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Preface

IbPRIA 2005 (Iberian Conference on Pattern Recognition and Image Analysis) was the
second of a series of conferences jointly organized every two years by the Portuguese
and Spanish Associations for Pattern Recognition (APRP, AERFAI), with the support
of the International Association for Pattern Recognition (IAPR).

This year, IbPRIA was hosted by the Institute for Systems and Robotics and the
Geo-systems Center of the Instituto Superior Técnico and it was held in Estoril, Portu-
gal. It provided the opportunity to bring together researchers from all over the world to
discuss some of the most recent advances in pattern recognition and all areas of video,
image and signal processing.

There was a very positive response to the Call for Papers for IbPRIA 2005. We re-
ceived 292 full papers from 38 countries and 170 were accepted for presentation at the
conference. The high quality of the scientific program of IbPRIA 2005 was due first to
the authors who submitted excellent contributions and second to the dedicated collabo-
ration of the international Program Committee and the other researchers who reviewed
the papers. Each paper was reviewed by two reviewers, in a blind process. We would
like to thank all the authors for submitting their contributions and for sharing their re-
search activities. We are particularly indebted to the Program Committee members and
to all the reviewers for their precious evaluations, which permitted us to set up this
publication.

We were also very pleased to benefit from the participation of the invited speakers
Prof. David Lowe, University of British Columbia (Canada), Prof. Wiro Niessen, Uni-
versity of Utrecht (The Netherlands) and Prof. Isidore Rigoutsos, IBM Watson Research
Center (USA). We would like to express our sincere gratitude to these world-renowned
experts.

We would like to thank Prof. João Sanches and Prof. João Paulo Costeira of the
Organizing Committee, in particular for the management of the Web page and the sub-
mission system software.

Finally, we were very pleased to welcome all the participants who attended IbPRIA
2005. We are looking forward to meeting you at the next edition of IbPRIA, in Spain in
2007.

Estoril, June 2005 Jorge S. Marques
Nicolás Pérez de la Blanca

Pedro Pina
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Robert Duin University of Delft, The Netherlands
Mário Figueiredo Instituto Superior Técnico, Portugal
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Joan Serrat Universitat Autònoma de Barcelona, Spain
Yoshiaki Shirai Osaka University, Japan
Pierre Soille Joint Research Centre, Italy
Karl Tombre LORIA, France
M. Ines Torres University of the Basque Country, Spain
Emanuele Trucco Heriot-Watt University, UK
Alessandro Verri University of Genoa, Italy
Max Viergever University of Utrecht, The Netherlands
Joachim Weickert Saarland University, Germany



Organization IX

Reviewers

Arnaldo Abrantes
Luı́s Alexandre
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José Isern-González, and Antonio Falcón-Martel

Removing Shadows from Face Images Using ICA . . . . . . . . . . . . . . . . . . . . . . . . . 453
Jun Liu, Xiangsheng Huang, and Yangsheng Wang

An Analysis of Facial Description in Static Images and Video Streams . . . . . . . . . 461
Modesto Castrillón-Santana, Javier Lorenzo-Navarro,
Daniel Hernández-Sosa, and Yeray Rodrı́guez-Domı́nguez

Recognition of Facial Gestures Based on Support Vector Machines . . . . . . . . . . . . 469
Attila Fazekas and István Sánta

Performance Driven Facial Animation by Appearance Based Tracking . . . . . . . . . 476
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José Garcı́a-Hernández, Stella Heras, Alfons Juan,
Roberto Paredes, Beatriz Nácher, Sandra Alemany,
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Fernando López, José Miguel Valiente, Ramón Baldrich, and Marı́a Vanrell

Quantitative Identification of Marbles Aesthetical Features . . . . . . . . . . . . . . . . . . . 674
Roberto Bruno, Lorenza Cuoghi, and Pascal Laurenge

Leather Inspection Based on Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
João Luı́s Sobral

Multispectral Image Segmentation by Energy Minimization
for Fruit Quality Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
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Abstract. This paper describes a novel compact representation of local
features called the tensor doublet. The representation generates a four
dimensional feature vector which is significantly less complex than other
approaches, such as Lowe’s 128 dimensional feature vector. Despite its
low dimensionality, we demonstrate here that the tensor doublet can be
used for pose estimation, where the system is trained for an object and
evaluated on images with cluttered background and occlusion.

1 Introduction

Pose estimation of objects is of great interest in several industrial applications,
especially in the unsolved bin picking problem. Industrial automation of today
demands very dynamic automation systems since the geometry of the products
changes faster than before. As a consequence, old systems where the objects
are placed in fixtures, will not be sufficient in the future. Instead we need more
advanced procedures that can find the pose of objects, guide the robot toward
the objects and finally grasp them.

Over the years several algorithms have been developed for view centered
pose estimation of objects based on local invariant features [4, 6, 7, 10], where
Lowe’s SIFT features [7] are considered state of the art. These features seem
to deliver a very stable and accurate pose estimate, but the representation of
the local feature is iconic. By using a model based approach to represent these
local features, it is possible to have a more compact representation, and it is also
possible to extract information about the local area which could be useful in a
grouping process.

The approach to pose estimation proposed in this paper uses the scene ten-
sor in 2D [8, 9] as a basis for a set of invariant features. The scene tensor is a
representation of one or several line segments, where each segment is represented
by its orientation, center of gravity and covariance relative to a local coordinate
system. A tensor doublet, inspired by the work of Granlund and Moe [4] and
based on the information from the scene tensor is then used as the invariant
representation of the local feature. The tensor doublet only consists of four pa-
rameters which all are invariant to translation, and variations in orientation and
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scale. In comparison with the SIFT feature’s 128 invariant parameters where
more than 50 percent is non zero, the tensor doublet is a very low dimensional
feature vector. If the database contains a large number of feature vectors, the
lower dimensionality of the feature vector will definitely speed up the rest of the
pose estimation procedure.

In this paper we will show that it is possible to use low dimensional feature
vectors for pose estimation of object and still get comparable results to other
approaches using high dimensional feature vectors.

2 Introduction to the Scene Tensor

Next section presents a doublet descriptor which is invariant to certain transfor-
mations. The descriptor is based on the assumption that we can find corner-like
points in the image and also describe the parameters of the corresponding cor-
ners; the opening angles, their relative orientation and position. Consequently,
we need a detector of corner points and a descriptor of the parameters of the
corner. In the literature, the so-called Harris corner detector [5] is a common tool
for finding interest points for various purposes. This feature, however, does not
give a reliable indication that the corresponding point really is a corner. It also
detects isolated points, crossings of several lines, high frequency textures and
noise, or in principle anything which cannot be characterized as locally constant
or similar to a single line.

For the purpose of finding and describing corner points we here use a tensor
based descriptor presented in [8, 9]. This approach combines the usual orientation
tensor [2] with projective geometry, similar to what was done in [11], but also
employing higher order tensors (4th order). The resulting representation has
some very useful properties presented below.

The fourth order tensor can be rearranged as a second order tensor S22 which
in the 2D case is 6× 6. In [8] it is shown that S22 can be estimated from image
data using only weighted polynomial filters which in addition can be separable.
Assuming that S22 has been estimated from a local region which contains N line
segments it can be written

S22 =
N∑

k=1

S20,k ST
02,k (1)

where S20,k is 6-dimensional vector which contains information about the local
center of gravity and extension of segment k and S02,k is a 6-dimensional vector
which contains information about the position and orientation of the correspond-
ing line. In brief, each pair S20,k, S02,k describes a local line segment in terms
of its position relative to the local region, its orientation and extension. Conse-
quently, S22 is the superposition of all this information for all N line segments
in the local region from where it has been estimated.

In [8] it is shown that for the caseN ≤ 3 the rank of S22 is the same asN , i.e.,
local regions which contains two line segments are characterized by S22 having
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Fig. 1. Left: test image. Right: A measurement of certainty that the corresponding S22

is of rank two.

rank two. The detection of rank two points can be implemented in different ways,
but it is typically based on analyzing the singular values of S22, see [8]. In the
2D case, and for these rank two points, it is also possible to analyze S22 further
to extract the position, extension and orientation of both line segments. This is
done by analyzing the full SVD of S22. This information allows us to characterize
each rank two region, e.g., as a corner, a crossing or a junction. Furthermore, for
each of these cases, the position where the two lines meet and the orientations
of each line can be estimated with an accuracy which make the representation
useful for practical applications, e.g., the one presented in this paper. For a more
detailed presentation of the fourth order tensor representation, see [8].

Figure 1 shows a synthetic test image and the response of a rank two measure.
By considering the local peaks of the response image, and further analysis of the
corresponding S22 at these points, it is possible to determine if the points are
corners and what the parameters of the corners are.

3 Compact and Invariant Representation
of Local Image Data

One very useful feature for a representation is its degree of invariance. If a
representation is invariant with respect to translation, rotation and scale, the
amount of training data required decreases and a learning procedure converges
faster. The scene tensor described in section 2 is not invariant with respect
to orientation and scale and we have consequently implemented an invariant
representation based on both the scene tensor and the work by Granlund and
Moe [4]. The idea is to calculate invariant parameters based on a geometry
including two corners. This representation is called a doublet or more precisely
a tensor doublet, because the corners are detected and represented by using the
scene tensor.

From the corner feature detection process described in Section 2 we get a
list of tensors where each tensor is a description of a local region containing
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1α 2α

1β

2β

γ

Fig. 2. Illustration of the tensor doublet.

two line segments. Each segment is defined in terms of its position, extension
and orientation. By extracting the line parameters from two of these tensors
the tensor doublet illustrated in figure 2 can be computed. The four feature
parameters α1, α2, β1, β2 and γ can be calculated from the line parameters,
where α is the angle between the line segments in each second level feature and
β is the orientation of each feature relative to the line connecting both features.
These four parameters are invariant to both rotation, translation and scaling
of the image. The position of each feature is defined by the intersection of the
line segments and γ is the distance between the features. It is more robust to
use the intersection as the feature’s position rather than using the result from
the detection process, since that is dependent on contrast, lighting and even the
angle between the line segments. It is not hard to realize that the parameters
representing the tensor doublet are invariant with respect to translation and
rotation. The γ parameter is however not invariant to scale, but is useful in the
grouping process. The process of connecting second level features is not an easy
task and it is necessary to include some kind of perceptual grouping process in
this step. The method employed here is on the lower end of perceptual grouping,
where the rule for connecting two features is simply based on the distance γ
between the features. If the distance for a feature pair is between certain lower
and an upper bounds, then the features are joined to build a doublet. The
maximal distance should be set to a value that minimizes the probability of
a connection between features from the object and the background. A typical
value is half the object size. The minimal distance should prevent connecting
two tensors estimated from the same feature and the value should be based on
the parameters used in the detection process.

4 Mapping from the Representation
to Object State Parameters

In this approach to pose estimation we have used a matching and clustering pro-
cedure to perform the mapping from feature vectors to object state parameters,
but it is also possible to use an associative network together with these types of
features. The object state parameters are the two pose angles φ and θ, figure 3,
the scaling relative to the training view s′/s, the rotation in the image plane α,
and the translation x, y.
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Fig. 3. Definition of the two pose angles.

During training, images are taken from different views of the object using
a rotation table. Tensor doublets are calculated for each image and stored in
a database, called the prototype doublets in figure 4. A label containing the
pose angles, φ and θ, together with the positions for the interest points in the
doublet is also stored for each prototype doublet. When a query image, or a test
image, is presented to the system, tensor doublets are calculated. These doublets
are referred to as query doublets in figure 4. Each of these query duplets is then
matched with the prototype doublets and for each match a translation t, rotation
R and scaling s of the object relative to the training image is calculated according
to

pq = t + sRpp (2)

where pq and pp are the positions of one of the points in the doublet in the
query image and in the prototype image, respectively. The transformations have
4 degrees of freedom in total, so one doublet should be sufficient to compute the
transformations.

All doublets computed from interest points on the objects will vote on the
same object state parameters and will therefore cluster in the six dimensional
space illustrated in figure 4. This cluster can be found by a mean-shift filtering
followed by a mean-shift clustering [1, 3]. A confidence measurement is then
calculated for each cluster. This measure is the estimated probability for the
cluster mean multiplied with the number of votes in the cluster.

5 Results

The system has been trained for one of the sockets in figure 6. Images have been
taken from different views of this object where θ ranges from zero to 40◦ and φ
ranges from zero to 180◦. The step between the training images is 10◦ for both
the φ and θ variable.

The pose estimation system has been evaluated with the worst case images,
meaning the images between the training images. The result is illustrated in
figure 5. The MAE (mean absolute error) is 1.6◦ for the θ variable and 1.8◦

for φ.
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......
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Fig. 5. Pose estimation test on the socket. The dotted line is the estimated pose and
the solid line represents the ground truth.

The bin picking problem discussed in the introduction often implies in prac-
tice that the objects are stacked in a pile. The pose estimation system is evaluated
for such a situation with good performance, figure 6. Each one of the three ob-
jects can be found with good accuracy. The upper leftmost image illustrates the
pose derived from the cluster with the highest confidence, the upper rightmost
is the cluster with the second highest confidence and the lower leftmost is the
cluster with the third highest confidence. The white mesh illustrating the object
pose is the norm of the gradient of the closest training view, which is scaled and
translated according to the pose estimate. The system also works with other
objects in the background which is illustrated in the lower rightmost image in
figure 6. Figure 7 illustrates the performance when the object has a different
scale relative to the training images.
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Fig. 6. Pose estimation of sockets in a pile and a socket with background. The three
first images is actually the same image, where the first image illustrates the pose
estimate withe highest confidence, the second image illustrates the pose estimate with
the second highest pose estimate and so on. Demonstrably the algorithm can detect
several objects from one image.

Fig. 7. Pose estimation with background and different scales.

6 Conclusion

In this paper we have introduced the tensor doublet, which is a compact and
invariant representation useful for pose estimation tasks. The main difference be-
tween this representation and others is the low dimension of the feature vector,
which will definitely speed up the following steps in the pose estimation algo-
rithm. It is shown by a number of test images that the pose estimation works well
for objects stacked in a pile, an object with a cluttered background and objects
with different scales. Pose estimation of objects stacked in a pile is especially
interesting in industrial automation, for example the bin picking problem.
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Abstract. Some recent works have addressed the object recognition
problem by representing objects as the composition of independent im-
age parts, where each part is modeled with “low-level” features. One of
the problems to address is the choice of the low-level features to appro-
priately describe the individual image parts. Several feature types have
been proposed, like edges, corners, ridges, Gaussian derivatives, Gabor
features, etc. Often features are selected independently of the object to
represent and have fixed parameters. In this work we use Gabor fea-
tures and describe a method to select feature parameters suited to the
particular object considered. We propose a method based on the Infor-
mation Diagram concept, where “good” parameters are the ones that
optimize the filter’s response in the filter parameter space. We propose
and compare some concrete methodologies to choose the Gabor feature
parameters, and illustrate the performance of the method in the detec-
tion of facial parts like eyes, noses and mouths. We show also the rotation
invariance and robustness to small scale changes of the proposed Gabor
feature.

1 Introduction

The object recognition problem has been tackled recently with several successful
results [1–4]. All of these works exploit the idea of selecting various points in
the object and building up a local neighborhood representation for each one of
the selected points. Two related problems are involved in this process: (i) which
points in the object should be used and (ii) how to represent the information
contained in their neighborhood. In the present work, we address the latter
problem, assuming that interest points are obtained by some methodology [1–3].
In the experiments we present later, interest points are selected manually.

Regarding the problem of local neighborhood representation, there are sev-
eral types of features being proposed in the literature: gradient magnitude and
orientation maps [1], Gaussian derivatives [2, 3], rectangular features [5] and
� Research partly funded by European project IST 2001 37540(CAVIAR), the FCT

Programa Operacional Sociedade de Informação(POSI) in the frame of QCA
III, and Portuguese Foundation for Science and Technology PhD Grant FCT
SFRH\BD\10573\2002.
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Gabor features[6], amongst others. However, the parameters when using Gabor
features are often fixed [7, 8] or chosen manually [6]. In this work we also use Ga-
bor features to represent a local image neighborhood but select their parameters
according to the particular image pattern to detect.

The adaptation of feature parameters to particular object parts was first
exploited in [9]. They propose to select Gabor function parameters in a semi-
automatic fashion, using the “Information Diagram” concept. The Information
Diagram is the representation of Gabor feature magnitude, at a certain image
point, as a function of the Gabor filter orientation and frequency parameters.
The scale and wavelength (inverse of frequency) have a fixed ratio. In our work,
we extend the “Information Diagram” concept to consider scale and wavelength
as independent parameters, thus resulting in a 3-dimensional function. We show
different methodologies to select “good” feature parameters from this Extended
Information Diagram.

In order to evaluate different methodologies for parameter selection, we have
set-up a facial feature learning and detection experiment. The evaluation of
results will be based on the detection rates achieved. Since the focus of the work
is on the selection of feature parameters, we will employ very straightforward
techniques for the learning and detection steps. In the learning step we compute
the object model, consisting in the average and covariance matrix of vectors
containing the response of selected Gabor features in a large training set. In the
detection step, we compute the distance (Euclidean and Mahalanobis) between
novel image points and the acquired models. We have performed experiments in
the identification of facial points like eyes, mouths and noses, and obtain high
success rates with the proposed features. Then we evaluate the robustness of the
method to pattern variations in scale and orientation.

2 Gabor Functions as Local Image Descriptors

The motivation to use Gabor functions is mostly biological, since Gabor-like re-
ceptive fields have been found in the visual cortex of primates [10]. Gabor func-
tions act as low-level oriented edge and texture discriminators and are sensitive
to different frequencies and scale information.These facts raised considerable in-
terest and motivated researchers to extensively exploit the properties of Gabor
functions.

2.1 The Gabor Function

Mathematically, a 2D Gabor function, g, is the product of a 2D Gaussian and a
complex exponential function. The general expression is given by:

gθ,λ,σ1,σ2(x, y) = exp
{
−1/2

(
x y

)
M
(
x y

)T
}

exp
{
jπ

λ
(x cos θ + y sin θ)

}
where M = diag(σ−2

1 , σ−2
2 ). Some examples of Gabor functions are shown in

Fig.1. The parameter θ represents the orientation, λ is the wavelength, and
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σ1 and σ2 represent scale at orthogonal directions. When the Gaussian part is
symmetric, we obtain the isotropic Gabor function:

gθ,λ,σ(x, y) = exp
{
−x

2 + y2

2σ2

}
exp

{
jπ

λ
(x cos θ + y sin θ)

}
(1)

However, with this parameterization the Gabor function does not scale uni-
formly, when σ changes. It is preferrable to use a parameter γ = λ/σ instead
of λ so that a change in σ corresponds to a true scale change in the Gabor
function. Also, it is convenient to apply a 90 degrees counterclockwise rotation
to Eq. (1), such that θ expresses the orthogonal direction to the Gabor func-
tion edges. Therefore, in the remainder of the paper we will use the following
definition for the Gabor functions:

gθ,γ,σ(x, y) = exp
{
−x

2 + y2

2σ2

}
exp

{
jπ

γσ
(x sin θ − y cos θ)

}
By selectively changing each of the Gabor function parameters, we can “tune”

the filter to particular patterns arising in the images. In Fig. 1 we illustrate the
variation of parameters(γ, θ, σ) in the shape of the Gabor function.

(a) γ = {1/2,3/2,5/2,7/2} (b) θ = {0, π/6, π/3, π/2} (c) σ = {4, 8, 12, 16}
Fig. 1. Examples of Gabor functions. Each sub-figure shows the real part of Gabor
function for different values of γ, θ, and σ

2.2 Gabor Response

By convolving a Gabor function with image patterns I(x, y), we can evaluate
their similarity. We define the Gabor response at point (x0, y0) as:

Gθ,γ,σ(x0, y0) = (I ∗ gθ,γ,σ)(x0, y0) =
∫
I(x, y)gθ,γ,σ(x0 − x, y0 − y)dxdy (2)

where ∗ represents convolution. The Gabor response obtained from Eq. (2) can
emphasize basically three types of characteristics in the image: edge-oriented
characteristics, texture-oriented characteristics and a combination of both.In
order to emphasize different types of image characteristics, we must vary the
parameters σ, θ and γ of the Gabor function.

The variation of θ changes the sensitivity to edge and texture orientations.
The variation of σ will change the “scale” at which we are viewing the world,
and the variation of γ the sensitivity to high/low frequencies. We would like to
find the most adequate combinations of σ, θ and γ to represent particular parts
of objects for recognition/detection tasks.
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3 Object Part Model

As mentioned in the introduction, we consider objects composed of parts, like
eyes, noses and mouths in human faces. Each part is modeled as random vector
containing (a) the absolute value of Gabor responses, and (b)the real and imag-
inary parts of Gabor responses with different parameters. In the case of (a), the
feature vector is:

v(x,y) =
(
v1
(x,y), · · · , vi

(x,y), · · · , vm
(x,y)

)T

; vi
(x,y) = |Gθi,γi,σi(x, y)| (3)

and (x, y) represents the coordinate of the object part center. In the case of (b),
the feature vector is:

v =
(
v1, · · · , vi, · · · , v2m

)T ; v2i = Re(Gθi,γi,σi); v2i−1 = Im(Gθi,γi,σi) (4)

The rationale is to model image parts by analyzing their contents in terms of
edges and textures of different scales, orientations and frequencies. We assume
that the random feature vector follows a normal distribution with average v̄ and
covariance matrix Σ, v(x,y) ∼ N (v̄(x,y), Σ(x,y)).

For the detection of parts, we will compute the distance between the obtained
model and the novel patterns. We consider both the Euclidean and Mahalanobis
distances.The decision of whether a part feature is present or not in a certain
image pixel will depend on the computed distance values.

4 Parameter Selection

In this section we focus on selecting the parameters (orientation, scale and fre-
quency) for each of the Gabor functions used in the feature model. We assume a
limited (constant) number of Gabor filters to constrain the computational cost of
the methods. A straightforward approach to define the parameters would be to
sample the parameter space uniformly. However, this strategy does not exploit
the particular characteristics of the object part under test. Instead, we could
analyse the Gabor response function in the full parameter space(σ, γ, θ) and
select those parameters that best describe the particular object characteristics.
However, this strategy could bias the parameter distribution to a narrow range
and reduce the capability to discriminate the modeled object from others. To
enforce some variability in the parameter space and still be able to adapt the
representation to the particular object under test, we will sample uniformly one
of the parameters and perform a 2D search in the remaining dimensions. This
strategy extends the concept of Information Diagram[9].

4.1 Information Diagram

The “Information Diagram” (ID) concept proposed in [9] selects the Gabor filter
parameters semi-automatically. The ID represents the magnitude of the Gabor
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response at a certain interest point (x, y), as a function of θ and σ, keeping the
γ parameter constant. The ID function is defined as:

IDx,y(θ, σ) = |Gθ,γ=1,σ(x, y)|

Then, local maxima coordinates of ID are chosen as “good” Gabor function’s
parameters because they represent the object’s characteristic orientations, scales
and frequencies, thus being considered good descriptors of the local image con-
tent.

In this work, we extend the ID concept to consider variability also in the γ
parameter. We define the Extended Information Diagram as the 3D function:

EIDx,y(θ, σ, γ) = |Gθ,γ,σ(x, y)|

Then we denote θ-ID, γ-ID, and σ-ID as slices of the EID function, keeping
constant one of the parameters, θ = θ0, γ = γ0 or σ = σ0:

θ-IDθ0
x,y(σ, γ) = EIDx,y(θ0, γ, σ); σ-IDσ0

x,y(θ, γ) = EIDx,y(θ, γ, σ0);

γ-IDγ0
x,y(θ, σ) = EIDx,y(θ, γ0, σ)

According to our notation, the work in [9] uses a γ-ID with γ0 = 1. In Fig. 2 we
show some examples of the θ-ID, σ-ID and γ-ID.

σ

γ

θ

γ

σ

θ

σ

γ

θ

Fig. 2. Examples of θ-ID, σ-ID, γ-ID, and σ slices in the parameter space from left to
right

4.2 Searching Multiple Information Diagrams

Our strategy to find good parameters for the object part’s model features is based
on uniformly discretizing one of the parameters (say θ), and search local extrema
in the resulting set of θ-ID’s. For example, a set of θ-IDs for T = {θ1, · · · , θn},
at point (x, y) is given by:

Θ-IDT
x,y = {θ-IDθ1

x,y, · · · , θ-IDθn
x,y}

The several θi ∈ T are uniformly spaced in the range [0, π). Then we compute
the parameters of the highest local maximum and smallest local minimum:

(σ̂max
i , γ̂max

i ) = arg max
σ,γ

θ-IDθi
x,y; (σ̂min

i , γ̂min
i ) = arg min

σ,γ
θ-IDθi

x,y

Then, the set of chosen Gabor function parameters in Eq.(3) and Eq.(4), are
such that (γi, θi, σi) belongs to {(σ̂min

1 , γ̂min
1 , θ1), · · · , (σ̂min

n , γ̂min
n , θn)} and/or

{(σ̂max
1 , γ̂max

1 , θ1), · · · , (σ̂max
n , γ̂max

n , θn)}.
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5 Experimental Results

In this section we present the results of the tests done for the various approaches
to object modeling and feature parameter selection. Then we select the most
successful approach and perform tests in order to verify the rotation invariance
and robustness to scale changes of the selected feature vector.

The experimental tests performed in this work use 90 subjects from the AR
face database [11], all without glasses, where 60 of them are used for training
(object part modeling) and 30 for testing (object part detection). We represent
four different parts: left eye, right eye, nose and mouth.

5.1 Selection of the Object Model and the Modified ID

Experiments are set-up for evaluating the discretized parameters (σ, γ or θ),
the number and type of the extrema computed at each ID, the distance metrics
(Euclidean and Mahalanobis), and the feature model type (magnitude vs real-
imaginary parts). A list of the experiments and related configurations is shown
in Table 1.

Table 1. List of the performed tests. Performance in last two columns(%)

Test ID type # local max # local min distance mag re+im

1 θ 1 1 Mah 68.49 78.33
2 θ 2 0 Mah 85.92 95.83
3 γ 2 0 Mah 58.19 74.16
4 γ 1 1 Mah 54.41 75.83
5 σ 2 0 Mah 58.19 72.50
6 σ 1 1 Mah 50.21 72.50
7 θ 1 1 Euc 31.93 85
8 θ 2 0 Euc 38.87 87.5
9 γ 2 0 Euc 17.86 53.33
10 γ 1 1 Euc 15.55 45
11 σ 2 0 Euc 24.79 74.17
12 σ 1 1 Euc 15.97 75.83

In every experiment performed we use n = 12 IDs, and choose either one local
maxima and one local minima or two local maxima, so the number of filters is
kept constant (m = 24). The sets of values for the θ, γ and σ-IDs are, respectively,
T = {0, π/12, · · · , 11π/12}, G = {0.5, 0.8, · · · , 4}, and S = {4, 7, · · · , 39}.

All IDs are calculated from the mean images Īpart in the training set, centered
at each object part (left eye, right eye, nose, mouth). To evaluate the performance
of each experiment we count the number of hits (successful detections) in the
test set. Given an object part model, a distance function and an image point, a
hit exists if the global minima of the distance is located inside a circle of radius
r around the center of the object part.
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Considering only the tests using real and imaginary parts of the Gabor re-
sponse, we can see, in Fig. 3 that mean performance is better when using θ-IDs,
Mahalanobis distance, and 2 local maxima. In this case, success rates are as high
as 95%.

Fig. 3. Mean detection rate of marginalized tests of table 1

5.2 Rotation Invariance

We test the rotation invariance of the Gabor filters on a synthetic image, and
evaluate, in the face data set, the effects of Gabor response variations to rotated
patters on the correct detection rate. Due to discretization effects and imperfect
filter symmetry, Gabor response presents small variations with the amount of
rotation. In Fig.4 we show the effect of image α-rotation in the response of a
Gabor α-rotated to a synthetic image at the image’s center point. We can observe
that there are some errors in the magnitude and phase that, not being dramatic,
can change the performance of the detection algorithm. The variation in the error
change the success rate in the object part model when using rotated images.
If we shift the angles in every component of the feature vector in Eq.(4), the
rotated model is: v(x,y) =

(
v1, · · · , vi, · · · , v2m

)T ; v2i
(x,y) = Re(Gθi+α,λi,σi(x, y));

v2i−1
(x,y) = Im(Gθi+α,λi,σi(x, y)). In Fig. 4 we observe the variation of the success

rate when rotating the image parts and the model. In our tests, for simplicity, we
rotate the image regions every π/4, because it does not involve a recomputation
of the filters response. It is important to remark that we use the object model
learned when α = 0, computed in the previous section for test 2 in Table 1. We
observe a very good behaviour of the learned model in the rotated images, with
a performance above 91%.

5.3 Scale Robustness

To check the robustness to scale variations, we compute the success rate in
rescaled images maintaining the object model learned in the original images (θ-
IDs, Mahalanobis distance, and two local maxima). In Fig. 4 we observe that
the performance is above 90% for image rescaling upto ±20%, corresponding to
a range of about 0.6 octaves. To cope with larger scale variations, one should
cover the scale dimension with additional object part models. If we sample the
scale space every 0.6 octaves we should be able to keep performance above 90%,
provided that an adequate scale selection method is available.
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Fig. 4. Gabor filter rotation invariance tests(magnitude error, phase error, and success
rate variation in rotated images) and scale robustness test, from left to right

6 Conclusions and Future Work

In this work we present an automatic feature selection method that can be
applied to different image regions successfully. The representation is based on
Gabor features and our methodology selects automatically a set of parameters
that are good descriptors for a particular image pattern, representing a part
of an object. The technique is based on the Information Diagram concept [9] ,
that is extended, in this work, to consider optimization along all dimensions of
the Gabor function parameters. We illustrate the richness of the descriptor and
parameter selection methods in a facial feature detection task.

The face detection tests allowed us to evaluate certain design criteria:

– a representation using the full Gabor response (real and imaginary parts) is
more powerful than using the magnitude alone;

– using θ-ID’s provided significantly better performance;
– the Mahalanobis distance outcomes the Euclidean distance in the detection

success;

We also show some tests illustrating the rotation and scale robustness character-
istics of the method. The detection method is based on simple distance metrics
to stress the feature capability in representing image patterns, independently of
sophisticated learning algorithms. Even though the learning algorithm is very
simple, results are promising and should further improve with more powerful
techniques.
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Abstract. Using Comaniciu et al.’s approach as a basis, [9], this paper
presents a real-time tracking technique in which a multiple target model
is used. The use of a multiple model shall enable us to provide the track-
ing scheme with a greater robustness for tracking tasks on sequences in
which there are changes in the lighting of the tracked object. In order
to do so, a selection function is defined for the model to be used in the
search process of the object in each frame.

1 Introduction

Tracking objects through the frames of an image sequence is a critical task in
online and offline image-based applications such as surveillance, visual serving,
gestural human-machine interfaces, video editing and compression, augmented
reality and visual effects, motion capture, driver assistance, medical and meteo-
rological imaging, etc.

Bayesian framework methods have played an important role in tracking
[1][2][3]. The inclusion of a prior offline learning phase enables objects with more
complicated shapes to be tracked [4][5][6]. Exemplar-based methods generate ob-
ject representations from examples and then use distance measures to perform
template matching.

If the objects to be tracked are non-rigid, it is advisable to represent them
with probability distributions. A straightforward way to derive a distribution
model is by using histogram analysis [7][8][9]. The techniques introduced inde-
pendently by Bradski and Comaniciu et al. are based on the following principle:
the current frame is searched for a region, a fixed-shape variable-size window,
whose color content best matches a reference color model. The search is de-
terministic. Starting from the final location in the previous frame, it proceeds
iteratively at each frame so as to minimize a distance measure to the reference
color histogram. Objects are modeled using color distributions and the simi-
larity is then measured between the target and candidate distributions using a
Bhattacharyya coefficient.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 20–27, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A key component of a successful tracking system is the ability to search
efficiently for the target, as real-time tracking is one of the main goals of our
research.

Comaniciu et al.[9] propose a tracking algorithm in which a scheme for object
representation and tracking is established from the definition of a single target
model. The reference target model is represented by its pdf q in the feature
space. The reference model can be chosen to be the color pdf of the target.
In the subsequent frame, a target candidate is defined at location y, and is
characterized by the pdf p(y). Both pdfs are estimated from the data. In order
to satisfy the low-computational cost imposed by real-time processing discrete
densities, m-bin histograms should be used.

In certain cases, when the target moves in variable lighting conditions, shad-
ows appear which significantly alter the color distributions in the image sequence
(Figure 1). A single pdf will therefore be insufficient for modeling and tracking
the object reliably. Our approach is based on the use of multiple pdfs in a single
target model, when lighting conditions change between frames.

This paper is organized into four sections: Section 2 presents a short review
of the multiple model tracking technique; Section 3 presents some experimental
results; and finally, Section 4 concludes the paper.

Fig. 1. Three frames of a sequence where the target presents different illumination
conditions.

2 Tracking

2.1 Target Representation

In this section, we shall briefly present the main elements defined by Comaniciu
et al. [9] in their tracking scheme. The pdfs defined for the target model and the
target candidate will be given by m-bin histograms.

target model: q̂ = {q̂u}u=1...m

m∑
u=1

q̂u = 1

target candidate: p̂(y) = {p̂u(y)}u=1...m

m∑
u=1

p̂u = 1

A target is represented by an ellipsoidal region in the image. All targets are
first normalized to a unit circle.
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The function b : R2 → {1 . . .m} associates to the pixel at location x∗
i the

index b(x∗
i ) of its bin in the quantized feature space. The probability of the

feature u = 1 . . .m in the target model is then computed as:

q̂u = C

n∑
i=1

k(‖ x∗
i ‖2)δ[b(x∗

i )− u] (1)

where δ is the Kronecker delta function and C is a normalization constant.
Let {xi}i=1...nh

be the normalized pixel locations of the target candidate,
centered at y in the current frame. Using the same kernel profile k(x), but with
bandwidth h, the probability of the feature u = 1 . . .m in the target candidate
is given by:

p̂u(y) = Ch

nh∑
i=1

k(‖ y − xi

h
‖2)δ[b(x∗

i )− u] (2)

where Ch is a normalization constant.

2.2 Minimization Algorithm

The similarity function defines a distance between the target model and the
candidates. The distance between two discrete distributions is defined as:

d(y) =
√

1− ρ[p̂(y), q̂] (3)

where the similarity function will be denoted by:

ρ̂(y) ≡ ρ[p̂(y), q̂] =
m∑

u=1

√
p̂u(y)q̂u (4)

which is the sample estimate of the Bhattacharyya coefficient between p and q
[10].

In order to find the location corresponding to the target in the current frame,
the distance (3) should be minimized as a function of y. This is equivalent to
maximizing the Bhattacharyya coefficient ρ̂(y). For this, Comaniciu et al. [9] use
the mean-shift algorithm with a monotone kernel.

2.3 Model Selection

In order to prevent losses of the target due to lighting changes, we propose a
multiple model M, comprising a set of n pdfs, corresponding to several different
histograms of the object under typical lighting conditions:

M = {q̂0, q̂1, . . . , q̂n−1} (5)

Running the target localization algorithm for each q̂i, we obtain a set B of
Bhattacharyya coefficients,



Real-Time Tracking Using Multiple Target Models 23

B = {b0, b1, . . . bn−1}
and a set Y of image positions

Y = {y0,y1, . . .yn−1}

representing the best target location for each model and the corresponding sim-
ilarity levels.

We then need to select the pdf in M which best fits the observed frame.
Selecting the one with the largest Bhattacharyya coefficient may increase the
risk of distractions with image regions having similar histograms to the ones
present in our model. In order to avoid this, we shall also take into account the
position of the maximum given for each q̂i, and define a probability distribution
based on the difference between the position yi estimated by the tracker, and the
predicted position ȳ of the target. A value of ȳ for each frame can be obtained
by using a dynamical model of the object to be tracked.

Assuming statistical independence between B and Y, we can define the prob-
ability of each q̂i, given B as:

p(q̂i/B) =
bi · p(q̂i)∑

j

(
bj · p(q̂j)

) (6)

with p(q̂i) being the a priori probability distribution for each pdf in M. Addi-
tionally, the probability of each q̂i, given Y, is given by:

p(q̂i/Y) =
p(ȳ − yi) · p(q̂i)∑

j

(
p(ȳ − yj) · p(q̂j)

) (7)

In our case, we suppose that the ȳ − yi values follow a zero-mean Gaussian
distribution, i.e. p(ȳ − yi) ∼ N(0, σ). Expressions (6) and (7) lead us to the
probability distribution used to select the best pdf for each frame:

p(q̂i/B,Y) =
p(q̂i/B) · p(q̂i/Y)

p(q̂i)

=
bi · p(ȳ − yi) · p(q̂i)∑

j

(
bj · p(q̂j)

)
·
∑

j

(
p(ȳ − yj) · p(q̂j)

) (8)

3 Results

We have tested the efficiency of our method based on multiple target models
by comparing it with a mean-shift tracker using single models [9] with different
sequences and lighting conditions. We have used a three-component multiple
model containing the simple models shown in Figure 2, and compared the ob-
tained results. All of the experiments have been carried out on a desktop PC
(Pentium IV at 2 GHz), at real-time speed (over 40 fps).
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a b c

Fig. 2. Regions used to calculate the RGB models, with their correspondent his-
tograms. The corresponding images belong to different sequences that the ones used
for the experiments.

a)

b)

c)

d)
Frame 180 Frame 525 Frame 885 Frame 930

Fig. 3. Test Sequence 1, tracking with RGB histograms. a), b) and c): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

In this paper, we show the application of the mean-shift tracker both for a
simple and a multiple model, on three different sequences. In order to compute
the m-bins histograms required for the tracking algorithm, two color spaces have
been used: RGB quantized into 8 x 8 x 8 bins, and YUV quantized into 16 x
4 x 4, obtaining histograms with the same number of bins, but which are more
sensitive to intensity in the second case.
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a)

b)

c)

d)
Frame 75 Frame 435 Frame 570 Frame 675

Fig. 4. Test Sequence 2, tracking with RGB histograms. a), b) and c): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

The sequences represent a person who is moving in different directions, mov-
ing closer and farther away (scale changes) and varying the speed of the move-
ment. As a result of the presence of shadows in two of the sequences, there are
changes in the lighting of the target on entering or leaving these (see Figure 1).

The tracking carried out in the sequences is defined on an ellipsoidal region
covering the face. The model was obtained using different images, representing
the target in different lighting conditions. Consequently, the target models used
for the experiments do not belong to the test sequences. This is an advantage
since the multiple model may be initialized offline by employing the set of images
that best match the illumination conditions of the sequence.

In Figure 2, the images used to calculate the models are shown, together
with their corresponding histograms, weighted with an Epanechnikov kernel of
the type used in [9].

In order to predict the position ȳt+1 of the target in the next frame, a very
simple dynamics has been used:

dt+1 = λ · (yt − yt−1) + (1− λ) · dt

ȳt+1 = yt + dt+1 (9)

where yt represents the position of the target obtained by the tracking algorithm
at time t, and d0 = 0. In our experiments, we have used a value for λ of 0.5.
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a)

b)

c)

d)
Frame 30 Frame 210 Frame 300 Frame 450

Fig. 5. Test Sequence 3, tracking with RGB histograms. a), b) and c): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

Due to the simplicity of the dynamical model, we have used a σ value in
Equation (7) of 0.5. Having a more precise and less general dynamics would
allow this value to be reduced, favoring measurements closer to the expected
position of the target.

Although there are no significant lighting variations in the first sequence
(Figure 3), the multiple model performs better when the hand and the ball
occlude the target, because the dynamics gives less weight to these distracting
events. The results obtained with RGB and YUV-based models are very similar.

In the second and third sequence, significant variations can be observed in
the lighting conditions of the target. The simple model obtained from Image C
(Figure 2) gets distracted at the beginning of the second sequence (Figure 4)
because of the similarity between the histograms of the head and the ground.
For the last sequence, we can see that the selection of the best model for each
frame increases the tracker accuracy (Figure 5).

4 Conclusion

The method presented in this paper enables multiple models to be used in order
to prevent loss when there are significant variations in the target’s histogram,
and allows real-time execution on a desktop computer.
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The experimental results indicate that our method increases the robustness of
tracking when faced with lighting changes in the object. By adequately selecting
the samples for the multiple model, it is possible to track an object from its
generic set of images.
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Abstract. Object-class recognition is one of the most challenging fields of pat-
tern recognition and computer vision. Currently, most authors represent an object
as a collection of parts and their mutual spatial relations. Therefore, two types of
information are extracted: local information describing each part, and contextual
information describing the (spatial) context of the part, i.e. the spatial relations
between the rest of the parts and the current one. We define a generalized correl-
ogram descriptor and represent the object as a constellation of such generalized
correlograms. Using this representation, both local and contextual information
are gathered into the same feature space. We take advantage of this representa-
tion in the learning stage, by using a feature selection with boosting that learns
both types of information simultaneously and very efficiently. Simultaneously
learning both types of information proves to be a faster approach than dealing
with them separately. Our method is compared with state-of-the-art object-class
recognition systems by evaluating both the accuracy and the cost of the methods.

1 Introduction

In this work we deal with the problem of detecting the presence or absence of one object
category in an image. In contrast to simple object recognition, object-class recognition
is not restricted to images of the same physical object (e.g. different images of the same
car), but deals with different instances of the object, e.g. images of different cars. This
introduces a high variability of appearance across objects of our category. The difficulty
is increased by the presence of clutter in the images, partial occlusion and accidental
conditions in the imaging process. Among recent approaches, characterizing the object
as a collection of parts and their spatial arrangement has proved to be a promising
direction [1–4].

Classical contextual representations such as Attribute Relational Graph (ARG) [4]
and constellation of parts [3, 5] deal separately with these two forms of information: lo-
cal information is represented by feature vectors associated to each part and contextual
information is represented by a set of relative spatial vectors, i.e. differences in spatial
position.

In this work we define a constellation of generalized correlograms for object repre-
sentation. Correlograms were used to measure the joint distribution of pixel-level color
information along with the spatial distribution [6]. A generalized correlogram is intro-
duced here to deal with higher level properties related to parts of an object. The image

� Work supported by CICYT TIC2000-1635-C04-04, Spain.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 28–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is represented by constellations of such generalized correlograms, instead of using a
unique descriptor as done originally [6]. Belongie et al. [7] introduced constellations of
shape contexts (another type of correlogram) that only deal with spatial arrangements,
i.e. do not consider local information. In our representation, every feature vector in our
feature space gathers local and contextual information. A great advantage of this feature
space is that it can be integrated with an efficient feature selection and learning algo-
rithm such as AdaBoost [8, 9] with weak classifiers based on single dimensions. This
leads to simultaneously learning those spatial relations and local properties of parts that
are characteristic of the object category.

Summarizing, the main contribution of this work is in integrating a new constel-
lation of generalized correlogram representation into AdaBoost with feature selection.
AdaBoost used with weak classifiers based on single dimensions together with our ob-
ject representation lead to an efficient object recognition scheme dealing with the spatial
pattern of the object. We first explain the image representation in Section 2, followed by
the description of the spatial pattern classifier with boosting in Section 3. In Section 4
we report results and conclude in Section 5.

2 Image Representation

In this section we introduce a new representation of the object by using a constellation
of generalized correlograms. Let an image Ik be represented by a constellation of Uk

object parts, expressed as Hk = {〈oi,hi,xi〉}Uk

i=1. The i-th detected part is represented
by the tuple 〈oi,hi,xi〉, where oi is the label identifying the part, hi are the properties
describing the part, and xi is its spatial position in the image. Due to clutter, parts inHk

might correspond to different objects. LetXk = {xi}Uk

i=1 be the set of spatial positions
of parts from Hk. One way to obtain potential parts of an image is by extraction of
interesting points, also called features or key points [3, 5], this is also our approach.

For our purpose, it is important to not miss any informative location, and to perform
a fast interesting point extraction. By interesting point we mean any point located at
an informative position, such as the edges, we do not mean necessarily corners. Two
levels of interesting points are extracted. First we obtain a dense set of interesting points
representing potential parts of objects. From this dense set, we extract local information

around each point. Let HL
k = {〈oL

i ,h
L
i ,x

L
i 〉}

UL
k

i=1,x
L
i denote this dense set (do not

confuse with the final representation Hk). We extract local information as properties

hL
i of these parts. Let XL

k = {xL
i }

UL
k

i=1 be the dense set of positions from HL
k . In

our implementation, these positions are located at extracted contours of the image, see
fig. 1(a). From XL

k we sample a much more sparse set of interesting points Xk ⊂ XL
k

covering the different locations from which we measure the relative spatial distribution
of local properties in HL. Xk contain the positions of our final constellationHk. Each
point xj ∈ Xk is the position of oj . We associate as descriptor hj a correlogram
that measures the joint distribution of spatial relations (xL

i − xj) and local properties

{hL
i }

UL
k

i=1. Let us express the spatial relation (xL
i − xj) in polar coordinates: (αij , rij),

and the d local properties as hL
i = (li1, li2, . . . , lid). The joint distribution is measured

by a histogram based on a partition of the d+ 2 dimensional space with vectors vij =
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(αij , rij , li1, li2, . . . , lid), i = 1, . . . , UL
k . The partition of this space is obtained by

intersection of separate partitions made for each individual dimension. Let Bw be the
w-th bin in the final d + 2 space. The j-th correlogram is expressed as : hj(w) =
1

UL
k

|{vij ∈ Bw, i = 1, . . . , UL
k }|, i.e. the w-th bin of hj counts the number of vectors

vij falling into this bin.
Note that this space contains vectors that express spatial relations and local prop-

erties, and thus the resulting descriptor hj is a correlogram of local properties in HL
k

considering their spatial distribution around the point of reference xj . As Xk ⊂ XL
k ,

we are describing in the same vector hj attached to oj the local properties of oj , the
local properties of the rest of parts in the dense set HL, and the spatial distribution of
these parts relative to oj .

The dense set of interesting points in XL
k is obtained by extracting the contours

from an over-segmentation with k-means and subsequent postprocessing that obtains
spatially contiguous blobs. The sparse set of points in Xk is sampled fromXL

k keeping
points with maximum spatial distance to each other, so that Xk covers points of view
from different angles of the image (see fig. 1(b)-(c)). An important characteristic of our
implementation is that it is fast, and the results show that allows accurate representation.

For the spatial dimensions, we use the same log-polar spatial quantization as the
shape-context correlogram of Belongie et al [7] (see fig. 1(b)-(d)). This makes the de-
scriptor hj focus more on local properties around oj (local context) than to the far
context. The dimensions regarding the local properties li1, li2, . . . , lid are linearly quan-
tized; we explain below each of them in turn.

(a) (b) (c)

Fig. 1. (a) Dense cloud of points covering interesting parts of the image (edges). (b)-(c) Log-
polar spatial quantization of our correlogram. Each descriptor in (b) and (c) represents a different
“point of view” of the object’s spatial arrangement

As local information, local structure and color around a small neighborhood are
utilized. As local structure, the local direction of the edges is used. Specifically, the
angle is measured along the curve formed by contours. After smoothing the contours,
the angle is taken modulus π, and we make a quantization into 4 bins. The color is
linearly quantized and mapped into one dimension. We perform a very coarse quan-
tization of the R,G,B space into 3, 2, 2 bins to avoid large feature vectors in the final
histogram. As there is not only one dominant color around the local part oL

i , we take
every color around a small neighborhood and consider the proportion of this color in
this neighborhood, thus a local color histogram is taken. In this way, we are performing
a fuzzy assignment of the part oL

i to bins of the (local) color space, using the local color
histogram hc

i : {1, 2, . . . , 12} → [0, 1] as the color membership function of oL
i .

Different authors have used correlograms [6, 7]. The common feature is to use pixel-
level properties, traditionally only color, considering every pixel in the image. High-
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level entities such parts of objects are not considered in their formulation. Authors do
not consider constellations of their correlograms but aggregate all the descriptors into
one single (spatial) histogram for the image. Belongie et al. [7] use constellations of
shape contexts but do not use any local information, they describe binary contours by
the presence of a spatial position. The definition presented here can be considered a
generalization of correlograms into a constellation of parts framework. One drawback
of the spatial quantization we use is that it must be scaled with the size of the object to
provide scale invariance. This scaling is done by normalizing the distances rij by the
size of the object. As we do not know a priori the size of our objects, we must compute
the contextual descriptors for different scales fixed a priori. Let ns be the number of
scales (experimentally we chose ns = 7). The final representation of the image Ik
is expressed as Ak = {Hs

k}
ns
s=1, where Hk

s is the set of parts of Ik with contextual
descriptors h scaled according to scale s.

3 Learning Multiple Contextual Representations with Boosting

The explained representation is suitable for combination with a feature selection and
learning method such as AdaBoost with weak classifiers based on single dimensions,
that proved to be very efficient [8, 9]. By learning the relevant dimensions of vectors h
defined in section 2, we are simultaneously learning the properties characterizing every
part of the object and their mutual spatial relations.

In our framework, the model of one object is expressed as Ω = {〈ωi,ϕi〉}Mi=1,
where ωi is the label of one model part, ϕi are the parameters for this model part learnt
by the classifier, andM is the number of model parts. We denote as lωi (oj |oj ∈ Hs

k) the
likelihood that part oj ∈ Hs

k from image Ik with scale s represents the model part ωi.
We denote as Lω

i (Hs
k) the likelihood that any oi in Ik with scale s represents the model

part ωi. As we are using contextual descriptors, ωi also represents the whole model ob-
ject according to one particular point of view. Therefore,Lω

i conveys a piece of evidence
of the existence of the model object according to the point of view ωi. Lω

i (Hs
k) is the

likelihood that any oj ∈ Hs
k represents ωi, we apply as OR rule the maximum so that

Lω
i (Hs

k) = maxoj∈Hs
k
lωi (oj |oj ∈ Hs

k). This can also be regarded as matching ωi with
some om ∈ Hs

k , which is expressed as Mω
i (Hs

k) = om = argmaxoj∈Hs
k
lωi (oj |oj ∈

Hs
k).

Based on the individual likelihoods Lω
i , we denote as LΩ(Hs

k) the likelihood that
the object exists in Ik with scale s, according to the whole model Ω = {〈ωi,ϕi〉}Mi=1.
As we want all the model points of view ωi of the object to contribute to this likelihood,
we use as combination rule the mixture LΩ(Hs

k) =
∑M

i=1
1
MLω

i (Hs
k).

Recall that the image Ik is represented by different scalesAk = {Hs
k}

ns
s=1. The like-

lihood that the object exists with any scale in the image representationAk is expressed
as LΩ

f (Ak) = maxHs
k∈Ak

LΩ(Hs
k), where we have applied again the maximum as OR

rule. Again, this can be regarded as matching the model object with some scaled repre-
sentationHm

k in Ak, which we express as Ms(Ak) = Hm
k = arg maxHs

k
∈Ak

LΩ(Hs
k).

To learn the model Ω, AdaBoost is applied over each separate model point of view
ωi. This requires a separate training set for each ωi. We denote as Ti this training set.
Ti contains as positive samples the parts oj matching ωi with the correct scale in every
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positive image (i.e. an image containing an object of the category we are learning).
As negative samples Ti contains every part oj with every scale in negative images.
The problem of matching is solved in two stages. First, robust matchings are extracted
from a small set of manually segmented images from the training set (we will see that
very few images are enough). This is carried out by performing non-rigid registration
[7] over these manually segmented images, which obtains an initial training set T ′

i for
each ωi. T ′

i contains as positive instances only those from the segmented subset, but
has many negative instances, as we use every part with every scale in every negative
image. This allows to discard a lot of structures from clutter. We learn an initial model
part ωi with T ′

i . With the learnt model part, we can now match corresponding parts oj

with corresponding scales in the rest of images not segmented manually to construct the
final big training set Ti. Registration is not robust in clutter, therefore we match ωi with
those oj that have high likelihood according to the previous learning. We apply in every
positive image first the scale matchingMs(Ak) and then we apply the part matching in
the appropriate scaleMω

i (Ms(Ak)) (see the expressions above). Finally, we train again
the model with the complete training set Ti and obtain the final classifier for the whole
model object Ω.

4 Results

We used the CALTECH database (http://www.robots.ox.ac.uk/ vgg/data3.html) col-
lected by Fergus et al. [3, 10], which consists of 7313 images with clutter for object
recognition. Part of this database was also used by other authors such as Agarwal et al.
in [1]. This database contains 7 different categories, which is a big step forward com-
pared to many databases used in other works that are based on one or two categories. A
full description of the database along with examples can be found in [3, 10], we do not
show them here due to lack of space. The object categories can be found in table 1(a).
Most of the object categories have instances under the same bi-dimensional arrange-
ment, except for the spotted-cat category taken from Corel� database. Each category
has roughly 800 images of different objects of this category. From the positive training
set, 10 images are manually segmented. The negative set of images were taken by Fer-
gus et al. from Google� by searching with the keyword “things”. This consists of 520
images, 400 were taken as training and 120 as test. Each time the training consisted of
400 positive images, 400 negative, and the test of 100 positive and 100 negative.

A cross-validation procedure was followed to test a total of 400 negative images
and 400 positive images, average results are shown. Each time, the images included in
the sets were picked randomly, always using disjoint sets for training and test.

Fig. 2(a)-(b) shows a example of results for 2 of the 7 categories, motorbikes in (a)
and faces in (b). Fig. 2(a) shows every image correctly classified as motorbike. Some
images show a heavy clutter and still there are no incorrect matches. Fig. 2(b) shows
images classified as faces. Faces show an incorrect match, that can be seen to be similar
in shape.

In fig. 3 each row shows the matching from a part ωi of the learnt model, to a
matched part oj in different instances of the object. In the first row we show matching
of one model part of the car(rear) category. We can see that the model part is consistently
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(a) (b)

Fig. 2. (a) Example of images correctly classified as motorbikes, (b) images classified as faces

Fig. 3. Some matchings obtained with in several classes

matched with the same shadow beneath the car in the images. In the second row, another
model part is matched consistently near the left red light in the images. In the motorbike
category (third row), one model part matches with parts in a similar relative position of
the instance motorbikes, despite the clutter. Finally, a model part of the face category
(forth row) matches with parts near the ear of the face instances.

Given a test set with positive and negative images, the goal is to detect what im-
ages contain some instance of the object category and what do not contain any instance.
The classification hit rate is measured using the receiver-operating characteristic (ROC)
equal error rates: p(True Positive)=1-p(False positive). Table 1(a), presents results com-
paring our method against the constellation used by Fergus et al. in [3], they also report
results with other approaches using the same data set (see reference). In all the cat-
egories except the spotted cat and face, our method outperforms the one reported by
Fergus et al. The spotted cat has very different poses which makes the spatial quanti-
zation that we use not so suitable. However, the inclusion of local properties such as
color makes boosting focus more on local information than contextual information in
this category, so that not bad results are obtained. The face category is probably better
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Table 1. (a) ROC equal error rates measures with the method in [3], and our method (b) Com-
putational cost for different stages, see text for explanation, the second row is the inverted file
arrangement cost, only in our system

(a) (b)
Category [3] Ours

Context
Car(Rear) 90.3% 96.9%

Plane 90.2% 94.5%
Leaf - 96.3%

Motorbike 92.5% 95.0%
Face 96.4% 89.5%

Spotted Cat 90.0% 86.5%
Car (Side) 88.5 % 90.0%

Step [3] Ours
Description per image 15 sec. 6 sec.

I.F. per image - 2 sec.
Training 36 hours 4 hours

Classification per image 3 sec. 0.23 sec.

represented using local appearance and PCA as Fergus does, we can include this in a
future work. For the car (side) category the result is a recall-precision equal error. The
negative set in this category contain images of roads without cars [3], so that a more
realistic experiment can be made.

To speed up the algorithm, we take the non-empty bins of correlograms describing
the current object category, and only use these bins in AdaBoost. That is, bins that are
empty in our positive training set Ti (see section 3) are not used by the classifier. This
also makes the algorithm more robust against clutter because we disregard structures
not found in our object category. A similar idea was used in [11] for shape contexts.
We also make use of the high sparseness of our generalized correlograms both in the
training and in the recognition stage. Note that a correlogram is a special type of his-
togram. We only process the non-zero elements of our descriptors, by structuring the
data as inverted files, a technique used in information retrieval [12]. For each dimension
we keep the index of the descriptors that contain a non-zero value for this dimension,
along with the value for this descriptor. Then the descriptors are sorted by the value of
this dimension. This allows to use binary search in the recognition stage when we are
looking for values in one dimension exceeding the threshold obtained by AdaBoost [9].
As our images contain a large constellation of descriptors with different scales (typi-
cally 100 descriptors with 7 scales) this technique speed ups the algorithm by obtaining
a logarithmic cost in the number of scanned descriptors. Although sorting has a cost a
bit higher than linear, it is done only once, saving later a lot of cost in the search for
each model part ωi. Furthermore, sorting has linear cost on the number of descriptors
that have a value greater than zero, only 20% of the descriptors due to the sparseness.
This technique is also suitable for retrieving in large databases if we have pre-computed
the descriptors. The time cost for every stage is shown in table 1(b), compared to the
method in [3]. The second row denotes the cost of arranging the description of Ik as
inverted file and sorting. We used a computer at 2.4 GHz for the experiments, while ex-
periments in [3] were made with a computer at 2.0 GHz. We used Matlab� with some
subroutines in C. Some parts such as the feature extraction and training stage could be
made more efficient.
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5 Discussion

In this work a an object class recognition system has been proposed that is able to learn
the characteristic parts of the object and their spatial relationship in the presence of
clutter. The image is represented as a constellation of very sparse contextual descriptors
and this representation is integrated with an efficient feature selection and learning algo-
rithm such as boosting. We achieved very accurate classifier compared to the approach
of Fergus et al. [3]. Furthermore, making use of the sparseness we showed that an ef-
ficient method can be achieved, suitable for scanning large databases. Summarizing,
our novel contribution is to propose an efficient object class recognition framework that
incorporates a novel constellation of contextual descriptors into an efficient boosting
algorithm used with feature selection.

For future research, we would like to enrich the feature space by combining the log-
polar spatial quantization with other types of spatial quantization less sensitive to shape,
in order to be able to recognize the same object under different spatial configurations
(for example a dog with different poses). By boosting we can combine a descriptor sen-
sitive to different shapes and a (contextual) descriptor robust against shape variations,
and let the classifier learn if the object is very structured.
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Campus Riu Sec s/n 12071 Castellón, Spain
{pla,klaren}@uji.es

http://www.vision.uji.es

Abstract. It is well-known that image pixel values of an object could
vary if the lighting conditions change. Some common factors that produce
changes in the pixels values are due to the viewing and the illumination
direction, the surface orientation and the type of surface.

For the last years, different works have addressed that problem, propos-
ing invariant representations to the previous factors for colour images,
mainly to shadows and highlights. However, there is a lack of studies
about invariant representations for multispectral images, mainly in the
case of invariants to highlights.

In this paper, a new invariant representation to illumination intensity,
object geometry and highlights for multispectral images is presented.
The dichromatic reflection model is used as physical model of the colour
formation process. Experiments with real images are also presented to
show the performance of our approach.

1 Introduction

The image pixel values of an object could vary if the lighting conditions change.
During the image formation process, the main factors that could produce changes
in the pixel values are: viewing direction, surface orientation, highlights, illumi-
nation direction, illumination intensity, illumination colour and inter-reflections.

The aim of invariant image representations is to obtain the same value for
the pixels of an object, independently of the conditions commented above. These
representations can be quite useful to measure or recognize objects in images
or other tasks that require invariance to any of these properties. For instance,
intensity-based edge detectors cannot distinguish the physical cause of an edge,
such as material, shadows, surface orientation changes, etc. This fact produces
poor segmentations and, therefore, bad recognition of objects.

� This paper has been partially supported by projects: DPI2001-2956-C02-02 from
Spanish CICYT and IST-2001-37306 from European Union.
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For the last years, significant works about invariant representations for colour
images have been carried out [2], [4], [1]. Many of them use the reflection model
introduced by Shafer in [7] as a physical model to understand the colour of a
concrete pixel. The reader is addressed to [3] for a comprehensive study.

The next section explains how to obtain invariant representations to illumina-
tion intensity and other geometric factors (as shadows) and highlights, perform-
ing simple mathematical operation with bands (R, G and B, for colour images).
Our approach for multispectral images is based on similar properties, taking
advantage of the Neutral Interface Reflection (NIR) and narrow band filter as-
sumptions. We have named our invariant Ln which is invariant to illumination
intensity (assuming white illumination), object geometry and highlights while
approximately preserving the spectral information of the image.

2 Multispectral Invariant Representations

The use of the reflection model is key point to understand how a sensor works.
The Dichromatic reflection model introduced by [7], represents the output value
C of a pixel in the image plane as:

Cn = mb(−→n ,−→s )
∫

λ

fn(λ)e(λ)cb(λ)dλ +ms(−→n ,−→s ,−→v )
∫

λ

fn(λ)e(λ)cs(λ)dλ (1)

for Cn = {C1, . . . , CN} giving the Cth sensor response of a multispectral camera,
cb and cs are the surface albedo and Fresnel reflectance respectively, λ denotes
the wavelength, −→n is the surface patch normal, −→s is the direction of the il-
lumination source and −→v is the direction of the viewer. Geometric terms mb

and ms denote the geometric dependencies on the body and surface reflection
component respectively.

Considering the Neutral Interface Reflection (NIR) model (assuming that
cs(λ) has a constant value independent of the wavelength), narrow band filters
modelled as a unit impulse and white illumination (equal energy density for
all wavelengths within the visible spectrum), then e(λ) = e, f =

∫
λ f1(λ)dλ =

· · · =
∫

λ
fN (λ)dλ and cs(λ) = cs, and hence being constants. Then, with this

assumption, the measured sensor values are given by:

Cn = emb(−→n ,−→s )Kn + ems(−→n ,−→s ,−→v )csf (2)

with Kn = fn(λ)cb(λ)dλ.
If the object is matte, that is, if it does not have highlights, then the sec-

ond part of the equation 2 can be neglected. Therefore, the equation 2 can be
simplified as follows:

Cn = emb(−→n ,−→s )Kn (3)

It is possible to obtain invariant representations to some conditions, per-
forming simple mathematic operations with the bands. For instance: for matte
objects, dividing two bands i,j allows to get an illumination intensity and object
geometry invariant representation, i.e. non-dependent of mb and e factors:
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Ci

Cj
=
emb(−→n ,−→s )Ki

emb(−→n ,−→s )Kj
=
Ki

Kj
(4)

For shiny objects, subtracting one band from another provides a highlights
invariant representation, i.e. invariant to viewpoint ms and specular reflection
coefficient cs:

Ci − Cj = (emb(−→n ,−→s )Ki + ems(−→n ,−→s ,−→v )csf)
− (emb(−→n ,−→s )Kj + ems(−→n ,−→s ,−→v )csf)
= emb(−→n ,−→s )(Ki −Kj)

(5)

Finally, first subtracting and then dividing bands provides a representation
invariant to highlights, illumination intensity and object geometry:

Ci − Cj

Ck − Cl
=
emb(−→n ,−→s )(Ki −Kj)
emb(−→n ,−→s )(Kk −Kl)

=
Ki −Kj

Kk −Kl
(6)

Following these ideas, Stockman and Gevers [8] presented two invariant repre-
sentation for multispectral images, the normalized hyper-spectra and the hyper-
spectral hue.

The normalized hyper-spectra is a representation invariant to e andmb factor.
It is defined as follows:

cn =
Cn

C1 + · · ·+ CN
(7)

The calculation of the hyper-spectral hue needs a special attention since hue
orders colors in a circular way. First an equal-energy illumination is obtained
dividing each band by the corresponding sensor response of a white reference
object, and supposing that the filter is a narrow band filter modelled as a unit
impulse [8]. Thus, the object can be made independent of the illumination in-
tensity.

In a second step, all the values are transformed as follows:

cn = Cn −min(C1 + · · ·+ CN ) (8)

As a result, the transformed spectrum is invariant to highlights.
After the pre-processing of the spectrum, the hue can be calculated using the

following equation:

H(c1, . . . , cN ) = arctan
(∑

i ci cos(αi)∑
i ci sin(αi)

)
,where αi =

(i− 1)2π
N

(9)

As a result, the transformed spectrum is also invariant to object geometry. The
reader is addresed to [8] for further details.

3 Ln Multispectral Invariant

The multispectral Hue is invariant to illumination intensity (assuming white
illumination), object geometry and highlights which are the properties that we
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are looking for. Nevertheless, the fact that it transforms an image with N bands
to an image with just 1 band can produce an import loose of multispectral
information, which can be crucial in many applications.

Therefore, we propose the Ln invariant for multispectral images which trans-
forms an image with N bands into an invariant representation with N − 2 inde-
pendent bands. It is defined as follows:

Ln =
Cn −min(C1, . . . , CN )∑
j(Cj −min(C1, . . . , CN ))

(10)

In order to make the acquired images independent from illumination, the
aperture times of our multispectral camera have been calculated carefully for
every band to eliminate differences in light intensity that are caused by the
spectrum characteristics of the lamps, the filter and the sensor. This calculation
is done by repeatedly taking multispectral images of a white reference, (i.e. a
white surface with equal reflection properties in a wide spectrum) and adjusting
the aperture times until the light intensity is the same in every band. This process
is called white balancing. These aperture times compensate for the unknown
spectral characteristics of the lamps, the filter and the sensor. Thanks to that
process, we can assume that we are using white illumination and therefore the
acquired images fulfill that e(λ) = e, ∀λ. This fact allows to suppose that the
sensor behaviors following Equation 2.

The aim is to obtain an invariant representation where the spectral informa-
tion is preserved, i.e. the invariant pixel value not to be a mixture of other
pixel (wavelengths) values. Lets, Ci = embKi + B, Cj = embKj + B and
min(C1, . . . , CN ) = Cmin = embKmin + B, with B = emscsf being a constant
value along λ, mb = mb(−→n ,−→s ) and ms = ms(−→n ,−→s ,−→v ). In order to achieve
highlights invariance, we can perform Ci − Cj , but then, a mixture of body re-
flectance values from both pixels is obtained as an invariant, loosing spectral in-
formation, Ci−Cj = emb(Ki−Kj). However, using the minimum value, the spec-
tral information is approximately preserved, since Cmin = embKmin + B  B
and therefore Ci − Cmin  embKi + B − B = embKi, i.e. invariant to high-
lights. In addition, Ln is also invariant to e and mb, i.e. illumination intensity
and geometry factors, since:

Ln 
embKn∑
j embKj

=
Kn∑
j Kj

(11)

Note that we are dividing all the pixel values by a constant, therefore the
spectral information is maintained.

4 Experimental Results

In order to test our approach in real images, a set of multispectral images have
been taken using a specially designed illumination chamber (see Figure 1). The
chamber is a perfect hemisphere with a large number of low-voltage halogen
lamps attached on the inside uniformly distributed through the hemisphere. The
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Fig. 1. Illumination chamber used to capture our multispectral images

(a) (b)

(c) (d)

Fig. 2. Wooden toys experiment. (a) original image, (b) original edge-image, (c) Ln

invariant representation, (d) Ln invariant edge-image. See text for explanation

lamps illuminate the object from all sides and from equal distances, minimizing
shadows, shine and other effects. For each image, 33 bands have been captured,
from 400nm to 720nm, using a bandwidth of 10nm.

From the experiments performed using the set of images captured, the most
significative ones are reported in this paper. Children toys have been selected as
test objects since they have interesting properties that help us to demonstrate
the invariant behaviour of our approach.

Figure 2 shows the ”wooden toys” experiment. In figure 2a, the original 33-
bands image is presented. In order to show the image as a RGB image, the
bands 650nm, 540nm, 490nm have been selected to be the R, G and B chan-
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(a) (b)

(c) (d)

Fig. 3. Plastic Toys experiment. (a) original image, (b) original edge-image, (c) Ln

invariant representation, (d) Ln invariant edge-image. See text for explanation

nels, respectively. Figure 2b shows the edge-image obtained from the 33 band
original image. White pixels are the ones that are greater than a threshold in
the multispectral gradient of the image. The gradient of the multispectral im-
age has been calculated using the Di Zenzo multispectral gradient [9]. Note the
edges produced by shadows in the objects. Figure 2c and 2d show the results of
our approach. Figure 2c shows the Ln invariant representation as a RGB image
(R = 650nm, G = 540nm and B = 490nm). Finally, Figure 2d shows the edge
image obtained from the transformed multispectral image. Note that the effect
of the shadows has been completely eliminated.

The next experiment involves plastic toys whose reflection properties produce
highlights, which are hard to remove. Figure 3a shows the original image. As in
the previous experiment, the bands 650nm, 540nm, 490nm have been selected as
the R, G and B channels, respectively. Figure 3b shows the edge-image obtained
from the 33 band original image. Note the edges produced by shadows and
highlights. Figure 3c shows the results of our invariant as a RGB image (R =
650nm,G = 540nm and B = 490nm). Finally, 3d shows the edge image obtained
from the invariant image. Note that the effect of the shadows has been completely
eliminated and the effect of the highlights has been almost completely eliminated.
The brightest points have not been suppressed because of sensor saturation at
these pixels.
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(a) (b)

(c) (d)

Fig. 4. Orange segmentation experiment. (a) original image, (b) Ln invariant repre-
sentation, (c) segmentation results of original image, (d) segmentation results of the
transformed (by the invariant) image

In last experiment, our approach has been tested in an application to seg-
ment orange fruits. Figure 4a shows the original image as a RGB (R = 650nm,
G = 540nm and B = 490nm). In spite of our effort to make an illumination
chamber with a homogeneous illumination, the image of the orange shows vari-
able illumination in different areas of the orange, higher in the center than in
the periphery. Figure 4b shows the invariant representation, note that the illu-
mination problems have been drastically reduced. In order to test if the invariant
representation improves the segmentation of the orange, a multispectral segmen-
tation algorithm has been used (see [6], [5]), using as input the original (Figure
4a) and the transformed image (Figure 4b). Figure 4c and 4d show both results.

Note the poor results of the segmentation using the original image due to the
problems with illumination effects. On the other hand, note the excellent results
of the segmentation process in Figure 4d, where the effect of the illumination
problems have not influenced the extraction of the regions of the orange.
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5 Conclusions

A new invariant for multispectral images has been presented in this paper. Our
approach transforms the image into a new space which is invariant to illumi-
nation intensity (assuming white illumination), object geometry and highlights
while approximately preserving the spectral information of the image.

The presented method has been successfully tested in real multispectral im-
ages with shadows and strong highlights, where it has been demonstrated the
ability of the invariant to deal with those effects in the image and, therefore, can
be used as input of other image processing applications, for instance, segmenta-
tion.
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Abstract. This paper presents a local image feature, based on the log-
polar transform which renders it invariant to orientation and scale varia-
tions. It is shown that this feature can be used for pose estimation of 3D
objects with unknown pose, with cluttered background and with occlu-
sion. The proposed method is compared to a previously published one
and the new feature is found to be about as good or better as the old
one for this task.

1 Introduction

Finding the geometrical state of an object from a single 2D image is of major
importance for a lot of future applications in industrial automation such as bin
picking and expert systems for augmented reality as well as a whole range of
consumer products including toys and house-hold appliances. Previous research
in this field has showed that there are a number of steps that need to fulfill a
minimum level of functionality to make the whole system operational all the
way from image to pose estimate. Important properties of a real-world system
for pose estimation is robustness against changes in scale, lighting condition
and occlusion. Robustness to scale is usually solved by some kind scale-space
approach [9], but there are so far no really good ways to achieve robustness
to lighting changes and occlusion. Occlusion is usually handled by using local
features which is done here also. The local feature and the framework for pose
estimation presented here has been tested in a setting that is constrained to the
case of knowing what object to look for, but with no information on the state of
the object. The inspiration to the work presented here comes from active vision
and the idea of using steerable sensors with a foveal sampling around each point
of interest [11]. Each point of interest detected in this work can be seen as a point
of fixation for a steerable camera that then uses foveal sampling as a means of
concentrating processing in the area close to that point.

1.1 Related Research

The problem of estimating object state has been investigated for as long as
automated image processing has been possible. In the early period of the research
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field, a lot of effort was spent on global methods, many without much real-world
success. The work we will present here was in part inspired by one of those global
methods [1]. In the recent years some advances have been made in the area of
pose estimation [12], [10], [6], [8], of which much seems related to a new focus on
local invariant features. Each local feature detected in an image during training
can in such a setup be viewed as a search key to find the same view again from
the database of learned object views.

1.2 Thesis of This Paper

We propose to use as local feature a patch of either the image or a edge-filtered
version of the image and to use this feature in combination with a voting and
clustering setup. An edge-filtered patch of the image can either be represented
by the absolute value of the edge-vector in each point, or be represented in single
or double angle notation [5]. The double angle representation effectively doubles
the rotation angle around the z-axis for the edge normal in the image plane
and thus has the advantage of not discriminating between lines or edges or the
phase of an edge. This gives patches in double angle representation the chance
to be more robust to changes in background and lighting. In this paper we will
evaluate the performance of single and double angle represented patches.

We further propose that the patches are resampled with log-polar sampling
and then transformed with the Fourier transform. This will in theory give us a
local feature that can be made invariant to position in the image, to rotation
and scale. When using discretized versions of continuous transforms like the log-
polar transform used here, one has to be careful of how the discretization changes
the transform, but we will show that this works in practice and is applicable to
real-world setups for pose estimation.

2 Pose Estimation

In this section we will describe the details behind our setup. What we will not
go into detail about is the Harris corner1 detector [7] that we use for feature
selection. It was used since it seems to be one of the fastest and most stable ones
around according to [13].

2.1 The Local Feature

We see a zoom-in on one input image from the training set where Harris points
have been drawn as small circles in Figure 1(a). Around each Harris point a log-
polar sampling grid is placed in either the gray-valued image, see Figure 1(b), or
an edge filtered image, see Figure 2(a). Resampling using this sampling grid and
cubic interpolation yields an approximation to the log-polar transform for that
local neighborhood, see Figure 2(b). In a log-polar sampled image, translation

1 It is perhaps better to say that it detects non-simple signals.



46 Fredrik Viksten and Anders Moe

50 100 150 200 250 300 350

50

100

150

200

250

(a) Harris points

186 188 190 192 194 196 198 200 202 204 206

102

104

106

108

110

112

114

116

118

120

(b) Sample grid around Harris point

Fig. 1. Harris points and log-polar sampling grid
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Fig. 2. Edge image with sample grid and log-polar sampled edge image

equals rotation or scaling in the original image. It is possible to make this patch
invariant to rotation and scale changes in two-steps. First compute the Fourier
transform of the patch, this transfers the information on translation in the log-
polar patch into the phase of the transform. Second, compute the magnitude of
each sample in the Fourier transformed patch, thereby removing the phase and
thus the information on translation from the patch. We now have a local feature
that is invariant to rotation and scale. This corresponds to the Fourier-Mellin
transform used in [1], however the differences in the approaches are that we use
local features and also we will not use phase information to recover the scaling
and rotation.

2.2 Training

During training, the system does the following until all training images have
been processed:
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1. Read in next training image together with pose ground truth.
2. Detect Harris points and sample around each found Harris point with a

log-polar sampling grid.
3. Store the Fourier transform of each feature patch together with information

on the pose and the position it was found at in the database.

It should be noted that we do not perform the second step to make the
feature invariant as detailed in Section 2.1 at this stage.

One advantage of this kind of method is that since we use no kind of opti-
mization, as we would if we used a neural network, new views can be added at a
later time. Storing data in such a database can be seen as a crude way of doing
learning, there is however evidence that the human vision system works as if it
used database look-up functions when recognizing objects [3].

2.3 Matching

When the system is running in query mode, i.e. it has already been trained and
we want to use it to estimate the state of an object, we need to perform matching
to see what votes will be cast. The matching procedure can be visualized by
Figure 3. The second step detailed in Section 2.1, which is performed to make
the features invariant to scale and rotation, is applied. Correlation is then used
to compute the k nearest neighboring matches between the query and prototype
features. The k nearest prototypes to each query feature are selected to cast a
vote. The vote on pose angle as well as position is given by their position in the
database. To compute the votes for scale and rotation angle we apply the inverse
Fourier transform on the selected query and prototype patches to again get the
log-polar transform. A modified circular correlation between each query feature
and its k nearest neighboring prototype features yields a response where we can
find the votes on scale and rotation by locating the peak in that output.

2.4 Clustering

The votes for φ, θ, rotation in the image plane α, position and scale are inserted
into a 6-dimensional space. We need to find peaks in this space and estimate a
mean of such a peak, or cluster. For this, mean-shift clustering [4],[2] is used.
The algorithm finds one or many clusters and outputs a confidence value for each
cluster that depends on how many votes there are in that specific cluster and
how spread out the votes are. This means that the method can be used to search
for several objects of the same kind as they will form different clusters since it is
not physically possible for two objects to have the same exact state. Furthermore
it should be realized that the method takes longer time to compute the more
features are detected, for instance in the background, and that the more random
and erroneous features there are, the higher the probability of erroneous clusters
forming by chance will be.
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Query
image

...Query patches ...Prototype patches

knn

•Inverse FT
•Circular corr

6-dim space

Clustering

Fig. 3. Overview of the query mode. The resulting output is an estimated pose, posi-
tion, rotation, and scale of the object. KNN refers to the k nearest neighbor method

3 Experiments and Results

As we want to try and estimate the pose of an object we used the turntable
seen in Figure 4 to sample a set of images. The turntable can be controlled very
precisely and can rotate about two axes. The φ-axis does however tend to align
with the optical axis of the camera at high θ angles. This alignment means that
rotations in φ can be mistaken for rotations in α, i.e rotations in the image plane.
We are using a feature that is supposed to be invariant to rotations in the image
plane and this is the reason why the θ angle in the data sets does not go as high
as it could. A subset of the sampled images of a toy car can be seen in Figure 5,
where the θ angle is on the vertical axis and the φ angle is on the horizontal
axis. From this set of sampled images we define the following data sets

φ θ

Training 0◦, 10◦,. . . ,180◦ 0◦, 10◦,. . . ,40◦
Dataset 1

Evaluation 5◦, 15◦,. . . ,175◦ 5◦, 15◦,. . . ,35◦

Training 0◦, 20◦,. . . ,180◦ 0◦, 20◦,40◦
Dataset 2

Evaluation 10◦, 30◦,. . . ,170◦ 10◦, 30◦

and evaluation on these two data sets yielded the following mean absolute errors

Single angle Double angle Patch duplets [8]

φ 0.53◦ 0.48◦ 1.25◦
Dataset 1

θ 0.85◦ 0.80◦ 1.06◦

φ 2.42◦ 1.84◦ 4.21◦
Dataset 2

θ 2.26◦ 1.63◦ 2.66◦



Local Single-Patch Features for Pose Estimation 49

(a) Turntable

φ

θ

(b) Possible rotation angles

Fig. 4. Turntable used to sample images

Fig. 5. Subset of the training images of the toy car

From the above table we can see that for this particular set of images this
method is comparable to the patch duplets [8], which is in the right-most column.
We also see that the double angle representation seem to be better suited for
this task than the single angle representation.

To find out how this method behaves on images with structured background
we made some other experiments. Since we do not have ground truth in the
following experiments we choose to overlay the query image with an edge-filtered
version of the closest training view. Since we only have views with a 5◦ interval
we can have errors up to that level even though the estimates might be more
precise than that. One experiment can be seen in Figure 6, where the scale was
found to be 1.1 and the overlay was scaled accordingly. An other such experiment
can be seen in Figure 7, where scale was detected as 1.05. The experiment seen
in Figure 8 also shows that the method is robust to some occlusion.

4 Conclusions

It is obvious from images presented in Section 3 that the proposed local feature
together with the described matching and clustering works for real-world objects.
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Fig. 6. Toy car on table and closest view overlayed
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Fig. 7. Toy car on asphalt and closest view overlayed
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Fig. 8. Toy car occluded and closest view overlayed

It is also seen that in some cases the method is more precise than the method it
is compared to. Since the properties of the feature allows the method to use only
single patches, in contrast to for example [6] or [8], it has the chance be more
stable to occlusion than non-single-patch features. The single-patch property
might also make it possible for the method to generalize to similar objects,
which can be a good thing in some cases.
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Abstract. In this paper, a new approach to optical flow estimation in
presence of multiple motions is presented. Firstly, motions are segmented
on the basis of a frequency-based approach that groups spatio-temporal
filter responses with continuity in its motion (each group will define a
motion pattern). Then, the gradient constraint is applied to the output
of each filter so that multiple estimations of the velocity at the same
location may be obtained. For each “motion pattern”, the velocities at
a given point are then combined using a probabilistic approach. The use
of “motion patterns” allows multiple velocities to be represented, while
the combination of estimations from different filters helps reduce the
aperture problem.

Keywords: Optical flow, multiple motions, spatio-temporal models

1 Introduction

Optical flow estimation, viewed as an approximation to image motion, is a very
useful task in video processing [1]. In this framework, an open problem is how
to deal with the presence of multiple motions at the same location [2]. With
the presence of occlusions and transparencies, more than one velocity may be
presented at the same point (for example, let us consider a sheet of glass cross-
ing over an opaque object). In such cases, the techniques which do not consider
the presence of multiple motions will generate erroneous estimations which will
combine into a single vector the different velocities present at one point. These
problems are currently being addressed by the research community with models
such as those based on the use of mixed velocity distributions (usually two) at
each point [3], the models based on line processes [4], the parametric models
[5] or the frequency-based techniques (which use spatio-temporal filters to sepa-
rate the motions [6, 7]). Nevertheless, although they do consider the presence of
occlusions and transparencies in their calculations, the majority of these tech-
niques do not generate a representation as an output which allows more than
one velocity per point.

� This work has been supported by the MCYT (Spain) under grant TIC2003-01504.
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Fig. 1. A general diagram describing the motion segmentation model.

In order to confront this problem, in this paper we develop a methodology
for optical flow estimation that is able to represent multiple velocities at the
same point. To detect points with multiple motions, the model introduced in [8]
is used. This model is a frequency-based approach that groups spatio-temporal
filter responses with continuity in its motion (each group will define a motion
pattern). Given a motion pattern (a group of filters), the proposed technique
apply the gradient constraints to the output of each filter in order to obtain
multiple estimates of the velocity at the same location. Then velocities at each
point are combined using probability rules.

The rest of the paper is organized as follows. Section 2 introduces the spatio-
temporal filtering approach to motion segmentation and Section 3 shows its
application to optical flow estimation with of multiple motions. Results with real
and synthetic sequences are shown in Section 4 and, finally, the main conclusions
are summarized in Section 5.

2 Motion Patterns

To detect multiple motions at the same location, the frequency-domain approach
introduced in [8] is used. This methodology is based on three main stages:
a spatio-temporal filtering, the computation of the distance between filter re-
sponses, and a clustering process. A diagram illustrating the analysis on a se-
quence corresponding to a handclap is shown in Figure 1 (in this example, the
objective is to separate the two hand motions).
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In the first stage, the original sequence is represented as a spatio-temporal
volume, where a moving object corresponds to a three-dimensional pattern. Its
Fourier transform is then calculated in order to perform the analysis in the
frequential domain. Given a bank of spatio-temporal logGabor filters, a subset
of these is selected so that significant spectral information may be extracted.
These selected filters are applied over the original spatio-temporal image so that
a set of active responses may be obtained (only one subset of filters is used).

In the second stage, the distances between active filters are obtained. These
distances are computed over relevant points which are calculated as local energy
peaks on the filter response.

In the third stage, a clustering over the set of active filters is performed to
highlight response invariance. Each cluster obtained in this step defines a motion
pattern. In the output box of Figure 1, two collections of filters corresponding
to the two hand motions are shown. For more details about these three stages,
see [8].

3 Optical Flow Estimation

In this section, the frequency-based model described in Section 2 will be used to
optical flow estimation in presence of multiple motions

3.1 Differential Formulation

Within the gradient-based approaches, based on the well known differential
brightness constancy constraint equation, a probabilistic framework to optical
flow estimation was proposed by Simoncelli et al. [9]. In this approach, two
independent additive Gaussian noise terms n1 and n2 are introduced in the con-
stancy constraint equation [9], and the velocity at a given point is defined as a
Gaussian random variable with mean and covariance:

μv = −Δv ·
∑

r

wrdr

κ1 ‖fe(xr , yr, t)‖2 + κ2

(1)

Δv =

[∑
r

wrMr

κ1 ‖fe(xr , yr, t)‖2 + κ2

+Δ−1
p

]−1

(2)

with fe = (fx, fy) and ft being, respectively, the spatial and temporal derivatives,
where wr is a weighting function that gives more influence to elements at the
center of the neighborhood, with the points in the neighborhood indexed by r,
Δp the covariance of the prior distribution P (v), Mr and dr defined as

Mr =
[
f2

x(r) fx(r)fy(r)
fy(r)fx(r) f2

y (r)

]
br =

[
fx(r)ft(r)
fy(r)ft(r)

]
(3)

and κ1and κ2 two parameters associated to n1 and n2 respectively (see [9] for
more details)
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3.2 Estimation for a Spatio-temporal Filter Response

In order to estimate the velocity vi at a given point (x, y, t) of the i-th filter
φi, the probabilistic approach described in Section 3.1 is used. Using the odd
response of the filter φi, the velocity vi is therefore defined on the basis of a
Gaussian random variable vi with mean μvi and covariance Δvi :

vi ∼ N(μvi , Δvi) i = 1, . . .N (4)

where μvi and Δvi are calculated using Equations (1) and (2). Therefore, given
a point (x, y, t), we shall have a vector of estimations [v1,v2, . . .vN ], with N
being the number of active filters

Confidence Measure It is well known that the covariance matrix Δvi can be
used to define a confidence measure of the estimation vi [9]. In this paper, we
shall use the smallest eigenvalue of Δ−1

vi
as the confidence measure of vi [10] and

this will be denoted λvi :
λvi = min

{
λi

1, λ
i
2

}
(5)

where λi
1 and λi

2 are the two eigenvalues of Δ−1
vi

(for the sake of simplicity, we
have omitted the spatio-temporal parameters (x, y, t) in the notation λvi(x, y, t)).

Therefore, an estimation vi at a given point (x, y, t) of the i-th filter φi will
be accepted if λvi ≥ Thresholdφi, where Thresholdφi is a confidence threshold
associated to the filter φi. Under the assumption that every relevant point of the
filter will generate a reliable estimation, the following approximation is proposed
to calculate Thresholdφi:

Thresholdφi = min {λvi(x, y, t) / (x, y, t) ∈ P (φi)} (6)

where P (φi) represents the set of relevant points of the filter φi. In this way, we
accept as reliable any estimation which is the same as or better than the worst
estimation obtained for the set of relevant points.

3.3 Estimation for a Motion Pattern

This section shall describe the methodology for integrating the estimations cor-
responding to the set of filters which comprise a motion pattern. Let Sk be the
k -th motion pattern detected in the sequence, and let

{
φk

i

}i=1,...Lk be the set
of Lk grouped filters in Sk. Let Ωk be the set of estimations vi ∼ N(μvi , Δvi)
obtained from

{
φk

i

}i=1,...Lk which are above the confidence threshold. The inte-
gration will be performed on the basis of a linear combination

v̂k =
∑

vi∈Ωk

αivi (7)

with v̂k representing the velocity at point (x, y, t) of the motion pattern Pk, and
αi given by the equation

αi =
‖μvi‖λvi∑

vj∈Ωk

∥∥μvj

∥∥λvj

(8)
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In this equation, the norm ‖μvi‖ measures the “amount of motion” detected at
this point by the filter φi, while λvi measures the reliability of the estimation vi

(Equation (5)). The denominator in (8) guarantees that
∑

Ωk
αi = 1.

If we assume that vi are independent variables, v̂k will be a random variable
with a Gaussian distribution with mean μ

v̂k
=
∑

Ωk
αiμvi and covarianceΔ

v̂k
=∑

Ωk
α2

iΔvi .

3.4 Representation of Multiple Velocities

The motion patterns allow the relevant motions presented in a given sequence
to be separated; therefore, in the optical flow estimation problem, they can be
used to decide whether there are multiple velocities at the same location or not.
Based on this idea, our scheme will obtain the velocities at a given point (x, y, t)
directly from the estimations calculated for each motion pattern as:

v = {v̂k}k=1...K (9)

where K is the number of motion patterns detected in the sequence, and v̂k is
the optical flow estimation at point (x, y, t) of the k-th motion pattern Sk. It
should be noted that due to the use of confidence measures, we will not always
have K estimations at each point.

4 Results

4.1 Synthetic Sequences

Figure 2 shows two synthetic sequences which have been generated with Gaus-
sian noise of mean 1 and variance 0. The first example (Figure 2(A)) shows
a sequence where a background pattern with velocity (-1,0) frames/image is
occluded by a foreground pattern with velocity (1,0). The second example (Fig-
ure 2(B)) shows two motions with transparency: an opaque background pattern
with velocity (1,0) and a transparent foreground pattern with velocity (-1,0). In
both cases, the figure shows the central frame of the sequence, the motion pat-
terns detected by the model (two in each case), and the optical flow estimated
with our technique. In this example, we have used the values κ1 = 0, κ2 = 1
and κp = 1e − 5 (with Δ−1

p = κpI [9]) in Equations (1) and (2) as it is pro-
posed in [9], the spatial and temporal partial derivatives have been calculated
using the kernel 1

12 (−1, 8, 0,−8, 1), the gradient constraints have been applied
in a local neighborhood of size 5 × 5, and the weight vector has been fixed to
(0.0625, 0.25, 0.375, 0.25, 0.0625) [10].

We should point out that in the first example, our technique obtains two
velocities at the occlusion points; in a similar way, in the second example, our
methodology is able to estimate two velocities for each point of the frame. Since
we have access to the true motion field of the synthetic sequences, we can measure
the angular error [10]. Table 1 shows a comparision between our methodology
and other classic techniques such as those studied by Barron et al. [10].
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Optical Flow

A

Motion Patterns

A B

Original

B

Fig. 2. Results with synthetic sequences.

Table 1. Mean error obtained with several techniques applied to the sequences in
Figure 2. MV: Multiple velocities. SV: Single velocity. Density is 100%.

A (occlusion) B (transparency)

Proposed technique MV 0.84◦ 0.44◦

Nestares MV 3.93◦ 7.76◦

Lucas&Kanade SV 4.79◦ 50.89◦

Horn&Schunk SV 2.66◦ 52.77◦

Nagel SV 8.59◦ 45.81◦

Anandan SV 10.47◦ 47.78◦

Singh SV 2.97◦ 45.27◦

Uras SV 3.96◦ 57.86◦

Simoncelli SV 5.97◦ 49.38◦

4.2 Real Sequences

Figure 3 shows some examples with real sequences. In this case, we have used
the values κ1 = 0, κ2 = 1 and κp = 0.5 (as it is proposed in [9]) with the
same partial derivatives and weight parameters used in the synthetic case. For
each example, the figure shows the first and last frame of the original sequence,
the motion patterns detected in each case, the optical flow estimated with our
technique and the optical flow estimated employing the Simoncelli’s technique
[9] as described in section 3.1 (which uses a similar approach, but without a
multiple velocity representation). As we do not have the true motion field for
real image sequences, we can only show the computed flow field.

The first example (Figure 3(A)) shows a case of occlusion where a hand is
crossing over another one. The second case shows an example of transparency
where a bar is occluded by a transparent object (Figure 3(B)). Finally, Figure
3(C) shows an example with an articulated object with two components rotating
and approaching independently. In all the cases, our methodology extracts two
motion patterns and estimates two velocities in the occlusion points.
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Fig. 3. Results with real sequences.
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5 Conclusions

In this paper, a new methodology for optical flow estimation has been presented.
The proposed technique is able to represent multiple velocities on the basis of
a new frequency-domain approach capable to detect “motion patterns” (that is,
a clustering of spatio-temporal filter responses with continuity in its motion). A
methodology to obtain the optical flow corresponding to a spatio-temporal filter
response has been proposed, using confidence measures to ensure only reliable
estimations. A probabilistic combination of velocities corresponding to the set
of filters clustering in a given motion pattern has been proposed. One of the
main features of the proposal is the possibility of representing more than one
velocity at a point. This is extremely important in situations with occlusions or
transparencies.
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Abstract. In the last few years, the advances in three-dimensional med-
ical image processing have made possible operations like planning or sim-
ulation over real data. Different representations of structures or models
have been proposed, being the implicit surfaces one of the most flexible
models for processing. This paper introduces a new method for comput-
ing the implicit surfaces from the explicit representations of the objects
segmented in three-dimensional images. This proposal is based on the ap-
proximation of the surfaces using distance functions and natural neighbor
interpolation. The system has been tested over CT images of tibia and
femur where the explicit representation has been extracted through a
TAV model [1]. The results obtained show the suitability of the method
for a correct representation of the target objects.

1 Introduction

Three-dimensional image data from magnetic resonance imaging (MRI), com-
puted tomography (CT) and other scanning techniques allow scientist to interact
with anatomical structures directly mapped from patients. In the last few years,
medical imaging has expanded its use to new applications like surgical planning
an simulation, where a good representation of the organs is necessary. In such
applications, the implicit object representations are adequate due to their suit-
ability for collision detection and physically based animation. These two features
form the basis for intuitive and realistic interaction with solid objects. However,
most of these applications use segmentation processes for the extraction of the
target objects, and most of these processes produce explicit representations of
the surfaces (like polygonal meshes or unorganised points) that must be con-
verted to implicit representations.

There are several techniques for conversion of explicit to implicit represen-
tation. The method based on scan conversion, sample the surface into a binary
volume and then apply a distance transformation algorithm [9]. Breen et al. [4]

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 60–68, 2005.
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use a similar idea, first sampling the distance to surface into a narrow band near
it and then propagating this information using fast marching method [7]. Some
approaches use implicit function fitting: radial basis functions [10], moving least
squares [8] and level set methods [7] are also used for surface interpolation and
fitting. Finally, geometric approaches have been proposed, some of them based
on the identification of the vertex, edges and facets closest to regions in space [4]
while others use Voronoi diagram for natural neighbor interpolation of distance
functions associated to points on the surface [3, 6].

This paper introduces a framework where the target objects of three-dimen-
sional scenes are extracted using the Topological Active Volume (TAV ) model [1].
The result of this process is: a set of points on the surface of the objects, another
set of points inside the object and the topological relations between them. From
this information, we approximate the implicit functions representing the objects
through natural neighbor interpolation of distance functions [3]. The paper is
organised as follows. Section 2 introduces the TAV model. Section 3 describes
method for the reconstruction of implicit surfaces and how the TAV model is
adapted to it. Section 4 shows our preliminary results. And section 5 exposes
the conclusions from our work.

2 Topological Active Volumes (TAV)

The Topological Active Volumes (TAV ) model is an active contour model fo-
cused on extraction and modelisation of volumetric objects in three-dimensional
scenes [1]. A Topological Active Volume is a three-dimensional structure com-
posed of interrelated nodes where the basic repeated structure is a cube. There
are two kinds of nodes: the external nodes, that fit the surface of the object, and
the internal nodes, that model its internal topology. The state of the model is
governed by an energy function defined as follows:

E(v) =
∫ 1

0

∫ 1

0

∫ 1

0

Eint(v(r, s, t)) +Eext(v(r, s, t))drdsdt (1)

where Eint and Eext are the internal and the external energy of the TAV, respec-
tively. The internal energy controls the shape and the structure of the net. Its
calculation depends on first and second order derivatives that control contraction
and bending, respectively. It is defined by the following equation:

Eint(v(r, s, t)) = α(|vr(r, s, t))|2 + |vs(r, s, t))|2 + |vt(r, s, t))|2) +
β(|vrr(r, s, t)|2 + |vss(r, s, t)|2 + |vtt(r, s, t)|2)+
2γ(|vrs(r, s, t)|2 + |vrt(r, s, t)|2 + |vst(r, s, t)|2)

(2)

where subscripts represents partial derivatives and α, β and γ are coefficients
controlling the first and second order smoothness of the net.

Eext represents the features of the scene that guide the adjustment process
and is different for external and internal nodes. It is defined as:
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Eext(v(r, s, t)) = ωf [I(v(r, s, t))]

+
ρ

ℵ(r, s, t)
∑

n∈ℵ(r,s,t)

1
||v(r, s, t)− v(n)||f [I(v(n))] (3)

where ω and ρ are weights, I(v(r, s, t)) is the intensity value of the original image
in the position v(r, s, t), ℵ(r, s, t) is the neighbourhood of the node (r, s, t) and f
is a function of the image intensity, which is different for both types of nodes. For
example, if the objects to detect are light and the background is dark, function
f is defined as follows in order to minimise the energy value of external and
internal nodes when they are on the surface or inside the objects, respectively:

f [I(v(r, s, t))] =

⎧⎨⎩h[Imax − IN (v(r, s, t))] for internal nodes

h[IN (v(r, s, t)) + ξ(Gmax −G(v(r, s, t)))] for external

+ DG(v(r, s, t)) nodes

(4)

ξ is a weighting term; Imax and Gmax are the maximum intensity values of
image I and the gradient image G, respectively; I(v(r, s, t)) and G(v(r, s, t)) are
the intensity values of the original and gradient image in the position v(r, s, t);
IN (v(r, s, t)) is the mean intensity in a N ×N ×N cube and h is an appropriate
scaling function; DG(v(r, s, t)) is the distance from the position v(r, s, t) to the
nearest position in the gradient image that points out an edge.

The TAV model is automatic, so the initialisation does not need any hu-
man interaction as other deformable models. As a broad outline, the adjustment
process consists of the minimisation of the energy of the mesh and, after that,
the breaking of connections between external nodes badly placed, this is, the
external nodes that are not on the surfaces of the objects. The breaking of con-
nections allows a perfect adjustment to the surfaces and the detection of holes
and several objects in the three-dimensional scene [1].

3 Implicit Surface Reconstruction

3.1 Approximating Distance Functions

The most common approach for three-dimensional object surface representation
is the explicit (or parametric) model. In this kind of representation we can easily
identify point coordinates on the object’s surface by varying its parameters.
Opposing to this, in an implicit representation, points on the surface are those
that satisfy an equation like F (x, y, z) = 0, where F (x, y, z) is the so called
implicit function. Thus, the surface F (x, y, z) = 0 divides the space in two areas,
one where F (x, y, z) < 0 and the other where F (x, y, z) > 0. This is often used
for distinguish between the inside and the outside of the object using a function
that takes negative values inside and positive outside (or vice versa).

When we try to convert an explicit representation, like a TAV into an implicit
one, we first have to choose the implicit function to represent the object. In this
paper we use the signed distance function to the surfaceD(p) as implicit function.
This function is defined as the shortest distance from point p = {x, y, z} to any
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point on the surface. D(p) is positive if p lies outside the object and negative if
p lies inside it.

The implicit function we propose is derived from the interpolation of signed
distance functions associated to the points that are known to be on the object
surface. These functions are approximations of the distance to the object surface
around the points. Our approach uses natural neighbor interpolation of these
distance functions, as it has proved its suitability for surface reconstruction ([3],
[6]) and it is guaranteed to produce correct results when the sampling density
increases enough.

Natural neighbor interpolation is a weighted average of the values at the
neighbour data points using natural coordinates as the weighting measure. Let
S be a set of points si where the function to be interpolated is known (we know
the local distance function from any point p to the surface dsi(p) at si nearness),
and VS the Voronoi diagram of the data sites. The natural neighbors of any point
p in S are those that are neighbours of p in V(S∪p). For each si natural neighbor
of p, the natural region NRsi

p is defined as the region of space that si loses when
p is inserted in VS . Denoting dsi(p) as the distance function associated to si with
respect to point p, the interpolated distance D(p) is computed as:

D(p) =

∑
si∈S

wσ
p (si) dsi(p)∑

si∈S
wσ

p (si)
(5)

wp(si) =
L(VS(si) ∩ V(S∪p)(p))

L(V(S∪p)(p))
(6)

where σ ≥ 1 is the parameter that controls the relation between weight mag-
nitude and point importance, wp(si) is the natural coordinate of the point p
associated to si and L(R) denotes the Lebesgue measure of the region R (area
in two dimensions, volume in three-dimensional space) and dsi(p) is the signed
distance to the tangent plane at si. Thus, normal information is needed for each
point. The denominator is added for weight normalisation in order to preserve
the distance function magnitude when σ > 1.

3.2 Extracting Features from the TAV Model

The results from the segmentation process must be adapted to use the implicit
surface reconstruction method described above. As preciously mentioned, this
method uses points on the surface of the object and normal vectors to them.
The main idea is to get the external node positions of the TAV as the set of
points on the object surface and make an estimation of the normal (direction
and orientation) using the topological information.

Let T be a TAV model and B its boundary, NT |B denotes the set of external
nodes of T . For each external node n = {r, s, t} ∈ NT |B , v(n) denotes the node
position and FT |B(n) the external facets adjacent to it. The number of adjacent
external facets can vary from three to twelve due to the TAVs ability to make



64 José Rouco et al.

topology changes, so we use the normal vector to all these facets for estimating
the normal vector to B around n proceeding as follows.

For each external node n ∈ NT |B , we compute the direction of the normal
vectors n̄′

nf associated to each facet f ∈ FT |B(n) as well as the displacement
vectors d̄nf as follows:

n̄′
nf = norm(ē1nf × ē2nf ) (7)

d̄nf = norm(ē1nf + ē2nf) (8)

where ē1nf and ē2nf are unitary vectors in the direction of the two edges of f
adjacent to n, ‘×’ denotes vector product and norm(v̄) normalises the vector
v̄. In order to ensure that the normals point to the outside of the object, the
position of the centroid cf of the cube Cf that f belongs to is used (Cf is unique
since f is external). Then, the oriented normal n̄nf to each facet f associated to
each of its nodes n is:

n̄nf =
{
− n̄′

nf if ((cf − v(n)) . n̄′
nf < 0

n̄′
nf otherwise (9)

cf =
1
8

∑
ni∈Cf

v(ni) (10)

where ‘.’ denotes dot product. Note that vector (cf −v(n)) points inside the cube
due to internal energy minimisation of the model. This minimisation should as-
sure that the cubes are not degenerated. Hence, normal vector should have an
angle of at least π

2 radians with (cf − v(n)) and equation 9 gives the correct
orientation. Figures 1(a) and 1(b) represent the vectors involved in this compu-
tation.

Normal orientation n̄nf to all facets f ∈ FT |B(n) associated to node n give us
information about how surface B varies around the node position v(n). If these
normals are similar, the surrounding surface can be approximated by a single
plane. If not, see figure 1(c), such approximation differs from original surface and
sub-sampling is needed near v(n). With the aim of identifying the planes that
have to be used for a good approximation of B around v(n), a divisive hierarchical
cluster analysis algorithm (see [5]) overFT |B(n) is used. Neighbouring facets with
similar orientation are good candidates for being grouped together, so we use
the angle between normals as the dissimilarity measure and divide clusters if
they have at least two normals with difference over a threshold angle (θ).

The result of this analysis is a partition of FT |B(n)), this is, a set of clusters
Pn = {Pn1, Pn2, ..., Pnk} whose members are sets of similar facets that differ
from the others. Thus, we approximate the surface around the node position
using one plane for each of these clusters. This way, we choose the mean normal
vector n̄Pni of each cluster Pni ∈ Pn as its representing normal vector:

n̄Pni = norm(
∑

f∈Pni

n̄nf ) (11)
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 1. Feature extraction from TAV. (a) Vectors involved in computation of n̄nf and
d̄nf . (b) n̄nf and d̄nf for all facets in FT |B (n). (c) Normals to neighbour facets and
clusters. (d) Resulting points and normals. (e) Example of application. (f) Zoom on
high variance area. (g) Zoom on low variance area.

being n̄nf the oriented normal to facet f associated to node n, and norm(v̄) a
function that normalises v̄. Analogously, for selecting the sample point pni we
proceed as follows. If Pn contains more than one cluster (figure 1(c)), a sample
point pni is selected for each Pni as:

pni = v(n) + δ d̄Pni (12)

d̄Pni = norm(
∑

f∈Pni

d̄nf ) (13)

where δ is a displacement constant and d̄Pni is the mean displacement vector of
cluster Pni (see figure 1(d)). If only one cluster is given, position v(n) is used as
pni. Figures 1(e), 1(f) and 1(g) show an example of application of this method
on a simple artificial object.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Results. (a)(b) Femur and tibia CT slices. (c)(e) TAV results for femur and
tibia. (d)(f) Zero level isosurfaces from femur and tibia resulting implicit functions.
(g)(h)(i)(j)(k)(l) x,y and z sections from femur and tibia resulting implicit functions.

4 Results

We have used the proposed methodology for the segmentation of CT gray scale
images that represent sections of the tibia and femur. Figures 2(a) and 2(b) show
three of these slices from tibia and femur respectively.

