,2, rr,1

and rr,0, respectively.
– We must calculate the net forward rate r∗ to evaluate rates for C → FC,

A, and I → FI. This value is equivalent to the net transition rate between
E and LC1 rf because a tile becomes fixed in place when it is buried by the
next tile, which concurs with its neighbors.

8 Branch migration is a random-walk process. Therefore, the reaction time tbm depends
on the base length and other parameters. The reaction time is difficult to estimate,
but it does not strongly affect our result. For instance, even for very long tbm like
1 /sec, no significant differences in error rate and growth speed are evident for
1 < τ < 2. For simplification, we assume that branch migration at S and W are
synchronized.



A Method of Error Suppression for Self-assembling DNA Tiles 123

Fig. 8. The transition diagram for the LTM

Using the transition diagram, we can calculate the time development of each
state. Let pi(t) be the probability of state (i) at time t. From the transition
diagram in Fig. 8, we have the following differential equation:

ṗ(t) =



−7rf 0 0 0 rr,1

rf − 1
tbm

0 0 0
0 1

tbm
−rr, 18

14
0 0

2rf 0 0 − 1
tbm

0
0 0 0 1

tbm
−rr,1 − rr, 27

14

0 0 rr, 18
14

0 0
0 0 0 0 rr, 27

14

4rf 0 0 0 0
0 0 0 0 0
0 0 0 0 0

rr,2 rr,1 rr,0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−rr,2 − r∗ 0 0 0 0
0 −rr,1 − r∗ 0 0 0
0 0 −rr,0 − r∗ 0 0
r∗ 0 0 0 0
0 r∗ r∗ 0 0





pE(t)
pLC1(t)
pLC2(t)
pLA1(t)
pLA2(t)
pC(t)
pA(t)
pI(t)

pFC(t)
pFI(t)


.= Mp(t) , (3)



124 K. Fujibayashi and S. Murata

where p(0) = [ 1 0 0 0 0 0 0 0 0 0 ]T .
For t →∞, probabilities of states must be zero except for FC and FI. Thus

ṗ(∞) = [−1 0 0 0 0 0 0 0 pFC(∞) pFI(∞) ]T = Mp(∞) . (4)

The error rate is derived as follows:

ε = 1− pFC(∞) , (5)

where pFC is a solution of the above equation. (we can use software such as
Mathematica to do this calculation. )

The growth speed is given by the net transition rate from E to C:

rg =
1

1
rf

+ tbm +
1

rr, 18
14

− rr,2 . (6)

Fig. 9 shows the error rate vs. growth speed of three models (OTM, 2 × 2
PTM and LTM) by this analysis. These plots are for Gmc at several values of Gse

(= 8.5, 10.5, 12.5). Straight lines l1, l2, and l3 represent the best performance
region of these models, in which a low error rate and high growth speed are
achieved. Slope of these lines indicate overall performance of each model. For
OTM and 2 × 2 PTM, we have rg ≈ βε2 and rg ≈ βε, respectively, where
β = 1× 105 /M/sec is a constant.

For LTM, the relation between error rate and growth speed is

rg ≈ βε (7)

which means that LTM has similar performance to that of 2×2 PTM. In addition,
LTM’s performance curves overlap more with the optimal performance line l3,
implying that LTM has a low error rate for broader values of τ . In other words,
LTM is more robust for variations of temperature and tile concentrations.

6 Conclusions

This paper proposed the Layered Tile Model (LTM). This model offers several
merits:

– LTM provides an equivalent error rate and growth speed compared to 2× 2
PTM.

– Using protective tiles, LTM can suppress unnecessary interactions among
monomer and aggregates, which greatly hinder experimentation. Moreover,
it suppresses random aggregates in the 0 < τ < 1 region.

– The number of sticky ends necessary for LTM is small. It requires about
twice those of OTM. For any kind of tile set, we can design corresponding
protective tiles by simple modification of the original tile set. A small number
of necessary sticky ends is also advantageous to avoid spurious bindings
among non-complementary sticky ends.



A Method of Error Suppression for Self-assembling DNA Tiles 125

Fig. 9. Plots of ε vs. rg of three models (OTM, 2 × 2 PTM and LTM) by analysis.

Curved lines are plotted for Gmc at several values of Gse (= 8.5, 10.5, 12.5). Straight

lines l1, l2, and l3 represent the best performance of these models (l2 overlaps l3)

– LTM offers more robustness for changes of concentration and temperature.
It shows good performance in a wider area of Gse and Gmc compared to
OTM or 2× 2 PTM. It is also important for practical experiments.

Further research is required for this model. The next step is implementation
as DNA tiles. DNA sequences of original and protective tiles must be designed.
Simple experiments are planned to verify protective tile functionality.

References

[1] Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly
of DNA: Some theory and experiments. In Landweber, L.F., Baum, E.B., eds.:
DNA Based Computers II. Volume 44 of DIMACS., Providence, RI, American
Mathematical Society (1996) 191–213

[2] Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA
structures. Proc. Natl. Acad. Sci. USA 99 (2002) 12577–12582

[3] Kao, M.Y., Ramachandran, V.: DNA self-assembly for constructing 3D boxes. In
Eades, P., Takaoka, T., eds.: ISAAC 2001. Volume 2223 of LNCS., Christchurch,
New Zealand, Springer-Verlag (2001) 429–440



126 K. Fujibayashi and S. Murata

[4] Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules. Nature 407 (2000)
493–496

[5] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Symposium on Theory of Computing (STOC), Portland, Oregon,
ACM (2000)

[6] Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394 (1998) 539–544

[7] Yan, H., Feng, L., LaBean, T.H., Reif, J.H.: Parallel molecular computations of
pair-wise XOR using DNA ”String Tile” self-assembly. In Chen, J., Reif, J.H., eds.:
DNA Based Computers 9. LNCS, Madison, Wisconsin, Springer-Verlag (2003) 97

[8] Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of
DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA
100 (2003) 8103–8108

[9] Winfree, E.: Simulations of computing by self-assembly. Technical Report
CSTR:1998.22, Caltech (1998)

[10] Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorith-
mic self-assembly. In Chen, J., Reif, J.H., eds.: DNA Based Computers 9. LNCS,
Madison, Wisconsin, Springer-Verlag (2003)

[11] Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical
Journal 40 (1961) 1–42

[12] Wang, H.: Dominoes and the AEA case of the decision problem. In Fox, J.,
ed.: Proceedings of the Symposium on the Mathematical Theory of Automata,
Brooklyn, New York (1963) 23–55 Polytechnic Press.

[13] Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32 (1993)
3211–3220

[14] Biswas, I., Yamamoto, A., Hsieh, P.: Branch migration through DNA sequence
heterology. J. Mol. Biol. 279 (1998) 795–806

[15] Panyutin, I.G., Hsieh, P.: The kinetics of spontaneous DNA branch migration.
Proc. Natl. Acad. Sci. USA 91 (1994) 2021–2025

[16] Turberfield, A.J., Mitchell, J.C.: DNA fuel for free-running nanomachines. Phys.
Rev. Lett. 90 (2003) 118102

A Sticky End Design of Protective Tiles

We consider conditions in which protective tiles dissociate from original tiles
only when they correctively associate with the aggregate.

Regarding rule tiles, let each sticky end strength of the protective tile be
xr and yr, as shown in Figure 10a. First, xr must be smaller than 1 because it
must be replaced by branch migration between original tiles. yr must be also
smaller than 1 because the total strength of both N and E must be smaller than
τ (= 2 − ε) when sticky ends of S and W dissociated. Secondly, total bonding
strength of the protective tile must be larger than τ in the one-match case,
namely xr +2yr ≥ 2. Thirdly, we add yr < 3

4 to remove the protective tiles when
two match (Fig. 10b).

Similarly, for the boundary tiles, we determine 0 < xb < 1, 0 < yb < 1,
xb + yr + yb ≥ 2, yr + yb < 3

2 .



A Method of Error Suppression for Self-assembling DNA Tiles 127

Fig. 10. (a) Layered tile structure. Sticky end strengths of protective tiles are xr, yr, xb,

and yb (normalized by 1). (b) Yellow areas show possible strengths for the protective

tiles. Blue points represent strengths (xr = 9
14

, yr = 9
14

, xb = 23
14

, yb = 10
14

), which we

used in simulations and analyses

B Simulation Algorithm

The simulation algorithm is as follows: By Assumption iii in section 2, tiles are
attached one by one to the aggregate. Initially, a corner tile (seed tile) is placed at
the origin of the two-dimensional lattice. The rates of all possible reactions must
be known to determine the next event, which is either to add a tile (on-event)
or to remove a tile (off-event). The net on rate of on-event is kon = mkfe

−Gmc ,
where m is the number of total empty sites adjacent to the aggregate. The net
off rate of off-event is koff =

∑
b koff,b, where koff,b =

∑
ij s.t. bij=b kfe

−bijGse .
For each site (i, j) belongs to the aggregate (except for the seed tile), the total
strength bij is calculated. From kon and koff , the on-event probability is given by

kon
kon+koff

, and the off-event probability is koff
kon+koff

. In the case of on-event, a tile
(which is equally likely chosen from all kind of tiles) is added to one of the empty
sites adjacent to the aggregate. In the case of the off-event, the probability exists
that some tiles with b bonds dissociate from the aggregate. That probability is
koff,b
koff

; all such sites present equal likelihood. Once the event is chosen, all rates
must be recalculated to determine the next event.



Using Automated Reasoning Systems on
Molecular Computing

Carmen Graciani Dı́az and Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Dpto. Ciencias de la Computación e Inteligencia Artificial,

Universidad de Sevilla (Spain)
{cgdiaz, marper}@us.es

Abstract. This paper is focused on the interplay between automated
reasoning systems (as theoretical and formal devices to study the cor-
rectness of a program) and DNA computing (as practical devices to
handle DNA strands to solve classical hard problems with laboratory
techniques). To illustrate this work we have proven in the PVS proof
checker, the correctness of a program, in a sticker based model for DNA
computation, solving the pairwise disjoint families problem. Also we in-
troduce the formalization of the Floyd–Hoare logic for imperative pro-
grams.

1 Introduction

One of the most active areas of research in Computer Science is the study and use
of formal methods (applications of primarily discrete mathematics to software
engineering problems). Its widely development and the complexity of interesting
problems have given rise to automated reasoning. In this area, one of the main
problems is the correctness [2]: developing specifications and proofs that ensures
a program meets its specification. There is a previous work of formalization:
expressing all definitions, theorems and proofs in a formal language without
semantic ambiguity. This approximation has especial relevance in new computing
paradigms such as the DNA based molecular computing. In many molecular
models the data are tubes over an alphabet whose content encodes a collection of
DNA strands. The operations considered are abstraction of different laboratory
techniques to manipulate DNA strands.

This paper is organized as follows. It begins with a short presentation of
the Prototype Verification System (PVS) and the sticker model. Then, how this
model can be formalized in PVS, is briefly described. Section 4 introduces imper-
ative programs and gives an overview of how we deal with them in PVS. Finally,
as an example, a molecular solution of the pairwise disjoint families problem
and a description of its formal verification obtained with PVS, is presented.
The set of developed theories in PVS for this paper are available on the web at
http://www.cs.us.es/∼cgdiaz/investigacion.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 128–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Using Automated Reasoning Systems on Molecular Computing 129

2 The Prototype Verification System

The Prototype Verification System (PVS) is a proof checker based on higher–
order logic where types have semantics according to Zermelo–Fraenkel set theory
with the axiom of choice [8]. In such a logic we can quantify over functions which
take functions as arguments and return them as values.

Specifications are organized into theories. They can be parameterized with
semantic constructs (constant or types). Also they can import other theories.
A prelude for certain standard theories is preloaded into the system. As an
example we include in figure 1 the PVS theory suc finitas def which provides
an alternative definition (to the type finseq given in the prelude) for sequences
of a given length n for elements of a given type V.

suc_finitas_def[V: TYPE, n: nat]: THEORY

BEGIN

% Finite sequence: S = {sk}k < n+1

SUC_FINITAS: TYPE = [below[n] -> V]

SF: TYPE = SUC_FINITAS

END suc_finitas_def

Fig. 1. A PVS Theory

Before a theory may be used, it must be typechecked. The PVS typechecker
analyzes the theory for semantic consistency and adds semantic information
to the internal representation built by the parser. Since this is an undecidable
process, the checks which cannot be resolved automatically are presented to the
user as assertions called type–correctness conditions.

The PVS prover is goal–oriented. Goals are sequents consisting of antecedents
and consequents, e.g. A1, . . . , An � B1, . . . , Bm. The conjunction of the an-
tecedents should imply the disjunction of consequents, i.e. A1 ∧ · · · ∧ An →
B1 ∨ · · · ∨ Bm. The proof starts with a goal of the form � B, where B is the
theorem to be proved. The user may type proof commands which either prove
the current goal, or result in one or more new goals to prove. In this manner
a proof tree is constructed. The original goal is proved when all leaves of the
proof tree are recognized as true propositions. Basic proof commands can also
be combined into strategies.

3 The Sticker Model: A Description Through PVS

The sticker model used in this paper was introduced by S. Roweis et al. [9] (this
model is completely different from the sticker systems introduced by L. Kari
et al in [6]). It is an abstract model of DNA based molecular computing with
random access memory in the following sense: some operations could modify the
structure of the DNA molecules and so the information codified by them changes
during the execution.



130 C.G. Dı́az and M.J. Pérez-Jiménez

In this model, a memory strand (a single stranded DNA molecule) N bases
in length subdivided into k non–overlapping regions each M bases long is con-
sidered to represent a string of k bits. Each region is identified with exactly one
bit position. Also, k different sticker strands (single stranded DNA molecule)
each of them M bases long and complementary with one and only one of the k
memory regions are considered. If a sticker is annealed to its matching region
then the corresponding bit is on. Otherwise, it is off. A memory strand together
with its associated stickers, if any, is called a memory complex and represent one
bit string. In this sense we consider memory complexes as finite sequence of bits
in PVS:

BITS: TYPE = {on, off}
MEMORY_COMPLEX: TYPE = finseq[BITS]

Associated with this definition we consider the application σ from N into
{on, off} defined as follows (where σi is the i-th element of the bit sequent σ):

σ(i) =

{
σi if i < k

off otherwise

appl(sigma: MEMORY_COMPLEX, i: nat): BITS =

IF i < sigma‘length THEN sigma‘seq(i) ELSE off ENDIF

Within sticker model a tube is a collection of memory complexes representing
a multiset of bit strings. All memory strands (underlying each complex) in a
tube are identical and each one has stickers annealed only at the required bit
positions.

In PVS we consider a general concept: a multiset of memory complexes:

GEN_TUBE: TYPE = MULTISETS[MEMORY_COMPLEX]

Then we restrict this definition to consider tubes containing only memory
complexes of a given length, namely k.

MTUBE: TYPE =

{T: GEN_TUBE | FORALL (sigma: MEMORY_COMPLEX):

ms_in(sigma, T) IMPLIES sigma‘length = k}

The following are the molecular operations on tubes used in the sticker model
and the corresponding implementation in PVS.

– To combine two tubes producing a new one containing all the memory com-
plexes from both tubes.

combine(T1, T2: GEN_TUBE): GEN_TUBE =

LAMBDA (sigma: MEMORY_COMPLEX): T1(sigma) + T2(sigma)



Using Automated Reasoning Systems on Molecular Computing 131

– To separate the content of a tube into two new tubes, one containing all the
memory complexes with a particular sticker annealed (a particular bit on)
and the other all those with that region free (that bit off ).

separate(T: GEN_TUBE, oi: nat): [GEN_TUBE, GEN_TUBE] =

(LAMBDA (sigma: MEMORY_COMPLEX):

IF appl(sigma, oi) = on THEN T(sigma) ELSE 0 ENDIF,

LAMBDA (sigma: MEMORY_COMPLEX):

IF appl(sigma, oi) = off THEN T(sigma) ELSE 0 ENDIF)

– To turn on (set) a particular region annealing the appropriate sticker on
every complex in a tube (turning the corresponding bit to on).

– To turn off (clear) a particular region removing the appropriate sticker, if
any, on every complex in a tube (turning the corresponding bit to off ).
Previously to the implementation of these operations we define the concept
of modifying in a memory complex, σ, a particular bit, i, to b ∈ {on, off}.

σb
i =

{
{σ0, . . . , σi−1, b, σi+1, . . . , σk−1} if i < k

σ otherwise

turn(sigma: MEMORY_COMPLEX, i: nat, b: BITS): MEMORY_COMPLEX =

IF i < sigma‘length

THEN sigma WITH [(seq) := sigma‘seq WITH [(i) := b]]

ELSE sigma ENDIF

From this we consider a general operation that changes, in all memory com-
plexes present in a tube, T, a particular bit, i, to b ∈ {on, off}.

Change(T, i, b) = {{ σb
i | σ ∈ T }}

change(T: GEN_TUBE, i: nat, b: BITS): GEN_TUBE =

LAMBDA (sigma: MEMORY_COMPLEX):

IF i < sigma‘length AND sigma‘seq(i) = b

THEN T(turn(sigma, i, off)) + T(turn(sigma, i, on))

ELSIF i >= sigma‘length THEN T(sigma) ELSE 0 ENDIF

The implementation of the turn operations (set and clear) are as follows:
Set(T, i) = {{ σon

i | σ ∈ T }} Clear(T, i) = {{ σoff
i | σ ∈ T }}

set(T: GEN_TUBE, i: nat): GEN_TUBE = change(T, i, on)

clear(T: GEN_TUBE, i: nat): GEN_TUBE = change(T, i, off)

Also a read operation is considered. This operation determines if a tube is
empty and otherwise selects a complex from the tube and produce the associated
string of bits. To implement it we consider the special memory complex of length
0 as the answer when there is no elements in the tube.



132 C.G. Dı́az and M.J. Pérez-Jiménez

read(T: GEN_TUBE): MEMORY_COMPLEX =

IF EXISTS (gamma: MEMORY_COMPLEX): ms_in(gamma, T)

THEN choose({sigma: MEMORY_COMPLEX | ms_in(sigma, T)})
ELSE empty_seq ENDIF

Usually we express the use of those operations as assignments. For example,
T ←− Combine(T1, T2)

The interpretation of a program in the sticker model as a sequence of such
operations has taken us to consider them as imperative programs.

4 Imperative Programs

Following [3] we consider an imperative program as a sequence, I1 @@ I2 @@
...@@ Ik, of states transformers1. When such a program is executed on an
initial state the first transformer is applied to it, the second is applied to the
state obtained by the previous one and so on. A general work that shows how to
deal in PVS with nontermination and nondeterministic state transformers can
be found in [11].

A state is considered as a finite sequence of data in a given domain (we
introduced the possibility of take a tuple of sequences over different domains to
deal with elements of different nature). To access to the information stored in
a state we have variables. Each variable is associated with a natural number in
a one–to–one manner. The n–variable over a given state takes the value of the
n–th element.

In general, a term is any function, t, that given a state, s ∈ S, produces an
element over a given domain, D. Operations between elements of given domains
are lifted to operations between terms using the function l we describe with
an example. Suppose we have a binary operation op: D1× D2 → R. With l we
obtain a binary operation l(op), that given two terms t1: S → D1 and t2: S
→ D2 produces the term l(op)(t1, t2): S → R where

l(op)(t1, t2)(s) = op(t1(s), t2(s))

This function l is generalized to consider constants. Given c ∈ D, we obtain
the term l(c): S → D such that l(c)(s) = c.

In [5], Hoare introduced the {ϕ} P {ψ} notation to describe the behaviour
of a program P. Those expressions are called specifications of partial correctness
and have the following meaning: If ϕ and ψ are some conditions over states the
specification is true if whenever the program P is executed over a state verifying
ϕ and it halts, then it produces a state verifying ψ. As the considered notion of
program only consider total functions those expressions are, in fact, specifications
of total correctness.

1 In order to save space, we do not include in this section the corresponding PVS
implementations, see [3] and [4] for more details.



Using Automated Reasoning Systems on Molecular Computing 133

To construct a formal proof of a specification of partial correctness we use
the Floyd–Hoare logic, a set of axioms and inference rules. Next we introduce
the ones used to construct the correctness proof in the following section.

– The consequence rule:

ϕ → ϕ′, {ϕ’} S {ψ’}, ψ′ → ψ

{ϕ} S {ψ}

– The assignment instruction, X ←− t (we denote ←− by << in PVS) is a
program that over a state s produces the state s[t(s)/X], resulting from s
after the substitution of the associated value for the variable X by t(s).
The assignment axiom is

{ϕ[t/X]} X←− t {ϕ}

where ϕ[t/X](s) = ϕ(s[t(s)/X]).
– The compose rule:

{ϕ} S1 {ψ}, {ψ} S2 {φ}
{ϕ} S1 @@ S2 {φ}

– Given a program P, the following form

for X from 0 to t-1 do
P

end for

(we write it loop(X, t, P) for short) has the following meaning
X ←− 0 @@ P @@ ...@@ X ←− t-1 @@ P

The loop rule is

{ϕ ∧ X < t} P {ϕ[X+1/X]}
{ϕ[0/X]} loop(X, t, P) {ϕ[t/X]}

no assignment to X or variables occurring in t is used in P

4.1 First Order Logic

To express conditions over states we consider a first order logic whose set of
terms, TERM, is the inductive closure of the union of the set of variables mentioned
above and the set of lifted constants under the constructors l(op) for every
function op. The set of atomic formulas is the inductive closure of the pair of
sets TERM and {l(p)| p boolean constant}, under the constructors l(op) for
every predicate op.

Previous to the definition of the set of formulas we need the concept of
the state, s[d/X], resulting from a given one, s, after the substitution of the
associated value for a variable X by d. That is, s[d/X] is a state such that for



134 C.G. Dı́az and M.J. Pérez-Jiménez

any other variable different from X it has the same associated value than s and
for X it has d as the associated value.

The set of formulas is the inductive closure of the set of atomic formulas
under the constructors l(∧), l(∨), l(¬), foreach and exists, where
foreach(X, ϕ): S → bool such that foreach(X, ϕ)(s) ≡ ∀ d (ϕ(s[d/X]))

exists(X, ϕ): S → bool such that exists(X, ϕ)(s) ≡ ∃ d (ϕ(s[d/X]))

5 The Pairwise Disjoint Families Problem

Let us consider the following problem:

Let A = {0, ..., p-1}. Let F = {B0, ..., Bq−1} a finite family of subsets
of A. To determine all the ordered pairs (F’,

⋃
F’), where F’ is a subfamily

of F and its elements are pairwise disjoint.

To solve this problem in the sticker model we consider as initial tube T0, a
(p+q, q)–library (a tube containing, at least, a copy of any memory complex
with p+q regions and the p last regions deactivated). The first q bits represent a
subfamily of F . Given a memory complex with p+q regions, σ, we consider that
it codifies an ordered pair (Fσ, Aσ), where Fσ is the subfamily {Bj| σ(j) =
on} of F and Aσ is the subset {j| σ(j + q) = on} of A.

Fσ

p

Aσq

Fig. 2. Memory complex with (p+q) regions

The following is a program in the sticker model that solves the pairwise
disjoint families problem (where bi

j is the j-th element of Bi, the i-th subset of
F , and ri is its size; that is, Bi = {bi

0,...,b
i
ri−1} ∈ F).

Note: Each instruction is labeled in order to make references.

Procedure Disjoint
INPUT: A family F of A subsets

I1 for I ←− 0 to q-1 do
L1 (T*, T-) ←− Separate(T, I) @@
L2 for J ←− 0 to rI-1 do
l1 (T+, T’-) ←− Separate(T*, bIJ+q) @@
l2 T* ←− Set(T’-, bIJ+q)

end for @@
L3 T ←− Combine(T*, T-)

end for



Using Automated Reasoning Systems on Molecular Computing 135

The following PVS expression implements the program:

disjoint(F: (FAMILY(p, q))): program =

LET eB = l(elemF(p,q,F)) IN

loop(VI, q,

assig2((VTast, VTn), l(separate)(VT, VI)) @@

loop(VJ, l(tam(p,q,F))(VI),

assig2((VTm, VTnn), l(separate)(VTast, eB(VI, VJ) + l(q))) @@

(VTast << l(set)(VTnn, eB(VI, VJ) + l(q)))) @@

(VT << l(combine)(VTast, VTn)))

assig2(PT: [V1, V1], Pt: [term1, term1]): program =

(PT‘1 << Pt‘1) @@ (PT‘2 << Pt‘2)

In order to stablish the correctness of this program we consider the formula:

ΘF(T) ≡ ∀τ (τ ∈ T → ∀ i1< i2< q (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that the memory complexes of a given tube codifies a subfamily of F
whose elements are pairwise disjoint.

correc_disjoint(F: (FAMILY(p, q)))(T: MTUBE[p + q]): bool =

FORALL (tau: MEMORY_COMPLEX): (ms_in(tau, T) IMPLIES

(FORALL (i1, i2: below[q]):

(appl(tau, i1) = on AND appl(tau, i2) = on AND i1 < i2 IMPLIES

disj(F‘seq(i1), F‘seq(i2)))))

The following specification stablish the correctness of the program (where
library?[p+q](q) is a predicate over tubes characterizing a (p+q, q)–library):

{library?[p+q](q)(T)} disjoint(F) {ΘF(T)}

To prove this specification we will use two formulas θ and δ, that will be
invariants of the main loop (I1) and inner loop (L2), respectively. For these
formulas we prove the following results:

1. library?[p+q](q)(T) → θ[0/I]
2. θ[q/I] → ΘF(T)
3. θ ∧ I < q → δ[0/J][+(T,I)/T*][-(T,I)/T-]
4. δ[rI/J] → θ[I+1/I][T* ∪ T-/T]
5. δ ∧ J < rI →

δ[J+1/J][Set(T’-, bIJ+q)/T*][-(T*, bIJ+q)/T’-][+(T*, bIJ+q)/T+]

From those results and using the appropriate axioms and inference rules from
Floyd–Hoare logic we prove the following specifications:

– {δ*} l1 @@ l2 {δ[J+1/J]} where δ* is the formula
δ[J+1/J][Set(T’-, bIJ+q)/T*][-(T*, bIJ+q)/T’-][+(T*, bIJ+q)/T+]

(using the assignment axiom and the compose rule).



136 C.G. Dı́az and M.J. Pérez-Jiménez

– {δ ∧ J < rI} l1 @@ l2 {δ[J+1/J]} (using 5 and the consequence rule).
– {δ[0/J]} L2 {δ[rI/J]} (using the loop for rule).
– {δ[0/J]} L2 {θ[I+1/I][T* ∪ T-/T]} (using 4 and the consequence rule).
– {δ[0/j][+(T,I)/T*][-(T,I)/T-]} L1 @@ L2 @@ L3 {θ[I+1/I]} (with the as-

signment axiom and the compose rule).
– {θ ∧ I < q} L1 @@ L2 @@ L3 {θ[I+1/I]} (with 3 and the consequence rule).
– {θ[0/I]} I1 {θ[q/I]}} (using the loop for rule).
– {library?[p+q](q)(T)} disjoint(F) {ΘF(T)} (using 1, 2 and the con-

sequence rule).

The used formulas, θ and δ, are the following:

θ ≡ θD(T,I) ∧ θR(T,I) ∧ (I=0→ library?[p+q](q)(T)])

δ ≡ δD(T*,I,J) ∧ θD(T-,I) ∧ carac(T-,I) ∧ δR(T*,I,J) ∧ θR(T-,I)

where

– θD(T,I) is the formula:

I ≤ q → ∀ τ (τ ∈ T → ∀ i1 < i2 < I (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that for each memory complex τ of a tube T, the elements of the
subfamily FI

τ = {Bi| i < I ∧ τ(i) = on} are pairwise disjoint.
– θR(T, I) is the formula:

I≤q→ ∀ τ (τ ∈ T →
∀ k < I (τ(k) = on → Bk+q ⊆ τ) ∧
∀ s < p (τ(s+q) = on → ∃ k < I (τ(k) = on ∧ s ∈ Bk)))

that is, for each memory complex, τ , of a tube T, we have
⋃
FI

τ = Aτ .
– δD(T,I,J) is the formula:

I < q∧ J≤ rI →
∀ τ (τ ∈ T → (τ(I) = on → ∀ i1 < I (τ(i1) = on → Bi1∩ BJI = ∅))∧

∀ i1 < i2 < I (τ(i1) = τ(i2) = on → Bi1∩ Bi2 = ∅))
expressing that for each memory complex, τ , in a tube T, if BI ∈ FI+1

τ ,
then the set BJI (compose by the first J elements of BI) is disjoint with the
elements of the subfamily FI

τ ; and that the elements of the subfamily FI
τ are

pairwise disjoint.
– δR(T,I,J) is the formula

I < q∧ j≤ rI →
∀ τ (τ ∈ T → (τ(I) = on ∧∀ k < I (τ(k) = on → Bk+q ⊆ τ)∧ BJI+q ⊆ τ ∧

∀ s < p (τ(s+q) = on → ∃ k < I ((τ(k) = on ∧ s ∈ Bk)∨ s ∈ BJI))))

expressing that for each memory complex, τ , in a tube T, we have
(
⋃
FI

τ) ∪ BJI = Aτ

– carac(T, I) ≡ ∀ τ (τ ∈ T → τ(I) = off).
This formula characterizes the contents of the second tube obtained after
the use of the Separate operation.



Using Automated Reasoning Systems on Molecular Computing 137

6 Conclusions

A great part of our work within molecular computing is related to the formal-
ization of the different models that have appeared. During this effort we have
drawn the conclusion that using formal notations does not ensure us that spec-
ifications will be correct. They still need to be validated by permanent reviews
but, on the other hand, they support formal deduction; thus, reviews can be
supplemented by mechanically checked analysis. One advantage of PVS is that
it has sets and functions as types and that it is based on a higher–order logic so
we gain expressiveness.

To develop the work presented we have provided not only an implementation
of the sticker model in PVS. All the elements necessary to represent problems
over finite sets of natural numbers has been described in the system. Also we
have proved some usual properties over them and plan to complete this work
for general purpose. Most of the proofs constructed with the system have been
obtained using the basic commands and a previously elaborated hand written
proof. This effort shows the utility of the system as a verification tool.

References

1. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, November 1994.

2. R. S. Boyer and J S. Moore. The correctness problem in computer science. Aca-
demic Press, 1981.

3. P. Y Gloess. Imperative program verification in PVS. http://www.labri.fr/

Perso/∼gloess/imperative/ (1999).
4. C. Graciani Dı́az. Especificación y verificación de programas moleculares en PVS.

Doctoral Thesis, University of Seville (2003).
5. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10), 576–583, 1969.
6. Lila Kari, Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa, and S. Yu. DNA

computing, sticker systems and universality. Acta Informatica, 35:401–420, 1998.
7. S. Owre, N. Shankar and J. Rushby The PVS specification and verification system.

pvs.csl.sri.com
8. S. Owre and N. Shankar The formal semantics of PVS. Technical Report SRI-CSL-

97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997.

9. Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N. V.; Goodman, M. F.; Rothe-
mund, P. W. K.; Adleman, L. M. A sticker based model for DNA computation.
Landweber, L.; Baum, E., eds DNA Based Computers II, DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science, 44, 1–27. American
Mathematical Society (1999).

10. Sancho, F. Verificación de programas en modelos de computación no conven-
cionales. Doctoral Thesis, University of Seville (2002).

11. H. Pfeifer, A. Dold, F. W. v. Henke, and H. Rueß. Mechanized Semantics of
Simple Imperative Programming Constructs. Ulmer Informatik-Berichte 96-11,
Universität Ulm, Fakultät für Informatik, 1996.



Parallelism in Gene Assembly

Tero Harju1,3, Chang Li2,3, Ion Petre2,3, and Grzegorz Rozenberg4

1 Department of Mathematics, University of Turku,
Turku 20014 Finland

harju@utu.fi
2 Department of Computer Science, Åbo Akademi University,

Turku 20520 Finland
{lchang, ipetre}@abo.fi

3 Turku Centre for Computer Science, Turku 20520, Finland
4 Leiden Institute for Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, the Netherlands and
Department of Computer Science, University of Colorado at Boulder,

Boulder, Co 80309-0347, USA
rozenber@liacs.nl

Abstract. The process of gene assembly in ciliates, an ancient group of
organisms, is one of the most complex instances of DNA manipulation
known in any organisms. This process is fascinating from the computa-
tional point of view, with ciliates even using the linked list data structure.
Three molecular operations (ld, hi, and dlad) have been postulated for the
gene assembly process. We initiate here the study of parallelism of this
process by investigating several natural questions, such as: when can a
number of operations be applied in parallel to a gene pattern, or how
many steps are needed to assemble in parallel a micronuclear gene. We
believe that the study of parallelism contributes to a better understand-
ing of the nature of gene assembly, and in particular it provides a new
insight in the complexity of this process.

1 Introduction

The ciliates (ciliated protozoa) are an ancient and diverse group of unicellular
organisms. Their diversity can be appreciated by comparing their genomic se-
quences – some ciliate types differ genetically more than humans differ from
fruit flies! A unique feature of the ciliates is their nuclear dualism: each ciliate
possesses two kinds of nuclei in the same cell, a micronucleus and a macronu-
cleus, see [9], [10], and [11]. The micronucleus is a germline nucleus and has no
known function in the growth or the division of the cell. All RNA transcripts
are provided by the macronucleus – the somatic nucleus. The two types of nuclei
are however interrelated: at some stage, in the process of sexual reproduction,
the genome of the micronucleus develops into the genome of the macronucleus,
in a process called gene assembly. What makes this process unusual is the so-
phisticated rearrangement that ciliates, and in particular the Stichotrichs have

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 138–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Parallelism in Gene Assembly 139

engineered in the DNA sequence of their micronuclear genome. Thus, while genes
in the macronucleus are contiguous sequences, placed (with very few exceptions)
on their own short DNA molecules, the DNA in micronucleus is organized in
long molecules, with genes occurring individually or in groups, separated by
long stretches of non-coding DNA. The genes in the micronucleus are broken
into pieces called MDSs, separated by non-coding segments called IESs. More-
over, the MDSs may be scrambled, i.e., the sequence of MDSs is permuted, with
some MDSs being inverted. During gene assembly, the IESs are excised and
MDSs are ligated to form transcriptionally competent macronuclear genes.

The gene assembly process is highly interesting from the computational point
of view. One of the amazing features of this process is that ciliates apparently
know linked lists and use them in an elegant pattern matching mechanism.

Three molecular operations, ld, hi, and dlad, have been postulated in [8]
and [12] for the gene assembly process – they were successfully used to pro-
vide a uniform explanation for all known experimental data. The gene structure
and the operations themselves have been modelled and formally investigated on
three levels of abstraction based on permutations, strings, and graphs see [1],
[6], [8], and [12]. This line of research has already answered a number of natural
questions, such as the assembly power of these operations, invariants of the gene
assembly, or micronuclear gene patterns that can be assembled using a subset
of operations, see, e.g., [2], [3], [5], and [7]. We refer to the recent monograph [4]
for a comprehensive treatment of this research area.

In our research so far, the process of gene assembly has been mostly consid-
ered as a sequence of folding and recombination operations. While this approach
was adequate for the type of research questions that have been considered, in
order to gain more insight into the gene assembly process, a more general par-
allel application of molecular operations must be investigated – parallelism is a
natural phenomenon in biomolecular processes. In this paper we initiate a sys-
tematic study of parallelism in our model for gene assembly. Intuitively, a number
of operations can be applied in parallel to a gene pattern if each operation’s ap-
plicability is independent of the other’s. In other words, a set of operations can
be applied in parallel to a gene pattern if and only if they can be (sequentially)
applied to that pattern in any order – this is consistent with how concurrency
and parallelism are usually defined in Computer Science.

Our notion of parallelism naturally leads to a new measure of complexity
for the gene assembly process, given by the minimal number of steps required
to assemble a gene in parallel. E.g., micronuclear genes having the MDSs in the
orthodox order, such as C2 and βTP in S. nova, should be intuitively equally easy
to assemble. This is indeed the case, as we discuss in this paper: the signed graphs
associated to such genes can be reduced to the empty graph (the abstraction of
the completion of the gene assembly process for signed graphs) in one parallel
step. This clearly leads to another question: how many steps are needed in general
to reduce a signed graph (or to assemble a gene pattern)? We conjecture a
stunning answer to this question: any negative graph can be assembled in parallel
in at most two steps! Note however that we assume here maximal parallelism: any



140 T. Harju et al.

operation that can be applied in a given step of the reduction must be applied
at that stage. Whether or not ciliates actually operate in this way is clearly a
different question that can be answered only through well-designed laboratory
experiments.

2 Operations for Gene Assembly

Three molecular operations were postulated in [8] and [12] for the gene assembly
in ciliates. We only show here in Fig. 1-3 the foldings required by each operation
and the recombinations that take place in each case. We refer to [4] for a detailed
discussion.

The central role in gene assembly is played by characteristic short sequences
at the ends of MDSs, called pointers – the pointer in the end of an MDS M
coincides (as a nucleotide sequence) with the pointer in the beginning of the
MDS succeeding M in the macronuclear gene. Each micronuclear gene and its
intermediary successors in the gene assembly process can be thus described by
signed permutations (denoting the sequence and the orientation of the MDSs),
signed double occurrence strings (denoting the sequence and the orientation of
the pointers), and signed graphs (denoting the overlap of the pointers). E.g., the
signed graph associated to the micronuclear gene actin I in S. nova is given in
Fig. 4. We refer to [4] for many other examples.

Surprisingly enough, it has been proved in [1] and [6] that the information
given by the overlap relations among pointers is sufficient for analyzing the whole

(a) (b) (c) (d)

Fig. 1. Illustration of the ld molecular operation

(a) (b) (c) (d)

Fig. 2. Illustration of the hi molecular operation

(a) (b) (c)

Fig. 3. Illustration of the dlad molecular operation



Parallelism in Gene Assembly 141

8

3

9

+

− −−

4
− −

7

5 6 −−
2

Fig. 4. The signed overlap graph associated to he micronuclear gene encoding the

actin protein in S. nova

5 4
− −

2 3
− −

(b)

5 4
− −

2 3
− −

(a)

Fig. 5. (a) The square C4; (b) The diamond D4

process of gene assembly. We refer to [1], [6], and [4] for all details concerning
the various levels of abstraction and for the methodology of model forming. We
focus in this paper on the graph level. We recall below some basic definitions
related to signed graphs – we refer to [13] for more details on Graph Theory.

A signed graph G is a structure G = (V,E, σ) where (V,E) is a nondirected
graph and σ : V → {+,−} is a vertex-labelling function. G is called the empty
graph, denoted ∅, if V = ∅. We denote an edge between vertices u, v as uv –
since our graphs are nondirected, we have uv = vu for all edges uv ∈ E. A
vertex v ∈ V is positive (negative, resp.) if σ(v) = + (σ(v) = −, resp.) Denote
V + = {v ∈ V | σ(v) = +} and V − = V \ V +, and let G+ (G−, resp.) be the
signed subgraph of G induced by V + (V −, resp.). For a vertex p ∈ V we will
also write p ∈ G. We say that G is all-negative (all-positive, resp.) if V = V −

(V = V +, resp.). The neighborhood of v ∈ V is NG(v) = {u ∈ V | uv ∈ E}; v
is isolated if NG(v) = ∅. G is discrete if all its vertices are isolated. G is called
a clique if E = {uv | u, v ∈ V, u �= v}. The complement of G is the signed graph
(V,E′, σ′), where uv ∈ E′ if and only uv �∈ E, for all u �= v, and σ′(w) = + if
and only if σ(w) = −, for any w ∈ V .

For two signed graphs G1, G2, with Gi = (Vi, Ei, σi), for i = 1, 2 and
V1 ∩ V2 = ∅, we denote by G1 ⊕ G2 the disjoint union of G1 and G2, i.e.,
the graph (V3, E3, σ3) with V3 = V1 ∪ V2, E3 = E1 ∪ E2, σ3(u) = σ1(u)
if u ∈ V1 and σ3(u) = σ2(u) if u ∈ V2. We denote by G1 ⊗ G2 the com-
plete connection of graphs G1 and G2, i.e., the signed graph (V4, E4, σ4) with
V4 = V1 ∪ V2, E4 = E1 ∪ E2 ∪ {uv | u ∈ V1, v ∈ V2}, σ4 = σ3. A signed graph
G is called complete tripartite if there are discrete graphs G1, G2, G3 such that
G = G1⊗G2⊗G3. A signed graph (V,E, σ) is called a square, denoted C4 (dia-
mond, resp., denoted D4) if it is isomorphic to the graph in Fig. 5(a) (Fig. 5(b),
resp.).

The process of gene assembly is modelled on signed graphs by reduction
strategies: assembling the gene corresponds to reducing its associated signed



142 T. Harju et al.

graph to the empty graph using one of the three rules (gnr, gpr, gdr) defined
below. We first introduce some preliminary notations.

Let G = (V,E, σ) be a signed graph and S ⊆ V . We say that the signed graph
G′ = (V,E′, σ′) is obtained from G by complementing the set of vertices S if G′

results from G by replacing the subgraph induced by S with its complement;
G′ is denoted by comS(G). Moreover, if S is the neighborhood NG(v) of v ∈ V ,
then we get the local complement locv(G) at v: locv(G) = comNG(v)(G). For
a vertex u ∈ V , we denote by G − u the subgraph of G induced by V \ {u}.
For disjoint sets of vertices S1, . . . , Sk ⊆ V , we denote by switchS1,...,Sk

(G)
the graph G′ = (V,E′, σ) where for any two vertices u, v, if u ∈ Si, v ∈ Sj ,
i �= j, then uv ∈ E′ if and only if uv �∈ E, otherwise, uv ∈ E′ if and only if
uv ∈ E.

The molecular operations ld, hi, and dlad are modelled on signed graphs by
the rules gnr, gpr, and gdr defined below. Let G be a signed graph.

The graph negative rule gnrp for a vertex p is applicable to G if p ∈ G− is
isolated. The result gnrp(G) is the signed graph gnrp(G) = G − p. The domain
of gnrp is dom(gnrp) = {p}. Let Gnr = {gnrp | p ≥ 1} be the set of all graph
negative rules on signed graphs.

The graph positive rule gprp for a vertex p is applicable to G if p ∈ G+. The
result gprp(G) is the signed graph gprp(G) = locp(G)− p. The domain of gprp is
dom(gprp) = {p}. Let Gpr = {gprp | p ≥ 1} be the set of all graph positive rules
on signed graphs.

The graph double rule gdrp,q for two different vertices p and q is applica-
ble to G if p, q ∈ G− are adjacent. Denoting N1 = NG(p) \ NG(q), N2 =
NG(p) ∩ NG(q), N3 = NG(q) \ NG(p), the result gdrp,q(g) is the signed graph
gdrp,q(G) = switchN1,N2,N3(G) − p − q. The domain of gdrp,q is dom(gdrp,q) =
{p, q}. Let Gdr = {gdrp,q | p, q ≥ 1} be the set of all graph double rules on signed
graphs. It is straightforward to prove that gdrp,q(G) = gprp(gprq(locp(G))),
see [4], Lemma 11.3 for its counterpart result for signed double occurrence
strings.

For a signed graph G and a set of operations {ϕ1, ϕ2, . . . , ϕn} ⊆ Gnr ∪ Gpr ∪
Gdr, we say that ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn is a strategy for G if ϕ(G) = ∅.

6
−

4
+

5
+

2
−

7
−

3
−

(a)

6
+

5
+

2
+

7
−

3
+

(b)

6
−

4
+

5
+

7
−

(c)

Fig. 6. (a) A signed graph G; (b) The graph gpr4(G); (c) The graph gdr2,3(G)



Parallelism in Gene Assembly 143

Example 1. Consider the signed graph G illustrated in Fig. 6(a). Then gpr4 and
gdr2,3 are applicable to G, gpr4(G) is shown in Fig.6(b), and gdr2,3(G) is shown
in Fig. 6(c).

3 Parallelism in Gene Assembly

In this section we formalize the notion of parallelism for signed graphs.

Definition 1. Let S ⊆ Gnr ∪ Gpr ∪ Gdr be a set of rules and let G = (V,E, σ)
be a signed graph. We say that the rules in S can be applied in parallel to G if
for any ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk ◦ · · · ◦ ϕ1 is applicable
to G. In particular, two rules ϕ,ψ ∈ Gnr ∪ Gpr ∪ Gdr can be applied in parallel
to G if both ϕ ◦ ψ and ψ ◦ ϕ are applicable to G.

The following result is straightforward to prove and provides a simple cri-
terium for two rules to be applicable in parallel.

Theorem 1. Let G = (V,E, σ) be a signed graph and let ϕ,ψ ∈ Gnr∪Gpr∪Gdr
be two rules applicable to G with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Gnr, then ϕ and ψ can be applied in parallel to G.
(ii) If ϕ = gprp with p ∈ V , then ϕ and ψ can be applied in parallel to G iff

NG(p) ∩ dom(ψ) = ∅.
(iii) If ϕ,ψ ∈ Gdr, then ϕ and ψ can applied in parallel to G iff the subgraph

of G induced by dom(ϕ) ∪ dom(ψ) is not isomorphic to C4 or D4.

Example 2. Let G be the signed overlap graph associated to the actin I gene in
S. nova, shown in Fig. 4.
(i) The rules gnr2, gnr4, gdr5,6, and gdr8,9 can be applied in parallel to G.
(ii) The rules gdr5,6 and gdr6,7 are not applicable in parallel to G since applying
one of them removes vertex 6 and thus, makes the other one inapplicable. Also,
by Theorem 1, rules gpr3 and gdr8,9 are not applicable in parallel to G.
(iii) There are only 6 different maximal parallel strategies to reduce this graph:

- {gnr2, gnr4, gdr5,6, gdr8,9}{gnr7, gpr3};
- {gpr2, gnr4, gdr6,7, gdr8,9}{gnr5, gpr3};
- {gpr2, gnr4, gdr5,7, gdr8,9}{gnr6, gpr3};

- {gpr2, gpr3, gnr4, gdr5,6}{gnr7, gpr8, gpr9};
- {gpr2, gpr3, gnr4, gdr5,7}{gnr6, gpr8, gpr9};
- {gpr2, gpr3, gnr4, gdr6,7}{gnr5, gpr8, gpr9}.

Note that there are 3060 sequential strategies to reduce this graph (and assemble
the gene) – the reason for this difference is that many sequential strategies
coincide modulo commutation of some rules – as it turns out, these rules may
be applied in parallel.

According to our definition, if a set of rules is applicable in parallel to a
signed graph, then any composition of these rules is applicable to that graph.
It is important to note that this definition only presumes that the rules are



144 T. Harju et al.

applicable in any possible order. However, this is enough to ensure that the
result is always the same regardless of the order in which they are applied, as
shown in the next two theorems.

We consider first the case of two rules and prove that if both ϕ ◦ψ and ψ ◦ϕ
are applicable to a graph G, then (ϕ ◦ ψ)(G) = (ψ ◦ ϕ)(G).

Theorem 2. If ϕ,ψ ∈ Gnr ∪ Gpr ∪ Gdr are applicable in parallel to the signed
graph G, then ϕ(ψ(G)) = ψ(ϕ(G)).

Proof. If ϕ ∈ Gnr or ψ ∈ Gnr, then the result is trivial. The rest of the cases follow
observing that for any S, S1, S2 ⊆ V and p, q ∈ V , comS(G)− p = comS(G− p),
(G − q) − p = (G − p) − q, and comS1(comS2(G)) = comS2(comS1(G)). Indeed,
all our rules can be expressed as compositions of com and vertex removals. �

The general case follows now easily from Theorem 2.

Theorem 3. Let G be a signed graph and let S ⊆ Gnr ∪ Gpr ∪ Gdr be a set of
rules applicable in parallel to G. Then for any two compositions ϕ,ϕ′ of the rules
in S, ϕ(G) = ϕ′(G).

Proof. There is a sequence ϕ = ϕ0, ϕ1, . . . , ϕm = ϕ′ of permutations of ϕ, where

ϕi = ϕi2αiβiϕi1 and ϕi+1 = ϕi2βiαiϕi1,

for some compositions ϕi1 and ϕi1 and rules αi and βi. Therefore, it is sufficient
to show the claim for the case where the compositions are of the form ϕ =
ϕ2αβϕ1 and ϕ′ = ϕ2βαϕ1 for rules α and β. Also, in this case, ϕ(G) = ϕ′(G)
if and only if αβ(ϕ1(G)) = βα(ϕ1(G)). Since αβ and βα are both applicable to
ϕ1(G), the claim follows from Theorem 2. �

Clearly, if the rules in S are applicable in parallel to the signed graph G, then
the rules in any subset of S are applicable in parallel to G. However, the reverse
is not true, as shown by the following example.

Example 3. Let G be the all-negative hexagon in Fig. 7(a). Then any two rules
from the set S = {gdr2,3, gdr4,5, gdr6,7} are applicable in parallel to G by The-
orem 1. However, the rules in S are not applicable in parallel to G. Indeed,
applying any two of them to G in an arbitrary order makes the third one non-
applicable. E.g., (gdr2,3 ◦ gdr4,5)(G) is the isolated all-negative graph on the set
of vertices {6, 7}. Clearly, gdr6,7 is not applicable to this graph.

The following problem seems to be difficult: check whether or not an arbitrary
given set of rules can be applied in parallel to a given signed graph. We give in
the next theorem a simple criterium in the case where at most two rules gdr are
among the rules.

Theorem 4. Let G be a signed graph and S ⊆ Gnr ∪ Gpr ∪ Gdr a set of rules
containing at most two rules gdr. Let P be the union of domains of rules in S
with P+ = {p ∈ P | σ(p) = +} and P− = P \ P+. Then the rules in S can be
applied in parallel to G if and only if the following conditions are satisfied:



Parallelism in Gene Assembly 145

3

5 76

+

− − − −
4

2
+

(b)

2 3

4

56

7

− −

−

−−

−

(a)

Fig. 7. (a) An all-negative graph irreducible in less than two steps; (b) A signed graph

irreducible in less than four parallel steps

(i) The subgraph induced by P+ is discrete. Moreover, there is no edge between
vertices in P+ and vertices in P−.

(ii) The subgraph induced by P− does not contain induced squares C4 or dia-
monds D4.

Note however that Theorem 4 does not hold when more than two rules gdr
are in the considered set of rules as shown in Example 3. Indeed, for the graph
in Fig. 7(a), gdr2,3, gdr4,5, gdr6,7 are not applicable in parallel, although no four
vertices from {2, 3, . . . , 7} induce a subgraph isomorphic to C4 or D4.

4 Parallel Complexity of Micronuclear Genes

A new natural notion of complexity can be defined for the process of gene assem-
bly using the notion of parallelism. We investigate this notion in the following
and show how it leads to several intriguing questions on signed graphs.

Definition 2. The parallel complexity of a micronuclear gene (and of its signed
graph) is the minimal number of steps needed to reduce in parallel the signed
graph associated to that gene.

Example 4. (i) Consider the micronuclear gene C2 in S. nova – its associated
signed graph is the all-negative discrete graph with four vertices. Thus, its
parallel complexity is 1.

(ii) Consider the micronuclear gene actin I in S. nova with the associated signed
graph in Fig. 4. Its parallel complexity is two and a parallel strategy in two
steps is {gnr2, gnr4, gpr3, gdr5,6} {gnr7, gpr8, gpr9}, see also Example 2.

(iii) The signed graph G associated to the micronuclear gene αTP in S. nova
consists of one negative clique G1 with vertices {2, 3, . . . , 12} and one nega-
tive discrete subgraph G2 with vertices {13, 14}. Its parallel complexity is two
and a two step parallel strategy is {gpr2, gnr13, gnr14} {gnr3, gnr4, . . . , gnr12}.

(iv) The signed graph in Fig. 7(a) has parallel complexity two and a parallel
strategy in two steps is {gdr2,3, gdr4,5}{gnr6, gnr7}.

(v) The signed graph in Fig. 7(b) has parallel complexity four and a parallel
strategy in four steps is {gpr2}{gdr3,6}{gpr4, gnr7}{gnr5}.

Some upper and lower bounds on the parallel complexity of a signed graph
are given in the next result.



146 T. Harju et al.

Lemma 1. (i) The parallel complexity of a signed graph with n vertices is at
most n/2 + 4. If the graph is all-negative, then its complexity is at most
n/4 + 2.

(ii) There are signed graphs with parallel complexity four. There are all-negative
graphs with parallel complexity two.

As it turns out, it is difficult to find signed graphs with parallel complexity
higher than 5, or all-negative graphs with parallel complexity higher than 2.
As a matter of fact, we conjecture in Section 5 that all-negative graphs have
parallel complexity at most two! There are at least two types of graphs that
seem intuitively “difficult to reduce” and could thus be good candidates for
higher complexity: graphs for which no two rules can be applied in parallel in
the first step, and graphs that avoid a certain rule (such as gdr that reduces two
vertices at once) in all parallel reductions. We characterize these two types of
graphs in the following.

Graphs with no parallelism in the first step

An induced subgraph H is said to be a shadow of a vertex set (or a subgraph)
A if for each x ∈ A and edge uv of H, x is adjacent to u or v or both, and each
isolated vertex of H is adjacent to a vertex in A.

Theorem 5. Let G be a signed graph of at least two vertices. Then G has no
parallel applications of the rules (gnr, gpr, and gdr) if and only if

(i) G+ is a clique,
(ii) G− is a shadow of G+, and
(iii) G− = D ⊕ T , where D is a discrete graph and T is a complete tripartite

graph.

Graphs that avoid one type of reduction

The signed graphs that have no reductions using gnr are those that can be
reduced using only gpr and gdr. A string-based characterization was given in [3],
but giving a similar graph-based characterization remains an open problem.

Theorem 6. A signed graph G has no reductions using gpr if and only if G is
all-negative.

Theorem 7. Let G be a connected signed graph with no reduction using gdr.
Then G = G+ ⊗ G−, G+ is either a clique, or a disjoint union of two cliques,
and G− is discrete. Moreover, G can be reduced in at most three parallel steps.

5 Conclusions

We have investigated in this paper a notion of parallelism for reducing signed
graphs such as those associated to micronuclear gene patterns. We also intro-
duced a notion of parallel complexity for micronuclear genes and their signed



Parallelism in Gene Assembly 147

graphs, given by the minimal number of steps needed in a parallel reduction.
Surprisingly, we have been unable to find examples of graphs with high parallel
complexity; we conjecture that no such graphs exist. More specifically, we state
the following conjectures:

Conjecture 1. All-negative graphs can be reduced in parallel in at most two steps.

There are many other interesting questions related to parallelism and signed
graphs. E.g., although signed graphs require in general more parallel steps to
reduce than all-negative graphs, we have been unable to find signed graphs with
parallel complexity higher than 4. It remains an open question whether the
parallel complexity of signed graphs is indeed bounded.

Acknowledgements

The authors are supported by European Union project MolCoNet, IST-2001-
32008. T. Harju gratefully acknowledges support by Academy of Finland, project
39802. I. Petre gratefully acknowledges support by Academy of Finland, project
203667. G. Rozenberg gratefully acknowledges support by NSF grant 0121422.

References

1. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Formal
systems for gene assembly in ciliates. Theoret. Comput. Sci. 292 (2003) 199–219.

2. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Patterns of micronuclear
genes in cliates. Lecture Notes in Comput. Sci. 2340 (2002) 279–289.

3. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the mi-
cronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 (2002) 501–519.

4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Compu-
tation in Living Cells: Gene Assembly in Ciliates, Springer (2003).

5. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and
simple operations for gene assembly in ciliates. In: V. Mitrana and C. Martin-
Vide (eds.) Words, Sequences, Languages: Where Computer Science, Biology and
Linguistics Meet, Kluwer Academic, Dortrecht (2001) pp. 329–342.

6. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph
reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12
(2001) 113–134.

7. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Circularity and
other invariants of gene assembly in cliates. In: M. Ito, Gh. Păun and S. Yu (eds.)
Words, semigroups, and transductions, World Scientific, Singapore (2001) 81–97.

8. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects of
gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evolution
as Computation, Springer, Berlin, Heidelberg, New York (2001) pp. 216–256.

9. Jahn, C. L., and Klobutcher, L. A., Genome remodeilng in ciliated protozoa. Ann.
Rev. Microbiol. 56 (2000), 489–520.

10. Prescott, D. M., The evolutionary scrambling and developmental unscabling of
germlike genes in hypotrichous ciliates. Nucl. Acids Res. 27 (1999), 1243 – 1250.



148 T. Harju et al.

11. Prescott, D. M., Genome gymnastics: unique modes of DNA evolution and pro-
cessing in ciliates. Nat. Rev. Genet. 1(3) (2000) 191–198.

12. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations for
DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001) 241–
260.

13. West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ
(1996).



Splicing Systems for Universal Turing Machines

Tero Harju1 and Maurice Margenstern2

1 University of Turku, Department of Mathematics,
20014 Turku, Finland

harju@utu.fi
2 LITA, EA3097, UFR MIM, Université de Metz,

Île du Saulcy, 57045 Metz, France
margens@sciences.univ-metz.fr

Abstract. In this paper, we look at extended splicing systems (i.e., H
systems) in order to find how small such a system can be in order to
generate a recursively enumerable language.

It turns out that starting from a Turing machine M with alphabet A
and finite set of states Q which generates a given recursively enumerable
language L, we need around 2×|I|+2 rules in order to define an extended
H system H which generates L, where I is the set of instructions of Turing
machine M . Next, coding the states of Q and the non-terminal symbols
of L, we obtain an extended H system H1 which generates L using |A|+2
symbols. At last, by encoding the alphabet, we obtain a splicing system
U which generates a universal recursively enumerable set using only two
letters.

Keywords: DNA computing, splicing systems.

1 Introduction

Splicing systems are one of the broadest concepts of DNA computing, and so
many papers deal with various aspects of what is possible to do with splicing
systems that we cannot quote all of them, see [11].

Let us say simply that in most papers, the construction of the language which
is computed by the splicing system is the same as considered in [11]. For this ap-
proach, let L be a language and denote by σ̃(L) the result of the application of the
rules of a splicing system S to L. The language which is produced by S is given
by ∪

i∈IN
Li, where L0 = A, the set of axioms, and language Li+1 is defined by: (∗)

Li+1 = σ̃i+1(L) = σ̃i(L)∪σ̃σ̃i(L). This is the case, for instance, in [3, 4, 2], where
the question is also approached through multiplicities. In such splicing systems,
each generation contains all the information of the previous generations.

In [5], we defined another approach: we do not assume that the elements of
a generation survive to the next generation. Our approach can be formalised by
the following scheme:
(∗∗) σi+1(L) = σσi(L).

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 149–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



150 T. Harju and M. Margenstern

We consider finite sets of axioms and finite sets of rules. For the processing
operation (∗), it was proved by Culik and Harju, [1] (see also Pixton, [12])
that the generated splicing system is regular. For the nonpreserving opera-
tion (∗∗), we show that all recursively enumerable languages can be
generated.

This result means that the nonpreserving operation introduce some control
on the process which explains the possibility of universal computations. This
results is to be compared with other results on extensions of splicing systems
where various means of control are introduced, in particular, by elimination of
molecules which cannot enter a rule, see for instance [8, 9, 15] with time-varying
distributed systems and especially for [9] which is the closest to our definition
but not exactly the same.

In the first section, we remind the definitions about splicing systems and we
give the definition of our approach.

In the second section, we remind our universality results of [5] and we give a
method in order to obtain a rather small splicing systems which can generate
any recursively enumerable language.

2 Splicing Systems and Turing Machine Simulations

A splicing system S is a triple (Σ,A,R), where Σ is a finite alphabet, A is a
finite set of words called axioms and R is a finite set of rules which we presently
define.

A rule of S is given by four words in Σ∗, say (u1, u2u3, u4) which we shall
display as follows:

u1 u2

u3 u4

In the literature, the same rule is also often displayed as u1#u2$u3#u4.
The application of a rule to a pair of words (w1, w2) can be defined as follows:

- if w1 contains an occurrence of u1u2, say w1 = x1u1u2y1, and w2

contains an occurrence of u3u4, say w2 = x2u3u4y2, then rule u1#u2$u3#u4

applies to (w1, w2) and the result of the application is (x1u1u4y2, x2u3u2y1).
This application can be denoted by:

x1u1 u2y1

x2u3 u4y2

�r

{
x1u1u4y2
x2u3u2y1

- if w1 does not contain u1u2 or if w2 does not contain u3u4, then we
say that rule u1#u2$u3#u4 does not apply to (w1, w2).

When rule r applies to (w1, w2) with (y, z) as a result, we denote this by
(w1, w2) �r (y, z).

The language generated by S which we denote by L(S) is defined as fol-
lows:



Splicing Systems for Universal Turing Machines 151

L(S) = ∪
n∈IN

σn(A)

where σ0(A) = A and
σ(M) = {w ; ∃w1, w2, z ∈M,∃r ∈ R(w1, w2) �r (w, z) or (w1, w2) �r (z, w) },
with M running over σn(A), compare with (∗∗).

We also consider extended splicing systems.
They are obtained by changing the alphabet and the definition of the gener-

ated language in the following way. Now, we consider that Σ = T ∪N , where T
is called terminal alphabet and N is called the set of non-terminal sym-
bols and the system itself, say E , is denoted by (T,N,A,R). Also, the language
generated by E is defined by L(E) = L(S) ∩ T ∗, where S = (T ∪N,A,R).

As indicated with full details in [5], extended splicing systems can simulate
deterministic Turing machines with a single head and a single bi-infinite tape.

The idea of the simulation is that going from a current configuration to the
next one in the computation of Turing machine is a local transformation of
the current configuration. As splicing is also local to the sites where the rule
operates, we may expect to represent one step of the computation of a Turing
machine by the application of a splicing rule.

This is the case and our report [5] gives an explicit set of rules for that
purpose.

We have just to mention a point which is connected with the simulation within
finite strings of a Turing configuration which is a finite part of the infinite tape.

This means that the treatment of the ends of a word is different for Turing
machines and splicing systems. We solved this problem by introducing a special
marker which indicates the ends of the Turing configuration. When the signal
which simulates the Turing machine head meats the marker, it removes it by one
square further, putting in its place a blank. This is not difficult to implement in
splicing rules, see [5].

In [5], we proved the following result:

Theorem 1. For any RE language M, there is an extended splicing system E
such that L(E) = M.

Using the schemes for splicing rules introduced in [5], we could prove that:

Corollary 1. Let M be an RE language on {a, b} which is simulated by a Turing
machine M with k instructions. There is a splicing system having 2k + 32 rules
which generates M.

Also, using a coding of the alphabet of the recursively enumerable set by only
two letters, we obtained in [5]:

Corollary 2. For each RE language M⊆ Γ ∗, there is a non-extended splicing
system S and a coding c : Γ ∗ %→ {0, 1}∗ such that

M = c−1
(
L(S)

)



152 T. Harju and M. Margenstern

3 Universality Results

From theorem 1 we know that for each RE language, we can construct an ex-
tended splicing system which generates it.

In [5], we proved that there is a uniform way to do this by using universal
Turing machines:

Theorem 2. There is an extended splicing system E = (T,N,A,R) and an
encoding c over T ∗ such that for any RE M, there is a word wM such that the
new system E ′ = (T,N,A ∪ {wM}, R) generates c−1(M).

The idea of the proof is to simulate a universal Turing machine U and wM
is a suitable encoding of a Turing machine M which generates M.

We shall follow the same idea in a somehow more sophisticated pattern in
order to find an extended system which generates recursively enumerable lan-
guages with a small number of rules.

In the late fifties and early sixties of the previous century, there was a race to
find the smallest universal Turing machines. A long pause was put on this race
by the results of Yurii Rogozhin who, in 1982, devised seven very small universal
Turing machines, see [13, 14]. From these machines, we take the one which has
seven states and four symbols. It is usually denoted by UMT (7, 4).

These machines simulate tag systems which are proved to be universal, see
[10]. Tag-systems are defined as follows. We have an alphabet A, a positive num-
ber p and a mapping ai %→ Pi from A into A∗, Pi’s being called the productions.

One step of computation is defined by the following process where w is the
current word:

let ai be the first letter of w;
erase first p letters of w, and let w′ be what remains;
append Pi to w′.

The computation starts again with w′Pi as the new current word. It halts by
meeting a halting letter in first position. We may assume that there is a single
halting letter and we denote it by !.

As an example, consider tag-system P on {a,b,c} with current word bbb:
P :
a −→ b
b −→ bc
c −→ !

applied to bbb:
bb|b
|bb|c
| |c !

The general scheme for p = 2 can be simulated as follows:
ai↓

↑
Pi

As Minsky showed in 1962 that tag-systems can simulate Turing machines,
and as tag-systems can be easily simulated by Turing machines, this opened



Splicing Systems for Universal Turing Machines 153

the way to very small universal Turing machines. Below, the first seven lines of
Table 1, except the second instruction, are taken from Rogozhin’s UTM(7, 4).

Table 1. Program of machine U ′

0 1 b c

1 L 0L cR 2 bL

2 1R 0L 1 cR 1R 5

3 1L 4 R cR bR

4 1L 7 L cL bL

5 cL 4 R cR bR

6 R 5 0R R 0R 1

7 R 3 R 8 L 6

8 0R R 0R 9

9 cR ! R R

Without entering in the technique of the simulation, in a first stage, the
machine locates the production to be appended to the current word. To do so,
the encoding of the letters in the current word contain as many symbols as
there are markers in the encoding of the productions between the letter and its
production. To give a better idea to the reader, the tape of UTM(7, 4) looks like
this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk

where Li = 1Ni with Ni being the number of b’s to be marked between Li and
its corresponding production, and where Pi is a concatenation, in reverse order,
of codes of the letters in the form b00Ni , and Pi itself starts with an additional b.

When production Pi, corresponding to L1 is located, the tape looks like this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk
�

where, inside the frame, b’s are replaced by c’s and 0’s by 1’s.
We are interested in the aspect of the tape when the halting letter is the first

one. In that case, the tape looks like this:

10Pn . . . Pi . . . P1P0L1cL2c . . . cLk
�

with the same transformation of the tape as previously in the part of the tape
within the frame. The triangle indicate the position of the head which scans a c
under state 2. Next, the head goes on to the right under state 5 until it meets



154 T. Harju and M. Margenstern

the leftmost 0 which it replaces by a c. Then, the head goes back to the left
under state 4, leaving 1’s unchanged and transforming b’s into c’s and then c’s
into b’s, until the head meets the rightmost 0. It replaces 0 by 1 and goes to the
left under state 7. There it meets a 1, which means that the computation of the
tag system is completed. Table 1 appends instructions to Rogozhin’s UTM(7, 4),
giving us a new machine U ′, in order to restore the encoding of the tag system
and to prepare the collection of a word which belongs to the resulting language.
This is why crossing back the configuration, the head arrives to its right-hand
end where it halts on the leftmost 0.

In terms of extended splicing systems, this means that we arrive to a word
whose right-hand end is of the form qf#. Rules (B1), (B2), (s1) and (s2) allows
us to remove # from the right-hand end of the word and to go leftwards until
the rightmost 0 is met: what is on the right hand of this letter is the word to
append to the language. This is performed by rules similar to rule (C1) with
∗ replaced by 0. We may notice here that as the result of the tag-system has
always at least three symbols, we do not need rule (C2).

At this point, the rôle of rule (I1) is replaced by a much more complicate
process. First, we have to destroy all 0’s which we meet, still going to the left,
until the rightmost occurrence of b is reached. We append a new symbol, d, to
the right hand of b and we start the program of a new Turing machine V . Let
us call T the encoding of the tag-system on the tape: its right-hand end is d and
its left-hand end is 1 as far as in between, there are only 0’s and b’s. The rôle of
V is to put the encoding of the next initial current word on the right hand of T .

Recall that the initial current word corresponds to the encoding of configu-
ration (3). Recall that the tag system to which we apply U ′ does not directly
simulate Turing machine K in the proof of theorem 1. It simulates it through
a register machine R1 with two registers which simulates a register machine R0

with three registers simulating K. The simulation of R0 by R1 entails an expo-
nential slowdown: if the registers of R0 contain non-negative integers x, y and
z, the registers of R1 contain 2x3y5z and 0 at an appropriate step. As the initial
configuration of R0 is x, 0, 0, the initial configuration of R1 is 2x, 0. Now, if we
encode configuration (3) which is essentially n in unary, we get that x = 2n. In
order to avoid a double exponential, we encode n in binary. Accordingly, ma-
chine K must be replaced by a machine K ′ with a two letter alphabet which
does the same as K and in which n is encoded in binary: 0, 1 and ∗ of the tape
of the new machine K are respectively encoded as 10, 11 and 01 and we reserve
00 to encode the blank of K. As 10 cannot be confused with the blank of the
tape of machine K, we use ∗ as a separator. Call ∗ the blank cell which is the
left neighbour of the leftmost 1 on the tape of K ′. We also can assume that K ′

does not go to the left of ast. It is enough to guarantee this for the successor in
the proof of Kleene’s theorem. As there is no difficulty, we leave the easy details
to the reader.

Accordingly, we may assume that x = n. The next value of x will be n+1.
Let u = 2x. This means that the new value of u is 2n+1 = 2.2n.



Splicing Systems for Universal Turing Machines 155

Turning now to the tag-system simulation, u, v, the contents of the registers
of R1 are encoded as Aa(aa)uBb(bb)v. We may assume that the current word
which corresponds to configuration (3) is Aa(aa)uBbbb with u = 2n, where A,
a, B and b are fixed letters of the alphabet of the tag system. We may assume
that a, A, b and B are respectively encoded by 1c, 111c, 11c and 1111c.

Summarising all this information, when machine U ′ halts, the initial current
word of the tag-system goes from

111c1c(1c1c)u1111c 11c11c11c
111c1c(1c1c)2u1111c 11c11c11c.

For that purpose, we keep a copy of (1c)u(d1)10 which we put on the left hand
of the encoding T of the tag-system on the tape. We introduce an additional
letter, d, which we use in such a way that during the program of multiplication
by 2, we use motions between two 0’s. Letter d is also used to encode a fixed
part of the initial current word which corresponds to the encoding of A and of
Bbbb.

The installation of the next initial current word is performed by machine V
whose table is displayed by Table 2.

Machine V marks with d the rightmost 0 of T which also indicates its right-
hand end: state 1. Then, it goes to the left-hand end of the configuration, marking
by 1 the 0’s of T : state 2; the motion goes on with state 3 until the leftmost
0 is reached. State 4 is a test for loop (L1) which erases (1c)u while copying it
onto (1c)2u. On state 4, the head of V erases a 1 to meet a c or a d. If it meets
a d, it is the end of (L1). If it is a c, a new round of the copying action is to
be performed. State 5 puts the head to the other end of the configuration, on
the leftmost 0. There, it writes down (1c)2, using the instructions of states 21
up to 23 corresponding to 0. State 23 sends the head to the left. The motion is
controlled by state 6 which halts it on the rightmost 0 which marked a c. When
0 is reached, the head moves by one step to the right and a new test occurs.

When loop (L1) is completed, a new loop, (L2) occurs: it copies (d1)10 on the
left hand of T to (1c)10 at the right-hand end of the configuration. The test of
the loop is performed by state 9, the motion to the right is controlled by state 7,
the motion to the left by state 8. The writing on 0 is made by states 7 and 28.
The latter state calls state 8 which transfers the control to the test of state 9
when the head has performed its motion to the left. The test looks whether it
reads d, in which case a new cycle of copying. If it reads b, the head knows that
this second round of copying is completed. State 11 puts the head on the right-
hand end of the tape and from there, the instructions of states 21 up to 27 scan
1’s and c’s of this end of the tape and they change it such that Bbbb appears
at the end of the encoding. When this is done, state 27 marks with d the first
letter of the encoding of Bbbb which is a 1. Next, state 28 brings back the head
on mark d of the right-hand end of T : the head corrects the tape in such a way
that its beginning encodes A, which is performed by state 29 and with the help
of states 31 and 32, the head marks by d the last letter of the encoding of Aa
which is a c. Then, the head goes on to right in a cycle of copying 1c on the
left hand of T for the computation of the following initial current word. This is



156 T. Harju and M. Margenstern

performed by states 41 up to 44 where state 41 realises the test which controls
the loop. The loop is completed when it meets d under state 41. It then restores
the 1 which was marked by d and the machine goes to the left to the other d
which marks the rightmost c of Aai: state 52. Then, it restores the 0’s which are
with b in T .

The occurrence of d in state 53 indicates that the head is on the left of T and
that it has wrongly changed a 1 into 0. This is corrected by state 54 which also
changes into 1 the leftmost letter of T . The, state 55 brings the head to d where
it restores 0 which should be there and it stops. We can now give the control to
machine U ′.

Table 2 could be made more compact but it would be much more difficult to
understand it.

Table 2. Program of machine V

0 1 b c d

1 dL 2

2 1L L L L 3

3 R 4 L L L

4 0R 0R 5 0R 7

5 1R 21 R R R R

6 R 4 L L L L

7 1R 28 R R R R

8 dR 9 L L L L

9 R R 11 0R 7

11 L 21 R R R R

21 cR 22 L 22 L

22 1R 23 cL 23 1L

23 cL 6 L 24 1L

24 L 25 L

25 cL 26 1L

0 1 b c d

26 L 27 1L

27 dL 28 1L

28 cL 8 L L R 29

29 R 1L 10

31 R R 32

32 R dR 41

41 R 0R 42 1L 51

42 cL 43 L L L L

43 1R 44

44 cR 41 R R R R

51 L L cL 52

52 L L cL 53

53 0L L R 54

54 1R R 0R !

Now, let us count he number of rules which are needed.
Turing machine U ′ has 33 instructions, the halting one included. Machine V has
93 instructions, halting also included. This makes 126 instructions, hence, 252
rules. To detach the word which is computed by the tag system, we need rules



Splicing Systems for Universal Turing Machines 157

(B1), (B2), (s1), (s2) and an adaptation of rule (C1) to this setting. As (B2),
(s1), (s2) and (C1) are schemes of rules and as the alphabet has 5 letters, this
gives us 21 rules.

To removing 0’s after detaching the word which is produced, we need rules
similar to (B1) and B(2) which means again 6 rules. We need an additional rule
similar to (I1) to transfer the control to V .

Accordingly, we need 28 rules for tasks on the simulated Turing tape which are
typical for splicing systems and which cannot be performed by Turing machines.
In total, we need 280 rules.

This gives us the following result:

Corollary 3. There is an extended splicing system E = (T,N,A,R) such that
T = {0,1}, such that R contains 280 rules an such that there is an encoding c
over T ∗ such that for any RE M, there is a word wM such that the new system
E ′ = (T,N,A ∪ {wM}, R) generates c−1(M).

4 Conclusion

The last result of the paper points at how low the descriptional complexity of
a universal splicing system can be. Using the well known Turing simulation of
tag systems which allowed to obtain very small universal Turing machines, here,
we obtained a rather small splicing system which is able to generate any recur-
sively enumerable set. We did not completely investigate this aspect. It could
also be of interest to find out how complex are the rules which are involved in
corollary 3.

Also, notice that our result is highly sequential in its spirit, despite the highly
parallel potentiality of the model. We think that this is in connection with our
introductory remark about the sensibility of the computational of splicing sys-
tems with respect to the definition of the generation of the language. The well
known regularity result of extended splicing systems with finitely many axioms
and finitely many rules is also probably connected with the fact that the lack
of control prevents the realisation of highly sequential processes. This relation
between sequentialisation and universality was already noticed in [8, 9, 15]. How-
ever, these papers dealt with several splicing systems and the discussion was
more on the communications between the systems. With the result on universal-
ity which holds also for non-extended splicing systems, we think that the present
paper throws a new light on this connection.

Acknowledgement

Both authors acknowledge the help of IST-2001-32008 MolCoNet project for
giving the best conditions to their cooperation.



158 T. Harju and M. Margenstern

References

1. Culik, K., II and Harju, T., Splicing semigroups of dominoes and DNA, Discrete
Appl. Math., 31, (1991), 261–277.

2. Ferretti C. and Frisco P., Mauri G., Simulating Turing machines through extended
mH systems, Computing with Bio-Molecules. Theory and Experiments, (G. Păun,
ed.), Springer Verlag, (1998), 221–238.

3. Freund R., Kari L., and Păun G., DNA computation based on splicing: the exis-
tence of a universal computer, Theory of Computing Systems, 32, (1999), 69–112.

4. Ferretti, C., Mauri, G., Kobayashi, S., and Yokomori, T. , On the universality of
Post and splicing systems. Universal machines and computations (Metz, 1998).
Theoret. Comput. Sci., 231, (2000), 157–170.

5. Harju, T. and Margenstern, M. Remarks on the universality of splicing systems,
TUCS Report (2004).

6. Kleene S.C., A note on recursive functions, Bulletin of the American Mathematical
Society, 42, 544bis–546, (1936).

7. Margenstern M., Turing machines: universality and limits of computational power,
in Formal Languages and Applications, C. Martin-Vide, V. Mitrana, Gh. Păun,
ed., Springer-Verlag, to appear.

8. Margenstern M., Rogozhin Yu. About Time-Varying Distributed H-systems, Lec-
ture Notes in Computer Science, 2054, (2000), 53–62.

9. Margenstern M., Rogozhin Yu., Verlan S., Time-varying distributed H sytems with
parallel computations: the problem is solved, Lecture Notes of Computer Sciences,
2943, (2004), 48–53.

10. Minsky M.L. , Size and structure of universal Turing machines using Tag systems,
Proc. Sympos. Pure Math., 5, (1962), 229–238.

11. Păun, Gh., Rozenberg, G., Salomaa, A., DNA Computing, Springer-Verlag, Berlin
Heidelberg, 1998.

12. Pixton, D., Regularity of splicing languages, Discrete Appl. Math. 69, (1996), 101–
124.

13. Rogozhin Yu., Seven universal Turing machines, Mat. Issled., No. 69, (1982), 76–90.
14. Rogozhin Yu., Small universal Turing machines, Theoret. Comput. Sci., 168,

(1996), 215–240.
15. Verlan S., A frontier result on enhanced time-varying distributed H systems with

parallel computations, Preproceedings of DCFS’03, Descriptional Complexity of
Formal Systems, Budapest, Hungary, July 12-14, (2003), 221–232.



 

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 159 – 168, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Application of Mismatch Detection Methods  
in DNA Computing 

Christiaan V. Henkel1,2, Grzegorz Rozenberg2, and Herman P. Spaink1 

1 Institute of Biology, Leiden University, 
Wassenaarseweg 64, 2333 AL Leiden, The Netherlands 
{henkel, spaink}@rulbim.leidenuniv.nl 

2 Leiden Institute of Advanced Computer Science, Leiden University, 
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands 

rozenber@liacs.nl 

Abstract. In many implementations of DNA computing, reliable detection of 
hybridization is of prime importance. We have applied several well-established 
DNA mutation scanning methods to this problem. Since they have been devel-
oped for speed and accuracy, these technologies are very promising for DNA 
computing. We have benchmarked a heteroduplex migration assay and enzy-
matic detection of mismatches on a 4 variable instance of 3SAT, using a previ-
ously described blocking algorithm. The first method is promising, but yielded 
ambiguous results. On the other hand, we were able to distinguish all perfect 
from imperfect duplexes by means of a CEL I mismatch endonuclease assay. 

1 Introduction 

Biomolecular computing studies the potential of using biological molecules, currently 
mainly DNA, to perform computations. One focus of investigation is the use of com-
binatorial libraries of DNA to provide search spaces for parallel filtering algorithms. 
Many different methods for library generation, solution filtering, and output have 
been studied experimentally. The formal satisfiability problem has become a sort of 
benchmark in the implementation of such algorithms [1,2,3]. 

Computing by blocking is one of the methodologies for molecular computing [4]. 
The blocking algorithm uses nucleic acid complementarity to remove molecules not 
representing a solution from the candidate pool. To an initial library of single stranded 
DNA molecules corresponding to (all) potential solutions, a set of complementary fal-
sifying DNA (blockers) is added. Only those library molecules not representing solu-
tions will combine with a blocker to form a perfect DNA duplex. Library molecules 
corresponding to solutions should remain single stranded or form a duplex with mis-
matched basepairs, depending on experimental conditions. The experimental chal-
lenge in implementing this algorithm is to very precisely separate perfectly matched 
molecules from mismatched ones.  

The original proposal for the implementation of the blocking algorithm was using 
PCR inhibition. Falsified molecules were to be made unavailable for DNA poly-
merase through their association with a blocker molecule, for example peptide nucleic 



160 C.V. Henkel, G. Rozenberg, and H.P. Spaink 

 

acid (PNA). This would result in the selective amplification of unblocked DNA. So 
far, experimental data supporting this method is lacking. However, several fluores-
cence techniques (resonance energy transfer and correlation spectroscopy) have been 
successfully employed in combination with the blocking algorithm [5]. 

Here, we report the use of a heteroduplex migration assay and enzymatic mismatch 
recognition to implement blocking. In contrast to the fluorescence techniques men-
tioned before, both rely on DNA duplex structure rather than hybridization kinetics. 
These techniques are widely used to scan for mutations in molecular biological and 
clinical laboratories, and are well suited for high-throughput analysis of large num-
bers of samples [6,7]. 

During electrophoresis, perfect double stranded (homoduplex) DNA migrates 
through a gel at a predictable rate, dependent only on the strength of the applied elec-
trical field, gel and buffer conditions and DNA length. However, DNA containing nu-
cleotide mismatches (heteroduplex) and single stranded DNA migrate at anomalous 
rates, caused by secondary structure formation (ssDNA) or helix distortion (dsDNA). 
Such structures experience specific, but unpredictable, resistances when migrating 
through the gel matrix. Their mobility is lower than that of homoduplexes of equal 
length and as a result bands end up higher on the gel. Several well-established and 
sensitive mutation detection techniques exploit this effect, such as single strand con-
formational polymorphism (SSCP), temperature or denaturing gradient gel electro-
phoresis (TGGE, DGGE) and heteroduplex analysis [8]. 

Enzymatic mismatch recognition is also widely used in mutation detection [9]. It 
uses specific endonucleases which recognize and digest the abnormal DNA confor-
mations which result from mismatched nucleotides. We have used the recently dis-
covered CEL I nuclease, purified from celery, for this purpose [10,11]. 

2 Experimental 

2.1 Problem Instance and Algorithm 

We have tested mutation detection techniques on the following 4 variable, 4 clause 
satisfiability (3SAT) problem: 

F = (~a ∨ b ∨ ~c) & (a ∨ ~b ∨ d) & (~a ∨ c ∨ ~d) & (b ∨ c ∨ ~d) , (1) 

where a, b, c and d are the 4 variables with values of true (1) or false (0). ∨ stands for 
the OR operation, & for AND, ~ for negation. Since the clauses are connected by 
AND, falsifying one clause is sufficient for falsification of the whole formula. For ex-
ample, falsification of the first clause by abc = {101} falsifies the entire formula F.  

The blocking algorithm proceeds as follows: 

1. synthesize all possible assignments as ssDNA; 
2. synthesize blockers representing to falsifying assignments; 
3. mix and hybridize; 
4. apply mismatch detection method. 

Library/blocker combinations that form perfect duplexes correspond to false assign-
ments. 



 Application of Mismatch Detection Methods in DNA Computing 161 

 

2.2 Sequence Design 

To represent the entire solution space to a 4 variable SAT problem, 16 library oli-
gonucleotides were designed. The general structure of the library molecules is: 

5’ [start] [a] [b] [c] [d] [stop] ,  

with a, b, c and d sequences representing variables. Two subsequences correspond to 
the two values these variables can take: ATCACC for false, and GTCTGA for true. 
The sequence of any variable thus only depends on its value, not on its identity. start 
and stop are invariable sequences (CTTGCA and TTGCAC, respectively), bringing 
the total length of the molecules to 36 nucleotides. Library molecules are numbered 
from 0 to 15, after the binary numbers they encode. For example, truth assignment 
abcd = {1010} is represented by oligonucleotide 10:  

5’ CTTGCA GTCTGA ATCACC GTCTGA ATCACC TTGCAC 
   [start]        [a = 1]      [b = 0]      [c = 1]      [d = 0]        [stop] 

 

Falsifying oligonucleotides, or blockers, are complementary to the library oligonu-
cleotides: 

3’ [start] [a] [b] [c] [d] [stop] ,  

with start = GAACGA, stop = AACGTG, true = CAGACT and false = TAGTGG (all 
3’ → 5’). Since the falsification of a clause only requires 3 specified variables, and 
blocker molecules must contain a statement on all 4 variables, 2 blockers need to be 
designed for every clause. The fourth variable is set to true in one, and to false in the 
other. (It may be possible to circumvent this encoding complication through the use of 
redundant blockers, which contain universal nucleotides [12].) The translation of all 
clauses into blockers is summarized in table 1. 

Table 1. Blocker molecules 

Clause Falsified by abcd Blocker molecules 
(~a ∨ b ∨ ~c) 1010 A0 
 1011 A1 
(a ∨ ~b ∨ d) 0100 B0 
 0110 B1 
(~a ∨ c ∨ ~d) 1001 C0 
 1101 C1 
(b ∨ c ∨ ~d) 0001 D0 
 1001 identical to C0 

Constraints on the design of the variable sequences were: GC content < 50%, iso-
thermal melting behaviour (calculated according to [13,14]), no repeats or subse-
quence complementarity >2 bp, and no self complementarity. The uniform melting 
behaviour results in a Tm that is in theory identical for all possible library/blocker 
combinations.  



162 C.V. Henkel, G. Rozenberg, and H.P. Spaink 

 

2.3 Oligonucleotides 

Oligonucleotides were custom synthesized and labelled at Isogen Bioscience 
(Maarssen, NL). For detection, library molecules contain a covalent 5’ Cy5 label 
(Amersham Biosciences), blockers a 5’ fluorescein (FITC, Molecular Probes). All 
oligos were purified from 10% denaturing polyacrylamide gels to remove unbound 
dye. DNA was allowed to diffuse from gel slices by overnight soaking in 0,5 M 
NH4Ac, 2 mM EDTA, 0.1% SDS, and recovered by ethanol precipitation. Concentra-
tions were calculated from absorption measurements of the dyes at 494 nm (fluo-
rescein) or 649 nm (Cy5). Molar extinction coefficients of 77,000 cm-1 M-1 (fluo-
rescein) and 250,000 cm-1 M-1 (Cy5) were used. 

2.4 Duplex Migration Assay 

Mixtures of library and blocker molecules were made by combining 5 pmol per oligo 
in a gel loading buffer consisting of 1x TBE, 3.3% sucrose and 0.033% Orange G. 
Duplex DNA was formed by heating the mixtures to 95 °C for 5 minutes, and cooling 
to 4 °C at 0.1 °C second-1 in a thermocycler (Biometra TGradient). Gels were pre-
pared from regular acrylamide: bisacrylamide (20:1) or proprietary SequaGel MD 
(Mutation Detection) acrylamide matrix (National Diagnostics, Atlanta, Georgia, 
USA). Duplex destabilizing chemicals (urea, ethylene glycol, formamide, or glycerol) 
were sometimes added to enhance heteroduplex migration effects [15]. Gels were run 
in 1x TBE at 200 V and 4 °C. Gel images were captures on a Biorad FluorS MultiI-
mager, using UV excitation with 530 nm band pass and 610 nm long pass filters for 
detection of fluorescein and Cy5 fluorescence, respectively. Digital images were 
processed in Corel Photopaint 11 (contrast adjustment and greyscale conversion). 

2.5 Enzymatic Mismatch Cleavage Assay 

Duplexes were prepared as described above, except that hybridization was carried out 
in 10 mM Tris/HCl pH 8.5. T7 endonuclease I (T7EI) was obtained from New Eng-
land Biolabs and handled according to the manufacturers recommendations. Reac-
tions containing 5 pmol per oligonucleotide and 1 unit of enzyme were allowed to 
proceed for up to 150 minutes. 

CEL I enzyme was obtained from Dr Edwin Cuppen (Hubrecht Laboratory, 
Utrecht, NL), see http://cuppen.niob.knaw.nl for a detailed isolation protocol. Several 
batches of varying activity were used throughout the experiments described in this ar-
ticle. Every lot of CEL I was tested, and for all subsequent experiments quantities 
were used that gave the effect shown in Fig. 3 after 30 minutes of incubation. Reac-
tions were performed with 5 pmol per oligonucleotide in a 4 µl volume at 45 °C, in a 
10 mM MgSO4, 10 mM HEPES pH 7.5, 10 mM KCl, 0.002% Triton X-100, 0.2 µg 
µl-1 BSA buffer. Reactions were stopped by placing samples on ice and adding 4 µl 
80% formamide, 100 mM EDTA. Digests were analyzed on 10% 
TBE/polyacrylamide gels, which were imaged as before. Bands were analyzed using 
ImageJ software (version 1.31v, http://rsb.info.nih.gov/ij). 



 Application of Mismatch Detection Methods in DNA Computing 163 

 

3 Results 

3.1 Heteroduplex Migration 

Optimal conditions for the heteroduplex migration assay were determined using several 
blocking and non-blocking oligo combinations and various gel formulations. 12.5% 
acrylamide gels supplemented with 20% urea were found to give good separation of du-
plexes and heteroduplexes and were used for all subsequent experiments (Fig. 1).  

 

Fig. 1. Optimization of gel formulation. Shown are relative migration distances of 3 
blocker/library combinations on 12.5% gels in the presence of progressive concentrations of 
urea. Migration of the perfect duplex combination C0 + 09 (squares) is set to 1. Other combina-
tions are C0 + 08 (circles) and C0 + 10 (diamonds). The latter combination migrates as separate 
oligonucleotides on gels with urea concentrations of 30% and higher 

 

Fig. 2. Heteroduplex migration assay for all blocker/library combinations. Each gel contains the 
complete library (00-15) of oligonucleotides hybridized to the indicated blocker. The rightmost 
two lanes were loaded with unhybridized blocker and library 02. Arrows indicate apparent 
homoduplexes, which can be identified by coinciding fluorescence in both detection channels. 
The grayscale images in this figure only show total fluorescence 



164 C.V. Henkel, G. Rozenberg, and H.P. Spaink 

 

Fig. 2 shows the gel images for all combinations of blockers with library mole-
cules. These images are grayscale superpositions of the 530 BP (showing the blocker 
fluorescein label) and 610 LP (library Cy5) channels. In RGB stack images, duplexes 
appear as yellow bands, since they fluoresce in both channels at the same location. 
Red (Cy5) and green (fluorescein) bands indicate non-hybridizing oligonucleotides. 
Arrows indicate apparent homoduplexes that can be identified from colour images. 

Every blocker should only be able to form a perfect duplex with one of the library 
oligonucleotides, but Fig. 2 shows up to 6 apparent homoduplexes per blocker. No 
improvement was found using MD gel matrix or longer gels (not shown). Nonethe-
less, some solutions to the satisfiability problem can be identified from Fig. 2. Library 
oligos 00, 02 and 08 (abcd = {0000}, {0010} and {1000}, respectively) do not behave 
as a homoduplex in any combination. 

3.2 Mismatch Endonucleases 

Fig. 3 shows the effects of T7EI and CEL I on homoduplex and heteroduplex DNA. 
Both were incubated for a range of times. In our hands, the T7EI enzyme did not have 
any discernable effect on any DNA sample (here, 0.2 units were used per reaction; 1 
unit per reaction gave identical results), and was therefore not considered for further 
experiments. 

 

Fig. 3. T7EI & CEL I time series. 3 pmol samples of heteroduplex (C0 + 11) or homoduplex 
DNA (C0 + 13) were subjected to both endonucleases for up to 150 minutes. Samples were 
analyzed on a 12% denaturing gel. Images show total (combined 530 BP and 610 LP) fluores-
cence 

CEL I, however, has a clear effect on all samples. The enzyme completely de-
grades the mismatched DNA within 30 minutes. Perfect dsDNA, although also sub-
ject to degradation, is still detectable after 150 minutes of reaction. ssDNA is quickly 
degraded completely (not shown). To test whether CEL I would successfully pick 
blocking from non-blocking combinations, all library molecules were incubated with 
blockers and enzyme (Fig. 4). From these results, satisfying assignments could be 
identified (summarized in table 2). 



 Application of Mismatch Detection Methods in DNA Computing 165 

 

 

Fig. 4. a Effects of CEL I on all blocker/library combinations. Shown are denaturing gels of 
complete sets of library oligonucleotides and blockers, incubated with CEL I. b Quantified 
fluorescence from the gels. Fluorescence signals from the 530 BP channel are given relative to 
the signal of the most intense band on each gel (set to 1). The y-axis shows relative fluores-
cence, the x-axis the library molecules. Values are averages of two independent experiments. 
Error bars give standard deviations 



166 C.V. Henkel, G. Rozenberg, and H.P. Spaink 

 

Table 2. Apparent solutions to F (eq. 1) 

Library molecule abcd falsified by duplex migration  falsified by CEL I 
00 0000    
01 0001 D0  D0 
02 0010    
03 0011 D0   
04 0100 B0  B0 
05 0101 B0, D0   
06 0110 B0, B1  B1 
07 0111 D0   
08 1000    
09 1001 C0, D0  C0 
10 1010 A0  A0 
11 1011 A0, A1, C0, D0  A1 
12 1100 B0   
13 1101 B0, C0, C1  C1 
14 1110 A0, B0, B1   
15 1111 A0, A1, C0, C1   

4 Discussion 

Differential duplex migration did not provide a suitable test system to distinguish 
every satisfying solution from non-satisfying ones. There is no general theory describ-
ing the effect of anomalous DNA conformations on migration rate, and it was already 
known that not all mismatches can be detected this way [16,17]. A possible explana-
tion for the ambiguous results reported here is the length of the DNA molecules: het-
eroduplex migration is generally recommended for DNA 100 – 500 bp in length. Such 
lengths also accentuate the effect of a single mismatch, which produces a bend in the 
helix. In addition, the nature of the mismatches studied here may have contributed. A 
single variable difference between blocker and library is represented by 4 non-
matching basepairs at a molecular level. This will probably form a bubble-type mis-
match, which may not always be subject to higher gel resistances.  

We believe that with careful optimization of the encoding, the use of longer mole-
cules (perhaps in combination with scaling to larger problem instances) and more so-
phisticated analytical techniques (e.g. capillary electrophoresis), the method holds 
considerable promise. In particular, duplex migration might be employed as a pheno-
type for the implementation of evolutionary algorithms in DNA [18]. 

The CEL I assay gave more consistent results. However, the results are difficult to 
interpret from visual inspection of single gels, because CEL I also degrades perfect 
duplexes. This breakdown of homoduplex DNA may be due to equilibrium fraying of 
the molecules, continuously giving the enzyme a toehold on the duplex. Therefore, 
longer molecules may also be an option for this method. 

Using the blocking algorithm and encoding as reported here, the mismatch en-
donuclease assay is only useful as an analytical method. Because satisfying library 



 Application of Mismatch Detection Methods in DNA Computing 167 

 

molecules are fragmented, multiple rounds of selection (as in evolutionary algo-
rithms) cannot be easily implemented. However, several other proteins that bind mis-
matches (such as MutS [19]) do not destroy the DNA molecule. In future experi-
ments, such proteins may be used in a gel-shift assay [20]. Besides the enzymatic 
method tested here, chemical cleavage of mismatches [21] could be considered. In 
conclusion, we believe that the use of mutation detection techniques is an interesting 
option for DNA based computing. 

Acknowledgments 

We thank Dr Edwin Cuppen for the kind gift of purified CEL I enzyme. This work 
was supported by the Netherlands Organization for Scientific Research (NWO). 