The CT images (without filtering) were used to compute the external energy.
The gradient images were obtained with a bi-dimensional Sobel filter. TAV pa-
rameters used in the examples were α = 4.0, β = 0.00001, γ = 0.00001, ω = 4.0,
ρ = 4.0 and ξ = 5.0 and we selected them empirically.

Using TAV information from the extracted objects (figures 2(c) and 2(e))
we sampled the interpolated distance functions into three-dimensional volumes
with 50 × 50 × 70 voxels. For normal extraction we had to select values for
two parameters: maximum cluster angle constant θ and sample displacement
constant δ. We chose θ = 0.2 radians empirically and δ = 0.5 voxel units as a
negligible displacement value, taking into account that node positions have at
least one voxel unit of separation between them (so accuracy is kept) and we
are not interested in taking this value too low in order to avoid numerical errors
in natural coordinates computation. For natural neighbor interpolation we kept
σ = 1.
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Figures 2(d) and 2(f) show the zero level isosurfaces for the femur and the
tibia traced using Bloomenthal’s polygonizer [2], while the six figures in last row
of figure 2 are isolevel representations of sections traversing x, y and z axes of
the surface for the femur and tibia implicit functions. These images represent
distance values in gray scale. Values in [0, . . . , 127] represent the inside (nega-
tive values) of the object and values in [128, . . . , 255] the outside. For clarity in
representation, we insert a white level between adjacent levels inside the object,
and a black level between adjacent levels outside.

5 Conclusions

In this work we apply Topological Active Volumes (TAV ) for CT images segmen-
tation. The TAV model has proved to give good results for this environment [1],
but this time we have proved its usefulness for shape feature extraction using its
topological information.

For the conversion of the TAV model into an implicit surface representation,
we have used the natural neighbor interpolation based method proposed in [3],
that guarantees correct results on a dense enough sample. TAV model produces
sample points on the surface of the extracted objects and topological relations
between them, that provide enough information to estimate normal direction
and orientation. Using this information we analyse object surface and identify
the areas where sampled density needs to be increased. Our preliminary results
show the good performance of the method described.
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Abstract. This paper addresses the computation of motion between
two views when 3D structure is unknown but planar surfaces can be as-
sumed. We use points which are automatically matched in two steps. The
first one is based on image parameters and the second one is based on the
geometric constraint introduced by computed homographies. When two
or more planes are observed, corresponding homographies can be com-
puted and they can be used to obtain the fundamental matrix, which
gives constraints for the whole scene. The computation of the camera
motion can be carried out from a homography or from the fundamen-
tal matrix. Experimental results prove this approach to be robust and
functional for real applications in man made environments.

Keywords: Matching points, multiplane scenes, homographies, funda-
mental matrix, motion estimation

1 Introduction

The fundamental matrix encapsulates the geometric information which relates
two different views regardless of the observed scene. The non metric basis of this
matrix makes possible to use uncalibrated cameras. It has been usually computed
through points [1] although lines can also be used when two or more planes
are available [2]. Obviously points can also be used to compute homographies
and, if two or more homographies are available, the fundamental matrix can be
computed from them [3], [4].

In all the cases the matching problem is crucial to make the process work
automatically. The matching of features based on image parameters may give
non matched or wrong matched features. Projective transformations allow image
dependent measures, as cross-correlation, to be a viewpoint invariant, which
make possible to afford wide baseline matching [5]. So, the constraint imposed
by fundamental matrix or homographies must be used for matching points.

Scenes with several planes are usual in man made environments, and the
model to work with multiple views of them is well known. Points or lines in one
image of the world plane are mapped to points or lines in the other image by a
� This work was supported by project DPI2003-07986.
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plane to plane homography [6]. We robustly match points between two images
using the projective transformations corresponding to the existing scene planes.
The robust matching of points and the computation of the corresponding ho-
mography is iteratively carried out until we have no more available planes. If two
planes have been computed at least, the fundamental matrix can be computed,
which gives general constraint for the whole scene. It has been reported that the
multi-plane algorithm is not as stable as the general method [3], but when less
than three planes are observed, which is quite usual in man made environments,
the multi-plane algorithm gives better results than the general method.

Camera motion between two views can be obtained from the computed ho-
mography or from the fundamental matrix. Both methods are exposed in this
paper. Normally the computation of motion has been directly considered from
the fundamental matrix, which is a more general model. However, the funda-
mental matrix is ill conditioned with short baseline or when all the points lie on
a plane, which may easily happen in man made environments [6]. In these cases
the fundamental matrix is an inappropriate model to compute camera motion.
Using homographies, we can check the homology conditioning to determine if the
fundamental matrix may be computed. Therefore we can choose the appropriate
motion algorithm from either the fundamental matrix or the homography.

2 Robust Matching

Automatic matching continues to be an unsolved problem in general situations.
The aim is to determine correspondences between points in two images without
knowledge about motion or scene structure.

In this work the points of interest are extracted with the Harris corner ex-
tractor [7]. To obtain a homogeneous distribution of points all over the image,
it is divided in a grid and we establish a maximum number of points per cell to
be extracted. Additionally we establish a threshold of minimum contrast just to
give only good points.

Later, we consider the matching in two steps, the first step is based on image
correlation on a search window around the candidate points. This is actually
the most weak step of our implementation because, as known, correlation is not
invariant to rotations. As some mismatches appear here, we introduce in the
second step, our ”friendship” algorithm. It is similar to the previously proposed
relaxation process [8]. The idea is to allow only the matches whose neighboring
points move similarly. Those that do not behave as the neighbors are eliminated.

These points can be represented in the projective plane with homogeneous co-
ordinates as p = (x, y, 1)T . A projective transformation H21 exists from matched
points belonging to a plane in such a way that p2 = H21p1.

From the previous relation each couple of corresponding points gives two
homogeneous equations to compute the projective transformation, which can
be determined up to a non-zero scale factor. To compute the homography, we
have chosen the RANSAC method [9], which is a robust method to consider the
existence of outliers. It makes a search in the space of solutions obtained from
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subsets of four matches. Each subset provides a 8× 9 system of equations whose
solution is obtained from singular value decomposition.

From here on, we introduce the geometrical constraint introduced by the
estimated homography to get a bigger set of matches. Thus, final matches are
composed by two sets. The first one is obtained from the matches selected after
the robust computation of the homography. The second one is obtained making
a rematching of not matched points based on the computed homography.

3 From Homographies to Fundamental Matrix

Fundamental matrix has been stated as a crucial tool when using uncalibrated
images. As known, it is a 3× 3 matrix of rank 2 which encapsulates the epipolar
geometry. It only depends on internal parameters of the camera and the relative
motion.

Let us suppose the images are obtained with the same camera whose projec-
tion matrixes in a common reference system are P1 = K[I|0],P2 = K[R|t]; being
R the camera rotation, t the translation and K the internal calibration matrix.
Then, the fundamental matrix can be expressed as F21 = K−T ([t]× R) K−1.
Normally, it has been computed from corresponding points [1], [10], using the
epipolar constraint, which can be expressed as xT

2 F21 x1 = 0. However, the fun-
damental matrix is unstable when points lie in a plane [10]. In [3] is shown that
the multiplane method behaves better than the general method when less than
three planes are available. This constrained structure is usually observed in man
made environments.

In the case of multiplane scenes some alternatives can be used to compute
the fundamental matrix. If at least two homographies (Hπ1

21 ,H
π2
21) corresponding

to two planes (π1, π2) can be computed between both images, the homology on
the second image H2 = Hπ1

21 · (H
π2
21)−1, which is a mapping from one image

onto itself, can be computed. Under this mapping the epipole is a fixed point
e2 = H2 e2, so it may be determined from the eigenvector of H2 corresponding
to non unary eigenvalue [6]. Therefore, the fundamental matrix can be computed
using Hπ1

21 or Hπ2
21 as,

F21 = [e2]× Hπi
21 , (1)

being [e2]× the skew matrix corresponding to e2 vector.
On the other hand, the fundamental matrix can also be computed from both

homographies through a system of twelve linear equations extracted from the
following relation [3],

Hπi
21

T F21 + F21
T Hπi

21 = 0 . (2)

As we propose to compute fundamental matrix from homographies, a check
on the homology conditioning may help to determine if the fundamental matrix
may or may not be computed. Similarly the homology on the first image can
be computed as H1 = (Hπ1

21)−1 ·Hπ2
21 and taking into account that for a plane

H21 = K (R− t nπ
T

dπ
)K−1, it turns out that the eigenvalues of the H1 homology

are (1, 1, 1 + vT p) being v = KR−1t/(1 − nT
π1

dπ1
R−1t) a view dependent vector,
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and p = (
nT

π1
dπ1
− nT

π2
dπ2

)K−1 a plane dependent vector, being nπ1 , nπ2 the normals
and dπ1 , dπ2 the distances of the planes [11].

So, the homology has two equal eigenvalues. The third one is related to
the motion and the structure of the scene. These eigenvalues are used to test
when two different planes have been computed, and then the epipole and the
intersection of the planes can be also computed. The epipole is the eigenvector
corresponding to the non-unary eigenvalue and the other two eigenvectors define
the intersection line of the planes [6]. In case of small baseline or if there is only
one plane in the scene, epipolar geometry is not defined and only one homography
can be computed, so possible homology H1 will be close to identity, up to scale.

In practice a filter is proposed using these ideas. Firstly, we normalize the
homology dividing by the median eigenvalue. If there are no two unary eigenval-
ues, up to a threshold, then the computation is rejected. On the other hand, if
the three eigenvalues are similar we check if the homology is close to identity to
avoid the case where two similar homographies are computed.

4 Camera Motion from Two Views

Complete motion (rotation and translation up to a scale factor) can be computed
from homography or from the fundamental matrix if camera is calibrated. As we
have seen before, the homography H21 can be related to motion in such a way
that H21 = K (R− t nT

d )K−1, being n the normal to the scene plane and d its
depth. From here, two solutions (up to a scale factor for t) can be obtained [12].
The main steps of this algorithm is summarized in Algorithm 1.

Algorithm 1 Motion algorithm from homography
1. Compute a calibrated homography Hc

21 = K−1 H21 K
2. Compute the singular value decomposition of matrix Hc

21, in such a way that
Hc

21 = U diag(λ1, λ2, λ3)V
T with λ2 = 1

3. Let be ST S = diag(λ1, λ2, λ3), and α =
√

λ3−λ2
λ3−λ1

, β =
√

λ2−λ1
λ3−λ1

4. Writing V = [v1, v2, v3], compute vv = αv1 + β v3

5. Compute rotation matrix R = [Hc
21 vv, Hc

21 v2, Hc
21 vv×Hc

21 v2][vv ,v2,vv×v2]
T

6. Compute translation up to a scale factor as t = Hc
21 n − Rn being n = vv × v2

7. The second solution for R and t can be obtained by making β = −β
8. If λ3 = λ2, there is a sole solution being the camera translation perpendicular to

the plane (t ‖ Rn) and coming nearer the plane. If λ1 = λ2 there is also a sole
solution, but now the camera gets away from the plane. Finally, if λ1 = λ2 = λ3

report the sole solution t = 0, and R = Hc
21

Camera motion can also be computed from the fundamental matrix. As in
previous case, the algorithm provides two solutions up to a scale factor for trans-
lation. Given the calibration matrix, the motion can be deduced from F as sum-
marized in Algorithm 2 [6].
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Algorithm 2 Motion algorithm from fundamental matrix
1. Compute the essential matrix E = KT FK
2. Compute the singular value decomposition of matrix E, in such a way that E =

U diag(1, 1, 0)VT

3. The camera translation, up to a scale factor is t = U (0, 0, 1)T

4. The two solutions for the rotation matrix are R = UWVT and R = UWT VT ,
being W =

[
(0, 1, 0)T , (−1, 0, 0)T , (0, 0, 1)T

]

In case of pure rotation or if there exists only one plane in the scene, the
epipolar geometry is not defined. Then, only the alternative of motion from
homography will be correct.

5 Experimental Results

Many experiments have been carried out with synthetic and real images. The
homology filter just commented has been used to determine when a second plane
has been obtained. Several criteria can be used to measure the accuracy of the
computed motion. With synthetic images, where motion is known, we measure
the rotation error. We also measure the first order geometric error computed as
the Sampson distance [6] for a set of corresponding points manually extracted
and matched.

With real images the matches are automatically obtained for two planes
in scene (Fig. 1). The points extracted are 479 from the first image and 475
from the second. The number of basic matches obtained is 147 with 86.4% of
good matches. Once a homography has been computed, the robust homography
computation and the growing matches process has been iteratively repeated
twice. The experiment has been repeated 50 times using the same basic matches,
and the mean of final matches obtained is 131.8 matches (σ = 10.5) with 96.9%
of good matches (σ = 1.2%). As it can be seen the number and quality of final
matches are quite good.

As we have seen, one of the results of the homology is the intersection line of
the planes. We have proposed to use a filter based on the homology eigenvalues
to avoid situations where a sole homography can be computed or where the
homographies do not give a right homology due to noise or bad extraction. In
these cases the epipole, the fundamental matrix or the intersection line would be
badly computed. In Fig. 2 we can see the intersection lines of the planes for 100
executions with and without the homology filter. As it can be seen the quality
of the results improves significantly with the proposed filter.

With respect to the fundamental matrix computation, we show (Table 1) the
mean of the Sampson distance for 20 points manually extracted and matched.
We consider the images of the college and two synthetic images. The synthetic
scene consists of random points, with white noise of σ = 0.3 pixels, distributed
in three perpendicular planes. The experiment has been repeated 100 times and
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Fig. 1. Images of the college to compute homographies. Extracted points (a), (b).
Matches corresponding to the first homography (c), (d) and to the second (e), (f).
(Original images from VGG, Oxford)

(a) (b)

Fig. 2. Intersection of the planes through the eigenvalues of the homology. The lines
corresponding to 100 executions are represented without filter (a), and with homology
filter (b)
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Table 1. Sampson distance for 20 points manually matched (belonging to each plane
for homographies and distributed around the scene for fundamental matrixes). We
show in 100 executions the median and the mean with and without filter. These results
are shown for the homographies (H1, H2) and for the fundamental matrixes: eH1 and
eH2 using (1) with Hπ1

21 and Hπ2
21 respectively, and FH using (2)

Synthetic (pixels) Oxford college (pixels)

H1 H2 eH1 eH2 FH H1 H2 eH1 eH2 FH

Without filter median 0.581 0.586 0.891 0.789 0.932 0.707 0.683 1.004 1.286 1.906

mean 0.577 0.586 1.619 1.458 1.634 0.709 0.698 4.998 5.187 12.61

With filter median 0.581 0.584 0.740 0.725 0.805 0.687 0.666 0.566 0.796 1.045

mean 0.578 0.587 0.926 0.767 0.883 0.697 0.694 0.642 0.789 1.099

we show mean and median values. The Sampson distance is similar for the three
presented ways of computing the fundamental matrix, although it is a bit worse
using (1). Probably this is because if one homography is less accurate than the
other, (2) collects this inaccuracy, currently we are studying the implications of
these differences.

Table 2. Mean of rotation error (Synthetic) and rotation angle (College) computing
motion through homographies H1 or H2 with algorithm 1, and through fundamental
matrixes, eH1 and eH2 using (1) and FH using (2), with algorithm 2

Synthetic: rotation error (deg) Oxford college: rotation (deg)

H1 H2 eH1 eH2 FH H1 H2 eH1 eH2 FH

Without filter 0.958 0.454 0.524 0.545 0.562 9.240 10.64 7.777 7.662 8.096

With filter 0.456 0.365 0.225 0.226 0.214 9.691 10.97 9.118 9.115 9.478

Finally, results of the computation of camera motion using homographies and
fundamental matrix are exposed. We have executed these algorithms 100 times.
Table 2 shows the mean of the rotation (Oxford college) and the rotation error
(synthetic data) obtained through homographies (Algorithm 1) and fundamental
matrixes (Algorithm 2). Fundamental matrix is computed in different ways using
equations (1) and (2). The results are exposed with and without the homology
filter and they show the goodness of the proposed filter.

6 Conclusions

We have presented the matching of points, the computation of the intersection of
the planes and the computation of camera motion from two views. This is carried
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out through homographies corresponding to planes, which are quite usual in man
made environments. The robust computation of matches based on homographies
works especially well to automatically eliminate outliers which may appear when
there is no information of scene structure or camera motion. The fundamental
matrix and the intersection line of the planes is properly obtained if the images
correspond to motion and scenes which are geometrically well conditioned. If it
does not happen a homography may be given as a result of the algorithm and
motion can be obtained from this homography.

The main achievement of this work is that all the process is made automat-
ically and works in a robust way. Besides this, the joint use of homographies
and fundamental matrix allows the properly selection of the model to determine
camera motion in real applications. The proposed approach is a good solution
in man made environments, where usually at least one plane is available.
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Abstract. Sport Video understanding aims to select and summarize
important video events that occur in only special fragments of the whole
sports video. A key aspect to this objective is to determine the position
in the match field where the action takes place, that is, the location
context of the play. In this paper we present a method to localize where
in the match field the play is taking place. We apply our method to soccer
videos, although the method is extensive to other sports. The method is
based on constructing the mosaic of the first sequence that we process:
this new mosaic is used as a context mosaic. Using this mosaic we register
the frames of the other sequences in order to put in correspondence all
the frames with the context mosaic, that is, put in context any play.
In order to construct the mosaics, we have developed a novel method
to register the soccer sequences based on tracking imaginary straight
lines using the Lucas-Kanade feature tracker and the vb-QMDPE robust
estimator.

1 Introduction

Distribution of sports video over various networks uses a high bandwidth and for
this reason it is so difficult to find live sources of sports videos in the internet.
However, processing sports sequences, for example detecting important events
and creating summaries, allows to deliver sports videos even over narrow band
networks or wireless, since the valuable semantics generally occupy only a small
portion of the whole content.

It is also very important to index the content in order to make easy to
search due to the ever growing size of content produced. For easy management a
semantic index describing the different events in the content of the document is
indispensable. Since manual annotation is unfeasible because of its tedious and
cumbersome nature, automatic video indexing methods are necessary.

In literature several methods for automatic soccer analysis have been pro-
posed, e.g. [1, 5, 9, 12]. One of the first reported methods was presented in [12].
The authors focus on visualization of ball and player tracks using mosaics. More
recently, methods were proposed that try to narrow the semantic gap. In [1, 9]
camera based detectors are proposed, exploiting the relation between the move-
ment of the ball and the camera. A slow-motion replay detector is proposed in [5]
as a strong indicator for an event of importance that happened beforehand. For
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78 Lluis Barceló and Xavier Binefa

combination of the visual detectors a statistical Dynamic Bayesian Network is
used in [1, 9], whereas [5] exploits a knowledge based approach.

In this paper we present a method to localize in soccer video sequences where
in the match field the play is taking place. This kind of sequences are character-
ized by the fact that are generally very difficult to register because they contain
a lot of moving objects (the players) and constant regions without texture or
with a poor texture (low gradient) that correspond to the match field. For this
reason we use a novel method in order to register the sequences based on track-
ing imaginary straight lines over the playfield. We want to find the homography
that relates pairs of consecutive images, because the scene is planar (all match
field are) and then the transformation that pass from one to other is a projec-
tive transformation (an homography). It is important to say that there are many
classical methods like robust dense optical flow [2] and parametric methods [3]
but with the presence of constant regions they do not work very fine.

Then we use this information in order to summarize the soccer sequences
synthesizing an image mosaic. By computing the mosaics of different soccer
sequences we can merge these mosaics in order to construct a larger mosaic that
represents a wider area of the match field. Once we have done this wider version,
we have each frame of each sequence in context, that is, localized in the larger
mosaic. That is very important because in soccer sequences we lose sometimes
the contextual reference because the camera focus a part of the field that does no
contain the white lines of the field and therefore we do not have any contextual
reference in order to know in which part of the field corresponds the frame.

The rest of the paper is organized as follows: in section 2 we explain the
mosaic construction method, that includes our novel registration method and
the synthesis of mosaics. Then in section 3 we present our contextual localization
method and finally we present in section 4 the experimental results and in section
5 the conclusions and future work.

2 Mosaic Construction

Algorithms for the construction of image mosaics consist of two main steps:
registration, i.e. estimating the transformations between every pair of consecutive
frames of the video, and mosaic construction, i.e. the synthesis of the image
mosaic from the previously estimated transformations and the frames of the
video.

In our case in order to register the sequences we have developed a method
based on tracking imaginary straight lines over the match field. In general terms,
we have an initial set of features over the first frame and we track these features
in the second frame. Then using the correspondences of these features we can
extract the transformation that relates the two consecutive frames. In the next
sections we explain in more detail the whole method.

2.1 Straight Lines Tracking

We have two consecutive images Ii and Ii+1 and we want to obtain two corre-
sponding sets of features that represents six imaginary straight lines. In order to
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Fig. 1. Left: Initial features F in frame Ii. Right: The corresponding features of the
left image, F ′, in frame Ii+1 using the Pyramidal Lucas-Kanade Feature Tracker. We
can see that the estimations are affected by the moving objects (the players) and for
the superimposed scoreboard.

do that, we select as initial features image points of Ii that represent six imagi-
nary lines that must have the configuration shown in figure 1. These six lines are
named as control lines. Therefore we have six straight lines R = [r1, · · · , r6] where
each ri = (a/c, b/c, 1)T = (t, u, 1)T corresponds to a straight line of equation:

ax+ by + c = 0 (1)

and we want to compute the homography that relates the transformation be-
tween the frame Ii and the frame Ii+1. It is known that, projective transfor-
mations keep straight lines [6]: so the corresponding features computed for each
straight line in the frame Ii will also represent a straight line in the second frame
Ii+1.

In order to compute the homography, we first compute a vector of features fi

for each straight line ri, using as features, image points along of each line. As re-
sult, we have a set of features F = [f1, · · · , f6], where each fi is the corresponding
vector of features of the straight line ri.

Once we have the set of features of the frame Ii, F , we want to find the
respective features in the next frame Ii+1, F ′. Therefore, we apply a Pyramidal
Lucas-Kanade Feature Tracker [4] to find this set of features. In figure 1 we can
see the set of features F and its corresponding features F ′ after applying the
Lucas-Kanade feature tracker in a soccer sequence.

Now, we have the set of features in the frame Ii+1, F ′, and we need a method
to extract the six straight lines that best represent the set of features F ′. How-
ever, the features contain a high percentage of outliers, in some cases more than
50% due to the moving objects (soccer players), but always there is a subset of
good features. For this reason, we apply the variable bandwidth QMDPE robust
estimator that is robust with more than 50% of outliers. In figure 2 we shown
the estimation results of the vb-QMDPE, and we compare them with the Least-
Square method. We can find detailed information about the variable bandwidth
QMDPE robust estimator in [10, 11].

2.2 Homography Estimation
Once we obtain the respective six lines R′ = [r′1, · · · , r′6] in the frame Ii+1, we
know that a line ri is transformed into r′i using a projective transformation
(homography) [6] in the following way:
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a b c d

Fig. 2. Images a) and b) contain the straight line estimation results using vb-QMDPE
and Least-Squares methods respectively. The blue crosses are the features and the
red lines the estimated straight lines. We can see that when we use the Least-Square
method we obtain bad estimations due to the fact that we have a lot of outlier features.
In contrast, when we use vb-QMDPE we obtain good estimations because this method
is robust to more than 50% of outliers. In images c) and d), we show the registration
errors using the previously estimations.

r′i = (H−1)T ri (2)

where ri = (t, u, 1)T and H is the homography represented by a non-singular
3×3 matrix. Then, each line correspondence in the plane provides two equations
in the 8 unknown entries of H . Therefore, it is necessary to find at least four
line correspondences to define the transformation matrix uniquely, up to a scale
factor. In our case we use six lines in order to make more robust the estima-
tion because we deal with sequences that contain multiple moving objects. The
equations of (2) can be rearranged in matrix form, obtaining the next system
equation:⎡⎢⎣ t

′
i 0 −tit′i u′i 0 −tiu′i 1 0
0 t′i −uit

′
i 0 u′i −uiu

′
i 0 1

...
...

...
...

...
...

...
...

⎤⎥⎦ [h11 h12 h13 h21 h22 h23 h31 h32

]T =

⎡⎢⎣ tiui

...

⎤⎥⎦ (3)

and solving the above system equation using a Least Squares method we find
the homography that relates the transformation between the frames Ii and Ii+1.
Then we continue with the frames Ii+1 and Ii+2 using the previous method until
we process the whole sequence.

2.3 Mosaic Synthesizing

Once we have processed the whole sequence we have the transformations between
consecutive frames. However, in order to build the mosaic image we need that
all the frames reference the same initial frame. For this reason, we calculate
firstly the cumulative transformation of each frame with respect to the reference
frame, in our case, the first frame of each sequence. We do that multiplying the
transformation matrices to the left:
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Fig. 3. Right: the context mosaic. Left: the mosaic of the play that we want to put in
context.

H11 = I3×3 (4)
H12 = H11H12

...
H1n = H11H12H23 · · ·Hn−1n = H1n−1Hn−1n

where Hij is the homography between the frames Ij and Ii (the cumulative
transformation between the frames). Now, in order to construct the final mosaic
we have to transform each frame using its corresponding cumulative transforma-
tion and then we can apply a mean or median operator in order to obtain the
mosaic using the whole transformed frames.

3 Contextual Localization

Now given a sequence we are able to construct its corresponding image mosaic
using the method explained in previous sections. So, given the first sequence we
construct its mosaic: this mosaic will be the context for the next sequences that
we process and we name it as the context mosaic.

Then, in order to process the next sequences, we can use two methods: we
can try to register the frames of the new sequence against the context mosaic, or
we can build the mosaic image of the new sequence and then register this mosaic
against the context mosaic. The first method is unfeasible because we could have
a large transformation between the frame and the context mosaic, and moreover
the frame could not contain contextual information (i.e. white lines of the match
field) necessary to register against the context mosaic. For this reason we use
the second method: we construct the mosaic of the new sequence and then we
register both mosaics. Now, both mosaics contain contextual information and
therefore the registration is feasible.

In figure 3 we can see both mosaics, the context mosaic and the mosaic of
the new sequence. Both mosaics point to the same part of the field, but one is
localized near of the center and the other is localized near of the penalty area.

3.1 Initial Registration

We want to register both mosaics, but, first of all, a preliminary step is neces-
sary in order to pre-register the mosaics because there is a huge transformation
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Fig. 4. The synthesized mosaic using the mosaics of figure 3 after the initialization step
(Hausdorff step) and the mosaic registration. We obtain a larger version that includes
the two mosaics. As we can see it is not necessary that the context mosaic contains the
mosaic of the sequence that we are processing.

between both mosaics. To do that we use the Hausdorff Distance. The Hausdorff
Distance, given two finite point sets A = {a1, · · · , ap} and B = {b1, · · · , bq}, is
defined as:

H(A,B) = max(h(A,B), h(B,A)) (5)
h(A,B) = maxa∈Aminb∈B||a− b||

where ||a− b|| is the L2 or Euclidean norm.
However, the Hausdorff distance measures the mismatch between two sets

that are at fixed positions with respect to one another, whereas we are inter-
ested in comparing two images, where one of the images can be transformed
by the action of some transformation group. Therefore, we use the bidirectional
Hausdorff distance defined in [7, 8] to extract an initial registration of the two
mosaics, that corresponds to a translation in x and y directions and a scale fac-
tor. We do not apply directly the Hausdorff distance to the mosaic images: we
first apply a Discrete Laplacian to the mosaic images and then the Hausdorff
distance.

3.2 Mosaic Registration

Using this initial estimation, we can register the two mosaics easily and obtain
a mosaic image of mosaics as shown in figure 4. In this case we can use the
traditional parametric methods or our method based on tracking imaginary lines,
because both mosaics have a lager field of view and therefore are easy to register
(once we have the pre-registration parameters).

Now, we have the cumulative transformations for each mosaic as explained
in section 2.3 , and the transformation between the mosaics. Then, in order to
have the transformations that relates the frames of the sequences and the context
mosaic, we have to obtain:

Hi
totaln = HseqiH

i
1n (6)

where Hi
1n is the homography between the frames In and I1 of sequence i and

Hseqi is the homography that relates the transformation between the i sequence
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mosaic and the context mosaic. Finally, Hi
totaln

is the transformation between
the frame In of sequence i and the context mosaic.

Once we have processed the new sequence we update the context mosaic using
the mosaic of the new sequence (see mosaic of figure 4), and then we process
the next sequence. We do that to extend the context mosaic with regions that
it does not cover.

4 Experimental Results

Now, using all the extracted information we are able to recover the context of
a frame that does not contain any information about its localization: this fact
gives us a framework to the frame, that is, a context. In figure 5 we can see
this concept graphically. Therefore, we have a compact representation of the
sequences (the mosaic images) and the transformation between them.

Moreover, we can make a larger version of the sequences using the context
mosaic as a background and superimposing the frames. This larger version of
the sequences contains the same information but extended with more contextual
information. We also could use the localization of the frames of a sequence in
order to characterize the sequence as relevant or not in the soccer match.

Fig. 5. Left: a frame of the current sequence. This frame does not contain information
about its localization over the match field as we can see. Right: the previous frame but
with context, that is, printed over the context mosaic. This fact gives us information
about the localization of the frame that with the single frame we do not have.

5 Conclusions and Future Work

We have presented a method to obtain the context of soccer sequences, that is,
localize each frame of a sequence in the playfield. That fact allows us to obtain
information very useful in order to index a soccer sequence or to characterize
the sequence as relevant or not in the soccer match.

As a future work, it would will be very interesting to use the transformation
matricesHi

totaln
in order to construct a data structure that contains for each pixel

of the context mosaic information about the frames that overlap this position.
This data structure would make possible to index the sequence frames in function
of their positions over the mosaic, and we can make searches like: give me all
the sequences that contain any frame in this position.
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Abstract. Condensation is a widely-used tracking algorithm based on
particle filters. Although some results have been achieved, it has several
unpleasant behaviours. In this paper, we highlight these misbehaviours
and propose two improvements. A new weight assignment, which avoids
sample impoverishment, is presented. Subsequently, the prediction pro-
cess is enhanced. The proposal has been successfully tested using syn-
thetic data, which reproduces some of the main difficulties a tracker must
deal with.

1 Introduction

The increasing interest in visual tracking is motivated by a huge number of
promising applications that can now be tackled in real time thanks to recent
technological advances. These applications include performance analysis, surveil-
lance, video-indexing, smart interfaces, teleconferencing and video compression.

However, tracking agents can be extremely complex and time-consuming. To
start with, strong requirements are mandatory. Real-time processing, extreme
robust performances or high accuracy may be critical. On the other hand, diffi-
culties common to all vision areas could cause system failures, specially in open
environments. Hence, several of the following premises are often assumed: we
can consider outdoors or indoors scenes, static or in-motion background, illu-
mination changes, shadows, presence of clutter or a-priori known objects. Some
foreground assumptions are also taken into account concerning whether a single
or multiple agents should be expected; agents entries and exits from the scene;
smooth, restricted or already-known dynamics; occlusions; carried objects; or
appearance changes.

This paper focuses on solving some tracking problems related to the difficul-
ties described above, such as multiple-agent tracking with unknown dynamics in
presence of background clutter and strong noise. Specifically, we present some
improvements to a well-known tracking algorithm, Condensation [3].

The remainder of this paper is organized as follows. Section 2 covers the
probabilistic framework, revises Condensation, exposing its misbehaviours, and
reviews a Condensation-based algorithm called iTrack [7]. Section 3 proposes
several improvements on Condensation/iTrack. Section 4 shows experimental
results with synthetic data and section 5 concludes this paper.
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2 Image-Based Probabilistic Tracking

The environment is composed of agents, static objects and background condi-
tions. The scene is defined as the piece of environment which a visual sensor can
capture. The aim of the tracking task is to estimate the scene state over time.
In this context, the state will be the parameterised knowledge which will charac-
terise the scene evolution. Due to practical and theoretical ignorance, we do not
have access to the ground truth. A probabilistic framework is commonly used as
a way to perform tracking [5]. Classical approaches, such as the Kalman Filter,
rely on linearity and gaussianity assumptions about the involved distributions.
More recent works make use of Bayesian filters combined with Monte Carlo
Simulation methods in order to deal with nonlinear and non-Gaussian tran-
sition models [1, 2]. Subsequent developments have introduced a re-sampling
phase in the sequential simulation-based Bayesian filter algorithms. Such meth-
ods were first introduced in computer vision in Condensation [3]. However, they
have several important drawbacks as stated in [4]. A great number of improve-
ments have been introduced in recent years [6, 7] but there is still much ground
to cover before solving unconstrained tracking.

2.1 Bayesian Filtering

The computation of the belief state St given all evidence to date e1:t is called
filtering. The posterior pdf1 can be calculated through recursive estimation:

P (St | e1:t) = P (et | St)︸ ︷︷ ︸
likelihood︸ ︷︷ ︸
updating

∑
st−1

P (St | st−1)︸ ︷︷ ︸
transition mod.

p (st−1 | e1:t−1) .︸ ︷︷ ︸
previous post.︸ ︷︷ ︸

prediction

(1)

The pdf is projected forward according to the transition model, making a
prediction, and it is updated in agreement with the likelihood function value
based on the new evidence.

2.2 Condensation

Recursive estimation leads to expressions that are impossible to evaluate ana-
lytically unless strong assumptions are applied. Condensation addresses filtering
when no assumption about linearity or gaussianity is made [3]. This problem is
overcome by simulating N independent and identically-distributed samples from
the posterior pdf,

{
si
t; i = 1 : N

}
. The temporal prior

{
ŝi
t

}
is obtained by apply-

ing the transition model to each sample. Weights πi
t are assigned according to

the likelihood function. Once all samples have been propagated and measured,
1 Notation: bold case denotes vectors and matrices whereas non-bold case denotes

scalars. Matrices are in uppercase. In a probabilistic context, uppercase denotes
probability density functions (pdf) and random variables; lowercase denotes proba-
bilities and variable instances. Xa:b denotes a variable set from time t = a to t = b.
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the set is re-sampled using normalized weights πi
t as probabilities. This sample

set represents the new posterior. Expectations can be approximated as:

EP (St|e1:t) (St) 
∑N

i=1π
i
tŝ

i
t =

1
N

∑N
i=1s

i
t. (2)

However, it has several unpleasant behaviours as stated in [4]. Sampling
impoverishment is one of the main drawbacks of re-sampling algorithms. Sam-
ples are spread around several modes indicating hypotheses in the space state.
Nevertheless, some of them are spurious. Similarly to genetic drift, there is a non-
negligible probability of losing modes, a low probability of recovering them and
the remaining modes could be all spurious. It can also be derived from this fact
that different runs of the algorithm lead to different results. Therefore, computed
expectations in different runs have high variance although computed expecta-
tions within the same algorithm run have low variance making the tracker look
stable. On the other hand, Condensation has a tendency of clustering samples
even when the likelihood function gives no information at all. In addition, the
sample set size N is kept constant over time. Unfortunately, there is no informa-
tion about how large N should be for a requested precision. Once N have been
heuristically set, it may happen that at later times larger values of N may be
required. Finally, Condensation was designed to keep multiple-hypothesis for a
single agent.

2.3 iTrack

iTrack is a visual tracking algorithm based on Condensation [7], but both tran-
sition model and likelihood function are redefined. It also introduces some im-
provements in order to overcome some Condensation drawbacks and cope with
multiple agents.

iTrack uses a first-order dynamic model in image coordinates to model the
motion of the central point of a bounding box. The l-labeled agent’s state is de-
fined as sl

t = (xt,ut,wt,At)
T where each element represents the position, speed,

bounding-box size and pixel appearance, respectively. The label associates one
specific appearance model to the corresponding samples, allowing multiple-agent
tracking. However, multiple-agent tracking causes several problems including
that the agent with higher likelihood monopolizes the sample set. Denoting as
Nj the number of samples belonging to the l-labeled agent, iTrack proposed the
following normalization to avoid this issue:

πi,l
t =

πi,l
t∑N

i = 1 π
i,j
t

Nj

N
, where j = l. (3)

An initial pdf, provided by a segmentation method, is needed to start the re-
cursive estimation. iTrack also uses this pdf to reinitialize the algorithm allowing
multiple-agent tracking and error recovery. Thus, some samples are generated
according to the prior instead of being propagated.
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3 Improving Condensation/iTrack

3.1 Improvement 1. Sampling Impoverishment

Whether data association is feasible, using the prior density to generate new
samples reduces the risk of sampling impoverishment. However, it is not com-
pletely avoided, since it depends on the probability of generating new samples,
on whether these new samples represent the extincting mode, and on whether
they can be associated to it. This problem is increased in a multiple-agent track-
ing scenario. Without considering new sample generation, losing an agent track
is only a matter of time, according to the sample set size. In this case, those
agents whose samples exhibit lower likelihood have higher probability of being
lost, since the probability of propagating one mode is proportional to the cu-
mulative weights of the samples that constitute it. Two kind of modes can be
distinguished. In the first place, samples with different labels belong to different
modes. Thus, several agents can be tracked simultaneously. Secondly, samples
with the same label could be spread around different modes. This fact allows
us to keep several hypotheses. Hopefully, one of them represents the true agent
state and the others are due to background clutter.

In order to avoid single agent modes absorbing other agent samples, genetic
drift must be prevented. This fact happens due to the lack of genetic memory:
we propose to include a memory term which takes into account the number of
agents being tracked. Hence, weights are normalized according to:

πi,l
t =

πi,l
t∑N

i = 1 π
i,j
t

1
Na

, where j = l, (4)

where Na is the number of agents being tracked. It does not assign a fixed
number of samples to each agent but ensures that each agent will have the same
probability of being propagated. Furthermore, it can be combined with new
sample generation, thereby improving the general performance. On the other
hand, modes due to clutter are pruned because of differences in their dynamics.
It is unlikely that any sample tracks local clutter since it implies highly abrupt
changes in the dynamics. Non-losing the true mode depends on how accurate
the dynamic model is, and how the different hypotheses are generated.

3.2 Improvement 2. Agent Dynamics

iTrack makes predictions according to the following expressions:

x̂i
t = xi

t−1 + ui
t−1Δt+ ξi

x, ûi
t = ui

t−1 + ξi
u . (5)

The random terms ξi
x, ξ

i
u provide the system with a diversity of hypothesis.

Samples with high likelihood are supposed to be propagated. Sample likelihoods
depend on samples position but they do not depend on their speed. Thus, prop-
agated samples could have an accurate position, but their speed values become
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Visual Tracking

Frame: 1

Visual Tracking

Frame: 34

Visual Tracking

Frame: 300

Fig. 1. Ground Truth

completely different from the agent’s one in a few frames. Agents could be tracked
since we are in a multiple-hypothesis scenario, but an important proportion of
samples are wasted. The j-agent state is estimated according to:

ŝj
t =

1
Nj

∑N

i=1
si,j
t . (6)

Our approach proposes to feed-back the estimated agent speed at time t− 1,
denoted as ûj

t−1, into the prediction:

ûi,j
t = ûj

t−1 + ξi
u. (7)

However, there is still a weak relation between the agent and the estimated
speeds: they are chosen only due to the sample weights, which do not depend
on the current speed. We propose to enhance the estimation by considering not
only the estimated speed from the selected samples but also by calculating the
instant speed according to the history of positions. The following expressions
update the agent position and speed recursively considering this fact:

x̂j
t = x̂j

t−1 (1− αp) +
(

1
Nj

∑N

i=1
xi,j

t

)
αp,

ûj
t = ûj

t−1 (1− αs) +
(
x̂j

t − x̂j
t−1

)
αs, (8)

where αp, αs denote the adaptation rates. The estimated speed is then fed-back
when predicting the following sample state.

4 Experimental Results

In order to evaluate the algorithm performance, a two-moving-agent synthetic
experiment has been designed. The aim is to cover several difficulties a tracker
can run into, see Fig. 1. The background pixel intensity values are set randomly
following a normal distribution. Both agents’ pixel intensity values also have a
normal distribution around different means. Two vertical strips are drawn in the
background, simulating heavy clutter. Their distributions are identical to both
agent’s ones, thereby mimicking them. Strong acquisition-device noise, modeled
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Fig. 2. Condensation/iTrack performance

Table 1. Performance of improvement 1

Mean normalized error

Agent 1 Agent 2

Run 1 0.1163 0.1309

Run 2 3.8864 0.1182

Run 3 0.1222 0.1226

Run 4 0.0980 0.1038

Run 5 0.1612 0.1131

Run 6 0.1101 2.4679

Table 2. Performance of improvement 1, 2

Mean normalized error

Agent 1 Agent 2

Run 1 0.0715 0.0716

Run 2 0.0849 0.1163

Run 3 0.0987 0.1289

Run 4 0.0645 0.0595

Run 5 0.0679 0.1173

Run 6 0.1233 0.0840

as White Additive Gaussian Noise, is simulated2. A highly non-linear dynamic
is simulated: both agents move as projectiles which are shot into an environment
with gravity and air friction. Tracking is performed over T = 300 frames using
N = 100 samples. We present results of six random runs for each of the three
approaches considered, namely, iTrack and both presented improvements. New
sample generation is not used in order to evaluate only the tracking performance.

In 5 out of the 6 iTrack runs, an agent is lost due to the lack of samples, see
Fig. 2. In the remaining one, at time t = 300 an agent got 92% of the samples.
An agent is considered lost when the normalized Euclidean distance, according
to the agent size, between the agent and the estimation position is higher than a
threshold set at 0.5. On the other hand, after the proposed weight normalization,
the mean number of samples per agent fluctuates between 49.5 % and 50.5%.

Table 1 shows the mean normalized error, according to the agent size, in
the estimation of the agent position before applying the new dynamics updating
whereas Table. 2 shows the same results after applying it. A significant error
reduction can be appreciated. Figs. 3, 4 compare the number of samples per
agent that had lost the agent. After considering this improvement, a significant
sample loss reduction is observed. Furthermore, none of the agents is ever lost.

2 The standard deviation is set at 0.03 which implies nearly a ten per cent deviation.
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Fig. 3. Performance of improvement 1
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Fig. 4. Performance of improvements 1, 2

(Notice that axes scale are reduced in 75%)

(a) (b)

(c)

Fig. 5. Behaviour of the three studied trackers

The trackers behaviour can be seen in Fig. 5: Fig. 5.(a), corresponding to
iTrack, shows how one of the agents absorbs all the samples. Fig. 5.(b), after
applying the normalization improvement, shows agent recovery since the tracker
have preserved enough samples to cope with multiple hypotheses. Thus, both
modes, the agent and the clutter, are tracked until the clutter one disappears.
Fig. 5.(c) shows the tracker performance once both improvements are considered.
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5 Conclusions

In this paper, we have extended Condensation in order to enhance multiple-
agent tracking. A new approach is taken to deal with one of Condensation great
misbehaviours, the sampling impoverishment. This problem becomes critical in a
multiple-tracking scenario. The new sample-weight normalization prevents from
loosing any of the targets due to the lack of samples. The dynamics updating
is modified by feed-backing the estimated speed into the prediction stage. The
agent speed is estimated combining two sources of knowledge: the fittest sample
speed and the position historic. Thanks to both improvements, the tracker copes
successfully with multiple-agent tracking. These agents have a highly non-linear
dynamics which is successfully tracked using a constant-speed approach. More-
over, it also deals with complex clutter, which mimics the agent appearances, and
strong noise. Improvements shown in these synthetic experiments are currently
being applied in real applications relative to traffic surveillance. Encouraging
results are being achieved.

Acknowledgements

This work has been partially supported by the Spanish CICYT TIC 2003-08865.

References

1. Arulampalam, M. S., Maskell, S., Gordon, N. and Clapp, T. A Tutorial on Particle
Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions
on Signal Processing 50 (2): 174 - 188, 2002.

2. Doucet, A. On Sequential Simulation-Based Methods for Bayesian Filtering.
CUED/F-INFENG/TR 310. University of Cambridge, 1998.

3. Isard, M. and Blake, A. Condensation - Conditional Density Propagation for Visual
Tracking. International Journal of Computer Vision 29 (1): 2 - 18, 1998.

4. King, O and Forsyth, D. A. How Does Condensation Behave with a Finite Number
of Samples? ECCV proceedings (1): 695 - 709, 2000.

5. Russell, R. and Norvig, P. Artificial Intelligence, a Modern Approach. Chapters
13-15. Prentice Hall, 2003.

6. Merwe, R. van der, Doucet, A., de Freitas, N. and Wan, E. The Unscented Particle
Filter. CUED/F-INFENG/TR 380. University of Cambridge, 2000.
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Abstract. In this paper we propose a new framework to integrate several parti-
cle filters, in order to obtain a robust tracking system able to cope with abrupt
changes of illumination and position of the target. The proposed method is ana-
lytically justified and allows to build a tracking procedure that adapts online and
simultaneously the colorspace where the image points are represented, the color
distributions of the object and background and the contour of the object.

1 Introduction

The integration of several visual features has been commonly used to improve the per-
formance of tracking algorithms [1, 3, 9, 10]. However, all these methods lack a robust
dynamic model to track the state of the features and cope with abrupt and unexpected
changes of the target’s position or appearance. Particle filters have been demonstrated
to be robust enough to track complex dynamics. Usually, particle filters have been ap-
plied to only one object feature. [4] tracks an object based on multiple hypotheses of
its contour. Subsequently, several approaches [7, 8] predict the target position based on
the particle filter formulation. In our previous work [6] we proposed the use of this
framework to predict the object and background color distributions.

In this work, we introduce a framework for the integration of several particle filters
which are not independent between them, so that we can fuse their respective predicted
features. [5] integrates different particle filter algorithms for tracking tasks, but with the
assumption that the algorithms are conditionally independent. That is, if particle filter
PF1 is based on features z1 to estimate the state vector x1 and particle filter PF2

uses features z2 to estimate x2, for each whole state of the object X = {x1,x2} it is
assumed that, p(z1, z2|X) = p(z1|x1)p(z2|x2). But this assumption is very restrictive
and many times is not satisfied. For instance, a usual method to weigh each one of
the samples of a contour particle filter, is based on the ratio of the number of pixels
inside the contour with object color versus the number of pixels outside the contour
with background color. This means that the contour feature is not independent of the
color feature. In this situation if z1 represents the color features and z2 the contour ones,
the latter will be function of both x1 and z1, i.e. z2 = z2(x1, z1). Previous equation
should be rewritten as, p(z1, z2|X) = p(z1|x1)p(z2|z1,x1,x2). In this paper we will
design a system that verifies this relation of dependence between object features. The
main contributions of the paper are the following:

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 93–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1. Proposal of a framework to integrate several conditionally dependent particle filters.
2. There is no restriction in the number of particle filters that can be integrated.
3. Use the method to develop a robust tracking system that: (a) Adapts online the

color space where image points are represented. (b) Adapts the distributions of the
object and background colorpoints. (c) Accommodates the contour of the object.

All these features make our system capable to track objects in complex situations, like
unexpected changes of the scene color, or abrupt and non-rigid movements of the target,
as will be shown in the results Section.

In Section 2 we will introduce the mathematical framework and analytical justifica-
tion of the method. The features that will be used to represent the object are described in
Section 3. In Section 4 we will depict details about the sequential integration procedure
for the real tracking. Results and conclusions will be given in Sections 5 and 6.

2 Mathematical Framework

In the general case, let’s describe the object being tracked by a set of F features,
z1, . . . , zF , that are sequentially conditional dependent, i.e. feature i depends on fea-
ture i− 1. Each one of these features is associated to a state vector x1, . . . ,xF , which
conditional a posteriori probability p1 = p(x1|z1), . . . , pF = p(xF |zF ) is estimated
using a corresponding particle filter PF1, . . . ,PFF . For the whole set of variables we
assume that the dependence is only in one direction:

{zk = zk(zi,xi),xk = xk(xi, zi)} ⇐⇒ i < k (1)

Considering this relation of dependence we can add extra terms to the a posteriori prob-
ability computed for each particle filter. In particular, the expression for the a posteriori
probability computed by PF i will be pi = p(xi|x1, . . . ,xi−1, z1, . . . , zi). Keeping
this in mind, next we will prove that the whole a posteriori probability can be computed
sequentially, as follows:

P = p(X|Z) = p(x1, . . . ,xF |z1, . . . , zF ) (2)

= p(x1|z1)p(x2|x1, z1, z2) · · · p(xF |x1, . . . ,xF−1, z1, . . . zF ) = p1p2 · · · pF

Proof. We will prove this by induction, and applying Bayes’ rule [2] and Eq. 1:

– Proof for 2 features:

p(x1,x2|z1, z2) = p(x2|x1, z1, z2)p(x1|z1, z2) = p(x1|z1)p(x2|x1, z1, z2)

– For F − 1 features we assume that

p(x1, ..,xF−1|z1, .., zF−1) = (x1|z1)p(x2|x1, z1, z2)
· · · p(xF−1|x1, ..,xF−2, z1, ..zF−1) (3)

– Proof for F features:

p(x1, ..,xF |z1, .., zF ) = p(xF |x1, ..,xF−1, z1, .., zF )p(x1, ..,xF−1|z1, .., zF−1)
Eq. 3 =p(x1|z1)p(x2|x1, z1, z2) . . . p(xF |x1, . . . ,xF−1, z1, . . . zF )
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Eq.2 tells us that the whole a posteriori probability density function can be computed
sequentially, starting with PF1 to generate p(x1|z1) and use this to estimate
p(x2|x1, z1, z2) with PF2, and so on.

In the iterative performance of the method, PF i also receives as input at iteration
t, the output pdf of its state vector xi at the iteration t− 1. We write the time expanded
version of the pdf for PF i as p(t)i = p(x(t)

i |x
(t)
1 , . . . ,x(t)

i−1, z
(t)
1 , . . . , z(t)

i , p
(t−1)
i ). We

can also expand the expression of the whole pdf from Eq.2 as follows:

P (t) = p(X(t)|Z(t)) = p(x(t)
1 , ..,x(t)

F |z
(t)
1 , .., z(t)

F )

= p(x(t)
1 |z

(t)
1 , p

(t−1)
1 ) · · · p(x(t)

F |x
(t)
1 , ..,x(t)

F−1, z
(t)
1 , ..z(t)

F , p
(t−1)
F )

= p
(t)
1 p

(t)
2 · · · p

(t)
F

Now let’s describe in some detail the updating procedure of the i− th particle filter,
PF i. At time t, the filter receives p(t−1)

i , the pdf of the state vector xi at time t−1. This

distribution is approximated by a set of samples s(t−1)
ij , j = 1 . . .Ni, with associated

weights π(t−1)
ij . Given the set {s(t−1)

ij , π
(t−1)
ij } the value of p(t)i is estimated using the

standard particle filter procedure:

1. The set {s(t−1)
ij , π

(t−1)
ij }, j = 1 . . .Ni is resampled (sampling with replacement)

according to the weights π(t−1)
ij . We obtain the new set {s′(t−1)

ij , π
(t−1)
ij }.

2. Particles s′(t−1)
ij are propagated to the new set {s(t)

ij }, j = 1 . . .Ni, based on the

random dynamic model s(t)
i,j = His′

(t−1)
i,j + pi, where Hi ∼ A3×3(0, σHi) and

pi ∼ T3×1(μpi , σpi). We define the matrix A and the vector T as follows:

Am×m(μA, σA) =

⎡⎢⎣ 1 + a11 · · · a1m

...
. . .

...
am1 · · · 1 + amm

⎤⎥⎦ Tm×1(μt, σt) = [t1, . . . , tm]T (4)

where aij ∼ N
(
μAij , σAij

)
, ti ∼ N (μti , σti).

3. Finally, using some external measure on the feature z(t)
i (updated with the values of

the set of features {z(t)
k }, k < i and its corresponding state vectors {x(t)

k }) , samples

s(t)
ij are weighted in order to obtain the output of iteration t, that is {s(t)

ij , π
(t)
ij },

j = 1 . . .Ni, approximating p(t)i .

3 Features Used for a Robust Tracking

In order to design a system able to work in real and dynamic environments we define
a set of features that include both appearance (normal direction of the Fisher plane [6]
and the color distribution of the object) and geometric attributes (contour) of the object.
Next we will describe each one of these features:
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(a) (b) (c) (d) (e)

Fig. 1. Color model. (a) All image points in the RGB colorspace. In the upper left part the original
image is shown. (b) Manual classification of image points in foreground (O) and background (B).
(c) Projection of O and B points on the Fisher plane. (d) MoG of O (the central leave) and B in
the Fisher colorspace. (e) p

(
O|cF isher

)
, where brighter points correspond to more likely pixels.

3.1 Normal to the Fisher Plane

In [6] we first introduced the concept of Fisher colorspace, and suggested that for track-
ing purposes the best colorspace is one that maximizes the distance between the ob-
ject and background colorpoints. Let the sets CRGB

O = {cRGB
O,i }, i = 1, . . . , NO and

CRGB
B = {cRGB

B,j }, j = 1, . . . , NB be the colorpoints of the object and background
respectively, represented in the 3-dimensional RGB colorspace.

Fisher plane Φ = [φ1, φ2] ∈M3×2 is computed applying the nonparametric Linear
Discriminant Analysis technique [2] over the sets CRGB

O and CRGB
B . An RGB color-

point cRGB is transformed to the 2D Fisher colorspace by cFisher = ΦT cRGB (see
Fig. 1). This colorspace is adapted online, through the particle filter formulation pre-
sented above, with a 3D state vector corresponding to its normal vector, x1 = φ1 × φ2.

3.2 Color Distribution of the Foreground and Background

In order to represent the color distribution of the foreground and background in the
Fisher colorspace, we use a mixture of gaussians (MoG) model. The conditional proba-
bility for a pixel cFisher belonging to a multi-colored objectO is expressed as a sum of
Mo gaussian components: p

(
cFisher |O

)
=
∑Mo

j=1p
(
cFisher |j

)
P (j). Similarly, the

background color will be represented by a mixture of Mb gaussians. Given the fore-
ground (O) and background (B) classes, the a posteriori probability that a pixel cFisher

belongs to objectO is computed using the Bayes rule (Fig. 1d,e):

p
(
O|cF isher

)
=

p
(
cF isher|O

)
P (O)

p (cF isher|O) P (O) + p (cF isher|B) P (B)
(5)

where P (O), P (B) are the a priori probabilities of O and B.
The configurations of the MoG for O and B are parameterized by the vector Gε =

[pε, με, λε, θε] where ε = {O,B}, pε contains the priors for each gaussian compo-
nent, με the centroids, λε the eigenvalues of the principal directions and θε the angles
between the principal directions and the horizontal. x2 = {GO,GB} will be the state
vector representing the color model.
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Fig. 2. Flow diagram of one iteration of the complete algorithm.

3.3 Contour of the Object

Since color segmentation usually gives a rough estimation about the object location,
we use the contour of the object, to obtain a more precise tracking. The contour will
be represented by Nc points in the image, r = [(u1, v1), . . . , (uNc , vNc)]T . We assign
these values to the state vector, x3 = r.

4 The Complete Tracking Algorithm

In this Section we will integrate the tools described previously and analyze the com-
plete method for tracking rigid and non-rigid objects in cluttered environments, under
changing illumination. Let’s describe the algorithm step by step (See Fig. 2):

4.1 Input at Iteration t

At time t, for each i-feature, i = 1, . . . , 3, a set of Ni samples s(t−1)
ij , j = 1, . . . , Ni

(with the same structure than xi), is available from the previous iteration. Each sample
has an associated weight π(t−1)

ij . The whole set represents an approximation the a poste-

riori pdf of the system, P (t−1) = p(X(t−1)|Z(t−1)), where X = {x1,x2,x3} contains
the state vectors, and Z = {z1, z2, z3} refers to the measured features. Also available
is the set of image pointsR(t−1) that discretizes the contour of the object, and the input
RGB image at time t, IRGB,(t).

4.2 Updating the Fisher Plane pdf

At the starting point of iteration t, PF1, the particle filter associated to x1, receives
at its input p(t−1)

1 , the pdf of the state vector x1 at time t − 1, approximated with N1

weighted samples {s(t−1)
1j , π

(t−1)
1j }, j = 1, . . . , N1. These particles are resampled and

propagated to the set {s(t)
1j } according to the dynamic model. Each sample represents a
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Fig. 3. Generation of multiple hypotheses for each feature. Upper left: Fisher plane. Lower left:
Contour of the object. Right: Color distributions (and the corresponding a posteriori pdfs maps).

different Fisher plane,Φj , j = 1, . . . , N1. In order to assign a weight to each propagated
sample, we define a region W in the image IRGB,(t), where we expect the object will
be (bounding box around the contourR(t−1)). We fit a MoG configuration to the points
inside and outside W , and assign a weight to each Fisher plane Φj depending on how
well it discriminates the two regions:

π
(t)
1j ∼ 1

NW

∑
(u,v)∈W

p
(

W |I(u, v)
F isher,(t)
j

)
− 1

N
W

∑
(u,v)/∈W

p
(
W |I(u, v)

F isher,(t)
j

)
(6)

where IFisher,(t)
j is the image IRGB,(t) projected on the plane Φj , and NW , NW are

the number of image pixels in and out of W , respectively.

4.3 Updating the Foreground and Background Color Distributions pdf’s

PF2, the particle filter associated to the state vector x2, receives at its input p(t−1)
2 ∼

{s(t−1)
2j , π

(t−1)
2j }, j = 1, . . . , N2, approximating the pdf of the color distributions in the

previous iteration, and p(t)1 ∼ {s
(t)
1k , π

(t)
1k }, k = 1, . . . , N1, an approximation to the pdf

of the Fisher planes at time t. Particles {s(t−1)
2j } are resampled and propagated (using

the dynamic model associated to x2) to the set {s(t)
2j }. A sample s(t)

2j represents a MoG
configuration for the foreground and background. For the weighting stage, we associate
to this sample, a sample of Fisher plane from PF1, in such a way that those samples
s(t)
1k of Fisher planes having higher probabilities will be assigned more times to the

samples s(t)
2j of MoGs. The weighting function is similar as before, but now the MoGs

are provided by the sample s(t)
2j .

π
(t)
2j ∼ 1

NW

∑
(u,v)∈W

p
(
O|I(u, v)

F isher,(t)
j

)
− 1

N
W

∑
(u,v)/∈W

p
(
O|I(u, v)

F isher,(t)
j

)
(7)
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Fig. 4. Tracking results of a bending book in a sequence with smooth lighting changes. Upper
row: using the proposed method the tracking works. Lower row: using only a contour particle
filter and assuming smooth change of color the method fails.

4.4 Updating the Contour pdf

PF3, receives at its input p(t−1)
3 ∼ {s(t−1)

3j , π
(t−1)
3j }, j = 1, . . . , N3, that approximates

the pdf of the contours in the previous iteration, and p(t)2 ∼ {s
(t)
2k , π

(t)
2k }, k = 1, . . . , N2,

an approximation to the pdf of the color distributions of foreground and background at
time t. The set {s(t)

3j } (the resampled and propagated particles, see Fig. 3) are weighted

based on p(t)2 through a similar process than described for PF2: first we associate a

sample s(t)
2k to each sample s(t)

3j , according to the weight π(t)
2k . Then we use the a pos-

teriori probability map p(O|IFisher,(t)
j ) assigned to s(t)

2k in the previous step, and the

contour rj represented by s(t)
3j to compute the weight as follows:

π
(t)
3j ∼ 1

Nrj

∑
(u,v)∈rj

p
(
O|I(u, v)

F isher,(t)
j

)
− 1

Nrj

∑
(u,v)/∈rj

p
(
O|I(u, v)

F isher,(t)
j

)
(8)

whereNrj and Nrj
are the number of image pixels inside and outside the contour rj .

The whole pdf can be approximated by a set of samples and weights:

P (t) = P (t)(x1,x2,x3|z1, z2, z3) = p
(t)
1 p

(t)
2 p

(t)
3 ∼ {s

(t)
l , π

(t)
l } l = 1, . . . , N3 (9)

Considering these final weights, the output contour is computed asR(t) =
∑N3

l=1 s
(t)
3l π

(t)
l .

5 Experimental Results

In this Section we examine the robustness of our system to several changing conditions
of the environment, in situation where other algorithms may fail. In the first experiment
we track the boundary of a bending book in a video sequence, where the lighting condi-
tions change smoothly from natural lighting to yellow lighting. The upper row of Fig. 4
shows some frames of the tracked results. The same video sequence is processed by a
particle filter that only uses multihypotheses for the prediction of the contour feature,
while the color is predicted using a smooth dynamic model. Lower row of Fig. 4 shows
that this method is unable to track the contour of the object and cope with the effects of
self-shadowing produced during the movement of the book.
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Fig. 5. Tracking results of a cluttered sequence with abrupt change of illumination and unpre-
dictable movement of the target. Up: Results using the proposed method, and weight distribution
for each particle filter. Down: Results assuming smooth change of color.

In the second experiment we have tested the algorithm with a sequence of a mov-
ing leave. Although this is a challenging sequence because it is highly cluttered, the
illumination changes abruptly and the target moves unpredictably, the tracking results
using the proposed method are good. Upper images of Fig. 5 show some frames of the
tracking results. We show also the distribution of the weights for the samples of each
particle filter. Observe that during the abrupt change of illumination (between frames 41
and 42), there is a compression of these curves. This means that the number of samples
predicted well has been reduced. Nevertheless, the difference of probability between
these samples and the rest of the samples has increased meaning that in next iteration
the new predictions will be centered on these ‘good’ particles. We can observe that for
frame 43 the tracking has stabilized. On the other hand, the lower images of Fig. 5 show
the inability to accommodate these abrupt changes using a contour particle filter with
smooth color prediction.

6 Conclusions

In this paper we have presented a new technique to integrate different particle filters
that are conditionally dependent. This framework has allowed us to design a tracking
algorithm that accommodates simultaneously the colorspace where the image points
are represented, the color distributions of the object and background and the contour
of the object. We have demonstrated the effectiveness of the method both analytically
and experimentally, tracking real sequences presenting high content of clutter, non-rigid
objects, non-expected target movements and abrupt changes of illumination.
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Stereo Reconstruction of a Submerged Scene�
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Abstract. This article presents work dedicated to the study of refrac-
tion effects between two media in stereo reconstruction of a tridimen-
sional scene. This refraction induces nonlinear effects making the stereo
processing highly complex. We propose a linear approximation which
maps this problem into a new problem with a conventional solution. We
present results taken both from synthetic images generated by a raytracer
and results from real life scenes.

1 Introduction

Physical modelling is, still today, the main tool for testing and designing costal
structures, specially rubble-mound breakwaters. One of the most important fail-
ure modes of this kind of structure is the armour layer hydraulic instability
caused by wave action. Currently, to test the resistance of a proposed design to

Water

Air

Fig. 1. Real and model breakwater.

this failure mode, a scale model of the structure is built in a wave tank or in a
wave flume, such as the one shown in figure (1), and it is exposed to a sequence of
surface waves that are generated by a wave paddle. One of the parameters that
have proved of paramount importance in the forecast of the structure behaviour
is the profile erosion relative to the initial undamaged profile. Thus, measuring
and detecting changes in the structure’s envelope is of paramount importance.
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Laser range finders are one obvious and easy way of reconstructing the scene,
however, since common lasers do not propagate in the water, the tank (or flume)
have to be emptied every time a measurement is taken.

This is a quite expensive procedure, both in time and money resources. We
propose to use a stereo mechanism to reconstruct a submersed scene captured
from cameras placed outside of the water. This way we can monitor both the
emerged and submerged part of the breakwater.

1.1 Problem Definition

The problem tackled in this article is the reconstruction of a 3D scene with a
stereo pair. Between the scene and the cameras there is an interface that bends
light rays according to Snell’s law.

The main difficulty here is that the known epipolar constraint, which helps
reducing the search for a match, is not usable. Unlike conventional wisdom,
straight lines underwater do not project as straight lines in the image. As figure
1.c illustrates, for each pixel in one image, possible matches are along a curve
which is different for every point on the object. Essentially, this means that most
stereo algorithms are unusable. We show that, if the incidence angle is small,
the linear part of the Taylor Series expansion, which is equivalent to modifying
camera parameters, is precise enough for our purpose. In other words current
stereo algorithms can be used, provided the camera orientation parameters are
within a certain range.

Though with a relatively straightforward solution, to our knowledge, this
problem has not been addressed in the literature since most systems are placed
underwater, thus eliminating the refraction issue.

2 Scene Reconstruction in the Presence of an Interface

2.1 Snell’s Law

Whenever an interface is involved, Willebrord Snell’s Law will necessarily be
spoken of. The law states that a light ray crossing an interface will be bent
according to

k1 sinϕi = k2 sinϕr

where ϕi and ϕr are the angles the incident and refracted light rays have with
respect to the normal of interface at the point of intersection. Considering a
planar interface at z = 0 (see figure 1), a light ray emitted from a point above
the interface will relate to its refracted ray by:

vx
r (vi) =

k1

k2
vx

i , vy
r (vi) =

k1

k2
vy

i (1)

vz
r (vi) = −

√(
1− (k1)2

(k2)2

)(
(vx

i )2 + (vy
i )2

)
+ (vz

i )2 .
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This non-linear relation can be simplified by expanding vz
r (vi) in its Taylor series

(in the neighborhood of vi =
[
0 0 −1

]T ) and retaining the first order term. This
results in a much simpler (linear) transformation

vr ≈

⎡⎣kvx
i

kvy
i

vz
i

⎤⎦ =

⎡⎣k 0 0
0 k 0
0 0 1

⎤⎦vi, where k =
k1

k2
. (2)

2.2 Image Rectification

This approximation leads to a simple image rectification process, cancelling most
of the distortion introduced by the interface. Using equation (2) and classic
geometry, it can be shown that all light rays converge at a single point p1, as
illustrated in figure 2. The relation between both focal points is done by:

p1 =

⎡⎣1 0 0
0 1 0
0 0 1

k

⎤⎦p2 . (3)

This fact hints at the possibility of rectifying the image with refraction effects
by only changing the extrinsic camera parameters. In other words, by approx-
imating Snell’s law, the problem with refraction is transformed into a typical
stereo problem “without” air-water interface. All that remains to be done is to
project the original image onto the z = 0 plane, and project it back to a vir-
tual camera with projection center at p1. If P2 and P1 are, respectively, the
original camera projection matrix and the virtual camera projection matrix, the
rectification consists of a homography, given by:

H = P1M(p2)P∗
2 . (4)

Here, the operator {·}∗ denotes matrix pseudo-inverse which projects a point
in image coordinates onto the camera projection plane (at z = 1 in camera
coordinates). Matrix M(p2) projects a point onto the z = 0 plane using p̄2 as a
projection center. It is defined by:

M(p2) =

⎡⎢⎢⎣
−pz

2 0 px
2 0

0 −pz
2 p

y
2 0

0 0 0 0
0 0 1 −pz

2

⎤⎥⎥⎦ . (5)

The intrinsic parameters of the virtual camera are chosen to minimize informa-
tion loss or any other criteria needed by the specific implementation. In particular
in the case of stereo reconstruction, the image rectification process imposes a few
constraints on these parameters.

2.3 Underwater Stereo Reconstruction

The previous rectification process changes the image in such a way that they
become suitable to classic stereo reconstruction algorithms. Be advised though
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Fig. 2. Representation of the path fol-
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order snell approximation is used.
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Fig. 3. Illustration of the correction
needed to Snell’s equations after image
rectification.

that no guarantee was made about epipolar lines. Generally, depending on the
resolution used, baseline, and angle of incidence of the light rays, the epipolar
constraint does not occur due to the effect of higher order terms, neglected by
the Snell rectification. In case the rectification mentioned above is not accurate
enough, two dimensional search must be done to match the images. In these
circumstances, rectification can significantly narrow the band of search around
the estimated epipolar line.

Although the matching process gains considerably by assuming the simplifi-
cation as valid, for greater reconstruction precision the nonlinear terms shouldn’t
be discarded. After the matching has been done, the true Snell deformation can
be taken into account. In other words, equations 1 must be modified to include
the rectification effect on the image coordinates. This is illustrated in figure 3.
Note that v3 is the true trajectory of the underwater light beam and not v1.
We known how to obtain v3 from v2, but now only v1 is available. Finding the
intersection of the line through p1 tangent to v1 with the plane z = 0 yields pi

pi =
[
px
1 −

pz
1

vz
1
vx
1 py

1 −
pz
1

vz
1
vy
1 0

]T

. (6)

As mentioned before, Snell’s approximation changed the camera’s focal point.
Knowledge about the original camera’s focal point (p2) allows us to find v2:

p2 =
[
px
1 py

1 kpz
1

]T
, v2 = pi − p2 =

[
− pz

1
vz
1
vx
1 − pz

1
vz
1
vy
1 −kpz

1

]T

.

Replacing this expression of v2 in equation 1, we can represent v3 exclusively
as a function of the virtual camera, that is:

v3 ∝
[
vx
1 vy

1 −
√

1−k2

k2

(
(vx

1 )2 + (vy
1 )2

)
+ (vz

1)2
]T

. (7)
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It is now possible to apply equations (6) and (7) to the left and right cameras to
triangulate for the 3D point. Due to the discrete nature of the sensors the two
lines do not usually intersect, so a least squares error approach is used.

2.4 Implementation Notes

The location of the water plane is obtained during the calibration process using a
floating checkered board. For a description on how to use this plane to calibrate
the cameras’ extrinsic (and intrinsic) parameters please see Bouguet’s work [2]
which is based on Zhang [3] and Heikk̈ıla [4]. As stated before, the water plane
is forced (calibrated) to be at z = 0. In order to facilitate point matching, the
calibration data is then used to project the left and right images on a common
plane making the epipolar lines horizontal [5]. These images are then processed
by any classic stereo reconstruction algorithm. In our case we were interested in
a dense stereo reconstruction so we used Sun’s algorithm [6] based on dynamic
programming.

Please note that what is discussed in this paper is valid only for underwa-
ter scenes. If the scene to be reconstructed is only partially submerged, two
reconstructions should be performed. One valid for all the pixels corresponding
to points over water, and another for the pixels corresponding to underwater
points. Since the water plane is at z = 0, it can be written as w = [0 0 1 0]T in
projective coordinates. This plane can be easily described in disparity space as
wd = H−Tw, using the projective transformation

H = DE , where D =

⎡⎢⎢⎣
f 0 cxl 0
0 f cyl 0
0 0 cxr − cxl −Bf
0 0 1 0

⎤⎥⎥⎦ .

E is the world to camera projective transformation and D is the camera to d-
space transformation with f describing the focal length, cji the j coordinate (x or
y) of the principal point of camera i (left or right) and B is the baseline between
left and right cameras (see for example [7]). It is then possible to know in a
disparity map which camera pixels correspond to points under or above water.

3 Experiments

To validate the algorithm, two different experiments were made. First a synthetic
scene with planes at different depths was created. Images rendered from this
scene are completely known to us, allowing reconstruction errors to be measured.
The second type of images are real world images from a model breakwater. Since
we do not have “ground truth” we can evaluate performance only qualitatively.

3.1 Synthetic Experiment

A few synthetic images were generated using povray1 consisting of textured
planes at various depths. The cameras are placed at 1.3m over the interface
1 One of the oldest raytracers still used, which correctly models refraction effects.
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Fig. 4. Reconstruction error in depth (meters) for each pixel. The reconstructed scene
consists of a textured plane at a depth of 1.5m as illustrated in the first image.

(looking slightly away from the perpendicular) with a baseline of 25cm . Please
note that all of these reconstructions assume that the epipolar constraint is valid.
This is clear in all the plane images since the matching algorithm starts to fail
when the incidence angle becomes too great (noticeable in the top corners of the
error images).

The first error image shown in figure 4 describes the reconstruction error
when it is assumed that the disparity space is a projective reconstruction of the
scenery. Note that Snell approximation is still used to help feature matching. The
plane is reconstructed as a paraboloid (barely noticeable in the error images) due
to the fact that higher order terms of Snell’s law are discarded. This effect is
much clearer in figure 5 where the actual plane reconstruction is shown. The top
corners of the error image are poorly reconstructed due to the already mentioned
failure in epipolar geometry.

The second error image shown in figure 4 uses equation 7 to correct the higher
order distortion. Overall error is diminished but since nothing has been done to
improve matching the top corners are still not corrected. For a clearer perception
of the corrected distortion see figure 5 which shows the 3D reconstruction of
the same plane (they are translated in relation to one another for visualization
only) with (bottom plane) and without (top plane) use of equation 5. The plane
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Fig. 5. 3D comparisson of plane reconstruction with snell correction applied and with-
out it.

Fig. 6. 3D view and left image of a model breakwater partially submerged.

Fig. 7. 3D view and left image of another model breakwater partially submerged.

reconstructed as a paraboloid effect mentioned earlier is clearly visible on the
top plane. Although the planes are placed one above the other for comparisson
purposes, they are both at the same depth (1.5m).

Finally, the result of using bi-dimensional matching is shown in the third
error image of figure 4. Note that only a few pixels (depending on the resolution,
baseline and depth of the scene) need be searched away from the epipolar line,
and only where the angle of incidence is greater than a certain tolerance. The
maximum error is now 3 centimeters for the plane at z = −1.5m, which is the
expected error due to the discrete nature of the sensor at the given distance.
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3.2 Real World Experiment

Figures 6 and 7 show two reconstructions of a real breakwater physical model.
The first uses images taken with video low resolution PAL cameras with a base-
line slightly below 40cm and about 1.2m above the water. The second uses images
taken with a beam splitter mounted on a 6 megapixel still camera. The baseline
is about 5cm at 1.2m above the interface. Notice in both reconstructions the
discontinuity near the top where the underwater and overwater reconstructions
are fused. Unlike the synthetic images these are not so feature rich (for example
dark shadows appear between rocks), resulting in some matching errors. Better
results should be possible with algorithms that deal with occlusions and little
texture.

4 Conclusion

We have shown how to diminish the refraction effect introduced by the presence
of an interface between a stereo rig and the scene. The solution described allows
for standard stereo matching algorithms to be used. The results show that the
reconstruction error due to refraction is negligeable, provided the cameras are
looking perpendicularly to the water surface.
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Abstract. In this paper, a functional simplification of the BCS/FCS neurobio-
logical model for image segmentation is presented. The inherent complexity of 
the BCS/FCS system is mainly due to the close modelling of the cortical 
mechanisms and to the high number of parameters involved. For functional ap-
plications, the proposed simplification retains both the biological concepts of 
the BCS/FCS and its performance, while greatly reducing the number of pa-
rameters and the execution time. 

1   Introduction 

Image Segmentation has been studied for decades by researchers of animal and com-
puter vision. The present state of the art computer vision systems do not even ap-
proach the performance of human vision in image understanding, proving that there is 
still much to be learned form biological vision systems. With this in mind, many 
computer vision researchers have chosen biomorphic engineering approaches as the 
neural networks. 

The BCS/FCS [1-4] is a neural network system for boundary segmentation and sur-
face representation, inspired by a model of visual processing in the cerebral cortex. 
This model retains part of the biological concepts in which it is based.  

Neural network interactions between two subsystems: BCS (Boundary Contour 
System) and FCS (Feature Contour System) are the basis of this model. These interac-
tions are produced in the human visual cortex once the lateral genicular nucleus 
(LGN), which regulates flow from retina to primary cortex, preprocesses the image 
which gets “contrast enhanced”. BC system interacts FC system, complementing one 
to each other in order to delimit surfaces in the scene. As a result, invariant properties 
of surface shape are usually perceived with high fidelity, despite gross perturbations 
of surface appearance. The information about variable aspects of the objects is elimi-
nated or treated as noise [3]. The Boundary Contour system (BCS) model detects and 
completes coherent edges that retain their sensitivity to image contrasts and locations, 
performing a perceptual grouping. The Feature Contour system (FCS) model compen-
sates for local contrast variations and uses the compensated signals to diffusively fill-
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in surface regions within the BCS boundaries, so that subsystem is responsible for 
brightness and surface perception. 

Summarizing, BCS/FCS performs the enhancement and conditioning of images 
acquired by the visual system. This module is the result of the analysis of several and 
detailed experiments with the visual cortex of superior mammals as monkeys and 
humans, where the goal is to represent as close as possible the main aspects of neuro-
biological systems. However, the implementation of this system into the practical 
applications demanded by the industry is not easily feasible. Problems like the proc-
essing time (mainly due to the recursive nature of the processing), complexity in the 
tuning of the intervening parameters (the kind and condition of the scenes processed 
can vary greatly and these parameters have to be tuned accordingly), and the lack of 
optimal performance due to the limitations of the biological approach have to be 
avoided in some way. 

In this work, a simplification of the forming stages is presented. All the concepts 
contained in the BCS/FCS are used in the new implementation but restraining the 
complexity and making it more functional. This is accomplished in two main ways: 
the first one is by the reduction in the number of parameters to tune (simplifying func-
tions) which contributes to make this algorithm less dependant of the kind of images 
used for each application. The second way towards adapting this system for practical 
applications is to reduce the processing time by means of restraining recursivity and 
operations performed in each stage. By means of this action the processing speed is 
increased in a high rate and, although the model is not so close to biological aspects, 
the core of the system still retains the main concepts of the BCS/FCS. 

2   Conceptual Description of the BCS/FCS Neural Network 

The BCS/FCS neural network model was originally developed by Grossberg & Min-
golla [1-3] through a detailed analysis of biological vision. This is a partial model of 
the human visual system and reveals how it detects, completes, and cleans from noise 
and useless information general boundaries. The segmentations produced are based in 
regions of different texture, color or luminance.  

The lower level of the system (Stage 1) is a conditioning operation which boosts 
the contrast, normalizes the brightness in the input image and simultaneously reduces 
the speckle noise [5, 7]. It is performed by cells at the retinal and Lateral Genicular 
Nucleus. Receptive fields of these cells (see Figure 1), with an isotropic (not sensitive 
to orientation) center-surround structure, are the core of this stage. Two output chan-
nels, convolving the input image with a combination of two Gaussian functions of 
different size (σ ), are obtained: one of them detects transitions in the input image 
from dark to light - ON channel: 
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c
ijS  and sg

ijS are the convolution of the input image with Gaussians of different 

width (σ ). A, D+ and D- are parameters depending of the nature of the input images. 
Along this work, the ‘+’ superscript means that only positive values are considered, 
while negative values are truncated to zero. 

The combination of these channels produces the output of the Stage 1. These chan-
nels do not respond to uniform light in the input image.  
 

 

Fig. 1. Left: Receptive field of an ON channel. Right: Receptive field of an OFF channel. 

The outputs of these cells excite receptive fields at Stage 2. The function of this 
second module is mainly the segmentation of the existing borders. Also, a slight 
smoothing action on the surfaces enclosed by these borders is performed. It is formed 
by pairs of simple cells (which are directional) with the same orientation, which are 
sensitive to opposite contrast polarity. Their receptive fields, as can be seen in Figure 
2, detect either an increase or a decrease of the activation in their preferred direction. 
The simple cell pairs, in turn, pool their rectified and oppositely polarized output 
signals at complex cells with the same orientation. These complex cells are not sensi-
tive to direction of contrast. They respond equally well to increase/decrease of inten-
sity. Conceptually, in this module difference of elongated Gaussians (rotated for proc-
essing several orientations) is convolved with the output image of the Stage 1. The 
global output image (for each scale g) for this stage is obtained from the sum of the 
resulting processing for each orientation k (twelve in this work). The output of the 
simple cells is modeled by the equations: 
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where R and L are the four convolutions of the ON and OFF channels from Stage 1 
with the two elongated Gaussians. The output of the complex cell for each orientation 
(k) and scale (g) is:  
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g
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Fig. 2. Left: horizontal simple cell. Right: diagonal simple cell. 
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Stage 3 is conformed by a cooperative-competitive loop. This recursive procedure 
enhances the segmentation process by the completion of the discontinued borders and 
broken connections in collinear segments belonging to the same border (cooperative 
action) and by destroying false parallel contours, reducing the noise, and attenuating 
the presence of perpendicular lines which could belong to smaller structures and ob-
jects without real interest for the segmentation (competitive action). The boundary 
completion is made by the bipolar cells, which act as logical AND functions for col-
linear borders (Figure 3). If both lobes of the cell coincide with collinear lines when 
convolving with the image then these lines will be joined. The competitive and coop-
erative modules interact one to each other.  

The output of the boundary competition is: 
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where g
ijkE 3  is the pondered combination of the output of Stage 2 and the cooperative 
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The output of the cooperative module is: 
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where g
ijkE 4 is a combination of the output of the competitive module and several 

convolutions of the bipole cells with g
ijkZ . 
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Fig. 3. Lobes of a horizontal bipole cell. 

The three stages commented previously (LGN stage, simple and complex cells and 
cooperative-competitive loop) form the so-called Boundary Contour system (BCS). 

Boundary Contour System establishes a barrier to the filling-in (Stage 4) of the sur-
faces delimited by the boundaries. The system that carries out this filling-in is the 
Feature Contour System (FCS). For image pixels through which no boundary signals 
pass, the resulting intensity values become more homogeneous as diffusion evolves; 
but when boundary signal intervene they inhibit the diffusion, leaving a resulting 
activity difference on either side of the boundary signal [5]. This diffusiveness opera-
tion is an iterative task intervened not only by boundaries obtained from BCS but also 
by ON and OFF cells from Stage 1. Figure 4 shows an example of diffusion. 

The diffusive filling-in obeys the equations: 
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The boundary-gated permeabilities obey 
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Fig. 4. Brightness diffusion in FCS. Left: two objects presenting brightness differences due to 
shading. Right: after the FCS processing, the two objects now present uniform brightness. 

The last stage (Stage 5) is the scale averaging or combination of scales. The final 
output image is attained by a weighted combination of the resulting images at differ-
ent scales. The weight for each scale in the global result is heuristically evaluated, 
depending on the nature of the images to process. 

3   Simplification of the Original Algorithm 

Due to the need of getting a higher processing speed and the goal of eliminating as 
many parameters as possible, several changes have been made to the last development 
of the BCS/FCS by Grossberg et al. [7]. 

Stage 1 has not been changed. The difference of Gaussians (similar to the Lapla-
cian of Gaussian function) is the best biological approach to date for the modelling of 
the LGN cells. Although there are several filters similar in performance to the Differ-
ence of Gaussians function, this filter combines the edge enhancement property with 
the removal of the high frequency noise retaining the biological approach.  

Stage 2 is composed of directionally sensitive receptive fields (simple cells) which 
detect increase or decrease of activation in their preferred direction. The complex 
cells, also included in this stage, pool the information from simple cells obtaining the 
borders of the image. The receptive field of these cells is similar to the receptive field 
of the ON channels and OFF channels. The difference between them causes the ani-
sotropy. This elongation is the essence of the border detection. In the simplified algo-
rithm, this essence has been preserved but implemented in a simpler way. For exam-
ple, for the detection of an edge, in Grossberg’s original system two elongated 
difference of Gaussians (simple cells) are applied in the same area for detection of 
increase and decrease of activation respectively for a given direction (twelve, in this 
work), so the outputs of these two simple cells (one for detecting increase of contrast 



A Functional Simplification of the BCS/FCS Image Segmentation      115 

and the other for contrast decrease) are pooled. In the system presented in this work, 
only one simple Sobel approximation for the gradient (rotated for each orientation) is 
convolved for a given orientation, which reduces the computational load more than a 
half for this module. In the original system, the convolutions are made using the two 
elongated Gaussians with the ON and OFF channels, so four different outputs are 
obtained. An arithmetic combination of these four resulting images is used for the 
global output of this stage. We have found that this is functionally equivalent to con-
volving the combination of the ON and OFF channels with a rotated Sobel operator 
for each orientation. Therefore, the number of necessary convolutions is reduced in a 
quarter and the results obtained are on a par without loosing the main concept in-
volved. 

In Stage 3, some modifications have been arranged in order to speed up the proc-
essing. This module is divided into two sub-systems, the first one being the Competi-
tive Stage. It performs a useful cleaning of false and residual borders in the images, 
by means of an iterative process in which Stage 2 and the Cooperative Stage are in-
volved. This process is computationally very expensive, so its implementation has 
been changed. In spite of implementing a separate task interacting with the coopera-
tive action, the two modules have been joined in the algorithm. This integration obeys 
the equation: 
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where 21 <− KK  or 2
21 <−− orN

KK , being orN  the total number of orientations 

considered, K  the analyzed orientation for the image (
orNK ≤≤0 ) and 1K  the ori-

entation of the W filter (
orNK ≤≤ 10 ). This filter is a particularization of the general 

dipole receptive field given in [7], and it is shown for 0º orientation in figure 5. 
Only the three closest orientations to the perpendicular to the border are considered 

for the competition. This competition attenuates all the borders not belonging to the 
real contour of the blob. In the original system all the orientations have been consid-
ered as shown in equation (6). This is a more correct approximation but also slower to 
process while leading to similar results. 

The second subsystem in the CC loop is the Cooperative. The function defined for 
the bipole cells has several adjustable parameters related to the response saturation 
level, the threshold for the firing of the lobes, the length of both lobes from the filter 
center, the spatial deviation from co-linearity and the orientational deviation from co-
linearity. All of these adjustable values broaden the field of utilization for this system 
allowing fine-tuning the parameters according to the nature of the input images. A 
much simpler function has been chosen for replacing the original bipolar cells as 
shown in figure 5. This alternative has two great advantages. First, the filter size is 
considerably reduced. Considering that this stage has recursive implementation and 
that this mask must be convolved at each iteration with all the orientations, reduction 
in the size of the filter has a very evident effect in the efficiency. The second advan-
tage is the elimination of the need to tune the commented parameters, which is an 
arduous task. 
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Fig. 5. Filter (W) replacing the original receptive field of a bipole cell. 

Stage 4 is the Surface Filling-in process. As for Stage 1, no major changes have 
been made with respect to the original system. The interaction with Stage 1 has been 
limited to the output image from that stage and not performed with the ON and OFF 
channels separately, so the processing time is reduced on a half. 

Stage 5 (scale averaging) has been removed from the algorithm. After several ex-
periments, the conclusion was that no perceptible enhancement over the results ob-
tained having in account only one scale was obtained. This is due to the previous fine-
tuning of the intervening parameters dependant of the size of the blobs of interest. The 
smaller and the greater scales are not processed. Considering the three scales, the 
processing time would have been multiplied by three, a major inconvenient for the 
purpose of this system. 

4   Results 

A set of basic images used for the analysis and comparison of the results obtained 
with the original neural model and the modified one are presented in Fig. 6. These 
images have been selected because they allow to test and validate the performance of 
the most interesting stages comprising the BCS/FCS For example, in the leftmost 
image the broken boundaries in the polygon allow to evaluate the completion of the 
boundaries in several directions (Stage 3). Also, the residual blobs existing in this 
image are reduced in part by the Stage 1 and by the competition sub-stage in Stage 
3.In all the images, the noise (a kind of salt and pepper) is eliminated by the differ-
ence of Gaussians in Stage 1. The center and right images present illusory contours. 
These illusory contours can be recognized without actually being seen, and are easily 
perceived by humans, but hardly detected by computer vision systems. This is due to 
the existence of underlying textures of parallel lines. The ends of these lines form a 
line of disjoined points which excite the bipole cells of the cooperative module (Stage 
3). In the three images, surface diffusion has been carried out by the FCS system, and 
should lead to the differentiation of several uniform surfaces, corresponding to zones 
of the original image delimited by borders (real or illusory), o that present a common 
texture (like the different line densities in the center image of Fig. 6). 

The obtained images processed using both BCS systems are presented in Table 1. 
In Table 2 the results of the FCS for the simplified method are shown. No changes 
from original system have been made in this stage.  
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Fig. 6. Three test images. 

Table 1. Images obtained after BCS processing. 

Original 
BCS 

   
Simplified 
BCS 

   

Table 2. Images obtained after FCS processing. 

   
 
As can be seen in the results presented in the left column of Table 1, the comple-

tion of the boundaries is successfully performed. The variance in the thickness of the 
border and the difference in brightness between the two images (up and bottom) are 
due to the different functions convolved with the input images in the cooperative 
stage. The two columns on the right show the similarity in the results for the comple-
tion of illusory contours with both methods. 

In table 2 the intensity values become more homogeneous as diffusion evolves. In 
the left figure the borders of the object inhibit the diffusion outside the boundaries. 
The same process of diffusion has been initiated outside the object, but at a lower 
level. In the centre and right images, the diffusive process continues the work initiated 
by the BCS system. Several uniform regions are finally obtained, corresponding to 
those zones inside real or illusory borders, or distinct textures, as expected. 

5   Discussion 

A new functional and simplified implementation of the Neural BCS/FCS model for 
image processing is presented. While retaining the functionality and the biological 
inspiration of the original algorithm, this simplification eases its use and considerably 
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speeds-up the processing. As can be seen in the experiments included in this work, 
when applying this simplified revision of the neural system two goals are achieved: 
the processing time is reduced considerably and the tuning of the algorithm is made 
easier avoiding the need to adjust by hand a great amount of parameters, which intro-
duces an arduous and time demanding task to the system programmer. 
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Abstract. In this paper, we propose a new method to extract moving
objects from a video stream without any motion estimation. The ob-
jective is to obtain a method robust to noise, large motions and ghost
phenomena. Our approach consists in a frame differencing strategy com-
bined with a hierarchical segmentation approach. First, we propose to
extract moving edges with a new robust difference scheme, based on the
spatial gradient. In the second stage, the moving regions are extracted
from previously detected moving edges by using a hierarchical segmen-
tation. The obtained moving objects description is represented as an ad-
jacency graph. The method is validated on real sequences in the context
of video-surveillance, assuming a static camera hypothesis.

1 Introduction

Automated video surveillance applications have recently emerged as an impor-
tant research topic in the vision community. In this context, the monitoring
system requirement is to recognize interesting behaviors and scenarios. How-
ever, in such a system, the main problem is to localize objects of interest in the
scene. In this context, every moving area is potentially a good region of interest.

There are three conventional approaches to automated moving target detec-
tion: background subtraction [5–7, 13], optical flow [5, 8] and temporal frame
differencing [5, 10, 14]. In video surveillance, the background subtraction is the
most commonly used technique. However it is extremely sensitive to dynamic
change of lighting. Nevertheless, it requires a prior knowledge of the background,
which is not always available. In the second category of methods, the optical flow
estimation is used as a basis for further detection of moving objects. However,
it is a time consuming task. It is affected by large displacements and does not
provide the accurate values, neither at moving objects contours, nor in large
homogeneous areas.

In this paper, we focus on the temporal frame differencing methods. These
techniques enable fast strategies to recover moving objects. However, they gen-
erally fail to extract accurately both slow and fast moving objects at the same
time. In such case, a tradeoff between missed targets and false detections is very
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hard to obtain. To overcome these problems, we first propose a new difference
scheme suited to moving objects boundaries detection. Then, a hierarchical seg-
mentation [1–3] of the current frame is used to complete these contours and
extract the underlying moving regions.

The paper is organized as follows: section 2 introduces the method for motion
boundaries extraction. In section 3, the use of the hierarchical segmentation to
retrieve the moving regions is described. The experimental results are presented
in section 4. Then, we give the conclusions on the proposed method and we
discuss the future work.

2 Moving Edges Detection

The frame differencing methods take advantage of occlusions, which occur at
moving objects boundaries. Various kinds of approaches have been attempted in
the literature [10, 11, 13, 14]. Generally, the presence of the occlusions is detected
using the absolute difference of two successive frames. However, the occlusions do
not correspond to the position of the true object boundaries neither in the first
image nor in the second one. Moreover, depending on frame rate and speed of the
moving objects, the difference map can critically differ. When an object moves
slowly, image intensities do not change significantly in its interior. Consequently,
the resulting difference image exhibits high values only at motion boundaries.
In the opposite case, if the object has completely moved from its position, the
resulting frame difference will exhibit high values inside the object body in both
images. It is the so-called ghost phenomena [12] and leads to false detections.

In [13, 14], the authors propose to use a double-difference operator. The frame
difference is performed on the two pairs of successive images at time (t−1, t) and
(t, t+ 1). Then, the result is obtained by the intersection of these two difference
maps. However, when an object moves slowly this intersection may be reduced
to an insufficient number of pixels.

2.1 Difference Scheme

In the following, It : Z
2 → N indicates a discrete image at a given time t ∈ (0, T ].

We note the reference frame, the frame in which we want to localize and segment
the objects in motion.

The proposed method considers three successive images It−1, It and It+1.
We assume that moving edges position depends rather on the gradient changes
in the successive images than in the images themselves.

First, we compute the spatial gradient modulus of It−1, It and It+1 and we
note gt = ‖∇It‖ (respectively gt±1). Then, the symmetrical frame difference is
obtained on the two pairs of gradient images. The moving edges measurement
at a given time t is defined as the infimum operator of the two difference maps:

memt = inf
(∣∣gt+1 − gt

∣∣, ∣∣gt − gt−1
∣∣) (1)

The infimum operator properties and the analysis of gradient over three
frames yield the interesting behaviors:
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(a) (b) (c)

Fig. 1. Results of mem on three different cases: (a) homogeneous region, (b) assembly
of homogeneous regions and (c) textured area

1. a maximum response at moving objects boundaries locations: when a con-
trasted object is moving over a homogeneous area, the mem is equal to the
original gradient in the reference frame.

2. a significant robustness to motion amplitude: in the case of fast moving
objects, the result is not delocalized and the ghost phenomena are drastically
reduced.

3. a significant robustness to random noise (non-repeatable in subsequent
frames).

However, due to low motion, weak contrast with the scene and the aperture
problem (sliding contours), the moving edges measurement will certainly fail to
provide information along the whole contours of a moving object (figure 1). The
forthcoming section explains how to overcome this problem in order to obtain
reliable moving regions.

3 From Moving Edges to Moving Regions

In this section, we propose a method to extract moving regions based on the
new moving edges measurement (mem) proposed in paragraph 2.1. However,
the mem operator does not result in the complete object contours. Thus we
propose to consider an additional information issued from a spatial segmentation
of the reference image. Nevertheless the segmentation process generally results
in an over segmentation of the image, an accurate description of the image
requires multiple levels of details. Thus, in our approach, the moving regions are
searched through the levels of a hierarchical segmentation, which allows to study
the regions at different scales.

We start by extracting an initial set of moving contours corresponding to
spatial edges with a sufficient mem value. Then, the moving objects are detected
by browsing a set of candidate regions extracted from a hierarchical partition.
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3.1 Hierarchical Segmentation and Candidate Set to Detection

Some attempts to extract the meaningful image regions by gathering the regions
of an initial segmentation can be found in [1, 2, 4]. However, they are not based
on exhaustive analysis of region grouping which have a significant computational
complexity. As explained in these publications one way to reduce the number of
candidates is to build a hierarchical segmentation. After an initial partition is
built, a graph is defined, by creating a node for each region and an edge for each
adjacent regions pair. Graph’s edges are weighted according to a dissimilarity
criterion (as example, a grey level difference) between two regions. The hierar-
chical segmentation is obtained by progressively merging regions of the initial
segmentation, in an increasing dissimilarity order. The process is iteratively re-
peated until only one region remains. By keeping track of the merging process,
we construct the candidate set of regions C. Each time two regions merge, the
resulting region is added to the candidate list. Note that the candidates are
sorted according to their level of apparition in the hierarchy. The total amount
of distinct regions in the candidate list is 2N-1 (N is the number of regions of
the initial partition) [1]. This hierarchical segmentation only contains the more
meaningful assembly of regions in the sense of the chosen dissimilarity criterion.

In our approach, we use the set of contours and regions given by the watershed
transform proposed in [3]. We choose a robust dissimilarity criterion based on
the contrast: for a given regions pair, the value of the criterion is defined by the
median value of image gradient modulus along the watershed lines separating
the regions.

3.2 Initialization Step: Extraction of Moving Contours

Once the hierarchical segmentation is built, the next step of the algorithm is
to extract a set of moving contours: the mem is calculated and a threshold is
applied to obtain a binary image. A set of moving points designed as the most
significative contours in motion (mscm) is obtained by intersecting the thresol-
ded mem image with the lowest level’s contours in the hierarchy. The resulting
binary image (section 4, figure 3(b)) may not contain the whole moving object’s
boundary but only some incomplete and fragmented parts. Consequently, the
next step of our method is to gather and complete moving contours coming
from a same object, and discard small or isolated components corresponding to
residual noise. True moving edges are supposed to be distributed with enough
coherence and density around a same region to be gathered as the contours of
this region. A contrario, noise components are sparse and dispersed. They can
not be assembled as the contours of any region in the hierarchy.

3.3 Detection of Moving Regions

The detection step is achieved by independently optimizing a local criterion on
each region of the candidates list defined is section 3.1. In the following, for any
given candidate Ci ∈ C, the frontier ∂Ci of the region is defined as the subset of
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watershed points enclosing Ci. The matching score of a region Ci is calculated as
the proportion of significative contours in motion contained in its frontier ∂Ci.
This is simply expressed by:

ms(Ci) = card(∂Ci ∩mscm)/card(∂Ci) (2)

where card refers to the cardinal operator.
Each candidate is successively tested according to its order of apparition in C.

A candidate is labeled as detected if its score ms(Ci) is higher than a predefined
threshold Tpercent ∈ [0, 1] .

The method may lead to some incorrect detections as depicted in figure 2(c).
In figure 2(c), the regionC2 which causes the error is detected because its frontier
in common with the moving region C1 (figure 2(b)) is quite long. Nevertheless,
the frontier of C2 is longer than the frontier of C1 but does not contain more
moving contours points (figure 2(a)). Consequently, the score ms(Ci) of the
region C1 is higher than the one of C2 which enables to select the final correct
region.

As explained in section 3.1, each candidate (except those from the initial
partition) comes from a merging sequence of some preceding candidates. Owing
to the construction of C, when Ci is tested as a moving region, it implies that
all the grouping candidates constituting this sequence are already processed and
their scores are known. In the following, we will refer to this set of candidates as
the set of Ancestors of Ci. To avoid situations such as depicted in figure 2, we
propose to add the following condition to the detection: If Ci exhibits a score
superior to Tpercent, Ci is said to be detected if and only if, its score is higher
than any score of its ancestor. This can be expressed by adding the following
condition:

ms(Ci) > max
Ck∈Ancestors(Ci)

(ms(Ck)) (3)

This is a sufficient way to discard many false detections. However, when can-
didate regions correspond to higher levels of the hierarchy, their frontiers are
longer. Thus, a significant score is more difficult to obtain (a larger portion of
the contour may be missing). In that case, the score can not be constrained
to be strictly higher than the previous ones. Consequently, we propose to test
whether the new matching score is higher than the previous ones multiplied by
a weighting coefficient α, taken in the interval [0,1].

4 Experimental Results

In this section, we present some results on video sequences corresponding to real
situations of video-surveillance.

In the presented results, we use the regularized Deriche gradient [9] to obtain
the moving edges measurement (see section 2). The regularization parameter σ
should be chosen greater than 2.0 in order to preserve poorly contrasted or
narrowed structures.
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(a) (b) (c)

Fig. 2. (a) the (mscm) set (b) a first candidate matching the contours (c) a later
candidate matching the contours

(a) (b) (c)

Fig. 3. (a) original image, (b) set of moving contours initially detected (c) contours of
detected regions after parsing the hierarchy

The threshold parameter Tmem used to obtain the mscm mainly depends on
the level of noise in the mem image. Nevertheless the experiments show that it is
stable over time for a given scene and a fixed video camera. In all the presented
experiments this parameters is set Tmem = 2.0. The result of mscm detection is
presented in figure 3(b).

As it was presented in the section 3, we use the watershed transform to obtain
the initial segmentation. In order to reduce (once again) the computational cost
of the algorithm we propose to use a reduced set of markers. It is obtained
by the h-minima operator with h = 3 [15]. During the detection process, we use
Tpercent to express the ratio of the target boundary length, which can be missing
without altering the detection of the corresponding region. This parameter was
set to 0.65, which enables to detect the regions from an incomplete set of moving
contours, without generating false detections. The experimentally verified best
values range of parameter α is [0.65, 0.85]. The alpha paramater’s influence can
be reduced by taking into account the size ratio of the currently treated region
and its detected ancestors in the algorithm of section 3.3.

The initial set of moving edges is presented in the figure 3(b). The contours
of all the regions detected during the matching process are shown in figure 3(c).
Once the detection is achieved, isolated components with area under 50 pixels
are removed and the remaining regions are merged according to the dissimilarity
criterion. The results of this post-processing step are shown in figures 4(a) and
4(b).
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(a)

(b)

Fig. 4. From top-left to bottom-right (for each data set): first image of the sequence
and moving regions detected in some subsequent frames

5 Conclusions

This paper focuses on the extraction of moving objects in the video-surveillance
context. The goal is to detect all potential zones of interest and create their
representation suitable for tracking and scene interpretation.

First, we introduce a new method to perform the detection of moving objects
boundaries. The moving edges are extracted with an operator based on the
double differences of three successive gradient images. The defined operator is
robust to random noise and the results are not affected by the displacement speed
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of objects. Then we show how to use the hierarchical segmentation in order to
pass efficiently from the incomplete detected contours to the entire regions in
motion. To obtain the accurate set of moving regions, we propose to combine two
criteria during the detection process: i) the contrast criterion ii) the matching
score criterion. The hierarchical approach also reduces the computation time
that is the limiting factor in the video-surveillance applications.

Another advantage of the method is that the extraction of the moving objects
requires neither motion calculation nor prior knowledge of the scene.

In addition, the moving targets are extracted as an assembly of multiple
homogeneous parts of different size and contrast. Due to the underlying hierar-
chical segmentation structure, their adjacency and inclusion relations are known.
These considerations are very useful to construct a model for the detected tar-
gets. This model can be then used in several ulterior steps such as tracking,
occlusions analysis or pattern recognition.

Consequently, the next stage of our work will concentrate on the study of
the hierarchical graph-based object description for the scene interpretation and
the object tracking in the security domain.
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Abstract. In this paper we present efficient and fast algorithms for the
reconstruction of scenes or objects using range image data. Assuming
that a good segmentation is available, we concentrate on the polygoni-
sation, triangulation and optimisation, i.e. both triangle reduction and
adaptive edge filtering to improve edge linearity. In the processing, spe-
cial attention is given to complex edge junctions. In a last step, vertex
neighbourhoods are analysed in order to robustly attribute depth to the
triangle list from the noisy range data.

1 Introduction

Range images obtained by laser cameras or other devices allow to construct a
3D model of an object or a scene. Normally, the processing required consists of
(a) range data segmentation and (b) the modelling (triangulation) of the seg-
mented data and the attribution of depth to the vertices of the triangle list.
A lot of effort has been devoted to segmentation, see e.g. [1, 2] for a quantita-
tive comparison of existing solutions. Recently, we extended our single-feature
segmentation algorithm in a quadtree to multi-feature, i.e. instead of using only
one component of normal vectors, computed by considering three adjacent pixels
that form a triangle, we use the three components [3]. Here we will focus on the
3D reconstruction and not on the segmentation.

This paper concentrates on the second processing step, i.e. the modelling
and the attribution of depth, using methods that are extremely simple and fast.
Processing speed becomes important when many views of a rotated object need
to be integrated for constructing a consistent and complete 3D model. Another,
complexer and slower modelling approach is the one of Khalifa [4], who uses
bilinear Bézier patches for planar regions and NURBS patches for spherical re-
gions to construct surface CAD models. Figure 1 shows the main steps in our
processing pipeline, which will be explained in subsequent sections.

2 Filtering and Edge Detection

In a first pass, a range image is filtered in order to correct isolated pixels with
values that differ completely from their neighbouring pixels. This filtering is
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Filtering

Filtering

Edge
Detection

Polygonization Optimization 2D
Triangulation

Depth
Extraction

Range
Image

Segmented
Range Image

2D
3D

Fig. 1. Processing steps excluding surface shading and texture mapping.

important because it highly improves the depth extraction (Section 5). Using a
neighbourhood size of 3 × 3, the centre pixel is compared with its 8 neighbours.
When the difference does not exceed a threshold, the value of which may depend
on the noise of the data, the neighbour is counted as being similar. If the total
count is below 2, the centre pixel is assumed to be an outlier. Its value is replaced
by the average of the biggest group of pixels with similar values, after analysing
all combinations of the 9 pixels in the neighbourhood. We note that this filter
gives much better results than a simple median filter, because it corrects small
regions with different values that are often found at long edges of range images.
The same type of filtering is applied to the segmented range image, but serves
to correct single-pixel regions. In this case, an isolated pixel is substituted by
the value of the majority of its neighbours.

In the second step, edges are detected in the segmented range image. Here,
edges (or transitions) are considered as geometric primitives on the discrete
lattice that encode all available shape information at the pixel level. The result is
another image, initialised with zero, that contains ones in the form of continuous
and closed contours.This discrete representation can be obtained by applying
a very simple operator: if the values of the 4 bottom-right pixels in a 3 × 3
neighbourhood are not equal, the centre pixel is marked as an edge. Below, we
use “edge” to refer to edge contours and “edge pixel” when addressing single
edge points.

3 Polygonisation

The edges detected in the segmented range image can now be used to create
discrete polygons of all segmented regions (detected planar object faces). This is
done by tracking the edge of each region, as shown in Fig. 2. At each position,
the direction of the next pixel is determined from the 3 × 3 neighbourhood, as
shown in Figure 3. The first 2 cases to the left are tested first, and these depend
on the previous path. The other 4 cases are only tested if the first 2 don’t match.
We note that, if the segmentation contains a chessboard pattern consisting of
single-pixel fields as shown in Fig. 2 (right), only the outline of the pattern will
be tracked. However, such a pattern is impossible because of the filtering referred
to above.

4 Mesh Optimisation

Up to this point we have discrete polygons that consist of many edge pixels.
These edge pixels are vertices, but only in extremely simple cases, for example
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Fig. 2. Examples of edge tracking in different regions.

Fig. 3. Edge-tracking rules: the position of the next pixel is determined from the 3×3
neighbourhood. Black pixels belong to the region, white ones don’t. Grey pixels are
don’t cares.

a straight horizontal or vertical edge, vertices can be eliminated. Optimisation
aims at reducing the number of vertices of the discrete polygons, while preserving
the geometry, and consists of the following steps: (a) iterative vertex filtering,
(b) path extrapolation at bifurcating vertices, (c) vertex reduction, and (d) tri-
angulation.

Iterative filtering must be applied to all distinct parts that make up the poly-
gons, processing only once the parts that are shared between two neighbouring
polygons. The shared parts are often isolated by special vertices with more com-
plex junctions, like Y, T and K junctions. Such vertices we simply call “forks”
because of the bifurcations, and the edge between two forks is called “path.”
Every path starts and ends at a fork.

Iterative Filtering: This adaptive filtering is done in floating point, but we
keep working with the discrete vertex lists of all paths between forks. The filtering
is done by taking into account 5 successive vertices, moving only the position of
the centre vertex. The positions of the first two vertices are averaged, as are those
of the last two vertices. The straight line between the averaged two positions is
used to move the centre vertex: it is moved perpendicularly towards the line
such that its projected distance is halved, see Fig. 4. This is done iteratively
for all vertices of a path. The absolute values of all movements are added, and
the filtering of a path stops when the sum of a new iteration is below a certain
threshold value. This filtering is more robust to noise than applying a mean or
median filter.

Path Extrapolation at Forks: Iterative filtering will remove most noise from
the paths. However, since the first 2 and the last 2 vertices of each path are
not filtered, and because the fork vertices themselves are also affected by noise,
special processing of forks and their neighbouring vertices is required.

The first step is to estimate the most probable position of a fork vertex,
taking into account all paths that converge at the fork. For this, we assume that
each path is approximately linear near the fork, and use vertices 4 and 5 from the
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Fig. 4. Adaptive filtering of edges by considering two pairs of vertices, moving the
centre vertex in the direction of the connecting line.
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Fig. 5. Vertex correction by path extrapolation (left), intersection averaging (middle)
and repositioning (right).

path to define such a line (the first 3 vertices are ignored because vertices 1 and
2 are not filtered and vertex 3 still may have a considerable error). An example
of this is shown in Fig. 5 (left). The new coordinates of a fork will be the average
of all intersections of the extrapolated lines (filtered paths), as shown in Fig. 5
(middle). However, if two lines are almost parallel, their intersection will not be
used because of the possibly large error. If there are no useful intersections, the
position of a fork will not be changed. Finally, given the new fork coordinates,
the first 3 vertices of each path are interpolated between vertex number 4 and
the new fork, see Fig. 5 (right).

Vertex Reduction: In order to reduce the number of vertices, we consider
groups of 3 neighbouring vertices along each path, excluding fork vertices, and
compute the angle between the first and second pair. The centre vertex is elim-
inated from the vertex list if the angle is close to 180 degrees, using a threshold
value. After eliminating a vertex, we skip one vertex in order to avoid eliminating
successive vertices in the same iteration, preserving the shape of a path. This
process stops when zero vertices have been eliminated after an iteration.

Triangulation: The triangulation algorithm implemented is a very simple and
straightforward one, see Chapter 1 in [5]. This method has a complexity of
O
(
n3
)
, with n being the number of vertices. For a better performance, faster but

also more complex methods can be implemented, e.g. the Chazelle triangulation
of O (n). However, the main drawback of these algorithms is that they apply to
simple polygons, and not to polygons with holes.
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Fig. 6. Direct triangulation of part of a noisy range image.

5 Depth Extraction

After having obtained the reduced 2D triangle and vertex lists, depth can be
attributed to the vertices by using the range data. This is not trivial because
(a) the depth may show abrupt changes at discontinuous (jump) edges, (b) the
vertex connectivity must be assured at fold edges, and (c) the range data may
be very noisy. See Fig. 6 for a standard direct triangulation of a range image,
obtained by displaying two triangles at every 2×2 pixel block: clearly the data
are very noisy.

In a first step, we group the vertices having the same coordinates, which
belong to different but neighbouring polygons. Although all polygons have been
triangulated, we keep working with polygons because the detection of depth
discontinuities is much easier and faster. For each vertex of a group we determine
the interior of the polygon it belongs to, and a “search axis” into the polygon
by dividing the inner angle by 2 (see Fig.7 (left)).

Then, for each group, depth discontinuities are detected along all search axes
of the group, using a moving window of size 2 ·S; S = 4 implies a search window
of size 8, on which the pixel positions are numbered -4, -3, -2, -1, 0 (the “centre”
pixel), 1, 2 and 3, see Fig. 7 (right). On both parts of the search window, the
depth information is approximated by linear regression, i.e. on [−4,−1] and on
[0, 3]. The two depths computed at position −0.5 are compared and ordered,
giving Dmin and Dmax, as are the actual depth values at positions -1 and 0, D−1

and D0. The depth values at positions -1 and 0 are considered to represent a
depth discontinuity if all four of the following conditions hold:

|D0 −D−1| > T , Dmax−Dmin > T , |D0 −Dmin| > T and |D−1−Dmax| > T ,

in which T is a threshold value. If more than one depth discontinuity is found
for a group, only the one closest to the vertex position will be used.
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Fig. 7. Search axes for a group of vertices (left), and discontinuity detection (right).

Fig. 8. Segmented regions after polygonisation, vertex optimisation, path extrapolation
at forks and triangulation.

If a depth discontinuity has been found: (a) the depth of each vertex of
the group is determined in the direction of its own search axis, but starting at
the position of the discontinuity; (b) a search window of 8 pixels is used; (c) the
depth along the window is approximated by linear regression; (d) if the difference
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Fig. 9. Different views of a scene with Gouraud shading and texture mapping.
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between the linear regression and the actual depth value at each window position
is not greater than a threshold, the actual depth values are considered to be valid;
(e) the depth of the vertex is calculated by extrapolating the linear regression of
the first window position with valid depth values; and (f) after determining the
depth of each vertex of the group, vertex connectivity is ensured by comparing
depth values (all differences) against a threshold, and by replacing similar values
with their corresponding average.

If no depth discontinuity has been found: (a) the depth will be the same for
all vertices of the group, since they are considered to be connected; (b) the depth
value is obtained directly at the vertex position of the range image; and (c) if, at
this position, the depth is not available, we use the average of the first available
values along all search axes.

6 Results and Discussion

We applied the developed algorithms to the ABW range data set [6]. Average
scene CPU times on a 900MHZ iBook with 640MB RAM were 2 to 3s. Triangu-
lation with our algorithms yields up to 1,000 triangles per scene (direct triangu-
lation yields triangle counts up to 2×511×511=522,242). Thus, our algorithms
clearly enable interactive object visualisation with shading and texture mapping.
Figure 8 shows processing results of the polygonisation, vertex filtering, fork es-
timation and triangulation for one scene. Note the improved positions of the
complex vertex junctions after the fork processing. Figure 9 shows screenshots
from our interactive scene visualiser, obtained from two different viewpoints.
Note the discontinuity at jump edges and the connectivity at fold edges. The
texture mapping (centre and bottom) provides in a more realistic rendering of
the scene.

In this paper we presented very efficient, fast and low-level algorithms for
the reconstruction of objects in 3D scenes. Further optimisation, currently being
explored, concerns the detection of complex vertices (forks) by directly analysing
the range data. This is important because, in the case of objects with planar
faces, a good a priori localisation of forks can save most of the adaptive edge
filtering.
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Abstract. The present paper proposes a system that detects a stereo
disparity map from random-dot stereograms with the grouping process.
A simple operation for random-dot stereograms converts the stereo cor-
respondence problem to the segmentation one. For solving the segmen-
tation problem derived from random-dot stereograms, the stereo vision
system proposed here utilizes the grouping process of our previously
proposed model. The model for the grouping process consists of multi-
ple reaction-diffusion models, each of which governs segments having a
disparity in the stereo vision system. A self-inhibition mechanism due to
strong inhibitory diffusion within a particular reaction-diffusion model
and a mutual-inhibition mechanism among the models are built in the
proposed system. Experimental results for artificially generated random-
dot stereograms show the validity of the proposed system.

1 Introduction

In detecting disparity from stereo images, there are two major problems caus-
ing disparity error. These are the miss-match problem and the occlusion (un-
matched) problem. Most of ordinary methods detect disparity from stereo im-
ages by the pattern matching procedure. When a stereo camera system captures
a 3-dimensional scene having similar objects or not having texture of bright-
ness patterns, we can not distinguish correspondences of patterns between the
stereo images. Similar patterns in the stereo images cause the miss-match prob-
lem. When there are two objects located at different distances of depth in 3-
dimensional space, one of the objects occludes the other one in the stereo images.
The pattern matching procedure can not find the exact correspondence of the
occluded object between the stereo images. This is the occlusion problem.

Ordinary methods detect disparity at a particular pixel site by taking account
of disparities detected at neighbouring pixel sites. For example, some of the
methods propagate disparity over a local neighbouring region with a diffusion
process. Since the diffusion process [1] averages the disparity distribution, it also
averages abnormal disparities caused by the miss-match problem. The diffusion
process also fills in un-matched or un-detected regions by diffusing disparities
obtained within the well detected regions. However, since the diffusion process
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Fig. 1. Geometry of a stereo vision system. A point P in 3-dimensional space is
projected onto the position pl on the left image plane Il(x, y) and the position pr on
the right image plane Ir(x, y). Optical axes of the two image planes are parallel and
horizontal axes of the planes share a common horizontal line.

also propagates the disparities across object boundaries and around corners of
patterns, it simultaneously causes the over-smoothed problem.

Our previous paper presented a model for the grouping process, which groups
the pixel sites having similar features [2]. The model consists of multiple reaction-
diffusion models, each of which consists of reaction terms and diffusion ones. The
model can suppress the over-smoothed problem, which is often caused by the
simple diffusion model, by the self-inhibition mechanism. A special condition on
the diffusion coefficients and the non-linear reaction terms of the model prevent
the over-smoothed problem. Our another paper also showed that the problem of
finding correspondence relation between stereo images becomes the segmentation
problem with a simple logic operation [3]. Thus, we are expecting that the model
of the grouping process proposed previously solves the segmentation problem
derived from the stereo images without the over-smoothed problem.

The present paper proposes the stereo vision system detecting a disparity
map with the grouping process. The proposed system does not solve explicitly
the stereo correspondence problem, but solves the segmentation problem with the
grouping process. The main goal of the present study is to avoid the miss-match
problem and the occlusion one with the grouping process. The experimental
results for artificially generated random-dot stereograms show the performance
of the proposed system.

2 Stereo Vision System and Random-Dot Stereograms

A stereo vision system captures a 3-dimensional scene through the two cameras
located at two different positions (Fig. 1). The system projects a point P in
3-dimensional space onto the position pl of the left image plane Il(x, y) and
the position pr of the right image plane Ir(x, y). The stereo disparity refers
to difference between the two positions pl and pr on the horizontal axis. Since
the stereo disparity corresponds to the depth one-to-one, it provides the depth
of the point P. For the detection of the disparity, it is necessary to find the
correspondence relation between pl and pr on the stereo images. Most of the
previous studies find the correspondence relation by searching similar brightness
patterns between the stereo images. They often utilize the pattern matching
procedure to obtain the similarity between brightness patterns.



Stereo Vision System with the Grouping Process 139

(a) (b) (c)

d=0 d=1 d=2 (pixel)

Fig. 2. Example of random-dot stereograms. (a) The left image Il(x, y) and (b) the
right image Ir(x, y) of the stereo images. The black-dot density of the stereo images
is 50(%). (c) The true disparity map, which has three different disparities d = 0, 1, 2
(pixel). The size of the images is 250 × 250 (pixel2).

(a) (b) (c)

Fig. 3. Outputs of the XNOR logic operation applied to the random-dot stereograms
(Fig. 2). In the stereograms, a white dot refers to the logical value “true” and a black
dot does to “false”. Overlapping the stereo images [Figs. 2(a) and 2(b)] located at a
difference d = 0, 1, 2 (pixel) and computing the XNOR logic operation for the stereo
images at a particular pixel site provided the three outputs L(x, y; d) [see Eq.(1)].
(a) L(x, y;d = 0), (b) L(x, y; d = 1) and (c) L(x, y;d = 2).

The random-dot stereograms show that the human visual system can per-
ceive the depth from only the disparity information (Fig. 2) [4]. The random-dot
stereograms have only dot patterns; corresponding dots are located at slightly
different positions in the stereo images. The difference of the corresponding po-
sitions of a dot in the stereo images is the disparity. Finding the correspondence
of the dot between the stereo images provides the disparity, which provides the
depth.

When we focus on the random-dot stereograms, the problem of finding the
correspondence relation between the stereo images becomes the segmentation
problem [3]. Let us suppose that one of the stereo images overlaps the other one,
where the centre of the former image plane differs from that of the other image
plane. The distance between the two centre positions is d (pixel) on the horizontal
axis. We suppose that a black-or-white value at a pixel site in a random-dot
image refers to a logical value of “false” or “true”. The output L(x, y; d) of the
XNOR logic operation,
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Fig. 4. Phase plot for ordinary differential equations du/dt = f(u, v)/ε and dv/dt =
g(u, v) with the FitzHugh-Nagumo type reaction terms of Eq.(3). The parameter a is
(a) a = 0.25, (b) a = 0.45 and (c) a = 0.05; the parameter b is fixed as b = 10. The
points A, C and C’ are stable steady states; the points B and B’ are unstable ones.
The systems (a) and (c) having two stable steady states is called the bi-stable system;
the system (b) having one stable steady state is called the mono-stable system.

L(x, y; d) = Il(x, y)⊕ Ir(x+ d, y), (1)

applied to two dots on the overlapped stereo images Il(x, y) and Ir(x, y) extracts
the region having the disparity d (pixel) as the flat white pattern having the true
value. The random-dot pattern remains in other regions not having the disparity
d. Thus, the segmentation of the white flat region from the random-dot pattern
region for L(x, y; d) extracts the region having the disparity d (Fig. 3).

3 Proposed Stereo Vision System

3.1 FitzHugh-Nagumo Type Reaction-Diffusion Model

A general reaction-diffusion model with two variables u and v consists of two
partial differential equations describing the temporal developments of the two
variables. The equations have diffusion terms of ∇2u and ∇2v and reaction ones
f(u, v) and g(u, v),

∂u

∂t
= Du∇2u+

1
ε
f(u, v) + μs,

∂v

∂t
= Dv∇2v + g(u, v), (2)

where Du and Dv are diffusion coefficients, s(x, y) is a source term and its
coefficient μ is a small constant (0 < μ � 1). The FitzHugh-Nagumo type
reaction terms [5, 6] refer to the next functions,

f(u, v) = u(1− u)(u− a)− v, g(u, v) = u− bv, (3)

where a and b are constants.
Figure 4 shows the trajectory of the solution (u, v) under the non-diffusive

system (Du = Dv = 0) and without the source term (s = 0). When the model
is the bi-stable system, a solution converges either of two stable steady states;
when the model is the mono-stable system, a solution converges a stable steady
state. The system becomes either of the mono-stable system or the bi-stable
one, according to the parameter values of a and b. In addition, the parameter a
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works as a kind of a threshold value for an initial solution of (u = u0, v = 0).
When u0 < a, the solution directly converges to the stable steady state A at
the origin (u = 0, v = 0). When u0 > a, the solution first moves toward the
point (u = 1, v = 0) along the horizontal coordinate. After that, if the system is
bi-stable, the solution finally converges to the stable steady state C or C’ along
the function du/dt = 0; if the system is mono-stable, the solution does to the
stable steady state A along the trajectory indicated by the arrows in Fig. 4.

3.2 Multiple Reaction-Diffusion Models and Grouping Process

The next set of equations having two variables (ud, vd) describes the modified
version of the FitzHugh-Nagumo type reaction-diffusion model,

∂ud

∂t
= Du∇2ud +

1
ε
f(ud, vd, um) + μsd,

∂vd

∂t
= Dv∇2vd + g(ud, vd), (4)

where the output L(x, y; d) of the XNOR logic operation for the disparity d is
provided to the source term sd(x, y). The set of equations Eq.(4) governs the
groups having the disparity d. The disparity is in the range of d = 0, 1, 2, · · · , D.
Thus, multiple models, the number of which is D + 1, are necessary to govern
the multiple disparity values. The parameter um refers to the maximum value
of ud, namely, um = maxd(ud).

We introduce the mutual-inhibition mechanism among the multiple reaction-
diffusion models, each of which governs the groups of the disparity d. We call the
sate having the high value of ud  1 “excited”. Let us consider that the pixel site
being the excited state has the disparity d. When a model becomes the excited
state, since a particular pixel site has only one disparity value, the other models
must not become the excited state. The original FitzHugh-Nagumo model has
the parameter a, which works as a threshold value. In order to exclusively detect
a disparity value at a pixel site, we introduce the switching function into the
parameter a. Our previous paper [2] proposed the next modified version of the
reaction terms,

f(ud, vd, um) = ud(1− ud)(ud − a(um))− vd, g(ud, vd) = ud − bvd, (5)

and the next function a(um),

a(um) =
1
4
{tanh(um + a0) + 1}, (6)

where a0 is a constant. When another model becomes the excited state (um

becomes large), the threshold value a(um) also becomes large. Therefore, the
large threshold value inhibits the model governing the disparity d from becoming
the excited state. This is the mutual-inhibition mechanism built in the modified
reaction-diffusion models.

A special condition for the ratio between the diffusion coefficients Du and Dv

causes the self-inhibition mechanism in the reaction-diffusion model. In the con-
dition of Dv/Du < 1, spatial distributions of ud and vd change as time proceeds.
Edges of spatial patterns in their distributions propagate; their global structures
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dynamically change. In the condition of Dv/Du > 1, the strong diffusion of vd,
compared to that of ud, inhibits the edges from propagating (the self-inhibition
mechanism). Our model utilizes the condition for the self-inhibition mechanism
to sustain static patterns expressing the groups of the disparity d.

3.3 Building a Disparity Map
The final stage to build a disparity map is the integration of the outputs ud

of the multiple reaction-diffusion models. When a model with ud is the excited
state at a pixel site, we can understand that the pixel site has the disparity
d. Thus, we detect a disparity value at a pixel site by searching the maximum
value for all of the outputs ud. The proposed system builds the disparity map
M(x, y, t) by,

um = max
d

(ud) ⇒ M(x, y, t) = m. (7)

4 Experimental Results

We realized the proposed stereo vision system by numerical methods. The finite
difference method discretized the partial differential equations of the proposed
multiple reaction-diffusion models of Eq. (4). The Crank-Nicolson method with 5
spatial neighbouring points approximates the Laplacian operator∇2. The Gauss-
Seidel method solves the set of linear equations obtained by the discretization.
The Neumann boundary condition governs the four sides of the image plane.
Initial conditions of ud and vd are zero over the image plane.

Figure 5 shows the result for the random-dot stereo images of Figs. 2(a) and
2(b). The outputs of Fig. 3 represent the source terms of Eq.(4). Figures 5(a),
5(b) and 5(c) show the distributions of ud for d = 0, 1, 2, respectively. Equation 7
built the disparity map of Fig. 5(d) from the distributions of ud. By compar-
ing the result of the disparity map Fig. 5(d) with the true one of Fig. 2(c),
we successfully detected the disparity map. For confirming the validity of the
obtained map more quantitatively, we showed the 1-dimensional profiles of the
obtained disparity map and the true one in Fig. 5(e). We can confirm that these
disparity profiles are almost the same except for those around x = 50. Figure
5(f) shows the 1-dimensional profiles of ud. We can confirm that the variables ud

are almost exclusively distributing in the 1-dimensional space. However, around
x = 50, both the variables u1 and u2 become excited. This caused the disparity
error around x = 50.

An additional experiment shows the performance of the proposed method for
random-dot stereograms having low dot density. Figure 6 shows the result for the
stereo images having the black-dot density of 10(%) [the true disparity map is
the same as Fig. 2(c)]. In the outputs of the XNOR logic operation applied to the
low density stereo images [Figs. 6(c)∼6(e)], there exists many pixel sites having
the logical true values (white pixel), compared to those of Fig. 3. Therefore, the
problem of finding the flat true regions becomes more difficult. Figure 6(f) shows
the disparity map obtained by the proposed system. The shapes included in the
obtained disparity map incompletely illustrate the original ones. However, the
global structure of the map is very similar to the true one.
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Fig. 5. Experimental result for the random-dot stereograms of Fig. 2. The group-
ing process of the proposed system analysed the outputs of the XNOR logic opera-
tion (Fig. 3) and provided the distribution maps of ud for (a) d = 0, (b) d = 1 and
(c) d = 2 at t = 50. The parameter values utilized in the present experiments were
Du = 1, Dv = 4, ε = 1/100, a0 = 0.25, b = 10, μ = 0.005; the finite differences were
δx = δy = 1/10, δt = 1/1000. (d) The disparity map M(x, y, t) obtained from the dis-
tributions of ud. (e) The 1-dimensional profiles of the obtained disparity map compared
with its true map. (f) The 1-dimensional profiles of ud for d = 0, 1, 2.

5 Conclusions

The present paper proposed the stereo vision system detecting a disparity map
from random-dot stereograms. The problem of detecting stereo disparity be-
comes the segmentation problem by a simple logic operation for the stereo im-
ages. In solving the segmentation problem, the proposed system utilizes the
grouping process realized with the multiple reaction-diffusion models having the
mutual-inhibition mechanism and the self-inhibition one. The integration of the
outputs of the multiple models provides a disparity map. Through the analysis
of random-dot stereograms, the validity of the proposed system was confirmed.
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(a) (b) (f)

(c) (d) (e)

d=0 d=1 d=2 (pixel)

Fig. 6. Experimental results for the random-dot stereograms having low dot density.
The black-dot density of the images is 10(%). (a) Left image and (b) right image. The
size of the stereo images is 250 × 250 (pixel2). The XNOR logic operation applied to
the stereo images provided the outputs for (c) d = 0, (d) d = 1 and (e) d = 2 (pixel).
(f) The disparity map M(x, y, t) obtained at t = 50. The parameter values utilized
here were the same as those of Fig. 5 except for μ = 0.003.
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Abstract. The acquisition of three-dimensional models of a given surface is a
very interesting subject in computer vision. Most of techniques are based on the
use of laser range finders coupled to a mechanical system that scans the surface.
These techniques lacks of accuracy in the presence of vibrations or non-controlled
surface motion because of the misalignments between the acquired images. In this
paper, we propose a new one-shot pattern which benefits from the use of regis-
tration techniques to recover a whole surface in the presence of non-controlled
motion.

1 Introduction

Three-dimensional reconstruction of real objects is a promising subject with many ap-
plications, such as reverse engineering, robot navigation, mould fabrication and vi-
sual inspection among others. Most range finders are based on the projection of laser
beams because of its robustness against ambient light, easy image processing algorithms
and high given accuracy including optical segmentation and subpixel accuracy. Please,
check a quite recent survey related to laser projection [3] and other reconstruction tech-
niques such as coded structured light [9]. In general, laser projection techniques are
based on the use of a laser emitter coupled to a cylindrical lens that spread the light
forming a plane that is projected to the measured surface. The projection of a laser
plane only lets us to reconstruct a profile of the measuring surface. So, in most cases a
mechanical system is added that permits a scanning. In some applications: a) the laser
plane is projected onto a rotating mirror and reflected towards the surface; b) the laser
beam is attached to a moving worm gear; c) the laser beam keeps motionless while is the
object which is placed on a rotating table. All these techniques permit the reconstruction
of a whole surface with high resolution. However, the accuracy strongly depends on the
mechanical system used so that potential vibrations given by the environment produces
misalignments and consequently the accuracy is considerably influenced. Furthermore,
the sequence of images that are captured in the scanning process forces the object to be
motion controlled reducing the number of applications, i.e. industrial conveyors can not
be considered.

In this paper, a new one-shot 3D sensor is proposed, which is based on registering
a set of 3D images from a non-controlled moving surface. Furthermore, dense cloud of
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3D points are acquired without using any mechanical system to scan the object so that
misalignments in the reconstruction are neglected. Although one-shot 3D sensors have
been previously used, usually a manual or mechanical process is required to align the
scanned surfaces [7]. In this paper, a pair-wise-based registration method is proposed to
align the cloud of 3D points with the aim of obtaining a complete surface of the scanned
object.

2 One-Shot 3D Sensor

Nowadays, there are a considerably amount of lenses which can be coupled to a laser
emitter which spreads the light forming a given pattern: planes, circles, dots and stripes.
However, it has been demonstrated that stripe patterns are the most suitable in measur-
ing processes because of the easy segmentation and the use of subpixel techniques in
the detection of the stripe peaks. Stripe patterns also ease the search of correspondences
among the slits projected and the ones acquired by the camera. The number of stripes
projected is directly related to the surface resolution and to the image processing com-
plexity. A compromising stripe pattern forming 19 slits has been chosen and the images
are acquired by a on-the-shelf camera coupled with a 635 nm optical filter.

3 Calibration

Calibration is an offline process which aim is the computing of the geometry that re-
lates the 3D points on the measuring surfaces with the projection of these points in the
acquired image. This relation can be linearly approximated to the following equation:

PW =W TL · pi (1)

Once WTL is known, 2D points in the image frame can be directly transformed to
3D points in the world reference frame. This matrix is computed by orthogonal least
squares from a set of correspondences, also known as calibrating points. In order to
search for correspondences, the complete quadrangle is used [2]. The original method
has been adapted to calibrate the set of 19 planes obtaining the 19 transformation ma-
trices which describes the geometry of the sensor. For every plane calibration the fol-
lowing steps are processed:

– Detection of the points of the laser profile in the image plane,
– Find the correspondences between points in the image plane and 3D points in the

calibrating plane,
– and Compute the T matrix using the correspondences given by the previous step.

In the following sections, the three steps are described.

3.1 Points in the Laser Profile

When a unique plane is projected to the scene, the peak detection with subpixel accu-
racy can be determined with high accuracy using a FIR filter approach [4]. However,
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when more planes are projected, the derived curve of the profile (shown in fig.1b) is
high influenced by the neighborhood. In some situations, the derived curve does not
cross to zero at the maximum value of the intensity profile. To solve this problem, an
adapted methodology that is based on a previous work related to coded structured light
is used [8]. First of all, the first derivative is computed using the convolution of each
row with the vector [-1 -1 -1 0 1 1 1]. Then, the second derivative is computed obtaining
the enhancement of the peaks compared to the intensity image. A threshold is finally
used to segment the stripes as follows:{

0 if fi” < mean(f) + var(f)
255 otherwise

(2)

f ′L = conv([1 − 1 − 1 0 1 1 1], [f(pi − 3) : f(pi + 3)]) (3)

where f is the intensity profile curve and fi” is the second derivative in each pixel of the
row. As can be seen in the fig. 1c, the interval of each peak can be found easily analyzing
all the pixels in a consecutive order. For each interval, the central value is computed as
an approximation of the position of each maximum. Then, a local derivative is computed
in each estimated peak as follows:

where conv is the convolution, and f(pi) is the value of the intensity profile in the
ith estimated peak. The pass to zero of the f ′L function give us the sub-pixel position
of the peak of each laser stripe. Furthermore, if the intensity value of this points is less
than a threshold, this peak is not considered.

(a) Image obtained by
a camera with optical

filter after peak
detection
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Fig. 1. Process of obtaining the laser peaks

3.2 Correspondences Between Points in the Image and 3D Points

The methodology is based on the complete quadrangle [1]. The principle of this method
is the cross-ratio between the complete quadrangle and the acquired image of this quad-
rangle (see fig. 2).

A′P ′
A

A′G′ =
APA

AG
(4)
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As A,B are known 3D points, and A′, B′ and P ′
A can be found analyzing the acquired

image, PA can be determined. The same principle is applied with point PB . If quadran-
gle is moved along the Z-axis, a set of 2D-3D correspondences can be found for each Z
position. Using this set of correspondences, eq. 1 can be solved determining the trans-
formation matrix. In general, only two points are used for every plane position. Note
that calibration accuracy is related directly to the number of correspondences used. In
order to improve the accuracy, a set of points along the laser stripe are selected. More
details are presented in [2].

Fig. 2. Cross-ratio and the complete quadrangle used to determine 2D-3D correspondences

3.3 Compute T Matrix Using Known Correspondences

Now the transformation matrix can be obtained by minimizing eq. 5 which has been
easily obtained arranging eq. 1.⎡⎢⎢⎢⎢⎢⎣

...
...

...
...

...
ui vi 1 0 0 0 0 0 0 −ui · Xi −vi · Xi −Xi

0 0 0 ui vi 1 0 0 0 −ui · Yi −vi · Yi −Yi

0 0 0 0 0 0 ui vi 1 −ui · Zi −vi · Zi −Zi

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣

t11
t12
t13
t21
...

t43

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
...
0
0
0
...

⎤⎥⎥⎥⎥⎥⎦ (5)

where tij ’s are the parameters of the WTL matrix. The solution is obtained from the
computation of the vector θ that minimizes equationA ·θ = 0. A good estimation using
Orthogonal Least Square technique is computed from the eigenvector corresponding to
the smaller eigenvalue of matrix AT ·A.
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4 Reconstruction

Once the system is calibrated and the transformation matrices for every stripe com-
puted, the 3D points can be reconstructed by using their corresponding transformation
matrix. So, next step in reconstruction is stripe segmentation and the correspondence
problem. A robust stripe identification has been implemented which label every stripe
when all them are present for a given image row [3]. This information is used as a seed
to complete the stripe identification by region growing that allows us to identify the
stripes in the presence of occlusions and cuts. Then, once every image pixel is labelled
to the corresponding stripe, the surface reconstruction is accomplished.

A further step deals with the interpolation of the 3D profiles obtained with the aim
of obtaining a continuous surface. The function used to approximate the surface is the
following:

z = ax2 + by2 + cxy + dx+ ey + f (6)

The parameters are obtained by Least Squares as follows:⎛⎜⎜⎜⎜⎜⎜⎝
a
b
c
d
e
f

⎞⎟⎟⎟⎟⎟⎟⎠ = (HTH)−1HT

⎛⎜⎜⎜⎜⎜⎜⎝
z1
...
zi

...
zn

⎞⎟⎟⎟⎟⎟⎟⎠where H =

⎛⎜⎝ x1x1 y1y1 x1y1 x1 x1 1
...

...
...

...
...

...
xnxn ynyn xnyn xn xn 1

⎞⎟⎠ (7)

The results of the reconstruction are shown in fig 3. In spite of only 19 planes are used
to acquire the surface, the resolution of the final reconstruction is enough in free-form
shape objects. Furthermore, details not acquired by the sensor can be obtained in the
registration process, where some partial views are fused.

(a) Free form shape
Object

(b) Image of the laser stripe
projection

(c)
Reconstructed

surface

Fig. 3. Experimental results with a real object

5 Registration

When a set of free views from a given object are already available, registration can be
applied to align all these views among them with respect to a reference system and
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a)Real Object b)Final Registration c)Real Object d)Final Registration

Fig. 4. Final Results

Table 1. Registration results of the frog using real data

Rotation angle error
Pair-wise (ICP) Our proposal

Real angle Computed angle Error Computed angle Error
45◦ 44.11◦ 0.89◦ 44.11◦ 0.89◦

90◦ 88.41◦ 1.59◦ 88.41◦ 1.59◦

135◦ 132.92◦ 11.08◦ 124.20◦ 10.80◦

180◦ 168.60◦ 11.40◦ 183.86◦ 3.86◦

225◦ 213.00◦ 12.00◦ 228.27◦ 3.27◦

270◦ 256.39◦ 13.61◦ 271.67◦ 1.67◦

315◦ 300.75◦ 14.25◦ 316.03◦ 1.03◦

obtain a complete reconstruction of the object. A state-of-art of Registration methods
has been recently published [6]. The results of this work pointed out that the best tech-
nique to register range images is a robust variant of ICP [10] which was classified as a
pair-wise registration technique. Once all the images have been registered in pairs using
Zimβer method, a global minimization is applied with the aim of reducing the global
error. A graph of connectivity is constructed analyzing if two views are connected by
a common surface region. The goal is to compute the transformation of each view to
the reference frame throughout the path in the graph with minimal residual error, where
the error is computed as the mean of the distances between point correspondences for
every pair of views [5]. Dijkstra algorithm is applied to determine the optimal path in
graphs to solve this problem, obtaining a reduced graph. At last, the paths with min-
imal error are the ones used to register the set of views and the object reconstruction
is completed. Figure 4b shows an example of the registration of 8 different views of
an object where the images has been captured by using a Minolta Vivid 700 Scanner
and the object where placed on a non-controlled rotating table. This figure evaluates the
accuracy of the proposing registration method. In table 1, the rotation error obtained
is compared with the results of traditional pair-wise without refinement. Furthermore,
figure 4d shows the results of the registration of ten views captured by the one-shot
scanner proposed. Obviously, reconstructions are not as accurate as the Minolta equip-
ment, but note that the proposed scanner captures 3D information in a single image and
moreover the registration can be refined by the capturing of more and more views of
the same object.
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Fig. 5. The accuracy obtained related to depth, i.e. the Z-axis

6 Experimental Results

A set-up consisting of one on-the-shelf CCD camera, a 635 nm LASIRIS laser emitter
and an optical lens which spreads the laser beam into 19 planes has been arranged con-
forming the imaging system. Both camera and laser are located on a portable platform
where their optical axis form a angle of 60o and the distance between them is approx-
imately 20cm. A calibrating quadrangle has been located at several distances from the
system in increments of 2 mm. The closest plane is located at 20 cm. from the imaging
system. For every quadrangle position, two images are acquired: a) the first is an image
of the quadrangle; b) the second is the projection of the laser on the quadrangle. The
first image is used to determine the parameters of the quadrangle while the second the
geometry of the laser. Then, every laser stripe is determined by a sequence of 16 corre-
spondences which are used to compute the transformation matrix for each stripe. The
accuracy of the system is computed from the discrepancy between the reconstructed
3D points and the 3D points used in the calibration process. The results are shown in
fig. 5. The error is represented with respect to Z-axis which is the axis more sensitive
and directly related to depth. The results gives a good accuracy in a narrow area covered
the center of the calibration area while the accuracy decreases in the vicinity.

7 Conclusions

This paper presents a new one-shot imaging system, which is based on a single on-the-
shelf camera and a stripe laser pattern. The system benefits from one-shot techniques to
recover the 3D shape of surfaces in non-controlled motion environments or even in the
presence of vibrations. Registration is used to align every 3D acquisition with respect to
a world coordinate system obtaining a complete reconstruction of the measuring object.
The calibration benefits from the use of the complete quadrangle and image processing
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from the use of a nice stripe peak detector with subpixel accuracy. Experimental results
show that the accuracy obtained in the reconstruction step is quite acceptable (less than
0.5 mm. in the centered area) and the visual quality of registered surface satisfactory.
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2 Centre de Robotique, Électrotechnique et Automatique
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Abstract. A practical way for obtaining depth in computer vision is the use of
structured light systems. For panoramic depth reconstruction several images are
needed which most likely implies the construction of a sensor with mobile el-
ements. Moreover, misalignments can appear for non-static scenes. Omnidirec-
tional cameras offer a much wider field of view than the perspective ones, capture
a panoramic image at every moment and alleviate the problems due to occlusions.
This paper is focused on the idea of combining omnidirectional vision and struc-
tured light with the aim to obtain panoramic depth information. The resulting
sensor is formed by a single catadioptric camera and an omnidirectional light
projector.

1 Introduction

The omnidirectional vision sensors enhance the field of view of traditional cameras
by means of special optics, structures of still or gyratory cameras or combinations of
lenses and mirrors. Yagi [14] surveyed the existing techniques for building cameras with
a wide field of view and Svoboda [13] proposed several classifications of the existing
omnidirectional cameras according to their most important features.

The catadioptric sensors use reflecting surfaces (convex or planar mirrors) coupled
to a conventional camera and are usually classified depending on the way they gather
the light rays. When all the observed light rays converge into a point, called focus, the
sensors are known as Single View Point (SVP) [1]. The SVP enables distortion-free
reconstruction of panoramic images in a familiar form for the human users.

Stereo catadioptric sensors are special structures of mirrors and lenses designed
for obtaining depth from images with a wide field of view. In order to obtain distinct
points of view of the scene the camera is pointed towards a structure of convex [3] or
planar [5] mirrors. The results obtained by stereoscopic vision depend on the accuracy
of matching the points between the observed images. Structured light based techniques

� This work is partially supported by the Spanish project CICYT TIC 2003-08106-C02-02 and
by the AIRE mobility grant provided by the Generalitat of Catalunya that allowed a four month
stay in the CREA lab from Amiens, France.
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are a particular case of stereo vision where one of the cameras is replaced by a pattern
projector [12]. Using this technique is similar to placing visible landmarks in the scene
so that image points can be identified and matched faster.

This paper presents an omnidirectional sensor that provides 3D information using
structured light. The sensor is formed by a single-camera catadioptric configuration
with an embedded omnidirectional structured light projector. By mounting the om-
nidirectional sensor on a mobile robot applications such as 3D map building, robot
navigation and localization, active surveillance with real-time object detection or 3D
reconstruction can be performed within a horizontal field of view of 360 degrees. The
sensor design and the calibration of the whole system is detailed in section 2. The ex-
perimental results are shown in section 3. The article ends with conclusions, presented
in section 4.

2 Sensor Geometry

In the proposed solution, see Figure 1, the omnidirectional camera is coupled with a
structured light projector that has a field of view of 360 degrees. A more compact sensor
can be build by placing the light projector within the blind zone of the omnidirectional
camera as shown in [8] where a similar sensor was described and analyzed by simu-
lation. However, for the realization of the first prototype of the physical sensor the two
parts have been separated for more maneuverability.

a. b.

Fig. 1. a. Catadioptric omnidirectional camera with embedded structured light projector. b. Lab-
oratory prototype.

The circular pattern projected by the laser is reflected by the conical mirror and
becomes a light-stripe on the scene. The parabolic mirror reflects the scene into the
camera and the laser-stripe can be immediately identified. With the models for both
components of the sensor a precise triangulation can be carried out.

The traditional approach for calibrating a structured light system takes two steps.
The camera is calibrated at first and the light projector is subsequently calibrated based
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on information provided by the camera. A method based on the cross ratio invariance
under perspective projection providing a direct image to world transformation was pro-
posed by Huynh [6]. Since our intention was to model the light projector and the camera
independently the two steps calibration method was preferred.

2.1 Omnidirectional Camera Model

Assuming that the pair camera-mirror possesses a SVP, the omnidirectional camera can
be modelled as the projection onto the sphere followed by the projection to a plane, as
stated by Geyer and Daniilidis in [2]. Another way of approaching camera calibration is
by considering the mirror surface as a known revolution shape and modelling it explic-
itly, for instance considering that the reflecting surface is a paraboloid and the camera
is orthographic. Both models were tested and the comparative results were reported in
[9]. The omni camera used for this work has a SVP but contains two reflecting surfaces
so the first mentioned method was preferred.

Fig. 2. Image formation using the projective equivalence of a SVP catadioptric projection with
the projection on the sphere.

The calibration is performed using a set of known 3D points distributed on the four
walls of a cube placed around the sensor. Consider a scene point Pw = [xw , yw, zw],
and Ps = [xs, ys, zs] the intersection of the light ray emitted by the point Pw with the
sphere of radius R = 2h (see Figure 2). We can write equation (1) where all points are
represented with respect to the camera coordinate system.⎧⎨⎩

xs = λ · xw

ys = λ · yw

zs = λ · zw

(1)

Since the points belong to the sphere: x2
s + y2

s + z2
s = R2.

The perspective projection of Ps on the image plane from a point C = [0, ξ] pro-
duces a point Pi = [x, y] as expressed in equation (2){

xs

ξ−zs
= x

ξ+ϕ
ys

ξ−zs
= y

ξ+ϕ

(2)
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Adding the intrinsic camera parameters αu, αv , u0, v0, the pixel coordinates of the
image points are shown in eq. (3)⎧⎪⎨⎪⎩

u = αu(ξ+ϕ)xw

ξ
√

x2
w+y2

w+z2
w−zw

+ u0

v = αv(ξ+ϕ)yw

ξ
√

x2
w+y2

w+z2
w−zw

+ v0

(3)

The parameters of the model are ξ, which depends on the eccentricity; ϕ which is
a function of both the eccentricity and the scale; αu, αv , u0,v0, the intrinsic camera
parameters; rX(φ), rY (θ), rz(ϕ), and tx, ty, tz , the six extrinsic parameters that model
respectively the orientation and the translation between the world coordinate system
placed in the upper corner of the first calibration plane and the camera coordinate sys-
tem. The orientation vectors are functions of the three angles (φ, θ, ϕ) which define the
rotation on each axis and are expressed in radians while the translations are measured
in millimeters, as detailed in [11].

The difference between the positions of the calculated image points and the posi-
tions of the real image points is the calibration error of the model. Minimizing the above
error by means of an iterative algorithm such as Levenberg-Marquardt the model of the
omnidirectional camera is calibrated.

2.2 Omnidirectional Laser Projector Model

The omnidirectional light projector is formed by a laser which emits a circle and is
pointed to a conical mirror so that the projected light covers the entire field of view of
the catadioptric camera. The proposed projector can be seen as a reversed omni-camera
where the light flows in the opposite sense. So, the projector benefits of the attributes
revealed by previous studies of catadioptric cameras based on the conical mirror shape.
Lin and Bajcsy [7] pointed out that the conical mirror can be used for building true SVP
configurations with the advantage that it preserves image points brightness better than
other mirrors since it does not distort the image in longitudinal directions. Yagi [14]
highlighted the fact that the conical mirror on vertical section behaves like a planar
mirror and consequently provides a much better resolution than any other omni-mirror
shape. Baker and Nayar [1] proved that the curved mirrors (such as parabolic, hyper-
bolic, etc.) increase defocus blur because of their bend. Consequently, the cone bears
out to be the ideal shape of mirror to be used for building the structured light projector.

Unlike the camera, the light projector does not provide “image points” therefore no
correspondences can be established. The bright spots on the scene are observed by the
calibrated omnidirectional camera which possesses an unique center of projection. This
property allows calculating the direction of the light source for each image point. Since
the locations of the calibration planes are known, the 3D coordinates of the laser-stripe
lying on those planes can be determined. A set of such points can be used for calibrating
the pair laser-mirror.

Ideally, when the laser is perfectly aligned with the conical mirror, the 3D shape
formed by the reflected laser pattern can be imagined as a circular cone, called “laser-
cone”. Unfortunately, the precision of obtaining the coordinates of the bright spots is
bounded by the catadioptric camera calibration accuracy and by its resolution. More-
over, a perfect alignment of the laser and the conical mirror is difficult to guarantee so a
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more general shape than the circular cone should be considered. Since the perspective
projection of a circle placed on a plane Π onto a plane that is not parallel with Π is
an ellipse it can be deduced that a suitable shape for modelling the laser-cone is a rev-
olution surface whose intersection with the plane perpendicular on the omnidirectional
camera optical axis is and ellipse.This shape, the elliptic cone, was used in [9] and
proves to be more accurate than the circular cone. Still, for a large amount of noise, the
elliptical cone can not be uniquely determined.

Therefore, the general quadratic surface was chosen for modelling the laser projec-
tion. Consider Pwi(x, y, z) the bright spots on the calibration walls with known coor-
dinates. The quadratic surface that passes through all the points is represented in eq. 4.
Let H be the matrix that contains the coordinates of the points, A the matrix of the pa-
rameters and F the free term matrix. Writing H ·A = F , the matrix A can be obtained
by A = (H ′ ·H)−1 ·H ′ ·F . This is a simple method for calibrating the omni projector.
Since no iterations are needed it is much faster than the iterative minimization methods.
However, its main drawback is that the matrix H can not be controlled and, for noisy
data, it is likely to be singular.
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Therefore, a more robust method for finding the parameters of the general quadratic
surface must be considered. Lets assume, without loss of generality, that the world ref-
erence system is placed such that the calibration planes are perpendicular on the X and
Y axis. The intersections of the quadratic with the calibration planes are arcs described
by a subinterval of the parameter domain: the arcs contained in the planes perpendic-
ular on the X and Y axis provide information on the parameters of the quadratic with
x = ct and y = ct, respectively. Writing the quadratic as in eq. 5, its intersection
with the planes X and Y are shown in eq. 6 and eq. 7, respectively. The parameters of
the arcs for each plane are obtained by fitting the corresponding points into the subse-
quent equations. Taking into account that the 3x3 matrix is symmetric, the full set of
parameters of the quadratic surface can be retrieved from equations 6 and 7.

[
x y z

]
·
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Fig. 3. a. One of the calibration planes. b. Error for the 285 calibration points, measured in pixels.

Table 1. The calibrated parameters for the omni camera.

ξ ϕ αu αv u0 v0 rx ry rz tx ty tz

1.06 -9.64 -32.53 33.24 429.51 292.72 0.02 0.01 -0.009 -26.45 -0.82 -754.1

Dividing the calibration in two parts the number parameters to be simultaneously
minimized decreases which leads to a robust calibration method.

3 Experimental Results

The system was build using off the shelf components. The optics and the mirror used
for the omnidirectional camera were provided by Remote Reality [10]. The camera is
a Sony SSC-DC198P with the ccd of 1/3”. The laser and its optics are produced by
Lasiris, the diode power is 3mW and produces red light with a wavelength of 635nm.

The camera calibration is performed using a set of 285 dots distributed on the four
planes placed around the sensor. The distance between the centers of any two adja-
cent dots on the same plane is 6cm and the height of the calibration plane is 80cm.
A semi-automatic point extraction method is performed. For each plane, several dots
are selected by the user and their centers are determined with sub-pixel accuracy. The
centers of the remaining dots are automatically found with the same precision. The cali-
brated parameters of the camera-model are listed in the Table 1. The average calibration
error is μ = 2.3px and the sample standard deviation σ = 2.542.

The conical mirror used for building the laboratory prototype has a height h =
4.4 cm and the cone aperture angle is β = 52 degrees. The laser projects a circular
cone with a fan angle α = 11.4 degrees. Given that the relation between the two angles
is β ≈ 0.5(α + π/2), the laser is reflected along a very flat surface which can be
approximated to a plane: ax+ by + cz + d = 0, see Figure 4.b. The center of the laser
stripe is determined with sub-pixel accuracy using the peak detection method described
by Forest [4] and the discrete points are used for calibrating the parameters of the plane:
a = −0.13, b = −0.001, c = 1 and d = 78.99.
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Fig. 4. a. Projection of the laser pattern. b. Flat surface fitted to a set of discrete points from the
laser stripe. The three dotted rectangles are the points used for calibrating the camera.

a. b.

Fig. 5. Omnidirectional 3D profile obtained along the laser stripe. The dots stand for the recon-
structed 3D points. a. Lateral view b. Upper view.

With the sensor surrounded by four planes depth was calculated using a set of dis-
crete points of the laser pattern. For a scene containing two cylinders the result is pre-
sented in Figures 5 with the two cylindrical shapes correctly identified. It is also notice-
able that the points on the walls fall on the corresponding planes. In terms of accuracy,
the radius of the cylinder was measured and has 93cm while the range finder returned a
result of 95cm.

4 Conclusions

It is noticeable that the use of 360 degrees images and of scene-depth information is
ideal for robot navigation tasks. Starting from this observation we combine the advan-
tages of omnidirectional vision and structured light. We presented here the geometry
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and the calibration for a prototype of a panoramic range finder. The two omnidirec-
tional systems that compose the sensor are calibrated and the resulting model is used
for measuring depth in a real scene. The accuracy of the sensor is enhanced by the use
of sub-pixel accuracy techniques at calibration and reconstruction stages. The results
obtained are encouraging and prove that this sensor can be used in real robot navigation
and depth perception applications.
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Abstract. The paper presents a novel particle filtering framework for vi-
sual object tracking. One of the contributions is the development of a like-
lihood function based on one of machine learning algorithm–AdaBoost
algorithm. The likelihood function can capture the structure character-
istics of one class of objects, and is thus robust to clutters and noise
in the complex background. The other contribution is the adoption of
mean shift iteration as a proposal distribution, which can steer discrete
samples towards regions which most likely contain the targets, and is
therefore leading to computational efficiency in the algorithm. The effec-
tiveness of such a framework is demonstrated with a particular class of
objects–human faces.

1 Introduction

Particle filtering is widely investigated in recent years in computer vision, be-
cause of its powerful ability to deal with general non-linear and non-Gaussian
problems. Particularly in visual tracking, measurement model (likelihood func-
tion) is often non-linear due to clutter or noise in the background [1], causing
the posterior distribution of the system state being non-linear. It is why particle
filtering receives so much attention in the domain. Two factors weight heavily for
the effectiveness of particle filter. One is likelihood function, responsible for ex-
tracting visual information from images. The other is the proposal distribution,
from which a set of discrete samples will be drawn. The paper has contributions
in both aspeacts.

1.1 Likelihood in Particle Filter

Many researcher are devoted to development of a effective measurement like-
lihood. Isard et al. presents a contour likelihood function based on edges [1].
The measurement is performed along the normal lines to the discrete sampling
points on the contour, and the Canny edge detector is applied to these nor-
mals to obtain the local maximum as features. Under the assumption of the
feature outputs on distinct normal lines are statistically independent, together
with some other assumptions, a likelihood function is derived and used in the

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 161–167, 2005.
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framework of particle filter. Chen et al. [2], who argue that the measurement
of adjacent normals is statistically dependent, extends the above likelihood in
the framework of Hidden Markov Model (HMM), integrating the edge as well
as color information. Nummiaro et al. [3] adopted a metric defined on weighted
multi-channel color histogram [4], which represents the target distribution, as
the likelihood in the framework of particle filter [3].

We have also seen that machine learning has gradually played an important
role in the design of visual measurement model. Mikolajczyk et al. [5] incorpo-
rates the face detector of Schneiderman and Kanade [6] into particle filter for
face detection and tracking. Two detectors –frontal and profile face detectors
are combined to estimate the pose and give measurement probability. Avidan
integrates the Support Vector Machine (SVM) classifier into an optical flow,
and maximizes the SVM classification score, instead of minimizing the intensity
difference function between successive frames [7]. Furthermore, an approach of
Gaussian pyramid in both learning and tracking stages is introduced to handle
large motions in image plane.

Motivated by these work, we independently propose a likelihood function
based on AdaBoost algorithm. This likelihood function provides the probability
of a measurement given the input image, in addition, the computation of which
is efficient, as will be explained in the next section. This kind of likelihood
is particularly suited to some classes objects, e.g. faces, cars and pedestrians
tracking.

1.2 Proposal Distribution in Particle Filter

How to get an effective and efficient proposal distribution is a challenging prob-
lem. Isard et al. [8] proposes an importance-sampling method, which relies on an
independent global segmentation and tracking of human-skin block. Li et al. [9]
introduces proposal distribution based on Kalman filter and unscented Kalman
filter, which depends on the learned motion model and edge-based likelihood.
Wu et al. [10] present a novel particle filter, as an approximation of a factorized
graphical model, in which shape and color samples are interactively drawn from
each other’s measurements based on importance sampling.

In the paper, we introduce a general and efficient proposal distribution (im-
portance function) resulting from mean shift iteration. It is general because it
use weighted multiple-channel color histogram to represent the distribution of
the object, not specific to, for instance, human skin color; it is efficient because
the optimization of the metric based on gradient descent is fast which measures
the similarity of two distributions defined on the target and candidate [4].

2 Likelihood Function Based on AdaBoost Algorithm

In the face detection area, Viola and Jones [11] first realize the selection of crit-
ical visual features from a large set of Harr-like features and the training of
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Adaboost simultaneously [12]. Thanks to the introduction of a new image rep-
resentation called “Integral Image”, which allows the features used to be com-
puted efficiently, and combination of weak classifiers in a cascade, which allows
background regions of the image to be quickly discarded while spending more
computation on promising object-like regions, their algorithm is computationally
efficient.

Based on the work of Viola and Jones and the Real AdaBoost algorithm [13]
that can give conditional probability density of an test belonging to one specific
class, as well as the potential of machine learning in visual tracking, the authors
propose training a likelihood function. The main idea is that since in probabilistic
visual tracking, we are concerned with the probability of a candidate (expressed
by a system state), we therefore look forward to training such an likelihood
function which captures the structural characteristics of one class of objects and
gives a probabilistic interpretation. There is, however, a fundamental difference
for the use of AdaBoost in the paper from that in [11]. For the purpose of face
detection (classification problem–two classes: face or nonface) in one image, they
perform exhaustive search at different locations and at different possible scales.
They thus adopt cascade structure to reject gradually candidate regions that
most probably contain non-faces. Whereas in tracking, we are only concerned
with one image candidate region and its probability belonging to the target, so
cascade structure is not necessary any more.

2.1 Training a Likelihood Function Based on AdaBoost Algorithm

To accommodate face poses variations, we collect training examples which in-
cludes faces in different views: frontal, half-left and right profiles, left and right
profiles, and in each views, the faces demonstrate a degree of upside-down rota-
tions and in-plane rotation. These training examples are collected widespread in
Internet as well as captured in our lab. Some of non-face examples are collected
in internet, others are randomly sampled form windows in the image dataset.

The training of the likelihood function is illustrated in Figure 1:
The output Equ. (1) of the real AdaBoost algorithm has a probabilistic in-

terpretation, which gives a probability of an image patch x belonging to human
faces. The justification of Equ. (1) may be found in [13].

3 A Particle Filtering Framework for Object Tracking

In the paradigm of particle filtering (also known as sequential importance sam-
pling) [9], the system is described by p(Xk|Xk−1), p(Yk|Xk). The transition
prior p(Xk|Xk−1) indicates the the evolution of the state is a Markov process,
and p(Yk|Xk) denotes the observation density (likelihood function) in the dy-
namical system, in which the measurements are conditionally independent of
each other given the states. The posterior density is approximated by a set of
discrete samples, called particles, {(X(i)

k , ω
(i)
k , i = 1 . . . , N}. The computation
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1. Given a collection of fixed size (for example, 20×20) N1 face images and N2 non-face images
{(xi, yi), i = 1, · · · , N}, where N = N1+N2, yi = +1 denotes face example, yi = −1 denotes
non-face example. Set weights D1(i) = 1

2N1
, 1

2N2
for yi = +1,−1

2. for k = 1, · · · , T
a. For a set of weak functions (see [11] for details), fj(xi), j = 1, · · · , M , choose the weak

function as the kth weak leaner hk(•) = fj∗ (•) for which

pDk
(fj∗ (xi) 	= yi) = argminjpDk

(fj(xi) 	= yi)

b. Update the weight αk assigned to hk(•):

αk =
1

2
ln(

1 − qk

qk

),

where qt = pDk
[hk(xi) 	= yi]

c. Update distribution Dk+1(i) associated with training set

Dk+1(i) =
Dk(i) exp(−αkyihk(xi))

Zk

,

where Zk is a normalization factor (chosen so that Dk+1 will be a distribution).

3. Output the final hypotheses H(x) =
∑T

k=1 αkhk(x) and

p(y = 1) =
exp H(x)

expH(x) + exp−H(x)
(1)

Fig. 1. The AdaBoost algorithm for training face detector.

of weights concerns an introduction of an importance function, called a pro-
posal density, π(Xk|Xk−1,Y1:k), from which particles can be easily drawn, and
which approximates the posterior density. As such, the weights can be computed
iteratively as follows

π(Xk|Xk−1,Y1:k) =
p(Yk|X(i)

k )p(X(i)
k |X

(i)
k−1)

π(Xk|Xi
k−1,Y1:k)

(2)

3.1 Mean Shift Iteration

Mean shift iteration is targeted at seeking the candidate which has the most
similar distribution with the target in a local region [4]. The search is based on
gradient optimization of a scale-invariant metric between target and candidate
distribution

d(q, p̃(y)) =
√

1− ρ(q, p̃(y)) (3)

where ρ(q, p̃(y)) is Bhattacharyya coefficient. The distribution is generally in
the form of weighted multi-channel color histogram, q = {qu}u=1,...,m with∑m

u=1 qu = 1 for target, and p̃(y) = {pu(y)}u=1,...,m with
∑m

u=1 pu = 1 for can-
didate. In this case, ρ(q, p̃(y)) = Σm

u=1

√
pu(y)qu. Let us denote zi i = 1, . . . , n

the pixel locations of one face candidate, centered at y in the current frame, the
distribution of the face candidate can be expressed as p̃(y) = {pu(y)}u=1,...,m,
where
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1. Initialisation
Draw particles from the prior p(X

(i)
0 ) to obtain a set {(X̃(i)

0 , 1/N), i = 1, · · · , N},
2. Sampling and updating step

for i = 1, · · · , N :
a. Generate a random number α ∈ [0, 1], uniformly distribution.
b. If α < q use mean shift algorithm to determine proposal distribution. Specifically,

use mean shift algorithm in the current frame to seek the state X̂k, which has the

most similar distribution with X̄k−1. Draw X
(i)
k

from N (X̂k, P). Compute the proposal

distribution π(X
(i)
k

|X̃(i)
k−1, Y1:k) according to

π(X
(i)
k |X̃(i)

k−1, Y1:k) =

√
1 − ρ(q(X̄k−1), p̃(X

(i)
k ))

and then compute the weight of the sample X
(i)
k

according to Equ. (2)

c. If α ≥ q use the transition prior p(Xk|Xk−1) as the proposal distribution. Draw X
(i)
k

from the proposal distribution. Compute the weight of the sample X
(i)
k

ω̃
(i)
k = p(Yk|X(i)

k )

3. Output step

Output a set {(X(i)
k , ω

(i)
k ), i = 1, · · · , N} of particles that can be used to approximate

the posterior distribution as p(Xk|Y1:k) ≈
∑N

i=1 ω
(i)
k δ(Xk − X

(i)
k ), and the system mean

(tracking result) X̄k ≈
∑N

i=1 ω
(i)
k X

(i)
k

4. Selection (resampling) step

Resample the particles {(X(i)
k

, ω
(i)
k

)} with probability ω
(i)
k

to obtain N i.i.d random particles

{X̃(i)
k , 1/N}, approximately distributed according to p(Xk|Y1:k)

5. k = k + 1, go to step 2.

Fig. 2. The framework for visual tracking.

pu(y) =
1∑n

i=1 k(‖
y−zi

h ‖2)

n∑
i=1

k(‖y − zi

h
‖2)δ(b(zi)− u) (4)

where h is the radius of a candidate region, b(zi) is a function which associates to
the pixel at location zi the index b(zi) of the histogram, and δ(·) is the Kronecker
delta function. The weighting function is adopted as Epanechnikov kernel.

The distribution of target is adopted as that of the tracking result in the
previous frame and has similar form to Equ. (4).

3.2 Tracking Algorithm

Apart from the initialization, the framework operates in three steps: sampling
and updating, output, and re-sampling (or selection) step. While the mean shift
is efficient [4] in seeking the promising target, it depends on color information and
is thus not robust to lighting changes [3]. So we will not draw all particles from
the proposal distribution (step 2b): some will be sampled from the transition
prior for diversity of particles (step 2c). Let X̂k be the converged result of mean
shift iteration, it is reasonable and simple to assume that the distribution of the
potential target state is Gaussian N (X̂k,P), where X̂k is the mean and P is the
covariance. The detailed algorithm is presented in Figure 2.
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4 Experiments

The initialization of the particle filtering algorithm is accomplished using Ad-
aBoost face detector of Viola and Jones [11]. The transition prior is a random
walk

Xk = Xk−1 + Qk (5)

where Xk = [xk, yk, sk], (xk, yk) are the coordinate of the center of the tracked
region and sk is the scale. The likelihood function is represented by Equ. (1).

The algorithm is implemented with Visual C++ 5.0 on a laptop of Pentium
IV-2.2GHz CPU with Microsoft XP.In the image sequence, both the camera
and the subject are moving, and the motion of target is agile and large. The
background is complex and in some snapshots the color resembles to human
face. The algorithms rely only on edge [1], or rely only on relying only on color
[4], fail to track object. Our likelihood is aimed at finding out the structural
information of human face and is able to neglect background clutter. Together
with the aid of mean shift as importance sampling function, and the proposed
algorithm can robustly track the face in real time (about 20 ms) throughout
the whole image sequence. Some of typical tracking result are demonstrated in
Figure 3.

Fig. 3. Some of tracking results in the image sequence. It can be seen that complex
background, significant pose variations, partial occlusion are all well dealt with.

5 Conclusions and Discussion

In the paper, a novel likelihood function is developed based on AdaBoost train-
ing algorithm, which is capable of capturing the structural characteristics of the
human faces and gives a probability interpretation, and is not sensitive to il-
lumination changes. Furthermore, the general and efficient mean shift iteration
is considered as a means to produce the proposal distribution in the particle
filter, which can steer the particles towards most probable locations of target
in images and thus leads to efficacy of the algorithm. Although in the area of
face detection, a single classifier trained on all poses appears to be inaccurate,
the likelihood function, trained on all poses based on probabilistic version of
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AdaBoost, works satisfactorily in tracking. Experiments show that the particle
filter, with the proposed likelihood function but without mean shift iteration as
the proposal distribution, can well track the object, yet with the longer tracking
time. It is also found that mean shift iteration plays a much larger part when the
features of faces are not distinct, for example, in poses beyond profiles. The vali-
dation of the framework is demonstrated with experiments dealing with tracking
of human faces. However, it can naturally extends to some other categories of
objects, for example, pedestrians and cars. Future research will focus on this
aspect.

References

1. Isard, M.,Blake, A.: Cotour Tracking By Stochastic Propagation of Conditional
Density. Europearn Conf. Comp. Vis. Cambridge UK (1996) 343–356

2. Chen, Y., Rui, Y.,Huang, T.S.: JPDAF Based HMM for Real-Time Contour Track-
ing. IEEE Int. Conf. on Comp. Vis. and Pat. Rec. Hawaii USA(2001) 543–550

3. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An Adaptive Color-Based Particle
Filter. Image and Vision Computing 21 (2003) 100–110

4. Comaniciu, D., Ramesh, V., Meer, P.: Real-time Tracking of Non-rigid Objects
Using Mean Shift. IEEE Int. Conf. on Comp. Vis. and Pat. Rec. South Carolina
USA(2000) 142–149

5. Mikolajczyk, K., Choudhury, R., Schmid, C.: Face Detection in a Video Sequence
– a Temporal Approach. IEEE Int. Conf. on Comp. Vis. and Pat. Rec. Hawaii
USA(2001) 96–101

6. Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection
Applied to Faces and Cars. IEEE Int. Conf. on Comp. Vis. and Pat. Rec. South
Carolina USA(2000) 746–751

7. Avidan, S.: Support vector tracking, IEEE Int. Conf. on Comp. Vis. and Pat. Rec.
Hawaii USA(2001) 184–191

8. Isard, M., Blake, A.: ICondensation: Unifying Low-level and High-level Tracking
in a Stochastic Framework. Europearn Conf. Comp. Vis. Freiburg Germany (1998)
893–908

9. Li, P., Zhang, T., Pece, A.E.C.: Visual Contour Tracking based on Particle Filters.
Image and Vision Computing 21 (2003) 111–123

10. Wu, Y., Huang, T.S.: A Co-inference Approach to Robust Visual Tracking. IEEE
Int’l Conf. Comp. Vis. Vancouver Canada (2001) 26–33

11. Viola, P., Jones, M.J.: Robust Real-time Object Detection. IEEE Workshop on
Statistical and Computational Theories of Vision. Vancouver Canda (2001)

12. Freund, Y., Schapire, R.E.: A Decision-threoretic Generalization of On-line Learn-
ing and An Application to Boosting. Journal of Computer and System Sciences
55(1) (1997) 119–139

13. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical
View of Boosting. Annals of Statistics. 28 (2000) 337–374



A Calibration Algorithm for POX-Slits Camera

Nuno Martins1 and Hélder Araújo2
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Abstract. Recent developments have suggested alternative multiper-
spective camera models potentially advantageous for the analysis of the
scene structure. Two-slit cameras are one such case. These cameras col-
lect all rays passing through two lines. The projection model for these
cameras is non-linear, and in this model every 3D point is projected by a
line that passes through that point and intersects two slits. In this paper
we propose a robust non-iterative linear method for the calibration of
this type of cameras. For that purpose a calibrating object with known
dimensions is required. A solution for the calibration can be obtained us-
ing at least thirteen world to image correspondences. To achieve a higher
level of accuracy data normalization and a non-linear technique based
on the maximum likelihood criterion can be used to refine the estimated
solution.

1 Introduction

Projection models constitute a relevant issue in computer vision. The mathe-
matical model that describes the formation of the most common type of images
is the perspective projection model. Most of the commercialized optical devices
generate images whose geometrical properties are described in this model. There-
fore, the classic pinhole and orthographic camera models have long been used in
3D imaging applications.

However certain special vision problems can benefit from the application of
alternative projection models, as recent developments have suggested. Besides,
those developments in image sensing make the perspective model highly restric-
tive. These multiperspective models have been providing advantageous imaging
systems for understanding the structure of observed 3D scenes. Examples of
such camera models are bi-centric [13], crossed-slits (also known as x-slits) [15],
general linear [14] and rational polynomial [4] models. Multiperspective imaging
has also been explored in computer graphics[8].

In the bi-centric model the centers of horizontal and vertical projections lie
in different locations on the camera’s optical axis. Perspective and pushbroom
cameras [3] are particular cases of this model, if the horizontal and vertical
projections lie in the same locations and if only the horizontal projection resides
on the infinity (corresponds to a vertical strip of a sensor translating sideways),
respectively. In [13] it was also shown that a straight line in the scene is projected
into a hyperbole in the image. The pushbroom model collects rays along parallel

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 168–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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planes from points swept along a linear trajectory [3]. The most visible distortion
in the images that follow the pushbroom model is the variation of aspect-ratio.

General linear and cubic camera are general models. The general linear cam-
era model unifies most projection models used in computer vision, including
perspective and affine models, optical distortions models, x-slits models, stereo
systems and catadioptric systems [14]. A cubic camera maps the image points
as rational polynomial functions, of degree less than four, of the coordinates of
a world point [4]. This camera model treats projective, affine, pushbroom and
x-slits cameras as particular cases.

In the x-slits model the projection ray of a generic 3D point is defined by
the 3D line that passes through the point and two lines, referred as slits. The
image is obtained by the intersection of every projective ray with the image
plane. This model was initially designed by one of the pioneers of the color
photography, Ducos du Hauron, in 1888 [7], under the name “transformisme en
photographie” [6]. He thought that his device would be used in the 20th century
to “create visions of another world” [7]. However, it was a restricted model in
terms of the slits positions, which were parallel and orthogonal between each
other (this situation was later referred as parallel-orthogonal x-slits, or pox-slits
[15]). An interesting aspect is that pox-slits projection equations are similar to
the bi-centric model [1]. A particular case of the pox-slits camera, in which the
vertical slit resides at infinity, is the pushbroom camera.

One century later, the pox-slits model was revised and generalized by Kingsla-
ke, who concluded that it was similar to the perspective projection model in
which the image is stretched or compressed in one direction more than the other
[6]. This fact shows its adequacy to the use in wide-screen technologies.

Zomet et al, in [15], expanding the Kingslake generalization, introduced the x-
slits projection model. According to their study, one advantage of of this model
is the fact that x-slits images can be easily generated by perspective images.
Shortly, this procedure is performed by pasting together vertical or horizontal
samplings of a sequence of images captured from a perspective camera, which
moves, respectively, along a horizontal or vertical line. With a more complex
procedure new x-slits views can be generated even when the camera motion
is not parallel to the image plane [1]. The idea of sampling columns from im-
ages has been explored before, but using a constant sampling function [10]. This
traditional mosaicing technique is similar to the one used to create pushbroom
panoramas [13]. Another remarkable aspect of this camera is that perspective
model is a particular case of the x-slits camera, in which the vertical and hori-
zontal slits lie in the same plane. The optical center of the perspective camera
is the intersection of the slits.

In spite of the extensive analysis of x-slits cameras by [15], they have only
focused on aspects related to image generation. In this paper we deal with the
problem of calibrating this type of cameras.

Grossberg et al, in [2], presented a different camera calibration algorithm,
referred to as the generic imaging model. In that case calibration consists in de-
termining, for every image pixel, the associated 3D projection ray. This method
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is also used in [8] and [10]. This mapping can be conveniently described using
a set of virtual sensing elements, called raxels. Raxels include geometric, radio-
metric and optical properties.

As an extension to [2], [12] introduce a generic calibration approach. In this
method at least three images of a calibration object are acquired. The fact that
a projective ray is a 3D line yields a constraint that allows the recovery of both
the motion and the camera’s parameters. This constraint is formulated via a set
of trifocal tensors that can be estimated linearly. In [9] this calibration method
is used in a 3D reconstruction process, with a parametric reprojection to refine
the obtained solution, based on bundle adjustment.

In the calibration method described in this paper, we use the non-linear x-
slits equations. For estimation purposes the equations are rewritten so that linear
estimation methods can be used. For good levels of accuracy in the estimates,
data normalization and a non-linear technique based on the maximum likelihood
criterion can be used [5].

Fig. 1. X-slits projection model.

2 X-Slits Projection Model

Consider the x-slits projection configuration represented in figure 1. The pro-
jective ray of a generic 3D point, P , must intersect two lines, or slits, l1 and
l2. Point P together with each slit defines one plane. The intersection of those
planes defines the projective ray. The projection of the 3D point in the image,
p, is obtained by the intersection of the projective ray with the image plane.

To define the two slits, let ui and vi (with i = 1, 2) be two generic planes
defined in a space of 3 dimensions, given by their parametric coordinates. The
slits, li, are defined through the intersection of those planes. These slits can be
represented by the dual Plucker matrix [5], whose equation is

Li
∗ = uivi

T − viui
T =

⎡⎢⎣ 0 Li34 Li42 Li23

−Li34 0 Li14 −Li13

−Li42 −Li14 0 Li12

−Li23 Li13 −Li12 0

⎤⎥⎦
if we use the Plucker coordinates of the slits.
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The projective ray, l, is the intersection between two planes, defined by each
slit li and the 3D point P (L1

∗P and L2
∗P , respectively), and can be defined

by the dual Plucker matrix, through

L∗ = (L1
∗P ) (L2

∗P )T − (L2
∗P ) (L1

∗P )T

Assuming that the image plane, I, is defined by the points P0, P1 and P2,
any point that belongs to I can be expressed by the linear combination of those
points, given by

kxP0 + kyP1 + kP2

As a result any point from a 2D space vector defined in the image plane, in
homogeneous co-ordinates, is given by p =

[
kx ky k

]T [11].
The projection of a 3D generic point P in the image plane I generates a 2D

point p. This projection is given by the intersection of the projective ray l with
the image plane I. Therefore l must belong to both planes Li

∗P . Therefore,[
PTL1

∗P0 P
TL1

∗P1 P
TL1

∗P2

PTL2
∗P0 P

TL2
∗P1 P

TL2
∗P2

]
p = 0 (1)

The solution for equation (1) is the right null space of the matrix. This
solution is obtained by using the cross product between the elements of the
matrix, as

kp =

⎡⎣PTL1
∗ (P1P2

T − P2P1
T
)
L2

∗P

PTL1
∗ (P2P0

T − P0P2
T
)
L2

∗P

PTL1
∗ (P0P1

T − P1P0
T
)
L2

∗P

⎤⎦
The homogeneous relation between 3D world scene points and 2D image

points, in pixels, for the x-slits projection model is

kp =

⎡⎣kx γ cx
0 ky cy
0 0 1

⎤⎦⎡⎣PTL1I0L2P
PTL1I1L2P
PTL1I2L2P

⎤⎦ (2)

where I0, I1 and I2 are the Plucker matrices corresponding to the x and y axis of
the image plane and the line at infinity. kx and ky are the focal lengths. (cx, cy)
are the coordinates of the principal point and γ is the image skew. According to
[15], this solution is unique unless it resides on the line joining the intersections
of the two slits with the image plane.

3 Calibrating X-Slits Projection Model

In this section we describe an algorithm to calibrate the x-slits camera. We begin
with a particular case of this camera, known as pox-slits, and then we address
the general case.
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3.1 Pox-Slits Case

We show how to calibrate the pox-slits camera because this camera is similar to
the bi-centric camera and a generalization of the pushbroom camera.

Let us define,

u1 =
[
1 0 0 0

]T
v1 =

[
0 0 1 −Z1

]T
u2 =

[
0 1 0 0

]T
v2 =

[
0 0 1 −Z2

]T
Let us also consider three homogeneous points

P0 =
[
1 0 0 0

]T
P1 =

[
0 1 0 0

]T
P2 =

[
0 0 0 1

]T
which belong to the image plane. As a result, equation (2) is given by

k

⎡⎣xy
1

⎤⎦ =

⎡⎣kx γ cx
0 ky cy
0 0 1

⎤⎦⎡⎣−Z1
X

Z−Z1

−Z2
Y

Z−Z2

1

⎤⎦ (3)

The calibration algorithm aims at estimating the intrinsic camera parameters
kx, ky , cx, cy and γ and the slits parameters Z1 and Z2. From equation (3) we
can obtain

−kxZ1XZ + kxZ1Z2X − γZ2Y Z + γZ1Z2Y + cxZ
2 − cxZ1Z − cxZ2Z+

+cxZ1Z2 + Z1xZ + Z2xZ − Z1Z2x = xZ2 (4)

and
cyZ − cyZ2 − kyZ2Y + Z2y = Zy (5)

Assuming, without loss of generality, , C1 = cyZ2 and C2 = kyZ2, we can
rewrite equation (5), matrix form, as

[
Z −1 −Y y

]⎡⎢⎢⎣
cy
C1

C2

Z2

⎤⎥⎥⎦ = Zy

Using, at least, four world to image correspondences, we obtain a system of
equations whose solution can be obtained using any numerical linear method, e.g,
SVD. The solutions of this system of equations yield estimates for the intrinsic
parameters ky and cy, and the slit parameter Z2.

Assuming now, without loss of generality, C3 = kxZ1, C4 = cxZ1, C5 = Z1γ
and C6 = cxZ1, and substituting the estimated parameters in equation (4) we
get

xZ2 − xZZ2 = (−XZ +XZ2)C3 − Y ZZ2γ + Y Z2C5 + (Z2 − ZZ2)cx+
+(−Z + Z2)C6 + (xZ − xZ2)Z1

Similarly, and using at least six world to image correspondences, we obtain a
system of equations whose solutions yield estimates for the the intrinsic parame-
ters kx, cx and γ, and the slit parameter Z1. To obtain a higher level of accuracy,
Hartley et al, in [5], suggest data normalization and a non-linear technique based
on the maximum likelihood criterion. Therefore to calibrate the pox-slits camera
six world to image correspondences, at least, must be used.
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3.2 General Case

Let us now address the case of the general x-slits camera. Assuming

C1 = L142L234 − L134L242 C2 = L114L234 − L134L214 C3 = L142L213 − L113L242

C4 = L134L213 − L113L234 C5 = L114L223 − L123L214 C6 = L123L234 − L134L223

C7 = L114L242 − L142L214 C8 = L123L213 − L113L223 C9 = L114L213 − L113L214

C10 = L134L212 − L112L234 C11 = L112L214 − L114L212 C12 = L113L212 − L112L213

C13 = L142L223 − L123L242 C14 = L123L212 − L112L223 C15 = L142L212 − L112L242

V1 = C3 + C5 V2 = −cxC1 − kxC5 + kxC10 + γC13 V8 = cxC8 V20 = cyC8

V3 = −cxC2 − γC3 + kxC9 + γC10 V4 = −cxV1 + kxC12 + γC14 V5 = cxC4 + γC8

V6 = cxC6 + kxC8 V7 = −cxC7 + kxC11 + γC15 V9 = kxC4 + γC6 V10 = kxC6

V12 = −kyC3 + kyC10 − cyC2 V16 = kyC13 − cyC1 V17 = kyC15 − cyC7 V13 = kyC4

V11 = γC4 V15 = kyC8 + cyC4 V14 = kyC6 V18 = kyC14 − cyV1 V19 = cyC6

without loss of generality, equation (2) can be rewritten as

P T

⎡⎢⎣−V10 −V9 xC1 + V2 xC6 − V6

0 −V11 xC2 + V3 xC4 − V5

0 0 xC7 + V7 xV1 + V4

0 0 0 xC8 − V8

⎤⎥⎦P = 0

and

P T

⎡⎢⎣ 0 −V14 yC1 + V16 yC6 − V19

0 −V13 yC2 + V12 yC4 − V15

0 0 yC7 + V17 yV1 + V18

0 0 0 yC8 − V20

⎤⎥⎦P = 0

The general model of this camera is specified by 15 parameters and therefore
the total number of unknowns is also 15. However, as a result of rewriting the
equations so that a linear numerical method can be used, we end up with 26
unknowns. Therefore at least 13 world to image correspondences are required.

4 Experimental Results

The experimental results presented in this paper use synthetically generated
data. In addition we only present results for the case of the pox-slits model.
Results for the general case are still being obtained.

As it can be seen in figure 2(a), a sphere is used as calibration object. This
random sphere, with radius 20 and center (−22.33, 43.37,−226.93), is made up
of 1891 3D known points. In the figure we also show the image plane (bottom)
and the planes that contain the slits (the two upper planes). Figure 2(b) repre-
sents the pox-slits image of the sphere points, with resolution 1600× 800. Using
equation (3), the pox-slits camera is defined with Z1 = 100, Z2 = 50, kx = 47 ,
ky = 63, cx = 320, cy = 240 and γ = 25.

To calibrate the camera we start by normalizing the image coordinates as
suggested by Hartley [5]. Gaussian white noise with 0 mean and σ2 variance
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(a) (b)

Fig. 2. (a) Visualization of the calibration object, with the image plane and the planes
that contain the slits; (b) Pox-slit image of calibration object.

Fig. 3. Relative mean error in the estimation of the camera parameters plotted as
function of the noise variance.

was added to the image coordinates of the points. The noise variance was varied
between 0.1 pixels and 20 pixels. For each value of noise variance 150 runs were
performed. The percent error in the estimates for each parameter was computed.
The averages (for each noise variance level) of the percent errors are presented
in Figure 3. As it can be seen in the figure, errors increase almost linearly with
the noise level. We also computed the variance of errors in the estimates of
the parameters. The values of the error variances are below the floating point
precision. Therefore we can assume that this algorithm can be used to estimate
this type of camera.
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5 Conclusions

In this paper we present a robust non-iterative linear algorithm to calibrate
a pox-slits camera. The algorithm requires at least with six world to image
correspondences. Normalization of the coordinates of the image points is an
essential step of the algorithm.

The algorithm for the general x-slit camera is also described briefly.
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Abstract. Home entertainment systems are trending to be integrated to a single 
system and to be more complex and difficult to control. Due to it, the methods 
developed for specific entertainment system are difficult to be applied to inte-
grated systems. Accordingly, this paper presents a vision-based interface for in-
tegrated home entertainment system. The proposed interface has two types of 
modes: mouse control mode and instruction mode. The first mode move mouse 
point and click the icons using hand motion and shape and the second make in-
struction by hand gestures. The proposed interface is able to make predefined 
several gestures mapped to several similar tasks from different entertainment 
systems, which reduces the number of gestures and makes the interface more 
intuitive.  

1   Introduction 

Because of development of home network and multimedia systems, recently home 
entertainment systems such as home theater, games, audios and internet service sys-
tems are growing in popularity.  

The interfaces for the interaction between human and the systems have been re-
searched [1-9]. Among these interfaces, vision based interfaces have been the center 
of public attention due to cheap hardware and ease to use.  

Freeman et al.[5] studied how a viewer could control a television set remotely by 
hand gestures. They use just a hand position to control channel and volume of a tele-
vision. Lee et al.[6] implemented the PowerGesture system with which one can 
browse presentation program using predefined gesture commands. Shin et al.[7] de-
scribed a gesture recognition system for visualization navigation. They gave an 
analysis of the hand motion trajectory in the registered 3-D data and classified ges-
tures using a geometric method using Bezier curves. However, home entertainment 
systems are trending to be integrated to a single system and to be more complex and 
difficult to control. Due to it, the methods developed for specific entertainment sys-
tem are difficult to be applied to integrated systems.  

In this paper, we propose a vision-based interface for integrated home entertain-
ment system. For this, the proposed interface has two types of modes: mouse control 
mode and instruction mode. In mouse control mode, users use their hand to move 
mouse point and click. The mode make user able to select an application by clicking a 
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icon and enjoy web surfing by control mouse point. In instruction mode, users make 
command to use applications such as television, games, and moving picture players. 
The proposed interface is able to make predefined several gestures mapped to several 
similar tasks from different entertainment systems, which reduces the number of 
gestures and makes the interface more intuitive.  

2   System Overview 

The home entertainment system using the proposed interface is shown in Fig. 1. User 
can control the home entertainment system with hand gestures in front of camera 
without any hand-held device. The distance between user and camera is about 2~3 
miter. The system was implemented using a PC and a web cam without additional 
devices such as data gloves and frame grabber boards. 
 

 

Fig. 1. System Environment 

Our entertainment system includes three entertainment applications: television, 
moving picture player and web browser. To control the applications, the Interface has 
two types of mode as mouse control mode and instruction mode.  

2.1   Mouse Control Mode 

The mouse control mode is used for selecting one of the applications and surfing 
web. In the mode, open hand position control mouse point and the hand closing acts 
as mouse click. To select an application, user click the application icon in the user 
interface linked the entertainment application that user wants to use. Web browsing 
can be achieved by the same way. User can use the functions of web browser and 
hyper-links by mouse pointing and clicking.  
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2.2   Instruction Mode 

The instruction mode is used to control applications such as moving picture player 
and television. In the mode, the functions of the applications can be used by hand 
gesture instructions shown in Table 1. The interface use the hand shape, open and 
close, to separate meaningful gestures and unintentional movements. Therefore, for 
control the applications, user can act the predefined gestures with open hand. 

Table 1. Each entertainments’ defined gestures 

defined gestures 
moving picture and  

DVD player 
TV application 

 play  

 stop  

 temporary stop  

 volume up volume up 

 volume down volume down 

 next content channel up 

 before content channel down 

 exit exit 

3   Vision Based Interface 

To provide user-friendly remote controls, the gesture recognition system should have 
real-time interaction and good recognition performance across a variety of users. For 
this, we use hand position, shape and motions. 

In the mouse mode, we use hand position and shape in an image. To estimate hand 
position and shape in a frame captured from camera, Skin color regions are extracted 
using skin color model described by 2D Gaussian model in chromatic color space 
[10].  

In the instruction mode, we use predefined gestures as a meaningful sequence of 
the right hand motion [6]. The motion of the hand is defined as inter-frame position 
change of its region. The motion is quantized to one of the symbols which mean 8 
directions. To identify the beginning and the end of the gesture, we use the shape of 
the hand. Hand shapes, open and close, are easily classified using size of hand region. 
Hand opening and closing indicate the beginning and the end of the gesture, respec-
tively. For modeling and recognizing the gestures, we use HMMs which are robust to 
analyze and describe sequential data have spatiotemporal variability. Fig. 2 shows the 
overview of gesture recognition.  

3.1   Hand Extraction 

In this section, we describe the method for extracting hand region from a color image. 
The proposed method detects skin color pixels from a color image using skin color 
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model described by 2D Gaussian model in chromatic color space. To remove noises, 
morphological operations are used. Then bounding boxes of regions composed of 
connected components are generated. Finally, among the bounding boxes, the largest 
area is considered as the face, and the second and third ones are considered as hands. 
Fig.3 shows the results of the procedure. 

 

Hand Extraction

Feature Extraction

Hand Extraction

Feature Extraction

Recognition
Result

Gesture Recognition
Module

Gesture Symbol

Gesture
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Camera Image
Sequence

Hand Extraction

Feature Extraction
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Gesture
Recognition
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Module
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Sequence

Vector QuantizationVector Quantization Vector Quantization

 

Fig. 2. Overview of of gesture recognition 

    
(a) given image (b) skin color pixels (c) boundary boxes (d) right hand region 

Fig. 3. Hand extraction results 

  
(a) (b) 

Fig. 4. “Play” gesture and codeword sequence 
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3.2   Feature Extraction and Vector Quantization 

To recognize the user gestures, we used motion of right. The motion of the hand is 
defined as inter-frame position change of its region. We convert the feature vector to 
one of the 8directional codewords shown in Fig. 4(a). Accordingly, a given image is 
represented as a symbol and a gesture is represented as symbol sequence. Fig. 4(b) 
shows trajectory of “Play” gesture and extracted codewords. 

3.3   Gesture Recognition 

We defined gestures as a meaningful sequence of the open right hand motion. So we 
need to identify the beginning and the end of the gesture. Gestures begin when open 
hand appears and end when close hand appears. Open and close hand is easily classi-
fied using size of hand. 

To recognize gestures, we use left-right HMMs. Given a symbol sequence, the rec-
ognizer finds the best gesture model. A gesture is recognized if the likelihood of the 
best gesture model is higher than the threshold value. The likelihood is estimated 
using forwarding algorithm [11, 12, 13]. Each gesture model consisted of five states 
in the left-right model and the number of state determined by experiments. Training 
of the HMMs followed the Baum-Welch re-estimation formulas [11, 12, 13]. Given 
any finite observation sequence as training data, we choose the parameters of 8 ges-
ture models.  

4   Experiment and Result 

The interface was implemented using MS Visual C++ 6.0 and OpenCV beta3.1 to get 
320×240 and 24-bit color images captured 15 frames/s without an additional frame 
grabber board. Fig. 5 shows the user interface. At the top, there is an image display 
showing the captured image from the camera. And just below there is an image dis-
play showing the hand tracked image. This allows the user to see and keep his/her 
hand within the camera’s field of view. At the left bottom, there are a result display 
and application icons. The result display is reporting the recognized gesture and ges-
ture start and end. Application icons are composed of three type icon: movie picture 
player, TV, and web browser.  

The skin-color model is obtained from 200 sample images. Means and covariance 
matrix of the skin color model are as follows:  
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The proposed interface was evaluated through testing 4 persons in the mouse con-

trol mode and in the instruction mode. In instruction mode, each person tried many 
times to perform each gesture. In the mouse control mode, each person tried many 
times to move mouse cursor to target and then click. 
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In the mouse control mode task, the gestures are succeeded in performing when 
person moves mouse cursor to target and then click at a time. Each 4 persons at-
tempted it 20 times. Table 2 shows the gesture recognition performance in the mouse 
control mode.  
 

 

Fig. 5. User interface 

Table 2. Gesture recognition results in the instruction mode 

Number of attempt success Success ratio(%) 
80 62 77.50 

 
In the instruction mode task, we estimated gesture recognition performance by Lee 

et al. [6]’s test method. There are three types of errors: The insertion error occurs 
when the recognizer reports a nonexistent gesture, the deletion error occurs when the 
recognizer fails to detect a gesture, and the substitution error occurs when the recog-
nizer falsely classifies a gesture. The detection ratio is the ratio of correctly recog-
nized gestures over the number of input gestures as follows:  

gesturesinput 

gestures recognizedcorrectly 
  ratioDetection =

.
 

(1) 

In calculating the detection ratio, the insertion errors are not considered. The inser-
tion errors are likely to cause the deletion errors or the substitution errors because 
they often force the recognizer to remove all or part of the true gestures from obser-
vation. To take into account the effect of the insertion errors, another performance 
measure, called reliability, is introduced that considers the insertion errors. The reli-
ability ratio is the ratio of correctly recognized gestures over the number of input 
gestures and insertion errors. Reliability is as follows:  
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errorsinsertion   gesturesinput 
gestures recognizedcorrectly 

  Reliablity
+

= . (2) 

Consequently, Table 3 shows the gesture recognition performance in the instruc-
tion mode. The experiment showed 91.13 percent detection ratio and 88.33 percent 
reliability. In Table 3, ‘I’ is the insertion errors, ‘D’ is the deletion errors, and ‘S’ is 
the substitute errors. 

Table 3. Gesture recognition results in the instruction mode 

Error type 
command 

Number 
of 

gestures 
corrent 

I D S 

Detection 
(%) 

Reliability 
(%) 

Play 78 73 2 0 3 93.59 91.25 
Stop 80 74 2 1 3 92.50 90.24 
Temporary 
Stop 

78 70 2 2 4 89.74 87.50 

Volume 
Up 

82 74 3 1 4 90.24 87.06 

Volume  
down 

77 68 4 1 4 88.31 83.95 

Next 
Content 

80 73 3 1 3 91.25 87.95 

Before 
Content 

79 72 2 2 3 91.14 88.89 

Exit 77 71 2 1 3 92.21 89.87 
Total 631 575 20 9 27 91.13 88.33 

5   Conclusions 

This paper presents a vision-based interface for integrated home entertainment sys-
tem. The proposed interface has two types of modes: mouse control mode and in-
struction mode. The first mode move mouse point and click the icons using hand 
motion and shape and the second make instruction by hand gestures. The proposed 
interface was able to make predefined several gestures mapped to several similar 
tasks from different entertainment systems, which reduces the number of gestures and 
makes the interface more intuitive. Experimental results showed that the proposed 
interface is robust to integrated home entertainment system include several applica-
tions. 
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Abstract. In this work an approach to an adaptive vision system is
presented. It is based on a homeostatic approach where the system state
is represented as a set of artificial hormones which are affected by the
environmental changes. To compensate these changes, the vision system
is endowed with drives which are in charge of modifying the system
parameters in order to keep the system performance as high as possible.
To coordinate the drives in the system, a supervisor level based on fuzzy
logic has been added. Experiments in both controlled and uncontrolled
environments have been carried out to validate the proposal.

1 Introduction

The performance of most computer vision applications relies heavily on the
“quality” of the images supplied by the acquisition subsystem, normally a video
camera. But this “quality” is influenced by factors as hardware, camera and
acquisition board, lighting conditions, size and position of the object of inter-
est and many others. The variations of some of these factors can be limited for
some tasks as machine vision or indoor applications. However there exists more
challenging computer vision applications where some of the previous factors can
not be controlled as mobile robot applications and indeed human computer in-
teraction in indoor scenarios. So it is necessary to endow these systems with
mechanisms which allow them to survive in environments where the conditions
can vary in a wide range of values.

In nature, living beings can survive in a world where the environmental con-
ditions are continuously changing and they can perform their tasks with success.
Homeostasis is one of the mechanisms that the living beings own to adapt their
behavior to the enviromental changes. Homeostatis is defined in the Merriam
Webster on line dictionary as “a relatively stable state of equilibrium or a ten-
dency toward such a state between the different but interdependent elements or
� This work has been partially supported by the Spanish Ministry of Education and

Science and FEDER funds under research project TIN2004-07087, the Canary Is-
lands Regional Goverment under projects PI2003/165 and PI2003/160 and the Uni-
versity of Las Palmas under projects UNI2003/10, UNI2004/10 and UNI2004/25.
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groups of elements of an organism, population, or group”. The state of equilib-
rium is normally related to the survival of the animal in an environment making
sure that it gets enough to eat or it does not overheat or freeze.

The idea of homeostasis has been introduced by some authors in the construc-
tion of systems that have to develop their activity in complex environments.
Arkin and Balch [1] propose a homeostatic regulation system which modifies
the performance of the overall motor response according to the level of inter-
nal parameters such as battery or temperature. Another work which includes a
homeostatic regulation mechanism is the proposal of Hsiang [2] who introduces
it to regulate the dynamic behavior of the robot during task execution.

The works reviewed above are mainly related to robotics since robots possess
effectors to act on the environment, but we have none tackling the introduction
of homeostasis in a vision system. However, since the introduction of the Active
Vision paradigm [3], vision systems include perception strategies which are con-
trolled by the interaction with the environment when a specific goal is pursued.
Thus, we can consider the introduction of a homeostatic regulation in such vision
systems because they share with the previously described systems the fact that
a goal has to be achieved (survive) in a changing environment and they have to
adjust their behavior in order to get always the best possible performance.

Some important considerations must be taken into account when putting
homeostatic regulation into practice. Initially, a homeostasis regulation mecha-
nism can be configured as a set of independent drives operating at a predefined
frequency. However, in practice the execution of some drives can affect others
requiring a certain level of coordination to avoid undesired effects. Additionally,
active-vision and mobile robotic applications are usually conceived as tactical
multipurpose systems. This requires an implementation based on multiple peri-
odic tasks executing concurrently on systems with limited resources [4]. If not
correctly managed, this contention could lead to poor performance, threaten sys-
tem security or even block it, when in competition for CPU time, for example [5].
Thus our base homeostatic regulation level must incorporate a higher supervisor
level.

Some alternatives that have been proposed for computational adaptation
include any-time processing scheme [6], imprecise computation [7] or variable
frequency [8]. In our context, adaptation should deal with several aspects such
as drives coordination, inter-level coordination, priority-based degradation, and
resource management (CPU processing time, memory, energy). For this pur-
pose we have selected a fuzzy inspired adaptation control that complements the
homeostatic regulation.

This paper explores the introduction of a homeostatic adaptive mechanism
in a computer vision system based on artificial hormones which are regulated by
means of drives, this first level of adaptation is described in Section 2. Section
3 considers the introduction of a higher level of adaptation based on fuzzy rules
to take into account the possible interdependences among drives. Finally, in
Section 4 the experiments carried out with an implementation of the architecture
proposed here are presented.
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2 The Homeostatic Regulation Mechanism

In computer vision applications where the environment E is completely con-
trolled, i.e. industrial applications, the camera parameters that define the quality
of the image are initially tuned to get the best performance. This is illustrated
in Figure 1 where the set of camera parameters δ is the one which maximizes
the performance of the system under the environmental conditions E. If the en-
vironment changes to E′, for example due to different lighting conditions, the
performance of the system will be maximum for another set of camera param-
eters δ′ as it is shown in Figure 2. So if the system does not have an internal
mechanism to detect the new environment E′, its performance diminishes be-
cause it will continue using the initial parameter setting δ, and we must rely on
an external agent to readjust the parameter setting to δ′.
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Fig. 1. Setting of camera parameters for
an environment E
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Fig. 2. Setting of camera parameters for
an environment E′

In order to adopt in our proposal the affective computing framework [9] which
establishes that systems must be “bodily” because human emotions involve both
the body and the mind, we simulate the physiological changes that affect the
homeostasis mechanism. Cañamero [10] proposes synthetic hormones to imitate
physiological changes in the body of a robot which evolves in a two-dimensional
world and the motivations of the robot respond to the levels of the synthetic hor-
mones. We adopt this approach in our system and implement a set of synthetic
hormones that reflect the internal state of the system “body”.

The homeostatic mechanism is governed by the value of the hormones which
are computed from the controlled parameter by means of a sigmoid mapping
(Fig. 3). In this way, adaptive strategies can be implemented more easily in the
drives defining normal and urgent recovery zones which are independent of the
range of values of the controlled parameter [11]. In our system the hormones are
associated to the image luminance (h luminance), contrast (h contrast), white
balance (h whitebalance) and size of the object (h size).

The luminance of the image is controlled by dividing the image into five
regions similarly to the method proposed by Lee et al. [12]. This image partition
allows different luminance control strategies by giving different weights to the
average luminance in each region according to the nature of the task. To compute
the contrast of the image, a measure [13], which exhibits a maximum when the
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Fig. 3. Hormone value mapping from the variable of interest

image is at the best focus proposed, was used in an auto-focus algorithm that
obtain the best focus position avoiding a hill-climbing search [11]. For white
balance, we adopt the Grey World [13] assumption which tries to make the
average amount of green, blue and red in the image equal, by adjusting the red
and blue gain parameters. Finally to control the size of the object in the image
we act on the zoom of the camera.

As previously stated, an important element in a homeostatic mechanism is
its adaptive aspect. When the internal state of the body is too far away from the
desired regime, the homeostatic mechanism must recover it as soon as possible,
giving less priority to other tasks if it is necessary. To accomplish this, we have
included a higher level in the proposed architecture, that will be described in
the following section.

3 Rule Based Coordination Level

At low level, homeostatic drives should be coordinated to take into account
interdependencies, as several homeostatic drives are executing simultaneously
it can produce side effects on each other that make the settling times larger
than if execution sequence is supervised. In other cases, simply it makes not
sense executing some drives when others are far out from their desired regime
values (e.g. focusing on a very dark image). Additionally, some high processing
level tasks depend on the stabilization of the homeostatic level to produce valid
results, so their execution should be conditioned to this situation.

On the other hand, if the vision system is on a mobile robot, regulation
mechanism must deal with a multiple-task shared-resource system. The global
system operation normally requires the execution of multiple homeostatic drives
as well as high-level application tasks concurrently. In case of resource shortage,
low priority tasks have to be slowed-down or postponed, releasing resources for
higher priority tasks. Some examples include execution on a saturated CPU or
low-battery conditions.

Thus, the basic homeostatic mechanism described previously has been com-
plemented with a higher level in order to improve performance. Figure 4 shows
the architecture proposed combining both regulation levels, homeostatic and
rule based level. It can be noticed that homeostatic drives run independently
according to the values of the hormones associated to the measures obtained
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Fig. 4. Elements of the homeostatic adaptive regulation mechanism

from the image. A fuzzy-based approach has been selected for supervision, as we
consider it specially suitable for this vision based context, is implemented and
it takes into account the global state of the system to modify the operation of
the homeostatic drives.

The whole regulation architecture proposed in this work has been based on
the configuration of each task in the system as a periodic process, with a de-
sired frequency of operation to be met whenever possible; this includes both
homeostatic drives and high level application tasks. So the upper adaptive level
modifies the operation periods of the tasks by means of frequency commands,
allowing a modification on resource demands such us CPU processing time. Al-
though other actions can be generated as quality commands, they have not been
considered in this implementation.

The rules implemented in this work take the form of fuzzy implications with
conditions on state system (hormones) as antecedents, and actions on system
tasks as consequents. A rule is characterized by a priority value and a method to
combine the certainty of each premise to give the certainty of the rule (minimum,
mean, product). Additionally, the action part is defined by the type of control
action and its target. Some examples of these rules are the following ones:

R1: High Priority IF h_luminance is not zero THEN Decrease white
balance drive operation frequency

R2: Normal Priority IF h_whitebalance is zero THEN Decrease white
balance drive operation frequency

R3: Normal Priority IF h_luminance is zero THEN Decrease luminance
drive operation frequency
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Fig. 5. Evolution of the operation frequency in drives depending of h luminance hor-
mone value for the first experiment

In previous rules zero is a fuzzy linguistic label whose membership function
can be obtained from the hormone value which is bounded in the interval [-
1,+1] (Fig. 3). The highest priority rule, R1, is responsible of giving the most
CPU resources to the recovery of the luminance hormone when it is out of the
homeostatic regime. The other two rules, R2 and R3, relax the drives associated
to the luminance and white balance hormones when they have their desired
values, reducing the load of the CPU that can be assigned to other tasks in the
system.

4 Experiments

Some tests have been performed to evaluate the proposal presented in this paper.
A first bunch of experiments was realized in a controlled environment with fixed
lighting conditions to validate the obtained results against the expected behavior
of the system. In these experiments we used a static firewire color camera and
changed the luminance of the object of interest. The application consists on
two hormone drives controlling simultaneously luminance and white balance
hormones of the image and a set of fuzzy rules to change the operation frequency
of each drives according to the luminance hormone value.

In Figure 5, the value of the luminance hormone is shown together with fre-
quency degradation factors for luminance and white balance drives (1 means no
degradation). As it is shown, when hormone value separates from homeostatic
regime (centered in 0), luminance drive runs faster to recover image quality as
soon as possible, while white balance drive slows down its operation because
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Fig. 6. Hormone values and operation frequencies of the associated drives for the second
experiment

it makes no sense to recover the white balance until luminance is close the its
homeostatic regime. When luminance is close to the desired value, the associ-
ated drive can relax and the white balance drive recover its normal operation
frequency.

A second experiment was carried out making use of a mobile robotic platform
performing a line following task in a uncontrolled environment with changing
lighting conditions, with a specially dark area near the beginning of the path
due to the existence of a kind of tunnel that the robot must traverse, so that,
without homeostasis the robot task fails.

In Figure 6, the luminance hormone values are represented together with
execution frequency values for luminance and white balance drives. As it is
shown, when luminance hormone goes far from homeostatic regime, luminance
drive runs faster to recover image quality as soon as possible, while white balance
becomes slower. This effect becomes more noticeable when traversing the dark
zone, between seconds 75 and 100. In homeostatic regime, white balance drive
is allowed to execute at a higher frequency while luminance drive gets relaxed,
for example when the robot is on the first straight segment and the first curve
(seconds 100 to 125). The robot velocity is also governed by the image quality
to avoid lossing the desired path.

5 Conclusions

The introduction of the homeostatic regulation mechanism improves the perfor-
mance of an active vision system, as the mean quality of the sensor data increases
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in dynamic environments. The combination of this low-level adaptation mech-
anism with a high-level fuzzy adaptive control has exhibited a better outcome
under variable run-time conditions. The result, as illustrated in the experiments,
is a highly-configurable framework that improves the system performance and
extends its range of operation.
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Abstract. In this paper we present a new approach to computational
colour constancy problem based on the process of surface matching. Clas-
sical colour constancy methods do not usually rely on this important
source of information and they often use only partial information in the
images. Our proposal is to introduce the use of a set of canonical sur-
faces and its matching versus the content of the image using a ‘relaxed’
grey-world assumption to perform colour constancy. Therefore, our ap-
proach takes into account information not considered in previous meth-
ods, which normally rely on statistical information in the image like
highest luminance or image gamuts. Nevertheless the selection of the
canonical surfaces is not a trivial process and should be studied deeply.

1 Introduction

The human visual system has the capability to perceive the same colour for a
given surface regardless the colour of the illuminating light. This is a fundamental
property to colour vision and pursues the perception of a stable coloured world,
even though the stimulus reaching the retina differs for the same surface under
different conditions of illumination. The perceived colour of a white patch under
a blue sky compared to the same patch in a room with a light bulb is perceived
as the same colour. Actually in the first situation the reflected light reaching the
eye has a bluish spectrum compared to the reddish reflected light of the second.
This ability is known as colour constancy, the constant appearance of surface
colours despite changes in the colour of the illumination. The mechanisms of
human colour constancy have not yet been completely understood, and there
are different approaches trying to explain them [1–4].

2 Background

RGB images are formed by the light reflected from different surfaces reaching
three sensors that integrate the incident light at different wavelengths. The color
of a surface depends on the surface reflectance and the colour of the incident light.
The aim of computational colour constancy is to find an illuminant invariant de-
scription of a scene from an image taken under unknown lighting conditions.
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This process is often performed in two steps: (1) estimate the illuminant param-
eters and (2) use those parameters to build illuminant independent description
of the scene. For these methods a canonical illuminant must be defined, i.e. an
illuminant for which the camera is balanced and the colours appear in a trust-
worthy form. Under this illuminant, the RGB values of an image of a scene can
be taken as descriptors of the surfaces. There is a wide literature on computa-
tional colour constancy methods [5–10]. None of them performs perfectly on all
kind of images under weak assumptions.