References 

1. Faulhammer, D., Cukras, A. R., Lipton, R. J., Landweber, L. F., Molecular computation: 
RNA solutions to chess problems. Proc. Natl. Acad. Sci. USA 97 (2000) 1385-1389 

2. Liu, Q. H., Wang, L. M., Frutos, A. G., Condon, A. E., Corn, R. M., Smith, L. M., DNA 
computing on surfaces. Nature 403 (2000) 175-179 

3. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K., Adleman, L., Solution of 
a 20-Variable 3-SAT problem on a DNA computer. Science 296 (2002) 499-502 

4. Rozenberg, G., Spaink, H., DNA Computing by blocking. Theoretical Computer Science 
292 (2003) 653-665 

5. Schmidt, K. A., Henkel, C. V., Rozenberg, G., Spaink, H. P., DNA computing using single 
molecule hybridization detection. Nucl. Acids Res., in press 

6. Taylor, G. R., Enzymatic and chemical cleavage methods. Electrophoresis 20 (1999) 
1125-1130 

7. Kristensen, V. N., Kelefiotis, D., Kristensen, T., Borresen-Dale, A. L., High-throughput 
methods for detection of genetic variation. Biotechniques 30 (2001) 318-332 

8. Nataraj, A. J., Olivos-Glander, I., Kusukawa, N., Highsmith, W. E., Single-strand confor-
mation polymorphism and heteroduplex analysis for gel-based mutation detection. Elec-
trophoresis 20 (1999) 1177-1185 

9. Mashal, R. D., Koontz, J., Sklar, J., Detection of mutations by cleavage of DNA heterodu-
plexes with bacteriophage resolvases. Nat. Genet. 9 (1995) 177-183 

10. Oleykowski, C. A., Bronson Mullins, C. R., Godwin, A. K., Yeung, A. T., Mutation detec-
tion using a novel plant endonuclease. Nucl. Acids. Res. 26 (1998) 4597-4602 

11. Yang, B., Wen, X., Kodali, N. S., Oleykowski, C. A., Miller, C. G., Kulinski, J., Besack, 
D., Yeung, J. A., Kowalski, D., Yeung, A. T., Purification, cloning, and characterization of 
the CEL I nuclease. Biochemistry 39 (2000) 3533-3541 

12. Loakes, D., The applications of universal DNA base analogues. Nucl. Acids Res. 29 
(2001) 2437-2447 

13. SantaLucia, J., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95 (1998) 1460-1465 

14. Peyret, N., Seneviratne, P. A., Allawi, H. T., SantaLucia, J., Nearest-neighbor thermody-
namics and NMR of DNA sequences with internal A - A, C - C, G - G, and T - T mis-
matches. Biochemistry 38 (1999) 3468-3477 



168 C.V. Henkel, G. Rozenberg, and H.P. Spaink 

 

15. Ganguly, A., Rock, M. J., Prockop, D. J., Conformation-sensitive gel electrophoresis for 
rapid detection of single- base differences in double-stranded PCR products and DNA 
fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc. Natl. Acad. 
Sci. USA 90 (1993) 10325-10329 

16. Highsmith, W. E., Jin, Q., Nataraj, A. J., O'Connor, J. M., Burland, V. D., Baubonis, W. 
R., Curtis, F. P., Kusukawa, N., Garner, M. M., Use of a DNA toolbox for the characteri-
zation of mutation scanning methods. I: construction of the toolbox and evaluation of het-
eroduplex analysis. Electrophoresis 20 (1999) 1186-1194 

17. Upchurch, D. A., Shankarappa, R., Mullins, J. I., Position and degree of mismatches and 
the mobility of DNA heteroduplexes. Nucl. Acids Res. 28 (2000) e69 

18. Wood, D., Chen, J., Antipov, E., Lemieux, B., Cedeno, W., A DNA implementation of the 
Max 1s problem. In: Banzhaf, W., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., 
Smith, R. E. (eds.), Proceeding of the genetic and evolutionary computation conference 
1999. Morgan Kaufman, San Francisco (1999) 1835-1841 

19. Brown, J., Brown, T., Fox, K. R., Affinity of mismatch-binding protein MutS for hetero-
duplexes containing different mismatches. Biochem. J. 354 (2001) 627-633 

20. Goode, E., Wood, D. H., Chen, J., DNA Implementation of a Royal Road Fitness Evalua-
tion. In: Condon, A. , Rozenberg, G. (eds.), DNA computing, proceedings 6th international 
meeting on DNA based computers. Springer-Verlag, Berlin Heidelberg (2001) 247-262 

21. Bui, C. T., Rees, K., Lambrinakos, A., Bedir, A., Cotton, R. G. H., Site-selective reactions 
of imperfectly matched DNA with small chemical molecules: applications in mutation de-
tection. Bioorg. Chem. 30 (2002) 216-232 



Bond-Free Languages: Formalizations,
Maximality and Construction Methods

Lila Kari1, Stavros Konstantinidis2,�, and Petr Sośık1,3

1 Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7
{lila, sosik}@csd.uwo.ca

2 Dept. of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada

s.konstantinidis@stmarys.ca
3 Institute of Computer Science, Silesian University,

Opava, Czech Republic

Abstract. The problem of negative design of DNA languages is ad-
dressed, that is, properties and construction methods of large sets of
words that prevent undesired bonds when used in DNA computations.
We recall a few existing formalizations of the problem and then define the
property of sim-bond-freedom, where sim is a similarity relation between
words. We show that this property is decidable for context-free languages
and polynomial-time decidable for regular languages. The maximality of
this property also turns out to be decidable for regular languages and
polynomial-time decidable for an important case of the Hamming sim-
ilarity. Then we consider various construction methods for Hamming
bond-free languages, including the recently introduced method of tem-
plates, and obtain a complete structural characterization of all maximal
Hamming bond-free languages. This result is applicable to the θ-k-code
property introduced by Jonoska and Mahalingam.

1 Introduction

Most of the operations involved in DNA computations rely on the capability of
controlling the bonds that can be formed between (single-stranded) DNA mole-
cules. Such bonds are created due to the well-known Watson-Crick complemen-
tarity property of the four nucleotides A,C,G, T , which are the building blocks
of DNA molecules. This property is important in conjunction with the fact that
every molecule has a certain orientation, which is denoted by placing the sym-
bols ‘5′−’ and ‘−3′’ at the two ends of the sequence of nucleotides comprising
the molecule. For example, the molecules 5′−ACCGT−3′ and 3′−ACCGT−5′

are different – they have different chemical properties. In practice, the collection
of DNA molecules exists as a ‘soup’ inside a test tube. Under favorable physical

� Corresponding author.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 169–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 L. Kari, S. Konstantinidis, and P. Sośık

tube conditions, if a molecule of the form 5′ −X1X2 · · ·Xk − 3′, where each Xi

is a nucleotide, encounters the molecule 5′ − Yk · · ·Y2Y1 − 3′ in which each nu-
cleotide Yi is the complement of Xi, then the pairs (Xi, Yi) will form k chemical
bonds and a double-stranded structure will be created – see Figure 1(a).

5’- A G T T C C -3’ 5’- v A G T T C C w -3’ 5’- v A G T T C C w

| | | | | | | | | | | | | | | | | | x

3’- T C A A G G -5’ 3’- z T C A A G G y -5’ 3’- z T C A A G G y

(a) (b) (c)

Fig. 1. Vertical bars represent bonds between complementary nucleotides. In (b), the

complementary parts 5′−AGTTCC−3′ and 5′−GGAACT −3′ of the DNA molecules

5′ − vAGTTCCw − 3′ and 5′ − yGGAACTz − 3′ bind together. In (c), the molecule

5′ − vAGTTCCwxyGGAACTz − 3′ is twisted at x and its complementary parts bind

together

It is important to note that bonds can be formed even between complementary
parts of two molecules, provided that these parts are sufficiently long – see
Figure 1(b). Moreover, a molecule containing two complementary parts can bind
to itself, or to a copy of itself – see Figure 1(c).

The bonds shown in Figure 1 are formed between parts that are perfect
complements of each other. In practice, however, it is possible that two parts of
molecules will bind together even if some of their corresponding nucleotides are
not complementary to each other – see Figure 2.

5’- v A G A T T C C G T G w -3’ 5’- v A G A T T C C G T G w

| | | | | | | | | | | | | | | | x

3’- z T C T C A G G A A C y -5’ 3’- z T C T C A G G A A C y

(a) (b)

Fig. 2. In (a), parts of two DNA molecules bind together although these parts are not

perfect complements of each other. In (b), the same parts appear in one molecule

1.1 The Problem of Undesirable Bonds

The success of a DNA operation relies on the assumption that no accidental
bonds can be formed between molecules in the tube before the operation is
initiated, or even during the operation. With this motivation, one of the foremost
problems in DNA computing today is the following.

Problem 1. Define a large, potential collection of DNA molecules such that
there can be no (sufficiently long and possibly imperfect) complementary parts
in any two molecules, and no (sufficiently long and possibly imperfect) comple-
mentary parts in any one molecule.



Bond-Free Languages: Formalizations, Maximality and Construction Methods 171

In many cases in the literature, this problem is addressed in conjunction
with the uniqueness problem, which involves designing molecules whose parts
are different between each other. The motivation here is that, usually, a DNA
operation is intended only for molecules containing a specific pattern (or specific
patterns) of nucleotides. In this paper, however, we focus on Problem 1.

1.2 Notation for Molecules and Bonds

We proceed now with establishing the notation that would allow us to describe
formalizations of Problem 1. Specifically, we define the terms word, subword,
language, involution, and codeword.

A given alphabet can be used to form sequences of symbols that are called
words. For example, 01001 is a word over the alphabet {0, 1}. The length of
a word w is denoted by |w|. For example, |01001| = 5. The prime example
of an alphabet will be the DNA alphabet {A,C,G, T}. In this case, we agree
that the left end of a DNA word represents the 5′−end of the corresponding
DNA molecule. For example, the word CCATGT represents the molecule 5′ −
CCATGT−3′. If a word w can be written in the form xyz – this is the catenation
of some words x, y and z – then we say that y is a subword of w. A language
is any set of words. We shall use the expression ‘x is a subword of a language’
as a shorthand for x is a subword of some word in the language. One use of a
language L is to represent all the possible distinct copies of DNA molecules that
might appear in a tube. In this case, we refer to L as a tube language and we
assume that every word in L is of length at least k, for some parameter k. This
parameter represents the smallest length of two molecule parts for which it is
possible to form a stable bond.

To represent the complementarity of nucleotides we use the concept of an-
timorphic involution introduced in [13]. In general an involution of an alpha-
bet Σ is a function θ : Σ → Σ such that θ(θ(a)) = a, for all symbols a in
Σ. The involution is called antimorphic if we extend it to words such that
θ(a1 · · · an) = θ(an) · · · θ(a1), where each ai is a symbol in Σ. The prime ex-
ample of an antimorphic involution will be the DNA involution τ such that

τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) = C.

For example, τ(ACCGTT ) = AACGGT . In general, for two DNA words x and
y of length k, the identity τ(x) = y represents the fact that the molecules (or
parts of molecules) 5′−x−3′ and 5′−y−3′ could bind to each other. According
to the requirement in Problem 1, if k = 6, the words ACCGTT and AACGGT
should not be subwords of the tube language L.

In the literature on DNA encodings, the tube language L is usually equal
to, or a subset of, K+, where K is a finite language whose elements are called
codewords. The language K+ consists of all words that are obtained by concate-
nating one or more codewords from K. For a nonnegative integer n, the notation
Kn is used for the set of all words that are obtained by concatenating any n
codewords from K. In general, K might contain codewords of different lengths.



172 L. Kari, S. Konstantinidis, and P. Sośık

In many cases, however, the set K consists of words of a certain fixed length l.
In this case, we shall refer to K as a code of length l.

1.3 Formalizations of the Problem of Undesirable Bonds

With the preceding terminology in mind, Problem 1 is called the negative word
design problem in [18]. Now we recall a few existing formalizations of Problem 1
and we propose a new one, which appears to be closer to the intuition behind the
problem. It should be noted, however, that all formalizations are inter-related in
some interesting ways.

One of the most recent attempts to address Problem 1 appears in [10]. In
that paper, the authors require that a tube language L must satisfy the following
property.

P1[k]: If x and y are any subwords of L of length k then x �= τ(y).

A language satisfying this property is called a τ -k-code in [10]. An advantage of
this formalization is that the property is defined independently of the structure
of L. This property is also considered implicitly in [3] and [6]. In particular,
reference [3] considers tube languages of the form (sZ)+ satisfying P1[k], where
s is a fixed word of length k and Z is a code of length k – the notation sZ
represents the set of all words sz such that z is in Z.

In [9], the authors introduce the concept of a strictly τ -free code K, which
is a generalization of the notion of comma-free code [12], and show that the
language K+ must be strictly τ -free as well. Here we shall assume that K is of
fixed length k. In this formalization the tube language L is equal to K+. Using
the tools of [9], it can be shown that L is a strictly τ -free language iff (if and
only if) L satisfies the following property

P2[k]: If x is a subword of L of length k and v is a codeword in K then x �= τ(v).

We note that similar properties are considered also in [15] and [16].
As noted earlier, parts of DNA molecules can bind to each other even if

they are not perfect complements of each other. Hence, although sufficient, the
condition τ(x) = y might not be necessary for the DNA words x and y to
stick together. The common approach to deal with this is to modify the above
condition by using the Hamming distance function H(·, ·). More specifically, for
two words x and y of length k, the relation H(x, τ(y)) ≤ d represents the fact
that the molecules (or parts of molecules) 5′ − x− 3′ and 5′ − y − 3′ could bind
to each other. Here, d is a nonnegative integer less than k.

In [5] and [21], the authors consider codes K of length k satisfying the fol-
lowing property

P3[d, k]: If u and v are any codewords in K then H(u, τ(v)) > d.

In fact the above property is studied in conjunction with the uniqueness property
H(K) > d.

Reference [2] considers a measure between two words, which is applied to
codes of length k whose words can be concatenated in arbitrary ways. Thus,



Bond-Free Languages: Formalizations, Maximality and Construction Methods 173

the tube language here is L = K+. The code K satisfies certain uniqueness
conditions as well as conditions related to Problem 1. In particular, the tube
language L = K+ satisfies the following property.

P4[d, k]: If x is a subword of L of length k and v is a codeword in K then
H(x, τ(v)) > d.

We note that also reference [19] considers this property for tube languages of
the form K1K2 · · ·Km, where each Ki is a certain code of length k.

With ‘H(x, τ(y)) ≤ d’ as the criterion for x and y to bind together, it appears
that P4[d, k] is the strictest property in the literature for addressing Problem 1.
This property, however, is not sufficient in general for avoiding undesirable bonds
in the tube. To see this, consider the case where

d = 1, k = 5, K = {ACGAT,CCGAA}.

One can verify that the language K+ satisfies P4[d, k] and that the DNA words
ACGATACGATCCGAA and ACGATCCGAACCGAA are in K+ and contain
the subwords GATCC and CGATC such that

H(GATCC, τ(CGATC)) ≤ 1.

Motivated by the above observation, we introduce the following property of
a tube language L.

P5[d, k]: If x and y are any subwords of L of length k then H(x, τ(y)) > d.

Note that, as in the case of P1[k], the new property is defined independently of
the structure of L. Any tube language satisfying this property will be called a
(τ,Hd,k)-bond-free language.

We list now a few interesting connections among the properties P1–P5. We
note that the condition x �= τ(y) is equivalent to H(x, τ(y)) > 0.

P3 and P5: In this paper we introduce the subword closure operation ⊗
and we show that if a code K satisfies P3[d, k] then the language K⊗ satisfies
P5[d, k].

P4 and P2: It is evident that any language K+ satisfying P4[d, k] also
satisfies P2[k]. Moreover, P4[0, k] is identical to P2[k]. We can show that, for
every code Q of length q, if the language Q+ satisfies P2[q] then the language
(Qd+1)+ satisfies P4[d, q(d + 1)], for any d > 0.

P4 and P5: It is evident that any language K+ satisfying P5[d, k] also
satisfies P4[d, k]. Moreover, it can be shown that if K+ satisfies P4[d, k] then
(K2)+ satisfies P5[d, k].

P5 and P1: Obviously, any language satisfying P5[d, k] also satisfies P1[k].
Moreover, the property P1[k] coincides with P5[0, k]. It can be shown that every
language satisfying P1[q], for some positive integer q, also satisfies P5[d, q(d+1)]
for every d > 0, and conversely, if the language is of the form K+ and satisfies
P5[d, k] then it satisfies P1[k − d] as well.

Important Note. Proofs of the results obtained in this paper can be found in
the full version [17].



174 L. Kari, S. Konstantinidis, and P. Sośık

1.4 A More General Formalization: (θ, sim)-Bond-Freeness

The choice of the Hamming distance in the condition ‘H(x, τ(y))’ for similarity
between words is a very natural one and has attracted a lot of interest in the
literature. One might argue, however, that parts of two DNA molecules could
form a stable bond even if they have different lengths – hybridizations of this type
are addressed in [1]. Based on this observation, the condition for two subwords
x and y to bind together should be

|x|, |y| ≥ k and Lev(x, τ(y)) ≤ d.

The symbol |u| denotes the length of the word u and Lev(u, v) is the Levenshtein
distance between the words u and v – this is the smallest number of substitutions,
insertions and deletions of symbols required to transform u to v. With this
formulation, the condition for similarity based on the Hamming distance can be
rephrased as follows

|x|, |y| ≥ k and H(x, τ(y)) ≤ d,

where we assume that H(u, v) = ∞ if the words u and v have different lengths.
In general, for any similarity relation sim(·, ·) between words and for every in-
volution θ, we define the following property of a language L.

P[θ, sim]: If x and y are any nonempty subwords of L then sim(x, θ(y)) is false.

Any language satisfying P[θ, sim] is called a (θ, sim)-bond-free language.
The precise definition of a similarity relation is given in Section 2. It can

be shown that the relations ‘|u|, |v| ≥ k and H(u, v) ≤ d’ and ‘|u|, |v| ≥ k and
Lev(u, v) ≤ d’ are indeed similarity relations. For these relations we shall use
the notation Hd,k and Levd,k, respectively.

2 Decidability Questions About (θ, sim)-Bond-Freedom

In this section, we use the general tools about language operations and trajecto-
ries obtained in [16] and we show that one can decide in quadratic time whether
a given regular language is (θ, sim)-bond-free. Moreover, we show that this prob-
lem is decidable even when the given language is context-free. Then, we use also
the general tools about maximal solutions of language inequations developed in
[14] and [16] to establish the decidability of whether a given regular language
is maximal with respect to the (θ, sim)-bond-free property. The acronyms DFA
and NFA stand for deterministic and nondeterministic, respectively, finite au-
tomaton. A relation between words (binary relation) is rational if it is realized
by a finite-state transducer.

Definition 1. A binary relation sim is called a similarity relation with param-
eters (t, l), where t and l are nonnegative integers, if the following conditions are
satisfied. (i) If sim(u, v) is true then abs(|u| − |v|) ≤ t. (ii) If sim(u, v) is true
and |u|, |v| > l then there are proper subwords x and y of u and v, respectively,
such that sim(x, y) is true.



Bond-Free Languages: Formalizations, Maximality and Construction Methods 175

We can interpret the above conditions as follows: (i) the lengths of two similar
words cannot be too different and (ii) if two words are similar and long enough,
then they contain two similar proper subwords. In the rest of the section we shall
assume that sim is a fixed, but arbitrary, similarity relation with parameters (t, l).
It is evident that the relation Hd,k defined in Subsection 1.4 is an example of a
similarity relation with parameters (0, k). It can be shown that also Levd,k is a
similarity relation, with parameters (d, d + k) – see [17].

Theorem 1. Assume that sim is a rational relation. The following problem
is decidable in quadratic time. Input: NFA A. Output: Y/N, depending on
whether L(A) is a (θ, sim)-bond-free language.

We note that for most of the DNA language properties considered in [9, 15, 16]
the above problem is undecidable for context-free languages. As the (θ, sim)-
bond-free property seems to be rather general, it might be surprising that the
same problem is decidable.

Theorem 2. If the similarity relation sim is computable, then it is decidable
whether a given context-free language is (θ, sim)-bond-free.

Corollary 1. Let d and k be nonnegative integers with k ≥ 1. It is decidable
whether a given context-free language is (θ,Hd,k)-bond-free (or (θ, Levd,k)-bond-
free).

Theorem 3. Assume that the similarity relation sim is rational. Then the fol-
lowing problem is decidable. Input: NFAs A and B such that L(A) is a (θ, sim)-
bond-free subset of L(B). Output: Y/N, depending on whether L(A) is a max-
imal (θ, sim)-bond-free subset of L(B).

3 Decidability of Maximality in the Hamming Case

In the literature on DNA encodings, and in coding theory in general, the set
of words that are involved in the application of interest are usually formed by
concatenating shorter words of a certain fixed length. Following this practice,
we consider languages that are subsets of (Σk)+, for some positive integer k. We
call such languages k-block languages. Naturally, any regular k-block language
can be represented by a special type of lazy DFA, which we call k-block DFA.
This is a deterministic finite automaton such that, for every production pu → q,
the word u is of length k.

The decision method for maximality of the previous section is not of poly-
nomial time. In this section, however, we are able to show a polynomial time
algorithm for testing whether a given regular langauge is (θ,Hd,k)-bond-free, for
d = 0 or d = 1. We remind the reader that, in the case of d = 0, the prop-
erty coincides with P1[k] – see Subsection 1.3. Next we illustrate the concept
of maximality with an example. The notation Subk(L) represents the set of all
subwords of length k of the language L.



176 L. Kari, S. Konstantinidis, and P. Sośık

Example 3.1. Consider the code K1 = {AA,AC,CA,CC} over the DNA al-
phabet and the 2-block language K+

1 . Let S1 = Sub2(K+
1 ). Then, S1 is equal

to K1 and S1 ∩ τ(S1) is empty. Hence, the language K+
1 is a (τ,H0,2)-bond-free

subset of (Σ2)+. Moreover, there is no word v in Σ2 − K1 such that the lan-
guage (K1 ∪ {v})+ is H0,2-bond-free. For example, if v = AG then GC would
be a subword of length 2 of (K1 ∪ {v})+ such that GC = τ(GC). On the other
hand, it is possible to add AG as a subword with the constraint that AG cannot
be followed by CA or CC. In fact we can add also GA as a subword, provided
that GA cannot be preceded by AC, CC, or AG. More specifically, consider the
language L2 accepted by the 2-block DFA (Σ, {1, 2, 3, 4}, 1, {2, 3, 4}, P2), where
2, 3, 4 are the final states and the set of productions P2 is equal to

{1u → 2, 1v → 3, 1(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪
{2u → 2, 2v → 3, 2(AG) → 4 | u = AA,CA,GA and v = AC,CC} ∪
{3u → 2, 3v → 3, 3(AG) → 4 | u = AA,CA and v = AC,CC} ∪
{4(AG) → 4, 4(AC) → 3, 4(AA) → 2}.

The language L2 is a proper superset of K+
1 and is a (τ,H0,2)-bond-free subset

of (Σ2)+. In fact it can be shown that L2 is maximal with this property [17].

Theorem 4. Let d be a fixed value in {0, 1}. The following problem is com-
putable in polynomial time. Input: k-block DFA A such that L(A) is a (θ,Hd,k)-
bond-free subset of (Σk)+. Output: Y/N, depending on whether L(A) is maximal
with that property. Moreover, if L(A) is not maximal, output a minimal-length
word w ∈ (Σk)+ − L(A) such that L(A) ∪ {w} is a (θ,Hd,k)-bond-free subset
of (Σk)+.

4 Construction Methods for the Hamming Case

In this section we describe methods for constructing (τ,Hd,k)-bond-free lan-
guages. We focus on languages that are subsets of (Σk)+ or ΣkΣ∗. We assume
throughout that k and d are integers, with k ≥ 1 and 0 ≤ d < k, and τ is
the DNA involution. Moreover, we introduce the subword closure operation, ⊗,
which plays an important role in the sequel.

Let d be a nonnegative integer and let S and S1 be languages containing only
words of the same length k, for some positive integer k. The Hamming ball Hd(S)
of S is the set {v | H(v, z) ≤ d, for some z ∈ S}. Note that Hd(S) = S when
d = 0. The subword closure S⊗ of S is the set {w ∈ Σ∗ | |w| ≥ k, Subk(w) ⊆ S}.
We note that S1 ⊆ S iff S1

⊗ ⊆ S⊗. This implies that, if S1 �= S then S1
⊗ �=

S⊗. Moreover we note that, given S, one can construct in linear time a DFA
accepting S⊗ [17].

4.1 Direct Methods

Here we consider analytical methods that do not rely on previously constructed
languages. The first method is based on the concept of a template and the
operation ‘·’: 0 · 0 = C, 0 · 1 = G, 1 · 0 = T, 1 · 1 = A [2]. This operation is



Bond-Free Languages: Formalizations, Maximality and Construction Methods 177

extended to binary words of the same length in a natural manner. A k-template
is any binary word of length k. If x is a k-template and E is subset of {0, 1}k

then x · E = {x · v | v ∈ E}. The construction method of [2] involves choosing
a k-template x and a code E such that x ·E satisfies a desired property. In our
case, we are interested in k-templates x such that

H(x2x1, (x4x3)R) > d, (1)

for all prefixes x1 and x3 of x and suffixes x2 and x4 of x.

Theorem 5. Let x be a k-template satisfying (1). Then the language (x·{0, 1}k)+

is (τ,Hd,k)-bond-free.

Observe that the cardinality of the code x · {0, 1}k is 2k. The advantage of
the method of templates is that properties of the template x, which is a simple
object, are passed gracefully to the code x ·E, where E is any subset of {0, 1}k.
We note that many of the templates listed in [2] satisfy (1).

We introduce now another direct construction method. The bond-free lan-
guage is again of the form K+, where K is a code of fixed-length. Moreover
there is a set I of positions in which the codeword symbols are always in {A,C}.
The method is described more formally in the next theorem. The notation k % 2
stands for the remainder of the integer division k/2, and v[i] stands for the
symbol of the word v at position i.

Theorem 6. Let I be a nonempty subset of {1, . . . , k} of cardinality (k/2) +
1 + ((d + k % 2)/2). Then the language K+ is (τ,Hd,k)-bond-free, where

K = {v ∈ Σk | if i ∈ I then v[i] ∈ {A,C}}.

Let l be the quantity (k/2)+ 1 + ((d + k % 2)/2) that appears in the above
theorem. The size of the code K is 2l4k−l. On the other hand the method of
k-templates produces codes K of size 2k. Obviously, 2l4k−l ≥ 2k. Moreover, one
can verify that k = l iff d is in {k − 2, k − 3}. An advantage of the method of
Theorem 6 is that we can construct (τ,Hd,k)-bond-free languages with a large
ratio d/k. Another advantage of some codes K defined in the previous theorem
is that one can encode and decode information in linear time [17].

4.2 Methods Based on the Catenation Closure

The main idea here is that the catenation closure of Qd+1, that is the language
(Qd+1)+, is (τ,Hd,k)-bond-free if Q is of length q with the property that Q+

is (τ,H0,q)-bond-free. The correctness of the method is based on the following
theorem.

Theorem 7. Let j and q be positive integers and let L be a subset of ΣjqΣ∗. If
L is (τ,Ht,q)-bond-free, for some integer t ≥ 0, then it is also (τ,Hd,k)-bond-free,
where d = j(t + 1)− 1 and k = jq.



178 L. Kari, S. Konstantinidis, and P. Sośık

Observe that for t = 0, the above theorem says that nearly every language
that is (τ,H0,q)-bond-free is inherently (τ,Hd,k)-bond-free for any d > 0 and any
k ≥ q(d+1). This is a connection between the properties P1 and P5 considered
in Section 1.

With the notation of the above theorem, let Q be a code of length q such that
the language Q+ is (τ,Ht,q)-bond-free. Let K = Qj and let k = jq. The code Q
could be defined by some direct method, or by brute force for small values of q
and t. In either case, the language K+ is (τ,Hd,k)-bond-free.

In the case of t = 0, we have that j = d + 1 and the cardinality of the
code K is |Q|d+1, which can be larger than the cardinality of the codes defined
in Theorem 6 with the same parameters. For example, if Q = {A,C}2Σ ∪
{A,C}{G,T}{A,C}, then the code K = Qd+1 consists of 24d+1 codewords.
On the other hand, if the code K is defined using Theorem 6 for k = 3(d + 1)
then the cardinality of K is equal to 16d+1.

The following observation can be viewed as a converse type of Theorem 7.

Theorem 8. Let K be any set of words such that the language K+ is (τ,Hd,k)-
bond-free, for some integers d ≥ 0 and k ≥ 1. Then the language K+ is also
(τ,H0,k−d)-bond-free.

4.3 All Maximal (Hamming) Bond-Free Languages

With the results of Section 3 in mind [17], we understand that the languages of
the form K+ obtained by the preceding methods are not necessarily maximal. In
what follows we discuss methods of obtaining new bond-free languages, possibly
maximal, from old ones using the subword closure operation ⊗. We also need
the following, slightly restricted, version of the subword closure of S, where S is
any code of fixed length k, S⊕ � S⊗ ∩ (Σk)+. We call S⊕ the block closure
of S.

Theorem 9. Let S be a set of words of fixed length k. Then each of the languages
S⊗ and S⊕ is (τ,Hd,k)-bond-free iff

τ(S) ∩Hd(S) = ∅. (2)

Using the above observation we can extend (τ,Hd,k)-bond-free languages of
the form K+, such as those constructed earlier, as follows – we assume the
words of K are of fixed length k. Let S = Subk(K2) = Subk(K+). Then S
satisfies (2) and, therefore, the language S⊗ is a (τ,Hd,k)-bond-free language
that includes K+. Next consider any code K of length k satisfying property
P3[d, k] – recall from Section 1 that such codes have been studied in [5] and
[21]. Using again the above theorem it follows that K⊗ is a (τ,Hd,k)-bond-free
language.

The question that arises now is when the bond-free languages of Theorem 9
are maximal. The following result addresses this question. In fact we show a
complete structural characterization of all maximal (τ,Hd,k)-bond-free subsets
of (Σk)+ and ΣkΣ∗.



Bond-Free Languages: Formalizations, Maximality and Construction Methods 179

Theorem 10. The class of all maximal (τ,Hd,k)-bond-free subsets of (Σk)+ is
finite and equal to {S⊕ | S ⊆ Σk and S is maximal satisfying τ(S)∩Hd(S) = ∅}.
In particular, if d = 0 then this class is equal to {S⊕ | S ∪ τ(S) = {v ∈ Σk | v �=
τ(v)}, τ(S) ∩ S = ∅}.

Note: The above theorem holds also for subsets of ΣkΣ∗ if we replace S⊕ with
S⊗.

According to Theorem 10, if K is a maximal subset of Σk satisfying τ(K) ∩
Hd(K) then the language K⊕ is a maximal (τ,Hd,k)-bond-free subset of (Σk)+.
In the case of d = 0 the characterization of the maximal bond-free languages
is quite explicit: Define any partition {S, τ(S)} of the set {v ∈ Σk | v �= τ(v)}
and then compute S⊕; this language will be maximal. The language L2 con-
sidered in Example 3.1 is a particular instance of this type of construction
[17].

The above theorem implies that every k-block (τ,Hd,k)-bond-free language
L is included in a regular maximal such language. Statements of this type with
L being regular have been obtained for various code-related properties and are
of particular interest in the theory of codes [12]. In our case it is also interesting
to note that the language L is not necessarily regular.

5 Discussion

We have considered the problem of undesirable bonds and proposed the property
of (θ, sim)-bond-freedom for DNA languages, which addresses this problem when
bonds between imperfect complements of DNA molecules are permitted. Using
recent language theoretic tools, we were able to establish various decidability
results about (θ, sim)-bond-freedom. The case where sim is the Hamming simi-
larity has been considered by many authors. In this case, we have demonstrated
interesting connections between our property and those of other authors, and
have identified general construction methods. In particular, we have identified
all DNA languages that are maximal with respect to the new property. This re-
sult is also applicable to the case of the θ-k-code property of [10]. Directions for
future research include the following: (i) Derive a methodology for defining prop-
erties of DNA languages that would be able to address the uniqueness problem
– called positive design problem in [18] – as independently of the application as
possible. (ii) Elaborate on the proposed construction methods to obtain concrete
constructions of languages that, in addition to being bond-free, they satisfy ad-
ditional properties such as uniqueness and fixed GC-ratio. (iii) Explore further
the subword closure operation from a theoretical at least point of view.

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant 201/02/P079 to P.S.



180 L. Kari, S. Konstantinidis, and P. Sośık

References

1. Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena,
S.: Algorithms for testing that sets of DNA words concatenate without secondary
structure. In: [7], 182-195

2. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation
Computing 20 (2002) 263–277

3. Baum, E.: DNA sequences useful for computation. Pre-proceed. 2nd DIMACS
Workshop on DNA-based computers, (1996) 122–127

4. Chen, J., Reif, J. (eds): Pre-proceed. 9th International Workshop on DNA-Based
Computers, Madison, Wisconsin, 2003. Lecture Notes in Computer Science, Vol.
2943. Springer-Verlag, Berlin Heidelberg New York (2004)

5. Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design.
Journal of Computational Biology, 8:3 (2001) 201–220

6. Feldkamp, U., Saghafi, S., Rauhe, H.: DNASequenceGenerator - A program for the
construction of DNA sequences. In: [11], 179–189

7. Hagiya, M., Ohuchi, A. (eds): Pre-proceed. 8th International Workshop on DNA-
Based Computers, Saporo, Japan, 2002. Lecture Notes in Computer Science, Vol.
2568. Springer-Verlag, Berlin Heidelberg New York (2003)

8. Head, T.: Relativised code concepts and multi-tube DNA dictionaries. In: Calude,
C.S., Păun, G. (eds.): Finite Versus Infinite: Contributions to an Eternal Dilemma.
Springer-Verlag, London (2000) 175–186

9. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. In:
[11], 107-118

10. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: [4], 58–68
11. Jonoska, N., Seeman, N.C. (eds): Pre-proceed. 7th International Workshop on

DNA-Based Computers, Tampa, Florida, 2001. Lecture Notes in Computer Sci-
ence, Vol. 2340. Springer-Verlag, Berlin Heidelberg New York (2002)

12. Jürgensen, H., Konstantinidis, S.: Codes. In: G. Rozenberg, A. Salomaa (eds):
Handbook of Formal Languages, Vol. I. Springer-Verlag, Berlin Heidelberg New
York (1997) 511–607

13. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions and DNA encoding. In: Brauer,
W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.): Lecture Notes in Computer
Science, Vol. 2300. Springer-Verlag, Berlin Heidelberg New York (2002) 376–393

14. Kari, L., Konstantinidis, S.: Language equations, maximality and error detection.
Journal of Computer and System Sciences (to appear)

15. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Informatica 40 (2003) 119–157

16. Kari, L., Konstantinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Tech. report 609, Dept. Computer Science, Univ. Western Ontario, Canada (2003)

17. Kari, L., Konstantinidis, S., Sośık, P.: Bond-free languages: formalizations, max-
imality and construction methods. Tech. report 2004-01, Dept. Mathematics and
Computing Science, Saint Mary’s University, Halifax, Canada (2004). Electronic
form available at http://www.stmarys.ca/academic/science/compsci/

18. Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey. In: [4],
37–46

19. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S.: Experimental construction of very large scale DNA databases with
associative search capability. In: [11], 231–247



Bond-Free Languages: Formalizations, Maximality and Construction Methods 181

20. Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Developing
support system for sequence design in DNA computing. In: [11], 129–137.

21. Tulpan, D.C., Hoos, H.H., Condon, A.E.: Stochastic Local Search Algorithms for
DNA Word Design. In: [7], 229–241.



Preventing Undesirable Bonds Between
DNA Codewords

Lila Kari1, Stavros Konstantinidis2, and Petr Sośık1,3,�

1 Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7
{lila, sosik}@csd.uwo.ca

2 Dept. of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada

s.konstantinidis@stmarys.ca
3 Institute of Computer Science, Silesian University,

Opava, Czech Republic

Abstract. The input data for DNA computing must be encoded into the
form of single or double DNA strands. As complementary parts of single
strands can bind together forming a double-stranded DNA sequence, one
has to impose restrictions on these sets of DNA words (=languages) to
prevent them from interacting in undesirable ways. We recall a list of
known properties of DNA languages which are free of certain types of
undesirable bonds. Then we introduce a general framework in which we
can characterize each of these properties by a solution of a uniform formal
language inequation. This characterization allows us among others to
construct (i) a uniform algorithm deciding in polynomial time whether a
given DNA language possesses any of the studied properties, and (ii) in
many cases also an algorithm deciding whether a given DNA language
is maximal with respect to the desired property.

1 Introduction

A principle of DNA computing, in a nutshell, is to encode a task into a set of
input DNA molecules so that their mutual (and highly parallel) reactions serve
as a computational process, and produce a set of output molecules representing
a result of the computing. Fundamental techniques are the operations of hy-
bridization (annealing) and denaturation (melting) [16]. Given this framework,
[14] and others distinguish two elementary subproblems of the design of sets of
molecules for DNA experiments and computing:

– Positive design problem: to construct an input set of DNA molecules such
that there exists a sequence of reactions to produce a desired final set – the
result of the experiment.

� Corresponding author.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 182–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Preventing Undesirable Bonds Between DNA Codewords 183

– Negative design problem: the input set of molecules must not give way to
the reactions that produce undesired molecules encoding a false result or
blocking the desired reactions.

The negative design problem can be solved on a general basis by construction
of a large set of molecules which do not allow undesired mutual reactions. Various
subsets of this set are then used for concrete experiments. See e.g. [1, 3, 4, 5, 6,
8, 10, 13] for studies of properties of such sets (called also DNA languages) and
methods of their construction.

In this paper we introduce the concept of general (strictly) bond-free DNA
language property, and show that many of the previously studied properties
are its special cases. Moreover, we construct a general quadratic-time algorithm
deciding whether a given regular set of codewords satisfies any of these special
cases of the bond-free property. We note that by the term algorithm we always
mean a deterministic procedure, even if its input might be a nondeterministic
formal automaton.

By utilizing and improving recent results in [9] on language inequations,
we furthermore show that for many of the bond-free properties the maximality
problem is decidable. Polynomial-time algorithms are presented for the case of
θ-compliant finite sets and θ-non-overlapping regular sets. The proofs of these
results are mostly nontrivial and due to page limitations can be found in [11].

2 Undesirable Bonds in DNA Languages

We represent the single-stranded DNA molecules by strings over the DNA al-
phabet ∆ = {A,C, T,G}. Generally, an alphabet Σ is a finite and nonempty set
of symbols. The set of all words (over Σ) is denoted by Σ∗, including the empty
word λ. The length of a word w is denoted by |w|. For an n ≥ 0, wn denotes the
n concatenated copies of w. We denote the mirror image of the word w by wR.

A language L is a set of words, i.e. a subset of Σ∗. For n ≥ 0, we denote
by Ln the set of all words w1 · · ·wn such that each wi is in L. We also write
L∗ = L0∪L1∪L2∪· · · , and L+ for L∗−{λ}. The complement of L is Lc = Σ∗−L.
The mirror image of L is LR = {wR |w ∈ L}.

A nondeterministic finite automaton (NFA) is a quintuple A = (S,Σ, s0, F, P )
such that S is the finite and nonempty set of states, s0 is the start state, F is
the set of final states, and P is the set of productions of the form sx → t, for
s, t ∈ S, x ∈ Σ. If for every two productions sx1 → t1 and sx2 → t2 of an NFA
we have that x1 �= x2 then the automaton is called a DFA (deterministic finite
automaton). The language accepted by the automaton A is denoted by L(A).
The size |A| of the automaton A is the number |S|+ |P |.

A mapping α : Σ∗ → Σ∗ is called a morphism (anti-morphism) of Σ∗ if
α(uv) = α(u)α(v) (respectively α(uv) = α(v)α(u)) for all u, v ∈ Σ∗.

An involution θ : Σ → Σ of Σ is a mapping such that θ(θ(x)) = x for
all x ∈ Σ. It follows then that an involution θ is bijective and θ = θ−1. An
involution of Σ can be extended to either a morphism or an antimorphism of



184 L. Kari, S. Konstantinidis, and P. Sośık

�
�� ��

�

�

�

(a) (b) (c)

�
�

Fig. 1. Types of intramolecular (a) and intermolecular (b), (c) hybridizations

Σ∗. For example, if we extend the identity of Σ to an antimorphism of Σ∗ we
obtain the mirror-image involution of Σ∗ that maps each word u into uR.

If we consider the DNA-alphabet ∆, then the mapping τ : ∆ → ∆ defined
by τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) = C can be extended in the usual way
to an antimorphism of ∆∗. Then single strands w1, w2 ∈ ∆∗ are complementary
iff w1 = τ(w2). We refer the reader to [17] for further details on automata and

formal languages.

Two types of unwanted hybridization are usually considered: intramolecular,
Fig. 1 (a), and intermolecular, (b) and (c). The following properties of a DNA
language L ⊆ Σ+ preventing such a hybridization have been defined in [4, 8, 10].

(A) θ-non-overlapping: L ∩ θ(L) = ∅.
(B) θ-compliant: ∀w ∈ L, x, y ∈ Σ∗, w, xθ(w)y ∈ L ⇒ xy = λ.

(C) θ-p-compliant: ∀w ∈ L, y ∈ Σ∗, w, θ(w)y ∈ L ⇒ y = λ.

(D) θ-s-compliant: ∀w ∈ L, y ∈ Σ∗, w, yθ(w) ∈ L ⇒ y = λ.

(E) strictly θ-compliant: both θ-compliant and θ-non-overlapping.

(F) θ-free: L2 ∩ Σ+θ(L)Σ+ = ∅.
(G) θ-sticky-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, yθ(w) ∈ L ⇒ xy = λ.

(H) θ-3′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, θ(w)y ∈ L ⇒ xy = λ.

(I) θ-5′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, xw, yθ(w) ∈ L ⇒ xy = λ.

(J) θ-overhang-free: both θ-3′-overhang-free and θ-5′-overhang-free.

We agree to say that a language L containing the empty word has one of the
above properties if L \ {λ} has that property. Observe that (F) corresponds to
Fig. 1 (c), while others are special cases of (b).

In [6], a θ-non-overlapping language is called to be strictly θ. Generally, if
any other property holds in conjunction with (A), we add the qualifier strictly.
Further properties have been defined in [6]. We denote by Subk(L) the set of all
subwords of L of the length k. The following property corresponds to Fig. 1 (a):

(K) θ(k,m1,m2)-subword compliant: ∀u ∈ Σk, Σ∗uΣmθ(u)Σ∗ ∩ L = ∅ for
k > 0, m1 ≤ m ≤ m2.

(L) θ-k-code: Subk(L) ∩ Subk(θ(L)) = ∅, k > 0.



Preventing Undesirable Bonds Between DNA Codewords 185

The following property is defined for θ = I, the identity relation, in [3]. A
language L is called

(M) solid if:
1. ∀x, y, u ∈ Σ∗, u, xuy ∈ L ⇒ xy = λ, and
2. ∀x, y ∈ Σ∗, u ∈ Σ+, xu, uy ∈ L ⇒ xy = λ.

L is solid relative to an M ⊆ Σ∗ if 1. and 2. above hold only for w = pxuyq ∈ M.
L is called comma-free if it is solid relative to L∗. Solid languages are also used in
[10] as a tool for constructing error-detecting DNA languages that are invariant
under bio-operations. We refer to [6, 10, 11] for further examples and for mutual
relations between classes of a DNA languages satisfying these properties.

3 Binary Word Operations

Binary word operations on are extensively used in the following sections for
representing interaction of DNA molecules. A binary word operation is a mapping
♦ : Σ∗ × Σ∗ → 2Σ∗

, where 2Σ∗
is the set of all subsets of Σ∗. The notion can

be extended to languages X and Y as follows:

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

The left and the right inverse ♦l and ♦r of ♦, respectively, are defined as

w ∈ (x♦ v) iff x ∈ (w♦l v) iff v ∈ (x♦r w), for all v, x, w ∈ Σ∗.

Examples of binary word operations are catenation, quotient, insertion, deletion,
shuffle etc. See [7, 9, 15] for more details.

Further we introduce word operations on trajectories [2, 12, 15]. Consider a
trajectory alphabet V = {0, 1} and assume V ∩ Σ = ∅. We call trajectory any
string t ∈ V ∗. A trajectory is essentially a syntactical condition which specifies
how an operation ♦ is applied to the letters of its two operands. Let t ∈ V ∗ be
a trajectory and let α, β be two words over Σ.

Definition 1. The shuffle of α with β on the trajectory t, denoted by α��t β,
is defined as follows:

α��t β = {α1β1 . . . αkβk |α = α1 . . . αk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk ,
where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Example 2. Let α = a1a2 . . . a8, β = b1b2 . . . b5, t = 03120310101. The shuffle of
α and β on the trajectory t is: α��t β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

Definition 3. The deletion of β from α on the trajectory t is the following bi-
nary word operation:

α �t β = {α1 . . . αk |α = α1β1 . . . αkβk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk ,
where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.



186 L. Kari, S. Konstantinidis, and P. Sośık

Example 4. Let α = babaab, β = bb and assume that t = 001001. The deletion
of β from α on the trajectory t is: α �t β = {baaa}.

The operations can be extended to sets of trajectories as follows: α♦T β =⋃
t∈T α♦t β, where ♦ stands for �� or �, respectively. The operations ��T and

�T generalize further to languages due to (1).

4 Bond-Free DNA Languages

The notion of DNA language property from Section 2 can be formalized as
follows: a property P is a mapping P : 2Σ∗ −→ {true, false}. We say that a
language L ⊆ Σ∗ has (or satisfies) the property P if P(L) = true.

Definition 5. A language property P is called a bond-free property of degree 2
if there exist binary word operations ♦lo, ♦up such that for an arbitrary L ⊆ Σ∗,
P(L) = true iff

∀w ∈ Σ+, x, y ∈ Σ∗, (w♦lo x ∩ L �= ∅, w♦up y ∩ θ(L) �= ∅) ⇒ xy = λ. (2)

The phrase degree 2 is used to stress the fact that the property describes bonds of
two single DNA strands. In the remainder of this paper we write simply bond-free
property for a bond-free property of degree two.

Furthermore, in this and the following section we assume that ♦lo = ��Tlo

and ♦up = ��Tup for some trajectory sets Tlo, Tup ⊆ V ∗.

Theorem 6. The language properties (B), (C), (D), (G), (H), (I), (M.1), (M.2)
are bond-free properties. Moreover, the associated sets of trajectories Tlo, Tup are
regular.

Proof. Assume that θ is an antimorphism and define the sets of trajectories Tlo,
Tup as follows.

(B) θ-compliant: Tlo = 0+, Tup = 1∗0+1∗.
�

�

(C) θ-p-compliant: Tlo = 0+, Tup = 1∗0+.
�

�

(D) θ-s-compliant: Tlo = 0+, Tup = 0+1∗.
�

�

(G) θ-sticky-free: Tlo = 0+1∗, Tup = 0+1∗. �
�

(H) θ-3′-overhang-free: Tlo = 0+1∗, Tup = 1∗0+. �
�

(I) θ-5′-overhang-free: Tlo = 1∗0+, Tup = 0+1∗. �
�

Consider e.g. the property (H), θ-3’-overhang-freedom. Then w��Tlo x =
{wx} and w��Tup y = {yw}. The relations in (2) adopt the form wx ∈ L,
yw ∈ θ(L). This is equivalent to wx ∈ L, θ(w)θ(y) ∈ L. As xy = λ iff xθ(y) = λ,



Preventing Undesirable Bonds Between DNA Codewords 187

(2) corresponds to the definition of (H) in Section 2. The proofs of the other men-
tioned properties are analogous.

If θ is a morphism, then all the sets of trajectories Tup must be replaced by
the reversed sets TR

up, the proof technique remaining unchanged. ��

Observe that Tlo, Tup for a certain property corresponds to the “shape” of
the bonds prohibited in languages satisfying the property, see attached figures.

The main reason for introducing Definition 5 is the characterization of bond-
free properties via language inequations.

Theorem 7. For each bond-free property P there are regular sets of trajectories
T1, T2 and a binary word operation �P defined as

x �P y = ((x��(01)∗ Tlo)��T1(θ(y)��(01)∗ Tup)) �T2 K1, (3)

such that P(L) = true for an L ⊆ Σ∗ iff L �P L ⊆ K2.

This characterization allows us to answer decidability questions “Is P(L) =
true for a given language L and a bond-free property P?”

Theorem 8. Let P be a bond-free property associated with regular sets of tra-
jectories Tlo, Tup. The following problem is decidable in quadratic time w.r.t |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

Proof. Can be found in [11] using known results about word operations on tra-
jectories in [2, 12, 15]. ��

In [4] the decidability of the properties (D) and (F) for regular sets of words
was shown. In [3] the decidability of (M) in quadratic time is proven. In [5] an
algorithm deciding (F) in quadratic time for finite sets of codewords is presented.
The following corollary extends and generalizes these previous results for the case
of regular sets of DNA codewords.

Corollary 9. The following problem is decidable in quadratic time w.r.t. |A| :
Input: an NFA A.
Output:Y/N depending on whether L(A) satisfies any of the properties (B),

(C), (D), (G), (H), (I), (J) (M).

On the other hand, it is known [4] that for some bond-free properties, e.g. (B)
and (F), there is no such algorithm in the case of context-free DNA languages.

5 Maximal Bond-Free Languages

The approach used in the previous section can be applied also to maximality
problems (“Is L ⊆ M maximal w.r.t. a bond-free property P?”). The symbol
M ⊆ Σ∗ represents the set of all applicable/constructible DNA strands in a
case at hand. The following theorem is based on nontrivial results concerning
language inequations in [9].



188 L. Kari, S. Konstantinidis, and P. Sośık

Theorem 10. Let P be a bond-free property and M ⊆ Σ+ a set of words. For
a language L ⊆ M satisfying P, denote

R = M − (L ∪ L �r
P Kc

2 ∪Kc
2 �l

P L), (4)
Q = {z ∈ Σ∗ | z �P z ∩Kc

2 �= ∅}, (5)

where �P is defined by (3) and K2 = (Σ ∪ V )∗0(Σ ∪ V )∗ ∪ {λ}. Then L is a
maximal subset of M satisfying P iff R−Q = ∅.

After calculating the inverses of the operation �P , we obtain a decision al-
gorithm concerning maximal bond-free languages.

Theorem 11. Consider a fixed involution θ. Let P be one of the properties (B),
(C), (D), (G) if θ is an antimorphism, and one of (B), (C), (D), (H), (I) if θ
is a morphism.

Let M ⊆ Σ+ be a regular set of words, and L ⊆ M a regular language
satisfying P. Then there is an algorithm deciding whether L is a maximal subset
of M satisfying P.

Let A be a DFA accepting L. The algorithms described in the above theorem
may require an exponential number of steps w.r.t. |A| in the worst case. But one
can obtain a polynomial-time algorithm at least for finite languages.

Theorem 12. The following problem is decidable in time O(‖L‖3|A|), where
‖L‖ is the quantity

∑
w∈L |w|.

Input: DFA A and a finite language L such that L ⊆ L(A) and L satisfies
the property (B).

Output: Y/N, depending on whether L is a maximal subset of L(A) satisfying
(B).

The language inequation approach can be used also for characterization of
supersets of non-maximal bond-free DNA languages without breaking the given
bond-free property, see [11] for details. However, to construct such a superset
may require an exponential number of steps w.r.t. |A|.

6 Strictly Bond-Free Languages

In this section we focus mostly on the strict versions of the DNA language
properties (B)–(L), i.e. their conjunctions with (A). As one can easily observe,
the property (E) is equal to strictly (B), hence we do not refer to (E) in the
sequel. The following concept of a strictly bond-free property generalizes these
properties. However, (non-strictly) (L) is also a special case of the strictly bond-
free property.

Definition 13. A language property P is called the strictly bond-free property
of degree 2 if there are binary word operations ♦lo, ♦up and an involution θ such
that for an arbitrary L ⊆ Σ∗, P(L) = true iff

∀w, x, y ∈ Σ∗ (w♦lo x ∩ L �= ∅, w♦up y ∩ θ(L) �= ∅) ⇒ w = λ. (6)



Preventing Undesirable Bonds Between DNA Codewords 189

Again, in the remainder of this paper we write simply strictly bond-free prop-
erty for the strictly bond-free property of degree two.

Theorem 14. The language properties (A), strictly (B)–(D), strictly (G)–(I),
(L), strictly (L) are strictly bond-free properties.

Proof. Let ♦lo = ��Tlo and ♦up = ��Tup , where Tlo and Tup are the sets of
trajectories used in the proof of Theorem 6. The rest of the proof relies on
similar techniques. ��

Similarly as in Theorem 7, one can characterize strictly bond-free properties
via language (in)equations.

Theorem 15. For each strictly bond-free property P there is a binary word
operation �P defined as

x �P y = (x♦l
lo Σ∗) �1+ (θ(y)♦l

up Σ∗), (7)

such that for a language L ⊆ Σ∗, P(L) = true iff L �P L = ∅.
As a consequence one can derive a quadratic time decision algorithm for

regular DNA languages.

Theorem 16. Let P be a strictly bond-free property associated with operations
♦lo = ��Tlo , ♦up = ��Tup , with regular sets of trajectories Tlo, Tup. Then the
following problem is decidable in quadratic time w.r.t. |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

Corollary 17. Let P be any of the properties (A), strictly (B) – strictly (D),
strictly (G) – strictly (J), (L), strictly (L). The following problem is decidable
in quadratic time w.r.t. |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

On the other hand, one can easily show [11] that e.g. for the property (A),
there is no decision algorithm in the context-free case.

7 Maximal Strictly Bond-Free Languages

We focus on maximality problems (see section 5) w.r.t. a strictly bond-free prop-
erty P. For the case of the θ-non-overlapping regular languages, the problem is
decidable in polynomial time, for some other properties the polynomial-time
algorithm for regular languages is not known.

Theorem 18. The following problem is decidable in time O((|A| · |Aθ| · |AM |)3).
Input: DFA’s A, Aθ and an NFA AM such that L(A) = θ(L(Aθ)) ⊆ L(AM )

and L(A) is θ-non-overlapping.
Output: Y/N, depending on whether L(A) is a maximal θ-non-overlapping

subset of L(AM ).



190 L. Kari, S. Konstantinidis, and P. Sośık

Theorem 19. Consider a fixed involution θ. Let P be any of the properties
strictly (B) – strictly (D), strictly (G), (L), strictly (L) if θ is an antimorphism.
Let P be any of strictly (B) – strictly (D), strictly (H), strictly (I), (L), strictly
(L) if θ is a morphism.

Let M ⊆ Σ+ be a regular set of words and L ⊆ M a regular language satis-
fying P. Then there is an algorithm deciding whether L is a maximal subset of
M satisfying P.

Similarly as in Section 5, supersets of non-maximal languages satisfying a
certain strictly bond-free property can be also characterized.

8 Summary

We proposed a sequence of algorithms solving decision problems of DNA lan-
guages without undesirable bonds. The results are summarized in Tables 1 and
2. The abbreviations REG and CF denote the classes of regular and context-free
languages, respectively. In the column θ, the symbol A denotes antimorphism
and M denotes morphism, ∗ stands for an arbitrary involution. In the columns
corresponding to particular properties (B)–(M), D stands for decidable, Q for
quadratic-time decidable, P for polynomial-time decidable, U for undecidable
and ? for an open problem.

Furthermore we presented a polynomial-time algorithm deciding maximality
of a finite DNA language w.r.t. the property (B).

Among major open questions we mention the study of fast algorithms for
construction of finite bond-free languages, methods preventing imperfect bonds
(with bulges, non-complementary pairs etc.) between DNA strands, and study
of influence of the secondary DNA structure and free energy of single strands.

Table 1. Decision problems of non-strict DNA language properties

Properties
Problem Class θ (B) (C) (D) (G) (H) (I) (J) (L) (M)

Does a given language REG ∗ Q Q Q Q Q Q Q Q Q
satisfy the property P? CF ∗ U ? ? ? ? ? ? ? ?

Is a given language REG A D D D D ? ? ? D -
maximal w.r.t. P? REG M D D D ? D D ? D ?

Table 2. Decision problems of strict DNA language properties

Properties
Problem Class θ (A) (B) (C) (D) (G) (H) (I) (J) (L)

Does a given language REG ∗ Q Q Q Q Q Q Q Q Q
satisfy the property P? CF ∗ U ? ? ? ? ? ? ? ?

Is a given language REG A P D D D D ? ? ? D
maximal w.r.t. P? REG M P D D D ? D D ? D



Preventing Undesirable Bonds Between DNA Codewords 191

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant 201/02/P079 to P.S.

References

1. M. Arita, S. Kobayashi, DNA sequence design using templates. New Generation
Computing 20 (2002), 263–277.

2. M. Domaratzki, Deletion Along Trajectories. Tech. Report 464-2003, School of
Computing, Queen’s University, 2003, and submitted for publication.

3. T. Head, Relativised code concepts and multi-tube DNA dictionaries. In C.S.
Calude, G. Păun, Finite Versus Infinite: Contributions to an Eternal Dilemma,
Springer-Verlag, London, 2000, 175–186.

4. S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages. theo-
retical Computer Science 290/3 (2002), 1557-1579.

5. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words. Congressus
Numerantium 156 (2002), 99–110.

6. N. Jonoska, K. Mahalingam, Languages of DNA based code words. In J. Chen,
J. Reif (Eds.), Preproceedings of DNA9, June 1–4, 2003, Madison, Wisconsin, pp.
58–68.

7. L. Kari, On insertion and deletion in formal languages, PhD thesis, University of
Turku, Finland, 1991.

8. L. Kari, R. Kitto, G. Thierrin, Codes, involutions and DNA encoding. In W.
Brauer, H. Ehrig, J. Karhumäki, A. Salomaa (Eds.), Lecture Notes in Computer
Science 2300 (2002), 376–393.

9. L. Kari, S. Konstantinidis, Language equations, maximality and error detection.
Submitted for publication.

10. L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-free
DNA languages. Acta Informatica 40 (2003), 119–157.

11. L. Kari, S. Konstantinidis, P. Sośık, On Properties of Bond-Free DNA Languages.
Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario, 2003,
and submitted for publication.

12. L. Kari, P. Sośık, Language deletion on trajectories. Dept. of Computer Science
Technical Report No. 606, University of Western Ontario, London, 2003.

13. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA words design. J.
Computational Biology, 8:3, 2001.

14. G. Mauri, C. Ferretti. Word Design for Molecular Computing: A Survey. In J.
Chen and J.H. Reif (Eds.), DNA Computing, 9th International Workshop on DNA
Based Computers, Lecture Notes in Computer Science 2943 (2004), 37–46.

15. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic con-
straints, TUCS technical report No. 41, Turku Centre for Computer Science, 1996,
and Theoretical Computer Science 197 (1998), 1–56.

16. G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms,
Springer-Verlag, Berlin, 1998.

17. G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.



Testing Structure Freeness of Regular Sets of
Biomolecular Sequences�

(Extended Abstract)

Satoshi Kobayashi

Dept. of Computer Science,
Univ. of Electro-Communications

satoshi@cs.uec.ac.jp

Abstract. p
x→ q This paper discusses a problem of checking the struc-

ture freeness of DNA and RNA sequences. A set R of sequences over Σ
is said to be structure free if for every α ∈ R, the minimum free energy
of α is greater than or equal to 0. It was open whether or not there exists
a polynomial time algorithm for testing the structure freeness of a given
regular set R. In this paper, we will solve this problem.

Keywords: Molecular Computing, DNA Computing, Sequence Design,
Secondary Structures.

1 Introduction

Since the Adleman’s pioneering work on the computation of directed Hamilto-
nian path problem using molecular biological experimental technique ([Adl94]),
the design of DNA and RNA sequences is one of the most practical and impor-
tant research topics in DNA computing ([BC01]). One of the most important
requirements for the sequence design is that we should design sequences so that
they do not form any secondary structure, in other words, they are structure free.
In order to solve this design problem, we need to devise an efficient algorithm
to test the structure freeness of sequences. In this paper, we will focus on this
structure freeness test problem.

This paper discusses on an open question posed in [Con03] and [ADS02]. A
regular set R of sequences over Σ is said to be structure free if for every α ∈ R,
the minimum free energy of α is greater than or equal to 0. The problem is to
decide whether the given R is structure free or not. In this paper, we will give a
polynomial time algorithm to solve this problem.

� This work is supported in part by Grant-in-Aid for Scientific Research on Priority
Area No.14085205, Ministry of Education, Culture, Sports, Science and Technology,
Japan. It was also supported in part by Grant-in-Aid for Exploratory Research
NO.13878054, Japan Society for the Promotion of Science.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 192–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Testing Structure Freeness of Regular Sets of Biomolecular Sequences 193

2 Preliminaries

Let Σ be an alphabet {A,C,G,T} or {A,C,G,U}. A letter in Σ is also called
a base. By ε, we denote an empty string over Σ. A DNA or RNA sequence can
be seen as an oriented sequence of consecutively covalently bonded bases: one of
its end is called 5’ end, and the other is called 3’ end. A string is regarded as a
base sequence ordered from 5′-end to 3′-end direction. Consider a string α over
Σ. By |α| we denote the length of α. For a finite set or multiset X, by |X| we
denote the number of elements of X. For integers i, j such that 1 ≤ i ≤ j ≤ |α|,
by α[i, j] we denote the substring of α starting from the ith letter and ending
at the jth letter of α. In case of i = j, we write α[i]. In case of i > j or |α| = 0,
α[i, j] represents an empty string ε.

2.1 Secondary Structure

We will partly follow the terminologies and notations used in [SKM83]. Let us
introduce a relation θ ⊆ Σ × Σ defined by θ = { (A,T), (T,A), (G,C), (C,G),
(G,T),(T,G)}, for representing Watson-Crick and non-Watson-Crick base pairs1.
A hydrogen bond between the ith base and jth base of a string α can be formed
only if (α[i], α[j]) ∈ θ holds. The hydrogen bond between the ith base and jth
base is denoted by (i, j). The hydrogen bond (i, j) is also called a base pair.
Without loss of generality, we may always assume that i < j for a base pair
(i, j). For two base pairs (i, j) and (k, l), we write (i, j) ≺ (k, l) if i < k holds.
A secondary structure of α is a finite set of such base pairs of α. A string α
together with its secondary structure T is called a structured string, and written
α (T ). For representing the ith base in α (T ), we often use the integer i.

In this paper, we consider only pseudo-knot free secondary structures T such
that there exist no base pairs (i, j), (k, l) ∈ T satisfying i < k < j < l. In the
sequel, we assume that every secondary structure is pseudo-knot free.

For three bases i, j, and r in α (T ), we say that i and j surround r if i < r < j.
In case of (i, j) ∈ T , we also say that the base pair (i, j) surrounds r. For a base
pair (p, q), we say that i and j surround (p, q) if i and j surround both p and q.
In case of (i, j) ∈ T , we also say that (i, j) surrounds (p, q), written (p, q) < (i, j)
or (i, j) > (p, q). A base pair (p, q) or an unpaired base r is said to be accessible
from i and j, if it is surrounded by i and j and is not surrounded by any base
pair (k, l) such that (k, l) is surrounded by i and j. In case of (i, j) ∈ T , we also
say that it is accessible from a base pair (i, j).

For each base pair bp = (i, j) ∈ T , we define a cycle c(bp) as a substructure
consisting of the base pair (i, j) together with any base pairs (p1, q1), (p2, q2),
... accessible from (i, j) and any unpaired bases accessible from (i, j). If c(bp)
contains k base pairs (including the base pair (i, j)), it is said to be a k-cycle or
a cycle of order k. In case of k = 1, we often call it a hairpin. In case of k ≥ 3,
it is often called a multiple loop. In these definitions, the base pair (i, j) is called
a closing base pair of the cycle. (See Figure 1 (a).)

1 For the case of RNA strings, replace the letter T by U.



194 S. Kobayashi

Furthermore, in case of (1, |α|) �∈ T , the substructure of α (T ) consisting of
the base pairs and the unpaired bases accessible from 1 and |α| together with
the bases 1 and |α| is called a free end structure of α (T ).

The loop length of a 1-cycle c with a base pair (i, j) is defined as the number of
unpaired bases j−i−1. The loop length of a 2-cycle with base pairs (i, j) and (p, q)
((p, q) < (i, j)) is also defined as the number of unpaired bases p−i+j−q−2. The
loop length mismatch of a 2-cycle with base pairs (i, j) and (p, q) ((p, q) < (i, j))
is defined as |(p− i)− (j − q)|.

By ↑ α ↓ we denote a 1-cycle consisting of a string α with a base pair between
α[1] and α[|α|]. By | ↑αβ↓ | we denote a 2-cycle consisting of two strings α and β
with base pairs between α[1] and β[|β|] and between α[|α|] and β[1].

i i+1

j j−1

1-Cycle

5’

3’

5’

3’

i p

j q

i+1 p−1

j−1 q+1

2-Cycle

5’

3’

k-Cycle

( k = 4 )

5’ 3’

Free End Structure

α 1

α 2

α 0

α 3

5’ 3’

ML-component

component
ML-3’-end

ML-5’-end
component

(a) Basic Secondary Structures (b) Components of a Multiple Loop

Fig. 1. Secondary Structure

2.2 Free Energy Calculation

Free energy value is assigned to each cycle or free end structure. Experimental
evidence is used to determine such free energy values. The method for assigning
free energy values is given as follows 2: (See Figure 1 (a).)

1. The free energy E(c) of a 1-cycle c with a base pair (i, j) is dependent on
the base pair (i, j), the unpaired bases i + 1, j − 1 adjacent to (i, j), and its
loop length l:

E(c) = f1(α[i], α[j], α[i + 1], α[j − 1]) + g1(l).

2. The free energy E(c) of a 2-cycle c with base pairs (i, j) and (p, q) ((p, q) <
(i, j)) is dependent on the base pairs (i, j), (p, q), the unpaired bases i+1, j−1
adjacent to (i, j), the unpaired bases p− 1, q + 1 adjacent to (p, q), its loop
length l, and its loop length mismatch d:

E(c) = f2(α[i], α[j], α[p], α[q], α[i+1], α[j−1], α[p−1], α[q+1])+g2(l)+g3(d),

2 The calculation method presented here is in a general form so that it can be
specialized to be equivalent to the one used in standard RNA packages such as
ViennaRNA([HFS94]).



Testing Structure Freeness of Regular Sets of Biomolecular Sequences 195

3. The free energy E(c) of a (k + 1)-cycle c (k ≥ 2) with a closing base pair
(i, j) and the base pairs (p1, q1), (p2, q2), ..., (pk, qk) accessible from (i, j) is
dependent on the base pairs (i, j), (pl, ql) (l = 1, ..., k), the unpaired bases
i + 1, j − 1 adjacent to (i, j), the unpaired bases pl − 1, ql + 1 adjacent to
(pl, ql) (l = 1, ..., k), the number nb (= k + 1) of base pairs in c, and the
number nu of unpaired bases in c:

E(c) = m1(α[i], α[j], α[i + 1]) + m2(α[i], α[j], α[j − 1]) +
Σk

l=1(m1(α[ql], α[pl], a[ql + 1]) + m2(α[ql], α[pl], a[pl − 1])) +
Mb ∗ nb + Mu ∗ nu + CM ,

4. Although the free energy E(c) of a free end structure c is defined in a similar
way as that of k-cycle (k ≥ 3), we assume in this paper that it is defined as
0. This simplification is only because of space constraint. The result of this
paper is easily extended to the case that E(c) of a free end structure c is
appropriately defined.

In these definitions, the functions f1, g1, f2, g2, g3, m1, m2 are experimen-
tally obtained functions. The constants Mb,Mu, CM are also experimentally ob-
tained. In the case that there does not exist an unpaired base which is adjacent
to a given base pair, an empty string ε is used as an argument of those func-
tions.

We assume that Mb,Mu, CM are nonnegative constants. For each function
gi (i = 1, 2, 3), we assume that there exists a nonnegative integer Li such that
for the range l > Li, gi(l) is weakly monotonically increasing. Furthermore, we
assume that all the above functions are computable in constant time.

Let c1, ..., ck be the cycles contained in α (T ). Then, the free energy E(α (T ))
of α (T ) is given by E(α (T )) = Σk

i=1E(ci).

2.3 Structure Freeness Test Problem

In this paper, we will consider the problem of testing whether a given regular
set of strings is structure free or not. The problem is formally defined in the
following way.

Let R be a regular language over Σ. Then, we say that R is structure free if
for any structured string α (T ) such that α ∈ R and T is pseudo-knot free, it
holds that E(α (T )) ≥ 0. We have interests in deciding for given R, whether or
not R is structure free. In section 4, we will give a polynomial time algorithm
for solving this problem.

For specifying a regular language R, we use a labeled directed graph with
initial and final vertices. Let M = (V,E, σ, I, F ), where V is a finite set of
vertices, E is a subset of V × V , σ is a label function from V to Σ ∪ {ε},
and I, F ⊆ V . For p, q ∈ V and x ∈ Σ∗, we write p

x→ q if there is a path
with labels x from p to q in M . Note that x contains the labels σ(p) and σ(q).
We write p → q if p

x→ q for some x ∈ Σ∗. A string α is accepted by M if
p

α→ q for some p ∈ I and q ∈ F . This graph representation could be regarded



196 S. Kobayashi

as a Moore type machine with no edge labels. Thus, the set L(M) of strings
accepted by M is regular. Furthermore, it is also clear that every regular lan-
guage can be accepted by some graph M . A graph M is said to be trimmed
if every vertex is reachable from an initial vertex and has a path to a final
vertex.

For subsequent convenience, we introduce an array Len in the following way.
For each pair of vertices p, q ∈ V with σ(p), σ(q) ∈ Σ, and a positive integer l,
we define Len(l)(p)(q) as a set of lengths |x| such that p

x→ q and |x| ≤ l. Let
m = |V |. For a given M and l, we can compute the array Len efficiently in the
following way. At first, we can obtain a new graph M ′ such that L(M) = L(M ′)
by deleting all the vertices p such that σ(p) = ε and rearranging the edges. This
can be done in O(m3) time. Then, we can compute the array Len by modifying
a fundamental algorithm for all pairs shortest paths problem and applying it to
M ′. This can be done in O(m3l log l) time. Therefore, the total time complexity
for constructing the array Len is O(m3l log l).

3 Substructures and Boundary Contexts

3.1 Substructures of Multiple Loops

Let k be an integer with k ≥ 2 and αi (i = 0, ..., k) be strings over Σ such that
|α0| = |αk| = 1 and |αi| ≥ 2 (i = 1, ..., k−1). Then, by (−→α0 • −−−−−−−−−−→α1 • · · · • αk−1 • −→αk) ,
we denote a substructure of a multiple loop c consisting of: (1) k successive base
pairs accessible from the closing base pair of c, which are base pairs between
αi[|αi|] and αi+1[1] for i = 0, ..., k−1, and (2) sequences αi[2, |αi|−1] of unpaired
bases for i = 1, ..., k − 1. This substructure is called a multiple loop component,
or an ML-component for short. An ML-component is said to be basic if k = 2.
(See Figure 1 (b).)

Let a1, a2 ∈ Σ and α be a string over Σ such that |α| ≥ 2. An ML-3’-
end component, written (←−a1 • ←−α | ←−a2) , is defined as a substructure of a multiple
loop c consisting of: (1) the closing base pair bp of c between α[1] and a2 and
a base pair between a1 and α[|α|] which is adjacent to bp and located at 3’-end
direction from α[1], and (2) a sequence α[2, |α|−1] of unpaired bases. An ML-5’-
end component, written (←−a1 | ←−α • ←−a2) , is defined as a substructure of a multiple
loop c consisting of: (1) the closing base pair bp of c between α[|α|] and a1 and
a base pair between a2 and α[1] which is adjacent to bp and located at 5’-end
direction from α[|α|], and (2) a sequence α[2, |α| − 1] of unpaired bases. (See
Figure 1 (b).)

For convenience of the proofs, we will define the free energy of these sub-
structures. For an ML-component (−→α0 • −−−−−−−−−−→α1 • · · · • αk−1 • −→αk) , we define:

E( (−→α0 • −−−−−−−−−−→α1 • · · · • αk−1 • −→αk) ) =

Σk−1
i=1 ( m1(αi[1], αi−1[|αi−1|], αi[2]) + m2(αi+1[1], αi[|αi|], αi[|αi| − 1])+

Mu ∗ (|αi| − 2) + Mb ).



Testing Structure Freeness of Regular Sets of Biomolecular Sequences 197

Recall that the third arguments of m1 and m2 should be unpaired bases. Note
that in the case that there does not exist an unpaired base which is adjacent to
a given base pair, ε is used as an argument of those functions.

Further note that the base pair contribution Mb of the last base pair between
αk−1[|αk−1|] and αk[1] is not considered in this free energy definition.

For an ML-3’-end component (←−a1 • ←−α | ←−a2) , we define:

E( (←−a1 • ←−α | ←−a2) ) = m1(α[1], a2, α[2]) + m2(a1, α[|α|], α[|α| − 1])+
Mu ∗ (|α| − 2) + Mb.

For an ML-5’-end component (←−a1 | ←−α • ←−a2) , we define:

E( (←−a1 | ←−α • ←−a2) ) = m1(α[1], a2, α[2]) + m2(a1, α[|α|], α[|α| − 1])+
Mu ∗ (|α| − 2) + Mb.

Note that the base pair contribution Mb of the base pair containing the base
a1 is not considered also in these free energy definitions.

3.2 Contexts of Substructures

Let R be a regular language over Σ, and M = (V,E, σ, I, F ) be a trimmed
graph accepting R. Let α (T ) be a structured string such that α ∈ R and T
is pseudo-knot free. Let us consider a base pair (i1, i2) ∈ T of α (T ). Let ρ be
an accepting path of α. Then, (i1, i2) is said to have context (p1, p2) in ρ if for
l = 1, 2, ilth base of α is generated at the vertex pl on ρ. For a base pair bp and
an accepting path ρ, by cf(bp, ρ) we denote the context of bp in ρ. In case that ρ
is clear from the context, we omit the argument ρ and simply write cf(bp). For
context v = (p1, p2), we often prefer to use the following representation:

v = (↑ p1 • p2 ↓)

that is more graphically appealing to the reader. Note that for the context v,
(σ(p1), σ(p2)) ∈ θ and p1 → p2 should hold. By Cfg(M), we denote the set of
such well-defined contexts constructed from M . More formally, we define:

Cfg(M) = { (↑ p1 • p2 ↓) | p1, p2 ∈ V, (σ(p1), σ(p2)) ∈ θ, p1 → p2 }.

A 1-cycle c with a base pair bp in α (T ) is said to have context v in ρ if
v = cf(bp, ρ). A 2-cycle c with base pairs bp1 and bp2 (bp1 > bp2) in α (T ) is
said to have context (v1, v2) in ρ if vi = cf(bpi, ρ) (i = 1, 2). An ML-component
in α (T ) with base pairs bp1, ..., bpk (bp1 ≺ · · · ≺ bpk) is said to have context
(v1, ..., vk) in ρ if vi = cf(bpi, ρ) holds for i = 1, ..., k. It is also said to have
boundary context (v1, vk) in ρ. The context of an ML-3’-end component or an
ML-5’-end component in ρ is defined as the pair (v1, v2) of contexts in ρ, where
v1 is a context of the closing base pair in the corresponding multiple loop and
v2 is a context of the other base pair in that substructure.



198 S. Kobayashi

Definition 1. Let us consider two contexts v1 = (↑ p1 • q1↓) and v2 = (↑ p2 • q2 ↓)
in Cfg(M). Then, we define:

(1) minH(v1) = min {E( ↑ x ↓ ) | p1
x→ q1, |x| ≥ 2 },

(2) minI(v1, v2) = min {E( | ↑xy↓ | ) | p1
x→ p2, q2

y→ q1, |x| ≥ 2, |y| ≥ 2 },
(3) minM(v1, v2) = min {E( (

−−−→
σ(p1) • −→x •

−−−→
σ(q2)) | q1

x→ p2, |x| ≥ 2 },

(4) minM3′(v1, v2) = min {E( (
←−−−
σ(q2) • ←−x |

←−−−
σ(q1)) ) | p1

x→ p2, |x| ≥ 2 },

(5) minM5′(v1, v2) = min {E( (
←−−−
σ(p1) | ←−x •

←−−−
σ(p2)) ) | q2

x→ q1, |x| ≥ 2 }. �

The existence of these minimum values is not clear at all. However, we can
prove the existence of those minimum values in the following Theorem 1.

Recall the constants L1, L2, L3 defined at Section 2.2 and the array Len
introduced at the last paragraph of Section 2.3. Let L = max {L1, L2, L3 } and
m = |V |. Furthermore, for p, q ∈ V , a, b ∈ Σ, and a positive integer l (l ≥ 3), we
define:

Len(l)(p)(q)(a)(b) =
⋃

(p, p′), (q′, q) ∈ E
σ(p′) = a, σ(q′) = b

{x + 2 | x ∈ Len(l − 2)(p′)(q′) }.

This array Len(l)(·)(·)(·)(·) can be computed in O(m4l) time from the array
Len(l − 2)(·)(·).

Theorem 1. For contexts, v1 = (↑ p1 • q1 ↓) and v2 = (↑ p2 • q2 ↓) in Cfg(M),
the following equations hold:

(1) minH(v1) = min {E( ↑ x ↓ ) | p1
x→ q1, 2 ≤ |x| ≤ L + m + 4 },

(2) minI(v1, v2) = min {E( | ↑xy↓ | ) | p1
x→ p2, q2

y→ q1,
2 ≤ |x| ≤ L+m2 +m+4, 2 ≤ |y| ≤ L+m2 +m+4 },

(3) minM(v1, v2) = min {E( (
−−−→
σ(p1) • −→x •

−−−→
σ(q2)) | q1

x→ p2, 2 ≤ |x| ≤ m + 4 },

(4) minM3′(v1, v2) = min {E( (
←−−−
σ(q2) • ←−x |

←−−−
σ(q1)) ) | p1

x→ p2,

2 ≤ |x| ≤ m + 4 },
(5) minM5′(v1, v2) = min {E( (

←−−−
σ(p1) | ←−x •

←−−−
σ(p2)) ) | q2

x→ q1,

2 ≤ |x| ≤ m + 4 },
Furthermore, for given contexts, the above minimum values can be computed in
O(m4) time using the information about the array Len. �

4 Algorithm for Testing Structure Freeness

Let M be a reduced graph representing a given regular set R and consider
context set Cfg(M). Let us consider a context v = (↑ p • q ↓) ∈ Cfg(M) and a
structured string α (T ) such that p

α→ q and (1, |α|) ∈ T . Then, this structure



Testing Structure Freeness of Regular Sets of Biomolecular Sequences 199

α (T ) is called a closed structure with boundary context v. The base pair (1, |α|)
is called an end closing base pair of the closed structure α(T ).

For v = (p, q) ∈ Cfg(M), by δ(v) we denote the minimum free energy among
all closed structures with boundary context v. More formally, we define:

δ(v) = min {E(α (T )) | p
α→ q, (1, |α|) ∈ T }.

In case that such minimum free energy does not exists, we define δ(v) = −∞.
Since we assume that the free energy of any free end substructure is always 0, it
is enough for us to compute δ(v) for all v ∈ Cfg(M) and check whether or not
for every v ∈ Cfg(M), δ(v) ≥ 0 holds.

4.1 Minimum Free Energy of ML-Components Under Energy
Assignment

An energy assignment C is a mapping from Cfg(M) to the set of real values. Let
us consider an ML-component c = (−→α0 • −−−−−−−−−−→α1 • · · · • αk−1 • −→αk) in a structured
string α (T ) and let bpi (i = 1, ..., k) be the ith base pair of c from the 5’-end
(i.e. a base pair between αi−1[|αi−1|] and αi[1]). Let ρ be an accepting path of
α. Let vi be a context of bpi in ρ (i = 1, ..., k), and let cnf = (v1, ..., vk). The
free energy Ẽ(c, cnf, C) of c with respect to cnf under energy assignment C is
defined as Ẽ(c, cnf, C) = E(c) + Σk−1

i=1 C(vi). Note that C(vk) is not contained
in this definition. In case that cnf = (v1, ..., vk) is clear from the context, we will
often omit the second argument cnf in Ẽ(c, cnf, C) and simply write Ẽ(c, C).

An ML-component c with context cnf = (v1, ..., vk) is said to be E-minimal
with respect to cnf under energy assignment C if for any ML-component c′ with
context cnf , Ẽ(c, C) ≤ Ẽ(c′, C) holds.

Now, we have interests to compute for given contexts v1 and v2, the minimum
free energy ∆(v1, v2, C) under energy assignment C among all ML-components
with boundary context (v1, v2).

This problem can easily be reduced to the problem of all pairs shortest paths
of a graph defined bellow.

For given context set Cfg(M) and energy assignment C, we construct a
weighted directed graph G(M,C) = (V∗, E∗, w) defined by: V∗ = Cfg(M), E =
V∗ × V∗, and w((v1, v2)) = minM(v1, v2) + C(v1) for all v1, v2 ∈ V∗. Then, we
can show the following theorem.

Theorem 2. The weight of a path v1, ..., vk in G(M,C) is equal to the free
energy of an E-minimal ML-component with respect to (v1, ..., vk) under C. �

If there exists a negative weight cycle, and there exists no shortest path from
v1 to v2, then the weight of the shortest path from v1 to v2 is defined as −∞.
Then, we have the following corollary.

Corollary 1. The weight of the shortest path from v1 to v2 in G(M,C) gives
the value ∆(v1, v2, C).



200 S. Kobayashi

Proof
Note that the minimum value ∆(v1, v2, C) is given by an E-minimal ML-
component. �

SFT(M)
begin

compute Len up to l = L + m2 + m + 4;
compute Len for l = m + 4, L + m + 4, L + m2 + m + 4;
compute minH, minI, minM , minM3′ , minM5′ for all contexts;
for i = 1 to n do C1(v) := minH(v); end
for i = 2 to n + 1 do Ci :=Update(Ci−1); end
if there exists v ∈ Cfg(M) such that Cn(v) < 0 or Cn+1(v) < Cn(v) then

return ’NO’;
else return ’YES’;

end

Update(C)
begin

D := APSP(G(M, C));
if(D ==’NO’) then output ’NO’ and halt;
for v ∈ Cfg(M) do

X := min { C(v′) + minI(v, v′) | v′ ∈ Cfg(M) };
Y := min { minM3′(v, v′) + D(v′, v′′) + C(v′′) + minM5′(v, v′′) + CM |

v′, v′′ ∈ Cfg(M) };
C′(v) := min { C(v), X, Y };

end
return C′;

end

Fig. 2. Proposed Algorithm SFT

For instance, we can use the Johnson’s algorithm ([Joh77]) for computing all
pairs shortest paths. Johnson’s algorithm, denoted APSP in the sequel, allows
the use of negative weight edge and can detect negative weight cycle. It returns
’NO’ if there exists a negative weight cycle, otherwise returns a distance matrix
between the vertices. The time complexity of his algorithm is O( |V∗|2 log |V∗| +
|V∗||E∗| ).

4.2 Algorithm SFT

We are ready to give an algorithm SFT for testing the structure freeness of a
given regular set R. Let M = (V,E, σ, I, F ) be a graph representing R, n =
|Cfg(M)|, and m = |V |. Then, the proposed algorithm is shown in Figure 2.

Theorem 3. Algorithm SFT is correct. The time complexity of SFT is O(m8),
where m is the number of vertices of M . �



Testing Structure Freeness of Regular Sets of Biomolecular Sequences 201

References

Adl94. L. Adleman, Molecular Computation of Solutions to Combinatorial Problems.
Science 266, pp.1021-1024, 1994.

ADS02. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen,
S. Skiena, Algorithms for testing that DNA word designs avoid unwanted
secondary structure, In Proc. of 8th International Meeting on DNA Based
Computers, pp.92-104, 2002.

BC01. A. Brenneman, A. E. Condon, Strand Design for Bio-Molecular Computation,
Theoretical Computer Science, 287, pp.39-58, 2002.

Con03. A. E. Condon, Problems on RNA Secondary Structure Prediction and Design,
Proc. of ICALP’2003, Lecture Notes in Computer Science, Vol.2719, pp.22-32,
2003.

HFS94. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schus-
ter, Fast Folding and Comparison of RNA Secondary Structures (The Vienna
RNA Package), Monatshefte für Chemie, 125, pp.167-188, 1994.

Joh77. D. S. Johnson, Efficient Algorithms for Shortest Paths in Sparse Networks,
Journal of the ACM, Vol.24, pp.1-13, 1977.

KYS04. S. Kobayashi, T. Yokomori, and Y. Sakakibara, An Algorithm for Testing
Structure Freeness of Biomolecular Sequences, in Aspects of Molecular Com-
puting — Essays dedicated to Tom Head on the occasion of his 70th birthday,
Springer-Verlag, LNCS 2950, pp.266-277, 2004.

SKM83. D. Sankoff, J.B. Kruskal, S. Mainville, R.J. Cedergren, Fast Algorithms to
Determine RNA Secondary Structures Containing Multiple Loops, in Time
Warps, String Edits, and Macromolecules : The Theory and Practice of Se-
quence Comparison, D. Sankoff and J. Kruskal, Editors, Chapter 3, pp.93-120,
1983.

ZS81. M. Zuker, P. Steigler, Optimal Computer Folding of Large RNA Sequences
using Thermodynamics and Auxiliary Information, Nucleic Acids Research,
9, pp.133-148, 1981.



Minimum Basin Algorithm:
An Effective Analysis Technique for

DNA Energy Landscapes

Mitsuhiro Kubota and Masami Hagiya

Japan Science and Technology Agency (JST-CREST),
Department of Computer Science,

Graduate School of Information Science and Technology,
University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
{kubota, hagiya}@is.s.u-tokyo.ac.jp

Abstract. To design DNA nano-machines or analyze DNA molecular
reactions, it is important to be able to predict the energy landscape of
molecular structures and the energy barrier of a transition between struc-
tures on the landscape. Unfortunately, this is difficult for DNA molecules
longer than 100 bases. In this paper, we propose an effective new tech-
nique for analyzing a structural transition over a DNA energy landscape.
Imagine a very undulating landscape. Suddenly, water starts to gush
out from one site and keeps flowing. How will the water surface expand
over the landscape? Using a variant of Dijkstra’s and Jarńık-Prim’s al-
gorithms, we generate the shape of the basin from its formation process.
The resulting basin contains the true energy barrier. Furthermore, a com-
parison between the basin feature and the corresponding actual chemical
reaction shows that the basin can be used as a criterion to explain the
reaction.

1 Introduction

In the field of molecular programming [11], which aims to establish general prin-
ciples for building molecular systems, sequence design and the analysis of molec-
ular reactions are among the most important research themes. As one approach
to these problems, research using the thermodynamics of secondary structures
is flourishing [1, 2, 3, 5, 12, 17].

As a method of computing the free energy of a nucleic acid secondary struc-
ture, the model based on nearest neighbor thermodynamics [21] is widely used.
This model assigns a free energy parameter obtained experimentally to each
loop surrounded by the backbone and the hydrogen bonds between the bases of
the nucleic acid. The energy of the entire secondary structure is approximated
by the sum of such free energies. For DNA, the parameters are provided by
SantaLucia et al. [19] among others. According to the model, when a base se-
quence is given, the minimum free energy structure (mfe structure), which is the

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 202–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Minimum Basin Algorithm: An Effective Analysis Technique 203

most stable structure in solution, can be predicted. The problem of obtaining
the mfe structure is called the folding problem and is solved effectively using
dynamic programming [26]. Conversely, when a secondary structure is given, the
problem of finding a sequence whose mfe structure is the given one is called
the inverse folding problem. This can be formulated as an optimization problem
corresponding to the folding [13].

Furthermore, in some cases, we want to consider not only the minimization
of the free energy but also the maximization of the probability that the given
structure is assumed. For this purpose, it is necessary to obtain the partition
function, which can also be calculated using dynamic programming [14]. More-
over, a method of enumerating suboptimal structures in addition to the mfe has
been studied [24].

Recently, a DNA molecular machine based on the conformational changes
caused by fuel DNA via branch migration was reported [25]. A model based on
nearest neighbor thermodynamics could also be used to design such a molec-
ular machine. By using and extending the model, Uejima et al. designed their
“hairpin-based multi-state machine”, which is based on the sequential opening
of DNA hairpin structures, with the intention of developing more general multi-
state machines [22]. They proposed an application of their machine to molecular
memory, called “conformational addressing”, and verified its reactions [16]. In
the design, they considered not only static equilibrium energies but also struc-
tural transition paths, because some operations of their machine depend on free
energy traps (local minima) and they need to evaluate the (in)efficiency of struc-
ture transitions out of a trap.

In order to evaluate a transition between two structures, it is necessary to
define a path connecting the two structures and to calculate the height of the en-
ergy barrier on the path. To predict the transition path, Uejima et al. employed
the heuristics by Morgan and Higgs [15], which have a superior computational
efficiency compared with other methods. This heuristics restrict the transition
paths to those called “direct paths”, which consist of steps that remove the base
pairs in the start structure that do not exist in the target structures and steps
that add base pairs in the target structure that do not exit in the start structure.

Previously, we designed and verified our hairpin-based machine, called the
“branching machine”, whose state can branch according to the input. In the de-
sign, we also followed Uejima’s footsteps and used Morgan-Higgs’ heuristics [18].
As for direct paths, a breadth-first search algorithm [7] and an improvement of
Morgan-Higgs’ heuristics [23] have been proposed.

However, the structures on a direct path only contain base pairs that exist in
either the start or target structure. This condition obviously makes the analysis
based on transition paths restrictive. In order to analyze the energy landscape,
especially to seek the true energy barrier, it is also necessary to consider base
pairs that do not exist in the start or target structures.

For this purpose, analyses using the Markov process and a kind of Monte
Carlo methods were studied by Flamm et al. [8], and the flooding algorithm was
proposed by Stadler and Flamm [20]. The flooding algorithm generates not only



204 M. Kubota and M. Hagiya

the true energy barrier but also the barrier tree that is a fine representation
of the energy landscape [6]. However, this algorithm needs to enumerate all the
structures that the given sequence can assume and to calculate their energies in
advance. Because the number of all possible structures increases exponentially
with the sequence length, it is difficult to enumerate and calculate them all when
the length exceeds 100 bases [4]. Even if this were possible, the energies of almost
all of the structures are quite high [4] and useless.

In this paper, we notice that the analysis of the energy geographical features
of DNA is a special case of the minimax path problem and propose a technique
for the analysis based on the fact that the minimax path is a path on the mini-
mum spanning tree. The technique is a variant of Dijkstra’s and Jarńık-Prim’s
algorithms, which are used to obtain the shortest path and minimum spanning
tree, respectively. An experimental result of our “branching machine” shows that
this technique is reasonable for explaining an actual reaction.

2 Advanced Analysis Technique for Energy Landscapes

Consider a DNA molecule that undergoes a change from one conformation Ss

:start to another St:target. In this study, a structural transition is defined as
a sequence involving the “formation (addition) of one base pair” or “dissocia-
tion (removal) of one base pair.” Then, there must be a structure Sb:barrier
that gives the energy barrier on the path.

If the molecule can attain the conformation St, then the probability that the
molecule carries out a conformational change via the path with the lowest energy
barrier is high. To design a DNA machine using a conformational change, it is
reasonable to use DNA sequences with the high or low energy barrier depending
on the specifications.

Because one can search for a structure adjacent to a given structure by adding
or removing one base pair, we can consider the graph G = (V,E) in which a ver-
tex expresses a structure and an edge expresses an adjacency relation between
each pair of vertices. Then, the algorithm begins with the set which consists only
of the initial structure Ss and extends the set using the adjacency relation. It
ends when the set includes the target structure St.

Minimum Basin Algorithm

1) Given start vertex Ss and target vertex St.
2) B, N := ∅. B: a set of reachable, low energy vertices

N : a set of vertices neighboring a vertex in B
3) Add Ss to B.
4) Add u ∈ N(v) \ (B ∪N ) to N ,

where v is added to B in the previous step.
(x ∈ N(y) iff ∃e(x, y) ∈ E.)

5) Move v ∈ N with the minimum energy to B from N .
(If there are multiple minimum energy vertices, then Move all of them.)

6) Go to Step 4. If v = St in Step 5, then End.



Minimum Basin Algorithm: An Effective Analysis Technique 205

Subset B ⊆ V in this algorithm contains structures in the minimum basin
that connect the starting Ss and terminal St points. In other words, if we assume
that the starting point Ss is a source and the terminal point St is a switch to stop
the water, the set B consists of the structures that appear in the basin of water
over the energy landscape. Because B covers all of the low energy structures that
can be reached with a conformational change, it is suitable for comparison with
the result of an experiment. Moreover, the structure with the maximum energy
in B serves as the true energy barrier.

This technique can be used for any landscape in which each vertex can be
defined using any weight, like energy, and the adjacency relation between each
pair of vertices can be defined.

3 Relation to the Minimax Path Problem

The minimax path is the path whose maximum distance between two adjacent
vertices is the minimum. For example, one needs this path to cross a vast desert
via oases, choosing the path whose maximum distance between two oases con-
nected directly on the path is the minimum. This situation resembles that of a
conformational change via the path with the lowest energy barrier, except that
while weights are given to edges in typical graphs, i.e., E → IR, energies are
assigned to vertices on the energy landscape, i.e., V → IR.

Because the minimax path is a path on the minimum spanning tree, the algo-
rithm used to obtain the path with the lowest energy barrier must be related to
that of the minimum spanning tree. In fact, our minimum basin algorithm is a
variant of the Dijkstra-Jarńık-Prim (DJP) algorithm. In the DJP, the temporary
shortest distance or temporary minimum edge is held at each vertex and this
value is updated in these algorithms. Energy is assigned to each vertex on the en-
ergy landscape, and thus it is not necessary to update the value in the minimum
basin algorithm. The flooding algorithm is also a variant of Kruskal’s algorithm.
According to the above-mentioned feature, it is not necessary to check a cycle in
the flooding algorithm. Therefore, the analysis of the energy landscape is easier
than that of the minimax path problem.

In the minimum spanning tree problem, the obtained result can be repre-
sented graphically by the taxonomic tree called the dendrogram. The barrier
tree for the energy landscape is a variant of the dendrogram.

The minimum basin algorithm can obtain a kind of minimax path that has
the lowest energy barrier using trace back. The path obtained is the reasonable
path that is most stable energetically overall.

4 Efficient Data Structures for Implementation

When we use the minimum basin algorithm, the main procedure consisting of
Steps 5 and 6 in Sect. 2 is that shown in Table 1. In order to implement this



206 M. Kubota and M. Hagiya

Table 1. Main Repeat Procedure

1) Neighboring Structures
Specify a pair that can be added or removed,
in order to find one neighbor of the current structure.

2) Overlap Check
Confirm that the structure has not appeared before.

3) Calculate Energy
Calculate the energy of the new structure.

4) Compare Energy with Threshold
If the new energy is lower than the threshold,
then Add it to the priority queue.

5) Repeat
If neighboring structures remain, then Go to 1.

6) Select Minimum
Select a structure as the current structure for the next iteration.

Table 2. Strategies for Implementation

Data/Operation etc. Data Structure etc.

Ordered Rooted Tree
Secondary Structure (Ring List Tree)

Base Pair List

Check Overlap Base Pair Tree

Calculate Energy 3-Loop Energy Difference

Loop Energy of Virtual Base External Loop

Energy Threshold Morgan-Higgs’ Heuristics

Select Minimum Priority Queue
(Neighboring Set N ) (Incremental Binary Heap)

Multiple Minima Breadth First

Minimum Basin B Final Basin List

Yield Path Minimax Path

procedure, we used various strategies (Table 2). We present the details of the
individual strategies in the next subsections.

Ring List Tree and Base Pair List. In order to choose a base pair to add
or remove effectively (Table 1–Step 1), it is necessary to use good data structures
representing secondary structures. We used both the ring list tree (Fig. 1–C) and
the base pair list (Fig. 2–B).

In the case of addition, it is necessary to make a pair using bases that belong
to the same loop, so that the resulting structure does not become a pseudoknot.
A secondary structure can be converted into a tree representation called an
ordered rooted tree [10, 13]. The ring list tree we use is a kind of ordered rooted
tree, which Flamm et al. implemented in their stochastic simulation based on



Minimum Basin Algorithm: An Effective Analysis Technique 207

3’

1
5’

5

30

10

20

35

31

36

34

39

38

32

37

40

33

6

4

9 8

2

7

3

25

21

26

24

29

2822
27

23

15

11

16
14

19
18

1217

13

45

41 46

44

49

48

42

47

50

43

65

6166

64

69 68

62

67
70

63

75

71

76

74

79

78

72

77

80

73

55

51

56

54

5958

52

57

60

53

85

81

86

84

82

87

83

(21,27)

(3,72)

5

(10,29) (35,53)

32

(36,51)

(34,54)

39

(38,49)

(37,50)

(40,47)

(33,55)

(6,70)

(4,71)

(9,30)

(8,31)

(7,69)

2524

28

(22,26)

23

15

11

16

(14,18)

(12,20)

17

(13,19)

45

(41,46)

44

48

42 43

6561 6462 63

(79,85)

(78,86)

(80,84)

(56,68)

59

(58,66)

52

(57,67)

60

81 82

1 2 75 767473 (77,87)

83

37

38 50

39

4544

48

42 43

40

41 47

46

49

36

35

53

51

52

33

34 55

54

56

6564

68

62 63

57

58 67

666059 61

10

2524

28

23

21

22 27

26

2912

1716

20

15

13

14 19

18

11

 9

30

 8

31

32

757473 76

72

 6

70

 4

71

7

69

5

 2 1  3 77

78 87

8382

86

81

79

80 85

84

A B

C

D

..((.(((((.(((...)))((...)).))).((((((.((....)).))).)))(((.......)))))))....((((...))))

Fig. 1. Various Representations of a Secondary Structure. A: Planner Graph, B: Or-

dered Rooted Tree, C: Ring List Tree, D: Dot-Parenthesis Notation

(2,17)(1,18) (5,12) (6,11)

(3,15) (4,13) (5,12) (6,11)

(4,13) (5,12) (6,11)

C
(1,18)-(2,17)-(5,12)-(6,11).