Many of these methods directly estimate the illumination change from the
unknown illuminant to the canonical illuminant. Considering the von Kries adap-
tation model [11], the transform of an illuminant change can be modelled by a
linear diagonal model, as proven in [12]. For example, the RGB response of a
camera to a white patch under an unknown illuminant is (RU

w , G
U
w , B

U
w ) and the

response under the canonical illuminant is (RC
w , G

C
w , B

C
w ), the illuminant change

from the unknown to the canonical illuminant can be obtained by scaling the
three channels by RC

w/R
U
w , G

C
w/G

U
w , B

C
w/B

U
w respectively. Thus, the colour of the

illuminant of an RGB image can be modified by a diagonal change (1),

(RC , GC , BC) =

⎛⎝α 0 0
0 β 0
0 0 γ

⎞⎠⎛⎝RU

GU

BU

⎞⎠ (1)

where α = RC
w/R

U
w , β = GC

w/G
U
w , γ = BC

w/B
U
w . In a typical colour constancy

problem, we have acquired the image under an unknown illuminant,
(RU , GU , BU ), and try to obtain the surface descriptors, (RC , GC , BC). The
triplet (α, β, γ) is called a map, and knowing the actual map implies a guessing
of the unknown illuminant.

The different methods proposed in the literature can be sorted in different
classes regarding the assumptions they are based on. The first family of algo-
rithms are established upon the Retinex theory of human vision [13], which
goes beyond simple illuminant estimation. The theory assumes that slight spa-
tial changes in the response are due to changes in illumination or noise, and
large changes correspond to surface changes. The idea is to run random paths
from every surface and compute the ratio of the responses in each channel. The
descriptor of a pixel is given by the average of the ratios from different paths
beginning at the same pixel.

Another group are the Grey World methods. They are based on the assump-
tion that the scene is colorimetrically unbiased (no particular colour predomi-
nates). In other words, supposes that a complex scene contains a wide range of
reflectances, whose mean is a grey reflectance (for instance, a uniform reflectance
with half of the maximum energy). Therefore, to correct the illumination of an
image the map that takes the average of the image to the average of the canonical
gamut is used as an estimation of the illuminant change.

One of the most important groups to date are the Gamut Mapping methods.
All of them are based on the idea of canonical gamut firstly introduced by
Forsyth in [5]. If we consider all the possible reflectances under a canonical
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illuminant we obtain a convex set of RGB values, which are the whole set of
values that can be perceived under the canonical illuminant for a given camera.
This introduces a device/illuminant restriction, and it can be used to build a set
of illuminant changes that are feasible, i.e. which map the image gamut within
the canonical gamut. To build the feasible set of illuminant changes, the image
gamut is computed first. All the maps from a single colour in the image gamut
to each colour in the canonical gamut form a convex set. The intersection of the
convex sets obtained for each vertex in the image gamut results in a convex set
of feasible maps. This feasible set, which is given in the map space, αβγ-space,
normally contains a wide range of assorted maps unless the gamut of the image
is large enough to reduce the possible bindings of the image gamut inside the
canonical gamut. A selection step is needed to choose the optimal map inside
the feasible set, i.e. the best approximation to the unknown illuminant. Different
heuristics have been used to obtain a single answer. The most successful heuristic
[14] is the selection of the map that maximises the volume of the mapped image
gamut, i.e. the map that makes the image gamut as colorful as possible within
the bounds of the canonical gamut, also known as CRULE. Other heuristics like
the average map of the feasible set have also been studied. Several methods have
derived from Forsyth first approach, [9, 15].

Another kind of methods are those based on Colour by Correlation which pro-
pose to study the chromaticities of an image to decide among a set of proposed
illuminants the one that is more compatible with the chromaticities found [16]. A
correlation matrix is pre-computed and describes for each of the selected illumi-
nants the occurrence of image chromaticities. Each row in the matrix corresponds
to a different training illuminant and matrix columns to possible chromaticity
ranges.

An interesting study comparing the preformance of these different methods
described can be found in [14]. There are more contributions which are important
in colour constancy but they do not adapt to the context we work in, as they
deal with the recovery of surface spectral reflectances using reduced sets of linear
bases [6].

3 Surface Matching

The method we propose in this paper tries to introduce the surface matching
phenomenon, previously studied as one of the cues of how the human visual
system performs colour constancy [4, 17], to reduce the number of possible map
solutions. Nevertheless the idea has not yet been explored when performing
computational colour constancy. In the process of guessing the illuminant of an
image, it is likely to match the colours that we find in the image with colours
that we have previously learned, which are a set of colours we already know
for its significance. It can be easily assumed that when looking at an image
a part of the colour constancy process is the matching of the colours that we
see in the image with colours that we ‘expect’ to find in the image. This refers
to a previously learned knowledge of common colours as seen under an ideal,
canonical, illuminant.
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Considering this idea, we can pair the colours that are present in our image
with ‘reference’ colours. The values of these colours as they would be seen under
the canonical illuminant can be computed and they can be named as canonical
colours or ‘canonical surfaces’. Therefore, we can match every surface in our
image with a ‘canonical surface’. This is the surface matching process, also known
as ‘asymmetric colour matching’ and depicted in [4]. To perform the ‘surface
matching’ process, we need the set of surfaces to match with. In our surface
matching approach, we propose to use a reduced set of ‘canonical surfaces’,
carefully selected to represent the most important and frequent colours. The
selection of these canonical surfaces is a hard goal that should be addressed.

4 Relaxed Grey-World

Surface matching implies to match every image surface with every canonical sur-
face, that is to generate all the possible combinations of matchings. Even using a
reduced and significant set of image surfaces and a small set of canonical surfaces
the set of pairs of matches that can be derived is too large and introduces lots of
non-consistent pairs of matchings (if a reddish image surface is matched with a
bluish canonical surface, it is not coherent to match another bluish image surface
with a reddish canonical surface). This leads us to introduce an assumption to
constrict the set of matchings, in order to build a consistent set losing minimum
performance.

The Grey-World assumption, as depicted before, supposes the average of an
image is grey. Even though this is a strong assumption it can help us to find the
consistent constriction that maintains the colour structure of the image gamut.
In order to relax this assumption we propose another one:

Relaxed Grey-World Assumption. The image gamut under the canonical
illuminant contains grey or its average is close to grey.

Considering this assumption the set of canonical surfaces that can be paired
with each image surface can be reduced to the canonical surfaces which are close
to the image surfaces when the grey-world map is applied to the image, figure 1.
That is, the grey-world assumption is relaxed in order to find the solutions near
the grey-world, enabling some sort of flexibility near this solution.

The relaxed grey world asumption combined with surface matching lead us
to the new approach we propose in this paper. The method matches the image
surfaces with canonical surfaces that we have previously selected, but only with
the surfaces that are consistent with the relaxed grey-world assumption, i.e. the
canonical colours near a neighbourhood in the grey world transform.

First of all we need to select a representative set of surfaces and compute their
RGB values for the canonical illuminant, which is selected to be well balanced
with our sensor. Hence we have a set of k canonical surfaces, denoted as SC =
{SC

1 , S
C
2 , . . . , S

C
k }.

Thus, for a given image, I, acquired under an unknown illuminant U, the
matching algorithm is carried out with the following steps:
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Fig. 1. The relaxed grey-world assumption leads us to find a set of nearest-neighbour
canonical surfaces for each image surface. The image is maped to the center of the
canonical gamut (a),(b) and there the nearest-neighbour canonical surfaces for each
image surface are selected (c).

1. Getting RGB values of surfaces from the image I, denoted as SU (I) =
{SU

1 , S
U
2 , . . . , S

U
n }, where n is the number of surfaces.

2. Applying the grey world transform to SU (I), which places the center of the
image gamut in the center of the canonical gamut (fig. 1 a,b). It is denoted
as SGW (I).

3. For each surface, i = 1 . . . n, of SGW (I) we select the m nearest neighbours
surfaces from the canonical surfaces (fig.1 c), SC , we denote this set as SNN

i .
4. Computing the set of all possible correspondences between each SU

i with
all the surfaces in SNN

i , we name this set RCorr = {SU
1 = SNN

1,p1
, SU

2 =
SNN

2,p2
, . . . , SU

n = SNN
n,pn

; ∀pi = 1, . . . ,m}, where #RCorr = mn.
5. For each element of RCorr, the corresponding αβγ map is computed, and

we obtain a set of maps, MAPRCorr
αβγ .

6. All the maps in MAPRCorr
αβγ out of the feasible set are removed, as we do not

want to deal with impossible maps.

Once we have generated the set of maps, MAPRCorr
αβγ , we propose to use

one of the existing heuristics to select one map within this set. In the following
section we show the results using the heuristics of maximum gamut volume and
average of the set. A simplification of the process can be seen in figure 2.

5 Experiments and Results

To evaluate our method in this first approach we have looked at its performance
using only synthetic data. This is a first way to evaluate methods because perfor-
mance is not affected by image noise and we are able to evaluate performance over
hundreds of synthetic images and thus obtain a reliable performance statistic.
Otherwise, with real data these problems arise, and also the available datasets
are not large enough to extensively test the method.

To build the RGB of the canonical surfaces, we have chosen a synthetic
planckian illuminant with CCT=6500K (fig. 3 (a)). A gausian narrow-band sen-
sor has been built, with centers in 450, 540 and 610 nm (fig. 3 (b)). Hence, the
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Fig. 2. An illustration of how the relaxed grey world algorithm proceeds.

(a) (b)

Fig. 3. The synthetic illuminant (a) and sensor (b) used in the experiments.

1995 reflectances of the Munsell chips have been used to synthesise the RGB
values of our canonical set of surfaces.

Once we have selected the canonical surfaces we generate synthetic images
to test the algorithm. 400 images consisting of 10 reflectances per image (from
Munsell chips randomly selected) under a random illuminant, chosen from a
frequently used selection of 11 different illuminants [14]. To test the method, we
have selected 6 surfaces from each image and found their 5 nearest neighbours
surfaces from the canonical surfaces, that is n = 6 and m = 5.

We have used as recovery error the angular error between the RGB of the

estimated illuminant, R̂GB
C

w , and the RGB of the canonical illuminant used,
RGBC

w (as it is done in [14]). These RGB values of the illuminants are normally
unknown in real images, but they can be computed easily working with synthetic
data.

recovery error = angle(R̂GB
C

w , RGB
C
w )

In table 1 we can see the performance of the proposed method versus one
of the most significant colour constancy algorithms that normally achieves best
results [14], CRULE (introduced by Forsyth in [5]). The performance varies
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Table 1. Comparison of the performance of the two methods. The value shown is the
root mean square of the angular errors computed for the 400 synthetic images.

Heuristic CRULE Relaxed Grey-World

Maximum Volume map 7.09o 7.55o

Average map 9.35o 6.62o

depending on the heuristic used to select the optimal map within the computed
maps. As it can be seen, the best performance is obtained taking the average
map of the proposed Relaxed Grey World. This improvement reinforces the
use of the relaxed grey-world assumption. Also, in figure 4 the different sets of
maps generated with the two algorithms can be compared. With our method,
we avoid to generate a large set of maps that includes the worse maps. We look
for a reduced set of maps which includes the best solutions. In this sense we
have computed the average value of the best angular error for each of the 400
images and it has resulted to be 1.9o, which means that an optimal map is
included in our set of maps in the most of the cases. This result combined with
the performance of our method using the average as heuristic justifies the use of
the reduced set of maps.

Fig. 4. Comparison of the sets of maps generated with CRULE (dark dots) versus the
set of maps generated with our method (bright dots) for 2 different images. In the x-axis
is represented the angular error and in the y-axis the maximum volume heuristic.

6 Discussion

As it has been proven, the introduction of the surface matching approach to solve
computational colour constancy opens a new line of research in this problem that
can help in reducing the error of current methods, that ignore image information
that can be introduced by surface matching. The method proposed performs
good in the synthetic world and this encourages us to go on with its improvement.
The selection of canonical surfaces is an important step to pay more attention
and to be focus of a deep study. Indeed, the number of canonical surfaces used
in our experiments may seem too large to depict representative colours, but it
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has been used as a first approach to the surface matching method, to test how
good it could perform. Further work needs to be done in the selection of the set
of canonical surfaces, as they should represent more trustworthily our knowledge
of colours. When done, this part of the process of colour constancy in the human
visual system will be enabled to take part in computational approaches.
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Abstract. This paper describes a framework for analyzing video se-
quences of a driver and determining his level of attention. The proposed
system deals with the computation of eyelid movement parameters and
head (face) orientation estimation. The system relies on pupil detection
to robustly track the driver’s head pose and monitoring its level of fa-
tigue. Visual information is acquired using a specially designed solution
combining a CCD video camera with an NIR illumination system. The
system is fully automatic and classifies rotation in all-view direction,
detects eye blinking and eye closure and recovers the gaze of the eyes.
Experimental results using real images demonstrates the accuracy and
robustness of the proposed solution.

1 Introduction

The ever-increasing number of traffic accidents in the EC due to the diminished
driver’s vigilance level has became a serious problem to society. Driver fatigue
resulting from sleep deprivation or sleep disorders is an important factor in
the increasing number of accidents on today’s roads. Statistics shows that a
leading cause for fatal or injury-causing traffic accidents is due to drivers with a
diminished vigilance level. Automatically detecting the visual attention level of
drivers early enough to warm them about their lack of adequate visual attention
due to fatigue may save a significant amount of lives and personal suffering.
Therefore, it is important to explore the use of innovative technologies for solving
the driver visual attention monitoring problem.

Many efforts have been reported in the literature on developing non-intrusive
real-time image-based fatigue monitoring systems [2, 7–9, 11]. Measuring fa-
tigue in the workplace is a complex process. There are four kinds of measures
that are typically used in measuring fatigue: physiological, behavioral, subjective
self-report and performance measures [15]. An important physiological measure
that has been studied to detect fatigue has been eye-movements. Several eye-
movements were used to measure fatigue like blink rate, blink duration, long
closure rate, blink amplitude, saccade rate and peak saccade velocity. An in-
creasing popular method of detecting the presence of fatigue is the use of a
measure called PERCLOS [15]. This measure attempts to detect the percentage
of eye-lid closure as a measure of real time fatigue.The present solution focuses
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on rotation of the head and eye blinking, two important cues for determining
driver visual attention, to gather statistics about the driver’s visual attention
level.

The organization of the paper is as follows. In section 2, the image acquisition
system and illuminator is presented. The pupil detection solution based on the
Purkinje images is presented on section 3. This entails pupil detection, tracking
and eye gaze estimation. In section 4, the automated driver visual attention
statistics and some results are given and in section 5 the details of the 3D
head orientation and results are presented. Finally, conclusions are presented in
section 6.

2 Image Acquisition System and Illuminator

To take advantage of the Purkinje images, a special camera-illuminator de-
vice was constructed. For that purpose, several NIR light emitting diodes (the
TSHA650 from Vishay Telefunken) were distributed evenly and symmetrically
along the circumference of two coplanar concentric rings [8] (see fig. 1). The
center of the rings coincides with the camera optical axis. The IR light source
illuminates the driver’s eye and generates two kinds of pupil images: bright and
dark pupil images. The bright pupil image is produced when the inner ring of IR
leds is on and the dark pupil image when the outer ring is on. In order to take
dark and bright pupil images simultaneously, the inner and outer ring control
make use of the even/odd video signal information. The first Purkinje image,
the so-called glint, is observed in both pupil images. A narrow band NIR filter
(700-900 nm) was placed in front of the optical system of the camera to min-
imize interference from light sources beyond IR light and to maintain uniform
illumination under different light conditions.

3 Pupil Detection, Tracking and Gaze Estimation

A robust and accurate pupil detection is crucial for the subsequent eyelid move-
ments monitoring, eye gaze determination and face orientation estimation. Pupil
detection is obtained by IR illumination after removing external illumination dis-
turbance, and the result will be used on pupil tracking via Kalman filtering.

Fig. 1. Image Acquisition and NIR Illuminator.
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Fig. 2. The bright and dark pupil effect.

3.1 Pupil and Glint Detection

At the NIR wavelength, pupils reflect almost all the IR light they receive along
the path back to the camera, producing the bright pupil effect. If illuminated off
the camera optical axis, the pupils appear dark since the reflected light will not
enter the camera lens. This produces the so-called dark pupil effects.

Pupil detection involves locating pupils in the image. The narrow band NIR
filter that was attached to the camera lens almost remove the ambient light
interference. To robustly detect the pupils, each frame is separated into two
image fields, representing the bright and dark pupil images separately (fig. 2).
The image subtraction of these two image fields will produce an image with an
high intensity contrast between the pupils and the rest of the image, allowing
easy pupil segmentation via a simple global thresholding. This yields a binary
image consisting of binary blobs that may represent the pupils. The pupils are
detected by searching the entire image to locate two blobs that satisfy certain
size, shape and distance constraints. The relationship between the shape and
size of the pupils and the distance between each other is defined based on the
anthropometric measures of the human face. After the correct detection of both
pupils, an ellipse fitting is applied to each pupil and the centroid of the resulting
ellipse is returned as the position of the detected pupil.

To take advantage of the high contrast between the glint and the rest of the
image, the glint is detected using the dark image field. The bimodal intensity
distribution of the dark image field allows a robust detection of the glint via
simple image thresholding in the neighborhood region of the pupils. Once again,
the shape and position distribution of the glints are used to constrain the seg-
mentation results. Since the glints are visible in both image fields, the glints
detected in the dark image field are cross-checked with the results obtained with
the bright image field. The centroid of the segmented blob of a glint is returned
as the image position of the glint.

3.2 Pupil Tracking

To continuously monitor the driver visual attention, it is important to track the
eyes in real-time. We implemented a Kalman filter tracker to accomplish this
task. This tracker is aimed to fulfill two purposes: estimate the position and
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uncertainty of moving targets in the next frame and to filter out noise input
data.

The target state vector is X = [pl pr gl gr ṗl ṗr ġl ġr]
T where pi =

(xi, yi)|i=pr ,pl
and ṗi = (ẋi, ẏi)|i=pr ,pl

are the image position and image ve-
locity of the pupils and gi = (xi, yi)|i=gr ,gl

and ġi = (ẋi, ẏi)|i=gr ,gl
are the image

position and image velocity of the glints.
The system model used is the following discrete model:

Xk = f (Xk−1, k − 1) + Wk Zk = h (Xk, k) + Vk (1)

where Wk is a discrete-time white noise process with mean zero and covari-
ance matrix Q, Vk is a discrete-time white noise process with mean zero and
covariance matrix R, and Wj , Vk, and X0 are uncorrelated for all j and k. We
considered the assumption that trajectories are locally linear in 2D, resulting for
the system model the following linear difference equation Xk = A ·Xk−1 +Wk

where the system evolution matrix, Ak, is based on first order Newtonian dy-
namics and assumed time invariant.

The measurement vector is Zk = [pl pr gl gr]
T and is related to the state

vector via the measurement equation Zk = C ·Xk + Vk.
The state covariance matrix Pk encodes the information of the ellipse of

uncertainty of the estimation and can be used to compute the search area for
the pupils and the glints. Specifically, the search area size was chosen as [H,W ] =
[20 + 0.2 · Pk(y, y), 25 + 0.3 · Pk(x, x)].

3.3 Head-Eye Gaze Estimation

As stated before, the first and the fourth images of Purkinje (dual-images of
Purkinje) supply a very reliable information for head-eye gaze estimation [3, 10].
When the head-eye is panned horizontally or vertically, the relative positioning
of the glint and the centre of the bright-eye change accordingly, and the direction
of gaze can be calculated from these relative positions.

For a roll free head rotation, the locations of the pupils will share a common
image line. In case of a pure roll head rotation (frontal orientation), the orienta-
tion of the line defined by both pupils gives an estimation of the roll angle of the
head and the relative positioning of the glint and the pupil is the same in each
one of the eyes. In the case of a head-eye yaw rotation, this relative positioning
is different for each one of the eyes, being equal for the case of a pitch head-eye
rotation. This observation is used to obtain a rough estimation of the direction
of gaze.

Assuming roll free head rotation, the dual-images of Purkinje supply the
following measures

Dyaw = (|xpr−xgr |)−(|xpl
−xgl

|) Dpitch = 0.5∗((ypr−ygr)+(ypl
−ygl

)) (2)

that are used to estimate the head-eye gaze orientation. Dyaw is null for a frontal
head pose and shows positive/negative values for right/left head rotations. The
eye gaze orientation is measured on the eye with less pupil-glint relative position.
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Fig. 3. PERCLOS (left) and AECS (right) measurements over a period of 80 seconds.

Using these measures, the head-eye gaze orientation is obtained via a linear
mapping procedure. To make these measures scale invariant, they are normalized
by dividing over the inter-pupil distance value of the front view. An off-line
calibration procedure was carried on, quantizing the head gaze orientation in
steps of 5o.

4 Automated Driver Visual Attention Statistics

Of the drowsiness-detection measures, the measure referred to as PERCLOS was
found to be the most reliable and valid determination of a driver’s alertness level.
PERCLOS is the percentage of eyelid closure of the pupil over time and reflects
slow eyelid closures (droops) rather than blinks. To measure eyelid closure of
the pupil, the size of the pupil was taken as the average size of both pupils and
the rate of closure is defined as rateclosure = 1 − (pupilsize)/max(pupilsize),
defining a closed eye if rateclosure ≥ 0.8.

AECS is the average eye closure speed [9], which means the amount of time
needed to fully close the eyes and to fully open the eyes. An individual eye closure
speed is defined as the time period during which the 0.2 ≤ rateclossure ≤ 0.8.
Figure 3 show the PERCLOS and AECS for a period of 80 seconds.

5 Driver Head Orientation

The presented approach models the shape of the driver’s face with an ellipse,
since human faces can be accurately modelled with an ellipse and is less sensitive
to facial expression changes. To recover the 3D face pose from a single image,
it is assumed that the ratio of the major and minor axes of the 3D face ellipse
is know. This ratio is obtained through the anthropometric face statistics. Our
purpose is to recover the three angles of rotation: yaw (around vertical axis),
pitch (around horizontal axis) and roll (around the optical axis).

5.1 Image Face Ellipse Detection and Tracking

The image face ellipse detection and tracking is based on three major steps: i)
obtain an approximate location of the face based on the positions of the eyes.
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Fig. 4. Image face ellipse detection.

Since the pupil position varies as a function of the eye gaze movements, the
approximate location of the face is based on the location of the glints which are
invariants to the eye gaze. ii) determine the best fitted ellipse for the image face
by maximizing the normalized sum of the gradients around the edges of the face.
iii) Ellipse face tracking using a Kalman filter.

In order to correctly detect the face ellipse, some constraints must be consid-
ered, in special size, location and orientation. The distance between the detected
glints and their location are used to constrain the size and location of the image
face ellipse. The orientation of the line that passes through both glints is directly
related to the 3D face roll rotation. For roll free face poses this line remains hor-
izontal, which means that it is invariant to the yaw and pitch rotations. Under
this constraints, the roll angle (ψ) is defined by ψ = atan[(ypl

−ypr)/(xpl
−xpr )].

Under frontal orientation, a weak perspective projection can be assumed and
the face symmetry for the location of the eyes within the 3D face ellipse hold
for the image face ellipse. This means that the major axis of the face ellipse is
normal to the line connecting the two glints and pass through the center of the
line. In fact, these constraints doesn’t hold for non-frontal orientation and the
orientation of the major line is not normal to the connecting line. Although,
the solution adopted kept the constrain that the major axis of the ellipse pass
through the center of the line, considering the existence of an angle α between
the major axis and the normal to the line that connect the two glints.

Assuming the existence of an ellipse coordinate frame located at the middle
point of the glints connecting line, with the X and Y axis aligned with the minor
and major axes of the ellipse, respectively, the image face ellipse is characterized
by four parameters (mi, ni, d, α), where mi and ni are the lengths of the major
and minor semi-axis of the ellipse, respectively, d is the distance to the image
ellipse center and α is the rotation angle.

Taking the approach proposed by Birchfield [4], the image face ellipse can be
detected as the one that minimizes the normalized sum of the gradient magnitude
projected along the directions orthogonal to the ellipse around the perimeter of
the ellipse. This can be formulated has ε = 1

N

∑N
i=1 |n(i) · g(i)|2 where n(i)

is the unit vector normal to the ellipse at pixel i, g(i) is the pixel intensity
gradient and (·) denotes dot product. The best face ellipse is χ = arg maxe∈E(ε2)
where the search space E is the set of possible ellipses produced by varying the
four parameters of the ellipse. In order to constraint the searching space, the
rough estimation of the 3D face orientation obtained via the dual-images of
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Purkinje is used to define an initial estimate for these parameters. The four
ellipse parameters are tracked via a kalman filter. Figure 4 show the result of
the image face ellipse detection.

5.2 Face Orientation

Consider an object coordinate frame attached to the 3D face ellipse, with its
origin located on the center of the ellipse and its X and Y axes aligned with the
major and minor axes of the ellipse. The Z axis is located normal to the 3D ellipse
plane. The camera coordinate frame is located at the camera optical center with
the Xc and Yc aligned with the image directions with the Zc along the optical
axis. Since the 3D face ellipse is located on the plane Z = 0, the projection
equation that characterizes the relationship between an image face ellipse point
pi = (x, y, 1)T and the corresponding 3D face ellipse point Pi = (X,Y, 1)T is
given by pi = βK[R|t]Pi where K represents the camera intrinsic parameters
matrix, M = [R|t] = [r1 r2|t] is the extrinsic parameters matrix and β = λ/f is
an unknown scalar.

Representing [
x y 1

] ⎡⎣ a c/2 d/2
c/2 b e/2
d/2 e/2 f

⎤⎦⎡⎣xy
1

⎤⎦ = 0 (3)

the matricial generic formula of an ellipse, the 3D face ellipse and the image face
ellipse can be defined, respectively, as[

X Y 1
]
Q
[
X Y 1

]T = 0
[
x y 1

]
A
[
x y 1

]T = 0. (4)

Substituting pi = βKMPi to Eq. 4 lead to[
X Y 1

]
βMTKTAKM

[
X Y 1

]T = 0. (5)

Denoting B = KTAK, the 3D ellipse matrix Q yields Q = βMTBM .
Let the length of the major and minor axis of the 3D face ellipse be m and

n, respectively, and since the object frame is located on the center of the ellipse,
the ellipse matrix Q is parameterized as

Q =

⎡⎣1/m2 0 0
0 1/n2 0
0 0 −1

⎤⎦ (6)

resulting the equation⎡⎣1/m2 0 0
0 1/n2 0
0 0 −1

⎤⎦ = β

⎡⎣ rT
1 Br1 r

T
1 Br2 r

T
1 Bt

rT
2 Br1 r

T
2 Br2 r

T
2 Bt

tTBr1 t
TBr2 t

TBt

⎤⎦ (7)

Due to the symmetry of the matrix, there are only six equations (constraints)
for a total of nine unknowns.
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Fig. 5. Head face orientation estimation.

Since the roll angle was already obtained, the face orientation can be defined
just by the yaw and pitch rotation. Assuming a null translation vector, the
rotation matrix obtained from the yaw and pitch rotation is

R = RσRυ =
[
r1 r2 r3

]
=

⎡⎣ cos(σ) sin(σ)sin(υ) −sin(σ)cos(υ)
0 cos(υ) sin(υ)

sin(σ) −cos(σ)sin(υ) cos(σ)cos(υ)

⎤⎦ . (8)

Assuming that the ratio between the major and minor axis if the 3D face
ellipse is know by anthropometric face analysis, and letting c = m2/n2 represent
this ratio, the 2× 2 sub-matrix yields

β

[
rT
1 Br1 r

T
1 Br2

rT
2 Br1 r

T
2 Br2

]
=
[

1/m2 0
0 1/n2

]
(9)

resulting the following constraint equations

rT
1 Br2 = 0 (10)

βrT
1 Br1

1/m2
=
βrT

2 Br2
1/22

⇔ rT
1 Br1 =

n2

m2
rT
2 Br2 ⇔ rT

2 Br2 − crT
1 Br1 = 0. (11)

Using these two equations it is possible to solve for the pitch and yaw iter-
atively. The initial estimates of 0o for both angles has been used with correct
convergence results. This approach was tested with several real images with good
results. Although, the accuracy obtained with this approach is highly dependent
on the image face ellipse obtained. Figure 5 show the results obtained with the
face orientation estimation approach.

6 Conclusions

A Real-time Driver Visual Attention Monitoring System was presented. A spe-
cial hardware image acquisition and illuminator system was described to take
advantage of the dual-images of Purkinje. A efficient and simple solution for
pupil detection was presented that were used to take some drossiness measure in
real-time. A rough estimation of the head-eye gaze was described based on the
dual-images of Purkinje and finally an ellipse based face orientation estimation
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was presented. Although the good results obtained with the face orientation es-
timation, it reveals to be highly dependent on the image face ellipse detection.
Further research is necessary in order to improve the accuracy of the image face
ellipse detection.
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Abstract. We present an approach to vision-based person detection in
robotic applications that integrates top down template matching with
bottom up classifiers. We detect components of the human silhouette,
such as torso and legs; this approach provides greater invariance than
monolithic methods to the wide variety of poses a person can be in. We
detect borders on each image, then apply a distance transform, and then
match templates at different scales. This matching process generates a
focus of attention (candidate people) that are later confirmed using a
trained Support Vector Machine (SVM) classifier. Our results show that
this method is both fast and precise and directly applicable in robotic
architectures.

1 Introduction

Detection and recognition of objects from images disregarding orientation, scale
and view is a very important research subject in computer vision. People de-
tection in images and video sequences is a research subject in this area. We are
interested in this problem from a robotic application point of view since we are
currently in early development stages of a robotic application for search and
rescue operations [2].

The problem of people detection is very complex and has not been solved in
its generality, but there have been advances where the pose is fixed, such as in
the case of pedestrians [1, 9, 14]. However not much attention has been given
to the problem when the camera cannot be assumed stationary (therefore not
having a explicit scene model).

Our approach uses fast template matching as a focus of attention. Basically
it discards locations where there is no silhouette matching the human body. And
from those candidate locations (ideally, a very reduced set), we query a full scale
SVM.

The contributions pretended are two-fold: first the design and implementa-
tion of a vision system that integrates top-down template matching with bottom-
up classifiers; and second a concrete implementation on board a robot in an
embedded application.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 209–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The rest of the paper is organized as follows, first we describe distance trans-
forms for template matching and then support vector machines for pattern recog-
nition, after that we describe the system details, then the results are presented.
Finally, the discussion and conclusions are presented and then ideas for future
work are given.

2 Distance Transform for Template Matching

A distance transform (DT) converts a binary image (containing values 0 and∞)
to an image where each pixel value denotes the distance to the nearest feature
pixel. From this definition of the distance transform problem, a O(n4) algorithm
can be readily constructed (for an n×n image). However, over the last 20 years
the state of the art has advanced either approximating the EDT in a O(n2) time
or providing an exact solution in a O(n3) time.

Many DT algorithms exist, the differing characteristic is the distance metric
and the propagation of local distances. In particular we use Euclidean distance
and Maurer’s line-column scanning method [10].

After the image has been adequately preprocessed the template matching
step begins. As described in by Gavrila [7], a given image I is said to be matching
a template T when:

D(T, I) ≤ θ (1)

where θ is a user defined threshold on the maximum acceptable dissimilarity
between the DT image and the template, and D(T, I) is given by:

D(T, I) =
1
|T |

∑
t∈T

dI(t) (2)

where |T | is the number of features in T and dI(t) is the distance between feature
t ∈ T and the closest feature in I.

3 Support Vector Machines for Pattern Classification

Support vector machines (SVMs) is a principled machine learning technique that
is well founded in statistical learning theory.

SVMs have two outstanding characteristics: (1) they have a solid mathemati-
cal foundation and (2) strong practical results in large-scale, real-world problems.

Traditional machine learning methods such as backpropagation, minimize
the training error, while SVMs minimize a bound on the empirical error and
the complexity of the classifier, simultaneously. Therefore, SVMs are likely to
perform better than conventional techniques, such as backpropagation trained
neural networks. The decision surface of an SVM is given by:

f(x) = sgn

(
Ns∑
i=0

αiyiK(x, xi) + b

)
(3)
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where Ns is the number of support vectors (points closest to the separating
hyperplane, in terms of which the decision boundary is defined); x is the point
to be classified, xi is a support vector, and αi is the corresponding Lagrangian
multiplier. K is a kernel satisfying Mercer’s conditions. For a complete review
of SVMs for pattern recognition (see [4]).

4 System Details

At its core, our system for person detection uses template matching employing
Euclidean distance transform (EDT) to evaluate candidate people by indepen-
dent components (such as torso, leg, arm, head). These matched components are
immediately verified using a SVM specialized for that component. If valid, the
component is adequately marked on the image. The very first step is preprocess-
ing. Each input image is grayscaled and contour-filtered using the Marr-Hildreth
method[11]. After that, the contoured and grayscaled (CG) image is transformed
using an EDT. Figure 1 shows the result of running the preprocessing step on
three example images.

We have devised two simple methods for image scanning:

– Using exhaustive scanning. In an X × Y image with an N ×M template,
we first try to match the window defined by the rectangle (0, 0, N,M); after
that the one defined by (1, 0, N + 1,M), and so on until reaching the end of
the image at that scale.

– Using random sampling. In an X × Y image with an N ×M template, we
select a fixed number of samples proportional to the size of the image. This
scanning method accelerates the process with a sacrifice in precision.

In the offline experiments we use exhaustive scanning because runtime perfor-
mance is not an issue. However, the online version uses the randomized method.

After experimentation we settled with 12 templates. More templates means a
better definition of the class of interest but also translates into a slower matching
process. The templates are taken from photographs of the object of interest after
contour filtering it and obtaining the relevant connected components.

When an image window matches a template, a previously trained and boot-
strapped SVM is queried. If the SVM classifies the window as a valid component,
the component is then marked in the original image taking into account the scale.
Compared to template matching, SVM query phase is very slow. We have looked
into simplifying the verification and use Burges’s method [3] but later noticed
that a homogenous quadratic kernel does not perform well on some of these
component datasets.

This approach is not new. Heisele et al. [9] and Gavrila [7], both use some type
of hierarchical quick discard method. However, our method is very simple and
uses a small amount of templates compared to the results reported by Gavrila
[7].

The initial prototype of the current system was written in Python. It uses
the LIBSVM support vector machine library [5]. For image processing, we used
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(a) (b) (c)

Fig. 1. (a) is the original image, (b) is the contoured and grayscaled image and (c) is
the distance transformed image ready for template matching.

(1x1) (2x2) (3x3) (4x4)

Fig. 2. Chessboard feature selection for various sizes. White squares represent selected
pixels, black squares represent non-selected pixels.

the Python Imaging Library (PIL). The production version of the system is
written in C++ and uses LIBSVM and ImageMagick. The main difference in
the two implementations is mainly performance. On our 1.6 GHz Pentium IV
machine, the C++ version runs at 3 frames per second. The system does not
use movement as a focus of attention; using movement our system should be
considerably faster.

5 Results

We use a chessboard sampling of the pixels in the input image, as presented in
Fig. 2. The ROC (Receiver Operating Characteristic) curves in Fig. 3 (right)
show that the loss in accuracy is not significant while this feature selection
method makes real time performance feasible for our approach. The fact that
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Fig. 3. Left: ROC Graphic of the SVM classifier with an RBF (Radial Basis Function),
quadratic and linear kernel and C=5. Both classifiers are of similar complexity. Notice
the poor performance of the linear and quadratic kernels. Right: ROC Graphic of the
SVM classifier with an RBF (Radial Basis Function) and different chessboard intervals.
The loss in accuracy can also be observed in Table 1.

Table 1. Chessboard feature: selection and mean and standard deviation of the clas-
sification rate doing a 5-piece cross-validation of the torso classifier.

Features Mean ± Std. Dev.

1x1 89% ± 1%

2x2 86% ± 1%

3x3 86% ± 1%

5x5 87% ± 1%

7x7 83.5% ± 1%

this type of very simple feature selection approach works shows that the training
data are highly redundant.

We applied a 5-piece cross-validation of the training set and report the mean
and standard deviation of the classification accuracy rate of the torso classifier
in Table 1. Results show that we obtained high accuracy rates on a very large
complex dataset.

In Fig. 3 (left) it can be clearly observed that the linear and quadratic kernel
perform very poorly in this domain. While using a quadratic kernel, Burges’s
method [3] can be readily applied, as reported by Papageorgiou and Poggio [13]
after results reported by Osuna et al. [12] in another domain. We consider the
precision loss to make this approach prohibitive.

We present several examples of the output of the offline version of the system
in Fig. 4. Notice that kids are detected by the system. We consider this to
be encouraging since their characteristic proportions are different to those of
an adult. The system is also able to correctly classify a naked torso. This is
remarkable since the torso of a naked person is considerably different to the
torso of a dressed person.
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Fig. 4. The first two rows contains examples of the system running on several images
offline. The last row shows results obtained by the online version of the system in our
office environment.

6 Robotic Application

We tested the system onboard an ActivMedia Robotics Pioneer 2 mobile robot.
The online version (onboard the robot) uses the randomized scanning method
previously described.

It is important to note that because the camera is not stationary and the
background is constantly varying, simple techniques of background substrac-
tion cannot be used for getting the foreground objects. We execute multi-scale
exhaustive scanning at each frame.

Because a robotic application usually needs to be run on hardware that is
not last generation, we found the querying an SVM on every candidate quickly
becomes a cripling bottleneck. We eliminated the SVM querying step from the
online version.

The performance (as measured by false positives and false negatives) degen-
erated significantly. To handle this we adjusted (downwards) the value of Θ in
the template matching step. Further, to enhance the precision of the system in
our office environment, we measured the correlation of the value pixels on the
DT image over the template as described in equation 2 and called this value β
and measured the percentage of matching non-data points in the template com-
pared to the contoured image and called this value α. So the matching criteria
is:
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α

β
> γ (4)

where γ is an experimentally set threshold value. The matching criteria seeks
a balance of many matched points with low matching error (derived from the
distance measure of the EDT image ). This refinement of the matching criteria
significantly decreases the false-positive rate and eliminates the need of querying
an SVM to have acceptable results.

The online version of the system works at 3 Hz.

7 Conclusions

We have presented an approach to vision-based person detection in robotic ap-
plications that integrates top down (high speed) template matching with bottom
up classifiers. We detect components of the human silhouette such as torso and
legs; this approach provides greater invariance than monolithic methods to the
wide variety of poses a person can be in.

The torso detection methodology presented currently works very well even
though each pattern contains more than 1400 features. We have found that the
torso can be characterized as very noisy data due to the presence of clothes. The
trained SVM classifier correctly captures the relevant information to classify a
torso from CG image data, yet querying it is a bottleneck that makes unfeasible
to run the system in real time. We presented an alternative using only template
matching.

We believe this shows the wide range of applicability of our approach. Our
torso dataset contains 924 torsos (from the MIT Pedestrian dataset) and 2072
non-torsos (the non-torsos were generated after a bootstrapping process).

Developing classifiers and templates for other components of the human body
(more important in other poses) for use by this method constitutes promising
future work. By detecting components of the human body our method is more
resilient to occlusion than monolithic approaches.

Our system is not ready for mission critical applications. Performing a prin-
cipal component analysis (instead of the described chessboard) for feature se-
lection would be a challenging future direction with this large-scale dataset. In
the future, we intend to automatically construct shape models using techniques
such as described by Duta et al. [6] and Gavrila et al. [8] to generate a larger
template set before continuing on to the development of the classifiers for search
and rescue poses.

References

1. M. Bertozzi, A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi. Shape-
based pedestrian detection and localization. Procs. IEEE Intl. Conf. on Intelligent
Transportation Systems, pages 328–333, 2003.

2. A. Brando and C. Chang. Firefighter-robot interaction during a hazardous ma-
terials incident exercise. In 11th International Conference on Advanced Robotics,
volume 2, pages 658–663, 2003.



216 Carlos Castillo and Carolina Chang

3. C. J. C. Burges. Simplified support vector decision rules. In International Confer-
ence on Machine Learning, pages 71–77, 1996.

4. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

5. C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

6. N. Duta, A. K. Jain, and M. P. Dubuisson-Jolly. Automatic construction of 2d
shape models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(5):433–446, 2001.

7. D. Gavrila. Pedestrian detection from a moving vehicle. Proc. of the European
Conference on Computer Vision, 2(8), 2000.

8. D. Gavrila, J. Giebel, and H. Neumann. Learning shape models from examples. In
Pattern Recognition, 23rd DAGM-Symposium, Munich, Germany, September 12-
14, 2001, Proceedings, volume 2191 of Lecture Notes in Computer Science. Springer,
2001.

9. B. Heisele, C. Nakajima, M. Pontil, and T. Poggio. People recognition in image
sequences by supervised learning. Technical Report CBCL-188, MIT Artificial In-
telligence Laboratory, June 7 2000.

10. C.R. Maurer Jr. and V. Raghavan. A linear time algorithm for computing the
euclidean distance transform in arbitrary dimensions. In IPMI, 2001.

11. D. Marr and E. Hildreth. Theory of edge detection. Proc Roy. Soc. London, page
B207:187, 1980.

12. E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an ap-
plication to face detection. In 1997 Conference on Computer Vision and Pattern
Recognition (CVPR ’97), June 17-19, 1997, San Juan, Puerto Rico. IEEE Com-
puter Society, 1997.

13. C. Papageorgiou and T. Poggio. Trainable Pedestrian Detection. In Proceedings of
the 1999 International Conference on Image Processing (ICIP-99), pages 35–39,
Los Alamitos, CA, October 24–28 1999. IEEE.

14. C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time
tracking of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):780–785, 1997.



A New Approach
to the Template Update Problem�

Cayetano Guerra, Mario Hernández,
Antonio Domı́nguez, and Daniel Hernández

IUSIANI - Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas
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Abstract. Visual tracking based on pattern matching is a very used
computer vision technique in a wide range of applications [4]. Updating
the template of reference is a crucial aspect for a correct working of this
kind of algorithms. This paper proposes a new approach to the updating
problem in order to achieve a better performance and robustness of track-
ing. This is carried out using a representation technique based on second
order isomorphisms. The proposed technique has been compared experi-
mentally with other existing approaches with excellent results. The most
important improvements of this approach is its parameter-free working,
therefore no parameters have to be set up manually in order to tune the
process. Besides, objects to be tracked can be rigid or deformable, the
system is adapted automatic and robustly to any situation.

1 Introduction

Visual tracking based on pattern matching is a very used computer vision tech-
nique in a wide range of applications [4]. Its working is simple, a template of
reference is searched in the current image. However, updating the template of ref-
erence is a crucial aspect since the object of interest normally modifies its visual
aspect through the time. Therefore, an adaptation of the pattern is necessary in
order to keep the object.

Two problems can arise due to the insufficient or excessive frequency of the
number of updates. In the first of them, the visual aspect of the object of interest
can become too different from the pattern and, in this way, the searching algo-
rithm can find other part of the searching window more similar to the current
pattern. This produces a jump in the object of interest. The other problem is
due to applying too and unnecessary updates to the tracking process. The digital
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nature of images and patterns can cause drifting due to an accumulative sub-
pixel error in every update. Sometimes, the random movement of the object can
counteract the effect of the drift, but with certain kind of movements the drift
can be significant and end up losing the object. Every update causes a potential
drift.

This work proposes a new template updating approach within the framework
of representation spaces based on second order isomorphisms. Among its advan-
tages are a parameter free working, no parameter have to be set up manually
prior working, and a better performance than the traditional updating methods.

2 Second-Order Isomorphisms

The ”objects” are located in the real world and, after Shepard [11], we will
name to this world Distal Space. Every object in this space will have its own
representation in an inner space Φ, named Proximal Space. In this work we define
Visual Object to any physical entity in the real world which has associated its
own internal representation. In the proximal space the goal of the visual system is
to assign to every visual object in the distal space a unique symbol in a proximal
space, and thereby to establish an isomorphism between both spaces, [6].

Besides this correspondence, it is even much more useful to establish rela-
tions among objects in a distal space and their respective representations in the
proximal space. A second order isomorphism [7, 11] should accomplish that if
similarity between two distal objects A and B is greater than between distal ob-
jects B and C, then the distance between their respective representations (A′,
B′ and C′) should verify that d(A′, B′) < d(B′, C′). Therefore, the representa-
tion schema not only stores information about the objects but also information
about their relationships.

3 View-Based Representation Spaces

View-based approaches have experienced a renewed interest in the computer
vision community in the last decade. After Bergen and Adelson [1], the appear-
ance of a visual object in terms of images is described by the plenoptic function.
That is, if the plenoptic function of a visual object is known, then every possible
view of that object can be generated. This function depends on a set of param-
eters, like viewing position and lighting conditions, whose variability defines the
appearances subspace corresponding to the visual object [3] in the views space.

This function was originally defined for rigid objects. However, if time varying
parameters are included among the set of parameters ρ(t), the plenoptic function
V ((x),ρ(t)) will be able of dealing with non-rigid visual objects. We can call to
this function generalized plenoptic function. Unfortunately, finding the plenoptic
function corresponding to an object in a certain scene is a very complex problem.

In order to overcome this drawback much effort has been done in the study
of the views space. To characterize precisely the variability of images and other
perceptual stimuly, a mathematical approach can be taken.
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The views space can be modelled in image coordinates, based on considering
the set of n×m pixels corresponding to each image as a Rm×n vector. We can
consider each image as a vector with dimension m × n. The set of all possible
images of any distal object is a continuous subset of the views space [10]. This
continuity is related to the smooth variation of visual aspect with respect to
the plenoptic parameters. This can be stated as a continuity principle in the
following manner: given an arbitrarily small τ and δd, the following condition
will comply:

d[V (x; ρ(t)), V (x; ρ(t+ τ))] ≤ δd, ∀x ∈ S (1)

Where S corresponds to the support set of V and d is a defined distance function.
Varying t, in the generalized case, the set of points corresponding to the images
of a distal object are in a manifold [10] Mx of the Views Space. The manifold
of a certain object O MO

x is a lower dimensional subspace embedded [3, 5]
in the views space with the l parameters of the plenoptic function as intrinsic
dimensions:

MO
x = {V (x; ρ(t)) | ρ ∈ Rl} (2)

During a tracking process of an object, this does not show all possible views of
itself included in its manifold but just a subset of them. This manifold subset,
I(x; t) ⊂MO

x , will shape as a parametric curve of the time. We name this curve
Visual Transformation Curve of the Object.

The tracking process tries to follow the visual object through this curve
obtaining the values α0 corresponding to the location of the best match at time
t, through a function like:

α0(t) = argmin
α

∑
x

d(W (I(x; t); α), T (x; t)) (3)

Where I(.; .) is the image where looking for the template T (.; .) by means of a
windowing function W (.; .), which extracts an area of the same size than T (.; .)
at position α. α0(t) will be the minimum of the matching function, valued over
all possible values of α. That is, position of the window W over the image V .

The template tracking depends on the definition of several elements. Once
defined the matching strategy and distance function to be used, the fundamental
element to be defined is the template update strategy or, in other words, the
steps in which the visual transformation curve is tracked.

4 Existing Updating Techniques

A number of strategies have been proposed to define the template to be used
during the tracking process. In [2, 9] there are good surveys about these tech-
niques. Strategies goes from no template updating at all, others with very naive
approaches and some of them using similarity thresholds.

Among them, template update based on statistics [8] tries to overcome the
inherent problems of drifting and jumps of interest seeking a balance in the
number of updates to perform. This updating schema takes into account that
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exceeding a similarity threshold provides only specific information and does not
provide information at all about the rest of the image.

However, the quality of a maximum (or minimum) relies on the values that
surround it. Therefore, this statistical method of updating considers the rest
of values of the similarity function, in such a way that if the maximum (or
minimum) is differentiated enough from the rest of values then the quality of
the current pattern is good. This level of differentiation is calculated based on a
statistical function, [8].

5 Proposed Template Matching Updating Technique

In order to describe the procedure proposed in this paper, we will denote as p to a
point corresponding to the representation of a visual object in the proximal space
Φ at a certain time, i.e. p will correspond with the template T (see expression
3) in the space defined by Rm×n. A distance d can be established in Φ. In this
work, the distance d between two points p1 and p2 is based on the L2 norm.
This distance will be used between input image and template in order to obtain
the best match.

Fig. 1. The figure depicts the points corresponding to the symbolic representations of
the different searches over an image in a tracking process. The diagram c) illustrates
the consequences of a lack of required updating.

After applying the distance function between image and pattern sliding the
template over the searching window according to expression 3, a variable number
of local minima will show up, among them, the absolute one. In Φ, see figure
1, a) the vector p corresponds to the pattern of reference, i. e. the view of the
object of interest to look for. The vector m1 will be the absolute minimum since
it is the visual object most similar to the object of interest. The existence of
more local minima, m2 and m3, implies that there are other similar objects in
a certain degree to the object of interest. We name them objects of the context.
These objects, like the object of interest, have also their own curve of visual
transformation included in their manifolds of the proximal space. Although for
the sake of simplicity these objects of the context will remain static, see figure 1,
b). The Visual Transformation Curve of the object of interest is the loci of the
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points corresponding to the different minima after the matching process on input
images during a certain time. This curve will be composed by the nearest vectors
(m1,m

′
1,m

′′
1 , ...) to the pattern of reference (p). Therefore, m1 corresponds to

the closest point to p in the moment t = 0, m′
1 corresponds to the closest point

to p in the time t = 1 and so on. However, if there exist, at least, one object of
the context, m2, and the pattern of reference (p) is not updated, it may occur
that, after a number of frames, the absolute minimum does not correspond to
the real object of interest but to the most similar object of the context, as figure
1, c) shows. Thus, the area of the searching window corresponding to the point
m2 will be taken as the object of interest, resulting in an error of the tracking
process, that is an interest jump error, which is a very common error of updating
techniques that do not update the pattern just in time.

The origin of the problem is caused by the lack of updating or an inappro-
priate updating rate of the pattern of reference. It can be seen in figure 1, c)
that d(p,m1) < d(p,m2) and d(p,m′

1) < d(p,m2) but d(p,m′′
1) > d(p,m2).

For the sake of clarity the most similar object of the context, m2, does not move
and consequently does not draw any visual transformation curve.

It is clear that the pattern should be updated before any object of the context
can be more similar to the pattern of reference than the current view of the object
of interest. To accomplish this an updating threshold must be set up taking into
account the closeness of the objects of the context. Therefore, when a new view
of the object of interest is taken as current pattern a new updating threshold
is also computed automatically. The assigned value can be obtained by the rule
of dividing by two the distance to the closest object of the context to the new
pattern.

6 Experimental Results

Pattern updating is necessary if the view of the object of interest changes through
the time. Besides, this updating must be done at the right moment in order to
avoid the two most significant errors in a tracking process: drifts and interest
jumps. These two kinds of error will mark experimentally the goodness of the
different updating approaches.

Several experiments have been done in order to evaluate the performance
of the proposed solution. Among them, two critical sequences, described in this
paper, demonstrate the higher level of robustness of the new approach in com-
parison with the existing updating methods. Actually, only statistics updating
based method [8] is used as the other methods are too simple and their limita-
tions are obvious.

A complete tracking module has been developed to carry out the presented
experiments. To obtain the results only the updating schema of this algorithm
has been changed. In order to evaluate the updating approaches, the best method
will be the one that carries out a correct tracking (without interest jump nor
drifting errors) with the smallest number of updates.

In the first experimental sequence, see figure 2, a person walks and her face
is tracked. At first sight, it seems a not problematic task. However, an error
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Fig. 2. Different frames of a sequence where a face is tracked. Sometimes, at first sight
and if similarity function is not displayed, it does not look that the minimum of the
similarity function can be so confused.

Table 1. Above, number of updates based on statistical pattern updating and errors of
jumps for different reliability threshold. Below, number of updates in the same sequence
using context based pattern updating approach.

Statistical approach

Reliability threshold Number of updates Jump errors

0.75 - Yes
0.80 - Yes
0.85 - Yes
0.90 468 No

Context based approach

Reliability threshold Number of updates Jump errors

− 106 No

happens due to the existence of local minimums near the absolute one, and all
of them surrounded by a very different environment. Such a situation drives to a
not pattern updating, and a consequent interest jump error, when the constant
threshold and statistic based update algorithms are used.

Things that we perceive or think as quite different may not result be so
to a certain similarity function. Figure 2 illustrates such error. Every frame is
shown beside its corresponding similarity function. To fix the problem, using the
statistic based update method, it is necessary to increase the level of certainty
and so the number of updates. Table 1 shows the resulting values of the two
compared algorithms. Carrying out both of them a correct tracking process the
difference raises in the number of updates needed. The less number of updates
the less probability of drifting. The second experiment shows how the proposed
updating method can adapt the rate of updates according to the proximity of
very similar objects. In figure 3 can be seen a frame of a four seconds sequence
where the object of interest is a fish that swims into a shoal, so it is surrounded
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Fig. 3. The figure shows a frame of a sequence where the object of interest is sur-
rounded by very similar others. The right function depicts the shape of the scene in
the representation space. The absolute minimum corresponds to the object of interest
and the local minima are objects of the context.

Table 2. Number of updates needed by the two methods in order to achieve a correct
tracking.

Statistical approach

Reliability threshold Number of updates Jump errors

0.75 - Yes
0.80 - Yes
0.85 28 No

Context based approach

Reliability threshold Number of updates Jump errors

− 26 No

by other very similar fishes. In order to avoid the loss of the object, the frequency
of updates should be high due to the current pattern can be rapidly confused
with objects of the context. The function next to the frame shows graphically
the object of interest, as the absolute minimum, and the objects of the context
(two fishes) as local minima nearest to the absolute minimum.

7 Conclusions

As conclusions from the experiments carried out in a wide range of environments
and conditions we can state three major ones:

– The number of required updates is minimized achieving a correct tracking
process, and minimizing the drift risk.

– Achievement of an automatic template updating method for any environ-
mental condition.

– The update algorithm is computationally light what allows it to be imple-
mented in low cost general purpose computers.
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Abstract. Image registration is a problem that arises in many image processing 
applications whenever information from two or more scenes have to be aligned. 
In image registration the use of an adequate measure of alignment is a crucial 
issue. Current techniques are classified in two broad categories: area based and 
feature based. All methods include some similarity measure. In this paper a new 
measure that combines mutual information ideas, spatial information and fea-
ture characteristics, is proposed. Edge points are used as features, obtained from 
a Canny edge detector. Feature characteristics like location, edge strength and 
orientation are taken into account to compute a joint probability distribution of 
corresponding edge points in two images. Mutual information based on this 
function is minimized to find the best alignment parameters. The approach has 
been tested with a collection of portal images taken in real cancer treatment ses-
sions, obtaining encouraging results. 

1   Introduction 

Image registration techniques find applications in several medical fields, like tissue or 
injury evolution monitoring. In some medical applications there is a need of integrat-
ing complementary information from different imaging sensors, that is, different ra-
diological imaging modalities, and also in matching images from the same modality 
taken at different times. 

Portal imaging consists of sensing therapeutic radiation applied from electron ac-
celerators in cancer treatment [1]. They are formed by the projections of anatomical 
structures over the sensing area after it goes through the body. Due to the high energy 
of the radiation, there is a poor contrast in portal images compared to x-ray, axial 
tomography or magnetic resonance images. Introduction of electronic portal imaging 
devices has increased the quality of portal images. 

Detection of patient pose errors during or after treatment is the main use of portal 
images. For patient pose monitoring, portal images are compared to higher quality 
simulated portal images used as reference, or to a reference portal image taken at the 
first therapy session. Any misalignment has to be detected and corrected. Misalign-
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ments are traditionally detected manually after the session. Automatic misalignment 
detection before the session, using an innocuous dose, is desirable. 

Several registration methods with some degrees of automation, designed to com-
pare portal images among them and with their corresponding simulation images, have 
been reported in the literature [2, 3, 4, 5]. 

This work is being developed as part of a project between the Radiotherapeutical 
Oncology Department at Provincial Hospital of Castellón, Spain, and University 
Jaume I, Castellón. It is aimed at automating and improving quality control in radio-
therapy, mainly focused at patient positioning. We describe a registration method 
based on ideas of mutual information. Instead of a joint probability distribution de-
rived from grey levels, used in conventional mutual information registration, we pro-
pose a joint probability function derived from the spatial localization of features, and 
features similarity. The minimization of the mutual information based on this function 
provides the alignment parameters between two images. The method has been tested 
with portal and magnetic resonance images. 

2   Related Work 

Registration algorithms have applications in many fields. They are valuable tools in 
medical imaging, remote sensing, computer vision, etc. Currently, research is directed 
to multimodal registration and to cope with region deformations [6]. 

Many different registration algorithms have been proposed, and almost all share a 
common framework: optimizing a cost function that measures the alignment between 
images [7]. In feature-based approaches the cost function is computed from character-
istics of features (edges, ridges) extracted before registration. In the case of portal 
images, features from the irradiation field geometry have been used [8], where the 
distance measure is based on the Hausdorff distance modified by using a voting 
scheme that is expressed as a parameter introduced in the expression of this distance. 
This modification makes the method tolerant to small position errors like those that 
occur with automatic edge detectors. Techniques that use manually selected land-
marks to be matched have been also used, [9]. In this work contours of the irradiation 
field are manually selected and their points used for registration using chamfer match-
ing [10]. 

Pixel-based approaches use all the pixels of an image. A Fourier transform-based 
cross correlation operator was used in [4] to find the optimal registration, accounting 
for translations and rotations. A new image alignment measure was introduced in [11, 
12] based on entropy concepts developed as part of Shannon´s information theory: 
mutual information. It was used to measure the statistical dependence between image 
intensities of corresponding pixels in two images. 

Hybrid techniques that combine both approaches have been proposed. In [13] mu-
tual information is computed using feature points locations instead of image intensity. 
In [14] the registration function includes spatial information by combining mutual 
information with image gradient. 

Our method uses edges detected from portal images from conventional edge ex-
tractors. The registration function is derived from the mutual information concept, and 
combines three attributes of edges: edge point location, edge strength and  edge orien-
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tation. These attributes provide spatial information, and are used to build a probability 
estimate of the possible correspondence of two edge points in two images. A joint 
probability table is computed for all possible correspondences, and minimization of 
the mutual information is applied to obtain the best match and the alignment parame-
ters. 

3   Registration Based on Entropy Minimization 

Mutual Information 

Mutual Information is a concept from information theory, and is the basis of one of 
the most robust registration methods [15]. The underlying concept of mutual informa-
tion is entropy, which can be considered a measure of dispersion of a probability 
distribution. In thermology, entropy is a measure of the disorder of a system. A ho-
mogeneous image has a low entropy while a high contrast image has a high entropy. 
If we consider as a system the pairs of aligned pixels in two images, disorder, and 
joint entropy, increases with misregistration, and correct alignment gives a minimum 
of the mutual information of the two images. 

Given two images A and B, the definition of the mutual information I(A,B) is: 

I(A,B) = H(A) + H(B) – H(A,B) , (1) 

H(A) and H(B) being the entropies of images A and B, and H(A,B) being the joint 
entropy. Correct registration corresponds with maximization of the mutual informa-
tion. Following Shannon´s information theory, the entropy of a probability distribu-
tion P is computed as: 

H = ∑
∈

−
Pp

pp log . (2) 

Typically, the joint probability distribution of two images is estimated as a normal-
ized joint histogram of the intensity values [12]. The marginal distributions are ob-
tained by summing over the rows or over the columns of the joint histogram. 

Including Feature Information 

We propose a new measure of mutual information computed only from features. We 
use edge points as features, and point location, edge strength and edge orientation as 
feature characteristics. Edge points are a significant source of information for image 
alignment, they are present in portal images and in simulated radiographies obtained 
from a treatment planner, so they are useful for intra and inter modality registration. 
In optimal alignment position edge points from one image should match their corre-
sponding points in location and also in edge strength and orientation. 

In [13] a new mutual information-based measure was introduced. Instead of using 
image intensity for estimation of mutual information it uses feature points location 
information. Let {a1,a2,...,aN} and {b1,b2,...,bM} be two sets of feature points in two 
images A and B. The mutual information is a function of the joint probability: 

∑∑ ∑ ∑
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where pij represents the joint probability between feature point i in A and feature point 
j in B:  

( )

( )∑ −

−

=
ij

D

D
T

ij

e
e

T
ij

T
ij

p λ

λ

 , (4) 

T stands for the spatial mapping (rigid, similarity, affine) applied for aligning one 
point set with the other. T

ijD  is a distance measure between two points ai and bj (e.g. 

Euclidean distance). T
ijp  is a measure of the correspondence likelihood between those 

two feature points, while ∑
i

T
ijp  and ∑

j

T
ijp  are the marginal probabilities.  

In [14] the mutual information measure is extended to include spatial information. 
Locations with valuable spatial information (e.g. transition of tissues) are denoted by 
strong gradients. The extension is accomplished by multiplying the mutual informa-
tion extracted from grey level probability distributions with a gradient term. This term 
includes the gradient magnitude and orientation. The mutual information measure 
proposed in [14] is: 

Inew(A,B) = G(A,B) I(A,B) , (5) 
with G(A,B) being the gradient term obtained as: 

G(A,B)= ( ) ( )∑
∩∈

∇∇∇∇
BAba

jiji
ji

baba
),(

,min,α  , (6) 

ai and bj denote two points in images A and B, and α is the angle between two gradi-

ent vectors. 
When the two images are registered, point ai will be located close to its matching 

point bj. If a joint probability table is built considering the distances from each ai to all 
the bj with j=1, 2, …, M, in one of the M cells of the i-th column, there will the a 
maximum of that column, point bj, so having the biggest likelihood of being the 
match of ai. Re-computing the table for different spatial mappings T, one of the joint 

probability tables obtained will be the best, having the smallest distances of matched 
points. Similarly, with the images registered, an edge point ai will match some bj 

having similar edge strength since they represent the same edge point. The edge ori-
entation after the mapping has to be also similar. 

Denoting as Dij the distance between ai and bj, Φij the difference in edge strength, 

and Οij the difference in edge orientation after the mapping, we can base the mutual 

information measure on these feature points characteristics: 
I(A,B) = f(Dij, Φij, Οij) . (7) 

Our main contribution is the use of several feature attributes to estimate the joint 
probabilities. We use the gradient magnitude at a feature point as an estimation of the 
edge strength and the gradient direction as an estimation of the edge orientation: 

T

ijD  = 
2

T

ji ba −  ,             Φij = ji ba ∇−∇  ,            O
T

ij  = 
T

ji

T

ji

ba

ba

∇∇
∇∇−1cos . (8) 

Gradient magnitude at edge points can be different in corresponding edges detected 
in different images due the possibly different sensing devices used to take the images. 
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This can be overcome by scaling the gradient magnitude at edges in both images, 
giving, for example, a relative measure between zero and one. 

To estimate the joint probability of match between two edge points in two images 
we introduce an exponential function based on the feature attributes. If T

ijD , Φij, O
T

ij  

are small, there is a higher probability of correspondence between those edge points. 
The proposed joint probability is expressed as follows: 
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(9) 

with γk being constants. Using the probability distribution function given in (9), mu-

tual information is computed as described in (3). 
The main advantage of our approach compared to the classical mutual information 

is that this latter method does not use the neighbouring relations among pixels at all, 
all spatial information is lost, while our approach is precisely based on spatial infor-
mation. Compared to the method reported in [13], we propose a combination of fea-
ture attributes, compared to the method in [14], our approach is only based on feature 
points. 

Edge Detection 

Extraction of edges can be done by several methods, first derivative-based methods 
(Sobel masks), or second derivative-based, like Laplacian of a Gaussian or Canny 
[16]. In this work we have used the Canny edge detector, that selects edge points at 
locations where zero-crossings of the second derivative occur. 

Optimization 

Optimization of the registration function is done by exhaustive search over the search 
space. We assume a rigid transformation to align one image with the other, a rotation 
followed by a translation, both in 2D, so the search space is three-dimensional. 

A revision of optimization strategies can be found in [17]: Powell´s method, and 
simplex method, conjugate-gradient and Levenberg-Marquardt methods. Since the 
principal purpose of our work is to prove the feasibility of a new form of obtaining 
the joint probability used for the computation of the mutual information, no analysis 
on the convenience of using a certain optimization has been made. 

Exhaustive search is a sufficiently simple method for a bounded three-dimensional 
search space, and it finds a global optimum, avoiding the main drawback of other 
optimization algorithms of converging to a local optimum. 

4   Results 

We have tested our approach with about fifteen pairs of medical images of different 
sources, portal images provided from sessions of radiotherapy treatments at Provincial 
Hospital of Castellón, and Magnetic Resonance (MR) images obtained from the inter-
net [18]. 
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For portal image registration, image alignment parameters were determined by 
human operators and compared to the results of our approach. For MR images the 
alignment parameters were available along with the images.  

The influence of each feature in (9) was tested by making several experiments 

where each term: T
ijD , T

ij , T
ijO , was included or not. The overall best performance 

was observed when the three characteristics are used. 
In the computation of T

ijp  the values of γ1, γ2 and γ3 were fixed heuristically (20, 

10, and 1). They were selected by computing 
T
ijDe ,  

T
ijeΦ

and 
T
ijOe using the edge sets 

without applying any transformation, and observing the graphical representation of 

these functions. As our intention was that small values of  T
ijD , T

ij , T
ijO represent a 

high correspondence probability, we fixed γ1, γ2 and γ3 as values close to the time 
constants of the exponential functions. 

 

   
 a) c) e) 

   
 b) d) f) 

Fig. 1. Portal image of a hip with patient in a) initial position and in c) wrong position. Edges 
detected in each image, b) and d). Both sets of overimposed edges e) before and f) after the 
registration 

Figure 1 shows the registration of two portal images. 2a) shows a portal image of a 
hip taken in an initial radiotherapy session. c) shows an image from another session 
that must be aligned with a). b) and d) show the same images with its edges superim-
posed. These edges correspond mainly to hip bones. e) shows the same image as a) 
with edges overimposed from both b) and d) before registration, and f) reflects the 
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arrangement of edges after registration with our approach. Note the improvement in 
alignment. 

Figure 2 compares the joint probability functions obtained after applying the clas-
sical mutual information approach using a joint histogram of grey levels, and our 
feature-based method. Both functions are computed for the best alignment parameters 
obtained from the registration, that is, lowest entropy. High intensity values corre-
spond to high likelihood of correspondence. 

 

       

Fig. 2. Joint probability functions computed with classical grey level-based mutual information 
approach (left) and our feature-based method (right) 

We have tested our approach with several portal images and compared the results 
with the registration given manually by several human observers, and with the classi-
cal mutual information method based on grey level values. The manual registration 
was made by identifying common features in both images and registering them. The 
errors of our method with the human results were within acceptable levels, often less 
than a pixel in translation and less than a degree in rotation, and always better than the 
classical method. Although we assumed a rigid transformation in our tests, there is no 
a priori restriction to a particular type of transformation. 

5   Conclusions and Further Work 

The inclusion of spatial data in the computation of the mutual information is a subject 
under current investigation. In this paper we propose a new measure of registration 
that combines mutual information with spatial data obtained from feature attributes, 
like edge points. Instead of a joint histogram of grey levels, the classical approach, we 
estimate a joint probability distribution based on feature points. We introduce a prob-
ability estimate that two feature points match based on points similarity. An optimiza-
tion algorithm is then applied to find the best registration parameters where a mini-
mum of the mutual information based on joint entropy occurs. 

The proposed approach can be used to register images from different sources, mul-
timodal registration, since it can combine different features as needed. One has to 
provide a way to compute the probability that two features in two images correspond. 

The new approach improves the classical mutual information method, based only 
on intensity values, which obtains poor performance in low contrast images like portal 
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images. Furthermore, the number of points used to build the probability function is 
significantly smaller, only feature points, than the number used to build the joint his-
togram in the classical approach, all points in the images. 

Further work is addressed at investigating the use of other features in the approach, 
as boundaries of regions in segmented images, or the overlapping area of segmented 
regions. The key question is which attributes to include in the computation of the joint 
probability table, and how to combine them. 
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Abstract. In this paper we demonstrate how to embed label consistency
constraints into point correspondence matching. We make two contribu-
tions. First, we show how the point proximity matrix can be incorpo-
rated into the support function for probabilistic relaxation. Second we
show how the label probabilities delivered by relaxation labelling can be
used to gate the kernel matrix for articulated point pattern matching.
The method is evaluated on synthetic and real-world data, where the la-
bel compatibility process is demonstrated to improve the correspondence
process.

1 Introduction

Finding one-to-one feature point correspondences is a challenging problem in the
matching of deforming shapes. Many existing approaches rely on the method. For
example, point distribution models (PDMs) [1] require reliable one-to-one feature
point correspondences over a sequence of examples for the purposes of learning
the modes of shape variation. The factorisation method of Tomasi and Kanade
[10] also requires accurate correspondence information to separate motion and
shape. Without an accurate means of locating the feature correspondences, the
recovered model will be inaccurate. For instance, in point distribution models
then the covariance matrix will represent the distribution of correspondence er-
rors rather the modes of shape variation. In the case of factorisation, then there
will be errors in both the estimated motion and the recovered shape. In the liter-
ature, many attempts have been described to recover accurate correspondences.
For example, in [3] the softassign method is used to compute correspondences
in a manner that is robust to outliers.

Of course there is a wealth of information that can be exploited to improve
and refine the point-correspondence process. If absolute position is used, then the
detailed transformation between point sets must be recovered. This is of course
straightforward if the point sets are known to undergo a rigid transformation,
for example affine or perspective, or if there is a well defined non-rigid transfor-
mation that can be applied, for example a spline-warp or a diffeomorphism. One
way of avoiding the need to know the transformation geometry is to characterise
the point-sets using information concerning their relational arrangement. For in-
stance, here proximity graphs [12] or proximity matrices [8, 9] can be used. The
points can also be augmented using neighbourhood feature characteristics [5].

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 235–242, 2005.
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An additional but little used source of information is that provided by label
consistency constraints. In many types of image, the points can be assigned
semantic labels to distinguish their identity. The simplest of these distinguishes
whether the point is foreground or background. A more complex example would
be to assign labels to distinguish the object subparts, for example the limbs of
articulated objects. Using this information the consistency of pairwise relations
can be tested against a scene constraint model. Hence, correspondences which
are inconsistent with the model can be rejected.

In this paper we aim to develop a method which allows label consistency
constraints to be incorporated into the point correspondence process. To do
this we draw on ideas from probabilistic relaxation labelling [2, 4, 6]. We char-
acterise each point by augmenting the positional information with a vector of
label probabilities. In addition, the arrangement of the points is represented us-
ing a Gaussian point proximity matrix. Our first contribution is to show how the
point-proximity matrix can be incorporated into the definition of the support
function for relaxation labelling. In this way when the label probabilities are
updated, then the strength of the proximity relations is brought to bear on the
computation of label support. Our second contribution is to show how the label
probabilities can be used to refine the point correspondence process. Here we
draw on our previous work [11] and use a kernelised version of the Shapiro and
Brady algorithm [9]. We use the label probabilities to refine the kernel matrix
used to locate point correspondences. The matching process is realised as an
iterative process which has interleaved steps for label probability update and
point correspondence matching.

2 Label Process

One of the best studied approaches in the literature for labeling problems in com-
puter vision involves using relaxation techniques [2, 4, 6]. Relaxation labelling
can either be an “offline” belief propagation process that distributes the previ-
ously learned labeling confidence to the whole feature set, e.g., [4], or an “online”
learning process that learns the labeling information on the fly, e.g., [2, 6]. In
a discrete relaxation processes, initially each node is assigned all possible labels
and unconsistent labels are discarded in the process until a consistent label distri-
bution is obtained. In the continuous or probabilistic case, each node is assigned
an initial weight or probability distribution. Iteratively, the label probabilities or
weights are updated, again until a consistent distribution is reached. However,
whichever labeling process is used, the performance depends critically on the
compatibility coefficients and the support function used to combine evidence in
the iterative process. In [2], a dictionary is used, and in [4] the compatibility
coefficients are represented as a vector which is learned offline. Here our com-
patibility model shares some factors in common with the compatibility vector
in [4].

The labeling process that we develop here is an evidence combining one
that propagates label constraints. Our label consistency information is totally
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contained within a “model” feature point-set. We will hence learn the label
compatibility information from the model point-set, before attempting to match
it against the data. Our first step is to collect label information from the model
image, and apply the learned label compatibility model in the second step of the
process which involves assigning consistent point labels to the “data” point-set.

We are interested in matching two point-sets y = {yi}ni=1, yi = (yi1, yi2),
and x = {xi}mi=1,xi = (xi1, xi2). To apply semantic constraints to the feature
points, we augment the feature point vectors with a label probability vector for
the independent rigid component present in the scene. We specify the point-set
y as the model point-set and its label probability values are given beforehand.
Accordingly, the point-set x are called the “data” point-set where the label
probabilities are to be assigned. Assume there are L labels in each image. An
image point xi can be assigned to a label θi ∈ Ω, where Ω = {ωi}Li=1.Denote
by P (θi = λ) the probability that node xi is labeled as λ with λ ∈ Ω. Then
the vector pi = (P (θi = ω1), . . . , P (θi = ωL))T represents the probabilities of
assigning each of the possible labels to the point xi, with 0 ≤ P (θi = λ) ≤
1, and

∑L
λ=1 P (θi = λ) = 1. The matrix P with the probability vectors as

columns, i.e., P = (p1,p2, . . . ,pN )T , represents the label probability distribu-
tion over the entire point-set. The individual point-sets are characterised using
a Gaussian proximity matrix W . For the point-pair xi and xj the element of the
matrix is given by:

Wij = exp(−‖xi − xj‖2/2σ2) (1)

where ‖xi−xj‖2 is the Euclidean distance between xi and xj , and σ is a constant
width parameter of the Gaussian function.

2.1 Label Compatibility Information

Our aim is to develop a relational description of the point-sets using information
concerning point proximity and a label compatibility matrix. The compatibility
matrix R ∈ R

L×L is of dimension L×L and embodies knowledge of the number of
rigid components, i.e. labels, in each image, and the semantic constraints between
each pair of object-labels. The matrix has elements Rij = 1 if xi and xj come
from the same rigid part, and is −1 otherwise. This definition restricts the nodes
to give total positive support to the nodes in the same group and contribute a
negative support to nodes outside the group. The proximity constraint is also
acquired from the model image. We assume that in any two consecutive image
frames, the relative position of the rigid components of the object under study
will not change significantly.

2.2 Label Update Formula

The label probabilities for the data point-set are updated iteratively commenc-
ing from a set of initial values. With the label compatibility information learned
from the model point-set, we update the label probability for each point accord-
ing to the support from its neighbourhood. Let us denote the neighbourhood
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for the point xi and its k closest points by Ni = {xi1, . . . ,xik}. Here we use
the Euclidean distance between the points xi and xj to define the neighbour-
hood. With these ingredients the support from the neighbourhood for the label
assignment λi to point xi is:

Si,λi =
exp{

∑
j∈Ni

∑
λj∈Ω P (θj = λj)R(λi, λj)Wij}∑

λi∈Ω exp{
∑

k∈Ni

∑
λk∈Ω P (θk = λk)R(λi, λk)Wik}

(2)

where R(λi, λj) are the entries of the label compatibility matrixR which measure
the compatibility of the label pairs λi and λj . Here the elements of the proximity
matrix W are defined as in (1) and are used to weight the label-support.

Having defined the support equation, the label probabilities are updated
using the formula:

P (n+1)(θi = λ) =
P (n)(θi = λ) + βS

(n)
i,λ∑

λi∈Ω(P (n)(θi = λ) + βS
(n)
i,λ )

(3)

where β is a constant parameter.

3 Matching

Our aim is to combine the label information with the proximity information and
to develop a point association matching process to locate the feature point corre-
spondences. Our idea is to use a kernel function to map the data into a possibly
higher dimensional feature space, and then perform an eigen-decomposition on
the covariance matrix of the data in this space to construct the data mapping.
The matching process is further gated by the label-probabilities obtained in the
previous algorithm step. Assuming that the data x are already centered, this
covariance matrix is given by C = 1

m−1

∑m
i=1 Φ(xi)Φ(xi)T . The eigensystem is

recovered by solving the equation mλα = Kλ, where K is the Gram matrix with
its entries obtained from a kernel function k(xi,xj). In this paper the Gaussian
kernel function is used in the experiments. The pth feature vector, corresponding
to the projection of the pth feature point into the eigenspace, takes the form

< vp,Φ(x) >=
m∑

i=1

αp
i k(xi,x) (4)

To generalize the method to non-centered data, the covariance matrix C needs
to be re-computed. In our case where more than one rigid component is present
in the data point-set, the data need to be centered onto their respective subpart
centre of movement. Thus, the mean value of each data group in the feature
space needs to be computed and subtracted from Φ(xi). For the group with
label λ, the mean-position (i.e. subgroup centre) is given by

μλ =
1∑

i P (θi = λ)

∑
i

Φ(xi)P (θi = λ). for each λ ∈ Ω
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Denote by Φ̃(xi) = (Φ(xi) −
∑

λ μλP (θi = λ)), the covariance matrix of the
centered data is given by C̃ = 1

m−1

∑m
i=1 Φ̃(xi) · Φ̃(xi)T , where

Φ̃(xi) · Φ̃(xi)T = k(xi,xi)
−
∑

λ∈Ω
P (θi=λ)∑
j P (θj=λ)

∑
j P (θj = λ)k(xi,xj)

−
∑

λ∈Ω
P (θi=λ)∑
k P (θk=λ)

∑
k P (θk = λ)k(xk,xi)

+
∑

λ∈Ω
P 2(θi=λ)∑

j P (θj=λ)
∑

k P (θk=λ)

∑
j

∑
k P (θj = λ)P (θk = λ)k(xk,xj)

(5)

After computing the feature vectors ỹi and x̃j using (4) for the respective
model and data point-sets, the next step is to compute the association Mij =
exp(−d2

ij/σ) of the point pairs. Denote the label agreement of the point pair yi

and xj by P (θj = λ, θi = λ, ∀λ ∈ Ω), the association of the two feature vectors
is further gated by this constraint:

M̃ij = P (θj = λ, θi = λ, ∀λ ∈ Ω)Mij , (6)

The correspondences are defined as the most similar node pairs. That is, for each
node xi in the data point-set, the correspondence in the model set is the node
yj that has the largest association Mij with xi. Assume that the labels on each
feature point are independent of each other, then the consistency of the label on
point xi and the label on xj is computed by:

P (θi = λ, θj = λ, ∀λ ∈ Ω) =
L∑

λ=1

P (θi = λ)P (θj = λ) (7)

The matching process is thus an interative one in which at each step new label
probabilities are incorporated to improve the matching. Since as an increasing
number of correspondences are found, the value of S =

∑
i exp(‖xi−yi‖F /2σ2),

where we assume xi and yi are the correspondence pair from data point-set and
model point-set, respectively, will increase, and ultimately reach a maximum
value. The matching process contains the following steps:

1. Initialize P,t,Sold;
2. Compute the Gaussian association matrix for each point-set;
3. Run the labeling process, compute Pnew;
4. Use Pnew to compute Cnew using equation (5) and (6);
5. Compute M and find the current correspondences;
6. diff = S - Sold or iteration < t;
7. if diff < threshold

return;
else

update P using the matching results.
end

8. Go to step 2.



240 Hongfang Wang and Edwin R. Hancock

4 Experimental Results

We experiment with both synthetic data and real world data sets. The purpose
of using the synthetic data-sets is to test the algorithm under conditions of con-
trolled noise. Three groups of synthetic data are generated. Two data-set pairs
contains three rigid components, and the third pair two components. The point-
sets are shown in Figure (1). The experiment is designed to simulate articulated
object movement with the rigid components undergoing individual motion. To
do this, in each pair, the second data set is obtained from an articulated mo-
tion, where the data in the second and third components are transformed by
the equation X ′ = sRX + t, where s is a scaling parameter, t = (tx, ty)′ is

the translation vector, and R =
[
cos θ − sin θ
sin θ cos θ

]
is the rotation matrix. In the

second component, s = 0.8, t = (10, 15)′, θ = 20◦, and in the third component,
s = 1.2, t = (10, 15)′, θ = 30◦. In both experiments, the initial label probability
distributions are chosen to be uniform. Figure (1) and Table (1) show the result
of the labeling process.

Table 1. Matching and labeling results (error%)

Data-set Num of Num of Gaussian Articulated Articulated Labeling
points labels matching matching(1)∗ matching(2)∗∗

1 100 3 98 29 25 11

2 60 2 88.3 30 30 0

3 30 2 36.7 13.3 13.3 3.3

4 55 2 38.2 25.2 25.2 0

5 51 3 86.27 35.3 29.41 2

Note: ∗: Results based label information from the label process
∗∗: Results obtained when correct label information is assumed.

We simulate the effects of data uncertainty in the following way. First, Gaus-
sian noise G ∼ N (0, Σ) is added to each second data-set, so as to simulate ran-
dom position jitter. Second, points are deleted in data-set 5. From the results
we can see that this algorithm accommodates these uncertainties well. Figure
(2) shows the effect of noise with varying covariance matrices, and a different
percentage of points missing. Figure (3) also shows the matching result.

5 Discussion

The labeling process described above can be improved to be more robust and
flexible. In the framework of relaxation labeling, the compatibility coefficients
play an important role in making the labeling precise. The current compatibility
matrix will be improved in future work to accommodate semantic constraints
more effectively.
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Fig. 1. Synthetic data, labeling result. Top: data-set pair 2 ; Bottom: data-set pair 1
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Fig. 2. Left: The effect of adding Gaussian noise with varying Σ (data-set 3). Right:
The effect of missing points in the second point-set (data-set 5)

Fig. 3. Matching result: data-set 3 (top) and 5 (bottom)
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It is well known that the Gaussian kernel is invariant under similarity trans-
formations since it is based on pairwise Euclidean distances. Given that the rel-
ative positions of each rigid component are not affected significantly, the kernel
matching process we developed in prior work can be used to recover a reason-
ably accurate set of one-to-one point correspondences and provide good initial
label probability estimates. This can also be considered as a route to improving
the efficiency of the labelling process. Also other kernels which are capable of
extracting the transformation invariants and are insensible to structural errors
may be used in the matching process to improve the results.
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Abstract. The discrete Euclidean distance transform is applied to grids
with non-cubic voxels, the face-centered cubic (fcc) and body-centered
cubic (bcc) grids. These grids are three-dimensional generalizations of
the hexagonal grid. Raster scanning and contour processing techniques
are applied using different neighbourhoods. When computing the Eu-
clidean distance transform, some voxel configurations produce errors.
The maximum errors for the two different grids and neighbourhood sizes
are analyzed and compared with the cubic grid.

1 Introduction

Three-dimensional images are usually captured in the cubic grid. The main rea-
son is tradition and that the data structure is easy to handle. It is, however,
possible to adjust image capturing techniques such as CT or MRI to produce
images in other grids, such as the face-centered cubic (fcc) and body-centered
cubic (bcc) grids. It has been demonstrated that the hexagonal grid in two
dimensions is theoretically better than the square grid, [1]. The fcc and bcc
grids are the three-dimensional “equivalents” of the hexagonal grid, [2]. When
applying a Distance Transform (DT), each object (background) grid point is as-
signed the distance to the closest background (object) grid point. DTs are very
important in the field of image analysis with many applications such as, e.g.,
skeletonization, watershed segmentation, and template matching. In this paper,
the properties of the Euclidean DT on the fcc and bcc grids are examined.

The most common way to compute a DT is to use a raster scanning (Cham-
fering) algorithm, [3–5]. With this technique, the image is scanned sequentially
two or more times. In each scan, the distance values are propagated through
the image. To compute a weighted DT in a cubic grid, two scans are sufficient,
and to compute the Euclidean DT, four scans are necessary, [6]. Raster scanning
algorithms to compute the weighted DT for the fcc and bcc grids were examined
in [7]. The raster scanning technique to compute the Euclidean DT is applied to
the fcc and bcc grids in Section 3.

Another way to compute the Euclidean (or weighted) DT is to use contour
processing, or ordered propagation. The basic idea is to iteratively propagate
distance values by starting with the grid points on the contour of the object and
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considering neighbours of already visited grid points. This is done by, in each
iteration, constructing a list of all grid points that are to be included in the next
iteration. This technique has been examined in, e.g., [8–10]. Its generalization to
the fcc and bcc grids is examined in Section 4.

There are basically two other techniques to compute the Euclidean DT. A
parallel algorithm introduced by Yamada, [4, 11], and Voronoi diagram construc-
tion algorithms, [12–14]. These techniques are not considered in this paper. In
the parallel algorithm, all grid points are processed in each iteration which makes
it inefficient on standard computers. Since the algorithm is inherently parallel,
it performs well only on parallel computers. The Voronoi diagram construction
algorithms are too complex to be of any practical interest for these grids.

The DTs produced by the algorithms examined in this paper are not totally
error-free; a thorough error analysis is performed in Section 5. Many different
approaches to extend these algorithms in order to make the DTs error-free has
been made. One way of doing this is to employ extra processing in regions
where errors are likely to appear, see e.g. [10], where the neighbourhoods are
enlarged or [9], where extra iterations are performed. One way to make the
contour processing algorithm error-free is to keep the propagation chain convex
by splitting it when it loses its convexity, see [8].

2 The Grids

The grids that are examined are the fcc, F, and the bcc, B, grids defined as

F = {(c1, c2, c3) : c1, c2, c3 ∈ Z and c1 + c2 + c3 ≡ 0 (mod 2)} and
B = {(c1, c2, c3) : c1, c2, c3 ∈ Z and c1 ≡ c2 ≡ c3 (mod 2)}.

The adjacencies used in the fcc grid are the 12-adjacency (face-neighbours)
and the 18-adjacency (face- and vertex-neighbours), see Fig. 1. In the bcc grid,
the neighbours connected to a grid point are all face-neighbours, see Fig. 1.
However, there are two kinds of face-neighbours, which results in the 8-adjacency
and the 14-adjacency.

(a) (b) (c) (d)

Fig. 1. Voxels corresponding to: (a) 12-adjacent grid points in fcc, (b) 18-adjacent grid
points in fcc, (c) 8-adjacent grid points in bcc, and (d) 14-adjacent grid points in bcc
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3 Sequential Algorithm

In this section, the raster scanning technique is discussed. The basic idea is to
scan the image from one corner of the image to the opposite corner. First, back-
ground grid points are set to 0 and object grid points in the distance image are
set to ∞ for the weighted DT and a vector (∞,∞,∞) for the Euclidean DT.
For each grid point p, the minimum distance value of all weights/vectors at grid
points in the mask (qi) plus the weight/vector associated with qi relative to p is
computed, see, e.g., [3–6]. In the following, x+ y+ z+ denotes the loop
for(x = 1 : xmax)
for(y = 1 : ymax)
for(z = 1 : zmax)
for

(
v ∈ maskx+y+z+

)
if (‖I((x, y, z) + v)− v‖2 < ‖I(x, y, z)‖2)
I(x, y, z) = I((x, y, z) + v)− v

end
end

end
end

end,
where I denotes the distance image. This loop is a part of the sequential algo-
rithm used to compute the Euclidean DT.

When computing a weighted DT, two scans are sufficient for the cubic grid.
For the fcc and bcc grids, some caution is needed, see [7]. Since, in a raster scan,
two consecutive grid points are not adjacent when using the 12-adjacency in fcc
or the 8-adjacency in bcc, these adjacencies are not suited for a DT based on
raster scanning. Therefore, only the 18-adjacency in fcc and the 14-adjacency in
bcc are considered in this section.

When computing the Euclidean DT, two scans are not sufficient, [6]. This is
because the relative coordinates between grid points are propagated through the
image and, contrary to the weighted DTs where a limited number of weighted
prime directions are considered, the shortest path between the grid points can
have any direction. To examine the number of scans needed and what masks
that should be used in each scan, the the Unfolded Cube Graph (UCG) is used.
The UCG was introduced by Ragnemalm in [6]. Using the UCG, it is possible
to analyze which neigbours that are needed for the propagation in each image
scan. Given a mask, the corresponding UCG is constructed by unfolding a cube
in R

3 with the central grid point centered in the cube. The directions that are
supported by the mask are mapped on the cube. In two dimensions, this is done
by considering the unit circle. Since it is hard to visualize the complete surface
of a sphere, a cube is used instead.

In a raster scan, only grid points that have already been visited are useful
in the mask. For both the fcc and the bcc grids, the maximal mask that can be
used in each scan is exactly half the set of neighbouring grid points, see Fig. 2.
The amount of the UCG they fill up are also shown in Fig. 2.
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z 
y 

x 

(a) (b) (c) (d)

Fig. 2. The largest masks that can be used in the propagation x+ y+ z+ in fcc (a)
and bcc (c) and the corresponding Unfolded Cube Graphs (b) and (d), respectively

The mask in fcc covers 7/24 of the UCG, so the least number of scans are
four. In bcc, the mask covers 3/12 of the UCG. This suggests that exactly four
scans are needed. This is, however, not the case. The reason is the geometry of
the region covered in the UCG. It is not possible to cover the cube with four
regions shaped as in Fig. 2(d) when using masks consisting of grid points that
are positioned so that they can propagate distance information.

The UCG is used to examine in which order the image should be scanned. If,
when folded, the areas that correspond to a set of masks fill the whole surface of
the cube, then these masks and the corresponding scanning directions constitutes
sufficient raster scans. The whole direction space is filled up if the scanning is
performed as x+ y+ z+, x- y+ z-, z+ y- x-, z- y- x+ (fcc) and x+ y+ z+, z- y+
x+, x- y+ z-, z+ y+ x-, y- x+ z+ (bcc) with the masks as in Fig. 3.

z 
y 

x 

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 3. The masks in fcc (a-d) and bcc (e-i) derived using UCG

4 Contour Processing

When using a contour processing algorithm to compute the Euclidean DT, the
vector pointing to the nearest background grid point is propagated. In the first
step, a dynamic list of all contour grid points, i.e. the object grid points with an
adjacent grid point in the background, is constructed. All grid points in the list
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are processed by propagating the vector to the closest background grid point to
its adjacent neighbours. The neighbours are now put in a new list and in the next
iteration, only the grid points in the new list are considered. The algorithm stops
when a vector pointing to the closest background grid point has been assigned
to all object grid points. See also [8–10].

The contour processing technique is easy to generalize to the fcc and bcc
grids. It works for all adjacencies and the only errors that appears are those
examined in Section 5.

5 Error Analysis

In this section, the grid is considered as a subset of R3. Because of the discrete
structure of the grid, the configurations that produces errors are limited. There-
fore, the theoretical maximum error in R3, as calculated in e.g. [4], is of limited
practical interest. Instead, the configuration in the grid that actually produces
the maximum error is calculated. To be sure that the maximum error is found,
it is, however, necessary to do some calculations in R3.

Given an adjacency in a grid, the prime vectors are the vectors between the
center grid point and its adjacent grid points. The error analysis is performed on
regions spanned by three adjacent prime vectors, denoted p1, p2, p3. By perform-
ing the error analysis on every region spanned by three adjacent prime vectors,
all directions are considered. Thus, the maximum error is obtained.

An error appears in grid point 0 when any of its adjacent grid points does
not contain the address to the closest background grid point from 0. To find the
configurations of grid points that give rise to errors, the conditions derived by
Mullikin in [15] are used. Given a grid point q in the region spanned by p1, p2, p3,
an error appears at the origin 0 if there are grid points q1, q2, q3 such that

‖qi − pi‖2 < ‖q − pi‖2 for i ∈ {1, 2, 3}
‖q‖2 < ‖qi‖2 for i ∈ {1, 2, 3} (1)

This can be reformulated; let q be a grid point and p1, p2, p3 be three adjacent
prime vectors. If there is a grid point in the interior of each of the regions (in
R

3)
Ri = B(pi, ri) \B(0, s) for i ∈ {1, 2, 3}, (2)

where ri = ‖q − pi‖2 and s = ‖q‖2, then an error is produced by this configu-
ration of grid points. These conditions are shown in Fig. 4 with p1 = (1, 0, 1),
p2 = (0, 1, 1), p3 = (1, 1, 0), and q = (1, 1, 2). B(0, s), B(p1, r1), B(p2, r2), and
B(p3, r3) are denoted B1, B2, B3, and B4, respectively.

Using these conditions, the maximum relative error for a given q in a grid G

in the region spanned by p1, p2 and p3 is

E(q) = min
i∈{1,2,3}

(
max

q′∈G∩Ri

(
‖q′‖2
‖q‖2

)
− 1

)
. (3)
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Fig. 4. The conditions in equation (2), see text

To get an absolute upper bound of the relative error, the expression for the error
is also given for a q in R

3:

Econt(q) = min
i∈{1,2,3}

(
sup

q′∈Ri

(
‖q′‖2
‖q‖2

)
− 1

)
= min

i∈{1,2,3}

(
‖pi‖2 + ‖q − pi‖2

‖q‖2
− 1

)
. (4)

The last equality is derived as follows

sup
q′∈Ri

(‖q′‖2) = sup
q′∈Ri

(‖pi‖2 + ‖q′ − pi‖2) = ‖pi‖2 + ‖q − pi‖2,

i.e., the maximum distance from 0 to a point in Ri equals the distance to the
center of B(pi, ri) plus the radius ri. Observe that the error in a grid is equal to
zero for most q. This is not true in the continuous case. In R3, Econt(q) > 0 and
Econt(q)→ 0 as ‖q‖2 → ∞. With q at any distance from the origin, (4) is used
to derive the following conditions for q when the error is maximized

‖p1‖2 + ‖q − p1‖2 = ‖p2‖2 + ‖q − p2‖2 = ‖p3‖2 + ‖q − p3‖2. (5)

The maximum error is thus found along a curve q = l(t), t ∈ R+.
An error in a region defined by a set of adjacent prime vectors is obtained by

finding the q closest to the origin that gives an error. This is done by considering
only grid points within a given radius from the origin. If there are grid points
in each of the regions Ri defined in (2), then we get a configuration that gives
an error. The error E(q) is calculated using (3). First, a region defined by a
small radius is examined, and then the procedure is repeated for a slightly larger
radius until a configuration of grid points that produces an error is found.
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Then, the value of t = t0 such that the error at l(t0) in R3, Econt(l(t0)), is
equal to E(q) is calculated. Since the maximum error in R

3 is found along l(t),
it is enough to consider the grid points at a distance to the origin smaller than
‖l(t0)‖2. This is a cause of the fact that the grid is a subset of R3. Since the
maximum error in R3 at a distance greater than ‖l(t0)‖2 never can be larger
than E(q), this is also true in the grid.

This procedure is explained by a simple example. Consider Z3, using the 6-
adjacency. By symmetry it is sufficient to consider p1 = (1, 0, 0), p2 = (0, 1, 0),
and p3 = (0, 0, 1). We compute that with q = (1, 1, 1), q1 = (2, 0, 0), q2 = (0, 2, 0),
and q3 = (0, 0, 2) are the grid points closest to the origin that fulfills (1) and
where Ri, i ∈ {1, 2, 3} in (2) all contain q. Now, (3) gives E(q) = 2/

√
3 − 1 ≈

0.1547. By solving (5) for these p1, p2, and p3, l(t) = (t, t, t)/
√

3. Using (4), we
get that with t0 = 2

√
3, Econt(l(t0)) = 2/

√
3 − 1. Thus, the maximum relative

error is found within a radius of 2
√

3 from the origin. For these grid points, the
maximum error is calculated and the maximum among these is the maximum
error that can appear in the grid with this adjacency.

The maximum relative errors for fcc and bcc are listed in Table 1. For com-
parison, Z

3 is also included in the table. Note that the errors only appear for
some special configurations of grid points satisfying the conditions derived in
this section and that in most applications, the errors are neglectible.

Table 1. Maximum relative error for EDTs

Grid maximum error q q1 q2 q3

Z
3, 6 nb 15.47% (1, 1, 1) (2, 0, 0) (0, 2, 0) (0, 0, 2)

Z
3, 18 nb 4.08% (2, 2, 2) (2, 3, 0) (2, 0, 3) (0, 2, 3)

Z
3, 26 nb 2.06% (4, 2, 2) (5, 0, 0) (3, 4, 0) (3, 0, 4)

F, 12 nb 6.07% (4, 0, 0) (3, 0, 3) (3, 3, 0) (3,−3, 0)

F, 18 nb 4.08% (4, 4, 4) (4, 0, 6) (0, 4, 6) (4, 6, 0)

B, 8 nb 9.29% (6, 0, 0) (3, 3, 5) (3,−5, 3) (3, 3,−5)

B, 14 nb 2.06% (6, 0, 6) (5, 5, 5) (5,−5, 5) (7,−5,−1)

6 Conclusion

The Euclidean DT has been applied to the fcc and bcc grids. Both raster scanning
and contour processing have been considered. To compute the Euclidean DT on
the bcc grid, five scans are needed. On the cubic grid and the fcc grid, four
scans are sufficient. The result from the error analysis, Table 1, shows that the
maximum relative error is highly dependent on the grid and the adjacency that
is being used. Very good results are obtained for the bcc grid with 14 neighbours.
The reason that the same error is obtained for the fcc grid with 18 neighbours
and the cubic grid with 18 neighbours is that the prime vectors are collinear. The
error configurations, however, are not completely equivalent. This is because the
grid points in the error configuration in the cubic grid are not all grid points in
the fcc grid. These results show that the fcc and the bcc grids are well suited for
Euclidean DTs.
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3. Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision

and Image Understanding 64 (1996) 368–376
4. Danielsson, P.E.: Euclidean distance mapping. Computer Graphics and Image Pro-

cessing 14 (1980) 227–248
5. Ragnemalm, I.: The Euclidean distance transform and its implementation on SIMD

architectures. In: Proceedings of 6th Scandinavian Conference on Image Analysis,
Oulu, Finland. (1989) 379–384

6. Ragnemalm, I.: The Euclidean distance transform in arbitrary dimensions. Pattern
Recognition Letters 14 (1993) 883–888

7. Strand, R., Borgefors, G.: Distance transforms for three-dimensional grids with
non-cubic voxels. Submitted for publication (2004)

8. Vincent, L.: Exact Euclidean distance function by chain propagations. In: Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition, Maui,
Hawaii. (1991) 520–525

9. Ragnemalm, I.: Neighborhoods for distance transformations using ordered propa-
gation. Computer Vision, Graphics, and Image Processing 56 (1992) 399–409

10. Cuisenaire, O., Macq, B.: Fast Euclidean distance transformation by propaga-
tion using multiple neighborhoods. Computer Vision and Image Understanding
76 (1999) 163–172

11. Yamada, H.: Complete Euclidean distance transformation by parallel operation.
In: Proceedings 7th international Conference on Pattern Recognition, Montreal.
(1984) 69–71

12. Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact
Euclidean distance transforms of binary images in arbitrary dimensions. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2003) 265–270

13. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance
transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 17 (1995) 529–533

14. Guan, W., Ma, S.: A list-processing approach to compute Voronoi diagrams and
the Euclidean distance transform. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (1998) 757–761

15. Mullikin, J.C.: The vector distance transform in two and three dimensions. CVGIP:
Graphical Models and Image Processing 54 (1992) 526–535



J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 251–258, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Matching Deformable Regions  
Using Local Histograms of Differential Invariants* 

Nicolás Pérez de la Blanca1, José M. Fuertes2, and Manuel J. Lucena2 

1 Department of Computer Science and Artificial Intelligence 
ETSII. University of Granada, 18071 Granada, Spain 

nicolas@ugr.es 
2 Departmento de Informática. Escuela Politécnica Superior. Universidad de Jaén 

Avenida de Madrid 35, 23071 Jaén, Spain 
{jmf,mlucena}@ujaen.es 

Abstract. This paper presents a technique to enable deformable regions to be 
matched using image databases based on the information provided by the dif-
ferential invariants of local histograms for the key-region. We shall show how 
this technique is robust enough to deal with local deformations, viewpoint 
changes, lighting changes, large motions of the tracked object and small 
changes in image rotation and scale. The proposed algorithm is based on the 
building of a specific template where an orthogonal representation space is as-
sociated with each of its locations. This space is calculated from neighboring in-
formation provided by a vector of local invariants calculated on each of the im-
age’s pixels. Unlike other well-known color-based techniques, this algorithm 
only uses the pixels’ gray level values. 

1   Introduction 

In this paper, we shall explore the problem of matching deformable image regions 
using image databases or image sequences. The basic information used in our work is 
provided by local histograms of a finite set of image-bands defined from invariant 
values calculated on the image. What is new about our approach is the template defi-
nition which provides us with a very robust approach for dealing with local shape and 
lighting deformations. Deformable object matching remains a very challenging prob-
lem mainly due to the absence of good templates and similarity measures which are 
robust enough to handle all the geometrical and lighting deformations that might be 
present in a matching process. 

The use of invariant features to match or index objects from images is a well-
known approach in computer vision although originally, this was mainly used to char-
acterize objects from their outline shape [11]. In order to recognize objects from their 
pixel values, different geometrical and lighting differential invariants have been sug-
gested [5],[16],[18]. In practice, however, this type of invariant has only proved use-
ful when applied on points with rich geometrical structures in their neighborhoods 
[9],[12]. In [6] and [7], a new type of image is introduced where each pixel has an 
                                                           
*  This work is partially supported by Grant TIC2001-3316 from the Spanish Ministry of Sci-
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associated histogram of values rather than a scalar value. This new image concept is 
the inspiration for our approach, and we shall use it to associate to each pixel a sum-
mary of the information defining its neighborhood. In our approach, local histograms 
obtained after applying each invariant on all image pixels are used as the local fea-
tures characterizing the neighboring region of each pixel. Our approach is region-
based since spatial features better model the type of application we are interested in. 
Let us consider facial region matching. In recent years, object recognition by parts has 
been suggested as a very efficient approach for recognizing deformable objects 
[1],[3],[4]. Although different approaches are used in the recognition process from 
basic features, the selection and detection of good features is a common task shared 
by all approaches. 

The use of histograms as features of interest can be traced back to Swain & Ballard 
[17] who demonstrated that color histograms could be used as a robust and efficient 
mechanism for indexing images in databases. Histograms have been used widely in 
object and texture recognition and image and video retrieval in visual databases [2], 
[3],[14]. The main drawback of using global histograms as the main feature is the loss 
of spatial information. Recent approaches based on the space-scale theory have incor-
porated the image’s spatial information. In [14], multidimensional histograms ob-
tained by applying Gaussian derivative filters to the image are used. This approach 
incorporates the image’s spatial information with global histograms. In [2], while 
spatial information is also taken into account, a set of intensity histograms are used at 
multiple resolutions. In [8], it is shown how extremely relevant information for de-
tecting salient regions in the image can be extracted from local histograms at different 
scales. None of these approaches, however, explicitly addresses the use of the local 
spatial invariant information present in the image. 

In this paper, unlike the approaches mentioned above, we shall attempt to achieve a 
better compromise between spatial information and robustness to deformations. In our 
case, the matching template for each image region is built as a spatial array, and a set 
of histograms (calculated from a spatial neighborhood centered on this position) is 
associated to each of its positions. Each of these histograms defines a new axis of the 
representation space associated to each pixel. Building a new orthogonal representa-
tion of this space and extracting only the most relevant axis a new parsimonious or-
thogonal representation of it can be obtained. The projection of the histograms into 
the new orthogonal subspace provides the coefficient vector used in the matching 
process. On each image, the template is iterated on all the possible locations within it. 
The matching score on each image location is the Euclidean norm of the vector dif-
ference between the projection coefficients associated to the image and the template, 
respectively. 

This paper is organized into five sections: Section 2 presents the template defini-
tion and the matching process; Section 3 presents the gray value invariants we have 
used in the experiments; Section 4 shows the experimental results; and finally, Sec-
tion 5 details the discussion and conclusions. 

2   Template Definition and the Matching Process 

Let R be a region of an image I , defining our region of interest (ROI).  Different gray 
level invariants can be calculated on each R location according to the geometrical or 
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lighting transformation groups that we expect to deform the region. Standard template 
matching techniques based on these invariants, however, need only be shown to be 
effective if applied on image location with a rich gray level structure such as that 
given by a corner [9][16]. The technique we introduce to characterize the ROI uses a 
different approach. 

Let ni be the number of different independent invariants to be calculated on each R 
pixel location. Let IB(R) ={IB1, IB2,…., IBni} be the set of  band-images calculated 

by applying each invariant to the region R . An nbin×ni matrix, HI, is associated to 
each pixel location of our ROI where the columns of this matrix are the local histo-
gram in a neighborhood of the pixel from each of the IB matrices. The bin number, 
nbin, is fixed beforehand and all the histograms are normalized to this value. Each 
histogram is calculated from a fixed size neighborhood around the pixel. 

The set of histograms associated to a pixel can be considered as the different axes 
of a space characterizing the pixel neighborhood information. According to the gray 
level structure around the pixel, some of the invariant values provide more relevant 
information than others. In order to obtain an orthogonal parsimonious representation 
of this space, we calculate the singular value decomposition on the HI matrix, 
HI=UDVT and we select the s columns Us={U1,…,Us} associated to the s highest 
singular values as the new axis of the space. A threshold on the normalized singular 
values ratio is used to select the most significant ones. The projection of the HI matrix 
into this new space Us is given by: 

),(),()( T yxyxx,y Is HUc ⋅=  (1) 

The c(x,y) matrix  provides us with the set of coefficients characterizing the pixel 
location (x,y). In the matching process, we start by calculating HI on each pixel loca-
tion (r,s) of the target image. We then calculate a similarity measure on each (r,s)  
location by shifting the image template on the target image. The similarity measure is 
given by: 
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where the sum is on all pixel locations (x,y) of the region-template. The matrices 
c(x,y) and Us

T(x,y) correspond to the template location (x,y) and the matrix H’
I to the 

target image in location (x+r,y+s). The estimated target location is given by the loca-
tion of the minimum value of S and we use the Euclidean norm. 

In our case, all the local histograms are very sparse since the range of gray levels 
present in the neighborhood of each pixel is usually very small in comparison with the 
full range of the image. One important consequence of this situation is the need to 
quantize the image’s gray level range before the similarity distances are calculated. A 
consequence of the quantization process is the invariance to illumination changes 
which are smaller than the bin width. In all of our experiments, we use a uniform 
quantization criterion fixing the same length to the interval of the gray levels assigned 
to each bin. The same process is applied to the gray levels of the template region. 
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3   Gray Level Invariants 

In this paper, we use the set of invariants suggested by Schmid in [16]. We only use 
differential invariants based on the three first order derivatives of the image. The 
following table shows the invariants used in our experimentation in tensor notation: 
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where νS represents the differential invariants associated to the SO(2) similarity 

group, νL(1:7) represents the associated invariant  to gray level affine transformations, 

and νL(8:9) represents two invariants associated to lighting  reversible transformation  
[5]. The Cartesian expression of the invariants can be obtained using the usual con-
ventions: 
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4   The Algorithm 

The previous steps can be summarized as follows: 
 

1.- Fix the scale value for the histograms. 
2.- Fix the set of  invariants to be used and calculate their associated image-bands. 
3.- Calculate the local-histogram matrix on each location of the template region. 
4.- Build up the template T (RT) of the region template using SVD on each of the 

      local-histogram matrices. 
5.- For each target image:  
      5.1 Build the local-histogram matrix on each location of the image.   
      5.2 Shift the template frame on all possible image locations. On each location  
            to project the local-histogram matrices on the orthogonal spaces of the     
            corresponding template location to calculate the image coefficients c(x,y). 
      5.3 Calculate the similarity measure associated to each template position using 
            (2). 
      5.4 Take the image location with the S(x,y) minimum value as the best 
            target location. 
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In order to increase the efficiency of the algorithm, it is applied to a sub-sampled 
version of the region template and images. From this, we estimate a set of possible 
points instead of a single location. All these points and their neighboring points (for a 
fixed size) define the set of points on which we shall apply the algorithm on the origi-
nal images. The most costly step in this algorithm is the calculation of the similarity 
maps on each image location. In this respect and taking into account the redundant 
information present in the template, the error measure given in (2) can only be calcu-
lated on a subset of the pixel.  

5   Experimental Results 

Multiple experiments have been performed in order to assess the effectiveness of the 
proposed algorithm. Firstly, we have focused our experiments on showing how robust 
our algorithm is to drastic changes in object pose. Secondly, we have also shown how 
the algorithm is capable of a reasonable level of shape generalization, since with only 
one sample it is possible to successfully match different instances of the same kind of 
object. Thirdly, we have shown how robust our algorithm is when there is a very large 
change in pose and a very hard noise condition. In all of the experiments, we have 
used a frame with a seven-pixel radius for the histogram estimation. We also quantify 
the entire histogram range to 32 bins. The active range of the invariant images is se-
lected using a saturation threshold on the invariant values. In our case, a range of 
values between 100 and –100 was used. In all the experiments, the template region is 
a rectangular sub-image. In all the experiments, we have tried with different sampling 
steps (0-4) on the image axis in order to calculate the expression in (2). In all the im-
ages, a sampling step of 4 pixels in both axes was sufficient to obtain the highest 
saliency value in the best location. The full set of the 17 differential invariants has 
been used in all the experiments. 

Video sequences of human heads in motion and two sequences obtained from the 
Oxford face database1 have been used in our experiments. Our recorded sequences 
have one-hundredth images The head in motion sequences were captured in 640x480 
format by the same digital camera, but in different lighting conditions. For reasons of 
efficiency in our experiments, we reduce the image size to the head zone giving 
176x224 size images. The Oxford Groundhog-Day database comprises 243 images, 
which we split into two different sets with men’s and women’s faces, respectively. 
The pictures from the Oxford database are 81x81 pixels. Our aim is to match the eyes 
and the mouth throughout the entire sequence. In our case, the template region was an 
instance of the matched object chosen from an image of the sequence.  However, we 
also show the results of using a fixed template region on a different image sequence.  

In the different rows in Figure 1, we show relevant results for three different se-
quences where the goal is to match the eye region. The image template for each row is 
shown in the first cell of the row. The first row shows a person moving their head 
from right to left as they change their facial expression. The second and third rows 
show results from the Oxford face database. Figure 2 shows relevant results from the 
mouth matching experiments. As in Figure 1, the first row shows an image from a 

                                                           
1  http://www.robots.ox.ac.uk/~vgg/data4.html 
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recorded sequence and the second and third row show the results from the Oxford 
database. 

The experiments show how our algorithm is stable and robust enough for view-
point changes, local deformations, moderate scale changes and illumination changes. 
The images in both figures show how our template is flexible enough to match very 
different instances of an object. This means that the template definition is capable of 
codifying the relevant information about the object by removing local spatial details. 
It is also important to emphasize that the algorithm in our experiment is over 90% 
efficient when the template region and the images are from the same person, but when 
we match a region template from one person with images from another person, effi-
ciency drops to between 50%-60%. This indicates a lack of generalization that could 
be explained by the set of used invariants. It is also relevant to point out that the pre-
sented results have been obtained when the template-regions cover not only the par-
ticular feature of interest but also part of its surrounding area.  

 

      

 

      

 

      

Fig. 1. In this figure, the results of the eye-matching problem are shown. In each row, the re-
gion-template used is shown in the first column. The white rectangle indicates the best match-
ing region. 

 

       

       

       

Fig. 2. This figure shows relevant results for the mouth-matching problem. In each row, the 
region-template used is shown in the first column. The first row shows images from a recorded 
sequence. The two last rows show results from the Oxford database. The white rectangle indi-
cates the best matching region. 
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In all the experiments, we have only considered translation motions of the template 
since we are interested in showing that the proposed algorithm is capable of success-
fully matching a large set of different instances of the original template. Of course, 
the inclusion of motions such as rotation or scale should greatly improve the tech-
nique. One of the main drawbacks of our algorithm is the loss of the image-plane 
rotation invariance that is present when the full image histogram is considered.  

6   Conclusions 

In conclusion, we have proposed a new matching algorithm for the case of deform-
able regions and shown its application to face region matching. This algorithm en-
ables us to match different instances of the same object by making use of the informa-
tion provided by a set of geometrical and lighting invariants. The loss of local order 
imposed by the use of local histograms has resulted in a high level of robustness in 
template matching with strong shape deformations even in high noise conditions and 
moderate lighting changes. Although in theory the algorithm is not robust enough for 
image-plane rotation and scale, experiments have also shown that there is invariance 
to small rotations and scale. Full invariance to scale could be obtained by applying a 
space-scale approach. This, together with achieving higher invariance to lighting 
changes, shall be one of our future lines of research. 
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Abstract. In this paper, a multi-resolution rigid-model-based global matching 
algorithm is employed to register tree structures of blood vessels extracted from 
retinal fundus images. To further improve alignment of the vessels, a local 
structure-deformed elastic matching algorithm is proposed to eliminate the exis-
tence of ‘ghost vessels’ for accurate registration. The matching methods are 
tested on 268 pairs of retinal fundus images. Experiment results show that our 
global-to-local registration strategy is able to achieve an average centreline 
mapping errors of 1.85 pixels with average execution time of 207 seconds. The 
registration results have also been visually validated by corresponding fusion 
maps. 

1   Introduction 

The temporal registration of retinal fundus images is an important application in oph-
thalmology because a patient is often screened at regular intervals for the develop-
ment of eye diseases [1]. By comparing the photographs taken at different time peri-
ods, physicians can evaluate the progression of the diseases and decide on the 
appropriate treatments to be taken. Figures 1(a) and 1(b) show the retinal photographs 
of a patient that have been taken half year apart. With appropriate temporal registra-
tion, we are able to highlight the similarities/ differences in the two images (Figure 
1(c) and 1(d)).  

Alignment methods using the full image content and mutual information as the 
similarity measure fail to deal with the registration of the total surface of eye fundus 
images [2]. Bifurcation and intersection points of the vascular tree are usually identi-
fied and used as control points for global points mapping based registration methods 
[3]. However, the detection may be not accurate and the control point number needed 
to compute a correct transformation may not be sufficient. Therefore, it is expected to 
use tree structure of blood vessels as object features for retinal fundus registration 
[4,5]. Vascular trees are typically incorporated into well-established transformation 
models such as rigid [4], affine [5] and second order polynomial transformations [3]. 
The process of registration is equivalent to solving the problem of optimizing a func-
tion that measures the goodness of fit between the reference and the transformed im-
ages. Various search techniques are utilized to find the optimal transformation with 
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respect to the defined models. [4] used the Powell’s method and [5] employed simu-
lated annealing and genetic algorithms.  

The sphere-like shape of human eye suggests a quadratic surface model for regis-
tration. Nevertheless, the computation complexity of model parameters may be a 
disaster and the search strategy design is not trivial. Therefore, in this work, we de-
velop the idea to employ a ‘global-to-local’ matching strategy. First, tree structures of 
blood vessels are globally aligned using rigid model of translations and rotation. The 
adoption of relatively simple model enables us to compute the optimal transformation 
effectively and promptly by multi-resolution global matching technique. On the other 
hand, local alignment errors occur due to the imprecise model. In order to rectify the 
pitfall of local misalignment which results in ‘ghost vessels’, we propose a structure-
deformed elastic matching algorithm to improve registration accuracy. 268 pairs of 
retinal fundus images are used in the experiment to test the proposed methods. The 
registration algorithms are validated quantitatively by accuracy and efficiency analy-
sis as well as visually by corresponding fusion maps inspection. 

 

    
                (a)                               (b)                                   (c)                                   (d) 

Fig. 1. Illustration of successful registration for a pair of fundus images with 54.4% overlap. (a) 
Original gray level image of left eye, (b) Original gray image of the same eye half year later, (c) 
Overlapped vascular structures before matching, (d) Constructed fusion map. 

2   Registration Using Vascular Structure 

The success of feature-based registrations is largely dependent on the quality of the 
identified features. For retinal image registration based on extracted vessels, a robust 
method is needed to detect the vascular structure of retina as reliably as possible. 
Here, we employ the technique described in [6] which has been demonstrated to be 
effective in identifying the whole tree structure of blood vessels in retinal images.  

2.1   Global Multi-resolution Matching 

The anatomy of the human eye with its sphere-like shape and physical properties of 
optical imaging system naturally leads to a quadratic surface model for stereo regis-
tration. This is especially important when the images have little overlap due to the 
large variation in viewpoints between images [3].  

However, some important observations in the retinal fundus photograph imaging 
system suggest the possibility of other suitable transformation models. The use of 
central retinal images with the same viewpoint reduces perspective effects and indi-
cates that a weak affine model may be sufficient without losing too much accuracy. 
This motivates us to adopt the weak affine transformation model of translations and 
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rotation for globally matching two vascular structures of retinal fundus images. The 
model can be mathematically expressed as follows: 
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In order to evaluate the goodness of fit between two vascular features, a distance 
measure is computed in terms of the corresponding transformation. A search for the 
optimal transformation is to find the global minimum of the defined distance function. 
The search process typically starts with a number of initial positions in the parameter 
space.  

The idea behind multi-resolution matching is to search for the local optimal trans-
formation at a coarse resolution with a large number of initial positions. Only a few 
promising local optimal positions with acceptable centreline mapping errors of the 
resulting transformation are selected as initial positions before proceeding to the next 
level of finer resolution. The assumption is that at least one of them is a good ap-
proximation to the global optimal matching. The algorithm is detailed as follows.  

One of the two vascular features to be registered is called the Template and the 
other the Input. Thinning is performed for both the Template and the Input so that the 
resulting patterns consist of lines with one pixel width only. A sequential distance 
transformation (DT) is applied to create a distance map for the Template by propaga-
tion local distances [7]. The Input at different positions with respect to the corre-
sponding transformations is superimposed on the Template distance map. A centreline 
mapping error (CME) to evaluate matching accuracy is defined as the average of  
feature points distance of the Input as follows:  

∑
∈

=
Inputjip

Template jipDM
N

CME
),(

2)),((
1  (2) 

N is the total number of feature points in the Input, p(i,j) are the transformed posi-
tions of the original feature points in the Input and DM is the distance map created for 
the Template vascular features. It is obvious that a perfect match between the Tem-
plate and Input images will result in a minimum value of CME.     
 

          

                                            (a)                                                                               (b) 

Fig. 2. (a) Vascular structure image at different levels from left to right: original resolution of 
512×512 (level 0), intermediate resolution of 128×128 (level 2) and start resolution of 32×32 
(level 4). (b) Distance image of (a) at the original level: the larger the distance the lighter the 
tone. 
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The search of minimum CME starts by using a number of combinations of initial 
model parameters. For each start point, the CME function are searched for neighbor-
ing positions in a sequential process by varying only one parameter at a time while 
keeping all the other parameters constant. If a smaller distance value is found, then 
the parameter value is updated and a new search of the possible neighbors with 
smaller distance continues. The algorithm stops after all its neighbors have been ex-
amined and there is no change in the distance measure. After all start points have been 
examined, transformations having local minima in CME larger than a prefixed 
threshold are selected as initial positions on the next level of finer resolution. The 
optimal position search of maximum similarity between tree structures is operated 
from coarse resolution towards fine resolution with less and less number of start 
points. 

The final optimal match is determined by the transformation which has the smallest 
centreline mapping error at level 0 (the finest resolution). Once the relative parame-
ters for the global transformation model have been computed, the registration between 
two retinal images is ready. The registration results could be examined by visually 
inspecting the constructed fusion maps of the original gray level images. Examples 
are illustrated in Figure 3(a). 

2.2   Local Elastic Matching  

While the multi-resolution matching strategy is able to efficiently align retinal images 
globally, the alignment error caused by insufficient matching between some vessels 
remains unsatisfactory. The phenomenon of ‘ghost vessels’ that is more obvious 
around boundaries of overlapped region is caused by the assumption of the simple 
weak affine model used in globally matching two vascular features (see Figure 3(b)). 
In order to rectify the pitfall of the global transformation model, we propose a local 
elastic matching algorithm to further improve matching accuracy by eliminating the 
existence of ‘ghost vessels’ (Figure3(c)).  

 

       
                                               (a)                                                                   (c) 

Fig. 3. A fusion map of two retinal fundus images formed by the computed rigid global trans-
formation is shown in (a). The misaligned vessels (‘ghost vessel’) enclosed in the outlined 
frame in (a) have been clearly illustrated in (b) indicated by white arrows. (c) By applying the 
local elastic matching algorithm, near perfect alignment has been produced. 

(b) 
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Let Template and Input be two binary vascular structures. Thinning is performed 
and single short lines and short branches are removed. Remaining lines and curves are 
approximated by fitting a set of straight lines. Each resulting straight line is then di-
vided into smaller segments of approximately equal lengths referred as an ’element’ 
which is represented by its slope and the position vector of its midpoint. Both vascular 
structures are, in turn, represented by a set of elements.  Hence, the matching problem 
is equal to matching two sets of elements. Note that the number of elements in the two 
patterns need not be equal. 

 

   
                                          (a)                                                                   (b)          

Fig. 4. (a) Overlapped image of Input pattern (black lines) and Template pattern (gray lines) 
before matching. (b) Overlapped image of patterns after matching. 

The Template is elastically deformed in order to match the Input locally until the 
corresponding elements of both Input and Template meet, as illustrated in Figure 4.  
The objective is to achieve local alignment while to maintain the regional structure as 
much as possible. We elaborately create an energy function whose original format can 
be found in [8] to guide the deformation process.   
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where NT = number of Template elements,  NI = number of Input elements,  Tj = 
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K1 and K2: size parameters of the Gaussian windows which establish neighbour-
hoods of influence, and are decreased monotonically in successive iterations. 

The first term of the energy function is a measure of the overall distance between 
elements of the two patterns.  For each element Ii of the Input pattern, the summation 
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similar slopes and small for slopes perpendicular to each other.  As the size K1 of the 
Gaussian window decreases monotonically in successive iterations, in order for the 
energy E1 to attain a minimum, each Ii should have at least one Tj attracted to it. 

The second term is a weighted sum of all relative displacements between each 
Template element and its neighbors within the Gaussian weighted neighborhood of 
size parameter K2. Minimization of this term minimizes the structural distortion of the 
Template pattern while each element is being moved. Each Template element nor-
mally does not move towards its nearest Input element but tends to follow the 
weighted mean movement of its neighbors in order to minimize the distortions within 
the neighborhood. K2 is initially large so that the large-scale distortions are kept small 
and the Template elements move collectively to align with the Input pattern in a 
coarse or global manner. As K2 is gradually decreased in successive iterations, finer 
and finer details of the two patterns are aligned. E1 is minimized by a gradient descent 
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Once we have identified correspondence of each feature points, to determine the 
displacement vectors of pixels in both the tree structure of the Template and the origi-
nal retinal fundus image, the nearest N feature points of elements (middle point and 
two side-end points) of Template pattern are considered, where N is equal to 9 in our 
experiments. A normalized weighted sum of the displacement vectors of the feature 
points involved is used as the displacement vector of the pixel. Last, the registered 
positions of pixels of the Template retinal fundus image are ready to be computed in 
term of their global transformed positions and local displacement vectors. An exam-
ple of the fused map is given in Figure 3(c).  

3   Experiment Results 

The image database that we use to evaluate the performance of the proposed registra-
tion algorithm consists of 115 gray level fundus images of both left and right eyes 
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from eleven patients. The image size is 512×512×8 bits. We randomly pair retinal 
fundus images captured at different times from the same eye of the same person re-
sulting 268 pairs.  

The depth for the fast multi-resolution matching method is set to 3, resulting in the 
size of the level 3 images being 64×64 where vascular features can still be clearly 
recognized. We have 245 initial positions at the lowest resolution, namely: 7×7 trans-
lation positions, separated by 5 pixels between -15 to 15 centred at the geometry cen-
tre of the 64×64 frame, and 5 equidistant rotation angles. Given that the rotational 
movement of eyes is known to be small (less than 5 degrees), and taking into account 
the tilting of head during image capturing, the initial rotation positions are set at 0, 
±3.5 and ±7 degree angles respectively.           

The step-length for the translation parameters X or Y in vertical or horizontal co-
ordinate directions is one pixel shift. The step-length for the rotation angle is related 
to the resolution of each computation level and should cause one pixel shift for at 
least one feature points (position change), normally the feature point with the largest 
distance from the original. Assuming the Input vascular structure spans from the one 
corner of the image frame over to another corner, the minimum rotating angel can be 
computed as ( )width××=Δ πθ 2180  degrees.  

Taking into consideration the influence zone constraint, we tried two step-lengths: 
  and 2× . For example, in the experiments, at the starting level with the coarsest 

resolution of 64×64, step-lengths for rotational angle ( =0.63 degree of width=64) 
are 0.63 and 1.26 degrees respectively.  

 

      
                                   (a)                                                                            (b) 

Fig. 5. (a) Overlapped vascular structures extracted from two gray level retinal fundus images, 
(b) Fusion map of the two retinal images formed by successful rigid global matching and local 
elastic alignment.   

Initial parameter values used for calculation of movement vectors in the local elas-
tic matching algorithm are carefully determined. Each line or curve is approximated 
by fitting a sequence of short straight lines ('elements') of about 20 pixels long in 
terms of the image size with which the local elastic matching begins (512×512).     

Figure 5 shows an example of successful registration. The effectiveness and the ef-
ficiency of the algorithms are reflected in Table I. The average execution time taken 
for the entire matching algorithm is 207 seconds on a Pentium III Window XP com-
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puter with 866MHz CPU and 384MB RAM. The average centreline mapping error is 
1.85 pixels. It is clear that the employment of local elastic matching significantly 
improves the matching accuracy by reducing the average centreline mapping error 
achieved via global transformation down 0.94 pixels. The price is the extra 9 seconds 
of the average execution time.   

Table 1. Computation complexity and Performance. 

Algorithms 
Average centreline 

mapping error (pixels) 
Average time 

taken (s) 

Global 2.79 198 

Global+Local 1.85 207 

4   Conclusion 

In this paper, we have described how to apply a ‘global-to-local’ matching strategy to 
accurately align pairs of retinal fundus images with improved registration error. A 
multi-resolution global matching algorithm incorporated with a rigid model is em-
ployed to search for optimal parameters of translation and rotation. The computation 
complexity is low but local misalignments exist. In order to improve the registration 
accuracy, we adopt a local structure-deformed elastic matching algorithm to eliminate 
the existence of ‘ghost vessels’. Experiment results show the effectiveness and effi-
ciency of the matching algorithms. Alignments are successfully achieved in 1.85 
pixels of average centreline mapping errors and in 207 seconds of average execution 
time. The registration results have also been validated by visual inspection of the 
fusion maps.  
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Abstract. In this paper we describe a model-based method for recovering the 3D
shape of faces using shape-from-shading. Using range-data, we learn a statistical
model of the variation in surface normal direction for faces. This model uses the
azimuthal equidistant projection to represent the distribution of surface normal
directions. We fit the model to intensity data using constraints on the surface
normal direction provided by Lambert’s law. We illustrate the effectiveness of
the method on real-world image data.

1 Introduction

Shape-from-shading provides an alluring yet somewhat elusive route to recovering 3D
surface shape from single 2D intensity images. This has been partially motivated by
psychological evidence of the role played by shape-from-shading in human face per-
ception [1]. In addition, accurate recovery of facial shape would provide an illumination
and viewpoint invariant description of facial appearance which may be used for recog-
nition. Unfortunately, the method has proved ineffective in recovering realistic 3D face
shape because of local convexity-concavity instability due to the bas-relief ambiguity.
This is of course a well known effect which is responsible for a number of illusions,
including Gregory’s famous inverted mask [2]. The main problem is that the nose be-
comes imploded and the cheeks exaggerated. It is for this reason that methods such as
photometric stereo [3] have proved to be more effective.

One way of overcoming this problem with single view shape-from-shading is to
use domain specific constraints. Several authors [4–8] have shown that, at the expense
of generality, the accuracy of recovered shape information can be greatly enhanced by
restricting a shape-from-shading algorithm to a particular class of objects. For instance,
both Prados and Faugeras [8] and Castelan and Hancock [7] use the location of sin-
gular points to enforce convexity on the recovered surface. Zhao and Chellappa [5],
on the other hand, have introduced a geometric constraint which exploited the approx-
imate bilateral symmetry of faces. This ‘symmetric shape-from-shading’ was used to
correct for variation in illumination. They employed the technique for recognition by
synthesis. However, the recovered surfaces were of insufficient quality to synthesise
novel viewpoints. Moreover, the symmetry constraint is only applicable to frontal face
images. Atick et al. [4] proposed a statistical shape-from-shading framework based on
a low dimensional parameterisation of facial surfaces. Principal components analysis
was used to derive a set of ‘eigenheads’ which compactly captures 3D facial shape.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 268–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Unfortunately, it is surface orientation and not depth which is conveyed by image in-
tensity. Therefore, fitting the model to an image equates to a computationally expensive
parameter search which attempts to minimise the error between the rendered surface
and the observed intensity. This is similar to the approach adopted by Samaras and
Metaxas [6] who incorporate reflectance constraints derived from shape-from-shading
into a deformable face-model.

The aim in this paper is to construct a generic statistical model that can be used
to capture the modes of variation in surface normal direction. We couple this model to
the raw image brightness using the geometric shape-from-shading framework of Wor-
thington and Hancock [9]. Unfortunately, the construction of such a model is not a
straightforward task since the statistical representation of directional data has proved
to be considerably more difficult than that for Cartesian data. Surface normals can be
viewed as residing on a unit sphere and may be specified in terms of the elevation and
azimuth angles. This representation makes the computation of distance difficult. For
instance, if we consider a short walk across one of the poles of the unit sphere, then
although the distance traversed is small, the change in azimuth angle is large. To over-
come the problem, in this paper we draw on ideas from cartography. Our starting point
is the azimuthal equidistant or Postel projection [10]. This projection has the impor-
tant property that it preserves the distances between locations on the sphere. It is used
in cartography for path planning tasks. Using the projection we transform the surface
normals to points on a reference plane. We construct a statistical model of the surface
normals using a standard point-distribution model on the tangent-plane.

We fit the model to 2D intensity images using ideas drawn from shape-from-shading.
According to Worthington and Hancock [9], when the surface reflectance follows Lam-
bert’s law, then the surface normal is constrained to fall on a cone whose axis is in the
light source direction and whose opening angle is the inverse cosine of the normalised
image brightness. This method commences from an initial configuration in which the
surface normals reside on the irradiance cone and point in the direction of the local im-
age gradient. The statistical model is fitted to recover a revised estimate of the surface
normal directions. The best-fit surface normals are projected onto the nearest location
on the irradiance cones. This process is iterated to convergence, and the height map for
the surface recovered by integrating the final field of surface normals.

2 Azimuthal Equidistant Projection

A needle map describes a surface z(x, y) as a set of local surface normals projected
onto the view plane. Let nk(i, j) = (nx

k(i, j),ny
k(i, j),nz

k(i, j))T be the unit surface
normal at the pixel indexed (i, j) in the kth training image. At the location (i, j), the
mean-surface normal direction is n̂(i, j) = n̄(i,j)

||n̄(i,j)|| where n̄(i, j) = 1
K

∑K
k=1 nk(i, j).

On the unit sphere, the surface normal nk(i, j) has elevation angle θk(i, j) = π
2 −

arcsinnz
k(i, j) and azimuth angle φk(i, j) = arctan ny

k(i,j)

nx
k(i,j) , while the mean surface

normal at the location (i, j) has elevation angles θ̂(i, j) = arcsin n̂z(i, j) and azimuth
angle φ̂(i, j) = arctan n̂y(i,j)

n̂x(i,j) .
To construct the azimuthal equidistant projection we proceed as follows. We com-

mence by constructing the tangent plane to the unit-sphere at the location correspond-
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ing to the mean-surface normal. We establish a local co-ordinate system on this tangent
plane. The origin is at the point of contact between the tangent plane and the unit sphere.
The x-axis is aligned parallel to the local circle of latitude on the unit-sphere.

Under the equidistant azimuthal projection at the location (i, j), the surface nor-
mal nk(i, j) maps to the point with co-ordinate vector vk(i, j) = (xk(i, j), yk(i, j))T .
The transformation equations between the unit-sphere and the tangent-plane co-ordinate
systems are

xk(i, j) =k′ cos θk(i, j) sin[φk(i, j)− φ̂(i, j)]

yk(i, j) =k′
{

cos θ̂(i, j) sinφk(i, j)− sin θ̂(i, j) cos θk(i, j) cos[φk(i, j)− φ̂(i, j)]
}

where cos c = sin θ̂(i, j) sin θk(i, j)+cos θ̂(i, j) cos θk(i, j) cos[φk(i, j)− φ̂(i, j)] and
k′ = c

sin c .

θ
C O

PP'

Fig. 1. The azimuthal equidistant projection

Thus, in Figure 1,CP ′ is made
equal to the arc CP for all val-
ues of θ. The projected position
of P , namely P ′, therefore lies at
a distance θ from the centre of
projection and the direction of P ′

from the centre of the projection
is true. The equations for the in-
verse transformation from the tan-
gent plane to the unit-sphere are

θk(i, j) = sin−1

{
cos c sin θ̂(i, j)− 1

c
yk(i, j) sin c cos θ̂(i, j)

}
φk(i, j) =φ̂(i, j) + tan−1 ψ(i, j)

where

ψ(i, j) =

⎧⎪⎪⎨⎪⎪⎩
xk(i,j) sin c

c cos θ̂(i,j) cos c−yk(i,j) sin θ̂(i,j) sin c
if θ̂(i, j) �= ±π

2

−xk(i,j)
yk(i,j) if θ̂(i, j) = π

2
xk(i,j)
yk(i,j) if θ̂(i, j) = −π

2

and c =
√
x2 + y2.

3 Point Distribution Model

For each image location the transformed surface normals from the K different training
images are concatenated and stacked to form two long-vectors of lengthK . For the pixel
location indexed (i, j), the first of these is the long vector with the transformed x-co-
ordinates from the training images as components, i.e. Vx(i, j) = (x1(i, j), x2(i, j), ...,
xK(i, j))T and the second long-vector has the y co-ordinate as its components, i.e.



A Model-Based Method for Face Shape Recovery 271

Vy(i, j) = (y1(i, j), y2(i, j), ..., yK(i, j))T . Since the azimuthal equidistant projec-
tion involves centering the local co-ordinate system (i.e. the mean direction is pro-
jected to the point (0, 0)), the mean long-vectors over the training images are null. If
the data is of dimensions M rows and N columns, then there are M × N pairs of
such long-vectors. The long vectors are ordered according to the raster scan (left-to-
right and top-to-bottom) and are used as the columns of the K × (2MN) data-matrix
D = (Vx(1, 1)|Vy(1, 1)|Vx(1, 2)|Vy(1, 2)| . . . |Vx(M,N)|Vy(M,N)). The covari-
ance matrix for the long-vectors is the (2MN) × (2MN) matrix L = 1

K DTD. We
follow Atick et al. [4] and use the numerically efficient method of Sirovich [11] to com-
pute the eigenvectors of L. Accordingly, we construct the matrix L̂ = 1

K DDT . The
eigenvectors êi of L̂ can be used to find the eigenvectors ei of L using ei = DT êi.
We deform the azimuthal equidistant point projections in the directions defined by the
matrix P = (e1|e2| . . . |eK) formed from the leadingK principal eigenvectors.

A vector of parameters b describing a field of transformed surface normals on the
local tangent plane vk is given by: b = PT vk. To deform the field of surface normals,
we can displace the transformed surface normals on the local tangent planes in the
directions defined by the eigenvectors P. The deformed field of surface normals can be
transformed back onto the unit sphere using the inverse azimuthal equidistant projection
equations given above.

4 Geometric Shape-from-Shading

If I is the measured image brightness, then according to Lambert’s law I = n.s, where s
is the light source direction. In general, the surface normal n can not be recovered from
a single brightness measurement since it has two degrees of freedom corresponding to
the elevation and azimuth angles on the unit sphere. In the Worthington and Hancock
[9] iterative shape-from-shading framework, data-closeness is ensured by constraining
the recovered surface normal to lie on the reflectance cone whose axis is aligned with
the light-source vector s and whose opening angle is arccos I . At each iteration the
surface normal is free to move to an off-cone position subject to some smoothness or
curvature consistency constraint. However, the hard constraint is re-imposed by rotating
each surface normal back to its closest on-cone position. This process ensures that the
recovered field of surface normals satisfies the image irradiance equation after every
iteration.

Suppose that (n′)l(i, j) is an off-cone surface normal at iteration k of the algorithm,
then the update equation is nl+1(i, j) = Θ(n′)l(i, j) whereΘ is a rotation matrix com-
puted from the apex angle α and the angle between (n′)l(i, j) and the light source di-
rection s. To restore the surface normal to the closest on-cone position it must be rotated
by an angle θ = α− arccos

[
(n′)l(i, j).s

]
about the axis (u, v, w)T = (n′)l(i, j)× s.

Hence, the rotation matrix is

Θ =

⎛⎝ c+ u2c′ −ws+ uvc′ vs+ uwc′

ws+ uvc′ c+ v2c′ −us+ vwc′

−vs+ uwc′ us+ vwc′ c+ w2c′

⎞⎠
where c = cos(θ), c′ = 1− c and s = sin(θ).
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The framework is initialised by placing the surface normals on their reflectance
cones such that they are aligned in the direction opposite to that of the local image
gradient. We use the irradiance cone constraint to fit our statistical model of surface
normal variation to image brightness data.

5 Combining the Statistical Model and Geometric SFS

We train the statistical model using surface normals derived from range images of faces.
The method could be trained on surface normal data delivered by shape-from-shading,
but this is generally less reliable. To do this we used 200 range images of male and
female subjects in frontal poses and neutral expressions [12]. Once trained, the statis-
tical model represents the space of valid face shapes. By fitting the model to the data,
we can extract the needle map within this shape space that is closest to a given field
of surface normals. This “best fit” needle map is statistically constrained to represent a
valid facial surface. The idea underpinning this paper is to fit the model to brightness
images using the fields of surface normals estimated using the Worthington and Han-
cock shape-from-shading method. This is an iterative process in which we interleave
the process of fitting the statistical model to the current field of estimated surface nor-
mals, and then re-enforcing the data-closeness constraint provided by Lambert’s law by
mapping the surface normals back onto their reflectance cones. The algorithm can be
summarised as follows:

1. Calculate an initial estimate of the field of surface normals n by placing each nor-
mal on its reflectance cone in the direction of the negative local intensity gradient.

2. Each normal in the estimated field n undergoes an azimuthal equidistant projection
to give a vector of transformed coordinates v.

3. The vector of best fit model parameters is b = PTv.
4. The vector of transformed coordinates corresponding to the best-fit parameters is

v′ = (PPT )v.
5. Using the inverse azimuthal equidistant projection find n′ from v′.
6. Find n′′ by rotating n′ using n′′(i, j) = Θn′(i, j).
7. Stop if the difference between n and n′′ indicates convergence.
8. Make n = n′′ and return to step 2.

Upon convergence we output n′′, which satisfies the data-closeness constraint. How-
ever, given the variation in albedo in real world facial images, this may not be desir-
able. In this case we may choose to output n′ and an estimate of the albedo map. In
other words we relax the data-closeness constraint at the final iteration and use the dif-
ferences between observed and reconstructed image brightness to account for albedo
variations. If the final best-fit field of surface normals is reilluminated using a Lam-
bertian reflectance model, then the predicted image brightness is given by I(i, j) =
α(i, j)[s.n′(i, j)] where α(i, j) is the albedo at position (i, j). Since I , s, and n′ are all
known we can estimate the albedo at each pixel using the formula α(i, j) = I(i,j)

s.n′(i,j) .
The combination of the final best-fit needle map and estimated albedo map allows for
near photo-realistic reilluminations under novel illumination and viewpoint. In the next
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section we demonstrate how both n′ and n′′ are improvements over the needle maps es-
timated using the original curvature consistency constraints proposed by Worthington
and Hancock [9].

6 Experiments

In this section we apply the algorithm described above to a number of real world face
images. These images are drawn from the Yale B database [3] and are disjoint from the
data used to train the statistical model. In the images the faces are in a frontal pose and
were illuminated by a point light source situated approximately at the viewpoint, i.e. in
direction [0 0 1]T . We begin by analysing the behaviour of the algorithm over a number
of iterations. We then show how the recovered needle map can be used to synthesise
images of the input faces under novel illumination and from novel viewpoints.

Fig. 2. Angular difference between final
n′ and n′′ (left) and estimated albedo
map (right)

In Figure 2 (left) we show the angular change
as data-closeness is restored to the best fit nee-
dle map at the final iteration. From the plot it
is clear that the changes are almost solely due
to the variation in albedo at the eyes, eye-brows
and lips. Aside from these regions there is very
little change in surface normal direction, indi-
cating the needle map has converged to a solu-
tion which satisfies the data-closeness constraint
except in regions of actual variation in albedo.
Using the technique described above, Figure 2
(right) shows the estimated albedo map. The re-
sults appear intuitively convincing. For instance, how the albedo map identifies the
eyes, eyebrows, facial hair and lips. Moreover, there are no residual shading effects in
the albedo map, and the nose is given constant albedo.

The algorithm converges rapidly, usually within 10 to 20 iterations. In fact, there is
a considerable improvement in the needle map after only one iteration. This is because
the statistical model provides a very strict constraint. The top row of Figure 3 shows
how a needle map develops over 25 iterations of the algorithm. Since the needle maps
satisfy data-closeness at every iteration, they would all appear identical when rendered
with a light source from the original direction ([0 0 1]T ). For this reason we show the
needle maps reilluminated with a light source moved along the x-axis to subtend an
angle of 45◦ with the viewing direction. After one iteration there is a significant global
improvement in the recovered needle map. Subsequent iterations make more subtle im-
provements, helping to resolve convex/concave errors and sharpening defining features.
For comparison the second row shows the corresponding needle maps recovered using
the original curvature consistency contraint of Worthington and Hancock [9] reillumi-
nated in the same manner. Although there is a steady improvement in the quality of the
recovered normals, there are gross global errors as well as feature implosions around
features such as the nose.

In Figure 3 we also show the surfaces recovered from the current best fit needle
maps (third row) and the needle maps which satisfy data-closeness (bottom row) as
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Initial 1 Iteration 2 Iterations 5 Iterations 25 Iterations

Fig. 3. Re-illuminated needle maps and recovered surfaces over 25 iterations of the algorithm

the algorithm iterates. Surface recovery is effected using the method of Frankot and
Chellappa [13]. As one would expect, the imposition of data-closeness results in errors
in the recovered surface where there is variation in albedo, most notably around the
eyes and eye-brows. In both sets there is a clear improvement in the recovered surface
as the algorithm iterates. The implosion of the nose is corrected, the surface becomes
smoother and finer details become evident, for example around the lips.

Finally in Figure 4 we show how the estimated albedo maps and final best fit needle
maps can be used to synthesise views of a face in novel pose and under novel illumina-
tion from a single image. In the first four columns the light source is moved to subtend
an angle of 45◦ with the view direction along the positive and negative x and y-axes. In
the fifth column the faces are shown rotated 30◦ about the vertical axis. The synthesised
views are very convincing, even under large changes in lighting and viewpoint.

7 Conclusions

In this paper we have shown how to recover estimates of the 3D shape of faces from
single frontal images. The method iterates between surface normal estimation using
a geometrical shape-from-shading method and fitting a statistical model to the field
of surface normals. This process can be posed as that of recovering the best-fit field
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Fig. 4. Novel illumination and viewpoint

of surface normals from the statistical model, subject to constraints provided by the
image irradiance equation. The method proves rapid to converge, and delivers realistic
surfaces when the fields of surface normals are integrated. Our future plans revolve
around placing the iterative process in a statistical setting using the EM algorithm and
a von-Mises distribution to model the likelihood for the surface normal data. We also
plan to develop ways of aligning the model with images which are not in a frontal pose.
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Abstract. In this paper we focus on the problem of automatically de-
tecting the absence of the fastening bolts that secure the rails to the
sleepers. The proposed visual inspection system uses images acquired
from a digital line scan camera installed under a train. The general per-
formances of the system, in terms of speed and detection rate, are mainly
influenced by the adopted features for representing images and by their
number. In this paper we use overcomplete dictionaries of waveforms,
called frames, which allow dense and sparse representations of images
and analyze the performances of the system with respect to the sparsity
of the representation. Sparse means a representation with only few no
vanishing components. In particular we show that, in the case of Gabor
dictionaries, dense representations provide the highest detection rate.
Moreover, the number of no vanishing components of 1% of the total re-
duces of 10% the detection rate of the system, indicating that very sparse
representations do not heavily influence the performances. We show the
adopted techniques by using images acquired in real experimental con-
ditions.

1 Introduction

In the last years a large number of methods have been proposed by the computer
vision community for facing the problem of visual inspection [1, 2]. This problem
can be regarded as a particular instance of the most general problem of detect-
ing objects in images as faces [3], pedestrians [4], balls [5] just for citing a few
examples. Recently, such methods have been successfully applied for railway in-
spection and monitoring [6, 7]. In this field, the growing of the high-speed traffic
on the rail tracks demands the development of sophisticated real-time visual in-
spection systems which are able to automatically detect rail defects. Usually, the
maintenance of the railway plane is done by trained personnel who periodically
observes the images recorded by a TV camera installed on a diagnostic coach.
Actually, this manual inspection is lengthy, laborious and potentially hazardous
and the results are strictly dependent on the capability of the observer to catch
possible anomalies and recognize critical situations. The railway companies over
the world are interested in developing automatic inspection systems which could
increase the defect detection ability and decrease the inspection time in order
to guarantee more frequently the maintenance of the entire railway network. In
this context the detection of sleepers’ anomalies, as well as missing fastening
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elements, is an important task that an efficient inspection tool should supply.
As described in a our previous work [6] the Wavelet Transform has been suc-
cessfully applied in railway context for the recognition of fastening elements. In
other works [8, 9] this fastening element are recognized by using Independent
Component Analysis (ICA) and Support Vector Machine (SVM). This kind of
detection problem can be regarded as the problem of detecting flat objects from
2-D intensity image. Usually, such problems have been approached by using al-
gorithms of edge detection, border following, thinning, straight line extraction,
active contour (snake) following [10]. However, these methods fail if the patterns
are distorted by imaging process, view-point changes, lighting changes or large
intra-class variation among the patterns. In order to overcome these problems,
the mostly used approaches in object recognition are based on feature extrac-
tion by a pre-processing technique. In this paper we focus on hexagonal-headed
bolt images representations involving linear transformations of the original data
with the main difference that we require the system functions not to be a basis.
Such systems are, in general, constituted by much more elements that the ones
present in a basis, and for this reason the are called overcomplete or redundant
systems of functions. As described in Mallat [11] overcomplete dictionaries per-
mit of representing signals in many different ways and it is possible to envisage
that among all the possible representations, there is one suitable for a partic-
ular application. Sparsity is just one criteria for selecting a representation for
a given image, the one with a few number of coefficients different from zero,
particularly useful in the context of compression [12, 13]. In [14, 15] Match-
ing Pursuit algorithms are employed in the classification context in particular
Road Sign recognition and Face Identification. In this work we analyze sparse
vs. no sparse representations of hexagonal headed bolt images, obtained by two
different representation techniques, namely matching pursuit introduced by S.
Mallat [11] and method of frames proposed by I. Daubechies [16]. In the case
of MP is introduced a measure of sparsity called sparseness factor that is the
ratio between number of non-zero coefficients and total number of atoms. We
investigate these two methods by using overcomplete dictionary of Gabor func-
tions, with different numbers of centers frequencies and orientations. Using this
kind of dictionary, Method of Frame (MOF) achieves higher detection rate than
Matching Pursuit(MP) in our context. However in MP case a sparseness factor
less than 1% reduces only of 10% the performances of the whole system. This
result indicates that sparse representations do not affect strongly the detection
rate. This paper is organized as follows: In section 2 an overview of the Finite
dimensional frame theory is presented. In section 3 we briefly describe MOF
and the economic representation. The MP method is introduced in section 4.
In section 5 is described the Gabor Dictionary employed. Finally experimental
results are given in section 6.

2 Finite Dimensional Frames

In this section we analyze frames. We refer the reader to [17] for a review of
the frame theory in generic Hilbert spaces. At this aim, consider a family of
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vectors (ϕj)�
j=1 of IRn. In some contexts [18], the family is called dictionary and

the elements of the family are called atoms. By definition, the family of vectors
(ϕj)

�
j=1 constitutes a frame if there exist two constants A > 0 and B <∞ such

that, for all u ∈ IRn we have:

A||u||2 ≤
�∑

j=1

(〈u, ϕj〉)2 ≤ B||u||2 (1)

We call A and B frame bounds. Where we intend 〈a, b〉 = ab, if is not diversely
specified. If A = B then we will say that (ϕj)

�
j=1 is a tight frame and for all

u ∈ IRn:

u =
1
A

�∑
j=1

〈u, ϕj〉ϕj (2)

Moreover, if A = 1 then (ϕj)
�
j=1 is an orthonormal basis.

We have a practical recipe for establishing if a system of vectors (ϕj)
�
j=1 is

a frame. In fact, build the matrix F having the vectors ϕj as rows. Compute
the minimum and maximum eigenvalues of FF . If λmin > 0 then the system
(ϕj)

�
j=1 is a frame, with frame bounds λmin and λmax.

Fig. 1. Images of rail fixed to the sleeper by hexagonal-headed bolts (left picture) and
Sample image patterns of the hexagonal-headed bolts(right picture)

3 MOF and “Economic” Representations

Let F be a � × n matrix having the frame vectors as its rows. The matrix F is
the frame operator, where F : IRn → IR�. Let c ∈ IR� be the vector obtained
when we apply the frame operator F to the vector u ∈ IRn, that is: c = Fu.
Then:

cj = (Fu)j = 〈u, ϕj〉 for j = 1, 2, ..., �

Once we have computed the coefficients c, projecting the signal on the frame
elements, there is a unique way to recover the signal u:

u = F †c (3)
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where F † = (FF )−1F is the pseudoinverse of F . F , also called analysis op-
erator, associates a vector of coefficients c (features) to a signal u, projecting
the signal through the atoms of the dictionary. This operation involves a �× n
matrix. F †, also called synthesis operator, builds up a signal u as a superposition
of the atoms of the dual dictionary weighted with coefficients c. Now the ques-
tion is: among all possible representations of the signal u in terms of the frame
elements, what properties have the coefficients c? In [17] we show (see also [18])
that, among all representations of a signal in terms of the frame elements, MOF
selects the one whose coefficients have minimum �2 norm.

4 Matching Pursuit

Matching pursuit [11] is a non linear algorithm that decomposes a signal into
a linear expansion of waveforms that, in general, belong to a overcomplete dic-
tionary of functions. It is an iterative procedure which, at each step, selects the
atom of the dictionary which best reduces the residual between the current ap-
proximation of the signal and the signal itself. We analyze the method in the
case of a signal u ∈ IRn. Let (ϕj)

�
j=1 be a frame of vectors of IRn, with ||ϕj || = 1

for all j. At stage k = 0, let u(0) = 0 be the current approximation of the signal u
with residual R(0) given by R(0) = u−u(0). The algorithm selects the dictionary
atom that best correlates with the residual. In general, at stage k the algorithm
builds the approximation u(k) of u given by:

u(k) = u(k−1) +
〈
R(k−1), ϕjk

〉
ϕjk

(4)

where:
jk = arg max

j∈J

∣∣∣〈R(k−1), ϕj

〉∣∣∣ (5)

with residual R(k) = u − u(k). From the residual at the stage k-th we have:
u = u(k) +R(k). By using (4) recursively, at the stage k we have:

u =
k∑

i=1

〈
R(i−1), ϕji

〉
ϕji +R(k) (6)

From (6) follows that matching pursuit represents the signal u as linear com-
bination of the dictionary atoms with coefficients computed minimizing at each
step the residual. Some considerations are in order. In general the algorithm
ends after a fixed number of iterations or when the residual is less than a given
threshold. Matching pursuit is an example of a more general class of methods
known as greedy algorithms: they do the best thing at every step. The algorithm
provides a sparse representation of the signal.

5 Gabor Dictionary

The atoms used in this paper are Gabor atoms:

g(x, y) =
√

2Kse
−π(x2+y2)e

i( 2πωx
Nx

x+
2πωy

Ny
y) (7)
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Fig. 2. Example of Gabor atom (picture on the left) and its 3-D representation (right
picture)

Fig. 3. Experimental image acquisition setup

in their discrete version, so [x,y], [ωx, ωy]∈ ZZ2 and −→ω=[ωx, ωy]is fixed in this
dictionary. The constant Ks normalizes the discrete norm of g. The choice of
Gabor functions is due to the fact that they have optimal time-frequency reso-
lution. The dictionary is defined by the set of Gabor atoms gγ , with γ = (s,p, θ)
and:
s ∈ [0,min(Nx,Ny)) scaling factor
p = [px, py] where px ∈ [0, Nx), py ∈ [0, Ny) translation
θ∈ [0, π) rotation
with Nx × Ny the size of the image, s the scaling factor that divides the spa-
tial variables, p the translation vector in x and y and θ the angular resolution
(rotation). As the application of these parameters is not commutative it is very
important to fix the order a priori. The correct application order is:

1. Apply translation by [px, py]∈ ZZ2.
2. Rotate by θ the translated parameters.
3. Scale the translated and rotated variables by 2

s
NN ,where s is a discrete pa-

rameter s ∈ [0,NN · log2(N)]∈ ZZ and NN ∈ [1, log2(N)] ∈ ZZ (N is the size
of the image).

We have chosen our parameters in such a way that the associated family is a
frame of L2(IR2) [20]. Intuitively,Δθ andΔs must be small enough to allow some
overlap between adjacent atoms in the Fourier domain. In [19]is demonstrated
that this family of Gabor functions is complete.
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6 Experimental Results

The images of the rail have been obtained by a line scan camera DALSA PI-
RANHA 2 with 1024 pixels of resolution (maximum line rate of 67 kLine/s)
with the transmission protocol Cameralink, installed under a diagnostic train
during its maintenance route. Futhermore we have used the frame grabber PC-
CAMLINK (Imaging Technology CORECO). In order to reduce the effects of
variable natural lighting conditions, an appropriate illumination setup equipped
with six OSRAM 41850 FL light sources has been installed too (see fig. 3). In this
way the system should be robust against changes in the natural illumination.

Moreover, in order to synchronize data acquisition, a trigger is sent to the
TV camera by the wheel encoder. The spatial resolution of the trigger is 3 mm.
A pixel resolution of 1x1 mm2 can be obtained choosing a TV camera with focal
length of 12 mm. The integration time of the TV camera has been properly set
in order to acquire images at maximum speed of 241 Km/h choosing the spatial
resolution of 1 mm. A long video sequence of a rail network of about 5 Km
has been acquired in order to experiment the proposed visual-based inspection
system. Firstly, a number of sample images has been extracted from the sequence
to create the training set for the neural classifiers. The remaining video sequence
has been used to test the performance in term of detection rate e computational
velocity of the developed inspection system. Positive and negative examples of
the hexagonal-headed bolts have been manually extracted from the sequence
training images (see fig. 1 right side). Each examples consist of a 32×32 pixels
subwindow where the width an height depend on the dimension of the hexagonal-
headed bolts in the image (see fig. 1 left side). The training set is the same for
all carried out experiments. This training set contains 301 positive examples and
301 negative examples of hexagonal headed bolts. The pre-processing strategies
consist on Method of frames and Matching Pursuit with different residual error
percentages. Both method use the Gabor Dictionary (see section 5). This atom
dictionary is created with 4 central frequency 8 angular resolution and 1 octave.
In this way our dictionary contains 32768 atoms. These different pre-processing
techniques (described in detail in previous section) have been applied on the
image examples. The neural classifiers Multi Layer Perceptron Network (MLPN)
have been trained on this training set by back-propagation algorithm. In order to
evaluate the generalization ability of the neural network classifier and the effects
of the different pre-processing strategies on the images a test has been carried out
on the validation set. This set contains 801 positive examples and 801 negative
examples of hexagonal headed bolt. In table 1 the results of that test are shown.
In the first column of Table 1 the pre-processing strategies are listed. The first
row refers to MOF (Method of Frame), last three rows refer to MP (Matching
Pursuit) method with crescent residual error percentages (up to 50%). In the
second column of Table 1 the number of input coefficients for the classifiers are
listed. The second column of the Table 1 contains the sparseness factor (the ratio
between number of non-zero coefficients and total number of atom). Note that it
is not present in the MOF row because this is a dense representation. In the last
two columns of the same table the percentage of detection rate obtained from
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Table 1. Detection rate for the hexagonal-headed bolt testing the system on images
of the validation set

Pre-Processing Number Sparseness Detection rate (%)of
of input factor Back-propagation NN

TP TN

MOF 32768 / 795/801 (99.2%) 787/801 (98.2%)

MP (10% Error) 32768 179/32768 (0.54%) 718/801 (89.6%) 709/801 (88.5%)

MP (30% Error) 32768 85/32768 (0.26%) 712/801 (88.8%) 725/801 (90.5%)

MP (50% Error) 32768 49/32768 (0.15%) 665/801 (83.0%) 725/801 (90.5%)

the test on the validation set is reported for MLPN classifier. Detection rates
are given in terms of true positive (TP) and true negative (TN) rate.

7 Conclusion and Future Work

In this paper we have proposed a hexagonal bolt detection and recognition sys-
tem in the railway maintenance context. MLPN classifiers was trained to recog-
nize hexagonal-headed bolts. The images were pre-processed by using Method
of Frames and Matching Pursuit techniques based on a Gabor Dictionary. The
obtained trained networks were tested on a validation set to establish which pre-
processing techniques perform better in terms of detection rate percentages. The
results showed that MP technique with a decreasing residual error reach a good
compromise between the sparseness factor and the detection percentages. The
future work will be addressed to use the same techniques with different atoms
dictionary.
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Abstract. Object extraction or image segmentation is a basic problem in image 
analysis and computer vision. It has been dealt with in various forms. Varia-
tional method is an emerging framework to tackle such problems where the aim 
is to create an image partition that follows the data while at the same time pre-
serving certain regularity. In this paper, we propose a new energy functional 
which is based on the region information of an image. The region-based force 
makes our variational flow robust to noise and provides a global segmentation 
criterion. Furthermore, our method is implemented using level set theory, which 
makes it easy to deal with topological changes. Finally, in order to simultane-
ously segment a number of different objects in an image, a hierarchical method 
is presented.  

1   Introduction 

Object extraction is a very popular low-level topic of research in image processing 
and computer vision with its applications to remote sensing, medical imaging and 
video tracking. Active contour model, since it was first proposed in [1], has been 
extensively studied in this area. The central idea behind active contour model is to 
evolve a curve or surface based on energy minimization method under the influence 
of image dependent forces, regularity constraints and certain user-specified con-
straints. 

Originally, active contours are boundary-based methods, which usually need an 
edge detector to stop the evolving curve on the boundaries of the desired objects. 
Snakes [1], balloons [2] and recently the geodesic active contour [3] are all driven 
towards to the edges of an image. However, such methods only use the local informa-
tion on the boundary of an object, which makes them sensitive to noise. 

Recently, there has been a great interest in region- based active contours. In [4], 
Chan and Vese proposed a region-based active contour which was derived from 
Mumford-Shah functional [5]. The main idea behind Chan-Vese model is to use 
piecewise constant functions which are represented by the intensity means of different 
regions to approximate the original image with some regularity terms. In [6], Tsai et 
al. also proposed a curve evolution method based on the Mumford-Shah functional. 

A third form of active contours is to unify boundary and region-based segmenta-
tion approaches. In [7], Zhu and Yuille  proposed a statistical variational approach 
which combined the geometrical features of a snake/balloon model and the statistical 
techniques of region growing. N. Paragios also proposed a geodesic active region 
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model which was implemented in level set method [8]. We also note that recently 
X. Xie and M. Mirmehdi have proposed a region-aided geometric snake [9]. 

In this paper, we propose a new energy functional which is totally based on region 
features of an image. Compared with traditional boundary based active contours, our 
method is more robust to noise. Furthermore, we implement our method in the level 
set framework, thus it can deal with topological changes automatically and be ex-
tended to higher dimensions easily. Finally, unlike other active contours in [3] and 
[9],our contour is more insensitive to the initialization due to the region force. It can 
be placed near or far away from the boundaries of object.  

Our work can be seen as an extension of Chan-Vese model. However, unlike their 
Mumford-Shah functional-based method, our contour is based on a new proposed 
functional and the corresponding evolution equation is more numerically stable. 
What’s more, in order to segment multiple objects, we introduce a hierarchical 
method which was also used in Tsai et al. [6]. 

The remainder of this paper is organized as follows. Section 2 introduces the Chan-
Vese model. Section 3 describes our variational active contour in detail. Section 4 
presents the experimental results. Conclusions and future work are given in Section 5. 

2   Related Work 

In this section, we summarize the active contour model for segmenting bimodal im-
ages developed by Chan and Vese [4]. 

In the variational framework, an image 0I   is usually considered a real-valued 

bounded function defined on Ω , where Ω  is a bounded and open subset of 2R  (in 
two dimension case) with Ω∂ as its boundary. 

According to level set theory originally proposed by Osher and Sethian in [10], a 
geometric active contour can be represented by the zero level set of a real-valued 

function RR →⊂Ω 2:φ  which evolves in an image 0I according to a variational 

flow in order to segment the object from the image background. Since it was pro-
posed, level set theory has made great success in image processing community [11]. 
Some of the biggest advantages of level set method are as follows. Firstly, unlike 
traditional parametric active contour models [1], level set based active contours are 
parametric-independent and hence can deal with topological changes naturally. Sec-
ondly, level set contours can be extended to three and higher dimensions, which is 
needed in many image processing applications. Thirdly, level set method usually has 
mature numerical implementation [11].     

The active contour model developed in [4] is based on Mumford-Shah functional 
and level set theory. The main idea is to minimize the following “fitting” energy func-
tional with a length regularization term: 

dxdyHcI

dxdyHcIdxdyccF

))(1(||

)(||||)(),,(

2
202

2
10121

φλ

φλφφδμφ

−−+

−+∇=

∫

∫∫

Ω

ΩΩ            (1) 



A New Region-Based Active Contour for Object Extraction Using Level Set Method      287 

where 21 ,, λλμ  are the scaling  parameters, 1c  and 2c  are the mean intensities 

inside and outside the active contour Γ  (see Fig. 1) defined as follows: 
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In the numerical implementation, H(φ ) is the regularized Heaviside function defined 
as: 
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Similarly, δ(φ ) is the regularized version of Delta function defined as: 
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Note that when ε → 0, both regularized versions converge to standard Heaviside func-
tion and Delta function. 

Using the gradient decent method, Chan and Vese derived their evolution equation 
as follows: 
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3   Proposed Method 

In this section, we will describe the proposed variational flow.  
 

 

Fig. 1. The domain Ω divided into two regions by the curve Γ where φ = 0  

From Chan-Vese model, we notice that a bimodal image can be approximated by 
the following equation which we call piecewise constant image function: 
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Based on this observation, we propose a new energy functional whose main idea is 
to minimize the difference between the piecewise constant image function and the 
original image while keeping some regularity. The proposed functional is as follows: 

dxdydxdyIIccF ∫∫
ΩΩ
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),,( φμφ                        (8)                  

where the first term is a fidelity term, and the second term is a Tikhonov regulariza-

tion term. φ, 1c and 2c are defined as in Chan-Vese model, μ is a regularizing pa-

rameter. The purpose of using the regularization term is to keep the level curve 
smooth and regular. Moreover, since our regularization term is imposed on the whole 
image domain, the evolution of all the level sets in our method is meaningful. So we 
need few reinitialization of level set function, which can reduce the computational 
complexity.    

Using the fundamental lemma of calculus of variations, minimizing F with re-
spect to φ, we get the corresponding Euler-Lagrange equation: 

φμφδ
φ
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                                        (9)                  

Next using the steepest descent method, we get the evolution equation as follows: 

φμφδφ Δ+−−=
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                                       (10)                  

Compared to Chan-Vese evolution equation, the δ(φ) in the regularization term is 
replaced by “1” in our method. For the purpose of numerical calculation, the 
δ function tends to create oscillations if ε in the regularized version is too small, while 
if it is too large, the accuracy of numerical method can decrease. Therefore our varia-
tional flow has a better numerical stability. Furthermore, because we use a Tikhonov 
regularization term which is a very strict regularization term, our method is more 
robust to noise than Chan-Vese model in some cases. 

Hierarchical Method: In order to extract more than one object from an image, we 
adopt a hierarchical method. For a certain image, we firstly apply the active contour 
model proposed in previous section. At the end of this step, we get a contour which 
gives the boundaries of the segmented object. If there is a need for further segmenta-
tion, we then select one of the regions generated from the previous stage and apply 
our algorithm again only to this region. Therefore we can always only segment inter-
esting areas. 

Implementation Remarks: In numerical implementation, 1c  and 2c  are computed by 

the standard Heaviside function. I  is calculated by the regularized version of Heavis-
ide function. δ(φ) is computed by the regularized version of Delta function.  

4   Experimental Results 

In this section, we will give the experimental results obtained by using the new active 
contour model described in previous section. The segmented result is represented by a 
binary image. According to our algorithm, the image area where the level set function  
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φ > 0 is the extracted object and φ < 0 is the background, so we directly use gray level 
“1” (or “0”) to indicate the object and “0”(or “1”) to indicate the corresponding back-
ground without using any post processing step. 

Our experiments were performed on a Celeron 633 MHz PC. In the numerical ex-
periments, we generally choose the parameters as follows: 1=μ , 1=ε , the time 

step is 0.1, and the space step is 1.  
In fig. 2, we apply our method on a synthetic image, with Gaussian noise, of which 

the mean is zero and the variance is 0.02. We note that this image has multifarious 
shapes and interior contours. The result indicates that our method has the capability to 
extract object from noisy image even with complex topology due to the region forces 
and level set technique used in our geometric flow. Furthermore, it can also extract 
interior boundaries of object.  
 

 

Fig. 2. Result on a synthetic noise image 

We show the segmentation results on a real car license plate image with noise in 
Fig. 3. We compare it with the results obtained by applying Chan-Vese model. The 
experiments demonstrate that in this case our method is more robust to noise than 
Chan-Vese model as discussed in section 3. 

 

     
                                (a)                                      (b)                                       (c) 

Fig. 3. Results on a car plate image with noise: (a) original image, (b) Chan-Vese model and (c) 
proposed method 

We end our experiments by using a medical image in Fig. 4. The image is 
downloaded from the Brainweb [12], with T1-weighted, slice thickness of 1 mm, 
intensity inhomogeneity of 20%, and noise level of 7%. In this experiment the time 
step is 0.02. The MRI data is pre-processed to extract the region of interest by using 
the software MRIcro [13]. In this case, there are four parts in an image: gray matter, 
white matter, cerebrospinal fluid and back ground. So we use our hierarchical method 
to extract the gray matter and the white matter separately. The experiments indicate 
that our variational flow gives good results under the noise level.  
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5   Conclusion and Future Work 

In this paper, we propose a new variational active contour model to extract object 
from an image using level set method. Our variational flow is based on the region 
forces derived from the image and thus robust to noise. Compared to traditional 
boundary-based active contours, our contour is more insensitive to initialization. 
Moreover, our contour needs few reinitializations during evolution process. Finally, 
In order to extract multiple objects, we introduced a hierarchical method. The experi-
ments demonstrate that our method is very effective. 
 

                                   

Fig. 4. Results on a MRI brain image: (a) is the original image, (b) is the extracted white mat-
ter, and (c) is the extracted gray matter 

Since our method is implemented in level set framework, it is easily extended to 
three dimensions. This is very useful especially in medical applications. Our method 
can also be used with other boundary-based active contour models, for example, geo-
desic active contour [3]. These topics will be the subject of future work. 
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Abstract. The use of Active Shape Models (ASM) has been shown to be an
efficient approach to image interpretation and pattern recognition. In ASM, grey-
level profiles at landmarks are modelled as a Gaussian distribution. Mahalanobis
distance from a sample profile to the model mean is used to locate the best po-
sition of a given landmark during ASM search. We present an improved ASM
methodology, in which the profiles are modelled as a mixture of Gaussians, and
the probability that a sample is from the distribution is calculated using the prob-
ability density function (pdf) of the mixture model. Both improved and original
ASM methods were tested on synthetic and real data. The performance compari-
son demonstrates that the improved ASM method is more generic and robust than
the original approach.

1 Introduction

Active Shape Modelling (ASM) [3] has been applied in many image analysis appli-
cations, such as medical image analysis, facial recognition and video object tracking,
mainly due to its capability to deal with the variation of both shape and the signal inten-
sity of the target object [1]. Image segmentation using the conventional ASM method
can be divided into two stages. The first is the modelling (or training) stage, in which a
parameterised statistical shape model is built from labelled training images. Grey-level
profiles normal to the object boundary at each landmark are modelled as a single Gaus-
sian distribution. At the second stage, a shape instance is deformed in accordance with
the model to search for a boundary which optimally segments the object. This is an
iterative optimisation process consists of two major steps: (a) search for better positions
for each individual landmark using grey level statistical models, and (b) fit the shape
model to new landmarks by updating the shape model parameters. Step (a) ensures that
the boundary is placed at a location where the image structure around the boundary or
within the object is most similar to that is modelled from the training data, and step (b)
ensures that the segmentation can only produce plausible shapes. Both steps are crucial
to the final search results.

A collection of practical improvements are found in the literature. Most of the im-
provements were aimed at shape variation modelling and generation of shape instances.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 292–299, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Cootes et al. [2] used the Gaussian mixtures to model the distribution of the landmarks
and hence the shape variation. Rogers and Graham [5] improved ASM by using M-
estimator and random sampling approaches to robust parameter estimation instead of
Gaussian distribution based estimation. Twining et al. [6] described the use of Kernel
Principal Component Analysis (KPCA) to model the variability in a class of shapes. On
the other hand, van Ginneken et al. [7] used optimal image features instead of grey-level
profiles for ASM search, and applied a k-Nearest Neighbour (kNN) classifier to find the
displacement of landmarks. These improvements have achieved credible performance
and largely increased the efficiency and robustness of ASM methods.

We have applied ASM to segment objects of interest from image data sets. As shown
by some of the experiments, when the grey-level variation around the object border is
too complex to be modelled as a single Gaussian distribution, the use of Mahalanobis
distance to measure the distance from a sample to the mean of the distribution becomes
inaccurate and consequently causes invalid search results. In this case, a more accurate
representation of the image structure variation is expected to improve the performance
of ASM boundary search.

In this paper, we concentrate on the modelling aspects of grey-level profiles, as well
as locating of landmark positions using the profile models. Instead of a single Gaussian
distribution and Mahalanobis distance, we use a Gaussian mixture to model the profiles,
and the probability that a sample profile comes from the distribution is measured by the
total probability of sub-distributions.

2 Methods

The key issue in our improved ASM method is that the grey-level profiles are no longer
treated as a single Gaussian distribution, but as a mixture of Gaussians. The grey-level
profiles, rather than their derivatives, are used to model the intensity variation so that
original image information can be preserved. We assume that the sum of a certain num-
ber of Gaussian distributions can represent the distribution of these profiles. The Ex-
pectation Maximization (EM) algorithm [4] is applied to obtain the optimal Gaussian
mixture. The probability that a sample profile is from the population is calculated by
the combination of the probabilities that it belongs to each of the mixture components.

2.1 Profile Modelling Using Finite Gaussian Mixture Models

Finite mixture modelling is a powerful tool for density estimation and can be regarded
as a flexible way to represent a probability density function (pdf). At the ASM mod-
elling stage, intensity profiles are extracted from all training images at every landmark.
For each landmark these profiles are treated as a set of samples in R

d, denoted as
x = {x1, x2, . . . , xN}, where N is the number of images in the training set (i.e. the
number of profiles for each landmark). A mixture ofM simple distributions (e.g. Gaus-
sians) can be used to represent the underlying distribution of such a set of profiles. The
pdf of a sample profile xi can be written as

p(xi|Θ) =
M∑

j=1

αjpj(xi|μj , σj) (1)
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where αj is the mixing proportion of each component with
∑M

j=1 αj = 1, 0 ≤ αj ≤ 1,
and pj is the component density function parameterized by (μj , σj) (respectively the
mean and standard deviation for the Gaussian distributions), andΘ = (α1, α2, . . . αM ,
μ1, σ1, μ2, σ2, . . . , μM , σM ) are the model parameters to be estimated.

To obtain the optimal Gaussian mixture model, we used the EM algorithm to esti-
mate the number of model components and the parameters of each component. Some
pre-conditions must be fixed before the EM algorithm is applied to parameter estima-
tion: (a) the functional form of each component pdf, and (b) the number of components
M . In our case, the choice of component pdf is Gaussian, so we only search over the
component number for the overall maximum log-likelihood.

2.2 Improving ASM Search

The intensity profiles for landmark Pi are modelled as a Gaussian mixture distribution
characterised by the number of componentsMi and parametersΘi, where i is the index
of the landmark. During search, an initial shape is placed on the target image. The region
around each landmark is checked to find a optimal position for this landmark. The
optimal position, P̂i, is the location where the local profile has maximum probability as
determined by the mixture distribution,

P̂i ← argmax
P

p(xP |Θi) = argmax
P

Mi∑
j=1

αijpj(xP |μij , σij) (2)

where xP is the intensity profile at position P , and P is selected along the profile across
the current landmark Pi.

3 Experiments and Results

The improved ASM methodology was applied to two different sets of data, synthetic
images and hand video images. The main aim of these experiments is to demonstrate
the strength of the proposed method when applied to images with simple and complex
intensity variations.

3.1 Synthetic Images

The use of synthetic images in the testing of a method enables us to compare the results
of the method with real ground truth. In our experiments, the synthetic image data set,
S, consists of two subsets SA and SB , each of which includes 40 256× 256 images. A
‘V’-shape target object with additive shape variation is placed in the center of the im-
ages. Four key points are used to generate a nonuniform rational B-spline curve that rep-
resents the ‘V’-shape boundary. To produce the shape variation, a displacement is added
to each of these key points when the image is created. The displacement, (dx, dy), is
randomly selected from a Gaussian distribution, with the standard deviation of 6 pixels.
Nine points are evenly chosen on each of the four segments on the curve. Hence, 40
landmarks are used to represent the target object. The grey level intensity of the target
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is 128, while the background grey level for SA and SB are 80 and 180, respectively.
Finally, we add Gaussian noise, with standard deviation of 16, to the images to simulate
more realistic images. Set S contains all 80 images, and as such two different intensity
distributions. Example images from each subset are given in Fig. 1.

We first investigate the number of Gaussian components used to model the intensity
profiles at each landmark. Fig. 2 shows the percentage of profiles that are modelled
by a mixture of two Gaussians, and for all but two landmarks, more than 95% of the
profiles are modelled by these Gaussians. Since the two subsets of synthetic images are
distinct, in most cases the intensity profiles are modelled as two major Gaussians plus a
small third one. Such modelling provides a more accurate representation of the intensity
variation than a single Gaussian model as used in the original ASM method.

(a) (b)

Fig. 1. Two example images from (a) set SA and (b) set SB .
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Fig. 2. Percentage of profiles at each landmark that belong to the main two classes.

Secondly, leave-one-image-out experiments were performed on all the three sets
respectively. Both original and improved ASM methods were applied to segment the
‘V’-shape from the images. Root-Mean-Square Distance (RMSD) is commonly used
to measure the similarity between two shapes. Therefore segmentation methods can be
evaluated by comparing the RMSD from the segmentation results to the ground truth.
Furthermore, the distribution of RMSD, i.e. the number of images against RMSD value,
can provide a statistical comparison over a large data set. The RMSD distributions of
segmentation results for synthetic images are shown in Fig. 3. These results indicate
equivalent performance for the separate sets of images, but a significant improvement
when the improved ASM method is applied to the complete data set.
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Fig. 3. Results on synthetic data. The distribution of RMSD, between the ground-truth and origi-
nal ASM (dotted lines), the ground-truth and improved ASM (thin solid lines), the difference in
performance between the improved and orignal ASM (thick solid lines). Here (a) set SA, (b) set
SB and (c) set S.

3.2 Hand Video Images

Subsequently, the improved ASM method was applied to a set of hand images. Three
video clips of a volunteer’s left hand were taken under different background and lighting
conditions. The first video was taken on a white background without additional lighting.
A dark blue background was used for the other two while an additional spot light was
used for the third video clip. The videos were captured using a Fuji S304 digital camera
and have a significant noise level. The finger movements composed the shape variation
in these clips. Respectively from these three clips, 40, 43 and 40 frames were randomly
extracted. These formed our hand image data set,HA,HB andHC , totalling 123 images
of 352 × 288 resolution. The main feature of this data set is that it contains images of
a specific object on different background and with different lighting conditions. The
hand boundary in all images were manually outlined and represented by a polygon with
39 landmarks. Due to the large shape variation in these images, a two-level Gaussian
Pyramid is built to perform the multi-resolution scheme in both original and improved
ASM methods.

The percentage of profiles from set HA+HB+HC that are included by the main
three classes are presented in Fig. 4. Because of high noise level and complex intensity
variation, the number of components needed to model the profiles are greater than 3 for
almost all landmarks. Four clear troughs can be observed for both levels at landmarks
8-11, 14-16, 22-26 and 30-33, which are located between each two fingers on the hand
boundary. This indicates that landmarks at these locations have more complex intensity
variation which is caused by finger movements. Obviously, a single Gaussian is not suf-
ficient to represent such an intensity variation and may produce less appropriate search
results. Furthermore, landmarks 4-6, 13, 19-21, 27-29 and 36-37 lie at five finger tips re-
spectively and present less intensity variation. As a result, fewer Gaussian components
are used to represent the distribution of intensity profiles at these landmarks.

Leave-one-image-out experiments were performed on the three subsets respectively,
and subsequently on four combinations of the subsets: HA+HB , HA+HC , HB+HC

and HA+HB+HC , using both original and improved ASM methods. Example results
are given in Fig. 5. The distributions of RMSD are presented in Fig. 6. Although to
a lesser extent than the synthetic data, this shows an improved performance for the
described ASM approach using grey-level profile mixture modelling.
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Fig. 4. Percentage of profiles at each landmark that belong to the main three Gaussians. Two
Gaussian Pyramid levels: (a) first level, (b) second level.

(a)

(b)

Fig. 5. Example results for the segmentation of the hand images in set HABC (white solid
lines): (a) results of original ASM; (b) results of mixture-model ASM on the same images.

Table 1 gives a comparison of time used to build the models and perform boundary
search using both methods. The mixture-model ASM method spends more time on
modelling because of the iterative optimization process in the EM algorithm, which is
time-consuming specially for large data sets. However, the mixture-model ASM method
uses less time at the search stage (see Table 1), which implies a faster convergence speed
than the original ASM.

4 Discussion and Conclusions

We have investigated the use of Gaussian mixture models to represent the distribution of
intensity profiles and, by applying this technique in ASM modelling and search, we im-
proved the performance of ASM method when applied to segmentation of images with
complex intensity variation. Generally, the ASM method using the Gaussian mixture
model framework produces faster convergence and higher robustness than the original
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Fig. 6. Results on hand video images. The distribution of RMSD, between the ground-truth and
original ASM (dotted lines), the ground-truth and improved ASM (thin solid lines). The differ-
ence of RMSD between two methods are shown as thick solid lines. Here (a) Set HA, (b) Set
HB , (c) Set HC , (d) Set HAB , (e) Set HAC , (f) Set HBC and (g) Set HABC .

Table 1. A comparison of average model training and search time.

Average training time (sec.) Average search time (sec.)
Data Original ASM Improved ASM Original ASM Improved ASM

SA 0.406 66.688 0.537 0.299
SB 0.375 85.609 0.664 0.360
S 0.718 224.563 1.634 0.420

HA 0.234 71.360 0.722 0.483
HB 0.235 78.859 0.491 0.380
HC 0.235 62.594 0.665 0.456
HAB 0.532 232.687 0.969 0.867
HAC 0.515 192.969 0.976 0.866
HBC 0.547 210.406 0.707 0.747
HABC 0.766 327.375 1.165 0.839

ASM. This improvement is based on a more accurate representation of the intensity
variation in the images.

There is a significant difference in segmentation accuracy in moving from synthetic
to real images. A main reason for this is that, in synthetic images, the landmarks are per-
fectly located on the real shape boundary hence the shape model and profile model can
precisely represent the distributions, while manual annotation of the real images causes
less accurate boundary position and lower landmark correspondence. Furthermore, the
shape variation in hand images is much larger and more complex than in the synthetic
data sets.

This methodology can be applied to other choices of features used to determine
the landmarks positions during ASM search, such as texture information mentioned
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in [7]. Since complicated intensity variation can be modelled using mixture modelling,
the improved ASM method can be applied to those segmentation tasks with diverse
intensity variation, such as registration in multi-modality medical imaging, and tracking
objects in videos with variable object or background intensities.

Cootes et al. [2] have presented their work on improving ASM by using Gaussians
mixture model to represent the shape variation. Since we concentrate on the use of
Gaussian mixture model for profile intensity variation, theoretically, a combination of
both methods will largely improve the robustness and efficiency of the ASM approach.
Another significant improvement to ASM was proposed by van Ginneken et al. [7],
which used optimal image features and kNN classifiers for ASM search. It is not unrea-
sonable to assume that this variation can produce better results than the original ASM
on the data sets we used to evaluate our method. Further work will be undertaken to
make a comprehensive evaluation of ASM using mixture models for grey-level profiles
compared to other variations on the basic ASM approach.
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Abstract. In this paper, we present a Statistical Shape Model for Human Figure 
Segmentation in gait sequences. Point Distribution Models (PDM) generally 
use Principal Component analysis (PCA) to describe the main directions of 
variation in the training set. However, PCA assumes a number of restrictions on 
the data that do not always hold. In this work, we explore the potential of Inde-
pendent Component Analysis (ICA) as an alternative shape decomposition to 
the PDM-based Human Figure Segmentation. The shape model obtained en-
ables accurate estimation of human figures despite segmentation errors in the 
input silhouettes and has really good convergence qualities. 

1   Introduction 

Many works have attempted to accurately estimate the shape of the human body along 
a video sequence using 2D or 3D models of the object contour (e.g., see [1, 2]) and 
principal component analysis (PCA) is largely used in this purpose. In a previous 
work [3] we proposed a statistical model for detection and tracking of human silhou-
ette, based on PCA, and the corresponding 3D skeletal structure. 

Following this approach, a shape model is generated from a training set (see Fig.1.) 
extracting the mean shape and the variation modes using PCA. Then the model is 
fitted to the silhouette extracted from the image by background subtraction and esti-
mation is made of the human posture according to the contour obtained. The determi-
nation of the contour is a key factor for a good posture valuation. The more precise 
the segmentation is, the more accurate the estimate. 

The main problem is that the PCA assumes a Gaussian distribution of the input 
data. This supposition fails because of the non-gaussianity of the feature space, as 
Figure 1(c) illustrates in the Human figure case. This non-gaussianity of the land-
marks distribution is mainly caused by the non-linearity of the shape variation. This 
non-linearity is the result of natural curvature of the model: key points of the model 
move in a non-linear fashion within the image frame. 

This may lead to a wrong description of the dataset and cause bad effects on the 
model that can model implausible shapes or cannot generate shapes that are desired. 
In the Figure 6, we show how a bad detection of the body, e.g. a silhouette badly 
segmented gives an unsatisfactory estimation of the contour when a good shape-
model should help to find a correct and plausible shape that fits the blob. 
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                      (a)                                 (b)                                              (c) 

Fig. 1. (a) Contour extraction: the positions of 49 points of each shape are considered. The 
images from the “CMU Motion of Body Database” [4] have been used. On each picture, the 2D 
coordinates of the 49 landmarks have been taken manually or semi-automatically and stored in 
shape vectors. (b) shows a resulting contour. We processed the sequences of 15 people (2 walk-
ing cycles) in a lateral view. After aligning and scaling the 2000 shapes, we generate our ASM 
model by PCA. The data projected onto the 2 first modes is represented on (c). 

This drives us to search for a new approach to generate our model. The Independ-
ent Component Analysis [5] has produced some encouraging results in the Biomedi-
cal Image Processing area [6]. ICA differs from PCA in that it seeks such directions 
in feature space that are most independent from each other instead of directions that 
represent data best in a least squares sense.  

There are two main problems to be considered when using ICA as has been noted 
in [7]. First the reliability of the estimated independent components is unknown: we 
ignore which of the components are to be considered seriously. The further problem is 
that most algorithms have random elements and every run gives different results.  

The goal of this work is to generate a reliable statistical shape model for human 
figure segmentation. This is achieved by using ICA to model the shape variations. In 
this paper we demonstrate the potential of ICA in non-linear shape modeling applying 
it to the human figure case. Section 2 describes shape modeling with ICA. In section 
3, we apply the validation method to obtain a reliable model. Then we give some 
result in section 4, followed by some discussion in the conclusions section. 

2   ICA Modeling of the Human Figure 

ICA, also known as Blind Source Separation, is originally used for finding source 
signals from mixtures of unknown signals, without any knowledge other than the 
observation. It can be used too for feature extraction [8]. If we consider a human 
shape as a mixture of source signals (a source shapes), we can illustrate it as follows: 

ASdX =  , (1) 

where A is the matrix of mixing parameters, S the source shapes and dX is the ma-
trix of the training set, that will be defined as the matrix of the variations of  the  n  
training shape-vectors with respect to the mean shape: 
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niXXdX ii ...1, =−= , (2) 

where the Xi are the training shape-vectors and X  the mean shape. To prevent the 
data from overlearning we pre-processed it by PCA [5]. The goal of the Blind Source 
Separation is to estimate the de-mixing matrix W that will give an estimation of the 
original source shapes: 

dXWS
^^

= . (3) 

The de-mixing matrix can be found using different methods. In this work we used 
the FastICA algorithm developed by Hivärinen and Oja [9]. As in PCA case, the ICA 
model is constructed by combining the mean shape and the variation of each mode. 
The linear generative model is formulated as follows: 

 
^

bSXX +≈ , (4) 

where b is the weighted coefficient vector.  
If we vary the corresponding weight factor of an Independent Component, we can 

observe a variation with respect to the mean shape with certain amplitude (See Fig.2). 
To quantify the amplitude of the shape variation, we used a method given in [6]. We 
project all the shapes onto each IC and compute a histogram which width ω is consid-
ered as a measure of variation. To discard outliers and eliminate part of the noise, the 
width ω of the histogram is calculated as follow: parting from the median value, the 
“surface of interest” of the histogram is determined by summing the values until a 
percentage of the total surface is reached (Fig.3.) 

 

  

Fig. 2. Modes of PCA (left) and ICA (right) 
models. 

Fig. 3. Determination of ω with 95% of the 
surface considered. 

Figure 2 shows two ICA derived shape variation modes. For comparison, the two 
first PCA derived shape variation modes are also shown. The two models have been 
generated with the same data. Basically, we can observe that ICA modes variations 
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are quite localized along the shape. For each mode, a few part of the shape varies 
whereas the remainder part is unaffected. On the contrary, PCA modes present a 
global shape variation distributed over the entire contour. 

Like all the ICA algorithms, FastICA is stochastic, i.e. the result may be different 
in different runs of the algorithm. Thus, the result obtained after a single run of the 
FastICA algorithm cannot be trusted, and the reliability of the components has to be 
analyzed. 

3   Validation of the ICA via Clustering 

The method is based on estimating a large number of candidate independent compo-
nents by running FastICA many times, and clustering the components obtained in the 
signal space. Each estimated independent component is one point in the signal space. 
We will adapt the validation of the independent components proposed in [9] to our 
problem. First, the FastICA algorithm is run M times. The estimates of demixing 
matrices from each run  1,2,... ,Mi = are collected into a single matrix: 

[ ]
∧∧∧∧

= T
M

TT WWWW ...21 . 
(5) 

A good measure of the similarity between the estimated independent components 

is the absolute value of their mutual correlation coefficients ijr  elements of the ma-

trix: 
∧∧

= TWCWR . (6) 

where C is the covariance matrix of the original data dX . 
Therefore, we need to transform the similarity matrix into a dissimilarity matrix 

with elements ijd  A classic way to make this transformation is given by [10]: 

ijij rd −= 1 . (7) 

Using the dissimilarity as a measure of distance, we decompose the data into a sev-
eral levels of nested partitioning (tree of clusters), called dendrogram. The points are 
successively joined into clusters when moving upwards in the dendrogram. A cluster-
ing of the data is obtained by cutting the dendrogram at the desired level. Then each 
connected component forms a cluster (See Fig.4a.). 

A representative point is then computed for each cluster:  we calculate the similar-
ity intra-cluster and consider the centre of the cluster the point with the maximum 
sum of similarities to other points in the cluster. 

To better visualize the result, we apply the Linear Discriminant Analysis for data 
visualization [11]. LD1 and LD2 are the first two linear discriminants that map the 
samples with known class from the n-dimensional space to the plane, in such a way 
that the ratio of the between-group variance and the within-group variance is maxi-
mized. The clusters and their interrelations are visualized in Figure 4b. We can note 
that there are clusters that seem to be more compact and interesting than others.  

Following this methodology we have found a reliable linear non-orthogonal co-
ordinate system. We can observe how each mode is localized along the shape and 
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models a particular part of the human figure. For example, some modes are associated 
to the movement of the hands while another models the movement of the head. Most 
of the ICs are associated to the legs movement. It’s understandable since the principal 
variation that characterizes the evolution of a walking person figure is the movement 
of the legs. A sorting based on the position of the components along the shape is done 
since there is no natural sorting criterion for the components in ICA (See Fig. 4c.). 

 

 

Fig. 4. (a) Dendrogram. Cutting it at the level dissimilarity = 0.1 gives 30 clusters when cutting 
it at 0.4 gives 18 clusters. (b) Similarity graph of the estimates. Clusters are indicated by con-
vex hulls. Lines connect estimates whose similarity is larger than a threshold, the darker the 
line the stronger the similarity. (c) The 18 Variation Modes obtained ordered along the shape. 

4   Experimental Results 

4.1   Results Improvement in Cases of Bad Detection 

Our ICA-based model is now applied on images where our previous PCA-based 
model [3] fails because of the bad detection. It is iteratively deformed to fit to the blob 
(the silhouette) extracted from these images (See Figure 5). Some results are shown in 
Figure 6. The implausible shapes generated by PCA are corrected with ICA. 
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Fig. 5. Iterative Algorithm of the Contour 
Segmentation. 

Fig. 6. Segmentation using PCA (up) and ICA 
(down) based models. 

4.2   Numerical Results  

The model is now applied on a set of images of walking people from the MoBo data-
base [4] that we previously processed manually to determine the contour of the per-
son. We will measure how close from this “good contour” is the one estimated with 
our model. In that way we define the metrics used for the evaluation of the perform-
ances. Two distances between shapes are considered. 

Suppose Si and Sj are 2 shape vectors (xi,1….xi,n, yi,1….yi,n) and (xj,1….xj,n, 
yj,1….yj,n), firstly, a Euclidean distance Dij between these two shapes is given by: 
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. 
(8) 

We also define a “Point to Curve” distance Dij between the landmarks of Si and the 
curve formed by the segments interpolated between the landmarks of Sj. Since Dij and 
Dji can have different values, we define this distance D as the mean value: 
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where 
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,

2
,,, MkiMkikji yyxxd −+−= , )(),( jMM Scurvyx ∈ . (10) 

The idea of this new metric is to get a null distance between two contours that dif-
fer only by a displacement of some landmarks along the shape and allow a better 
measure of convergence. It is to note that using this distance makes sense only if the 
Euclidean distance has a reasonable value: for example a shape vector containing all 
its components equal to one component of another contour would have a null distance 
with it though the two shapes are totally different. 

We apply now our model on a set of 450 images (30 pictures of 15 persons) and 
consider 20 iterations of the algorithm for each image. The Euclidean distances of the 
current corrected shape with the “good” shape, and with the measured shape (deter-
mined on the silhouette blob) are calculated at each iteration. For each one of the 
distances calculated, a mean value is represented. In order to evaluate the results ob-
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tained with ICA, we compare them to the ones obtained with PCA using the same 
number of components. Figure 7 shows the results we obtained. 

We can note how the distance to the “good” contour reaches its lowest value after 3 
iterations with both methods and then starts to increase in the PCA case when it stays 
quite stable with ICA. We also can observe how the distance to the measured contour 
converges in both cases but with a lower value of convergence with PCA than with 
ICA. This can be explained by the fact that the PCA model fits exactly the blob and 
its eventual defects while the ICA model corrects them.  

The distance between the current corrected shape and the previous one is now cal-
culated at each iteration to evaluate the convergence of the results (See Figure 8). In 
both cases there is convergence, but the ICA method converges faster than the PCA 
one. It’s mainly due to the fact that ICA method has local variations whereas with 
PCA the variation is global: for each iteration, the ICA model changes local parts of 
the shape while the PCA one moves quite all the landmarks. 

   

Fig. 7. Results obtained by the PDM based Human Figure Segmentation using PCA or ICA:
Euclidean distances between corrected contour and “good contour” (left), and between cor-
rected contour and measured contour (right) are given.  

 

Fig. 8. Results obtained by the Human Figure Segmentation using PCA or ICA: “point to
curve” distance between the corrected contour and the previous one. 
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5   Conclusions 

This work shows the potential of the Independent Component Analysis as an analysis 
tool for extracting local shape variations. Indeed the ICA gives a representation of the 
training dataset, which consists of vectors that describe local deformations, whereas 
the vectors obtained by Principal Component Analysis describe global deformations. 

The first evaluation of the Human Figure Segmentation using ICA produces some 
encouraging results. Our shape model enables accurate estimation of human figure 
despite segmentation errors in the input silhouettes and has really good convergence 
qualities: compared with the PCA method, the convergence is obtained faster. 

We propose a new metric to measure this convergence. In a future work, we could 
analyze the possibility of using this convergence in the human detection task, decid-
ing if the input silhouette is human or not. A more complete study would have to be 
done to test and select the different settings. 
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Abstract. The paper presents a new approach to image matching based on the 
developed adaptive window growing algorithm. This integer-only algorithm 
operates on monochrome images transformed into the Census nonparametric 
representation. It effectively computes the entropy of the local areas and adjusts 
their size if the entropy is not sufficient. This way the method allows for avoid-
ance of featureless areas that cannot be reliably matched, at the same time 
maintaining the matching window as small as possible. The special stress has 
been also laid on efficient implementation that can fit the custom hardware ar-
chitectures. Therefore the presented algorithm requires only an integer arithme-
tic. Many experiments with the presented technique applied to the stereovision 
matching showed its robustness and competing execution times. 

1   Introduction 

Block matching plays an important role in the computer vision. It is widely used 
method for visual tracking, stereovision, video compression, etc. An inherent problem 
associated with every block matching is choice of a shape and size of the matching 
region, as well as the range of the search throughout the images. Unfortunately these 
choices are not unique since they depend greatly on application and image contents. 
Sometimes the search range can be preset based on application, e.g. for maximum 
disparity in the stereo-matching the statistical analysis based on variograms can be 
used [3] or in motion analysis the search range can be restricted to few pixels in every 
direction.  However the shape and size of a matching window is usually unknown 
beforehand. Therefore the simplest method is to use a rectangular window with fixed 
size. However, regardless of the employed matching measure, such an approach leads 
to matching errors in a form of either false matches or excessive blurring. At the one 
hand, the window size must be large enough to convey sufficient information for a 
reliable match, but at the other hand the window should be as small as possible to 
comprise only pixels with features of the same object and to avoid blurring of the 
output disparity maps. This is why the adaptive window concept has been developed. 

The adaptive window technique proposed by Lotti [8] for matching aerial images 
relies on sophisticated window growing that is limited by edges and statistical con-
tents of the matching regions. However, this technique is quite time consuming.  

One of the very original solutions with a statistical model was proposed by Kanade 
and Okutomi [7]. The appropriate window is selected by evaluating the variations in 
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intensity and disparity. The idea is that at discontinuities the intensity and disparity 
variations are larger, unlike at the positions of surfaces.  

In another class of methods, known as the multiple windowing [5], a small number 
of different windows are used for matching, and the one with the best cost is retained. 
Usually window size is fixed, but its shape is changed. However, the methods of this 
class show up some problems in low texture regions.  

Just recently Veksler proposed the new method of variable windows for stereo cor-
respondence [10]. This method is based on the concept of image integrity. 

Unfortunately, most of the aforementioned methods are rather time consuming and 
usually require advanced numerical computations. As a result they are not very well 
fitted for the real time and custom logic implementations.  

The method proposed in this paper assumes the nonparametric image transforma-
tion before the window adapting mechanism is used. This is a novel approach to the 
matching problem, not explored by the other authors. As a nonparametric transforma-
tion we use the Census and Rank methods, first proposed by Zabih and Woodfil [11], 
then employed with success to the real time stereo system [1]. The Adaptive Window 
Growing technique (AWG) proposed in this paper adapts size of the matching win-
dow as to maximize an amount of conveyed information in the information-theoretic 
sense. This is done thanks to the observation of entropy increase, up to a certain 
value, with an increase of zero-value-bits in the Census representation of matching 
windows. Such an approach does require only simple integer arithmetic. Therefore 
the method is appropriate for hardware implementation and real time processing. 

2   The Adaptive Window Growing Technique in Census Domain 

The Rank and Census transforms were proposed by Zabih and Woodfill [11] for com-
putation of correspondences by means of the local nonparametric transformation ap-
plied to the images before matching process. Both transformations start in the image 
intensity signals domain and are computed in a certain compact region around a cen-
tral pixel. Size and shape of this region can be set arbitrarily, usually it is a square. 
Such square regions are also assumed in this paper, although this assumption can be 
relaxed.  

For a given central pixel and its closest neighborhood the Rank transform is de-
fined as the number of pixels in that region for which the intensity signal is greater or 
equal than intensity of the central pixel. For the same setup the Census transform 
returns an ordered stream of bits where a bit at a given position is set if and only if the 
central and corresponding pixels hold the same relation, i.e. an intensity value at that 
pixel is greater or equal to the one at the central pixel. Fig. 1a explains the ideas be-
hind the Census transformations. Fig. 1b depicts assumed pixel orders for computing 
Census values for the 3×3 square neighborhood of pixels. An interesting observation 
for Census is that a value of the central pixel is taken only as a reference and does not 
go into the output bit stream. Therefore for 3×3 and 5×5 regions we obtain computer 
efficient representations of eight and twenty four bits (i.e. one and three bytes), re-
spectively. 

The Census transform maps the local pixel neighbourhoods, located around a cer-
tain central pixel P, to a bit string. In this series each bit conveys a 0/1 information, 



310      ����� ��	
����� 

saying whether a given pixel is less or not from the central pixel. The Census trans-
form for a pixel P in the image I is given as follows [11]:  

[ ]
( )

( )’,,,
,’

PPIPT
PWP

ξ
β∈

⊗=I  (1) 

where I denotes intensity, P is a central pixel, ⊗ denotes concatenation, W(P,β) is a 
local pixel neighbourhoods around pixel P with radius β, P’ denotes pixels belonging 
to W, and ξ is given by the following formula: 
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’,,ξ . (2) 

To find correspondence of images we first apply (1) to the images and then usually 
compute the Hamming distance between bit strings, although some other measures 
are also possible [4]. The other question is choice of the window W [4].  

2.1   Adaptive Window Growing 

In this section we explain the AWG method. The basic idea of this technique relies on 
observation of entropy increase in a certain neighborhood of pixels with increase of 
‘0’ value bits in the Census representation of this neighborhood.  

From the definition (2) and from the mutual relation between the central point ‘K’ 
and all its closest neighbors ‘a’ – ‘h’ in Fig. 2 we see that if only an intensity value of 
the point ‘K’ is different from all values of the points ‘a’ – ‘h’ we have fulfilled the 
condition for maximum entropy in this point arrangement and at the same time the 
maximum number of ‘0’s is achieved. This happens because if only the pixels differ 
then a bit with value ‘0’ will be assigned for this relation in accordance with (2). This 
bit will be either in the Census bit stream representation for the pixel ‘K’ or in its 
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(a) (b) 

Fig. 1. The Census transformation for a pixel at position (i,j) (a), the assumed pixel numbering 
in the square 3×3 window W for computation of the Census transformation (b) 
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corresponding pixel. Nevertheless, this ‘0’ will count for the whole 3×3 neighbor-
hood. There exists also another type of the mutual pixel relation – the relation among 
three consecutive pixels, such as ‘a’, ‘b’, and ‘d’ in Fig. 2. For each pair of abutted 
pixels from such a triple, a bit with value ‘0’ can be assigned if and only if any pair of 
intensity values is different. In such a case, for each pair of pixels from the triple, one 
Census representation obtains ‘1’ at the corresponding bit position, while the same bit 
position – but in the complementary pixel from this pair – holds ‘0’. This is clear from 
(2) since there is an exclusive relation. Thus, if only the abutted pixels have different 
values, at the pertaining bit position the only possibility is: bit ‘1’ in the first Census 
pixel of a pair and ‘0’ for the second one.       
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Fig. 2. Mutual relations of pixel values for the Census transformation (q is a number of bits) 

The above analysis leads to the following rules for obtaining the maximum number 
of ‘0s’ – and in consequence increase of entropy – in a Census representation of any 
3×3 neighborhood (Fig. 2): 

 

1. A value of the central pixel K is irrelevant provided that it is different than any 
other pixel from its closest neighborhood (i.e. from the all pixels a, b, c, d, e, f, g, 
and h in Fig. 2): 

{ } )()(: KIpIKNp ≠−∈∀ , (3) 

where I(p) is an intensity value of a pixel at index p (see Fig. 1b) from the 3×3 
neighborhood N. 

2. Any corner-triple of pixels (such as e.g. a, b, d in Fig. 2) must be different, i.e.: 

)()()( cIbIaI ≠≠ . (4) 

3. All other pixels bordering with pixels from the neighborhood N must have their 
intensity values less than their direct pixels-neighbors from N. For example, for the 
pixel b in Fig. 2 these would be pixels at indexes: (j-2,i-1), (j-2,i), and (j-2,i+1).  

 

The lower bound for data entropy (LBE) in any 3×3 Census neighbourhood that 
preserves the conditions 1-3 is obtained by taking only four different values and can 
be easily found from [6] to be: LBE=-4/9×log4/9-2×2/9×log2/9-1/9×log1/9≈0.55. The 
upper bound for the entropy in any 3×3 neighbourhood is MBE=log(9)≈0.95 (i.e. nine 
different values). Thus, any 3×3 neighbourhood of pixels that preserve conditions 1-3 
guarantee almost 58% of maximum possible entropy in this neighbourhood.  

The upper bound for any Census in a square neighbourhood 3×3 is qmax(3,‘0’) = 52 

and follows easily the conditions 1-3 and Fig. 2. Concluding we can state that the set 
of conditions 1-3 guarantying the maximum number of ‘0’s in any 3×3 Census 
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neighborhood leads to at least LBE. Therefore the sought size n of a matching square 
window can be found as such n that maximizes the averaged (per pixel) value of 

qav(n,‘0’) in a window of interest with a constraint  ( ) 0 ’ 0 ’ , 0 max = > ϑ  n q tot : 

( ) ( ) 0 ’ 0 ’ , ’ 0 ’ , max arg 0 max 
max min 

= > ∧ 
≤ ≤ 

ϑ  n q n q tot av 
n n n  

(5) 

where qav(n,’b’) and qtot(n,’b’) are average and total number of bits ‘b’ for a given 

square window n×n, nmin and nmax set the lower and upper bound of the matching 

window size, θ0 is a certain threshold for a total minimal amount of ‘0s’ in a window 
of interest; usually it is set to 0. Thus, applying (5) we obtain the minimal size of the 
matching window that is adapted to convey as much as possible of information. Oth-
erwise, in a case of a constant intensity (qtot(‘0’) is zero in that case) we obtain infor-

mation that there is no such a window that can guarantee a reliable matching. 
Computation of q(‘0’) in the Census representation according to (5) is much faster 

than a direct computation of an entropy [6] in each window due to the simple integer 
arithmetic. The q(‘0’) can be computed as a complement of the Rank value.  

3   Experimental Results 

Fig. 3 shows results of the AWG technique, computed in accordance with (5). Win-
dows in experiments are square with n (5) set from nmin=3 to nmax=33.   

 

  
(a) (b) 

  

(c) (d) 

Fig. 3. The Adaptive Window Growing method for artificial image from the Bonn University: 
an original image with selected region of interest (a), intensity values for the selected region 
(b), visualization of relative sizes of the matching windows determined by the presented AWG 
algorithm (set by the white frame) – the lighter places denote bigger matching windows due to 
insufficient texture in the original image (c), actual sizes (in pixels) in the selected region (d)   
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From the presented experiments it is evident that the AWG technique is very effi-
cient for images with large blobs of the same intensity values. The non uniformity of 
the adaptive windows in the central part of image from Fig. 3c comes from the set-
tings of a large upper size nmax=33 of windows. Therefore when the window comes to 

its upper allowable size the other features got caught (the walls of the corridor) and in 
result the computed output size of that window is smaller than nmax. 

3.1   Adaptive Window Technique Applied to the Stereovision 

The presented adaptive matching technique was employed in stereovision matching to 
show its quality and potential applications. The results are quite promising and very 
competing to the other matching methods, even those with very complex – and time 
consuming – comparison measures. The presented stereovision method does not re-
quire any floating or even fixed point arithmetic – only integer arithmetic is used. 
Therefore the method is appropriate for custom hardware implementation if real time 
applications are taken into consideration. 

 

Left image of a stereo-pair 
Visualization of the matching 

windows 
Disparity maps 

   

   

Fig. 4. Adaptive Window Growing applied in the stereo matching with Census measure. From 
the top: image from the Tsukuba University, Map provided by Scharstein and Szeliski [9], 
Trees SRI and Pentagon from the CIL CMU. From left to right: a left image from each pair, 
visualization of sizes of the matching windows determined by the AWG algorithm (brighter 
places denote larger matching windows), disparity maps (brighter places denote closer objects) 

For each pixel location the size of a matching window is determined with the 
AWG technique defined by (5). Disparity values are found for each pixel by matching 
square windows of sizes appropriately set in the previous step. As a matching meas-
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ure the Hamming distance is computed from the Census representation of each pair of 
candidate windows. Matching is done with a fast block matching algorithm based on 
the winner-update strategy with hashing table [2]. The running times in seconds on 
IBM with Pentium 1.5 GHz were as follows (from top of Fig. 4): 5.48, 1.52, 0.86, and 
0.89 for different maximal disparities. The visible limited occlusions are due to a 
simple stereo algorithm without the cross-checking [12]. However, the details were 
preserved due to adaptively chosen matching windows. 

 

   
(a) (b) (c) 

Fig. 5. Cross-checked disparity maps: Corridor (a), Pentagon (b), Parkmeter (c) 

The cross-checked [12] disparity maps are presented in Fig. 5. Their computation 
was done in a parallel fashion by use of different threads for computation of the two 
left-right and right-left disparity maps. Therefore the execution times are only about 
20% greater than already presented. The results and visual quality of the disparity 
maps in Fig. 4 and Fig. 5 can be classified as very good.  

 

  
(a) (b) 

Fig. 6. Comparison of quality of the disparity maps measured as a ratio of cross-checked re-
jected points to the total amount of pixels (the lower bar, the better quality): AWG matching vs. 
fixed 3×3 Census matching (a), AWG matching vs. fixed 11×11 Census matching (b) 

The number of rejected points during the cross-checking can be used to infer a 
quality of the stereo matching process and for images in Fig. 5 the normalized (to the 
number of total pixels in the output disparity map) values of rejections are:  0.23, 
0.11, and 0.17, respectively. Fig. 6 presents a qualitative comparison of the disparity 
maps. The quality is measured as a ratio of cross-checked rejected points to the total 
amount of pixels. Although this measure is not perfect it can characterize a given 
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stereo method from the qualitative point of view. The disparity maps obtained with 
the AWG (the dark bars in Fig. 6) were compared with the ones obtained from the 
fixed window matching (red bars): 3×3 Census matching (Fig. 6a) and 11×11 Census 
(Fig. 6b). It is evident that in the first case the AWG outperforms its counterpart.  

4   Conclusions 

The paper presents the novel Adaptive Window Growing technique that is based on 
the two nonparametric local transformations: Rank and Census. It has been shown that 
the increase of the quantity of the zero-value-bits q(‘0’) in any Census neighborhoods 
leads to an increase of the conveyed information, conceived in the information-
theoretic sense as an entropy value. The AWG method looks for a minimum size 
square windows that maximize qav(‘0’), i.e. the average number of ‘0’ bits per pixel in 
the Census representation in a given window. In effect, the subsequent matching is 
locally well posed and can be done much more reliably than in a case of fixed win-
dows. The experimental results with the AWG technique applied to the stereo match-
ing showed robustness of this technique. The main purpose of avoiding low-textured 
areas was achieved by means of very simple integer arithmetic. Therefore the AWG 
method seems to be appropriate for hardware and real-time implementations.  
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Abstract. In this work, we propose a set of algorithms to manage the resolution 
of DEM for simulation processes. First, we present an application to handle the 
huge quantity of data contained in DEM for real-time rendering by discriminat-
ing the less significant elevation data. On the other hand, as a second step of the 
process, we extend the algorithm to increase the spatial resolution of DEM for 
cases when it is needed. Finally, we introduce a method for increasing spectral 
resolution of DEM by using a skeletonization process. The algorithms were de-
veloped to be used with raster data sets, although similar considerations can be 
taken for vector data sets.  

1   Introduction 

Digital Elevation Models (DEM) have gained popularity in applications for simulat-
ing natural disasters. Nevertheless, these applications require a huge amount of data. 
In many cases, the available data do not present enough quality for simulation proc-
esses. The Statistics, Geography and Informatics National Institute of Mexico 
(INEGI) produces DEM with 50 m of resolution [1][2], but some simulation proc-
esses require a better level of detail (1 m is the standard). In all cases, DEM are gen-
erated by means of contours. These have different representations and thresholds of 
separation. For instance, in the topological maps of INEGI, the contours are separated 
by 10 and 5 m near the coast. In Simulation processes like flooding simulations we 
need more detailed information (less than 1 m of resolution).  