(1,18)-(2,17)-(4,13)-(5,12).

(1,18)-(2,17)-(4,13)-(5,12)-(6,11).

(1,18)-(2,17)-(3,15)-(4,13)-(5,12)-(6,11).

B
((..((....))....))

((.((......))...))

((.(((....)))...))

((((((....))).).))

A

Fig. 2. Base Pair Tree and Multiple Secondary Structures. A: Dot-Parenthesis Nota-

tion, B: Base Pair List, C: Base Pair Tree

the Monte Carlo method [9, 8]. This tree uses horizontal lines to represent bases
that belong to the same loop. Therefore, using the ring list tree, we can find
neighboring structures effectively in the case of addition.

On the other hand, in the case of removal, we must scan the entire tree. To
overcome this problem, it is effective to use a list representation. Each node in



208 M. Kubota and M. Hagiya

the list is connected according to the order of indices of base pairs. We call this
list the base pair list. Removal can be realized by deleting a node from the list.

Base Pair Tree. In Step 2 in Table 1, we must check whether each calculated
neighboring structure has already appeared. A mechanism that keeps the struc-
tures that have already appeared is needed for this overlap check.

We propose the base pair tree (Fig. 2–C), which represents multiple base pair
lists. Each node of this tree also represents a base pair. By choosing a node, we
can decide the unique structure consisting of the base pairs on the path traced
back to the root of the tree.

Each node has a Boolean value: 0 or 1. The tree is traversed using the base
pair list of a given neighboring structure. If the value of the final node in the
traversal is 0, then the neighboring structure has not yet appeared. If the value
is 1, the structure has already appeared. In any case, the value of the final node
is changed to 1.

3-Loop Energy Difference. In Step 3 in Table 1, we must calculate the energy
of the new structure. We use the fact that an energy parameter is assigned to each
loop in the nearest neighbor model. For structures obtained using the adjacency
relation, the energy difference between two neighboring structures arises from
the loops before and after a transition. The number of different loops is always
three (Fig. 3). Therefore, it is sufficient to calculate this difference. The ring list
tree plays an important role in this calculation.

30

10

20

9

25

21

26

24

29

2822
27

23

15

11

16
14

19
18

1217

13

10

2524

28

23

21

22 27

26

2912

1716

20

15

13

14 19

18

11

 9

30

30

10

20

9

25

21

26

24

29
28

22

27

23

15

11

16
14

19
18

1217

13

10

2911

 9

30

28

252423

21

22 27

26

12

1716

20

15

13

14 19

18

Fig. 3. Three Loops and Changing the Ring List Tree. The loops indicated by the cycle

change during the formation and dissociation of a base pair. Consequently, the ring list

tree is manipulated

Loop Energy for Virtual Bases. In order to calculate the energy of a sec-
ondary structure formed by two or more sequences, these sequences must be
connected using virtual bases that do not form base pairs with other bases. Ue-
jima et al. calculated a loop energy parameter including virtual bases using the
equilibrium analysis of reactions consisting of two molecules [22], because it was



Minimum Basin Algorithm: An Effective Analysis Technique 209

necessary to compare the energy difference between separated and hybridized
molecules. Ackermann et al. used an approximation with sixteen virtual bases [1].

We follow Uejima’s approach for our analysis, while considering the energy
of the dangling ends. For a single sequence, the loop containing the 5’- and 3’-
ends belongs to the external loop. Therefore, it is reasonable to consider that
a loop containing virtual bases is also an external loop, otherwise there would
be an energy difference between the two ways of connecting two DNA sequences
using virtual bases, i.e., 5’-A-spacer-B-3’ and 5’-B-spacer-A-3’, and each
way would produce a different mfe structure.

Morgan-Higgs’ Heuristics and Its Modification. Morgan and Higgs pro-
posed that their heuristics can be used to give a threshold for the true energy
barrier, i.e., Barrier true ≤ BarrierMH [15]. It is also an effective way to reduce
the search space in our algorithm (Table 1–Step 4). Structures whose energies ex-
ceed the barrier obtained using the heuristics need not be considered for selection
and can be discarded.

In using Morgan and Higgs’ heuristics, we made the following small modifi-
cation. At the end of the heuristics, we remove the base pairs remaining from
the initial structure. This is simply because in their original heuristics, the base
pairs of the initial structure that are not incompatible with the final one are
never chosen. Because the Morgan-Higgs’ heuristics keeps as many base pairs in
the initial structure as possible, it is reasonable to remove the remaining base
pairs at the end.

Multiple Minimum Energy Structures. The minimum energy structure of
N is not unique in general (Table 1–Step 6). If we only need to know the energy
barrier involved in a conformational change, it is sufficient to select only one of
the multiple minimum energy structures for the next iteration. This results in
the depth-first strategy, which is more effective for obtaining the barrier.

To analyze the minimum basin B, however, we should adopt the breadth-first
strategy. Using the depth-first strategy, if the algorithm stops when the basin
reaches the target structure St, then the basin obtained is smaller than the
true minimum basin and this depends on the selection of the minimum energy
structure. By choosing all of the minimum energy structures, we can simulate
water gushing over an undulating landscape.

5 Analysis Using the Minimum Basin

Our branching machine is a single DNA molecule consisting of two hairpin struc-
tures connected by a single-stranded section. The input DNA can invade a hair-
pin’s stem via branch migration, opening the hairpin. The branching state is
represented by which of hairpins is opened. In Fig. 4, conformation (b) corre-
sponds to one of the branching states, while the change to (c) is undesirable.
Therefore, our criteria were to maximize the barrier height B on the path from
(b) to (c) and to minimize the energy valley depth V for both the left and right



210 M. Kubota and M. Hagiya

(a) (b) (c)

(b) (c) structure

fr
ee

 e
ne

rg
y

B

V

Fig. 4. Conformational Change of Our Branching Machine. The graph on the right

side shows the free energy following the conformational change from (b) to (c)

Table 3. Sequences of the Branching Machine and Input Oligomer

Branching : 5’-TATAAAACCCTATCTATGCG-ACACATA-CGCATAGATAGGGTTTTATA-

Machine -CCGCACGAGACCCCACCCTC-

(Hairpin) -CGCGCAAGAACCATTTGTTG-CAGCGCA-CAACAAATGGTTCTTGCGCG-3’

Open 5 : 5’-GAGGGTGGGGTCTCGTGCGG-TATAAAACCCTATCTATGCG-3’

Open 3 : 5’-CAACAAATGGTTCTTGCGCG-GAGGGTGGGGTCTCGTGCGG-3’

sides. Table 3 shows the best sequences in our design using Morgan-Higgs’ heuris-
tics. Open 5 opens the hairpin’s 5’-side and Open 3 opens the hairpin’s 3’-side.
The hairpin is 114 bases long and the input DNA is 40 bases.

An experiment showed that the 5’-side input DNA was much better at hy-
bridizing with the branching machine than the 3’-side [18]. We postulated that
the mfe structure of the input DNA influences the reaction.

Fig. 5 shows the free energies along the structural transition paths obtained
using the Morgan-Higgs’ and our minimum basin algorithms.

On the Morgan-Higgs’ paths, the 3’-side energy barrier is higher than that
on the 5’-side. During the structural transition after the nucleation for the hy-
bridization, both sides must assume a structure that is more unstable than struc-
ture Ss. This results in a big barrier. In this way, using Morgan-Higgs’ heuristics,
we can discuss the energy barrier on the direct paths. However, it does not tell
us about the true energy barrier or the structures in the middle of the transition.

By contrast, on the minimax paths obtained using the minimum basin algo-
rithm, we can find the true energy barrier, which does not usually appear on
direct paths. It turned out that it was unnecessary to climb over a big barrier
on both sides. However, a structure considered to be a kind of barrier still exists
on both sides. The energy of the structure on the 3’-side is higher than that on
the 5’-side. Furthermore, using the minimum basin algorithm, we can analyze
the minimum basin B and obtain the structures in the middle of the transition.

Table 4 shows some features of the minimum basin B and minimax path. In
the first column is the number of structures comprising the minimum basin. The
next column shows the barrier height Bc from Ss to the structure considered to
be a kind of barrier, the number of structures that are reached before the barrier
structure, and the ratio of these structures with respect to the minimum basin.



Minimum Basin Algorithm: An Effective Analysis Technique 211

-95-95

-90

-85-85

-80

-75-75

-70

-65-65

-60

-55-55

-50

-45-45

-40

Morgan-Higgs’ Heuristics

5’-side

3’-side

Structure [step]

F
re

e 
en

er
gy

 [k
ca

l/m
ol

]

Structure [step]

-95-95

-90

-85-85

-80

-75-75

-70

-65-65

-60

-55-55

-50

-45-45

-40

Minimum Basin Algorithm

5’-side

3’-side

F
re

e 
en

er
gy

 [k
ca

l/m
ol

]

Fig. 5. Free Energies along the Structural Transition Path. These are the paths from

the mfe structure when the hairpin does not hybridize with any input DNA to the

mfe structure when the hairpin hybridizes with one of the input DNA. The vertical

axis is the free energy of the structure given on the horizontal axis. The “addition” or

“removal” of a base pair is one step involved in changing the secondary structure along

the horizontal axis. In the lower graph, the lower left corner of the triangle shows the

structure that is thought to be a kind of barrier

Table 4. Features of the Minimum Basin and Path. (Bc [kcal/mol])

Basin Barrier (Maximum Convex) Length
|B| < Bc ≤ Bc Bc Step Dist.

5’-side 3416 2311 (67.7%) 2338 (68.5%) −5.50 96 68
3’-side 65887 61801 (93.8%) 62548 (94.9%) −0.17 98 74

The last column presents the lengths of the minimax path (Step) and the direct
path (Dist.).

These results can explain the molecular reactions that make it comparatively
more difficult for the 3’-side to occur than the 5’-side. Among several crite-
ria in Table 4, the number of structures can be evaluated while calculating the



212 M. Kubota and M. Hagiya

minimum basin. We can set a threshold on the number of structures used to
judge a given sequence; we can stop the algorithm when the number reaches the
threshold.

For the 5’-side, it took 8–9 seconds (CPU time) and about 200 MB of memory
to calculate the minimum basin. This performance was measured on a Pentium 3,
500 MHz, using Windows 2000 with 320 MB of memory. The sequence used for
this calculation was 158 bases long (input + virtual bases + hairpin = 40 + 4
+ 114). Although it is difficult to analyze the energy landscape of such a long
sequence after enumerating all the structures (see [4] Table 1), it is reasonable to
analyze it using the minimum basin algorithm. Using our original implementa-
tion, which did not use the strategies mentioned in Sect. 4, we spent over a day
and about 10 MB of memory on the same problem. Therefore, those strategies
are quite effective for a long sequence. Incidentally, even using the original im-
plementation, we were able to analyze a sequence with a length of 20 bases in a
instant.

6 Conclusion

We proposed the minimum basin algorithm and showed that the analysis of
the minimum basin B obtained using this algorithm gives a reasonable criterion
for explaining actual reactions. Robust molecular machines and systems should
be realizable using sequence designs based on this technique. Furthermore, de-
tailed analyses could be performed using the flooding algorithm for the minimum
basin B.

Despite the efforts of many researchers, the technique still involves several
uncertainties, e.g., the accuracy of the parameters and approximations used
by the algorithm. While such predictions are statistically accurate, they may
not be as accurate in individual cases [8]. Therefore, in order to use this tech-
nique for sequence design, it is important to verify individual sequence reac-
tions experimentally. In the future, it will be necessary to draw and collect
the correspondence maps between reaction experiments and analytical predic-
tions in order to incorporate the knowledge obtained from the map in sequence
design.

In addition to DNA, the minimum basin algorithm should also be effective for
any energy or fitness landscape. Presently, we are trying to apply this technique
to analyze actual RNA reactions.

Acknowledgments

This work was supported by JST CREST and the Ministry of Education, Cul-
ture, Sports, Science, and Technology of Japan under Grants-in-Aid for Scientific
Research on Priority Areas (B), 14085101 and 14085202, 2004.



Minimum Basin Algorithm: An Effective Analysis Technique 213

References

1. Ackermann, J. et al.: Word design for molecular information processing. Zeitschrift
für Naturforschung 58a (2003) 157–161

2. Andronescu, M. et al.: RNAsoft: a suite of RNA secondary structure prediction
and design software tools. Nucl. Acids. Res. 31 (2003) 3416–3422

3. Andronescu, M. et al.: Algorithms for testing that sets of DNA words concatenate
without secondary structure. DNA8, Springer LNCS 2568 (2003) 182–195

4. Cupal, J. et al.: Density of States, Metastable States, and Saddle Points Explor-
ing the Energy Landscape of an RNA Molecule. Proc. of 5th Int. Conference on
Intelligent Systems for Molecular Biology (ISMB-97) (1997) 88–91

5. Deaton, R. et al.: A Software Tool for Generating Non-crosshybridizing Libraries
of DNA Oligonucleotides. DNA8, Springer LNCS 2568 (2003) 252–261

6. Flamm, C. et al.: Barrier Trees of Degenerate Landscapes. Z. Phys. Chem. 216
(2002) 155–173

7. Flamm, C. et al.: Design of multistable RNA molecules. RNA 7 (2001) 254–265
8. Flamm, C. et al.: RNA folding at elementary step resolution. RNA 6 (2000) 325–

338
9. Flamm, C.: Kinetic Folding of RNA. PhD Thesis, University of Vienna, Austria

(1998)
10. Fontana, W. et al.: Statistics of RNA secondary structures. Biopolymers 33 (1993)

1389–1404
11. Hagiya, M.: Towards Molecular Programming. Modeling in Molecular Biology,

Springer Natural Computing Series (2003) (in press)
12. Heitsch, C.E. et al.: From RNA Secondary Structure to Coding Theory: A Com-

binatorial Approach. DNA8, Springer LNCS 2568 (2003) 215–228
13. Hofacker, I.L. et al.: Fast Folding and Comparison of RNA Secondary Structures.

Monatshefte für Chemie 125 (1994) 167–188
14. McCaskill, J.S.: The Equilibrium Partition Function and Base Pair Binding Prob-

abilities for RNA Secondary Structure. Biopolymers 29 (1990) 1105–1119
15. Morgan, S.R. et al.: Barrier heights between ground states in a model of RNA

secondary structure. J. Phys. A: Math. Gen. 31 (1998) 3153–3170
16. Kameda, A. et al.: Conformational addressing using the hairpin structure of single-

strand DNA. DNA9, Springer LNCS 2943 (2004) 219–224
17. Kobayashi, S. et al.: An Algorithm for Testing Structure Freeness of Biomolecular

Sequences. Aspects of Molecular Computing, Springer LNCS 2950 (2004) 266–277
18. Kubota, M. et al.: Branching DNA Machines Based on Transitions of Hairpin

Structures. Proc. of the 2003 Congress on Evolutionary Computation (CEC2003)
4 (2003) 2542–2548

19. SantaLucia, J., Jr.: A unified view of polymer, dumbbell, and oligonucleotide DNA
nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95 (1998) 1460–
1465

20. Stadler, P.F. et al.: Barrier Trees on Poset-Valued Landscapes. J. Gen. Prog. Evol.
Machines 4 (2003) 7–20

21. Tinoco, I., Jr. et al.: Estimation of secondary structure in ribonucleic acids. Nature
230 (1971) 362–367

22. Uejima, H. et al.: Secondary Structure Design of Multi-state DNA Machine Based
on Sequential Structure Transitions. DNA9, Springer LNCS 2943 (2004) 74–85

23. Uejima, H. et al.: Analyzing Secondary Structure Transition Paths of DNA/RNA
molecules. DNA9, Springer LNCS 2943 (2004) 86–90



214 M. Kubota and M. Hagiya

24. Wuchty, S. et al.: Complete Suboptimal Folding of RNA and the Stability of Sec-
ondary Structures. Biopolymers 49 (1999) 145–165

25. Yurke, B. et al.: A DNA-fuelled molecular machine made of DNA. Nature 406
(2000) 605–608

26. Zuker, M. et al.: Optimal computer folding of large RNA sequences using thermo-
dynamic and auxiliary information. Nucl. Acids. Res. 9 (1981) 133–148



 

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 215 – 223, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Efficient Initial Pool Generation for Weighted Graph 
Problems Using Parallel Overlap Assembly 

Ji Youn Lee1, Hee-Woong Lim2, Suk-In Yoo2, Byoung-Tak Zhang2,  
and Tai Hyun Park1 

1 School of Chemical Engineering 
 2 School of Computer Science and Engineering,Seoul National University,  

San 56-1 Shilim-Dong, Kwanak-Gu, Seoul 151-744, Korea 
elfin94@snu.ac.kr, {hwlim, siyoo, btzhang}@bi.snu.ac.kr, 

thpark@plaza.snu.ac.kr 

Abstract. Most DNA computing algorithms for mathematical problems start 
with combinatorial generation of an initial pool. Several methods for initial-
pool generation have been proposed, including hybridization/ligation and 
mix/split methods. Here, we implement and compare parallel overlap assembly 
with the hybridization/ligation method. We applied these methods to the 
molecular algorithm to solve an instance of the graph problem with weighted 
edges. Our experimental results show that parallel overlap assembly is a better 
choice in terms of generation speed and material consumption than the 
hybridization/ligation method. Simulation of parallel overlap assembly was 
performed to investigate the potential and the limitation of the method. 

1   Introduction 

DNA computing has showed its potential by solving several mathematical problems, 
such as graph and satisfiability problems [1-5]. To solve those problems, precedent 
initial pool generation is required even though it has been pointed out as a 
shortcoming in DNA computing. Most molecular algorithms generate initial pools in 
the first implementation step and then filter the candidate solutions which satisfy the 
given conditions. Usually, an initial pool is a combinatorial library that contains 
numerical or indicative information. There are a few initial pool generation methods 
with their own advantages and disadvantages. One of them is the 
hybridization/ligation method that link oligonucleotides hybridized through hydrogen 
bonds by enzymatic reaction. This method was first introduced by Adleman to solve a 
Hamiltonian path problem [1] and a traveling salesman problem (TSP) [3]. Parallel 
overlap assembly (POA) was originally introduced by Stemmer to facilitate in vitro 
mutagenesis [6]. It was successfully applied by Kaplan et al. to generate an initial 
pool consists of binary numbers to solve a maximal clique problem [7]. Other method, 
such as the mix/split method was introduced by Faulhammer et al. to generate 
combinatorial library of binary numbers [5]. Braich et al. applied this method to 
generate an initial pool for 20-variable 3-SAT problem [4].  

In previous work, we implemented a molecular algorithm to solve a 7-city traveling 
salesman problem [3]. The molecular algorithm for TSP also contained an initial pool 



216 J.Y. Lee et al. 

 

generation step before filtering and readout steps. The hybridization/ligation method 
was used to generate an initial pool and we succeeded to solve the problem; however, 
the pool generation efficiency was very low. Therefore, the hybridization/ligation 
method cannot guarantee a complete pool as the problem size increases, which limits 
the solvable problem size. We introduced another initial pool generation method which 
is based on parallel overlap assembly. This method was compared with the former one 
by looking at the product size distributions. Additionally, a computerized simulation of 
parallel overlap assembly was performed to support the experimental results.  

2   Initial Pool Generation Methods 

2.1   Parallel Overlap Assembly 

Kaplan et al. suggested the construction of computational DNA libraries based on a 
DNA shuffling method [2, 6]. They succeeded in constructing a complete library of 
binary numbers from 0 to 24-1 to solve the maximal clique problem for a graph with 
four vertices. Their library consisted of two parts; one is the position string of fixed 
length and the other is value string (0 or 1) of various lengths. The DNA strands 
corresponding to the same position string were overlapped during an annealing step in 
the assembly process while the remaining parts of the DNA strands were extended by 
dNTPs incorporation by polymerase (represented by the dotted arrows in Fig. 1).  

 

Fig. 1. Schematic diagram of parallel overlap assembly and the hybridization/ligation method 
for a traveling salesman problem. Left part: The thick arrows represent the single-stranded 
DNA molecules which participate in each cycle of the reaction. The dotted arrows represent the 
elongated part by dNTPs incorporation. Right part: The nicks generated in the hybridization 
step are linked by ligase via the formation of a phosphodiester bond between the 3' hydroxyl 
and 5' phosphate of adjacent nucleotides. The arrowhead indicates the 3’ hydroxyl end 



 Efficient Initial Pool Generation for Weighted Graph Problems 217 

 

The mechanism of POA resembles that of polymerase chain reaction (PCR) in that 
it repeats the denaturation, annealing and extension. However, the characteristics are 
complete different. PCR is an in vitro DNA amplification method, so the number of 
target DNA strands doubled every cycle. In POA, the number of DNA strands does 
not increase as the cycle progresses, while the lengths of the DNA strands increase.  

POA can also efficiently be applied to initial pool generation for a weighted graph 
problem because the encoding scheme relies on hybridization between city sequences 
which correspond to the positioning string in the maximal clique problem. The 
schematic diagram of POA for a traveling salesman problem is shown in Fig. 1. 

2.2   Hybridization and Ligation Method 

Adleman created an initial pool of candidate paths in parallel to solve a 7-node 
Hamiltonian path problem utilizing the hybridization/ligation method [1]. Possible 
paths of various lengths were generated by hybridization between half sequences of 
each node. Ligase connected the nicks between the 3' hydroxyl and 5' phosphate of 
adjacent nucleotides which are formed after hybridization via a phosphodiester bond 
and consequently linked the DNA molecules (right part of Fig. 1). This method was 
also applied to solve a 7-city traveling salesman problem [3]. 

3   Materials and Methods 

3.1   Target Problem 

The target problem was a 7-city traveling salesman problem as shown in Fig. 2 (A). 
DNA strands representing the city and the cost were encoded with 20-mer 
oligonucleotides. DNA strands representing the road were encoded according to city 
and cost information with 40-mer oligonucleotides. The last half (10-mer) of the 
departure city and the first half (10-mer) of the arrival city act as linkers to connect 
the cities (Fig. 2 (B)). The linker parts hybridize in hybridization and annealing step 
in each initial pool generation method. 

3.2   Parallel Overlap Assembly 

Thirty five different DNA oligonucleotides (7 cities, 5 costs, and 23 roads) were 
mixed and subjected to PCR without primers as templates. The reaction mixture 
contained 1.25 unit of Pyrobest® DNA polymerase (TaKaRa, Japan) in 10 mM Tris-
HCl, pH 9.0, 1 mM MgCl2, 50 mM KCl, and 0.2 mM of each dNTP was dissolved in 
distilled water. The total reaction volume was 20 µl. PCR was processed for 34 cycles 
at 95°C for 30 seconds, at 55°C for 30 seconds and at 72°C for 30 seconds. Initial 
denaturation and prolonged polymerization were executed for 4 minutes each. 

3.3   Hybridization and Ligation 

The same amount of oligonucleotide mixture as in POA was prepared [3]. The 
mixture was heated to 95 and then hybridized by slow cooling to 20°C at 1°C per 
minute. The reaction mixture was then subjected to a ligation. For a  ligation,  5  µl  of  

°C



218 J.Y. Lee et al. 

 

1

0

3

2 5

6

4

3

5

3

3

7

11

3

3

9

11

3

3

start & end
city

(A)

(B)

city A city B

road A to B

cost A to B

(20 mer) (20 mer) (20 mer)

(40 mer)  

Fig. 2. The seven-city traveling salesman problem (A) and encoding scheme (B). Paths start 
and end at city 0. The circles denote the cities and the arrows represent the roads. The number 
on each arrow gives the cost on the given road. The arrowhead of (B) denotes 3’ hydroxyl end 

the reaction mixtures, 700 units of T4 DNA ligase (TaKaRa, Japan), ligase buffer (66 
mM Tris-HCl, pH 7.6, 6.6 mM MgCl2, 10 mM DTT, 0.1 mM ATP), and an 
appropriate volume of distilled water was mixed. The total reaction volume was 10 µl. 
The reaction mixture was incubated at 16°C for 16 hours. 

3.4   Gel Electrophoresis and Image Analysis 

Agarose gel electrophoresis was performed with 2% Agarose-1000 (Invitrogen, CA, 
USA) in 0.5X tris-Borate-EDTA buffer and gel was stained with ethidium bromide. 
As a marker, GeneRulerTM 50 bp DNA ladder (Fermentas, MD, USA) was used. The 
gel image was obtained with a Gel-Doc and analyzed by Quantity OneTM (Bio-Rad, 
USA).  

3.5   Simulation of Parallel Overlap Assembly 

We used the algorithm of Maheshri [8] to simulate parallel overlap assembly process 
for initial pool generation. For simplicity, we only considered match regions to 
calculate the free energy and did not consider mismatches or dangling ends. The free 
energy was calculated from the nearest-neighbor model and the parameters given by 
SantaLucia [9]. 



 Efficient Initial Pool Generation for Weighted Graph Problems 219 

 

4   Results and Discussion 

To compare the initial pool generation efficiencies between the hybridization/ligation 
method and parallel overlap assembly, we performed agarose gel electrophoresis and 
analyzed the gel image with an image analysis software. The efficiencies can be 
indirectly compared with the produced amounts of expected length of DNA strands. 
From the agarose gel, it was possible to determine the length distribution of DNA 
strands. The length of the candidate paths was 300 bp. The candidate paths contained 
eight cities and seven costs which were 20-mer respectively; the paths start from city 
0, end with city 0, and visit all seven cities. The electrophoresis results are shown in 
Fig. 3 (A). After the hybridization/ligation reaction, the elongated DNA strands were 
observed (lane 2 in Fig. 3 (A)) to be located higher than the oligomer mixture (lane 1 
in Fig. 3 (A)). The fluorescence intensity was generally increased by the double-
stranded DNA formation when compared with oligomer mixture in lane 1. However, 
most DNA strands are located around 100 bp, which indicates that the generated paths 
visit only two to four cities. Approximately 13.18 ng of DNA strands were located  
 

(A)

(B) Marker Lane 1 Lane 2 Lane 3

 

Fig. 3. Comparison of two initial pool generation methods. (A) Experimental results of 
electrophoresis on 2% agarose gel. M denotes DNA size marker (50 bp ladder). Lane 1 is the 
oligomer mixture, lane 2 is the product of hybridization/ligation reaction and lane 3 is the 
product of parallel overlap assembly by Taq polymerase. (B) Image analysis results using 
Quantity OneTM. Each graph corresponds to each lane of (A). When comparing POA with  the 
hybridization/ligation method, more DNA strands are located around 300 bp which is the 
expected pool size 



220 J.Y. Lee et al. 

 

around 300 bp, which corresponds to 67.59 fmole molecules or 27.04 nM (quantified 
by a linear regression of marker DNA molecules). When considering the 
reactionvolume (10 µl), the generated pool size was 1.63×1011. The complete initial 
pool size of the 7-city TSP cannot exceed 88 (= 1.68×107). Therefore, we can 
conclude that the initial pool generated by hybridization/ligation contained the 
complete pool.  

In the case of parallel overlap assembly, many longer DNA strands were observed 
compared to the hybridization/ligation reaction (lane 3 in Fig. 3 (A)). Moreover, the 
product amount that was represented by the area of the peak was increased by the 
dNTPs incorporation by polymerase. There were approximately 25.82 ng of DNA 
strands around 300 bp, which corresponds to 132.41 fmoles or 26.48 nM. When 
considering the reaction volume (20 µl), the generated pool size was 3.19×1011. The 
initial pool size generated from the same amount of initial oligonucleotides was about 
two times larger than that of hybridization/ligation. With larger problem, the initial 
pool size is too small to contain the complete pool; however, POA with more cycle 
and large experimental scale can include practical pools. 

Parallel overlap assembly is a better initial pool generation method for problems 
that require combinatorial initial pools, such as weighted graph problems. Firstly, 
POA is more efficient than the hybridization/ligation method in that it maintains the 
population size, i.e. the number of DNA molecules throughout the procedure. 
Initially, two single-stranded DNA molecules partially hybridize in the annealing step 
and then they are extended by dNTPs incorporation by polymerase. The elongated 
DNA molecules are denatured to two single-stranded DNA in the next denaturation 
step, and they are subjected to the annealing reaction at the next cycle. Therefore, the 
population size does not change, and we can decide the population size by varying the 
initial number of oligonucleotides. On the other hand, in the hybridization/ligation 
method, the population size decreases as reaction progresses. For example, in our 
target problem, one complete double-stranded DNA strand composed of eight cities 
can be made by a ligation of eight city strands, seven cost strands, and seven road 
strands. This means that the population size is decreased by a factor of the number of 
components composing it in the hybridization/ligation method. As the problem size 
increase, the required initial pool size increases dramatically. Therefore, in the light of 
scalability, POA has an advantage over the hybridization/ligation method.  

Secondly, POA does not require phosphorylation of oligonucleotides which is 
prerequisite for the ligation of oligonucleotides. We used 5’-phosphate group 
modified oligonucleotides for ligation and the oligonucleotide synthesis cost take up 
most of the expenses. Thirdly, POA demands less time than the hybridization/ligation 
method. Hybridization required one and half hour while ligation required more than 
12 hours; however POA for 34 cycles required only two hours. Therefore, POA is a 
much more efficient and economic method for initial pool generation. Moreover, 
initial pool generation by POA requires fewer strands than the hybridization/ligation 
method to obtain a similar amount of initial pool DNA molecules, because 
complementary strands are automatically extended by polymerase. For example, in 
the above target problem, the cost strands are not required because the cost regions 
can be filled by polymerase extension. 



 Efficient Initial Pool Generation for Weighted Graph Problems 221 

 

However, POA was not as efficient as we expected. So, we performed a 
computerized simulation to investigate the capability and the limitation of POA as an 
initial pool generation method. In the simulation, each cycle consisted of three steps: 
two single-stranded DNA molecules were randomly selected and collided; annealing 
event and duplex formation were decided based on the thermodynamic properties; and 
extendable duplexes were extended according to the pre-determined polymerase 
fidelity. The selection probability was proportional to the concentration of each DNA 
strand. Whether single-stranded DNA molecules will hybridize or not was determined 
by Boltzman-weighted probability  

 

Fig. 4. Simulation results. (A) Length distribution of POA product. (B) Diversity of generated 
DNA species. (C) Valid strand ratio of final product in each length. (D) Average extension 
length in each cycle. (E) Valid sequence ratio and extension efficiency in each cycle. (F) 
Length change during POA: minimum, maximum, and average length in population 

After 30 cycles of POA process, various sizes of double-stranded DNA strands 
were generated (Fig. 4 (A)). The average extension length continuously increased 
with each cycle (Fig. 4 (D)), which is because extended DNA strands were used as 
templates for longer strand generation. However, the ratio of DNA strands, which 
were long enough to contain optimal solution, was very low. This was mainly due to 
the rapid decrease of the extension efficiency. When we defined the extension 
efficiency of each cycle as the ratio of annealing event which forms extendable 
duplex to total annealing event, the extension efficiency dropped dramatically after 
only a few cycles (Fig 4 (E)). The reason is that non-extendable annealing event 
increased with cycle. In the early cycles of POA, most annealing between single-
stranded DNA molecules formed an extendable duplex. Extendable duplex means that 

.  



222 J.Y. Lee et al. 

 

a 3’-end part of one single-stranded DNA molecule is annealed to its complementary 
part of the other single-stranded DNA molecule, which can undergo extension by 
polymerase. However, non-extendable duplex formation rapidly increased with each 
cycle. Non-extendable duplex means that their 3’-end parts are both dangling, so 
polymerase cannot incorporate dNTP molecules. The probability of annealing event 
with a dangling 3’-end increased with each cycle, because the elongated DNA strands 
had long subsequence complementary to the other strand. They underwent re-
annealing rather than initiated an extension reaction. This explained the rapid 
decrease of the extension efficiency. 

Products of POA were diverse both in length and in composition as shown in (Fig 
4 (B)). However, the valid strand ratio decreased with each cycle, because the DNA 
strands extended by mis-hybridization were not eliminated or recovered during the 
process. Elongated DNA strands can be considered as concatenation of the predefined 
DNA blocks: left half and right half of city strands, cost strands, and their 
complementary strands (the region connected by dotted lines in Fig. 2 (B)). Valid 
strands must be the concatenation of the above DNA blocks. However, invalid strands 
which are extended after mis-hybridization must contain incomplete subsequences of 
DNA blocks, and this cannot be recovered during the POA process. Moreover, as 
DNA strands are extended and getting longer, the possibility of a non-specific 
annealing increases. These are the reasons why the valid sequence ratio decreased 
with every cycle, and the valid strand ratio of longer strands were lower than that of 
shorter strands as shown in Fig. 4 (C). For example, when we investigated the invalid 
strand of 47 bp after first cycle, we could observe an initial dimer formation between 
city5 city3 road sequences, which caused incomplete DNA block of 7 bp. We could 
find the same block in the middle of invalid strands of 287 bp after 30 cycles. This 
block was found at different positions among those strands. This means that this type 
of mis-hybridization also happened in a later cycle, because the extension of DNA 
strands is unidirectional. Like this example, invalid strands generated by mis-
hybridization accumulate during POA cycles. Unlike in PCR, which primer strands 
exist in excess, template strands behave as primers in POA, therefore elaborate 3’-end 
sequence design is critical for successful POA. 

Though POA is a better method for initial pool generation than 
hybridization/ligation method as mentioned in previous section, the efficiency of POA 
is not enough to be applied to initial pool generation. Sequence design for initial 
strands of POA is an important factor and especially the specificity of 3’-end must be 
considered carefully to prevent an extension after non-specific annealing. In addition, 
we have to incorporate POA with another supplementary process such as gel 
electrophoresis and additional amplification of target length by PCR. 

Acknowledgements 

This research was supported in part by the Ministry of Commerce, Industry and 
Energy through MEC project, the Ministry of Education & Human Resources 
Development under the BK21-IT Program and the Ministry of Science and 
Technology through the NRL Program. The ICT at Seoul National University 
provided research facilities for this study. 



 Efficient Initial Pool Generation for Weighted Graph Problems 223 

 

References 

[1] L. Adleman. Molecular computation of solutions to combinatorial problems. Science, 
266:1021-1024, 1994. 

[2] Q. Ouyang, P. D. Kaplan, S. Liu, and A Libchaber. DNA solution of the maximal clique 
problem. Science, 278:446-449, 1997. 

[3] J. Y. Lee, S. –Y. Shin, T. H. Park, and B. –T. Zhang. Temperature gradient-based DNA 
computing for graph problems with weighted edges. Lect. Notes. Compt. Sci. 2568:73-84, 
2003.  

[4] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L Adleman. Solution 
of a 20-variable 3-SAT problem on a DNA computer. Science, 296:499-502, 2002. 

[5] D. Faulhammer, A. R. Cukras, R. J. Lipton, and Laura F. Landweber. Molecular 
computation: RNA solutions to chess problems. Proc. Natl. Acad. Sci. USA. 98: 1385-
1389, 2000. 

[6] W. Stemmer. DNA shuffling by random fragmentation and reassembly: in vitro 
recombination for molecular evolution. Proc. Natl. Acad. Sci. USA. 91: 10747-10751, 
1994. 

[7] P. D. Kaplan, Q. O. Ouyang, D. S. Thaler, and A Libchaber. Parallel overlap assembly for 
the construction of computational DNA libraries. J. Theor. Biol., 188: 333-341, 1997. 

[8] N. Maheshri, and D. V. Schaffer. Computational and experimental analysis of DNA 
shuffling. Proc. Natl. Acad. Sci. USA. 100: 3071-3076, 2003. 

[9] J. SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl. Acad. Sci. USA. 95: 1460-1465, 1998 



Partial Words for DNA Coding

Peter Leupold�

Research Group on Mathematical Linguistics, Rovira i Virgili University,
Pça. Imperial Tàrraco 1, 43005 Tarragona, Catalunya, Spain

klauspeter.leupold@estudiants.urv.es

Abstract. A very basic problem in all DNA computations is finding a
good encoding. Apart from the fact that they must provide a solution,
the strands involved should not exhibit any undesired behaviour, espe-
cially they should not form secondary structures. Various combinatorial
properties like repetition-freeness and involution-freeness have been pro-
posed to exclude such misbehaviour. Another option, which has been
considered, is requiring a big Hamming distance between the codewords.

We propose to consider partial words for the solution of the coding
problem. They, in some sense, already include the Hamming distance in
the definition of compatibility and are investigated for many combinato-
rial properties. Thus, they can be used to guarantee a desired distance
and simultaneously other properties. As the investigations on partial
words are attracting more and more attention, they might be able to
provide an ever-growing toolbox for finding good DNA encodings.

1 Introduction

Partial words were introduced by Berstel and Boasson in 1998 [3]. One of their
main motivations came from the behaviour of DNA strands. Two strands com-
plementing each other very closely, but having a few mismatches can still align
with each other. In such a double strand of DNA with a few mismatches, one
cannot tell which of the two non-matching bases is the right or original one.
Thus one might consider the respective position as one without information, a
whole, and then see what can still be said about the resulting word.

On the other hand, DNA or RNA strands are the basic building blocks and the
carriers of information in all DNA computations. There, a major issue is finding
the right words to encode the problem under consideration. Computations like
the famous, seminal experiment by Adleman depend on the usage of sequences,
which will recombine exactly in the ways intended in the design.

Of course, the central problem is finding a suitable set of linear sequences,
whose recombinations will constitute the computation. However, in addition the
designer faces further problems due to the fact that in reality nucleic acid strands

� This work was done, while the author was funded by the Spanish Ministry of Culture,
Education and Sport under the Programa Nacional de Formación de Profesorado
Universitario.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 224–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Partial Words for DNA Coding 225

Bulge

Hairpin Loop

External Base

Fig. 1. Various possible secondary structures of an RNA strand; the line indicates the

backbone, the dotted ones paired bases

are not linear but three-dimensional objects. Thus the selected strands might
form three-dimensional secondary structures like loops and hairpins. This should
be avoided by all means, i.e. no parts of the strand should align with other parts
of the same strand to form structures like the ones depicted in Figure 1. Such
secondary structures obviously hinder further combinability, readability etc., and
thus can render useless a computation designed very well for one-dimensional
strings, but without consideration of the actual behaviour of longer strands of
nucleic acids in the three-dimensional real world.

Adronescu et al. also mention a rather simple model trying to predict such
structures, the no repeated k-strings model [1]. There, a sequence is supposed to
have non-empty secondary structure, if there is a repetition without overlap of
a factor of length k in the string. We want to emphasize that this need not be
a direct repetition, usually termed square in combinatorics on words – in this
case an arbitrarily long sequence can separate the two repetitions. It should be
added that in an application one would really be looking for reverse complement
strings instead of repetitions. This, however, could be done with essentially the
same algorithms.

In a different approach Deaton et al. have considered the Hamming distance
between the strands of a coding as an approximate measure for the reliability
of a computation [9]. The farther apart the code words are, the less probable
undesired bindings are.

Partial words seem a good tool to combine properties like these two: if we
replace equality of words by compatibility, we in some sense get the Hamming
distance for free. If then we define a property like repetition-freeness also for
partial words, we can guarantee both properties in a unified way.

We will proceed to illustrate this considering another property, namely
involution-freeness, which was introduced by Hussini et al. [13] and further de-
veloped with numerous variants in subsequent work [11, 12, 14]. Before this, we
mention yet another motivation to use partial words in the context of DNA
computation: if such a computation lasts for a longer time and involves some
recombinations and especially copying of strands, errors are bound to be intro-
duced in some of the strands; for example, copying processes never work with
absolute perfection. If one wants to choose a set of DNA words fulfilling a prop-



226 P. Leupold

erty, even after some bases may have been changed, it is an appropriate approach
to check the following: does the desired property still hold, if the originally cho-
sen language of code words and their possible catenations is punctured up to
a certain degree with holes like in a partial word. Such a code language would
be more robust to errors and external influence and would thus promise more
reliable computations. Also the production of not exactly complementary but
very similar sequences, which still might align to each other, would be outruled.

2 Partial Words

The main motivation for the introduction of partial words mentioned by Berstel
and Boasson [3] came from molecular biology of nucleic acids. There, among
other things, one tries to determine properties of the DNA or RNA sequences
encountered in nature. These are usually seen as strings over the alphabet
{A, T,C,G}, respectively {A,U,C,G} of four bases. In nature they mostly occur
paired with their Watson-Crick complements; all these concepts belong more to
the realm of biology and will not be explained in any depth here.

But supposing only perfect pairings of bases is supposing an ideal world. As
long as the number of mismatches is not very high, similar strands will still align
due to the affinity of their matching parts.

If one then encounters a pair of strands as depicted in Figure 2, there is in
general no telling, which one of the mismatched bases is the correct or original
one.

However, one still wants to investigate the properties of such a sequence and
state them as concisely as possible. To this end, it seems a plausible choice to
regard the positions in question as unknown, or holes, and to see what then
still can be said about such a sequence. In the given example we would consider
(for the upper strand) a string composed of the parts . . . AG, CAAUGU , and
ACAGUC . . . in this order with one hole inbetween each of the parts.

Thus, intuitively, a partial word is very much like a conventional word, only at
some positions we do not know which letter it has. Looking at a word as a total
function from {0, . . . , |w| − 1} to Σ, we then except these unknown positions
from the mapping’s domain and define a partial word w as a partial function
from {0, . . . , |w| − 1} to Σ. The positions, where w[n] is not defined for n < |w|
are called the word’s holes. The numbers in {0, . . . , |w| − 1} \D(w) are the set
of holes of w and are written Hole(w). Here D(w) denotes the domain of w.

Fig. 2. Part of an RNA sequence with two mismatches



Partial Words for DNA Coding 227

For a partial word w we define its companion as the total word w♦ over the
extended alphabet Σ ∪ {♦} where

w♦[i] :=
{

w[i] if i ∈ D(w)
♦ if i �∈ D(w) ∧ 0 ≤ i < |w|

When it is more convenient, we will also refer to the companion as a partial
word to simplify the syntax of our sentences. Thus we will say for example “the
partial word ♦a♦b” instead of “the partial word with companion ♦a♦b”.

For two partial words u and v of equal length, we say that u is contained in
v, if D(u) ⊂ D(v) and i ∈ D(u) → u[i] = v[i]; this is written u ⊂ v, a rather
natural notation, if we adopt the view of a function f as a set of ordered pairs
[n, f(n)]. If there exists a partial word w such that for two other partial words
u and v we have u ⊂ w and v ⊂ w, then u and v are called compatible, written
u ↑ v. For two such words, u ∨ v is the smallest word containing both u and v;
smallest here means that its domain is D(u ∨ v) = D(u) ∪D(v), its values are
defined in the obvious way.

At times it will be interesting to in some sense measure to what degree a
partial word is riddled with holes. For example a nucleic acid sequence would
certainly not align with its complement any more, if more than half of its bases
had been changed. To formally denote the degree to which a partial word u is
undefined we will use the puncturedness coefficient defined as ϑ(u) := Hole(u)

|u| .
A final notion we will need concerns the intersection of two sets of partial

words. For it to contain also words not in either language but compatible to at
least one word from each language, we define a modified intersection:

K � L := {w : ∃u ∈ K,∃v ∈ L[w = u ∨ v]}

An important question is how to obtain such languages of partial words to start
with. Because, in this context, holes are considered as some type of defect, which
might occur just about anywhere, we choose the following approach: we start
out from a language L of total words.

Definition 2.1 For some puncturedness coefficient r with 0 < r ≤ 1 the language
Lr−♦, called L’s r-puncturing, is the one that contains all words of L and all
the partial words one can obtain from these obeying the bound imposed by the
coefficient r.

As already mentioned, the Hamming distance between code words has been
considered as a measure for the quality of a code [9]. To make evident the
close connection between compatibility and the Hamming distance we close this
section by stating a rather obvious equivalence.

Proposition 2.1 Let k,m be two natural numbers with m > 2k. Two words u, v ∈
(Σm)k−♦ are compatible, if and only if their Hamming distance is less than or
equal 2k.

Notions from classical Formal Language Theory are not explained here; we only
mention that Σ shall always denote the alphabet under consideration and that
Σ∗ is the set of all words over this alphabet; finally Σ+ := Σ∗ \ {λ}.



228 P. Leupold

3 Involutions and DNA

We now introduce a special class of mappings, so-called involutions. These enjoy
some special interest in the context of DNA computing, because the Watson-
Crick complementarity corresponds to a specific involution to be introduced
further down.

In general, an involution is a mapping θ such that θ2 is the identity mapping.
A mapping such that always µ(uv) = µ(u)µ(v) is a morphism; an involution also
fulfilling this property will be called a morphic involution.

We now recall a few special involutions acting over the DNA-alphabet ∆ =
{A,C,G, T}, which were introduced, for example, by Hussini et al [11]; their
specific importance in the context of DNA is that a strand and its image under
τ align. Thus, strands which are not supposed to align with themselves to form
secondary structures should not contain at the same time some factor and its
image as explained with more detail in the cited source.

The complement involution γ is defined by γ(A) := T , γ(T ) := A, γ(G) := C,
and γ(C) := G; additionally we define γ(♦) := ♦ to extend the mapping from
total to partial words. A second involution is the mirror involution µ mapping
every word into its mirror image; i.e. it reverses the word’s order. Their combi-
nation µγ is also an involution and will be called the DNA involution τ . Thus,
for example τ(GTAT ) = ATAC.

4 Involution Compliance and Freedom

For various reasons it seems reasonable to consider in this context only punc-
turedness bounds relative to the words’ length. First, whether two strands align
or not, depends not on the absolute number of mismatches, but more on their
frequency. While two strands of length eight will almost certainly not align, if
there are four mismatches, the same number is negligible for strands of lengths
greater than one hundred.

Secondly, computation means that something is happening; so computing
with DNA molecules means that they are changed, at the very least rearranged
in some way. Often enough this involves catenation; especially in the matters
treated here, catenation plays a central role. And while relative bounds are
preserved under catenation, absolute ones are not, because the number of holes
is simply summed up for two catenated words.

Proposition 4.1 For a rational number r with 0 < r < 1 the inclusion (Lr−♦)∗ ⊆
(L∗)r−♦ holds.

It is easily seen that the two sets are in general not equal. Consider a non-empty
language L with only words shorter than 1

r ; its r-puncturing is just L itself, it
does not contain any words with holes. Thus also the Kleene iteration is a total
language. The r-puncturing of L∗, however, contains words of arbitrary length
and therefore also words with holes.



Partial Words for DNA Coding 229

To make notation a little easier and more readable we make the following
convention: when the puncturing symbol ♦ will be used without giving either a
constant or a relative bound in the form r−♦; this shall mean that all occurences
within a definition, theorem, etc. have the same relative bound. In general, the
respective statements will not be true or make sense without this unstated as-
sumption.

Definition 4.1 A language of partial words L is θ-compliant for a morphic involu-
tion θ, if for words u, v, w,w′ ∈ Σ∗♦ we have that w, uθ(w′)v ∈ L♦ and w ↑ θ(w′)
imply uv = λ; if also (L)♦ � θ(L)♦ = ∅, then L is strictly θ-compliant.

A rather easy to see property of compliance is the following.

Proposition 4.2 For every θ-compliant language L♦, also θ(L♦) is θ-compliant.

Further, we can see quickly a necessary and sufficient condition for the strict-
ness of compliance.

Proposition 4.3 A θ-compliant language L♦ is strictly θ-compliant, if and only if
(L∗)♦ � (θ(L)∗)♦ = {λ}.

Proof. The empty word is in any iteration of a language, and thus always λ ∈
(L♦)∗�(θ(L)♦)∗. Now suppose there is another word in this set for some strictly
θ-compliant language L. This means there are words u1, . . . , un and v1, . . . , vm

all from L such that

(u1 · u2 . . . un)♦ ↑ θ(v1 · v2 . . . vm)♦.

If |u1| < |θ(v1)| or |u1| > |θ(v1)| this leads to a contradiction to L’s θ-compliance
or to θ(L)’s θ-compliance, which by Proposition 4.2 is equivalent. For |u1| =
|θ(v1)| we must have u1 ↑ θ(v1); so only in this case we need the strict θ-
compliance of L to reach a contradiction.

The other direction of the implication is rather obvious. ��

After compliance, freeness is a second interesting property related to involu-
tions.

Definition 4.2 A language L is θ-free, if (L2)♦�(Σ+θ(L)Σ+)♦ = ∅; if also (L)♦�
θ(L)♦ = ∅, then L is strictly θ-free; it suffices, if L \ {λ} is strictly θ-free.

It is quite clear that the notions just defined carry over from punctured
languages to total ones, in exactly the sense of the original definitions [11]. We
state this explicitly only in one exemplary case.

Proposition 4.4 If any puncturing of a language L is θ-free, then L itself is θ-free.

Proof. For languages of only total words, � becomes simply conventional set in-
tersection; thus the two definitions of θ-freeness are equivalent, and consequently
hold for the same class of languages, ��



230 P. Leupold

As is to be expected, the contrary is not true. To show this, we investigate
an example provided by Hussini et al. Here the DNA-involution τ and the DNA-
alphabet ∆ are used as introduced in Section 3.

Example 4.1 ACC∆2 is τ -free [11]. With a puncturing factor of 1
10 this is not

true any more. Consider the two words

w1 = ACCGGACCTG
w2 = ACCGGTCCTG,

where w1 is from ACC∆2ACC∆2, and τ(w2) is from the set ∆+(∆2GGT )∆+,
which is equal to ∆+θ(ACC∆2)∆+. They are identical except for the sixth po-
sition. As they have length ten, one hole is allowed, and thus the 1

10 -puncturing
of ACC∆2 is not τ -free, because (ACC∆2ACC∆2)♦� (∆+(∆2GGT )∆+)♦ con-
tains, for example, ACCGG♦CCTG, because this word is contained in both lan-
guages.

So we see that in general things must be reinvestigated. However, we have
chosen our definitions in a way that leaves most results for total languages valid
with only the reformulations necessary by the slight differences in definition. We
illustrate this with the first result from Hussini et al.

Proposition 4.5 For a language L and a morphic involution θ the following hold
true:
(i) If L♦ is θ-free, then both L♦ and θ(L♦) are θ-compliant.
(ii) If L♦ is strictly θ-free, then (L2)♦ � (Σ∗θ(L)Σ∗)♦ = ∅

Proof. We give only the proof for (i); it is very analogous to the proof of the
original lemma just as the proof for part (ii). So suppose that L is a language
such that L♦ is θ-free but at the same time not θ-compliant. The latter implies
that either Σ+θ(L♦)Σ∗ � L♦ �= ∅ or Σ∗θ(L♦)Σ+ � L♦ �= ∅. Catenating L♦ on
the right side in the second case, we obtain L♦Σ∗L♦Σ+ � L♦L♦ �= ∅. With
Proposition 4.1 we see that then also (LΣ∗LΣ+)♦ � (LL)♦ �= ∅; this contradicts
θ-freeness. In the first case an analogous contradiction is reached. Finally, for
θ(L♦) the inclusion now follows with Proposition 4.2. ��

As already mentioned, there is some special interest in the behaviour of cer-
tain properties with respect to catenation. For the case of compliance, we can
state a positive result in this respect.

Proposition 4.6 If two languages L♦
1 and L♦

2 are both θ-compliant a morphic in-
volution θ, then also their catenation L1 · L2 is θ-compliant.

Proof. We assume that there exist two θ-compliant languages L1 and L2, whose
catenation is not θ-compliant. This means there are partial words u, v, w,w′ such
that w, uθ(w′)v ∈ L♦

1 ·L♦
2 and w ↑ θ(w′). Let w be composed from w1 ∈ L♦

1 and
w2 ∈ L♦

2 , and uθ(w′)v from z1 ∈ L♦
1 and z2 ∈ L♦

2 . The border between z1 and z2

must be inside the factor θ(w′); otherwise we obtain an immediate contradiction
to the θ-compliance of either L♦

1 or L♦
2 looking at w1 respectively w2.



Partial Words for DNA Coding 231

So w′ has a factorization w′
1w

′
2 such that uθ(w1) ∈ L♦

1 and θ(w2)v ∈ L♦
2 . Now

if |w1| ≤ |w′
1|, then w1 is compatible to a prefix of θ(w′

1) in the word uθ(w′
1),

which is in contradiction to the θ-compliance of L♦
1 , because uθ(w1) ∈ L♦

1 .
If, on the other hand, |w1| > |w′

1|, then |w2| ≤ |w′
2|; we obtain an analogous

contradiction to the θ-compliance of L♦
2 . ��

5 Constant Length Codings

Now we will restrict our attention to a class of languages, which seems of special
interest in the context of DNA computations. Many times all the original strands
employed at the beginning of an experiment have the same length. Among other
advantages this allows, for example, telling how far the experiment has proceeded
in a simple way: the length of the present strands corresponds directly to the
number of catenations, which created them. And determining strand length via
gel electrophoresis is a very reliable standard procedure.

Thus it seems reasonable to consider languages all of whose words have equal
length. This property allows the statement of some results, which are not true
in general. We note further that the DNA involution τ as well as its components
µ and γ all are length-preserving (this means the length of original and image is
always the same); therefore this is a sensible restriction to put on the involutions
under consideration.

First off, we note that strictness loses its meaning for involution compliance.

Proposition 5.1 A language L ⊂ Σn♦ is θ-compliant for a length-preserving in-
volution θ, if and only if it is strictly θ-compliant.

Proof. Immediate from the definition: For non-θ-compliance uθ(w′)v (variable
names referring to Definition 4.1) must have the same length as w. Because
always |w| = |w′| = |θ(w′)| for w,w′ ∈ L, uv is empty in any counterexample to
θ-compliance. ��

For involution-freeness, the analogous statement is not true as shown by the
following example.

Example 5.1 The set {TGGT,ATAC} is strictly τ -free. If we add the word
ACCA = τ(TGGT ), the resulting set is still τ -free, the strictness, however,
is lost.

Proposition 5.2 A constant-length language L♦ is strictly θ-free for a length-
preserving involution θ, if and only if it is θ-free and θ-compliant.

Proof. From strict θ-freeness, θ-freeness follows by definition; θ-compliance fol-
lows by Proposition 4.5.

The inverse inclusion follows immediately from Proposition 5.1 and the fact
that the strictness condition is the same for both freeness and compliance. ��



232 P. Leupold

Now we provide a sufficient condition for a constant-length language to be
θ-free, and also for strict θ-freeness. Here pref(L) denotes the set of all proper
prefixes of words in L and suff(L) denotes the set of all proper suffixes including
the empty word. For one word the sets of prefixes and suffixes are both finite.
Therefore the conditions provided can be checked very easily for any finite lan-
guage.

However, here we need to give the puncturedness bounds explicitly, because
they are not uniform for all languages involved – there is even a mixture of
relative and absolute bounds. The proof will make clear, why this is necessary.

Proposition 5.3 For L ⊂ Σn, the language Lr−♦ is θ-free, if and only if
(pref(L)suff(L))k−♦ � Lr−♦ = ∅ for k := (2 · r · n).

Proof. If Lr−♦ is not θ-free, then there exist total words u, v, w ∈ L, such that a
word from θ(wr−♦) is compatible to a subword of one from (uv)r−♦. This sub-
word is neither entirely from u2r−♦ nor entirely from v2r−♦ due to the definition
of θ-freeness. Further, because all three words have equal length the subword
touches both factors.

Since this subword is shorter than uv itself, the local puncturedness coefficient
might be higher than the one for the entire word. The maximum number of holes
in this word is the following: the length of uv is 2n, thus with a puncturedness
coefficient of r there can be at most (2 · r · n) holes in the entire word from
(uv)r−♦ – in the extreme case all of them can be in the subword considered above.
Thus the set (pref(L)suff(L))k−♦�Lr−♦ is non-empty. After these considerations
also the inverse inclusion follows easily. ��

By extending the prefix and suffix sets by the original words themselves, we
immediately obtain an analogous characterization of strictly θ-free languages.

Corollary 5.3.a For L ⊂ Σn, the language Lr−♦ is strictly θ-free, if and only if
((L ∪ pref(L))2r−♦(L ∪ suff(L))2r−♦) � Lr−♦ = ∅.

6 Outlook

What was presented here is only one example for possible usage of partial words
in the context of biological computation, or more general, in dealing with DNA
sequences with certain desired or undesired properties. In some contexts also a
variation of partial words might be useful.

As suggested by both Gh. Păun and G. Lischke, regarding a base pair like
A − G as a hole is to some extent giving away some more information than
necessary. Although theoretically possible, it is in practice improbable that both
bases have been produced by an error. So instead of regarding the position as a
complete unknown, one might attribute to it a type like {A−T,C−G}, supposing
that only the A or only the G is wrong. Considering only one strand we would
use {A,C}; either way, this should then be treated as a letter compatible to all
its elements, but not to the other letters.



Partial Words for DNA Coding 233

For the DNA alphabet ∆, the version extended in this sense would be

{A,C,G, T, {A,C}, {A,G}, {T,C}, {T,G}}.

The other possible binary combinations like {A, T} are, of course well-matched
pairs and do not appear here explicitly, but are already represented by the single
letters. To our knowledge this type of partiality has not been investigated yet.

We have stated before that using partial words in the original form for the
encoding of a DNA computation is very related to the use of Hamming distances
between the code words. Already now combinatorial investigations on partial
words offer quite a number of tools concerning periodicity [7],[17], primitivity
[5], codes [6],[15] etc. Thus, and as the combinatorial theory around partial
words is growing, their use might have the advantage over the plain Hamming
distance that many properties have already been investigated and may provide
ways to guarantee some desired properties. Of course, taking into account the
peculiarities of DNA, also some tailor-made restrictions of partial words might
be defined and investigated for special purposes.

Acknowledgement

The author is thankful to Max Garzon for pointing him to the coding problem.
Further thanks are due to an anonymous referee for close reading of and detailed
comments about the manuscript.

References

1. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A.E. Condon, B. Cohen,
and S. Skiena: Algorithms for Testing That Sets of DNA Words Concatenate
without Secondary Structure. In: [10], pp. 182–195.

2. W. Bauer, H. Ehrig, J. Karhumäki and A. Salomaa (eds.): Formal and Nat-
ural Computing. Lecture Notes in Computer Science 2300, Springer-Verlag, Berlin,
2002.

3. J. Berstel and L. Boasson: Partial Words and a Theorem of Fine and Wilf. In:
Theoretical Computer Science, Vol. 218, 1999, pp. 135–141.

4. J. Berstel and D. Perrin: Theory of Codes. Academic Press, 1985.
5. F. Blanchet-Sadri: Primitive Partial Words. Preprint 2003.
6. F. Blanchet-Sadri: Codes, Orderings, and Partial Words. Preprint 2003.
7. F. Blanchet-Sadri and A. Hegstrom: Partial Words and a Theorem of Fine

and Wilf Revisited. In: Theoretical Computer Science, Vol. 270, No. 1/2, 2002, pp.
401–419.

8. J. Chen and J.H. Reif (Eds.): DNA Computing, 9th International Workshop on
DNA Based Computers. Lecture Notes in Computer Science 2943, Springer-Verlag,
Berlin, 2004.

9. R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti and
S.E. Stevens Jr.: On the Reliability and Efficiency of a DNA-based Computation.
In: Physical Review Letters 80:2, 1998, pp. 417–420.



234 P. Leupold

10. M. Hagiya and A. Ohuchi (eds.): DNA Computing — 8th Int. Workshop on
DNA-Based Computers. Lecture Notes in Computer Science 2568, Springer-Verlag,
Berlin, 2003.

11. S. Hussini, L. Kari and S. Konstantinidis: Coding Properties of DNA Lan-
guages. In: Theoretical Computer Science, Vol. 290, 2003, pp. 1557–1579.

12. N. Jonoska and K. Mahalingam: Languages of DNA Based Code Words. In: [8],
pp. 61-73.

13. L. Kari, R. Kitto and G. Thierrin: Codes, Involutions and DNA Encodings.
In: [2].

14. L. Kari, S. Konstantinidis, E. Losseva and G. Wozniak: Sticky-free and
Overhang-free DNA Languages. In: Acta Informatica 40(2), 2003, pp. 119-157.

15. P. Leupold: Languages of Partial Words. Submitted.
16. G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages. Springer-

Verlag, Berlin, 1997.
17. A.M. Shur and Y.V. Gamzova: Periods’ Interaction Property for Partial Words.

In: Preproceedings of Words’03, TUCS General Publications, Turku, 2003.
18. H.J. Shyr: Free Monoids and Languages. Hon Min Book Company, Taichung, 1991.



Accepting Hybrid Networks
of Evolutionary Processors

Maurice Margenstern1, Victor Mitrana2, and Mario J. Pérez-Jiménez3

1 LITA, UFR MIM, University of Metz,
Ile du Saulcy, 57045 Metz-Cedex, France

margens@lita.univ-metz.fr
2 Faculty of Mathematics and Computer Science, University of Bucharest,

Str. Academiei 14, 70109, Bucharest, Romania
and

Research Group in Mathematical Linguistics, Rovira i Virgili University,
Pça. Imperial Tarraco 1, 43005, Tarragona, Spain

vmi@fll.urv.es
3 Department of Computer Science and Artificial Intelligence,

University of Seville
Mario.Perez@cs.us.es

Abstract. We consider time complexity classes defined on accepting hy-
brid networks of evolutionary processors (AHNEP) similarly to the clas-
sical time complexity classes defined on the standard computing model
of Turing machine. By definition, AHNEPs are deterministic. We prove
that the classical complexity class NP equals the set of languages ac-
cepted by AHNEPs in polynomial time.

1 Introduction

The origin of networks of evolutionary processors (NEPs for short) is twofold. In
[5] we consider a computing model inspired by the evolution of cell populations,
which might model some properties of evolving cell communities at the syntac-
tical level. Cells are represented by words which describe their DNA sequences.
Informally, at any moment of time, the evolutionary system is described by a
collection of words, where each word represents one cell. Cells belong to species
and their community evolves according to mutations and division which are de-
fined by operations on words. Only those cells are accepted as surviving (correct)
ones which are represented by a word in a given set of words, called the genotype
space of the species. This feature parallels with the natural process of evolution.

On the other hand, a basic architecture for parallel and distributed sym-
bolic processing, related to the Connection Machine [10] as well as the Logic
Flow paradigm [6], consists of several processors, each of them being placed in
a node of a virtual complete graph, which are able to handle data associated
with the respective node. Each node processor acts on the local data in accor-
dance with some predefined rules, and then local data becomes a mobile agent

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 235–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



236 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

which can navigate in the network following a given protocol. Only such data
can be communicated which can pass a filtering process. This filtering process
may require to satisfy some conditions imposed by the sending processor, by
the receiving processor or by both of them. All the nodes send simultaneously
their data and the receiving nodes handle also simultaneously all the arriving
messages, according to some strategies, see, e.g., [7, 10].

In [1](further developed in [2, 11, 3]), we modify this concept (considered
in [4] from a formal language theory point of view) in the following way in-
spired from cell biology. Each processor placed in a node is a very simple pro-
cessor, an evolutionary processor. By an evolutionary processor we mean a
processor which is able to perform very simple operations, namely point mu-
tations in a DNA sequence (insertion, deletion or substitution of a pair of
nucleotides). More generally, each node may be viewed as a cell having ge-
netic information encoded in DNA sequences which may evolve by local evo-
lutionary events, that is point mutations. Each node is specialized just for
one of these evolutionary operations. Furthermore, the data in each node is
organized in the form of multisets of words (each word appears in an arbi-
trarily large number of copies), and all copies are processed in parallel such
that all the possible events that can take place do actually take place. Obvi-
ously, the computational process described here is not exactly an evolution-
ary process in the Darwinian sense. But the rewriting operations we have con-
sidered might be interpreted as mutations and the filtering process might be
viewed as a selection process. Recombination is missing but it was asserted
that evolutionary and functional relationships between genes can be captured
by taking only local mutations into consideration [12]. Consequently, hybrid
networks of evolutionary processors might be viewed as bio-inspired comput-
ing models. We want to stress from the very beginning that we are not con-
cerned here with a possible biological implementation, though a matter of great
importance.

In a series of papers, we present linear time solutions to some NP-complete
problems using these simple mechanisms. Such solutions are presented for the
Bounded Post Correspondence Problem in [1], for the “3-colorability problem”
in [2] (with simplified networks), and for the Common Algorithmic Problem in
[11]. In this paper, we consider time complexity classes defined on accepting
hybrid networks of evolutionary processors (AHNEP) similarly to the classical
time complexity classes defined on the standard computing model of Turing
machine. By definition, AHNEPs are deterministic. We prove that NP equals
the class of languages accepted by AHNEPs in polynomial time.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V is called string (word)
over V . The set of all strings over V is denoted by V ∗ and the empty string is



Accepting Hybrid Networks of Evolutionary Processors 237

denoted by ε. The length of a string x is denoted by |x| while alph(x) denotes
the minimal alphabet W such that x ∈ W ∗.

A nondeterministic Turing machine is a construct T = (Q,V, U, δ, q0, B, F ),
where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,
V ⊂ U , q0 is the initial state, B ∈ U \V is the “blank” symbol, F ⊆ Q is the set
of final states, and δ is the transition mapping, δ : (Q \F )×U −→ 2Q×U×{R,L}.
Moreover, if (s,B,X) ∈ δ(q, a) for some s, q ∈ Q and X ∈ {R,L}, then a = B,
i.e. T never write B over a symbol different than B. The variant of a Turing
machine we use in this paper can be described intuitively as follows: it has a tape
divided into cells that may store symbols from U (each cell may store exactly
one symbol from U). The tape is semi-infinite, namely it is bounded to the left
(there is a leftmost cell) and unbounded (arbitrarily long) to the right. The
machine has a a central unit which can be in a state from a finite set of states,
and a reading/writing tape head which can scan in turn the tape cells. This head
cannot go the the left-hand end of the tape. The input word is a word over V
and is stored on the tape starting with the leftmost cell and all the other tape
cells contain the symbol B.

Initially, the tape head scans the leftmost cell and the central unit is in the
state q0. The machine performs moves. A move depends on the contents of the
cell currently scanned by the tape head and the current state of the central unit.
A move consists of: change the state, write a symbol from U on the current cell
and move the tape head one cell either to the left (provided that the cell scanned
was not the leftmost one) or to the right. An input word is accepted iff after a
finite number of moves the Turing machine enters a final state.

An instantaneous description (ID for short) of a Turing machine T as above
is a string over (U \ {B})∗Q(U \ {B})∗. Given an ID αqβ, this means that the
tape contents is αβ followed by an infinite number of cells containing the blank
symbol B the current state is q, and the symbol currently scanned by the tape
head is the first symbol of β provided that β �= ε, or B, otherwise.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both
a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule
if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules over
an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule as above σ and a string w ∈ V ∗, we define the following actions
of σ on w:

• If σ ≡ a → b ∈ SubV , then

σ∗(w) = σr(w) = σl(w) =
{
{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{
{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{
{u : w = ua},
{w}, otherwise σl(w) =

{
{v : w = av},
{w}, otherwise

• If σ ≡ ε → a ∈ InsV , then
σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.



238 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

α ∈ {∗, l, r} expresses the way of applying an evolution rule to a word, namely
at any position (α = ∗), in the left (α = l), or in the right (α = r) end of the
word, respectively. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define
the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a finite set of rules M ,

we define the α-action of M on the word w and the language L by:
Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local gene mutations. For two disjoint subsets P and F of an alphabet
V and a word w over V , we define the predicates

ϕ(1)(w;P, F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P, F ) ≡ alph(w) ⊆ P
ϕ(3)(w;P, F ) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)
ϕ(4)(w;P, F ) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts) and F (forbidding contexts).

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3), (4)}, we define:
ϕβ(L,P, F ) = {w ∈ L | ϕβ(w;P, F )}.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:

– Either (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,
while PO,FO ⊆ V are the output permitting/forbidding contexts of the proces-
sor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of evolutionary processors over V by EPV .
An accepting hybrid network of evolutionary processors (AHNEP for short)

is a 7-tuple Γ = (V,U,G,N, α, β, xI , xO), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph with the set of vertices XG and the

set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPU is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on

the words existing in that node.
– β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters of a

node. More precisely, for every node, x ∈ XG, the following filters are defined:
input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),

output filter: τx(·) = ϕβ(x)(·;POx, FOx).
That is, ρx(w) (resp. τx) indicates whether or not the string w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of strings of L that can pass the input (resp. output) filter of x.

– xI , xO ∈ XG are the input and the output node of Γ , respectively.



Accepting Hybrid Networks of Evolutionary Processors 239

We say that card(XG) is the size of Γ . If α and β are constant functions, then
the network is said to be homogeneous. In the theory of networks some types of
underlying graphs are common, e.g., rings, stars, grids, etc. Networks of evolu-
tionary processors with underlying graphs having these special forms have been
considered in [1, 2, 11, 3]. We focus here on complete AHNEPs, i.e., AHNEPs
having a complete underlying graph denoted by Kn, where n is the number of
vertices.

A configuration of a AHNEP Γ as above is a mapping C : XG −→ 2V ∗
which

associates a set of strings with every node of the graph. A configuration may
be understood as the sets of strings which are present in any node at a given
moment. Given a string w ∈ V ∗, the initial configuration of Γ on w is defined
by C

(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG − {xI}.

A configuration can change either by an evolutionary step or by a communi-
cation step. When changing by an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C ′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C ′, iff C ′(x) = M

α(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each string it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the strings sent by any node
processor connected with x providing that they can pass its input filter.

Formally, we say that the configuration C ′ is obtained in one communication
step from configuration C, written as C � C ′, iff C ′(x) = (C(x)− τx(C(x))) ∪⋃

{x,y}∈EG
(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Let Γ be an AHNEP, the computation of Γ on the input string w ∈ V ∗

is a sequence of configurations C
(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial

configuration of Γ on w, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0.

By the previous definitions, each configuration C
(w)
i is uniquely determined by

the configuration C
(w)
i−1. Otherwise stated, each computation in an AHNEP is

deterministic. A computation halts (and it is said to be finite) if one of the
following two conditions holds:

(i) There exists a configuration in which the set of strings existing in the
output node xO is non-empty. In this case, the computation is said to be an
accepting computation.

(ii) There exist two consecutive identical configurations.
The language accepted by Γ is

L(Γ ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

3 Complexity Classes

The reader is referred to [8, 9] for the classical time and space complexity classes
defined on the standard computing model of Turing machine.



240 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

We define some computational complexity measures by using AHNEP as the
computing model. To this aim we consider a AHNEP Γ and the language L

accepted by Γ . The time complexity of the accepting computation C
(x)
0 , C

(x)
1 ,

C
(x)
2 , . . . C

(x)
m of Γ on x ∈ L is denoted by TimeΓ (x) and equals m. The time

complexity of Γ is the partial function from N to N,
TimeΓ (n) = max{TimeΓ (x) | x ∈ L(Γ ), |x| = n}.

For a function f : N −→ N we define
TimeAHNEP (f(n)) = {L | there exists an AHNEP Γ and n0 such that

L = L(Γ ) and ∀n ≥ n0(TimeΓ (n) ≤ f(n))}
Moreover, we write PTimeAHNEP =

⋃
k≥0 TimeAHNEP (nk).

Now we prove a result which establishes a strong connection between the
complexity classes defined on Turing machines and those defined on AHNEPs.

Proposition 1. For any nondeterministic Turing machine, M , recognizing a
language L there exists an AHNEP, Γ , accepting the same language L. Moreover,
if M works within time f(n) then TimeΓ (n) ∈ O(f(n)).

Proof. Let M = (Q,V1, V2, δ, q0, B, F ) be an arbitrary Turing machine. We de-
fine the new alphabets:
U

(K)
1 = {〈s, b,K, a〉 | (s, b,K) ∈ δ(q, a), s, q ∈ Q, a, b ∈ V2 \ {B}},K ∈ {R,L},

U2 = {[a, b] | a, b ∈ V2 \ {B}} U3 = {Xa | a ∈ V2 \ {B}},
U4 = {Y (b)

a | a, b ∈ V2 \ {B}} U5 = {Za | a ∈ V2 \ {B}},
U6 = {Wa | a ∈ V2 \ {B}} U7 = {sa | s ∈ Q, a ∈ V2 \ {B}},
U8 = {Ya | a ∈ V2 \ {B}} U10 = {s̃a | s ∈ Q, a ∈ V2 \ {B}}
U

(K)
9 = {〈〈s, a,K, q〉〉 | (s, a,K) ∈ δ(q,B), s, q ∈ Q, a ∈ V2 \ {B}},K ∈ {R,L}.

Furthermore, for an alphabet T we denote by T ′ the alphabet consisting of the
primed copies of all symbols in T . Now, we put

U = U
(R)
1 ∪ U

(L)
1 ∪ U2∪ U3∪ U4∪ U5∪ U6∪ U7∪ U8∪ U

(R)
9 ∪ U

(L)
9 ∪

U10 ∪ V2 ∪ Q ∪ U ′
3 ∪ U ′

5 ∪ U ′
6 ∪ U ′

8 ∪ (V2 \ {B})′
We define the AHNEP Γ = (V1, U,G,N, α, β, xI , xO), where G is a complete
graph whose nodes are described below.
MxI

= {ε → q0}, PIxI
= ∅, FIxI

= U , POxI
= ∅, FOxI

= ∅, α(xI) = r,
β(xI) = (1).

Table 1

Node M PI FI PO FO α β

x
( �=B)
1 {q → 〈s, b, K, a〉 | ∅ U \ (V2 ∪ Q) ∅ ∅ ∗ (1)

(s, b, K) ∈ δ(q, a)}
x

( �=B)
1 (a, b) {ε → Y

(a)
b } {〈s, b, R, a〉} U \ (V2 ∪ U

(R)
1 ∅ ∅ r (1)

∪U4)

x
( �=B)
1 (a) {a → Xa} {Y (a)

b } U \ (V2 ∪ U
(R)
1 U3 ∅ ∗ (4)

∪U3 ∪ U4)

x
( �=B)
2 {〈s, b, R, a〉 → s, U3 U \ (V2 ∪ U

(R)
1 U \ (U

(R)
1 U

(R)
1 ∪ U4 ∗ (4)

Y
(a)

b → b} ∪U3 ∪ U4) ∪U4)

x
( �=B)
3 {Xa → ε} U3 U \ (V2 ∪ U3) U \ U3 U3 l (4)



Accepting Hybrid Networks of Evolutionary Processors 241

The nodes described in Table 1 are used for simulating a move of M which
consists in reading a symbol different from B, possibly changing the state as well
as the read symbol, and moving the tape head to the right. In this table, s, q ∈ Q,
a, b ∈ V2\{B} and K ∈ {R,L}. Each table is accompanied by some explanations
which emphasize the simulation mode. By the definition of the input node xI ,
for any input string w ∈ V ∗

1 , C
(w)
1 (xI) = {wq0}. In the next communication step

both nodes x
( �=B)
1 and x

(=B)
1 (which will be defined later) receive a copy of wq0.

Note that the initial ID of a computation of M on w is q0w. Let us consider now
an ID αqβ, which can be obtained by a computation in M starting with q0w.
By induction, we may assume that βqα ∈ C

(w)
m (x( �=B)

1 ) ∩ C
(w)
m (x(=B)

1 ) for some
m ≥ 1. Let us suppose that β = aβ′, a ∈ V2 \ {B}, β′ ∈ (V2 \ {B})∗. Clearly,
C

(w)
m+1(x

(=B)
1 ) ⊇ {β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q, b, c ∈ V2 \ {B},K ∈

{R,L}}. Obviously, only those strings with c = a from the above ones are
useful for our simulating process. Now, let us follow what happens with a string
β〈s, b, R, a〉α for some fixed s ∈ Q, b ∈ V2\{B} in the following steps. This string
is accepted by x

( �=B)
1 (a, b) only, where Y

(a)
b is appended to its right-hand end. The

resulting string β〈s, b, R, a〉αY
(a)
b is sent out by x

( �=B)
1 (a, b) and x

( �=B)
1 (a) is the

unique node which can receive it. Here, exactly one occurrence of a in different
copies of β〈s, b, R, a〉αY

(a)
b is replaced by Xa and all the obtained strings leave

x
( �=B)
1 (a). (We shall see later that only those strings starting with a in which this

first occurrence of a is replaced by Xa can further navigate through the network;
the others remain in x

( �=B)
3 forever.) Then, all of them enter the node x

( �=B)
2 where

〈s, b, R, a〉 and Y
(a)
b are replaced by s and b, respectively. Both symbols must be

replaced in two consecutive evolutionary steps since the output filter of x
( �=B)
2

prevents leaving of this node by the strings containing symbols from U
(R)
1 or U4.

All the strings leaving x
( �=B)
2 arrive in x

( �=B)
3 where those starting with Xa can

leave x
( �=B)
3 after having removed Xa from their left-hand end, while the others

remain in x
( �=B)
3 forever. In this way, we check whether or not the first letter of

β is indeed a. By the above explanations, we infer that
C

(w)
m+14(x

( �=B)
1 ) ⊇ {β′sαb | (s, b, R) ∈ δ(q, a), s ∈ Q, b ∈ V2 \ {B}}.

The nodes described in Table 2, together with x
( �=B)
1 are used for simulating

a move of M which consists in reading a symbol different from B, possibly
changing the state as well as the read symbol, and moving the tape head to the
left, provided that this is possible. In this table, s, q ∈ Q and a, b ∈ V2 \ {B}.

We start our explanation by returning to the configuration C
(w)
m+1(x

(=B)
1 ) ⊇

{β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q, b, c ∈ V2 \ {B},K ∈ {R,L}}. In the
sequel, we follow a string β〈s, b, L, a〉α for some fixed s ∈ Q, b ∈ V2 \ {B}. This
string enters x

( �=B)
2 (a, b) where, similarly to the situation described above when

the followed string reached x
( �=B)
1 (a), exactly one occurrence of a in different

copies of β〈s, b, L, a〉α is replaced by [a, b]. As we shall see later, the node x
( �=B)
5

blocks all the strings obtained in x
( �=B)
2 (a, b) which do not start with [a, b] for

further navigation through the network. Until that moment, we continue our



242 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

explanations. The strings obtained in x
( �=B)
2 (a, b) enter x

( �=B)
2 (b), where Wb is

appended to their right-hand end. Now, all these strings enter x
( �=B)
4 , where

exactly one occurrence of each letter c ∈ V2 \ {B} is replaced by Zc. The role of
this node is to check whether or not α = ε since a move of the tape head to the
left in the ID αqβ is possible provided that α �= ε. More clearly, C

(w)
m+5(x

( �=B)
4 )

has just received all strings of the form β1〈s, b, R, a〉αWb and β〈s, b, R, a〉α1Wb,
where β1 and α1 differ from β and α, respectively, on exactly one position where
a in β or α is replaced by [a, b].

Table 2

Node M PI FI PO FO α β

x
( �=B)
2 (a, b) {a → [a, b]} {〈s, b, L, a〉} U \ (V2 ∪ U

(L)
1 ) U2 ∅ ∗ (4)

x
( �=B)
2 (b) {ε → Wb} {[a, b]} U \ (V2 ∪ U

(L)
1 ∅ ∅ r (1)

∪U2)

x
( �=B)
4 {a → Za} U6 U \ (V2 ∪ U

(L)
1 U5 ∅ ∗ (4)

∪U2 ∪ U6)

x
( �=B)
5 {[a, b] → ε} U5 U \ (V2 ∪ U

(L)
1 U \ U2 U2 l (4)

∪U2 ∪ U5 ∪ U6)

x
( �=B)
3 (a) {ε → W ′

a} {Wa} U \ (V2 ∪ U
(L)
1 U \ U3 U3 l (4)

∪U5 ∪ U6)

x
( �=B)
6 {Wa → ε} U ′

6 U \ (V2 ∪ U
(L)
1 U \ U6 U6 r (4)

∪U5 ∪ U6 ∪ U ′
6)

x
( �=B)
4 (a) {ε → Z′

a} {Za} U \ (V2 ∪ U
(L)
1 ) U \ U3 U3 l (4)

x
( �=B)
7 {Za → ε} U ′

5 U \ (V2 ∪ U
(L)
1 U \ U5 U5 r (4)

∪U5 ∪ U ′
5 ∪ U ′

6)

x
( �=B)
8 {W ′

a → a}∪ U ′
5 U \ (V2 ∪ U

(L)
1 U \ (U

(L)
1 U

(L)
1 ∪ ∗ (4)

{Z′
a → a}∪ ∪U ′

5 ∪ U ′
6) ∪U ′

5 ∪ U ′
6) U ′

5 ∪ U ′
6

{〈s, b, L, a〉 → s}

Now, C
(w)
m+6(x

( �=B)
4 ) contains all strings h(β1)〈s, b, L, a〉αWb, β1〈s, b, L, a〉h(α)Wb,

β〈s, b, L, a〉h(α1)Wb, h(β)〈s, b, L, a〉α1Wb, where h : ((V2 \ {B}) ∪ U2 ∪ U6 ∪
U

(L)
1 )∗ −→ 2((V2\{B})∪U2∪U6∪U

(L)
1 ∪U5)

∗
is a finite substitution which leaves un-

changed all the symbols from U2 ∪U6 ∪U
(L)
1 and h(c) = {c, Zc}, for all c ∈ V2 \

{B}. But C
(w)
m+6(x

( �=B)
4 ) contains no string β1〈s, b, L, a〉αWb or β〈s, b, L, a〉α1Wb

from above. Later, it will turn out that only the strings [a, b]β′〈s, b, L, a〉α′ZcWb

are useful for the rest of computation. Indeed, the strings which do not start
with a symbol in U2 remain blocked in x

( �=B)
5 . The others leave x

( �=B)
5 and enter

x
( �=B)
3 (a) where they receive W ′

a in their left-hand end, provided that they have
Wa in their right-hand end. After that, Wa is deleted. This is actually the way
of rotating a symbol from the right-hand end to the left-hand end of a string.
The role of x

( �=B)
4 (a) and x

( �=B)
7 is the same and now we can easily notice that

only the strings proceeding from [a, b]β′〈s, b, L, a〉α′ZcWb can continue the com-
putation. Finally, we deduce that



Accepting Hybrid Networks of Evolutionary Processors 243

C
(w)
m+22(x

( �=B)
1 ) ⊇ {cbβ′sα′ | α = cα′, (s, b, L) ∈ δ(q, a), s ∈ Q, b, c ∈ V2 \ {B}}.

The nodes described in Table 3 are used for simulating a move of M which con-
sists in reading B and changing it into a symbol from V2\{B}, possibly changing
the current state, and moving the tape head to the right. In this table, s, q ∈ Q,
a ∈ V2 \ {B} and K ∈ {R,L}.

Table 3

Node M PI FI PO FO α β

x
(=B)
1 {ε → 〈〈s, a, K, q〉〉 | ∅ U \ (V2 ∪ Q) ∅ ∅ r (1)

(s, a, K) ∈ δ(q, B)}
x

(=B)
1 (q) {q → ε} {〈〈s, a, K, q〉〉} U \ (V2 ∪ U9 U ∅ l (4)

∪Q)

x
(=B)
1 (s, a) {ε → sa} {〈〈s, a, R, q〉〉} U \ (V2 ∪ U

(R)
9 ) ∅ ∅ l (1)

x
(=B)
1 (a) {ε → Ya} {sa} U \ (V2 ∪ U

(R)
9 U ∅ r (4)

∪U7)

x
(=B)
2 {〈〈s, a, R, q〉〉 → ε} U8 U \ (V2 ∪ U

(R)
9 ∅ U

(R)
9 ∗ (1)

∪U7 ∪ U8)

x
(=B)
3 {Ya → a}∪ U8 U \ (V2 ∪ U8 U \ (U8 U8 ∪ U7 ∗ (4)

{sa → s} ∪U7) ∪U7)

We consider a string βqα ∈ C
(w)
m (x(=B)

1 ) and (s, a,R) ∈ δ(q,B) a transition
which the move of M we want to simulate is based on. First, βqα〈〈s, a,R, q〉〉 is
produced in x

(=B)
1 and then sent out. The string enters x

(=B)
1 (q) where one

checks whether or not β = ε. Only qα〈〈s, a,R, q〉〉, after deleting q, is able
to leave x

(=B)
1 (q), the others being blocked in this node. Now, α〈〈s, a,R, q〉〉

enters x
(=B)
1 (s, a), where the symbol sa is appended to its left-hand end, and

the resulting string enters x
(=B)
1 (a), where Ya is appended to its right-hand end.

Table 4

Node M PI FI PO FO α β

x
(=B)
2 (s, a) {ε → s̃a} {〈〈s, a, L, q〉〉} U \ (V2 ∪ U

(L)
9 ) U ∅ l (4)

x
(=B)
4 {〈〈s, a, L, q〉〉 → ε} U7 U \ (V2 ∪ U

(L)
9 U \ U

(L)
9 U

(L)
9 ∗ (4)

∪U10)

x
(=B)
2 (a) {ε → X ′

a} {s̃a} U \ (V2 ∪ U10) U ∅ l (4)

x
(=B)
5 {a → Y ′

a} U ′
3 U \ (V2 ∪ U10 U ′

8 ∅ ∗ (4)
∪U ′

3)

x
(=B)
3 (a) {ε → a′} {Y ′

a} U \ (V2 ∪ U10 ∅ ∅ l (1)
∪U ′

3 ∪ U ′
8)

x
(=B)
6 {Y ′

a → ε} V ′
2 U \ (V2 ∪ U10 U \ U ′

8 U ′
8 r (4)

∪U ′
3 ∪ U ′

8 ∪ V ′
2 )

x
(=B)
7 {X ′

a → a}∪ U ′
3 U \ (V2 ∪ U10 U \ (V ′

2∪ V ′
2 ∪ U ′

3 ∗ (4)
{s̃a → s}∪ ∪U ′

3 ∪ V ′
2 ) U ′

3 ∪ U10) ∪U10

{a′ → a}



244 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

Then, 〈〈s, a,R, q〉〉is removed and Ya, as well as sa, are replaced by a and s,
respectively. Hence

C
(w)
m+14(x

(=B)
1 ) ⊇ {sαa | (s, a,R) ∈ δ(q,B), s ∈ Q, a ∈ V2 \ {B}}.

The nodes described in Table 4 are used, together with the nodes x
(=B)
1 and

x
(=B)
1 (q), q ∈ Q, for simulating a move of M which consists in reading B and

changing it into a symbol from V2 \ {B}, possibly changing the current state,
and moving the tape head to the left. In this table, s, q ∈ Q and a ∈ V2 \ {B}.

We consider again a string βqα ∈ C
(w)
m (x(=B)

1 ) and (s, a, L) ∈ δ(q,B) a
transition which the move of M we want to simulate is based on. As above, after
producing βqα〈〈s, a, L, q〉〉 in x

(=B)
1 , this string enters x

(=B)
1 (q), where one checks

whether or not β = ε and q is removed. Then, α〈〈s, a, L, q〉〉 enters x
(=B)
2 (s, a),

where s̃a is appended to its left-hand end. The new string, after having removed
〈〈s, a, L, q〉〉 receives X ′

a in its left-hand end resulting in X ′
as̃aα. Now, the last

symbol of α, say b, is shifted as b′ before X ′
a by means of the nodes x

(=B)
5 , x

(=B)
6 ,

and x
(=B)
3 (b). The obtained string is now b′X ′

as̃aα′, with α = α′b. Therefore,
C

(w)
m+22(x

(=B)
1 ) ⊇ {basα′ | (s, a, L) ∈ δ(q,B), s ∈ Q, a ∈ V2 \ {B}, α = α′b}.

The construction of Γ is completed with the output node xO defined by MxO
= ∅,

PIxO
= F , FIxO

= U \(V2∪F ), POxO
= ∅, FOxO

= U , α(xO) = ∗, β(xO) = (4).
By the aforementioned explanations, we infer that L(M) = L(Γ ).

It is worth mentioning that the underlying graph G is the complete graph Kp,
with p = 15+7(card(V2)−1)+card(Q)+2(card(V2)−1)2+2card(Q)(card(V2)−1).
That is, the number of nodes of Γ is bounded by a quadratic function depending
on the number of states and symbols of M . Also, the total number of symbols
used by Γ is the above simulation is bounded by a cubic function depending on
the number of states and symbols of M . More precisely,

card(U) = 4card(Q)(card(V2)− 1)2 + 2(card(V2)− 1)2 + Card(V2) +
2card(Q)(card(V2)− 1) + 9(card(V2)− 1) + card(Q) �

Now we are ready to prove the main result of this paper.

Theorem 1. NP = PTimeAHNEP .

Proof. Let L be a language accepted by a nondeterministic Turing machine M
with k tapes such that for each x ∈ L, |x| = n, M can accept x in no more than
p(n) moves. We write this as TM (n) ≤ p(n). Clearly, we can construct a Turing
machine M ′ such that TM ′(n) ≤ p(n)/

√
22. By the well-known results regarding

tape compression, we can construct a Turing machine M ′′ with one tape only,
such that TM ′′(n) ≤ p2(n)/22. Now, by the previous proof, we construct an
AHNEP Γ such that L(M ′′) = L(Γ ) and TimeΓ (n) ≤ 22TM ′′ ≤ p2(n), which
concludes the proof of NP ⊆ PTimeAHNEP .

Conversely, let L be a language accepted by an AHNEP Γ in polynomial
time p(n). We construct a nondeterministic Turing machine M as follows:

(1) M has a finite set of states associated with each node of Γ . This set is divided
into disjoint subsets such that each filter (input or output) and each rule has an
associated subset of states.



Accepting Hybrid Networks of Evolutionary Processors 245

(2) M chooses nondeterministically a copy of the input word from those existing
in the initial node of Γ (this word is actually on the tape of M in its initial ID)
and follows its itinerary through the underlying network of Γ . Let us suppose
that the contents of the tape of M is α; M works according to the following
strategy labelled by (∗):

(i) When M enters a state from the subset of states associated to a rule
a → b, it applies this rule to an occurrence of a in α, if any, nondeterministically
chosen. If α does not contain any occurrence of a, M blocks the computation.

(ii) When M enters a state from the subset of states associated to a filter,
it checks whether α can pass that filter. If α does not pass it, M blocks the
computation. Clearly, M checks first the condition of the current node (sending
node) output filter and then the condition of the receiving node input filter
(which becomes the current node).

(iii) As soon as M has checked the input filter condition of the output node
of Γ , it accepts its input word.

It is rather plain that M accepts L. If the input word w in the initial node of Γ
is in L, then there exists a computation in Γ of time complexity O(p(|w|)). Since
in any evolutionary step one inserts at most one letter, the length of α in (∗) is
at most p(|w|)+ |w|. Clearly, each step (i) and (ii) of (∗) can be accomplished in
time O(|α|). Therefore, w is accepted by M in O(p2(|w|)) time and we are done.

�

References

1. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Solving NP-complete prob-
lems with networks of evolutionary processors, IWANN 2001 (J. Mira, A. Prieto,
eds.), LNCS 2084, Springer-Verlag, 2001, 621–628.

2. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Networks of evolutionary
processors, Acta Informatica 39 (2003), 517-529.

3. J. Castellanos, P. Leupold, V. Mitrana, Descriptional and computational complex-
ity aspects of hybrid networks of evolutionary processors, submitted.

4. E. Csuhaj-Varjú, A. Salomaa, Networks of parallel language processors. In: New
Trends in Formal Languages (Gh. Păun, A. Salomaa, eds.), LNCS 1218, Springer
Verlag, 1997, 299–318.

5. E. Csuhaj-Varjú, V. Mitrana, Evolutionary systems: a language generating device
inspired by evolving communities of cells, Acta Informatica 36 (2000), 913–926.

6. L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In
Artificial Intelligence and Information-Control Systems of Robots ’94 (I. Plander,
ed.), World Sci. Publ., Singapore, 1994, 31–40.

7. S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National Conf. on
AI, William Kaufman, Los Altos, 1983, 109–113.

8. J. Hartmanis, P.M. Lewis II, R.E. Stearns, Hierarchies of memory limited compu-
tations. Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical
Design, 1965, 179 - 190.

9. J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms, Trans.
Amer. Math. Soc. 117 (1965), 533–546.



246 M. Margenstern, V. Mitrana, and M.J. Pérez-Jiménez

10. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
11. C. Martin-Vide, V. Mitrana, M. Perez-Jimenez, F. Sancho-Caparrini, Hybrid net-

works of evolutionary processors, Proc. of GECCO 2003, LNCS 2723, Springer
Verlag, Berlin, 401 - 412.

12. D. Sankoff et al. Gene order comparisons for phylogenetic inference:Evolution of
the mitochondrial genome. Proc. Natl. Acad. Sci. USA, 89 (1992) 6575–6579.



Building the Components for a Biomolecular Computer

Clint Morgan1, Darko Stefanovic1, Cristopher Moore1,
and Milan N. Stojanovic2

1 Department of Computer Science, University of New Mexico
{clint, darko, moore}@cs.unm.edu

2 Department of Medicine, Columbia University
mns18@columbia.edu

Abstract. We propose a new method for amorphous bio-compatible computing
using deoxyribozyme logic gates [1] in which oligonucleotides act as enzymes
on other oligonucleotides, yielding oligonucleotide products. Moreover, these re-
actions can be controlled by inputs that are also oligonucleotides. We interpret
these reactions as logic gates, and the concentrations of chemical species as sig-
nals. Since these reactions are homogeneous, i.e., they use oligonucleotides as
both inputs and outputs, we can compose them to construct complex logic cir-
cuits. Thus, our system for chemical computation offers functionality similar to
conventional electronic circuits with the potential for deployment inside of liv-
ing cells. Previously, this technology was demonstrated in closed-system batch
reactions, which limited its computational ability to simple feed-forward circuits.
In this work, we go beyond closed systems, and show how to use thermodynam-
ically open reactors to build biomolecular circuits with feedback. The behavior
of an open chemical system is determined both by its chemical reaction network
and by the influx and efflux of chemical species. This motivates a change in de-
sign process from that used with closed systems. Rather than focusing solely on
the stoichiometry of the chemical reactions, we must carefully examine their ki-
netics. Systems of differential equations and the theory of dynamical systems
become the appropriate tools for designing and analyzing such systems. Using
these tools, we present an inverter. Next, by introducing feedback into the reac-
tion network, we construct devices with a sense of state. We show how a com-
bination of analytical approximation techniques and numerical methods allows
us to tune the dynamics of these systems. We demonstrate a flip-flop which ex-
hibits behavior similar to the RS flip-flop of electronic computation. It has two
states in which the concentration of one oligonucleotide is high and the other
is low or vice versa. We describe how to control the state of the flip-flop by
varying the concentration of the substrates. Moreover, there are large regions of
parameter space in which this behavior is robust, and we show how to tune the
influx rates as a function of the chemical reaction rates in a way that ensures
bistability.

1 Introduction

We use deoxyribozymes (nucleic acid enzymes) as gates to transform input and sub-
strate signals (molecular concentrations) into product signals and thereby perform sim-

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 247–257, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



248 C. Morgan et al.

ple computation. Since the inputs are of the same type as the outputs, viz. oligonu-
cleotides, gates may, in principle, be connected in complex circuits, with the output of
one gate acting as the input of another. Thus, we may design chemical systems that
perform complex computations from simple boolean primitives in much the same way
electronic computers are built from simple logic gates. These devices could operate
without macroscopic intervention in a biological environment, and the goal of this tech-
nology is autonomous in vivo computation for diagnostic and therapeutic purposes. We
have reported gates with a single layer of logic, and no inter-gate communication [1].
Devices that function as a half-adder [2] and a tic-tac-toe automaton [3] have been built
and tested in the laboratory.

These gates have been deployed in a closed reactor, which effectively limits this
technology to one-shot boolean computations. To overcome this limitation, we explore
using this chemistry in an open reactor, in which gates could be re-used many times
and connected in recurrent, rather than feed-forward, circuits. This adds a level of com-
plexity to the engineering task, but we develop a process that may be used to engineer
these devices. We apply methods of dynamical systems to construct reaction networks
in open reactors that implement rudimentary elements of digital chemical computation.
This allows us to investigate complex reaction networks that make use of inter-gate
communication and feedback.

2 The Chemical Kinetics of Deoxyribozyme Logic Gates

The four components of our deoxyribozyme system are inputs, gates, substrates, and
products. Under certain input conditions a gate is an active enzyme [1]. The effect of
input molecules on the catalytic activity of the gate defines the logic operation that
the gate performs. A gate requires the presence and/or absence of certain inputs to be
active. When active, the enzymatic gate is a phosphodiesterase: it catalyzes an oligonu-
cleotide cleavage reaction. A substrate molecule is cleaved into two product molecules.
The product molecules represent the output signal of the gate. Computations are car-
ried out in solution, where gates communicate by diffusion of oligonucleotides. Logic
signals, true or false, are expressed by high or low concentrations of specific oligonu-
cleotides. Oligonucleotides transmit information by participating in the reactions of
multiple gates. The simplest example is an oligonucleotide that is a product of one gate
and an input to another; serving as a substrate would suffice as well.

The mechanism of a deoxyribozyme gate is as follows. Input molecules bind to the
designated locations on the gate molecules. The binding of an input to a gate affects
the conformation of the gate, which in turn affects catalytic activity. Under appropri-
ate circumstances, the gate is an active enzyme, in which case it binds to a substrate
molecule, cleaves it into two molecules of product, and separates into two molecules of
product and one active gate complex. Active gates continue to operate as long as there
is substrate remaining to be cleaved.

In order to design larger circuits, we must first understand the dynamic behavior
of individual logic gates. We set up the experiment as follows. We prepare a solu-
tion with a concentration of G = 250nM of a specific YES gate (which becomes ac-
tive in the presence of input), a certain concentration I of the matching input, and a



Building the Components for a Biomolecular Computer 249

 0

 500

 1000

 1500

 2000

 2500

 0  5000  10000  15000  20000  25000

pr
od

uc
t c

on
ce

nt
ra

tio
n 

(n
M

)

time (seconds)

2500
1250
625

312.5
156.2
78.12
39.06
19.53

Fig. 1. Measured kinetics of a deoxyribozyme gate for different input concentrations I (nM)

concentration S = 2500nM of the substrate cleaved by the gate. At 900s intervals we
record the instrumentally measured fluorescence. We repeat the experiment varying I,
starting with I = S and repeatedly halving it. The measured fluorescence level of a
molecular species is proportional to its concentration. The specific fluorescences of the
product and the substrate have been established separately and are in a ratio of 8:1.
Therefore the increase of total fluorescence is proportional to the amount of product,
which allows us to convert measured fluorescence into product concentration, shown in
Figure 1.

For small values of the input concentration I, product concentration P rises lin-
early with time, with slope proportional to I. For larger values of I, the growth soon
reaches a plateau defined by the initial substrate concentration S: when all of the sub-
strate has been converted to product, the reaction stops. Note also the saturating behav-
ior: whereas the slope of t %→ P increases with I for small I, it remains roughly constant
for I > G.

We will model the kinetics of the deoxyribozyme gates as follows. First we note
that the cleavage and separation of substrate molecules is the slowest of the reactions—
it is the rate-limiting process. We will assume that bonding between gate and input
molecules is instantaneous and complete. Thus, the number of active gates at a given
time is a simple calculation depending solely on the number of gates and inputs.

Cleavage of substrate requires both substrate and an active gate complex. Experi-
ments have shown that the rate of production is proportional to the concentration of
both reactants. Hence, a model for the rate at which product is produced is: dP

dt = βSGA,
where P is the product concentration, β is the reaction rate constant, S is the substrate
concentration, and GA is the concentration of active gates. In the experiments shown
in Figure 1, I (and thus GA) was held constant. Therefore, the solution is an exponen-
tial decay of the substrate S. This model agrees well with observed measurements in
Figure 1, and analysis of the measured data gives a rough estimate of the reaction rate
constant β = 5 ·10−7 nM−1s−1. This value will be used to model the chemical gates in
the circuit designs presented herein.



250 C. Morgan et al.

3 The Reactor

Chemical reactors may be divided into closed systems, where reactants are added to
a solution and the reaction is allowed to proceed toward equilibrium, and open sys-
tems, where reactants are continuously supplied and excess solution is removed. We
explore the benefits and design considerations associated with using our chemistry in
an open reactor. Previous theoretical work has described circuits created from hypo-
thetical enzymatic transistors in open reactors [4]. We expand on this work by present-
ing circuit designs based on the chemical technology described above. Reactions in a
closed environment are subject to the Second Law of Thermodynamics, which posits
that the free energy in a closed system will continuously decrease and implies that the
system will move toward an equilibrium. This does not rule out interesting behavior,
such as oscillations on the way to an equilibrium [5], but it implies a finite number
of cycles through these oscillations. Thus it would be impossible to implement a re-
current digital circuit in which gates could switch on and off an arbitrary number of
times.

Instead, we use a thermodynamically open system; material is continuously supplied
and removed, as in a living cell. The circuit may be reused and produce many outputs
over its lifetime, so that it is recurrent rather than feed-forward. While a long-term goal
of this technology is deployment inside of (thermodynamically open) living cells, the
first step toward that end is testing and verification in a laboratory setting. A model open
environment is the continuous-flow stirred tank reactor. It delivers reactants into a reac-
tion chamber, stirred to maintain a uniform distribution of chemical species. An outflow
removes solution from the reactor to maintain constant volume. The inputs can be varied
in terms of their concentrations in the input solution and the flow rate into the reactor.
Both the concentration and the volumetric influx of a solution can be varied while still
maintaining the same total molecular influx rate. Thus we can manipulate total efflux
while maintaining desired concentrations of chemical species inside the reactor.

The decay rate of the reactor (k) is equal to the efflux rate (E) divided by the vol-
ume (V ). As the decay rate is increased, material spends less time inside the reactor.
Because the reactor state changes faster, the circuit speeds up. However, this increases
the amount of chemical species needed to maintain the same concentrations. In the spe-
cific design below, the reactor will have a total efflux of 5 · 10−8 m3s−1 and a volume
of 5 · 10−4 m3. This results in a decay rate of 10−4 s−1. While the resulting circuits
will operate very slowly, these values were chosen as design points corresponding to
equipment that can be found in a traditional chemistry laboratory.

4 A Simple Inverter

We begin by examining a simple computational device: the digital inverter. It is built
from a single type of Not gate G operating in an open reactor. The reactor is supplied
with a constant influx of gate and substrate molecules. In addition, input I is supplied to
provide an external drive. The output of this inverter is expressed by the concentration
of product P cleaved from substrate S. The behavior of the system can be modeled with
the following system of four coupled differential equations:



Building the Components for a Biomolecular Computer 251

dG
dT

=
Gm−EG(T )

V
(1)

dI
dT

=
Im−EI(T )

V
(2)

dP
dT

= βS(T )max(0,G(T )− I(T ))− EP(T )
V

(3)

dS
dt

=
Sm

V
−βS(T )max(0,G(T )− I(T ))− ES(T )

V
(4)

where Im, Gm, and Sm are the constant rates of molar influx of the respective chemical
species, V is the volume of the reactor, E is the rate of volume efflux, and β is the
reaction rate constant. The max terms in (3) and (4) come from our assumption that the
binding of input to gate molecule is both instantaneous and complete.

Clearly, this system can function as an inverter. If there are no inputs in the reactor,
all of the gates are active and produce product—this is the high signal. As input is added
gates become inhibited, and the product concentration falls. As the input concentration
reaches the gate concentration, all gates become inhibited and the product concentration
falls to zero—this is the low signal.

To explore the equilibrium behavior of the inverter we first assume that the input
concentration never exceeds the gate concentration; we can then eliminate the max
functions from equations (1)-(4). We can now set the derivatives to zero and solve for P.
This produces the following relation between input concentration and output (product)
concentration:

P =
βSmV ( Gm

E − I)

E2 +βV E( Gm

E − I)
=

Sm

E ( Gm

E − I)
E

βV + Gm

E − I

Introducing rescaling parameters α = Sm

E , γ = Gm

E , and δ = E
βV allows further simplifi-

cation. Thus we arrive at the following equation for the static transfer curve:

P =
α(γ− I)

δ+(γ− I)

This shows how the output concentration P depends on the input concentration I.
Further constraints must be introduced to create an inverter with well-defined signal

levels. First, the concentration corresponding to a high logic value is defined as H. We
require that P = H when I = 0 and P = 0 when I = H. These conditions yield the
constraints γ = H and α = H + δ. Thus, to alter the static transfer curve, we may vary
the parameters δ and α, while maintaining the relationship: α = H +δ. Figure 2 shows
the transfer functions obtained by setting δ to a range of values. As δ is increased, the
curve flattens out and becomes close to linear. As δ is decreased the curve becomes
more bowed out (i.e., a large derivative).

This transfer curve is far from the sigmoid shape desired in digital computing. Any
noise that moves the input concentration away from its digital value will propagate
through to the output, possibly resulting in computational errors. However, we may
construct inverters with differing static characteristics by concatenating several gates in
a cascade. Details of this construction are given in [6].



252 C. Morgan et al.

H

0
H0

pr
od

uc
t

input

 

 

 

δ = 1
8

δ = 1
2

δ = 200

Fig. 2. The static transfer curve for an inverter constructed from a NOT gate in an open system
with several different values for δ: 1

8 , 1
2 , and 200. As δ increases the transfer curve approaches a

straight line from high product and low input to low product and high input concentrations

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  60000  120000  180000

dr
iv

e 
(n

m
ol

 s
-1

)

time (s)

 0

 50

 100

 150

 200

 250

 0  60000  120000  180000

in
pu

t (
nM

)

time (s)

 0

 50

 100

 150

 200

 250

 0  60000  120000  180000
pr

od
uc

t (
nM

)
time (s)

Fig. 3. Left: external drive (molecular influx), as input to the circuit. Middle: concentration of
input I inside the reactor. Right: product concentration P, the output of the inverter. The input
concentration is moved from low, to high, and back to low at 6 ·104 s intervals

While the static behavior addresses equilibrium characteristics, this analysis ne-
glects the dynamic behavior of the system. Ultimately, the static transfer characteristic
depends on only one ratio, but the dynamic behavior is less restricted and depends on
several variables. However, this solution space is narrowed by the physical restrictions
of our technology. We define a logical high value to be a concentration of 250 nM and
calculate the rest of the parameters for the system. Figure 3 shows the results of numer-
ical integration of the inverter working under such conditions. The reactor was started
with zero concentration of all chemical species. The propagation delay of the inverter
is ≈ 7.9 ·103 s, with a tPHL ≈ 12.5 ·103 s, and tPLH ≈ 3.2 ·103 s.

5 A Chemical Flip-Flop

Moving to an open system allows us to construct recurrent chemical and logical
circuits—circuits with a lasting internal state or memory, which can change and be ac-
cessed over time. The simplest such system in digital logic is a flip-flop. This is simply
a bistable system, which exhibits three behaviors depending on its inputs, commonly
called hold, set, and reset. In the hold behavior, there are two stable states, which repre-
sent high and low outputs of the system. Set forces the system into its high stable state



Building the Components for a Biomolecular Computer 253

regardless of its previous state; similarly, reset forces it to its low stable state. Thus a
flip-flop represents a single bit of memory, which can be stored (hold) or overwritten
(set or reset).

A system that functions as a flip-flop can be constructed with a network of two
NOT gates connected in a cycle of inhibition. A gate G1 cleaves substrate S1 to produce
product P1, which inhibits the catalytic activity of gate G2; gate G2 cleaves S2 to produce
P2, which inhibits G1 to complete the cycle. Output from the flip-flop is in terms of the
concentration of the cleaved product P2, with high or low concentration corresponding
to a logical one or zero. The flip-flop is controlled by varying the influx of substrates 1
and 2 to the reactor, while gates 1 and 2 are continuously supplied.

We define constants Gm
1 and Gm

2 to be the rates of molecular influx of gate solutions.
The external control is modeled by the functions Sm

1 (T ) and Sm
2 (T ), which describe

the variable molecular influx of substrates at time T . The rate of efflux of the system
is given by E. We define P1(T ), P2(T ), S1(T ), S2(T ), G1(T ), and G2(T ) to be the
concentrations within the reactor at time T of product 1, product 2, substrate 1, substrate
2, gate 1, and gate 2, respectively. The system’s dynamics are modeled by the following
system of six coupled differential equations:

dG1

dT
=

Gm
1 −EG1(T )

V
dG2

dT
=

Gm
2 −EG2(T )

V
dP1

dT
= β1S1(T )max(0,G1(T )−P2(T ))− EP1(T )

V
dP2

dT
= β2S2(T )max(0,G2(T )−P1(T ))− EP2(T )

V
dS1

dT
=

Sm
1 (T )
V

−β1S1(T )max(0,G1(T )−P2(T ))− ES1(T )
V

dS2

dT
=

Sm
2 (T )
V

−β2S2(T )max(0,G2(T )−P1(T ))− ES2(T )
V

where β1 and β2 are the reaction rate constants and V is the volume of the reactor.
We now examine the model to determine the conditions under which it will function

as a flip-flop. Since we control it using substrate concentrations, we must determine how
its output depends on these. To simplify the analysis, we take the gate concentrations to
be constant (depending only on the efflux of the system). Hence we view the substrate
concentrations as parameters of the system rather than dynamic variables. Now the
behavior of the flip-flop can be understood using the following two-dimensional system:

d p1

dt
= r1max(0,g1− p2(t))− kp1(t) (5)

d p2

dt
= r2max(0,g2− p1(t))− kp2(t) (6)

where p1 and p2 are the product concentrations, r1 and r2 are lumped parameters repre-
senting substrate concentration and the reaction rate constant for the two reactions, g1

and g2 are the gate concentrations, and k is the decay constant. In order to function as a
flip-flop, the system must have two stable states: a set state with a high value of p2, and
a reset state with a low value of p2. Additionally there should exist control mechanisms



254 C. Morgan et al.

to switch between states, in this case by varying the substrate concentrations. High con-
centration of both substrates is used to hold the flip-flop state, while the absence of one
is used to set or reset the flip-flop. We now examine how the system will behave for
various values of the parameters r1 and r2.

We begin our analysis by examining the nullclines of the system, i.e., the curves
along which the time derivatives of the variables are constant. Setting equations (5) and
(6) to zero yields:

d p1

dt
= 0 ⇒ p1 =

r1max(0,g1− p2)
k

d p2

dt
= 0 ⇒ p2 =

r2max(0,g2− p1)
k

The derivative on the nullclines will have components in a single direction, along either
the p1 or p2 axis. This observation can be further qualified by inspecting equations
(5)-(6). Notice that as we increase the value of p1 the value of d p1

dt decreases, and as

we decrease the value of p1 the value of d p1
dt increases. This same relationship holds

between p2 and d p2
dt . Thus a point above the p1 nullcline will have a derivative in the

negative p1 direction and a point below the p1 nullcline will have a derivative in the
positive p1 direction. We can use these facts to partition the phase space into regions
where the signs of the derivatives are known [7].

Figure 4 shows two possible configurations of the nullclines along with the signs of
the derivatives in different regions of the phase space. In the case shown in Figure 4a
the two nullclines intersect (to create fixed points) at points A, B, and C. The stability
of these points can be investigated by examining the slopes of the surrounding regions.

d p1
dt = 0

a b

p2

Separatrix

p2

p1

B

D

A

E C

d p2
dt = 0

F

d p1
dt = 0

d p2
dt = 0

Fig. 4. The geometric structure of the flip-flop equations. Dark lines indicate the nullclines, where
p1 or p2 is unchanging. The arrows indicate the sign of the derivatives at various regions in the
phase space. a The hold state: a bistable system with balanced substrate concentrations. Points B
and C are the stable points of the system. Point A is an unstable saddle node. b The reset state:
a mono-stable system caused by a low concentration of substrate 2. The nullclines intersect once
at point F, which all locations will be attracted to



Building the Components for a Biomolecular Computer 255

The intersection at point A has four adjacent regions. Two of the regions adjacent to A
have derivatives pointing toward A, but two of the regions have derivatives away from
A. This reveals that A is a saddle point: perturbations in one direction will return back
to A, while perturbations in another direction will fall away from A. B and C, on the
other hand, are stable. The separatrix shown in Figure 4a divides the phase space into
two basins of attraction. All trajectories starting above the separatrix will be attracted to
B; all trajectories starting below it will be attracted to C. This configuration represents
a hold state of the flip-flop as the system will evolve to either B or C. B is the low
state of the flip-flop, in which the system has a low concentration of p2 and a high
concentration of p1. Similarly, C is the high state, with a high concentration of p2 and
a low concentration of p1. Thus we have two stable states and a valid flip-flop.

If the nullclines do not intersect in the positive quadrant then there will be a single
intersection on either the p1 or the p2 axis. Such a situation is shown in Figure 4b. The
point F is a stable node with a low p2 value and a high p1 value. An examination of
the three regions of the phase space reveals that all points will be attracted to point F.
Thus this state will reset the flip-flop. For bistability to occur the two nullclines must
intersect in the orientation shown in Figure 4a. This requires that point B be above
point D and that point C be to the right of point E, and translates into the following
conditions: kg2 < r1g1 and kg1 < r2g2. If we wish to maintain symmetry, we can set
g1 = g2 and r1 = r2 = r and the conditions become k < r. When this condition is met the
flip-flop will be in a hold state. The flip-flop is set or reset when the two nullclines do
not intersect in the positive quadrant. Then there will exist one stable fixed point at their
intersection (point F in Figure 4b). This will be the case if either r1 or r2 takes the value
of zero. Suppose that the flip-flop is in the hold state with a high concentration of p2 at
point C in Figure 4a. As the parameter r2 is reduced, the slope of the d p2

dt nullcline will
decrease and the stable point C will slide down the p2 axis toward point E. As C passes
E the fixed point is annihilated, and the system will jump to the only fixed point: point
F in Figure 4b. After the system has gone to point F the parameter r2 can be returned to
its original value and the flip-flop will remain in its low state. This lack of reversibility
as the parameter is varied is called hysteresis in dynamical systems [7].

This stability analysis reveals the constraints we need to satisfy for the system to
function as a flip-flop. First, in order to maintain output symmetry we require that g1 =
g2. This ensures that both the output of the flip-flop (p2) and the negated output (p1)
have the same value for a logical high. Next, in order to maintain a symmetric separatrix
along the line p1 = p2 we require that r1 = r2 = r. Thus, during the hold state of the flip-
flop, the phase-space is equally divided between values which are attracted to the high
state and values which are attracted to the low state. Finally, the constraint for bistability
is k < r. This means that the rate at which concentrations decay in the reactor (by means
of outflow) must be less than the rate at which the enzymatic gates can create product.
In other words, the gates must be capable of creating product faster than product is
being removed.

We then convert these constraints on the dimensionless model to specifications for a
physical system. Figure 5 shows a numerical integration of the system over a period of
9.6 ·104 s. At 2.4 ·104 s intervals the system is moved between set, hold, reset, and hold
operations by controlling the influx of substrates. The top two traces on the left show



256 C. Morgan et al.

 0

 0.5

 1

 1.5

0 60000 120000 180000 240000su
bs

tr
at

e 
1 

in
flu

x 
 (

nm
ol

 s
-1

)

time (s)

 0

 200

 400

 600

0 60000 120000 180000 240000

su
bs

tr
at

e 
1 

(n
M

)

time (s)

 0

 0.5

 1

 1.5

0 60000 120000 180000 240000su
bs

tr
at

e 
2 

in
flu

x 
 (

nm
ol

 s
-1

)

time (s)

 0

 200

 400

 600

0 60000 120000 180000 240000

su
bs

tr
at

e 
2 

(n
M

)

time (s)

 0

 100

 200

0 60000 120000 180000 240000

pr
od

uc
t 2

 (
nM

)

time (s)

 0

 100

 200

0 60000 120000 180000 240000

pr
od

uc
t 1

 (
nM

)

time (s)

Fig. 5. Exercising control over the flip-flop system

substrate molecular influx rates. The top two traces on the right show the corresponding
concentrations of substrates. The bottom two traces show concentrations of products 2
and 1. These represent the output and the negated output of the system, respectively.

6 Conclusions

Deoxyribozyme logic gates may be used to construct a biomolecular computer. By mov-
ing to open reactors, we increase the computational abilities of the underlying logic
gates by making it possible to build recurrent circuits and devices with feedback. Tech-
niques from dynamical systems offer qualitative and quantitative insights about the be-
havior of these chemical networks. Using these techniques, we have designed two fun-
damental components of a biomolecular computer: a single-bit inverter and a flip-flop
that provides a single bit of memory. Compared to electronic computers, this technol-
ogy is slow (about 1 mHz) but the possibility it offers of amorphous computation inside
living cells is extremely exciting.

References

1. M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic, “Deoxyribozyme-based logic gates,”
Journal of the American Chemical Society, vol. 124, pp. 3555–3561, Apr. 2002.

2. M. N. Stojanovic and D. Stefanovic, “Deoxyribozyme-based half adder,” Journal of the Amer-
ican Chemical Society, vol. 125, pp. 6673–6676, May 2003.



Building the Components for a Biomolecular Computer 257

3. M. N. Stojanovic and D. Stefanovic, “A deoxyribozyme-based molecular automaton,” Nature
Biotechnology, vol. 21, pp. 1069–1074, September 2003.

4. M. Hiratsuka, T. Aoki, and T. Higuchi, “Enzyme transistor circuits for reaction-diffusion com-
puting,” IEEE Transactions on Circuits and systems—I: Fundamental Theory and Applica-
tions, vol. 46, pp. 294–303, Feb. 1999.

5. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics. New York:
Oxford University Press, 1998.

6. C. Morgan, “Units of a biomolecular computer constructed from networks of modular chem-
ical gates in an open reactor,” Undergraduate thesis, University of New Mexico, 2003.

7. S. H. Strogatz, Nonlinear Dynamics and Chaos (With Applications to Physics, Biology, Chem-
istry, and Engineering. Addison-Wesley, 1994.



Methods for Manipulating DNA Molecules in a
Micrometer Scale Using Optical Techniques

Yusuke Ogura1,3, Takashi Kawakami1, Fumika Sumiyama1,3, Satoru Irie1,
Akira Suyama2,3, and Jun Tanida1,3

1 Graduate School of Information Science and Technology,
Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

{ogura, kawakami, sumiyama, irie, tanida}@ist.osaka-u.ac.jp
2 Graduate School of Arts and Sciences, The University of Tokyo,

3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
suyama@dna.c.u-tokyo.ac.jp

3 Japan Science and Technology Corporation (JST-CREST)

Abstract. We studied optical methods for controlling the position and
reaction of DNA molecules in a micrometer scale. We used an experimen-
tal system equipped with two single laser sources for optical manipulation
and temperature control. The experimental results demonstrated that
the position and reaction of the DNA were controlled independently. We
also succeeded in manipulating DNA inside a microwell. The methods
are expected to be useful for developing optically assisted DNA comput-
ing in which DNA is used as an information carrier and manipulated by
effective use of optical techniques.

1 Introduction

Optical computing is a computational technique for parallel information process-
ing that uses inherent property of light such as fast propagation, parallelism,
and a large bandwidth. Many interesting results were obtained with various
demonstration systems, which were associated with, for example, optical inter-
connection and digital optics[1, 2]. The embodiment of a valuable optical com-
puting system requires high-performance optical devices, and some remarkable
devices are developed. Good examples include vertical-cavity surface-emitting
lasers (VCSELs)[3] and diffractive optical elements (DOEs)[4]. The VCSELs
can be arranged in a two dimensional array structure with a period of a-few-
hundred micrometer and their intensities are individually modulated at a rate
that is higher than 10 GHz. Owing to the progress in a microfabrication tech-
nology based on lithography or other methods, DOEs that achieve complicated
control of light are put to practical use. These devices are useful for controlling
an optical field in a micrometer scale.

When using light, one must usually consider the diffraction limit, which de-
termines the resolution of the light. From a viewpoint of information technology,
the diffraction limit often restricts the density and capacity of information that

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 258–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Methods for Manipulating DNA Molecules 259

is dealt with in a system. The precise alignment of optical devices is necessary
for manipulating the light with the diffraction limit. The most important theme
in the present research on optical computing is to find applications that utilize
the full advantages of the features of the optical technique, and to contribute to
develop practical and high performance information systems.

In contrast, DNA computing is an interesting computational paradigm in
which information is encoded and expressed with the base sequences or the
structures of DNA molecules[5]. Massive parallelism of reactions, smallness, ca-
pability to react autonomously, and other characteristics of DNA are effectively
used in the DNA computing. Computation based on the DNA computing starts
with design and synthesis of DNA. Information is processed by controlling re-
actions of the DNA. The DNA reacts in parallel and autonomously. This is an
essential basis of the computational capability of the DNA computing. However,
to use autonomous reactions of the DNA effectively, various information must be
previously included in the base sequences of the DNA. Reaction parallelism sug-
gests that a sophisticated mechanism or ingenuity is required for manipulating
particular DNA molecules selectively in an entire DNA solution.

Light and DNA have large potential capabilities for achieving high perfor-
mance information systems. There are, however, difficulties to be overcome at
the present stage. Use of both the light and the DNA is a promising strategy
to establish a new computational paradigm that has distinctive features. As an
example, we propose optically assisted DNA computing, in which the DNA is
used as an information carrier and manipulated by effective use of optical tech-
niques. The optically assisted DNA computing is based on control of the DNA
in a molecular scale by using bio-chemical reactions and that in a micrometer
scale by applying optical techniques.

In this paper, we report on methods for controlling the position and reaction
of DNA in a micrometer scale. We use a system equipped with two single laser
sources of different wavelengths. Effectiveness of the methods is demonstrated by
experimental results. The methods can be extended to parallel manipulation of
DNA by using a VCSEL array[6] and therefore they are fundamental technologies
for developing optically assisted DNA computing. In Section 2, the basic concept
and the features of optically assisted DNA computing are described. In Section
3, methods for controlling the position and reaction of DNA by use of optical
techniques are introduced. In Section 4, we show experimental results that are
related with translation of DNA molecules by optical manipulation and local
reaction control by irradiating with a laser beam.

2 Optically Assisted DNA Computing

The basic concept of optically assisted DNA computing is illustrated in Fig. 1.
DNA molecules including encoded information, which are referred to as infor-
mation DNAs in this paper, are used in the optically assisted DNA computing
as well as in traditional DNA computing. The information DNAs are manipu-
lated in a micrometer scale using optical techniques. This is a major difference



260 Y. Ogura et al.

Fig. 1. The basic concept of optically assisted DNA computing

between the optically assisted DNA computing and the traditional DNA com-
puting. The reaction space of DNA is divided into multiple small spaces, which
are referred to as reaction sub-spaces. The reactions of information DNAs are
controlled independently in the individual sub-spaces using optical techniques,
and therefore particular information DNAs among all the information DNAs in
the overall reaction space can be manipulated selectively. The information DNAs
can be translated to another sub-space with microscopic beads. The information
DNAs are attached to and detached from the substrate by hybridization and de-
naturation with the DNAs that are bound to the substrate. This makes possible
to store the information DNAs. We can manipulate the information DNAs by
generating and switching an optical field pattern.

The optically assisted DNA computing provides many advantages. From a
viewpoint of the application of optical techniques to DNA computing, a procedu-
ral operation is introduced into the DNA computing owing to ease of controlling
light. Use of the procedural operation is effective for relaxation of constraints in
design of DNA sequences, improvement of flexibility in computation, and so on.
An efficient processing or a new operation mechanism can be used because DNAs
are manipulated in small reaction sub-spaces based on control from outside of
the reaction space. An electronics technology can be combined to DNA com-
puting because an optical technology bridges the both technologies. In addition,
from a standpoint of optical computing, the capacity and density of informa-



Methods for Manipulating DNA Molecules 261

tion increase because the information can be manipulated in a molecular scale
which is considerably smaller than the diffraction limit. Capability of DNA to
react autonomously provides a large tolerance in controlling light and reduces re-
quirements for system packaging. We can directly deal with ambiguous genetical
information.

3 Manipulation of DNA Using Optical Techniques

Methods for manipulating information DNAs are important for developing opti-
cally assisted DNA computing. We present two methods using optical techniques.
One is optical manipulation for controlling the position of the DNAs and the
other is a method for controlling reaction of the DNAs in local space by laser
irradiation.

Optical manipulation is a method for non-invasively manipulating an object
with a radiation pressure force induced by the interaction between light and
the object. Ashkin et al. have demonstrated optical levitation of a particle by
a scattering force in 1971[7] and three-dimensional trapping of a microscopic
dielectric particle by an optical gradient force in 1986[8]. The optical manipula-
tion is useful for controlling a molecule, and it is applied to measure the physical
property of a filament molecule and to clarify a mechanism of the motility of
motor proteins[9, 10].

When DNA molecules are diffused in a solution, it is difficult to directly
manipulate the DNA molecules by using a radiation pressure force. However,
fabrication of a DNA cluster with a microscopic bead makes it possible to trans-
late a large amount of DNAs by the optical manipulation. The DNA cluster is
fabricated with a procedure as follows. Anti-tag DNAs that include a particular
sequence are bound to the surface of a bead. Information DNAs include a tag
sequence, which is complementary to the anti-tag DNA. Reacting with the bead,
the information DNAs are immobilized to the bead by hybridization between the
tag and anti-tag sequences. We refer to the bead with information DNAs as a
DNA cluster. The DNA clusters are fabricated with the individual beads, and
each DNA cluster contains thousands of the DNAs. A lot of information DNAs
can be translated simultaneously by moving the DNA cluster.

Temperature is an essential parameter for control of various reactions of DNA
molecules. Optical field patterns can be easily generated and modulated in a mi-
crometer scale, and a temperature control method based on an optical technique
is useful for controlling the DNA reactions locally. The scheme of the method
for controlling reaction of DNAs by irradiating with a laser beam is shown in
Fig. 2. A substrate is coated with material that absorbs light and a DNA solu-
tion is placed on it. When the substrate is irradiated with a focused laser beam,
the surface of the substrate is heated up with light absorption. Thermal energy
transfers to the solution on the substrate, and the temperature of the solution
around irradiated area increases. Based on the phenomenon, the temperature of
the solution can be controlled by changing the power of the beam used. When



262 Y. Ogura et al.

Fig. 2. A method for controlling the temperature of a solution in a micrometer scale

focusing a laser beam using an objective lens with a high numerical aperture,
we can control a reaction of the DNAs selectively in a micrometer scale.

4 Experiments

Procedures to fabricate a DNA cluster and to prepare a substrate are as fol-
lows. Anti-tag DNAs (3’-GCACC TAGTC ATTGA CTTTA CTCCA TTCTA
AACAT GATAC-5’) which are modified with biotin at the 5’-end are mixed in
a solution that contains polystyrene beads coated with streptavidin. The anti-
tag DNAs are bound to the surfaces of the beads by biotin-streptavidin bind-
ing. Then tag DNAs (3’-GTATC ATGTT TAGAA TGGAG TAAAG TCAAT
GACTA GGTGC-5’) with fluorescent molecules (Molecular Probes: Alexa Fluor
647) for observation are mixed in the solution. The absorption and fluorescence
emission maxima of the florescent molecules are 650 nm and 668 nm, respec-
tively. After hybridization reaction, the tag DNAs are immobilized to the beads.
The DNA clusters are extracted from the solution and a sample solution is pre-
pared by putting DNA clusters into a buffer solution. A glass substrate is coated
with titanylphthalocyanine of 0.15 µm thickness as a layer for absorbing light,
then gold is deposited on the substrate. The anti-tag DNAs which are modified
with thiol at the 5’-end are bound to the substrate.

We construct an experimental system equipped with two laser sources as
shown in Fig. 3. The sample solution is irradiated from below with a laser beam
(wavelength: 850 nm) for controlling temperature, whereas the solution is irra-
diated from above with a laser beam (wavelength: 980 nm) for positioning by
optical manipulation. A dichroic mirror (Olympus: U-DM-CY5) is used for cap-
turing fluorescent images. An excitation wavelength range is approximately 625
nm ± 25 nm.

The first experiment was detachment of information DNAs from the sub-
strate. The information DNAs (tag DNAs) were immobilized to the substrate
by hybridization with the anti-tag DNAs. We irradiated the substrate with a fo-
cused laser beam, and scanned the beam in the shape of the letter “T” by moving



Methods for Manipulating DNA Molecules 263

850nm

980nm

×60
objective lens

Mercury lamp

Laser diode for 
control of position

Dichroic mirror

Dichroic mirror
(U-DM-CY5)

Dichroic mirror

Laser diode for 
control of temperature

Halogen lamp

ND filter

ND filter

Cooled CCD

Sample and stage

Fig. 3. Experimental setup

the sample stage. Figure 4 shows an fluorescent image captured after the above
procedure. The fluorescent intensity of the area where the beam passed is lower
than that of the other area. The phenomenon is explained by a mechanism that
the information DNAs are denaturated by rise of temperature and diffused in the
solution. The result shows that the denaturation of the information DNAs can be
controlled by irradiating with a laser beam in approximately 5 µm resolution.
After detaching the DNAs from the substrate, we performed a hybridization
reaction with sufficient amounts of information DNAs. Then the fluorescent in-
tensity at the area of detachment increased as high as that of surrounding area.
The result suggests that the thiol-gold bond is not disrupted by laser irradiation.

We also performed an experiment for detaching information DNAs from a
bead. In this experiment, we prepared two kinds of samples to measure photo-
bleach of the fluorescent molecules. Sample (i) includes DNA clusters, in which
fluorescent molecules are attached to the tag DNAs. Sample (ii) includes beads
on which the anti-tag DNAs with fluorescent molecules are attached. We used
a laser beam for temperature control and irradiated a bead in sample (i) or
(ii) with 5 mW for 15 second then stopped irradiating for 4 second to capture
a fluorescent image during one cycle. This irradiation cycle was repeated. Fig-
ure 5 shows dependence of the fluorescent power on an irradiation cycle. The



264 Y. Ogura et al.

decrease of the fluorescent power for sample (i) is considerably larger than that
for sample (ii). In the case of sample (ii), the anti-tag DNAs are immobilized to
the bead by biotin-streptavidin binding and do not leave by rise of temperature,
and therefore the decrease of fluorescent power is considered as photobleach of
the fluorescent molecules induced by the laser beam for temperature control and
excitation light. This result demonstrates that information DNAs are detached
from the bead by irradiating with the laser beam for temperature control.

We translated a DNA cluster and then denatured DNAs from the DNA clus-
ter. The DNA clusters were fabricated with 6µm-diameter polystyrene beads.
Figure 6 shows a sequence of fluorescent images during the experiment. (a) is
the image at the initial state, (b) is that captured after translation of the DNA

30µm

Fig. 4. Experimental result of detachment of information DNA from a substrate

Irradiation cycles

F
lu

or
es

ce
nt

 p
ow

er
 (

a.
u.

)

1

0.8

0.6

0.4

0.2

0
5 10 15 200

Sample (i)

Sample (ii)

Fig. 5. Dependence of the fluorescent intensity on irradiation cycle when the laser

beam for temperature control is used. Sample (i); fluorescent molecules are attached

to tag DNAs, Sample (ii); fluorescent molecules are attached to anti-tag DNAs



Methods for Manipulating DNA Molecules 265

(b) (c)(a)

10µm

Fig. 6. Experimental result of translation and detachment of DNA. Fluorescent images

(a) at initial state, (b) after translation, and (c) after detachment

cluster, and (c) is that after denaturation. For denaturation, we irradiated the
DNA cluster with 3 mW for one minute. The fluorescent intensity clearly de-
creases after irradiating the DNA cluster with the laser beam for temperature
control (Fig. 6(c)). In contrast, the fluorescent intensity scarcely decreases dur-
ing irradiation with the laser beam for optical manipulation (Fig. 6(b)). This
means that the DNAs are surely translated and then denatured. In addition,
note that the fluorescent intensity of another DNA clusters does not decrease
in Fig. 6. The experiment demonstrates that the position and reaction of DNAs
can be controlled in a micrometer scale with our system.

To investigate a rate of denaturation with the laser beam for optical manip-
ulation, we performed a further experiment with samples (i) and (ii) which are
used in a previous experiment. We irradiated with the laser beam for optical
manipulation for 15 second then stopped irradiating for 4 second to capture a
fluorescent image during one cycle. This irradiation cycle was repeated. Little
difference was seen between the fluorescent powers measured for samples (i) and
(ii). This result suggests that the laser for optical manipulation can not increase
temperature of the solution and it does not accelerate the denaturation reaction.

In addition to the above result, when the bead was irradiated with the laser
beam for temperature control, the position of the DNA cluster was scarcely
changed. The possible reasons are low transmittance to the substrate and spread
of a focal spot by scattering in the substrate. These results show that the position
and reaction of the DNA can be controlled independently using two wavelengths
of laser sources.

A substrate with a microwell array was used in the following experiment. The
microwell array is considered to be useful for confining information DNAs in sub-
spaces. By controlling the reaction of the information DNAs inside the microwell,
diffusion of them can be reduced. Furthermore, efficiency of the DNA reaction
becomes higher due to the small volume of the reaction solution. Anti-tag DNAs
are bound at the bottoms of the microwells, and therefore the information DNAs
can be immobilized in the microwells when they include a tag sequence.



266 Y. Ogura et al.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

F
lu

or
es

ce
nt

 in
te

ns
ity

 (
a.

u.
)

Place (µm)

DNA
cluster

Before irradiation
After irradiation

(a)
(b)

Fig. 7. Fluorescent intensity of a DNA cluster (a) before and (b) after irradiating with

a laser beam

The microwell array was fabricated by photo-lithography and wet-etching
processes. The diameter and the depth of the wells were 7 µm and 4 µm, re-
spectively. A DNA cluster was put into a microwell by optical manipulation,
and tag DNAs were denaturated by irradiating with a laser beam. The DNA
clusters were fabricated with beads of 2µm in diameter. Fluorescent images of
the DNA cluster were captured before and after irradiating with a laser beam.
Dependence of the fluorescent intensity on the place along the diameter of the
bead is shown in Fig. 7. The DNA cluster was irradiated with 4 mW for one
minute. The fluorescent intensity decreases after irradiating with the laser beam.
This result confirmed that the solution in the microwell was heated up and that
the DNAs were denaturated due to a rise of temperature. We also verified that
the DNA cluster in a microwell could be translated to anther microwell.

5 Conclusions

We developed methods for manipulating DNA molecules in a micrometer scale
with optical techniques, and demonstrated the effectiveness of the methods. The
experimental results confirmed that the position and reaction of DNA are con-
trolled independently using two laser beams with different wavelengths. The
methods can be applied to manipulate DNA in a microwell.

Measuring temperature when irradiating with a laser beam is an important
issue in future. The result of Fig. 5 suggests that temperature can be increased
higher than the melting temperature of DNA used (approximately 63̊ C) after
several irradiation cycles. However, the accurate temperature have not been



Methods for Manipulating DNA Molecules 267

measured. Use of two sequences of DNA with different melting temperatures is
a possible method to measure temperature.

Optically assisted DNA computing requires high efficient control of the reac-
tion of DNA. For the purpose, use of a microwell array is a possible approach.
The experimental result, however, suggests that the DNA molecules that leave
from a bead are dissolved even though they react in the microwell. Closing the
microwell with another bead is considered to be a strategy to prevent the DNA
from dissolving. If the reaction space is completely sealed, the loss of the in-
formation DNA is avoidable, and therefore the DNA can be reacted with high
efficiency. We are now examining this technique. The methods presented in this
paper are useful in manipulating DNA in a micrometer scale and expected to be
advanced as a new application of optics based techniques.

Acknowledgment

This work was supported by JST CREST and the Ministry of Education, Science,
Sports, and Culture, Grant-in-Aid for Scientific Research (A), 15200023, 2003.

References

1. J. Tanida and Y. Ichioka: Digital optical computing. Progress in Optics XL (El-
sevier Science, Amsterdam, 2000) 77-114.

2. J. Tanida and Y. Ichioka: Optical computing. The Optics Encyclopedia 3 (Wiley-
VCH, Berlin, 2003) 1883-1902.

3. K. Iga: Surface-emitting laser – Its birth and generation of new optoelectronics
field. IEEE J. Select. Topics in Quan. Electron. 6 (2000) 1201-1215.

4. H. P. Herzig (ed.): Micro-optics: Elements, systems, and applications. Taylor &
Francis Ltd., 1 Gunpowder Square, London (1997).

5. J. Chen and J. Reif (eds.): Ninth Annual International Meeting on DNA based
Computers, Preliminary proceedings, (2003).

6. Y. Ogura, T. Kawakami, F. Sumiyama, A. Suyama, and J. Tanida: Parallel trans-
lation of DNA clusters by VCSEL array trapping and temperature control with
laser illumination. Ninth Annual International Meeting on DNA based Computers
(2003) 19-27.

7. A. Ashkin and J. M. Dziedzic: Optical levitation by radiation pressure. Appl. Phys.
Lett. 19 (1971) 283-285.

8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu: Observation of a single-
beam gradient force optical trap for dielectric particles. Opt. Lett. 11 (1986) 288-
290.

9. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita Jr., and H.
Itoh: Tying a molecular knot with optical tweezers. Nature 399 (1999) 446-448.

10. C. Veigel, L. M. Coluccio, J. D. Jontes, J. C. Sparrow, R. A. Milligan, and J.
E. Molloy: The motor protein myosin-I produces its working stroke in two steps.
Nature 398 (1999) 530-533.



From Cells to Computers:
Membrane Computing – A Quick Overview

Gheorghe Păun

Institute of Mathematics of the Romanian Academy,
PO Box 1-764, 014700 Bucureşti, Romania

and
Research Group on Natural Computing,

Department of Computer Science and AI, University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

george.paun@imar.ro, gpaun@us.es

Abstract. The present paper is an informal introduction to membrane
computing, presenting the basic ideas, the central (mathematical) results,
and the main directions of research. A special emphasis is put on the
(possible) usefulness of membrane systems for molecular computing and
for biological modelling.

1 From Cells to Models

Membrane Computing (MC) started (in the end of 1998; the paper [12] was first
circulated on web) from a double challenge: to check whether or not the state-
ments about the computations taking place in a cell (see, e.g., [3], [9]) were mere
metaphoras or they correspond to computations in the standard (mathematical)
understanding of this term, and, more ambitiously, having in mind the encour-
aging experience of other branches of Natural Computing, to get inspired from
the structure and the functioning of the living cell and define new computing
models, possibly of interest for computer science, for computability in general.

In a very short time, the area developed extensively from a mathematical
point of view, proposing and investigating a series of models (called P systems)
inspired from the cell biochemistry. Later, also models inspired from the way the
cells are organized in tissues and from the way the neurons cooperate in networks
were considered. The main issues investigated were of a (theoretical) computer
science type: computation power (in comparison with Turing machines and their
restrictions), and usefulness in solving computationally hard problems. The field
simply flourished at this level. Comprehensive information can be found in the
web page (organized under the auspices of the European Molecular Computing
Consortium, EMCC) [22]; a presentation at the level of the spring of year 2002
can be found in [13].

In short, a cell-like P system consists of a hierarchical arrangement of mem-
branes (understood as three-dimensional vesicles), which delimit compartments
(also called regions), where abstract objects are placed. These objects correspond

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 268–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



From Cells to Computers: Membrane Computing – A Quick Overview 269

to the chemicals from the compartments of a cell, and they can be either unstruc-
tured, a case when they can be represented by symbols from a given alphabet,
or structured, and then a possible representation of objects is by strings over
a given alphabet (but also more complex structures were considered, such as
two-dimensional arrays, trees, etc). Corresponding to the situation from biology,
where the number of molecules from a given compartment matters, also in the
case of objects from the regions of a P system we have to take into account their
multiplicity, that is why we consider multisets of objects assigned to the regions
of P systems. These objects evolve according to rules, which are also associated
with the regions. The intuition is that these rules correspond to the chemical
reactions form cell compartments and the reaction conditions are specific to each
compartment, hence the evolution rules are localized. The rules say both how the
objects are changed and how they can be moved (we say communicated) across
membranes. By using these rules, we can change the configuration of a system
(the multisets from its compartments, and also the membrane structure in cer-
tain cases); we say that we get a transition among system configurations. The
way the rules are applied imitates again the biochemistry (but goes one further
step towards computability): the reactions are done in parallel, with the objects
to evolve and the rules by which they evolve being chosen in a non-deterministic
manner, in such a way that the application of rules is maximal. A sequence of
transitions forms a computation, and with computations which halt (reach a con-
figuration where no rule is applicable) we associate a result, for instance, in the
form of the multiset of objects present in the halting configuration in a specified
membrane.

The passage from the “real cell” to the “mathematical cell”, as well as the
generality of the approach are obvious. We start from the cell, but the abstract
model deals with very general notions: membranes interpreted as separators
of regions, objects and rules assigned to regions; the basic data structure is
the multiset (a set with multiplicities associated with its elements); the rules
are used in the non-deterministic maximally parallel manner, and in this way
we get sequences of transitions, hence computations. All these items have a
mathematical representation; in such terms, MC can be interpreted as a bio-
inspired framework for distributed parallel processing of multisets.

It is also obvious that from a theoretical point of view, MC is an extension of
DNA (more generally, of Molecular) Computing, both because the objects from
a P system can be DNA molecules, processed by operations abstracting from
DNA biochemistry (actually, there were considered splicing based P systems,
and other P systems with string-objects which evolve according to biochemical-
like rules), and because MC deals with a distributed parallel computing, in a
cell-like framework, which is a model of distributed DNA Computing both in
vivo and in vitro.

Thus, MC started as a mathematical enterprise inspired from biology, not
aiming to model the cell in the benefit of cell biology, but in the benefit of com-
putability. Several seemingly contradictory criteria have concomitantly acted: to
have models as realistic as possible (adequate to the bio-reality, capturing as



270 G. Păun

many biological features as possible), as powerful as possible from a computabil-
ity point of view (if possible, equal in power to Turing machines; this is rather
important, because the constructive equivalence with Turing machines can di-
rectly imply the existence of universal – hence “programmable” – computing
models), as elegant as possible from a mathematical point of view (with reduced
ingredients, without redundancies, etc), as efficient as possible (solving compu-
tationally hard problems in a feasible time, by making use of the parallelism
inherent to the biochemistry of the cell). Some details about these criteria will
be given below. Important is to note that among the many classes of P systems
considered in the literature, many of them incorporate in a direct way various
biologically inspired features, most of them are Turing universal, even in cases
where reduced ingredients are used (which is a way to get farther from biology,
where one meets a lot of redundancies), while several classes of P systems can
provide polynomial or even linear time solutions to NP-complete problems (by
a time-space trade-off, made possible, for instance, by membrane division). Oth-
erwise stated, at the theoretical level, MC was quite successful. Based on this
mathematical development, two recent trends are rather promising also from a
practical point of view. On the one hand, one discusses more and more frequently
about the usefulness of MC as a source of ideas for distributed computing and
as a possible general framework for covering and extending several existing ap-
proaches to distributed computing. This direction of research, still in its infancy,
is directly continuing the many efforts for implementing (simulating) P systems
on the usual electronic computer (there are numerous programs of this type, see
[22]), on distributed architectures [6], [20], on a reconfigurable hardware [16], etc.
On the other hand, making use of both the theoretical developments and of the
existing implementations, MC started to be used as a framework for modelling
biological processes, especially at the level of the cell. This was not an initial
goal of MC, but it promises to be an important “by-product” of it, in view of
the difficulty of modelling and simulating the cell – see, e.g., [21]. We will return
to these topics, after having a closer look to MC.

2 The Basic Classes of P Systems

We introduce now the fundamental ideas of MC in a more precise way. We recall
the fact that, wearing “mathematical glasses”, we look to the cell and try to find a
computing device. To this aim we need data structures and operations with these
data structures, an architecture of our “computer”, and a systematic manner to
define computations and results of computations. As a result, MC proposes a
computing model in the form of a membrane system (or P system), consisting of
(1) a membrane structure, in whose compartments there are placed (2) multisets
of (3) objects which evolve according to (4) sets of rules also associated with the
compartments.

A membrane structure is a hierarchically arranged set of membranes. A sug-
gestive representation is as in Figure 1. We distinguish the external membrane
(corresponding to the plasma membrane and usually called the skin membrane)



From Cells to Computers: Membrane Computing – A Quick Overview 271

and several internal membranes (corresponding to the membranes present in a
cell, around the nucleus, in Golgi apparatus, vesicles, etc); a membrane without
any other membrane inside it is said to be elementary. Each membrane deter-
mines a compartment, also called region, the space delimited from above by
it and from below by the membranes placed directly inside, if any exists. The
correspondence membrane–region is one-to-one, that is why we sometimes use
interchangeably these terms; also, we identify by the same label a membrane
and its associated region.

	




�

�

	




�

�



�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

��	

�
�
��

�
�

��


membrane

���

skin elementary membranemembrane

region

environment environment

�
���������

�
�

���

Fig. 1. A membrane structure

1 2

3

4
5

6

7

8

9

In the basic class of P systems, each region contains a multiset of symbol-
objects, which correspond to the chemicals swimming in a solution in a cell
compartment; these chemicals are considered here as unstructured, that is why
we describe them by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The rules correspond to
the chemical reactions possible in the compartments of a cell. The typical form
of such a rule is aad → (a, here)(b, out)(b, in), with the following meaning: two
copies of object a and one copy of object d react and the reaction produces one
copy of a and two copies of b; the new copy of a remains in the same region
(indication here), one of the copies of b exits the compartment, going to the
surrounding region (indication out) and the other enters one of the directly inner
membranes (indication in). We say that the objects a, b, b are communicated as
indicated by the commands associated with them in the right hand member
of the rule. When an object exits a membrane, it will go to the surrounding
compartment; in the case of the skin membrane this is the environment, hence
the object is “lost”, it never comes back into the system. If no inner membrane
exists (that is, the rule is associated with an elementary membrane), then the
indication in cannot be followed, and the rule cannot be applied.



272 G. Păun

The communication of objects through membranes reminds the fact that
the biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with a consumption of energy), in a rather selective manner. The
fact that the communication of objects from a compartment to a neighboring
compartment is controlled by the “reaction rules” is attractive mathematically,
but not quite realistic from a biological point of view, that is why there also were
considered other ways of moving objects, for instance, by symport/antiport rules
– see Section 3.

A rule as above, with several objects in its left hand member, is said to be
cooperative; a particular case is that of catalytic rules, of the form ca → cx, where
a is an object and c is a catalyst, appearing only in such rules, never changing.
A rule of the form a → x, where a is an object, is called non-cooperative.

The rules associated with a compartment are applied to the objects from
that compartment, in a maximally parallel way: we assign objects to rules, until
no further assignment is possible. The used objects are “consumed”, the newly
produced objects are placed in the compartments of the membrane structure
according to the communication commands assigned to them. The rules to be
used and the objects to evolve are chosen in a non-deterministic manner. All
compartments of the system evolve at the same time, synchronously (a common
clock is assumed for all membranes). Thus, we have two layers of parallelism,
one at the level of compartments and one at the level of the whole “cell”.

A membrane structure and the multisets of objects from its compartments
identify a configuration of a P system. By a non-deterministic maximally parallel
use of rules as suggested above we pass to another configuration; such a step
is called a transition. A sequence of transitions constitutes a computation. A
computation is successful if it halts, it reaches a configuration where no rule can
be applied to the existing objects. With a halting computation we can associate
a result in various ways. The simplest possibility is to count the objects present
in the halting configuration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave the system during
the computation, and this is called external output. In both cases the result is
a number. If we distinguish among different objects, then we can have as the
result a vector of natural numbers. The objects which leave the system can also
be arranged in a sequence according to the moments when they exit the skin
membrane, and in this case the result is a string. A string can also be obtained by
following the trace of a distinguished object (a “traveller”) through membranes.
(When we deal with string-objects, then the result of a computation is usually
defined as the set of strings which leave the system during the computation;
these strings cannot be further processed, hence in this case we do not need to
use the halting condition in order to define successful computations.)

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several
results. Thus, a P system computes (one also uses to say generates) a set of
numbers, or a set of vectors of numbers, or a language.



From Cells to Computers: Membrane Computing – A Quick Overview 273

Of course, the previous way of using the rules from the regions of a P system
reminds the non-determinism and the (partial) parallelism from cell compart-
ments, with the mentioning that the maximality of parallelism is mathematically
oriented (rather useful in proofs); when using P systems as biological models,
this feature should be replaced with more realistic features (e.g., reaction rates,
probabilities, partial parallelism).

An important way to use a P system is the automata-like one: an input
is introduced in a given region and this input is accepted if and only if the
computation halts. This is the way of using P systems, for instance, in solving
decidability problems.

We do not give here a formal definition of a P system. The reader interested
in mathematical and bibliographical details can consult the mentioned mono-
graph [13], as well as the relevant papers from the web bibliography [22]. Of
course, when presenting a P system we have to specify: the alphabet of objects
(a usual finite non-empty alphabet of abstract symbols identifying the objects),
the membrane structure (usually represented by a string of labelled matching
parentheses), the multisets of objects present in each region of the system (repre-
sented by strings of symbol-objects, with the number of occurrences of a symbol
in a string being the multiplicity of the object identified by that symbol in the
multiset represented by the considered string), the sets of evolution rules asso-
ciated with each region, as well as the way the output is defined.

Many modifications/extensions of the very basic model sketched above are
discussed in the literature, but we do not mention them here.

3 Computing by Communication

In the systems described above, the symbol-objects were processed by multiset
rewriting-like rules, and moved across membranes according to given communi-
cation targets. Coming closer to the trans-membrane transfer of molecules, we
can consider purely communicative systems, based on the two classes of coupled
transfer processes known in biology: symport, and antiport (see [1] for details).
Symport refers to the transport where two (or more) molecules pass together
through a membrane in the same direction, antiport refers to the transport
where two (or more) molecules pass through a membrane simultaneously, but
in opposite directions; for uniformity, the case when a molecule does not need a
“partner” for a passage is referred to as uniport.

In terms of P systems, we can consider object processing rules of the fol-
lowing forms: a symport rule (associated with a membrane i) is of the form
(x, in) or (x, out), stating that the objects of the multiset (represented by the
string) x enter/exit together membrane i, while an antiport rule is of the form
(x, out; y, in), stating that, simultaneously, the objects from x exit and those
from y enter membrane i.

A P system with symport/antiport rules has the same architecture and func-
tioning as a system with multiset rewriting rules: alphabet of objects, membrane
structure, initial multisets in the regions of the membrane structure, sets of rules



274 G. Păun

associated with the membranes, possibly an output membrane – with one ad-
ditional component, the set of objects present in the environment. Because by
communication we do not create new objects, we need a supply of objects, in the
environment, otherwise we are only able to handle a finite population of objects,
those provided in the initial multiset. If an object is present in the environment
at the beginning of a computation, then it is considered available in arbitrarily
many copies (the environment is inexhaustible). In this way, the environment
takes an active part in the computation, which, together with the conservation
of objects, the direct biological inspiration, the mathematical elegance, the com-
putational power, is one of the attractive features of this class of P systems.

4 Computational Completeness; Universality

As we have mentioned before, many classes of P systems, combining various
ingredients biologically or mathematically inspired, are able of simulating Turing
machines, hence they are computationally complete. Always, the proofs of results
of this type are constructive, and this has an important consequence from the
computability point of view: there are universal (hence programmable) P systems.
In short, starting from a universal Turing machine (or an equivalent universal
device), we get an equivalent universal P system. Among others, this implies
that in the case of Turing complete classes of P systems, the hierarchy on the
number of membranes always collapses (at most at the level of the universal P
systems). Actually, the number of membranes sufficient in order to characterize
the power of Turing machines by means of P systems is always rather small.

We only mention here two of the most interesting universality results:

1. P systems with symbol-objects with catalytic rules, using only two catalysts
and two membranes, are computationally universal.

2. P systems with symport/antiport rules of a rather restricted size (exam-
ple: four membranes, symport rules of weight 2, and no antiport rules) are
universal.

We can conclude that the compartmental computation in a cell-like mem-
brane structure (using various ways of communicating among compartments) is
rather powerful. The “computing cell” is a powerful “computer”.

5 Computational Efficiency

The computational power (the “competence”) is only one of the important ques-
tions to be dealt with when defining a new computing model. The other fun-
damental question concerns the computing efficiency. Because P systems are
parallel computing devices, it is expected that they can solve hard problems in
an efficient manner – and this expectation is confirmed for systems provided
with ways for producing an exponential workspace in a linear way. Three main



From Cells to Computers: Membrane Computing – A Quick Overview 275

such possibilities have been considered so far in the literature, and all of them
were proven to lead to polynomial solutions to NP-complete problems.

These three ideas are membrane division, membrane creation, and string
replication. Using these operations (especially membrane division) polynomial
time solutions to SAT, the Hamiltonian Path problem, the Node Covering prob-
lem, the problem of inverting one-way functions, the Subset-sum and the Knap-
sack problems (note that the last two are numerical problems, where the answer
is not of the yes/no type, as in decidability problems), etc were proposed. Details
can be found in [13], [15], as well as in the web page of the domain.

Roughly speaking, the framework for dealing with complexity matters is that
of accepting P systems with input: a family of P systems of a given type is con-
structed starting from a given problem, and an instance of the problem is in-
troduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration), in a given time one of the an-
swers yes/no is obtained, in the form of specific objects sent to the environment.

This direction of research is very active at the present moment. More and
more problems are considered, the MC complexity classes are refined, charac-
terizations of the P�=NP conjecture were obtained in this framework, improve-
ments are looked for. An important recent result states the fact that PSPACE
is included in PMCD, the family of problems which can be solved in polyno-
mial time by P systems with the possibility of dividing both elementary and
non-elementary membranes [17]. Rather interesting are the investigations on the
complexity of various problems which are known to be decidable (see, e.g., [8]).

6 Applications

As said several times in the previous sections, MC was initiated with the goal of
finding ideas, models, tools of interest for computer science in the cell structure
and functioning, and not of modelling the real cell. However, abstracting from
the cell biochemistry, a new modelling framework (starting with a new language,
set of concepts, tools) was developed which proves now to be useful for modelling
not only biological processes, but also linguistic facts, management aspects, etc.
Several applications in addressing computer science problems were reported, for
instance, in sorting and ranking problems, handling 2D languages, in computer
graphics, in simulating Fredkin gates or shuffle-exchange networks, etc. A book
is in preparation, covering many of these applications.

In some of these applications, what is actually used is the language of MC.
This means not only the long list of concepts either newly introduced, or related
in a new manner in this area, but also the way to represent a cell-like structure,
as proposed in MC. This representation is rather attractive for biologist: Euler-
Venn diagrams, with labels for membranes, with multisets of objects (chemicals)
placed in regions, and with sets of rules placed either in regions (the case of
rewriting-like rules) or near membranes, to suggest that they are associated
with the membranes (the case of symport/antiport rules).



276 G. Păun

However, this level of application/usefulness is only a preliminary one. The
next level is that of using tools, techniques, results of MC, and here there ap-
pears an important question: to which aim? Solving problems already stated
by biologists, in other terms and another framework, could be an impressive
achievement, and this is the most natural way to proceed – but not necessarily
the most efficient one, at least at the beginning. New tools can suggest new
problems, which either cannot be formulated in a previous framework or have
no chance to be solved in the previous framework. Problems of the first type
(already examined by biologists, mainly experimentally) concern, for instance,
correlations of processes, of the presence/absence of certain chemicals, their mul-
tiplicity (concentration, population) in a given compartment, while of the second
type are topics related to the evolution of bio-systems when modelled as dynam-
ical systems (e.g., concerning the periodicity and the asymptotic properties of
trajectories, or the reachability of certain configurations).

The applications in biology develop in general along a scenario of the follow-
ing type: one examines a piece of reality, related to the biochemistry of the cell
(but not only from this area), one builds a P system modelling the respective
process, one writes a program simulating that system (or one uses one of the
many existing programs), and one performs experiments with the program, tun-
ning certain parameters, and looking for the evolution of the system (usually,
for the population of certain objects). Respiration in bacteria [2], photosynthe-
sis [11], processes related to the imune system [7], [19], and other processes [5],
[18] were studied in this way. We do not recall any detail here, but we refer to
the papers mentioned above, to the chapter of [13] devoted to biological appli-
cations, as well as to the papers available in [22]. Anyway, the investigations
are somewhat preliminary, but the progresses are obvious and the expectation
is to have in the near future applications of an increased interest for biologists.
This hope is supported also by the fact that more and more powerful simula-
tions/implementations of various classes of P systems are available, with better
interfaces, which allow for the friendly interaction with the program.

7 Why Membrane Computing?

This is a rethorical question, but still we take and answer it here in a serious
manner.

The cell exists, so it is the “duty” of mathematics to model it – especially
having in mind that the biologists are waiting for mathematical tools to help
their investigations, in particular, they wait for global models of the cell. And
now, comes an important question: using what kind of mathematics? Tradition-
ally, the mathematical models are equalized with the continuous mathematical
models, especially (partial) differential equations – and this is the case also with
biology, which tries to use such models since several years. The results are only
partially satisfactory: the cell is too complex in order to be modelled as a whole,
while the differential equations are difficult to handle, difficult to understand
by biologist, difficult to scale-up, and so on and so forth. A similar situation



From Cells to Computers: Membrane Computing – A Quick Overview 277

occurred in linguistics about half a century ago, when it was soon realized that
the right approach is not the one based on the continuous mathematics, but
the discrete algorithmic models. The biology has one more peculiarity: immense
databases were accumulated (see, e.g., the genome project), which are waiting to
be explored. The need to use computers is obvious. Moreover, most of these bio-
logical data are of a discrete type. (This is another topic, which we only mention
here: how is the real biological reality, of a continuous or of a discrete type, is
it a space-time field, or it deals mainly with “quanta” of matter?) MC proposes
and investigates models which are both discrete and algorithmic, two attractive
and timely considered features. Using discrete models in approaching the cell as
a whole was several times advocated, due to the easy understandability for the
biologist, the easy scalability, the efficiency in simulating on computers.

Then, if not for other reasons, P systems deserve to be considered as possible
cell models at least for the obvious one that this is the first class of models directly
inspired from cell structure and functioning, while the tools previously used
in cell modelling were borrowed from other areas, from physics and computer
science in general, and needed considerable efforts to be adjusted to the biological
reality.

But, let us return to the initial goal of MC, that also related to DNA Comput-
ing. Why MC as a branch of computer science? At a previous DNA Computing
conference, somebody has formulated it much more precisely: what can MC do
better than other branches of computer science? Again the answer can be given
at various levels. First, the cell is such an exquisite tiny machinery, polished
by nature for billions of years, that there is a good chance to find in it, in its
architecture and way of processing substances and information, various ideas,
techniques, models also useful to computer science. The case of other branches
of Natural Computing (see, e.g., evolutionary computing) is rather encourag-
ing. MC is a systematic investigation of computing models inspired from the
cell structure and functioning, and there is no other branch of computer science
with similar goals. In particular – and in contrast to DNA Computing – MC
addresses in a direct manner the compartmentalization of the cell.

This is a crucial point: the distribution/parallelism of computations which
take place in P systems. The parallelism is a long dream of computer science
(often, both Turing and von Neumann are “blamed” for pushing computer sci-
ence towards sequential computing). Nature “computes” almost always in par-
allel, from cell compartments, to tissues, brain, organisms, populations. From
a technological point of view, there is no difficulty in putting together a huge
number of electronic processors/computers (internet is an example); the dif-
ficulty is to use them, to coordinate, synchronize, etc (in distributed/parallel
computing, the communication complexity is equally important and contradic-
tory to classic time and space complexities). Nature has solved this difficulty in
a way which remains to be discovered and incorporated in our “artificial” com-
puting machineries. Decentralization, random choices, non-determinism, loose
control, asynchronization, promoting/inhibiting, control paths are key-words of
the “natural computing”, of the manner the cell preserves its integrity, its life,



278 G. Păun

but they are still long term goals for computer science in silico, a challenge for
computability in general.

We do not claim that MC provides an answer to this challenge, but it is at
least a framework to formulate this question and to (re)call the attention to it.

At a much more technical level, MC proved its attractivity for computer sci-
ence by the two types of results which are common in this area: Turing univer-
sality and fast solutions to hard problems. The borderline between universality
and non-universality is a central topic in computability, in many cases a non-
trivial issue. The cell, abstracted in MC terms, turned out to be a very powerful
“computer”, universal in many cases, including the surprising and philosophi-
cally significant case of computing by communication only, in the case of sym-
port/antiport P systems. Then, numerous efforts were paid to the complexity
classes corresponding to various types of P systems where an exponential space
can be created in a linear time (e.g., by membrane division, a well-know bio-
logical operation). The “standard” result is a proof that a given NP-complete
problem can be solved in polynomial or even linear time by P systems of a given
type, but more interesting results were also reported. The possibility to cover
PSPACE and to characterize the P �= NP problem were already mentioned.
Interesting questions appear in what concerns the very definition of a complex-
ity class in this framework. We have mentioned in Section 5 the possibility of
allowing some non-determinism in the functioning of systems which are meant
to solve a decision problem. Another delicate question concerns the way of con-
structing the systems which solve a problem. Classicaly, these systems should be
constructed in a uniform mode (starting from the size of instances) by a Turing
machine, working a polynomial time. A more relaxed framework is that where a
semi-uniform construction is allowed: carried out in polynomial time by a Turing
machine, but starting from the instance itself to be solved (the condition to work
a polynomial time ensures the “honesty” of the construction: the solution to the
problem cannot be found during the construction phase). The relation between
the complexity classes based on uniform and semi-uniform constructions is not
clarified yet. Then, several challenging hypotheses circulate in the area, about the
features necessary in order to obtain a given degree of computational efficiency.
For instance, in [17] it was formulated the conjecture that in order to solve QSAT
in polynomial time by means of P systems with active membranes, the division
of both elementary and non-elementary membranes is necessary (when solving,
e.g., SAT in linear time, division of elementary membranes was sufficient).

8 Concluding Remarks

This was a very general overview of membrane computing, informal, covering
only a few directions of research and giving very few bibliographical references.
The aim was to give the reader a quick image of the area, pointing the ba-
sic ideas, the main types of results (universaliry and efficiency), the important
recent trends (towards applications in computer science and in biological mod-
elling), and to emphasize the interest for this research (both through the possible



From Cells to Computers: Membrane Computing – A Quick Overview 279

achievements and through the attractive research topics). The reader interested
in more details is advised to consult the comprehensive bibliography from [22].

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

2. I.I. Ardelean, M. Cavaliere, Modelling Biological Processes by Using a Probabilistic
P System Software. Natural Computing, 2, 2 (2003), 173–197.

3. D. Bray, Protein Molecules as Computational Elements in Living Cells. Nature,
376 (July 1995), 307–312.

4. C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, Multiset Processing. Math-
ematical, Computer Science, and Molecular Computing Points of View. Lecture
Notes in Computer Science, 2235, Springer, Berlin, 2001.

5. G. Ciobanu, D. Dumitru, D. Huzum, G. Moruz, B. Tanasă, Client-Server P Systems
in Modelling Molecular Interaction. In [14], 203–218.

6. G. Ciobanu, W. Guo, P Systems Running on a Cluster of Computers. In [10],
123–139.

7. G. Franco, V. Manca, A Membrane System for the Leukocyte Selective Recruit-
ment. In [10], 180–189.

8. O.H. Ibarra, On the Computational Complexity of Membrane Computing Systems.
Theoretical Computer Science, 320, 1 (2004), 98–109.

9. S. Ji, The Cell as the Smallest DNA-based Molecular Computer. BioSystems, 52
(1999), 123–133.

10. C. Martin-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds. Membrane
Computing. International Workshop, WMC2003, Tarragona, Spain, Revised Pa-
pers. Lecture Notes in Computer Science, 2933, Springer, Berlin, 2004.

11. T.Y. Nishida, Simulations of Photosynthesis by a K-subset Transforming System
with Membranes. Fundamenta Informaticae, 49, 1-3 (2002), 249–259.

12. Gh. Păun, Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

13. Gh. Păun, Computing with Membranes: An Introduction. Springer, Berlin, 2002.
14. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, Membrane Computing. Inter-

national Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, Revised Papers.
Lecture Notes in Computer Science, 2597, Springer, Berlin, 2002.

15. M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Com-
plejidad en Modelos de Computatión Celular con Membranas, Editorial Kronos,
Sevilla, 2002.

16. B. Petreska, C. Teuscher, A Hardware Membrane System. In [10], 269–285.
17. P. Sosik, The Computational Power of Cell Division in P Systems: Beating Down

Parallel Computers? Natural Computing, 2, 3 (2003), 287–298.
18. Y. Suzuki, Y. Fujiwara, H. Tanaka, J. Takabayashi, Artificial Life Applications of

a Class of P Systems: Abstract Rewriting Systems on Multisets. In [4], 299–346.
19. Y. Suzuki, S. Ogishima, H. Tanaka, Modeling the p53 Signaling Network by Using

P Systems. Proceedings of the Brainstorming Week on Membrane Computing; Tar-
ragona, February 2003 (M. Cavaliere, C. Martin-Vide, Gh. Păun, eds.), Technical
Report 26/03, Rovira i Virgili University, Tarragona, 449–454.



280 G. Păun

20. A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades, A Distributed Sim-
ulation of Transition P Systems. In [10], 357–368.

21. M. Tomita, Whole-Cell Simulation: A Grand Challenge of the 21st Century. Trends
in Biotechnology, 19 (2001), 205–210.

22. * * *, P Systems Web Page: http://psystems.disco.unimib.it.



The Capacity of DNA for Information Encoding

Vinhthuy Phan and Max H. Garzon

Computer Science, The University of Memphis,
Memphis, TN 38152-3240, U.S.A.
{vphan, mgarzon}@memphis.edu

Abstract. Information encoding and processing in DNA has proved to
be an important problem for biomolecular computing, including the well
studied codeword design problem. A lower bound is established for the
capacity of DNA to encode information using a combinatorial model of
DNA homology given by the so-called h-distance. This bound decreases
exponentially with a parameter τ that roughly codes for stringency in
reaction conditions. We further introduce a new family of near-optimal
codeword sets, so-called shuffle codes. This construction, which is opti-
mal in terms of efficiency, can also be used to produce set of codewords
with a given constant GC-content. These codes yield estimates of the
capacity of DNA oligonucleotides to store abiotic information in DNA
arrays as defined in [11]. Finally, we discuss the sensitivity of the corre-
sponding DNA chip encodings to store and discriminate inputs, including
the regions of maximum discrimination and uncertainty.

Keywords: Information storage capacity of DNA, Gibbs energy,
distance, codeword design, shuffle codes, abiotic data on DNA chips.

1 Introduction

The ways cells and biomaterials store and process information is one of the most
important and enigmatic problems of our times. One major subproblem of this
puzzle, encoding information in biomolecules for processing in vitro, has proven
to be a interesting and challenging problem for biomolecule-based computing af-
ter Adelman’s founding work [1]. Codeword design and, more generally, data and
information representation in DNA bear an increasing interest, not only from
the point of view of using biomolecules for computation, but also for shedding
light on a number of other problems in areas outside computation per se, such
as bioinformatics, and conceivable genetics and microbiology. The codeword de-
sign problem [4, 5, 8, 11, 12, 13] requires producing sets of strands that are likely
to bind in desirable hybridizations while keeping to a minimum the probability
of erroneous hybridizations that may induce false positive or false negative out-
comes. A fairly extensive literature now exists on various aspects and approaches
to the problem (see [5] for a review.) Although various algorithms have been pro-
posed for testing the quality of codeword sets in terms of being free of secondary
structure [5], very few methods have been proposed to systematically produce

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 281–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

h-



282 V. Phan and M.H. Garzon

codes of high enough quality to guarantee good performance in test tube proto-
cols [10]. Even fewer articles address the issue of the capacity of DNA strands of
a given length (say 20−mers) to hold information, if they are to co-exist without
undesirable cross interactions in a test tube under given stringency conditions,
such as required by a stable associative memory ”in principle larger than the
brain” [4].

The obvious approach to encode information in DNA is to encode bits 0
and 1 by fixed selected oligos and symbolic strings by the induced concatena-
tions. Direct encoding is, however, not very efficient for storage or processing
of massive amounts (over terabytes) of abiotic data because of the enormous
implicit cost of DNA synthesis to produce the encoding strands. Indirect and
more efficient methods have been proposed [10], using as basic elements a set
of non-cross-hybridizing DNA molecules. DNA molecules can interact through
intermolecular reactions, usually hybridization in DNA form alone. Due to the
inherent uncertainty in biochemical processes, small variations in strand com-
position will not cause major changes in hybridization events, with consequent
limitations on using small variations of a molecule to encode different records.
Input strands must be ”far apart” from one another in hybridization affinity in
order to prevent disturbing cross-hybridizations. The major difficulty is that the
hybridization affinity between DNA strand sets is difficult to quantify. Ideally,
the Gibbs energy released in the process should be the most appropriate cri-
terion, but its exact calculation is difficult. Even though pairwise interactions
among small oligos may admit fast approximations [7], a search for optimal sets
of strands maximally separated in a given coding space (codeword sets) is infea-
sible, because the optimality of a set is a global property to be checked against
doubly exponentially many others possibilities. In particular, the capacity of
DNA oligonucleotides of a given length to store information in the globally ro-
bust and fault-tolerant way that biology appears to require seems to be very
difficult to quantify, or even estimate.

To cope with this problem, a much simpler and computationally tractable
model of the Gibbs energy landscapes given by the hybridization distance (or
just h-distance), was introduced in [12] as a measure of hybridization affinity.
In this approximation, a space of DNA strands becomes a combinatorial object
(a string) over a 4-letter alphabet in which characters may “bond” according
to the well known Watson-Crick pairing (A-T’s and C-G’s). The Gibbs energy
is replaced, not by the traditional Hamming distance assuming perfect align-
ment between the strings in simpler models [15, 16], but by a value that counts
the largest number of matching pairs in the most favorable relative shift as
the strands slide past each other rigidly, unable to form loops or bulges. Hy-
bridization events, naturally dependent on many other reactions conditions such
as temperature, salinity, and kinetic factors, are reduced to a single numerical
threshold τ . Hybridization occurs if and only if their h-distance does not exceed
τ (more below in Section 2.) For example, under the tightest stringency τ = 0,
two strings can only hybridize when they are perfect complements, whereas un-
der the most relaxed stringency τ = n, any two strings will bind when they



The Capacity of DNA for Information Encoding 283

Table 1. Sizes of shuffle codes with stringency pre-assigned at 100% (first column),

50% (second column), and with the additional constraint of 50% GC content (third

column), respectively

Length (n) τ = n τ = n
2

τ = n
2
&w = n

2

12 4,096 46,656 4,096
16 65,536 1,679,620 65,536
20 1,048,580 60,466,200 1,048,580
24 16,777,200 2,176,780,000 16,777,200
28 268,435,000 78,364,200,000 268,435,000

encounter each other. The problem of information capacity of the space of DNA
strands of a fixed length n for a given set of reaction conditions τ is thus reduced
to the problem of finding the largest size of set of strings such that the distance
between any pair of codewords is at least τ

Under these assumptions, our results can be summarized as follows. After
some definitions in Section 2, a lower bound on maximal codesets with h-distance
is established in Section 3 that is analogous to the the Gilbert-Varshamov sphere-
packing bounds for the Hamming distance. In the next two Sections 4 and 5 we
propose a novel and scalable method to construct explicitly shuffle codes with
and without the requirement of having a constant GC-content. Their sizes do
exceed the lower bound established in Section 3 and are indeed very close to the
optimal in size when the stringency τ is not too large. Table 1 gives a sample
for various practical lengths n and typical stringency of 100% and 50%. The
last column shows the sizes of such a codeset the GC-content of whose words
is constrained to 50%. Finally, as an example application, we show how these
bounds and construction provide an estimate of the capacity of DNA arrays to
store information on DNA chips [11], including the sensitivity of this type of
representation and its range of maximal uncertainty in Section 6.

2 Gibbs Energy and the H-Distance

The ideal model of the hybridization process between strand pairs is the Gibbs
energy released in the process [7, 18, 19], in particular for measuring the quality
for a code set of strands. Although hybridization reactions in vitro are governed
by well characterized rules of local interaction between base pairings theoretically
[18] and practically [7], by models such as the nearest-neighbor model and the
staggered-zipper model, difficulties arise in trying to use these rules to handle the
combinatorial explosion implied in the search of good codeword sets in a variety
of conditions, even for the small size of oligo-nucleotides of the type currently
used in DNA computing (less than 150-mers.) Hence, an exhaustive search of
strand sets of words maximally separated in a given coding space (say 20−mers)
is infeasible because of the massive double exponential number of combinatorial
possibilities that need to be checked, in principle.



284 V. Phan and M.H. Garzon

To address this problem, models and methods have been considered in the
literature, including various hybridization metrics [3, 13, 15, 16]. In the h-distance
model, the Gibbs energy is modeled by a simple combinatorial count of the
maximum number of basepair matches in the optimal alignment of two DNA
strands x, y of a given length n (written from the 5′- to the 3′-end), given by

h(x, y) := min
−(n−1)<k<n−1

{
|k|+ H(x, σk(ywc))

}
(1)

where σk is the (right-) left-shift by k positions (if k < 0, respectively.), ywc is
the Watson-Crick-complement of y obtained by reversing y and exchanging A-
T’s, C-G’s and vice versa, and H(∗, ∗) is the ordinary Hamming distance. The
h-distance considers hybridization in all possible frame-shifts, which is more
realistically restrictive than simpler models [15, 16] in which hybridization is
considered only in the perfect alignment (i.e., shift k = 0). Measure 0 indicates
perfect complementarity. A large measure indicates that even when x finds itself
in the proximity of y, they contain few complementary basepairs, and are less
likely to hybridize. This measure h can be precisely related to the maximum
number of complementary base pairs in all frame shifts as follows:

Lemma 1.
h(x, y) = n− max

−(n−1)≤i≤n−1
{m(x, σi(ywc))}

where m(x, σi(ywc)) is the number of matches of x and ywc in frame shift i.

Proof. Let s be a shift in which h(x, y) = τ = |s| + H(u, σs(vwc)) is minimum.
In the optimal shift s, only n − |s| characters are aligned. Of these, comple-
mentary basepairs are accounted for by m(u, σs(vwc)), and uncomplementary
basepairs are accounted for by H(u, σs(vwc)). Therefore, |s| + H(u, σs(vwc)) +
m(u, σs(vwc)) = n, and consequently, h(x, y) = n−m(u, σs(vwc)). ��

In reality, hybridization events depend on many other reactions conditions
such as temperature, salinity, and kinetic factors. In the h-distance model, these
parameters are all are reduced to a single numerical threshold τ . Hybridization
occurs if and only if their h-distance does not exceed τ . The h-distance model
is thus not kinetically accurate because it doesn’t explicitly capture effects such
as dissociation and re-association, the flexibility of semi-crystal DNA strands in
forming loops and bulges, and the energetic contributions of mismatched pairs
for example, which are explicitly excluded. It does account however, although
indirectly, for the effect of temperature, salinity and other conditions in the
parameter τ . The virtues of the model is therefore to be gauged, not by the
physical realism with which it captures the hybridization process, but by the ac-
curacy and feasibility of the understanding and the predictions it affords. There
is good evidence that this admittedly coarse model may provide so. In recent
application, it has produced results consistent with experiments in vitro of ac-
tual hybridizations in the range of 20-to 60-mers in various situations, such as
Adleman’s original solution to the Hamiltonian path problem in silico [11], PCR
reactions [10, 12, 13]. As shown in this paper, it also helps to provide a handle on



The Capacity of DNA for Information Encoding 285

the combinatorial explosion in the search of good codewords sets for DNA-based
computing and abiotic information encoding on DNA in general. (There is a
technical difficulty that this measure does not satisfy all the customary proper-
ties of a mathematical metric, but can be easily be circumvented below, so we
will maintain the term h-distance.)

3 Bounds on DNA Codes

To achieve efficient and scalable DNA-based computation, the set of DNA strands
involved should exhibit as few cross-hybridized pairs as possible other than
the planned hybridizations between complementary segments [9]. Using the h-
distance model, the problem of information capacity of the space of DNA strands
of a fixed length n for a given set of reaction conditions τ is thus reduced to
finding the largest size of set of strings such that the h-distance between any pair
of codewords is at least a given threshold τ . This number is intrinsically depen-
dent on the “geometric” structure of the metric space of all n−mer, which we
proceed to analyze. The problem is altogether formally analogous to the classical
problem in information theory [17], except that the nature of the h-distance is
essentially different from the Hamming metric and so requires new analyses and
tools.

A set of DNA strands S is called an (n, τ)-code if ∀x, y ∈ S, h(x, y) ≥ τ .
Before attempting to construct actual codes, we first provide lower and upper
bounds on the possible size of a maximal (n, τ)-code.

Theorem 1. Let Gn,τ to be the graph with 4n vertices (representing all possible
strands of length n) and an edge between strands u and v if h(u, v) < τ . The
maximum size of an (n, τ)-code S satisfies

V

1 + 2E
V

≤ |S| ≤ V

where V = 4n and E is the number of edges of Gn,τ . In particular, |S| ≥ 4n−τ+1

τ( n
τ−1)

.

Proof. First, it is easy to show that an independent set of Gn,τ is an (n, τ)-code.
Applying Jensen’s inequality,

∑n
i=1 f(xi)

n ≥ f(
∑n

i=1 xi

n ), to the convex function
f(x) = 1

x with xi = 1 + di, where di is the degree of vertex i, gives
∑V

i=1
1

1+di
≥

V 2

V +2E . Caro’s theorem [2] provides the lower bound on the size of a maximal
independent set, α(Gn,τ ): |S| = α(Gn,τ ) ≥

∑V
i=1

1
1+di

≥ V
1+ 2E

V

.
To quantify this lower bound, we estimate the number of edges in Gn,τ .

Let Huv be the event that two strands u and v hybridize. Define Huv = 1 if
h(u, v) < τ , and Huv = 0 otherwise. Then, P (Huv = 1) = P (h(u, v) ≤ τ − 1) ≤
τ
(

n
n−τ+1

)
pn−τ+1 = τ

(
n

τ−1

)
pn−τ+1 The expected degree of a vertex u is E[2E

V ] =
E[du] ≤

∑
v P (Huv) = 4n ·τ

(
n

τ−1

)
pn−τ+1 = τ ·4τ−1

(
n

τ−1

)
. Now, we can apply the

lower-bound result and get |S| = α(Gn,τ ) ≥ 4n

1+ 2E
4n

≥ 4n

1+τ4τ−1( n
τ−1)

≈ 4n−τ+1

τ( n
τ−1)

. ��



286 V. Phan and M.H. Garzon

This result is analogous to the Sphere-packing bound and Gilbert-Varshamov
bound for Hamming codes. First note that, because the h-distance is not a
true metric function, it creates a non-uniformity that makes the volumes of
codeword spheres depend heavily on their centers. We can, however, consider
a metric on the graph Gn,τ (defined in Theorem 1), by defining d(u, v) to be
the length of the shortest path between u, v ∈ Gn,τ . Since three conditions
d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z) are satisfied for all
x, y, z, (Gn,τ , d) is indeed a metric space.

In the metric space (Gn,τ , d), the expected volume of a ball with radius 1
is 1 + 2E

V . In other words, the number of vertices (strands) of distance 1 away
from a vertex is 1 (vertex itself) plus the average degree of Gn,τ , which is 2E

V .
Similarly, the volume of a ball with radius 0 is 1 (containing the vertex itself).
Since an (n, τ)-code is a maximal independent set of Gn,τ , it can be viewed as an
(n, 2)-code in the space (Gn,τ , d), denoted A(2). Therefore, our result means that

V
V ol(1) ≤ |A(2)| ≤ V

V ol(0) , which is a probabilistic analog of the Sphere-packing
Gilbert-Varshamov bounds for a Hamming code: V

V ol(d−1) ≤ |A(d)| ≤ V
V ol(� d−1

2 �) ,

where V is the number of all possible codewords, and V ol(d) is the number of
all codewords within distance d from any strand.

4 Construction of Shuffle Codes

We now describe an efficient construction of shuffle codes and the cardinality of
codes it produces, both in absolute terms and relative comparison to optimality.
This construction yields a code larger code than the lower bound established
in Section 3. An explicitly construction has practical significance for actual ap-
plications in larger biomolecular computing experiments and for the design of
associative memories as discussed in Section 6 below. Briefly, our method refines
the construction in [10] and constructs a (n, τ)-code by shuffling a (n

τ , 1)-code
exactly τ times. This construction is analogous to the construction of the well
known Hamming codes in information theory, but with shuffling taking the place
of the cyclic permutation used by Hamming [17]. Given {x1, x2, · · · , xk}, a set
of DNA strands of length m, define:

x1 , · · · , xk = x11 · · ·xk1x12 · · ·xk2 · · ·x1m · · ·xkm

where x1j is the jth character of the sequence x1, and so on. For example, for
ai, bi, ci, di ∈ {A,C,G, T}, 1 ≤ i ≤ 3, a1a2a3 , b1b2b3 , c1c2c3 , d1d2d3 results
in a1b1c1d1a2b2c2d2a3b3c3d3. Algorithm 1 describes the construction of shuffle
codes.

Theorem 2. If n = τm, then Algorithm 1 produces an (n, τ)-code of size(
4m − |Pm|

2

)τ

where |Pm| = |{x : h(x, x) = 0, |x| = m} = 4
m
2 if m is even, and 0 if m is odd.



The Capacity of DNA for Information Encoding 287

Algorithm 1 Input: n = τm. Output: an (n, τ)-code in the h-distance model
Construct Sm, the set of all possible DNA strands of length m.
for all strands x ∈ Sm do

Construct xwc, the unique complementary of x, i.e. h(x, xwc) = 0.
Sm = Sm − xwc

end for{note: |Sm| = 4m−|Pm|
2

}
Let S = {x1 � x2 � · · · � xτ : ∀xi ∈ Sm}
Return S.

Proof. First, we want to show that |Sm| = 4m−|Pm|
2 , where |Pm| = |{x : h(x, x) =

0, |x| = m} = 4
m
2 } if m is even, and 0 if m is odd. To see that, notice that an

(m, 1)-code contains no strands in Pm (palindromes.) Removing the complements
of nonpalindromic strands those from 4m − Pm (which are also nonpalindromic
and at distance 0 form their matching pairs), gives us an (m, 1)-code of size
4m−|Pm|

2 . Second, the set S produced by Algorithm 1 has
(

4m−|Pm|
2

)τ

strands,
because the shuffling of each different sets {x1, x2, · · · , xτ}, xi ∈ Sm produces
a different strand x ∈ S. Further, we claim that S is an (n, τ)-code; in other
words, for any two sets {x1, x2, · · · , xτ}, {y1, y2, · · · , yτ}, xi, yi ∈ Sm, h(x1 ,
· · ·,xτ , y1,· · ·,yτ ) ≥ τ . This is because in any shift of the two shuffled strands,
each xi is perfectly aligned to some ywc

j . For example, consider the alignment of
a1a2a3 , b1b2b3 , c1c2c3 to x1x2x3 , y1y2y3 , z1z2z3. In any shift, strand a can
be considered separately aligned to either strand x, or y, or z. The same holds for
strands b and c. Therefore, h(x1,· · ·,xτ , y1,· · ·,yτ ) ≥ τ ·h(xi, yj) ≥ τ ·1 = τ .

��

As a corollary, the algorithm produces a maximal (n, n)-code with (41−|P1|
2 )n =

2n. In general, shuffle codes come within a factor of 1
2τ−1 from optimality.

Theorem 3. Let Lτ be a maximal (n, τ)-code and S be the (n, τ)-code con-
structed by Algorithm 1. If n = τm and if n or m is odd, then

2τ−1 · |S| ≥ |Lτ |

Proof. Let L1 be the maximal (n, 1)-code. Then L1 ≥ Lτ , and thus |S|
|L1| ≤

|S|
|Lτ | .

Therefore,
1

2τ−1
≤ (4m − |Pm|)τ

2τ
÷ 4n − |Pn|

2
=

|S|
|L1|

≤ |S|
|Lτ |

which yields the result. Note that the first inequality holds because 1 ≤ 4n−|Pm|τ
4n−|Pn| ≤

(4m−|Pm|)τ

4n−|Pn| when n is odd or m is odd. ��

Generating and storing |S| strands of length n must take at least Ω(n · |S|)
steps and require Ω(n · |S|) memory. Our algorithm is thus optimal for the
construction.

Theorem 4. Algorithm 1 takes Θ(n · |S|) steps and uses Θ(n · |S|) memory,
where S is the (n, τ)-code returned by the algorithm.



288 V. Phan and M.H. Garzon

Proof. We assume that n = τm for simplicity. Constructing Sm takes takes
m · 4m steps. This involves going through all 4m sequences, each of which is
excluded (in a O(m)-step check) if its reverse complement is lexicographically
equal or precedes it. Constructing S = Sτ

m requires |S| = |Sm|τ interleavings,
each of which takes O(m · τ) = O(n) steps. Therefore, the total number of steps
is O(m · 4m + n · |S|) = O(n · |S|), since m · 4m ≤ n · |S|,∀n > 1. The amount of
memory is never used to hold more than O(|S|) strands, each of length n.

5 Shuffle Codes with Constant GC Contents

It is desirable in practice to impose an additional requirement on codeword
sets that DNA strands roughly have the same amount of G’s and C’s [3], due
to the fact the number of GC bonds (which are stronger than AT bonds) is a
good measure of the melting characteristics of DNA strands. Thus, DNA strands
with similar amounts of GC’s have similar melting characteristics and would
serve better biomolecular experiments that rely heavily on repeated melting and
annealing DNA strands, such as PCR selection [9]. Using the less realistic DNA-
Hamming codes, King [15] established upper and lower bounds for code sizes
with constant GC content. These results do not readily carry over to the space
defined by our h-distance, except in the case when τ = 1. We define an (n, τ, w)-
code to be an (n, τ)-code with an additional requirement that every strand must
have exactly w C’s and G’s in total.

Algorithm 2 Input: τ,m,w. Output: an (τm, τ, τw)-code in the h-distance
model

Construct Sm, the set of all m-strands, each having exactly w G’s and C’s in total.
for all strand x ∈ Sm,w do

Construct xc, the unique complementary of x, i.e. h(x, xc) = 0.
Sm,w = Sm,w − xc

end for{note: |Sm| =
(n

w)2n−|Qm|
2

}
Let S = {x1 � x2 � · · · � xτ : ∀xi ∈ Sm,w and xi �= xj if i �= j}
return S.

Theorem 5. The shuffling construction specified in Algorithm 2 can be used to
construct an (τm, τ, τ)-code of size mτ2(m−1)τ . Generally, Algorithm 2 can be
used to construct an (τm, τ, τw)-code of size((

m
w

)
2m − |Qm|

2

)τ

where |Qm| =
(
m/2
w/2

)
2m/2 if n and w are even and |Qm| = 0 if m or w is odd.

Proof. The set Sm constructed by Algorithm 2 is an (m, 1, w)-code of size
(m

w)2m−|Qm|
2 , where Qm = {x : h(x, x) = 0, x has exactly w G’s or C’s in total.},



The Capacity of DNA for Information Encoding 289

and |Qm| =
(
m/2
w/2

)
2m/2 if m and w are even, and 0 if either m or w is odd. This is

because there are
(

n
w

)
configurations for G’s and C’s, in each of which there are

exactly two choices for each position. We only need to discount the strands at
h-distance 0. As before, these include the Watson-Crick palindromes (Qm) and
the unique complementary strands of all the strands left. Further, the number of
Watson-Crick palindromes is exactly

(
m/2
w/2

)
2m/2 because the ith and (m−i+1)th

characters of these strands must be complementary, which implies m and w must
be both even and further the GC-content of w implies that each position has
exactly 2 choices. Finally, as in the proof of theorem 2, the shuffling construction
scales linearly both stringency and GC-content. In other words, a shuffle of τ
(m, 1, w)-codes yields an (τm, τ, τ)-code. ��

Theorem 6. Lτ be a maximal (τm, τ, τw)-code, and S be the (τm, τ, τw)-code
constructed as above. If τm or τw is odd, then

2τ−1 · |S| ≥ |Lτ |

Proof. L1, the maximal (τm, 1, τw)-code, is larger than Ln, and thus |S|
|L1| ≤

|S|
|Lτ | .

Using Sterling’s approximation to factorials (
(
m
w

)τ ≈
(
τm
τw

)
) we get(

m
w

)τ

2τ−1
(
τm
τw

) ≤ (
(
m
τ

)
2m)τ

2τ
÷
(
τm
τw

)
2τm

2
=

|S|
|L1|

≤ |S|
|Lτ |

.��

Theorem 7. Algorithm 2 takes Θ(n · |S|) steps and uses Θ(n · |S|) memory,
where S is the (τm, τ, τw)-code returned by the algorithm.

Proof. Similar to the proof of Theorem 4.

6 Capacity of DNA-Based Associative Memory

Garzon et al [11] propose to use DNA arrays as a medium to address the more
general aspect of the encoding problem how to store abiotic information on
DNA chips. In this model of associative memory, datum X is represented as a
hybridization pattern given by shredding X into short fragments and pouring
them over a DNA chip containing as probes a large non-crosshybridizing set S,
under reaction conditions of a given stringency τ . The memory of each input
is defined as the set of subsequences hybridized by the strands on the chip,
counting multiplicity. Therefore, the less crosshybridizing the probe strands are
on the chip, the less ambiguous their hybridization is to memory inputs, and
the more inputs are unambiguously representable on the same chip. The basis
elements on the chip can be obtained, for example, using Algorithm 1 or 2.

The maximum number of patterns that can be stored on a given chip and
reliably retrieved unambiguously from others can be considered as a measure



290 V. Phan and M.H. Garzon

of the chip’s capacity. An estimate of the this capacity can be obtained by
estimating the probability of two inputs being indistinguishable in this repre-
sentation. Let S = {s1, s2, · · · , sk} be the basis strands on the chip. Given an
input X to be stored in memory, define XS to be the image of X on S as
XS = (x1, x2, · · · , xk), where xi is the number of times si hybridizing to (dif-
ferent parts) of X. Inputs X and Y are indistinguishable in S if XS = YS , i.e.
xi = yi, for all 1 ≤ i ≤ k.

P (XS = YS |X �= Y ) =

(
σ

x1,x2,··· ,xk

)
kσ

≤ 2σH(P )

kσ
=

1
2σ(log2 k−H(P ))

where
∑k

i=1 xi =
∑k

i=1 yi = σ, and H(P ) = −xi

σ

∑k
i=1

xi

σ , the Shannon en-
tropy of the distribution of S in X (and Y ). Thus, using S as a memory
is not effective if the distribution of the bases in the inputs is random (i.e.
H(P ) → log2 k). Therefore, this type of an associative DNA memory is most
effective when we can design large and noncrosshybridizing bases in such a
way that their distribution in the stored inputs is as far from uniformity as
possible.

7 Conclusions

We have established nearly optimal bounds on the capacity of DNA to encode
and retrieve information using a combinatorial model of hybridization, the h-
distance. The bounds decrease exponentially with a parameter τ that roughly
codes for stringency in reaction conditions. Furthermore, we have provided a
construction to produce families of error-preventive shuffle codes, based on a
refinement of the idea in [10], that come within a constant factor of the optimal
size depending on the given reaction condition parameter τ .

These results have a number of consequences for the ultimate capacity on
the size of associative memories built on DNA, specifically, the capacity of
DNA oligonucleotides to store abiotic information in DNA arrays as defined
in [11]. According to the h-distance model, associative DNA memory is most
effective if we used a large and non-crosshybridizing basis. Further, the ability
of DNA memories to discriminate information is best when the distribution of
stored inputs with respect to probes on the chip is as far from uniformity as
possible.

Finally, there remains the issue of how realistic these results are when carried
over to wet tubes. The h-distance has been used as a hybridization criterion in
extensive simulations of various protocols such as Adleman’s original experiment
[11] and the PCR selection protocol to solve the codeword design problem [6].
The results show good agreement with the results of analogous experiments in
vitro, both qualitatively and, within scaling limitations, quantitatively. Refine-
ments of the model to address dissociation, re-association, and more quantitative
expressions for the Gibbs energy are certainly possible. It appears reasonable to
conclude at this point, however, that despite how coarse an abstraction the h-



The Capacity of DNA for Information Encoding 291

distance may appear to be in capturing the hybridization process and reaction
conditions such as temperature and salinity, the results in this paper are likely
to be fairly close to the corresponding situation for DNA oligonucleotides in
vitro.

References

1. L. Adleman (1994), Molecular computation of solutions of combinatorial problems.
Science 266, 1021-1024.

2. N Alon, J. H. Spencer (2000), The Probabilistic Method, 2nd Edition, John Wiley
& Sons Publisher, p. 91.

3. M. Arita, S. Kobayashi (2002), DNA Sequence Design Using Templates. New
Generation Computing 20:3, 263-277. See also [14], 205-214.

4. E. Baum (1995), Building an Associative Memory Vastly larger than the Brain.
Science 268, 583-585.

5. B. Brenneman, A. Condon (2001), Sequence Design for Biomolecular Computa-
tion. In press. http://www.cs.ubc.edu/∼condon/papers/wordsurvey.ps.

6. R.J. Deaton, J.Chen, H. Bi, M. Garzon , H.Rubin, D.H. Wood (2002), A PCR-
based protocol for In Vitro Selection of Non-crosshybridizing Oligonucleotides. In:
[14], 105-114.

7. R.J. Deaton, J. Chen, H. Bi, J.A. Rose (2002b), A Software Tool for Generating
Non-crosshybridizing Libraries of DNA Oligonucleotides. In: [14], 211-220.

8. R. Deaton, M. Garzon, R. E. Murphy, J. A. Rose, D. R. Franceschetti, S.E.
Stevens, Jr. (1998), The Reliability and Efficiency of a DNA Computation. Phys.
Rev. Lett. 80, 417.

9. M.H. Garzon, R.J. Deaton (2004), Codeword Design and Information Encoding
in DNA Ensembles. J. of Natural Computing, in press.

10. M.H. Garzon, K. Bobba, B.P Hyde. (2004), Digital Information Encoding on DNA.
Aspects of Molecular Computing 2004: 152-166.