In this work, we propose a set of algorithms to manage the resolution of DEM for 
simulation processes. First, we present an application to handle the huge quantity of 
data contained in DEM for real-time rendering by discriminating the less significant 
elevation data, without changing the semantics of the raster data. However, we cannot 
improve the quality of the more relevant data to obtain additional information. On the 
other hand, as a second step of the process we extend the algorithm to increase the 
spatial resolution of DEM, in those cases. Finally, we introduce a method for increas-
ing spectral resolution of DEM by using a skeletonization process. It is important to 
lineout that the algorithms mentioned above were developed to be used with raster 
data sets, although similar considerations can be taken for vector data sets. 
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By using these algorithms together, we can solve the problem of 3D data represen-
tation and generate virtual scenes, which are ready to navigate, either by simulations 
or by defined trajectories. In the next three sections, we present the algorithms men-
tioned above, as well as, some results. Finally, Section 5 describes our conclusions.  

2   Real-Time Rendering by Decreasing Spatial Resolution 

In this section we present an algorithm that allows creating virtual scenes according 
to the elevation and texture of the spatial data. Our proposal allows making rendering 
process in real-time; it reduces the quantity of the processed data.  

The algorithm uses the elevation data stored in a matrix G, loaded from any source 
of elevation data, i.e. DEM files, elevation bitmaps, etc. A trivial algorithm to make 
this is the following: 

 

 RENDER(o) 
1 
2 
3 
4 
5 
6 

for i = 1 to M–1  
   for j = 1 to N–1 
         RENDER-VERTEX(G [i, j]) 
       RENDER-VERTEX(G [i+1, j]) 
       RENDER-VERTEX(G [i+1, j+1]) 
       RENDER-VERTEX(G [i, j+1]) 

 

Notice that this process could produce a huge quantity of data to process. In the 
tests that we made, we have used a DEM that produces a vertex grid of 2048×2048 
elements. It is more than 4 million of polygons. Appling space partitioning algorithms 
[6] and hide surface removal techniques [7], we must process a set of 500 thousands 
of polygons approximately. Then, processing such huge volume of data, it is neces-
sary to decrease much more the number of polygons to process. This can be done by 
means of Level of Detail (LOD) algorithms. 

In [3], [4] are presented some algorithms to decrease the LOD in complex scenes. 
These algorithms present three main drawbacks: 

 

• They are complex and increase the workload of the processor. They make changes 
to the terrain data (spatial data), because they are focus on the final visual appear-
ance of the scene.  

• They modify the terrain data depending on the observer’s viewpoint. Due to this, 
the spatial data analysis is not possible. 

• The number of polygons rendered is variable, and then the frame per second (fps) 
rate is not constant during the simulation.  
 

We have developed an algorithm to reduce the terrain LOD to speed up the data 
visualization facing the problems mentioned above. The goals of the algorithm are: 1) 
be simple, 2) not to affect the terrain data and 3) run in real-time. The algorithm must 
guarantee a maximum number of polygons to render (a constant fps rate). 

To describe the algorithm, we must define some parameters first (their meanings 
are illustrated in Fig. 1). 
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• A matrix L of H×H defines the discrete LOD’s to use. H is an odd number greater 
than 1, and L[i,j] �	���	1 i,j H. 

• A number S defines the optimization unit size; it means that it is necessary to op-
timize regions of S×S polygons. 

• A vector o represents the observer position. 
 

Figure 1 shows the visual representation mechanism used for proposed algorithm. 
 

 
 

Fig. 1. Visual representation using the parameters of the algorithm 

Using the defined parameters, it is possible to outline the algorithm. The proposed 
algorithm is the following: 

 

RENDER (o) 
1 
2 
3 
4 
5 
6 

(ox, oy)  RELATIVE-POSITION(o,G) 

for i = ½H to ½H 
    x  ox+S(i – ½) 

    for j = ½H to ½H 
        y  oy+ S(j – ½)  

         RENDER-BLOCK(x,y,L[i+½H, j+½H]) 
RENDER-BLOCK(x, y, lod) 

1 
2 
3 
4 

if lod > 0 
    for i = x to x+S step lod 
        for j = y to y+S step lod 
            RENDER-QUAD(i,j,lod) 

RENDER-QUAD(i,j,lod) 
1 
2 
3 
4 

RENDER-VERTEX(G[i,j]) 
RENDER-VERTEX(G[i+lod,j]) 
RENDER-VERTEX(G[i+lod,j+lod]) 
RENDER-VERTEX(G[i,j+lod]) 

 

By using the algorithm, we can easily compute the number of polygons to be proc-
essed (NP), given the equation (1): 

∑∑
= =

=
H

i

H

j
P jiL

S
N

1 1 ],[
 

(1) 

3   Bicubic Patches Based Algorithm for Increasing Spatial  
     Resolution 

In this section we present an algorithm to increase resolution of DEM for real-time 
simulation processes without change the semantics of the elevation data. In previous 
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section, we presented the algorithm to manage the huge quantity of data contained in 
DEM for real-time rendering. Thus, we can discriminate data from DEM. However, 
in the case when we need more detailed data than those that are in G(i,j) we can apply 
parametric patches to obtain these intermediate data. We have mentioned that eleva-
tion data can be represented as a polygon mesh. The step from polygon meshes to 
patch meshes is straightforward. If we consider a mesh of four-sided polygons ap-
proximating a curved surface, then a parametric patch mesh can be defined as a set of 
curvilinear polygons, which actually lie in the surface, and by applying parametric 
patches we can increase the resolution of the elevation data.  

The definition given in [7] for a parametric surface (either B-spline or Bezier sur-
faces) Q(u,v) is in terms of two parameters, u and v, where 0 � � and 0 � �, 
and the function Q is a cubic polynomial. The accurate values of the coefficients in 
the cubic determine the curve. A special and convenient way of defining these is to 
use 16 three-dimensional points known as control points. The shape of the patch is 
fully determined by the position of these points. A bicubic surface is defined in 
Eqn. 2. 
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0 0

,∑∑
= =
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m

j
jiij vuBPvuQ  
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Where Pij is an array of control points an Bi,j(u,v) is a bivariate basis function. We 

can generate Bi,j(u,v) in the form given in Eqn. 3. 

,)()(),(, vBuBvuB jiji =  (3) 
Where Bi(u) and Bj(v) are the univariate cubic basis function. The definition of 

these basis functions describes the type of surface to be generated. As a first ap-
proximation, we apply Bezier patches enable an efficient patch-splitting algorithm for 
rendering. But the main problem with Bezier patches is that the generated surface 
does not fit with the given points (control points). We cannot fit all control points 
with the resultant Bezier patches. Nevertheless, by applying Bezier surfaces, we can 
compute how the whole data set behavior affects to a single point. On the other hand, 
we can apply B-spline patches. Thus, we can compute the inner points between the 
known ones (control points), using only local information. A B-spline patch is always 
defined by a 4×4 control point array. So, with this type of surface we can find the 
new data without affecting the behavior of the whole data set. 

To integrate the increasing resolution using parametric patches, we should modify 
the algorithm presented in previous section. First, we should allow values less than 
one in matrix L. Such values mean that we expect to obtain higher resolution for the 
block that is being rendered. On the other hand, we need to compute the parametric 
curve. This curve is stored in an alternate grid called Q. The values of Q will be de-
fined by the control points and by the transformation matrix B shown in Eqn. 4. 
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Finally, the changes in the algorithm are the following: 
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RENDER-BLOCK(x, y, lod) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

if lod  1 
    for i = x to x+S step lod 
        for j = y to y+S step lod 
            RENDER-QUAD(i,j,lod) 
else  
    Q  TO-SPLINE(G,x,y,lod) 
    for i = x to x+S step lod 
        for j = y to y+S step lod 
             RENDER-QUAD-SPLINE(i,j) 

TO-SPLINE(G,x,y,lod) 
1 
2 
3 
4 
5 
6 

P CONTROL-POINTS(x,y) 
for u=0 to 1 step lod 
    U [u3 u2 u 1] 
    for v=0 to 1 step lod 
        V [v3 v2 v 1] 
        Q[u,v] U×B×P×BT×V 

RENDER-QUAD-SPLINE(i,j) 
1 
2 
3 
4 

RENDER-VERTEX(Q[i,j]) 
RENDER-VERTEX(Q[i+1,j]) 
RENDER-VERTEX(Q[i+1,j+1]) 
RENDER-VERTEX(Q[i,j+1]) 

 

We only present the changes for integrating B-spline surfaces. Similar considera-
tions must be taken for applying Bezier surfaces. 

In Fig. 2 are presented some screenshots of the terrain rendering applying the algo-
rithms outlined. 

 

a)  b)  

Fig. 2. a) Result with the trivial algorithm. b) Result with the proposed algorithm 

4   Skeleton-Based Algorithm for Increasing Spectral Resolution  

We have presented algorithms for managing spatial resolution of DEMs. Now, we 
will present an algorithm for increasing the spectral resolutions of elevation models. 
We propose the use of a skeletonization process to obtain a new contour between two 
known ones, i.e., to increase spectral resolution. In [5] we present the process to com-
pute the skeleton of a binary image. Now, we define how to generate the new contour 
from the skeleton of the region between the two known contours. We will call this 
region Equi-Height region or EH regions. In real elevation models, many times the 
contours are interrupted in the edges of the image. Hence, the EH regions can be 
incomplete; we have identified three cases (see Fig. 3): 
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a)  b)  c)  

Fig. 3. Cases considered in the raster analysis 

• Case A. The contours that define EH region are completely inside of the image, 
forming a blob with at least one hole (Fig. 3a) 

• Case B. The contours begin and end outside of the image, forming a strip across 
the image (Fig. 3b) 

• Case C. The same as case B, but there are holes in the strip (Fig. 3c). 
 

In Fig. 4 we present the skeletons obtained for EH regions of Fig. 3. As we can 
see, each skeleton has a lot of branches that are not suitable for being part of the con-
tour. We can discriminate the noise branches (prune the skeleton). In same Fig. 3 the 
noise lines are in light gray, while the contour is in black.  

 

a)  b)  c)  

Fig. 4. The skeletons for the examples depicted in Fig. 3 

To perform the skeleton pruning, we propose to generate a graph that describes the 
morphology of the skeleton. Thus, it is possible to find the contour of EH region by 
using a graph that describes the skeleton (see Fig. 5).  

 

a)  b)  

Fig. 5. Transformation of skeleton into graph 

To generate the graph from the skeleton, we use on the fact that the skeleton is 8-
connected. Let I be a binary image containing a skeleton and pij the value of the im-

age matrix I(i,j).  
Let p be a pixel of the image and n(p) the number of 8-connected neighbors. Then 

we define T as the set of terminal pixels (Eqn. 5). Similarly, we define A as the set of 
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edge pixels (Eqn. 5) and R as the set of triad pixels (Eqn. 5). Also, we define E as the 
set of edge pixels and TE as the set of terminal pixels that arise the edge of the image. 

While, the set of vertices V is given by Eqn. 6.  
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Let p be an image pixel and N(p) the set of the 8-connected neighbors of p, then 
we define a branch s by Eqn. 7. Also, l(s) denotes the length of a branch s, and first(s) 
and last(s) defines the extreme elements of a branch s.  
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We now define the graph representing the skeleton of the image as G(V, E) where 
E={s : s is a branch}. Also, we define a path w on the graph G by Eqn. 8. Moreover, 
we define the length of a path (w), the set of all paths in G as W(G), and (G) is the 
longest path in G (Eqn. 9). 
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Once we have obtained the graph from skeleton, we simply take the following cri-
teria for discriminating noise branches: 

 

• If there are loops in graph, then all branches that are not in one loop are eliminated. 
• If a branch is in more than one loop, then that branch is eliminated. 
• If there are not loops in graph, then all branches outside (G) are eliminated. 

 

The next definitions are used to discriminate branches. A path b is a loop if 
last(sn)=first(s1). So, let B(G) be the set of all loops in graph G and SR(G) the set of 

redundant branches in G (Eqn. 10). Then we define the candidate contour C as is 
denoted in Eqn. 13. 
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Finally, let CN be the resulting contour within the skeleton, defined by Eqn. 11. 
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a)  b)  

Fig. 6. Final result. (a) Contour discovered into original DEM. (b) Modified DEM according to 
the source 

5   Conclusions 

In this work, we proposed a set of algorithms to manage the resolution of DEM for 
simulation processes. We have presented an algorithm to handle the huge quantity of 
data contained in DEM for real-time rendering by discriminating the less significant 
elevation data. The developed algorithm fully fit the stated goals. It does not overload 
the processor, because it is very simple. Also, the rendering algorithm guaranties a 
maximum number of elements to be rendered (NP). Additionally the algorithm does 

not modify the spatial data.  
Similarly, we extended the algorithm to increase the spatial resolution of DEM, for 

cases when it is needed. An application of this algorithm in image processing is as 
follows: it may be used to zoom-in images with a non-linear re-sampling. Using pa-
rametric patches, it is possible to obtain the new values for the pixels between the 
known ones, containing local information (by means of B-spline patches) and global 
behavior (by means of Bezier patches) that improve the appearance of the enlarged 
image. 

Finally, we have presented an algorithm for increasing spectral resolution in DEM. 
The algorithm is based on the 8-connected skeleton of polygons composed of the 
contour lines; and to prune this skeleton by transforming it into a graph. The algo-
rithm is an alternative to the processes of vector interpolation. With this approach, it 
is possible to find new elevation data from the information contained in DEM, and 
generate new data with the same spatial resolution.  

The use of the three algorithms allows processing huge quantity of data contained 
in DEM for simulation and visualization processes, optimizing its performance. 
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{agnesba,josep}@cvc.uab.es

http://www.cvc.uab.es

Abstract. This paper presents an image retrieval system based on 2D
shape information. Query shape objects and database images are repre-
sented by polygonal approximations of their contours. Afterwards they
are encoded, using geometric features, in terms of predefined structures.
Shapes are then located in database images by a voting procedure on
the spatial domain. Then an alignment matching provides a probability
value to rank de database image in the retrieval result. The method al-
lows to detect a query object in database images even when they contain
complex scenes. Also the shape matching tolerates partial occlusions and
affine transformations as translation, rotation or scaling.

1 Introduction

The goal of Content-Based Image Retrieval (CBIR) is to find all images in a given
database that contain certain visual features specified by the user. The reviews
of Huang [1] and Forsyth [2] expose a wide variety of feature representations and
image retrieval strategies. This work is focused on the development of a CBIR
system where the image classification is done according to the shape information.
Given the image of an object and a database containing images of complex
scenes, the system is able to retrieve those images that likely contain an instance
of the object.

In the literature we can find a great variety of shape representation ap-
proaches. Some relevant surveys are those of Veltkamp [4], Safar [5], Zhang [3]
or Loncarnic[11]. Some retrieval strategies represent the shape taking the infor-
mation of the whole image. This fact allows to obtain a compact representation
that works efficiently in a retrieval application. This is the case of approaches
that use shape descriptors such as the shape context [6], the Fourier coefficients
or the ART descriptor of the standard MPEG7 [7]. Although these strategies
provide relevant results they are not suitable for retrieving objects in complex
scenes. In this case it is essential to apply a structural approach that permits to
detect a shape as a part of the entire information of an image. Structural ap-
proaches on shape representation and matching often use graph based strategies
[8][9][10].
� This work has been partially supported by the project TIC2003-09291 and the grant

2002FI-00724.
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In our work we have chosen a shape representation based on the boundary
information. This fact allows us to deal with open shapes and sketches. Query
shape objects and database images are represented by polygonal approximations
of their contours. Afterwards they are encoded, using geometric features, in
terms of predefined structures. Shapes are then located in database images by a
voting procedure on the spatial domain. Then an alignment matching provides a
probability value to rank de database image in the retrieval result. The method
allows detecting a query object in database images even when they contain
complex scenes. Also the shape matching tolerates partial occlusions and affine
transformations of translation, rotation or scaling.

The stages of our method guide the structure of this paper. In the section
2 we present the shape modelling strategy and we detail the representation
of an image. Then, in the section 3 we proceed to define how the modelling
information is used in the detection process. Finally, in sections 4 and 5 we
present the obtained results and the conclusions of our work.

2 Shape Modelling

A CBIR system analyses the similarity of a given image against a set of images
contained in a database. The retrieval needs a previous step where the shape
information is modelled. The modelling is applied in the same manner to the
query image and to the database images, so we generalize the explanation for
any image I.

2.1 Geometric Features of the Shape Elements

To model a shape we use the boundary information polygonally approximated
in terms of segments. We assign each one a reference orientation, thus we refer
them as vectors instead of segments.

Definition 1. We define the boundary information BI of an image I as the
basic data used to model a shape. Then we denote V I the collection of N vectors
v that conform the polygonal approximation of BI.

In Figure 3 we can see graphically the steps of the retrieval system. Then,
from an image I we can see the BI and V I information. The vectors that
compose a shape are identified in a unique way with a set of features called
absolute features.

Definition 2. AF (v) is defined as an attribute function that, given an image
vector v assigns its length, angle and coordinates as absolute features. They are
denoted AF l(v), AFα(v) and AF (x,y)(v) respectively.

Notice that the absolute features contain the data that describe the scale,
rotation and translation of a vector in an image. On the contrary, we want our
system to be invariant to these three affine transformations. This way, instead
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of working directly from the absolute features we consider them pairwise and
extract what we call relative features. For the sake of simplicity, we will denote
vij the vector pair (vi, vj).

Definition 3. Given AF (vi) and AF (vj) we denote RF (vij) the attribute func-
tion that computes the relative features for the vector pair vij These features are
the relative distance, the relative angle, the relative size, and the medium relative
angle. We denote them RF d(vij), RFα(vij), RF l(vij) and RF δ(vij) respectively.

RF α(vij) = α RF δ(vij) = δ RF d(vij) =
d

AF l(vi)
RF l(vij) =

AF l(vj)

AF l(vi)

Fig. 1. Computation of the relative features

The relative features of two vectors can be seen as basic shape descriptors
(the Figure 1 shows its computation graphically). In a higher abstraction level, a
shape is described in term of primitives that combine these low level descriptors.

2.2 Labelling of the Image Elements with the Primitive Structures

Many shape recognition strategies search for particular line arrangements ac-
cording to perceptual grouping of salient features [13][12][15]. In our case, we
describe the relationships of perpendicularity, parallelism and co linearity due
to several predefined structures that we call primitives.

Definition 4. A primitive P is a particular arrangement of two vectors (wa,
wr). We denote P a collection of primitives {P z} z = 1..NP

Figure 3 shows the set of primitive types we consider due to the arrangement
of the vectors wa and the reference vector wr (shown in black). The aim of the
shape modelling consists in obtaining a local description of the shape around
each image vector. The idea is easily shown in the Figure 2. We identify the
reference vectors wr of every primitive on an image vector vi. Then for every
vector wa we have to find the most similar image vector vj . We choose vj to be
the most similar if it minimizes a given distance function DRF .

Definition 5. Given the relative features of an image vector pair, RF (vij), and
the relative features of a primitive vector pair, RF (wra), let us denote DRFα,
DRF δ, DRF d, DRF l the distance values for each relative feature and DRF the
function that globally quantifies the distance from vij to wra.

DRF (RF (vij), RF (wra)) = max(DRFα, DRF δ, DRF d, DRF l)
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The election of the greatest distance for each feature assures that DRF pro-
vides a certain degree of similarity only when all the features accomplish at least
this similarity degree. The general idea to compute every DRF value consists in
find the difference between the relative feature values and normalize the result
by the maximum feasible variation. Every shape element vi is assigned an at-
tribute vector composed by the distances of the relative features in relation to
every primitive. This information is arranged in a table LI where the rows are
referred to the vectors and the columns are referred to the primitives (see Figure
2). In other words, every line of LI can be understood as the deformation that
the primitive structures have to suffer to fit locally the shape around vi.

P1

DRF α DRF δ DRF l DRF d

v1
v2
:

v
NI

... Pz

DRF α DRF δ DRF l DRF d

Fig. 2. a) Image vectors b) Arrangement of the primitive vectors wa due to the identi-
fication of v15 with every wr c) The labelling process searches the most similar vectors
to every wa (ex: wa of belonging P 1 is identified with v16). The modelled information
is indexed L[i][z] in the table

3 Shape Detection

Given a query image I1 we evaluate the retrieval of a database image I2 in a two
step process.

3.1 Location of the Shape: The Voting Process

The shape detection involves a voting procedure in the spatial domain that uses
the modelled information of both images and a reference point rp in the image I1.
The evidence combination methods that share these characteristics are typically
those based in the generalised Hough transform [16][17].

Definition 6. Let us define a vote mijO as the evaluation of the local matching
of the vector vi belonging to I1 with the vector vj belonging to I2 in the orientation
O (where O=1 means equal orientation and O=0 means opposite orientation).

Given two modelled images, the process generates N1xN2x2 votes. The votes
are used to construct an image map M of the shape location.
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Definition 7. Let us name M an image with the same dimensions as I2 that
acts as probability map of the locations of the shape I1 inside I2.

Every vote has a specific location L(mijO) in the map M . This location
is found by the transformation of the reference point rp when we match vi

and vj . Moreover, every vote has a weight H(mijO) that is computed from
the information LI1[i] and LI2[j]. This information describes the distortions of
the shapes around the vectors vi and vj respect to the primitives. The query
shape is detected when the local distortions are similar to those of the database
shape. This way, the vote weight H(mijO) will have a high value if LI1[i] and
LI2[j] are similar. When the vote evaluates vi on vj with the same orientation
(O=0) we analyse pairwise the information of L[i] and L[j] for each primitive.
Otherwise, we compare the information related to the primitives that have the
same characteristics but opposite orientation (P 1 with P 5, P 2 with P 6, and so
on). A vote with a high weight enforces the probability of finding the query shape
in the location L(mijO). The map M , viewed in a 3D representation, shows as
peaks the locations where the query shape is more probably located (see the
example Figure 3). Then we proceed to validate the shape detection on those
positions such M(x, y) exceeds a certain confidence value ThrM .

3.2 Retrieval Evaluation: The Alignment Process

The generated votes are accumulated with freedom of scale a rotation as peaks
in M . Then we validate its coherence using an alignment process on the origi-
nal contour information of both images, BI1 and BI2. Given a vote mijO , the
alignment points are defined by the initial and final coordinates of vi and vj .
We evaluate the matching by combining the spatial distance between the con-
tours with and the angular information of the normal vectors on shape boundary
[17][18]. Then, we use the maximum alignment result of all the peaks in M as a
measure to rank the database images in the retrieval process (see Figure 3).

4 Results

We have test our CBIR system with three experiments. The first one is composed
by 75 database images and 5 query images of logos. The second deals with 48
database images and 3 possible queries of traffic signs [19]. Finally we have used
another set of 30 images and 6 image queries of tin cans. For every query image
we have computed the rate of database images that contain the searched object
and that have been retrieved in the first n positions (being n the total amount
of database images where the query shape can be found). The obtained results
for the three tests are 97%, 80%, and 65%. The images of the Figure 4 show the
performance of the shape retrieval against transformations of rotation and scale.
The traffic sign test shows the robustness of the algorithm against a great amount
of information related to the scene. Furthermore, the first image of the third test
shows the tolerance of the system against partial occlusion. We have to stand
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Fig. 3. Example of the algorithm steps

out that the object retrieval in real scenes, such as the tin can example, adds
the difficulty of dealing with the effects such as specular reflections, shades or
slightly modifications of the viewpoint. These effects are captured by the contour
information and affect directly to the vector structures and to the alignment
result. Finally we have experimentally set at 0.75 the confidence threshold on
the retrieval results as a compromise between the presision and the recall.

5 Conclusions

We have developed a CBIR system of 2D objects by shape content that is capable
to deal with databases of complex scenes. The system is modularised in two
blocs: the shape modelling and the shape detection. The independence of the
two parts allows to precompute the shape representation for any database image.
The algorithm has been tested in real scenes to evaluate the robustness of the
object location against transformations of scale, rotation and partial occlusions.
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Position: 1 0.84 Position: 2 0.81 Position: 3 0.81

Position: 4 0.77 Position: 5 0.77 Position: 6 0.75

Position: 1 0.91 Position: 2 0.90 Position: 3 0.88

Position: 4 0.88 Position: 5 0.77 Position: 6 0.75

Position: 1 0.77 Position: 2 0.76 Position: 3 0.75

Position: 4 0.71 Position: 5 0.70 Position: 6 0.66

Fig. 4. Retrieval examples: Traffic signs, logos and beer cans. The first line corresponds
to the query images. We can see the first 6 results on the leftmost query image, the
vectorized image that shows the location solution, and the retrieval value
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Abstract. We describe a fast algorithm for Gabor filtering, specially
designed for multi-scale image representations. Our proposal is based on
three facts: first, Gabor functions can be decomposed in gaussian con-
volutions and complex multiplications which allows the replacement of
Gabor filters by more efficient gaussian filters; second, isotropic gaussian
filtering is implemented by separable 1D horizontal/vertical convolutions
and permits a fast implementation of the non-separable zero-mean Gabor
kernel; third, short FIR filters and the à trous algorithm are utilized to
build a recursive multi-scale decomposition, which saves important com-
putational resources. Our proposal reduces to about one half the number
of operations with respect to state-of-the-art approaches.

1 Introduction

Gabor filtering is widely applied in image analysis and computer vision applica-
tions, such as image compression [5], texture classification [14], image segmen-
tation [15], motion analysis [1] and visual attention [8]. The use of Gabor filters
is motivated by information theoretic and biological facts. Gabor [6] showed
that gaussian-modulated complex exponentials provide the best trade-off be-
tween spatial and frequency resolution. Neurophysiological studies show that
visual cortex simple cells are well modeled by families of 2D Gabor functions
[4]. Both facts raised considerable interest and suggest that neuronal structures
may develop toward optimal information coding.

In the case of visual attention, recent models propose multi-scale image rep-
resentations of different features like color, intensity and orientation [8]. Such a
decomposition benefits, in terms of completeness and stability, on having more
than one voice (frequency) per scale and orientation [11]. Therefore, a large num-
ber of different kernels may be needed to represent the image characteristics.

Whereas fast algorithms for Gabor filtering exist [13, 18], multi-scale repre-
sentations require analysis with many Gabor kernels, tuned to different orienta-
tions, scales and frequencies, which poses serious computational constraints in
real-time scenarios. However, many computations are redundant. Here we exploit
this redundancy to develop more efficient algorithms.
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In section 2 we review some of the underlying theory of Gabor analysis and
show that image filtering with isotropic zero-mean Gabor kernels (non-separable)
can be computed by the sum of two separable filtering operations. In section 3
we show that Gabor filtering can be factored in complex multiplications and
gaussian convolutions, which allow significant computational improvements. In
section 4 we apply this technique to multi-scale image analysis and propose an
approximate algorithm that reduces computations more than 50%.

2 Isotropic Gabor Wavelets

Gabor functions consist on the multiplication of a complex exponential (carrier)
and a gaussian function (envelope). We will focus on isotropic envelope functions
because efficient separable implementations are currently available. Let wσ(x, y)
be a two dimensional gaussian function with scale σ and, cψ(x, y), ψ = (λ, θ)
be a complex exponential function representing a plane-wave with wavelength λ
and orientation θ:

wσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 and cψ(x, y) = ei 2π
λ (x cos θ+y sin θ)

To simplify notation, we will drop the spatial coordinates (x, y) and write a two
dimensional Gabor function as gσ,ψ = wσ · cψ . This function has non zero mean
value, which is not desirable for the purpose of feature extraction and multi-scale
analysis. The zero-mean kernel is used instead [11]:

γσ,ψ = wσ · (cψ − kσ,ψ) (1)

where the scalar kσ,ψ is calculated so the kernel’s average value is zero (Appendix
A). We distinguish between the Gabor function (non-zero-mean function) and
the Gabor kernel (zero-mean function). The Gabor kernel satisfies the admissi-
bility condition for wavelets, thus being suited for multi-resolution analysis [12].
Apart from a scale factor, it is also known as the Morlet Wavelet. Examples of
two dimensional Gabor kernels are shown in Figure 2.

Image analysis by convolution with Gabor kernels has been extensively stud-
ied in the literature. In practical terms, the filter will respond strongly when the
local image structure is similar to the Gabor kernel shape, in terms of scale (σ),
wavelength (λ), and orientation (θ). Using the definition of the Gabor kernel (1),
its convolution with an image f can be written as:

zσ,ψ = f ∗ gσ,ψ︸ ︷︷ ︸
zc

σ,ψ

−kσ,ψ f ∗wσ︸ ︷︷ ︸
zw

σ

(2)

This convolution can be implemented by subtracting two terms: zc
σ,ψ – a Gabor

convolution; and kσ,ψzw
σ – a scaled gaussian convolution. In the isotropic case

both Gabor and gaussian functions are separable (g(x, y) = gx(x) · gy(y), and
w(x, y) = wx(x) · wy(y)) and convolutions can be performed with two cascaded
(horizontal and vertical) 1D convolutions. Thus, even though the isotropic Gabor
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kernel γ is not separable itself (can not be written as the tensor product of two
1D filters), image filtering with this kernel can be implemented efficiently as the
sum of two separable convolutions.

To date, the fastest implementation of gaussian [17] and Gabor convolutions
[18] require 13 real (gaussian) and 13 complex (gabor) arithmetic operations
per pixel per dimension. Considering a complex multiplication as 4 real mul-
tiplicationa and 2 real additions, the extension to 2-D signals requires, respec-
tivelly, 26 and 108 real operations. Therefore, image convolution with Gabor
kernels,consisting in 1 gaussian filtering, 1 Gabor filtering, 1 multiplication and
1 addition, has a total computational cost of 136 operations per pixel.

3 Gabor Convolution Factorization

We show that the Gabor convolution in (2) can be computed by multiplications
with complex exponentials and gaussian convolutions. The motivation is that
state-of-the-art gaussian filtering is significantly more efficient than Gabor fil-
tering. We focus on the isotropic case but the method can also be applied to
the anisotropic case. In fact, a separable implementation of anisotropic Gabor
filtering has recently been proposed [7].

Image convolution with Gabor functions, denoted by zc
σ,ψ , is computed by:

zc
σ,ψ(x, y) =

∑
k,l

f(k, l) · wσ(x− k, y − l) · cψ(x− k, y − l)

Since cψ(x−k, y− l) = cψ(x, y)c̄ψ(k, l) (c̄ denotes complex conjugation), we can
expand the previous expression into:

zc
σ,ψ(x, y) = cψ(x, y) ·

∑
k,l

c̄ψ(k, l) · f(k, l) · wσ(x − k, y − l)

In compact form, the full convolution (2) is written as:

zσ,ψ = cψ · [(f · c̄ψ) ∗wσ]︸ ︷︷ ︸
zc

σ,ψ

−kσ,ψ · (f ∗wσ)︸ ︷︷ ︸
zw

σ

(3)

Notice that only gaussian convolutions are involved in the previous expression.
With the IIR gaussian filter of [17] (26 real operations per pixel), the required
computations on Eq. (3), are:

– a modulation (f · c̄ψ) corresponding to 2 operations per pixel;
– a complex gaussian filtering (wσ convolved with f · c̄ψ) requires 52 op-

erations per pixel;
– a demodulation operation (product of cψ with (f · c̄ψ) ∗ wσ) requires 1

complex multiplication per pixel, corresponding to 6 operations per pixel;
– a real gaussian filtering (f ∗wσ) requiring 26 operations per pixel;
– a real scaling by kσ,ψ, requires 1 operation per pixel;
– and the final subtraction, corresponds to only 1 operation per pixel

because only the real part of Gabor kernels has non zero DC value.
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Altogether we have 88 operations which, in comparison with the reference value
of 136 operations, correspond to about 35% savings in computation.

When multiple carriers (orientations/wavelengths) are considered, it is ob-
vious from Eq. (3) that term zw

σ is common to all. Fig. 1 shows a graphical
representation of the method. Gaussian filtering contributes with 26 operations
and each carrier contributes with additional 62 operations (our proposal) or
110 operations (direct Gabor filtering). If, for example, 4 orientations and 2
wavelengths are used, the total number of operations is 8 × 62 + 26 = 522 vs
8× 110+26 = 906 (about 42% savings). It is also worth mentioning that multi-
scale image architectures often compute image gaussian expansions to support
further processing[2, 3]. Thus intermediate filtered images zw

σ may already have
been computed, which saves additional 26 operations per pixel.

4 Analysis at Dyadic Scales

Dyadic scale representations are very utilized in image analysis. Efficient re-
cursive algorithms exist to build Gaussian and Laplacian pyramids [2] with L
dyadic levels (σ ≈ 2i, i = 0, .., L). Usual approaches create image pyramids by
successively filtering previous levels and sub-sampling by 2. Even though sub-
sampling is useful in terms of storage and computation, it has the disadvantage
of loosing translation invariance properties [12], thus reducing precision in the
localization of relevant image structures. We consider the unsubsampled case,
where image size is constant at all scales. In this case the à trous algorithm [12],
is an efficient recursive technique to implement multi-resolution decompositions
with constant size filters. If filter coefficients are properly chosen, we obtain good
approximations to quasi-dyadic gaussian filters [2].

Consider a signal f(x, y) and low-pass filter q(x, y) with Fourier transform
q̃(ωx, ωy). The first step of the à trous algorithm consists in obtaining a low-
pass version of the original signal: f1 = f ∗ q. In the next decomposition level a
new filter is created by expanding the previous one with zero insertion, which,
in the frequency domain, corresponds to a spectral compression q̃1(ωx, ωy) =
q̃(2ωx, 2ωy). The new low-pass signal is computed by f2 = f1 ∗ q1, and the
procedure goes on recursively until the last scale level is reached. Since the
convolution operation is linear, this is equivalent to filter the original signal f with
filters wi resulting from successive convolutions of the several qk. In the Fourier
domain the equivalent filters are described by w̃i(ωx, ωy) =

∏i
k=0 q̃(2

kωx, 2kωy).
In [2], some base filters q were tested but not all choices approximate gaussian
functions. We use the 1D filter qx = (.05, .25, .40, .25, .05) for x = (−2,−1, 0, 1, 2)
to generate a set of equivalent filters similar to dyadic gaussian functions.

Since the filter is symmetric, convolution is computed in the following way:

f i+1(·) = q0f
i(·) + q1

[
f i(· − 2i) + f i(·+ 2i)

]
+ q2

[
f i(· − 2i+1) + f i(·+ 2i+1)

]
In this form, only 6 multiplications and 8 additions per pixel are required to
perform the 2D convolution. For a single carrier, we can compute a multi-scale
approximation to (3) with 52 operations in the first level and 50 operations in
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the remaining levels (see Fig. 1). This corresponds to 62% computation savings
with respect to the reference value of 136 operations per pixel.

Finally, let us consider the multi-scale, multi-carrier problem. If S is the
number of scales and C the number of carriers, our proposal requires 14× S +
2×C + 36× S ×C operations (see Fig. 1), while direct Gabor filtering requires
26 × S + 2 × C + 108 × S × C operations. If all combinations of carriers and
scales are needed, then we attain up to 66% computation savings. For example,
considering 3 scales (S = 3), 4 orientations and 2 wavelengths (C = 8), the full
decomposition takes 922 operations vs 2686 operations in the reference method.
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Fig. 1. Proposed Gabor filtering schemes: single-scale-multi-carrier (left), multi-scale-
single-carrier (middle) and multi-scale-multi-carrier (right). Thick/Thin lines and boxes
represent complex/real signals and filters. At each computational element we indicate
the number of real operations required. Dashed lines represent vectors instead of scalars.

5 A “Real-Time” Multi-scale Quasi-Gabor Expansion

We have developed a quasi-dyadic Gabor image decomposition for the control of
visual attention in an active vision system, using the the first 4 scales generated
by the à trous algorithm σ = {0.95, 2.12, 4.35, 8.75}. The definition of the carrier
wavelengths, λ, is inspired on biological data. Simple and complex cells in the pri-
mary visual cortex have receptive fields that resemble Gabor functions of partic-
ular combinations and ranges of parameters [11]. In particular the half-amplitude
frequency bandwidth (β) range from 0.5 to 2.5 octaves. In the radial frequency
direction, an isotropic Gabor function is given by g̃(ω) = e−

1
2 σ2(ω− 2π

λ )2 , whose
half-amplitude points ω1,2 and half-amplitude bandwidth β are, in octaves:

ω1,2 =
2π
λ
±
√

2 log(2)
σ

and β = log2

2πσ + λ
√

2 log(2)
2πσ − λ

√
2 log(2)

We have used wavelength values λ = {3.7, 7.4, 14.8, 29.6}. The half-amplitude
bandwidth of each scale/wavelength combination is shown in table 1. We choose
kernels whose half-amplitude bandwidth is approximately within biologically
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Table 1. Half-amplitude bandwidth (in oc-
taves) for each pair scale/wavelength. Italic
entries are biologically plausible values. In
parenthesis we indicate the appearance of the
kernel: E – “edge” kernel, ST – small texture
kernel, LT – large texture kernel.

λ = 3.7 7.4 14.8 29.6

σ = .95 2.68 (E) - - -

2.12 .98 (ST) 2.26 (E) - -

4.35 .46 (LT) .95 (ST) 2.18 (E) -

8.75 .23 .46 (LT) .95 (ST) 2.16 (E)

Table 2. Signal to Error Ratio
(in dB) between the output of
FIR Gabor wavelets and the pro-
posed approximation. Test images
are from the collections miscella-
neous, aerial and texture of the
USC-SIPI database.

SNR Aerial Texture Misc

Average 30.39 30.06 29.95

Maximum 38.87 39.28 38.92

Minimum 23.82 13.83 7.15

Fig. 2. Real and imaginary parts of: (left) an “edge” (E) Gabor kernel with half-
frequency bandwidth in octaves β = 2.46; (center) a “small texture” (ST) kernel
having β = 1.04; (right) a “large texture” (LT) kernel with β = 0.51.

plausible values (italic entries in table 1). The kernel shapes are shown in Fig.
2, and resemble units tuned to edges, small texture patches and large texture
patches, respectively. Roughly speaking, “edge” kernels will respond equally well
in image locations corresponding to edges and textures with appropriate scale
and orientation. “Texture” kernels will respond better in textured areas with the
matched direction and wavelength.

Notice that not all combinations of wavelengths and scales are biologically
plausible. A recursive dyadic decomposition will require 14× S + 2 × C + 28×
Ak + 6 × Rk operations, where Ak is the number of levels to compute and Rk

is the number of “interesting” kernels. With the IIR filters, some levels are not
required and the number of operations is 26× S + 2×C + 52×Rk + 6×Rk. In
the proposed decomposition, we have Ak = 60 and Rk = 36, which lead to 1984
operations in the dyadic recursive decomposition and 2224 with IIR gaussian
filters. For the sake of comparison, if the state-of-the art IIR Gabor filters are
used, the number of computations would increase to 4024 operations.

6 Results

Figure 3 shows the output modulus of the proposed filter, applied to a common
test image. The computation, in 128 × 128 greyscale images, takes about 0.2
seconds in a P4 2.66GHz processor.

We have applied both the approximate method (with the à trous decomposi-
tion) and the exact method (with FIR Gabor wavelets) to images from the mis-
cellaneous, aerial and texture classes [16], converted to greyscale and 128× 128
pixel sizes. We have applied a decomposition of the type described in section 5,
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Fig. 3. Modulus of the Gabor wavelet decomposition (for orientation 135o) applied to
the image “Lenna” (left). Contrast has been normalized for visualization. From left to
right, the kernel parameters (σ, λ) are, respectively: (0.95,3.7), (2.12,3.7), (4.35,3.7),
(2.12,7.4), (4.35,7.4), (8.75,7.4), (4.35,14.8), (8.75,14.8), (8.75,29.6).

with 4 orientations, and the relative mean squared error between the two meth-
ods was computed for all images and filter channels. On average, the signal to
error ratio is about 30dB (3% error). In some images with strong edges in the
boundary, the error grows larger (7dB), but current work is dealing with eficient
boundary conditions to address this problem.

7 Conclusions

We have presented a novel algorithm for the computation of Gabor features. Im-
provements are obtained by an efficient decomposition of Gabor convolution into
gaussian convolutions and complex multiplications, and the reuse of intermediate
computations in a multi-scale framework. The method reduces computations to
about one half when compared to the state-of-the-art. The application of Gabor
filters is far from being limited to visual attention. One can find Gabor analysis
in object representation [9] texture classification [10], motion estimation [1] and
image compression [5]. Therefore, many other applications may benefit from the
results presented in this paper.

Appendix A
Computation of Gabor Kernel’s k Parameter

A Gabor Kernel is defined in the frequency domain as:

g̃(ωx, ωy) = w̃

(
ωx −

2 cos θ
λπ−1

, ωy −
2 sin θ
λπ−1

)
− kw̃ (ωx, ωy)

Parameter k is computed such that the kernels’ DC value is zero.

k =
w̃(− 2 cos θ

λπ−1 ,− 2π sin θ
λπ−1 )

w̃(0, 0)

With the à trous algorithm, the equivalent envelope filters q̃i(ωx, ωy) have
the following Fourier transform :

i∏
k=0

(
a cos(2k+1ωx) + b cos(2kωx) + c

)
·
(
a cos(2k+1ωy) + b cos(2kωy) + c

)
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where a = 0.1, b = 0.5 and c = 0.4. Thus, the value of k comes:

i∏
k=0

(
a cos

2k cos θ
4π−1λ

+ b cos
2k cos θ
2π−1λ

+ c

)
·
(
a cos

2k sin θ
4π−1λ

+ b cos
2k sin θ
2π−1λ

+ c

)
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Abstract. Most of the available digital color cameras use a single Cou-
pled Charge Device (CCD) with a Color Filter Array (CFA) in acquiring
an image. In order to produce a visible color image a demosaicing pro-
cess must be applied, which produces undesirable artifacts. This paper
addresses the demosaicing problem from a superresolution point of view.
Utilizing the Bayesian paradigm, an estimate of the reconstructed images
and the model parameters is generated.

1 Introduction

Most of the available digital color cameras use a single Coupled Charge Device
(CCD) with a Color Filter Array (CFA) to obtain color images. Unfortunately
the color filter generates different spectral responses at every CCD cell. The
most widely used CFA is the Bayer one [1]. It imposes a spatial pattern of two
G cells, one R, and one B cell, as shown in Fig. 1.

Bayer camera pixels convey incomplete color information which needs to
be extended to produce a visible color image. Such color processing is known
as demosaicing (or de-mosaicking). From the pioneering work of Bayer [1] to
nowadays a lot of attention has been paid to the demosaicing topic (see [2] for a
review). The use of a CFA, and the corresponding demosaicing process produce
undesirable artifacts, such as color fringe, that are difficult to avoid.

Over the last two decades research has been devoted to the problem of recon-
structing a high-resolution image from multiple undersampled, shifted, degraded
frames with subpixel displacement errors (see [3] for a recent review). In our pre-
vious work [4][5] we addressed the high resolution problem from complete and
also from incomplete observations within the general framework of frequency

� This work has been supported by the “Comisión Nacional de Ciencia y Tecnoloǵıa”
under contract TIC2003-00880.
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domain multi-channel signal processing developed in [6]. In this paper we for-
mulate the demosaicing problem as a high resolution problem from incomplete
observations and therefore we propose a new way to looking at the problem of
demosaicing.

The rest of the paper is organized as follows. The problem formulation is
described in section 2. In section 3 we describe the process for reconstructing
each band of the color image and then examine how to iteratively estimate the
high resolution color image. Experimental results are described in section 4.
Finally, section 5 concludes the paper.

2 Problem Formulation

Consider a Bayer camera with a Color Filter Array (CFA) over one CCD with
M1 × M2 pixels, as shown in Fig. 1(a). Assuming that the camera has three
M1 × M2 CCDs (as is usually the case), one for each R,G,B channels, the
observed image is given by

g =
(
gR t,gG t,gB t

)t
, (1)

where t denotes the transpose of a vector or a matrix and each one of theM1×M2

column vectors gc, c ∈ {R,G,B}, results from the lexicographic ordering of the
two-dimensional signal in the R,G and B channels, respectively.

(a) (b)

Fig. 1. (a) Pattern of channel observations for a Bayer camera with CFA; (b) Observed
low resolution channels (the array in (a) and all the arrays in (b) are of the same size)

Due to the presence of the CFA we do not observe g but an incomplete subset
of it, as shown in Fig. 1(b). Let us characterize these observed values in the Bayer
camera. Let N1 = M1/2 and N2 = M2/2; then the 1-D downsampling matrices
Dx

l and Dy
l are defined by

Dx
l = IN1 ⊗ et

l , Dy
l = IN2 ⊗ et

l , (2)

where INi is the Ni×Ni identity matrix, el is the 2×1 unit vector whose nonzero
element is in the l− th position, l ∈ {0, 1} and ⊗ denotes the Kronecker product
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operator. The (N1×N2)× (M1×M2) 2D downsampling matrix is now given by
Dl1,l2 = Dx

l1 ⊗Dy
l2, with l1, l2 ∈ {0, 1}.

Using the above downsampling matrices, the subimage of g which has been
observed, gobs, may be viewed as the incomplete set of N1 × N2 low resolution
images

gobs =
(
gR t

1,1,g
G t
1,0 ,g

G t
0,1 ,g

B t
0,0

)t
, (3)

where

gR
1,1 = D1,1gR, gG

1,0 = D1,0gG, gG
0,1 = D0,1gG, gB

0,0 = D0,0gB. (4)

As an example Fig. 2 illustrates how gR
1,1 is obtained. Note that the origin of

coordinates is located in the bottom-left side of the array. We have one observed
N1 ×N2 low resolution image at R, two at G and one at B channels.

Fig. 2. Process to obtain the low resolution observed R channel

We now assume that g in equation (1) can be written as

g =

⎛⎝gR

gG

gB

⎞⎠ =

⎛⎝ fR

fG

fB

⎞⎠+

⎛⎝nR

nG

nB

⎞⎠ = f + n (5)

where f denotes the real high resolution color image we are trying to estimate
and n denotes white independent uncorrelated noise between and within chan-
nels with variance 1/βc in channel c ∈ {R,G,B}. Substituting this equation in
equation (4) we have that the discrete low-resolution observed images can be
written as

gR
1,1 = D1,1fR + D1,1nR, gG

1,0 = D1,0fG + D1,0nG,

gG
0,1 = D0,1fG + D0,1nG, gB

0,0 = D0,0fB + D0,0nR, (6)

where we have the following distributions for the subsampled noise

D1,1nR ∼ N(0, 1/βRIN1×N2), D1,0nG ∼ N(0, 1/βGIN1×N2),
D0,1nG ∼ N(0, 1/βGIN1×N2), D0,0nB ∼ N(0, 1/βBIN1×N2). (7)
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From the above formulation, our goal has become the reconstruction of a
complete RGB M1 × M2 high resolution image f from the incomplete set of
observations, gobs in equation (3). In other words, the demosaicing problem has
taken the form now of a superresolution reconstruction one. We can therefore
apply the theory developed in [5, 7], but taking into account that we are dealing
with multichannel images and that the relationship between channels should also
be taken into account [8].

3 Bayesian Reconstruction of the Color Image

Let us consider first the reconstruction of channel c assuming that the observed
data gobs c and also the real images fc′ and fc′′ , with c′ �= c and c′′ �= c, are
available.

In order to apply the Bayesian paradigm to this problem we define pc(fc),
pc(fc′ |fc), pc(fc′′ |fc), and pc(gobs c|fc) and use the global distribution

pc(fc, fc′ , fc′′ ,gobs c) = pc(fc)pc(fc′ |fc)pc(fc′′ |fc)pc(gobs c|fc) . (8)

Smoothness within channel c is modelled by the introduction of the following
prior distribution for fc

p(fc|αc) ∝ (αc)M1×M2/2 exp
[
−1

2
αc ‖ Cfc ‖2

]
, (9)

where αc > 0 and C denotes the Laplacian operator.
To define pc(fc′ |fc) and similarly pc(fc′′ |fc), we proceed as follows. A two-

level bank of undecimated separable two-dimensional filters constructed from a
low-pass filter Hl (with impulse response hl = [1 2 1]/4) and a high-pass filter
Hh (hh = [1−2 1]/4) is applied to fc′−fc obtaining the approximation subband
Wll(fc′−fc), and the horizontal Wlh(fc′−fc), vertical Whl(fc′−fc) and diagonal
Whh(fc′−fc) detail subbands [9] (see Fig. 3); where

Wuv = Hu ⊗Hv , for uv ∈ {ll, lh, hl, hh} . (10)

With this decomposition differences between channels, for high frequency compo-
nents, are penalized by the introduction of the following probability distribution

pc(fc′ |fc, γcc′) ∝ |A(γcc′)|−1/2 exp

[
−1

2

∑
uv∈HB

γcc′
uv ‖Wuv(fc′−fc)‖2

]
, (11)

where HB = {lh, hl, hh}, γcc′
uv measures the similarity of the uv band of the c

and c′ channels, γcc′ = {γcc′
uv |uv ∈ HB}, and

A(γcc′) =
∑

uv∈HB
γcc′

uvW
t
uvWuv . (12)
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Fig. 3. Two-level filter bank

From the model in Eq. (6), we have

pc(gobs c|fc, βc) ∝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βRN1×N2/2 exp

[
−βR

2 ‖ gR
1,1 −D1,1fR ‖2

]
if c = R

βGN1×N2 exp
[
−βG

2

(
‖ gG

1,0 −D1,0fG ‖2 +
‖ gG

0,1 −D0,1fG ‖2
)]

if c = G

βBN1×N2/2 exp
[
−βB

2 ‖ gB
0,0 −D0,0fB ‖2

]
if c = B

(13)

Note that from the above definitions of the probability density functions, the
distribution in equation (8) depends on a set of unknown parameters and has to
be properly written as

pc(fc, fc′ , fc′′ ,gobs c|Θc) (14)

where
Θc = (αc, γ

cc′, γcc′′ , βc) . (15)

Having defined the involved distributions and the unknown parameters, the
Bayesian analysis is performed to estimate the parameter vector Θc and the
unknown high resolution band fc. It is important to remember that we are
assuming that fc′ and fc′′ are known.

The process to estimate Θc and fc is described by the following algorithm
which corresponds to the so called evidence analysis within the Bayesian para-
digm [10].

Algorithm 1 (Estimation of Θc and fc assuming that fc′ and fc′′ are known)

Given fc′ and fc′′

1. Find

Θ̂c(fc′ , fc′′) = arg max
Θc

pc(fc′ , fc′′ ,gobs c|Θc) (16)

= arg max
Θc

∫
fc

pc(fc, fc′ , fc′′ ,gobs c|Θc)dfc (17)



348 Miguel Vega, Rafael Molina, and Aggelos K. Katsaggelos

2. Find an estimate of channel c using

f̂c(Θ̂c(fc′ , fc′′)) = arg max
fc

pc(fc|fc′ , fc′′ ,gobs c, Θ̂c(fc′ , fc′′)) (18)

Let us now assume that we have initial estimates of the three channels, fR(0),
fG(0) and fB(0); then we can improve the quality of the reconstruction by using
the following procedure

Algorithm 2 (Reconstruction of the color image)

1. Given fR(0), fG(0) and fB(0), initial estimates of the bands of the color
image and ΘR(0), ΘG(0) and ΘB(0) of the model parameters

2. Set k=0
3. Calculate

fR(k + 1) = f̂R(Θ̂R(fG(k), fB(k))) (19)

by running Algorithm 1 on channel R with fG = fG(k) and fB = fB(k)
4. Calculate

fG(k + 1) = f̂G(Θ̂G(fR(k + 1), fB(k))) (20)

by running Algorithm 1 on channel G with fR = fR(k + 1) and fB = fB(k)
5. Calculate

fB(k + 1) = f̂B(Θ̂B(fR(k + 1), fG(k + 1))) (21)

by running Algorithm 1 on channel B with fR = fR(k+1) and fG = fG(k+1)
6. Set k=k+1 and go to step 3 until a convergence criterion is met.

4 Experimental Results

A number of simulations have been performed with the proposed algorithm.
Figure 4 shows a subset of images of size 256× 384, taken from [11], used in the
experiments. These images where sampled applying a Bayer pattern to get the
observed images that are to be reconstructed.

The proposed Algorithm 2 was run using as initial image estimates bilinearly
interpolated images, and the values αc (0) = 0.01, βc (0) = 1000.0 and γcc′ (0)

uv =
2.0 ( for all uv ∈ HB and c′ �= c) for all c ∈ {R,G,B}. The convergence criterion
utilized was ‖fc(k+1)−fc(k)‖2

‖fc(k)‖2 ≤ 10−7.
Table 1 compares the results obtained by bilinear interpolation, the methods

proposed by Laroche [12], Kimmel [11], Gunturk [9] and Algorithm 2. Their
performance were evaluated by measuring the SNR improvement in dB, given
by

ΔSNR = 10× log10

[
‖ fc − gpad c ‖2 / ‖ fc − f̂c ‖2

]
,

for c ∈ {R,G,B}, where fc and f̂c are the original and estimated high resolution
images, and gpad c is the result of padding missing values at gobs c (equation 3)
with zeroes. Figure 5 shows an enlargement of a small region of the restorations
of the image in Figure 4(c) by the different methods under comparison.

Finally, Algorithm 1 takes 5 secs of CPU time on a Intel Xeon processor at
3.2 GHz, with 4 GB of RAM, for images of the considered size.
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a b c

Fig. 4. Images used in the experiments

a b c

d e f

Fig. 5. Details of the (a) original image , (b) bilinear reconstruction, (c) Methods of
Laroche [12], (d) Kimmel [11], (e) Gunturk [9] and (f) our method

Table 1. ΔSNR (dB)

image bilinear Laroche [12] Kimmel [11] Gunturk [9] our method

Fig. 4.(a)

Fig. 4.(b)

Fig. 4.(c)

R G B

21.0 24.0 20.8

20.3 21.7 17.6

18.9 19.9 17.6

R G B

23.1 26.6 27.1

18.5 23.9 21.9

20.9 21.2 22.2

R G B

28.2 29.5 28.3

26.2 25.5 23.0

25.3 24.6 22.6

R G B

30.3 32.7 29.0

27.8 29.5 25.9

28.4 30.2 23.6

R G B

28.4 31.0 29.0

29.0 28.6 23.6

27.2 28.8 26.7
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5 Conclusions

In this paper the color demosaicing problem has been formulated from a super-
resolution point of view. A new method for estimating both the reconstructed
color images and the model parameters, within the Bayesian framework, was
obtained. Based on the presented experimental results, the new method outper-
forms bilinear interpolation and the methods in [11] and [12], while it performs
comparably to the method in [9].
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Abstract. This paper deals with the minimization of the total varia-
tion under a convex data fidelity term. We propose an algorithm which
computes an exact minimizer of this problem. The method relies on the
decomposition of an image into its level sets. Using these level sets, we
map the problem into optimizations of independent binary Markov Ran-
dom Fields. Binary solutions are found thanks to graph-cut techniques
and we show how to derive a fast algorithm. We also study the special
case when the fidelity term is the L1-norm. Finally we provide some
experiments.

1 Introduction

Minimization of the total variation (tv) for image reconstruction is of great
importance for image processing applications [1, 17, 19, 21, 22]. It has been
shown that these minimizers live in the space of bounded variation [9] which
preserves edges and allows for sharp boundaries. In this paper we propose a new
and fast algorithm which computes an exact solution of tv minimization-based
problems.

Assume u is an image defined on Ω then its total variation is tv(u) =
∫

Ω |∇u|,
where the gradient is taken in the distributional sense. A classical approach to
minimize tv is achieved by a gradient descent [24] which yields the following
evolution equation ∂u

∂t = div
(

∇u
|∇u|+ε

)
. To avoid division by zero, ε is set to

a small positive value. In [5], Chambolle reformulates tv minimization problem
using duality. Using this formulation he proposes a fast algorithm. In [19], Pollak
et al. present a fast algorithm which provide the exact solution in one dimen-
sion. However only an approximation is available in higher dimensions. After a
discretization, tv minimization can be reformulated as a minimization problem
involving a Markov Random Field (MRF). In [4], Boykov et al. present a fast
approximation minimization algorithm based on graph cuts for MRF. An algo-
rithm which computes an exact solution for MRF where the prior is convex is
presented in [12]. It is also based on graph-cuts.
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In this paper, we assume u and v are two images defined on Ω. Thus we are
interested in minimizing the following functional:

E(u) =
∫

Ω

f (u(x), v(x)) dx+ β

∫
Ω

|∇u| . (1)

We assume that the attachment to data term is a convex function of u(.), such
as: f (u(x), v(x))) = |u(x) − v(x)|p for the Lp case (p = 1, 2), and that the
regularization parameter β is some positive constant. In this paper, we propose
a fast algorithm which computes an exact minimizer of problem 1. It relies on
reformulating this problem into independent binary MRFs attached to each level
set of an image. Exact minimization is performed thanks to a minimum cost cut
algorithm.

The rest of this paper is organized as follows. In section 2 we map the origi-
nal problem 1 into independent binary Markov Random Field optimizations. In
section 3, a fast algorithm based on graph cuts is presented. In section 4 we shed
new lights on tv minimization under the L1-norm as fidelity term. Finally we
draw some conclusions in section 5.

2 Formulation Using Level Sets and MRF

For the rest of this paper we assume that u takes values in the discrete set
[0, L− 1] and is defined on a discrete lattice S. We denote by us the value of the
image u at the site s ∈ S. Let us decompose an image into its level sets using
the decomposition principle [11]. It corresponds to considering the thresholding
image uλ where uλ

s = 1lus≤λ. One can reconstruct the original image from its
level sets using us = min{λ, uλ

s = 1}.

2.1 Reformulation into Binary MRFs

The coarea formula states that for any function u which belongs to the space

of bounded variation [9] one has tv(u) =
∫

IR

P (uλ) dλ almost surely. In the

discrete case, we write tv(u) =
L−2∑
λ=0

P (uλ), where P (uλ) is the perimeter of uλ

(notice that uL−1
s = 1 for every s ∈ S, which explains the previous summation

up to L− 2.) Let us define the neighboring relationship between two sites s and
t as s ∼ t. The associated cliques of order two are noted as (s, t). This enables
to estimate the perimeter using the approach proposed in [14]. Thus we have

tv(u) =
L−2∑
λ=0

∑
(s,t)

wst |uλ
s −uλ

t |, where wst is set to 0.26 and 0.19 for the four- and

eight- connected neighborhood, respectively.
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Proposition 1 The discrete version of the energy E(u) rewrites as

E(u) =
L−2∑
λ=0

Eλ(uλ) + C , where (2)

Eλ(uλ) = β

⎡⎣∑
(s,t)

wst ((1 − 2uλ
t ) uλ

s + uλ
t )

⎤⎦
+

∑
s∈Ω

(gs(λ+ 1)− gs(λ))(1 − uλ
s ) (3)

gs(x) = f(x, vs) ∀s ∈ S and C =
∑
s∈Ω

gs(0)

Proof: Using the following property for binary variables a, b: |a−b| = a+b−2ab,
and starting from the previous equality obtained from the coarea formula we have

tv(u) =
L−2∑
λ=0

∑
(s,t)

wst

(
(1− 2uλ

t ) uλ
s + uλ

t

)
. Moreover the following decomposi-

tion property holds for any function g:

∀k ∈ [0, L− 1] g (k) =
k−1∑
λ=0

((g(λ+ 1)− g(λ)) + g(0)

=
L−2∑
λ=0

(g(λ+ 1)− g(λ)) 1lλ<k + g(0)

(note that this formula is coherent for both k = 0 and k = L − 1). Thus, by
defining gs(us) = f(us, vs) and since 1lλ<us = 1− uλ

s , we have

f (us, vs) = gs(us) =
L−2∑
λ=0

(gs(λ+ 1)− gs(λ)) (1− uλ
s ) + gs(0) .

This concludes the proof. �
Note that each Eλ(uλ) is a binary MRF with an Ising prior model. To minimize
E(.) one can minimize all Eλ(.) independently. Thus we get a family {ûλ} which
are respectively minimizers of Eλ(.). Clearly the summation will be minimized
and thus we have a minimizer of E(.) provided this family is monotone:

ûλ ≤ ûμ ∀λ < μ . (4)

If this property holds then the optimal solution is given by [11]: ûs = min{λ,
ûλ

s = 1} ∀s. If property 4 does not hold, then the family {uλ} is not a function.

2.2 A Lemma Based on Coupled Markov Chains

Since the MRF posterior energy is decomposable into levels, it is useful to define
the “local neighborhood configurations”: Ns = {ut}t∼s and Nλ

s = {uλ
t }t∼s ∀λ ∈

[0, L− 2] . In [8] the following lemma was established:



354 Jérôme Darbon and Marc Sigelle

Lemma 1 If the local conditional posterior energy at each site s writes as

E(us | Ns, vs) =
L−2∑
λ=0

( Δφs(λ) uλ
s + χs(λ) ) (5)

where Δφs(λ) is a non-increasing function of λ and χs(λ) does not depend on
uλ

s , then one can exhibit a “coupled” stochastic algorithm minimizing each total
posterior energy Eλ(uλ) while preserving the monotone condition: ∀s , uλ

s ↗
with λ .

In other words, given a binary solution u� to the problem Ek, there exists at
least one solution û to the problem El such that u� ≤ û ∀k ≤ l. The proof of
the Lemma relies on coupled Markov chains [20].

Proof: We endow the space of binary configurations by the following order:
u ≤ v iff us ≤ vs ∀s ∈ Ω. From the decomposition (5) the local conditional
posterior energy at level value λ is E(uλ

s | Nλ
s , vs) = Δφs(λ) uλ

s + χs(λ). Thus
let us define the following Gibbs local conditional posterior probability:

Ps(λ) = P (uλ
s = 1 | Nλ

s , vs) =
exp−Δφs(λ)

1 + exp−Δφs(λ)
=

1
1 + expΔφs(λ)

. (6)

With the conditions of the Lemma 1, this latter expression is clearly a monotone
non-decreasing function of λ.
Let us now design a “coupled” Gibbs sampler for the L − 1 binary images in
the following sense: first consider a visiting order of the sites (tour). When a site
s is visited, pick up a single random number ρs uniformly distributed in [0, 1].
Then, for each value of λ, assign: uλ

s = 1 if 0 ≤ ρs ≤ Ps(λ) or else uλ
s = 0 (this

is the usual way to draw a binary value according to its probability, except that
we use here the same random number ρs for all the L− 1 binary images. ) From
the non-decreasing monotony of (6) it is seen that the set of assigned binary
values at site s satisfies uλ

s = 1 ⇒ uμ
s = 1 ∀μ > λ. The monotone property

uλ ≤ uμ ∀ λ < μ is thus preserved. Clearly, this property also extends to a
series of L− 1 coupled Gibbs samplers having the same positive temperature T
when visiting a given site s: it suffices to replace Δφs(λ) by Δφs(λ) / T in (6).
Hence, this property also holds for a series of L−1 coupled Simulated Annealing
algorithms [10] where a single temperature T boils down to 0 (either after each
visited site s or at the beginning of each tour [25] .) �
It must be noticed that our Lemma gives a sufficient condition for the simul-
taneous, “level-by-level independent” minimization of posterior energies while
preserving the monotone property. We shall now prove the following property:

Lemma 2 The requirements stated by Lemma 1 are equivalent to these:
all conditional energies E(us | Ns, vs) are convex functions of grey level us ∈
[0, L− 1], for any neighborhood configuration and local observed data.

Proof: Since from (2) the total energy is “decomposable” on the levels, so are

the local conditional energies: E(us | Ns, vs) =
L−2∑
λ=0

Eλ(uλ
s | Nλ

s , vs) .
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Besides, since the local conditional posterior energy at level λ is a function of
binary variable uλ

s , it satisfies:

Eλ(uλ
s | Nλ

s , vs)− Eλ(uλ
s = 0 | Nλ

s , vs)
=
(
Eλ(uλ

s = 1 | Nλ
s , vs)− Eλ(uλ

s = 0 | Nλ
s , vs)

)
uλ

s

which yields by identification with (5):

Δφs(λ) = Eλ(uλ
s = 1 | Nλ

s , vs)− Eλ(uλ
s = 0 | Nλ

s , vs)

Now, in the transition λ→ λ+ 1, only the following level variable does change:
uλ

s = 1→ uλ
s = 0 . From the decomposition of conditional energies on levels, this

means that only the level component Eλ(uλ
s | Nλ

s , vs) does change and thus:

E(λ+ 1 | Ns, vs)− E(λ | Ns, vs)
= Eλ(uλ

s = 0 | Nλ
s , vs)− Eλ(uλ

s = 1 | Nλ
s , vs)

= −Δφs(λ)

The monotone non-increasing condition on Δφs(λ) is thus equivalent to:

E(λ+1 | Ns, vs)−E(λ | Ns, vs) is a non-decreasing function on [0, L−2]. �
Clearly both L1 + TV and L2 + TV models enjoy this convexity property and
satisfy thus the conditions of application of Lemma 1.

3 Minimization Algorithm

Although the previous section proves that the monotone property holds, it does
not provide an algorithm to compute a solution. Our algorithm makes use of
the formulation shown in equation 2 which allows independent optimizations.
A natural algorithm, presented in [8], is to optimize independently each MRF.
This leads to an algorithm which performs L−1 optimizations on binary images
whose sizes are the same as the original image.

However, one can both drastically save computations using a divide and con-
quer approach. Such an approach requires to decompose a problem into smaller
ones, then to solve these sub-problems and to recombine the sub-solutions to
get an optimal solution. Our algorithm takes benefit of the following. Suppose
we minimize at some level λ. Then, for all pixels of the minimizer we know
whether they are below or above λ. Thus it is useless to take into account pix-
els above λ for further optimizations which only allow pixels to be lower than
λ. Obviously, the same holds for pixels which are below λ. Then, every con-
nected component (it defines a partition of the image) of the minimizer can be
optimized independently from each others. The latter corresponds to the de-
composition of the problem into subproblems. Once minimizers of subproblems
are computed, they are recombined to yield an optimal solution. The recombi-
nation is straightforward since the decomposition was a partition. This process
is depicted in Figure 1. A good choice to choose the threshold level λ is to use
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(a) (b) (c) (d)

Fig. 1. Illustration of our algorithm. The partition of the image after a minimization
with respect to some level λ is shown on (a). The connected components of the image (a)
are shown on (b): it corresponds to the decomposition of the problem into subproblems.
Each subproblem is solved independently and the result is depicted in (c). Finally
solutions of subproblems are recombined to yield the image (d).

Table 1. Time results (in seconds) with L1 data fidelity term for different weighted
term β. Two time results are presented: time for our algorithm and time for the algo-
rithm presented in [8] inside parentheses.

Image β = 1 β = 2 β = 3

Lena (256x256) 0.37(7.31) 0.54(14.52) 0.72(16.41)
Lena (512x512) 1.56(31.10) 2.24(53.36) 2.84(101.33)
Woman (522x232) 0.53(16.03) 0.77(20.34) 1.03(23.86)

a dichotomic process. For instance, suppose the minimizer is a constant image,
then our algorithm requires exactly log2(L) (we suppose L is a power of two)
binary optimizations to compute it. This is in contrast compared to the L − 1
required binary optimizations of the algorithm proposed in [8].

Optimization of a binary MRF can be performed exactly and efficiently using
graph-cut techniques. It consists of building a graph such that its minimum
cut gives an optimal labelling. We build the graph as proposed in [13]. Our
implementation uses the minimum cut algorithm described in [3]. Time results
(on a 3GHz Pentium IV) for our algorithm and the one presented in [8] are given
in Table 1 for L1 fidelity. Note how our algorithm outperforms the other one.

4 Total Variation with L1 Data Fidelity

The use of total variation with L1 data fidelity has already been studied in [2,
6, 15, 16]. However, the following is new as far as we know. Note that the Ising
model fulfills the necessary condition provided that the interaction is attractive
(i.e. β is non-negative) which is the case in our problems.
As a matter of fact, due to the equivalence of the Potts framework, the initial
L1 + TV restoration model (assign gs(us) = |us − vs| =

∑L−2
λ=0 |uλ

s − vλ
s | in (3))

is equivalent to an Ising model with constant magnetic field amplitude B = 1/2
and constant interaction coefficient J = β/2 over the whole range of levels.
It was shown, first semi-empirically [23] and then rigorously [18] that the 4-
connnected chessboard model exhibits a phase transition property. Namely if
the basic cell size A satisfies: A ≤ 4J/B = 4β then two ground states occur,



A Fast and Exact Algorithm for Total Variation Minimization 357

(a) Initial binary image with various cell sizes: 4, 5, 6 and 8 (from left to right).

(b) Restored image with positive boundary conditions.

Fig. 2. Minimal energy configurations obtained by Simulated Annealing. Initial tem-
perature T0 = 16 with decreasing step = 0.98, β = 1.5 (4-connectivity).

Fig. 3. Minimizers of TV with L1 fidelity. From left to right: original image, then
minimizers for β = 1, β = 2.1, β = 3. Finally, some level lines of the minimizers (in
the same order). Only level lines multiples of 10 are displayed.

corresponding to uniform binary images. In the opposite case, the unique ground
state is the initial chessboard itself. In other words, and put in a rather “inex-
act” way, objects whose characteristic size is greater than 4β are conveniently
restored, whereas smaller objects are lost in the “background”. This property
holds on the whole range of levels for the L1 + TV model (See Fig. 2).
Moreover, it was shown in [7] that the continuous approach to this problem
generates extra grey levels outside the initial grey level range, which is obviously
not the case here. It happens because of the ε introduced in the numerical scheme
to avoid division by zero. Figure 3 depicts some results on the image woman.
Note how well the contrast is preserved and how level lines are simplified.

5 Conclusion

In this paper we have presented an algorithm which computes an exact solution
for the minization of the total variation under a convex constraint. The method
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relies on the decomposition of the problem into binary ones using the level sets of
an image. Moreover, this algorithm is quite fast. Comparison to other algorithms
with respect to time complexity must be made. Extension of this method to other
type of regularization is in progress.
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José M. Bioucas-Dias1 and Gonçalo Valadão2
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Abstract. This paper presents a new algorithm for recovering the abso-
lute phase from modulo-2π phase, the so-called phase unwrapping (PU)
problem. PU arises as a key step in several imaging technologies, from
which we emphasize interferometric SAR and SAS, where topography is
inferred from absolute phase measurements between two (or more) an-
tennas and the terrain itself. The adopted criterion is the minimization of
the Lp norm of phase differences [1], [2], usually leading to computation-
ally demanding algorithms. Our approach follows the idea introduced in
[3] of an iterative binary optimization scheme, the novelty being the cast-
ing onto a graph max-flow/min-cut formulation, for which there exists
efficient algorithms. That graph formulation is based on recent energy
minimization results via graph-cuts [4]. Accordingly, we term this new al-
gorithm PUMF (for phase unwrapping max-flow). A set of experimental
results illustrates the effectiveness of PUMF.

1 Introduction

Phase is an important property of many classes of signals. For instance, interfer-
ometric SAR (InSAR) uses two or more antennas to measure the phase between
the antennas and the terrain; the topography is then inferred from the differ-
ence between those phases [5]. In magnetic resonance imaging (MRI), phase is
used, namely, to determine magnetic field deviation maps, which are used to cor-
rect echo-planar image geometric distortions [6]. In optical interferometry, phase
measurements are used to detect objects shape, deformation, and vibration [7].

In all the examples above, in spite of phase being a crucial information, the
acquisition system can only measure phase modulo-2π, the so-called principal
phase value, or wrapped phase. Formally, we have

φ = ψ + 2kπ, (1)
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where φ is the true phase value (the so-called absolute value), ψ is the mea-
sured (wrapped) modulo-2π phase value, and k ∈ Z an integer number of wave-
lengths [2].

Phase unwrapping (PU) is the process of recovering the absolute phase φ
from the wrapped phase ψ. This is, however, an ill-posed problem, if no further
information is added. In fact, an assumption taken by most phase unwrapping
algorithms is that the absolute value of phase differences between neighbouring
pixels is less than π, the so-called Itoh condition [8]. If this assumption is not
violated, the absolute phase can be easily determined, up to a constant. Itoh
condition might be violated if the true phase surface is discontinuous, or if only
a noisy version of the wrapped phase is available. In either cases, PU becomes a
very difficult problem, to which much attention has been devoted [2], [3].

Phase unwrapping approaches belong to one of these following classes: path
following [9], minimum Lp norm [1], Bayesian [10], and parametric modelling [11].

Path following algorithms apply line integration schemes over the wrapped
phase image, and basically rely on the assumption that Itoh condition holds
along the integration path. Techniques employed to handle these inconsistencies
include the so-called residues branch cuts [9] and quality maps [2].

Minimum norm methods exploit the fact that the differences between abso-
lute phases of neighbour pixels, are equal to the wrapped differences between
correspondent wrapped phases, if Itoh condition is met. Thus, these methods try
to find a phase solution φ for which Lp norm of the difference between absolute
phase differences and wrapped phase differences (so a second order difference)
is minimized. This is, therefore, a global minimization in the sense that all the
observed phases are used to compute a solution. With p = 2 we have a least
squares method [12]. A drawback of the L2 norm is that this criterion tends to
smooth discontinuities, unless they are provided as binary weights. L1 norm per-
forms better than L2 norm in what discontinuity preserving is concerned. Such
a criterion has been solved by Flynn [13], using network programming. With
0 ≤ p < 1 the ability of preserving discontinuities is further increased at stake,
however, of highly complex algorithms.

The Bayesian approach relies on a data-observation mechanism model, as
well as a prior knowledge of the phase to be modelled. For instance in [14], a
non-linear optimal filtering is applied, while in [15] an InSAR observation model
is considered, and is taken into account not only the image phase, but also
the backscattering coefficient and correlation factor images, which are jointly
recovered from InSAR image pairs.

Finally, parametric algorithms constrain the unwrapped phase to a paramet-
ric surface. Low order polynomial surfaces are used in [11]. Very often in real
applications just one polynomial is not enough to describe accurately the com-
plete surface. In such cases the image is partitioned and different parametric
models are applied to each partition [11].

1.1 Proposed Approach

This paper proposes a new phase minimum Lp norm unwrapping algorithm, that
minimizes the Lp norm of the complete set of phase differences between neigh-
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bour pixels, with the additional constraint of being 2π-congruent with wrapped
phases.

The integer optimization problem we are led to is solved by a series of binary
elementary optimizations as presented in [3] for the ZπM algorithm. The present
approach casts, however, the optimization problem as a max-flow/min-cut cal-
culation on a certain graph, building on energy minimization results presented in
[4]. The developed algorithm is valid for p ≥ 1. Accordingly, we call the method
to be presented, the PUMF algorithm (for PU-max-flow).

2 Problem Formulation

Adopting the representation used in [3], Fig.1 shows a pixel and its four neigh-
bours along with the variables h and v signalling horizontal and vertical discon-
tinuities respectively.

Fig. 1. Representation of the pixel (i,j) and its first order neighbours along with the
variables h and v signalling horizontal and vertical discontinuities respectively.

The Lp norm of the difference between neighbouring pixels phases, 2π-con-
gruent with wrapped phases, is given by

E(k|ψ) =
∑

ij∈Z1

∣∣Δφh
ij

∣∣p vij +
∣∣Δφv

ij

∣∣p hij , (2)

where (·)h and (·)v denotes pixel horizontal and vertical differences given by

Δφh
ij =

[
2π(kij − kij−1)−Δψh

ij

]
, k ∈ Z (3)

Δφv
ij =

[
2π(kij − ki−1j)−Δψv

ij

]
, k ∈ Z (4)

Δψh
ij = ψij−1 − ψij (5)

Δψv
ij = ψi−1j − ψij , (6)

with p ≥ 0, ψ being the wrapped (observed) phase, hij = 1 − hij and vij =
1 − vij (hij , vij ∈ {0, 1}) being binary horizontal and vertical discontinuities
respectively, and (i, j) ∈ Z1 where Z1 = {(i, j) : i = 1, . . . ,M, j = 1, . . . , N},
and with M and N denoting the number of lines and columns respectively (i.e.,
the usual image pixel indexing 2D grid).

Our purpose is to find the integer image k that minimizes energy (2), k being
such that φ = 2πk + ψ, where φ is the estimated unwrapped image; k is the
so-called wrap-count image. To achieve this goal, we compute a series of graph
flow calculations for which efficient max-flow/min-cut algorithms exist.
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3 Minimizing E by a Sequence of Binary Optimizations

The following lemma, taken from [3], assures that if the minimum of E(k|ψ) is
not yet reached, then there exists a binary image δk (i.e., the elements of δk are
all 0 or 1) such that E(k + δk|ψ) < E(k|ψ).

Lemma 1 Let k1 and k2 be two wrap-count images such that

E(k2|ψ) < E(k1|ψ). (7)

Then there exists a binary image δk such that

E(k1 + δk|ψ) < E(k1|ψ). (8)

Proof. The proof follows the same line of the one given in the appendix of [3]
for p = 2, using the convexity of |x|p with respect to x, for p ≥ 1.

According to Lemma 1, we can iteratively compute kt+1 = kt + δk, where
δk ∈ {0, 1}MN minimizes E(kt+δk|ψ), until the the minimum energy is reached.

3.1 Mapping Binary Optimizations onto Graph Min-Cuts

Let kt+1
ij = kt

ij +δkt
ij be the wrap-count at time t+1 and pixel (i, j). Introducing

kt+1
ij into (3) and (4), making some simple manipulations and introducing the

obtained expressions into (2), we can rewrite energy E(k|ψ) as a function of
binary variables δkt

ij , i.e.,

E(k|ψ)=
∑

ij∈Z1

∣∣2π(δkt
ij − δkt

ij−1) + ah
∣∣p vij︸ ︷︷ ︸

Eij
h (xij−1,xij)

+
∣∣2π(δkt

ij − δkt
i−1j) + av

∣∣p hij︸ ︷︷ ︸
Eij

v (xi−1j ,xij)

, (9)

where xij = δkt
ij , a

h = 2π(kt
ij − kt

ij−1)−Δψt
ij , and av = 2π(kt

ij − kt
i−1j)−Δψt

ij .
For simplicity, let us denote for a moment terms Eij

h and Eij
v by Eij(xk, xl).

We have thus, Eij(0, 0) = |a|p dij , Eij(1, 1) = |a|p dij , Eij(0, 1) = |2π + a|p dij ,
and Eij(1, 0) = |−2π + a|p dij , where a represents ah or av and dij represents
hij or vij .
So, we also have Eij(0, 0) + Eij(1, 1) = 2 |a|p dij , and Eij(0, 1) + Eij(1, 0) =
(|−2π + a|p + |2π + a|p) dij . For p ≥ 1, termsE(xk, xl) verifyEij(0, 0)+Eij(1, 1)
≤ Eij(0, 1) + Eij(1, 0), this following from the convexity of E(k|ψ).

We are now in conditions of using Theorem 4.1 stated in [4]:

Theorem(F2 theorem) 1 Let E be a function of n binary variables from the
class F2, i.e.,

E(x1, ..., xn) =
∑

i

Ei(xi) +
∑
i<j

Eij(xi, xj). (10)

Then E is graph-representable if and only if each term Eij satisfies the inequality

Eij(0, 0) + E(1, 1)ij ≤ Eij(0, 1) + Eij(1, 0). (11)
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Proof. See the proof in [4].

From the above theorem we can now state that energy E(k|ψ) (2) is graph
representable. In fact, it has the structure of function E in Theorem 1, with null
one-variable terms. The inequality (11) was verified above.

The proof of the precedent theorem, presented in [4], shows how to con-
struct that graph. First, build vertices and edges corresponding to each pair of
neighbouring pixels, and then join these graphs together based on the additivity
theorem also given in [4].

So, for each energy term Eij
h and Eij

v (see expression 9), we construct an
“elementary” graph with four vertices {s, t, v, v′}, where {s, t} represents source
and the sink, common to all terms, and {v, v′} represents the two pixels involved
(v being the left (up) pixel and v′ the right (down) pixel). Following very closely
[4], we define a directed edge (v, v′) with the weight E(0, 1)+E(1, 0)−E(0, 0)−
E(1, 1). Moreover, if E(1, 0) − E(0, 0) > 0 we define an edge (s, v) with the
weight E(1, 0) − E(0, 0) or, otherwise, we define an edge (v, t) with the weight
E(0, 0)−E(1, 0). In a similar way for vertex v′, if E(1, 1)−E(1, 0) > 0 we define
an edge (s, v′) with weight E(1, 1)−E(1, 0) > 0 or, otherwise, we define an edge
(v′, t) with the weight E(1, 0)− E(1, 1).

In [4] it is shown that there is a one-to-one mapping between the configu-
ration of (x1, . . . , xn), and cuts leaving the source and the sink in disconnected
components; furthermore, the cost of the cut is the value of the energy on that
configuration. Therefore, minimizing the energy corresponds to computing the
max-flow. As we have shown above, building on results from [3] and from [4], we
can iteratively find an energy minimum through binary optimizations, based on
max-flow calculation on a certain graph.

Algorithm 1 shows the pseudo-code for the Phase Unwrapping Max-Flow
(PUMF) algorithm1.

4 Experimental Results

The results presented in this section were obtained by a MATLAB coding of the
PUMF algorithm [max-flow was coded in C++ (see [16])].

Fig. 2(a) displays a noisy phase image to be unwrapped; it was synthesized
from a Gaussian elevation height of 14π rad, and standard deviations σi = 15
and σj = 10 pixels. This synthesis consists of generating a pair of SAR complex
images, given the desired absolute phase surface and pair coherence [17]; this is
done according to the InSAR observation model adopted in [3]. The wrapped
phase image is then obtained, by computing the product of one image by the
complex conjugate of the other, and finally taking the argument. The correlation
coefficient, 0 ≤ α ≤ 1, of the associated InSAR pair is, in this case, α = 0.8.
This value is low enough to induce a large number of phase jumps, making the
unwrapping a very difficult task. Fig. 2(c) shows the corresponding unwrapped
surface by PUMF with p = 2. We can see that in a few iterations (eight) PUMF
successfully accomplishes the unwrapping.
1 The authors acknowledge Vladimir Kolmogorov for the max-flow/min-cut C++ code

made available on the web.
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Algorithm 1 (PUMF) Graph cuts based phase unwrapping algorithm.
Initialization: k ≡ k′ ≡ 0, possible improvement ≡ 1
1: while possible improvement do
2: Compute E(0, 0), E(1, 1), E(0, 1), and E(1, 0) {for every horizontal and vertical

pixel pairs}.
3: Construct elementary graphs and merge them to obtain the main graph.
4: Compute the min-cut (S, T ) {S- source set; T -sink set}.
5: for all pixel (i, j) do
6: if pixel (i, j) ∈ S then
7: k′

i,j = ki,j + 1
8: else
9: k′

i,j = ki,j {remains unchanged}
10: end if
11: end for
12: if E(k′|ψ) < E(k|ψ) then
13: k = k′

14: else
15: possible improvement = 0
16: end if
17: end while

Fig. 2(b) shows a wrapped phase image analogous to 2(a), but now the origi-
nal phase corresponds to a (simulated) InSAR acquisition for a (real) high-relief
mountainous area inducing, therefore, many discontinuities and posing a very dif-
ficult PU problem. Fig. 2(d) shows the unwrapped surface by PUMF. It should
be stressed that this is a very tough phase unwrapping problem, and thus a
quality map was supplied as an input discontinuity map to the algorithm. This
quality map labels each difference as 0 or 1 according, respectively, to whether
there is, or there is not, a discontinuity. PUMF accomplished the unwrapping,
taking 17 iterations, with p = 2. With this setting, the accuracy of the un-
wrapping is given by an error norm of 0.0936 (squared rads). The error norm
obtained with the WLS (Weighted Least Squares) algorithm [2] is 0.3977. This
difference is due to the fact that the WLS algorithm relaxes the discrete problem
to the continuum, before minimizing and then going back to the discrete domain,
whereas the PUMF solves exactly the integer minimization problem. The error
norm obtained with the LPN0 algorithm, the most (or among the most) accu-
rate unwrapping technique known to date [2], was 0.0986, which confirms the
outperforming accuracy of PUMF in this PU problem2.

5 Concluding Remarks

We introduced a new PU algorithm that computes exactly the 2π congruent
minimum Lp norm of any linear function of the phase neighbouring differences,

2 The error norms were calculated over the subset (of the entire image) defined by
the quality map, plus a one pixel erosion in order to cut-off mask border pixels that
usually have problems.
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Fig. 2. (a) Wrapped phase image (rad) from a Gaussian absolute phase surface of height
14π rad and standard deviations σi = 15 and σj = 10. The correlation coefficient of
the associated pair is α = 0.8. (b) Wrapped phase image (rad) from a simulated InSAR
acquisition for an area around Long’s Peak, Colorado (data distributed with book [2]).
(c) Image in (a) unwrapped by PUMF (8 iterations). (d) Image in (b) unwrapped by
PUMF (17 iterations).

for p ≥ 1. This class of energy functions includes the usual norms used in PU
and smoothing regularization functions used, for example, in image restoration.

The proposed algorithm is iterative, solving, in each iteration, a minimization
over a binary move (each pixel allowed to remain unchanged or to be incremented
by 2π). This minimization is implemented efficiently by exploiting recent results
from [4] on energy minimization via max-flow/min-cut computations on certain
graphs. In two experiments, the proposed PUMF algorithm outperformed state-
of-the-art methods.

An open issue in the performance of PUMF for p < 1. In fact, we have noticed
that, for this values of p, the algorithm is able to blindly, i.e., without supplying
discontinuities explicitly, unwrap difficult examples. This is, however, an issue
for future research.
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Abstract. One of the most common image processing tasks involves the
removal of impulse noise from digital images. In this paper, we propose
a new two step multi-channel filter. This new non-linear filter technique
contains two separate steps: an impulse noise detection step and a noise
reduction step. The fuzzy detection method is mainly based on the cal-
culation of fuzzy gradient values and on fuzzy reasoning. This phase will
determine three separate membership functions that will be used by the
filtering step. Experiments prove that the proposed filter may be used for
efficient removal of impulse noise from colour images without distorting
the useful information in the image.

1 Introduction

A fundamental problem in image processing is to reduce effectively noise from a
digital image while keeping its features intact. In this paper we mainly focus on
filtering impulse noise from digital images. Impulse noise is usually characterized
by some portion of image pixels that is corrupted, leaving the remaining pixels
unchanged.

A digital colour image (denoted by O) can be modelled in a certain colour
space. As in most applications we use the RGB colour space. Colours in this
model are represented by a three-dimensional vector, where each component is
quantified to the range [0, 2m − 1] (mostly with m = 8). In practice a digital
colour image O can be represented by a two-dimensional array of vectors where
an address (i, j) defines a position in O, called a pixel or picture element. If
O(i, j, 1) denotes the red component of a pixel at position (i, j) in an (noise-free)
imageO (respectivelyO(i, j, 2) the green andO(i, j, 3) the blue component), then
we can model the occurrence of impulse noise for colour images as:

[A(i, j, 1) A(i, j, 2) A(i, j, 3)] ={
[O(i, j, 1) O(i, j, 2) O(i, j, 3)] with prob. 1− pr

noise pixel with prob. pr

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 368–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where pr is the probability that a pixel is corrupted and where A is the corrupted
image. An impulse noise pixel for colour images can be determined as follows:

noise pixel =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[pk O(i, j, 2) O(i, j, 3)] or
[O(i, j, 1) p′

k O(i, j, 3)] or
[O(i, j, 1) O(i, j, 2) p′′

k ] or
[O(i, j, 1) p′

k p′′
k ] or

[pk p′
k O(i, j, 3)] or

[pk O(i, j, 2) p′′
k ] or

[pk p′
k p′′

k ] with ∀k ∈ {1, ..., n}; n ≤ 2m − 1

(1)

where pk, p′k and p′′k are integer values between 0 and 2m−1 (where m indicates
the amount of bits used, possibly different, to store a colour pigment).

2 Fuzzy Impulse Noise Detection

In this paper we introduce a new two step filter called “Fuzzy Impulse noise
Detection and Reduction M ethod for Colour images” (FIDRMC). In this section
we explain the detection phase for the red component (the other two are similar)
and in the next section the new filtering phase. This step uses (fuzzy) gradient
values and a fuzzy rule (see GOA filter [1]) to determine if a certain pixel pigment
is corrupted with impulse noise or not. This detection phase is an improved
version of the one we have explained in [2].
If A(i, j, 1) denotes the red component input image pixel at position (i, j), then
the definition of the gradient �(k,l)A(i, j, 1) becomes:

�(k,l) A(i, j, 1) = A(i+ k, j + l, 1)−A(i, j, 1) with k,l ∈ {−1, 0, 1},
where the pair (k, l) corresponds to one of the eight directions R ∈{N = North,
E = East, S = South, W = West, NW = North West, NE = North East, SE
= South East, SW = South West} w.r.t. the centre of the gradient (i, j) (see
Fig. 1). For each direction R we calculate the corresponding gradient value that
we simply call the basic gradient value (�RA(i, j, 1)) and two related gradi-
ent values �RA(i′, j′, 1) and �RA(i′′, j′′, 1). The centres of these two related
gradient values ((i′, j′) and (i′′, j′′)) are making a right angle with the investi-
gated direction R. Fig. 1 illustrates this principle for the North West direction
(NW ). The following fuzzy rule calculates the fuzzy gradient value (denoted by
�F

R A(i, j, 1)) for a direction R and centre (i, j):

IF | �R A(i, j, 1)| is large AND | �R A(i′, j′, 1)| is small

OR

| �R A(i, j, 1)| is large AND | �R A(i′′, j′′, 1)| is small

OR

�R A(i, j, 1) is positive AND

(
�R A(i′, j′, 1) AND �R A(i′′, j′′, 1)

)
are negative

OR

�R A(i, j, 1) is negative AND

(
�R A(i′, j′, 1) AND �R A(i′′, j′′, 1)

)
are positive

THEN �F
R A(i, j, 1) is large
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Fig. 1. Involved centres for the calculation of the related gradient values in the SE-
direction.

(a) (b)

Fig. 2. The membership functions SMALL respectively LARGE (a), NEGATIVE respectively
POSITIVE (b).

The basic gradient value will be high if impulse noise is present. Therefore
it can be used to define impulse noise. But edges or contour pixels also have
natural high gradient values and therefore we use the concept of fuzzy gradient
values.

In fuzzy logic, features like “large”, “small”, “negative” and “positive” can
be represented as fuzzy sets [3]. Fuzzy sets in turn can be represented by a
membership function. Examples of the membership functions LARGE (for the
fuzzy set large), SMALL (for the fuzzy set small), POSITIVE (for the fuzzy
set positive) and NEGATIVE (for the fuzzy set negative) are shown in Fig. 2.
The optimal parameters are [2]: c ∈ [50, 80], c′ ∈ [110, 130], a′ ∈ [−30,−20],
a ∈ [−20,−15], b ∈ [15, 20], b′ ∈ [20, 30].
Finally we use the following fuzzy detection rule to decide if a certain pixel is
(impulse) noisy or not:

IF most of the eight quantities �F
R A(i, j, 1) are large

THEN the central pixel pigment A(i, j, 1) is an impulse noise pixel pigment

This rule will be translated as: if for a certain central pixel (i, j) more than
half of the fuzzy gradient values (thus more than four for a non-border pixel)
are part of the (weak) α-level of the fuzzy set large, then we can conclude that
this pixel is an impulse noise pixel. The (weak) α-level of a certain fuzzy set
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Fig. 3. (a) A cameraman image corrupted with 20% impulse noise
(
(p1, p2, p3, p4) =

(25, 75, 200, 225)
)

(b) the corresponding histogram of the detected noisy pixels and
(c) the corresponding memberschip function impulse noise. (d) A cameraman image
corrupted with 10% impulse noise

(
(p1, p2) = (25, 225)

)
plus Gaussian noise with

σ = 5. (e) The corresponding histogram of the detected impulse noisy pixels and (f)
the corresponding memberschip function impulse noise.

FS [3] is the crisp set of all points in the universe of discourse U such that
the membership function of FS is greater than or equal to α. In order to be
as critical as possible we keep this parameter very low [2]: α ∈ [0, 0.1]. If we
have decided that a certain pixel (i, j) is corrupted with impulse noise then we
store the corresponding intensity value in a histogram. This histogram is used to
define the membership function impulse noise (denoted respectively by μred

impulse,
μgreen

impulse and μblue
impulse for the red, green and blue component). Two examples are

presented in Fig. 3. For more details we refer to [2].

3 Filtering Phase

In contrast to other well known colour filters our new filtering step is not based
on intensity values but on the differences between intensity values in the different
components. The differences are used for filtering. This is realised by using the
following matrices:

RG(i, j) = A(i, j, 1) − A(i, j, 2) RB(i, j) = A(i, j, 1) − A(i, j, 3)
GR(i, j) = −RG(i, j) GB(i, j) = A(i, j, 2) − A(i, j, 3)
BR(i, j) = −RB(i, j) BG(i, j) = −GB(i, j)
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The first iteration is illustrated in Fig. 4 for the red component only (the green
and blue components are filtered in the same way). If the output image F is the
same as the input image A then the filter method is called recursively otherwise
we call it non-recursively. In this pseudo-code (Fig. 4) we also use membership
functions impulse noise for the defined matrices. These membership functions
are defined by conjunction. For example, the membership degree μRG is the
conjunction of the membership degrees μred

impulse and μgreen
impulse. In fuzzy logic

triangular norms and co-norms are used to represent conjunctions [3] (roughly
the equivalent of AND operators) and disjunctions (roughly the equivalent of
OR operators).

4 Experimental Results

Finally we present some experimental results. We compare our method with
other well known fuzzy filters: FIRE [4] (fuzzy inference rule by else-action),
DSFIRE [5] (dual step FIRE), PWLFIRE [6] (piecewise linear FIRE), AWFM
[7] (adaptive weighted fuzzy mean), HAF [8] (histogram adaptive fuzzy), FMF
[9] (fuzzy median filter), IFCF [10] (iterative fuzzy control based filter), FSB [11]
(fuzzy similarity filter), FIDRM [2] (fuzzy impulse noise detection and reduction
method). We also compare all these fuzzy filters with the following non-fuzzy
filters: CWM [12] (centre weighted median), TSM [13] (tri-state median filter)
and the LUM [14] (lower-upper-middle filter).

As a measure of objective dissimilarity between a filtered image and the original
one we use the peak signal to noise ratio (PSNR Eq. 2 (in decibels dB)):

PSNR(Img,O) = 10 log10

3NMS2

3∑
c=1

N∑
i=1

M∑
j=1

[
O(i, j, c) − Img(i, j, c)

]2
(2)

where O is the original image, Img the filtered image of size NM and S the
maximum possible pixel value (with 8-bit integer values the maximum will be
255). Although this measure has his shortcomings w.r.t. expressing the quality
of an image as observed by human beings, they are still widely used in the
image processing community [15]. In order to get a clear idea of the performance
w.r.t. the level of impulse noise, experiments have been carried out for 5%,
10%, 15% and 20% of impulse noise. This is illustrated in Table 1 where the
numerical results for the test image Trees of size 258 × 350 are shown. The
test image is included in the Matlab package. Fig. 5 finally illustrates the main
improvement for a part of a coloured image. The main improvement can be
observed in regions with many details. Other filters introduce red artefacts at
the leaves while this new filter performs very well. Other advantages of the
FIDRM filter are: it doesn’t blur (in contrast to HAF and IFCF) and it doesn’t
destroy useful information (see the line in Fig. 5).
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Input: A =
(
A(i, j, 1), A(i, j, 2), A(i, j, 3)

)
: the noisy colour image with impulse

noise.
μred

impulse(A(i, j, 1)): the membership degree for the fuzzy set impulse noise for
the red component image at position (i, j).

μgreen
impulse(A(i, j, 2)): the membership degree for the fuzzy set impulse noise for

the green component image at position (i, j).
μblue

impulse(A(i, j, 3)): the membership degree for the fuzzy set impulse noise for
the blue component image at position (i, j).

F (i, j, 1): the red component output pixel at position (i, j).

(1) FOR each non-border pixel (i, j)
(2) IF A(i, j, 1) ∈ (weak) α-level(fuzzy set impulse noise)
(3) s1RG = 0, s2RG = 0, s1RB = 0, s2RB = 0, s1RED = 0 and s2RED = 0
(4) FOR h from −K to +K
(5) FOR l from −L to +L

(6) s1RG = s1RG +
(
1 − μRG(RG(i + h, j + l))

)
∗ RG(i + h, j + l)

(7) s2RG = s2RG + 1 − μRG(RG(i + h, j + l))

(8) s1RB = s1RB +
(
1 − μRB(RB(i + h, j + l))

)
∗ RB(i + h, j + l)

(9) s2RB = s2RB + 1 − μRB(RB(i + h, j + l))

(10) s1RED = s1RED +
(
1 − μred

impulse(A(i + h, j + l, 1))
)
∗ A(i + h, j + l, 1)

(11) s2RED = s2RED + 1 − μred
impulse(A(i + h, j + l, 1))

(12) END

(13) END

(14) corRG =
s1RG

s2RG
and corRB =

s1RB

s2RB
and resRED =

s1RED

s2RED

(15) resRG = μgreen
impulse(A(i, j, 2))

(
A(i, j, 2) + corRG

)
(16) resRB = μblue

impulse(A(i, j, 3))
(
A(i, j, 3) + corRB

)
(17) help =

resRG + resRB

μgreen
impulse(A(i, j, 2)) + μblue

impulse(A(i, j, 3))

(18) help = max(min(help, 2m − 1), 0)
(19) mem = min(μgreen

impulse(A(i, j, 2)), μblue
impulse(A(i, j, 3)))

(20) F (i, j, 1) = mem ∗ resRED + (1 − mem) ∗ help
(21) ELSE

(22) F (i, j, 1) = A(i, j, 1)
(23) END IF

(24) END FOR

Fig. 4. Pseudo-code of the first filtering iteration for the red component.

5 Conclusion

A new colour filter (FIDRMC), which is based on fuzzy logic has been presented.
This filter is especially developed for reducing all kinds of impulse noise from
digital colour images. A numerical measure, such as the PSNR (Eq. 2), and visual
observations (Table 1 and Fig. 5) show convincing results for colour images.
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Table 1. PSNR results for the (258×350-) trees image for different impulse noise levels
(5%, 10%, 15%, 20%) and different filters.

PSNR (dB) PSNR (dB)

5% 10% 15% 20% 5% 10% 15% 20%
Original 17.02 14.04 12.27 11.08 Original 17.02 14.04 12.27 11.08

CWM (3 × 3) 27.76 26.17 25.59 25.13 TSM (3 × 3) 28.58 27.32 25.28 24.73
LUM 27.48 26.87 25.94 24.81 FSB 27.21 26.56 25.76 24.53
HAF 25.71 25.41 25.15 24.81 FIRE 30.42 26.93 23.90 21.35

AWFM 27.21 25.31 23.98 21.76 IFCF 27.46 26.65 25.62 24.56
DSFIRE 29.74 28.72 27.67 25.93 PWLFIRE 31.71 27.41 23.62 20.56

FMF 32.91 29.81 27.29 24.84 FIDRM 35.87 33.35 31.38 29.81
FIDRMC 42.99 39.98 37.87 36.02

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. The restoration of a part of a realistic colour image (a) corrupted with 10% im-
pulse noise (b). The applied methods are: (c) FIDRMC, (d) component based FIDRM,
(e) component based FMF, (f) component based DSFIRE, (g) component based HAF
(h), component based AWFM, (i) component based IFCF.
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Abstract. In this work, artificial neural networks are used to clean and enhance
scanned images for a handwritten recognition task. Multilayer perceptrons are
trained in a supervised way using a set of simulated noisy images together with
the corresponding clean images for the desired output. The neural network ac-
quires the function of a desired enhancing method. The performance of this
method has been evaluated for both noisy artificial and natural images. Objec-
tive and subjective methods of evaluation have shown a superior performance of
the proposed method over other conventional enhancing and cleaning filters.

Keywords: handwritten recognition, form processing, image enhancement, im-
age denoising, artificial neural networks

1 Introduction

The field of offline handwritten recognition has been a topic of intensive research for
many years [1–4]. One of the first steps in the classical architecture of a handwritten
text recognizer is preprocessing, where noise reduction and normalization takes place.
Preparing clean and clear images for the recognition engines is often taken for granted
as a trivial task that requires little attention. However, this step undoubtedly influences
the overall performance of the system. Neural networks for cleaning and enhancing
scanned handwritten images are proposed in this work. For a review of image process-
ing with neural networks, see [5].

There exist several methods to design forms with fields to be filled in. For instance,
fields may be surrounded by bounding boxes, by light rectangles or by guiding rulers.
These methods specify where to write and, therefore, minimize the effect of skew and
overlapping with other parts of the form. These guides can be located on a separate
sheet of paper that is located below the form or they can be printed directly on the
form. The use of guides on a separate sheet is much better from the point of view
of the quality of the scanned image, but requires giving more instructions and, more
importantly, restricts its use to tasks where this type of acquisition is used. Guiding
rulers printed on the form are more commonly used for this reason. Light rectangles
can be removed more easily with filters than dark lines whenever the handwritten text
touches the rulers. Nevertheless, other practical issues must be taken into account:
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– The best way to print these light rectangles is in a different color (i.e. light yellow);
however, this approach is more expensive than printing gray rectangles with black-
and-white laser printers.

– A more economical and easier approach is to use gray rectangles printed by a black-
and-white laser printer. This produces a pattern of pixels that is more difficult to
remove.

– Very different types of handwriting instruments and different colors are used by
different users.

The work described here consists of filtering the background noise caused mainly
by gray rectangles used as guiding rulers. The proper elimination of these rectangles
makes it possible to use this approach in the design of forms to be used by handwritten
recognition systems, which is much cheaper than other approaches.

In many handwritten recognition systems, preprocessing does not require a bina-
rization step. For this reason, the images should be maintained in gray-level quality.
The enhancement of images should also correct traces with low, non uniform ink level
produced by some handwriting instruments (such as some ball pens and pencils), which
may be broken or disappear in the preprocessing.

2 The Spartacus Database

A new offline handwritten database for the Spanish language, which contains full Span-
ish sentences, has recently been developed: the Spartacus database [6] (which stands for
SPAnish Restricted-domain TAsk of CUrsive Script). There were two main reasons for
creating this corpus. First of all, most databases [7–12] do not contain Spanish sen-
tences, even though Spanish is a widespread major language. Another important reason
was to create a corpus from semantic-restricted tasks. These tasks are commonly used
in practice and allow the use of linguistic knowledge beyond the lexicon level in the
recognition process. The database includes 1 500 forms produced by the same num-
ber of writers, scanned at 300 dpi. A total of around 100 000 word instances out of a
vocabulary of around 3 300 words occur in the collection.

As the Spartacus database consisted mainly of short sentences and did not con-
tain long paragraphs, the writers were asked to copy a set of sentences in fixed places:
dedicated one-line fields in the forms. Figure 1 shows one of the forms used in the
acquisition process. These forms also contain a brief set of instructions given to the
writer.

3 Cleaning and Enhancing Method

There are several classic spatial filters for reducing or eliminating high-frequency noise
from images. The mean filter, the median filter and the closing/opening filter are fre-
quently used [13]. The mean filter is a low-pass or smoothing filter that replaces the
pixel values with the neighborhood mean. It reduces the image noise but blurs the im-
age edges. The median filter calculates the median of the pixel neighborhood for each
pixel, thereby reducing the blurring effect. Finally, the opening/closing filter is a math-
ematical morphological filter that combines the same number of erosion and dilation
morphological operations in order to eliminate small objects from images [14, 15].
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Squared neighborhoods of 3×3 pixels with center at the modified pixel were em-
ployed in the filter implementations. However, the obtained images were not satisfac-
tory enough (see Figure 2). For this reason, neural network filters [5] were used. Neural
networks were used to estimate the gray level of one pixel at a time. The input to the
network consists of a square of pixels centered at the pixel to be cleaned (see Figure 3).

“This handwritten sample
is intended to help the ex-
perimentation and testing
of computer handwriting
recognition. Please, write
using the guiding rectangle
as reference, trying not to
touch the typographic text
nor the bottom horizontal
rule. If there is not enough
space, the sentence should
be left unfinished.”

Fig. 1. An example of a filled acquisition form and the translation of the instructions given for
filling out the form.

4 Simulated Noisy Image Dataset

The main goal was to train a neural network in a supervised manner to obtain a clean
image from a noisy one. In this particular case, it was much easier to obtain a simulated
noisy image from a clean one than to clean a subset of noisy images.