11. M. Garzon, D. Blain, K. Bobba, A. Neel, M. West. (2003), Self-Assembly of DNA-
like structures In-Silico. Genetic Programming and Evolvable Machines 4:2, 185-
200.

12. M. Garzon, P.I. Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, S.E.
Stevens, Jr. (1997), A New Metric for DNA Computing. Proc. 2nd Annual Genetic
Programming Conference. Morgan Kaufmann, 472-478.

13. M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, E. Stevens
Jr. (1997), On the Encoding Problem for DNA Computing. Poster at The Third
DIMACS Workshop on DNA-based Computing, U of Pennsylvania. Preliminary
Proceedings, 230-237.

14. M. Hagiya, A. Ohuchi, eds. (2002), Proc. 8th Int. Meeting on DNA-Based Com-
puters. Springer-Verlag Lecture Notes in Computer Science LNCS 2568. Springer-
Verlag.

15. O. King (2003), Bounds for DNA codes with constant GC-content, Journal of
Combinatorics, 10(1) R33 13pp, 2003.

16. A. Marathe, A. Condon, R. Corn (1999), On Combinatorial DNA Word Design.
Proceedings 5th DIMACS Workshop on DNA Based Computers. American Math-
ematical Society. Editors: Erik Winfree and David K. Gifford. 75-89.

17. J. Roman (1995), The Theory of Error-Correcting Codes. Springer-Verlag, Berlin.



292 V. Phan and M.H. Garzon

18. J. SantaLucia, Jr., H.T. Allawi, P.A. Seneviratne (1990), Improved Nearest Neigh-
bor Paramemeters for Predicting Duplex Stability. Biochemistry 35, 3555-3562.

19. J.G. Wetmur (1997), Physical Chemistry of Nucleic Acid Hybridization. American
Mathematical Society DIMACS Series 48 (1999). 1- 23.



Compact Error-Resilient Computational
DNA Tiling Assemblies�

John H. Reif, Sudheer Sahu, and Peng Yin

Department of Computer Science, Duke University, Box 90129,
Durham, NC 27708-0129, USA

{reif, sudheer, py}@cs.duke.edu

Abstract. The self-assembly process for bottom-up construction of nanostruc-
tures is of key importance to the emerging scientific discipline Nanoscience.
However, self-assembly at the molecular scale is prone to a quite high rate of
error. Such high error rate is a major barrier to large-scale experimental imple-
mentation of DNA tiling. The goals of this paper are to develop theoretical meth-
ods for compact error-resilient self-assembly and to analyze these methods by
stochastic analysis and computer simulation. Prior work by Winfree provided an
innovative approach to decrease tiling self-assembly errors without decreasing
the intrinsic error rate ε of assembling a single tile. However, his technique re-
sulted in a final structure that is four times the size of the original one. This paper
describes various compact error-resilient tiling methods that do not increase the
size of the tiling assembly. These methods apply to assembly of boolean arrays
which perform input sensitive computations (among other computations). Our
2-way (3-way) overlay redundancy construction drops the error rate from ε to
approximately ε2 (ε3), without increasing the size of the assembly. These results
were further validated using stochastic analysis and computer simulation.

1 Introduction

Self-assembly is a process in which simple objects associate into large (and complex)
structures. The self-assembly of DNA tiles can be used both as a powerful computa-
tional mechanism [4, 6, 10, 11, 14] and as a bottom-up nanofabrication technique [8].
Periodic 2D DNA lattices have been successfully constructed with a variety of DNA
tiles, for example, double-crossover (DX) DNA tiles [13], rhombus tiles [5], triple-
crossover (TX) tiles [3], and 4x4 tiles [15]. Two dimensional algorithmic self-assembly,
in contrast, is comparatively resistant to experimental demonstration, partially due to the
large number of errors in the assembled structure.

How to decrease such errors? There are primarily two kinds of approaches. The first
one is to decrease the intrinsic error rate ε by optimizing the physical environment in
which a fixed tile set assembles [11], by improving the design of the tile itself using
new molecular mechanism [2], or by using novel materials. The second approach is to
design new tile sets that can reduce the total number of errors in the final structure even

� Extended abstract. For full paper, see [7]

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 293–307, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



294 J.H. Reif, S. Sahu, and P. Yin

with the same intrinsic error rate. A seminal work in this direction is the proofreading
tile set constructed by Winfree [12].

One desirable improvement on Winfree’s construction (which results in an assem-
bled structure with 4x size of the original one) is to make the design more compact.
Here we report construction schemes that achieve performance similar as or better than
Winfree’s tile set without scaling up the assembled structure. We will describe our work
primarily in the context of self-assembling Sierpinsky triangles and binary counters, but
note that the design principle can be applied to a more general setting. The basic idea of
our construction is to overlay redundant computations and hence force consistency in
the scheme. The idea of using redundancy to enhance reliability of a system constructed
from unreliable individual components goes back to von Neumann [9].

The rest of the paper is organized as follows. In Sect. 2, we introduce the assembly
problem. In Sect. 3, we describe a scheme that decreases the error rate from ε to 6ε2. In
Sect. 4, this scheme is further improved to 30ε3 using a three-way overlay redundancy
technique. Kinetic analysis is performed in Sect. 5 to show that the assembly speed
is not much decreased. Sect. 6 gives empirical study using computer simulation. We
conclude with discussions about future work in Sect. 7.

2 Assembly with o Error Corrections

2.1 Assembly Problems

A general assembly problem considered in this paper is the assembly of a Boolean
array. A Boolean array assembly is an N ×M array, where the elements of each row
are indexed over {0, . . . , N − 1} from right to left and the elements of each column
are indexed over {0, . . . , M − 1} from bottom to top. The bottom row and right most
column both have some given values. Let V (i, j) be the value of the i-th (from the right)
bit on the j-th row (from the bottom) displayed at position (i, j) and communicated to
the position (i, j + 1). Let U(i, j) be a Boolean value communicated to the position
(i + 1, j). For i = 1, . . . , N − 1 and j = 1, . . . , M − 1, we have V (i, j) = U(i −
1, j) OP1 V (i, j − 1) and U(i, j) = U(i − 1, j) OP2 V (i, j − 1), where OP1 and
OP2 are two Boolean functions, each with two Boolean arguments and one Boolean
output. See Figure 1 for an illustration.

Two Boolean arrays of particular interest are the Sierpinsky Triangle [1] and the
Binary counter. The Sierpinsky Triangle is an N ×N Boolean binary array, where the
bottom row and right most column all have 1s; its OP1 and OP2 operators are both
XOR. Recall that XOR is exclusive OR, a binary operator that outputs bit 1 if the two
input bits are different and 0 otherwise. For an illustration, see Figure 2.

The binary counter is an N × 2N Boolean binary array. In a binary counter, the
bottom row has all 0s and the j-th row (from the bottom) is the binary representation
of counter value j, for j = 0, . . . , 2N − 1. Note that the i-th bit is i-th from the right
– this is in accordance with the usual left to right binary notation of lowest precision
bits to highest precision bits. V (i, j) represents the value of the i-th (from the right)
counter bit on the j-th row (from the bottom), and U(i, j) is the value of the carry
bit from the counter bit at position (i, j). In the binary counter, we have V (0, j) =
V (0, j − 1) XOR 1; V (i, j) = U(i − 1, j) XOR V (i, j − 1) for i = 1, . . . , N − 1;

N



Compact Error-Resilient Computational DNA Tiling Assemblies 295

U(i,j) U(i−1,j)

V(i,j)

V(i,j−1)

T0(i − 1, j)

T0(i, j + 1)

T0(i, j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

T0(i + 1, j)

T0(i, j − 1)

Fig. 1. Tile T0(i, j) takes input U(i − 1, j) and V (i, j − 1); determines V (i, j) = U(i −
1, j) OP1 V (i, j − 1) and U(i, j) = U(i − 1, j) OP2 V (i, j − 1); displays V (i, j)

S

0

0

0

00

0

0

1

11

11

1

1

1 1 1 1

1

1

1

0 0 1 0 1

1 0

1

0 1 10

S 1 1

0

1

0

1

01

0

1
0

1

0

10

1

1

00
1

0

11

1

1

0

0

1

1

1

0

1

0

1

0

1 1

1

0

1

1

1

1

1

Pads

1

1

Tiles

1

Sierpinsky Tiling

1
1

1

1 0

1

01

1

1

0

0

0

1
1 0

0
00

0

0 00 0

0

0

Fig. 2. Sierpinsky triangle tiling assembly

U(i, j) = U(i− 1, j) AND V (i, j− 1). Hence OP1 is the XOR operation and OP2

is the AND operation.
We observe that OP1 is XOR both for the Sierpinsky Triangle and for the binary

counter and we will thus assume in our error-resilient constructions that OP1 is XOR.
Each assembly will be constructed with the 4× 4 DNA tiles described in [15]. A 4× 4
tile allows one pad per side (which can communicate a small constant number of bits).
Furthermore, we will assume that a “frame” is assembled first for each binary array,
consisting of a “bottom row” with N horizontally aligned tiles and a “right border”
linear assembly with M vertically aligned tiles.



296 J.H. Reif, S. Sahu, and P. Yin

2.2 Assemblies with o Error Corrections

We first describe the naive assembly scheme without error correction. Note that such
assembly requires only 4 tile types in addition to 3 frame tiles, but results in rather
small scale error-free assemblies (with the actual size contingent on the probability of
single pad mismatch between adjacent tiles). We call this scheme version 0 assembly
and denote the tiles as T0(i, j).

The simplest way to construct such an assembly is to make each side of each tile
a binary valued pad. Since the values of the left and top pads depend on the values
of the right and bottom pads, the tile type depends on only 2 binary pads, and hence
only 22 = 4 tile types are required in addition to the 3 tiles for assembling the initial
frame.

The bottom, right, top, and left pads of tile T0(i, j) represent the values of V (i, j−1)
(as communicated from the tile below T0(i, j−1)), U(i−1, j) (as communicated from
the tile on its right T0(i−1, j)), V (i, j) ( as computed by V (i, j−1) OP1 U(i−1, j)),
and U(i, j) (as computed by V (i, j − 1) OP2 U(i− 1, j)), respectively. A determined
value V (i, j) = 1 can be displayed by the tile T0(i, j) using, for example, an extruding
stem loop of single strand DNA.

2.3 Errors in Assemblies

All this is theoretically correct, but it has not taken into account the error rate of the
assembly of individual DNA tiles. A critical issue in 2D tiling assemblies is the pad
mismatch rate, which determines the size of the error-free assembly. Let ε be the prob-
ability of a single pad mismatch between adjacent assembling DNA tiles, and assume
that the likelihood of a pad mismatch error is independent for distinct pads as long
as they do not involve the binding of the same two tiles. As such, a pad mismatch
rate of ε = 5% would imply an error-free assembly with an expected size of only 20
tiles, which is disappointingly small. Thus, a key challenge in experimentally demon-
strating large scale algorithmic assemblies is to construct error-resilient tiles. Winfree’s
construction is an exciting step towards this goal [12]. However, to reduce the error
rate to ε2 (resp. ε3), his construction replaces each tile with a group of 2 × 2 = 4
(resp. 3 × 3 = 9) tiles and hence increases the size of the tiling assembly by a fac-
tor of 4 (resp. 9). Our construction described below, in contrast, reduces the tiling
error rate without scaling up the size of the final assembly. This would be an attrac-
tive feature in the attempt to obtain assemblies with large computational capacity. We
call our construction compact error resilient assemblies and describe them below in
detail.

3 Error-Resilient Assembly Using Two-Way Overlay Redundancy

3.1 Construction

To achieve the goals stated in previous section, we propose the following error resilient
tiling scheme. Our Error-Resilient Assembly I (using two-way overlay redundancy) uses
only 8 computational tile types plus the 4 frame tile types. This drops the probability of

N



Compact Error-Resilient Computational DNA Tiling Assemblies 297

assembly error to 6ε2, which is 1.5% for ε = 5%, potentially allowing for error-free
assemblies of expected size in the hundreds of tiles.

The construction is depicted in Figure 3. Tiles in this construction are denoted as
T1 tiles (for version 1). Each pad of each tile encodes a pair of bits. The basic idea
of this Error-Resilient assembly is the two-way overlay redundancy: each tile T1(i, j)
computes the outputs for its own position (i, j) and also for its right neighbor’s position
(i− 1, j); the redundant computation results obtained by T1(i, j) and its right neighbor
T1(i−1, j) are compared via an additional error checking portion on T1(i, j)’s right pad
(which is the same as T1(i− 1, j)’s left pad). Tile T1(i, j)’s right neighbor T1(i− 1, j)
is not likely to bind to T1(i, j) if these pad values are not consistent. Hence if only one
of T1(i, j) and T1(i− 1, j) is in error (incorrectly placed), the kinetics of the assembly
may allow the incorrectly placed tile to be ejected from the assembly.

The four pads of T1(i, j) are constructed as follows (Figure 3).

– The right and left portions of the bottom pad represent the value of V (i− 1, j − 1)
and V (i, j − 1) respectively as communicated from the tile T1(i, j − 1).

– The top portion of the right pad represents the value of U(i−2, j) as communicated
from the tile T1(i− 1, j). The bottom portion of the right pad represents the value
of V (i− 1, j) as determined by the tile T1(i, j). Note that the value V (i− 1, j) is
also redundantly determined by T1(i−1, j) and hence the bottom portion performs
comparison of the two values and is referred to as error checking portion, and
labeled with checked background in Figure 3.

V(i−1,j)

V(i−1,j−1)V(i,j−1)

V(i,j)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

T1(i − 1, j)

T1(i, j − 1)

T1(i + 1, j)

T1(i, j + 1)

T1(i, j)

V(i,j+1)

V(i-1,j)V(i,j)

V(i,j-1)

V(i+1,j)

Fig. 3. Construction of compact error-resilient assembly version I. Each pad has two portions.
A portion encoding an input (resp. output) value is indicated with a dark blue (resp. light pink)
colored arrow head. The error checking portion is depicted as a checked rectangle. Tile T1(i, j)

takes inputs U(i − 2, j), V (i − 1, j − 1), and V (i, j − 1); determines V (i − 1, j) = U(i −
2, j) OP1 V (i − 1, j − 1), U(i − 1, j) = U(i − 2, j) OP2 V (i − 1, j − 1), and V (i, j) =

U(i − 1, j) OP1 V (i, j − 1); displays V (i, j)



298 J.H. Reif, S. Sahu, and P. Yin

– The top and bottom portions of the left pad represent the values of U(i− 1, j) and
V (i, j) respectively, as determined by the tile T1(i, j). Again, the bottom portion is
the error checking portion.

– The right and left portions of the top pad represent the values of V (i − 1, j) and
V (i, j) respectively, as determined by tile T1(i, j).

The above tile design allows the values V (i−1, j−1) and V (i, j−1) to be commu-
nicated to tile T1(i, j) from the tile T1(i, j−1) just below T1(i, j). The value U(i−2, j)
is communicated to tile T1(i, j) from its immediate right neighbour T1(i − 1, j). The
values V (i− 1, j) and U(i− 1, j) are determined by tile T1(i, j) from V (i− 1, j − 1)
and U(i − 2, j): V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1) and U(i − 1, j) =
U(i− 2, j) OP2 V (i− 1, j − 1). The value V (i, j) is determined from V (i, j − 1) and
U(i−1, j): V (i, j) = U(i−1, j) OP1 V (i, j−1). If the determined value V (i, j) = 1,
then it is displayed by the tile T1(i, j).

In this construction, each pad encodes two bits. However, since the values of the left
pad, the top pad, and the bottom portion (V (i− 1, j)) of the right pad each depend only
on the values of the top portion (U(i − 2, j)) of the right pad and the bottom pads, the
tile type depends on only 3 input binary bits. Hence only 23 = 8 tile types are required.
In addition, 4 tiles are required to assemble the frame, as described in Sect. 6.

We emphasize that though a pad has two portions, it should be treated as a whole
unit. A value change in one portion of a pad changes the pad to a completely new pad.
If the pad is implemented as a single strand DNA, this means that the sequence of the
single strand DNA will be a complete new sequence. One potential confusion to be
avoided is mistakenly considering two pads encoding, say 00 and 01, as having the 0
portions identical or, in the context of single strand DNA, as having half of the DNA
sequences identical. To emphasize the unity of a pad, we put a box around each pad in
Figure 3.

3.2 Error Analysis

Recall that ε is the probability of a single pad mismatch between two adjacent DNA
tiles. We further assume that the likelihood of a pad mismatch error is independent for
distinct pads as long as they do not involve the binding of the same two tiles and that
OP1 is the function XOR.

Our intention is that the individual tiling assembly error rate (and hence the prop-
agation of these errors to further tile assemblies) is substantially decreased, due to co-
operative assembly of neighboring tiles, which redundantly compute the V (−,−) and
U(−,−) values at their positions and at their right neighbours.

Without loss of generality, we consider only the cases where the pad binding error
occurs on either the bottom pad or the right pad of a tile T1(i, j). Otherwise, if the
pad binding error occurs on the left (resp. top) pad of tile T1(i, j), then use the same
below argument for tile T1(i + 1, j) (resp. T1(i, j + 1)). We define the neighborhood
of tile T1(i, j) to be the set of 8 distinct tiles { T1(i′, j′) : |i′ − i| < 2, |j′ − j| <
2 } \ { T1(i, j) } with coordinates that differ from (i, j) by at most 1. A neighborhood
tile T1(i′, j′) is dependent on T1(i, j) if both its coordinates are equal to or greater
than those of T1(i, j); otherwise T1(i′, j′) is independent of T1(i, j). Note that a neigh-
borhood tile T1(i′, j′) is dependent on T1(i, j) if and only if the values V (i′, j′) and



Compact Error-Resilient Computational DNA Tiling Assemblies 299

U(i′, j′) are determined at least partially from V (i, j) or U(i, j). More specifically,
the neighborhood tiles dependent on T1(i, j) are T1(i + 1, j + 1), T1(i + 1, j), and
T1(i, j + 1). The neighborhood tiles independent of T1(i, j) are T1(i + 1, j − 1),
T1(i, j − 1), T1(i− 1, j + 1), T1(i− 1, j), and T1(i− 1, j − 1).

Lemma 1. Suppose that the neighborhood tiles independent of tile T1(i, j) have cor-
rectly computed V (−,−) and U(−,−). If there is a single pad mismatch between tile
T1(i, j) and another tile just below T1(i, j) or to its immediate right, then there is at
least one further pad mismatch in the neighborhood of tile T1(i, j). Furthermore, given
the location of the initial mismatch, the location of the further pad mismatch can be
determined among at most three possible pad locations.

Proof. Suppose that a pad binding error occurs on the bottom pad or the right pad
of tile T1(i, j) but no further pad mismatch occurs between two neighborhood tiles
which are independent of T1(i, j). We now consider a case analysis of possible pad
mismatches.

(1) First consider the case where the pad binding error occurs on the bottom pad of
tile T1(i, j). Recall that the right and left portions of the bottom pad represent the values
of V (i− 1, j − 1) and V (i, j − 1) respectively as communicated from tile T1(i, j − 1).
Observe that neighborhood tiles T1(i, j − 1), T1(i− 1, j − 1), and T1(i− 1, j) are all
independent of T1(i, j) and so all correctly compute V (−,−) and U(−,−) according
to the assumption of the lemma.

(1.1) Consider the case where the pad binding error is due to the incorrect value of
the right portion V (i − 1, j − 1) of the bottom pad of tile T1(i, j) as shown in Fig-
ure 4. Note that the left portion V (i, j − 1) of the bottom pad of tile T1(i, j) may also

V(i−1,j−1)

V(i−1,j)

Further Mismatch

V(i,j)

Mismatch

V(i,j−1) V(i−1,j−1) V(i−2,j−1)V(i−1,j−1)

U(i−2,j−1)

U(i−1,j) U(i−2,j)

V(i,j) V(i−1,j)

T1(i, j)T1(i + 1, j)

T1(i, j − 1)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

V(i-1,j-1)

T1(i − 1, j − 1)

T1(i − 1, j)

T1(i, j + 1)

Fig. 4. Case 1.1 in the proof of Lemma 1: error in right portion V (i− 1, j − 1) of the bottom pad
of tile T1(i, j) causes a further mismatch on the right pad of tile T1(i, j)



300 J.H. Reif, S. Sahu, and P. Yin

V(i,j)

V(i,j−1)
V(i−1,j−1)

Case ii b

V(i−1,j)
Case i

Further Mismatch
Mismatch

Further Left Pad Mismatch
Case iia

V(i,j−1)
V(i+1,j−1)

V(i,j−1)

Further Mismatch

U(i−2,j)U(i−1,j)

V(i−1,j)V(i,j)

U(i−1,j−1)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

V(i+1,j-1)

T1(i − 1, j)

T1(i, j + 1)

T1(i, j)T1(i + 1, j)

T1(i + 1, j − 1) T1(i, j − 1)

Fig. 5. Case 1.2 in the proof of Lemma 1: a further mismatch is caused by an error in the
V (i, j − 1) portion of the bottom pad of tile T1(i, j)

be incorrect. In case (i), T1(i, j) has an incorrect value for the U(i − 2, j) portion of
its right pad and hence there is a further pad mismatch on the right pad of T1(i, j). In
case (ii), T1(i, j) has a correct value for the U(i − 2, j) portion of its right pad. Since
T1(i, j) uses the formula V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1) to compute
V (i−1, j) and OP1 is assumed to be the XOR function, it will determine an incorrect
value for V (i−1, j), which is distinct from the correct value of V (i−1, j) determined
by its (independent) right neighbor tile T1(i − 1, j). This again implies a further pad
mismatch on the right pad of tile T1(i, j).

(1.2) Next consider the case in Figure 5 where the pad binding error is due to
the wrong value of the left portion V (i, j − 1) of the bottom pad of tile T1(i, j).
However, there is a correct match in the right portion V (i − 1, j − 1) of the bot-
tom pad of tile T1(i, j). In case (i), T1(i, j) has an incorrect value for the top portion
U(i − 2, j) of its right pad, then there will be a mismatch on the right pad of T1(i, j).
In case (ii), T1(i, j) has a correct value for the top portion U(i − 2, j) of its right pad,
then it will further determine a correct value for U(i − 1, j), since U(i − 1, j) =
U(i − 2, j) OP2 V (i − 1, j − 1) and both U(i − 2, j) and V (i − 1, j − 1) have
correct values. Since V (i, j) = U(i − 1, j) OP1 V (i, j − 1), U(i − 1, j) is correct
and V (i, j − 1) is incorrect, T1(i, j) will determine an incorrect value for V (i, j).

Note that the neighborhood tiles T1(i−1, j−1), T1(i, j−1), and T1(i+1, j−1) are
independent of T1(i, j) and so both correctly compute V (−,−) and U(−,−). However,
T1(i, j)’s immediate left neighbour T1(i+1, j) is dependent both on the incorrect value
communicated by the pad of T1(i, j) and the correct values communicated by the pad
of T1(i+1, j−1). So in case (ii) there must be a further pad mismatch at tile T1(i+1, j)
as argued below. In case (iia) there is pad mismatch on the right pad of T1(i+1, j) either
due to a mismatch on the portion of U(i− 1, j) or on the portion of V (i, j). Otherwise,



Compact Error-Resilient Computational DNA Tiling Assemblies 301

in case (iib) there is no mismatch on either the U(i− 1, j) or the V (i, j) portion of the
pad between T1(i, j) and T1(i+1, j). This implies that V (i, j) is incorrectly computed
by T1(i + 1, j) (since T1(i, j) has incorrectly computed V (i, j)), but T1(i + 1, j) has
a correct value of U(i − 1, j). However, V (i, j) = U(i − 1, j) OP1 V (i, j − 1) and
OP1 is XOR, this implies that the right portion V (i, j−1) of the bottom pad of T1(i+
1, j) has an incorrect value, and hence there is a mismatch between T1(i + 1, j) and
T1(i + 1, j − 1).

(2) Next consider the case where the pad binding error occurs on the right pad of
tile T1(i, j), but there is no error on the bottom pad of T1(i, j). We first note that the
value of the top portion U(i − 2, j) of the right pad of T1(i, j) must have an incorrect
value. Assume the opposite case where U(i − 2, j) is correct. But the V (i − 1, j − 1)
portion of T1(i, j)’s bottom pad must also have a correct value (no mismatch on the bot-
tom pad), this results in a further correct value for the V (i − 1, j) portion of T1(i, j)’s
right pad. Thus both U(i − 2, j) and V (i − 1, j) portions of T1(i, j)’s right pad are
correct and there must be no mismatch on the right pad. A contradiction. Therefore,
U(i − 2, j) must have an incorrect value, and hence we only need to consider this
case.

(2.1) Now consider the case where the pad binding error is due to the incorrect value
of the top portion U(i− 2, j) of the right pad of tile T1(i, j) as shown in Figure 6. We
note that T1(i, j) will compute an incorrect value for the right portion V (i− 1, j) of its
top pad, according to the formula V (i− 1, j) = U(i− 2, j) OP1 V (i− 1, j − 1). Note
that T1(i, j +1) is dependent on T1(i, j). In case (i), tile T1(i, j +1) has a correct value
of V (i− 1, j). There must be a pad mismatch on V (i− 1, j) between T1(i, j + 1) and
T1(i, j), since the value of V (i − 1, j) determined by T1(i, j) is incorrect. In case (ii),

Case i

Further Mismatch
Case ii

Further Mismatch

Mismatch

V(i,j) V(i−1,j)

V(i−1,j−1)V(i,j−1)

V(i−1,j) V(i−2,j)

V(i−1,j+1)

V(i−1,j)V(i,j)

U(i−2,j)U(i−1,j)

U(i−2,j+1)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1) V(i-1,j+1)

V(i-1,j)

T1(i, j) T1(i − 1, j)

T1(i − 1, j + 1)
T1(i, j + 1)

T1(i + 1, j)

T1(i, j − 1)

Fig. 6. Case 2.1 in the proof of Lemma 1: a further mismatch is caused by an error in theU(i−2, j)

portion of the right pad of tile T1(i, j)



302 J.H. Reif, S. Sahu, and P. Yin

tile T1(i, j + 1) has an incorrect value of V (i− 1, j), using similar argument as in case
1.1, we can show that there must be a pad mismatch on the U(i − 2, j + 1) portion of
T1(i, j + 1)’s right pad.

Hence we conclude that in each case, there is a further pad mismatch between a pair
of adjacent tiles in the neighborhood of tile T1(i, j). Furthermore, we have shown in
each case that given the location of the initial mismatch, the location of the further pad
mismatch can be determined among at most three possible pad locations. ��

Recall that we have let ε be the probability of a single pad mismatch between adja-
cent assembling tiles. This implies that 1−ε is the probability of no single pad mismatch
between a given pair of adjacent tiles. So the probability that there is no pad mismatch
between tile T1(i, j) and another tile just below or to its immediate right is (1 − ε)2.
Hence the probability that there is a pad mismatch between tile T1(i, j) and another tile
just below or to its immediate right is 1−(1−ε)2 = 2ε−ε2, which is at most 2ε. But by
Lemma 1, if there is a pad mismatch between tile T1(i, j) and another tile just below or
to its immediate right, then there is a further pad mismatch between a pair of adjacent
tiles in the immediate neighborhood of tile T1(i, j), and the location of the further pad
mismatch can be determined among at most three possible pad locations. The probabil-
ity that there is such a further pad mismatch between tiles at most three possible pad
locations is at most 1−(1−ε)3, which is at most 3ε. This implies that with probability at
most (3ε)(2ε) = 6ε2, there is both (i) a pad mismatch between tile T1(i, j) and another
tile just below or to its immediate right; and (ii) furthermore, there is also a further pad
mismatch between tiles in the immediate neighborhood of tile T1(i, j) as considered in
the case analysis in the proof of Lemma 1. Hence we have shown:

Theorem 1. Suppose that the neighborhood tiles independent of tile T1(i, j) have cor-
rectly computed V (−,−) and U(−,−). Then the assembly error probability for tile
T1(i, j) is at most 6ε2, where ε is the probability of a single pad mismatch.

4 Error-Resilient Assembly Using Three-Way Overlay
Redundancy

4.1 Construction

We next extend the design of our scheme to a 3-way overlay scheme. The Error-Resilient
Assembly II (using 3-way overlay redundancy) uses 16 computational tile types and 5
frame tile types. One mismatch on a tile forces two more mismatches in its neighbor-
hood. This property further lowers the assembly error.

The basic construction is shown in Figure 7. In this construction, each pad encodes a
tuple of 3 bits and hence is an 8-valued pad. The basic idea of this error-resilient assem-
bly is to have each tile T2(i, j) compute error checking values for positions (i − 1, j),
(i, j−1), (i+1, j), and (i, j+1), which are compared with corresponding error checking
values computed by T2(i, j)’s four neighbors. The neighbors are unlikely to bind with
T2(i, j) if such error checking values are inconsistent, and the kinetics of the assembly
will allow these tiles to dissociate from each other, as in version 1 (2-way overlay re-
dundancy). However, instead of introducing just one additional mismatch in T2(i, j)’s



Compact Error-Resilient Computational DNA Tiling Assemblies 303

U(i−1,j)

V(i+1,j)

V(i,j-1)

V(i,j)

V(i,j+1)

V(i-1,j)

T2(i, j + 1)

T2(i + 1, j) T2(i, j) T2(i − 1, j)

T2(i, j − 1)

V(i,j-1) V(i-1,j)

V(i-1,j-1)

V(i-1,j-2)

U(i-1,j-1)

V(i,j-1) V(i-1,j-1)
U(i-2,j)

U(i-2,j-1)

V(i,j-2) V(i-1,j-1)

Fig. 7. Tile T2 takes inputs U(i − 2, j), U(i − 2, j − 1), V (i − 1, j − 2), and V (i, j − 2);
determines V (i − 1, j − 1) = U(i − 2, j − 1) OP1 V (i − 1, j − 2), U(i − 1, j − 1) =

U(i − 2, j − 1) OP2 V (i − 1, j − 2), V (i, j − 1) = U(i − 1, j − 1) OP1 V (i, j − 2),
U(i − 1, j) = U(i − 2, j) OP2 V (i − 1, j − 1), V (i, j) = U(i − 1, j) OP1 V (i, j − 1), and
V (i − 1, j) = U(i − 2, j) OP1 V (i − 1, j − 1); displays V (i, j)

neighborhood, the 3-way overlay redundancy (version 2) forces two mismatches, and
hence we have a further lowered error rate.

4.2 Error Analysis

For error analysis, in addition to the assumptions made in Sect. 3.2, we require that
OP2 can detect incorrect value of input 1 regardless of the correctness of input 2. This
property seems essential to guarantee two further mismatches in a tile’s neighborhood
when there is an initial mismatch on one of the tile’s four pads.

Using a similar but more involved analysis as in Lemma 1 and Theorem 1, we can
show

Lemma 2. Suppose that the neighborhood tiles independent of tile T2(i, j) have cor-
rectly computed V (−,−) and U(−,−). If there is a single pad mismatch between tile
T2(i, j) and another tile just below or to its immediate right, then there are at least two
further pad mismatches between pairs of adjacent tiles in the immediate neighborhood
of tile T2(i, j). Furthermore, given the location of the initial mismatch, the location of
the second mismatch can be determined among at most three locations in the neigh-
borhood of T2(i, j); given the location of the initial and the second mismatches, the
location of the third mismatch can be determined among at most five locations.

Theorem 2. Suppose that the neighborhood tiles independent of tile T2(i, j) have cor-
rectly computed V (−,−) and U(−,−). Then the assembly error probability for tile



304 J.H. Reif, S. Sahu, and P. Yin

T2(i, j) is at most 2ε × 3ε × 5ε = 30ε3, where ε is the probability of a single pad
mismatch.

For detailed analysis, see [7]. It is also easy to see that this schemes requires 24 = 16
computational tile types and 5 frame tile types.

5 Kinetic Analysis

Our kinetic analysis is based upon the analysis done by Winfree [12]. Two parameters,
Gse and Gmc, are defined in [12]. Gmc measures the entropic cost of fixing the location
of a monomer unit and Gse measures the free energy cost of breaking a single sticky-
end bond. A non-rigorous condition for good self-assembly is given as Gmc ≈ 2Gse

and the growth rate of assembly r is approximately αe−Gmc .
For the construction with no error-correction, the equilibrium error rate δ0 for an

assembly is approximately k0e
−Gse , which yields an assembly rate r0 ≈ αe−Gmc ≈

αe−2Gse ≈ (α/k2
0)δ

2
0 [12]. For our version 1 error-resilient construction, it can be

shown that δ1 ≈ k1e
−2Gse , which further yields r1 ≈ αe−Gmc ≈ αe−2Gse ≈ (α/k1)δ1.

For our version 2 error resilient scheme, it can be shown that the error rate is approx-
imately δ2 ≈ k2e

−3Gse , which yields r2 ≈ αe−Gmc ≈ αe−2Gse ≈ (α/k2)δ
(2/3)
2 .

k0, k1 and k2 are constants. See [7] for details. The above analysis shows that while
the error rates δ1 and δ2 are significantly reduced in our error resilient assemblies, the
aggregation speeds r1 and r2 stay approximately the same as r0.

6 Computer Simulation

We first give below the construction of a Sierpinsky Triangle using our error resilient
assembly version 1, and then perform empirical study of the error rates using computer
simulation of assembly of the Sierpinsky Triangle and compare the results with that of
Winfree’s [12].

Figure 8 illustrates the construction of a Sierpinsky triangle, using 8 computational
tiles and 4 frame tiles. We would like to again emphasize that although we give the
construction of the tiles in previous sections with each pad having two or three distinct
portions, a mismatch on any portion of a pad results in a total mismatch of the whole
pad instead of a partial mismatch of only that portion. Hence, in Figure 8, we use a
distinct label for each pad, emphasizing the wholeness of the pad.

For the simulation study, we used the Xgrow simulator by Winfree [12] and simu-
lated the assembly of Sierpinsky triangles for the following cases:

– assembly without any error correction,
– assembly using Winfree’s 2× 2 proofreading tile set,
– assembly using Winfree’s 3× 3 proofreading tile set,
– assembly using our error resilient scheme version 1, T1 (construction in Figure 8),
– assembly using our error resilient scheme version 2, T2 (construction not shown).

We performed simulations of the assembly process of a target aggregate of 512×512
tiles. A variable N is defined as the number of tiles assembled without any permanent



Compact Error-Resilient Computational DNA Tiling Assemblies 305

Scccc

a

a

a

b

b

aS b c

0

0

0

0

1

1 1

1

0

0

000

0

0

00

0

0

1

1

1

1

11

1

1

1 1

0

0
01

0
1

0

1
1

0

0
0

0

0
1

1

1
1

0

1
1

0

11

00

1

01

1

11

11

1

00

0
0

01

00

01

0

01

00

10

00

0
1

01

11 11

11
0

1
1

00

1
1 0

0
1

00

1
1

1

01

00

0
0

0
0

1
1

0
1

11

01

1
1

0

0
1

01

1

11

0
1

01

0
0

11100100

1

10

0
10

1
0
0

00

11

11

10

Tiles

0110

0
0 0

1

10

0
1

10

0
1

0
1

0

0

1

10

10

0
1

0
1

0
1

10

0
0

1

1

1

1

1

Sierpinsky TilingPads

11

00 11
0

Fig. 8. The construction of a Sierpinsky Triangle using error resilient assemblies version 1. The
pads and the tile set are shown on the left and the assembled Sierpinsky Triangle is shown on the
right. The pads of strength 2 have black borders while the strength 1 pads are border-less. The
seed tile is labeled with S. Tiles a, b, and c are the other frame tiles

error in the assembly in 50% cases. The variations in the value of N are measured as
we increase value of the probability of a single mismatch in pads (ε) by changing the
values of Gmc and Gse, where Gmc and Gse are the free energies [12]. We used the
fact mentioned by Winfree [12] that ε ≈ 2e−Gse and for a good assembly we need to
have Gmc ≈ 2Gse.

Figure 9 shows the variation in N with loge ε. From the figure it can be seen that
the performance of our version 1 (T1) construction is comparable to Winfree’s 2 × 2
proofreading tile set construction, while our version 2 (T2) performs comparably to
Winfree’s 3× 3 proofreading tile set construction.

−6 −5.8 −5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

log(probability of single mismatch)

S
iz

e 
of

 e
rr

or
−

fr
ee

 a
gg

re
ga

te

Size of error−free aggregate vs Probability of single mismatch

No error correction
Our T

1
 construction

Winfree 2x2 construction
Our T

2
 construction

Winfree 3x3 construction

Fig. 9. A graph showing the variation of N v.s. increasing value of error (probability of single
mismatch)ε



306 J.H. Reif, S. Sahu, and P. Yin

7 Discussion

In the proof of this paper, we require OP1 to be XOR, for concreteness. However, note
that our constructions apply to more general boolean arrays in which OP1 is an input
sensitive operator, i.e. the output changes with the change of exactly one input.

Note that OP1 and OP2 are both the function XOR for the example assemblies
for the Sierpinsky Triangle but this is not true for the assembly for a binary counter of
N bits, since OP2 is the logical AND in that example. It is an open question whether
our above error-resilient constructions can be further simplified in the case of special
computations, such as the Sierpinsky Triangle, where the OP1 and OP2 are the same
function such as XOR.

Another open question is to extend the construction into a more general construction
such that the error probability can be decreased to εk for any given k, or alternatively,
prove an upper bound for k.

Acknowledgements

We would like to thank Erik Winfree for the simulation software Xgrow. We are also
grateful to Thomas H. LaBean and Hao Yan for helpful discussions. This work was
supported by NSF under ITR Grant EIA-0086015 and ITR Grant 0326157, by NSF un-
der QuBIC Grant EIA-0218376 and QuBIC Grant EIA-0218359, by NSF under EMT
Grant CCF-0432038 and EMT Grant CCF-0432047, by DARPA/AFSOR under Con-
tract F30602-01-2-0561, and by RGC under Grant HKBU2107/04E.

References

1. B. A. Bondarenko. Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and
Applications. The Fibonacci Association, 1993. Translated from Russian and edited by R.
C. Bollinger.

2. H. L. Chen, Q. Cheng, A. Goel, M. D. Huang, and P. M. de Espanes. Invadable self-assembly:
Combining robustness with efficiency. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2004.

3. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

4. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA
Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Soci-
ety, 2000.

5. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction
arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

6. J. H. Reif. Local parallel biomolecular computation. In H. Rubin and D. H. Wood, editors,
DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical
Society, 1999.

7. J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies.
Technical Report CS-2004-08, Duke University, Computer Science Department, 2004.

8. N. C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.



Compact Error-Resilient Computational DNA Tiling Assemblies 307

9. J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. Autonomous Studies, pages 43–98, 1956.

10. E. Winfree. On the computational power of DNA annealing and ligation. In R. J. Lipton
and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 199–221.
American Mathematical Society, 1996.

11. E. Winfree. Simulation of computing by self-assembly. Technical Report 1988.22, Caltech,
1998.

12. E. Winfree and R. Bekbolatov. Proofreading tile sets: logical error correction for algorithmic
self-assembly. In DNA Based Computers 9, volume 2943 of Lecture Notes in Computer
Science, pages 126–144, 2004.

13. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394:539–544, 1998.

14. E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In L. F. Landweber and E. B. Baum, editors, DNA Based Com-
puters II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1999.

15. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science, 301:1882–1884, 2003.



Toward “Wet” Implementation of Genetic
Algorithm for Protein Engineering

Kensaku Sakamoto1, Masayuki Yamamura2, and Hiroshi Someya3

1 Department of Biophysics and Biochemistry, Graduate School of Science,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

and
RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi,

Yokohama 230-0045, Japan
sakamoto@biochem.s.u-tokyo.ac.jp

2 Department of Computational Intelligence and Systems Science,
Interdisciplinary Graduate School of Science and Engineering,

Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku,
Yokohama 226-0026, Japan

my@dis.titech.ac.jp
3 Department of Prediction and Control,
The Institute of Statistical Mathematics,

4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan
some@ism.ac.jp

Abstract. We here propose an application of DNA computing to a prac-
tical problem, protein engineering, which is difficult to approach by us-
ing modern electronic computers. DNA molecules naturally carry the
blueprints of proteins. DNA-based processing of this genetic informa-
tion could give mutant proteins with desired properties. We conceived
the use of genetic algorithm for this purpose, and designed an algorithm
amenable to DNA-based implementation. The performance of this algo-
rithm was examined on a model fitness landscape by computer experi-
ments. Then, spontaneous DNA recombination during PCR was utilized
to embody the crossover operation in the genetic algorithm, preparing
for the “wet” implementation of the whole search process in the future.

1 Introduction

Adleman’s study of DNA computer indicated that the information carried by
DNA molecules can be processed by a defined mathematical algorithm, which
is implemented using molecular biology techniques (Adleman, 1994). His way of
solving a combinatorial problem involves the generation of a library of solution
candidates and the search for the true solution. The solution was actually found
by a rigorous implementation of a computing algorithm, not by trial and error.

DNA molecules in nature carry the blueprints (genes) of proteins. It is known
that some mutant genes (the genes with base substitutions or mutations in their
base sequence) produce mutant proteins with an enhanced activity or an altered

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 308–318, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering 309

substrate specificity. In molecular biology, such desired mutant genes have been
obtained by exploring an artificially generated library of mutants. This search
process could be regarded as a computation of an optimization problem by using
biological or “wet” techniques1. However, this process has been implemented
largely by trial and error, rather than according to an appropriate algorithm.

In order to design such a search algorithm for “evolutionary protein engineer-
ing”, we could take advantage of the empirical knowledge and conventional tools
(computer experiments, for example) of computer scientists, if protein evolution
is actually an instance of optimization problem, and the desired mutant genes
can be assumed to be optima or sub-optima on the fitness landscape. In the
present study, we first surveyed the existing search strategies used in computer
science, before proposing a possible algorithm for protein engineering. The per-
formance of this algorithm was examined by computer experiments, and a wet
method for one-point crossover was then developed for a future implementation
of the whole search process in a wet manner.

2 Proposed Algorithm for Protein Engineering

2.1 Guidelines for Designing Effective Search Algorithm

Several types of stochastic algorithms have been proposed for optimization pro-
cesses, and Genetic Algorithm (GA) provides one of the successful optimization
strategies working on electronic computers or in silico, not restricted to partic-
ular fitness landscapes (Goldberg, 1989). We adopted GA as the main strategy
for the evolutionary protein engineering, because GA is equipped with all of
the genetic operators of selection, mutation, and crossover (or recombination),
which are regarded as the main driving forces of protein evolution in nature2.
The use of GA and evolutionary strategy in DNA computing has been conceived
and demonstrated in an instance of mathematical problem (Chen, 1999).

Kita and Yamamura have proposed guidelines for designing GA (Kita, 1999a),
and several GAs that satisfy the design guidelines have shown effective perfor-
mance (Kita, 1998; Kita, 1999b; Tsutsui, 1999; Someya, 2001). One of their
recommendations is that “selection operators of GA should be designed so as
to gradually narrow the distribution of a population of genes and maintain the
diversity of the population to a maximum.” A selection operator not equipped
with this mechanism for the diversity maintaining often causes a disadvantageous
phenomenon called “Premature Convergence”. If the diversity rapidly decreases
in the early stage of the search, the varieties of the characteristics of the genes in
the population are also lost. Thus, crossover does not work as recombination and
does not generate novel solutions. Since mutation generates new characteristic

1 The fitness function for protein, computable on electronic computers, is not knownyet.
2 In this report, we use the terminology of molecular biology rather than that of the

conventional GA. For example, the term of “gene” or “base sequence” is used instead
of the “chromosome” in GA.



310 K. Sakamoto, M. Yamamura, and H. Someya

Fig. 1. Relation between the initial population and hardness of finding the optimum

genes, increasing a mutation rate might be a convenient solution to this problem.
However, too much mutation often causes another problem called “Evolutionary
Stagnation” because it would rather destroy a useful characteristics in a gene
than find that one. Note, the above discussions are based on the assumption
that the initial population has enough diversity and encompasses the optimum
adequately. For example, in the case of (a) in Fig.1, the optimum is located in
the center of the initial population, finding the optimum is easy for GA. On the
other hand, in the case of (c), GA hardly finds the optimum (Someya, 2002).

2.2 Our Proposed Algorithm

When designing a possible search algorithm for protein engineering, we took
into accounts the biological constraints on the search operators, which, on the
other hand, can be arbitrarily designed for in silico implementations (Table 1).
In addition, there is an important difference between the biological and in silico
searches. In the evolutionary protein engineering, the search starts from the
initial gene pool that contains only one or a few gene species, and thus does not
satisfy the aforementioned condition that the genes in the initial pool should be
so spread in the space as to encompass the desired optimum or optima.

In order to address this difficulty, we employed the mechanism of Simulated
Annealing (SA) (Kirkpartrick, 1983), in the scheme of GA, for making a fa-
vorable gene diversity at the early stage of search and maintaining it in the
succeeding search process. This combination of SA and GA can find its prece-
dents in computer science, such as Thermodynamical Genetic Algorithm (Mori,
1995) and Genetic Simulated Annealing (Koakutsu, 1994). The outline of our
proposed algorithm for protein evolution is as the following.

Step 1: Generate the initial population, P (0), including p genes by amplifying
the starting gene(s).

Step 2: Introduce mutations into the genes in P (t) to generate Pm(t), where t
is the counter of search generations and takes the values of 0, 1, 2, · · ·

Step 3: Make crossovers between the genes in Pm(t) to generate a population of
crossover products, Pc(t).

Step 4: Select a gene from Pc(t) randomly, and accept it at the probability
related to both the fitness value of this gene and a given selection pressure



Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering 311

Table 1. Differences between in silico and wet implementations

in silico in vitro

readability of a gene sequence easy hard
automatization whole partial
parallel processing under a few hundred dozens
designing operators flexible constrained
parent-child lineage observable not observable

represented by T . This operation is repeated p times to form P ′(t + 1) of
size p′.

Step 5: Select p − p′ genes from P (t) randomly, and add them to P ′(t + 1) to
form P (t + 1).

Step 6: Go to Step 2 and set t to be t + 1, unless a certain condition is satisfied.

The mechanism of SA is employed at Step 4. The selection of genes is per-
formed by the Metropolis method, being controlled by parameter T . Suppose
that ∆E is the increase in the fitness value for a gene, relative to the average
value in the gene population of the previous generation. Then, if ∆E is > 0 or
0 for a gene, this gene is accepted at the probability of 1. If ∆E is < 0, the gene
is accepted at the probability of exp(∆E/T ). The value for T is gradually de-
creased throughout the search process, according to a given annealing schedule.
This proposed algorithm has the advantages of (i) not requiring the information
of base sequence for each gene, (ii) not requiring specific designs for the mutation
and crossover operators, (iii) being equipped with the mechanism for tuning the
selection pressure, and (iv) being relatively simple.

3 Computer Experiments

3.1 Experimental Details and the Results of Computer
Experiments

The performance of an in silico search algorithm is usually tested in computer ex-
periments performed on model landscapes, and parameters are adjusted through
these trials. Our proposed algorithm was similarly tested for its performance as
an optimizer on the landscapes of Kauffman’s NK model (Kauffman, 1995), a
tunable random fitness landscape model. This is not a simulation of a protein
evolution based on our algorithm, but a performance test using more general
landscapes.

The fitness function is determined as 1
N

∑N
i=1 f(xi;xj0, . . . xjK) , where

f(xi) ∼ U(0, 1). N is the dimension of the sequence space (length of the gene)
and K represents the number of the linkages that each base has with other
bases in the same gene. The modality of the fitness landscape is controlled by
K. In the case of K = 0, the fitness landscape is unimodal and there are no
correlation between the bases. In the other cases, K > 0, the fitness landscapes



312 K. Sakamoto, M. Yamamura, and H. Someya

Table 2. Experimental results. rc indicates crossover rate. The figures represented by

bold font specify the best parameter set in each K

K = 0 K = 2 K = 4 K = 6 K = 8
No Crossover 100 67.6 16.0 7.8 2.6
One-point Crossover rc = 0.3 100 72.7 20.4 8.4 2.4

T (0)=0.0 rc = 1.0 100 62.4 13.3 3.8 0.8
Uniform Crossover rc = 0.3 100 67.5 15.8 6.8 2.2

rc = 1.0 100 45.5 6.2 1.0 0.4
No Crossover 100 81.1 22.3 15.4 7.6
One-point Crossover rc = 0.3 100 84.8 26.7 14.2 5.3

T (0)=1.0 rc = 1.0 100 77.6 23.1 7.5 2.4
Uniform Crossover rc = 0.3 100 71.0 19.5 7.3 4.0

rc = 1.0 100 56.9 9.6 0.2 1.4

have some peaks. As the value for K increases, more number of peaks appear,
and the landscape becomes more rugged. The experiments were performed with
K = 0, 2, 4, 6 or 8. N and the number of different bases for each gene position,
A, are set to be 32 and 2, respectively. Five instances of landscape are prepared
for each K value. They were randomly generated, and the global optimum for
each instance was obtained by exhaustive search in advance.

The initial temperature T (0) is set to be 0.0 or 1.0; with T (0) = 0.0, the search
will be done in a simple hill-climbing manner, which keeps only the improved
genes as the parents of the next generation, while the effects of SA can be
observed with T (0) = 1.0. The temperature is scheduled based on T (t + 1) =
T (t) ∗ 0.98. The base sequence of the starting gene was generated at random.
Population size p is set to be 100. The upper limit on the number of the iteration
of Steps 2 ∼ 5 was set to be 2000. One-point crossover and uniform crossover,
each with the crossover rate of 0.0, 0.3 or 1.0 (no crossover occurs with the rate
of 0.0), were used as the crossover operator, in order to determine which one
of these operators gives the highest performance. The mutation rate was fixed
to be 0.03125, meaning one mutation (base-type change) at a random site per
gene. The performance measure is the success rate of finding the global optimum
(ropt). For example, when ropt of a method is 100, this result indicates that the
method succeeded in finding the global optimum in all trials. For each instance
of landscape, 300 trials were performed, with the results summarized in Table 2.
In some searches, the optimum was found out after a small number of search
generations. For example, the optimum was found after around 300 generations
in the instances for every K value under the conditions of one-point crossover,
rc = 0.3, and T (0) = 1.0.

Fig.2 shows representative transition curves for the entropy, which corre-
sponds to the gene diversity in a gene population, 1

N

∑N
i=1

∑
a∈A−Pi(a)

log2 Pi(a), where Pi(a) is the proportion of the genes with base a at the i-th
position in the population. In all of the trials starting from T = 1.0, the gene
diversity increases at the early search generations, up to much higher scores than
the trials starting T = 0.0.



Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering 313

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50000  100000  150000  200000

En
tro

py

Number of evaluations

T(0)=1.0

T(0)=0.0

Fig. 2. Representative transition curves for the entropy (gene diversity). These curves

were drawn based on the results of 10 trials for an instance with K = 4, where the

starting temperature T (0) was set to be 0.0 or 1.0, and the one-point crossover was

performed at the rate of 0.3. Each search generation involves 100 evaluations. The

optimum was found out before 500 search generations in the trials under T (0) = 1.0

3.2 Discussion on the Results from Computer Experiments

In the performed computer experiments, the optimization of the fitness value
became more difficult, as the value for K increased (each gene position was
correlated with more number of other positions in the computation of the fitness
value). In the cases of K = 2 and K = 4, our proposed algorithm, combining
the search strategies of GA and SA, showed better performance than the simple
SA and the simple hill-climbing. When the value for K was increased up to 6
and 8, the simple SA showed the performance better than, or nearly comparable
to, that of our algorithm. As shown in Fig.2 for the instance of K = 4, the
diversity in the gene population successfully increased for T (0)=1.0 at the early
stage, which was consistent with the good performance of our algorithm. This
successful diversification was concluded to be driven by the mechanism of SA,
by comparing with the diversification under T (0) = 0.0. These results indicated
that our proposed algorithm is a good optimizer on the “correlated” landscapes.
In addition, we found that the one-point crossover with a crossover rate of 0.3
is a better operator than the one-point crossover with a rate of 1 or the uniform
crossover with any crossover rate. This finding is consistent with the empirical
knowledge from in silico GA that crossover is to be performed in appropriate
manners and with appropriate rates, because it could spread some characteristics
in the population so rapidly as to cause premature convergence. On the other
hand, the mutation rate was fixed to be one random mutation per gene, and
therefore higher or lower mutation rates would possibly give better results.

We note that as many as 300 ∼ 2, 000 search generations cannot be imple-
mented in wet experiments. In contrast, in the case of wet implementation, the
fitness values of as many as 10,000 to 1,000,000,000 genes could be evaluated at
each search generation, by using biological genetic methods. It remains to study
whether this heavy parallelism can compensate for a much smaller number of
search generations feasible in wet experiments as compared with that feasible in



314 K. Sakamoto, M. Yamamura, and H. Someya

silico. On the other hand, it seems easy to introduce the mechanism of SA into
the evolutionary protein engineering, by keeping genes for the next generation
at the probabilities related with their fitness values. The biological embodiment
of the one-point crossover was developed in the next section.

4 Wet Embodiment of One-Point Crossover

The biological parallel to crossover is gene recombination, and the feasibility
of its implementation in a test tube has been demonstrated (Stemmer, 1994).
However, all of the reported methods have been developed for implementing
multi-point crossover (Stemmer, 1994; Zhao, 1998). We describe here a method
for one-point crossover.

If two genes have some homology between their base sequences, crossover
spontaneously occurs during PCR and the succeeding cloning step (Jansen &
Ledley, 1990). This crossover during PCR was utilized by Zhao et al., and the
frequency of crossover was increased by reducing the time of the polymerization
step. On the other hand, if the crossover frequency is made low enough to achieve
one-point crossovers, the PCR products undergoing no crossovers will form a
large population among all products. Therefore, we added a step of keeping

EcoRI

HindIII

EcoRI

HindIII

EcoRI

HindIII

EcoRI HindIII

Crossover Products

������

������

������

Fig. 3. PCR steps for achieving one-point crossover



Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering 315

Table 3. The number of the crossover products having crossover sites in each section

is shown for Programs 1 and 2. The data of only the one-point crossover products are

included. Each section is between two neighboring mutation sites, except that positions

1 and 869 are the fist and last positions, respectively, of genes A and B. The positions

for the mutations in gene A are underlined, while the others are in gene B except for

position 788, at which both genes have different types of base substitution

Section length Program 1 Program 2
1-110 109 1 1
-118 8 0 1
-130 12 1 1
-145 15 0 0
-199 54 0 1
-301 102 4 4
-302 1 0 0
-336 34 0 0
-384 48 1 0
-398 14 0 0
-484 86 3 3
-489 5 0 0
-515 26 2 0
-545 30 1 2
-547 2 0 0
-658 111 3 3
-696 38 1 2
-698 2 0 0
-702 4 1 0
-714 12 0 0
-763 49 0 1
-765 2 0 0
-788 23 0 1
-835 47 2 1
-843 8 0 0
-869 26 0 2
total 19 23

only the crossover products, while the crossover at the cloning step was avoided,
because this event, occurring in the E. coli cell, is difficult to control.

Two genes, A and B, used in the test experiments are the same part of
the E. coli argS gene (869 bases) with 16 and 10 mutations, respectively (Ta-
ble 3). Crossover products were generated by the following laboratory steps
(Fig. 3).

Step 1: The EcoRI and HindIII sites were generated near the 5’ end of gene
A and the 3’ end of gene B, respectively, by amplifying these genes with
appropriate PCR primers. This step was carried out separately for the two
genes.

Step 2: The PCR products from the two genes were mixed and then amplified
using the common PCR primers. At this step, we tested two PCR programs,
Programs 1 and 2, with different times for the polymerization step. The
time is shorter in Program 1 than in 2, as described under “Experimental
Methods”.



316 K. Sakamoto, M. Yamamura, and H. Someya

Step 3: The products of Step 2 were diluted and then amplified to less than a
concentration of 50-ng products per 1µL of the reaction mixture. This step
removes heteoduplex between the two genes, because heteroduplex is formed
under high product concentrations achieved at late PCR cycles.

The final PCR products were inserted between the EcoRI-HindIII sites of
vector pUC19, and the sequences of 21 and 24 clones for Programs 1 and 2,
respectively, were analyzed. All of these clones were crossover products. Although
the crossover site could not be pinpointed, we decided which one of the gene
sections each between two mutation sites included the crossover site (Table 3).
Except for two clones for Program 1 and one for 2, the crossover products were
formed by one-point crossover, with the crossover sites distributed along the
full-length of the gene.

Our protocol does not completely exclude the contamination of multi-point
crossover products. Programs 1 and 2 formed two three-point-crossover products
and one such product, respectively; these contaminations were 9.5% for Program
1 and 4.2% for Program 2. The frequency of the occurrence of mutation in the
analyzed clones was 0.18% and 0.14% for Programs 1 and 2, respectively.

We also carried out a similar experiment without performing the extraction
of crossover products (Step 1 was omitted), and the sequences of four clones out
of the obtained products were analyzed. All of the four were either gene A or B,
no crossover products between them. Thus, the population of the spontaneous
crossover products contained in the PCR products was small.

In this experiment, all of the crossover products had the 5’ and 3’ parts of
gene A and gene B, respectively. When this method is applied to a population
of genes, the EcoRI site will be added to some copies of a gene and the HindIII
site to the other copies of this gene. Therefore, both of its 5’ and 3’ parts will be
found in crossover products. One-point crossover guarantees that any product
has just two parent genes, while the multi-point crossover performed in a wet
manner necessarily generates the crossover products each made of parts from
several parent genes.

Experimental Methods. At Step 1, gene A or B of more than 5 ng was am-
plified with ExTaq DNA polymerase (Takara, Japan) of 2 units and appropriate
primers (25 pmol each) in a 50-µL reaction. The thermal program comprises
pre-heating at 94̊ C for 30 sec, 25 cycles [94̊ C for 30 sec, 60̊ C for 30 sec, and
72̊ C for 60 sec], and the graduating run at 72̊ C for 3 min. PCR at Step 3 was
similarly performed, except that the products of Step 2 (50 ng) were amplified
by 8 thermal cycles. At Step 2, the products of Step 1 were mixed and then
subjected to PCR in a 50-µL reaction using rTaq DNA polymerase (Toyobo,
Japan) of 2 units and appropriate primers (25 pmol each). The thermal program
consists of a pre-heating at 94̊ C for 30 sec, 25 cycle [94̊ C for 60 sec, 45̊ C for 60
sec, and 72̊ C for 30 sec (Program 1) or 60 sec (Program 2)], and the graduating
3-min run at 72̊ C . A GeneAmp PCR system 9700 (Applied Biosystems) was
used, with a ramp speed set to 9600.



Toward “Wet” Implementation of Genetic Algorithm for Protein Engineering 317

5 Conclusion

The development of DNA computer into a useful tool requires the scaling-up of
computations or its application to any purpose that is difficult to approach even
with modern electronic computers. DNA computers operating on undefined DNA
sequences have been conceived as a possible application of the latter category
(Landweber, 1999). DNA-based GA for protein engineering also operates on the
undefined sequences produced by random mutation and recombination, and the
protein design by electronic computers has not yet enjoyed wide success. Thus,
our study explores the new way to use DNA computer in its application to
biotechnology.

Acknowledgement

We thank H. Kita and Y. Husimi for valuable discussions. This work was sup-
ported by the Grant-in-Aid for Scientific Research on the Priority Area “Molec-
ular Implementation and Methodology for Natural Computing (in Molecular
Programming) (No. 766-14085203)” by the MEXT of Japan.

References

Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science
266 (1994) 1021–1024

Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley (1989)

Chen, J., Antipov, E., Lemieux, B., Cedeno, W., Wood, D.H.: In vitro selection for
max 1s DNA genetic algorithm. In: Preliminary Proceedings of 5th International
Meeting on DNA Based Computers. (1999) 23–37

Kita, H., Yamamura, M.: A functional specialization hypothesis for designing genetic
algorithms. In: Proceedings of 1999 IEEE International Conference on Systems,
Man and Cybernetics. (1999) 579–584

Kita, H., Ono, I., Kobayashi, S.: Theoretical analysis of the unimodal normal distri-
bution crossover for real-coded genetic algorithms. In: Proceedings of 1998 Inter-
national Conference on Evolutionary Computation. (1998) 529–534

Kita, H., Ono, I., Kobayashi, S.: Multi parental extension of the unimodal normal
distribution crossover for real-coded genetic algorithms. In: Proceedings of the
1999 Congress on Evolutionary Computation. (1999) 1581–1587

Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex
crossover in real coded genetic algorithms. In: Proceedings of the Genetic and
Evolutionary Computation Conference 1999. (1999) 657–664

Someya, H., Yamamura, M.: Genetic algorithm with search area adaptation for the
function optimization and its experimental analysis. In: Proceedings of the 2001
Congress on Evolutionary Computation. (2001) 933–940

Someya, H., Yamamura, M.: Robust evolutionary algorithms with toroidal search
space conversion for function optimization. In: Proceedings of the Genetic and
Evolutionary Computation Conference 2002. (2002) 553–560



318 K. Sakamoto, M. Yamamura, and H. Someya

Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220 (1983) 671–680

Mori, N., Yoshida, J., Tamaki, H., Kita, H., Nishikawa, Y.: A thermodynamical selec-
tion rule for the genetic algorithm. In: Proceedings of 1995 International Conference
on Evolutionary Computation. (1995) 188–192

Koakutsu, S., Hirata, H.: Genetic simulated annealing for floorplan design. Control
and Information Sciences 197 (1994) 268–277

Kauffman, S.A., Macready, W.G.: Search strategies for applied molecular evolution.
Journal of Theoretical Biology 173 (1995) 427–440

Stemmer, W.P.C.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 379
(1994) 389–391

Jansen, R., Ledley, F.D.: Disruption of phase during pcr amplification and cloning of
heterozygous target sequences. Nucleic Acids Research 18 (1990) 5153–5156

Zhao, H., Giver, L., Affholter, J.A., Arnold, F.H.: Molecular evolution by staggered
extension process (StEP) in vitro recombination. Nature biotechnology 16 (1998)
258–261

Landweber, L.F., Lipton, R.J., Rabin, M.O.: DNA2DNA computations: a potential
“Killer App?”. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 48 (1999) 161–172



Programmable Control of Nucleation
for Algorithmic Self-assembly

(Extended Abstract�)

Rebecca Schulman and Erik Winfree

California Institute of Technology,
Pasadena, CA 91125, USA

{rebecka, winfree}@caltech.edu

Abstract. Algorithmic self-assembly has been proposed as a mecha-
nism for autonomous DNA computation and for bottom-up fabrication
of complex nanodevices. Whereas much previous work has investigated
self-assembly programs using an abstract model of irreversible, errorless
assembly, experimental studies as well as more sophisticated reversible
kinetic models indicate that algorithmic self-assembly is subject to sev-
eral kinds of errors. Previously, it was shown that proofreading tile sets
can reduce the occurrence of mismatch and facet errors. Here, we in-
troduce the zig-zag tile set, which can reduce the occurrence of spurious
nucleation errors. The zig-zag tile set takes advantage of the fact that as-
semblies must reach a critical size before their growth becomes favorable.
By using a zig-zag tile set of greater width, we can increase the critical
size of spurious assemblies without increasing the critical size of correctly
seeded assemblies, exponentially reducing the spurious nucleation rate.
In combination with proofreading results, this result indicates that algo-
rithmic self-assembly can be performed with low error rates without a
significant reduction in assembly speed. Furthermore, our zig-zag bound-
aries suggest methods for exquisite detection of DNA strands and for the
replication of inheritable information without the use of enzymes.

1 Introduction

Since Adleman first used DNA to perform a hard computation [1], researchers
have explored the ability of biological molecules to carry out algorithms. Al-
gorithmic self-assembly of DNA tiles [19] is Turing universal in theory, and
tile sets for the construction of a variety of desired products have been sug-
gested [12, 15, 3, 8]. An example of a structure that can be constructed using
algorithmic self-assembly, a Sierpinski triangle, is shown in Figure 1. A simple
generalization of this construction can be used to implement an arbitrary cellular
automaton.

A tile program consists of labels for the sides of each of a set of square tiles,
the strength with which each possible pair of labels binds, a designated seed tile,

� A preprint of the full paper can be found at http://arxiv.org.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 319–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



320 R. Schulman and E. Winfree

rule tiles boundary tiles

0+1=10+0=0 1+0=1 1+1=0

seed tile

strength−2 (strong) bond

strength−1 (weak) bond

strength−0 (null) bond

output
input

fac
et 

err
or

s

fac
et

 = 2τ

(a)

rf rr,2
rf rr,1

rf

rr,1 rf

rr,2

rf

rr,5

(b) (c) (d)

Fig. 1. Tile assembly models (a) The Sierpinski tile set. Tiles cannot be rotated.
Whereas the rule tiles have sides that form strength-1 (weak, single-line) bonds, some
sides on the boundary tiles form strength-2 (strong, double-line) bonds or strength-
0 (null, thick-line) bonds. (b) Seeded growth of the Sierpinski tiles according to the
aTAM at τ = 2. The small tiles indicate the (only) four sites where growth can occur.
At each location exactly one tile matches both exposed sides, so assembly results in
a unique pattern. (c) For the growth of an isolated crystal under unchanging tile
concentrations, the forward rate (association) is rf = kf [tile] = kfe−Gmc , while the
reverse rate (dissociation) is rr,b = kfe−bGse for a tile that makes bonds with total
strength b. Parameters Gmc and Gse govern monomer tile concentration and sticky-
end bond strength, respectively. A representative selection of possible events is shown
here. The kTAM approximates the aTAM with threshold τ when Gmc = τGse − ε, in
which case the same set of reactions are favorable or unfavorable in the two models.
(d) An undesired assembly that can form due to unseeded growth of boundary tiles
followed by facet errors

and a strength threshold τ . Polyomino tiles with labels on each unit-length of
the perimeter can be used in addition to square tiles. The abstract tile-assembly
model (aTAM) [20] describes the behavior of a tile program executed in the
absence of assembly errors. Under the aTAM, assembly starts with designated
tiles (usually just the seed tile) and proceeds by the addition of tiles at locations
on the assembly’s perimeter where the total strength of the connections between
the tile and the assembly is greater than or equal to the threshold. Addition
of tiles is irreversible but non-deterministic. Within the aTAM, it is possible
to prove program correctness – that is, that growth from the seed tile always
results in the unique desired structure. In this paper, unless stated otherwise
mismatched labels will always bind with strength 0, bond strengths will be non-
negative integers, and τ = 2, as is the case for most prior work on algorithmic
self-assembly.

In contrast to assembly in the aTAM, the assembly of DNA tiles is neither
errorless nor irreversible. In practice a tile sometimes binds and sticks to a grow-



Programmable Control of Nucleation for Algorithmic Self-assembly 321

ing assembly even when the strength of the tile’s attachments is smaller than
the threshold, an event called an unfavorable attachment. Unfavorable attach-
ments can lead to three kinds of errors. First, an unfavorable attachment that
only partially matches the adjacent tiles can occasionally become locked into
place by succeeding attachments, forming a mismatch error. Second, a tile that
attaches unfavorably to a facet and in turn allows the attachment of incorrect
tiles nearby causes a facet error (Figure 1(d)). Lastly, a spurious nucleation error
occurs when an assembly grows from a tile other than the designated seed tile.

Mismatch, facet and spurious nucleation errors have all been observed in
algorithmic self-assembly experiments. In an experimental demonstration of the
algorithmic self-assembly of a Sierpinski triangle [16], between 1% and 10% of
tiles mismatched their neighbors, an effect that was attributed to both mismatch
and facet errors. Furthermore, only a small fraction of the observed crystals were
properly nucleated from seed molecules.

Why avoiding spurious nucleation can be difficult was clarified by experiments
with just the boundary tiles shown in Figure 1 [17]. While the aTAM predicts
that V-shaped assemblies should form, most observed assemblies were linear
polymers without a seed tile. When all the tiles in the Sierpinski tile set were
combined, most assemblies seen were spuriously nucleated rather than grown
from a V-shaped boundary. The spuriously nucleated assemblies could have been
produced either by linear boundaries growing wider due to multiple facet errors
or by rule tiles assembling by themselves into crystals.

To theoretically study the rates at which these three kinds of errors occur,
we need a model that includes energetically unfavorable events. The kinetic Tile
Assembly Model (kTAM) [20] describes the dynamics of assembly according to
an inclusive set of reversible chemical reactions: A tile can attach to an assembly
anywhere that it makes even a weak bond, and any tile can dissociate from
the assembly at a rate dependent on the total strength with which it adheres to
the assembly (see Figure 1(c)). Several variants of the kTAM, reflecting different
assumptions about how growth proceeds, have been developed [18]. In the kTAM
as described in Figure 1(c), mismatch errors occur at least at a rate proportional
to the square root of assembly speed [20]. Therefore, the mismatch error rate
can be reduced by decreasing the temperature of the assembly reaction and/or
decreasing the monomer concentration – but a 10-fold decrease in error rates
requires a 100-fold decrease in assembly speed. A better solution to controlling
mismatch and facet errors is to use “proofreading” tile sets that implement the
same logic of an original tile set but assemble more robustly, reducing the error
rates exponentially without significant slow-down [21, 6, 14].

In this paper we propose a method to control spurious nucleation errors with-
out significant slow-down, exponentially reducing the rate at which assemblies
without a seed tile grow large (unseeded growth), while maintaining the rate of
growth that starts from a seed tile and proceeds roughly according to aTAM
(seeded growth). To do so, a tile set must satisfy two conflicting constraints:
When assembly begins from a seed tile, it must proceed quickly, whereas when
assembly starts from a non-seed tile, it must go nowhere.



322 R. Schulman and E. Winfree

These two constraints are simultaneously satisfied by a phenomenon well-
known to children who make rock candy: the nucleation of crystals in a super-
saturated solution. By cooling a solution slowly, it is possible to create a solution
that has more solute dissolved than would be possible in standard conditions,
called a supersaturated solution. Because of the interplay between surface and
volume energy terms in a supersaturated solution, crystals smaller than a criti-
cal size will tend to shrink, whereas large crystals will grow. The seeded growth
of crystals results from the mixing of a supersaturated solution with a small
number of large crystals, called seed nuclei. When a seed nucleus is added to the
solution, its growth is immediately favorable. Monomers attach to the seed, and
a large crystal results.

To apply these principles for the control of nucleation in algorithmic crystals,
it is enough to create a well-behaved boundary that plays the same role as the
V-shaped boundary in Figure 1, but grows exclusively from a seed. Since rule
tiles are not likely to spuriously nucleate on their own under optimal assembly
conditions, once the well-behaved boundary has set up the correct initial infor-
mation, algorithmic crystal growth will proceed correctly and without spurious
side products. We use large seed tiles that serve the the same purpose as the
large seed nuclei in the rock candy example. Tiles attach to the seed tile to pro-
duce a long boundary of predefined width. Because only full-width boundaries
can grow by favorable attachments, without the seed tile there is a critical size
barrier that prevents spurious nucleation – unlike the boundary tiles of Figure 1
for which the critical size is a single tile. The tile set that implements these ideas,
called the zig-zag tiles, is described below.

2 The Zig-Zag Tile Set

The zig-zag tile set (see Figure 2(a)) of width k contains tiles that assemble
to form a periodic ribbon of width k (see Figure 3(a)). Zig-zag tile sets can be
constructed with any width k ≥ 2. A zig-zag tile set includes a top tile and
a bottom tile, each consisting of 2 horizontally connected square tiles. It also
includes an L-shaped seed tile consisting of k vertically connected square tiles
and a square tile horizontally connected to the bottom of the vertical connected
tiles. In a zig-zag assembly, the top and bottom tiles stagger so that each column
of tiles is connected to the columns on its right and left by either a top tile or a
bottom tile. Each of the k − 2 rows between the top and bottom tiles contains
two unique middle tiles that alternate horizontally. Unique tiles in each row
make assemblies of width less than k impossible to form without zero-strength
attachments. Two tile types in each row enforce the staggering of the top and
bottom tiles, which is essential for seeded growth to proceed quickly in a path
that zig-zags up and down the width of the assembly. The seeded assembly path
is shown in Figure 3(b).

The tile set is designed to operate in a physical regime where the attachment
of a tile to another tile or assembly by two matching sides is energetically favor-
able, whereas an attachment by only one bond is energetically unfavorable. In



Programmable Control of Nucleation for Algorithmic Self-assembly 323

Seed Tile

1

4

8

1012

Top Tile

1 2 3 1

Bottom Tile

Middle Tiles

10 11 12 10

2
5

6
4

3
4

7
5

6
9

12
8

7
8

11
9

(a)

1

4

8

10
12

148

10

12

(b)

Fig. 2. The zig-zag tile set. (a) Each square, rectangle, and L shape represents a
single tile. Excluding the seed tile, tiles are given unique bonds that determine where
the fit in the assemble: each label has exactly one match on another tile. All correctly-
matched bonds have strength 1. The geometric patterns shown on each tile identify
them in subsequent figures. (b) The seed shown here, with appropriate tiles for vertical
zig-zag growth, could be used instead of the L-shaped seed in (a) to form V-shaped
assemblies

(a)

(b) → → → → → → ...

(c) → → → → → → ...

Fig. 3. Zig-zag assembly. (a) The structure formed by the zig-zag tile set according
to aTAM with a threshold τ = 2. (b) Seeded growth of a zig-zag tile set in the aTAM.
The same growth pattern occurs reversibly in the kTAM with a threshold near τ = 2.
(c) A possible series of steps by which the tiles could spuriously nucleate in the kTAM.
Under the conditions of interest, some steps are energetically favorable, but at least
k−1 must be unfavorable for a zig-zag tile set of width k. At this point, further growth
is favorable

this physical regime, algorithmic self-assembly is possible. In the aTAM, these
conditions translate to growth with a threshold of 2. Growth from a seed tile
occurs in a zig-zag shaped pattern; if assembly starts from a non-seed tile, no
growth occurs. In the kTAM, seeded growth occurs in the same pattern as in the
aTAM, but there are also series of reactions that can cause spurious nucleation
errors.



324 R. Schulman and E. Winfree

Spurious nucleation is a transition from assembly melting, where assemblies
are more likely to fall apart than they are to get larger, to assembly growth,
where each assembly step is energetically favorable. An assembly where melting
and growth are both energetically favorable is a critical nucleus. Nucleation
theory [9] predicts that the rate of nucleation is limited by the concentration of
the critical nucleus, [Ac]. Since [Ac] = e−∆G/kT , where ∆G is the free energy of
a critical nucleus with respect to unbound tiles, linearly increasing the energy
barrier, ∆G, exponentially decreases the rate of nucleation1.

Since there is no energy barrier to seeded growth in the zig-zag tile set, growth
from the seed tile is favorable. In contrast, there is an energy barrier for unseeded
growth. The size of this barrier depends on the total concentration of critical
nuclei. For a zig-zag tile set of width k, the critical nuclei are k tiles wide. Under
the right conditions, the energy barrier depends linearly on the width of the crit-
ical nuclei, and thus the concentration of critical nuclei decreases exponentially
with k. This argument is not rigorous, however, because unfortunately there are
also many more kinds of critical nuclei for larger values of k. The rate of spurious
nucleation is proportional to the sum of the concentrations of all these critical
nuclei.

To bound rather than explicitly calculate the rate of spurious nucleation, it is
not necessary to calculate the rate of growth of each critical nucleus. Instead, we
consider a set of subcritical assemblies, and we bound the total flux of assemblies
leaving this set; it is assumed that (in the worst case) every assembly that leaves
the set eventually becomes a long spuriously nucleated ribbon. This flux rate is
a valid upper bound as long as single tiles are members of the set and spuriously
nucleated assemblies are not.

For the zig-zag tile set of width k, we use the set of assemblies of width less
than k. Because of the way the zig-zag tile set is designed, no assembly of width
smaller than k can grow significantly longer without an unfavorable attachment.
However, any assembly of width k can grow in a zig-zag fashion by exclusively
favorable steps. Thus, we bound the rate of spurious nucleation by the rate at
which assemblies of width k − 1 grow to a width of k.

To formally calculate such a bound, we make use of the kTAM as formulated
for mass action dynamics [18], assuming constant tile concentrations. In mass-
action dynamics the rate at which a reaction proceeds is proportional to a rate
constant times the product of the concentrations of the reactants [10]. Given a tile
set, we consider all possible accretion reactions: reactions either between two tiles
or between a tile and an assembly in which tile concentrations remain constant.
Since changes in the concentrations of unbound tiles are ignored2, a reaction’s
rate is dependent on at most one changing concentration, so dynamics are linear
and therefore easier to analyze. The concentration of tiles and the strength of
formation are specified by the parameters Gmc and Gse. The concentration of

1 In the kTAM, ∆G = (bGse − nGmc)kT for an assembly involving n tiles and total
bond strength b. k is Boltzmann’s constant and T absolute temperature.

2 In reality, tile concentrations will decrease as they are used, further decreasing the
rate of spurious nucleation.



Programmable Control of Nucleation for Algorithmic Self-assembly 325

each tile (except the seed tile) is [tile] = e−Gmc and the bond strength between
two matching tiles is Gse. The rate constant for each possible forward reaction
is kf , and the reverse rate constant for a reaction involving b bonds is kfe−bGse .
For a zig-zag tile set of width k, J(k) is defined as the total rate of all addition
reactions that exit the set of subcritical assemblies, i.e., reactions in which the
reactant has width k − 1 and the product has width k. We have proved the
following theorem:

Theorem 1. For a zig-zag tile set of width k > 2, if Gse > 2(k ln 2+1), Gmc =
2Gse − ε, and 0 ≤ ε < 1

k , then, at all time points, J(k) < 4kfeε−kGse .

The proof appears in the full paper.

3 Discussion

3.1 Nucleation of Algorithmic Self-assembly

Our original motivation for this work was to show that self-assembly programs
that work in the aTAM, in which it is straightforward to design tile sets that algo-
rithmically assemble any computationally defined structure, can also be made to
work in the more realistic kTAM. Tiles sets that assemble correctly via unseeded
growth in the aTAM with a threshold of τ = 1 will assemble correctly in the
kTAM under the right conditions. However, tile sets that are designed to assem-
ble via seeded growth in the aTAM with a threshold τ = 2 may fail in the kTAM
because mismatch, facet and spurious nucleation errors occur. These problems
are ameliorated in the limit of slow assembly speed [20]. Other work has de-
scribed methods to control mismatch errors and facet errors without significant
slowdown [21, 6, 14]. Here, we have developed a construction that corrects the
last discrepancy, spurious nucleation errors, again without significant slowdown.

However, it remains to be formally proven that these constructions can be
combined to control all types of errors simultaneously for any tile set of interest.
No major difficulties are expected, in large part because mismatch and facet er-
rors can both be controlled by a single mechanism [6] and the control of spurious
nucleation errors works independently of this mechanism. Both methods work
by transforming an original tile set which works in the aTAM at τ = 2 into a
new (typically larger) tile set that is more robust to particular kinds of errors
in the kTAM. The transforms are simple : each tile in the original tile set is re-
placed by a k×k′ block of tiles with a specified pattern of labels that implement
the original tile’s logic. The proofreading methods [21, 6, 14] transform rule tiles,
while the zig-zag tile set can be considered a transform of the seed and boundary
tiles. The cost of both these transformations is a moderate increase in spatial
scale and the number of tile types.

As an alternative to these methods, one might wonder whether it is possible
to also design tile sets capable of any desired computation that rely only on
unseeded growth, which appears to be easier to implement experimentally. How-
ever, seeded growth, and therefore control of nucleation, appears to be necessary
for practical, algorithmic construction by self-assembly: The seed sets up the



326 R. Schulman and E. Winfree

→ +
growth→

↓ fragmentation

{} growth

→
fragmentation

Fig. 4. Exponential amplification of assemblies. Probe strands assemble onto a
target sequence to create a seed assembly, which nucleates zig-zag growth. Periodic
fluid shear causes fragmentation of zig-zag assemblies, leading to exponential amplifi-
cation. The diagonal structure of the seed assembly shown here is the natural shape
for assembling DAE-E tiles on a scaffold strand [16]

correct initial inputs and directs computation to proceed from beginning to
end. (As a consequence, existing mismatch and facet error correction techniques
have only been shown to reduce errors in properly seeded assemblies.) Unseeded
growth is much more difficult to program and to analyze than is seeded self-
assembly, because the “computation” can begin in the middle and proceed in ei-
ther direction. Although it is possible to assemble computationally defined sets of
structures using unseeded growth [1, 22, 4], we would not expect them to assem-
ble efficiently a set of structures as rich as that generated by seeded self-assembly.

3.2 Exquisite Detection of DNA Sequences

Control over nucleation in algorithmic self-assembly can be seen as a special
case of exquisite detection (the detection of a single molecule) [2]. For a tile
set of sufficiently large width, essentially nothing happens when no seed tiles
are present, whereas if even a single seed tile is added, growth by self-assembly
will result in a macroscopic assembly. Theorem 1 shows that the false-positive
rate for detection can be made arbitrarily small by design; the false-negative
rate in the kTAM is 0. Although this idealized model does not consider many
factors that could lead to poorer detection in a real system, we don’t know of
any insurmountable problems with implementing exquisite detection.

There are, however, two immediate drawbacks. First, detecting seed-tile as-
semblies is not as useful as detecting arbitrary DNA sequences. Second, the
linear growth of a single zig-zag assembly would require a long time lapse before



Programmable Control of Nucleation for Algorithmic Self-assembly 327

a macroscopic change is perceptible. As sketched in Figure 4, we can surmount
both obstacles. First, as in [13, 23], a set of strands can be designed to assem-
ble double-crossover molecules on a (sufficiently long) target strand with nearly
arbitrary sequence, thus creating the seed assembly if and only if the target
strand exists. Second, since fluid shear forces can fragment large DNA assem-
blies, intermittent pipetting or vortexing will break large zig-zag assemblies, thus
at least doubling the number of growing ends with each fragmentation episode.
This fragmentation process can be expected to lead to exponential growth in the
number of zig-zag assemblies without increasing the false-positive rate.3

3.3 Exponential Replication of Inheritable Information

The zig-zag constructions detailed in this paper propagate a single bit of in-
formation: the presence or absence of the seed tile. Using a tile set that simply
copies information, we could use the exponential amplification reaction to detect
and identify one of several different target strands, by creating a tile set where
the seed assemblies for each target strand contain a different pattern of 1s and 0s.

Furthermore, considering the amplification process as replication, the infor-
mation encoded in the strip’s width can be seen as a form of inheritable informa-
tion. A zig-zag assembly replicates (in the appropriate culture medium consisting
of tiles) by growth of new layers followed by random fission [11]. Errors during
growth, bit flips as well as errors that increase or decrease the width of the as-
sembly, are inherited. If one sequence of tiles has a greater reproductive fitness
than other sequences – for example, by having a different growth or fission rate
– then natural evolution can be expected to occur. Cairns-Smith considered re-
lated ideas about crystal growth as a possible scenario for the origin of life on
Earth [5]. However, additional mechanisms would have to be present for this in-
heritable information to be useful in directing the reproduction of tile sequences.
Such an enzyme-free system would be considerably less complex than that con-
trolling the replication of chemical information in modern biological organisms
or in processes such as polymerase chain reaction (PCR) that provide the basis
for most in vitro evolution studies.

Acknowledgment. The authors are grateful to Ho-Lin Chen, Ashish Goel,
Rizal Hariadi, Paul Rothemund, Bernie Yurke, and Dave Zhang for helpful advice
and discussions. This work was supported by NSF CAREER Grant No. 0093486
to EW and an NSF Graduate Fellowship to RS.

References

1. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, Nov. 11, 1994.

2. L. M. Adleman. Personal communication, 2004.

3 When a spuriously nucleated assembly does eventually form, of course, it will also
be exponentially amplified.



328 R. Schulman and E. Winfree

3. L. M. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program
size for self-assembled squares. Symposium on the Theory of Computing (STOC),
2001.

4. L. M. Adleman, J. Kari, L. Kari, and D. Reishus. On the decidability of self-
assembly of infinite ribbons. Symposium on Foundations of Computer Science
(FOCS), 43:530, 2002.

5. A. G. Cairns-Smith. The life puzzle: on crystals and organisms and on the possi-
bility of a crystal as an ancestor. Oliver and Boyd, New York, 1971.

6. H.-L. Chen and A. Goel. Error free self-assembly using error prone tiles. Accepted
to DNA Computing 10.

7. J. Chen and J. Reif, editors. DNA Computing 9, volume LNCS 2943, Berlin Hei-
delberg, 2004. Springer-Verlag.

8. M. Cook, P. W. K. Rothemund, and E. Winfree. Self-assembled circuit patterns.
In Chen and Reif [7], pages 91–107.

9. R. Davey and J. Garside. From Molecules to Crystallizers. Oxford University
Press, Oxford, UK, 2000.

10. K. A. Dill and S. Bromberg. Molecular Driving Forces: Statistical Thermodynamics
in Chemistry and Biology. Garland Science, 2002.

11. G. Egan. Wang’s carpets. In G. Bear, editor, New Legends. Legend, London, 1995.
12. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiability. In

E. Winfree and D. K. Gifford, editors, DNA Based Computers V, volume 54 of
DIMACS, pages 141–154, Providence, RI, 2000. American Mathematical Society.

13. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using al-
gorithmic self-assembly of DNA triple-crossover molecules. Nature, 407(6803):493–
496, 2000.

14. J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling
assemblies. Accepted to DNA Computing 10.

15. P. W. K. Rothemund. Using lateral capillary forces to compute by self-assembly.
Proceedings of the National Academy of Sciences, 97:984–989, 2000.

16. P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. 2004. Submitted.

17. R. Schulman, S. Lee, N. Papadakis, and E. Winfree. One dimensional boundaries
for DNA tile self-assembly. In Chen and Reif [7], pages 108–125.

18. R. Schulman and E. Winfree. Kinetic models of DNA tile self-assembly. In prepa-
ration.

19. E. Winfree. On the computational power of DNA annealing and ligation. In R. J.
Lipton and E. B. Baum, editors, DNA Based Computers, volume 27 of DIMACS,
pages 199–221, Providence, RI, 1996. American Mathematical Society.

20. E. Winfree. Simulations of computing by self-assembly. Technical Report CS-
TR:1998.22, Caltech, 1998.

21. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error-correction for algo-
rithmic self-assembly. In Chen and Reif [7], pages 126–144.

22. E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of
DNA: Some theory and experiments. In L. F. Landweber and E. B. Baum, editors,
DNA Based Computers II, volume 44 of DIMACS, pages 191–213, Providence, RI,
1998. American Mathematical Society.

23. H. Yan, T. H. LaBean, L. Feng, and J. H. Reif. Directed nucleation assembly of
DNA tile complexes for barcode-patterned lattices. Proc. Nat. Acad. Sci. USA,
100(14):8103–8108, 2003.



DNA Hybridization Catalysts
and Catalyst Circuits

Georg Seelig1, Bernard Yurke1,2, and Erik Winfree1

1 California Institute of Technology, Pasadena, CA 91125, USA
2 Bell Laboratories, Murray Hill NJ 07974, USA
{seelig, yurke, winfree}@dna.caltech.edu

Abstract. Practically all of life’s molecular processes, from chemical
synthesis to replication, involve enzymes that carry out their functions
through the catalysis of metastable fuels into waste products. Catalytic
control of reaction rates will prove to be as useful and ubiquitous in
DNA nanotechnology as it is in biology. Here we present experimental
results on the control of the decay rates of a metastable DNA “fuel”.
We show that the fuel complex can be induced to decay with a rate
about 1600 times faster than it would decay spontaneously. The original
DNA hybridization catalyst [15] achieved a maximal speed-up of roughly
30. The fuel complex discussed here can therefore serve as the basic
ingredient for an improved DNA hybridization catalyst. As an example
application for DNA hybridization catalysts, we propose a method for
implementing arbitrary digital logic circuits.

1 Introduction

DNA has proven to be a highly versatile material for building artificial nanoscale
devices. Among the devices already realized experimentally are DNA motors
[6, 19, 7], DNA walkers [12, 13], DNA fuels [15], DNA catalysts [15] and self-
assembled two dimensional crystals [16]. It is interesting to ask to what degree
DNA alone can reproduce the richness of molecular biology and whether an
alternative “DNA-only” world is conceivable. In fact, proposals that the history
of life must include a time when nearly all the functions of life were subserved by
RNA – the RNA World – have been given serious attention and are now widely
accepted [3].

Biological systems exhibit complex and programmed behaviors. These behav-
iors are encoded by sets of specifically interacting molecules, such as DNA and
proteins. The interactions among the molecules in such biochemical networks
are akin to wires in electronic circuits. If we set our eyes on creating an artificial
“cell” containing only DNA-based structures we need to design similar DNA-
based biochemical networks that allow the components of the artificial cellular
machinery to interact and communicate.

Biochemical circuits in biological systems almost universally rely on enzyme
activity to carry out their function. It thus seems natural to use DNA catalytic
systems as basic building blocks for a synthetic DNA-based circuit. While ri-
bozymes are the best known example of nucleic acids with catalytic activity

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 329–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



330 G. Seelig, B. Yurke, and E. Winfree

(such as DNA-cleaving or RNA-cleaving DNA enzymes [11, 1, 14]), we here want
to use an alternative and entirely different type of DNA based catalytic sys-
tem, namely a DNA hybridization catalyst [15]. DNA hybridization catalysts
are rationally designed molecules that catalyze the conformational rearrange-
ment of other DNA complexes. The catalytic system typically consists of two
components: (i) a metastable “fuel”, i.e. a DNA complex forced into a state from
which it can not decay spontaneously into its true minimal energy configuration
(“waste product”), and (ii) the actual catalyst which makes a fast pathway avail-
able for the transformation of the fuel complex into waste. The term fuel is used
here, since the free energy that becomes available when the metastable complex
decays can in principle be used to perform mechanical work. The fuel com-
plex could for example serve as an energy source for a autonomous DNA-based
molecular motor.

The first example of a DNA hybridization catalytic system was devised by
Turberfield et al. [15]. There, the metastable fuel consisted of a pair of comple-
mentary strands of DNA that were inhibited from hybridization by inducing at
least one of the strands to acquire a loop-like structure through partial hybridiza-
tion with another strand of DNA. The inhibition was thought to be due to the
difficulty a complementary strand of DNA has in threading its way through the
loop to form duplex DNA. Catalytic speed-up was achieved by a short strand
of DNA that binds on one side of the loop via a toehold and opens the loop
through three-strand branch migration.

In Sec. 2 we describe this system in detail and propose modifications which
promise to significantly enhance catalytic activity and applicability. In Sec. 3 we
propose a scheme for linking such DNA hybridization catalysts into networks
capable of performing complex logic. Finally, in Sec. 4 we will present experi-
mental results on the construction and characterization of a DNA fuel complex
and the catalytic control over the decay of the fuel complex.

2 Improving the DNA Hybridization Catalyst

Catalytic control of chemical reactions is essential for the design of autonomous
behavior in biochemical systems. Two features are necessary for high perfor-
mance of a catalytic system: programmability of the interactions so that catalyst
systems can be tailored to a given task, and high ratios between the rates of cat-
alyzed and uncatalyzed reactions. We expect that the former criterion will pose
little difficulty for DNA hybridization catalysts, since catalyst design should be
relatively insensitive to the specific choice of nucleotide sequence, once essen-
tial constraints are incorporated into the design process. The more interesting
problem is to design a system with a high catalysis ratio.

Previous work has identified systematic approaches to the control of DNA
hybridization kinetics. A key phenomenon, studied in [10, 4, 17, 18], is strand dis-
placement by branch migration (Fig. 1a). Here, the reaction PS̄ + S → SS̄ + P
is thermodynamically favorable, because of the additional base pairs that are
formed. The kinetics of the reaction depends upon the length of the single-
stranded overhang, known as a toehold. The toehold is where S initially binds
to PS̄, and the longer it is, the more likely that the reaction will enter a branch



DNA Hybridization Catalysts and Catalyst Circuits 331

a

b

c

S

Q

P

S P

S

Q

L

Q

Q

S

L
L L

L

L L
L

Q
Q

TET TAMRA

d

Fig. 1. (a) Single-stranded toehold allows rapid displacement of P by S. (b) The

QL̄ + L → Q + LL̄ reaction is slow. (c) The QL̄ + LQ̄ → QQ̄ + LL̄ reaction is even

slower. (d) Strand M catalyzes the QL̄ + L → Q + LL̄ reaction

migration phase prior to dissociation. Branch migration consists of isoenergetic
steps where the final base pair of P to S̄ is replaced by a base pairing of S to S̄,
thus moving the branch point by a random walk process [9, 8]. When the branch
point reaches the left side of the complex, strand P dissociates. This is an es-
sentially irreversible step, because there is no toehold for P ; although, due to
spurious “toeholds” produced by DNA breathing, the reaction can occur at low
rates. Using fluorescence of a fluorophore/quencher pair to read out the bulk frac-
tion of molecules in which the fluorophore and quencher were near each other (as
in the random-coil state of Q), Yurke et al. [18] measured an exponential acceler-
ation of reaction kinetics due to toehold lengths from 0 (where the rate constant
is ∼ 1 /M/s) to 6 (where the rate approaches that of ordinary hybridization,
namely ∼ 106 /M/s). The principle of strand displacement mediated by toeholds
will be essential also for the more complicated systems considered below.

We now turn to DNA hybridization catalysts [15], where the reaction rate is
controlled not by a permanent structural change in the molecules (such as adding
a toehold or changing the length of a toehold) but rather by an additional strand,
namely the catalyst strand. A precondition for such a system is a metastable
DNA complex or pair of complexes for which a thermodynamically favorable
but kinetically inaccessible configuration exists. A catalyst for this reaction must
make available a fast pathway to the thermodynamically favorable state. Thus,
the metastable complexes represent an energy source that can in principle be
coupled to other reactions, with timing controlled by the catalyst.

An example is shown in Fig. 1b. As described in Ref. [15], the 40 nucleotide
loop region was presumed to be tightly coiled, preventing hybridization in that



332 G. Seelig, B. Yurke, and E. Winfree

domain. The second-order rate constant for this reaction was measured to be
∼ 420 /M/s, which is ∼ 104 times slower than the rate for the hybridization of
unconstrained single-stranded DNA, such as L and L̄. A catalyst for this reaction
(Fig. 1d) was proposed and demonstrated in Ref. [15], where a 30-fold speed-up
due to the catalyst strand M was measured.

To increase the catalysis ratio, however, we need a pair of metastable fuel
complexes that have an even lower spontaneous hybridization rate. An obvious
candidate is the system consisting of the molecules QL̄ and LQ̄ shown in Fig. 1c
where now both long strands L and L̄ are forced into a loop. A preliminary
study reported in Ref. [15] established an upper limit of 3/M/s for the second
order rate constant of this reaction. The similarity with the singly protected
system (Fig. 1b) suggests that catalysis of the hybridization reaction QL̄+LQ̄ →
QQ̄ + LL̄ will be possible.

Before turning to the experimental implementation (see Sec. 4) we will discuss
one potential pathway for a catalyzed reaction between two loops (see Fig. 2)
whose logic is based on the conclusions of [15]: The presumed compact state of
the loop prevents interaction with single strands or other loops. To enable the
loop-loop hybridization reaction, both of the fuel complexes must be opened,
exposing both loop regions. This is accomplished by one molecule of the catalyst
strand binding to each fuel complex. Thus, in the second hybridization step,
both loop regions are open and available for hybridization. Once the combined
complex has been formed, 3-way branch migration brings the conformation to
the point where 4-way branch migration of the C arms may take place. After

Fig. 2. Two copies of strand M catalyze the QL̄+LQ̄ → QQ̄+LL̄ reaction of Fig. 1c.

Here, subsequences of each strand are explicitly labeled, and the necessary toeholds

are added. Thus, M = T̄ Ā, Q = CAT , L̄ = ĀB̄C̄, Q̄ = ĀC̄, and L = CBAT . The

dotted line separates uncatalyzed reactions from those that occur only in the presence

of catalyst strand T̄ Ā



DNA Hybridization Catalysts and Catalyst Circuits 333

this final step, the complex dissociates into two inert waste products, from which
the catalyst strands can dissociate due to the weak binding in the short toehold
domain.

Unlike the original catalyst, which made use of 3-way branch migration only,
the improved catalyst makes use of both 3-way branch migration (where in-
dividual steps are typically ∼ 10 µs) as well as 4-way branch migration (in
which individual steps are typically ∼ 100 ms depending upon reaction con-
ditions) [9, 8]. Short 4-way branch migration reactions are typically completed
in a few seconds, so we don’t expect this to be the rate-limiting step. How-
ever, in another study we have discovered that initiation of branch migration
at a junction can be surprisingly slow [20]. The results of that study sug-
gest that a three nucleotide toehold would significantly enhance the reaction
rates. To achieve this, we truncate the terminal three nucleotides of the catalyst
T̄ Ā, leaving 3nt of A unpaired to serve as a toehold to initiate 3-way branch
migration.

Note that the reaction pathway shown in Fig. 2 is by no means the only
one possible. In fact, the analysis of complex DNA hybridization pathways such
as this one poses profound challenges, because the number of possible inter-
mediate complex conformations (as measured by secondary structure) can be
exceedingly large. For example, branch migration reactions in different parts of
the molecule can occur at different rates and complete in different orders. Fur-
thermore, what are shown as unstructured single-stranded regions may fold into
weakly-structured states that can significantly affect the rates of reactions. Also,
entirely unexpected reactions can in principle occur. One approach to these is-
sues is to use stochastic models of secondary structure kinetics [2] to identify
unexpected pathways or steps at which the reaction stalls. Initial simulations
have demonstrated that the pathway shown here can in fact go to completion
with sequences based on the original catalyst system.

3 Logic Gates and Circuits

In biological organisms, systems of catalysts regulate fundamental biological
pathways. The ability of catalysts to regulate the activity of other catalysts al-
lows complex logic to be implemented. The potential programmability of DNA
hybridization catalysts may be ideal for the construction of logic circuits. How-
ever, for this to be accomplished, the catalysis of one pair of fuel complexes
must be somehow coupled to the catalysis of a second pair of fuel complexes
which have unrelated sequences. Our proposal for accomplishing this builds on
the improved catalyst design by modifying one of the fuel complexes to con-
tain an additional strand, X̄, hybridized to the inside of the loop, as shown in
Fig. 3. This strand is then released by strand displacement during an interme-
diate 3-way branch migration step in the reaction. Since the sequence of strand
X̄ is unrelated to the other parts (A, B, and C) of the catalyst design, we are
free to choose its sequence to be the catalyst for an otherwise unrelated down-
stream hybridization reaction. By making the two toehold sequences distinct,
a different catalyst strand is required to open each of the fuel complexes, and
only presence of both of the input strands allows the reaction to go to comple-



334 G. Seelig, B. Yurke, and E. Winfree

Fig. 3. An AND-gate catalyst constructed via two modifications of the improved cata-

lyst shown in Fig. 2: (1) two distinct toehold sequences S and T guard access to the two

loop-opening reactions required in the catalysis pathway; and (2) one of the loops con-

tains a hybridized “output” strand, X̄, which is released by strand displacement during

the formation of LL̄. Thus, the overall reaction can be written as Gate(T̄ Ā & S̄Ā ⇒ X̄),

indicating that X̄ is produced as a single-stranded species only if both T̄ Ā and S̄Ā are

present. The dotted line separates uncatalyzed reactions from those that occur only in

the presence of input strands

tion. This effects AND-gate logic, i.e., the output X̄ is produced if and only
if both T̄ Ā and S̄Ā are present, which we write as Gate(T̄ Ā & S̄Ā ⇒ X̄).

A simple variation of this gate results in OR-gate logic: give the toeholds from
the A stems of both loops the same sequence T , and create analogous toeholds
on both C stems with sequence S. Now, either input T̄ Ā or input S̄C̄ will be
sufficient to trigger the catalytic step and release the output strand X̄. We write
this as Gate(T̄ Ā | S̄C̄ ⇒ X̄).

To implement any desired computation, a universal gate such as NAND is
needed. AND and OR provide a universal basis only for monotone circuits, which
can directly implement a strict subclass of all boolean functions, specifically those
for which an input bit flipping from 0 to 1 can never cause the output to flip
from 1 to 0. However, this seeming limitation is lifted if we allow a “dual rail”
input representation, wherein distinct signals x+

i and x−
i are used to represent

“xi = 0” and “xi = 1”. Either x+
i = 1 or x−

i = 1, but not both; however,
both x+

i and x−
i can be 0, indicating that bit xi has not yet been computed.

To see that an arbitrary function xn = f(x1, x2, ...xm) can be implemented with
monotone gates, consider a circuit of NAND gates that implements f(·). Replace



DNA Hybridization Catalysts and Catalyst Circuits 335

each gate xk = xi NAND xj by the pair of monotone gates x+
k = x−

i OR x−
j

and x−
k = x+

i AND x+
j . Computation in the new circuit begins with all variable

at zero, then the appropriate input variables are flipped to 1 and subsequent
downstream gates are evaluated. (Note: if a gate is evaluated prematurely, and
both inputs to an OR or AND gate are 0, nothing happens to the output either.)
As soon as the signal reaches the output gate n, either x+

n or x−
n flips to 1, giving

the result of the computation.
It is straightforward to use DNA hybridization AND-gates and OR-gates

to implement arbitrary digital circuits using this “dual-rail” monotone logic.
Indeed, because we have proposed no mechanism for getting rid of a catalyst
once it is released, the monotone logic property is essential for the circuits we
could build this way. To further minimize the size of constructed circuits, and
to show that the shared sequence requirement of the AND-gate catalyst’s inputs
causes no difficulties, we use two optimizations. First, all OR gates may be
eliminated and replaced by a “wired-OR”; i.e., each gate that outputs one of
the OR gate’s inputs can now instead directly produce the OR gate’s output
itself. The resulting circuit can be pictured as in Fig. 4. The inputs to the new
AND gate i are distinguished as type “T” or type “S”, corresponding to whether
the DNA input strands will be T̄iĀi or S̄iĀi respectively, where the subscript i
indicated that distinct DNA sequences will be used for each gate. Now, for each
distinct output wire from each AND gate, we construct an AND-gate catalyst
with the given inputs and the given output for that wire. Noting that arbitrary
fan-out can be achieved, this completes the construction.

l

k
j

i

T

S

S

T
T

S

T

S

Fig. 4. A monotone logic circuit with AND gates and wired OR. The two inputs to each

AND gate are distinguished. In this diagram, if either gate i or gate j outputs 1, the “T”

input of gate k is activated. To translate this circuit to a DNA hybridization catalyst

network, we require one AND-gate catalyst for each wire in the diagram. For example,

the three thick wires become the three catalyst gates Gate(T̄iĀi & S̄iĀi ⇒ S̄lĀl),

Gate(T̄iĀi & S̄iĀi ⇒ T̄kĀk), Gate(T̄jĀj & S̄jĀj ⇒ T̄kĀk)



336 G. Seelig, B. Yurke, and E. Winfree

In a large circuit consisting of DNA hybridization catalyst gates, input is
provided by adding the catalysts corresponding to 1 or 0 input variables, as
appropriate. This will trigger the release of the logically correct intermediate
catalysts for intermediate gates, and finally, the release of either the 1 output
strand or the 0 output strand. Recognizing that the uncatalyzed rate of each
hybridization reaction is non-zero, we must consider that eventually every inter-
mediate and every output catalyst species will be released. Thus, to evaluate the
probable reliability of circuits constructed this way, understanding the timing of
reactions is essential: will the 1 output strand or the 0 output strand be produced
first? It is critical, for example, that the presence of a single catalyst input to
an AND gate will not significantly accelerate the reaction. In some cases a bio-
chemical AND gate, with both inputs driven by the same species, can function
as a restoring element to correct small errors [5]; it remains to be seen to what
extent the sigmoidal input/output curve expected for the AND-gate catalyst can
be used to reduce errors in this context.

It is remarkable that active biochemical logic can in principle be accomplished
by DNA without the assistance of any enzymes. Note however that we have only
shown how to construct feed forward circuits; it is an open question whether the
general scheme presented here can be adapted to the case of feedback circuits,
where signals can be turned off and on dynamically.

4 Experimental Implementation

From the discussion in the previous section it is clear that the experimental
realization of a DNA-based catalyst with a large catalysis ratio is a necessary
precondition for the implementation of a DNA-logic circuit. Our preliminary
experimental results indicate that the system outlined in Sec. 2 may indeed work
as a catalyst with a remarkably large catalysis ratio. However, the experiment
also shows several interesting deviations from the theoretical scheme.

Typical experimental data for the reaction between the two loops QL̄ and
LQ̄ (in the following we will use the notation introduced in Fig. 1) is shown
in Fig. 5. In this experiment, the strands L̄ and Q are unlabeled, strand Q̄ is
fluorescence-labeled with the fluorophore TAMRA at the 3′-end and L is labeled
with an Iowa Black quencher at the 5′-end. Thus, the reactant LQ̄ is dark, while
the product QQ̄ is fluorescent. The loops are formed in a slow anneal. The
experiment shown was performed at a constant temperature T = 20◦C and
with a concentration c = 0.5 µM for the two loops. The reaction is initiated
when the QL̄-solution is added to the LQ̄-solution. An increase in fluorescence
intensity is a direct measure of the rate of dissolution of the LQ̄-loop as the
reaction QL̄ + LQ̄ → QQ̄ + LL̄ proceeds. In the example shown in Fig. 5 we
followed the reaction over more than three days and, as can be seen from the
figure, the fluorescence intensity changes very little after the first few hours or
so. One might thus conclude that after this point almost all the available loops
have reacted and only inert segments of double-stranded DNA are present in the
solution. However, surprisingly, annealing the sample up to 80◦C for 5 minutes
at the end of the measurement and subsequently remeasuring the fluorescence
intensity shows an increase in fluorescence of around 25 percent.



DNA Hybridization Catalysts and Catalyst Circuits 337

0 20 40 60 80
Time (hours)

0

0.2

0.4

0.6

0.8

1
Fl

uo
re

sc
en

ce
 (

ar
bi

tr
ar

y 
un

its
)

Quencher
(Iowa Black)

Fluorophore 
(TAMRA)

Anneal

Fig. 5. The figure shows the long-time behavior of a stoichiometric mixture of the

two loops QL̄ and LQ̄. Strands L̄ and Q are unlabeled, strand Q̄ is fluorescence-

labeled with the fluorophore TAMRA at the 3′-end and L is labeled with an Iowa

Black quencher at the 5′-end (see inset). In the initial state fluorescence is quenched.

The increase in fluorescence intensity is a measure of the progress of the reaction

QL̄+LQ̄ → QQ̄+LL̄. Remarkably, only the anneal performed after ∼ 86 hours brings

the reaction to completion. This indicates the presence of a metastable compound in

the solution. The experiment is performed in SPSC buffer (pH 6.5, 1 M NaCl) at a

temperature T = 20◦C

From this experiment we can draw two main conclusions: First, as the rela-
tively rapid initial increase in fluorescence indicates, the mixture of the two loops
QL̄ and LQ̄ is less stable than one might have expected. In fact, a more detailed
analysis shows that the reaction QL̄ + LQ̄ → QQ̄ + LL̄ initially progresses at a
rate comparable to that of the reaction L̄Q+L → Q+LL̄ where only one of the
two long strands is protected (see Fig. 1b). Taken alone, this would indicate that
the catalyst proposed in Sec. 2 is at best a minor improvement over the simpler
system of Ref. [15]. Our second finding, however, is more intriguing: Even after
several days the reaction has not gone to completion, as indicated by the large
jump in fluorescence intensity upon annealing. What is more, an electrophoresis
gel shows that directly before the anneal three species are present in the solution
mixture (see Fig. 6). Two of them are the expected reaction end products LL̄
and QQ̄ while the third one is a complex with a mobility roughly half that of a
single loop. After the anneal, only LL̄ and QQ̄ are found.

While it is difficult to determine the exact structure of the low-mobility
species, we have verified that all four strands (L, L̄, Q and Q̄) used for the



338 G. Seelig, B. Yurke, and E. Winfree

QLLQ

LL

QQ

k2 k3

k1

A
C

C
A

A C

AC

AC
B

AC T

B

C A

C

A

T

B

A

C T

C

B

AT

B

T
C A

B

T
AC

(a)

pr
e−

an
ne

al
po

st
−a

nn
ea

l (b)

Fig. 6. (a) Products of the reaction between the two loops QL̄ and LQ̄. The reaction

was left to proceed for about twelve hours (T=20◦C, TAE buffer, pH 8, 12.5 mM Mg++)

before the gel was run. Left lane: ladder with ten base pair spacing. Middle lane: the

three bands correspond to the metastable fuel complex QL̄LQ̄ (lowest mobility) and to

the double stranded end products LL̄ and QQ̄ (highest mobility). Right lane: After an

anneal, only the stable end products LL̄ and QQ̄ are found. No bands corresponding

to unreacted loops are seen (the mobility of the unreacted loops is comparable to that

of a 55mer). (b) Proposed reaction pathway: The two loops QL̄ and LQ̄ can either

decay directly into the end products LL̄ and QQ̄ (rate constant k1) or via a metastable

complex. In our model, k2 is the second order rate constant for the formation of the

intermediate complex and k3 is the first order rate constant describing its subsequent

decay. Subsequences of each strand are explicitly labeled: Q = CAT , L̄ = ĀB̄C̄,

Q̄ = ĀC̄, and L = CBAT

formation of the loops are also present in this complex. It is therefore plausi-
ble that the complex is formed due to strong interactions between the single
stranded regions of the two loops.

Two competing reactions appear to be taking place when solutions of the
two loops are mixed. In one of them, the final double-stranded minimum-energy
compounds are formed directly. Let the rate constant for this reaction be k1.
The second, parallel reaction proceeds via a metastable intermediate which only
slowly decays into the end products LL̄ and QQ̄. We model the rate constants
for these two steps as k2 and k3, respectively (see Fig. 6). The putative reactions
taking place can be summarized as follows:

QL̄ + LQ̄
k1→ QQ̄ + LL̄, (1)

QL̄ + LQ̄
k2→ QL̄LQ̄

k3→ QQ̄ + LL̄. (2)

To estimate the rate constants k1, k2 and k3 we use a simple mathematical
model for the reaction kinetics. The reaction given in Eq. 1 and the first step
of the reaction in Eq. 2 are assumed to be second order, while the second step
of the reaction in Eq. 2 is treated as a first order reaction. The fluorescence
concentration is assumed to be proportional to the concentration of QQ̄ and
it is further assumed that the fluorescence remains quenched in the complex



DNA Hybridization Catalysts and Catalyst Circuits 339

QL̄LQ̄. From the slow decay of the fluorescence intensity at long times it is clear
that the rate for the decay of QL̄LQ̄ must be small.

The metastable complex QL̄LQ̄ is dissolved very easily upon addition of the
catalyst strand M as is shown in Fig. 7. The loops used in this reaction are
dye-labeled as described above and mixed stoichiometrically at a concentration
c = 0.5 µM. Catalyst strand M at a concentration of c = 0.3 µM was added
after about 12 hours. The reaction then very rapidly went to completion. In fact,
a final anneal did not markedly change the fluorescence intensity in contrast to
our previous result.

To estimate the reaction speed up we need to compare the rate constants be-
fore and after catalyst addition. The uncatalyzed reaction is modeled as outlined
above (see Fig. 6 and Eqs. 1 and 2): The data in Fig. 7 is well approximated by
our model with k1 = 690 /M/s, k2 = 670 /M/s and k3 = 10−6 /s (see Fig. 7).
The values for the rate constants given here should be considered as order of
magnitude estimates. As we have already mentioned previously, the rate con-
stants k1 and k2 are of the same order of magnitude as the rate constant for

0 5 10 15 20
Time (hours)

0

0.2

0.4

0.6

0.8

1

Fl
uo

re
sc

en
ce

 (
ar

bi
tr

ar
y 

un
its

) Data
Fit to loop-loop reaction
Fit to catalyzed reaction

Anneal

Catalyst added 

Fig. 7. Catalysis of the reaction between the two loops QL̄ and LQ̄. The experiment

was performed in TAE buffer (pH 8, 12.5 mM Mg++) at a temperature T = 20◦C
with an initial concentration c = 0.5 µM for both loops. The locations of the dye label

and quencher are as indicated in the inset of Fig. 5. Catalyst strand M (concentration

c = 0.3 µM) is added after approximately 12 hours. After the addition of the catalyst

the reaction goes to completion and a final anneal increases the fluorescence only

marginally. The full lines are fits to the data using the model described in the text.

For the rate constants we use the numerical values k1 = 690 /M/s, k2 = 670 /M/s,

k3 = 10−6 /s and k4 = 5300 /M/s



340 G. Seelig, B. Yurke, and E. Winfree

the reaction LQ̄ + L̄ → Q̄ + LL̄ (see Ref. [15]). The reaction after addition of
catalyst strand can be fitted with a simple second order rate law with a rate
constant k4 = 5.3 × 103 /M/s (see Fig. 7). Since the catalyst concentration is
c = 0.3 µM the half-time t̃1/2 for this reaction is 1/k4c = 625 s. The half time
t1/2 for the uncatalyzed decay of the metastable compound, on the other hand,
is t1/2 = 1/k3 = 106 s. If we define the reaction speed up as the ratio of the
half times for the decay of the metastable compound before and after addition
of catalyst strand we obtain t1/2/t̃1/2 = 1600.

In Sec. 3 we proposed a modification of the original dual catalyst design
where an additional strand X̄ is hybridized to the inside of the loop. This strand
is released when the loops react and can itself act as a catalyst in a downstream
reaction. The proposal for implementing logic gates outlined in Sec. 3 relied on
two assumptions: (i) that the two loops remain stable and independent in solu-
tion and (ii) that there is a clear separation of timescales between the reactions
taking place in the absence and presence of input strands. The surprising exis-
tence of the intermediate QL̄LQ̄ foreshadows that the scheme discussed in Sec. 3
will have to be modified at least in part.

Intuitively, one would expect strand X̄ to hinder loop-loop interactions and
thus to suppress complex formation. That this is indeed the case can be seen from
the preliminary experimental data shown in Fig. 8. There, the reaction between
the modified loop LQ̄X̄ and loop QL̄ is compared to the reaction between LQ̄
and QL̄. In our experiment, the output strand X̄ has a length of 21 bases (the
same length as the catalyst strand) and its sequence is complementary to the

0 5 10 15 20 25
Time (hours)

0

0.5

1

Fl
uo

re
sc

en
ce

 (
ar

bi
tr

ar
y 

un
its

) No output strands
One output strand

LL

LQ

QLLQ

QQ

Q
L+

LQ
Q

L+
LQ

X

LQ
X

(a) (b)

Anneal

Fig. 8. (a) Comparison of the reactions between the two unmodified loops QL̄ and LQ̄

and the reaction between QL̄ and LQ̄X̄. The experiment was performed in TAE buffer

(pH 8, 12.5 mM Mg++) at a temperature T = 20◦C with an initial reactant concentra-

tion c = 0.5 µM. The locations of the dye label, quencher and output strand X̄ are as

indicated in the inset. (b) Reactants and reaction products for the reaction between

QL̄ and LQ̄X̄. Far left lane: Loop QL̄. Center left lane: Modified loop LQ̄X̄. Center

right lane: Products of the reaction between QL̄ and LQ̄. Far right lane: Products of

the reaction between QL̄ and LQ̄X̄



DNA Hybridization Catalysts and Catalyst Circuits 341

central part of L. To form the modified loop LQ̄X̄ the output strand is added to
a solution of preformed loops LQ̄. The left two lanes in the gel of Fig. 8b show
the band corresponding to the unmodified loop QL̄ (far left) and to the (less
mobile) modified loop LQ̄X̄ (center left).

The fluorescence data (Fig. 8a) shows that the reaction with one modified
loop proceeds slower than that between the unmodified loops but also goes closer
to completion. An explanation for the latter is provided by the gel in Fig. 8b,
center right and far right lanes, which shows that in the presence of output
strands relatively more loops participate in a reaction that leads to end product
formation than to complex formation. Contrary to our assumptions, even in
the modified reaction essentially all the loops seem either to decay into double-
stranded end products or to form metastable complexes and do not remain in
solution in their original form. While no band corresponding to free output
strand X̄ is seen in the gel, it seems plausible that X̄ is released in both the
decay and the complex formation reaction. (This is confirmed indirectly since
the bands corresponding to all reaction products migrate at the same speed in
both cases.)

5 Discussion

The slow long-term increase in fluorescence intensity we observed for QL̄+LQ̄ is
in qualitative agreement with the preliminary results on loop-loop reactions re-
ported in [15]. A quantitative comparison is difficult since reactant concentration,
location of dye and quencher within the molecules, as well as the dye-quencher
pair used, differ between our work and the work reported in [15]. However, our
results shed light on the actual origin of the observed stability. The discovery
that QL̄ and LQ̄ form a stable complex also leads to the view that the reac-
tion depicted in Fig. 1b proceeds through the formation of a bound complex
between QL̄ and L that then slowly decays to LL̄ and Q. This differs from the
intuitive view, expressed earlier, that the reaction is inhibited because of tight
coiling of the loop. Furthermore, it now seems probable that the catalysis cycle
shown in Fig. 1d proceeds by a different pathway (for substoichiometric cata-
lyst strand concentrations): QL̄ first forms a complex with L, then the catalyst
strand accelerates its decay into Q and LL̄.

Further work is needed to demonstrate catalytic speed-up of the reaction
leading to the decay of the metastable compound. So far, we have only mea-
sured the reaction speed-up in the case where catalyst strand and complex are
mixed roughly stoichiometrically. The result thus obtained can be considered an
estimate for an upper bound on the reaction rates. However, to show that the
catalyst strand indeed acts catalytically, it will be necessary to demonstrate turn-
over – i.e. to show that the reaction goes to completion for sub-stoichiometric
amounts of catalyst strand and that in this regime the reaction rate increases
(linearly) with catalyst concentration.

To implement an OR gate or an AND gate one would have to demonstrate
that adding input strands to a mixture of LQ̄X̄ and QL̄ speeds up the release
of the output strand X̄. However, contrary to the situation encountered in the
catalysis experiments discussed above, it is fruitless to add an input strand to



342 G. Seelig, B. Yurke, and E. Winfree

the solution after the metastable complex has formed, because presumably all
output strands have already been released at this point. Alternatively, catalyst
strands could be added when the two loops are mixed initially, and their effec-
tiveness measured by a speed-up in the release of the output strands. For such an
experiment it seems most convenient to choose an intramolecular dye/quencher
configuration that allows one to directly monitor the release of the output strand.
It seems probable that at least the relatively simpler OR gate can be implemented
according to the scheme outlined here, as all it requires is the speed-up of the
initial reaction between LQ̄X̄ and QL̄ in the presence of either of two input
strands. The on/off ratio for such a gate can be expected to be comparable to
the ratio between the catalyzed and uncatalyzed reactions of Ref. [15] which
was found to be about 20 to 30. However, for implementing more complicated
circuits in which several gates are linked, it seems more promising to completely
redesign the constituent gates using the metastable complex explicitly as a start-
ing point. In this way, one could hope to design gates with an on/off ratio of the
order of one thousand.

Acknowledgments. Thanks to Ben Rahn, Jeremy Leibs, Joseph Schaeffer,
Jongmin Kim, Dave Zhang, and especially Paul Rothemund for stimulating dis-
cussion and help preparing figures and simulations. GS was supported by the
Swiss National Science Foundation, EW was supported by NSF CAREER Grant
No. 0093486, NSF ITR Grant No. 0113443, and GenTel.

References

1. N. Carmi, S. R. Balkhi, and R. R. Breaker. Cleaving DNA with DNA. Proceedings
of the National Academy of Sciences, 95:2233–2237, 1998.

2. C. Flamm, W. Fontana, I. Hofacker, and P. Schuster. RNA folding at elementary
step resolution. RNA, 6:325–338, 2000.

3. R. F. Gesteland, T. R. Cech, and J. F. Atkins. The RNA world. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New York, 1999.

4. C. Green and C. Tibbetts. Reassociation rate-limited displacement of DNA strands
by branch migration. Nucleic Acids Research, 9:1905–1918, 1981.

5. M. O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters,
78(6):1190–1193, 1997.

6. C. D. Mao, W. Q. Sun, Z. Y. Shen, and N. C. Seeman. A nanomechanical device
based on the B-Z transition of DNA. Nature, 397:144–146, Jan. 14, 1999.

7. C. M. Niemeyer and M. Adler. Nanomechanical devices based on DNA. Ange-
wandte Chemie International Edition, 41(20):3779–3783, 2002.

8. I. G. Panyutin, I. Biswas, and P. Hsieh. A pivotal role for the structure of the
Holliday junction in DNA branch migration. The EMBO Journal, 14(8):1819–
1826, 1995.

9. I. G. Panyutin and P. Hsieh. Kinetics of spontaneous DNA branch migration.
Proceedings of the National Academy of Sciences, 91:2021–2025, 1994.

10. C. Radding, K. Beattie, W. Holloman, and R. Wiegand. Uptake of homologous
single-stranded fragments by superhelical DNA. IV. branch migration. J. Mol.
Biol., 166:825–839, 1977.

11. S. W. Santoro and G. F. Joyce. A general purpose DNA cleaving RNA enzyme.
Proceedings of the National Academy of Sciences USA, 94:4262–4266, 1997.



DNA Hybridization Catalysts and Catalyst Circuits 343

12. W. B. Sherman and N. C. Seeman. A precisely controlled DNA biped walking
device. Nano Letters, 4(7):1203–1207, 2004.

13. J. Shin and N. Pierce. A synthetic DNA walker for molecular transport. Journal
of the American Chemical Society, 126(35):10834–10835, 2004.

14. M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic. Deoxyribozyme-based logic
gates. Journal of the American Chemical Society, 124:3555–3561, 2002.

15. A. J. Turberfield, J. C. Mitchell, B. Yurke, A. P. Mills, Jr., M. I. Blakey, and
F. C. Simmel. DNA fuel for free-running nanomachines. Physical Review Letters,
90(11):118102–1–4, 2003.

16. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of
two-dimensional DNA crystals. Nature, 394:539–544, 1998.

17. D. M. Wong, P. H. Weinstock, and J. G. Wetmur. Branch capture reactions:
displacers derived from asymmetric PCR. Nucleic Acids Research, 19:2251–2259,
1991.

18. B. Yurke and A. P. Mills, Jr. Using DNA to power nanostructures. Genetic
Programming and Evolvable Machines, 4:111–122, 2003.

19. B. Yurke, A. J. Turberfield, A. P. Mills, Jr., F. C. Simmel, and J. L. Neumann. A
DNA-fuelled molecular machine made of DNA. Nature, 406:605–608, 2000.

20. D. Y. Zhang and J. Schaeffer. Personal communication, 2003.



Complexity of Self-assembled Shapes

(Extended Abstract�)

David Soloveichik and Erik Winfree

California Institute of Technology, Pasadena, CA 91125, USA
{dsolov, winfree}@caltech.edu

Abstract. The connection between self-assembly and computation sug-
gests that a shape can be considered the output of a self-assembly “pro-
gram,” a set of tiles that fit together to create a shape. It seems plausible
that the size of the smallest self-assembly program that builds a shape
and the shape’s descriptional (Kolmogorov) complexity should be re-
lated. We show that under the notion of a shape that is independent of
scale this is indeed so: in the Tile Assembly Model, the minimal num-
ber of distinct tile types necessary to self-assemble an arbitrarily scaled
shape can be bounded both above and below in terms of the shape’s Kol-
mogorov complexity. As part of the proof of the main result, we sketch
a general method for converting a program outputting a shape as a list
of locations into a set of tile types that self-assembles into a scaled up
version of that shape. Our result implies, somewhat counter-intuitively,
that self-assembly of a scaled up version of a shape often requires fewer
tile types, and suggests that the independence of scale in self-assembly
theory plays the same crucial role as the independence of running time
in the theory of computability.

1 Introduction

Self-assembly is the process by which an organized structure can spontaneously
form from simple parts. The Tile Assembly Model [15, 14], based on Wang
tiling [13], formalizes the two-dimensional self-assembly of square units called
“tiles” using a physically plausible abstraction of crystal growth. In this model,
a new tile can adsorb to a growing complex if it binds strongly enough. Each
of the four sides of a tile has an associated bond type that interacts with a cer-
tain strength with matching sides of other tiles. The process of self-assembly is
initiated by a single seed tile and proceeds via the sequential addition of new
tiles. Confirming the physical plausibility and relevance of the abstraction, sim-
ple self-assembling systems of tiles have been built out of certain types of DNA
molecules [16, 11, 10, 8]. The possibility of using self-assembly for nanofabrica-
tion of complex components such as circuits has been suggested as a promising
application [5].

� A preprint of the full paper can be found at http://arxiv.org.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 344–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Complexity of Self-assembled Shapes 345

The view that the “shape” of a self-assembled complex can be considered the
output of a computational process [2] has inspired recent interest [7, 1, 3, 6, 4].
While it was shown through specific examples that self-assembly could be used
to construct interesting shapes and patterns, it was not known in general which
shapes could be self-assembled from a small number of tile types. Understanding
the complexity of shapes is facilitated by an appropriate definition of shape. In
our model, a tile system generates a particular shape if it produces any scaled
version of that shape (Sect. 3). This definition may be thought to formalize
the idea that a structure can be made up of arbitrarily small pieces. Compu-
tationally, it is analogous to disregarding computation time and is thus more
appropriate as a notion of output of a universal computation process.1 Using
this definition of shape, we show that for any shape S̃, if Ksa(S̃) is the minimal
number of distinct tile types necessary to self-assemble it then Ksa(S̃) log Ksa(S̃)
is within multiplicative and additive constants (independent of S̃) of the shape’s
Kolmogorov complexity. This theorem is proved by construction (which might be
of independent interest) of a general method for converting a program that out-
puts a fixed size shape as a list of locations into a tile system that self-assembles
a scaled version of the shape. Our result ties the computation of a shape and
its self-assembly, and, somewhat counter-intuitively, implies that scaling up a
shape may often allow it to be self-assembled from fewer tile types. Another
consequence of the theorem is that the minimal number of tile types necessary
to self-assemble an arbitrary scaling of a shape is uncomputable. Answering the
same question about shapes of a fixed size is computable but NP complete [1].

2 The Tile Assembly Model

We present a description of the Tile Assembly Model based on Rothemund
and Winfree [7] and Rothemund [6]. We will be working on a Z × Z grid of
unit square locations. The directions D = {N,E,W, S} are used to indicate
relative positions in the grid. Formally, they are functions Z × Z → Z × Z:
N(i, j) = (i, j+1), E(i, j) = (i+1, j), S(i, j) = (i, j−1), and W (i, j) = (i−1, j).
The inverse directions are defined naturally: N−1(i, j) = S(i, j), etc. Let Σ be a
set of bond types. A tile type t is a 4-tuple (σN , σE , σS , σW ) ∈ Σ4 indicating
the associated bond types on the north, east, south, and west sides. Note that
tile types are oriented and a rotated version of a tile type is considered to be a
different tile type. A special bond type null represents the lack of an interaction
and the special tile type empty = (null, null, null, null) represents an empty
space. If T is a set of tile types, a tile is a pair (t, (i, j)) ∈ T ×Z2 indicating that
location (i, j) contains the tile type t . Given the tile t = (t, (i, j)), type(t) = t

1 The production of a shape of a fixed size cannot be considered the output of a
universal computation process: whereas questions about the result of universal com-
putation are often uncomputable, any question about a shape of a fixed-size can
be answered with a finite simulation of the self-assembly process [7], because in the
model considered here, once a tile is added, it cannot be removed. Thus questions
about shapes of fixed size are decidable.



346 D. Soloveichik and E. Winfree

and pos(t) = (i, j). Further, bondD(t), where D ∈ D, is the bond type of the
respective side of t , and bondD(t) = bondD(type(t)). A configuration is a set
of tiles such that there is exactly one tile in every location (i, j) ∈ Z × Z. For
any configuration A, we write A(i, j) to indicate the tile at location (i, j). We
will write a configuration as a set of non-empty tiles; all other tiles are implicitly
empty.

A strength function g : Σ × Σ → Z, where null ∈ Σ, defines the inter-
actions between adjacent tiles: we say that a tile t1 interacts with its neighbor
t2 with strength Γ (t1, t2) = g(σ, σ′) where σ is the bond type of tile t1 that is
adjacent to the bond type σ′ of tile t2.2 In most previous works on self-assembly,
as in this work, strength functions are restricted with the following properties:
(1) g is symmetric (the effect that one tile has an another is equal to the effect
that the other has on the first), (2) g(σ, null) = 0 (the lack of an interaction is
normalized to zero), (3) g is non-negative (there are no “adverse” interactions
counteracting other interactions), (4) g is diagonal : g(σ, σ′) = 0 if σ �= σ′ (only
sides with matching bond types interact). Property 4 shows the roots of the
Tile Assembly Model in the Wang tiling model. Our results confirm that non-
negativity is not a major restriction as Theorem 1 is valid for strength functions
taking on negative values. However, if property 4 is relaxed then information
in tile systems can be represented more compactly (using fewer tile types [4]),
potentially leading to a different form of Theorem 1.

A tile system T is a quadruple (T, ts, g, τ) where T is a finite set of non-
empty tile types, ts is a special seed tile with type(ts) ∈ T , g is a strength
function, and τ is the threshold parameter. Self-assembly is defined by a relation
between configurations. Suppose A and B are two configurations, and t is a tile
such that A = B except at pos(t) and A(pos(t)) = null but B(pos(t)) = t.
Then we write A →T B if

∑
D∈D Γ (t, A(D(pos(t)))) ≥ τ . This means that

a tile can be added to a configuration iff the sum of its interaction strengths
with its neighbors reaches τ . The relation →∗

T is the reflexive transitive closure
of →T.

Whereas a configuration can be any arrangement of tiles (not necessarily
connected), we are interested in the subclass of configurations that can result
from a self-assembly process. Formally, the tile system and the relation→∗

T define
the partially ordered set of assemblies: Prod(T) = {A s.t. {ts} →∗

T A}, and
the set of terminal assemblies: Term(T) = {A ∈ Prod(T) and � ∃B �= A s.t.
A →∗

T B}. A tile system T uniquely produces A if ∀B ∈ Prod(T), B →∗
T A

(which implies Term(T) = {A}).
The tile systems used in our constructions have τ = 2 with the strength

function ranging over {0, 1, 2}. It is known that τ = 1 systems with strength
function ranging over {0, 1} are rather limited [7, 6].

2 More formally,

Γ (t1, t2) =

{
g(bondD−1(t1), bondD(t2)) if ∃D ∈ D s.t. pos(t1) = D(pos(t2));
0 otherwise.



Complexity of Self-assembled Shapes 347

3 Arbitrarily Scaled Shapes and Their Complexity

In this section, we introduce the model for the output of the self-assembly process
used in this paper. Let S be a finite set of locations on Z×Z. The adjacency graph
G(S) is the graph on S defined by the adjacency relation where two locations are
considered adjacent if they are directly north/south, or east/west of one another.
We say that S is a coordinated shape if G(S) is connected.3 The coordinated
shape of assembly A is the set SA = {(i, j) s.t. A(i, j) �= empty}. Note that
SA is a coordinated shape because A contains a single connected component.

For any set of locations S, and any c ∈ Z+, we define a c-scaling of S as

Sc = {(i, j) s.t. ((i/c), (j/c)) ∈ S} .

Geometrically, this represents a “magnification” of S by a factor c. Note that
a scaling of a coordinated shape is itself a coordinated shape: every node of
G(S) gets mapped to a c2-node connected subgraph of G(Sc) and the relative
connectivity of the subgraphs is the same as the connectivity of the nodes of
G(S). A parallel argument shows that if Sc is a coordinated shape, then so is S.
We say that coordinated shapes S1 and S2 are scale-equivalent if Sc

1 = Sd
2 for

some c, d ∈ Z+. Two coordinated shapes are translation-equivalent if they
can be made identical by translation. We write S1

∼= S2 if Sc
1 is translation-

equivalent to Sd
2 for some c, d ∈ Z+. Scale-equivalence, translation-equivalence

and ∼= are equivalence relations. We call S̃, the equivalence class of coordinated
shapes under “∼=”, the shape S̃. We say that S̃ is the shape of assembly
A if SA ∈ S̃. The view of computation performed by the self-assembly process
espoused here is the production of a shape as the “output” of the self-assembly
process. Intuitively, the idea of scale-invariance attempts to formalize the notion
that a physical object can be constructed from arbitrarily small pieces.

Having defined the notion of shapes, we turn to their descriptional complexity.
As usual, the Kolmogorov complexity of a binary string x with respect to a uni-
versal Turing machine U is KU (x) = min {|p| s.t. U(p) = x}. (See the exposition
of Li and Vitanyi [9] for an in-depth discussion of Kolmogorov complexity.) Let
us fix some “standard” universal machine U . We call the Kolmogorov complexity
of a coordinated shape S to be the size of the smallest program outputting it as
a list of locations:4,5

3 We say “coordinated” to make explicit that a fixed coordinate system is used. We
reserve the unqualified term “shape” for when we ignore scale and translation.

4 Note that K(S) is within an additive constant of K(x) where x is some other effective
description of S, such as a characteristic function. Since our results are asymptotic,
they are independent of the specific representation choice. One might also consider
invoking a two dimensional computing machine, but it is not fundamentally different
for the same reason.

5 Notation 〈·〉 indicates some standard binary encoding of the object(s) in the brackets.
In the case of coordinated shapes, it means an explicit binary encoding of the set of
locations. Integers, tuples or other data structures are similarly given simple explicit
encodings.



348 D. Soloveichik and E. Winfree

K(S) = min {|s| s.t. U(s) = 〈S〉}.

The Kolmogorov complexity of a shape S̃ is:

K(S̃) = min
{
|s| s.t. U(s) = 〈S〉 for some S ∈ S̃

}
.

We define the tile-complexity of a coordinated shape S and shape S̃ re-
spectively as:

Ksa(S) = min
{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S is the coordinated shape of A

}

Ksa(S̃) = min
{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S̃ is the shape of A

}
.

4 Relating Tile-Complexity and Kolmogorov Complexity

The essential result of this paper is the description of the relationship between
the Kolmogorov complexity of any scale-invariant shape and the number of tile
types necessary to self-assemble it.

Theorem 1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃) ≤ a1K(S̃) + b1. (1)

Note that since any tile system of n tile types can be described by O(n log n)
bits, the theorem implies there is a way to construct a tiling system such that
asymptotically at least a constant fraction of these bits is used to “describe” the
shape rather than any other aspect of the tiling system.

Proof (of Theorem 1). To see that a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃), realize
that there exists a constant size program psa that, given a binary description of
a tile system, simulates its self-assembly, making arbitrary choices where multi-
ple tile additions are possible. If the self-assembly process terminates, psa out-
puts the coordinated shape of the terminal assembly as the binary encoding of
the list of locations in it. Any tile system T of n tile types with any diagonal
strength function and any threshold τ can be represented by a string dT of
4n-log 4n.+ 16n bits: For each tile type, the first of which is assumed to be the
seed, specify the bond types on its four sides. There are no more than 4n bond
types. In addition, for each tile type t specify for which of the 16 subsets L ⊆ D,∑

D∈L g(bondD(t)) ≥ τ . Note that the possibility of negative bond strengths is
taken into account, but a diagonal strength function is assumed. If T is a tile
system uniquely producing an assembly that has shape S̃, then K(S̃) ≤ |psadT|.
The left inequality in eq. 1 follows with the multiplicative constant a0 = 1/4− ε
for arbitrary ε > 0.

We prove the right inequality in eq. 1 by developing a construction (sketched
in Section 5 and detailed in the full paper) showing how for any program s s.t.



Complexity of Self-assembled Shapes 349

U(s) = 〈S〉, we can build a tile system T of 64- |p|
log |p|. + b tile types, where

b is a constant and p is a string consisting of a fixed program psb and s (i.e.
|p| = |psb| + |s|), that uniquely produces an assembly whose shape is S̃ such
that S ∈ S̃. Program psb and constant b are both independent of S. The right
inequality in eq. 1 follows with the multiplicative constant a1 = 64 + ε for
arbitrary ε > 0. ��

Our result can be used to show that the tile-complexity of shapes is uncom-
putable:

Corollary 1. Ksa of shapes is uncomputable. In other words, the following lan-
guage is undecidable: L̃ =

{
(l, n) s.t. l = 〈S〉 for some S ∈ S̃ and Ksa(S̃) ≤ n

}
.

Language L̃ should be contrasted with L = {(l, n) s.t. l = 〈S〉 and Ksa(S) ≤ n}
which is decidable (but hard to compute in the sense of NP-completeness [1]).

Proof (of Corollary 1). We essentially parallel the proof that Kolmogorov com-
plexity is uncomputable. If L̃ were decidable, then we can make a program that
computes Ksa(S̃) and subsequently uses Theorem 1 to compute an effective lower
bound for K(S̃). Then we can construct a program p that given n outputs some
coordinated shape S (as a list of locations) such that K(S̃) ≥ n by enumerating
shapes and testing with the lower bound, which we know must eventually exceed
n. But this results in a contradiction since p〈n〉 is a program outputting S ∈ S̃
and so K(S̃) ≤ |p|+ -log n.. But for large enough n, |p|+ -log n. < n. ��

5 Sketch of the Programmable Block Construction

5.1 Overview

The uniquely produced terminal assembly A of our tile system will consist of
square “blocks” of c by c tiles. There will be one block for each location in S.
Consider the coordinated shape in Fig. 1(a). An example assembly A is graph-
ically represented in Fig. 1(b), where each square represents a block containing
c2 tiles. Self-assembly initiates in the seed block, which contains the seed tile,
and proceeds according to the arrows illustrated between blocks. Thus if there
is an arrow from one block to another, it indicates that the growth of the second
block (a growth block) is initiated from the first. A terminated arrow indicates
that the block does not initiate the self-assembly of an adjacent block in that
direction. Fig. 1(c) describes our nomenclature: an arrow comes into a block on
its input side, arrows exit on propagating output sides, and terminated arrows
indicate terminating output sides. The seed block has four output sides, which
can be either propagating or terminating. Each growth block has one input and
three output sides, which are also either propagating or terminating.

The input/output connections of the blocks form a spanning tree rooted at
the seed block. During the progress of the self-assembly of the seed block, a
computational process determines the input/output relationships of the rest of



350 D. Soloveichik and E. Winfree

a) b) c)

(0,0)

seed block

Terminating output side

Te
rm

in
at

in
g 

ou
tp

ut
 s

id
e

Propagating       output side  Input side

Fig. 1. Forming a shape out of blocks: a) A coordinated shape S. b) An assembly

composed of c by c blocks that grow according to transmitted instructions such that the

shape of the final assembly is S̃. Arrows indicate information flow and order of assembly.

(Not drawn to scale.) The seed block and the circled growth block are schematically

expanded in Fig. 2. c) The nomenclature describing the types of block sides

the blocks in the assembly. This information is propagated from block to block
(along the arrows in Fig. 1(b)) during self-assembly and describes the shape
of the assembly. By following the instructions each growth block receives in its
input, the block decides where to start the growth of the next block and what
information to pass to it in turn. The scaling factor c is set by the size of the
seed block. The computation in the seed block ensures that c is large enough
that there is enough space to do the necessary computation within the other
blocks.

We present a sketch of a general construction that represents a Turing–
universal way of guiding large scale self-assembly of blocks based on an input
program p. In the following section, we describe the architecture of seed and
growth blocks on which arbitrary programs can be executed. In section 5.3 we
discuss the programming of p that is required to grow the blocks in the form of
a specific shape. For a complete presentation of our construction, including the
proof that the terminal assembly is uniquely produced, see the full version of
this paper.

5.2 Architecture of the Blocks

The internal structure of a growth block is shown in Fig. 2(a). The first part is a
Turing machine simulation, which is based on [12, 7]. The machine simulated is a
universal Turing machine that takes its input from the propagating output side
of the previous block. This TM has an output alphabet {0, 1, S}3 and an input
alphabet {(000), (111)} on a two-way tape. The output of the simulation, as 3-
tuples, is propagated until the diagonal. The diagonal propagates each member of
the 3-tuples crossing it to one of the three output sides, like a prism separating
the colors of the spectrum. This allows the single TM simulation to produce



Complexity of Self-assembled Shapes 351

a) b)

halt

computation

…011S01... 
input

output
…

01S01…ou
tp

ut
no

 "S
"

output
no "S"

second phase:
prism

first phase:
TM

 sim
ulation

halt

computation

…011S01... 
output

output
…

01S01…ou
tp

ut
...

00
1S

01
...

output
no "S"

co
m

pu
ta

tio
n com

putation

computation

unpacking

input
unpacking

un
pa

ck
in

g unpacking

ha
lt

halt

halt

Fig. 2. Internal structure of a growth block (a) and seed block (b)

three separate strings targeted for the three output sides. The “S” symbol in
the output of the TM simulation is propagated like the other symbols. However,
it acts in a special way when it crosses the boundary tiles at the three output
sides of the block, where it starts a new block. The output sides that receive
the “S” symbol become propagating output sides and the output sides that do
not receive it become terminating output sides. Obviously, the TM simulation
decides which among the three output sides will become propagating output
sides, and what information they should contain, by outputting appropriate
tuples. Subsequent blocks will use this information as a program, as discussed
in section 5.3.

An outline of the seed block is shown in Fig. 2(b). While growth blocks
contain a single TM simulation that outputs a different string to each of the
three output sides, the seed block contains four identical TM simulations that
output different strings to each of the four output sides. This is possible because
the border tile types transmit information selectively: the computation in the
seed block is performed using 4-tuples as the alphabet in a manner similar to the
growth blocks, but only one of the elements of the 4-tuple traverses the border
of the seed block. As with growth blocks, if the transmitted symbol is “S”, the
outside edge initiates the assembly of the adjoining block. The point of having
four identical TM simulations is to ensures that the seed block is square: while a
growth block uses the length of its input side to set the length of its output sides
(via the diagonal), the seed block does not have any input sides. (Remember
that it is the seed block that sets the size of all the blocks.)

The initiation of the Turing machine simulations in the seed block is done
by tile types encoding the program p that guides the block construction. The
natural approach to provide this input is using 4 rows (one for each TM) of
unique tiles encoding one bit per tile; however, this does not result in an asymp-
totically optimal encoding. We follow Adleman et al [3] and encode on the order
of log n/ log log n bits per tile where n is the length of the input. This repre-
sentation is then unpacked into a one-bit-per-tile representation used by the



352 D. Soloveichik and E. Winfree

TM simulation (Fig. 2(b)). Adleman et al’s method requires O(n/ log n) tiles to
encode n bits, leading to the asymptotically optimal result of Theorem 1.

5.3 Programming Blocks and the Value of the Scaling Factor c

In order for our tile system to produce some assembly whose shape is S̃, in-
structions encoded in p must guide the construction of the blocks by deciding on
which side of which block a new block begins to grow and what is encoded on
the edge of each block. For our purposes, we take p = psb〈s〉 (i.e. psb takes s as
input), where s is a program that outputs the list of locations in the shape S. psb

runs s to obtain this list and plans out a spanning tree t over these locations (it
can just do a depth-first search) starting from some arbitrarily chosen location
that will correspond to the seed block. The information passed along the arrows
in Fig. 1(b) is pgb〈t, (i, j)〉 which is the concatenation of a program pgb to be ex-
ecuted within each growth block, and an encoding of the tree t and the location
(i, j) of the block into which the arrow is heading. When executed, pgb〈t, (i, j)〉
evaluates to a 3-tuple encoding of pgb〈t,D(i, j)〉 together with symbol “S” for
each propagating output side D. Thus, each growth block passes pgb〈t,D(i, j)〉
to its Dth propagating output side as directed by t. Note that program psb in
the seed tile must also run long enough to ensure that c is large enough that the
computation in the growth blocks has enough space to finish without running
into the sides of the block or into the diagonal. Nevertheless, the scaling factor
c is dominated by the building of t in the seed block, as the computation in the
growth blocks takes only poly(|S|). Since the building of t is dominated by the
running time of s, we have c = poly(time(s)).

6 Discussion and Open Questions

Because the Kolmogorov complexity of a string depends on the universal Tur-
ing machine chosen, the complexity community adopted a notion of additive
equivalence, where additive constants are ignored. However, Theorem 1 includes
multiplicative constants as well, which are not customarily discounted. It might
be possible to use a more clever method of unpacking (Sect. 5.2) and a seed
block construction that reduces the multiplicative constant a1 of Theorem 1.
Correspondingly, there might be a more efficient way to encode any tile system
than described in the proof of the theorem, and thereby increase a0.

It is most likely that our block construction can be easily adapted to use
a different encoding of the input, leading to a different form of Theorem 1 for
variations on the Tile Assembly Model. Recent work by Aggarwal et al [4] shows
that allowing non-diagonal strength functions allows a dramatic change in tile
complexity.

The programmable block construction may have other applications as well.
For instance, it is easy to reprogram it to simulate, using few tile types, a large
deterministic τ = 1 tile system for which a short algorithmic description of the
tile set exists. We believe a slightly extended version of the block construction



Complexity of Self-assembled Shapes 353

can also be used to provide compact tile sets that simulate other τ = 2 tile
systems that have short algorithmic descriptions.

The scaling factor c = poly(time(s)) is extremely large since |S| is presumably
enormous for cases where our results are of interest and s must output every
location in S. Are there special instances where it is not necessary to run the
program s outputting S to completion but query it in a few locations relevant
to the immediate block being built?

Acknowledgements. We thank Len Adleman, members of his group, and Paul

Rothemund for fruitful discussions and suggestions. We thank Rebecca Schulman and

David Zhang for useful and entertaining conversations about descriptional complexity

of tile systems. This work was supported by NSF CAREER Grant No. 0093486.

References

1. L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M. de Espanes, and
P. W. K. Rothemund. Combinatorial optimization problems in self-assembly. In
Proc. of STOC, 2002.

2. L. M. Adleman. Toward a mathematical theory of self-assembly (extended ab-
stract). Technical report, University of Southern California, 1999.

3. L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang. Running time and pro-
gram size for self-assembled squares. In ACM Symposium on Theory of Computing,
pages 740–748, 2001.

4. G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schweller. Complexities for
generalized models of self-assembly. In Symposium on Discrete Algorithms, 2004.

5. M. Cook, P. W. K. Rothemund, and E. Winfree. Self-assembled circuit patterns.
In DNA Based Computers 9, pages 91–107, 2004.

6. P. W. K. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD
thesis, University of Southern California, Los Angeles, 2001.

7. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares (extended abstract). In ACM Symposium on Theory of Com-
puting, pages 459–468, 2000.

8. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C.
Seeman. Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. Journal of the Americal Chemical Society, 122:1848–1860, 2000.

9. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer, second edition, 1997.

10. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407:493–496,
2000.

11. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday
junction arrays visualized by atomic force microscopy. Journal of the Americal
Chemical Society, 121:5437–5443, 1999.

12. R. M. Robinson. Undecidability and nonperiodicity of tilings of the plane. Inven-
tiones Mathematicae, 12:177–209, 1971.

13. H. Wang. Proving theorems by pattern recognition. II. Bell Systems Technical
Journal, 40:1–42, 1961.

14. E. Winfree. Simulations of computing by self-assembly, Caltech CS TR 1998.22.



354 D. Soloveichik and E. Winfree

15. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena, 1998.

16. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of
two dimensional DNA crystals. Nature, 394:539–544, 1998.



Aqueous Computing with DNA Hairpin-Based
RAM

Naoto Takahashi1, Atsushi Kameda2, Masahito Yamamoto3,
and Azuma Ohuchi3

1 Graduate School of Engineering, Hokkaido University,
North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

2 CREST, Japan Science and Technology Agency (JST),
Honmachi 4-1-8, Kawaguchi, Saitama 332-0012, Japan

3 CREST, Japan Science and Technology Agency (JST) and
Graduate School of Information Science and Technology, Hokkaido University,

North 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
{naoto, kameda, masahito, ohuchi}@dna-comp.org

http://ses3.complex.eng.hokudai.ac.jp/

Abstract. DNA RAM can eliminate the computational overhead of se-
quence design because the same RAM can be used for various computa-
tions once it is made. In this paper, we report a new method to construct
RAM by using the hairpin structure of DNA, and the 4-bit RAM that
we actually constructed with this method. We conducted an experiment
to distinguish all 16 states of the 4-bit RAM, and another to verify our
achievement of a successive writing operation. Finally, we performed aque-
ous computing with this 4-bit RAM.

1 Introduction

In the conventional computational methods of DNA computing, researchers had
to design and make up the complete set of DNA sequences to obtain the solutions
of each given problem. Because designing the sequence can be more difficult than
solving the given problem, this can be a serious bottleneck. However, this overhead
may be eliminated if we can use the same sequences to solve the various problems.
This is achieved with Random Access Memory (RAM). Once RAM has been made
with DNA, it can be widely used for various computations.

Read Only Memory (ROM) can be considered as another kind of memory.
An associative memory, reported by Baum [1] and Reif et al. [2], is one kind
of ROM. It can be used to perform the associative searches, and it exploits the
capability of DNA effectively. Nested Primer Molecular Memory was developed
by Kashiwamura et al. [3], and it is an addressing memory that uses Polymerase
Chain Reaction (PCR). If we apply the primers in the correct order when PCR,
data becomes readable. This is another kind of ROM. Chen et al. studied a
DNA memory with learning and associative recall [4]. This memory changes its
own sequence by digestion and extension, thus it can learn a segment of un-
known input DNA. Using that learned memory, researchers can search for similar

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 355–364, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



356 N. Takahashi et al.

strands to the initial input DNA in other unknown DNA. Much research has
been conducted on DNA memory, and we focused on RAM because of DNA’s
versatility.

To create DNA RAM, bits have to be represented by using DNA, and three ear-
lier methods have been investigated. The first was the Cut, Elongate, and Ligate
(CEL) method developed by Head et al. [5]. This method uses several restriction
enzymes, polymerase, ligase, and circular double-strand DNA. The second was
the Cut, Delete, and Ligate (CDL) method also developed by Head et al. [6]. This
method also uses several restriction enzymes, ligase, and circular double-strand
DNA, but needs pairs of the same kind of restriction sites to represent a bit.
The third was the method of using Peptide Nucleic Acid (PNA) developed by
Yamamura et al. [7]. This method uses single-strand PNA and DNA.

We propose using hairpin structure DNA to represent bits. This hairpin method
does not use enzymes, and does not require regulating solution temperature. The
only materials required for this method is DNA. Therefore, it may be an easier
method to handle than the earlier methods described above. We explain hairpin
structure in the next section.

Aqueous computing is an application that can make good use of the nature of
DNA RAM, and its framework was suggested by Head [8]. Because DNA RAM
exists in a solution randomly, it is easy to split into several processes with equal
component percentage, and to mix them uniformly is easy, also. Using this aqueous
nature with ingenuity can create the solution candidates. Further details about
an algorithm for this is illustrated with one concrete example in section 5.

In this paper, we propose a method for creating RAM by exploiting the
hairpin structure of DNA. Next, we show our experimental results of the con-
structing this RAM, distinguishing its states, and using it for successive writing
operation.

2 DNA Hairpin-Based RAM (DNA-HRAM)

2.1 DNA Hairpin

The structure of a single-strand DNA that has bonded to itself is like that
of a hairpin. This is shown in Fig. 1 in what we call the “closed” state. In-
terestingly, the bonded stem can be separated by one single-strand DNA that
is complementary to the lead and stem. This single-strand DNA is called an
opener. As Fig. 2 shows, an opener bonds to the lead first and then bonds to
the stem, and we call this state “open”. The closed state is counted as 1, and
the open state is counted as 0. In this way, we can represent a bit, and this
RAM is called DNA Hairpin-based RAM (DNA-HRAM). The only experimental
treatment that we have to perform to open a hairpin is to mix in an opener.
Regulating the solution temperature is not necessary because this opening re-
action occurs at room temperature. Moreover, basically, the only materials re-
quired for this method are DNA strands. Additionally, DNA-HRAM is reusable
because the opener can be separated from the hairpin by raising the solution
temperature.



Aqueous Computing with DNA Hairpin-Based RAM 357

Fig. 1. “Closed” state Fig. 2. “Open” state and opener

To be precise, a hairpin consists of a stem, loop, and complementary stem,
but we add a lead to the 5’-end of a hairpin to obtain an opening reaction. The
hairpin and lead are collectively called a hairpin unit.

2.2 Multi-bit DNA-HRAM

Multi-bit DNA-HRAM is achieved by splicing the multiple hairpin units pre-
viously described. We constructed 4-bit DNA-HRAM as shown in Fig. 3. The
sequences of this 4-bit DNA-HRAM and its openers are shown in Table 1. The
lead is 20 mer, the stem is 20 mer, the loop is 7 mer, and the complementary stem
is 20 mer. Accordingly, the total length of one hairpin unit is 67 mer, that of one
opener is 40 mer, and that of one target sequence is 288 mer.

Table 1. Sequences (in order of from 5’ to 3’)

Name Sequence

lead A TCCAGATTAAATGGAGTGGG
hairpin A GGTTGGGAGCGATATTCGTA TTCATCC TACGAATATCGCTCCCAACC

lead B TAGCAAAAGCGGCCTCACTC
hairpin B CCAGTATATACCAGCACCTG TTAGCCC CAGGTGCTGGTATATACTGG
lead C GCAGCAAGAATAGTTCACCT

hairpin C CAGAACGACATTACGAGAGA CGCTGTC TCTCTCGTAATGTCGTTCTG
lead D ATGTGGTTAAGCAACTGCCG

hairpin D CTGGAATACTCTTAGGCTGG GTTCAGT CCAGCCTAAGAGTATTCCAG
lead E GCATGCCAGACCTAAGGATG

opener A TACGAATATCGCTCCCAACC CCCACTCCATTTAATCTGGA
opener B CAGGTGCTGGTATATACTGG GAGTGAGGCCGCTTTTGCTA
opener C TCTCTCGTAATGTCGTTCTG AGGTGAACTATTCTTGCTGC
opener D CCAGCCTAAGAGTATTCCAG CGGCAGTTGCTTAACCACAT

In the sequence design step, each hairpin can only be opened by its own opener,
and taking note of that is important. That is to say, the only opener that can
open hairpin A is opener A. We referred to the recent research by Uejima and
Hagiya [9] to resolve this sequence design problem.

This hairpin mechanism was also used for conformational addressing by Kameda
et al. [10]. They found that the memory becomes readable if openers are mixed
in the correct sequence.



358 N. Takahashi et al.

Fig. 3. Target sequence and openers

3 Construction

To construct this target sequence, we had to decompose it into several short parts
and then recompose them because directly synthesizing a long DNA sequence
is very difficult. The composition of these parts was reported in our previous
study [11].

To examine whether the target sequence was actually composed, we used Poly-
Acrylamide Gel Electrophoresis (PAGE). The sequence in which part A is spliced
to part B is named A+B. The migration distance of A+B is different from that of
A and that of B because A+B has a different length than A and B. By the same
token, if a new band that is not made up of its parts or intermediate products
appears when all parts are mixed, it can be considered as a product in which
all parts are combined. Accordingly, A+B+C+D+E should have a different band
from all the others, and it should be the target sequence that is shown in Fig.
3. The results of this experiment are in Fig. 4, and the completion of the target
sequence is indicated by the arrow. In this experiment, DNA was stained with
SYBR Gold after PAGE.

Fig. 4. Experimental results of constructing 4-bit DNA-HRAM



Aqueous Computing with DNA Hairpin-Based RAM 359

4 Distinguishing States

We checked whether each bit of this 4-bit DNA-HRAM could be opened inde-
pendently and specifically, and the results are in Fig. 5. Here, we used PAGE
again. The difference of migration distance is caused not only by the length of
the sequence but also by its form. That is, sequences that have different forms
are carried different distances even if they have same length. For example, the
state where no openers are mixed, that is, T in Fig. 5, was carried a different
distance from the state where opener A was mixed, that is T+oA, because each
had different forms. By the same token, all 16 states were carried to different
positions. The states T+oB, T+oC, and T+oD definitely have different band po-
sitions. These results mean that all 4 hairpins were opened independently and
specifically by their individual openers, even though, some band positions of all
16 states were very close. This may be unavoidable because of the resolutive limits
of this method. However, the true need is detecting one solution after computing
and not distinguishing all states. Thus, we propose one idea in section 6. Unfortu-
nately, some lanes had more than one band. That means the reaction for opening
the hairpin was not perfect.

Fig. 5. Experimental results of distinguishment of all 16 states

5 Retaining Bit Pattern

To accomplish the successive writing operation, such as those shown in Fig.
8, retaining the bit pattern of RAM after mixing the split solutions is neces-
sary. Basically, openers must be mixed in large enough quantities so that the
opening reaction occurs effectively. Accordingly, a lot of openers that have not
reacted remain in the solution. Because some DNA-HRAM that are from an-
other solution and that have different states may be opened by those openers
remaining after mixing, all remaining openers have to be eliminated from the
solution before mixing. Next, we explain how to eliminate them, and show the
experimental results of using that elimination treatment for a successive writing
operation.



360 N. Takahashi et al.

5.1 Eliminating Opener

We adopted use of a cover and magnetic beads to eliminate the remaining openers.
The elimination technique is shown in Fig. 6. The cover is the same sequence as
the lead, but its 5’-end is biotinylated. After the reaction of opening hairpins,
we mix covers in sufficient quantities, and they hybridize with the remaining
openers. Next, we mix the appropriate amount of binding buffer (20 mM Tris-Cl,
1.0 M NaCl, 1 mM EDTA, 0.02% Triton X-100; pH 7.8) and streptavidin with the
solution. The covers that bonded to openers are bound to streptavidin because
of the 5’-end biotin. The remaining covers are also bound to streptavidin. Since
streptavidins are bound to magnetic beads, they can be separeted with a magnet.
Thus, we can achieve the solution that contains no magnetic beads, resultingly
the remaining openers and covers are eliminated with them.

Fig. 6. Elimination process Fig. 7. Experimental

results of elimination

The results of this test experiment is shown in Fig. 7. In each lane, the index
h means hairpin unit, the index o means opener, and the index c means cover.
When the hairpin unit and opener were mixed, a new band appeared, the lane of
h+o, and that is the band of opened hairpin units. Since the amount of openers
were larger than that of hairpin units, the band of openers remained. However,
some closed hairpin units also remained in the lane because the reaction of hairpin
opening, as mentioned earlier, can not be performed perfectly. When opener and
cover were mixed, that is the lane o+c, most openers bonded to covers, thus a new
band appeared. That the band positions of h and o+c happen to be very close
should be noted. In the lane of h+o+c, cover was added after mixing the hairpin
unit and opener. Three bands appear to be in this lane, but the middle band
includes two kinds of strands, h and o+c. The other high and low bands are that
of h+o and c. We applied the elimination described above to this solution, and the



Aqueous Computing with DNA Hairpin-Based RAM 361

far right lane is the result of that. The thickness of the middle band decreased. This
means that o+c was eliminated and h remained. Additionally, band c disappeared,
and there were no remaining bands except h+o and h. Therefore, we verified that
the remaining openers and covers were actually eliminated.

5.2 Successive Operation

We performed the aqueous computing that is shown in Fig. 8 for the verification
of the successive writing operation with the 4-bit DNA-HRAM.

This is an instance of Maximum Independent Set Problem (MISP), and it is
such as shown in Fig. 9. If no two vertices in a subset of a graph G are connected
by an edge, the subset is an independent set of G. Therefore, an independent set
containing the largest possible number of vertices is a maximum independent set.
MISP is the problem of obtaining a maximum independent set, and it belongs to
the class of NP-complete.

Fig. 8. Algorithm and process of aqueous computing

Fig. 9. Graph of solved

Maximum Independent

Set Problem

Fig. 10. Experimantal results of successive writing operation



362 N. Takahashi et al.

Here, we explain how to solve a MISP with an aqueous algorithm. The idea is
very simple. First, we prepare a lot of subsets containing all the vertices. Then,
we split them into two processes. In one process, to resolve connected vertices,
one vertex that is either side of an edge is removed from the subsets. In another
process, the vertex of another side is removed. After mixing these two processes,
the connection of an edge has been cleared away. We repeat these splits and
mixes until all the connections are cleared. Thus, this algorithm makes solving
the problem possible in linear chemical steps even if it is a large scale combinatorial
optimization problem. Besides, the only required operation is to remove the vertex.

Experimental results of the successive writing operation are shown in Fig. 10.
The bit state 1 indicates the closed state of the hairpin, and 0 indicates the open
state. Starting from the left, each bit corresponds to hairpin A, B, C, and D. For
example, 0101 means that hairpin A is open, B is closed, C is open, and D is
closed. The split solutions were sampled after elimination of openers.

Mix-0 is the initial state in which all the hairpins of 4-bit DNA-HRAM are
closed, so only one band of 1111 appears in this lane.

First, Mix-0 was split into two solutions, to resolve the edge between vertices
A and B. In one solution, hairpin A was opened, and the bit pattern was changed
from 1111 to 0111. This was the lane of Split-1-open A, and only one band of 0111
was obtained. In another solution, hairpin B was opened, and the bit pattern was
changed from 1111 to 1011. This was the lane of Split-1-open B, and only one
band of 1011 was obtained. After eliminating openers, these two solutions were
mixed as Mix-1. Most DNA-HRAM were clearly divided into two states, though
a few 1111 remained. That means the elimination of openers was successful.

Next, Mix-1 was split into two solutions, to resolve the edge between vertices
A and C. In one solution, hairpin A was opened, and the bit pattern was changed
from 1011 to 0011. Because hairpin A of 0111 had been already opened, it re-
tained its bit pattern. This was the lane of Split-2-open A, and two bands of 0111
and 0011 were obtained. In another solution, hairpin C was opened, and the bit
patterns were changed from 0111 and 1011 to 0101 and 1001, respectively. This
is the lane of Split-2-open C, and two bands of 0101 and 1001 were obtained.
After eliminating openers, these two solutions were mixed as Mix-2. Here, these
DNA-HRAM were very clearly divided into four states.

Then, Mix-2 was split into two solutions, to resolve the edge between vertices
A and D. In one solution, hairpin A was opened, and the bit pattern was changed
from 1001 to 0001. Because hairpin A of 0111, 0011, and 0101 had been already
opened, they retained their bit patterns. This is the lane of Split-3-open A, and
four bands of 0111, 0011, 0101, and 0001 were obtained. However, as shown in
Fig. 10, the lane of Split-3-open A seems similar to that of Mix-2 because the
band positions of 1001 and 0001 are very close. In another solution, hairpin D
was opened, and the bit patterns were changed from 0111, 0011, 0101, and 1001
to 0110, 0010, 0100, and 1000. This is the lane of Split-3-open D, and the four
bands of 0110, 0010, 0100, and 1000 were obtained. After eliminating openers,
these two solutions were mixed as Mix-3. Actually, we wanted eight bands here,
but we could observe only seven bands. The reason is that the band positions



Aqueous Computing with DNA Hairpin-Based RAM 363

of 0011 and 0010 are very close. Therefore, we believe that these DNA-HRAMs
contain eight different bit patterns, and that their computational power has been
demonstrated.

6 Detecting Solution

One remaining problem is how to detect the solution. We created the solution
candidates, and in the next step, we had to extract the optimum solution from
among those. In the successive writing operation experiment, the bit patterns
of each appeared band were determined by comparing them with the results of
experimentally distinguishing states. However, that way may be impractical when
the number of all bits increased. Here, we introduce an idea that of using the
complementary strands of DNA-HRAM to extract the solution. An outline of this
idea is shown in Fig. 11.

Fig. 11. Idea of Extracting Solution

This is an example of a 2-bit DNA-HRAM. Here, we want to obtain a solu-
tion from the three states shown on the left side. First, we mixed filler 1 with
DNA-HRAM and performed ligation. Second, we added filler 2 and repeated the
ligation process. The fillers bonded to a single-strand of each DNA-HRAM and
were spliced as shown on the right side. As a result, we made three complemen-
tary strands of different lengths. In the case of MISP, the shortest complemen-
tary strand represents the solution. Finally, by using denatured PAGE, we were
able to separate and identify the solution. However, in this method the opener
strands must be changed to achieve effective ligation, and the length of each
part must be coordinated. Currently, we have succeeded in the ligation of filler
1, as shown in the upper right. To read the bit pattern, we can use fluorescent
materials.



364 N. Takahashi et al.

7 Conclusion

We developed DNA-HRAM, and actually constructed 4-bit DNA-HRAM. We
then checked whether each bit of this 4-bit DNA-HRAM could be opened inde-
pendently and specifically, and found that all these bits had worked normally.
Additionally, we achieved successive writing operations, and performed aqueous
computing with this 4-bit DNA-HRAM. Finally, we also offered a possible way of
extracting a solution.

We would like to make DNA-HRAM more efficient since there are still many
things that we can improve. But, we must first bring the detection method to
completion. In future work, we plan to try constructing a large-bit DNA-HRAM.
We consider that the construction will not be so difficult now that we have the
sequence set for 20-bit DNA-HRAM.

References

1. E. B. Baum, “Building an Associative Memory Vastly Larger Than the Brain”,
Science, Vol. 268, pp. 583-585, 1995.

2. J. H. Reif, T. H. LaBean, M. Pirrung, V. S. Rana, B. Guo, C. Kingsford, G. S.
Wickham, “Experimental Construction of Very Large Scale DNA Databases with
Associative Search Capability”, 7th International Workshop on DNA-Based Com-
puters (DNA7), in Lecture Notes in Computer Science 2340, pp. 231-247, 2002.

3. S. Kashiwamura, M. Yamamoto, A. Kameda, T. Shiba, A. Ohuchi, “Hierarchical
DNA Memory Based on Nested PCR”, 8th International Workshop on DNA-Based
Computers (DNA8), in Lecture Notes in Computer Science 2568, pp. 112-123, 2002.

4. J. Chen, R. Deaton, Y. Wang, “A DNA-based Memory with In Vitro Learning
and Associative Recall”, Preliminary Proceedings of Ninth International Meeting
on DNA Based Computers (DNA9), pp. 127-136, 2003.

5. T. Head, M. Yamamura, S. Gal, “Aqueous Computing: Writing on Molecules”, Pro-
ceedings of the Congress on Evolutionary Computation, pp. 1006-1010, 1999.

6. T. Head, G. Rozenberg, R. S. Bladergroen, C. K. D. Breek, P. H. M. Lommerse, H.
P. Spaink, “Computing with DNA by operating on plasmids”, BioSystems, Vol. 57,
pp. 87-93, 2000.

7. M. Yamamura, Y. Hiroto, T. Matoba, “Another Realization of Aqueous Computing
with Peptide Nucleic Acid”, 7th International Workshop on DNA-Based Computers
(DNA7), in Lecture Notes in Computer Science 2340, pp. 213-222, 2002.

8. T. Head, “Circular Suggestions for DNA Computing”, submitted to World Scientific,
1999.

9. H. Uejima, M. Hagiya, “Secondary Structure Design of Multi-state DNA Machine
Based on Sequential Structure Transitions”, Preliminary Proceedings of Ninth In-
ternational Meeting on DNA Based Computers (DNA9), pp. 80-91, 2003.

10. A. Kameda, M. Yamamoto, H. Uejima, M. Hagiya, K. Sakamoto, A. Ohuchi, “Con-
formational addressing using the hairpin structure of single-strand DNA”, Pre-
liminary Proceedings of Ninth International Meeting on DNA Based Computers
(DNA9), pp. 197-201, 2003.

11. N. Takahashi, A. Kameda, M. Yamamoto, A. Ohuchi, “Construction and verification
of DNA hairpin-based RAM”, Proceedings of The Ninth International Symposium
on Artificial Life and Robotics (AROB 9th ’04), Vol. 2, pp. 388-391, 2004.



 

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 365 – 374, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Programmable Molecular Computer in Microreactors 

Danny van Noort 

Ecology and Evolutionary Biology,  
Princeton University, Princeton, NJ 08544, USA 

Present address: Biointelligence Lab., 
School. of Computer Science and Engineering,  

Seoul National University, San 56-1, Sinlim-dong,  
Gwanak-gu, Seoul 151-742, Korea 

danny@bi.snu.ac.kr 

Abstract. To solve problems with DNA in microreactors, static systems are not 
favourable due to programmability.  It will be shown that solving Boolean logic 
with a programmable microfluidic system is a step forward in molecular 
computing.  Not only the use of DNA as information carrier is important but 
also the integration of electronic computing to control the system and readouts.  
This paper will show that the optimal configuration of computing in 
microfluidics is a system containing components analogue with electronic 
elementary building blocks components, such as switches, logic gates and 
memory, making it programmable for any type of Boolean problem. 

1   Introduction 

It has been foreseen that conventional electronic processors will reach its speed and 
size limit in the near future.  This is the reason why intensive research has been 
started on alternative computing methods like fluidic computing [1], quantum 
computing [2] and DNA-computing [3].  The latter is the most promising because it is 
closely connected to the biological world and therefore will have applications in 
biotechnology, such as medical diagnostics and drug lead-compound optimisation.  
The research on operations with biomolecules can give a better insight into biological 
systems, while the information processing and construction abilities at molecular level 
can give new computing paradigms.  However, digital computers have their 
advantages as well, especially as controller. Therefore an optimal computing solution 
would be to integrate electronic with molecular computing.   

As shall be shown, microfluidic networks can be incorporated as an information 
carrier in a computing scheme.  The advantages of microfluidics are the small 
volumes (in the pico-liter range) of DNA solution needed and the speed of reactions.  
With fluidic switches, such as micro valves, and micro pumps the flow can be (re-) 
directed.  By controlling the sequence of switch settings with an electronic 
controller, a specific programme can be executed.  The channels are like the wires in 
electronic circuits, transporting the information from one operator to another, to 
fluidic flip-flops, i.e. logical operators.  Logical gates with biological components, so 



366 D. van Noort 

 

far, have been introduced in cells [4], biomolecules [5] and bioelectronics, such as 
nanowires [6]. 

Gehani and Reif [6], and later McCaskill and Wagler [7], came with a concept for 
re-configurable microreactors as a way to dynamically change the flows in 
microfluidic networks.  However, these visions were still too futuristic and have no 
short term application.  In this paper we introduce microfluidic logic operators, simple 
fluidic switches and memory.  Furthermore, the use of electronic fluidic control 
components in microfluidic systems will be demonstrated in such way as to perform 
dynamic operations and programming.  Finally a proposal for an actual fluidic 
computer will be made which in first instance solves a series of logical operations, for 
example, the Maximum Clique [9] and is more efficient than previous developed 
DNA-computers because of its flexible programming capability. 

2   Selection Procedure 

Selections can be made by using capture probes (CP), such as short selection DNA, to 
select longer single DNA strands containing coded information in the sequence of its 
base-pairs from a sequence space {Si}.  Hybridisation between these two is a 
selection, a YES or NO, i.e. a logic operation.   

There are two ways of performing selections, using varied techniques: positive or 
negative selection.  Positive selection retains Sk from the sequence space {Si} while 
negative selection discards Sk.  One method of positive selection was proposed by 
McCaskill [9], introducing active transport of DNA by means of paramagnetic beads.  
The CPs are immobilised to the beads and the selected DNA is moved from one flow 
to another.  Negative selection is reached by immobilising the CPs to a surface (such 
as beads) which hybridise to Sk, while the rest of the sequences (S1,…,k-1, k+1,…,N) 
continue to next operator [10]. 

The advantage of positive selection is that there is a minimal amount of unwanted 
DNA, while the advantage of negative selection is the simplicity of operation and 
control, however with higher error rate.  In the latter case it is possible to re-run the 
solution over the (regenerated) CPs as to optimise the purity of the DNA template 
solution. 

3   Principle of Operation 

It is clear from the above that logic operators can be defined with these selection 
procedures.  A NOT operation corresponds to a negative selection, while the retention 
of a certain member (Sk) from the sequence space corresponds to a positive selection. 

For now, we leave the selection procedure a black box with the operation a being a 
positive selection and a a negative selection procedure (Fig 1a), since it is not 
important for the concept to know how the selection is precisely done.  Two selectors 
in sequence will perform an AND operation, while two selectors in parallel will 
perform an OR operation (see Fig 1b). 



 A Programmable Molecular Computer in Microreactors 367 

 

    

Fig. 1a. NOT operations on member a in a sequence space {Si} is made by a negative selection, 
while selection of member a (Sa) is made by a positive selection 

   
 a ∧ b  a v b 

Fig. 1b. AND operations can be made by having two selectors in sequence, while an OR 
operation is made by two selectors in parallel 

By making a combination of a number of selectors in a certain connection, it is 
possible to solve Boolean logic problems. 

4   Memory 

Using switchable microfluidics makes it is possible to construct memories.  
Information can be stored in separate channels which hold the solutions with DNA, or 
other molecules used as information carriers. Figure 2 shows the schematics of the 
memory.  A number of channels, determining the memory size, are connected to an 
input and output channel by multi-selection valves.  The  position  of  the  valve  gives 

 

Fig. 2. The schematics of a memory with 5 channels and selection valves (the light grey circles) 



368 D. van Noort 

 

the memory location (Mi, with i the number of channels).  This would be similar to 
Direct Accessible Memory with read and write capabilities.  The advantage of a 
memory is that information can be stored and retrieved at a later period. Iterative 
processes would then be possible, broadening the range of problem solving. 

5   The Configurable Microfluidic Computer 

To make a problem solving fluidic network feasible, a series of switches must be 
incorporated into the design of the microsystem.  This allows us to change the 
direction of the flows, routing the solution to certain reactors, depending on the 
problem.  By storing the intermediate template between 2 valves in the memory, the 
reactors can be rinsed without interfering with the template. 

The sequence of logical operations will determine the settings of the switches.  By 
feeding the problem into a digital computer, the problem will be translated into a 
sequence of switch settings.  The DNA in the microfluidic system will do the actually 
computing part in a massively parallel fashion, while the electronic part will control 
the flows by fast switching and monitor the information. 

 

Fig. 3. The architecture of a 9 bit configurable microfluidic computer with 2 pumps (arrows), 9 
operators (a-i) and a 5-channel memory.  The light grey circles are selection valves 

We will illustrate the workings of this system with an example of a NP-complete 
problem, because this can be readily translated into a set of logic operations. 

6   Maximum Clique 

The maximum clique problem requires finding the largest subset of fully 
interconnected nodes in a given graph (Fig. 4).  The decision problem associated with 
the maximum clique problem becomes rapidly harder to solve (NP-complete) as the 
problem size increases.  

The basic algorithm has been discussed by McCaskill [9].  The edges of the graph, 
i.e. the connections between the nodes, can be represented by a so called connectivity 
matrix [11].  The connectivity matrix for the 9-node example shown in Fig. 4 is the 
9x9 matrix in Table 1. As Table 1 shows, the matrix is symmetrical over the diagonal, 
while the diagonal trivially one, reducing the number of necessary selections from N2 
to ½N(N-1). 



 A Programmable Molecular Computer in Microreactors 369 

 

 

Fig. 4. An N=9 instance of the clique problem.  The maximum clique is given by ACEI, 
represented by 101010001 

Table 1. The connectivity matrix for the 9-node graph as shown in Fig. 4.  The shaded numbers 
are trivial selections and don’t have to be included in the selection procedure to obtain all the 
cliques 

 A B C D E F G H I
A 1 0 1 0 1 0 0 0 1
B 0 1 0 0 0 0 1 0 0
C 1 0 1 0 1 0 0 0 1
D 0 0 0 1 0 1 0 1 0
E 1 0 1 0 1 0 0 0 1
F 0 0 0 1 0 1 0 1 0
G 0 1 0 0 0 0 1 0 0
H 0 0 0 1 0 1 0 1 0
I 1 0 1 0 1 0 0 0 1

The connectivity matrix can be transcribed into a sequence of reactors with the 
appropriate CPs. Table 2 shows all the CPs necessary to perform the clique selection 
for the graph in Fig. 4, with instance N=9.  If there is a connection, this field stays 
empty (Ø).  For the example presented in Fig. 4, the first column, checking the 
connectivity with node A, would contain CPs labelled with {Ø C0 Ø E0 Ø Ø Ø I0} 
successively. 

The logic operations can be written as follows: 

A0  [Bk  Ck  Dk  Ek  Fk  Gk  Hk  Ik]   
B0  [Ck  Dk  Ek  Fk  Gk  Hk  Ik]   
C0  [Dk  Ek  Fk  Gk  Hk  Ik]   
D0  [Ek  Fk  Gk  Hk  Ik]   
E0  [Fk  Gk  Hk  Ik]  
F0  [Gk  Hk  Ik]  
G0  [Hk  Ik]  
H0  [Ik] 
 
with k=0 or Ø 



370 D. van Noort 

 

Table 2. The connectivity matrix for the 9-node graph as shown in Fig. 4 transcribed into CPs 
showing all the necessary selection steps, needed to determine the existence of edges between 
node i and j.  The letter indicates the CP needed for that node while the indices denote the bit 
value (0 in this case).  Ø is an empty selection.  The shaded area is programmable and is 
determined by the edge between node i and j 

 node A node B node C node D E node node F node G node H 

node B A0 Ø     
   

node C A0 C0 B0 Ø    
   

node D A0 Ø B0 Ø C0 Ø   
   

node E A0 E0 B0 Ø C0 E0 D0 Ø  
   

node F A0 Ø B0 Ø C0 Ø D0 F0 E0 Ø
   

node G A0 Ø B0 G0 C0 Ø D0 Ø E0 Ø
F0 Ø   

node H A0 Ø B0 Ø C0 Ø D0 H0 E0 Ø
F0 H0 G0 Ø  

node I A0 I0 B0 Ø C0 I0 D0 Ø E0 I0
F0 Ø G0 Ø H0 Ø

If there is an edge (k=Ø): SiØ = Ø; no edge (k=0): Si0, with Si ∈ {A, B, C,….}.  
This results in the following operations for the example given in figure 4: 

A0  [C0  E0  I0]   
B0  [G0]   
C0  [E0  I0]   
D0  [F0  H0]   
E0  [I0]  
F0  [H0]  
G0  
H0  

As we can see from Table 2, some of the CPs are revisited and some are empty.  
So in principle it is possible to reduce the number of reactors to the number of nodes, 
represented by the CPs, and revisit the selection modules again if necessary.  Since 
we don’t have to check the empty sites, this reduces the number of selection steps 

from 36x3=108 (as proposed in [9]) to 18 steps, with a maximum of 44 (
=

N

2i

i ) when 



 A Programmable Molecular Computer in Microreactors 371 

 

all nodes are inter-connected.  The information flow patterns depend on the switch 
settings.  For node A, B, C, D and H the flow patterns are presented in Fig. 5a, while 
a washing step is presented in Fig. 5b. 

 

 

 

 

 

Fig. 5a. The flow pattern for the selections concerning node A, B, C, D and H in the maximum 
cliques problem 

 

Fig. 5b. The flow pattern for the washing step.  Notice that the memory channels are not 
affected in this step 



372 D. van Noort 

 

7   A Simplified 3-Bit Computer 

To illustrate the flow patterns, a simple 3-bit programmable computer was 
implemented in PDMS (Polydimethylsiloxane, Sylgard 184, Dow-Corning, MI).  
The valves were fabricated on top of the flow channels and were made of PDMS as 
well [12].  A thin layer of PDMS (~40 m), which was spin coated, acts like a 
membrane between a pneumatic actuator and the flow channel.  When pressure is 
applied, the membrane is pushed into the underlying channel, effectively blocking 
the flow (Fig. 6).   

 

Fig. 6. A fully closed pneumatic valve (300x300 m square) over a 100 m channel, effectively 
blocking the channel 

      
 (a)  (b) (c) 

Fig. 7. (a) The lay-out of a simplified 3-bit computer. The circles are the reactors, while the 
squares are the pneumatic valves.  Note that any combination of serial or parallel settings can 
be made.  (b) The reactors A and B are switched in serial: A  B.  (c) The same as (b), except 
reactor C is set in parallel with A and B: (A  B)  C 

These valves were pneumatically controlled by a 3-way solenoid valve (Lee 
Company), which switches the pressure lines between high (30 psi) and low 
(atmosphere).  The solenoid valves where controlled by a conventional computer 

A B C



 A Programmable Molecular Computer in Microreactors 373 

 

running LabVIEW (National Instruments).  Figure 7a shows the structure of the 
microsystem.  The valves are set up in such fashion that each reactor can be switched 
into the flow while serial and parallel connections between the reactors are possible.  
A fluorescence dye was used to highlight various paths in the system.  Figure 7b 
shows the expression A  B while Fig. 7c depicts (A  B)  C. 

8   Conclusion 

This design is more simple and flexible than previously proposed systems.  It further 
shows that the integration of electronic control with microfluidic is essential for future 
progress not only in the molecular computing world, but in the biotechnology in 
general as well.  It is easy to see that a system like this can be applied in areas of 
biotechnology, like in lead optimisation in drug discovery.   

Suppose there are a number of diseases to be treated with one optimised drug or 
vice versa, check which disease a drug can treat.  The appropriate molecules (DNA, 
RNA, proteins, etc.) could be immobilised in the selection reactors, while the drugs 
are passed along the reactors.  In this manner selections can be made.  Even patient 
specific treatments can be envisioned, by using patient specific data. 

It should further be noted that all logic operations can be performed with this 
system.  The end result of the selection has the DNA with the instruction set desired 
(the DNA is an instruction template). 

Acknowledgement 

The author wishes to acknowledge the support from DARPA award F30602-01-2-
0560 to Laura F. Landweber and NSF award 0121405 to Lydia L. Sohn and Laura F. 
Landweber.  Furthermore the support from the Molecular Evolutionary Computing 
(MEC) project of the Korean Ministry of Commerce, Industry and Energy, and the 
National Research Laboratory (NRL) Program from the Korean Ministry of Science 
and Technology is acknowledged.  EEB at Princeton University and the ICT at Seoul 
National University provided the research facilities. 

References 

1. van Noort, D. and Austin, R. H.  Towards a bubbling brain in microfluidics.  Manuscript 
in preparation 

2. Hirvensalo, M.  (2001)  Quantum computing.  Natural Computing Series, Springer-Verlag, 
Berlin. 

3. Adleman, L. M. (1994) Molecular computation of solutions to combinatorial problems.  
Science 266, 1021-1024. 

4. Amos, M. and Owenson, G. G. (2000) ERCIM News 43, 36-37, October 2000. 
5. Klein, J. P., Leete, T. H. and Rubin, H.  (1999)  A biomolecular implementation of 

logically reversible computation with minimal energy dissipation.  BioSystems 52, 15-23. 



374 D. van Noort 

 

6. Huang, Y., Duan, X. ,Cui, Y., Lauhon, L., Kim, K. and Lieber, C. M.  (2001)  Logic Gates 
and Computation from Assembled Nanowire Building Blocks.   Science 294, 1313-1317.  

7. Gehani, A. and Reif, J. (1999)  Micro flow bio-molecular computation.  BioSystems 52, 
197-216. 

8. McCaskill, J. S. and Wagler, P. (2000)  From reconfigurability to evolution in 
construction systems: spanning the electronic, microfuidic and biomolecular domains. In 
R. W. Hartenstein and H. Grünbacher (Eds.) FPL 2000, LNCS 1896, 286-299, Springer-
Verlag, Berlin Heidelberg. 

9. McCaskill, J. S. (2001) Optically programming DNA computing in microflow reactors. 
BioSystems 59, 125-138.   

10. van Noort, D and Landweber, L. F.  (2003) Towards a re-programmable DNA computer.  
Ninth International Meeting on DNA Based Computers, June 1-4, 2003, USA. 

11. van Noort, D., Gast, F.-U. and McCaskill, J. S. (2001) DNA computing in microreactors.  
LNCS 2340, 33-45. 

12. Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake (2000)  
Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science 
288, 113-116. 



Combinatorial Aspects of Minimal DNA
Expressions

Rudy van Vliet, Hendrik Jan Hoogeboom, and Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science (LIACS),
Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{rvvliet, hoogeboo, rozenber}@liacs.nl

Abstract. We describe a formal language/notation for DNA molecules
that may contain nicks and gaps. The elements of the language, DNA
expressions, denote formal DNA molecules. Different DNA expressions
may denote the same formal DNA molecule. We analyse the shortest
DNA expressions denoting a given formal DNA molecule: what is their
length, how are they constructed, how many of them are there, and how
can they be characterized.

1 Introduction

Since the discovery of the structure and function of DNA molecules, DNA has
become an ‘intense’ research topic among biologists and biochemists. Formal
study of computational properties of DNA really began when Head [1987] de-
fined formal languages consisting of strings that can be modified by operations
based on the way that restriction enzymes process DNA molecules. Theoretical
computer scientists explored the generative power and other properties of such
languages, see, e.g., [Kari et al., 1996] and [Head et al., 1997]. The interest of
the computer science community in the computational potential of DNA was
boosted, when Adleman [1994] described a solution of an instance of the di-
rected Hamiltonian path problem using DNA, enzymes and standard biomolec-
ular operations. Since then, research on DNA computing is really flourishing,
see, e.g., [Hagiya & Ohuchi, 2003], [Chen & Reif, 2004] and [Păun et al., 1998].
Recent developments include research on computations in living cells, see, e.g.,
[Landweber & Kari, 1999], [Daley et al., 2004] and [Ehrenfeucht et al., 2004].

Neither in the theoretical, nor in the applied publications, much atten-
tion is paid to the notation used to denote DNA molecules – exceptions are
[Boneh et al., 1996] and [Li, 1999]. In most cases, one simply uses the stan-
dard double-string notation (like ACATG

TGTAC
) to describe a double-stranded DNA

molecule.
In this paper, we describe a concise and precise notation for DNA molecules,

based on the letters A, C, G and T and three operators ↑, ↓ and / (to be

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 375–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



376 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

pronounced as uparrow , downarrow and updownarrow , respectively). The re-
sulting DNA expressions denote formal DNA molecules – a formalization of
DNA molecules. We do not only account for perfect double-stranded DNA
molecules, but also for single-stranded DNA molecules and for double-stranded
DNA molecules containing nicks (missing phosphodiester bonds between adja-
cent nucleotides in the same strand) and gaps (missing nucleotides in one of
the strands). The notation is the first step towards a formal description of more
complex DNA molecules. The ultimate goal is to also describe the secondary
structure of DNA.

Our three operators bear some resemblance to the operators used in
[Boneh et al., 1996] and [Li, 1999], but their functionality is quite different. The
operator ↑ acts as a kind of ligase for the upper strands: it creates upper strands
and connects the upper strands of its arguments. The operator ↓ is the analogue
for lower strands. Finally, / fills up the gap(s) in its argument. The effects of
the operators do not perfectly correspond to the effects of existing techniques in
real-life DNA synthesis. Yet, the operators are useful to describe certain types
of DNA molecules.

In our formal language, different DNA expressions may denote the same
formal DNA molecule. We examine which DNA expressions are minimal, i.e.,
have the shortest length among DNA expressions denoting the same formal DNA
molecule, and what their length is. Moreover, there may be different minimal
DNA expressions denoting the same formal DNA molecule. We calculate the
number of these minimal DNA expressions. Finally, we give a characterization
of minimal DNA expressions, which makes it easy to check whether or not a
given DNA expression is minimal.

Due to space limitations, we omit the formal proofs of the results we present in
this paper. For some results, however, we will provide an intuitive argumentation.
The proofs can be found in [Van Vliet, 2004].

2 N -Words and Formal DNA Molecules

The letters A, C, G and T, denoting the four nucleotides that a DNA molecule
consists of, are also important building blocks of our language. We use N to
denote this alphabet: N = {A, C, G, T}. The elements of N are called N -
letters. A non-empty string over N is called an N -word.

For an N -word α, c(α) is the element-wise (non-reversed) Watson-Crick com-
plement of α. For example, c(ACATG) = TGTAC.

The semantical basis of our formal language are formal DNA molecules.
Formal DNA molecules are strings over the set A�� = A+ ∪A− ∪A± ∪ {

�
, �},

where A+ =
{(

A
−
)
,
(

C
−
)
,
(
G
−
)
,
(

T
−
)}

, A− =
{(−

A

)
,
(−

C

)
,
(−
G

)
,
(−

T

)}
and A± ={(

A
T

)
,
(

C
G

)
,
(
G
C

)
,
(
T
A

)}
. The elements of A+∪A−∪A± are called A-letters. The

elements of A+ and A− correspond to gaps in the lower strand and the upper
strand, respectively. The symbols � and � are called nick letters. The upper nick



Combinatorial Aspects of Minimal DNA Expressions 377

letter � represents a nick in the upper strand of the DNA molecule; the lower
nick letter � represents a nick in the lower strand.

Not all strings over A�� are formal DNA molecules. We impose three natu-
ral conditions on the strings, which, among others, prevent the DNA molecule
represented from ‘falling apart’.

Definition 1. A formal DNA molecule is a string X = x1x2 . . . xr with r ≥ 1
and for i = 1, . . . , r, xi ∈ A��, satisfying

• if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),
if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

• x1, xr /∈ {�
, �},

• if xi ∈ {
�
, �}, then xi−1, xi+1 ∈ A± (i = 2, 3, . . . , r − 1).

A formal DNA molecule that does not contain nick letters, is called nick free.
Examples of formal DNA molecules are

X1 =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
C

)
, (1)

X2 =
(
A
T

)
�
(

C
G

)(
A
T

)
�

(
T
A

)(
G
−
)
, and (2)

X3 =
(−

T

)(
C
G

)(
A
−
)(

T
−
)(

G
C

)
. (3)

Both X1 and X3 are nick free. We assume that if two nucleotides in the same
strand are separated by a gap (as is the case for the G and the C in the lower
strand of X3), then they are not connected by a (long) phosphodiester bond.

The following strings over A�� are no formal DNA molecules, because they
violate one of the three conditions from Definition 1.

X ′
1 =

(−
T

)(−
G

)(
A
−
)(

T
A

)(
G
C

)
,

X ′
2 = �

(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
−
)
, and

X ′
3 =

(−
T

)
�
(

C
G

)(
A
−
)

�
(

T
−
)(

G
C

)
.

Often, we simplify the notation of a formal DNA molecule. Let X = x1 . . . xr

for some r ≥ 1 be a formal DNA molecule. If two or more consecutive symbols
of X are elements of A+, say xi . . . xj =

(
ai

−
)

. . .
(
aj

−
)

with 1 ≤ i < j ≤ r,

then we may substitute xi . . . xj by
(
ai . . . aj

−
)
. Analogously, we may substitute

consecutive elements of A− and consecutive elements of A±. When we simplify
the notation of a formal DNA molecule, we do not modify the formal DNA
molecule itself. In particular, it remains a string over A��.

A non-empty sequence of elements of A+ is called an upper A-word . Anal-
ogously, we have a lower A-word (with elements of A−) and a double A-word
(with elements of A±). These notions are needed to define the decomposition of
a formal DNA molecule:



378 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

Definition 2. Let X be a formal DNA molecule. The decomposition of X is the
sequence x′

1, . . . , x
′
k of k ≥ 1 non-empty strings over A�� such that

• X = x′
1 . . . x′

k,
• for i = 1, . . . , k, x′

i is either an upper A-word, or a lower A-word, or a double
A-word, or a nick letter, and

• for i = 1, . . . , k − 1, if x′
i is an upper A-word, then x′

i+1 is not an upper
A-word, and analogously for lower A-words and double A-words.

Hence, the decomposition of X cannot be simplified any further. For the ease of
notation, we will in general write x′

1 . . . x′
k instead of x′

1, . . . , x
′
k.

For example, the decompositions of the formal DNA molecules X1, X2 and
X3 are

X1 =
(
ACATG
TGTAC

)
(with k = 1),

X2 =
(
A
T

)
�
(
CA
GT

)
�

(
T
A

)(
G
−
)

(with k = 6), and

X3 =
(−

T

)(
C
G

)(
AT
−
)(

G
C

)
(with k = 4).

If x′
1 . . . x′

k for some k ≥ 1 is the decomposition of a formal DNA molecule X,
then the substrings x′

i are called the components of X. For i = 1, . . . , k, if x′
i is

an upper A-word (lower A-word or double A-word), then it is called an upper
component (lower component or double component , respectively) of X. If x′

i is
either an upper component or a lower component, then we may also call it a
single-stranded component of X.

Because, by definition, an upper component of a formal DNA molecule X
cannot be followed by a lower component and vice versa, and nick letters occur-
ring in X must be preceded and followed by a double component, we have

Lemma 3. For each formal DNA molecule X, the decomposition of X is an
alternating sequence of double components on the one hand and other types of
components on the other hand.

For example, the decomposition of X2 consists of a double component, an upper
nick letter, a double component, a lower nick letter, a double component and an
upper component, respectively.

We define three functions on formal DNA molecules. Let X = x1 . . . xr for
some r ≥ 1 be a formal DNA molecule. Then L(X) = x1 and R(X) = xr. Hence,
the functions L and R give the leftmost symbol and the rightmost symbol of a
formal DNA molecule. Further, |X|A counts the A-letters occurring in X. For

example, L(X2) =
(
A
T

)
, R(X2) =

(
G
−
)

and |X2|A = 5.

3 DNA Expressions

The elements of our language are called DNA expressions. The semantics of a
DNA expression E is a formal DNA molecule, denoted by S(E). In this paper,



Combinatorial Aspects of Minimal DNA Expressions 379

S
(〈
↑ C

G
AT GC

CG

� 〉)
= CATGC

G CG
S
(〈
↑ A

T
T
A

〉)
= AT

TA�
(a)

S
(〈
↓T CATGC

G CG
AT
TA�

〉)
= CATGCAT

TG CGTA

�
(b)

S
(〈
/ CATGCAT

TG CGTA

� 〉)
= ACATGCAT

TGTACGTA

�
(c)

Fig. 1. Examples of (a) the effect of the operator ↑; (b) the effect of the operator ↓;
(c) the effect of the operator �

we will describe the syntax and semantics of a DNA expression in words and by
means of examples. For a formal definition, we refer to [Van Vliet, 2004]. One
can also define a context-free grammar that generates the DNA expressions.