The clean image database was obtained by scanning 150 white background hand-
written sentences. The handwriting instrument was specially chosen in order to obtain
uniform traces. The resolution was set to 300 dpi, which gives 32 · 106 patterns. Pixels
are codified as gray-levels in the interval [0,1], where 0 means “black” and 1 means
“white”.

The process for obtaining simulated noisy images follows the scheme presented
in Figure 4. This process requires images of the background (gray rectangles) of the
acquisition forms, which were obtained by printing and scanning the same background
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(a)

(b)

(c)

(d)

Fig. 2. An example of an original scanned image (a) and the clean images obtained with the filters:
Mean filter (b), Median filter (c), and Opening/Closing filter (d).

Fig. 3. Architecture of the artificial neural network to enhance images. The entire image is cleaned
by scanning with the neural network.

of the original forms. First, in order to simulate the variability of the traces produced by
some handwriting instruments (pencils, some ball pens, etc.), a trace noise was obtained
by generating a white noise and applying an “oil” effect [16]. This trace noise was
applied to the clean-trace image using the maximum operation, which only affects the
ink and not the white background. Secondly, the noisy-trace image was combined with
the scanned background noise to obtain the simulated noisy image. An example of a
simulated noisy image is shown in Figure 5.

5 Enhancement and Cleaning with Neural Networks

5.1 Architecture

Multilayer perceptrons (MLPs) were used for the enhancement and cleaning of images.
Only one output unit was needed to estimate the energy level (gray level) of the clean
pixel. The activation function of the units of the hidden layer(s) was the sigmoid func-
tion, while the activation function of the output unit was the identity function. Due to
the linear activation function, the output may be out of range, but, in practice, values
were in the interval [0,1].

We employed the identity function at the output layer instead of the more com-
monly used sigmoid function because the characteristics of an MLP were improved
significantly with the identity function when applied to regression problems such as
image processing (see, for example, [17]). It should be noted that using a sigmoid acti-
vation function at the output layer is useful for applications where the output is in the
form of binary values such as binarization image processing.
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MIN

"Oil" effect 2x2 smoothing

White noise

3x3 smoothing

MAX
Trace noise

Clean−trace image

Scanned background noise

Noisy−trace  image

Simulated noisy  image

Fig. 4. Simulated noisy process.

(a)

(b)

Fig. 5. (a) Clean-trace image, and (b) Simulated noisy image.

The input units consisted of a squared window of pixels centered at the pixel to
be cleaned. Neighborhoods from 2 to 5 were tested, where a neighborhood of n pixels
means a squared (2n+ 1)-sided input window to the MLP.

The entire image was cleaned by scanning all the pixels with the MLP. The MLP,
therefore, functions like a nonlinear convolution kernel. The universal approximation
property of a MLP guarantees the capability of the neural network to approximate any
continuous mapping [18].

5.2 Training the Neural Networks

The obtained simulated noisy image corpus was divided into a training set, a validation
set and a test set. The trained neural networks differed in the number of neighbor pixels
(from 2 to 5), the number of hidden layers (one or two hidden layers) and the number
of hidden neurons in each layer (from 2 to 16 hidden units). In every case, the online
version of the backpropagation learning algorithm with momentum was used. For the
same topology, several trainings were performed varying the learning rate, the momen-
tum term and using different initializations of the weights. The stopping criteria was the
mean squared error in the validation set.

6 Evaluation of the Cleaning and Enhancing Method

The proposed approach was objectively evaluated by using the simulated noisy image
dataset. We measured the “closeness” of the original image (clean) and the cleaned
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image (the simulated “noisy” image after being cleaned by each of the MLPs). This
measure was obtained by calculating the mean squared error (MSE) between each pair
of images in the test set. Figure 6 plots the MSE of all the trained MLPs. As can be
observed, the best results were achieved with many different MLPs, demonstrating the
robustness of the methodology. The best MLP (the one that obtained the lowest MSE in
test set) used 5 neighbors at the input and two hidden layers of 16 and 8 units, respec-
tively.
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Fig. 6. Mean Squared Error of the test set for the trained MLPs. The number of neighbors and the
complexity (number of weights) of the MLPs are displayed.

In order to perform a subjective evaluation of the cleaned Spartacus database, we
visually inspected a subset of the cleaned images. An example of the performance of the
proposed neural method, along with the result of the best used filter (opening/closing
filter), is shown in Figure 7. As can be seen from the examples, the result clearly im-
proves the image quality.

7 Summary and Conclusions

In this paper, we have described a generic cleaning and enhancing system for automatic
form processing using neural networks. It takes clean and simulated noisy images to
train and select the best neural network. Subjective and objective evaluations of the
cleaning method show excellent results to clean forms with printed gray-areas to indi-
cate where to fill in the information. The same idea could be used to clean and restore
other types of images, such as noisy backgrounds in scanned documents, folded docu-
ments, stained paper of historical documents, vehicle license recognition, etc.

The proposed approach should also be evaluated objectively in a goal-directed man-
ner [19], which means testing an image recognition system based on the results of our
enhancing and cleaning method. We are planning to use both a standard HMM-based
recognition system that has been developed in our research group and a commercial
product. The purpose of using more than one recognizer in the evaluation is to prove
that the improvement of performance brought about by the cleaning and enhancing pro-
cedure is independent of the features or methods that are used in the recognizers.
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(a)

(b)

(c)

(d)

Fig. 7. (a) Original image, (b) result of applying the opening/closing filter, (c) result of applying
the best MLP, and (d) Detail of the former images: Original image (left), result of applying the
opening/closing filter (middle), and the result of applying the best MLP (right).
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Abstract. In this paper we propose a fast DWT based multi-resolution texture 
synthesis algorithm in which coefficient blocks of the spatio-frequeny compo-
nents of the input texture are efficiently stitched together (quilted) to form the 
corresponding components of the synthesised output texture. We propose the 
use of an automatically generated threshold to determine the significant coeffi-
cients which acts as elements of a matching template used in the texture quilting 
process. We show that the use of a limited set of, visually significant coeffi-
cients, regardless of their level of resolution, not only reduces the computational 
cost, but also results in more realistic texture synthesis. We use popular test tex-
tures to compare our results with that of the existing state-or-the-art techniques. 
Many application scenarios of the proposed algorithm are also discussed. 

1   Introduction 

Texture synthesis is particularly useful in modeling repetitive patterns such as human 
and animal skin, stone wood marble etc.  A texture synthesis method starts from a 
sample image and attempts to produce a texture with a visual appearance similar to 
that sample, by repeated placement of micro patterns of texture elements on a surface 
so that when perceived by a human observer, it appears to be generated by the same 
underlying stochastic process. Unfortunately, creating a robust and general texture 
synthesis algorithm has been proven difficult. 

The problem of synthesizing textures has been studied extensively and numerous 
approaches have already been proposed [1-5]. The inspiration for our work comes 
form the recent, efficient algorithms proposed by Efros & Freeman [6] and Lin Ling 
& C Liu [7]. Both these algorithms use patch based sampling and Lin Ling & C Liu 
[7] addresses the problem of constrained texture synthesis. These algorithms produce 
reasonably good quality results with less computation cost compared to the other 
algorithms. In Efros & Freeman’s algorithm the output texture is formed by selec-
tively transferring randomly selected blocks of a predefined size from the input tex-
ture image. Firstly, given that the top left hand corner block of the output image has 
been appropriately formed, a subset of blocks from which a good candidate for the 
block to it’s right (assuming a raster scanned order) could be found as follows: All 
possible blocks of the same block size from the input image is matched to the first 
block (top left hand corner) of the output image, under a certain overlap. Unfortu-
nately this algorithm cannot be used for real time texture synthesis, as its efficiency is 
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relatively low. The use of exhaustive searching in choosing the best match causes 
computational power to be wasted. Due to the use of a random picking technique in 
selecting the final block to be patched with the preceding block, often the seam be-
tween the two adjacent blocks are quite visible. Even though a minimum error bound-
ary cutting technique is used to smoothen off these sudden changes in texture, it in-
volves computationally extensive methodologies such as dynamic programming and 
thus would not be suitable for real time applications. 

In order to resolve the problems discussed above, in our previous work we pro-
posed a Discrete Wavelet Transform (DWT) based multi resolution image quilting 
algorithm[8] in which coefficient-blocks of the spatio-frequency components of the 
input texture are efficiently stitched together to form the corresponding components 
of the synthesised output texture. In this paper we propose major improvements to 
this algorithm in terms of speed and the quality of synthesized texture. Important 
theoretical contributions made by Shapiro [9] to progressive encoding of images, 
namely, Embedded Zerotree Wavelet (EZW) coding, is modified and used in the 
proposed texture synthesis process. 

For clarity of presentation the rest of the paper is divided into four further sections 
as follows. Section 2 discusses the possibility of using DWT in the analysis and the 
synthesis of a texture image and summarises our previous work in this area. Section 3 
presents the proposed multiresolution framework. Section 4 provides experimental 
results and a comprehensive analysis of the results. Finally section 5 concludes, with 
an insight to possible improvements and future variations.  

2   Wavelets in Analysis and Synthesis of a Texture Image 

A texture image contains large amounts of perceptual data. Therefore the amount of 
bits required to represent one with good resolution is comparably high. Research in 
image compression technologies have proven that it is possible to produce a texture of 
near perceptual quality with only about 20-30 percent of total image data. Unfortu-
nately, identifying this significant data in the pixel domain is difficult. However, im-
ages consist of a wide range of frequency components spread throughout the human 
visual frequency band. Some of these frequency components have a significant effect 
in human perception while some others have very low significance. Existing texture 
synthesis algorithms that produce near photorealistic texture demands high computa-
tional power often taking hours to synthesize small areas of texture. This is due to the 
reason that they are based on a texture analysis in the pixel domain. The best way to 
speed up these algorithms is to identify the perceptually significant frequency bands 
and use only those frequency components in the synthesis process. This requires a 
good frequency analysis method. In our previous work we successfully demonstrated 
the efficiency of using DWT as frequency analysis technique in texture synthesis [8]. 
However in this approach, we used only the lowest resolution sub-band, i.e. LL3 (as-
suming 3 levels of decomposition), together with one of LH3, HH3 or LH3, in quilting 

two blocks in the synthesized texture. However as discussed above, there are percep-
tually important coefficients in sub-bands of higher resolution levels as well as per-
ceptually negligible coefficients in low frequency bands. As this was not accounted 
for in the above texture synthesis process, the quality of the synthesized texture was 
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not very good for certain types of textures. Further the computational power was 
wasted in considering coefficients of insignificant visual impact in the synthesis proc-
ess. In addition when using the L2 norm as the matching criteria, we do not get the 
visually best match, a problem inherited from Freeman’s method. The method pro-
posed in this paper overcomes all above shortcomings. 

3   Proposed Multiresolution Framework 

We commence with a three level DWT decomposition of the input sample texture and 
the output (to be synthesized) texture. The basic idea of proposed multiresolution 
texture synthesis algorithm is to synthesize each sub-band of the output texture by the 
corresponding sub-band of the input, sample texture. This texture synthesis procedure 
is described in detail below. 

Let ),( yxsB denote a general, block tree (see fig. 1(a), a combination of several adja-

cent wavelet coefficient trees with the root being a coefficient in LL3) of the decom-
posed sample (Note: subscript ‘s’) image, located at position ),( yx  relative to its 

origin. In our experiments we have set the block size to ll −− × 55 22  (where l = 3, num-
ber of decomposition levels). We first pick a block tree, )1,1( yxsB  randomly and place 

it in the top left hand corner of the output coefficient image (see figure 1(a)). Let this 
block tree be denoted by )0,0(oB . Subsequently we create a so-called matching mask 

tree from )0,0(oB by only selecting the coefficients higher than a pre defined threshold 

out of the right hand side edge zone of the block )0,0(oB  (see figure 1(b)). Let this 

matching mask tree be denoted by. This matching mask tree (figure 1(e)) is then 
moved around the sample image’s 3 level DWT representation in search of the best 
match. When the best match is found, the corresponding block tree (figure 1(d)) is 
picked and placed in the output representation (see figure 1(c)).  

Note that due to the use of the matching mask tree, the coefficients above the pre 
defined threshold in all sub-bands are used in matching. All coefficients below the 
threshold were disregarded in matching, regardless of whether they came from a low 
resolution sub-band or not. The matching criterion used is described as follows. 

In general, if )1,1( yxoB  and )2,2( yxsB  are two block trees to be matched, we 

say )2,2( yxsB is the best match for )1,1( yxoB  if ),( )2,2()1,1( yxsyxo BBd  is minimum for all 

possible sB block trees where,  

[ ])}()({),( 2
)2,2()1,1()1,1()2,2( ∑ ∂−∂=

iall
yxsyxoyxoyxs iBiBBBd  

(1) 

Where xB∂  is the matching mask tree of the block tree ),( yxxB  (see figure 1(c)) and i is 

the ith element in the matching mask tree. 

Determining the Threshold: Our algorithm is based on two important observations; 
(i) natural images in general have a low pass spectrum. When an image is wavelet 
transformed the energy in the sub-bands decrease as the scale decreases, so the wave-
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let coefficients will, on average, be smaller in the higher sub-bands than in the lower 
sub-bands. (i.e. higher sub-bands only add details). (ii) Larger wavelet coefficients are 
more important than the smaller coefficients. Therefore we need to find a threshold, 
which gives the minimum number of coefficients witch could result in the best possi-
ble perceptual quality. Experiments carried out by us proved that the optimum thresh-
old is dependant on the details contained in the texture. Thus we use the following 
method based on the largest coefficient in LL3 sub-band (this sub-band contains “the” 

most perceptually significant information). We use the following empirical formula to 
obtain the threshold, t. 

⎣ ⎦ 102 ))),(((log 32 yxLLMAXt =  (2) 

where MAX() means maximum coefficient value and ),(3 yxLL  denotes a general 

coefficient in 3LL sub-band. Our experiments showed that when this threshold is 

used only 10%-15% of the coefficients are selected. These coefficients contain the 
perceptually significant frequency components. 
 
Mask Creation and Best Match Selection: Once the above threshold is used to filter 
out the significant coefficients, the matching mask tree is created to be the significant 
coefficient representation of the edge zone tree (see fig. 1(b)). This mask is over-
lapped with the sample coefficient image and moved vertically and horizontally to all 

 

Fig. 1. Construction of the output texture. (a) First random block tree ( ) placed on top left
hand corner of the output  texture (b) Edge zone tree of the first block tree . (c) First random 
block tree ( ) and its best match ( ) (second block tree) placed on top left hand corner of the
output texture. (d) Best position is found and the corresponding block tree is picked (e) Match-
ing mask tree moved around the sample texture to find the best match. 
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possible locations until the best match is found. At the best location, the block tree 
adjacent to the matching mask tree is picked and placed in the output representation. 
This process is repeated until whole output texture is filled. 

4   Experimental Results and Analysis 

In order to analyse the performance of the proposed algorithm, experiments were 
performed on a widely used set of texture images, consisting of textures of both regu-
lar and stochastic nature. A typical set of sample images and the output textures ob-
tainable using the proposed texture synthesis algorithm is illustrated in figure 2. The 
results clearly indicate that the proposed method is capable of providing high quality 
texture synthesis for a wide variety of textures. The selection of publicly available 
texture images for our experiments should enable readers to compare the performance 
of our algorithm with that of others.  

Figure 3 compares the performance of proposed technique with that of Effros’s [6] 
and our previous method based on DWT [8], for two regular test images. They clearly 
illustrate the improved subjective quality performance of the proposed algorithm.  

 

 

Fig. 2. Synthesized (large) texture samples using the proposed algorithm. The corresponding 
small textures show the original texture samples. 
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                          (a)                                            (b)                                             (c) 

Fig. 3. Subjective quality comparison between textures synthesized by (a) Effros’s method (b) 
Our previous method (c) Proposed method. 

4.1   Detailed Analysis 

In contrast to the method proposed by Effros and Freeman, we have adapted a mul-
tiresolution matching strategy in selecting the adjacent blocks of the output texture. 
The use of pixel level detail [6] would not only make the texture synthesis inefficient, 
but also unsuitable for real time texture synthesis capabilities expected from modern 
imaging applications. In our previous method, we adopted all coefficients from a 
fixed number of sub-bands from the lowest level of resolution, for comparisons. 
Those coefficients, in some instances excluded certain significant high frequency 
coefficients and included certain insignificant low frequency components. Yet it man-
aged to achieve a remarkable speed in synthesis while maintaining reasonably good 
quality compared to Effros and Freeman algorithm.In the proposed algorithm when 
the threshold is lowered the numbers of coefficients included in the mask tree is in-
creased. This in turn increases the quality of synthesized texture. In the experiments 
performed we started with the threshold at its maximum value, 8×t  and gradually 
decreased. Our observations were that the quality of the synthesized texture increased 
up to a certain maximum level and lowering the threshold further, does not signifi-
cantly improve the quality of the final output texture. At the same time when the 
threshold is lowered the no of comparisons increase due to increased number of coef-
ficients in the mask tree, resulting in increased computational cost. This increases the 
synthesis time. Consequently we need to find a trade off between quality and speed. 
Empirically we found t to be the best threshold. 
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In order to maintain the global structure of the overall texture it is important to se-
lect the block size as large as possible.  This also accounts for increased efficiency of 
the algorithm as the choice of blocks available for filling the output texture becomes 
less, making the process fast.  At the same time, selection of large block sizes makes 
it increasingly difficult to find overlapping areas providing a good match, lowering 
the quality of the resulting texture. Selection of the optimum size of the block is de-
pendent on the repeating pattern contained in the texture to be synthesized. The use of 
small block sizes will increase the synthesis time. Thus in an effective implementation 
of the proposed algorithm we need to have a trade off between the image quality and 
efficiency in selecting the block size. Experiments have shown block size 88×  in LL3 

sub-band gives better results for most of the textures. 
In selecting the matching block, width of the matching mask tree (corresponds to 

the area of overlap of block trees to be matched) will also account for the quality and 
the speed of synthesis. Use of less number of overlapping elements (coefficients) 
results in increased efficiency and more visible artefacts at block boundaries. Increase 
of overlapping elements results in better quality with less artefacts and increased syn-
thesis time. However, a too extensive increase in overlapping area will result in no-
ticeable artefacts as it makes it more difficult for the algorithm to make the correct 
decision on the perceptually best matching block. In order to maintain a compromised 
situation we have adapted an overlap of a single coefficient row (or column) at level 
LL3, of decomposition. This amounts to an overlap of 8 pixel rows (or columns) in the 

pixel domain.  

4.2   Applications 

The following is a summary of applications that could benefit from the multiresolu-
tion design of the proposed fast texture synthesis algorithm. 
Progressive 2D Texture Transmission: Within a progressive transmission scenario, 
data is transmitted according to significance. The special design of the proposed tex-
ture synthesis algorithm allows DWT coefficient significance based progressive crea-
tion, transmission and reconstruction of the synthesized texture.  

Texture Mapping of Progressively Transmitted 3D Structures: MPEG 4 AFX 
standard is currently working on progressive transmission of 3D structures. Initially 
they transmit data sufficient for a coarse representation of the structure. Our algorithm 
can complement this effort by texturing that surface with minimal transmission of 
texture data. Thus, both the structure as well as the texture can be refined progres-
sively with more data transmission.  

Compressed Domain Texture Synthesis: Synthesizing a compressed output texture 
with the use of a compressed original texture sample. Useful in fast, on-demand ap-
plications.  

5   Conclusion 

In this paper we have introduced a novel approach to synthesizing textures under a 
multi resolution framework. We have provided experimental results and an in-depth 
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analysis, proving that the proposed method works remarkably fast, producing  better 
output texture quality as compared to the method proposed in [6,8].  The multiresolu-
tion nature of the proposed framework also makes it easily applicable to modern im-
aging applications needing progressive transmission capabilities.  

In designing the above multi-resolution texture synthesis algorithm we have made 
a compromise between the synthesised texture quality and the algorithmic complexity 
by not performing seamless edge construction algorithms as in [6] and [7]. However 
due to the multi-resolution approach and the novel matching criteria adopted, we have 
managed to obtain perceptually equivalent (or better) synthesised texture quality to 
that of [6,7] at a much less computational complexity. We are currently looking at the 
implementation optimisation of the algorithms and the use of fast, simple, seamless 
edge cutting/construction algorithms. We are also in the process of applying the idea 
to handle the texture synthesis part omitted from consideration in the fast 
MESHGRID coding algorithm of [10], which has been a key contribution to the 
MPEG-4 AFX coding standard.  This is expected to extend the applicability of the 
MESHGRID algorithm to full, fast, multi-scalable 3D object/surface coding.    
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Based on Video Abstraction and Temporal Modeling 

Kisung Lee 

Kongju National University, Kongju, Korea 
klee@kongju.ac.kr 

Abstract. This paper presents a novel scheme of object-based video indexing 
and retrieval based on video abstraction and semantic event modeling. The pro-
posed algorithm consists of three major steps; Video Object (VO) extraction, 
object-based video abstraction and statistical modeling of semantic features. 
Semantic feature modeling scheme is based on temporal variation of low-level 
features in object area between adjacent frames of video sequence. Each seman-
tic feature is represented by a Hidden Markov Model (HMM) which character-
izes the temporal nature of VO with various combinations of object features. 
The experimental results demonstrate the effective performance of the proposed 
approach. 

1   Introduction 

As the Internet grows explosively, needs of multimedia processing such as image, 
audio, and video data, are also increasing rapidly. Therefore analysis and representa-
tion of multimedia contents become more and more important issues. MPEG-7, the 
representation standard enables flexible access and manipulation functionalities of 
audio/visual data in a unified manner. To make it more useful and efficient for real-
world applications, multimedia indexing and retrieval schemes have been emphasized 
as filtering and interfacing tools for this standard. 

Although many works [1, 2] have been done in the area of content-based image in-
dexing, video object(VO)-based area has not been fully explored. As the research of 
multimedia indexing advances more and more, demands for bridging the gap between 
low-level perceptual features and high-level concepts become increasingly important 
issues. By composing semantically meaningful features from various low-level fea-
tures, it is possible to build more advanced indexing and retrieval system equipped 
with automatic annotation functionality. Currently, some recent works in video index-
ing area deal with both object-based approach and semantic feature composition              
[3-5]. 

Video abstraction is another important issue for high-level feature modeling. A 
video abstraction is defined to be a sequence of still or moving images (with or with-
out audio) presenting the content of a video in such a way that the respective target 
group is rapidly provided with concise information about the content while the es-
sence of the original message is preserved [6]. While it has been adapted to video 
skimming or browsing applications of most indexing and retrieval systems, we ap-
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plied this technique as a filter for following feature extraction step, since it reduces 
temporal data redundancy of video sequence and helps semantic models to concen-
trate on apparent changes of object features in time domain as the object-based ap-
proach does similar function in spatial domain. 

From the motivations described above, this paper describes an approach which in-
tegrates VO extraction, object-based abstraction, and high-level semantic feature 
modeling. 

2   System Overview 

Fig. 1 is the block diagram of the proposed approach. 
First step is object segmentation to extract interesting area, i.e. VO, for indexing 

and retrieval. There are two different scenarios for the applications of content-based 
video extraction and analysis. One is a change-detection-based VO extraction algo-
rithm that is appropriate for video sequences with stationary background. The other is 
an object tracking-based method, which is more suitable for video sequences with 
moving background. While the algorithm for stationary background is operated auto-
matically, the latter is done by semi-automatic manner, i.e. the algorithm needs first 
frame with manually segmented object mask and starts tracking the object in the con-
secutive frames. In our approach, two novel algorithms proposed in [7] are exploited 
to cover both types of applications. 

 

 

Fig. 1. Block diagram of object-based semantic feature indexing/retrieving system 

After VO extraction, object-based video abstraction is performed, which can pro-
vide the abstracted manner to represent video sequence efficiently with all the gists in 
a video preserved. Main advantage of abstraction is to reduce the data redundancy 
from video shot and to provide reliable feature data for following feature extraction 
and modeling stage. The approach proposed in [8] was utilized for this step. 

Final step is semantic feature extraction to bridge the gap between low-level fea-
ture and high-level concept to some extent. There are three components of blocks in 
this stage. At first, perceptual features such as shape, motion, etc are collected as 
input of semantic-level feature composition. Then, HMM is modeled and trained to 
create advanced features with these data. The dotted lines in Fig. 1 explain query 
process. In the case of query, video clips are commonly processed through extraction, 
abstraction and low-level feature extraction steps. Then, extracted low-level features 
are fed into previously trained probabilistic models and classified into nearest ones. 
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3   Semantic Feature Modeling 

The main advantage of video features beyond image ones is that video features in-
clude the temporal information on the attributes of each video frame through the 
whole sequence. By characterizing temporal variations of features between objects in 
adjacent frames, semantic features can be modeled to some extent. 

This section describes the proposed semantic feature composition method. Since 
we consider the algorithm for generalized applications, extracted VO needs to be 
processed for normalization prior to feature extraction. For perceptual features, we 
mainly focus on shape and motion of VO because they represent the characteristics of 
VO quite well if VO can be extracted precisely with acceptable noise. By composing 
these features with HMM, semantically meaningful event is composed, trained, and 
tested by query process. The following subsections present those procedures in detail. 

3.1   Preprocessing 

In order to compensate the global camera motion dominating through whole frame, 
the area of extracted object is considered as “interesting domain” for features. There-
fore we start from normalization of VO area in terms of object size and COG(Center 
of Gravity).  

COG is calculated with Eq.(1) on the extracted object mask image ),( yxB  which 

contains 0 for background and 1 for foreground. 
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where w and h are width and height of image B  respectively. 
Distance from COG to end points of x, y directions in each frame is calculated by 

Eq. (2)  as follows. 

),max( max,min,, COGttCOGtx xxxx −−=Δ , ),max( max,min,, tCOGtCOGty yyyy −−=Δ  (2) 

where t=1,…,T and T is total frame size of abstracted video, and 
txmin,
 and 

tymin,
 are 

minimum x, y coordinate positions where object mask exists in frame t.  And same 
expressions are applied to 

txmax,
 and 

tymax,
 as well. max,xΔ and max,yΔ which are 

maximun values of tx,Δ and 
ty ,Δ for all t, are considered as normalized distance from 

COG in  x, y direction. The original image frames are cropped in x, y direction with 
the length of 

tx,Δ  and 
ty ,Δ  respectively, then are resampled into predefined VO area 

size so that all the video clips can be normalized with same size for further process-
ing. 

3.2   Shape Features 

3.2.1   Moments of Boundary Segments 
The shape of boundary segments is one of the major perceptual features that can rep-
resent the property of an object in an image. A semantic event can be modeled by 
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exploring the temporal variation of an object shape through the whole frames within a 
shot. The shape of boundary segments can be described quantitatively by using mo-
ments, entropy, and so on [9]. Let the amplitude of the shape boundary be a random 
variable r , and amplitude histogram Rxxpr ,...,1),( = . Then, i-th central moment of 

r  is defined as  
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where  first moment of  r is 
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It has been well known that first few moments are required to differentiate between 
boundary signatures of clearly distinct shapes. The second moment 

2μ  has been re-

garded as a measurement of the spread of the curve about the mean value of r  and 
the third moment 

3μ  measures its symmetric property with respect to its mean value. 

As shown in Fig. 2, after extraction of boundary signature of an object, it is divided 
into N equally spaced 1-D blocks for each frame.  Therefore the signature divided by 
each block can be treated as a boundary segment. The first moment (Eq. (4)), and 
second and third central moments(Eq. (3)) are calculated for each boundary segment. 
By considering moments in multiple segments, we can put spatially correlated fea-
tures together and produce more reliable features than considering whole object 
boundary as one segment at the expense of number of features. 

 

     
                              (a)                     (b)                                          (c) 

Fig. 2. Moments feature extraction from  segments of boundary signature. (a) binary mask of 
normalized object, (b) extracted boundary, (c) segmentation of 1-D boundary signature: x axis 
is  degree of angle, y axis is relative value of the boundary signature 

3.2.2   UFF(UNL Fourier Features) 
Drawback of moments of boundary signature is that they are applicable to only some 
part of the pattern if the object has holes inside the object area or deep bays along 
with its boundary. For instance, in Fig. 2, the concave boundary of lifted leg are an 
insurmountable limit for these features. Well-known Fourier descriptors(FD) also 
have similar limitations as signatures. A further drawback of FDs are that the patterns 
are limited to only closed curves.  

In order to compensate these drawbacks, more generalized shape descriptors called 
UFF(UNL Fourier Features) are applied as the second shape features. A method de-
noted as UNL transform, performs a nomalization operation for translation and scale 
changes and causes rotations to appear as periodic translations in the transformed 
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representations of the pattern. This procedure creates an optimal input for a 2-D Fou-
rier image transform which yields the numerical descriptors called UNL Fourier Fea-
tures, and consequently permits the mapping of any shape to a single vector(or point 
in an n-dimensional space). The definition and properties of UFF in detail is described 
in [10]. 

Besides its general-purpose applicability to various kinds of 2-D patterns including 
open, multiple curves, and curves with holes, UFF has been reported to outperform 
other boundary-based shape descriptors in image processing area by some experimen-
tal works [11]. 

3.3   Motion Features 

The procedure for motion feature extraction consists of two steps. In first step, motion 
vectors are extracted for each pixel by hierarchical block matching (HBM) algorithm 
[12] as shown in Fig. 3 (c). Since we regard object mask area as only interesting do-
main, it is truncated by Eq.(5). (See Fig. 3(d)) 

),(),( yxMVyxMVobj =   if  ,0),( >yxNR  

                                    
0),( =yxMVobj

  otherwise, (5) 

where NR(x,y) is normalized object image produced by preprocessing step. 
Now, the 

objMV  is divided into equally spaced MxN regions so that it can preserve 

spatially correlated motion features together. Motion vectors of x and y direction are 
considered as different features. Therefore total 2MN features per frame are extracted 
for motion. First moments of x, y motion vectors in each segment are calculated for 
these features. 

3.4   Temporal Modeling of Features 

HMM(Hidden Markov Model) has been successfully utilized in speech recognition 
area and was applied to some image and video applications such as gesture recogni-
tion, similarity-based image indexing, video shot detection, and so on [13]. This sto-
chastic automata was exploited in this paper for modeling semantic feature by fusing 
perceptual features.  

In our approach, we regard VO of a frame as a rigid-body object at the specific 
time instant, gather a series of feature vectors of these rigid bodies through video 
sequence, and characterize a semantic model by differentiating their temporal varia-
tions between adjacent frames.  

After obtaining perceptual features described previously for each frame, a feature 

vector to
�

, where t is a frame number, is formed by serializing those features for each 

frame. An observation sequence 
TooO
���

,....,1= , where T is total number of frames 

produced by previous abstraction step, is built by arranging those feature vectors 
through the all frames.(See Fig. 4) The feature sequence calculated on each video clip 
for the particular semantic feature are used to train individual HMM model. Due to 
the sequential nature of video in time domain,  the semantic models are designed into 
left-right HMM in general. 
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                                               (a)                                                  (b) 

    
                                               (c)                                                  (d) 

Fig. 3. Motion feature extraction. (a-b) Adjacent frames of bowling sequence after abstraction. 
(c) Motion vectors between (a) and (b). (d) Motion fields after applying object mask 

 

Fig. 4. Creation of observation sequence for hidden Markov model (HMM) 

4   Results 

Video sequence for query consists three types of semantic events, downhill skiing, 
golf swing and ski jump. Each clip was segmented by object tracking algorithm which 
was explained in Section 2. After segmentation step, extracted VO sequence was 
abstracted by clustering analysis that was described in [8]. Fig. 5(a) and (b) shows the 
results of these steps respectively.  
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(a) 

 
(b) 

Fig. 5. Results of VO Extraction(a) and Abstraction(b) of a golf swing clip 

We applied our approach to modeling semantic events based on temporal varia-
tions of human behaviors within a video sequence. 

In training stages, five different types of events (downhill skiing, golf swing, pitch-
ing, bowling, and ski jump) were modeled, which are based on temporal changes of 
object body in sequential manner. To make the HMM more reliable, we extracted the 
VOs with manual interactions in some video clips such as pitching and bowling, both 
of which have complex and fast moving backgrounds. Sometimes, it is useful in train-
ing stage so that it may preserve the homogeneities and prevent the potential data 
corruption caused by segmentation errors. 

For moment features, the object boundary of each frame was divided into ten 
blocks. First moment, second and third central moments were calculated for each 
boundary segment block. Therefore, 30 features were used for each frame. Motion 
features were also divided into two equally spaced domains in x, y directions and 
formed four regions. First moment of motion vectors of x and y were explored as 
statistical information on these features and formed 8 features for motion. For UFF, 
76 coefficients were considered. Therefore, by combining all the features above, ob-

servation vector to
�

 is created with total 114 elements. Seven states were used for 

downhill skiing and ten for the others. 
Table 1 shows the experimental results of the proposed approach. In the experi-

ment, to begin with, 76 UFF features was tested first to classify the event among 5 
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different categories. As a result, one golf clip, two ski jump clips and one bowling 
clips were misclassified. The results means that fusion of multiple features which can 
represent various aspect of object behavior, is needed for more reliable detection of 
high level features. In the last column of Table 1, we combined all 3 types of features 
and demonstrated that the detection ratio was improved. The algorithm missed only 
one ski jump clip while all the other 32 clips correctly categorized. 

Table 1. Classification Results: Two right-most columns represents the number of clips which 
were correctly classified 

 
 

Training 
sets 

Query 
sets 

UFF 
UFF 

Moments 
Motions 

Downhill  24 6 6 6 

Golf swing 19 4 3 4 

Ski jump 15 5 3 4 

Pitching 20 9 9 9 

Bowling 14 9 8 9 

5   Conclusion 

In this paper, an integrated approach has been proposed for object-based video index-
ing and retrieval scheme. The abstraction algorithm applied in the proposed approach 
provides good compression of redundant information from video shots and yields 
reliable feature data as input to high level feature modeling. Semantic feature model-
ing based on temporal variation of perceptual features of VO was also described. The 
proposed algorithm was tested by modeling semantic events based on human behav-
iors. The experiments have shown promising results and good prospect in developing 
advanced level feature indexing systems. 

For future works, we will make more experiments on features for semantic model-
ing and develop feature refinement algorithms by exploring feature selection methods. 
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Abstract. In creating a new multimedia asset, specially a video, some decisions
have to be made: a selection of the portions of the original footage that might
be included, how to order them, how to crop each portion in order to reach the
desired length and how to stitch all these pieces together. All these decisions con-
stitute the core of the so called Editing Decision List, where all these actions are
stored for the record. In this paper the authors show that the list of editing deci-
sions can be used as the basis for indexing and retrieving videos from a database;
more specifically, we show that a timeline created from the EDL is a valid and
sufficient descriptor for identifying a video among a huge population, assuming
a minimum duration. We demonstrate, as well, that this descriptor has a very
good behavior in terms of robustness given different bit and frame rates, sizes
and re-encoding processes. Indexing and retrieval using this descriptor is tested
in a IPMP application for TV broadcasting.

1 Introduction

Research community is devoting a lot of efforts to develop new paradigms for querying
visual databases (typically still and moving pictures) in order to retrieve this visual
material using languages which are consistent with the contents to be retrieved. One
of the most promising lines of work is the QBE (Query By Example) paradigm, where
a piece of visual information is used to launch the query; after that, automatic feature
extraction and processing is performed to extract visual cues that will be compared
with the database contents. One of the most critical aspects to be taken into account in
developing such systems is the kind of visual cues that must be extracted in order to
achieve effective indexing and retrieval; of course, this decision should be guided by
the definition of similarity within the system.

The question of the similarity definition is linked with the goal of the database
system: very often this goal is to resemble as much as possible the selection process
that a human operator would carry out in developing the same task as the database
manager. However, there are other type of tasks where this human resemblance lays in
a second plane, being the main objective to identify or detect the query object.

Being the case of a system for identity detection, different possibilities can be intro-
duced: requirements can ask for a one-to-one identity detection, or part-to-one (where
identity must be detected even when just a part of the database object is presented as
the query). Typically, in a part-to-one application objects in the database comprise mas-
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sive information, like books (find a sentence within a volume) or, and that’s the case
described in this paper, videos (find a video containing this segment).

In this paper the authors introduce a database system that works under these con-
straints: QBE paradigm, identity detection for the 100% of the cases and the necessity
of performing part-to-one identifications, working with a video database. Additionally,
the descriptors we introduce are robust under different video source transformations,
like bitrate reduction, frame rate reduction, spatial reduction and re-coding, conditions
that perfectly resemble a real multiband, multiplatform distribution environment.

Section 2 summarizes the state of the art in video indexing and retrieval, Section
3 analyzes the proposed descriptor, Section 4 describes algorithms for comparing such
descriptors and Section 5 describes the test application built and the results obtained.
Finally, in Section 6 a brief set of conclusions are presented.

2 Related Work

Video indexing is a problem that has been widely addressed by the image processing
research community. Traditionally, the main focus of attention in the QBE field has been
the definition of a similarity rating procedure, assuming that the concept of similarity is
centered on resembling the human perception. Being this the objective, research lines
have mainly followed the path of searching among visual cues in order to find those
with stronger power in describing perceptual similarity. Henceforth, most of the work
has dealt with such visual cues, mainly three: color, shape and motion [1].

Once these visual cues are extracted, the following step is synthesizing a similar-
ity function that gathers all this information and generates a unique similarity rating.
Depending on the application, type of query and other factors, this similarity function
can be generated in many different ways; the simplest one could be applying euclidean
distance to each couple of feature vectors, while the most complex one could be gener-
ated trying to resemble human perception, and even dynamically adjusted by means of
mechanisms as relevance feedback [2][3].

Given the fact that a complete video usually contains diverse kinds of footage, in
terms of color, shape and motion variety, the common approach is to split the clip in ho-
mogeneous segments, having homogeneous values of each of these features. The way
to reach such segmentation is to find and consider each shot separately, using differ-
ent algorithms focused in different kinds of transitions. Usually, these transitions are
grouped in: hard cuts, fades, dissolves and wipes [4].

However, few work can be found on managing huge databases for footage iden-
tification, leaving apart the concept of similarity and replacing it with the concept of
identity. Normally, it can be stated that visual cues have a good discriminant power in
order to achieve this goal, but carrying excessive computational costs, both in terms of
extraction, storing and handling, since descriptors trends to be massive even for short
clips. Usually, finding the identity comprises less information that finding similarity,
and therefore reduced feature sets can be used for achieving the same result.

3 Video Descriptor

The process of querying a database depends on how the database must be explored in
order to build the result set [5]. There are some cases where the query and the corre-
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sponding exploration of the database can be set to return just one element, the so called
exact match or point query. This could be the case of a database system working on the
identification of the query item, e.g. a face detection application for access control. This
is the kind of the application framework that have inspired the work presented herein.
Therefore, our first objective is to find a descriptor or descriptors with the maximum
robustness in locating identities within a huge database.

Extended Analysis of Requirements for Retrieval

Retrieved Set. The query must generate either a single match in the database, the case
when the query object already exist in the database, or none, the case when it
doesn’t. This means that result must be submitted to a thresholding process, where
the similarity measure found between the query object and the retrieved asset is
validated to determine if the match is real.

Time Restrictions. This requirement has a double implication: computation time of
the descriptor and matching time on large databases. The computation of the de-
scriptor must rely on video content, so given the huge amount of data that a video
comprises, this is a very time consuming task. On the other hand, seeking the
database is a problem whose complexity grows exponentially as the population
increases. In our case, the applications must work in real time so our descriptor
must be kept as simple as possible taking into account that the objective is not to
reach an interpretation of the video content, but to determine whether it is or is not
in the database.

Matching Restrictions. As it was stated in the introduction section, it is necessary
to be able to match parts of videos. Considering that this part can belong to any
moment in the original video, the number of possible matching combinations grows
exponentially.

Tolerance Requirements. Videos can be extracted from different types of channels
or compressed using different codecs or bitrate values. Hence, the descriptor must
be flexible enough to allow matching of non-identical videos. The implications
concern mainly to the descriptor comparison algorithm.

Description by Detected EDL. Videos are complex elements, comprising a huge
amount of data which can be structured at different levels of representation, ranging
from pixels to segments. Therefore, the task of comparing a pair of such elements is
correspondingly complex, since comparison can be performed on the basis of any level
of representation [6].

In this paper the authors introduce the timestamp of edition effects as a sufficient
and robust descriptor that we have called detected EDL, or detected Edit Decision List1.
By edition effect we mean any transition between shots or any effect that is considered
relevant enough to be included in the timeline. Similar algorithms are used for different
identification tasks, as the discid algorithm used by the freedb database to identify music
albums.

1 Edit Decision List is a record explaining which pieces of original footage have been used and
how they have been stitched together to build a clip.
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Edition Effects. It is widely accepted that there are three main edition effects that sum
up the 95% of the grand total: hard cuts, fades and dissolves. Hard cuts are relatively
easy to find at a relatively low computational cost. Fades and dissolves require specific
detection algorithms with low performance, in terms of a bad balance between false
positives and missed effects, in addition to high computational. This poor performance
along with he fact that around 90% of shot transitions are hard-cuts, as it is stated in
[4], made us choose only hard cuts to build up the detected EDL timeline.

To detect hard cuts, the algorithm presented in [7] is used. It computes the difference
between consecutive frames color histograms obtaining a temporal series of values that
represent color change from a frame to the following along all the video. Detecting a
hard-cut is as easy as detecting local maxima in this series.

Analysis Flaws. The CHD algorithm introduced above has a slight error rate that needs
to be properly handled by the application. The query sample provided will not be nor-
mally extracted from the same source as the object stored in the database, as they rep-
resent different instances of the same original material; the differences can be produced
due to variations on different media types, coding algorithms, bitrates, framerates, in-
terlacing and so on. Therefore, it is possible that the detected EDL varies for different
instances of a video due to precision issues of the detection algorithm (causing a number
of non-corresponding effects between the two timelines):

– An effect was detected in the database object but not in the query object: produced
by a false positive in the first or by a missed effect in the second.

– An effect was not detected in the database object but was in the query object.
– An effect was detected in both instances but with not exactly at the same video time:

this can be produced by recordings at different bitrate or framerate, or recordings
using different algorithms.

Descriptor Implementation. Given a video clip V , let its Detected EDL (DEDL) be
TV = {t1, t2, t3, ...,tN} , where ti stands for the amount of time units between hard cuts
Hi−1 and Hi. This information will be stored in the database for featuring a video, and
extracted from a query object as search key. Notice that the timeline store differences
between consecutive elements. Being hi the time at which the Hi hard cut is detected,
the descriptor is built up by storing ti=hi-hi−1, as stated before, defining h0 = 0, the
beginning of the clip. This definition brings several advantages:

Storage Size. Time stamps need to be stored with subsecond precision. If absolute
time values are stored, the representation of time stamps at the end of long videos
will increase dramatically storage size (and thus decrease performance). By storing
differences, values tend to be smaller.

Ease of Comparison. When comparing timelines, it is common to come into cases
as the one show in figure 1. In it, the maximum similarity value is not found in the
first position of the timeline. If dealing with absolute time stamps, a reference must
be chosen and all time stamps need to be recomputed. In our timeline model there is
no need to modify time stamps because the reference is always the previous value:
performance is greatly improved.
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In the next sections, a deep analysis of the use of this descriptor as a tool for video
comparison is provided.

4 Timeline Comparison

Our application will normally deal with large timelines (coming from an input video
broadcast), and will compare it with a big set of much smaller timelines (from the
copyrighted videos database). In this scenario, comparing a very short timeline to a
much larger one could provide a similarity value close to 1, if the shorter timeline is a
part of the larger one, as shown in figure 1.

Fig. 1. Comparing different sized timelines. If the shorter is part of the larger, a high similarity
value is produced.

Additional constrains arise because of accuracy problems in hard-cut detection. Two
different copies of the same material may produce a different result when applied to the
hard-cut detection algorithm. Two kinds of tolerance are introduced:

– Time deviation tolerance: to deal with slight differences in position of detected hard
cut caused by deviations in the stream flow or by the hard-cut detector.

– Hard-cut missing tolerance: to deal with missed and false detections introduced by
the video analyzer. The importance of missing one time stamp, or having an extra
one, should not be considered in a local extent but globally.

Most of the previous work was created to find similarity between character strings.
Considering each element of the timeline a letter in an appropriate alphabet such meth-
ods can be applied in the general timeline case. These classical methods are mainly
based in measuring distance between corresponding elements in the timelines (ham-
ming distance) or finding the longest subsequence of elements that is included in both
timelines (longest common subsequence). This kind of algorithms get poor results when
the sequences being are likely to include missing elements. A better idea is to provide
the option of applying transformations to the sequences. The “edit distance method”
performs the measurement in a very different fashion using the idea of transformations.
Three basic transformations are provided: insertion, deletion and change. Each trans-
formation has a penalty value (e.g. hamming distance, for changes). By using these
transformations more robustness in the presence of missing hard-cuts is achieved. As
the requirements for each application made comparison a very specific problem, two
new methods have been created to improve results obtained with classical methods.
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Fig. 2. Similar time addition method. Similar hard-cuts are shown in black, tolerated hard-cuts
in grey, and different hard-cuts in white. Here the first tolerated hard-cut takes into account an
“hard-cut missing” tolerance, and the second one takes into account a “temporal tolerance”.

Fig. 3. Morphing distance based method. To be able to transform the first timeline, T 1, into the
second, T 2, we need to move a hard-cut (1), merge two shots (2), and split a shot into two (3).

Similar Time Addition. When two sequences have a high similarity value then they have
a large number of equally placed hard-cuts. An intuitive way to measure the similarity
value between two sequences at a certain position, is to measure the total amount of
similar time, which is the sum of all the shot duration between hard-cuts equally placed
in both. A tolerance value, which can be computed as a function of the time since the
last hard-cut, is set to deal with slight timeline differences (see figure 2).

A similarity coefficient can be obtained by computing the duration of matched shots.
A penalty value, 0 ≤ ωcost ≤ 1, can be applied to the extra duration obtained thanks to
tolerance values. Then we can define a coefficient similarity as:

Similarity =
matched shot time+ ωcost tolerated shot time

Clip length

Morphing Distance. This distance represents the minimum amount of transformations
needed to transform a sequence into another. If two sequences are similar, fewer trans-
formations are needed, and the “morphing distance” will be smaller.

Firstly, it is necessary to define the allowed transformations in this method (see fig-
ure 3). Each video is divided into shots, each of them defined as the segment between
two consecutive hard-cuts. The first transformation is splitting a segment in two. This
transformation allows to deal with hard-cut detection misses and it is equivalent to in-
troducing a new hard-cut. The second transformation is merging two segments together.
This is the opposite case and allows to deal with hard-cut false detection. The last trans-
formation is shifting the position of a hard-cut. It allows to deal with small differences
of hard-cut timestamp detection. Each transformation has an associated cost. The cost
of the operations can be defined depending on the application. In our case, the merge
operation is set to 1, the split operation is set also to 1 and, finally, the cost of a move
operation will depend on the distance moved. For this last operation, a tolerance value
can be set so a hard-cut can be freely moved within that environment.
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The similarity value between two timelines, T1 and T 2, with lengths |T1| and |T 2|
respectively, is defined as:

Similarity =
Cost of all the transformations

min(|T 1|, |T2|)

An interesting improvement to this method is to assign a variable cost to “merge”
and “split” operations depending on their neighborhood. When the neighbor hard-cuts
are well matched, the cost is reduced, thus taking into account that it is possible to detect
some false or missing hard-cuts.

5 Results

5.1 Descriptor Generation

Generation of the descriptor can be performed much faster than real time. Computation
time depends mainly on spatial and temporal resolution. Temporal resolution (frame
rate) has a direct linear impact on the final time because it defines the number of frames
that will be processed by the algorithm. Spatial resolution affects also linearly to com-
putation time (as it grows, processing each frame takes more time). It is important to
note that hard-cut detection accuracy is not severely affected by a significant quality
decrease, allowing to perform this stage very fast.

5.2 Matching Accuracy

In this section, a comparison of the algorithms discussed in section 4 is provided. The
goal of the first set of tests was to find out the best algorithm for comparing sequences.
Though the similarity value found with all of them is very good, the morphing distance
algorithm was chosen because it is able not only to get high similarity values with
similar videos but also it is able to get low values for different videos. A brief summary
of the results is shown in table 1. To test matching accuracy, several versions of the
same video have been generated, changing spatial and temporal resolutions as well as
quality. These have been fed to the morphing algorithm. Results are shown in table 2.

Similarity values obtained by the morphing algorithm are quite good. Reducing
both bitrate and spatial resolution in the incoming video, in order to save the descriptor
computation time, does not produce a significant decrease of similarity, which remains

Table 1. Timeline comparison algorithms performance. When comparing similar timelines, all
algorithms find high similarity. For different timelines, morphing shows the best behavior.

Algorithm Similarity for variations of same video Similarity for a different video

Hamming 98.51% 27.48%
Edit Distance 99.19% 23.54%
Similar Time 98.73% 19.36%

Morphing 99.95% 12.09%



408 José San Pedro, Nicolas Denis, and Sergio Domı́nguez

Table 2. Morphing algorithm matching accuracy, Database Size: 30 videos (mean video duration
 3min30sec).

Video Frame Rate Bit Rate Resolution Duration (sec) Similarity

V1 25 2000 352x288 272 100%

V1 25 1000 200x150 272 95.35%
V1 12 2000 352x288 272 92.19%

V1 (Segment) 25 2000 352x288 20 96.54%
V1 (Different Encoder) 25 2000 352x288 272 97.72%

V2 25 2000 352x288 272 12.09%
V1 in large incoming Stream 25 250 352x288 1844 90.02%

above 90%. The same applies to the frame rate reduction. It is important to notice the
great similarity value obtained for a segment of the original video (entry number 2). It
is also important to remark the low similarity value found for a different video.

6 Conclusion

This paper introduces a video descriptor and a comparison function, both easy to extract
and robust, that allows to perform fast identity retrieval from a database, in contrast to
similarity based retrieval. The proposed retrieval system obtains good identity values
even when querying variations of the original content (lower frame rate or quality). It
can be stored in a database, along with other relevant information of the video, using
the MPEG-21 standard.
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delrey@usal.es

Abstract. A new secret color image sharing scheme based on two-
dimensional memory cellular automata, is proposed. Such protocol is
of a (n, n)-threshold scheme where the secret image to be shared is con-
sidered as one of the initial configurations of the cellular automata. The
original idea is to study how a reversible model of computation permits
to compute the shares and then using the reverse computation in order
to recover the original image. The scheme is proved to be perfect and
ideal, and resistant to the most important attacks such as statistical at-
tacks.

Keywords: Cellular automata, Cryptography, Image processing, Secret
sharing.

1 Introduction

Secret sharing schemes are cryptographic procedures to share a secret among
a set of participants in such a way that only some qualified subsets of these
participants can recover the secret. Such schemes were independently introduced
by Shamir ([13]) and Blakley ([3]) and their original motivation was to safeguard
cryptographic keys from loss. Currently, there are many applications in different
areas such as access control, opening safety deposit boxes, etc.

The basic example of secret sharing scheme is the (k, n)-threshold scheme,
where k and n are integer numbers such that 1 ≤ k ≤ n. The structure of this
scheme is as follows: There exists a mutually trusted party (or a dealer) which
computes n secret shares from an initial secret and securely distributes them
into n participants in such a way that any k or more of these participants who
pool their shares may easily recover the original secret, but any group knowing
only k − 1 or fewer shares are unable to recover the secret. Shamir’s scheme,
which is based on polynomial interpolation, and Blakley’s scheme, based on the
intersection of affine hyperplanes, are examples of (k, n)-threshold schemes.

A (k, n)-threshold scheme is perfect if the knowledge of any k − 1 or fewer
shares provide no information about the original secret. Moreover, a (k, n)-
threshold scheme is ideal if the size of every share is equal to the size of the
shared secret. For a more detailed description of these schemes we refer the
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reader to [10], [14], and [15]. The first scheme proposed to share images was
based on visual threshold schemes k of n (see [12]) and is called visual cryptog-
raphy. This visual scheme is perfect but not ideal since the size of the shared
images is bigger than the original one. Moreover, in the visual schemes, there is
a great contrast loss between the secret image and the recovered one.

Furthermore, visual secret sharing schemes have been proposed for several
applications. For example, in [5] a method for intellectual property protection
of grey level images is presented, and a scheme to share multiple secrets by
using digital images is proposed in [18]. A recent secret sharing scheme for grey-
level images which elaborates shares of smaller size than the original image is
presented in [16]. It is based on Shamir scheme, but the grey value range is
limited to only 250 levels. Finally, in [6] another algorithm for sharing images,
not based on the visual cryptography, has been proposed.

In this work we use a particular type of two-dimensional delay discrete dy-
namical systems, called two-dimensional memory cellular automata, in order to
share a secret color image. The main features of the proposed scheme are two: (i)
The shares obtained for each participant have the same size as the secret image,
and (ii) The recovered image is exactly the same as the original one, that is,
there is no loss of resolution. The use of cellular automata to design cryptosys-
tems goes back to the mid-80s ([20]). In the recent years many cryptographic
protocols have been proposed (see, for example, [2], [4], [7], [8], [9], [11], [19]).

The remainder of the paper is organized as follows: In Section 2, the basic
definitions about memory cellular automata are introduced; in Section 3 the
secret sharing scheme based on memory cellular automata is presented, and its
security analysis is given in Section 4. The conclusions are shown in Section 5.

2 Two-Dimensional Memory Cellular Automata

Two-dimensional finite boolean cellular automata (2D-CA for short) are discrete
dynamical systems formed by a finite two-dimensional array of r × s identical
objects called cells, in such a way that each of them can assume a state, which
is an element of a finite set, S = Z2. The (i, j)-th cell is denoted by 〈i, j〉, and
the state of this cell at time t is given by a(t)

ij . The 2D-CA evolves deterministi-
cally in discrete time steps, changing the states of all cells according to a local
transition function. The updated state of each cell depends on the variables of
the local transition function, which are the previous states of a set of cells, in-
cluding the cell itself, and constitutes its neighborhood. In this work extended
Moore neighborhoods are considered; that is, the eight nearest cells to the cell
〈i, j〉 and itself are considered. This neighborhood will be denoted by Vij . As a
consequence, the local transition function takes the following form:

a
(t+1)
ij = f

(
V

(t)
ij

)
, 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1,

where V (t)
ij stands for the states of the neighbor cells of 〈i, j〉 at time t:

V
(t)
ij =

{
a
(t)
i−1,j−1, a

(t)
i−1,j , a

(t)
i−1,j+1, a

(t)
i,j−1, a

(t)
ij , a

(t)
i,j+1, a

(t)
i+1,j−1, a

(t)
i+1,j , a

(t)
i+1,j+1

}
.



A New Secret Sharing Scheme for Images 413

The matrix C(t) =
(
a
(t)
ij

)
is called the configuration at time t of the 2D-CA, and

C(0) is the initial configuration of the CA. Moreover, the sequence {C(t)}0≤t≤k is
called the evolution of order k of the 2D-CA, and C is the set of all possible con-
figurations of the 2D-CA; consequently |C| = 2r·s. As the number of cells of the
2D-CA is finite, boundary conditions must be considered in order to assure the
well-defined dynamics of the cellular automaton. In this work periodic boundary
conditions are taken: if i ≡ u (mod r), and j ≡ v (mod s), then a(t)

ij = a
(t)
uv . The

global function of the 2D-CA is a linear transformation, Φ : C → C, that yields
the configuration at the next time step during the evolution of the 2D-CA, that
is, C(t+1) = Φ

(
C(t)

)
. If Φ is bijective then there exists another cellular automa-

ton, called its inverse, with global function Φ−1. When such inverse 2D cellular
automaton exists, the 2D-CA is called reversible and the backward evolution is
possible ([17]).

Let us consider the set of 2D-CA whose local transition function takes the
following form:

a
(t+1)
ij =

∑
α,β∈{−1,0,1}

λα,βa
(t)
i+α,j+β (mod 2) ,

where 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1, and λα,β ∈ Z2. These are called 2D linear
cellular automata (2D-LCA for short). As there are 9 cells in the extended Moore
neighborhood, then there exist 29 = 512 different 2D-LCAs, and every one of
them can be conveniently specified by a decimal integer called rule number: ω,
which is defined as follows:

ω = λ−1,−128 + λ−1,027 + λ−1,126 + λ0,−125 + λ0,024

+ λ0,123 + λ1,−122 + λ1,021 + λ1,120,

where 0 ≤ ω ≤ 29−1. Note that the 2D-LCA with ω = 16 stands for the identity.
The standard paradigm for 2D-CA claims that the state of every cell at time

t+1 depends on the state of some cells (its neighborhood) at time t. Nevertheless,
one can consider 2D-CA for which the state of every cell at time t+ 1 not only
depends on the states of some cells at time t but also on the states of (possibly)
another different groups of cells at times t− 1, t− 2, etc. This is the basic idea
of two-dimensional memory cellular automata ([1]), 2D-MCA for short. In this
work, we consider a particular type of 2D-MCA called k-th order linear MCA
(2D-LMCA for short) whose local transition functions takes the following form:

a
(t+1)
ij =

k∑
l=1

fl

(
V

(t+1−l)
ij

)
(mod 2) , (1)

with 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1, and fl is the local transition function of a
particular 2D-LCA. In this case, the configurations C(0), . . . , C(k−1) are called
initial configurations of the k-th order 2D-LMCA.

It is a well-known fact (see [1]) that if fk

(
V

(t−k+1)
i

)
= a

(t−k+1)
i , then the

2D-LMCA given by (1) is a reversible CA, whose inverse 2D-CA is another k-th
order 2D-LMCA with local transition function:
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a
(t+1)
ij =

k−2∑
m=0

fk−m−1

(
V

(t−m)
ij

)
+ a

(t−k+1)
ij (mod2) ,

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1.

3 The Secret Sharing Scheme for Images

In this section we propose a new secret sharing scheme. It consists of a (n, n)-
threshold scheme such that the color image to be shared, I, is one of the initial
configurations of a reversible n-th order 2D-LMCA, specifically C(n−1). The
remainder initial configurations, C(0), . . . , C(n−2), are n− 1 random matrices of
the same size as I. The shares to be distributed among the n participants are n
consecutive configurations of the evolution of the LMCA.

An arbitrary image I defined by a × b pixels, pij , with 0 ≤ i ≤ a − 1,
0 ≤ j ≤ b − 1, and c colors, can be considered as a configuration, for example
C(t), of a 2D boolean cellular automata with r × s cells as follows:

1. If I is a binary image, i.e. c = 2, then a(t)
ij = 0 if the pixel pij is black, and

a
(t)
ij = 1 if the pixel pij is white. As a consequence, in this case r = a and
s = b.

2. If I is a grey-level image, then c = 28 and the RGB code of each pixel pij

can be defined by eight bits. Hence, C(t) is an a × (8 · b) boolean matrix,
that is, r = a and s = 8 · b. A similar configuration appears if the image is
defined by 256 colors.

3. Finally, if I is a color image defined by c = 224 colors, then each pixel is
given by 24 bits. As a consequence C(t) is an a × (24 · b) boolean matrix,
and, obviously, r = a and s = 24 · b.

3.1 Structure of the Scheme

The procedure to share secret images by means of LMCA is divided into three
phases: The setup phase, the sharing phase, and the recovery phase.

The Setup Phase

1. The mutually trusted party determines a sequence of n integer numbers:
{ω1, . . . , ωn}, such that ωn = 16, and the remaining values 0 ≤ ωl ≤ 511,
with 1 ≤ l ≤ n − 1, can be generated by a random bit generator. These
n numbers stand for the rule numbers of the 2D-LCA constituting the 2D-
LMCA used.

2. The mutually trusted party constructs the reversible n-th order 2D-LMCA
with local transition function:

a
(t+1)
ij =

n∑
l=1

fωl

(
V

(t+1−l)
ij

)
(mod 2) , (2)

where fωj is the local transition function of the 2D-LCA with rule number
ωl, 1 ≤ l ≤ n, and 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1.
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3. The secret image to be shared is considered as the initial configuration
C(n−1), and the mutually trusted party computes the remaining n − 1 ini-
tial configurations: C(0), . . . , C(n−2), by using a random bit generator. These
n− 1 configurations must be destroyed after generating the shares.

The Sharing Phase

1. The mutually trusted party chooses an integer number m, such that is public
and m ≥ n. For efficiency, m must be closer to n in order to reduce the
number of iterations of the cellular automaton.

2. Starting from the initial configurations C(0), . . . , C(n−1), the mutually
trusted party computes the (n+m−1)-th order evolution of the 2D-LMCA:{

C(0), . . . , C(n−1), C(n), . . . , C(m), . . . , C(m+n−1)
}
.

3. The shares to be distributed among the n participants are the last n con-
figurations computed: S1 = C(m), . . . , Sn = C(n+m−1). Note that m ≥ n is
considered to avoid overlapping between the initial configurations and the
shares.

4. Each participant receives the 3-uplets (i, ωi, Si), in order to construct the
inverse function of the local transition function given by formula (2).

The Recovery Phase

1. To recover the secret, C(n−1), all the 3-uplet
(
i, ωi, Si = Cm+i−1

)
, for i =

1, . . . , n, are needed.
2. The secret, C(n−1), is obtained by taking C̃(0) = C(m+n−1), . . . , C̃(n−1) =
C(m), and iterating m times the inverse 2D-LMCA.

3.2 An Example

In this section, we present an example for the proposed scheme by using a grey-
level image with 512×512 pixels (see Fig. 1). For the sake of simplicity, we have
computed the protocol for the values n = 2 = m, and we have obtained two
shares (see Fig. 1). The recovered image is exactly the same as the original one.

Fig. 1. The original image and its shares.
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4 Security Analysis

The security of the proposed scheme is considered in this section. In particular,
we prove that the scheme is ideal and perfect, and we show that it resists the
most important statistical attacks.

4.1 The Scheme Is Ideal and Perfect

As the size of every distributed image share is equal to the size of the secret
image (recall that both are configurations of the same 2D-LHCA), the proposed
scheme is ideal.

Furthermore, the scheme is also perfect since if only one configuration of the
form C(t−i), with 0 ≤ i ≤ n − 1, is unknown, say for example C(t−n+1), then
there is no information about the configuration C(t+1) as the evolution of the
2D-LMCA is given by the following linear system:

a
(t+1)
ij = bij + a

(t−n+1)
ij (mod 2) , 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1,

where bij = fω1

(
V

(t)
ij

)
+ . . .+ fωn−1

(
V

(t−n+2)
ij

)
.

Consequently, it is formed by r · s equations with 2r · s unknown variables:
a
(t+1)
ij , a

(t−n+1)
ij , 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1. Hence it can not be solved and,

obviously, no information about the configuration C(t+1) =
(
a
(t+1)
ij

)
, where

0 ≤ i ≤ r − 1, 0 ≤ j ≤ s− 1, is obtained. Note that a similar result holds if the
number of unknown configurations is greater than one. As a consequence, for
the secret sharing scheme proposed it is impossible to recover the secret image
starting from n− 1 (or less) shares.

4.2 Statistical Analysis

We have studied statistical analysis in order to prove the confusion and diffusion
properties of the proposed scheme, which allows it to strongly resists statistical
attacks. This analysis is performed by a test on the histograms and by the
correlations of adjacent pixels of the original image and its shares.

The histograms of the original image and the shares given in Fig. 1 are shown
in Fig. 2. One can see that the histograms of the shares are fairly uniform and
they are significantly different from the histogram of the original image.

Fig. 2. Histograms of the original image and its shares.
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Table 1. Correlation coefficients of two adjacent pixels.

Original Image Share 1 Share 2

Horizontal 0.9802 0.0399 0.0015

Vertical 0.9840 −0.0240 −0.0394

Diagonal 0.9576 −0.0009 0.0063
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Fig. 3. Correlation of diagonally adjacent pixels.

To test the correlation between two adjacent pixels in the images, we have
randomly selected 1000 pairs of two vertically adjacent pixels, 1000 pairs of two
horizontally adjacent pixels, and 1000 pairs of two diagonally adjacent pixels, for
the original image as well as for its shares. In each case, we have computed the
correlation coefficient of each pair and the results obtained are shown in Table 1.
One can see that the correlation coefficients are far apart. For example, in the
original image, the correlation coefficient for two horizontally adjacent pixels is
0.9802, which is very near to 1, as it was expected. Nevertheless, in the two
shares, these coefficients are 0.0399 and 0.0015, respectively, that is, these are
very close to 0.

Finally, Fig. 3 shows the correlation distribution of two diagonally adjacent
pixels in the original image and in its shares.

5 Conclusions

In this paper we have studied the application of a reversible model of computa-
tion, based on two-dimensional reversible linear memory cellular automata, to
define a new (n, n)-threshold scheme for image sharing. We have proved that it is
ideal and perfect since the size of the shares to be distributed to the participants
and the size of the secret image are equal, and no information about the secret
is obtained if n− 1 or less shares are known. Moreover, we have shown that the
scheme resists the most important statistical attacks. Now, we are working in
extending the previous scheme to more general k of n schemes, where k < n.
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Abstract. Based on the study of patterns used in many fast algorithms for the 
block-matching motion estimation (BMME), a new search pattern, TP (Triangle 
Pattern), was introduced in this paper. TP is a simplified SP (Square Pattern), so 
it has almost the same performance as SP. By combining TP with DP, a fast 
BMA (BMME Algorithm), DTS (Diamond-Triangle Search), was also pro-
posed in this paper. DTS well exploits the motion correlation between the adja-
cent blocks, the directional characteristic of SAD(Sum of Absolute Difference) 
distribution, and the center-biased characteristic of motion vectors to speed up 
the BMME. Experimental results show that the proposed DTS algorithm can 
reduce the computational complexity of the BMME remarkably while incurring 
little, if any, loss in quality. 

1   Introduction 

Motion estimation and compensation are very important components of video coding. 
They are used to eliminate the temporal redundancy information between successive 
frames so as to improve the encoding efficiency greatly. BMA(BMME Algorithm) is 
a widely used motion estimation algorithm and it was adopted by many video-coding 
standards such as MPEG-1/2/4, H.261, H.263 and H.264/AVC etc. [1] [2]. The most 
basic BMA is the full search (FS). Although FS can find the best matching block by 
exhaustively testing all the candidate blocks within the search window, its computa-
tion is too heavy: experimental results demonstrate that the time of the BMME con-
sumed by FS in H.264 is about 60% to 80% of the total. In order to speed up the 
BMME, many researchers have been working hard for many years and have proposed 
many kinds of fast BMAs.  

Most of the fast BMAs find the best matching block (or point) by using some spe-
cial search patters. For example, TDLs(Two-Dimensional Logarithmic Search) uses 
cross “+” pattern; [3]; CSA (Cross-Search Algorithm)[4] and DSWA(Dynamic 
Search-Window Adjustment) [5] adopt “X” and “+” pattern; TSS(Three-Step 
Search), NTSS (New TSS) [6], 4SS (Four-Step Search) [7], and BBGDS(Block-
Based Gradient Descent Search)[8] employ square pattern; DS(Diamond Search) 
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exploits diamond pattern [9]; HEXBS(Hexagon-Based Search) adopts hexagon pat-
tern [10]; etc.  

Based on the study of search patterns used in many fast BMAs, we proposed a fast 
BMA, which is based on diamond and triangle search patterns, in this paper.  

The remainder of this paper is organized as follows. In section 2, we briefly ana-
lyze the DS algorithm. The proposed DTS algorithm is described in Section 3. Simu-
lation results are presented in Section 4. Finally, a conclusion is given in the last sec-
tion. 

2   Analysis of DS Algorithm 

The DS algorithm is one of the most famous fast BMAs, it was adopted and incorpo-
rated in MPEG-4 verification model. S. Zhu et al. pointed out in [9] that over 50% of 
the motion vectors are enclosed in a circular area with a radius of 2 pixels and cen-
tered on the position of zero motion as illustrated in Fig. 1. 

 

 

Fig. 1. Motion vectors distribution 

The DS algorithm employs two search patterns as illustrated in Fig.2. The first pat-
tern, called large diamond search pattern (LDSP), comprises nine checking points 
from which eight points surround the center one to compose a diamond shape. The 
second pattern consisting of five checking points forms a smaller diamond shape, 
called small diamond search pattern (SDSP). In the searching procedure of the DS 
algorithm, LDSP is repeatedly used until the step in which the minimum block distor-
tion (MBD) occurs at the center point. The search pattern is then switched from 
LDSP to SDSP as reaching to the final search stage. Among the five checking points 
in SDSP, the position yielding the MBD provides the motion vector of the best 
matching block. 

By analyzing the DS algorithm, we found that it has the following limitations: 

• It doesn’t utilize the directional characteristic of SAD(Sum of Absolute Differ-
ence) distribution fully, so it will waste partial time to find the best matching 
block with large motion. 

• It doesn’t employ the center-biased characteristic of motion vectors(i.e. most of 
the motion vectors are centered on the position of zero motion), so it will take 
thirteen search points to find the best matching block with zero motion, and in 
this case, the ideal search points is only five. 
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(a) LDSP                        (b) SDSP 

Fig. 2. Two search patterns employed in the DS algorithm 

In short, the efficiency of the DS algorithm is not so high. So we developed a 
novel fast BMA, DTS, in this paper. 

3   Diamond-Triangle Search Algorithm 

3.1   DTS Patterns 

The proposed DTS algorithm adopts two search patterns adaptively in the process of 
motion search. The first pattern, called DP(Diamond Pattern, as shown in Fig.3(a)), 
comprises five checking points from which four points surround the center one to 
compose a diamond shape. The second pattern consisting of three checking points 
and covering the MBD point obtained in the previous search step(as shown in 
Fig.3(b)) forms a triangle shape, called TP(Triangle Pattern). In the process of motion 
search, DP is used to refine the motion vectors and it is necessary no matter than the 
motion vector being small or big, while TP is used to locate the best matching block 
with large motion approximately and it can be disused if the motion vector is zero. 

 

         
(a) DP                                    (b) TP 

Fig. 3. Two search patterns employed in the proposed DTS algorithm 

3.2   DTS Algorithm 

The proposed DTS algorithm has the following technical characteristics. Firstly, the 
initial search center is formed according to the predicted motion vector of the current 
block by the adjacent blocks. Secondly, DP and TP are adaptively employed accord-
ing to the motion extents of macro blocks. The details about DTS algorithm are de-
scribed as follows. 
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1)   Predict the initial search point by the adjacent blocks 
In order to reduce the search points for the best matching block with large motion, we 
use the median motion value of the adjacent blocks (as Fig.4 shows) to predict the 
motion vector of the current block. The median prediction is expressed as for-
mula (1). 

 

        
(a) i                             (b) i-1 

Fig. 4. Reference block location for predicting motion vector 

)_,_,_(_ CmvBmvAmvmedianmvpred =  (1) 

• If Ai and Di are outside the picture, their values are assumed to be zero. 

• If Di, Bi, and Ci are outside the picture, the prediction is equal to A. 

• If Ci is outside the picture or still not available due to the order of vector data, 

Ci is replaced by Di. 

• If Ai, Bi, Ci and Di are outside the picture, the prediction is equal to the value of 

the co-located block in the previous frame (i.e. Ei-1 as shown in Fig.4 (b)). 

2)  Employ DP and TP adaptively according to motion extents of macro blocks 
Based on the assumption that most of the macro blocks in an image sequence of real 
world would be quasi-stationary or stationary, the DTS algorithm adopts DP at the 
first search step. If the best matching motion vector is zero, the DTS algorithm needs 
only 5 search points to find out. Otherwise, in order to judge whether the best match-
ing motion vector is large or not, the DTS algorithm employs the TP which covers the 
MBD point obtained in the previous step at the second search step. If the new MBD 
point is located in one of the vertexes of DP, it indicates that the best matching mo-
tion vector would be small, DP is repeatedly used until the step in which the MBD 
occurs at the search center point. Otherwise, do the same as the beginning. 

The DTS algorithm is summarized as follows. 
Preparation: Use Formula (1) to predict the initial motion vector of the current 
block, and set the initial search center point according to the predicted value. 
Step1: Dispose DP at the search center, and test the 5 checking points of DP (as 
shown in Fig. 3(a)). If the MBD point calculated is located at the center position, go 
to step4; otherwise, go to step2. 
Step2: Dispose TP at the search center according to the MBD point obtained in the 
previous step, and test the 2 checking points of the TP which covers the MBD point 
obtained in the previous search step (as shown in Fig.3 (b)). If the new MBD point is 
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still located at one of the four vertexes of DP, go to step3; otherwise, the new MBD 
point is re-positioned as the search center point, go to step1. 
Step3: The new MBD point found in the previous search step is re-positioned as the 
search center point. Dispose DP at the search center, and test the 3 checking points of 
DP. If the MBD point calculated is located at the center position, go to step4; other-
wise, recursively repeat this step. 
Step4: Stop searching. The center point is the final solution of the motion vector 
which points to the best matching block. 

3.3   Analysis of the Proposed DTS Algorithm 

For BMME, computational complexity could be measured by average number of 
search points required for each motion vector estimation. According to the statistical 
distribution law of motion vectors in different images sequences, assume that the best 
matching point is located in the circle area as shown in Fig.1, the least search points 
needed for DS and DTS are listed in Table 1. 

Table 1. Comparison of search points near the initial search center for DS and DTS 

 the best matching point is located in the 

 center 
Circular area 
with a Radius 

of 1 pixel 

Circular area 
with a Radius 
of 2  pixels 

Circular area 
with a Radius 

of 2 pixels 

DS 13 13 16 18 

DTS 5 10 12 13 

 
From Table 1 we observe that the least search points needed for DTS is always 

less than that of DS, and the reduced search points is always 3~8. 
If the best matching point is located outside the circular area with a radius of 2 

pixels, the least search points needed for DTS is still less than that of DS. This could 
be seen from the practical search path. Fig.5 gives a search path example which leads 
to the motion vector (-4,-2) for DS and DTS. 

Although the average number of searched points can reflect the computational 
complexity of motion search, we use the CPU time (i.e. CPU clock cycles/frequency) 
consumed by the BMME to measure its computation complexity in practice for the 
fairness. In order to compare the speed of DTS with other BMAs, we use the speed 
improvement ratio (SIR) which is defined as follow: 

%100×
−

=
refBMA

DTSrefBMA

T

TT
SIR  (2) 

Where TDTS represents the total CPU time consumed by the proposed DTS algo-

rithm, and TrefBMA denotes the total CPU time consumed by the reference block match 

motion estimation algorithm. The CPU time is measured by accumulating the CPU 
clock cycles occupied by the corresponding block-match motion estimation algo-
rithm. 
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� �

(a) DS uses five search steps – four times of 
LDSP and one time SDSP at the final step. 
There are 24 search points in total –taking 
nine, five, three, three, and four search 
points at each step, sequentially.�

(b) DTS uses six search steps – two times 
of TP and four times of DP. There are 19 
search points in total – taking five, two, 
four, two, three, and three search points at 
each step, sequentially.�

Fig. 5. Search path example which leads to the motion vector (-4,-2) for DS and DTS 

Table 2. SIR  values of our DTS algorithm versus FS and DS 

 DTS/FS DTS/DS 

 QP=28 QP=32 QP=36 QP=40 QP=28 QP=32 QP=36 QP=40 

Akiyo 98.25 98.09 97.85 97.66 42.80 44.17 44.66 46.96 

Foreman 98.49 98.32 98.04 97.77 32.34 32.90 32.57 31.57 

Mobile 99.03 98.89 98.69 98.50 31.97 31.09 30.75 26.71 

Coastguard 99.00 98.86 98.71 98.60 33.35 33.72 32.24 35.22 

4   Simulation Results 

Our proposed DTS algorithm was integrated within version 7.6 of the H.264 software 
[11], and it is compared versus FS, and DS. Even though many image sequences are 
tested in the experiment, only four of them are selected out to be compared. The 
CABAC(Context-Adaptive Binary Arithmetic Coding) entropy coder [12] was used 
for all of our tests, with quantization parameter (QP) values of 28, 32, 36, and 40, a 
search range of ±32, and 2 references. 

The four selected sequences are Akiyo(Quarter Common Intermediate Format, 
QCIF), Foreman(QCIF), Mobile(CIF), and Coastguard(QCIF). The former 100 
frames of every sequence are tested, and only the first frame was encoded as I(inter)-
frame, while the remainders are encoded as P(predictive)-or B(bi-predictive)- frames. 
The video sequence type is IBBPBBP…. To simplify our comparison, we have used 
SIR(Speed Improvement Ratio) and RD(Rate Distortion) performance plot as shown 
in Table 2 and Fig.6 respectively.  

From Table 2 and Fig.6 we can observe that the computational complexity of the 
proposed DTS algorithm decreased about 97.66% to 99.03% with about 0.06dB on 
average loss in PSNR (Peak Signal to Noise Rate) compared with that of FS; or about 
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26.71% to 46.93% with about 0.17dB on average gain in PSNR compared with that 
of DS. Although the proposed DTS algorithm can also be trapped in local minima, 
the experimental results demonstrate that it is faster and better than DS. 

5   Conclusions 

Based on the directional characteristic of SAD distribution and the center-biased 
characteristic of motion vectors, a fast BMA, DTS, is proposed in this paper. The 
proposed DTS algorithm adaptively employs TP to locate the best matching block 
with large motion approximately, and DP to refine the motion vectors. Experimental 
results show that the proposed DTS algorithm can reduce the computational complex-
ity of the BMME remarkably while incurring little, if any, loss in quality.  
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Abstract. This paper presents a novel method for constructing non-
separable wavelet filters. The high frequency sub-bands of non-separable
wavelet transform can reveal more features than that of the common
used separable wavelet transform. Then, we describe a blind watermark-
ing scheme which is based on discrete non-separable wavelet transform
(DNWT). More coefficients of DNWT can add watermark than that of
discrete separable wavelet transform (DSWT). Experiment results show
that the DNWT watermarking scheme is robust to noising, JPEG com-
pression, and cropping. Especially, it is more resistant to sharpening than
DSWT scheme. Furthermore, by adjusting the threshold such that the
number of the DSWT coefficients to embed watermark is not less than
the number of the DNWT coefficients, the performance of DSWT to
sharpening is still worse than the DNWT. Such adjustment also dramat-
ically decreases the robustness of the DSWT scheme to noising.

1 Introduction

Digital watermarking has been proposed to solve the problem of copyright pro-
tection. Recent research has shown that watermarking in wavelet domain has
some advantages over other watermarking approaches (see [2], [4], [5] and refer-
ences therein). Almost all the literatures of wavelet based watermarking schemes
use discrete separable wavelet transform (DSWT) to embed watermark. How-
ever, the property of anisotropy makes separable wavelet unattractive for the
purpose of watermarking, which demands the extraction of more features of the
image. The high frequency sub-bands of non-separable wavelet transform can
reveal more features than that of the common used separable wavelet transform.
We propose to embed watermark by discrete non-separable wavelet transform
(DNWT) in this paper.

Many efforts have been spent on constructing non-separable wavelets (see [3]
and references therein). However, up to now, there is still no systematic method
to construct two-dimensional non-separable wavelets. Even for the construction
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of non-separable wavelets supported over [0, 3]× [0, 3], we have to deal with an
implicit constrained condition (see Eq. (11) in [3]).

In this paper, we present a novel method for constructing two dimensional
orthogonal wavelet filters begin with one dimensional wavelet filters but non-
separable can be achieved.

The non-separable wavelet filters derived from our method are applied for
watermarking still images. We describe a blind watermarking scheme which is
based on the method given by Dugad [2] but embeds the watermark by DNWT.
We add the watermark to all coefficients in the high frequency sub-bands above
a threshold. For the same threshold, watermark (pseudo-random codes) will be
added to more coefficients in the DNWT watermarking scheme than that in the
DSWT one. Experiments show that the DNWT watermarking scheme is robust
to some distortions such as noising, JPEG compression, and cropping. In partic-
ularly, it is more resistant to sharpening than DSWT scheme. By adjusting the
threshold such that the number of the DSWT coefficients to embed watermark
is not less than the number of the DNWT coefficients, the response on sharpen-
ing is still worse than the DNWT. However, such adjustment will dramatically
decrease the robustness of the DSWT scheme to noising.

We present a method for constructing non-separable wavelet filters by one
dimensional orthogonal wavelet filters in Section 2. In Section 3, we describe the
watermark embedding approach and the detection method. Experimental results
are presented in Section 4. The conclusion is given in Section 5.

2 Construction of Non-separable Wavelet Filters

To construct two-dimensional orthogonal scaling function φ(x, y), we need to
construct orthogonal low-pass wavelet filter {p(k1,k2)} such that∑

k1,k2∈Z

p(k1,k2) = 4, and
∑
k1,k2

p(k1,k2)p(k1+2γ1,k2+2γ2) = 4δ0,γ1δ0,γ2 . (1)

To construct the associated orthogonal wavelets ψj(x, y) (j = 1, 2, 3), we need
to construct orthogonal high-pass wavelet filters {qj

(k1,k2)
} (j = 1, 2, 3) such that∑

k1,k2

p(k1,k2)q
l
(k1+2γ1,k2+2γ2)

= 0, (2)

∑
k1,k2

ql1
(k1,k2)q

l2
(k1+2γ1,k2+2γ2) = 4δ0,γ1δ0,γ2δl1,l2 , (3)

where l, l1, l2 = 1, 2, 3, and γ1, γ2 ∈ Z. A sequence {p(k1,k2)} is called non-
separable low-pass wavelet filter if it satisfies (1), and its mask P (ω1, ω2) =
1
4

∑
k1,k2

p(k1,k2)e
−iω1k1e−iω2k2 is nonseparable.

Let ϕ(x) be the compactly supported one-dimensional orthogonal scaling
function, which satisfies the equation

ϕ(x) =
∑
n∈Z

hnϕ(2x− n) (4)
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where {hn} is a finite sequence, such that
∑

n∈Z

hnhn+2s = 2δ0,s. Then ψ(x) =∑
n∈Z

gnϕ(2x− n) is the associated orthogonal wavelet, where gn = (−1)nh1−n.

Theorem 1. For k = 1, 2, choose integers ak, bk, ck, dk, sk, tk, lk and uk,
such that |ak| = |bk| = |ck| = dk|, plus sk + tk and lk + uk are odd. Define the
sequence {p(k1,k2)} as follows:

p(i,j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2nh2m if i = 2a1n+ s1 and j = 2a2m+ s2,
h2n+1h2m if i = 2b1n+ t1 and j = 2c2m+ l2,
h2nh2m+1 if i = 2c1n+ l1 and j = 2b2m+ t2,
h2n+1h2m+1 if i = 2d1n+ u1 and j = 2d2m+ u2,
0 otherwise.

(5)

If the difference of any two evens and any two odd in sk, lk, tk, uk can be divided
by ai, then {p(k1,k2)} defined above is an orthogonal low-pass wavelet filter.

Theorem 2. Suppose that {p(k1,k2)} is a sequence constructed in Theorem 1.
We define the sequences {qj

(k1,k2)} (j = 1, 2, 3) as follows

q1(i,j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2ng2m if i = 2a1n+ s1 and j = 2a2m+ s2,
h2n+1g2m if i = 2b1n+ t1 and j = 2c2m+ l2,
h2ng2m+1 if i = 2c1n+ l1 and j = 2b2m+ t2,
h2n+1g2m+1 if i = 2d1n+ u1 and j = 2d2m+ u2,
0 otherwise.

(6)

q2(i,j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g2nh2m if i = 2a1n+ s1 and j = 2a2m+ s2,
g2n+1h2m if i = 2b1n+ t1 and j = 2c2m+ l2,
g2nh2m+1 if i = 2c1n+ l1 and j = 2b2m+ t2,
g2n+1h2m+1 if i = 2d1n+ u1 and j = 2d2m+ u2,
0 otherwise.

(7)

q3(i,j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g2ng2m if i = 2a1n+ s1 and j = 2a2m+ s2,
g2n+1g2m if i = 2b1n+ t1 and j = 2c2m+ l2,
g2ng2m+1 if i = 2c1n+ l1 and j = 2b2m+ t2,
g2n+1g2m+1 if i = 2d1n+ u1 and j = 2d2m+ u2,
0 otherwise.

(8)

Then, {qj
(k1,k2)

} (j = 1, 2, 3) satisfying Eq. (2) and (3), are the high-pass wavelet
filters associated with {p(k1,k2)}.

When compared with [3], our method given in (5)∼(8) does not need to solve
an implicit constrained condition (see Eq. (11) in [3]), and the the highpass &
lowpass wavelet filters are given in explicit expression (see (5)∼(8)).

Theorem 3. Let ϕ(x) be a one-dimensional orthogonal scaling function sat-
isfying Eq. (4). {hn} is a sequence associated with the one-dimension scaling
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function ϕ(x) as in (4). Suppose that there exists k, s ∈ Z (s ≥ 1), such that
hkhk+2s+1 �= hk+1hk+2s. Choose integers ak, bk, ck, dk, lk, uk, sk, tk, such that

ak = bk = ck = dk = 1, s2 = lk = t2 = uk = 0, k = 1, 2 (9)
s1 = 1, and t1 = −1. (10)

Then, the filter {p(k1,k2)}, which is given by (5), is a orthogonal non-separable
low-pass wavelet filter.

Remark 1. Theorem 3 provides a concrete algorithm for constructing non-
separable orthogonal wavelet filters based on one-dimensional wavelet filters.
Here, we only give the construction under the conditions (9) and (10). In many
other cases, non-separable wavelet filters can also be derived.

3 Watermarking by DNWT

The watermark is embedded into the image according to the following procedure:

Step 1 Compute the DNWT coefficients of the original image. In this paper,
we compute DNWT coefficients at three levels.

Step 2 Add watermark to those coefficients whose magnitudes are greater than
a given threshold (T1) in the sub-bands other than the low pass sub-band.
The equations used for watermark casting and detection are given as follows:

Ŝi = Si + α|Si|xi, (11)

where i runs over all DNWT coefficients whose magnitudes are greater than
T1 (except the low-pass component). Si denotes the corresponding DNWT
coefficients of the original image and Ŝi denotes the DNWT coefficients of
the watermarked image. xi are the watermark values for each component of
Si, which are generated from a normal distribution of zero mean and unit
variance. α is a parameter to control the intensity of the watermark. In this
paper we use an appropriate value of scale factor α for each sub-band.

Step 3 Compute the inverse DNWT to reconstruct the watermarked image.

The watermark detector is correlation-based, similar to Dugad [2]. All the
high pass coefficients whose magnitudes greater than T2 are chosen, and are
correlated with the original copy of the watermark. T2 is larger than T1. The
correlation z between the DNWT coefficients Ŝi of the corrupted watermarked
image and a test watermark is computed as z = 1

M

∑
i Ŝiyi, where yi stands for

the value of the i-th watermark component, i is an index over all the significant
coefficients of the input image and M is the total number of such coefficients.
The threshold G is defined as

G =
1

2M
(
∑

t

∑
i

αt|Ŝt
i |), (12)

where αt denotes the scale factor for level t, and Ŝt
i denote the DNWT coefficients

of the corrupted watermarked image of level t. If z ≥ G, the watermark is present
in the input image.
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4 Experimental Results

First, we provide the non-separable wavelet filters adopted in our experiments.
Consider the scaling function ϕ(x) which satisfies the equation [1]: ϕ(x) =∑3

i=1 hiϕ(2x− i), where h0 = 1+
√

3
4 , h1 = 3+

√
3

4 , h2 = 3−
√

3
4 , and h3 = 1−

√
3

4 . By
Theorem 3, we construct the non-separable low-pass wavelet filter {p(k1,k2)}:

p(0,0) = 6+4
√

3
32 p(0,1) = 12+6

√
3

32 p(0,2) = 6
32 p(0,3) = − 2

√
3

32

p(1,0) = 4+2
√

3
32 p(1,1) = 6+4

√
3

32 p(1,2) = 2
√

3
32 p(1,3) = − 2

32

p(2,0) = − 2
32 p(2,1) = − 2

√
3

32 p(2,2) = 6−4
√

3
32 p(2,3) = 4−2

√
3

32

p(3,0) = 2
√

3
32 p(3,1) = 6

32 p(3,2) = 12−6
√

3
32 p(3,3) = 6−4

√
3

32

The associated high-pass filters can be given by Theorem 2 in the similar way.

Table 1. Comparison of DSWT and DNWT: the number of coefficients whose magni-
tudes greater than a threshold (T1 = 40) in the high frequency sub-bands by DNWT
and DSWT respectively.

lena boat mandrill peppers goldhill

DSWT 6110 8561 23946 5884 6071

DNWT 9103 12689 27147 8972 8812

The high frequency sub-bands of non-separable wavelet transform can reveal
more features than that of the common used separable wavelet transform. Table
1 shows the numbers of coefficient whose magnitudes greater than a threshold
(T1 = 40) in the high frequency sub-bands by DNWT and that by DSWT
respectively. Each image is gray scale and has size of 512× 512. It was observed
that effective numbers of coefficient in DNWT are larger than that in DSWT.
Hence, more wavelet coefficients will be involved in our DNWT watermarking
scheme than in the DSWT one.

Our DNWT watermarking scheme is based on the above filters. The threshold
for significance of wavelet coefficients for the watermark embedder is T1 = 40 and
the detector is T2 = 50. Different values of scale factor α (α = 0.14, 0.18, 0.20) are
used for level 3, 2, and 1 respectively. The test image is the gray scale lena image
of size 512 × 512. Figure 1(a) displays the original lena image and Figure 1(b)
illustrates the watermarked lena image by using the above non-separable wavelet
filters {p(k1,k2)}, and the associated highpass wavelet filters {ql

(k1,k2)} (l = 1, 2, 3).
The distortion of the watermarked image is not recognizable by visual inspection,
which validates the effectiveness of the proposed DNWT watermarking.

We tested our DNWT scheme’s robustness against various attacks. In the
experiments, 1000 watermarks (i.e., pseudo-random sequences) have been gen-
erated randomly, only one of them is the watermark embedded in image. Figure
2(a) shows the response of the watermark detector to 1000 randomly generated
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Fig. 1. (a) The original “lena” image; (b) Watermarked “lena” image by DNWT.
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Fig. 2. (a) Responses on the watermarked image (Fig. 1(b)); (b) Responses to Gaussian
noise with σ2 = 500; (c) Responses to JPEG 10% quality compression.

watermarks. We find that the response of the correct watermark (for example
100 in the figure) is much stranger than the response to incorrect watermarks.
Fig.2 (b), Fig.2 (c), Fig. 3 (b), Fig.4 (a) show the responses of our DNWT
scheme’s against noising, JPEG compression, cropping and sharpening respec-
tively. Results show that we can still correctly detect the watermark under these
attacks.

It is observed that Dugad’s technique is unable to embed the watermark into
many coefficients of the image [5], and their method is vulnerable to attacks such
as sharpening (see Fig. 4(b)). When compared with the method given in [2], our
DNWT watermarking scheme is much more resistant to the attack of sharpening
than the scheme given by [2] (see Fig. 4(a)). To improve the robustness of wa-
termarking scheme in [2] against sharpening, Oriol Guitart Pla et.al.[5] describe
a watermarking scheme by using the tree structure of the DSWT. The method
is more complex and computationally expensive. In comparison with [5], our
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(a)  Cropping image 
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Fig. 3. (a) A Cropped image, which retains only the central portion. (b) Responses to
the cropped image by DNWT.
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Fig. 4. Responses to sharpening attack: (a) by DNWT; (b) by DSWT.

method is much efficient in computation since we do not need to compute the
children of the significant coefficients.

We also perform some experiments to see if the DNWT watermarking scheme
can be substituted by DSWT watermarking scheme. We decrease the threshold
T1 (40 to 30) in DSWT scheme, then there are 9123 DSWT coefficients being
embedded with watermark, which is bigger than the number of coefficients (9103)
in our DNWT method for threshold 40. In Fig. 5(a), it is shown that although the
performance of DSWT to sharpening is improved, it is still worse than DNWT
(see Fig. 4(a)). Furthermore, such adjustment will dramatically decrease the
robustness of the DSWT watermarking scheme to noising (see Fig. 5(b)).

5 Conclusion

A novel method is presented for constructing non-separable wavelet filters. Based
on the fact that the high frequency sub-bands of non-separable wavelet transform
can reveal more features than that of the separable one, we propose to embed
watermark by DNWT and describe a blind watermarking scheme. Experiments
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Fig. 5. (a) Responses to the sharpening attack of DSWT for T1 = 30: (b) Response to
the nosing attack of DSWT for T1 = 30.

show that this scheme is robust to noising, JPEG compression, and cropping,
especially for sharpening.
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Abstract. A new image coder is described in this paper. Since it is based on the 
Discrete Wavelet Transform (DWT), it yields good Rate/Distortion (R/D) per-
formance. However, our proposal focuses on overcoming the two main prob-
lems of wavelet-based image coders: they are typically implemented by mem-
ory-intensive and time-consuming algorithms. In order to avoid these common 
drawbacks, we ought to tackle these problems in the main stages of this type of 
coder, i.e., both the wavelet computation and the entropy coding of the coeffi-
cients. The proposed algorithms are described in such a manner that they can be 
implemented in any programming language straightforwardly. The numerical 
results show that while the R/D performance achieved by our proposal is simi-
lar to the state-of-the-art coders, such as SPIHT and JPEG2000/Jasper, the 
amount of memory required in our algorithm is reduced drastically (in the order 
of 25 to 35 times less memory), and its execution time is lower (three times 
lower than SPIHT, and more than ten times lower than JPEG 2000/Jasper). 

1   Introduction 

Wavelet-based image coders have aroused great interest in the last years due to their 
nice features, such as natural multiresolution and high compactness of the coeffi-
cients, which leads to high compression efficiency. However, one of the main draw-
backs of current wavelet encoders is their high memory usage, since the regular 
wavelet transform requires a lot of memory to be computed. In addition, in many 
wavelet encoders, the subsequent coding process uses some extra lists and introduces 
memory overhead. The complexity of these algorithms is another usual problem. In 
this paper, we deal with both problems (memory requirement and complexity) in both 
stages (wavelet transform and efficient coding).  

2   Wavelet Transform for Image Coding with Low Use of Memory 

One of the desirable features of the proposed image coder is to have low memory 
consumption. Since our proposal is a wavelet-based coder, the first bottleneck that 
appears in the efficient use of memory is the computation of the DWT. Our encoder 
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could only have low memory consumption if the DWT is performed in an efficient 
way. In the regular DWT, Mallat decomposition is performed [1]. In this decomposi-
tion, the image is transformed first row by row, and then column by column, at every 
decomposition level. Therefore, it must be kept entirely in memory. In this section we 
propose a different wavelet transform in which the key idea for saving memory is to 
get rid of the wavelet coefficients as soon as they have been calculated. 

This idea was first used in [2], aiming to reduce the memory requirements of the 
1D DWT. In [3], this transform is extended to image wavelet transform (2D), and 
other issues related to the order of the data are solved. However, in this 2D version, 
the authors do not propose a direct algorithm to implement their proposal, and it can-
not be easily implemented due to some unclear aspects. In [4], we presented a gen-
eral-purpose recursive algorithm that we will use in the image coder presented in this 

Algorithm 1.1. Backward recursive function 

function GetLLlineBwd( level ) 

1) First base case: No more lines to be read at this level 
if levellevel MaxLinesLinesRead =  return EOL 

2) Second base case: The current level belongs to the space domain and
not to the wavelet domain  

else if 0=level  return ReadImageLineIO( )  
else  

3) Recursive case  
3.1) Recursively fill or update the buffer for this level 

if levelbuffer  is empty 

for NNi 2�=   

=)(ibufferlevel 1D_DWT(GetLLlineBwd( level-1)) 

FullSymmetricExtension( levelbuffer  ) 

else  
repeat twice 

Shift( levelbuffer  ) 

line = GetLLlineBwd( level-1 ) 
if line = EOL =)2( Nbufferlevel SymmetricExt( levelbuffer ) 

else  =)2( Nbufferlevel 1D_DWT( line ) 

3.2) Calculate the WT from the lines in the buffer, then process the result-
ing subband lines (LL, HL, LH and HH) 

{ }HLlineLLline, = ColumnDWT_LowPass( levelbuffer  ) 

{ }HHlineLHline, = ColumnDWT_HighPass( levelbuffer  ) 

EncodeSubLines({ }HHlineLHlineHLline ,, , level ) 

set 1+= levellevel LinesReadLinesRead  

return LLline  

end of fuction
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paper. In this section, this wavelet transform is outlined, while the reader is referred 
to [4] for a more complete and exhaustive description. 

The proposed algorithm relies on a line-based strategy. In this strategy, we only 
keep in memory those image lines that we are dealing with. This way, there is a 
buffer in each level that is able to keep 2N+1 lines for the low-frequency subband 
(LL) at that level (2N+1 is the length of the filter bank). These buffers are filled so 
that, when they are full, one-step of a column wavelet transform is performed. This 
operation generates a line of every wavelet subband (HH, HL and LH at that level), 
and a LL line. The HH, HL and LH lines can be directly encoded, while the LL line is 
passed to the following level in order to fill its buffer up.  

The drawback of this algorithm is the synchronization among the buffers. Before a 
buffer can produce lines, it must be filled with lines from previous buffers, therefore 
they start working at different moments, i.e., they have different delays. Moreover, all 
the buffers exchange their result at different intervals, according to their level. 

To solve the synchronization problem, we define a recursive function called 
GetLLlineBwd (level), which obtains the next LL line from a contiguous level. This 
algorithm is formally described in the frame Algorithm 1.1, while Algorithm 1.2 de-
fines the main program that sets up some variables and performs the image transform 
by calling the recursive function. Let us see the first algorithm more carefully. 

The first time that the recursive function is called at every level, its buffer 
(

levelbuffer ) is empty and it has to be filled up. So, its upper half (from N to 2N) is 

recursively filled with lines from the previous level. When a line is received, it must 
be transformed using a 1D DWT before it is stored. The lower half part is filled using 
symmetric extension (the N+1 line is copied into the N-1 position …) 

On the other hand, if the buffer is not empty, it simply has to be updated. In order 
to update it, it is shifted one position so that a new line can be introduced in the last 
position (2N) using a recursive call. This operation is repeated twice. 

program Code_Image (nlevel, Q , rplanes) 

set nlevellevellengthrunLinesRead levellevel ∈∀== 0_  

set nlevellevel
height

MaxLines
levellevel ∈∀=

2
 

set buffer
level

 = EncBufferHL
level

 = EncBufferLH
level

 = 
 EncBufferHH

level
 =empty nlevellevel ∈∀  

repeat 
nlevel

height

2
 times 

LLline = GetLLlineBwd( nlevel ) 

EncodeLLSubLine( LLline ) 

end of program 

Algorithm 1.2. Perform the DWT and encode the image by calling a 
backward recursive function (see Algorithm 1.1) 
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However, if there are no more lines in the previous level, this recursive call will re-
turn End Of Line (EOL). That points out that we are about to finish the computation 
at this level, but we still need to fill the buffer up using symmetric extension again. 

Once the buffer is filled or updated, both high-pass and low-pass filter banks are 
applied to every column in the buffer. This way, we get a line of every wavelet sub-
band at this level, and a LL line. The wavelet coefficients are passed to the coder so 
that they can be compressed, and the function returns the LL line. 

Notice that this function has two base cases. In the first one, all the lines at this 
level have been read. It is detected by keeping an account of the number of lines read, 
and it returns EOL. In the second one, the variable level reaches 0 and then no further 
recursive call is need since an image line can be read directly. Moreover, the maxi-
mum recursion depth is given by the decomposition level (which is usually 5 or 6), 
and so the memory usage for recursion is negligible compared with the buffer sizes. 

3   Run-Length Coding of the Wavelet Coefficients 

In order to have low memory consumption, once a wavelet subband line is calculated, 
it has to be encoded as soon as possible to release memory. However, we cannot 
encode independent lines if we want good R/D performance, since entropy coders 
need to exploit local similarities in the image to be efficient. Algorithm 2.1 stores the 
subband lines in encoder buffers so that when they are full, there are enough lines to 
perform an efficient compression, and the coding function is called. 

The encoder cannot use global image information since it does not know the whole 
image. Moreover, we aim at fast execution, and hence no R/D optimization or bit-
plane processing can be made, because it would turn it slower. In the next subsection, 
a Run-Length Wavelet (RLW) encoder with the aforementioned features is proposed. 

3.1   Fast Run-Length Coding 

In the proposed algorithm, the quantization process is performed by two strategies: 
one coarser and another finer. The finer one consists on applying a scalar uniform 

Algorithm 2.1. Store the subband lines in the encoder buffer and call the run-
length coding function when they are full 

function EncodeSubLines({ }HHlineLHlineHLline ,, , level ) 

    AddToBuffer ( EncBufferHL
level

 , HLline) 
    AddToBuffer ( EncBufferLH

level
 , LHline) 

    AddToBuffer ( EncBufferHH
level

,, HHline) 
    if IsFull (EncBufferHL

level
 ) 

RLW_Code_Subband ( EncBufferHL
level

 , level) 
RLW_Code_Subband ( EncBufferLH

level
 , level) 

RLW_Code_Subband ( EncBufferHH
level

,, level) 
EncBufferHL

level
 = EncBufferLH

level
 = EncBufferHH

level
 =empty 

end of function 
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Algorithm 2.2. Run-length coding of the wavelet coefficients 

function RLW_Code_Subband( Buffer, L ) 
Scan Buffer in horizontal raster order (i.e., in columns) 
for each c

i,j
  in Buffer 

, i c )  (  ⎡  ⎤  j i nbits 2 , log =   j  

if rplanesnbits ji ≤,  

increase run_length
L  

 
else 

if 0_ ≠Llengthrun  

if modeenter_run_run_length L <  

repeat run_length
L
 times  

arithmetic_output LOWER 
else 

arithmetic_output RUN 

( )⎡ ⎤Lrun_lengthrbits 2log=  

arithmetic_output rbits 
output ( ) ( )LLrbits run_lengthrun_length 11 bitbit �−  

run_length
L 
= 0 

arithmetic_output jinbits ,  

output ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− �  

output  sign( jic , ) 

end of function 

Note: ( )cnbit  is a function that returns the nth bit of c 

quantization to the coefficients using the Q parameter (see Algorithm 1.2). The 
coarser one is based on removing bit planes from the least significant part of the coef-
ficients. We define rplanes as the number of less significant bits to be removed, and 
we call significant coefficient to those coefficients ci,j that are different to zero after 

discarding the least significant rplanes bits, in other words, if ci,j 2rplanes. 

The wavelet coefficients are encoded as follows. The coefficients in the buffer are 
scanned column by column (to exploit their locality). For each coefficient in that 
buffer, if it is not significant, a run-length count of insignificant symbols at this level 
is increased (run_lengthL). However, if it is significant, we encode both the count of 

insignificant symbols and the significant coefficient, and run_lengthL is reset. 

The significant coefficient is encoded by means of a symbol indicating the number 
of bits required to represent that coefficient. An arithmetic encoder with two contexts 
is used to efficiently store that symbol. As coefficients in the same subband have 
similar magnitude, an adaptive arithmetic encoder is able to represent this information 
in a very efficient way. However, we still need to encode its significant bits and sign. 
They are raw encoded to speed up the execution time. 
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In order to encode the count of insignificant symbols, we encode a RUN symbol. 
After encoding this symbol, the run-length count is stored in a similar way as in the 
significant coefficients. First, the number of bits needed to encode the run value is 
arithmetically encoded (with a different context), afterwards the bits are raw encoded. 

Instead of using run-length symbols, we could have used a single symbol to en-
code every insignificant coefficient. However, we would need to encode a larger 
amount of symbols, and therefore the complexity of the algorithm would increase 
(most of all in the case of large number of insignificant contiguous symbols, which 
usually occurs in moderate to high compression ratios). 

Despite of the use of run-length coding, the compression performance is increased 
if a specific symbol is used for every insignificant coefficients, since an arithmetic 
encoder stores more efficiently many likely symbols than a lower amount of less 
likely symbols. So, for short-run lengths, we encode a LOWER symbol for each in-
significant coefficient instead of coding a run-length symbol for all the sequence. The 
threshold to enter the run-length mode and start using run-length symbols is defined 
by the enter_run_mode parameter. The formal description of the depicted algorithm 
can be found in the frame entitled Algorithm 2.2. 