DNA expressions are the result of applying the three operators ↑, ↓ and /
to basic N -words. In general, the operator ↑ can have any number n ≥ 1 ar-
guments ε1, . . . , εn, which may be N -words or DNA expressions. The result of
applying ↑ to these arguments is the DNA expression 〈↑ ε1 . . . εn〉. It is called an
↑-expression. Analogously, we may have a ↓-expression 〈↓ ε1 . . . εn〉. The opera-
tor / can have only one argument ε1, which may again be an N -word or a DNA
expression, yielding an /-expression 〈/ ε1〉.

Hence, the set of all DNA expressions is a language over the alphabet N ∪{↑,
↓, /, 〈 , 〉}. The length of a specific DNA expression E is defined as the number of
its symbols and is denoted by |E|. The outermost operator of a DNA expression
is (the occurrence of) the operator which has been performed last. For example,
the outermost operator of an ↑-expression is ↑. All other occurrences of operators
in a DNA expression, i.e., the occurrences in the argument(s) of the outermost
operator, are called inner occurrences.

The effect of ↑ is the following: (1) for each argument that is an N -word α, it

produces an upper A-word
(

α
−
)
, (2) it removes all upper nick letters occurring in

its arguments, and (3) it connects the upper strands of consecutive arguments.
Step (3) requires that for i = 1, . . . , n − 1, the upper strand of the formal

DNA molecule Xi corresponding to argument εi extends at least as far to the
right as the lower strand: R(Xi) must not be an element of A−. Analogously, if
Xi+1 is the formal DNA molecule corresponding to argument εi+1, then L(Xi+1)
must not be an element of A−. Otherwise, there would be a gap in the upper
strand ‘between’ Xi and Xi+1, and we would not be able to connect the upper
strands. Such natural requirements are tedious to formalize, which is why we
omit a full formal definition of DNA expressions.

Lower nick letters that occur in the arguments of ↑ are not removed. On the
contrary, if both R(Xi) and L(Xi+1) are elements of A±, then ↑ produces a
lower nick letter between Xi and Xi+1. Thus, the lower strands of consecutive
arguments are not connected.

The simplest ↑-expression is of the form 〈↑ α1〉 for an N -word α1. Its seman-

tics is the formal DNA molecule
(
α1

−
)
. Figure 1(a) shows the effect of ↑ for two

less trivial examples. For the ease of understanding, we replaced the arguments



380 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

of ↑ that are DNA expressions by pictorial representations of the corresponding
DNA molecules. The result of the operator is depicted in the same way. For ex-
ample, the first ↑-expression has three arguments: a DNA expression, an N -word
and another DNA expression, respectively.

On the other hand, although the DNA molecules corresponding to ACAT
TGT

and G
AC

have matching sticky ends,
〈
↑ ACAT

TGT
G

AC

〉
is not a DNA expres-

sion, because L(
(−
A

)(
G
C

)
) ∈ A−. Hence, the operator ↑ does not account for

annealing. Analogously,
〈
↑ AC

TGT
G

AC

〉
is not a DNA expression.

The effect of the operator ↓ is analogous to that of ↑. However, instead of
upper A-words, upper nick letters and upper strands, we must read lower A-
words, lower nick letters and lower strands, respectively. For step (3), we also
have analogous requirements. The effect of ↓ is illustrated in Fig. 1(b).

Finally, the operator / complements its argument: it provides a complemen-
tary nucleotide for every nucleotide that is not yet complemented. Each nu-
cleotide added is connected to its direct neighbours. The operator does not intro-
duce or remove nick letters. The argument of / may be any N -word or any DNA
expression. If the argument is an N -word α1, then it is interpreted as 〈↑ α1〉.
Hence, S(〈/ α1〉) =

(
α1

c(α1)

)
.

Figure 1(c) illustrates the effect of /. A complete DNA expression denoting
the formal DNA molecule from this example is

E = 〈/ 〈↓ T 〈↑ 〈/ C〉AT 〈↓ 〈/ G〉 〈/ C〉〉〉 〈↑ 〈/ A〉 〈/ T〉〉〉〉 . (4)

It is the result of the step-by-step construction from Fig. 1.
We say that a formal DNA molecule X is expressible, if there exists a DNA

expression E with S(E) = X. Unfortunately, there exist formal DNA molecules
that are not expressible. In fact, we have:

Theorem 4. A formal DNA molecule is expressible, if and only if it does not
both contain upper nick letters and lower nick letters.

Hence, the formal DNA molecules X1 and X3 from (1) and (3) are express-
ible, for example by DNA expressions 〈/ ACATG〉 and 〈↓ T 〈↑ 〈/ C〉AT 〈/ G〉〉〉,
respectively. X2, however, is not expressible.

4 The Length of a DNA Expression

Different DNA expressions may denote the same formal DNA molecule. Such
DNA expressions are called equivalent . In fact, for each expressible formal DNA
molecule X, there exist infinitely many DNA expressions denoting X. For ex-
ample, it is easily verified that if E is an ↑-expression denoting X, then so is
〈↑ E〉. By repeating the construction, adding three symbols (two brackets and
an operator) at a time, we can find arbitrarily long, equivalent DNA expressions.
Hence, there is no maximal length for DNA expressions denoting a given formal



Combinatorial Aspects of Minimal DNA Expressions 381

DNA molecule. There does, however, exist a minimal length. We will examine
this length for all types of expressible formal DNA molecules and we will also
describe the DNA expressions that achieve this length. Before we do so, we make
an elementary observation:

Lemma 5. Let E be a DNA expression denoting a formal DNA molecule X,
and let p be the number of operators occurring in E. Then |E| = 3 · p + |X|A.

Because each occurrence of an operator is accompanied by an opening bracket
and a closing bracket, the term 3 · p accounts for the operators and the brackets
in E. Consequently, |X|A counts the N -letters occurring in E. Note that this
number only depends on X, and not on the specific DNA expression E.

Indeed, for the DNA expression E from (4), the number p of operators is 10,
the number of A-letters in X is 8 and |E| = 3 · 10 + 8 = 38.

5 Lower Bounds for the Length of a DNA Expression

We first examine lower bounds for the length of a DNA expression E denoting a
formal DNA molecule X. These lower bounds will be expressed in terms of some
simple counting functions of X. We now introduce these counting functions.

It follows from the definition of a DNA expression that both upper com-
ponents and lower nick letters are the result of an occurrence of the operator
↑. Therefore, these type of components are called ↑-components . Analogously,
lower components and upper nick letters are called ↓-components .

Recall that the decomposition of a formal DNA molecule is an alternating se-
quence of double components on the one hand and other types of components on
the other hand. If we disregard the double components, then we only have a se-
quence of other types of components, which are ↑-components and ↓-components.
Consecutive ↑-components form a (maximal) series of ↑-components. Analo-
gously, we have maximal series of ↓-components.

Definition 6. Let X be a formal DNA molecule.

• T↑(X) is the number of maximal series of ↑-components of X.
• T↓(X) is the number of maximal series of ↓-components of X.
• n�(X) is the number of double components of X.

We illustrate this definition by the formal DNA molecule X depicted in Fig. 2.
The αi’s occurring in this picture denote the N -words determining the upper,
lower and double components of X. The ↑-components of X are

(
α4

−
)

(series

1),
(
α8

−
)

and
(
α10

−
)

(series 2), and
(
α13

−
)

(series 3). The ↓-components of X are

the first and the second upper nick letter (series 1),
(−
α6

)
(series 2), the third

upper nick letter (series 3) and the fourth upper nick letter and
( −
α16

)
(series

4). Hence, T↑(X) = 3 and T↓(X) = 4. Further, n�(X) = 10.
Intuitively, T↑(X) counts the transitions (from ↓-components) to ↑-compo-

nents. It requires an occurrence of the operator ↑ to achieve this transition.



382 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

� � � �α1 α2 α3 α4 α5

α6

α7 α8 α9 α10 α11 α12 α13 α14 α15

α16

Fig. 2. Pictorial representation of a formal DNA molecule containing upper nick letters

There is, of course, an analogous interpretation of T↓(X). Note that, unless a
formal DNA molecule X only consists of a double component, hence, unless
X =

(
α1

c(α1)

)
for an N -word α1, either T↑(X) > 0, or T↓(X) > 0 (or both).

Because maximal series of ↑-components and maximal series of ↓-components
alternate in a formal DNA molecule, we have

Lemma 7. For each formal DNA molecule X, T↑(X)−1 ≤ T↓(X) ≤ T↑(X)+1.

We can now formulate lower bounds on the lengths of DNA expressions:

Theorem 8. Let E be a DNA expression, and let X = S(E).

1. If E is an ↑-expression, then |E| ≥ 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.
2. If E is a ↓-expression, then |E| ≥ 3 + 3 · T↑(X) + 3 · n�(X) + |X|A.
3. If E = 〈/ α1〉 for an N -word α1, then |E| = 3 · n�(X) + |X|A.
4. If E = 〈/ E1〉 for a DNA expression E1, then |E| ≥ 3 + 3 · n�(X) + |X|A.

The terms 3+3·T↓(X) and 3+3·T↑(X) occurring in the first two lower bounds
correspond to occurrences of the two operators ↑ and ↓. The term 3 · n�(X)
occurring in all lower bounds corresponds to occurrences of the operator /, which
are needed to obtain the double components of X. For example, an ↑-expression
denoting a formal DNA molecule X contains at least (1+T↓(X)) occurrences of
↑ and ↓ together, and at least n�(X) occurrences of /.

The symmetry between Claims 1 and 2 is due to the symmetrical effects of
the operators ↑ and ↓. In later results, we will refer to this symmetry rather than
fully stating a symmetrical claim.

6 Minimal DNA Expressions for a Nick Free Molecule

We are not just interested in lower bounds on the lengths of DNA expressions;
we also want to be able to construct the shortest DNA expressions denoting a
given formal DNA molecule. A DNA expression E is called minimal , if for every
equivalent DNA expression E′, |E′| ≥ |E|.

We first consider nick free formal DNA molecules. These consist only of upper
components, lower components and double components. By Theorem 4, each nick
free formal DNA molecule is expressible.

Theorem 9. Let X be a nick free formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then the only minimal DNA expression

denoting X is E = 〈/ α1〉, with length |E| = 3 + |X|A.
2. If T↑(X) = T↓(X) ≥ 1, then each minimal DNA expression E denoting X

is either an ↑-expression or a ↓-expression and has length



Combinatorial Aspects of Minimal DNA Expressions 383

α1 α2

α3

α4

α5

α6 α7 α8

α9

α10 α11 α12 α13 α14

α15

α16 α17 α18︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

Fig. 3. Pictorial representation of a nick free formal DNA molecule X with single-

stranded components. The lower components have been partitioned in submolecules

X1 and X2 (see the construction below Theorem 9)

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A
= 3 + 3 · T↑(X) + 3 · n�(X) + |X|A.

3. If T↑(X) > T↓(X), then each minimal DNA expression E denoting X is an
↑-expression and has length

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

4. If T↓(X) > T↑(X), then . . . (symmetric to Claim 3).

For nick free formal DNA molecules with at least one single-stranded com-
ponent, we did not mention how to construct the minimal DNA expressions. We
will describe this construction now, in an intuitive way, by means of an example.

Consider the nick free formal DNA molecule X depicted in Fig. 3, for which
T↑(X) = 4, T↓(X) = 3 and n�(X) = 9. Because T↑(X) > T↓(X), a minimal DNA

expression denoting X must be an ↑-expression. Upper components
(
αi

−
)

result

when ↑ has arguments that are N -words αi, and double components
(

αi

c(αi)

)
of X can be produced efficiently by arguments of the form 〈/ αi〉. The lower
components of X, however, require a special treatment. We partition the lower
components of X in submolecules X1, X2, . . . , Xr for some r ≥ 1, which, if possi-
ble, start with a double component preceding a maximal series of ↓-components
and end with a double component succeeding a maximal series of ↓-components.
If the first component of X is a ↓-component, then X1 starts with this compo-
nent. Analogously, Xr may end with a ↓-component.

For our nick free formal DNA molecule X, we may take r = 2 and

X1 =
(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(−
α5

)(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)(−
α9

)(
α10

c(α10)

)
,

X2 =
(

α14

c(α14)

)( −
α15

)(
α16

c(α16)

)
(see also Fig. 3). We now recursively determine minimal DNA expressions E1 and
E2 denoting X1 and X2, respectively. These minimal DNA expressions become
arguments of the ↑-expression E we are constructing, together with N -words αi

and /-expressions 〈/ αi〉 for the upper components and double components of X
which are neither in X1, nor in X2:

E = 〈↑ α1E1α11 〈/ α12〉α13E2α17 〈/ α18〉〉 .



384 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

Because T↑(X1) = 1 < 2 = T↓(X1), E1 must be a ↓-expression, which is con-
structed in an analogous way: the only upper component of X1 is ‘partitioned’
in the submolecule X1,1 =

(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)
. We determine a minimal DNA

expression E1,1 for X1,1, which is, in turn, an ↑-expression:

E1,1 = 〈↑ 〈/ α6〉α7 〈/ α8〉〉 .
We then get

E1 = 〈↓ 〈/ α2〉α3 〈/ α4〉α5 〈↑ 〈/ α6〉α7 〈/ α8〉〉α9 〈/ α10〉〉 .
The minimal DNA expression E2 is relatively easy to construct:

E2 = 〈↓ 〈/ α14〉α15 〈/ α16〉〉 .
Consequently,

E = 〈↑ α1 〈↓ 〈/ α2〉α3 〈/ α4〉α5 〈↑ 〈/ α6〉α7 〈/ α8〉〉α9 〈/ α10〉〉
α11 〈/ α12〉α13 〈↓ 〈/ α14〉α15 〈/ α16〉〉 α17 〈/ α18〉 〉 . (5)

Indeed,
|E| = 39 + |X|A = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

All minimal DNA expressions denoting X are constructed in this way. The result
only depends on the way that lower components (for a minimal ↑-expression) or
upper components (for a minimal ↓-expression) are partitioned in submolecules
X1, . . . , Xr. The construction (of one minimal DNA expression) takes a time
linear in the length of X.

The construction of a minimal ↑-expression for a formal DNA molecule X
with T↑(X) = T↓(X) ≥ 1 (see Theorem 9(2)) proceeds along the same lines.

7 Minimal DNA Expressions for a Molecule with Nicks

To construct minimal DNA expressions for an expressible formal DNA molecule
X containing nick letters, we first decompose X into nick free pieces and nick
letters. We call the result the nick free decomposition of X.

Consider, for example, the formal DNA molecule X depicted in Fig. 4. This
molecule contains three lower nick letters and no upper nick letters. The nick
free decomposition of X is Z1�Z2�Z3�Z4, where

Z1 =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
,

Z2 =
(

α5

c(α5)

)(−
α6

)(
α7

c(α7)

)(
α8

−
)(

α9

c(α9)

)( −
α10

)(
α11

c(α11)

)
,

Z3 =
(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)(
α15

−
)(

α16

c(α16)

)
,

Z4 =
(

α17

c(α17)

)
.

A DNA expression E is called operator-minimal , if for every equivalent DNA ex-
pression E′ with the same outermost operator, |E′| ≥ |E|. For example, consider
the formal DNA molecule Z2, for which T↑(Z2) = 1, T↓(Z2) = 2 and n�(Z2) = 4.
The ↑-expression



Combinatorial Aspects of Minimal DNA Expressions 385

α1 α2

α3

α4 α5

α6

α7 α8 α9

α10

α11 α12 α13 α14 α15 α16 α17

� � �

Z1︷ ︸︸ ︷ Z2︷ ︸︸ ︷ Z3︷ ︸︸ ︷ Z4︷︸︸︷
Fig. 4. Pictorial representation of a formal DNA molecule X containing lower nick

letters. The nick free decomposition of X is Z1�Z2�Z3�Z4

E2 = 〈↑ 〈↓ 〈/ α5〉α6 〈/ α7〉〉α8 〈↓ 〈/ α9〉α10 〈/ α11〉〉〉 ,
which denotes Z2 and has length

|E2| = 21 + |Z2|A = 3 + 3 · T↓(Z2) + 3 · n�(Z2) + |Z2|A,

is operator-minimal, because by Theorem 8(1), there can be no shorter ↑-expres-
sion denoting Z2.

However, because T↓(Z2) > T↑(Z2), E2 is not minimal. By Theorem 9(4),
each minimal DNA expression E′

2 denoting Z2 is a ↓-expression and has length

|E′
2| = 3 + 3 · T↑(Z2) + 3 · n�(Z2) + |Z2|A = 18 + |Z2|A.

We are in particular interested in operator-minimal ↑-expressions and ↓-expres-
sions denoting nick free formal DNA molecules. These operator-minimal DNA
expressions appear to be constructed in exactly the same way as the minimal
↑-expressions and ↓-expressions for nick free formal DNA molecules, which we
have seen in the previous section. The only difference is that operator-minimal ↑-
expressions and ↓-expressions can be constructed for every nick free formal DNA
molecule, and not just for formal DNA molecules X satisfying certain conditions
on T↑(X) and T↓(X).

We can now describe the minimal DNA expressions denoting expressible for-
mal DNA molecules containing nick letters. We only give the formulation for
molecules with lower nick letters, as the formulation for the case with upper
nick letters is completely analogous. Note that by definition, there do not exist
↓-expressions that denote a formal DNA molecule containing lower nick letters.

Theorem 10. Let X be an expressible formal DNA molecule which contains at
least one lower nick letter �, and let Z1�Z2� . . . �Zm for some m ≥ 2 be the
nick free decomposition of X.

For h = 1, . . . , m, let Eh be an operator-minimal ↑-expression denoting
Zh and let the string Êh be the sequence of the arguments of Eh. Then E =〈
↑ Ê1 . . . Êm

〉
is a minimal DNA expression denoting X and

|E| = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

Each minimal DNA expression denoting X is constructed in this way.

We return to the formal DNA molecule X from Fig. 4, for which T↓(X) =
3 and n�(X) = 10. We already established the nick free decomposition
Z1�Z2�Z3�Z4 of X and considered an operator-minimal ↑-expression E2 de-
noting Z2. It is not difficult to also construct operator-minimal ↑-expressions for
Z1, Z3 and Z4:



386 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

E1 = 〈↑ α1 〈↓ 〈/ α2〉α3 〈/ α4〉〉〉 ,
E3 = 〈↑ 〈/ α12〉α13 〈/ α14〉α15 〈/ α16〉〉 ,
E4 = 〈↑ 〈/ α17〉〉 .

The corresponding minimal DNA expression denoting the entire formal DNA
molecule X is

E = 〈↑ α1 〈↓ 〈/ α2〉α3 〈/ α4〉〉 〈↓ 〈/ α5〉α6 〈/ α7〉〉α8 〈↓ 〈/ α9〉α10 〈/ α11〉〉
〈/ α12〉α13 〈/ α14〉α15 〈/ α16〉 〈/ α17〉 〉 .

Indeed,
|E| = 42 + |X|A = 3 + 3 · T↓(X) + 3 · n�(X) + |X|A.

Also this construction requires linear time.

8 The Number of Minimal DNA Expressions

In principle, there may be many different minimal DNA expressions which denote
the same formal DNA molecule. This is due to the different partitionings of lower
or upper components that we can choose for the construction of an (operator-)-
minimal ↑-expression or ↓-expression denoting a nick free formal DNA molecule.

Let X be a nick free formal DNA molecule. There appears to be an elegant bi-
jection between (operator-)minimal ↑-expressions E denoting X and sequences
of T↓(X) well-nested pairs of brackets. This sequence is obtained from E by
removing all symbols from E except the brackets corresponding to inner occur-
rences of the operators ↑ and ↓. The result for the minimal ↑-expression from (5)
is 〈〈〉〉 〈〉, which is indeed a sequence of T↓(X) = 3 well-nested pairs of brackets.

The number of such sequences is one of the many combinatorial interpreta-
tions of the well-known Catalan numbers (see [Stanley, 1999]). For p ≥ 0, there

exist Cp = 1
p+1

(
2p
p

)
sequences of p well-nested pairs of brackets.

Now, for an expressible formal DNA molecule X, let nmin(X) be the number
of different minimal DNA expressions denoting X. We have:

Theorem 11. Let X be an expressible formal DNA molecule.

1. If X is 〈/ α1〉 for an N -word α1, then nmin(X) = 1.
2. If X is nick free and T↑(X) = T↓(X) = p with p ≥ 1, then nmin(X) = 2 ·Cp.

3. If X is nick free and T↑(X) > T↓(X) = p with p ≥ 0, then nmin(X) = Cp.

4. If X is nick free and T↓(X) > T↑(X) = p with p ≥ 0, then . . . (symmetric to
Claim 3).

5. If X contains at least one lower nick letter, then let Z1�Z2� . . . �Zm for
some m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . , m,
ph = T↓(Zh). Then nmin(X) = Cp1 × · · · × Cpm

.

6. If X contains at least one upper nick letter, then . . . (symmetric to Claim 5).



Combinatorial Aspects of Minimal DNA Expressions 387

9 Characterization of Minimal DNA Expressions

When we want to decide whether or not a given DNA expression E is minimal,
we can determine its semantics X = S(E), look up the length of a minimal
DNA expression denoting X and compare this to the length |E| of E. There is,
however, also a direct way, based on the following characterization:

Theorem 12. A DNA expression E is minimal, if and only if

• each occurrence of the operator / in E has as its argument an N -word α
(i.e., not a DNA expression),

• and no occurrence of the operator ↑ in E has an argument that is an ↑-
expression, and no occurrence of the operator ↓ in E has an argument that
is a ↓-expression,

• and unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments,

• and for each inner occurrence of an operator ↑ or ↓ in E, the arguments are
N -words and DNA expressions, alternately,

• and for each inner occurrence of an operator ↑ or ↓ in E,
− the first argument is either an N -word or an /-expression,
− and the last argument is either an N -word or an /-expression,

• and if the outermost operator of E is ↑ or ↓, then
− either it has two consecutive arguments which are DNA expressions,
− or its first argument is an N -word or an /-expression,
− or its last argument is an N -word or an /-expression.

For an arbitrary DNA expression E, we can verify these six properties in a
time linear in the length of E.

10 Conclusions and Directions for Future Research

We have introduced DNA expressions as a formal notation for DNA molecules
that may contain nicks and gaps. There exist, however, (formal) DNA molecules
with nicks that cannot be represented. For each expressible formal DNA
molecule, we have described the minimal DNA expression(s) denoting it and we
have determined the number of such minimal DNA expressions. For almost all
types of expressible formal DNA molecules, the number of minimal DNA expres-
sions can be expressed in terms of the Catalan numbers. Finally, we have charac-
terized minimal DNA expressions by six properties which can easily be verified.

Because each expressible formal DNA molecule can be denoted by infinitely
many DNA expressions, one may ask for a normal form: a well-defined set of
properties such that for each expressible formal DNA molecule X, there is a
unique DNA expression denoting X and satisfying those properties. And given
a normal form, one may ask for an algorithm that, for each DNA expression,
determines the equivalent DNA expression in normal form. We already have a
normal form and a corresponding algorithm for nick free formal DNA molecules.



388 R. van Vliet, H.J. Hoogeboom, and G. Rozenberg

We also have ideas for another normal form and a corresponding algorithm,
which applies to all expressible formal DNA molecules. A nice feature of this
new normal form is that each DNA expression satisfying it is minimal.

One may also consider a new set of operators to construct DNA expressions.
The result may be that each formal DNA molecule becomes expressible, or that
two formal DNA molecules with complementary sticky ends can anneal. It would
be desirable/interesting to find extensions such that the new DNA expressions
could be used to denote DNA molecules with a variety of other ‘imperfections’,
such as, e.g., hairpin loops and circular strands.

References

L.M. Adleman: Molecular computation of solutions to combinatorial problems, Science
266 (1994), 1021-1024.

D. Boneh, C. Dunworth, R.J. Lipton: Breaking DES using a molecular computer, DNA
based computers – Proceedings of a DIMACS workshop (R.J. Lipton, E.B. Baum,
eds.), American Mathematical Society, Providence, RI (1996), 37-66.

J. Chen, J. Reif (eds.): DNA computing – 9th International workshop on DNA based
computers, LNCS 2943, Springer-Verlag, Berlin (2004).

M. Daley, L. Kari, I. McQuillan: Families of languages defined by ciliate bio-operations,
Theoretical Computer Science 320(1) (2004), 51-69.

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in living
cells – Gene assembly in ciliates, Springer-Verlag, Berlin (2004).

M. Hagiya, A. Ohuchi (eds.): DNA computing – 8th International workshop on DNA-
based computers, LNCS 2568, Springer-Verlag, Berlin (2003).

T. Head: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology 49(6) (1987),
737-759.

T. Head, Gh. Păun, D. Pixton: Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination, Handbook of formal languages (G.
Rozenberg, A. Salomaa, eds.), Vol. 2, Springer-Verlag, Berlin (1997), 295-360.

L. Kari, Gh. Păun, A. Salomaa: The power of restricted splicing with rules from a
regular language, Journal of Universal Computer Science 2(4) (1996), 224-240.

L.F. Landweber, L. Kari: The evolution of cellular computing: nature’s solution to a
computational problem, Proceedings of the fourth international meeting on DNA
based computers, BioSystems 52 (1999), 3-13.

Z. Li: Algebraic properties of DNA operations, Proceedings of the fourth international
meeting on DNA based computers, BioSystems 52 (1999), 55-61.

Gh. Păun, G. Rozenberg, A. Salomaa: DNA computing – New computing paradigms,
Springer-Verlag, Berlin (1998).

R. P. Stanley: Enumerative combinatorics, Vol. 2, Cambridge University Press, Cam-
bridge (1999).

R. van Vliet: Combinatorial aspects of minimal DNA expressions (ext.), Technical
Report 2004-03, Leiden Institute of Advanced Computer Science, Leiden University
(2004), see www.liacs.nl/home/rvvliet/mindnaexpr.html.



A Design for Cellular Evolutionary Computation
by Using Bacteria

Kenichi Wakabayashi and Masayuki Yamamura

Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8502, Japan

wakabayashi@es.dis.titech.ac.jp,

http://www.es.dis.titech.ac.jp

Abstract. In this paper, we propose a general idea of Cellular Evolu-
tionary Computation (CEC). CEC is Evolutionary Computation that
solves the optimization problems with real DNA molecules and cells.
The easiest means of cellular evolution is achieved by adding some genes
to the main frame of gene network in the cell. However, in some cases
it is necessary to optimize the gene parameters to achieve a desirable
gene network output. We are working toward a realization of Evolu-
tionary Computation algorithm to deal with the network optimization
problems. We also suggest a novel method to realize a crossover opera-
tor for CEC via homologous recombination system within bacterial cells.
Our ultimate objective of this study is the achievement of gene network
evolution of the cell. We suggest an idea of cell-based computing that
the cell-related problems are addressed by their related cells.

1 Introduction

Recently, various DNA-based computational models were proposed. GA-like ap-
proaches were also developped [1, 2, 3]. In vitro molecular evolution that is also
considered as a computation that mainly targetted at evolution of peptides,
RNA, and DNA is commonly studied in biotechnology. A typical scheme of
molecular evolution is comprised of several steps - a step of generating mutants,
evaluating phenotype of each mutant, and selecting an elite among a population.

The first step is designed to generate a variety to the nucleotide sequences.
How to design this step determines the search ability of the system. The tradi-
tional approach is classified into a local search that is based on generating several
single-base substitutions in the polynucleotides. The crossover methods includ-
ing DNA Shuffling provide greater variety to a population [4]. Block Shuffling
provides diversified library that complies with global search requirements like
Genetic Algorithm (GA) [5]. In the steps of evaluation and selection, activities
of molecules are rated and we sort an elite through thousands of molecules. As
for the peptide molecules, we need to know the corresponding DNA sequence
of selected molecule. Therefore, various display methods are developed to create
peptide-nucleic acid complex [6, 7, 8].

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 389–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



390 K. Wakabayashi and M. Yamamura

There are various works and some of them appear to be succeeding in ac-
tually progressing molecular activity. Some works modeled an operation after
evolutionary computation in sillico [9].

In contrast, research of directed cellular evolution is less commonly studied.
Recent work by Yokobayashi et al. described about directed evolution of ge-
netic circuit in the cellular environment [10]. In the cell, a vast array of genes
and their products keep interactions with each other and with other substances
[11]. The interactions between genes and molecules form a huge network. When
trying to add new genes into the cell, we need to devote attention to the in-
teractions between new genes and the preexisting Gene Network. Those newly
introduced genes sometimes have undesirable effects to the Gene Network. The
same applies to the Gene Network that negatively affects the newly introduced
genes. Since the effects are sometimes serious and it is not always easy to predict,
we should optimize gene expressions by evolutionary computational approach.
Cellular evolution is achieved by the adaptive strategy.

2 Design of Cellular Evolutionary Computation

The approach of CEC is simillar to Genetic Algorithm on some level (Figure
1). At first, a plasmid library with a large number of plasmids is constructed
(initial population). The plasmids are introduced into bacterial cells. In the cell,
the plasmids exchange their information by homologous recombination reaction
processed by the host cell (crossover). The cells are spread on an agarose plate.

Plasmids

Introduction into bacteria

Library

Crossover

(Homologous Recombination)

Selection

Amplification

Extraction

�

Fig. 1. Scheme Design of CEC



A Design for Cellular Evolutionary Computation by Using Bacteria 391

Bacterial cell colonies are picked up according to their fitness (selection). The
plasmids are then amplified, extracted and returned to the library. An opti-
mization of gene network is accomplished by applying this procedure over many
generations.

2.1 Plasmid DNA Memory for CEC

Coding. A pair of plasmids, male and female, is constructed (Figure 2(a)). Sex-
uality does not indicate a class of F plasmid, it is merely theoretically assumed
in this section. The male and female plasmids are equivalent and interchange-
able except for the region of antibiotic resistance gene. A plasmid memory is
composed of an array of genes. All plasmids have same set of genes and only
these promoter regions are variable. Various promoter sequences can be ligated
into the promoter regions of the genes by substituting its native sequences. A
protein-encoding region is kept constant in order that homologous recombina-
tion reaction occurs between identical sequences of different plasmids in the host
cell.

G
en

e 1

Gene 2

Gene NCmR

�
�
�

G
en

e 1

Gene 2

Gene NTcR

�
�
�

( 101 bp ) ( 103 bp )

Protein Encoding RegionPromoter

Variable
Constantmale male female female 

(a)

(b)

Fig. 2. Configuration of Plasmid DNA Memory

2.2 Initial Population

At the beginning of computation, CEC needs at least several number of plasmids.
It would be enough to construct plasmids as many number as the variety of
given promoter sequences. It is preferable to even out the proportion of male
and female.

2.3 Crossover

Phase 1. The plasmid memories are introduced to the E. coli by the calcium
chloride methods. Cells are cultured under presence of both antibiotic substances
(Tc/Cm). All cells except for ones having both male and female plasmids are



392 K. Wakabayashi and M. Yamamura

killed by the antibiotic substances. Crossover between male and female plasmid is
carried out by the host cells in this period. One point crossover between circular
plasmids results in generating a double length fusion plasmid. After overnight
incubation, all plasmids are extracted from cells and recovered into a test tube.

Phase 2. Plasmids are introduced to the newly prepared E. coli. Cells are
incubated under presence of both antibiotic substances (Tc/Cm). The fusion
plasmids would be dominant at this point. In this period, another one point
crossover is carried out on the fusion plasmids at a certain frequency. This second
crossover occurs between the homologous sequences of male and female on the
same fusion plasmid that results in generating a pair of single size plasmids.
After over night incubation, all plasmids are extracted and recovered into a test
tube.

Phase 3. This step is designed to delete residual fusion plasmids from the solu-
tion. The extracts are split into two fractions and digested by different restriction

+EcoRI +EcoRV

1

2

3

Introduction

Antibiotic Selection

Amplification
/Recombination

Extraction

Introduction

Antibiotic Selection

Amplification
/Recombination

Extraction

Enzymatic
Digestion

in vitro

in vivo

male

female

Phase

Fig. 3. Procedure of Crossover Operation



A Design for Cellular Evolutionary Computation by Using Bacteria 393

enzymes EcoRV and EcoRI, respectively. EcoRV cuts a restriction site on the
antibiotic resistance gene TcR. EcoRI cuts a site on CmR gene. Double-size fu-
sion plasmid could be digested in both case. After deactivation of the enzymes,
two fractions are combined. Linearized plasmids by these enzymes are dissolved
by the nuclease activity of E. coli in the next step.

2.4 Selection

The plasmids are introduced to the cell again. The transformed cells are dis-
persed to the LB agarose plate and incubated overnight. Then, the cells form
colonies on the plate. All colonies are rated according to an objective fitness
function. The criterion for evaluation on CEC is something like an efficiency of
cellular function, a reaction activity of enzymes, a cell viability, a proliferation
rate, and the like. The evaluation methods vary according to individual cases.
The colonies making high scores are picked up and multiplied in the LB fluid
culture.

2.5 Library Operation

The Plasmid Library keeps plasmids of older generations with wide distribution.
To avoid an early convergence, the selected plasmids are combined to a plasmid
library at the final step of each generation.

3 Preliminary Experiment

3.1 Procedures

Plasmid Construction. To confirm a feasibility of the crossover model, we
created a pair of plasmids with two bits of memories (Figure 4a). pBR-x1y0 and
pBR-x0y1 indicating [1, 0] and [0, 1] as the initial state were constructed from a
plasmid pBR328. In order to simplify the detection process, the memory states
were associated with sensitivity to antibiotic substances and different restriction
sites (Table 1). pBR-x0y1 is resistant to chloramphenicol (CmR) and sensitive
to tetracycline (TcS). pBR-x1y0 is sensitive to Cm (CmS) and resistant to Tc
(TcR). Each recognition sequence of restriction endonuclease BglII and BlnI was
integrated in the region x1 and y1, respectively. x0 and y0, a part of native
sequence CmR and TcR, contains restriction site of EcoRI and EcoRV.

Table 1. Memory Sequences and associated phenotypes

Sequence Length Restriction Antibiotic
(bp) Site Resistance

x0 509 EcoRI CmR

x1 207 BglII CmS

y0 499 EcoRV TcR

y1 153 BlnI TcS



394 K. Wakabayashi and M. Yamamura

Tc
R

A
m

pR pBR-
x1y0

BglII

EcoRV

x1

CmS
CmR

pBR-
x0y1A

m
pR

EcoRI

BlnI

(a)

(b)

y0

x0

y1
C

m
R

Tc
R

C
m

S

TcS

y0

x0

y1

x1

BlnI

EcoRI

EcoRV

BglII

C
m

R

Tc
S

C
m

S

TcR

x0

y1

y0

x1

EcoRV

EcoRI

BglII

BlnI

Tc
S

Amp R

Amp R

AmpR

AmpR

Fig. 4. (a) Plasmids for preliminary experiment. AmpR, CmR and TcR indicate antibi-

otic resistance genes. CmS and TcS indicate nonfunctional genes produced by replasing

x0 and y0 to x1 and y1, respectively. Arrows indicate primer annealing sites of PCR.

(b) Predicted structures of fusion plasmid. Two possible structures are shown

Crossover. The crossover experiment was performed according to the model
described in the previous section. E. coli strain DH5α was used. We also tested
ES1301(recA+) and observed a similar result.

Detection. In order to detect the recombination, the extracted plasmids were
re-introduced to the newly prepared E. coli DH5α after treatment of restriction
enzymes. The participating enzymes are summarized in Table 2. Bacterial cells
were dispersed to the LB agarose plate and incubated overnight. Some of the
colonies on the plate were picked up and respectively cultured in fluid LB. After
overnight culture, the plasmids were extracted from each culture. The DNA
sequences of memory regions were amplified by polymerase chain reaction and
electrophoresed in an agarose gel.

Table 2. Detection patterns by restriction enzymes

Restriction Detection Pattern
Enzyme [ x y ]

None (control) [00], [01], [10], [11], [10-01]

+BglII, BlnI [00]

+BglII, EcoRV [01]

+EcoRI, BlnI [10]

+EcoRI, EcoRV [11]

+BglII, EcoRI BlnI, EcoRV -



A Design for Cellular Evolutionary Computation by Using Bacteria 395

3.2 Results of Preliminary Experiment

The result of crossover experiment was shown in Figure 5. The frequency of
appearance of each child was relatively equivalent although it contained some
degree of bias (Figure 6). This bias was probably resulted from our mistake
of design in that we associated the memories with the functional genes that
had strong correlation with cell viability. The fact indicates the need to intro-
duce an additional repressor system to control gene expression. The plasmid
should be designed that its gene expression is repressed during the crossover
process to avoid a bias behavior. Meanwhile it should be recovered during the
evaluation and selection process. Or, simply we should choice mildest genes for
optimization.

[10] [01] [00] [11][10-01]

x

0 0

1
1 - 200

- 500

- 100

y x y x y x y x y

Fig. 5. Memory states of a fusion plasmid and its crossover products. Size of each PCR

product is summarized in Table 1. [10-01] indicates a fusion plasmid of pBR-x1y0 and

pBR-x0y1

�

����

����

����

����	
��

���

���

���

���

�������

Fig. 6. Relative frequency of appearance of each crossover product. Frequency was

estimated by calculating the ratio of each colony number to a number of control



396 K. Wakabayashi and M. Yamamura

4 Discussion

4.1 Crossover

This two-phased crossover method is designed to minimize the loss of population
variety. Considering that a homologous recombination is supposed to process a
two-point crossover, it appears that we can get single-size recombinant plasmids
directly from the Phase 1 extract. However, full reaction occurs with relatively
low frequency. The extract from Phase 1 includes relatively narrow variety of
single-size recombinants. On the other hand, more number of double-size plas-
mids are generated by one-point crossover via defective homologous recombina-
tion. It is desirable to delete the double-size fusion plasmids from the solution
at the final stage because they are out of standard in format and something
illegal for optimization purposes. However, they are allowed to grow at first to
maintain the diversification of the population. After generating single-size plas-
mids from the fusion plasmids, they are then deleted as described in phase 3.
Another reason for allowing fusion plasmids is that they are distinguishable from
single-size plasmids. Because of low frequency of crossover rate (around 3-5%),
most of parent plasmids are left unchanged. We need to remove them from the
final solution to achieve an equal distribution to the next generation. However,
we cannot distinguish parents and children directly. By forming fusion plasmids,
we can distinguish them from their children and come to be able to remove them
from the final solution that leads an efficient generation shift.

4.2 Initial Population

In GA, it is required to generate randomized initial population at the beginning
of the computation. However, it is not always easy to follow it on molecular-based
computing. Assembling highly randomized library is one of the underlying issues
of molecular-based computing. It is known that the most favorite methods such
as sexual PCR and ligation-based methods tend to generate biased diversifi-
cation into the library. In addition, considering the fact that the plasmid that
integrates multiple genes readily reach a length of more than 10kbp, different
technology other than those in vitro methods is required. Since the homologous
recombination system processed by the cell is applicable to even longer DNAs
and it appears to provide relatively less biased library, we adopt a crossover-
based strategy to generate an initial population before starting CEC. Several
variety of plasmids are prepared at first. This pre-initial population is then di-
versified by the crossover. The generated library would be used as an actual
initial population of the computation.

4.3 Population Size

Unlike GA in sillico, a population size of CEC is not constant. All individuals
need to be amplified at each step of CEC in order to resist the experimental
loss. A loss of population arises in the step of introducing plasmids to E. coli



A Design for Cellular Evolutionary Computation by Using Bacteria 397

that becomes a major bottleneck of population size. Another loss occurs in the
in vitro step of enzymatic digestion. Altogether, around 103 - 105 would be a
bottleneck size in crossover process. The reduction of population size is more
serious in a selection process. The step of picking up colonies in the most typical
method is carried out by hand. Hence the population size in this step is restricted
to 101 at most. It seems that some more breakthroughs are required to remove
this bottleneck.

4.4 Size of Max Generation

Although a fully autonomous computing system would be ideal, CEC on present
form includes many manual works. That restricts its generation size to around
101. It is enough if we are to optimize small number of genes, but not sufficient
to maxmize full computational power of CEC, It needs some devices to automate
the system in the future.

4.5 Effect of Mutation and Other Points

Random mutation seems to influence negative effect on the crossover system
of CEC. The natural process of accumulation of point mutations would be ex-
pected to reduce homology between plasmids in an evolving population that
might degrade the crossover frequency. Moreover, mutation would be expected
to affect the process of enzymatic digestion. Enzymatic digestion by EcoRV or
EcoRI will not occur for the subset of plasmids which have undergone protect-
ing at point mutation at the target sequence. The simplest solution to address
it is integrating the multiple copies of the target sequences in the plasmid. To
add to this, recovering the mutation by semiconservative crossover between se-
lected plasmids and library plasmids, excluding homology-reduced, less evolved
plasmids under a selection pressure of stepwise evolution, and maintaining the
population diversity would be a key to answer these problems.

Although it is unclear if and how frequently the recombination between non-
homologous region may or may not occur (e.g. between region of TcR and CmR

or between sequences on plasmid and genomic DNA), we estimate its frequency
will be small if any as compared to that between homologous sequences.

A low crossover frequency would scale down the bottleneck size of population
around 10−2. The frequency might be partially improved by inducing upregula-
tion of recA by UV irradiation [12].

5 Conclusion

Genes are often influenced by many other genes in the cellular environment.
Therefore, gene functions should be optimized under presence of all other genes
including many seemingly unrelated genes in the cell. It is not easy to figure out
all of these underlying interactions in computer simulation. In such cases, we



398 K. Wakabayashi and M. Yamamura

have to optimize genes in the cell via evolutionary computational approach with
real molecules and cells. The approach would become more important where the
target genes are deeply involved in the cellular gene network - (e.g., the genes of
multi-functional proteins, toxic proteins, DNA-binding proteins, etc.).

References

1. Bäck T, Kok JN., and Rozenberg G., Evolutionary computation as a paradigm for
DNA-based computing. Preliminary Proceedings DIMACS Workshop on Evolution
as Computation, 67–88 (1999).

2. Wood, DH., Chen, J., Antipov, E., Lemieux, B. and Cedeno, W., In vitro selec-
tion for a OneMax DNA evolutionary computation. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 54, 23–37 (2000).

3. Rose, JA., Takano, M., Hagiya, M., and Suyama, A., A DNA computing-based
genetic program for in vitro protein evolution via constrained pseudomodule shuf-
fling, Journal of Genetic Programming and Evolvable Machines, 4, 139–152 (2003).

4. Stemmer, W., Rapid evolution of a protein in vitro by DNA shuffling, Nature 370,
389–391 (1994).

5. Kitamura, K., Kinoshita, Y., Narasaki, S., Nemoto, N., Hushimi, Y., and Nishigaki,
K., Construction of block-shuffled libraries of DNA for evolutionary protein engi-
neering: Y-ligation-based block shuffling, Protein Engineering, 15 (10), 843–853
(2002).

6. Smith, GP., Filamentous fusion phage: novel expression vectors that display cloned
antigens on the virion surface, Science, 228, 1315–1317 (1985).

7. Mattheakis, LC., An in vitro polysome display system for identifying ligands from
very large peptide libraries, Proc. Natl. Acad. Sci. USA, 91, 9022–9026 (1994).

8. Nemoto, N., Miyamoto-Sato, E., Husimi, Y., and Yanagawa, H., In vitro virus:
Bonding of mRNA bearing puromycin at the 3f-terminal end to the C-terminal
end of its encoded protein on the ribosome in vitro, FEBS Lett, 414, 405–408
(1997).

9. Sakamoto K., Yamamura M., and Someya H., Toward ”wet” implementation of
genetic algorithm for protein engineering, Proceedings of 10th international meeting
on DNA computing, 416–425 (2004).

10. Yokobayashi Y., Weiss R., and Arnold FH., Directed evolution of a genetic circuit,
Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).

11. Kitano, H., Computational Systems Biology, Nature 420, 206–210 (2002).
12. Salles, B. and Paoletti, C., Control of UV induction of recA protein, Proc. Natl.

Acad. Sci. USA 80, 65–69 (1983).



 

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 399 – 409, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Inexpensive LED-Based Fluorometer Used to Study a 
Hairpin-Based DNA Nanomachine 

Hanwen Yan 

Staples High School, 70 North Avenue, 
Westport, CT 06880 USA 

hanwen@dna.caltech.edu 

Abstract. Fluorometers have become indispensable tools in the study of DNA-
based nanomachines. The cost of such an instrument is usually outside the 
budget of a high school science department or that of an amateur scientist. This 
paper presents a low-cost fluorometer that can be assembled for the cost of 
approximately a hundred dollars. By monitoring Fluorescence Resonance 
Energy Transfer (FRET) from the donor dye TET to the acceptor dye TAMRA, 
this fluorometer has been successfully used to follow the repeated opening and 
closing of a DNA hairpin nanomachine. This instrument makes possible the 
investigation of DNA-based nanotechnology or the performance of FRET-
based molecular biology experiments within a high school setting. 

1 Introduction 

A number of DNA-based nanomachines that can be repeatedly cycled between two or 
more states have been devised1-9.  For a review see Niemeyer10. With the exception of 
Yan5, all of these investigations used Förster (or Fluorescence) Resonance Energy 
Transfer (FRET) to follow the conformational changes the nanodevices undergo 
during the course of operation. In a recent review, Jares-Erijman and Jovin11 classified 
FRET techniques into 22 different methods. All of these methods take advantage of 
the fact that a fluorescent dye molecule (called the donor) excited by some light 
source can transfer its energy to a second dye molecule (called the acceptor), provided 
the second dye molecule has an absorption band overlapping with the emission band 
of the first dye. This results in a lower fluorescence from the excited dye molecule 
and usually an increased emission of light from the acceptor dye. The rate of energy 
transfer between the two molecules is a strong function of the distance between them. 
Thus, detecting either the change in fluorescence of the donor dye or the change in 
fluorescence of the acceptor dye or both allows one to infer configuration changes in 
nanostructures to which the dyes are attached. 

The fluorometer described here allows for FRET measurements in which only the 
fluorescence of the donor dye is monitored because of the specific filters. Data are 
presented which show that this fluorometer is able to follow the opening and closing 
of hairpin-based DNA nanostructures. Spectrophotometers and laser-based 
fluorometers used for FRET studies are often in the $20,000 to $100,000 dollar price 
range, putting such instruments out of the range of a typical high school budget or a 



400 H. Yan 

 

hobbyist’s budget. The fluorometer described here can be built for a roughly one 
hundred dollars. It thus opens up the possibility of carrying out the growing fields of 
DNA-based nanotechnology investigations or FRET-based molecular biology 
investigation in a high school or amateur scientist setting. 

 

Fig. 1. Excitation and emission spectrums for fluorescent dyes, TET and TAMRA 

 

 

Fig. 2. DNA tweezers2. The excited fluorescent dye emits fluorescence when it is separated 
from the accepter on the left side. Resonance energy transfer from the donor to the accepter 
when the dyes are closer reduces the fluorescence on the right side 



 An Inexpensive LED-Based Fluorometer 401 

 

2   Materials and Methods – Laser-Based System 

In DNA nanotechnology, FRET is used to measure the relative fluorescence of the 
donor dye attached to DNA oligomers. Figure 1 shows overlapping spectra for two 
commonly used dyes, Tetrachloro-Fluorescein (TET) and Tetramethyl Rhodamine 
(TAMRA). 

Using a fluorometer, one may measure the fluorescence transfer from one dye, the 
“donor” to its counterpart, the “accepter”, which quenches the donor’s fluorescent 
emission as the distance between the two is reduced. Varying fluorescence emissions 
may show the change in displacement between the dyes, representing molecular 
motion of the DNA. Measuring fluorescence emitted by dyes attached to the DNA 
strands effectively represents the distance between the dyes. Figure 2 shows the 
fluorescence of the donor as a function of the distance between the molecules. 

 

Fig. 3. A laser-based fluorometer system. In the above system, an Argon laser device projects a 
514 nm wavelength – near TET’s excitation spectrum – beam of light, which is sent to a 
chopper that splits the beam at an adjustable frequency. The resulting pulsed light is to avoid 
interference from other light sources, such as sunlight and 60 Hz light. The laser light is chosen 
to match the excitation wavelength of TET. The light then excites the TET in the DNA sample. 
The optical band-pass filter optimizes the fluorescence emitted by the sample, which is then 
detected by the photodiode. The laser and optical filter in the system are spectrum-specific for 
certain dyes; different dyes would require a different laser and filter. The signal processing 
system combines the signals from the light emission system and the photodetector system. The 
output of the signal processing system is linked to a PC running programs allowing analysis of 
the data through graphs of the FRET versus time. This system was used in DNA experiments 
concerning FRET and is the basis of the LED-based fluorometer design 



402 H. Yan 

 

For a laser-based fluorometer similar to the one employed by Yurke’s group2-4, 7, 
there are three main parts: the light emission system (the laser and chopper), the 
photodetector system (filters and photodiodes), and the electronic signal processing 
system. The setup is shown in Figure 3. 

3   Materials and Methods – LED-Based System  

Because the expensive design of the laser-based fluorometer system is unrealistic for 
a high school environment, a fluorometer with a Light Emitting Diode (LED) as the 
light source instead of a laser would be much less expensive. This simple alteration of 
light source changes the entire system dramatically, especially economically, as LEDs 
are one of the most economical light sources available. With an LED-based system, 
instead of having beam splitters and optical equipment, almost the entire system 
becomes electronics-based which also reduces the cost. A diagram of a potential 
LED-based fluorometer system is shown in Figure 4. 

 

Fig. 4. A suggested LED-based fluorometer system founded on the laser-based system. A high 
luminance, 520 nm LED is used to generate the light source. A square-wave oscillator drives 
the LED to pulse light at 90 to 100 Hz in order to avoid light interference from steady light and 
60 Hz harmonics. A 525 nm band-pass filter is used for the light in order to optimally excite the 
TET. The fluorescence from the excited dyes is passed through a 545 nm long-pass filter which 
optimizes the fluorescence. A photodiode detects the fluorescence and produces an electric 
output signal, which is amplified through a low-noise, high-gain amplifier. This signal is 
further processed through the multiplier circuit, which multiplies it by the reference signal from 
the oscillator to generate a DC signal. This resulting signal is directly correlated to the level of 
the fluorescence detected. This signal is low-pass filtered and its levels are adjusted and can be 
displayed on a digital display or converted from analog to digital through a data acquisition 
system, then interfaced with a PC.  Appendix B provides details of component sources 



 An Inexpensive LED-Based Fluorometer 403 

 

This system works in a similar manner compared to the laser-based system as 
shown in a comparison of the two in Table 1. 

Table 1. A comparison of the fluorometer systems by functions of the system. Each system 
utilizes similar mechanisms to perform the same essential function 

 

Function Laser-based Fluorometer 
System 

LED-based Fluorometer System 

Light Source Laser device LED 
 

Square Wave Generator Chopper Square-wave Oscillator 
 

Light Detection Filters and Photodiode Filters and Photodiode 
 

Detector System Detector Hardware Multiplier and Amplifier 
 

The building of the fluorometer consisted of two phases. The first phase was to 
create a breadboard prototype for concept verification as shown in Figure 5. The 
prototype was build by assembling components onto a breadboard according to the 
schematics, with calculated values of resistors and capacitors (Appendix A). After the 
prototype was tested using an oscilloscope and multimeter, the correct values of the 
components could then be measured and correctly incorporated into the electronics 
schematics. The breadboard prototype was created to verify the concept of the LED-
based system.  

 

Fig. 5. A working prototype created from components placed onto a breadboard 

The second phase was to build the fluorometer with a printed circuit board (PCB), 
which would eliminate most of the wire connections and achieve a higher signal-to-
noise ratio. This is critical because of the extremely high amplifier gain. The printed 
circuit board was designed using ExpressPCB, a free program that allows users to 
create a design file and send it to the company, which fabricates the PCB for the user. 
The PCB was designed according to the schematics and components were then 
soldered onto it. A 4-digit display from Digi-Key was connected to the system to 
display the DC signal, reflecting the measured fluorescence. After completing the 
system’s circuitry, a metal project box was used for mounting it, as well the sample 



404 H. Yan 

 

chamber to hold the DNA sample, completing the fluorometer system. The working 
LED-based fluorometer system is shown in Figure 6. 

 

 

Fig. 6. The working LED-based fluorometer system, including an interface allowing 
connections to computer based data collection software. The assembled system is shown in the 
inset (top-left corner) 

The LED (Appendix B) was connected to the chamber for the DNA sample 
opposite to the photodiode. The fluorometer is connected to the optional data 
acquisition system that allows connection to a PC with data acquisition software. A 
PC interface allows more thorough analysis of the collected data through graphing 
and is highly recommended, although optional. 

4   Results 

When working with the laser-based fluorometer, data of an unpublished DNA 
“hairpin” machine was obtained, an early version of DNA nanomachines that 
consisted of a single strand that bonded to itself to form a closed state and opened by 
the addition of complementary strands. Figure 7 shows the DNA hairpin 
nanomachine. 



 An Inexpensive LED-Based Fluorometer 405 

 

 

Fig. 7. The DNA hairpin nanomachine. In state A, the hairpin is bonded to itself. When the F 
strand is introduced, a sequence on F is complementary to T1 of the hairpin machine and bonds 
to it (B), eventually displacing the closed half of the hairpin and achieving the “open” state (C). 
When the R strand is introduced, a sequence on R is complementary to T2 of the F strand and 
bonds to it (D), eventually displacing the F strand from the machine and reverting to the 
original “closed” state (A). W is the waste product formed by F and R after cycling through the 
machine movement. The machine will be published in the future 

 

 

Fig. 8. Graph of DNA hairpin FRET obtained from a laser-based fluorometer system. The top 
line represents the standard TET used, which remained constant throughout the experiment, 
while the hairpin fluorescence varied 



406 H. Yan 

 

The graph in Figure 8 shows the cyclic function of the DNA hairpin. The 
increasing fluorescence directly correlates with the distance between the dyes, as the 
distance increases, so does the fluorescence. The fluorescence gradually decreases as 
the solution’s concentration of TET decreases with the repeated addition of 
complement and anti-complement strands. 

Figure 9 depicts two cycles of the same hairpin experiment on the LED-based 
fluorometer. 

 

Fig. 9. The DNA hairpin FRET obtained from the LED-based system. The time interval is 400 
sec/div.  The fluorescence increases when F was added and decreased when its complementary 
R is added. The extended lines are due to the pipette inserted into the sample for mixing and 
adding strands 

These signals demonstrate the LED-based fluorometer’s ability to excite DNA 
conjugated fluorophores and detect the resulting emission, in this case the movement 
of the DNA hairpin nanomachine. 

5   Discussion/Conclusion 

From the graph obtained through the LED-based fluorometer, it is not only able to 
measure fluorescence with a high signal-to-noise ratio, but also has high detection 
sensitivity due to the circuit’s photodiode and amplification. There are still 
possibilities for reduction of noise through using a better power supply. This data 
shows that a high-luminance LED can effectively replace a laser in a fluorometer 
system and still provide results similar to data obtained by a research-grade 
fluorometer. 



 An Inexpensive LED-Based Fluorometer 407 

 

The LED-based fluorometer system does not have a temperature regulation 
function; temperature is one variable that may affect measurements of DNA. 
However, results can be accurately measured with DNA at constant room 
temperature. Further testing with the fluorometer would involve reproducing 
experiments done on the laser-based fluorometer system on the LED-based system, or 
designing new nanomachines and testing them on both systems to compare the 
results. Reviewing the similarities and differences from results obtained from the two 
systems on the same experiment would allow a much more reliable comparison 
between the laser-based and LED-based fluorometer and help give evidence to 
support the principle of DNA nanomachine studies in the high school setting. 

The approximate total materials cost of the prototype breadboard fluorometer was 
around eighty dollars. The printed circuit board version of the fluorometer costs 
around the same price with another twenty dollars for the display. The separate 
chamber used to hold the DNA samples so as to reduce variables that could affect 
measurements, such as movement, had a cost of around ten dollars. In comparison to 
laser-based or lamp-based fluorometers, an LED-based fluorometer system is much 
more economical. 

With the development of a successful inexpensive fluorometer, the study of not 
only DNA nanotechnology, but also other fields utilizing the FRET method would be 
possible for much lower costs. This would greatly facilitate the study of DNA 
nanotechnology and FRET-based molecular biology by providing an inexpensive 
piece of equipment to research organizations, particularly high schools that could not 
normally afford such a dedicated piece of equipment to aid students in studies. 

Acknowledgements 

I would like to thank my high school teacher, Dr. A. J. Scheetz, for encouragement 
and guidance towards science research. I thank B. Yurke of Lucent Technologies for 
mentoring me on this project and for providing me with an opportunity to work for 
one month in his lab during the summer of 2002.  I also thank him and Lucent for 
providing the cuvette and DNA used in this project and for allowing me to use a 
number of Yurke’s PowerPoint presentation figures in this manuscript. I thank Dr. 
Michael Stanley at Chroma Technologies for supplying me with the filters. I also 
thank Ziyu Yan for assistance and guidance in the design and assembly of the 
electronics in this project. 

References 

1. Mao, C., Sun W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z 
transition of DNA. Nature 297, 144-146 (1999) 

2. Yurke, B., Turberfield, A.J., Mills, Jr., A.P., Simmel, F.C. and Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature. 406, 605–608 (2000) 

3. Simmel, F.C., Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 
63 art. no. 041913 (2001) 



408 H. Yan 

 

4. Simmel, F.C., Yurke, B.: A DNA-based molecular device switchable between three 
distinct mechanical states. Appl. Phys. Lett. 80, 883-885 (2002) 

5. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled 
by hybridization topology. Nature 415, 62-65 (2002) 

6. Li, J.J., Tan, W.: A single DNA molecular nanomotor. Nano Lett. 2, 315-318 (2002) 
7. Turberfield, A.J., Yurke, B, Mills, Jr., A.P., Blake, M.I., Mitchel, J.C., Simmel, F.C.: 

Hybridization catalysis: controlled power for nanomachines. Phys. Rev. Lett. 90, art. no. 
118102, (2002) 

8. Alberti, P., Mergny, J-L: DNA duplex-quadruples exchange as the basis for a 
nanomolecular machine. PNAS 100, 1569-1573 (2003) 

9. Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA 
nanoactuator. Angew. Chem. Int. Ed. 42, 4342-4346 (2003) 

10. Niemeyer, C., Adler, M.: Nanomechanical Devices Based on DNA. Angew. Chem. Int. 
Ed.  41, 3779-3783 (2002) 

11. Jares-Erijman, E.A., Jovin, T.M.: FRET imaging. Nature Biotech. 21, 1387-1395 (2003) 

Appendix A – Circuit Calculations 

Low-pass Filter Amplifier 

 
Fig. A.1. The low-pass filter amplifier used in the LED-based fluorometer system. The 
calculations for the values of the components are shown to the right 

Multiplier Principle 

 
Fig. A.2. When the reference signal is multiplied by the measured signal, the result is a positive 
DC output signal.  Both the reference signal and measured signal are independent of optical 
noise from the environment 



 An Inexpensive LED-Based Fluorometer 409 

 

Appendix B – Materials 

The LED used was NSPG500S, found at The Led Light (www.theledlight.com). It 
was chosen for its high luminous intensity (11.6 candellas) and matching with the 
TET excitation spectrum (520 nm peak).  

The oscillator chip used was a universal LM555 clock chip. 
The Printed Circuit Board was designed using ExpressPCB, a free program from 

ExpressPCB (www.expresspcb.com). The company will fabricate PCBs designed 
with their tool. 

The components (amplifier chips, capacitors, resistors, wires, etc.) were bought 
from Radio Shack. 

The multiplier chip was Analog Devices’ (www.analogdevices.com) AD633 Low 
Cost Analog Multiplier. 

The 4-digit display was ordered from Digi-Key (www.digi-key.com). It allows the 
DC signal from the fluorometer system to be displayed. 

The optical filters, D525/20X (band-pass) and HQ545LP (long-pass) are gifts from 
Chroma Technologies (www.chroma.com). The D525/20X was chosen to optimize 
the LED spectrum to fit the TET’s excitation; it is an excitation filter with center 
wavelength 525 nm and is 20 nm wide, fitting TET’s emission spectrum. The 
HQ545LP was chosen to optimize the non-fluorescent light from TET; it is a long 
pass filter beginning at 545 nm, near the peak of TET’s emission. 

The chemically synthesized DNA with fluorophores that formed the DNA hairpin 
was purchased from Integrated DNA Technologies (www.idtdna.com).  

The data acquisition equipment was Dataq Instruments’ (www.dataq.com) DI-
194RS. 



Designs of Autonomous Unidirectional
Walking DNA Devices�

Peng Yin1, Andrew J. Turberfield2, and John H. Reif1

1 Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA

{py, reif}@cs.duke.edu
2 University of Oxford, Department of Physics, Clarendon Laboratory,

Parks Road, Oxford OX 1 3PU, UK
a.turberfield@physics.ox.ac.uk

Abstract. Imagine a host of nanoscale DNA robots move autonomously over a
microscale DNA nanostructure, each following a programmable route and serv-
ing as a nanoparticle and/or an information carrier. The accomplishment of this
goal has many applications in nanorobotics, nano-fabrication, nano-electronics,
nano-diagnostics/therapeutics, and nano-computing. Recent success in construct-
ing large scale DNA nanostructures in a programmable way provides the struc-
tural basis to meet the above challenge. The missing link is a DNA walker that
can autonomously move along a route programmably embedded in the under-
lying nanostructure – existing synthetic DNA mechanical devices only exhibit
localized non-extensible motions such as bi-directional rotation, open/close, and
contraction/extension, mediated by external environmental changes. We describe
in this paper two designs of autonomous DNA walking devices in which a walker
moves along a linear track unidirectionally. The track of each device consists of a
periodic linear array of anchorage sites. A walker sequentially steps over the an-
chorages in an autonomous unidirectional way. Each walking device makes use
of alternating actions of restriction enzymes and ligase to achieve unidirectional
translational motion.

1 Introduction

A major challenge in nanotechnology is to precisely transport a nanoscale object from
one location on a nanostructure to another location following a programmable path.
DNA has been explored as an excellent building material for the construction of both
large scale nanostructures and individual nanomechanical devices [11]. The success-
ful constructions of two dimensional DNA lattices and one dimensional DNA arrays
made from DX molecules [16], TX molecules [5], rhombus molecules [8], and 4x4
molecules [17] provide the structural base for realization of the above goal. However,
most existing DNA nanomechanical devices only exhibit localized non-extensible mo-
tions such as open/close [7, 13, 14, 21], extension/contraction [1, 4, 6], and reversible

� Extended abstract. For full version, see [19].

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 410–425, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Designs of Autonomous Unidirectional Walking DNA Devices 411

rotation motion [9, 18]. Furthermore, these motions are not autonomously executed but
rather mediated by external environmental changes such as the addition and removal
of DNA fuel strands [1, 4, 6, 13, 14, 18, 21] or the change of ionic compositions of the
solution [7, 9]. Autonomous unidirectional DNA devices executing linear translational
motions are hence desirable.

There are already some exciting progress in this direction. Turberfield and col-
leagues have proposed to use DNA fuels to design autonomous free running DNA
machines [15]. Reif has described theoretical designs of autonomous DNA walking
and rolling devices that demonstrate random bidirectional translational motion along
DNA tracks [10]. On the experimental side, Mao’s group has recently constructed an
autonomous DNA motor powered by a DNA enzyme [3]; Seeman’s group has con-
structed a DNA walking device mediated by DNA fuel strands [12].

In the rest of the paper, we present two designs of autonomous DNA walking de-
vices. Each device consists of a track and a walker. The track of each device contains
a periodic linear array of anchorage sites. A walker sequentially steps over the anchor-
ages in an autonomous unidirectional fashion. Each walking device makes use of alter-
nating actions of restriction enzymes and ligase to achieve unidirectional translational
motion. The action of ligase consumes ATP as energy source. The walking devices
described here make the following improvements over the walking device presented
in [10]. Firstly, they demonstrate unidirectional motion rather that random bidirectional
motion. Secondly, the moving part (walker) in each walking device is a physical entity
with a flexible body size rather than a symbolic entity, and thus the walker can serve not
only as an information carrier but also as a nanoparticle carrier. These walking device
designs are also different from the walking device construction by Seeman’s group [12]
in that they are autonomous. A limitation of our first device is that it has a low proba-
bility of falling off the track. Our second device has zero probability of falling off the
track, but it is a more complicated (hence less practical) construction and assumes a
restriction enzyme property that has not yet been fully-substantiated. For each walking
device, we first present its structure and operation, and then describe its implementation
using conceptual enzymes followed by one or more concrete examples using commer-
cially available enzymes. The design using conceptual enzymes illustrates the general
principle of the design and reveals the essential information encoding of the device that
dictates its operation, while the examples using real enzymes attempt to validate the
practicality of the design principles and to illustrate some technical complications in
mapping the conceptual design to real enzymes.

2 Definitions

A basic structural unit used in the construction of the walking devices is a dangler. A
dangler is a duplex DNA fragment with single strand extensions at both ends: one end is
the fixed end that is usually attached to another structural unit (e.g. the backbone of the
track or the body of the walker); the other end is the sticky end. The flexible single strand
DNA at the fixed end allows the otherwise stiff dangler to move rather freely around the
fixed end. This property is crucial to the operation of the devices. The fixed end only
serves to structurally join a dangler to another component of the device in a flexible



412 P. Yin, A.J. Turberfield, and J.H. Reif

Fig. 1. Conceptual endonucleases used in the construction of the walking devices. The sequences
constituting the recognition site of the endonuclease in (a), (b), and (c) are labeled with 1, 1̄,
1�, and 1̄�; 2 and 2̄; and 3 and 3̄, respectively. Symbols r, d, and e are signed length parame-
ters in number of bases. Recognition sites and cleavage sites are indicated with bold boxes and
pairs of bold arrows, respectively. N indicates the position of a base whose value does not affect
recognition by an endonuclease

fashion (e.g. the linkage of an anchorage to the backbone of the track/the linkage of a
foot to the body a walker); the sticky end, in contrast, usually encodes information and
participates actively in dictating the motion of the walker.

Two basic operational events driving the unidirectional motion of the devices are
ligations and cleavages. Two neighboring danglers with complementary sticky ends
can associate with each other via the hybridization of their sticky ends. Subsequent to
this hybridization, the nicks at either end of the hybridized section can be sealed by a
ligase and the two duplex fragments are hence joined covalently in a process known as
ligation. When the context is clear, the whole process of hybridization and subsequent
ligation (joining of two DNA strands) is referred to as ligation, for simplicity. In cleav-
age, an approximately reverse process to ligation, a duplex DNA fragment is cut into
two separate duplex parts (with each usually possessing a complementary sticky end)
by enzymes known as restriction endonucleases. Following cleavage, the two duplex
DNA fragments (each with a sticky end) can dissociate in a process known as melting.
When the context is clear, the whole process of cleavage and subsequent melting is re-
ferred to as cleavage. Figure 1 illustrates the conceptual restriction enzymes used in the
construction of our devices. Cleavage uses no energy input from external environment
while ligation consumes one molecule of ATP as energy source.

3 Device I

Design Overview. Device I consists of two parts: the track and the walker. The walker
is the moving part of the device while the track is the immobile part along which the
walker moves. Figure 2 (a) gives a schematic drawing of the structure of device I. The
track contains a linear array of anchorages, A and B. Each anchorage is a duplex DNA
fragment with a sticky end on the top, and rigidly attached to the backbone of the track.
The walker stands on top of the track. The walker consists of two parts, the body and
the feet (a front foot C and a hind foot D). The body is a duplex DNA segment and
each foot is a DNA dangler tethered to the body via a flexible single strand DNA joint.



Designs of Autonomous Unidirectional Walking DNA Devices 413

The flexible joint allows a foot of the walker to rove to and only to the two anchorages
immediately neighboring the current anchorage on which it stands. The sticky end of
a foot is complementary to the sticky end of the anchorage on which it stands and
hence the foot can hybridize and be ligated with the anchorage. The ligation product
between a foot and an anchorage will be cut by an endonuclease such that both the foot
and the anchorage change their sticky ends. As a result, the foot will possess a sticky
end that is complementary to the sticky end of the anchorage immediately ahead of
the anchorage X on which the foot has been standing, but not complementary to the
sticky end of the anchorage immediately behind X . Consequently, the foot can only
hybridize and be ligated with the anchorage immediately ahead of X , but not with
the one immediately behind it. This guarantees the forward motion of the walker. See
Figure 2 (b) for illustration.

A foot or an anchorage X can exist in two forms, X and X∗, where X = A, B,
C, and D. X∗ is derived from X by altering its sticky end. X and X∗ are required to
satisfy certain properties that will be described later. At any moment during the motion,
the track in front of the front foot C and behind the hind foot D consists of alternating
danglers A and B∗ while the track between them consists of alternating A∗ and B.
Assume w.l.o.g. that at the start of the motion, both feet C and D are ligated with an-
chorages of type A, forming A∗C and A∗D respectively. Thus the initial configuration
of the walker and track complex can be written as,

(AB∗)i[A∗D]B(A∗B)j [A∗C]B∗(AB∗)k

where [A∗C] (resp. [A∗D]) is the complex between anchorage A∗ and the front foot
C (resp. hind foot D). To make the walker move unidirectionally down the track, we
implement the following reactions between a foot and an anchorage,

A + C∗ a→ A∗C b→ A∗ + C B∗ + C
a→ B∗C b→ B + C∗

A∗ + D
a→ A∗D b→ A + D∗ B + D∗ a→ BD∗ b→ B∗ + D

In phase a of each reaction, a foot is ligated with an anchorage; in phase b, the foot
and the anchorage are cut separate by a restriction enzyme, each now possessing a new
sticky end. Applying the reactions to the walker-track complex, we have the following
motion of the walker along the track,

(AB∗)i[A∗D]B(A∗B)j [A∗C]B∗(AB∗)k

→ (AB∗)iA[B∗D](A∗B)jA
∗[B∗C](AB∗)k

→ (AB∗)i+1[A∗D]B(A∗B)j [A∗C]B∗(AB∗)k−1

The above is a full induction cycle of the motion of the walker, and hence the walker can
(in principle) move forward along the track infinitely. We further require that phase a
of each reaction is not reversible, thus the whole reaction is irreversible. Consequently,
the walker can only move unidirectionally along the track.

Note that the hind foot D can be viewed as the dual to the front foot C: during the
motion, front foot C changes the configuration of the track from (AB∗) to A∗B; hind
foot D moves on the modified track and restores it to its original configuration AB∗.



414 P. Yin, A.J. Turberfield, and J.H. Reif

Rove forwardRove forward

Step 1b

Rove forward

LigationLigation

Step 1c

Step 2a

Step 2c

Step 2b

Step 1a

Rove forward

LigationLigation

Track

Walker

Joint

Hind foot
Anchorage

Front foot

A∗ B A∗B B B∗ AB∗
E3 cut

A∗D A∗C

E1 cut

D∗ C

A∗ B A∗BA B A∗ B∗ AB∗

A∗ B A∗B∗A B A∗ B AB∗

A∗ B A∗B∗A B A∗ B AB∗

D C∗

D C∗

A∗ B A∗A B A∗ AB∗ B

D∗ C

B∗

A∗ B A∗A B A∗ AB∗

B∗D B∗C

E2 cutE4 cut

(b)

C∗

A∗ B A∗BA∗ B A B∗ AB∗

D

D∗ C

A∗ B A∗BA B A∗ B∗ AB∗

(a)

Fig. 2. The structural design and step by step operation of device I. (a) Structural design of the
device. (b) Step by step operation of the device. The walker moves unidirectionally to the right



Designs of Autonomous Unidirectional Walking DNA Devices 415

Fig. 3. Implementation of device I using four conceptual restriction enzymes. Endonuclease
recognition sites and cleavage sites are indicated with bold boxes and pairs of bold arrows, re-
spectively

Implementation with conceptual endonucleases. To implement the designed reac-
tions, we use four conceptual enzymes E1, E2, E3, and E4. The cutting patterns of
these enzymes are similar to the one depicted in Figure 1 (a). Here we require that
d1 − e1 = d4 − e4 = e2 − d2 = e3 − d3, where di and ei are the length parameters
for endonuclease Ei. Figure 3 describes the detailed step by step reactions that dictate
the motion of the walker. Since only the region near the end of an anchorage or a foot
is relevant for the reactions, we only depict the end regions in Figure 3.

Figure 3 (a) depicts reaction A + C∗ → A∗C → A∗ + C. In this reaction, the
sticky end ū of anchorage A is first ligated with the sticky end u (complementary to
ū) of foot C∗, generating ligation product A∗C. This corresponds to the reaction of the
front foot in Step 1a in Figure 2 (b): A + C∗ → A∗C. A∗C contains a recognition
site for endonuclease E1 and is cut by E1 into A∗ and C (Step 1b in Figure 2 (b):
A∗C → A∗ + C). Note that now front foot C possesses a new sticky end ū. Recall
that the anchorage immediately ahead of the anchorage A∗, on which front foot C is
standing, is anchorage B∗, which possesses a sticky end u (complementary to ū). Thus
C can rove forward and hybridize with B∗ (Step 1c in Figure 2 (b)). This leads to the
reaction in Figure 3 (b): B∗ + C → B∗C → B + C∗. First, the hybridization product
between B∗ and C is ligated to form B∗C (Step 2a in Figure 2 (b): B∗ + C → B∗C).



416 P. Yin, A.J. Turberfield, and J.H. Reif

Table 1. Implementation of device I with endonucleases Ahd I, Fnu4H I, ScrF I, and Xcm I.
Ligation sites and cleavage sites are denoted with − and ˆ, respectively. The bases that determine
recognition sites in action are in upper case

Reactions Enzymes DNA Sequences
A + C∗ → A∗C Ligase 5′...gaccc-ngcgtc... 3′

3′...ctgggn-cgcag... 5′

A∗C → A∗ + C Ahd I 5′...GACcc nˆgcGTC... 3′

3′...CTGggˆn cgCAG... 5′

B∗ + C → B∗C Ligase 5′...ccanngcn-gcgtc... 3′

3′...ggtnncg-ncgcag... 5′

B∗C → B + C∗ Fnu4H I 5′...ccannGCˆn GCgtc... 3′

3′...ggtnnCG nˆCGcag... 5′

A∗ + D → A∗D Ligase 5′...gacccn-ggnntgg... 3′

3′...ctggg-nccnnacc... 5′

A∗D → A + D∗ ScrF I 5′...gacCCˆn GGnntgg... 3′

3′...ctgGG nˆCCnnacc... 5′

B + D∗ → B∗D Ligase 5′...ccanngc-nggnntgg... 3′

3′...ggtnncgn-ccnnacc... 5′

B∗D → B∗ + D Xcm I 5′...CCAnngc nˆggnnTGG... 3′

3′...GGTnncgˆn ccnnACC... 5′

This ligation product is subsequently cut into B and C∗ by endonuclease E2 (Step 2b
in Figure 2 (b): B∗C → B + C∗ ). Now front foot C∗ possesses sticky end u, and
hence it will rove forward and hybridize with anchorage A down the track (Step 2c in
Figure 2 (b)). This completes a full induction cycle for the front foot.

Note that reaction A+C∗ → A∗C is irreversible: no restriction enzyme is present to
cut A∗C into A and C∗. This effectively establishes the irreversibility of the motion of
foot C. However, we note that after A∗C is cut into A∗ and C, the two can be religated
into A∗C (which is subsequently cut back into A∗ and C). This represents an idling
step in the motion of the walker. Similar analysis applies to the reaction B∗ + C →
B∗C → B + C∗.

The motion of hind foot D is similar to motion of front foot C and we omit its
description for brevity.

Molecular implementation using real enzymes. We give two implementations with
real enzymes. The first one is a direct mapping of the implementation using the concep-
tual enzymes in Figure 3. The real enzymes used are shown in Figure 4 (a). Here, real
endonucleases AhdI , Fnu4HI , ScrFI , and XcmI correspond to conceptual endonu-
cleases E1, E2, E3, and E4, respectively. The reactions are shown in Table 1.

The second implementation reduces the number of endonucleases to three by using
a non-palindromic endonuclease (Aci I) and its slightly more involved construction is
shown in Table 2. The real enzymes used are shown in Figure 4 (b). Note that Aci I and
Hha I correspond to the conceptual enzyme depicted in Figure 1 (b).

Processivity of device I. A key technical issue in the construction of device I is to
ensure that the walker is constrained to stay on or near the track. An isolated foot C or



Designs of Autonomous Unidirectional Walking DNA Devices 417

Fig. 4. Real enzymes used in the construction of device I. Endonuclease recognition sites and
cleavage sites are indicated with bold boxes and pairs of bold arrows, respectively. N indicates
the position of a base whose value does not affect recognition by an endonuclease

Table 2. Implementation of device I with endonucleases Aci I, Hha I, and Drd I. Ligation sites
and cleavage sites are denoted with − and ˆ, respectively. The bases that determine recognition
sites in action are in upper case

Reactions Enzymes DNA Sequences
A + C∗ → A∗C Ligase 5′...gacnccg-c... 3′

3′...ctgng-gcg... 5′

A∗C → A∗ + C Aci I 5′...gacnCˆCG C... 3′

3′...ctgnG GCˆG... 5′

B∗ + C → B∗C Ligase 5′...c-cgc... 3′

3′...cgc-g... 5′

B∗C → B + C∗ Hha I 5′...G CGˆC... 3′

3′...CˆGC G... 5′

A∗ + D → A∗D Ligase 5′...gacnc-cggngtc... 3′

3′...ctgnggc-cncag... 5′

A∗D → A + D∗ Drd I 5′...GACnc cgˆgnGTC... 3′

3′...CTGngˆgc cnCAG... 5′

B + D∗ → B∗D Ligase 5′...gcg-gngtc... 3′

3′...c-gccncag... 5′

B∗D → B∗ + D Aci I 5′...GˆCG Gngtc... 3′

3′...C GCˆCncag... 5′

D would easily fall off the track and diffuse away. However, we can reduce the falling-
off probability by constructing a multi-footed walker. Instead of possessing only two
feet as in Figure 2, the walker has an array of alternate C and D feet. The feet are
attached to a common backbone. Hence the walker is held to the track by multiple
bonds - even if none are ligated (so all bonds are weak 1- or 2-base hydrogen bonds)
then the probability of detachment is small. This is precisely what is needed - feet are
held in the right place with the right amount of freedom to move - it introduces the
constraint that no foot can move more than two anchorages forward until all feet have
moved at least one anchorage.



418 P. Yin, A.J. Turberfield, and J.H. Reif

4 Design II

Overview. A potential problem of device I is that it may fall off the track. Though
a walker with more feet has lower probability of falling off, we can not completely
eliminate such risk. In contrast, the device we describe next is guaranteed to stay on the
track, though it has a more complicated (hence less practical) construction and assumes
a restriction enzyme property that has not yet been fully-substantiated. In device II, a
two-footed walker steps over the anchorages along a track unidirectionally. The design
of device II is based on the following principle: the lifting of one foot off the track is
conditional on the attachment (ligation) of the other foot to the track. This attachment
principle can ensure that at any moment, at least one foot of the walker is attached to
the track. We describe the structure and step by step operation of device II below.

The track and the walker are depicted in Figure 5 (a). The track contains a linear ar-
ray of anchorages. Each anchorage is a duplex DNA fragment with single strand DNA
overhangs at both ends and its midpoint is tethered to the backbone of the track via sin-
gle strand DNA. Thus the anchorage can be viewed as a two-ended dangler. In addition,
between every two neighboring anchorages is tethered another dangler, referred to as a
switch. As we shall see below, the alternating arrangement of anchorages and switches
are used to construct a signaling mechanism which ensures the unidirectional and non-
falling-off-track motion of the walker. The anchorages and switches are denoted as Ti

and Si respectively, where i = 1, 2, 3, . . . , n. A switch Si can only be ligated with its
immediate anchorage neighbors Ti−1 and Ti. The upper ends of T are of type C∗, and
the lower end of Ti is of type A∗ (B∗) for odd (even) i.

The walker consists of two danglers connected with a single strand DNA . The two
danglers serve as the feet of the walker and are denoted as F1 and F2. The ends of both
F1 and F2 are of type C. The walker stands on top of the upper ends of the anchorages
and walks down the track unidirectionally, with the switch/anchorage complex of the
road serving both as attaching points and as a signal transducing device to dictate the
lifting and attaching of its feet in an alternating fashion such that it never falls off the
track. In particular, at any point, if one foot is attached to anchorage Ti, the other foot
can only be attached to Ti’s immediate neighbors, Ti−1 and Ti+1.

The ends of the feet of the walker, of the anchorages, and of the switches have the
following properties:

1. The complementary end pairs are: (A,A∗), (A,B∗), (B∗, A∗), (B,B∗), and
(C,C∗). Only two danglers with these complementary ends can be ligated.

2. The formation of CC∗ ligation product at the upper end of the anchorage intro-
duces a recognition site on the anchorage for endonuclease E3, which has a similar
cleavage pattern as the one depicted in Figure 1 (c). And this results in a cleavage at the
other end of the anchorage such that the anchorage is cut from the switch it is currently
ligated with (if there is one). Similarly, the formation of A∗A (resp. B∗B) at the lower
end of the anchorage will produce a recognition site on the anchorage for endonucle-
ase E1 (resp. E2) and this will result in the cleavage of CC∗ at the upper end of the
anchorage if there is a foot end C ligated with C∗.

We will next see how these properties guarantee the desired motion of the walker as
we go through a step by step description of the walker’s motion.



Designs of Autonomous Unidirectional Walking DNA Devices 419

Fig. 5. The structural design and step by step operation of device II. (a) Structural design of the
device. (b) Step by step operation of the device. The track is depicted in light gray



420 P. Yin, A.J. Turberfield, and J.H. Reif

Step by step motion. Now we describe the four steps of the walker’s motion that com-
pletes a full inductional cycle. Initially, the walker and track complex is assembled in
such a way that the feet F1 and F2 of the walker are ligated with anchorages T1 and T2,
respectively; each switch Si is ligated to the lower end of Ti, forming BA∗ for odd i
and AB∗ for even i. Note that BA∗ and AB∗ are different.

Step 0. Upon introduction of enzymes into the system, switches S1 and S2 are cut
from anchorages T1 and T2 respectively, since the CC∗ sequences at the upper ends of
T1 and T2 constitute endonuclease E3 recognition sites and hence result in cleavages
at the lower ends of T1 and T2. Now S2 (with end A) can explore its neighboring space
and be ligated with either T1 (with end A∗) or T2 (with end B∗). Ligation between S2

and T2 is a just an idling step: the ligation product will be subsequently cut again. In
contrast, ligation of S2 and T1 brings the system to Step 1.

Step 1. The ligation of S2 (with end A) and T1 (with end A∗) introduces a recog-
nition site for E1, and thus results in the cleavage of F1 from the upper end of T1.
Note that the ligation product between the lower end of T1 and S2 contains recognition
site (AA∗) for E1 while the ligation product between foot F1 and the upper end of T1

contains recognition site (CC∗) for endonuclease E3. As such, both E1 and E3 will
compete to perform cleavage on the common ligation product. (See Figure 6 (a) for
detail.) It is possible that endonuclease E3 cuts switch S2 away from anchorage T1,
resulting in an idling step. However, there must also be non-zero probability that en-
donuclease E1 cuts foot F1 away from anchorage T1, advancing the system to Step 2.

Step 2. Now foot F1 has free end C and can swing around the ligation product
between foot F2 and anchorage T2 and get ligated with the upper end C∗ of anchorage
T3. Note that now foot F1 is in front of foot F2. The ligation of CC∗ subsequently
results in the cleavage of S3 from T3.

Step 3. Switch S3 has free end B and is ligated with the B∗ end of anchorage T2,
and the newly formed recognition site BB∗ leads to the action of endonuclease E2 and
results in the cleavage between foot F2 and anchorage T2.

Step 4. Foot F2 swings to in front of foot F1 and is ligated with anchorage T4,
resulting in the cleavage of switch S4 from the lower end of anchorage T4.

Upon completion of Step 4, the walker has moved from anchorages T1 and T2 to
anchorages T3 and T4. This finishes a full inductional cycle, and hence the walker can
continue moving down the track.

Correctness. To show the correctness of the design, we prove the following three prop-
erties of the walker: 1) the motion of the walker is unidirectional; 2) the walker never
falls off the track; 3) the motion of the walker is never blocked. We omit detail here due
to lack of space, but refer the reader to [19].

Implementation with conceptual enzymes. Figure 6 describes the implementation of
device II with these conceptual restriction enzymes E1, E2, and E3, which have sim-
ilar cutting patterns as the one shown in Figure 1 (c). We require that d1 = d2 = d3

and e1 = e2 = e3, where di and ei are the length parameters for Ei (i = 1, 2, and 3).
In Figure 6 (a), two anti-parallel flows of reactions are depicted. Starting from the top,
end A (of a switch) has sticky end sequence complementary to end A∗ (lower end of
an anchorage) and hence the two are ligated together. This creates a recognition site for



Designs of Autonomous Unidirectional Walking DNA Devices 421

Fig. 6. Actions of conceptual enzymes used in the construction of device II. (a) Sequences 1, u,
1�, 1̄, ū, and 1̄� (sequences of AA∗) together constitute the recognition site (red box) for con-
ceptual endonuclease E1, whose cleavage site is indicated with a pair of bold arrows. Sequences
3̄�R, v̄R, 3̄R 3�R, vR, and 3R (sequences of C∗C) together constitute the recognition site (light
gray box) for conceptual endonuclease E3, whose cleavage site is indicated with a pair of light
gray arrows.(b) Two anti-parallel flows of reactions by E2 and E3. (c) and (d) Neither ligation
of AB∗ or BA∗ results in cleavage of CC∗

endonuclease E1, and results in the cleavage of end C (of a foot) from end C∗ (upper
end of an anchorage). This downward flow of reactions can be fully reversed into the
anti-parallel upward flow starting from the bottom with C∗ and C and ends at the top
with A and A∗. We note that due to the fully reversible nature of reactions, the reaction
system has nonzero probability to explore all three states: the top one (A, A∗ :: C∗C),
the middle one (AA∗ :: C∗C), and the bottom one (AA∗ :: C∗, C), where :: rep-
resents the duplex portion of DNA connecting the two ends. Similar fully reversible
anti-parallel flows of reactions involving E2 and E3 are depicted in Figure 6 (b). In



422 P. Yin, A.J. Turberfield, and J.H. Reif

Fig. 7. Real enzymes used in the construction of device II. Endonuclease recognition sites and
cleavage sites are indicated with bold boxes and pairs of bold arrows, respectively. N indicates
the position of a base whose value does not affect recognition by an endonuclease

Table 3. Implementation of device II with endonucleases Bpm I, Bsg I, and BpuE I. Ligation sites
and cleavage sites are denoted with − and ˆ, respectively. The bases that determine recognition
sites in action are in upper case

Reactions Enzymes Sequences
A + A∗ :: C∗C → Ligase 5′...ctg-gag(n)11ctcaag...3′

AA∗ :: C∗C 3′...g-acctc(n)11gagttc...3′

AA∗ :: C∗C → Bpm I 5′...CTGGAG(n)11ctc aaˆg...3′

AA∗ :: C∗ + C 3′...GACCTC(n)11gagˆtt c...3′

AA∗ :: C∗ + C → Ligase 5′...ctggag(n)11ctcaa-g...3′

AA∗ :: C∗C 3′...gacctc(n)11gag-ttc...3′

AA∗ :: C∗C → BpuE I 5′...c tgˆgag(n)11CTCAAG...3′

A + A∗ :: C∗C 3′...gˆac ctc(n)11GAGTTC...3′

B + B∗ :: C∗C → Ligase 5′...gtg-cag(n)11ctcaag...3′

BB∗ :: C∗C 3′...c-acgtc(n)11gagttc...3′

BB∗ :: C∗C → Bsg I 5′...GTGCAG(n)11ctc aaˆg...3′

BB∗ :: C∗ + C 3′...CACGTC(n)11gagˆtt c...3′

BB∗ :: C∗ + C → Ligase 5′...gtgcag(n)11ctcaa-g...3′

BB∗ :: C∗C 3′...cacgtc(n)11gag-ttc...3′

BB∗ :: C∗C → BpuE I 5′...g tgˆcag(n)11CTCAAG...3′

B + B∗ :: C∗C 3′...cˆac gtc(n)11GAGTTC...3′

AB∗ :: C∗ + C → Ligase 5′...ctgcag(n)11ctcaa-g...3′

AB∗ :: C∗C 3′...gacgtc(n)11gag-ttc...3′

AB∗ :: C∗C → BpuE I 5′...c tgˆcag(n)11CTCAAG...3′

A + B∗ :: C∗C 3′...gˆac gtc(n)11GAGTTC...3′

BA∗ :: C∗ + C → Ligase 5′...gtggag(n)11ctcaa-g...3′

BA∗ :: C∗C 3′...cacctc(n)11gag-ttc...3′

BA∗ :: C∗C → BpuE I 5′...g tgˆgag(n)11CTCAAG...3′

B + A∗ :: C∗C 3′...cˆac ctc(n)11GAGTTC...3′

contrast, reactions in Figure 6 (c) and 6 (d) are not fully reversible since neither ligation
of AB∗ nor that of BA∗ can result in a recognition site for an endonuclease, and hence
CC∗ can not be cleaved. This irreversibility ultimately accounts for the unidirectional-
ity of the motion of the walker. The downward reaction flow in Figure 6 (a), the upward
reaction flow in (d), the downward reaction flow in (b), and the upward reaction flow in
(c) correspond to Steps 1, 2, 3, and 4 in Figure 5, respectively.



Designs of Autonomous Unidirectional Walking DNA Devices 423

Molecular implementation with real enzymes. The above conceptual enzymes can
be mapped directly to real enzymes in Figure 7, where conceptual enzymes E1, E2,
and E3 correspond to real enzymes Bpm I, Bsg I, and BpuE I, respectively. Table 3
describes the implementation with these real enzymes. Note that we have the following
mapping from sequences in Figure 6 to the sequences in Table 3: 1 = C, u = TG, 1� =
GAG, 2 = G, 2� = CAG, 3̄�R = CTC, v̄R = AA, and 3̄R = G.

Practicality. One assumption we make about the enzyme is that the presence of a single
strand between the recognition site and cleavage site of each endonuclease used above
will neither alter the specificity nor totally inhibit the activity of that endonuclease. A
theoretical modeling of the molecular structure of the enzyme and its interaction with
the DNA strands would shed light on the practicality of this assumption. However, the
final validation of this assumption relies on a rigorous experimental study. Though our
preliminary experimental result is in agreement with this assumption, more work is still
required to further substantiate this assumption.

5 Discussion

We have depicted the backbones of the walking devices as duplex DNA fragments for
simplicity. However, this is not technically precise. One property we require of the
backbone of a track is its rigidity, to ensure that the walker cannot skip anchorage(s)
and “jump” ahead. Existing DNA lattices provide such a platform [5, 8, 16, 17]. We can
easily embed the anchorages to a rigid DNA lattice and thus integrate a walking device
to a lattice, with the latter provide the desired rigid backbone for the anchorages. In ad-
dition to the rigidity of the track, the structure and the size of the walker are also crucial
factors to ensure that a foot can only explore the immediately neighboring anchorages.
In device I, though it is hard to ensure this property for a two-footed walker (since in
such a walker one foot might swing around the other foot in a similar fashion as in
device II), this property can be rather straightforwardly guaranteed in a multi-footed
walker with a rigid body. In device two, the two feet of the walker alternate their or-
der along the track by swinging around each other and we hence only need to properly
design the size of the body such that a foot can only reach a neighboring anchorage.

The designs of the devices assume that enzyme cleavage occurs only after the DNA
strands are ligated. This is assumption is in agreement with the experimental results
observed in our recent construction of a unidirectional autonomous DNA walker [20].
In this device, we use two class II enzymes PflM I and BstAP I and the system operates
at 37 ◦C. However, we note that this property does not hold true for all class II enzymes
under all conditions. Indeed, Shapiro’s group has observed that a class II enzyme Fok I
can cleave GC rich DNA duplex strands with nicks present between Fok I recognition
site and cleavage site under at low temperature (8 ◦C) [2].

Acknowledgement

The authors would like to thank Hao Yan and Thomas H. LaBean for helpful discus-
sions. We are also grateful to the helpful comments from Alexander J. Hartemink, Yusu



424 P. Yin, A.J. Turberfield, and J.H. Reif

Wang, Hai Yu, and the anonymous reviewers. This work was supported by NSF under
ITR Grant EIA-0086015 and ITR Grant 0326157, by NSF under QuBIC Grant EIA-
0218376 and QuBIC Grant EIA-0218359, by NSF under EMT Grant CCF-0432038
and EMT Grant CCF-0432047, by DARPA/AFSOR under Contract F30602-01-2-0561,
and by RGC under Grant HKBU2107/04E.

References

1. P. Alberti and J. L. Mergny. DNA duplex-quadruplex exchange as the basis for a nanomolec-
ular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.

2. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA, 100:2191–2196,
2003.

3. Y. Chen, M. Wang, and C. Mao. An autonomous DNA nanomotor powered by a DNA
enzyme. Angew. Chem. Int. Ed., 43:3554–3557, 2004.

4. L. Feng, S. H. Park, J. H. Reif, and H. Yan. A two-state DNA lattice switched by DNA
nanoactuator. Angew. Chem. Int. Ed., 42:4342–4346, 2003.

5. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

6. J. Li and W. Tan. A single DNA molecule nanomotor. Nano Lett., 2:315–318, 2002.
7. D. Liu and S. Balasubramanian. A proton fuelled DNA nanomachine. Angew. Chem. Int.

Ed., 42:5734–5736, 2003.
8. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction

arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.
9. C. Mao, W. Sun, Z. Shen, and N. C. Seeman. A DNA nanomechanical device based on the

B-Z transition. Nature, 397:144–146, 1999.
10. J. H. Reif. The design of autonomous DNA nanomechanical devices: Walking and rolling

DNA. Lecture Notes in Computer Science, 2568:22–37, 2003. Published in Natural Com-
puting, DNA8 special issue, Vol. 2, p 439-461, (2003).

11. N. C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.
12. W. B. Sherman and N. C. Seeman. A precisely controlled DNA biped walking device. Nano

Lett., 4:1203–1207, 2004.
13. F. C. Simmel and B. Yurke. Using DNA to construct and power a nanoactuator. Phys. Rev.

E, 63:041913, 2001.
14. F. C. Simmel and B. Yurke. A DNA-based molecular device switchable between three dis-

tinct mechanical states. Appl. Phys. Lett., 80:883–885, 2002.
15. A. J. Turberfield, J. C. Mitchell, B. Yurke, Jr. A. P. Mills, M. I. Blakey, and F. C. Simmel.

DNA fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.
16. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-

dimensional DNA crystals. Nature, 394:539–544, 1998.
17. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-

assembly of protein arrays and highly conductive nanowires. Science, 301:1882–1884, 2003.
18. H. Yan, X. Zhang, Z. Shen, and N. C. Seeman. A robust DNA mechanical device controlled

by hybridization topology. Nature, 415:62–65, 2002.



Designs of Autonomous Unidirectional Walking DNA Devices 425

19. P. Yin, A. J. Turberfield, and J. H. Reif. Designs of autonomous unidirectional walking DNA
devices. Technical Report CS-2004-01, Duke University, Computer Science Department,
2004.

20. P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif. A unidirectional DNA walker
moving autonomously along a linear track. Angew. Chem. Int. Ed., 2004. In press.

21. B. Yurke, A. J. Turberfield, Jr. A. P. Mills, F. C. Simmel, and J. L. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406:605–608, 2000.



Design of an Autonomous DNA Nanomechanical Device
Capable of Universal Computation and

Universal Translational Motion�

Peng Yin1, Andrew J. Turberfield2, Sudheer Sahu1, and John H. Reif1

1 Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA
{py, sudheer, reif}@cs.duke.edu

2 University of Oxford, Department of Physics, Clarendon Laboratory,
Parks Road, Oxford OX 1 3PU, UK

a.turberfield@physics.ox.ac.uk

Abstract. Intelligent nanomechanical devices that operate in an autonomous fash-
ion are of great theoretical and practical interest. Recent successes in building
large scale DNA nano-structures, in constructing DNA mechanical devices, and
in DNA computing provide a solid foundation for the next step forward: design-
ing autonomous DNA mechanical devices capable of arbitrarily complex behav-
ior. One prototype system towards this goal can be an autonomous DNA me-
chanical device capable of universal computation, by mimicking the operation of
a universal Turing machine. Building on our prior theoretical design and proto-
type experimental construction of an autonomous unidirectional DNA walking
device moving along a linear track, we present here the design of a nanomechan-
ical DNA device that autonomously mimics the operation of a 2-state 5-color
universal Turing machine. Our autonomous nanomechanical device, called an
Autonomous DNA Turing Machine (ADTM), is thus capable of universal com-
putation and hence complex translational motion, which we define as universal
translational motion.

1 Introduction

1.1 Previous and Current Work

DNA has been explored as an excellent material for building large scale nano-structures,
constructing individual nanomechanical devices, and performing computations [26].
Recent years have seen substantial progress in these three fields and this progress pro-
vides a solid foundation for the next step forward: designing (and implementing) au-
tonomous nanomechanical devices capable of arbitrarily complex behavior, e.g. motion
and computation. A major challenge in nanoscience is to design a nanomechanical de-
vice that is capable of universal translational motion, which we define as the motion
determined by the head of a universal Turing machine. To meet this challenge, we de-
scribe the construction of a nanomechanical device embedded in a DNA lattice that

� Extended abstract. For full version, see [41].

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 426–444, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Design of an Autonomous DNA Nanomechanical Device 427

mimics the operation of a universal Turing machine in an autonomous fashion. We call
this prototype device an Autonomous DNA Turing Machine, or ADTM. The design of
ADTM benefits from recent progress in the three aforementioned fields, can be viewed
as an exciting synergistic point of the three fields, and in turn contributes to the advance
of each of these fields: it can be viewed as an autonomous intelligent nano-lattice, an
autonomous intelligent nanorobotics device, and a compact autonomous universal com-
puting device.

Large scale periodic lattices have been made from a diverse set of branched DNA
molecules, such as the DX molecules [35], TX molecules [10], rhombus molecules [17],
and 4x4 molecules [38]. In addition, researchers have also successfully constructed ape-
riodic programmable DNA lattices [37]. These self-assembled lattices provide a struc-
tural base for our construction of ADTM, whose main structure can be implemented as
two parallel arrays of DNA molecules embedded in a one-dimensional DNA lattice.

A variety of DNA nanomechanical devices have been previously constructed that
demonstrate motions such as open/close [14, 28, 29, 43], extension/contraction [2, 8,
12], and rotation [18, 39], mediated by external environmental changes such as the
addition and removal of DNA fuel strands [2, 8, 12, 28, 29, 39, 43] or the change of
ionic composition of the solution [14, 18]. A desirable improvement of these devices
is the construction of DNA nanomechanical devices that achieve motions beyond the
non-autonomous and localized non-extensible motions exhibited by the above devices.
There have already been some exciting work in this direction. Turberfield and col-
leagues have designed a free running DNA machine [31] which uses DNA as fuels and
demonstrates autonomous motion. Mao’s group recently demonstrated an autonomous
DNA motor powered by a DNA enzyme [6]. Seeman’s group has constructed a DNA
walking device controlled by DNA fuel strands [27]. Reif has designed an autonomous
DNA walking device and an autonomous DNA rolling device that move in a random
bidirectional fashion along DNA tracks [23]. The authors have recently designed au-
tonomous DNA walking devices capable of autonomous programmable unidirectional
motions along linear tracks [40, 42]. One of these prototype unidirectional DNA walk-
ing devices has also been experimentally constructed in our lab [42]. However, these
devices only exhibit simple unidirectional motion.

A rich family of DNA computation schemes have been proposed and implemented
[7, 11, 13, 15, 16, 19, 21, 22, 20, 24, 25, 30, 34] following Adleman’s seminal report in
1994 [1]. Among them, the most relevant work that has inspired the construction here
is the universal DNA Turing machine design by Rothemund [24] and the autonomous
2-state 2-color finite state automata constructed by Shapiro’s group [3, 4, 5]. In Rothe-
mund’s innovative design, the transition table of a universal Turing machine is encoded
in a circular DNA and the encoded transitions are carried out by enzymic cleavages and
ligations. However, these reactions need to be carried out manually for each transition.
In contrast, the ADTM described here operates in an autonomous fashion with no exter-
nal environmental mediation. In the inspiring construction by Shapiro’s group, a duplex
DNA encoding the sequence of input symbols is digested sequentially by an endonu-
clease in a fashion mimicking the processing of input data by a finite state automaton.
Some of their encoding schemes are used in the construction described in this paper, i.e.
using DNA sticky end to encode the combination of state and symbol and using a class



428 P. Yin et al.

II restriction enzyme to effect state change. A limitation of the finite state automata con-
struction is that the data are destroyed as the finite state automaton proceeds. Though
this feature does not affect the proper operation of a finite state automaton, it poses
a barrier to further extending the finite state automaton to more powerful computing
devices such as Turing machines.

In this work, we encode computational power into a DNA walking device embedded
in a DNA lattice and thus accomplish the design for an autonomous nanomechanical de-
vice capable of universal computation, by mimicking the operation of a 2-state 5-color
universal Turing machine. In the process of computation, the device can also demon-
strate universal translational motion as defined above, i.e. the motion demonstrated by
the head of universal Turing machine.

1.2 Universal Turing Machine

A Turing machine is a theoretical computational device invented by Turing for perform-
ing mechanical or algorithmic mathematical calculations [32, 33]. Though the construc-
tion and operational rules of a Turing machine may seem beguilingly simple and rudi-
mentary, it has been shown that any computational process that can be done by present
computers can be carried out by a Turing machine.

A Turing machine consists of two parts, a read-write head and a linear tape of cells
encoding the input data. The head has an internal state q and each cell has a color (or
data) c (as described in [36]). At any step, the head resides on top of one cell, and the
color of that cell and the state of the head together determines a transition: (i) the current
cell may change to another color; (ii) the head may take a new state; (iii) the head may
move to the cell immediately to the left or the right of the current cell.

A universal Turing machine is a Turing machine that can simulate the operation
of any other Turing machine. Let m and n be the number of possible states and the
number of possible colors of a Turing machine, respectively. The Turing machine with
a proven universal computation capacity and the smallest m × n value is a 2-state 5-
color Turing machine described in [36]. In this paper, we describe the design of a DNA
nanomechanical device that simulates the general operation of an arbitrary 2-state 5-
color Turing machine whose head moves to either its left or right neighbor in every
transition, and in particular, the universal Turing machine described in [36].

The rest of the paper is organized as follows. We give a structural overview of
ADTM in Sect. 2 and an operational overview in Sect. 3, followed by a detailed step-
by-step molecular implementation of the operation in Sect. 4. In Sect. 5, we briefly
overview two major technical challenges in designing ADTM. We close in Sect. 6 with
a discussion of our results.

2 Structural Overview

Figure 1 illustrates the structure of ADTM. ADTM operates in a solution system. The
major components of ADTM are two parallel arrays of dangling molecules tethered
to two rigid tracks. The two rigid tracks can be implemented as rigid DNA lattices as
described in Sect. 1.1, for example, the rhombus lattice [17] as shown in Figure 1. A



Design of an Autonomous DNA Nanomechanical Device 429

H1 H2 H3 H4 H5

S S S S S1 2 3 4 5

Fig. 1. Schematic drawing of the structure of ADTM. Hi and Si denote Head-Molecule and
Symbol-Molecule, respectively. The backbones of DNA strands are depicted as line segments.
The short bars represent base pairing between DNA strands

dangling-molecule is a duplex DNA fragment with one end linked to the track via a flex-
ible single strand DNA and the other end possessing a single strand DNA extension (the
sticky end). Due to the flexibility of the single strand DNA linkage, a dangling-molecule
moves rather freely around its joint at the track. The upper and lower arrays of dangling-
molecules are called Head-Molecules, denoted as H , and Symbol-Molecules, denoted
as S, respectively. We require that the only possible interactions between two dangling-
molecules are either a reaction between a Head-Molecule and the Symbol-Molecule
immediately below it or a reaction between two neighboring dangling-molecules along
the same track. This requirement can be ensured by the rigidity of the tracks and the
properly spacing of dangling-molecules along the rigid tracks.

In addition to the two arrays of dangling-molecules, there are floating-molecules. A
floating-molecule is a free floating (unattached to the tracks) duplex DNA segment with
a single strand overhang at one end (sticky end). A floating-molecule floats freely in the
solution and thus can interact with another floating-molecule or a dangling-molecule
provided that they possess complementary sticky ends. There are two kinds of floating-
molecules: the Rule-Molecules and the Assisting-Molecules. The Rule-Molecules spec-
ify the computational rules and are the programmable part of ADTM while the
Assisting-Molecules assist in the carrying out the operations of ADTM, as described
in detail later.

The array of Symbol-Molecules represent the data tape of a Turing Machine; the
array of Head-Molecules represent the moving head of a Turing Machine (more specif-
ically, at any time, only one Head-Molecule is active, and its position indicates the
position of the head of a Turing Machine); the Rule-Molecules collectively specify the
transition rules for ADTM; the Assisting-Molecules are auxiliary molecules that assist
in maintaining the operation of ADTM.

The duplex portion and/or the sticky end of a DNA molecule may encode the fol-
lowing information: (i) state, the Turing machine state; (ii) color, the color (data) en-
coded in a symbol molecule; (iii) position, the position type of a Head-Molecule. The
state, color, and position information are denoted as q, c, and p, respectively, where q ∈
{QA = LONG,QB = SHORT}, c ∈ {CA, CB , CC , CD, CE}, p ∈ {PA, PB , PC}
for the 2-state 5-color ADTM. The position information p indicates the position type
of a Head-Molecule. This information is essential for dictating the bidirectional motion
of the head. An information encoding molecule is denoted as Xa[y]b, where X is its



430 P. Yin et al.

duplex portion, [y] is its sticky end portion; a is the state/color/position information
encoded in X , and b is the state/color/position information encoded in [y]. A comple-
mentary sticky end of [y] is denoted as [ȳ].

The array of Head-Molecules is denoted as (H1,H2,H3, . . . ); the array of Symbol-
Molecules is denoted as (S1, S2, S3, . . . ). To specify the motion of ADTM head, we
have Head-Molecules arranged in periodic linear order along the Head-track

(HPA
1 ,HPB

2 ,HPC
3 ,HPA

4 ,HPB
5 ,HPC

6 . . . )

3 Operational Overview

At the beginning of a transition operation of ADTM, all the Symbol-Molecules possess
sticky ends [s̄]. A Symbol-Molecule with a sticky end [s̄] is referred to as in its default
configuration; the [s̄] sticky end is referred to as a default sticky end. One of the Head-
Molecules encodes the current state of ADTM in its duplex portion and possesses an
active sticky end [s] that is complementary to the sticky end [s̄] of the Symbol-Molecule
just below it. This Head-Molecule is referred to as the active Head-Molecule. In con-
trast, all other Head-Molecules (with sticky ends other than [s]) are in default or inactive
configuration.

Figure 2 gives a high level description of the events that occur during one transition
of ADTM. For ease of exposition, we describe the operation in 4 stages. The 8 types of
ligation events that correspond to the detailed 8-step implementation of ADTM (Sect. 4)
are also marked in the figure to assist the reader in relating the high level description
in this section to detailed step-by-step implementation in Sect. 4. In Stage 1, the active
Head-Molecule (labeled with a triangle, H3 in the example shown in Figure 2) is ligated
to the Symbol-Molecule (S3 in Figure 2) directly below it, creating an endonuclease
recognition site in the ligation product (event (1) in Figure 2). The ligation product is
subsequently cleaved into two molecules by an endonuclease. The sticky end of each
of the two newly generated molecules encodes the current state and the current color of
ADTM.

In Stage 2, both the new Symbol-Molecule and the new Head-Molecule are ligated
to floating Rule-Molecules (events (2) and (4) in Figure 2), which possess complemen-
tary sticky ends to them and correspond to one entry in the Turing machine transition
table. The ligation product between the Symbol-Molecule and the Rule-Molecule is in
turn cleaved, generating a new Symbol-Molecule dictated by the current state and color
information as well as the transition rule. The new Symbol-Molecule encodes the new
color in its sticky end. Similarly, the ligation product between the Head-Molecule and
the Rule-Molecule is cleaved, generating a new Head-Molecule whose duplex portion
encodes information of Turing machine’s next state and whose sticky end encodes the
moving direction of the head.

In Stage 3, the newly generated Symbol-Molecule is further modified by an
Assisting-Molecule so that it will encode the new color in its duplex portion (rather
than sticky end) and possess an [s̄] sticky end (event (3) in Figure 2). The sticky end of
the Head-Molecule will dictate it to hybridize with either the Head-Molecule to its left
or to its right, depending on which of its neighbors possesses a complementary sticky



Design of an Autonomous DNA Nanomechanical Device 431

end (event (5) in Figure 2, H3 is ligated with its left neighbor H2). Next, the ligation
product between these two Head-Molecules is cleaved.

H 1 H 2 H 3 H 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

H 1 H 2 H 3 H 4

S 1 S 2 S 3 S 4

Stage 1

Stage 2

Stage 3

Stage 4

R

R A A

A(1)

(2)

(4)

(3)

(5)

(6) (7,8)

Fig. 2. Operational overview of ADTM. The dangling Head-Molecules and Symbol-Molecules
are depicted as dark line fragments. The floating Rule-Molecules and Assisting-Molecules are de-
picted as light colored light segments. H , S, R, and A denote Head-Molecule, Symbol-Molecule,
Rule-Molecule, and Assisting-Molecule, respectively. The triangle indicates the active Head-
Molecule. (i) indicates the ligation event that occurs in Step i as will be described in the detailed
step-by-step implementation of ADTM (Sect. 4)

In Stage 4, the two Head-Molecules are modified by floating Assisting-Molecules
(events (6) and (7, 8) in Figure 2) so that the first Head-Molecule is restored to its in-
active configuration (with a default sticky end) and the second Head-Molecule encodes
the state information in its duplex part and possesses an active sticky end [s] and thus
becomes an active Head-Molecule, ready to interact with the Symbol-Molecule located
directly below it.

This finishes a transition and the operation can thus go on inductively. We emphasize
that we describe the events in stages only for ease of exposition. The proper operation
of ADTM does not require the synchronization of the events as described above. For
example, event (3) in Stage 3 can occur either before event (4) or after event (8).



432 P. Yin et al.

4 Step-by-Step Implementation

We next give a detailed 8-step description of the operation of ADTM. Each step consists
of ligation and cleavage events. The ligation events are marked in Figure 2 with (i),
where i = 1, 2, . . . , 8. To demonstrate the practicality of our design, we give full DNA
sequence for the reactions of each step. In addition to the A, T , C, and G bases, we also
occasionally require another pair of unnatural bases which we denote as E and F . The
reason to use E and F is to minimize the futile reactions as described later and hence
increase the efficiency of our ADTM. The practicality of use of E and F is justified by
the existing technology to make such bases and incorporate them into DNA strands. For
a recent survey on unnatural bases, see [9].

At the start of the operation of ADTM, the configuration of the Head-Molecules
array along the Head-track is

(Ĥp1q
1 [s])([h̄]p2Hp2

2 )([h̄]p3Hp3
3 ) . . .

where pi = PA for i = 3k + 1, pi = PB for i = 3k + 2, pi = PC for i = 3k + 3
for k = 0, 1, 2, . . . . The first Head-Molecule is special: it is the active Head-Molecule
and represents the current position of the active head. We use the symbolˆ to denote
the active configuration of a Head-Molecule. H1 has the unique sticky end [s], which
is complementary to the sticky end [s̄] of a Symbol-Molecule in default configuration
(in particular, the Symbol-Molecule directly below it). Thus, H1 can hybridize and
be ligated with Symbol-Molecule S1, and this will start the operation of the Turing
machine. Recall that p encodes the position type information of a Head-Molecule. This
position type information is encoded both in the sticky end portion and in the duplex
portion of a Head-Molecule. As we will see below, the sticky end encoding of p is
necessary for dictating the appropriate motion of an active head; the duplex portion
encoding is necessary for restoring a Head-Molecule to its default configuration after it
turns from an active to an inactive state.

The Symbol-Molecules array along the Symbol-track is

([s̄]Sc1
1 )([s̄]Sc2

2 )([s̄]Sc3
3 ) . . .

All the Symbol-Molecules have the same sticky end [s̄]. As such, whenever a Head-
Molecule directly above a Symbol-Molecule becomes active, this Symbol-Molecule
can interact with the active Head-Molecule. Note that [s̄] encodes no color information
– the color information ci is instead encoded completely in the duplex portion of a
Symbol-Molecule.

4.1 Reaction Between a Head-Molecule and a Symbol-Molecule

Step 1. In step 1, the active state-encoding Head-Molecule is first ligated with the color-
encoding Symbol-Molecule below it, and then the ligation product is cut into a new
Head-Molecule and a new Symbol-Molecule, the sticky ends of which both encode the
current state and color information.

Let Ĥpq
i [s] be the current active head (encoding position type p and current state

q); let [s̄]Sc
i be the Symbol-Molecule below it (encoding current color c). Ĥi and Si



Design of an Autonomous DNA Nanomechanical Device 433

has complementary sticky ends and hence these two are ligated into (HiSi)pqc. An
endonuclease recognizes the newly formed recognition site in the ligation product and
cuts the ligation product into Ĥp

i [r]qc and [r̄]qcSi. Now the sticky ends of both Ĥi and
Si encode the current color and state. Step 1 can be described by the following equation,

Ĥi
pq

[s] + [s̄]Sc
i → (HiSi)pqc → Ĥi

p
[r]qc + [r̄]qcSi

The first part of the equation is the ligation of Head-Molecule Ĥi
pq

[s] with Symbol-
Molecule [s̄]Sc

i into (HiSi)pqc; the second part is the cleavage of the ligation product
into Head-Molecule Ĥi

p
[r]qc and Symbol-Molecule [r̄]qcSi. Note that now both the

sticky ends of the Head-Molecule and the Symbol-Molecule are encoding the current
state and color. This encoding scheme is in the same spirit as the one used in [5].

Fig. 3. Step 1 of the operation of ADTM. The current state q and color c are initially encoded
in the duplex portion of the Head-Molecule and the Symbol-Molecule, respectively. After the
ligation and cleavage, both the sticky ends of the new Head-Molecule and Symbol-Molecule
encode the current state q and the current color c. The encoding scheme of c is described in
Table 1. Bsl I recognition sites and cleavage sites are indicated with boxes and pairs of bold
arrows, respectively

Figure 3 gives the molecular implementation of Step 1. For simplicity, only the
relevant end sequences are given. The encoded information p is not shown. Both the
case when q = SHORT and the case when q = LONG are depicted. xyz is the
color encoding region for Symbol-Molecule S. The encoding scheme used is shown in
Table 1.

Table 1. The molecular implementation of the color encoding scheme of a Symbol-Molecule. c

is the color; xyz is the sticky [r] exposed when state q = LONG; Txy is the sticky end [r] when
state q = SHORT . Note that all the ten sticky end sequences are different from each other

c CA CB CC CD CE

q = LONG xyz TTA CTT CAA AEA CEA
q = SHORT Txy TTT TCT TCA TAE TCE



434 P. Yin et al.

4.2 Color Change of a Symbol-Molecule

After Step 1, the sticky end of [r̄]qcSi encodes the current state and color. This sticky
end is subsequently detected by a Rule-Molecule R̃[r]qc, which has a complementary
sticky end. R̃[r]qc corresponds to one entry in the transition table for ADTM, and deter-
mines the next color c′ that will be encoded in Si. This color transition occurs in Step
2 and Si is modified to possess a sticky end [ē]c

′
that encodes the new color c′. In Step

3, Si is restored to a default configuration with a sticky end [s̄], and the new color c′

encoded in its duplex portion. We next describe the reactions in detail.
Step 2. In Step 2, Rule-Molecule R̃[r]qc hybridizes and is ligated with Symbol-

Molecule [r̄]qcSi. The ligation product is cut into R̃w[e]c
′

(a waste molecule that dif-
fuses away) and [ē]c

′
Si. The sticky end [ē] encodes the new color c′. Schematically, we

have,
R̃[r]qc + [r̄]qcSi → (RSi)qcc′ → R̃qc

w [e]c
′
+ [ē]c

′
Si

Figure 4 describes the molecular implementation of Step 2 for the case when current
state is q = LONG, and the new color is c′ = CB . The case for q = SHORT
is similar, except that sticky end [r̄] of S is Cx̄ȳ instead of x̄ȳz̄. The Rule-Molecule
R̃[r]qc consists of three parts, in the terminology of [5], Bpm I recognition site, spacer
region, and <state,color> detector. The <state, color> detector is the sticky end [r]qc,
which hybridizes with and thus detects the sticky end [r̄]qc of the symbol molecule.
The Rule-Molecule and the Symbol-Molecule are ligated and Bpm I cuts the ligation
product into a waste Rule-Molecule R̃qc

w [e]c
′

(w for waste), which diffuses away, and a
new Symbol-Molecule [ē]c

′
S, effecting the color change of the Symbol-Molecule from

c to c′. The length of the spacer of R̃ (see Figure 4) determines the position of the cut
in the ligation product and hence the sticky end [ē] and the new color c′ encoded in it.
See Table 2 for the relation between the length of the spacer, the sequence of sticky end
[ē] and the new color c′.

Fig. 4. Step 2 of the operation of ADTM. In this example, the current state is q = LONG; the
current color q and state c are encoded in the Symbol-Molecule’s sticky end [r̄] whose sequence
is x̄ȳz̄; the new color, in this case, will be c′ = CB , encoded in sticky end [ē] whose sequence is
“TG” Bpm I recognition site and cleavage site are indicated with a box and a pair of bold arrows,
respectively



Design of an Autonomous DNA Nanomechanical Device 435

Table 2. The relation between the length of the spacer, the sequence of sticky end [ē] and the new
color of a Symbol-Molecule. l is the spacer length; ē is the sticky end sequence; c′ is the new
color

c′ CA CB CC CD CE

ē CA AC CT TT TG
q = LONG l 8 7 6 5 4

q = SHORT l 7 6 5 4 3

Step 3. The Symbol-Molecule [ē]c
′
Si obtained from Step 2 needs to be restored to

its default configuration [s̄]Sc′
i so that it can interact with the Head-Molecule Hi above

it when Hi becomes active again. Note that this re-usability of the Symbol-Molecule
is essential for the proper functioning of ADTM. After the restoration, the new color
c′ is encoded in the duplex portion of Si, whose sticky end is the default sticky end
[s̄] for a Symbol-Molecule: it encodes no color, but is ready to interact with an active
Head-Molecule. The reaction of Step 3 is,

Ec′ [e]c
′
+ [ē]c

′
Si → (ES)c′ → Ew[s] + [s̄]Sc′

i

Figure 5 gives a molecular implementation of Step 3 for the case c′ = CB . Color c′

is encoded both in the sticky end portion and the duplex portion of Assisting-Molecule
Ec′ [e]c

′
. Assisting-Molecule Ec′ [e]c

′
detects the color encoding sticky end of Symbol-

Molecule Si and transfers its color encoding duplex portion to Si via ligation and subse-
quent cleavage. This step generates a waste product Ew[s] that diffuses away. Note that
Ew[s] may hybridize and be ligated with some other [s̄] end of a Symbol-Molecules,say
[s̄]Sk. However, this only represents some futile reactions that will not block, reverse, or
alter the operation of ADTM, since Ew[s] will be cut subsequently away from [s̄]Sk by
EcoPl 5I. Nevertheless, this does decrease the efficiency of ADTM and as the concentra-
tion of Ew[s] increases, the negative effect on the efficiency becomes more prominent.
For a complete set of Assisting-Molecules Ec′ [e]c

′
, see Figure 6.

Fig. 5. Step 3 of the operation of ADTM. In this example, the new color c′ = CB . See Figure 6
for the complete set of Assisting-Molecules Ec′ec′ . The color encoding regions are indicated
with light gray background. EcoPl5 I recognition site and cleavage site are indicated with a box
and a pair of bold arrows, respectively



436 P. Yin et al.

Fig. 6. The complete set of Assisting-Molecules Ec′ [e]c
′
. The color encoding regions are indi-

cated with light gray background

Note that the existence of endonuclease EcoPl5 I recognition site in the duplex por-
tion of Si adds extra complication to Step 1 and Step 2: it results in futile reactions
which are discussed in [41].

4.3 State Change of a Head-Molecule

Step 4. In Step 4, the Head-Molecule Hp
i [r]qc generated in Step 2 (with its sticky end

encoding the current state and color) is modified by a Rule-Molecule that decides the
state transition and the motion of the head. After the modification, the new state infor-
mation is encoded in the duplex portion of the modified Head-Molecule, and the motion
direction of the head is encoded in the sticky end of the modified Head-Molecule in the
form of a sticky end complementary to one of its neighboring Head-Molecules. The
sticky end of the modified Head-Molecule will dictate it to interact with either its left
or right neighbors, and thus determines the motion of the head.

More specifically, Head-Molecule Hp
i [r]qc hybridizes and is ligated with a free

floating Rule-Molecule [r̄]qcR and the ligation product (HiR)pqc is cut by endonu-

clease EcoPl5 I into Hpq′
i [h]p

′
and [h̄]p

′
Rw, a waste molecule that diffuses away. Head-

Molecule Hpq′
i [h]p

′
encodes the new state q′ in its duplex portion, and the motion di-

rection p′ of the head in its sticky end. The reaction of Step 4 is,

Ĥi
p
[r]qc + [r̄]qcR → (HiR)pqc → Ĥi

pq′
[h]p

′
+ [h̄]p

′
Rw

Figure 7 describes the molecular implementation for the case when the current state
q = LONG; new state q′ = SHORT ; the position type of the current Head-Molecule
Hi is p = PA; the position type of the Head-Molecule Hj that it will interact with is
p′ = PB (hence j = i + 1 in this case). The Rule-Molecule [r̄]qcR consists of three
parts: the detector sticky end [r̄]qc that encodes the current state and color; the spacer,
whose length determines the transition results (new state and motion direction of the
head); and recognition site for endonuclease EcoPl5 I. The Rule-Molecule [r̄]qcR de-
tects the current state q and color c encoded in sticky end [r]qc of Hi and is ligated
to Hi. After ligation, endonuclease EcoPl5 I cuts into the motion encoding region of
the Head-Molecule and exposes a new sticky end that encodes the position type infor-
mation p′ ( and hence determines the motion direction). Cleavages at motion encoding
regions I and II result in new states q′ = LONG and q′ = SHORT , respectively.
The complete set of transitions for all the combinations of different p, q, d, and q′ is
described in [41].



Design of an Autonomous DNA Nanomechanical Device 437

Fig. 7. Step 4 of the operation of ADTM. The motion encoding regions are indicated with light
gray background. l is the length of the spacer region of Rule-Molecule R. EcoPl5 I recognition
site and cleavage site are indicated with a box and a pair of bold arrows, respectively

4.4 Reaction Between Two Adjacent Head-Molecules

Head-Molecule Ĥpq′
i [h]p

′
produced in Step 4 will next interact with one of its neigh-

boring Head-Molecules, [h̄]p
′
H ′

j , where j = i − 1 for its left neighbor and j = i + 1
for its right neighbor (Step 5). Then Hj becomes an active Head-Molecule encoding
the new state q′ (Step 6) while Hi is restored to its default inactive configuration (Steps
7 and 8).

Step 5. In Step 5, Head-Molecule Ĥpq′
i [h]p

′
is ligated to either its left neighbor or

its right neighbor [h̄]p
′
H ′

j , where j = i − 1 or i + 1, as dictated by the p′ information

encoded in its sticky end. The ligation product (HiHj)q′
is cut into Hp

i [t̄]pp′q′
and

[t]pp′q′
Ĥj . The reaction of Step 5 is,

Ĥi
pq′

[h]p
′
+ [h̄]p

′
H ′

j → (HiHj)q′ → Hi[t̄]pp′q′
+ [t]pp′q′

Ĥ ′
j

Note that now both the sticky ends of Hi and Hj encode position type p of Hi,
position type p′ of Hj , and the new state q′.

Figure 9 gives a molecular implementation for this step. Panel I depicts an example
case in full detail; Panel II and III show all the cases in a simplified way. Note that the
sticky end [t̄] (and [t]) encodes all the information for position type p of Hi, position
type p′ of Hj , and the new state q′, we hence have 3 × 2 × 2 = 12 different sticky
ends [t̄].

Step 6. In Step 6, Head-Molecule Ĥ ′
j is modified into a Head-Molecule ready to in-

teract with a Symbol-Molecule; in other words, it becomes an active head. The reaction
of Step 6 is,

Ĥ ′
j [t]

pp′q′
+ [t̄]pp′q′

T → H ′
jT → Ĥ ′

j

q′
[s] + [s̄]Tw

Figure 8 describes the molecular implementation for Step 6. The mechanism of this
step is very similar to Step 4, and hence we omit its details.



438 P. Yin et al.

Fig. 8. Step 5 of the operation of ADTM. Panel I depicts the case when p = PA, p′ = PC , and
q′ = SHORT . Panel II and III describe all the cases when q′ = SHORT and all the cases when
q′ = LONG, respectively. In panel II and III, each case is represented in a simplified fashion
that only shows the ligation product before the cleavage.Bsl I recognition sites and cleavage sites
are indicated with boxes and pairs of bold arrows, respectively. The unique sticky ends [t̄]pp′q′

are shown with gray background

Fig. 9. Step 6 of the operation of ADTM. Bpm I recognition sites and cleavage sites are indicated
with boxes and pairs of bold arrows, respectively



Design of an Autonomous DNA Nanomechanical Device 439

Fig. 10. Step 7 of the operation of ADTM. Bsl I recognition site and cleavage site are indicated
with a box and a pair of bold arrows, respectively

Steps 7. and 8. In Step 7, the sticky end [t̄]pp′q′
of Head-Molecule Hi is modified

by an Assisting-Molecule T̃ [t]pp′q′
to a new sticky end [ḡ]pp′q′

. In Step 8, the sticky end
[ḡ]pp′q′

initiates a sequential “growing-back” process which restores Hi to its default
(inactive) configuration [h̄]pHp

i . The reaction of Step 7 is,

T̃ [t]pp′q′
+ [t̄]pp′q′

Hi → T̃Hi → T̃w[g]pp′q′
+ [ḡ]pp′q′

Hi

The reaction of Step 8 is,
[ḡ]pp′q′

Hi → [h̄]pHp
i

Figure 10 and Figure 11 describe the molecular implementation of Step 7 and Step
8 for the case p = PA, p′ = PB , and q′ = LONG, respectively. The figures are
self-explanatory and hence we omit the details for brevity. Note that Step 8 is a rather
spectacular process which illustrates a precisely controlled elongation mechanism using
alternating ligations and cleavages. This mechanism may be of independent interest for
designing other molecular devices.

4.5 Overall Reaction Flow

Putting all the above steps together, we have a schematic drawing for the overall flow of
the reactions (Figure 12). The complete molecule set for the construction of our ADTM
is described in [41].

To fully test the validity of our complex construction of ADTM, we performed com-
puter simulation of ADTM (See http://www.cs.duke.edu/∼py/paper/dnaUTM/).

5 Technical Challenges

Two major technical challenges in designing ADTM are to accommodate the futile
reactions occurring during the operation of ADTM and to design ADTM using limited
encoding space dictated by the four (six) letter vocabulary of DNA bases and by the
sizes of the recognition, restriction, and spacing regions of endonucleases.



440 P. Yin et al.

Fig. 11. Step 8 of the operation of ADTM for the case p = PA, p′ = PB , and q′ = LONG.
This step consists of a sequence of alternating ligations and cleavages. At each stage k, where
k = 1− 5, the Head-Molecule is first ligated to an Assisting-Molecule GAk (stage k.a), then the
ligation product is cut by an endonuclease (stage k.b). A waste molecule GAkw is generated at
each stage. The last panel gives a compact representation of the whole process. The unique sticky
end generated at each stage is indicated with gray background. Endonuclease recognition sites
and cleavage sites are indicated with boxes and pairs of bold arrows, respectively



Design of an Autonomous DNA Nanomechanical Device 441

Fig. 12. Overview of the operation of ADTM

The key technique used here to address the first challenge is to make all the futile
reactions fully reversible so that they do not obstruct or alter the operation of ADTM.
The key technique to address the second challenge is to use an “overlay” technique as
shown and to carefully select the sticky ends to avoid undesirable reactions. See [41]
for details.

6 Discussion

In this paper, we present the design of a DNA nanomechanical device capable of univer-
sal computation and hence universal translational motion. In addition to general design
principles, we give detailed molecular implementation of ADTM. A next step would be
to construct a DNA cellular automata that demonstrates parallel computations.

As a consequence of the universal computation, ADTM demonstrates universal
translational motion. This motion is a symbolic motion in the sense that no physical
entity is moved from one location to the other. Instead, the motion is the motion of the
active head symbol relative to the tracks. A nanorobotics challenge is to extend ADTM
to a device that can move a physical entity, probably a DNA fragment, in a universal
translational motion fashion. As a first step, it is conceivable that a DNA nanomechan-
ical device that moves a DNA fragment bidirectionally along the track can be designed
and possibly experimentally constructed.

Our complex design of ADTM makes some unconventional physical and chemical
assumptions. Two lines of recent work lend partial experimental support to the prac-
ticality of this design. The first one is the autonomous DNA finite state automata con-
structed by Shapiro’s group [3, 4, 5], in which a cascade of cleavages and ligations drive
the operation of the machine. A more relevant study is the experimental construction of
an autonomous unidirectional DNA walker that moves along a DNA track [42]. In this
device, a walker moves unidirectionally over a sequence of three dangling anchorages
sites (a structural analog to the dangling-molecules in ADTM design) embedded in a
DNA track in an autonomous fashion, driven by alternating actions of DNA endonucle-



442 P. Yin et al.

ases and ligases. In particular, this walking device exploits some very similar enzyme
reactions as used in the design of ADTM, such as the ligation and cleavages of DNA
duplices tethered to another DNA nanostructure and the ligation of DNA fragments
with 3-base overhangs at a relatively high temperature (37 ◦C).

Though a full experimental implementation of ADTM appears daunting, due to the
rich set of molecules, reactions, futile reactions involved, it might be possible to exper-
imentally test a subset of the mechanisms described here. Another challenge to experi-
mental demonstration of ADTM is the design of an output detection mechanism.

Many futile reactions happen in the background during the operation of ADTM.
A key feature of these futile reactions is that they are fully reversible. This is critical
in ensuring the autonomous operation of ADTM as explained below. We initially sup-
ply the system with sufficiently high concentrations of Rule-Molecules and Assisting-
Molecules as well as all the byproducts generated in the futile reactions. As such, the
futile reactions will reach a dynamic balance and the concentrations of all the compo-
nents involved in the futile reactions, including both the “active” components essential
for the operation of ADTM and the “futile” byproducts, will stay relatively constant
during the operation of ADTM. Note that since the active components will not be de-
pleted by the futile reactions (which could have happened should some futile reactions
are irreversible), the autonomous operation of ADTM will not be disrupted. Though the
futile reactions are innocuous, they do decrease the efficiency of ADTM. A desirable
improvement of the current design is to decrease the level of futile reactions and thus
increase the efficiency and robustness of ADTM.

Acknowledgement

The authors would like to thank Hao Yan and Thomas H. LaBean for helpful dis-
cussions. We are also grateful to the very helpful comments from Nabil H. Mustafa
and the anonymous reviewers. This work was supported by NSF under ITR Grant
EIA-0086015 and ITR Grant 0326157, by NSF under QuBIC Grant EIA-0218376 and
QuBIC Grant EIA-0218359, by NSF under EMT Grant CCF-0432038 and EMT Grant
CCF-0432047, by DARPA/AFSOR under Contract F30602-01-2-0561, and by RGC
under Grant HKBU2107/04E.
The full version of this paper and the supplementary material can be accessed at
http://www.cs.duke.edu/∼py/paper/dnaUTM/.

References

1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 1994.

2. P. Alberti and J. L. Mergny. DNA duplex-quadruplex exchange as the basis for a nanomolec-
ular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.

3. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA, 100:2191–2196,
2003.



Design of an Autonomous DNA Nanomechanical Device 443

4. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular com-
puter for logical control of gene expression. Nature, 429:423–429, 2004.

5. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable
and autonomous computing machine made of biomolecules. Nature, 414:430–434, 2001.

6. Y. Chen, M. Wang, and C. Mao. An autonomous DNA nanomotor powered by a DNA
enzyme. Angew. Chem. Int. Ed., 43:3554–3557, 2004.

7. D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber. Molecular computation:
RNA solutions to chess problems. Proc. Natl. Acad. Sci. USA, 97:1385 – 1389, 2000.

8. L. Feng, S. H. Park, J. H. Reif, and H. Yan. A two-state DNA lattice switched by DNA
nanoactuator. Angew. Chem. Int. Ed., 42:4342–4346, 2003.

9. A. A. Henry and F. E. Romesberg. Beyond A, C, G, and T: augmenting nature’s alphabet.
Curr. Opin. Chem. Biol., 7:727–733, 2003.

10. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

11. L. F. Landweber, R. J. Lipton, and M. O. Rabin. DNA2 DNA computations: A potential
’Killer App’? In H. Rubin and D. H. Wood, editors, DNA Based Computers III: DIMACS
Workshop, June 23-27, 1997, University of Pennsylvania, pages 161–172, Providence, Rhode
Island, 1997. American Mathematical Society.

12. J. Li and W. Tan. A single DNA molecule nanomotor. Nano Lett., 2:315–318, 2002.
13. R. J. Lipton. DNA solution of hard computational problem. Science, 268:542–545, 1995.
14. D. Liu and S. Balasubramanian. A proton fuelled DNA nanomachine. Angew. Chem. Int.

Ed., 42:5734–5736, 2003.
15. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA computing

on surfaces. Nature, 403:175–179, 2000.
16. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using algorithmic

self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.
17. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday junction

arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.
18. C. Mao, W. Sun, Z. Shen, and N. C. Seeman. A DNA nanomechanical device based on the

B-Z transition. Nature, 397:144–146, 1999.
19. Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique

problem. Science, 278:446–449, 1997.
20. J. H. Reif. Parallel molecular computation: Models and simulations. In Proceedings: 7th

Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’95) Santa Bar-
bara,CA, pages 213–223, 1995.

21. J. H. Reif. Paradigms for biomolecular computation. In C. S. Calude, J. Casti, and M. J.
Dinneen, editors, First International Conference on Unconventional Models of Computation,
Auckland, New Zealand, pages 72–93. Springer Verlag, 1998.

22. J. H. Reif. Local parallel biomolecular computation. In H. Rubin and D. H. Wood, editors,
DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical
Society, 1999.

23. J. H. Reif. The design of autonomous DNA nanomechanical devices: Walking and rolling
DNA. Lecture Notes in Computer Science, 2568:22–37, 2003. Published in Natural Com-
puting, DNA8 special issue, Vol. 2, p 439-461, (2003).

24. P. W. K. Rothemund. A DNA and restriction enzyme implementation of Turing machines. In
R. J. Lipton and E. B. Baum, editors, DNA Based Computers: Proceedings of the DIMACS
Workshop, April 4, 1995, Princeton University, volume 27, pages 75 – 119, Providence,
Rhode Island, 1996. American Mathematical Society.

25. A. J. Ruben and L. F. Landweber. The past, present and future of molecular computing.
Nature Rev. Mol. Cell Biol., 1:69–72, 2000.



444 P. Yin et al.

26. N. C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.
27. W. B. Sherman and N. C. Seeman. A precisely controlled DNA biped walking device. Nano

Lett., 4:1203–1207, 2004.
28. F. C. Simmel and B. Yurke. Using DNA to construct and power a nanoactuator. Phys. Rev.

E, 63:041913, 2001.
29. F. C. Simmel and B. Yurke. A DNA-based molecular device switchable between three dis-

tinct mechanical states. Appl. Phys. Lett., 80:883–885, 2002.
30. W. D. Smith. DNA computers in vitro and in vivo. In R. J. Lipton and E. B. Baum, editors,

DNA Based Computers: Proceedings of the DIMACS Workshop, April 4, 1995, Princeton
University, pages 121 – 186, Providence, Rhode Island, 1996. American Mathematical So-
ciety.

31. A. J. Turberfield, J. C. Mitchell, B. Yurke, Jr. A. P. Mills, M. I. Blakey, and F. C. Simmel.
DNA fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.

32. A. M. Turing. On computable numbers, with an application to the Entscheidungs problem.
In Proc. London Math. Society Ser. II, volume 42 of 2, pages 230–265, 1936.

33. A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proc. London Math. Society Ser. II, volume 43, pages 544–546, 1937.

34. E. Winfree. On the computational power of DNA annealing and ligation. In R. J. Lipton
and E. B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages 199–221.
American Mathematical Society, 1996.

35. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394:539–544, 1998.

36. S. Wolfram. A new kind of science. Wolfram Media, Inc., Champaign, IL, 2002.
37. H. Yan, T. H. LaBean, L. Feng, and J. H. Reif. Directed nucleation assembly of DNA tile

complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100:8103–8108,
2003.

38. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean. DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science, 301:1882–1884, 2003.

39. H. Yan, X. Zhang, Z. Shen, and N. C. Seeman. A robust DNA mechanical device controlled
by hybridization topology. Nature, 415:62–65, 2002.

40. P. Yin, A. J. Turberfield, and J. H. Reif. Designs of autonomous unidirectional walking DNA
devices. In DNA Based Computers 10, 2004.

41. P. Yin, A. J. Turberfield, S. Sahu, and J. H. Reif. Design of an autonomous DNA nanome-
chanical device capable of universal computation and universal translational motion. Tech-
nical Report CS-2004-07, Duke University, Computer Science Department, 2004.

42. P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif. A unidirectional DNA walker
moving autonomously along a linear track. Angew. Chem. Int. Ed., 2004. In press.

43. B. Yurke, A. J. Turberfield, Jr. A. P. Mills, F. C. Simmel, and J. L. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406:605–608, 2000.



A Clocked DNA-Based Replicator

Bernard Yurke1,2 and David Zhang2

1 Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
2 California Institute of Technology, Pasadena, California 91125

{yurke, dzhang}@dna.caltech.edu

Abstract. A stepped replicator is described that uses the energy of hy-
bridization to pry the product from the template in order to prevent
product inhibition of replication. Toehold-mediated strand displacement
is used to reset the system to its initial state after a round of replica-
tion. It is argued that the formation of dimers between structures in the
process of replicating should not be able to form and, consequently, the
system should exhibit exponential growth.

1 Introduction

The ability to reproduce is one of the defining characteristics of life. This ability
arises from a process by which DNA serves as its own template to make copies
of itself [1]. There is considerable interest in the construction of synthetic sys-
tems that are also capable of template-directed replication [2]. For our purposes
synthetic systems will mean systems that do not take advantage of biologically
derived polymerases to achieve replication of nucleic acids. Much of the interest
in synthetic replication systems comes from the insights they might provide on
how life originated or functions [3, 4]. There is interest also from the point of
view of what template replication may have to offer for manufacturing. Replica-
tion by living organisms is an exponential growth process. In a manufacturing
setting this kind of replication would alow for easy scale-up of the volume of
units produced. Another feature exhibited by living organisms is that the repli-
cation process is not perfect. This allows for Darwinian evolution. The power
of directed evolution has been exploited in research and manufacturing settings
[5]. Error-prone synthetic replicators may also allow for the directed evolution
of useful products.

A number of synthetic chemical systems have been constructed which ex-
hibit template-directed replication [6] or self-replication in oligonucleotide-based
systems [7]-[15], peptide-based systems [16]-[20], and other chemical systems [21]-
[27]. A characteristic problem of these systems is that the product remains bound
to the template or competes with monomers for binding with the template. Such
systems exhibit parabolic rather than exponential growth. The replication pro-
cess tends to stall as the concentration of product increases. Exponential growth
is a prerequisite for selection in the Darwinian sense [28, 29]. The sub-exponential
growth exhibited by these systems is thus nonconducive to Darwinian evolution.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 445–457, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



446 B. Yurke and D. Zhang

Recently a self-replicating system based on a ligase ribozyme has been con-
structed [30] that, at least, at early times exhibits exponential growth.

Recently exponential growth has also been demonstrated for a system em-
ploying a stepwise ’feeding’ procedure and immobilization of the product on a
support [31]. In this system a template is immobilized on a solid support. Frag-
ments of the product that bind to the template are introduced. The fragments are
then ligated together to produce the product. Next, a denaturing step releases
the product which is then immobilized on fresh solid support. The problem of
the binding of a template with its product is thus overcome by immobilization.

Various DNA-based nanostructures [32]-[38] and nanomachines [39]-[46] have
been constructed. For a recent review see [38]. This suggests that DNA may be
a suitable medium for the construction of synthetic replicators. Most of the
DNA-based nanomachines that have been constructed [40]-[46] to date use the
energy of hybridization to activate the machines. In addition, strand displace-
ment through competitive binding mediated by toeholds is generally used to
return the machine to its initial state. The operation of these machines involves
stepwise feeding and, hence, are clocked in the sense that the operator controls
when the machine advances to its next state through the addition of the ap-
propriate DNA strand to the solution containing the machines. Here we argue
that clocked replicators can be constructed in which the energy of hybridization
is used to pull the template-replicated product from the template to allow for
template replication. Toehold-mediated strand displacement is used to clear the
spent replication machinery from the template and product to prepare for the
next round of template replication. The replication process proceeds in a clocked
manner in which the replication process is sequenced through a series of steps
via the addition of DNA strands in an appropriate sequence. In the discussion
that follows it will be assumed that the DNA strands are added in stoichiometry
and that one waits for the reaction at each step to go to completion. Alterna-
tively, strands or components could be added in excess, if a means is provided for
removing the unreacted excess before one proceeds to the next step. This could,
in principle, be achieved through the use of magnetic beads functionalized with
the appropriate base sequences to scavenge the unreacted strands. It is argued
that the replication scheme we propose is not stalled by product-template bind-
ing and exhibits exponential growth. If the template-directed replication process
is made a bit faulty this system could, in principle, be subjected to directed
evolution.

2 The Replicator

The components from which the replicating structures are constructed are shown
in Figure 1. Key components are a set of structures we will refer to as ”bases”
labeled Bi where i is an integer index distinguishing members of the set. These
structures will play a role very similar to individual bases on a DNA strand.
Each base Bi consists of two strands of DNA held together by complementary
regions labeled n and n̄. We will refer to this as the neck region of the base. For



A Clocked DNA-Based Replicator 447

Bi

Bi

g

bi

bi b'i

b'i

n

n'

n

n'

g'

h

h'

ef

f' e'

E

E

h

h'

e'

ene

n'e

be

be

F

F

f

f'

g

g'

nf

n'f

bf

b'f

f'e'

L

L

e f

Fig. 1. The components from which the structures to be template-replicated are con-

structed. The Bi are referred to as bases and the B̄i as their complements. The linker

strands L and L̄ allow the bases or the complements, respectively, to polymerize into

linear chains. The DNA strands E, Ē, F , and F̄ serve as chain terminators. The recog-

nition groups be, bf , and the bi and b′i allow for binding with the complements via the

complementary sequences b̄e, b̄f , and the b̄i and b̄′i. See the text for further details

each base Bi there is a corresponding structure labeled B̄i which we will refer to
as the complement of the base. This complement also consists of two strands of
DNA held together by complementary regions labeled n′ and n̄′. A base Bi and
its complement B̄i can bind through hybridization of the single-stranded regions
bi and b′i of the base with the corresponding complementary regions b̄i and b̄′i
of the complement of the base. In addition to the bases, we have two strands of
DNA labeled E and F which can be viewed as a half of a base. Associated with
E and F are Ē and F̄ that will be referred to as the complements of E and F ,
respectively. E can bind with Ē via complementary base paring of be with b̄e.
Similarly, F can bind with F̄ via complementary base paring of bf with b̄f .

The base sequences of the regions labeled e, f , g, and h are the same for all
the bases Bi. In addition, the sequences e and h also appear in E. Similarly, the
sequences f and g also appear in F . The sequences e′, f ′, g′, and h′ are likewise
shared among Ē, F̄ , and the B̄i. By using identical sequences in portions of
these structures one can reduce the size of the set of maximally noninteracting
base sequences that one needs to design. The sequences ne, n′

e, nf , and n′
f

are a set of maximally noninteracting base sequences which are also maximally
noninteracting with n, n′ and their complements. The base sequences g, g′, h,
and h′ will provide regions for the attachment of the replication machinery, to
be discussed in Section 3.

The regions labeled e and f allow the bases Bi to be linked end to end in a
polymer chain. E and F provide chain terminations, since L can bind with these
strands only at one end. The linkage is performed by the strand labeled L in



448 B. Yurke and D. Zhang

Fig. 1 that consists of the concatenation of ē and f̄ , the complements of e and
f . Similarly, the complements B̄i can be linked together via the strand labeled
L̄. For the complements, Ē and F̄ serve as chain terminators.

Figure 2 shows the simplest chain that can be constructed for the comple-
ments of the bases. It consists of the termination Ē, a single base complement
B̄i, and the termination F̄ . These units are held together by the linker strand
L̄. More generally, one could have an arbitrary sequence of the B̄i between the
two terminations. However, to keep the complexity of the figures and the dis-
cussion at a manageable level, we will consider this three-unit system with the
understanding that the discussion can be easily extended to the case of a general
sequence of B̄i.

The recognition groups b̄e, b̄f , b̄i, and b̄′i allow template-guided ordering of
E, F , and the Bi when they are added to a solution containing the construct of
Fig. 2. This is shown in Fig. 3. Because E and F are not connected, the single-
stranded pairs be with b̄e, bi with b̄i, b′i with b̄′i, and bf with b̄f are able to wrap
around each other to form a double helix.

L

E

h'

be

g'

L

Bi

bi b'i

h'

F

g'

b'f

Fig. 2. A trimer consisting of the units Ē, B̄i, and F̄ linked together by the strand L̄.

The single-stranded regions b̄e, b̄i, b̄′i, and b̄f sever as recognition sites for the template-

directed construction of the complementary trimer

E

h'

be

g'

Bi

bi b'i

h'

F

g'

b'f

E

h

be

Bi

g

bi b'i

h

F

g

Bbf
fe e f

L L

Fig. 3. The construct, consisting of Ē, B̄i, and F̄ linked together by L̄ strands, allows

the template-guided arrangement of E, Bi, and F through the pairing of complemen-

tary regions be with b̄e, bi with b̄i, b′i with b̄′i, and bf with b̄f



A Clocked DNA-Based Replicator 449

E

h'

be

g'

Bi

bi b'i

h'

F

g'

b'f

E

h

be

Bi

g

bi b'i

h

F

g

bf

L L

LL

Fig. 4. Addition of L strands to the solution forms the template-constructed polymer

consisting of the three units E, Bi, and F . This is the structure that is to be repeatedly

template-replicated

It should be noted that the base sequences n and n̄ are noncomplementary to
the base sequences n′ and n̄′, and the base sequences bi and b̄i are noncomple-
mentary to the base sequences b′i and b̄′i. As a consequence, the Holiday junction
formed when Bi binds to B̄i, as depicted in Figs. 3 and 4, is stable.

r'

g'

r

g

mm

g

r

r'

g'

m'

s

h

s'

h'

m'

h

s

s'

h'

Fig. 5. The DNA strands that constitute the replication machinery. See the text for

an explication of the function of these strands. The base sequences m, m′, m̄, and m̄′

involved in pulling apart the complementary polymers are indicated by thicker lines

for emphasis



450 B. Yurke and D. Zhang

As shown in Fig. 5, the strands L can now be added to the solution to link
the e and f sequences of neighboring units. Because there is a nick between
the e and f strands attached to a given L and because one has a pivot where
be is joined with e and where f is joined with bi, for example, there should be
sufficient freedom for L to form a double helix with the e and f strands. The
repeated template replication of this structure will now be discussed.

3 The Functioning of the Template-Replication
Machinery

Once the structure of Fig. 4 has been formed, in order to have further template
replication the two polymers EBiF and ĒB̄iF̄ must be pulled apart to expose
the sequences be, bi, b′i, and bf and the complements b̄e, b̄i, b̄′i, and b̄f . The
template-replication procedure described here uses the DNA strands shown in
Fig. 5. The strands consisting of the sequences r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ are able
to bind with the structure of Fig. 4 through the base sequences ḡ, ḡ′, h̄, and
h̄′. The strand m and m′ can hybridize with r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′, respectively,
and will supply the energy to pry apart the two complementary polymers. The
strands rg, g′r′, sh, and h′s′ will allow the removal of the replication machinery,
once a round of replication has taken place.

Figure 6. shows the r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ attached to the structure to be
replicated. Since the g, g′, h, and h′ regions are attached to the structure at only
one end, it is clear that these are not inhibited from forming double-stranded
DNA with complementary regions of r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′. To insure that the
r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ strands only connect between complementary units rather

E

h'

be

Bi

bi b'i

F

g'

b'f

E

h

be

Bi

bi b'i

F

g

bf

h

h'

h

h'

g

g'

g

g'

s r s r

s' s'r' r'

m mm' m'

Fig. 6. Upon addition to the solution, the r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ strands attach to the

construct of Fig. 4 as shown. For clarity, tick marks indicating the individual bases of

the sequences m̄ and m̄′ have been suppressed



A Clocked DNA-Based Replicator 451

than across units, such as from Bi to F̄ , L and L̄ and the sequences e and f that
it hybridizes with should be sufficiently long to prevent the r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′

strands from reaching between complementary regions on neighboring units. We
will assume that the structure is sufficiently linear so that folding will not be a
problem. How long a polymer is allowed is determined by the persistence length
of the polymer.

Upon the addition of m and m′ to solution they hybridize with the com-
plementary regions in the strands r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′. As the double helix
is formed m̄ and m̄′ begin to straighten and pull the structure into two com-
plementary polymers. Since for each base torn apart between, for example, be

and b̄e, one is formed between, in this case, m′ and s̄h̄m̄′h̄′s̄′, one has a random
walk process that eventually breaks apart the complementary pairs of sequences
(be, b̄e), (bi, b̄i), (b′i, b̄′i), and (bf , b̄f ). Since double helices are being unwound
during this process, the unit consisting of E and Ē must rotate relative to the
unit consisting of Bi and B̄i. That it can do so is evident from the fact that it is
connected to the BiB̄i unit through the single duplex strand consisting of be and
b̄e In fact, the link between the EĒ unit and the BiB̄i becomes a single duplex
strand at two places, the one already mentioned and the strand consisting of
bi and b̄i. The unit consisting of F and F̄ is similarly free to rotate relative to
the BiB̄i unit. This argument is easily extended to polymers with multiple BiB̄i

h g

h' g'

E

be

Bi

bi b'i

F

bf

LL

E

be

Bi

bi b'i

F

b'f

L L

m'

s r

h g

s

h

r

g

r'

g'

r'

g'

s'

h'

s'

h'

m' m m'm m' m m

Fig. 7. The construct of Fig. 6 after the motor strands m and m′ have been added and

the two complementary polymers have been pulled apart



452 B. Yurke and D. Zhang

H G

H' G'

E

Be

Bi

Bi B'i

F

Bf

LL

E

Be

Bi

Bi B'i

F

B'f

L L

Be Bi B'i Bf

M'

S R

H G

S

H

R

G

R'

G'

R'

G'

S'

H'

S'

H'

M' M M'M M' M M

Fig. 8. The construct of Fig. 7 after the addition of the monomers E, Bi, and F . The

polymer unit ĒB̄iF̄ serves as a template to put the E, Bi, and F into the correct order.

The g and h regions of the monomers have been drawn folded back on themselves with

ticks representing individual bases suppressed. Thick lines have been used to represent

these regions. This representation will reduce the amount of clutter in Figs. 9 through 11

units. However, the number of turns the end units have to make relative to each
other grows linearly with the number of units.

Once the two complementary polymers have been pulled apart, the monomers
E, Bi, and F can be added to solution and allowed to hybridize with comple-
mentary base sequences on the ĒB̄iF̄ polymer, as shown in Fig. 8. This process
takes place in much the same way as discussed in connection with Fig. 3. Again,
because there is a free end, the double helices are not inhibited from forming.

It may be of concern that the complementary polymers, when pulled apart,
have a propensity to form dimers in which two neighboring constructs, like the
one depicted in Fig. 7, bind together, the exposed be, bi, b′i bf sites of one
construct binding with the complements of another. It is noted that this pro-
cess is geometrically hindered. In the case when the template and product are
pulled apart, each pair of units was free to rotate relative to neighboring pairs
by virtue of the fact that in the link between neighboring units are the single
duplex strands that need to be unwound. In the present situation this is not the
case, because each unit is linked to its neighbors to form a ladder-like structure.
The rungs of the ladder are the r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ strands hybridized, re-



A Clocked DNA-Based Replicator 453

h g

h' g'

E

be

Bi

bi b'i

F

bf

LL

be bi b'i b'f

E

be

Bi

bi b'i

F

b'f

L L

be bi b'i bf

LL

m'

s r

h g

s

h

r

g

r'

g'

r'

g'

s'

h'

s'

h'

m' m m'm m' m m

Fig. 9. The construct of Fig. 8 after the addition of the L strands. Now the monomers

E, Bi, and F attached to ĒB̄iF̄ are assembled into the linear polymer EBiF

spectively, with the m and m′ strands. The rails of the ladder are the template
and its product. Also, apart from the single-stranded recognition regions, the
rungs and rails of the ladder are made of stiff double-stranded DNA. Two such
ladders forming a dimer do not provide the freedom for a monomer unit and
its complement to rotate relative to neighboring pairs of units in order to form
duplex DNA. Hence, the duplexes will be incompletely formed. Under such cir-
cumstances, monomers will be able to attach themselves to the portions of the
recognition regions that remain single-stranded. Then, by competitive binding
the monomers will be able to break the duplex bonds. Hence, this system should
not exhibit the product inhibition of replication that occurs in most synthetic
systems so far devised.

Next the monomers E, Bi, and F are linked together using the L strands.
This is shown in Fig. 9. The mechanics of this process is essentially the same as
that discussed in connection with figure 4.

Once the new EBiF polymer has been completed, one adds the monomers
Ē, B̄i and F̄ to the solution. The recognition sequences of these monomers
hybridize with complementary exposed sequences of the upper EBiF polymer
shown in Fig. 9. With the addition of L̄ strands a new ĒB̄iF̄ polymer is formed
as shown in Fig. 10. Now to produce two copies of the construct of Fig. 4 it is
only necessary to remove the hybridization machinery strands.



454 B. Yurke and D. Zhang

h g

h' g'

E

be

Bi

bi b'i

F

bf

LL

be bi b'i b'f

L L

E

be

Bi

bi b'i

F

b'f

L L

be bi b'i bf

LL

m'

s r

h g

s

h

r

g

r'

g'

r'

g'

s'

h'

s'

h'

m' m m'm m' m m

Fig. 10. The construct of Fig. 9 after the addition of monomers Ē, B̄i, and F̄ , followed

by the addition of L̄. Note that one now has two copies of the construct of Fig. 4, but

linked together with the replication machinery strands

The hybridization machinery strands are removed through the addition of the
sh, h′s′, rg, and g′r′ strands of Fig. 5. These attach themselves to the r̄ḡm̄ḡ′r̄′

and s̄h̄m̄′h̄′s̄′ strands via the toeholds provided by the base sequences r̄, r̄′, s̄,
and s̄′. Then, by three-way branch migration, the r̄ḡm̄ḡ′r̄′ and s̄h̄m̄′h̄′s̄′ strands
along with the m and m′ strands are displaced. As depicted in Fig. 11 the result
is two released constructs of the type depicted in Fig. 4 for each initial construct.
In addition, the freed hybridization machinery strands are double-stranded over
their entire length and, hence, neutral to the addition of further DNA strands
to repeat the replication process.

4 Conclusions

We have described a clocked DNA-based template-replication system. It was
argued that product inhibition of template formation should not be a problem for
this system because geometrical constraints imposed by the attached replication
machinery prevent dimer formation between templates and products at the stage
when new monomers are added to the system. The system should, thus, exhibit
exponential amplification. The system could be made error-prone by choosing the



A Clocked DNA-Based Replicator 455

h g

h' g'

E

be

Bi

bi b'i

F

bf

LL

be bi b'i b'f

L L

E

be

Bi

bi b'i

F

b'f

L L

be bi b'i bf

LL

hg

g' h'

r'

g'

r

g

m

g

r

r'

g'

h

s s

h

s'

h'

m'

s'

h'

Fig. 11. The addition of strands sh, h′s′, rg, and g′r′ to the construct of Fig. 10

results in the displacement of the hybridization strands from the polymers through

competitive binding. The result is the release of two constructs of the same structure

as the starting construct, depicted in Fig. 4. Although the hybridization machinery

strands are drawn with short displaced segments, these should be viewed as nicks so

that, in fact, these strands are double-stranded over their entire length

recognition sequences bi and b′i such that the bases Bi are capable of binding to
an inappropriate site. In principle, circumstances could be devised where strands
with different Bi sequences could compete with each other in a Darwinian fashion
where both mutation and selection take place. It is also worth noting that the
ladder-like structure formed by the replication machinery as the template and
its product are pulled apart can be viewed as a kind of compartmentalization
which prevents interference, in this case dimer formation and product inhibition,
by neighboring replicators. Also, note that as in biological systems where, during
replication, two duplex strands are made from one, here also duplex structures
are being duplicated.

References

1. B. Alberts, ”DNA replication and recombination,” Nature 421, 431-435 (2003).
2. E. A. Wintner, M. M. Conn, and J. Rebek, ”Studies in molecular replication,”

Acc. Chen. Res. 27, 198-203 (1994).
3. L. S. Penrose, ”Self-Reproducing Machines,” Scientific American 200(6), 105-114

(1959).



456 B. Yurke and D. Zhang

4. L. E. Orgel, ”Unnatural Selection in Chemical Systems,” Acc. Chem. Res. 28,
109-118 (1995).

5. J. J. Bull and H. A. Wichman, ”Applied Evolution,” Annu. Rev. Ecol. Syst. 32,
183-271 (2001).

6. W. K.Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner, and D. P. Bar-
tel, ”RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated
Primer Extension,” Science 292, 1319-1325 (2001).

7. G. von Kiedrowski, ”A self-replicating hexadeoxynucleotide,” Angew. Chem. Int.
Edn Engl. 25, 932-935 (1986).

8. W. S. Zielinski and L. E. Orgel, ”Autocatalytic synthesis of a tetranucleotide ana-
logue,” Nature 327, 346-347 (1987).

9. G. von Kiedrowski, B. Wlotzka, J. Helbing, M. Matzen, and S. Jordan, ”Parabolic
growth of a hexadeoxynucleotide analogue bearing a 3’-5’-phosphoamidate link,”
Angew. Chem. Int. Edn Engl. 30, 423-426, 892 (1991).

10. T. Achilles and G. von Kiedrowski, ”A self-replicating system from three precur-
sors,” Angew. Chem. Int. Edn 32, 1198-1201 (1993).

11. D. Sievers and G. von Kiedrowski, ”Self-replication of complementary nucleotide-
based oligomers,” Nature 369, 221-224 (1994).

12. T. Li and K. C. Nicolaou, ”Chemical self-replication of palindromic duplex DNA,”
Nature 369, 218 (1994).

13. B. Martin, R. Micura, S. Pitsch, and A. Eschenmoser, ”Pyranosyl-RNA: further
observations on replication,” Helv. Chim. Acta 80, 1901-1951 (1997).

14. D. Sievers and G. von Kiedrowski, ”Self-replication of hexadeoxynucleotide ana-
logues: autocatalysis versus cross-catalysis,” Chem. Eur. J. 4, 629-641 (1998).

15. H. Schöneborn, J. Bülle, and G. von Kiedrowski, ”Kinetic monitoring of self-
replicating systems through measurement of fluorescence resonance energy trans-
fer,” Chembiochem 2, 922-927 (2001).

16. D. H. Lee, J. R. Granja, J. A. Martinez, K. Severin, and M. R. Ghadiri, ”A self-
replicating peptide,” Nature 382, 525-528 (1996).

17. K. S. Severin, D. H. Lee, J. A. Martinez, and M. R. Ghadiri, ”Peptide self-
replication via template-directed ligation,” Chem. Eur. J. 3, 1017-1024 (1997).

18. K. Severin, D. H. Lee, J. A. Martinez, M. Vieth, and M. R. Ghadiri, ”Dynamic
error correction in autocatalytic peptide networks,” Angew, Chem. Int. Edn Engl.
37, 126-128 (1998).

19. S. Yao, I. Ghosh, R Zutshi, and J. A. Chmielewski, ”A self-replicating peptide
under ionic control,” Angew. Chem. Int. Edn Engl. 37, 478-481 (1998).

20. A. Saghathelian, Y. Yokobayashi, K. Soltani and M. R. Ghadiri, ”A chiroselective
peptide replicator,” Nature 409, 797-801 (2001).

21. T. Tjivikua, P. Ballester, and J. A. Rebek, ”A self-replicating system,” J. Am.
Chem. Soc. 112, 1249-1250 (1990).

22. A. Terfort and G. von Kiedrowski, ”Self-replication during condensation of 3-
aminobenzamidines with 2-formylphenoxyacetic acids,” Angew. Chem. Int. Edn
Engl. 31, 654-656 (1992).

23. J.-I. Hong, Q. Fang, V. Rotello, and J. Rebek, ”Competition, cooperation, and
mutation improving a synthetic replicator by light irradiation,” Science 255, 848-
850 (1992).

24. Q. Fang, T. K. Park, and J. Rebek, ”Crossover reactions between synthetic repli-
cators yield active and inactive recombinants,” Science 256, 1179-1180 (1992).

25. R. J. Pieters, I. Huc, and J. Rebek, ”Reciprocal template effect in a replication
cycle,” Angew. Chem. Int. Edn Engl. 106, 1579-1581 (1994).



A Clocked DNA-Based Replicator 457

26. D. N. Reinhoudt, D. M. Rudkevich, and F. de Jong, ”Kinetic analysis of the Rebek
self-replicating system: Is there a controversy?” J. Am. Chem. Soc. 118, 6880-6889
(1996).

27. B. Wang and I. O. Sutherland, ”Self-replication in a Diels-Alder reaction,” Chem.
Commun. 16, 1495-1496 (1997).

28. E. Szathmáry and I. Gladkih, ”Sub-exponential growth and coexistence of non-
enzymatically replicating templates,” J. Theor. Biol. 138, 55-58 (1989).

29. P. R. Wills, S. A. Kauffman, and B. M. R. Stadler, ”Selection dynamics in au-
tocatalytic systems: Templates replicating through binary ligation,” Bull. Math.
Bio. 60, 1073-1098 (1998).

30. N. Paul and G. F. Joyce, ”A self-replicating ligase ribozyme,” PNAS 99, 12733-
12740 (2002).

31. A. Luther, R. Brandsch, and G. von Kiedrowski, ”Surface-promoted replication
and exponential amplification of DNA analogues,” Nature 396, 245-248 (1998).

32. J. Chen and N. C. Seeman, ”The synthesis from DNA of a molecule with the
connectivity of a cube,” Nature 350, 631-633 (1991).

33. N. C. Seeman, ”Nucleic acid nanostructures and topology,” Angew. Chem. Int.
Edn Engl. 37, 3220-3238 (1998).

34. E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, ”Design and self-assembly of
two-dimensional DNA crystals,” Nature 394, 539-544 (1998).

35. C. Mao, W. Sun, N. C. Seeman, ”Designed two-dimensional DNA Holiday junction
arrays visualized by atomic force microscopy” J. Am. Chem. Soc. 121, 5437-5443
(1999).

36. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, N. C. See-
man, ”Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes,” J. Am. Chem. Soc. 122, 1848-1860 (2000).

37. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, ”Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules,” Nature 407, 493-496
(2000).

38. N. C. Seeman, ”DNA in a material world,” Nature 421, 427-431 (2003).
39. C. Mao, W. Sun, Z. Shen, and N. C. Seeman, ”A nanomechanical device based on

the B-Z transition of DNA,” Nature 297, 144-146 (1999).
40. B. Yurke, A. J. Turberfield, A. P. Mills, Jr., F. C. Simmel, and J. L. Neumann, ”A

DNA-fuelled molecular machine made of DNA,” Nature 406, 605-608 (2000).
41. F. C. Simmel and B. Yurke, ”Using DNA to construct and power a nanoactuator,”

Phys. Rev. E 63, art. no. 041913 (2001).
42. F. C. Simmel and B. Yurke, ”A DNA-based molecular device switchable between

three distinct mechanical states,” Appl. Phys. Lett. 80, 883-885 (2002).
43. H. Yan, X. Zhang, Z. Shen, and N. C. Seeman, ”A robust DNA mechanical device

controlled by hybridization topology,” Nature 415, 62-65 (2002).
44. J. J. Li and W. Tan, ”A single DNA molecular nanomotor,” Nano Lett. 2, 315-318

(2002).
45. P. Alberti and J-L Mergny ”DNA duplex-quadruples exchange as the basis for a

nanomolecular machine,” PNAS 100, 1569-1573 (2003).
46. L. Feng, S. H. Park, J. H. Reif, H. Yan, ”A two-state DNA lattice switched by

DNA nanoactuator,” Angew. Chem. Int. Ed. 42, 4342-4346 (2003).



A Bayesian Algorithm for In Vitro Molecular
Evolution of Pattern Classifiers

Byoung-Tak Zhang1,2 and Ha-Young Jang1

1 Biointelligence Laboratory,
Seoul National University, Seoul 151-742, Korea

2 Computer Science and Artificial Intelligence Laboratory (CSAIL),
MIT, Cambridge, MA 02139

{btzhang, hyjang}@bi.snu.ac.kr
http://bi.snu.ac.kr/

Abstract. We use molecular computation to solve pattern classification
problems. DNA molecules encode data items and the DNA library rep-
resents the empirical probability distribution of data. Molecular bio-lab
operations are used to compute conditional probabilities that decide the
class label. This probabilistic computational model distinguishes itself
from the conventional DNA computing models in that the entire molec-
ular population constitutes the solution to the problem as an ensemble.
One important issue in this approach is how to automatically learn the
probability distribution of the DNA-based classifier from observed data.
Here we develop a molecular evolutionary algorithm inspired by directed
evolution, and derive its molecular learning rule from Bayesian decision
theory. We investigate through simulation the convergence behaviors of
the molecular Bayesian evolutionary algorithm on a concrete problem
from statistical pattern classification.

1 Introduction

Pattern classification is a classical and fundamental problem in artificial intel-
ligence and machine learning with a wide range of applications including com-
puter vision, data mining, information retrieval, and bioinformatics. The task of
a pattern classifier is to assign a class to an input pattern. A variety of pattern
classification techniques have been developed so far (see, for example, [4]).

This paper explores the potential of molecular computing to solve the com-
putational problems involved with pattern classification. We focus on the prob-
abilistic formulation of the pattern classification problem. The objective is to
build a joint probability P (X,Y ) of input pattern X and output class Y . Once
this model is constructed, class decisions can be made by computing the condi-
tional probabilities, such as P (Y |X). In doing so, we make use of DNA-based
molecular computation.

We use a library (as test tube or in some other format) of DNA molecules to
represent the probability distribution of data. Each molecule encodes an instance
of training data and the frequency of molecules is proportional to the probability

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 458–467, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers 459

of observing the patterns stored in the library. This makes the whole library of
molecules a probabilistic pattern classification device.

In this paper we develop a molecular algorithm for learning probabilistic
pattern classifiers. It is motivated by in vitro evolution [15] and we derive from
Bayesian decision theory a rule for setting the learning parameters for evolving
the classifier using a probabilistic DNA-library.

The paper is organized as follows. In Section 2 we describe the probabilistic
approach to pattern classification and provide the probability-theoretical basis
of using DNA molecules for solving this problem. Section 3 discusses molecular
computation of probability functions related with pattern classification. Section
4 addresses the learning problem and presents a molecular algorithm inspired by
in vitro evolution. Section 5 shows the mathematical background of the molec-
ular algorithm by deriving its learning rule. Section 6 presents and discusses
simulation results. Section 7 draws conclusions.

2 Pattern Classification and DNA Molecules

The aim is to build a pattern classification system f that outputs a label y
given an input pattern x = (x1, ..., xn), i.e. f(x) = y. In this paper we restrict
ourselves to the case of binary variables. It is convenient to assume there exists
a (unknown) target system f∗ as an ideal model for f . We also assume f∗

behaves according to the probability distribution P ∗(Y |x), but the exact form
of probability model is unknown. The only information we have is data collected
from the input-output pairs of f∗.

DNA computing provides a promising approach to realizing the pattern clas-
sifier. We can represent each input pattern as a sequence of A, T, G, and C. The
output label can also be encoded as a DNA sequence. For example, if we use 10-
mer to encode each binary variable and if there are 30 variables for input pattern
and one variable for class label, then DNA molecules of length 310-mer can rep-
resent an instance of the training example. The training patterns can be stored
as a DNA library and given a query pattern xq, the molecular pattern classifier
compares every library element against xq to make class-label decisions. The use
of DNA molecules as a memory device and the use of biochemical techniques for
memory storage and retrieval provides interesting properties, such as massive
parallelism, associative search, fault-tolerance, and miniaturization [2, 3, 6].

The method we present here is in some sense an extension of the memory-
based learning (MBL) approach [8]. In MBL, the training examples are stored
one copy for each instance. Here, we use many copies for each training example.
The number of copies of library elements is updated as new training exam-
ples are observed so that their frequency is proportional to their probability
of observation. MBL does rote-learning and thus very fast in storage, but very
slow in recall since classification computation is done from scratch. Here we up-
date the probabilistic library on learning. On recall our method works like a
look-up table, but the probabilistic distribution of the data in the library fa-
cilitates classification computation. Keeping multiple copies of data items can



460 B.-T. Zhang and H.-Y. Jang

also contribute to the robustness and fault-tolerance of the molecular computing
system [9, 13]

The frequentist interpretation of probability builds the theoretical basis of our
probabilistic molecular pattern classification model. The basic event in molecu-
lar pattern classification involves DNA-hybridization reactions. If n is the total
number of DNA strands in the library and nA is the number of strands with
pattern (or hybridization event) A, then the probability of A is defined as the
limit

P (A) = lim
n→∞

nA

n
. (1)

In molecular computation, the accuracy and reliability of the probability values
are supported by the Avogadro-scale number of molecules for representing the
population. This offers a novel way of representing the probability distribution
of data.

3 Molecular Computing for Pattern Classification

In the previous section we described how to represent the probability distribution
using DNA molecules. Essentially, the DNA library represents the joint proba-
bility P (X,Y ) of the input pattern X and the output class Y . In this section we
discuss how the class label can be computed.

One criterion to determine the class label is the maximum a posterior (MAP)
decision rule. Here, the classifier computes the probability of each class condi-
tional on the input pattern x, and decides as output the class whose conditional
probability is the highest, i.e.

y∗ = arg max
Y ∈y0,y1

P (Y |x) (2)

where y0 and y1 are the candidate classes (for simplicity, we deal with here
the case of binary classes, however, the method is generalizable to an arbitrary
number of classes). Specific techniques differ in the methods how to model the
probability distribution P (Y,x) and how efficiently to compute the necessary
probability values.

Here we use a molecular computational method for pattern classification
using the probabilistic DNA-library. Given a query pattern x we extract from
the library all the molecules that match the query. These molecules will have class
labels from which we decide the majority label as the class of the query pattern.
A class label is a sequence appended to denote the class to which the pattern
belongs. The extraction may involve some mismatches due to the potential for
formation of double-stranded DNA duplexes. There are a lot of work going on
to design the sequences and codeword sets (see, for example, [11] and references
therein). From the machine learning point of view, the small error occurred by
DNA mismatches offers the possibility of generalization by allowing unobserved
patterns to be classified. The decision-making can still be robust because it is
based on the statistics of the huge number of molecular samples.



A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers 461

The molecular algorithm for computing the class labels can be summerized
as follows.

– 1. Let the library L represent the current empirical distribution P (X,Y ).
– 2. Present an input (query) pattern x.
– 3. Classify x using L as follows:

• 3.1 Extract all molecules matching x into M .
• 3.2 From M separate the molecules into classes:

∗ Extract the molecules with label Y = y0 = 0 into M0.
∗ Extract the molecules with label Y = y1 = 1 into M1.

• 3.3 Compute y∗ = arg maxY ∈{0,1} |MY |/|M |.

In Step 3.1, note that the count c(x) of x in M approximates the probability of
observing the pattern which is called evidence:

c(x)/|L| = |M |/|L| ≈ P (x). (3)

Step 3.2 essentially computes the frequencies c(Y |x) of molecules belonging to
different classes Y . These are an approximation of the conditional probabilities
given the pattern, i.e. a posteriori probabilities:

c(Y |x)/|M | = |MY |/|M | ≈ P (Y |x). (4)

Thus, in effect, the protocol computes the maximum a posteriori (MAP) crite-
rion:

y∗ = arg max
Y ∈{0,1}

c(Y |x)/|M | = arg max
Y ∈{0,1}

c(Y |x) ≈ arg max
Y ∈{0,1}

P (Y |x) (5)

It is worth noting that for classification purposes only the relative frequency or
concentration of the molecular labels are important.

4 Molecular Computing for Pattern Learning

In the previous section we assumed the library represents the proper joint-
probability distribution P (X,Y ) of patterns X and their class Y . Here we de-
scribe how the library is revised from observed data. Our update procedure is
motivated from in vitro evolution [15, 12]. In vitro evolution starts with a library
of molecules and evaluates their goodness. Then, the fitter ones are selected as
the basis for generating mutants that build the next generation of library. The
iteration of the selection-amplification cycle can come up with the identification
of molecules that best fits to the target function. In vitro evolution has been
used to identify active compounds from composite mixtures [7]. In recent years,
a number of methods have been developed to isolate molecules with desired func-
tions from libraries of small organic molecules, nucleic acids, proteins, peptides,
antibodies or single-chain antibody fragments, or other polymers [5]. In vitro
evolution has also been used to design genetic circuits [16], finite state machines
[10], and game programs [14].



462 B.-T. Zhang and H.-Y. Jang

We start with a random collection of DNA strands. Each DNA sequence
represents an instance (x, y) of a vector (X,Y ) of random variables of interest
in the problem domain. Without any prior knowledge the DNA sequences are
generated to represent uniform distribution of the data variables. As a new
training example (x, y) is observed, we extract from the library the patterns
matching x. The class y∗ of x is determined by the classification procedure
described in the previous section. Then, the matching patterns are modified
in their frequency depending on their contribution to the correct or incorrect
classification of x. If the label v of the library pattern (u, v) matching x is
correct, i.e. v = y, it is duplicated: L ← L+ {(u, v)}. Optionally, if the label v is
incorrect, i.e. v �= y, the matching library pattern is removed from the library:
L ← L−{(u, v)}. The update of library in this way more or less like evolutionary
computation [1, 17] with the additional feature that the presentation of a training
example proceeds one generation of the library (as a population). This is also
a learning procedure since the library improves its classification performance as
new examples are presented.

The molecular algorithm for the whole evolutionary learning procedure is
summarized as follows.

– 1. Let the library L represent the current empirical distribution P (X,Y ).
– 2. Get a training example (x, y).
– 3. Classify x using L as described in the previous section. Let this class be y∗.
– 4. Update L

• If y∗ = y, then Ln ← Ln−1 + {∆c(u, v)} for u = x and v = y for
(u, v) ∈ Ln−1 ,

• If y∗ �= y, then Ln ← Ln−1 − {∆c(u, v)} for u = x and v �= y for
(u, v) ∈ Ln−1.

– 5. Goto step 2 if not terminated.

In Step 4, ∆c(u, v) denotes the number of copies of (u, v). It should be noted that
here we make use of the fact that the addition or removal operation can be per-
formed in parallel in DNA computing. Addition operation can be implemented
by PCR and removal can be done by extraction of the corresponding molecules.
The update process relies upon the reliability of DNA extraction technology.
For effective implementation of the learning procedure, experimental protocols
should consider advanced techniques for improving extraction efficiencies, such
as the refinery or super-extract model. Note also that the learning rule has a
parameter ∆c that reflects the strength of learning for each training example.
How to set this parameter will be addressed in the next section.

5 Derivation of Bayesian Update Rule

What is the theoretical basis of the molecular evolutionary learning algorithm
described in the previous section? We consider the evolution of the probability
distribution in the library L. Let L0 denote the initial library and let its proba-
bility distribution be P0(X,Y ). As the nth training example (x, y) is observed,



A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers 463

Ln−1 is updated to Ln. Thus, the general form of the learning rule is written as
Ln ← Ln−1 + {∆c(x, y)}, where all the class-dependent updates are integrated
into one term {∆c(x, y)}. This update entails the revision of the distribution
Pn−1(X,Y |x, y) of Ln−1 into Pn(X,Y |x, y) of Ln. Thus, in terms of probability
the learning rule is rewritten as

Pn(X,Y |x, y) = (1 + δ)Pn−1(X,Y |x, y), (6)

where δ is a learning parameter determining the strength of update.
Using the Bayes rule we can write P (X,Y |x, y) = P (x,y|X,Y )P (X,Y )

P (x,y) . Note that
P (X,Y |x, y) = Pn(X,Y |x, y) and P (X,Y ) = Pn−1(X,Y |x, y). Thus, inserting
Eqn. (6) into the Bayes rule we get

(1 + δ)Pn−1(X,Y |x, y) =
P (x, y|X,Y )Pn−1(X,Y |x, y)

P (x, y)
. (7)

Therefore,

δ =
P (x, y|X,Y )− P (x, y)

P (x, y)
. (8)

This indicates that the molecular algorithm follows the Bayesian evolutionary
update rule [17].

Setting the parameter δ is important to balance the adaptability and stability
of the molecular library as a probabilistic model for the data. The larger the
value of δ is, the larger gets the change of the distribution. An alternative way
to control δ is via the number of copies ∆c which dictates how many copies
of the current example should be amplified. To see the influence of δ-value on
learning effect in terms of ∆c, we use the frequentist interpretation to express
the probability:

Pn−1(X,Y |x, y) ∼= cn−1(x, y)/|L| Pn(X,Y |x, y) ∼= cn(x, y)/|L| (9)

where cn−1(x, y) and cn(x, y) are the number of copies of x before and after the
example (x, y) is presented, respectively. The size |L| of the library is assumed
to remain constant. The difference in probability is expressed as

δPn−1(X,Y |x, y) = Pn(X,Y |x, y)− Pn−1(X,Y |x, y) =
cn(x, y)− cn−1(x, y)

|L| (10)
and from this we have

δ =
∆c(x, y)

cn−1(x, y)
. (11)

The above equation shows the relationship of the probability amplification factor
δ to the number ∆c(x, y) of additional copies of molecules. It is interesting that
δ is expressed as the amplification ratio of current copies cn−1(x, y) since this
is equivalent to the number of PCR cycles for signal amplification. Thus, the
learning parameter δ can be set indirectly by controlling the number of PCR
cycles or its fraction.



464 B.-T. Zhang and H.-Y. Jang

6 Simulation Results and Discussion

We performed simulations to study the properties of the molecular algorithms
before we realize them with wet DNA. The questions we are interested in are:

– Does the evolutionary learning process converge to the best solution available
by the training data?

– If yes, how fast is the convergence? And how to control the learning rate?
– To what extent is the molecular algorithm robust against external pertur-

bation?

We use the majority function of input size n = 13. This binary function
returns 1 if the input pattern contains 6 or more 1s, otherwise it returns 0. The
size of the DNA library was 214. Theoretically, this covers the entire space of
examples for this problem (13 inputs plus 1 output). However we generated the
library randomly, so the example space is covered only statistically. We simulate
this setting considering the case where DNA computation can not cover the
whole problem space, which is true in practice.

Initially, an average of K copies of each instance are generated in the library.
We experimented on various K values, ranging from 10 to 104. Then, learning
proceeds by presenting training patterns. We use a training set of N examples
and an independent set of N examples for testing the performance of the molec-
ular pattern classifiers. Typically, N ranged from 500 to 1500. It is important
to note that though the training set of size N is given, the learning process is
on-line, i.e., the probability distribution of the DNA library is updated before
the next example is presented.

To answer the questions mentioned above, we ran the experiments by chang-
ing the learning-rate parameter δ. We also changed the example presentation
sequences. In one set of runs we presented the positive training example and the
negative example alternatingly. This is more reasonable procedure since there is
the same number of positive examples and negative examples in the majority
function. In another set of runs we presented two positive examples and then one
negative example alternatingly. This is to test for the robustness of the molec-
ular learning process against some external, statistical perturbation. These sets
of experiments were combined with the varying values of δ.

Figure 1 shows the learning behavior of the algorithm. For this simulation
experiment, the learning rate was δ = 0.1 and the DNA library maintained 1000
copies of molecules for each training instance. The examples were presented
randomly, alternating a positive and a negative example. The training set size
was 800, thus this graph shows the learning curve for the first two (random)
sweeps through the training set. We observe a monotonic increase in classification
rate which was evaluated on a test set of the same size but independent of the
training set.

To see the effect of the learning rate on the convergence we ran the same
experiment by changing δ = 1.0. The result is shown in Figure 2. It is observed
that the classification performance steadily increases until the completion of the



A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers 465

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
la

ss
ifi

ca
tio

n 
R

at
e

Number of Observed Examples

Fig. 1. Learning curve of the simulated

DNA-computing classifier: δ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
la

ss
ifi

ca
tio

n 
R

at
e

Number of Observed Examples

Fig. 2. Learning curve of the simulated

DNA-computing classifier: δ = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
la

ss
ifi

ca
tio

n 
R

at
e

Number of Observed Examples

Fig. 3. Learning curve of the simulated

DNA-computing classifier: δ = 0.1 with

alternating presentations of two positive

examples and one negative example

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

C
la

ss
ifi

ca
tio

n 
R

at
e

Number of Observed Examples

Fig. 4. Learning curve of the simulated

DNA-computing classifier: δ = 1.0 with

alternating presentations of two positive

examples and one negative example

first sweep of the training set, after which the performance degrades. This indi-
cates that the learning rate was set too big. Since we maintained 1000 copies of
DNA molecules for each example pattern in this experiment, this means making
1000 copies to learn a single training example may lead to overfitting.

We varied the example presentation order to see the effect of statistically per-
turbed training sequence. Figures 3 and 4 depict the results which replace the
experiments for Figures 1 and 2 by presenting two positive examples and then
one negative example alternatingly (and randomly). We observe lower classifica-
tion performance for these cases than the cases for presenting one positive and
one negative example alternatingly. However, when the learning rate is small, the
performance still increases steadily, showing robustness against external statis-
tical perturbation. We see some overfitting or instability when the learning rate
is too big. For instance, in this run the performance starts to get lower earlier
than when the training set correctly reflects the probabilistic distribution of the
data space.



466 B.-T. Zhang and H.-Y. Jang

To summarize, the simulation results show the learning behavior is relatively
stable against the learning rate parameter δ in the range of 0 ≤ δ ≤ 1.0 for the
experimental settings we studied. Generally, when δ is set too big, the perfor-
mance may degrade after a sweep through the training set or later. The system
was also relatively robust against the statistical perturbation of example pre-
sentation sequences. This seems due to the fact that our learning algorithm
has an error-correction component (matched wrong-answering molecules are not
copied). Finally, it should also be noted that removing incorrect-answering ex-
amples from the library can speed up the learning process, but may lead to
instability of the convergence behavior (results not shown). Thus, it should be
used with care and only if necessary.

7 Conclusion

We presented a DNA computing algorithm that evolves probabilistic pattern
classifiers from training data. Based on Bayesian theory we derived the rule
for determining the learning-rate parameter and showed this is related to the
number of copies of matched molecules in the DNA library.

We performed simulations to evaluate the performance and stability of the
molecular Bayesian evolutionary algorithm. The convergence of the algorithm
was quite stable, considering the statistical bias coming from the small number
of training examples in our experimental setting. This seems attributed to the
probabilistic nature of our molecular computing based on the huge number of
molecules to represent the statistical distributions of data. It was also observed
that the convergence was relatively stable against external perturbations such
as the presentation sequence of training examples.

Our work shows that molecular computation provides several interesting
properties for probabilistic computation in general and for pattern classifica-
tion in specific. The most important property the present work is exploiting,
and thus our simulated molecular pattern classifiers are to be useful, is the huge
number of molecular-scale data items combined with the highly-parallel molecu-
lar recognition mechanism which provides the theoretical and technological basis
for the probabilistic DNA library.

Acknowledgements

Thanks are due to Bruce Tidor and the members of the Laboratory for Molecular
Science at MIT CSAIL for many fruitful discussions. This research was supported
by the National Research Laboratory Program of the Korea Ministry of Science
and Technology and by the Next Generation Technology Program of the Korea
Ministry of Industry and Commerce.



A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers 467

References

1. Baeck, T., Kok, J.N., Rozenberg, G., “Evolutionary computation as a paradigm for
DNA-based computing,” Evolution as Computation, Landweber, L.F. and Winfree,
E. (Eds.), Springer-Verlag, pp. 15-40, 2002.

2. Baum, E. B., “Building an associative memory vastly larger than the brain,” Sci-
ence, 268:583-585, 1995.

3. Chen, J. Deaton, R. and Wang, Y.-Z., “A DNA-based memory with in vitro learn-
ing and associative recall,” Proc. 9th Annual Meeting on DNA-Based Computers,
pp. 127-136, 2003.

4. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, 2nd Ed. Wiley,
2001.

5. Famulok, M. and Verma, S., “In vivo-applied functional RNAs as tools in pro-
teomics and genomics research,” Trends in Biotechnology, 20(11):462-466, 2002.

6. Garzon, M. Bobba, K. and Neel, A., “Efficiency and reliability of semantic retrieval
in DNA-based memories,” Proc. 9th Annual Meeting on DNA-Based Computers,
pp. 137-149, 2003.

7. Landweber, L.F. and Pokrovskaya, I.D., “Emergence of a dual-catalytic RNA with
metal-specific cleavage and ligase activities: The spandrels of RNA evolution,”
Proc. Natl. Acad. Sci. USA, 96:173-178, 1999.

8. Lim, H.-W., Yun, J.-E., Jang, H.-M., Chai, Y.-G., Yoo, S.-I., and Zhang, B.-T.,
“Version space learning with DNA molecules,” Lecture Notes in Computer Science,
2568:143-155, 2003.

9. Reif, J. and LaBean, T. “Computationally inspired biotechnology: Improved DNA
synthesis and associative search using error-correcting codes and vector quantiza-
tion,” Lecture Notes in Computer Science, 2054:145-172, 2001.

10. Rose, J. A., Deaton, R. J., Hagiya, M., Suyama, A., “A DNA-based in vitro genetic
program”, Journal of Biological Physics, 28:493-498, 2002.

11. Shin, S.-Y., Lee, I.-H., Kim, D. and Zhang, B.-T. “Multi-objective evolutionary
optimization of DNA sequences for reliable DNA computing,” IEEE Transactions
on Evolutionary Computation, 2004 (to appear).

12. Wilson, D.S. and Szostak, J.W., “In vitro selection of functional nucleic acids,”
Ann. Rev. Biochem., 68:611-647, 1999.

13. Winfree, E. and Bekbolatov, R. “Proofreading tile sets: Logical error correction
for algorithmic self-assembly,” Talk at The 9th Annual Meeting on DNA-Based
Computers, Madison, WI, June 2003.

14. Wood, D. “DNA starts to learn Poker,” Proc. DNA7, Lecture Notes in Computer
Science, 2340:92-103, 2003.

15. Wright, M.C. and Joyce, G.F., “Continuous in vitro evolution of catalytic func-
tion,” Science, 276:614-617, 1997.

16. Yokobayashi, R., Weiss, R., and Arnold, F.H., “Directed evolution of a genetic
circuit,” Proc. Natl. Acad. Sci. USA, 99(26):16587-16591, 2002.

17. Zhang, B.-T., “A unified Bayesian framework for evolutionary learning and op-
timization,” Advances in Evolutionary Computation, Chapter 15, pp. 393-412,
Springer-Verlag, 2003.



Author Index

Alhazov, Artiom 1

Baryshnikov, Yuliy 14
Bi, Hong 50

Câmpeanu, Cezar 24
Carpenter, Dylan 50
Cavaliere, Matteo 1, 35
Chen, Ho-Lin 62
Chen, Junghuei 50
Coffman, Ed 14
Csuhaj-Varjú, Erzsébet 76

Deaton, Russell 50
Dı́az, Carmen Graciani 128
D’yachkov, Arkadii G. 90

Franco, Giuditta 104
Fujibayashi, Kenichi 113

Garzon, Max H. 50, 281
Giagulli, Cinzia 104
Goel, Ashish 62

Hagiya, Masami 202
Harju, Tero 138, 149
Henkel, Christiaan V. 159
Hoogeboom, Hendrik Jan 375

Ibarra, Oscar H. 76
Irie, Satoru 258

Jang, Ha-Young 458
Jonoska, Nataša 35

Kameda, Atsushi 355
Kari, Lila 169, 182
Kawakami, Takashi 258
Keinan, Ehud 35
Kim, Jin Woo 50
Kobayashi, Satoshi 192
Konstantinidis, Stavros 169, 182
Kubota, Mitsuhiro 202

Laudanna, Carlo 104
Lee, Ji Youn 215

Leupold, Peter 224
Li, Chang 138
Lim, Hee-Woong 215

Macula, Antony J. 90
Manca, Vincenzo 104
Margenstern, Maurice 149, 235
Mitrana, Victor 235
Momčilović, Petar 14
Moore, Cristopher 247
Morgan, Clint 247
Murata, Satoshi 113

Ogura, Yusuke 258
Ohuchi, Azuma 355

Păun, Andrei 24
Păun, Gheorghe 268
Park, Tai Hyun 215
Pérez-Jiménez, Mario J. 128, 235
Petre, Ion 138
Phan, Vinhthuy 281
Piran, Ron 35

Reif, John H. 293, 410, 426
Renz, Thomas E. 90
Rozenberg, Grzegorz 138, 159, 375
Rykov, Vyacheslav V. 90

Sahu, Sudheer 293, 426
Sakamoto, Kensaku 308
Schulman, Rebecca 319
Seelig, Georg 329
Seeman, Nadrian C. 35
Soloveichik, David 344
Someya, Hiroshi 308
Sośık, Petr 169, 182
Spaink, Herman P. 159
Stefanovic, Darko 247
Stojanovic, Milan N. 247
Sumiyama, Fumika 258
Suyama, Akira 258

Takahashi, Naoto 355
Tanida, Jun 258

P gozelski, Wendy K. 90o



470 Author Index

Torney, David C. 90
Turberfield, Andrew J. 410, 426

van Noort, Danny 365
van Vliet, Rudy 375
Vaszil, György 76

Wakabayashi, Kenichi 389
Wang, Yu-Zhen 50
Winfree, Erik 319, 329, 344
Wood, David 50

Yamamoto, Masahito 355

Yamamura, Masayuki 308, 389

Yan, Hanwen 399

Yin, Peng 293, 410, 426

Yogev, Sivan 35

Yoo, Suk-In 215

Yurke, Bernard 329, 445

Zhang, Byoung-Tak 215, 458

Zhang, David 445


	Frontmatter
	Computing by Observing Bio-systems: The Case of Sticker Systems
	DNA-Based Computation Times
	Computing Beyond the Turing Limit Using the H Systems
	Biomolecular Implementation of Computing Devices with Unbounded Memory
	Characterization of Non-crosshybridizing DNA Oligonucleotides Manufactured {\itshape In Vitro}
	Error Free Self-assembly Using Error Prone Tiles
	On the Computational Complexity of {\itshape P}~Automata
	A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes
	DNA Extraction by XPCR
	A Method of Error Suppression for Self-assembling DNA Tiles
	Using Automated Reasoning Systems on Molecular Computing
	Parallelism in Gene Assembly
	Splicing Systems for Universal Turing Machines
	Application of Mismatch Detection Methods in DNA Computing
	Bond-Free Languages: Formalizations, Maximality and Construction Methods
	Preventing Undesirable Bonds Between DNA Codewords
	Testing Structure Freeness of Regular Sets of Biomolecular Sequences
	Minimum Basin Algorithm: An Effective Analysis Technique for DNA Energy Landscapes
	Efficient Initial Pool Generation for Weighted Graph Problems Using Parallel Overlap Assembly
	Partial Words for DNA Coding
	Accepting Hybrid Networks of Evolutionary Processors
	Building the Components for a Biomolecular Computer
	Methods for Manipulating DNA Molecules in a Micrometer Scale Using Optical Techniques
	From Cells to Computers: Membrane Computing -- A Quick Overview
	The Capacity of DNA for Information Encoding
	Compact Error-Resilient Computational DNA Tiling Assemblies
	Toward ``Wet'' Implementation of Genetic Algorithm for Protein Engineering
	Programmable Control of Nucleation for Algorithmic Self-assembly
	DNA Hybridization Catalysts and Catalyst Circuits
	Complexity of Self-assembled Shapes
	Aqueous Computing with DNA Hairpin-Based RAM
	A Programmable Molecular Computer in Microreactors
	Combinatorial Aspects of Minimal DNA Expressions
	A Design for Cellular Evolutionary Computation by Using Bacteria
	An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based DNA Nanomachine
	Designs of Autonomous Unidirectional Walking DNA Devices
	Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal Translational Motion
	A Clocked DNA-Based Replicator
	A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers
	Backmatter