3.2   Tradeoff Between R/D Performance and Speed and Memory Requirements 

The proposed algorithm can be tuned according to the final application. Thus, some 
parameters can be adjusted to improve the compression performance at the cost of 
slightly higher memory requirements or execution time. This way, the size of the 
encoder buffer can be 8 subband lines for a good R/D performance, but compression 
efficiency can be improved with 16 lines, increasing the memory requirements. An-
other parameter that can be tuned is the enter_run_mode variable in Algorithm 2.2. 
When this parameter is increased, larger run-lengths are encoded by successive 
LOWER symbols, which results slower but a bit more efficient in R/D performance. 
Another tradeoff between compression and complexity is the use of an arithmetic 
encoder (with nine contexts) for the sign of the coefficients. In general, each of these 
improvements may increase the PSNR of an image encoded at 1bpp in about 0.1 dB, 
while the two latter improvements increase the execution time in about 20% each 
one. 

4   Numerical Results 

We have implemented the proposed coder in ANSI C language. In this section we 
will compare it with the state-of-the-art wavelets coders SPIHT [5] and JPEG 2000 
[6]. For JPEG 2000, we do not consider image tiling since it degrades the image qual-
ity a lot. The results for JPEG 2000 have been obtained using Jasper [7], an official 
implementation included in the ISO/IEC 15444-5 standard. All of them use the same 
wavelet filter bank (Daubechies’ B7/9) and have been written and compiled with the 
same level of optimization. In our comparison, we will use the standard images Lena 
and Barbara (monochrome, 8bpp, 512x512), and the larger and less blurred images 
Café and Woman (monochrome, 8bpp, 2560x2048, equiv. 5-Megapixel), from the 
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JPEG 2000 testbed. For more tests, the reader can download an implementation of the 
coder at the authors’ web site http://www.disca.upv.es/joliver/LowMemRLW. 

Table 1 shows a compression comparison for the evaluated images and coders. In 
general, our proposal performs as well as SPIHT does for less detailed images (Lena 
and Woman) and better than it for more complex images (Barbara and Café). It is due 
to the fact that SPIHT is based on coefficients trees, and fewer trees can be estab-
lished in images with many details. On the contrary, JPEG 2000 is more efficient than 
our proposal in highly detailed images, since it defines more contexts and uses R/D 
optimization. However, our coder and JPEG 2000 are similar in low detailed images. 

Table 1. PSNR (dB) with different bit rates and coders for the evaluated images. The numbers 
in parenthesis for our proposal correspond to the decrease of performance if the R/D improve-
ments discussed in subsection 3.2 are not applied. 

 Lena (512x512) Barbara (512x512) 
Codec\ 
rate 

SPIHT 
Jasper/ 
JP2K 

Proposed Run 
Length 

SPIHT 
Jasper/ 
JP2K 

Proposed Run 
Length 

1 40.41 40.31 40.37 (-0.14) 36.41 37.11 36.82 (-0.35) 
0.5 37.21 37.22 37.15 (-0.10) 31.39 32.14 31.90 (-0.29) 
0.25 34.11 34.04 34.03 (-0.08) 27.58 28.34 28.12 (-0.22) 
0.125 31.10 30.84 30.97 (-0.04) 24.86 25.25 25.19 (-0.08) 
 Woman (2560x2048) Café (2560x2048) 
Codec\ 
rate 

SPIHT 
Jasper/ 
JP2K 

Proposed Run 
Length 

SPIHT 
Jasper/ 
JP2K 

Proposed Run 
Length 

1 38.28 38.43 38.49 (-0.21) 31.74 32.04 31.89 (-0.26) 
0.5 33.59 33.63 33.72 (-0.15) 26.49 26.80 26.67 (-0.16) 
0.25 29.95 29.98 30.04 (-0.08) 23.03 23.12 23.10 (-0.12) 
0.125 27.33 27.33 27.40 (-0.04) 20.67 20.74 20.67 (-0.06) 

Table 2. Total memory requiered (in KB) to encode the Woman image with the compared 
algorithms. The numbers in parenthesis correspond to the memory that is saved if the R/D 
improvements are not used (it can be applied in both columns of our proposed algorithm). 

Codec \ 
rate 

Compressed 
Image File 

SPIHT 
Jasper/ 
JP2K 

Proposed 
Run Length 

Proposed with bit- 
stream in memory 

1 640 42,888 62,768 1,256  1,896       (-180) 
0.5 320 35,700 62,240 1,192  1,512       (-180) 
0.25 160 31,732 61,964 1,192  1,352       (-180) 
0.125 80 28,880 61,964 1,176  1,256       (-180) 

 

The comparison in which our encoder clearly outperforms both SPIHT and JPEG 
2000 is in memory consumption. Table 2 shows that, for a 5-Megapixel image, our 
proposal requires between 25 and 40 times less memory than SPIHT, and more than 
45 times less memory than Jasper/JPEG 2000. In this table, the last column refers to 
the case in which the complete bitstream (i.e., the compressed image) is kept in mem-
ory while it is generated. Due to the computation order in the proposed wavelet trans-
form, the coefficients from different subband levels are interleaved. Thus, instead of a 
single bitstream, we generate a different bitstream for every level. These different 
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streams can be kept in memory or saved in secondary storage. In addition, having a 
different bitstream for each level eases the decompression process, since the order in 
the inverse transform is just the reverse of the order in the forward one.  

In this table, the memory estimated for executing a single process is about 650 KB. 
Hence, we can consider that the remaining memory is the data memory. Moreover, 
for our RLW coder, 180 KB can be saved if we use 8 lines per buffer instead of 16. 

Since JPEG 2000 has more contexts and uses R/D optimization, it is more complex 
than our proposal. SPIHT is also more complex because it performs several image 
scans handling a different bit-plane each scan. Moreover, in cache-based systems, the 
proposed DWT makes better use of the cache. The last table shows an execution time 
comparison for two image sizes. Due to the former reasons, our algorithm clearly 
outperforms Jasper/JPEG 2000, and it is several times faster than SPIHT. In addition, 
we can speed it up in about 30% if no compression improvements are performed. 

Table 3. Execution time (in Million of CPU Cycles) needed to encode images of different size. 
The numbers in parenthesis correspond to time reduction if no R/D improvements are applied. 

 Woman (2560x2048)  Lena (512x512) 

Codec \ 
rate 

SPHIT 
Jasper / 
JP2K 

Proposed Run 
Length 

 
SPHIT 

Jasper / 
JP2K 

Proposed Run 
Length 

1 3,669 23,974 1,855  (-587)  147 750 98  (-28) 
0.5 2,470 23,864 1,291  (-377)  97 734 65  (-21) 
0.25 1,939 23,616 970  (-259)  73 726 44  (-11) 
0.125 1,651 23,563 783  (-197)  60 717 34  (-7) 

5   Conclusions 

In this paper, a wavelet image coder with state-of-the-art compression performance 
has been presented. The main contribution of this image coder is that it requires much 
less memory to work and thus, it is a good candidate for many embedded systems and 
other memory-constrained environments (such as digital cameras and PDAs). In addi-
tion, it is also several times faster than the other evaluated wavelet image coders. 
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Abstract. This paper describes in detail a real-time multiple face de-
tection system for video streams. The system adds to the good perfor-
mance provided by a window shift approach, the combination of different
cues available in video streams due to temporal coherence. The results
achieved by this combined solution outperform the basic face detector
obtaining a 98% success rate for around 27000 images, providing addi-
tionally eye detection and a relation between the successive detections
in time by means of detection threads.

1 Introduction

People detection is a basic ability to be included in any Vision Based Interface
[14] in order to use computer vision technology to perceive the user in a Human
Computer Interaction (HCI) context. Among the different approaches for this
purpose, face detection has been a revisited topic in the recent literature.

The face detection problem, defined as: to determine any face -if any- in the
image returning the location and extent of each [18], seems to be solved, accord-
ing to some recent works [9, 11, 16]. Particularly for video stream processing,
these approaches focus the problem in a monolithic fashion, forgetting elements
that the human system employs: temporal and contextual information, and cue
combination.

The work presented in this paper describes a real-time vision system which
goes beyond traditional still image face detectors. The resulting system is an
approach for robust multiresolution real-time multiple face detection which com-
bines different cues based on an obvious connection that exists between frames,
i. e. temporal coherence. The resulting approach achieves better detection rates
for video stream processing and cheaper processing costs than outstanding and
public available face detection systems.

1.1 Previous Work

Face detection methods are classified according to different criteria as recent face
detection surveys do [5, 18]. In our opinion these techniques can be classified into
two main families according to the information used to model faces:

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 445–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– Pattern based or Implicit: These approaches work by searching exhaustively
a previously learned pattern at every position and different scales of the
whole input image.

– Knowledge based or Explicit: These approaches increase processing speed by
taking into account face knowledge explicitly, exploiting and combining cues
such as color, motion, face and facial features geometry, and appearance.

Recent window shift based approaches, i.e. pattern based, have achieved im-
pressive results applied even to video streams [9, 11, 16]. However, the exclusive
use of a monolithic approach has the disadvantage of despising a main cue useful
for video processing: temporal coherence. Any face detected in a frame provides
valid information which can be used to speed up the process in the next frames.

2 The Face Detection Approach

Our approach is related to both categories described in the previous section, as it
makes use of both implicit and explicit knowledge to get the best of each one. The
explicit knowledge is based on the face geometry and the descriptors extracted
from a detection: color and appearance. On the other side, the implicit knowledge
is integrated using the general object detection framework integrated in the
Open Computer Vision Library (OpenCV) [6]. This framework is based on the
idea of a boosted cascade classifier [16] but extends the original feature set and
provides different boosting variants for learning [10]. The framework combines
increasingly more complex classifiers in a cascade, allowing background regions
of the image to be quickly discarded while spending more time on promising
object-like regions.

The face detection approach here described has two different working modes
depending on recent face detection events reported:

After no detection: This working mode takes place at the beginning of an
interaction session, when all the individuals are gone from the field of view,
or if nobody is detected for a while. The approach basically makes use of
two window shift detectors based on the general object detection framework
described in [16]. These two brute force detectors, integrated in the last
OpenCV release [6], are the frontal face detector described in that paper, and
the local context based face detector described in [8]. The last one achieves
better recognition rates for low resolution images if the head and shoulders
are visible. The respective minimum size searched are 24 × 24 and 20 × 20
pixels. In order not to waste processing time, the detectors are executed
alternatively.
For any face detected, the system tries to detect its facial features assuming
that it is a frontal face, and therefore its facial features would verify some
geometric restrictions. The current implementation searches only the eyes,
using a process similar to the one employed in [1] just for a single face
detection approach. It was however improved by the addition of different
alternatives for eye detection as described below:
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1. Skin blob detection: Once a face is detected, its skin color is modelled
using red-green normalized color space [17], considering just the center
of the face container provided by any of the Viola-Jones based detectors.
The system heuristically removes elements that are not part of the face,
e.g. neck, and fits an ellipse to the blob in order to rotate it to a vertical
position [12].

2. Eyes location: At this point, the approach searches eye candidates in the
likely areas inside the skin blob considering that the face detected is a
frontal face. Different candidate pairs are checked for their appearance
until one of them, is accepted. The cues used for this purpose are:
(a) Dark areas: Eyes are particularly darker than their surroundings [2].
(b) Viola-Jones based eye detector: As the eye position can be roughly

estimated and therefore restricted, a Viola-Jones based eye detector
provides very fast results. The detector searches eyes with a minimum
size of 16 × 12 pixels. For small faces, they are scaled up before
performing the search.

(c) Viola-Jones based eye pair detector: If other cues fail, the eye pair
detection can provide another estimation for eye positions. The min-
imum pattern size searched is 34× 8.

3. Normalization: Eye positions, if detected, provide a measure to normalize
the frontal face candidate. The normalization step allows further face
processing modules to reduce the problem dimensionality.

4. Pattern Matching Confirmation: Once the likely face has been normal-
ized, its appearance is checked in two steps making use of Principal Com-
ponent Analysis (PCA) spaces [7]. The PCA spaces were built using a
face dataset of 4000 facial images extracted from internet and annotated
by hand.
(a) Eye appearance test: A certain area (11 × 11) around both eyes in

the normalized image is projected to a PCA space and reconstructed.
The reconstruction error [4] provides a measure of its eye appearance,
and can be used to identify incorrect eye detections.

(b) Face appearance test: A final appearance test applied to the whole
normalized image. The image is first projected to a PCA space, and
later its appearance is tested using a Support Vector Machine (SVM)
classifier [15].

After recent detection(s): As briefly mentioned above, for each detected
face, the system stores not only its position and size, but also its average
color using red-green normalized color space [17], and the patterns of the
eyes (if detected) and the whole face. Thus, a face is characterized by f =
〈pos, size, red, green, leyepos, leyepattern, reyepos, reyepattern, facepattern〉.
These features direct different cues in the next frames which are applied op-
portunistically in an order based on their computational cost and reliability.
– Eye tracking: A fast tracking algorithm [3] is applied in an area that

surrounds previously detected eyes, if available. The tracker makes use
of a fixed pattern size for both eyes, 24× 24, and searches the minimum
difference in the search area as follows:
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Fig. 1. The search area used for each detected face in the next frame is defined as an
expansion of the previous face detection container.

D(u, v) =
∑
Area

|I(u+ i, v + j)− P (i, j)| (1)

Eye patterns are previously saved with the first detection, and updated
according to the strategies described in [3], i.e. only if there is a notori-
ous change in relation to the original pattern, and this difference could
confuse the tracker with any other pattern of the close context. If the
difference reported is too big, the pattern will be considered lost.

– Basic face detector: The Viola-Jones face detector [16] searches faces
but only in an area that covers the previous detection, see Figure 1.
This strategy significant reduces processing time.

– Local context face detector: If previous techniques fail, the local con-
text based face detector is applied in an area that includes the previous
detection [8], see Figure 1.

– Skin color: The integration of other cues, likely weaker, help to im-
prove the final system performance and robustness. Skin color based
approaches for face detection have the lack of robustness for different
conditions. A well known problem is the absence of a general skin color
representation for any kind of light source and camera [13]. However,
the skin color extracted from the face previously detected by the Viola
detector can be used to estimate facial features position by means of the
color blob, as described above. If previous cues fail, the modelled skin
color is used to locate the face, and therefore it is searched in the win-
dow that contains the previous detection, see Figure 1. The new sizes
and positions are coherently checked, due to the fact that the skin color
container is not allowed to experiment large size changes just to avoid
an incorrect color updating mechanism.

– Face tracking: If everything else fails, the prerecorded face pattern is
searched in an area that covers previous detection [3], see Figure 1. The
tracking pattern has a fixed size, for that reason the system scales down
the face to fit it in the pattern size. The scale ratio is stored and later
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used if necessary to scale down the search area in the next frame. This
action helps reducing the tracking shift problem. However, the tracking
is not allowed to be the only valid cue for more than some consecutive
frames in order to avoid tracking problems. Instead, the other cues should
confirm the human presence, from time to time, or the person will be
considered lost.

For each previous detection, these techniques are applied until one of them
finds a new face coherent with the previous detection. Whenever a face is
detected, and its eyes were not tracked, the skin color is used for facial
features detection as explained above for the After no detection working
mode. Also, every third frame one of the Viola-Jones based detectors is
applied to the whole image in order to detect new faces. Those new faces
are compared with those already detected by temporal coherence and those
which are redundant removed. If no faces are detected for a while, the process
switches to the default After no detection working mode.

The approach described considers the possibility of multiple face detection,
as no restriction is imposed in that sense. It is interesting to relate the detec-
tion information achieved in the consecutive frames, especially when multiple
individuals are present. During the video stream processing, the face detector
gathers a set of detection threads, IS = {dt1, dt2, ..., dtn}. A detection thread
contains a set of continuous detections, i.e. detections which take place in differ-
ent frames but are related by the system in terms of position, size and pattern
matching techniques. Thus, for each detection thread, the face detector system
provides a number of facial samples, dtp = {x1, ..., xmp}, which correspond to
those detections for which also the eyes were located.

The Viola-Jones based detectors have some level of false detections. For that
reason a new detection thread is created only if the eyes have been also de-
tected. The use of color and tracking cues after a recent detection is reserved to
detections which are already considered part of a detection thread. In this way,
spurious detections do not launch cues which are not robust enough, in the sense
that they are not able to recover from a false face detection.

Ideally a detection thread contains samples detected from a single individ-
ual. However, different detection threads can correspond to the same individual,
aspect which is not checked by the current implementation. Gaps are allowed
during detection thread life, but a detection thread is considered lost if after a
predefined number of frames it is not correctly associated to a new detection.

3 Performance Results

For static images the approach provides a performance which combines the re-
sults achieved for the standard Viola-Jones face detector [16] and the local con-
text based face detector [8]. We refer the reader to those works to get precise
information for static images results.
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Fig. 2. Different samples of some sequences.

Fig. 3. From left to right: 1) Both faces and their eyes are detected, 2) the face on the
right is detected by tracking the face pattern due to the Viola based detectors failure,
3) the left face is detected using skin color and the right one by means of the local
context face detector, 4) the same for the left face, the right one is found by tracking,
5) face pattern tracking is not allowed to be the only valid cue for many consecutive
frames, so the right face detection thread is considered missed, and 6) the right face
recovers its vertical position and it is fused with the latent detection thread.

The strength of our approach is exploited in video stream processing thanks
to cue integration. 70 sequences, see Figure 2, corresponding to different indi-
viduals, cameras and environments with a resolution of 320× 240 were recorded
and processed. The total set contains 27271 images, presenting all of them a face
easily detected by a human. The average processing time of 60 msecs. using a
PIV 2.2Ghz, allowed the system to associate 26875 (98.5%) detections to a de-
tection thread, see Figure 3. As described in that figure, some of those detections
are not provided by the Viola-Jones based detectors, but by the cue integration
approach. From those detections, their eyes were also located in 70% of them.
It must be observed that eyes are located only for frontal poses in the current
implementation.

At least 10 of those sequences reported detections which correspond to non
face patterns. These detections were correctly not assigned to any detection
thread as the eyes were not found and their position, color and size were not
coherent with any active detection thread.

Only for 3 (4%) sequences with a single individual, the detection thread was
not unique. In these sequences this was due to the fact that at a certain point a
detection thread was incorrectly fused with an erroneous detection provided by
the Viola-Jones based detectors. However, in all the cases the detection thread
was shortly considered lost, and therefore some frames later the still present face
was newly detected, and a new detection thread created.

For single individuals sequences this is an impressive result considering the
large changes in pose experimented in many of the sequences. The processing
rates achieved make the system suitable for further processing in the field of
perceptual user interfaces.

For multiple individuals sequences, the system needs more time as more faces
are tracked simultaneously, in our experiments the processing time is increased
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around 20 msecs. per. This effect can be reduced by decreasing the number of
times per second that new faces are searched in the whole image, due to the fact
that two faces cover more area and therefore it is less likely the presence of a
new face. It must also be noticed that in these sequences as no appearance cue
is used to relate a detection in the next frame with a previous one, the system
is not currently able to manage coherently a situation when different detection
threads can overlap, i.e., there is occlusion. It is not sure that after the occlusion
between two individuals, the detection threads will be properly assigned to the
new detections.

4 Conclusions

We have described a system which combines multiple cues taking into account
their respective computational cost and reliability in the problem of face detec-
tion. The approach developed provides fast multiple face detection at different
resolutions for standard webcam images, i.e. 320× 240, suitable for perceptual
user interfaces.

The system is also able to provide information about the relation of the de-
tections in time, reporting good results in the experiments. Currently detection
threads can contain among their samples some with bad eye detections, partic-
ularly when the face is not completely frontal. In this sense the appearance test
must be improved. However, the system is always able to recover once a frontal
face is present. Future work must cover the detection of other facial elements in
order to have a more robust facial features detection for non frontal poses, as in
the current implementation it is only based on eye detection.

Another interesting step to be done is the integration of additional descrip-
tors, e.g. identity, t-shirts color, etc., in order to be able to manage situations
with occlusions between individuals, which right now are not specifically ana-
lyzed.
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thesis, Universidad de Las Palmas de Gran Canaria, Octubre 2002.

4. Erik Hjelmas and Ivar Farup. Experimental comparison of face/non-face classifiers.
In Procs. of the Third International Conference on Audio- and Video-Based Person
Authentication. Lecture Notes in Computer Science 2091, 2001.

5. Erik Hjelmas and Boon Kee Low. Face detection: A survey. Computer Vision and
Image Understanding, 83(3), 2001.

6. Intel. Intel open source computer vision library, b4.0.
www.intel.com/research/mrl/research/opencv, August 2004.

7. Y. Kirby and L. Sirovich. Application of the karhunen-loève procedure for the
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Abstract. Shadows produce troublesome effects in many computer vi-
sion applications. The idea behind most current shadow removal ap-
proaches is locating shadows and then removing them[1][4]. However,
distinguishing shadow edges due to shadows from reflectance edges due
to reflectance changes is a difficult problem, particularly in a single image.
In this paper, we focus on the shadow removal problem in face recogni-
tion, and take a novel method based on ICA (Independent Component
Analysis) to remove shadows from a single face images. The training set
contains face images without shadows. Firstly, we applied derivative fil-
ters on training images to derive face edge maps, and then perform ICA
on filtered training set to construct pixel ICA subspaces which can be
used to remove shadow edges from the filtered versions of a single test im-
age. After the shadow edges removal process, a shadow free image can be
reconstructed using an approach similar to [7]. Unlike previous shadow
removal approaches, our method can remove shadows from a single gray
image. Experimental results demonstrate that the proposed approach
can effectively eliminate the effects of shadows in face recognition.

1 Introduction

Shadows in images may cause problems to many algorithms in the fields of image
processing and computer vision, such as object detection and recognition, and
removing them can greatly improve the results of these algorithms. One possible
solution to the shadow removal problem can be locating shadows and remov-
ing them which generally requires identification and removal of shadow edges.
However, the disambiguation of shadow edges due to shadows and reflectance
edges due to reflectance changes is a difficult problem and has a long history in
computer vision research [5].

Recently, a method to derive shadow free images was presented by Weiss [7].
The example used in the paper was a sequence of grey-scaled images captured
with a stationary camera over a period of time such that the illumination in the
scene (specifically the position of the shadows) changes considerably. Assuming
that reflectance changes are constant in the scene and that shadows move in

� This work supported by National Natural Science Foundation of China, Project
Number: 60473047.
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the image sequence, it follows that the median edge map of the image sequence
can be used to remove shadow edges, while reserving reflectance edges. Given
the reflectance edge map, a shadow free image that depends only on reflectance
can be recovered. The same method is introduced in [8] to handle shadows in an
intelligent transportation system. It is proven to perform quite well for shadow
removal, however its applicability is limited since it requires a sequence of images
of the same scene in which only the illumination varies with time.

Removing shadow directly from a single image is a challenging task. In [3],
Finlayson assumed that camera sensor sensitivities behave like delta functions
and that lighting in the scene can be approximated by Planckian lights. These
constraints ensures the extraction of 1D-illuminant invariant image without
shadows from a single RGB image. Then applying edge-detection on the in-
variant image and the original image, and removing the edges that exist in the
original image but not in the invariant image, a reflectance edge map can be
derived. Similar to Weiss’s method, reintegrating the edge map can result in a
shadow free image. This method outperforms the previous approaches in some
aspects. However, its assumptions can’t be exactly met in real scenes. So the
shadow removal effect in real images aren’t perfect. Moreover, It can’t deal with
gray images.

When thinking about how we might remove shadows from an image it is
important that we consider the applications we are interested in, because this
can have a bearing on what restrictions we place on how we solve the problem. In
this paper, we focus on the shadow removal problem in the face recognition and
the restriction is we handle with a class of object. Faces without shadows have
similar edges, and a global constraint can be derived from the filtered face images
to help remove shadow edges. We chose ICA factorial code architecture to train
the global models because the face edge maps are sparse, and we need to deal
with them pixelwisely. The training set contains face images without shadows.
Our work began with applying derivatives filters on the training images, and
then ICA was performed on the filtered training images according to each filters
to obtain the global models separately. Given a filtered test face image, we
found that a minimum squared error approximation of it derived with the global
models was shadow edge free. And then reintegrating the edge maps with shadow
edges removed using an approach similar to [7] resulted in a shadow free image.
Experimental results showed that our proposed method can effectively remove
shadows from a single gray face image.

The remainder of this paper is organized as follows. Section 2 recapitulates
the related work of Weiss. Section 3 introduces our novel method to remove shad-
ows from a single image using independent component analysis. Experiments and
results are reported in Section 4. Section 5 concludes this paper.

2 Related Work and Discussion

Weiss’s method works in the framework of “intrinsic image”, which was intro-
duced by Barrow and Tenenbaum in 1978. According to their definition, an
image I(x, y) can be decomposed into a product of two images:
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I(x, y) = L(x, y)R(x, y) (1)

where L(x, y) is an illumination image and R(x, y) is a reflectance image which
is shadow free.

Obviously, recovering two intrinsic images from a single image is an ill-posed
problem: the number of unknowns is twice the number of equations. However,
deriving intrinsic images from a sequence of images is a relatively easier problem.
Given a sequence of T images {I(x, y, t)}Tt=1, a single reflection image R(x, y)
and T illumination images L(x, y, t) can be derived.

For convenience, This method works in the log domain.

log I(x, y, t) = logL(x, y, t) + logR(x, y)
i(x, y, t) = l(x, y, t) + r(x, y) (2)

Previous researches showed that when derivative filters are applied to natural
images, the filter outputs tend to be sparse. So when a horizonal derivative
filter fx and a vertical derivative filter fy are applied on l(x, y, t), the resulting
filter outputs ln(x, y, t) : lx, ly are sparse and then can be approximated with a
Laplacian distribution P (ln) = 1

Z e
−α|ln|. Applying derivative filters {fn : fx, fy}

on i(x, y, t), we have

i(x, y, t) � fn = l(x, y, t) � fn + r(x, y) � fn (3)
in(x, y, t) = ln(x, y, t) + rn(x, y) (4)

Then the ML estimate of filtered reflectance image r̂n(x, y) are given by:

r̂n(x, y) = mediantin(x, y, t) (5)

Then r can be recovered via solving the overconstrained systems of linear
equations:

r̂ � fn = r̂n (6)

In this case, the solution can be given by:

r̂ = g � [fx(−x,−y) � rx + fy(−x,−y) � ry ] (7)

where fn(−x,−y) is a reversed copy of fn(x, y), and g is the solution of

g � [fx(−x,−y) � fx(x, y) + fy(−x,−y) � fy(x, y)] = δ (8)

Note that g is independent of the image sequence, so can be computed offline.
The whole process is illustrated in Figure 1.

The prerequisites of this method is a sequence of images of one fixed scene
only with significantly changing illuminations. However, it is difficult to meet in
face recognition. Acquiring strictly aligned face images with illumination changes
needs face alignment technologies insensitive to illumination. But all of current
face alignment algorithms will be affected dramatically by illumination changes.
So exploring methods to remove shadows from just a single face image is critical
to face recognition.
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Fig. 1. Illustration of the weiss’s algorithm.

Let’s look at equation (4), what we need is an estimation of rn(x, y). As
described in [6], face images under arbitrary illuminations construct a low-
dimension subspace. Our motivation is to construct filtered face illumination
subspaces containing filtered face images without shadow edges. Given a face
image with shadows, we can project its filtered versions into these subspaces to
produce edge maps with shadow edges removed. This eliminates the need to lo-
cate shadows in images, instead we introduce the global constraint of face images
into the shadow removal process. Because the filtered faces are sparse and we
treat each of them as an observation, so the factorial code architecture of ICA
best fits to construct these subspaces. After removing shadow edges from the
filtered face images, a reconstruction process can be applied to derive a shadow
free image.

3 Removing Shadows from Face Images

3.1 Independent Component Analysis

The goal of independent component analysis (ICA) is to decompose a set of
observations into a basis whose components are statistically independent or, at
least, are as independent as possible. Given N face images, prior to the applica-
tion of ICA on the face images, each image has been scanned rowwise in order
to form a column feature vector. All the feature vectors have been collected in
a matrix X whose columns contain the images. Let us now suppose that each
image (columns of X) represents a linear combination of some underlying basis
images. In the matrix form we can write X = AS, where A are the basis im-
ages associated with a set of independent coefficients vector (source) of S [2].
All we want to do is to estimate A by D−1, where the unmixing matrix D is
the learned ICA weight matrix, such that Ctrain = DX and Ctrain ≈ S. There-
fore, each column of Ctrain consists of the independent coefficients, Ctrain, for
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the linear combination of basis images in A that comprised each face image x.
Since ICA attempts to make Ctrain as independent as possible, Ctrain is called a
factorial code for face images [2]. Note that, under this configuration the pixels
are independent across the same image. That is, the coefficients c found in the
columns of Ctrain are independent and not the basis images.

In order to have a controlled reduction of the number of independent com-
ponents, m linear combinations of the original images, namely the first m PCA
coefficients of the images, are chosen. ICA was performed on the matrix RT

m

whose columns are the PCA coefficients of the training images. Let PT
m be the

modal matrix where rows are the m principal eigenvectors. Matrix RT
m is then

given by RT
m = PT

mX . Hence: Ctrain = DRT
m. Subsequently, a whitening pro-

cess is applied to RT
m to normalize the data. If the row means are substracted

from RT
m and the resulting matrix is passed thorough a zero-phase whitening

filter which is twice the inverse square root, the whitening transformation is
written as W = 2( 1

NR
T
mRm)−

1
2 . Therefore, the zero-mean input matrix can be

decomposed as the product of the unmixing matrix and the whitening matrix
Dw = DW . Accordingly, (1) is rewritten as Ctrain = DwR

T
m. The unmixing

matrix Dw must be learned by ICA during training. An iterative process for
updating Dw yields the independent coefficients. Different approaches exist for
this purpose. A typical one is maximum entropy method. Let ctrain,i be the i-th
column vector of Ctrain, ctrain,i = (ci1, ci2, ...cij , ..., cim)T , and g(ξ) = 1

1+e−ξ be
a nonlinearity applied component wise to the elements of ctrain,i to yield the
vector zi = g(ctrain,i). An updating equation for Dw based on ctrain,i at each
iteration k, is given by :

Dw(k + 1) = Dw(k)+
η[I + (1 − 2zi(k))cTtrain,i(k)]Dw(k)]Dw(k) (9)

where η is the learning rate, I is the identity matrix and 1 is a m × 1 of ones.
Obviously, ctrain,i(k) = Dw(k)rm,i where rm,i is the i-th column of RT

m and
zi(k) = g(ctrain,i(k)). Once we have finished training and obtained Ctrain, the
coefficients for a test image xtest can be represented as

ctest = DwP
T
mxtest (10)

where xtest has zero mean.

3.2 Our New Method of Shadow Removal

According to the ICA factorial representation of face images described above,
given a test image xtest, we have an image synthesis model as:

xsyn = ACtest (11)

where the elements of Ctest are given by equation (10). Figure 2 illustrates this
image synthesis model. Note that during training we perform ICA on filtered
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Fig. 2. Image synthesis model of ICA. The independent coefficients, c, for the linear
combination of basis images in A synthesize each face image. The synthesized face edge
map is shadow edge free.

Fig. 3. Examples of ICA basis images.

face images, not original face images because we need sparse input. The training
process is given below.

Given training face images without shadows X = {xi|i = 1, ..., n}, and a set
of derivative filters F = {fx, fy}, where fx is a horizonal derivative filter and
fy is a vertical derivative filter, as those in section 2. Applying these derivative
filters to the face images, we have two sets of face edge maps. Performing ICA
on both sets separately, we get two sets of ICA basis images that make up of
matrix Ax and Ay . Some examples of these basis images are shown in figure 3.

After the training, we have the unmixing matrix D and basis images contained
in A. Using equation (11), two filtered versions of test images with shadows can
be projected into the ICA subspaces separately, deriving two synthesized edge
maps with shadow edges removed (r̂x and r̂y) as illustrated in figure 2.

The reconstruction is given by:

xnew = g � [fx(−x,−y) � r̂x + fy(−x,−y) � r̂y] (12)

where fn(−x,−y) is a reversed copy of fn(x, y), and g is the solution of equation
(8). xnew is the shadow free image we derive from a single face image with
shadows.
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Fig. 4. Some examples of the CMU face database.

Fig. 5. Removing shadows from a single face image.

4 Experiments and Results

We have extensively test our method on a subset of the CMU PIE face im-
age database. This database consists of 68 persons’ face images captured under
changing illuminations. We choose 20 images of each person under different il-
luminations, crop and scale them to 100× 100 to form the subset. Examples of
this subset are shown in figure 4. Five face images without shadows of each per-
son were chosen as the training set, others as the test set. Experimental results
show that our method can successfully remove shadows from a single face image
(figure 5). In figure 5, column 1 is the original test face image, the horizontal and
vertical derivatives of which are shown in column 2 and 3, column 4 and 5 are
the corresponding face edge map synthesized using the ICA models, from which
we can see that shadow edges are gone. The last column shows the reconstructed
shadow free image.

Experimental results show that our method can achieve good shadow removal
effects, and we need only a single image. We further perform face recognition
experiment on the test set. The test set is divided into 3 subsets, subset 1 contains
68×5 images without shadows, subset 2 contains 68×5 with small shadows, and
subset 3 contains 68× 5 with large shadows. Direct correlation method is used
to recognize the face images after shadow removal. We compared our method
with raw method (without any preprocessing) and PCA method. The recognition
results are shown in table 1. It is obvious that our method significantly improves
the recognition rate on face images with shadows.

5 Conclusion

The performance of algorithms in computer vision decrease when there are shad-
ows in images. Typical shadow removal approaches try to locate shadows in the
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Table 1. Face Recognition Results on CMU PIE.

Subset 1 Subset 2 Subset 3

Raw Method 94.2% 61.5% 45.3%

PCA Method 96.3% 78.2% 69.9%

Our Method 97.3% 94.5% 92.1%

image, which, however, is a difficult task. In this paper, we present an effective
ICA-based method to remove shadows from a single face image. Firstly we re-
move shadow edges from face edge maps of the test image using ICA learning
method, and then reconstruct a shadow free image from the face edge maps with
shadow edges removed. Our novelty is that we introduce the global constraints
of face images into the shadow removal process using learning method, which
enable us to remove shadows from a single gray image. The experimental re-
sults showed that using prior learning our method can effectively improve the
performance of face recognition on face images with shadows.
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Abstract. This paper describes an analysis performed for facial de-
scription in static images and video streams. The still image context
is first analyzed in order to decide the optimal classifier configuration
for each problem: gender recognition, race classification, and glasses and
moustache presence. These results are later applied to significant sam-
ples which are automatically extracted in real-time from video streams
achieving promising results in the facial description of 70 individuals by
means of gender, race and the presence of glasses and moustache.

1 Introduction

Human beings are sociable by nature and use their sensorial and motor capabili-
ties to communicate with their environment. If Human to Computer Interaction
(HCI) were more similar to human to human communication, accessing HCI
devices would be easier and this fact would improve their social acceptability,
becoming non-intrusive, more natural and comfortable [9].

Among the different channels used for human communication, the face has
great importance conveying to humans a wealth of social signals, being therefore
considered the center of human communication [6]. They tell us who the person
is, or help us to guess features that are interesting for social interaction such
as gender, age, expression and more. That ability allows us to react differently
with a person based on the information extracted visually from his/her face. For
these and other reasons, computer-based facial analysis is becoming widespread,
covering applications such as identity recognition, gender recognition, facial ex-
pression analysis, etc.

The contribution of this work is the analysis of an appearance based approach
for semantic facial description of individuals in static images and during an
interactive session. The paper is organized as follows: in Section 2 the approach
used for facial description in still images is described and tuned for the problems
selected. Section 3 considers the application to video streams, establishing a
criteria for pattern selection during interaction. Finally, in Section 4 the main
conclusions of the work are outlined, as well as directions for future development.
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2 Facial Description

The facial descriptors considered in this work are: gender, race, and the presence
or not of moustache and glasses. In the literature different works have tackled the
problem of gender recognition. A recent approach based on rincipal Components
Analysis (PCA) achieves high performance also for low resolution images [8]. In
[7] a Gabor wavelet representation on selected points is used with good results
in gender and race classification. There are different references [4, 12] which try
to detect the presence of glasses in a face, but we have not found any reference
tackling the the problem of the moustache presence.

Fig. 1. Gender results: left) Model training time, middle) success rates for training set,
and right) success rate for test set.

To tackle the problem, a representation mechanism must first be established
to represent faces once the input data, i.e. the images, are available. It is inter-
esting to reduce the data dimensionality to encode the face image without losing
information. We selected a well known face representation space in advance: the
PCA space due to its economical advantages [5]. The different classifications are
performed in that representation space by means of a Support Vector Machines
(SVM) classifier [10]. This combination PCA+SVM has been chosen for being
well known by the community and the good performance results achieved [2].

The different classifiers performance is analyzed in relation to the number of
eigenvalues used for representation, in order to get the best number for reliable
classification in each problem. To define the PCA space, we have previously an-
notated the eye positions of 6000 faces of different people taken from internet.
These images have been normalized according to eye positions obtaining 59×65
samples which were used for the gender and race descriptors, and more local-
ized areas to check the presence of glasses and moustache, see Figure 4.A. The
PCA space calculation using 4000 of them required 12 hours in a PIV 2.2 Ghz.
Different training and test sets have been set up for each problem, see Table 1.

Gender recognition: The results, see Figure 1, show that the training set
needs around 40 − 50 eigenvalues to be perfectly classified, while the test
set presents a balanced improvement for both sets up to 70 eigenvalues.
The required training time is also reduced for more than 60 eigenvalues.
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Fig. 2. Each row represents the ratios achieved for the different descriptors: gender,
skin, glasses and moustache. In each row left) Model training time, middle) success
rates for training set, and right) success rate for test set.

According to some results on human perception [3], the experiments have
been also performed considering only the eyes area, achieving a performance
only 5 points lower.

Race classification: Restricted by the face database, we have considered only
two race groups, clear and dark, suffering problems to find more samples for
the dark class during our gathering stage. For that reason the training set
is smaller than the one used for gender recognition. First row in Figure 2
reflects the results achieved. Due to the unbalanced distribution of the test
set, the total success rate is close related to the clear skin class rate, however
it is observed that around 30 eigenvalues are necessary to classify correctly
the training set, while the best results for the test set are achieved in the
range 50− 70.

Glasses presence: For the glasses presence problem, we have restricted the
image to the eyes area, see Figure 4.A. Middle row in Figure 2 reflects the
results, the test set is correctly classified with around 30 eigenvalues, while
the test set starts to lose some performance (observing both sets) with more
than 80 eigenvectors.
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Table 1. Training and test sets. We have tried to build balanced training sets, but for
some descriptors one class is not so frequent in our database, and therefore the training
set is reduced and the test set has much more samples of the most typical class.

Training set Test set
Descriptor Female Male Female Male

Gender 1223 1523 835 2246

Descriptor Clear Dark Clear Dark
Race 574 316 4811 306

Descriptor No Yes No Yes
Glasses presence 912 692 4042 356

Moustache presence 710 480 4389 426

Fig. 3. Moustache conditioned.

Moustache presence: For moustache, bottom graphs in Figure 2 presents the
results observing that with more than 50− 60 eigenvalues the test set starts
to lose the success rate.

Conditional classification: We have also considered the application of a clas-
sifier attending to a previous condition. It is supposed that a female has
no moustache, therefore, we apply the moustache presence classifier only
if the face was considered male. The results reflected in Figure 3 indicates
that this information, with the current success rates achieved, improves the
performance for the test set.

According to these results, the optimal number of eigenvalues to use are 70 for
gender recognition and glasses presence, 60 for moustache presence, and 50 for
race classification. In the next section we analyze their performance processing
faces automatically detected in video streams.

3 Video Stream Processing

Our final objective is to be able to provide the system the ability of describing
an individual who interacts with, therefore we apply the conclusions extracted
in the previous section to video stream analysis.

For that purpose an automatic face detector is required. The one employed
combines the general object detection framework by Viola and Jones [11], skin
color detection, tracking and temporal coherence providing high performance,
see [1] for more details. For each detected face, the system stores not only
its position and size, but also its average color and patterns. In summary,
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Fig. 4. A) Images areas used for the different problems. B) Exemplar selection process.

each face detected in a frame can be characterized by different features xi =
〈pos, size, color, eyespos, eyespattern, facepattern〉.

During an interaction session, IS, the face detector gathers a set of detection
threads, IS = {dt1, dt2, ..., dtn}. A detection thread contains a set of continuous
detections, i.e. detections which take place in different frames and are related
by the system in terms of position, size and pattern matching techniques. Thus,
for each detection thread, the face detector system provides a number of facial
samples, dtp = {x1, ..., xmp}.

3.1 Significant Patterns Selection

As mentioned in the previous section, the face detection system provides a set
of detection threads. From each, some selected patterns, the exemplars ep =
{e1, ..., esp}, are extracted in order to reduce information redundancy.

The criteria used to select significant samples in a detection thread, have
been chosen to be easily integrated in the detection process. For that reason, it
is based on events reported by the the eye tracker integrated in the face detector,
see [1] for more details about that detector. A tracking failure shows an evidence
of a substantial change in the face appearance, which forces the tracker to lost
the target. Under this circumstance, the system needs to use another cue to
detect again first the face and later the eyes, or the detection thread will be
considered lost. The first face detected in the next frames by the eye tracker is
taken as a new exemplar, see Figure 4.B for a graphical overview of the selection
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Fig. 5. Stable patterns or exemplars extracted from two different detection threads.
Dot lines indicates the moment in which they were extracted during interaction.

process. For each exemplar, its time life until the next tracking failure is stored.
Therefore, an exemplar is described by the data provided by the normalized
detected face, xj , and its persistence, pej , i.e. ej = 〈xj , pej〉. In Figure 5, the
exemplars extracted automatically for two individuals during sessions of more
than 15 secs. are presented.

Given an interaction session, IS, for any detection thread, dtp, a facial clas-
sifier can compute the likelihood for a class, Ck. This is done by weighting the
binary classification for each exemplar according to its relative persistence in
relation to the total persistence of the detection thread. This is expressed as:

P (Ck|dtp) =

∑sp

j=1 P (Ck|ej) ∗ pej∑sp

n=1 pen
(1)

3.2 Experiments with Video Streams

70 sequences corresponding to different individuals, cameras and environments
with a resolution of 320×240 were recorded and processed. The total set contains
27271 images, presenting all of them a face easily detected by a human. The face
detector located 98.5% of them with an error rate of 5%.

Table 2 summarizes the results for the different descriptors, computed with
(1) for the exemplars automatically extracted from each sequence. The correct
classification rates are above 80% for moustache and glasses presence problems.
For race classification the results are above 90% for both classes, but it must
be noticed that the number of dark individuals is reduced in the test set. For
gender recognition the results are worse, over 70% for both sets using the eyes
area, and over 65% using the whole face.

This low confidence achieved by the gender recognizer can be used by the
system to suggest a classification only if the winner class has a likelihood greater
than 0.7, asking for supervision in any other situation. This action will addition-
ally allow the system to distinguish who is not correctly classified, and therefore
who should be added to the training set, due to the fact that his/her particular
data are still not properly considered in the gender model. That information can
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Table 2. Results achieved for facial description. The left column reflects in brackets
the number of individuals (video streams) with a particular feature. The other columns
indicate the percentage of those sequences which were labelled with a likelihood of
belonging to a class (F for female, ¬F for male, C for clear skin, ¬C for dark skin,
G for glasses, ¬G for no glasses, Mo for moustache and ¬Mo for no moustache). For
example, the value in the second row and column, 56.5%, indicates that this percentage
of sequences was assigned to the class ¬F , i.e. Male, with a likelihood greater than 0.7.

P (¬F ) > 0.7 P (¬F ) > 0.5 P (F ) > 0.5 P (F ) > 0.7

Male (46), using the face 56.5% 65.2% 34.6% 17.3%

Male (46) using the eyes 65.2% 71.7% 28.2% 15.2%

Female (24) using the face 4.1% 4.1% 95.8% 83.3%

Female (24) using the eyes 8.3% 20.8% 79.1% 66.6%

P (¬C) > 0.7 P (¬C) > 0.5 P (C) > 0.5 P (C) > 0.7

Clear skin (67) 89.5% 94% 5.6% 1.4%

Dark skin (3) 0% 0% 100% 33.3%

P (¬G) > 0.7 P (¬G) > 0.5 P (G) > 0.5 P (G) > 0.7

No glasses (59) 81.3% 86.4% 13.5% 11.8%

With glasses (11) 9% 18% 81% 36%

P (¬M) > 0.7 P (¬M) > 0.5 P (M) > 0.5 P (M) > 0.7

No moustache (64) 92.2% 98.4% 1.5% 0%

With moustache (6) 0% 16.6% 83.3% 66.6%

be used by the system to tune the classifier based on its experience, in order to
learn iteratively a better classifier.

4 Conclusions

An analysis has been performed for facial description in static images and video
streams. A subset of the total number of eigenvectors has been empirically se-
lected in order to get better performance for each problem. An approach for
significant samples extraction from video streams has also been described. The
results achieved classifying automatically selected faces in video streams of indi-
viduals not contained in the training set are decent enough to keep on developing
these abilities for a machine.

Further work must focus on gathering more interactive sessions with individ-
uals with features less frequent in our test set, to perform further experiments.
Additionally, we are interested in developing some tools for self supervision of the
system in order to improve the current classifiers by means of its own experience.

Acknowledgments

Work partially funded by research projects Univ. of Las Palmas de Gran Ca-
naria UNI2003/06, UNI2004/10 and UNI2004/25, Canary Islands Autonomous
Government PI2003/160 and PI2003/165 and the Spanish Ministry of Education
and Science and FEDER funds (TIN2004-07087).



468 Modesto Castrillón-Santana et al.

References

1. M. Castrillón Santana, J. Lorenzo Navarro, D. Hernández Sosa, and Y. Rodŕıguez-
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Abstract. This paper addresses the problem of recognition of emotional
facial gestures from static images in thumbnail resolution. More experi-
ments are presented, a holistic and two local approaches using SVM’s as
classifier engines. The experimental results related to the application of
our method are reported1.

1 Introduction

As the Multimax Principle says, the natural communication is multimodal so
far as it can be [1]. Thus our aim must be to create similar multimodalities in
the communicative way of human-computer interaction. Faces are our interfaces
in our emotional and social lives. They should take part in our communication
with computers as well. The face is our unique feature. Even the faces of the
twins differ in some respects. Humans can detect the differences between two
faces very easily, but this is a hard task for a computer.

Automatic analysis of facial gestures is rapidly becoming an area of intense
interest in multi-modal human-computer interaction. However, the basic goal of
this area of research mapping detected facial gestures into a human-like descrip-
tion of shown facial expression is yet to be achieved.

Pantic and Rothkrantz [12] have laid down the basic requirements of an ideal
system for facial expression analysis. The first of these points is the requirement
of fully automatic system, i.e. it has to automatically perform all the stages of
the recognition (face detection, feature extraction and expression classification).
There have already been some experiments for developing such a system e.g.
[13].

The published studies cover almost all the possible approaches for facial
expression recognition [4, 7, 12]. There are holistic [2] and local image-based [11]
recognizers. Researchers use templates [7], principal components or Gabor filters
[2], neural networks [11] for finding the proper expressions. They try to classify
the images into facial action units [3], or some main emotion categories [14] from
static images [13] or image sequences [3].

Our aim is to recognize the main emotional expressions from static images.
In our previous work we provided a holistic approach using Support Vector Ma-
chines for classifying sadness, surprise, anger, happiness and neutral expression
1 Research supported by OTKA grants F043090.
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from thumbnail images, in which only the main facial regions appear (without
hair information) [6]. The thumbnail images give minimal amount of face infor-
mation to the recognition system. In the present study, we demonstrate two local
approaches near a holistic one by using only some local areas of the face, which
are important information sources from the aspect of classifying facial gestures.
We are using thumbnail resolution and SVM classifier again.

2 Support Vector Machine

Statistical learning from examples aims at selecting from a given set of functions
{fα(x) | α ∈ Λ}, the one which predicts best the correct response (i.e. the
response of a supervisor). This selection is based on the observation of l pairs
that build the training set:

(x1, y1), . . . , (xl, yl), (1)

which contains input vectors xi ∈ Rm and the associated ground “truth” yi ∈
{+1,−1} given by an external supervisor.

Let the response of the learning machine fα(x) belongs to a set of indicator
functions (which admits the value +1 or −1) {fα(x) | x ∈ Rm, α ∈ Λ}. If we
define the loss-function:

L(y, fα(x)) =
{

0, if y = fα(x),
1, if y �= fα(x) (2)

that measures the error between the ground truth y to a given input x and the
response fα(x) provided by the learning machine, the expected value of the loss
is given by:

R(α) =
∫
L(y, fα(x))p(x, y)dxdy (3)

where p(x, y) is the joint probability density function of random variables x and
y. R(α) is called the expected risk. We would like to find the function fα0(x)
which minimizes the risk functional R(α). The selection of the function is based
on the training set of l random independent identically distributed observations
(1) [8].

The basic idea of SVM to construct the optimal separating hyperplane. Sup-
pose that the training data (1) can be separated by a hyperplane, fα(x) =
αT x + b = 0, such that:

yi

(
αTxi + b

)
≥ 1, i = 1, 2, . . . , l (4)

where α is the normal to the hyperplane, |b|
‖α‖ is the perpendicular distance from

the hyperplane to the origin, and ‖α‖ is the Euclidean norm of α. Let d+ (d−)
be the Euclidean distance from the separating hyperplane to the closest positive
(negative) example. The margin of the separating hyperplane is defined to be
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d+ + d−. For the linearly separable case, SVM simply seeks for the separating
hyperplane with the largest margin [10, 15–17].

For linearly non-separable data, by mapping the input pattern vectors, which
are the elements of the training set, into a high-dimensional feature space through
an a priori suitably chosen mapping, we expect that the elements of the training
set will be linearly separable in the feature space. We construct the optimal
separating hyperplane in the feature space to get a binary decision whether the
input vector belongs to a given class or not. For example, in the case of the
application studied in the paper, facial gesture recognition, the input vector
comprises gray levels of pixels from a rectangular region of the digital image and
the result of the binary decision is the answer whether this region, for example,
is a smiling face or not.

In this research, we used the application SVM Light developed by T. Joachims
[9].

3 Image Database

In the presented study we used our face database of 600 images. All of its images
are recorded in 256 gray levels and are of dimension 640×480. These images show
the head of 40 different subjects asked for performing 5 facial gestures (neutral,
sad, surprised, angry, and smiling) successively. We repeated this sequence three
times. Figure 1 shows surprising, smiling, sad, and angry face in the original
resolution.

(a) (b)

(c) (d)

Fig. 1. Surprising face (a), smiling face (b), sad face (c), angry face (d) in the original
resolution.

Our dataset is divided into three disjoint parts. All the images of 6 randomly
selected persons are referred as database TEST ONLY. This is the collection of
images of subjects, who are absolutely unknown for the SVM’s, i.e. who are not
trained to them only tested. The gesture sequence recorded at 3rd time of the
remaining 34 subjects makes up the database called TEST. This is the collection
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of images, which are unknown for the SVM’s of persons, whose other 2 sequences
belong to the database TRAIN and used for training the classifiers.

In our preliminary works we tried to classify the gestures from the image of
the whole face. From each image, a bounding rectangle of dimension 256× 320
pixels has been manually determined that includes the actual face. This area
has been subsampled four times in the following way: at each subsampling, non-
overlapping regions of 2× 2 pixels are replaced by their average. [5] The size of
this dataset is multiplied by 5 by shifting each 16× 20-pixel image of database
TRAIN by a pixel along the four main direction for decreasing the error of the
manual recording of rectangles.

In our succeeding studies, we tried a local approach by determining the
bounding rectangle of the eyes and their neighbourhood, and that of the mouth
and its surroundings. The eye-rectangles have dimension 208×96 pixels and the
mouth-rectangles have dimension 184×96 pixels. These patterns have been sub-
sampled three times according to the above procedure. Figure 2 shows smiling
eyes and mouth.

(a) (b)

Fig. 2. Smiling eyes (a), smiling mouth (b) in the original resolution.

4 Experimental Results

In all the presented experiments, the groundtruth of each gesture contains all
the vectors of the database TRAIN labeled with +1, if the given pattern shows
the given gesture, and with −1, otherwise.

In learning phases, a lot of different kernel functions were tried. At all times,
we found that different gestures can be recognized on the best performance level
by using different kernels.

After the learning phases, the trained SVM’s are tested on database TEST and
TEST ONLY. We measured the classification errors, i.e. the sum of false positive
and false negative answers, SVM by SVM.

In the holistic case, we trained 5 SVM’s, one for each gesture. We used linear,
and 2nd, 3rd and 4th degree polynomial kernels and tested all of them on the
test sets. Table 1 shows the best results. The classification errors are in terms of
percent.

In the local approach, we trained two individual SVM’s for each gesture, one
for the eyes, the other for the mouth, with the proper groundtruth. We measured
the classification errors of these SVM’s for different linear and polynomial kernels
and the 3rd degree kernels seemed to produce the best performance. We selected
the best one of them for the additional experiments. Its results can be seen in
Table 2 for the eyes and table 3 for the mouths.
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Table 1. Experimental results of the holistic approach.

TEST TEST ONLY

Neutral
linear kernel 21.76% 32.22%

Sad
3rd degree polynomial kernel 22.35% 30.00%

Surprised
3rd degree polynomial kernel 11.76% 24.44%

Angry
3rd degree polynomial kernel 14.12% 15.56%

Happy
linear kernel 14.12% 14.44%

Table 2. Experimental results of the local approach. Results of the eyes-SVM’s.

TEST TEST ONLY

Neutral 15.88% 30.00%

Sad 21.18% 32.22%

Surprised 14.12% 15.56%

Angry 15.88% 16.67%

Happy 18.82% 22.22%

Table 3. Experimental results of the local approach. Results of the mouth-SVM’s.

TEST TEST ONLY

Neutral 21.76% 27.78%

Sad 17.06% 28.89%

Surprised 17.65% 22.22%

Angry 18.82% 22.22%

Happy 7.65% 3.33%

As can be seen, these results have greater scatter, because there can be
different gestures with very similar eye-state or mouth-state.

In what follows, the outputs of these 10 SVM’s with the selected kernels
for each eyes-mouth pair have made a new groundtruth of dimension 10. In
this second layer, there are 5 SVM’s trained for each gesture. Again, each SVM
receives the 10-dimension vector of all the pairs labeled with +1, if the pair
belongs to the given gesture, and with −1, otherwise.

For reducing the classification errors of the first layer, we used the outputs
of the misclassified images of the training set as well as the right outputs (of
course with the proper labels) for training the second layer.

For the SVM’s of the second layer, we tried some polynomial kernels. The
best performance is showed by Table 4.
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Table 4. Experimental results. Results of the 2-layer SVM network.

TEST TEST ONLY

Neutral
3rd degree polynomial kernel 12.94% 14.44%

Sad
2nd degree polynomial kernel 14.12% 22.22%

Surprised
2nd degree polynomial kernel 12.94% 15.56%

Angry
3rd degree polynomial kernel 15.29% 14.44%

Happy
3rd degree polynomial kernel 5.88% 4.44%

As we expected, the happiness is significantly more recognizable than other
4 gestures, which are on approximately the same significance level.

5 Conclusions

We have presented some progressing experiments for classifying emotional facial
gestures using still images in thumbnail resolution. We have used SVM classi-
fiers. First, a holistic approach has been accomplished using thumbnail images of
the whole face. Its test results have proved to be acceptable. However, it can be
improved using local procedures as it can be seen in results of our further studies.
They have used two local parts of the faces, eyes and mouth with their surround-
ings. Our latest reported experiment using two-layer SVM network have turned
out to be a much stronger classifier than our previous not-so-bad procedures.

Since the direct transition between certain states of the face may happen
rather rarely, thus information retrieved from more than one immediately suc-
ceeding frames of video sequences can increase on the accuracy. It will be the
next step in our research work.
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Abstract. We present a method that estimates high level animation
parameters (muscle contractions, eye movements, eye lids opening, jaw
motion and lips contractions) from a marker-less face image sequence.
We use an efficient appearance-based tracker to stabilise images of upper
(eyes and eyebrows) and lower (mouth) face. By using a set of stabilised
images with known animation parameters, we can learn a re-animation
matrix that allows us to estimate the parameters of a new image. The
system is able to re-animate a 32 DOF 3D face model in real-time.

1 Introduction

Automated computer animation of faces and avatars is an area of intense re-
search for its application in the television, computer games and film industry.
Performance driven animation is usually done by motion capture using markers
on the face. Computer vision provides an alternative non-intrusive marker-less
approach to motion capture.

Generally, the face shapes of the actor and that of the animated model are
different. So, a method to adapt the motion of the former to the latter is needed
[1]. There are two ways to achieve this: parametrisation and motion modification.
By facial motion modification we mean to adapt the vertex deformation due to
facial motion to the new facial model. In [1] were introduced some algorithms
and heuristics to translate the facial expression motion from a facial model into
another with different surface structure. Procedures based on parametrisation
aim to describe motion with a set of values that, when applied to any facial
model, will produce a similar expression. Among the parametrised systems we
can distinguish those that use standard facial expressions coding, like FACS[2, 3]
or MPEG-4 FAPS [4, 5], and those that use and ad-hoc coding [6, 7]. When the
abstraction level of the animation parameters is high, then the estimation of
these parameters is more difficult. This is due mainly to the weak relationship
between image measurements and control parameters.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 476–483, 2005.
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In this paper we present a method that estimates high level animation pa-
rameters from a marker-less face image sequence. We will use a muscle-based
3D face model resulting in a parametrised motion capture algorithm. We have
previously developed an efficient appearance based tracker [8] that locates and
tracks the eyes and the mouth in spite of the non-rigid motion of the face. The
main contribution of this paper is a procedure to estimate the animation param-
eters of a 3D face model from stabilised images of the eyes and mouth obtained
from our tracking algorithm. This procedure is composed of two training steps,
one for building an eigenspace for tracking, and another one for learning a lin-
ear relation between the animation parameters and the stabilised images. In the
following sections we will present this algorithm and some results.

2 Appearance Based Tracking

The tracking algorithm presented in this section can be seen as an extension
of the Hager and Belhumeur’s Jacobian factorisation [9] where we impose no
restrictions on the PCA-based subspace model used. It is also related to the
Black and Jepson’s Eigentracking [10], but instead of computing the motion
parameters by using a gradient descent procedure in which the target image
Jacobian must be computed for each frame in the sequence, as in [10], we use
a set of precomputed motion templates which alleviate the computations that
have to be performed on line.

Let P be the image of a target. The subspace constancy equation holds for
all pixels in the target [10]:

I(f(x,μ), t) = [Bc(t)](x) ∀x ∈ P, (1)

where x is the vector of co-ordinates of a point in image I, B is the subspace
base matrix, c is the vector of subspace coefficients, and I(f(x,μ), t) is the image
acquired at time t rectified with motion model f(x,μ) and motion parameters μ.
By [Bc](x) we denote the value of Bc for the pixel with position x in the image.
Matrix B is of dimension N × k, where N is the number of pixels per image and
k is the number of basis vectors in the subspace. Intuitively (1) states that the
rigidly rectified image I(f(x,μ), t) can be expressed as a linear combination of
the appearance subspace basis vectors, B 1.

Tracking consists on estimating for each image in the sequence the values of
the motion, μ, and appearance, c, parameters which minimise the error function

E(μ, c) = ||I(f(x,μt), t)− Bc(t)||2,

where I(x) is I(x) in vector form (scanning I by rows or columns). In order
to make Gauss-Newton iterations, a Taylor series expansion of I at (x, t) is
performed, producing a new error function

E(δμ, c) = ||Mδμ + I(f(x,μ))− Bc||2,
1 We assume that that the average image has been included as the first column of B.
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where M = ∂I(f(x,μ))
∂μ is the N × n (n = dim(μ)) Jacobian matrix of I (note that

dependence on t has been dropped for convenience). In the following subsections
we will introduce a procedure for precomputing a set of motion templates which
efficiently minimise (2) for any linear subspace model.

2.1 Jacobian Matrix Factorisation

One of the obstacles for minimising (2) on line, while tracking, is the com-
putational cost of estimating M for each frame. Following an approach simi-
lar to [9], M can be expressed in terms of the gradient of the subspace ba-
sis vectors, B∇, which are constant, and the motion and appearance param-
eters (μ, c), which vary over time. If we choose a motion model f such that
Cfx(xi,μ)−1fμ(xi,μ) = Γ(xi)Σ(μ, c), then M can be factored into

M(μ, c)=

⎡⎢⎣ B∇(x1)Γ(x1)
...

B∇(xN )Γ(xN )

⎤⎥⎦ Σ(μ, c)=M0Σ(μ, c),

where B∇(xi) is the Jacobian of B with respect to the image co-ordinates. Then
M0 is a constant matrix and Σ depends on c and μ.

2.2 Minimising E(μ, c)

As M depends on both, μ and c, (2) defines a nonlinear cost function over δμ
and c. The optimisation algorithm that we use first assumes c constant and
computes the minimum of E(μ, c) w.r.t. μ,

δμ = −(ΣMΣ)−1ΣM0 [I(f(x,μ), t+ τ)− Bc(t)],

whereM = M0 M0. Then it minimises E over c assuming μ constant,

c = B[Mδμ + I(f(x,μ), t+ τ)].

Once we have c, we can refine the estimation of δμ by using (2.2) again. Normally
two or three iterations are enough to reach a stable solution. We have developed
the factorisation for the rotation-translation-scale, the affine and the projective
motion models [8]. In this paper we will use a projective motion model, f(x,μ) =
Hx, where H is a 3× 3 homography.

3 Reanimation

The philosophy to performance driven animation of a 3D face model we propose,
is similar to the Valente and Dugelay’s one [4]. We will use stabilised view images
of the user’s eyes and mouth with known animation parameters to estimate a
linear relationship between grey levels and animation parameters. In order to
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estimate the control parameters of their face model, Valente and Dugelay use
optical flow and not raw grey levels as we do. They use a very realistic 3D face
model of each particular user. Therefore, by driving their model with a set of
control parameters it was possible to get the corresponding optical flow for each
face region. Valente and Dugelay use a feature based tracker (five features) and
a Kalman filter to get the normalised images of different face regions. As their
tracker is not designed to deal with non-rigid motion, it is not clear how is it
going to work with extreme facial expressions.

In our case, the appearance based tracker of section 2 allows us to track
the most informative face areas in spite of the non-rigid motion due to facial
expressions. With the tracker we can extract stabilised images of any part of the
face for each frame in the sequence. In this section we are going to show how to
estimate the face animation parameters from stabilised images of the lower and
the upper part of the face.

3.1 Animation Parameters Estimation

In order to estimate the animation parameters for a given face region we will
use e example images each with N pixels. Let I be an N × e matrix, where each
column ij has one of the example images (e.g. scanning the image by rows),
and let A be an a × e matrix, where each column aj represents the animation
parameters, a, corresponding to the appearance in ij 2. Then De is an (N+a)×e
matrix:

De =
[

I
WAA

]
=
[

i1 · · · ie
WA[a1 · · · ae]

]
, (2)

where WA is a diagonal matrix of weights that takes into account the different
scale of the animation parameters and grey levels. The weight matrix we use, is
rI where r2 is the rate between the grey levels variability and total variability
in the animation parameters. In the Direct Appearance Models framework [11]
it is used a similar matrix but for grey levels and shape parameters.

By computing PCA of matrix De, we get Bl, the subspace basis expanded
by the l eigenvectors3 corresponding to the bigger eigenvalues of the covariance
matrix (DeDe ), which can be written as

Bl =
[
Bi

Ba

]
.

Using the (N + a) × l matrix, Bl, the vector cl, that represents the relation
between the images in I and the animation parameters in A can be estimated.
By using cl, we can approximate each pair (i, a) by (i∗,a∗) in such a way that:[

i∗

WAa∗

]
= Blcl, cl = Bl

[
i

WAa

]
.

2 We assume, that all examples, ij , and animation parameters, aj , are mean centred.
3 Note that we use two eigenspaces, one for tracking and the other for reanimation.
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Given an image i, and Bi and Ba matrices from training, the re-animation problem
is to estimate the corresponding animation parameters, a∗. From the structure
of Bl we can write Bicl = i, where cl is the only unknown. In general, the number
of image pixels N is much bigger than l and the solution for cl will be given by
the minimisation of

c∗l = argmin
cl

||Bicl − i||2 = pinv(Bi)i, (3)

where the l×N matrix pinv(Bi), is the pseudo-inverse of Bi computed by using
SVD. And then, the animation parameters that corresponds to the image i are
given by

WAa∗ = Bapinv(Bi)i = Ra
i i, (4)

where the a×N matrix, Ra
i , is constant and can be precomputed. As we get WAa∗

from (4), it is needed to multiply it by (WA)−1 in order to obtain the animation
parameters estimation, a∗, in the right scale.

4 Experiments

In all the experiments conducted4 in this section the face is splited in the upper
face (the eyes region) and the lower face (mouth region) areas. As the motion of
the two regions is almost independent we can build two appearance models need-
ing less examples on each (a modular eigenspace). Nevertheless, our tracker uses
the grey levels from both regions to compute motion parameters but maintaining
separate appearance parameters.

4.1 Quantitative Experiments

In the first experiment we would like to assert the quality of the re-animation.
To do so, we use a modified version of the Parke and Waters’ 3D face model [12]
with 32 degrees of freedom. The 3D face model is used to render three image
sequences: a training sequence for the eyes (630 images), a training sequence for
the mouth (540 images) and a test sequence (1225 images, see figure 1). The
facial expressions in the test sequence are different from the ones used in the
training sequences.

Fig. 1. Some of the 75 key-frames used to render the test sequence (1125 images).

4 See videos in http://www.dia.fi.upm.es/˜lbaumela/FaceExpressionRecognition/
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In the eyes training sequence there is only non-rigid motion in the upper
area of the face. Therefore, the stabilised images of the eyes can be extracted
automatically by tracking the mouth area with a simple template tracker (using
a mouth template). Similarly, as in the mouth training sequence there is only
non-rigid motion in the lower face, the mouth stabilised images are computed by
rigidly tracking the eyes. We have extracted a region of the eyes with Neyes =
60 × 35 pixels and a region of the mouth with Nmouth = 53 × 43 pixels (that
will be used both in tracking and re-animation). The normalised images of the
3D model (from the two training sequences) and the ground truth animation
parameters allows us to compute Ri

a, for each of the face regions (upper and
lower face).

In the experiment conducted we use the projective motion model for appear-
ance based tracking. In order to compute the eigenspace matrix for tracking,
B, we use all the training normalised images. For computing the re-animation
matrix, Ri

a, we use the 540 and 629 example pairs (images and animation pa-
rameters) for eyes and mouth, respectively.

The jaw opening parameter (see figure 2 left) is estimated very accurately
except around the frame 830 in which the face is out of the frontal position
to the camera. The overall estimation of the pupil horizontal orientation (see
figure 2 middle and right) is quite good except in frames 222 to 435, in which
the face is not frontal to the camera, and around frame 1050, in which the model
is cross-eyed (and we don’t have such configuration in the examples).
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Fig. 2. Synthetic experiment results. 8 On the left, it is shown the estimated jaw
openness, in the middle the estimated horizontal rotation for the left pupil and on the
right the horizontal orientation of the right pupil.

4.2 Qualitative Validation

We have tested our re-animation system with five different users. The main prob-
lem here is the selection of the examples for re-animation (the pairs normalised
images, animation parameters). The solution we have adopted is to use a set of
known face expressions in the 3D model (key frames) and select manually the
corresponding normalised images of the user’s eyes (21 examples) and mouth (18
examples). By doing so, we get the set of examples needed for the re-animation
training. We use all the training normalised images for computing the eigenspace
tracking matrices, B.
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Fig. 3. Results of two of the qualitative experiments. In first row, appearance based
tracking results for first user (the two face areas locations are overlayed in white) and
in second row animation results. In third row, appearance based tracking results for
the second experiment and fourth row animation results.

All the qualitative experiments were made by taking a very long sequence of
images and using half of the sequence for training and the other half for tracking.
In figure 3 are shown some of the results for two of the experiments. In the first
experiment we used a 4925 image sequence: 2190 images for training and 2735
for testing. And in the second one we used a 4421 images sequence: 2360 images
for training and 2061 images for testing. Due to lack of space we can not show
all the five re-animation experiments.

5 Conclusions

In this paper we have shown one of the applications of facial analysis: perfor-
mance driven animation. The animation system presented can be adapted, by
training, to any user and illumination conditions and the current implementa-
tion of our appearance based tracker (not optimised) can track the upper part of
the face at 25 fps and the whole face at 15 fps. Given that the re-animation only
needs the multiplication of matrix Ra

i by the grey levels of the corresponding
normalised image, it allows the animation of the 3D model in real time.

Some issues still remain open. The adaptation to a new user is in part manual,
mainly because we have not studied how to choose automatically the user images
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that correspond to facial expressions in the 3D model. We are currently building
a robust tracker, which efficiently deal with occlusions and gross illumination
changes.
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8. Buenaposada, J., Muñoz, E., Baumela, L.: Efficient appearance-based tracking. In:
Proc. of Workshop on Nonrigid and Articulated Motion, IEEE (2004)

9. Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of
geometry and illumination. PAMI 20 (1998) 1025–1039

10. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of artic-
ulated objects using a view-based representation. IJCV 26 (1998) 63–84

11. Hou, X., Li, S.Z., Zhang, H., Cheng, Q.: Direct appearance models. In: Proc. of
CVPR, IEEE (2001)

12. Parke, F.I., Waters, K.: Computer Facial Animation. AK Peters Ltd (1996)



J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 484–491, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Color Distribution Tracking for Facial Analysis 

Juan José Gracia-Roche, Carlos Orrite, Emiliano Bernués, and José Elías Herrero 

Computer Vision Lab, Aragon Institute for Engineering Research 
University of Zaragoza, María de Luna 1, 50018 Zaragoza, Spain 

{jjroche,corrite,ebr,jelias}@unizar.es 

Abstract. In this paper we address the problem of real time object tracking in 
complex scenes under dynamically changing lighting conditions. This problem 
affects video-surveillance applications where object location must be known at 
any time. We are interested in locating and tracking people in video sequences 
for access control and advanced user interface applications. Here we present a 
real time tracking method suitable for human faces. A Skin Probability Image 
(SPI) is generated by applying a skin hue model to the input frame. Targets are 
located by applying a modified mean-shift algorithm. To obtain their spatial ex-
tent, error ellipses are fitted to the probability distributions representing them. 
The hue model is unique for each target and it is updated each frame to cope 
with lighting variations. This technique has been applied to human face tracking 
in indoor environments to test its performance in different situations. 

1   Introduction 

One of the main research lines in our workgroup is facial analysis and recognition. 
Face detection and tracking are two steps required for the development of applications 
such as access control or advanced user interfaces. In this paper we introduce a novel 
approximation to face tracking based on the tracking of color probability distribu-
tions, a technique that has been widely used in previous works [1-6]. 

Color is used in computer vision as an efficient technique to segment and classify 
image areas. It has important advantages such as pose, occlusions and size invariance. 
For skin color, it is even possible to find a model common to all people. 

In the detection step, color is used to generate a bi-dimensional target probability 
map according to a statistical model in different color spaces [9]. Skin tone allows 
different modeling alternatives. In [1, 2] a gaussian model in the RG normalized 
chromatic space is used and in [3] as a gaussian mixture. In [4] the skin color cluster 
is segmented by fitting boundaries directly in the CbCr chromatic space. Color histo-
grams as approximations of probability density functions can be also used, [5, 6]. 

A face in the Skin Probability Image (SPI) is tracked by determining its position 
and spatial extent. The mass center of the distribution is used as an estimation of the 
position [6, 10]. Different techniques to estimate the size have been proposed: thresh-
old on the SPI [1], a function of the zeroth order moment of the distribution [6], a 
function of its standard deviation [3], boundary detection [4] or combination of the 
previous ones [7]. 

A search window is applied to limit the processing range. Each frame it is updated 
in location and size according to a dynamic model. These models range from the 
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assumption that there is no movement between frames [6, 3] to the application of 
Kalman filtering [1, 8]. The color model is also updated to compensate lighting 
changes [3]. 

We need a system suitable for real time face tracking to known location, size and 
pose every frame. The system should be capable to deal with the problems involving 
people tracking in indoor environments such as: mobile camera, dynamic lighting 
changes, complex motion dynamics or target overlapping. 

In this work we propose a tracking algorithm based on target modeling and project-
ing to a probability image. The main contribution is a new size and orientation estima-
tion technique from the statistical distribution model complemented with a robust 
color model update. It has been applied to indoor human face tracking with a hue 
model which is defined a priori and adaptive. The paper emphasizes the application of 
the method to human face tracking although it pretends to be general enough to be 
applicable to any object tracking 

The rest of the paper is organized as follows: In the next section the different as-
pects and structure of the tracking system are described. Section 4 describes the tech-
nique to estimate target location and spatial extent. The color model update is shown 
in section 5. Results of its performance in the presence of the problems described 
before are presented in section 6 and conclusions are drawn in section 7. 

2   System Overview 

To track a face three characteristics must be determined: face location, spatial extent 
(size and orientation) and color model. Therefore a target face is modeled by an ellip-
tical region, which comprises its location and spatial extent, and a skin tone model; a 
one-dimensional hue histogram, used as an approximation of the skin probability 
density function [5, 6]: 

))(()( ijij xHhistskinxp ∝  . (1) 

2.1   Tracking Initialization 

Face hue levels, mainly skin tone, can be modeled a priori and offer the main cue to 
initially locate target faces on the scene. In this step a generic skin model is used, its 
values are taken from pixels selected by a statistical segmentation algorithm [5] ap-
plied on a face database containing 1500 different persons, with different skin tones 
and lighting condigions. The algorithm is based on the techniques described in [4]: 

1. Lighting compensation is applied to remove undesired color bias in input image. 
2. Skin-like pixels are segmented using the generic tone model and an adaptive 

threshold. 
3. Candidate areas are validated by detecting facial features using chrominance maps 

for mouth and eyes. 

An ellipse is fitted to each of the detected face. The starting area of the face is smaller 
than the actual one as our elliptical model will adapt itself in size and orientation until 
taken over the entire facial area in successive iterations, as shown in figure 2. 
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2.2   Tracking Stages 

The face tracking system consists of four stages as depicted in figure 1: 

1. Prediction: according to the face location in previous frames and a dynamic model, 
the new position of the search window is predicted. With high frame rates, above 
15 per second, the center of the distribution in the previous frame is a valid ap-
proximation. However to improve robustness a second order lineal model of con-
stant acceleration is applied. Window size is not modified as its variation follows a 
dynamic hard to model. 

2. Data generation: the image is transformed to the HSV color space [9] and it is used 
to calculate de SPI image in an area surrounding the search window. 

3. Estimation: Target Feature Extraction. The distribution center and spatial extent 
are computed from the SPI by applying an iterative algorithm to find the distribu-
tion center and by fitting an ellipse. It is explained in detail in next section. 

4. Correction: predicted and estimated data are linearly combined according to the 
target characterization process confidence measure.  A wide range of face varia-
tions is allowed so the estimation confidence is not easy to compute. We have 
noted that the best combination method is to give preference to extracted data ex-
cept in clear error situations such as target overlapping or occlusions when there is 
a bad measure. The hue model for the face target is updated once the final elliptical 
model is in place; pixels are selected according to their similarity with the previous 
model. 

 

 

Fig. 1. The different processing steps for a given frame, K, in the tracking system. E and P 
stand for Estimation and Prediction respectively 

3   Target Feature Extraction 

It is initially based on the CAMShift algorithm idea [6] to compute the center of the 
probability distribution of a target face. The main innovation is in the estimation of 
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the spatial extent of the target. It does not require scene dependant thresholds as the 
one done in CAMShift and also computes the orientation of the target. 

3.1   Skin Probability Image Generation 

The input frame pixels are projected onto the skin tone probability space according to 
the model of a given target. This is done once for each target, i.e. there is a different 
SPI for each face. The SPI is zero outside a neighborhood of the search window. In 
the region of interest the values of the SPI pixels are taken from the hue histogram of 
the target used as a look up table for the corresponding input frame hue pixels. 

As explained in [6] there is a problem when using the HSV space. Hue measure in 
pixels with corresponding low saturation or high brightness is not reliable. Therefore 
saturation and brightness planes are also taken in consideration when computing the 
SPI and these pixels are ignored in the SPI computation. 

3.2   Target Location 

The center of the skin probability distribution is taken as the target location. To locate 
this position a variation of a mean-shift algorithm [10, 11] is used. Our algorithm is 
based on the CAMShift algorithm [6] which applies iteratively mean-shift on a size-
varying search window until convergence, successfully avoiding local minima. 

In CAMShift the search window size is an empirical function of the zeroth moment 
(weighted area or mass) of the distribution. It also depends on scaling parameters 
which are scene dependant. This is a problem when lighting modifies the SPI values 
thus changing the zeroth moment, which results in incorrect window sizing. 

We have modified the iterative process of CAMShift so the distribution spatial ex-
tent is not estimated until the next step and local minima are still avoided: 

 
1. Center the search window at the predicted face location in the SPI. 
2. Set search window size a constant percentage bigger than current one. 
3. Compute the mass center of the distribution within the new window. 
4. If the location computed in 3 and the window center in 2 do not match, center 

the search window at the first one and go to step 2. 

3.3   Target Size and Orientation 

The spatial extent of the target face is estimated by fitting an ellipse [12] to the distri-
bution representing the face in the skin probability space. 
The distribution orientation is inferred from the main variation modes extracted from 
its covariance matrix. The covariance matrix can be splitted into independent compo-
nents made up of the eigenvectors and variances given by eigenvalues. Given a co-
variance matrix H with eigenvalues v1 and v2, the orientation: 

2
)(tan

2,1

1,111 πθ −
−

= −

H

Hv  . 
(2) 
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To compute the size we apply the estimation of the distribution uncertainty ellipses 
(also called error ellipses) for a given confidence interval: 

ρ⋅= 1vMajorAxis  , (3) 

ρ⋅= 2vMinorAxis  , (4) 

)1log(*2 P−−=ρ  , (5) 

where  is a scaling factor. This defines the axis length of an ellipse such that there is 
P probability of being inside it. With a confidence of 99% (P=0.99) the selected area 
contains all relevant information of the distribution. To apply this result we are as-
suming that the distribution is a bi-dimensional gaussian. It is a good approximation 
given the correspondence found between the ellipse and the distribution boundaries. 

This measuring algorithm is limited to targets whose distribution in the probability 
space is somewhat elliptical or gaussian. Therefore it is very useful for face modeling 
as a face boundary can be represented by an ellipse as shown in figure 2. 

The fitting process is very robust against close distractors and outliers; with the se-
lected confidence the region of interest is defined as the minimum distribution area 
containing an ellipse. All nearby values are ignored. The measured size and orienta-
tion depend on the covariance matrix, not on the particular values of the distribution. 
As a result elliptical region is not affected by values with low probability within the 
target due to shadows or sudden lighting changes; the target area is extrapolated from 
the distribution variation modes. 

 

    

    

Fig. 2. First frames of a video sequence and their corresponding SPI’s. Estimated face location 
and axes orientation are depicted on the frames. From its initial placement the face model is 
able to match face size and orientation in three or four frames and track their variations over 
time. The elliptical area used to update the color model is also shown 

4   Robust Color Model Update 

The skin tone model, hue histogram, is updated each frame to compensate lighting 
changes. The model can not be totally remade each frame as it would be too noisy. 
From previous works we know that the best alternative is a linear combination of the 
new measured histogram and the previous one: 

 



Color Distribution Tracking for Facial Analysis      489 

[ ] [ ] ( ) [ ]KhistRkhistRKhist measured⋅−+−⋅=+ 111  , (6) 

factor R is a memory factor, which controls the update speed. It is not critical and any 
value between 0.2 and 0.8 works. 

The main innovation in the model update is the selection of the face pixels to esti-
mate the new histogram; all pixels within a 99% error ellipse of the distribution. The 
selection is done by Mahalanobis distance, so all pixels within the region of interest 
are used, regardless of its hue value. A face model starts with only skin tone values 
but will evolve to represent all hue information in the target as seen in figure 3. 

 

   

Fig. 3. Color model update results: SPI for frames 1, 3 and 5 in a video sequence. Each step the 
face region contains higher probability levels as the model evolves from the general one 

5   Experimental Results in Different Tracking Situations 

All test video sequences are sized 320x240 pixels and recorded at 15 fps. with a mo-
bile camera and an adaptive iris. The elliptical model is represented on each face 
target. 

Note that target initial locations are defined approximately on target centers and the 
convergence area is either the face area or the face and neck one, depending on par-
ticular lighting and target skin tone. The initial scene conditions are not important as 
long as there is enough information to adjust the elliptical models to each one. Once 
the model is in place, the generic skin color model evolves to the target particular one 
and is capable of following its changes. 
 

 

Fig. 4. The elliptical model tracks target face size and orientation as they change over time even 
in presence of complex target and camera movement dynamics 
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Fig. 5. Tracking in the case of severe lighting changes. Thanks to the color model update and 
the robustness against changes in the SPI values of the ellipse fitting algorithm, target face 
location and spatial extent are preserved. This video sequence shows three main different light-
ing conditions. The system is also able to track the target during the transitions 

 

Fig. 6. Tracking multiple targets. The system is able to track multiple close target faces without 
confusion between them or with distracters (arms for instance). Simple face overlapping and 
occlusions are resolved thanks to the linear model prediction and estimation correction 

6   Conclusions 

We have presented a tracking algorithm based on probability distribution tracking. It 
has been successfully applied to face tracking by using a skin tone model. Our main 
contributions are an ellipse fitting step to add precision to the estimation of the spatial 
extent of the target and a robust model update that maintains the tracking under vary-
ing lighting conditions. 

So far the model is limited to a one-dimensional tone model. The next step is to 
track using the information contained in all three image planes and pixel neighbor-
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hood relationship within the target. The elliptical model fitting can also be upgraded 
by using multiple ellipses, i.e. modeling the target distribution by a gaussian mixture. 
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Abstract. Head gestures such as nodding and shaking are often used as
one of human body languages for communication with each other, and
their recognition plays an important role in the development of Human-
Computer Interaction (HCI). As head gesture is the continuous motion
on the sequential time series, the key problems of recognition are to
track multi-view head and understand the head pose transformation.
This paper presents a Bayesian network (BN) based framework, into
which multi-view model (MVM) and the head gesture statistic inference
model are integrated for recognizing. Finally the decision of head ges-
ture is made by comparing the maximum posterior, the output of BN,
with some threshold. Additionally, in order to enhance the robustness
of our system, we add the color information into BN in a new way. The
experimental results illustrate that the proposed algorithm is effective.

1 Introduction

With the ever increasing role of computers in society, HCI has become an increas-
ingly important part of our daily lives. Gesture recognition plays an important
role in the development of HCI since it provides a natural and efficient interface
to computers. Among gestures, head nod and shake are very common and used
often, so gesture detection is basic to a visual understanding of human responses.

Up to now, many methods for gesture recognition have been proposed such as
syntactical analysis, neural based approach, hidden Markov model(HMM) based
recognition, especially in head gestures recognition [1][2][3][4][6]. In [6], a real-
time head gesture detector was presented, but an extra hardware was needed. In
[4], there is no extra hardware needed and some results are got. But just using
color information may result in some problems in bad illumination scenes. The
features, which have more statistical significance, should be added to the system.
In [3], the pattern between eyes was used for tracking. But it may fail when the
pattern doesn’t exist in the image, such as rotating head in large range.

In this paper, Bayesian network is introduced for head gesture recognition.
Because BN [7] allows one to learn about the causal relationships and predict the
future, it is useful when we are trying to understand the head gesture recognition
process. As head gesture is the continuous motion on the sequential time series,
tracking multi-view head is important and fundamental to gesture recognition.
Meanwhile the gesture can be described by a set of head poses, thus it is also

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 492–499, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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necessary for us to revealing head pose transformation in gesture sequences. Once
we construct the multi-view tracking model and gesture inference model, the BN
can be applied to integrate them. For head pose detection, much work has been
done. Harr wavelet like features were used by Li [10] to recognize multi-view head
and he gets good result in multi-view head with floatboost algorithm. But it is
not trivial to get the difference between similar poses by Haar features. In [11] a
set of appearance based maximum likelihood estimators is used to detect head
pose and each estimator describes one pose. By using appearance feature we can
get the similar measurement between input pattern and five pose patterns (up,
down, left, right and frontal). So it is very useful for our multi-view head tracking
model. At the same time skin is arguably the most widely used primitive in
human image processing research, with applications ranging from face detection
and person tracking to pornography filtering, therefore skin information should
be added into the tracking model. Currently the most popular method is learning
the skin color distribution model from a large number of training set and using
this model to detect head position. But such a model is sensitive to camera lens,
which easily leads to shift of center of color model. In this paper we proposed
a new way to use color in BN (More details can be found in section 3.2). For
sequence actions recognition, HMM is the most effective recognition for sequence
gesture recognition. As gesture is the continuous motion on the sequential time
series, HMM is the most suitable model as the gesture inference model. The
presented method is different from the previous work in the following ways.
First, a new way of using color information is proposed and it can eliminate
the effect of different camera lens. Second, subspace based methods, which was
widely used in hand gestures recognition, are applied in our multi-view model
for head gesture recognition. Third, BN is introduced to integrate the multi-
view model and gesture inference model. And the proposed method is a nature
framework for head gesture recognition.

In the remainder of this paper, section 2 introduces the head gesture infer-
ence by BN. Section 3 describes the computing and learning of the BN. Some
experiments are shown in section 4.

2 Inference in the Bayesian Network

Head gesture is made up of a set of head pose, thus for recognizing head gesture,
two steps are needed. First, head pose should be inferred from the MVM, which
is made up of color model and appearance model. Second, all the inferred results
will be used for head gesture recognition. This process can be compactly repre-
sented as a Bayesian network shown in Fig.1. Node G represents head gesture,
nod or shake. Node Ei is a discrete random variable, which denotes the true head
pose in the ith video frame. Its value can be one of the S1, S2, · · · , S5, which cor-
respond five head pose: up, down, frontal, left, right. Ci, Di are the color and
appearance measurements respectively. T is the number of observations which
constitute a sequence. No more than one head gesture should be found in this
sequence. In our system we use T = 12, which was found sufficient to detect
slow as well as subtle head nods/shakes [6].
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Fig. 1. The Bayesian Network.

From Fig.1 the posterior probability of head gesture given observations of
the other variables can be computed as follows:

P (G|E1, C1, D1, E2, C2, D2 · · · , ET , CT , D)
∝ P (G,E1, C1, D1, E2, C2, D2 · · · , ET , CT , DT )
= P (E1, C1, D1, E2, C2, D2 · · · , ET , CT , DT |G)P (G)
= P (C1, D1, · · · , CT , DT |E1 · · · , ET , G)P (E1, E2 · · · , ET |G)P (G)

(1)

By using conditional independence relationships we can get

P (C1, D1, · · · , CT , DT |E1, E2 · · · , ET , G)P (E1, E2 · · · , ET |G)P (G)

=
T∏

i=1

P (Ci|Ei)P (Di|Ei)P (E1, E2 · · · , ET |G)P (G)
(2)

Substituting (2) into (1), we have

P (G|E1, C1, D1, E2, C2D2 · · · , ET , CT1, CT2)

∝
T∏

i=1

P (Ci|Ei)P (Di|Ei)P (E1, E2 · · · , ET |G)P (G)
(3)

3 Computing and Learning of the Bayesian Network

3.1 Appearance Marginal Likelihood

Computation of the Appearance Marginal Likelihood. Based on as-
sumption of a Gaussian distribution, the probability of input pattern X , which
belongs to class Ω can be modelled by a multidimensional Gaussian probability
density function:

P (X |Ω) =
exp[− 1

2 (X − μ)TΣ−1(X − μ)]
(2π)N/2|Σ|1/2

(4)

where X is the mean vector of class Ω. Σ is the covariance matrix of class Ω.
From equation (4), we have

P (D|E) =
exp[− 1

2 (C − μi)TΣ−1
i (C − μi)]

(2π)N/2|Σi|1/2
(5)

where i = 1, · · · , 5, corresponding five head poses.
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By given μi and Σi, the appearance likelihood P (D|E) of each pose S can
be estimated by equation (5). But taking computation into consideration, we
use Principal Component Analysis(PCA) to reduce the dimension of X . In our
experiment, the P (D|E) is approximately estimated by equation (6), more detail
about equation (6) can be found in [11].

P̂ (D|E) = exp

[
−1

2

M∑
i=1

y2
i

λi

]
exp

[
− ε

2(x)
2ρ

]
(6)

where P̂ (D|E) is the estimation value of P (D|E), ε2(x) is the residual error, λi is
eigenvalue of Σ, M is the dimensional of principal subspace, N is the dimension
of total subspace.

Learning the Appearance Likelihood Model Parameters. For each head
pose the parameters μi and Σi are learned from more than 200 labelled images
with different illumination.

3.2 Color Marginal Likelihood

In our scheme, we use the region of face in actual frame, which is detected by
our Haar-Sobel-like boosting algorithm [13] and aligned by active shape model
(ASM) algorithm [9], to create skin color model. At detection stage, Haar and
Sobel features are used as feature space. GentleBoost is used to select simple
classifiers. Haar features are used to train the first fifteen stages. And then Sobel
features are used to train the rest fourteen stages. At alignment stage, ASM is
used for face alignment. At color model creating stage, we change the input image
from Red, Green, Blue(RGB)color space to HSV space, which separates out hue
(color) from saturation (how concentrated the color is) and from brightness.
And the color models are created by taking 1D histograms from the H (hue)
channel in HSV space. Through this model the input image can be convert into
a corresponding head position probability map Pc(i, j), which represents the
possibility of point(i, j) belonging to head.

In practice, we assume the skin color distributes as normal distribution
N(μc, σc). μc is the mean value of the H value in face region and σc is the
variance of H value. Thus we have

Pc(i, j) = P (h(i, j)|skin) =
exp[ (h(i,j)−uc)2

2σ2
c

]
√

2πσc

(7)

where h(i, j) is the H value at point(i, j).
We define the color likelihood as follows:

P (C|E) =
1
nc

∑
i,j

Pc(i, j) (8)

where nc is the scale of the likelihood.
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3.3 Gesture Marginal Likelihood

Computation of the Gesture Marginal Likelihood. Given the observa-
tion sequence E1, E2 · · · , ET , the likelihood P (E1, E2 · · · , ET |G) can be derived
from discrete HMM model, which is represented by λ = (A,B,Π), where A =
(aij)N×N

is the state transition probability distribution matrix , B = (bjk)N×T

is the observation symbol probability distribution matrix and Ek represents dis-
crete observation symbol, Π = (π1, · · · , πN ) is the initial state distribution.

Fig. 2. A left to right state transition diagram for a 4-state HMM. For head nod 1,2,3,4
denote frontal, up, frontal, down respectively. For head shake 1,2,3,4 denote frontal,
left, frontal, right respectively.

As show in Fig. 2, the observation sequence E1, E2 · · · , ET and head gesture
G are connected through HMM model λ = (A,B,Π).

P (E1, E2, · · · , ET |G) =
∑

allQ

P (E1, E2, · · · , ET |Q,G)P (Q|G)

=
∑

q1,q2,···,qT

πq1bq1(E1)aq1q2bq2(E2) · · ·aqT−1qT bqT (ET )
(9)

In practice, the P (E1, E2, · · · , ET |G) can be computed by Forward-Backward
algorithm [12] as follows:

we define αt(i) as follows:

αt(i) = P (E1, E2, · · · , ET , qt = Si|G) (10)

1) Initialization:
α1(i) = πibi(E1)1 ≤ i ≤ N. (11)

2)Induction:

αt+1(j) = [
N∑

i=1

αt(i)aij ]bj(Et+1) (12)

3)Termination:

P (E1, · · · , ET |G) =
N∑

i=1

αT (j) (13)

Learning the Gesture Likelihood Model Parameters. In our experiment
fifty labelled gesture sequences were used for training. The parameters (A,B,Π)
can be learned by Baum-Welch algorithm [12] as follows:

γt(i) =
N∑

j=1

ξt(i, j) (14)
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πi = γ1(i) (15)

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)
(16)

bj(k) =

T∑
t=1

γt(j)

T∑
t=1

γt(j)
(17)

where ξt(i, j) = P (qt = Si, qt+1 = Sj |E1, E2, · · · , ET , G).

4 Experimental Result

Two BN are necessary to recognize head gestures and each one describes a
gesture. For each BN, there are fifteen parameters, μi 1 ≤ i ≤ 5, Σi 1 ≤ i ≤ 5,
uc,σc,A,B,Π . The μi, Σi, are obtained from 200 labelled images, of which the
size is 20 × 20. The uc,σc are obtained from the aligned face region. And the
A,B,Π are obtained from fifty labelled gesture sequences. We implemented the
algorithm on a P4 machine with 1.3G CPU and the database collection of our
experiment was similar to that in [6]. A program agent will ask 5 questions, and
the subjects are asked to answer with head node or head shake.

As an example, Fig. 3 shows the recognition process of head shake. Our
algorithm is initialized by the output of Haar-like feature based boosted cascade
face detector. Once a frontal face is detected, the color model will be created by
the aligned region and the size of head in image can be got. The next twelve
frames will be taken out. With Kalman filter the coarse head region in each
frame is cropped as an input of BN. MVM will be applied to the input to detect
head position and infer the head pose. But instead of make a decision of head
pose, we send to HMM the three maximal pose inference results out of five S.
Through BN integrating, we can obtain the maximal a posterior (MAP). Finally,
a gesture decision will be made by comparing the MAP with some threshold.

Table 1. Recognition results.

In the Lab

Nod Shake Nod Miss Shake Miss

67 73 7 4

Average Recognition ratio: 92.1%

Table 1 illustrates the recognition results of the samples in the database and
the average recognition ratio of head gesture is 92.1%. From Table 1 we can see
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Fig. 3. A recognition process of head shake.

that some head gestures go undetected, but there are no false positives. In the
database the persons in some samples have expression, which doesn’t affect the
recognition of head gesture. The undetected head gestures due to the slight head
movement. The outputs of multi-view head tracking model are inaccurate as the
appearance features, the base of the tracking model, are not sensitive to these
slight movement.

5 Summarize

In this paper a unified framework for recognizing head gesture in HCI environ-
ment is proposed. The MVM is used for tracking head pose and the HMM is
used for inferring the head gesture. Finally, MVM and HMM are integrated into
the BN framework. Experimental results show that the proposed framework is
feasible and effective. But it doesn’t work well in slight head movement. Local
feature tracking seems to be a good way to solve the slighter movement. So
how to fuse more local features into the proposed framework will be our future
works. Comparing with the previous work, the main contribution of this paper
is introducing the BN into head gesture recognition, providing a way for multi
information (such as appearance and color) fusing. Thus the recognition process
of head gesture is more efficient.
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Abstract. We propose a system for detection and tracking of face in
dynamic and changing environments from a camera mounted on a walk-
ing robot. The proposed system is based on the principal component
analysis (PCA) technique. For the detection of a face, first, we use a skin
color information and motion information. Thereafter, we verify that the
detected regions are indeed the face using the PCA technique. The track-
ing of a face is based on the Euclidian distance in eigenspace between
the previously tracked face and the newly detected faces. Walking robot
control for the face tracking is done in such a way that the detected face
region is kept on the central region of the camera screen by controlling
the robot motion. The proposed system is extensible to other walking
robot systems and gesture recognition systems for human-robot interac-
tion.

Keywords: Face Detection, Face Tracking, PCA, Walking Robot

1 Introduction

The mobile machines with wheels and crawlers assume simple works and their
movable environment is limited. Because of the movable environment limitation,
humanoid 2-leg walking robot has been produced such as ASIMO and SDR-4X
and so on. One of the goals of building intelligent and interactive machines is
to make them aware of the user’s presence. Detection and tracking of face from
a walking robot is a much more challenging problem as the scene is much more
dynamic because of both motion of the camera and that of the user.

In general, there are two kinds of grouping of tracking methods according to
their views. Some people group tracking methods as recognition-based tracking
and motion-based tracking and the others group them as edge-based tracking
and region-based tracking [1].

Recognition-based tracking is really based on the object recognition tech-
nique and the performance of the tracking system is limited by the efficiency of
� This work is financially supported by the Ministry of Education and Human Re-

sources Development(MOE) and the Ministry of Commerce, Industry and En-
ergy(MOCIE) through the fostering project of the Industrial-Academic Cooperation
Centered University.
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the recognition method. Motion-based tracking relies on the motion detection
technique, which can be divided into the optical flow method and the motion-
energy method.

Edge-based methods track the edges in an image sequence, which are usually
boundaries of objects of interest. However, these methods suffer from the changes
in color or illumination since boundaries of objects to be tracked have to show a
strong edge variation in color or illumination. Moreover, it is difficult to provide
reliable results in a case where the background of an image has strong edges.
Most of the current work related to this type of method stems from the efforts
of Kass et al. on snakes [2]. Many of the recent researches on face tracking are
in trouble with the presence of background noise and apt to track an unverified
face, for example, arms and hands.

In this paper, we propose a system for detection and tracking of face in dy-
namic and changing environments from a camera mounted on a walking robot us-
ing PCA technique. The proposed system consists of two main steps as depicted
in Figure 1: face detection and face tracking. Using two consecutive frames, first,
the candidate face regions are verified to determine which region is indeed the
face using PCA. Thereafter, the verified face is tracked using the eigen-technique.

Skin Color
Classification

Motion Detection

Post-ProcessingFace Verification

Tracking Face
Determination

Robot Control
Parameter Computation

Robot
Control

Face Detection

Face Tracking

tI

1tI  

Fig. 1. Architecture of the proposed system.

2 Face Detection

In this section, the techniques used to detect faces in the proposed system are
introduced. For improving the accuracy of the face detection, we combine several
published techniques such as a skin color model [3] and PCA [4, 5].

2.1 Skin Color Classification

Detecting pixels with the skin color provides a reliable method for detecting and
tracking faces. Since an RGB representation obtained by most video cameras not
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only includes color but also brightness, this color space is not necessarily the best
color representation for detecting pixels with skin color. The brightness may be
removed by dividing the three components of a color pixel by the intensity. The
color distribution of human faces is clustered in a small area of the chromatic
color space [6].

When the chromatic r and chromatic g of skin pixels from face patch are
plotted in CrCg-space, skin color occupy with elliptical shape. Figure 2(a) are
the sample face patches and (b) shows the skin locus of a MPC-C30 CCD camera
used in experiment. A simple membership function to the skin locus is a pair of
quadratic functions defining the upper and lower bound of the cluster [7]. But,
in our experiment, the shape of skin cluster is similar to an ellipse. Therefore,
we decide the membership function to the skin locus is an elliptical function as
follows:

S =

{
1, (x

′
−cx)
a2 + (y

′
−cy)
b2 < 1,

0, otherwise
(1)[

x
′

y
′

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
, (2)

where Cx = 0.426, Cy = 0.324, a = 0.074, b = 0.022, θ = 0.226 (in radian) are
computed from the skin cluster in the CrCg-space.

       (a)                                             (b)

Fig. 2. (a) The sample face patches, (b) Skin locus of MPC-C30 CCD camera in CrCg-
space.

2.2 Motion Detection

Although skin color is the most widely used feature, skin color alone is not suit-
able for the face detection in the case when skin colors appear in the background
areas as well as in the human skin areas. This drawback can be effectively re-
moved by using motion information. To be precise, after the skin classification,
only those skin color regions are considered, which contain motion. As a result,
the combined skin color model with motion information results in a binary image
that indicates the foreground (face regions) and background (non-face region).
The binary image is defined as
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Mt(x, y) =
{

1, It(x, y) ∈ St & |It(x, y)− It−1(x, y)| > θt

0, otherwise
, (3)

where It(x, y) and It−1(x, y) are the intensities of the current frame and previous
frame at pixel (x, y), respectively. St is a set of the skin color pixels of the current
frame and θt is a threshold value calculated using an adaptive thresholding
technique [8]. As a post-processing we simplify theMt image using morphological
operations and connected component analysis.

2.3 Face Verification Using PCA

In a sequence, tracking of the face of interest is difficult because there are many
moving objects. Moreover, a process is needed to verify that the moving object is
a face or not. For the face verification problem, we use the weight vectors of candi-
date regions in eigenspace. For the dimensionality reduction of the feature space,
we project an N-dimensional candidate face image to the lower-dimensional fea-
ture space, called eigenspace or facespace [4, 5]. In eigenspace, each feature com-
ponent accounts for a different amount of the variation among the face images.
To be brief on the eigenspace, let a set of images be I1, I2, I3, ..., IM , which is
the N-dimensional column vector of each image and used for constructing the
facespace. The average of the training set is defined by A = 1/M

∑M
i=1 Ii. A new

set of vectors with zero mean at each dimension is computed as Φi = Ii − A.
To produce the M orthogonal vectors that optimally describe the distribution
of face images, the covariance matrix is originally computed as

C =
1
M

M∑
i=1

ΦiΦT
i = YYT , (4)

for Y = [Φ1Φ2...ΦM ]. Since the matrix C, however, is N × N dimension, deter-
mining the N-dimensional eigenvectors and N eigenvalues is an intractable task.
Therefore, for the computational feasibility, instead of finding the eigenvectors
for C, we calculate M eigenvectors vk and eigenvalues λk of [YTY], so that uk,
a basis set is computed as

uk =
Y × vk√
λk

, (5)

for k = 1, ...,M. Of the M eigenvectors, the M
′

significant eigenvectors are
chosen as those with the largest corresponding eigenvalues. For M training face
images, the feature vectors Wi = [w1, w2, ... , wM ′ ] are calculated as

wk = uT
k Φi, k = 1, ...,M. (6)

To verify the candidate face region is indeed the face image, the candidate
face regions are also projected into the trained eigenspace using equation (6).
The projected regions are verified using the minimum distances of the detected
regions with the face cluster and the non-face cluster according to equation (7).

min(||W candidate
k −Wface||, ||W candidate

k −Wnon−face||), (7)
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where W candidate
k is the kth candidate face region in trained eigenspace, and

Wface,Wnon−face are the center coordinate of the face cluster and non-face
cluster in trained eigenspace respectively, and the Euclidean distance measure is
used.

3 Face Tracking

Among the newly detected faces, the face to be tracked in the next image se-
quence is determined by using a distance measure in the eigenspace. For tracking
of the face, the Euclidian distance between the feature vectors of the tracked face
and those of the K newly detected faces is calculated as

obj = arg min
k

‖Wold −Wk‖ , k = 1, ...,K . (8)

After the determination of the face region, central position of the face region
is verified that the central position is inside of central region of screen or not.
If the face region is located out of central region, face size and face direction
are calculated. Thereafter, the distance between the center of the detected face
region and the center of the screen is calculated as

distt(face, screen) = Facet(x, y)− Screen
(
height

2
,
width

2

)
, (9)

where Facet(x, y) is the center of the detected face region at t time and
Screen(height/2, width/2) is the center of the screen. Using the face size, face
direction and distance vector, horizontal and vertical motion is controlled. The
camera control is done in such a way that the detected face region is kept on
the central region of the camera screen by controlling the robot motion. We con-
trolled the robot motion using predefined robot actions such as “walk forward”,
“walk backward”, “move right”, “move left”, “turn right”, “turn left”.

4 Experimental Results

The experimental environment was the laboratory room where possible noises
were existed and the lighting condition was changing. Figure 3 shows the setup
and the interface of the proposed system.

For tracking of face, the system control a mobile robot. The controlled results
are appeared as a action of robot. The used robot, KHR-1 can move to various
orientations using a servo control board,RCB-1 equipped in a robot. TheRCB-1
is operated by HeartToHeart1.0 software which is shown Figure 4(b). To operate
a robot, we control the HeartToHeart1.0. First, we make robot actions by motion
generator in HeartToHeart1.0. Thereafter, we assign a number to each action and
memorize the assigned action by motion controller. Given a action number, a
robot controller controls the robot action.

In the experiments, a user is standing before a mobile robot with complex
background. The images are obtained from the camera mounted on the KHR-1.
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   (a)                                                (b)

Fig. 3. The setup of the proposed system: (a) the setup, (b) the interface.

Fig. 4. A robot controller: (a) control board:RCB-1, (b) Graphic user interface (GUI):
HeartToHeart1.0.

Fig. 5. The part of the training images for eigenspace construction.

The used robot is KHR-1 which can controlled servo motor. For performance
evaluation, the proposed system was tested on 20 different test sequences and
the training set consists of 13 individuals at 5 different head orientations. Fig-
ure 5 shows the part of the training images which is used in construction of the
eigenspace.

The analysis of a set of images captured during the experiment revealed that
the correct rate of face verification was 82.3% in an average.

Face verification rate

= Number of correctly verified faces
Number of images verified as true face ,

(10)
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Non− face verification rate
= Number of correctly verified images as non faces

Number of images verified as non face .
(11)

In Table 1, the correct verification rates that the face region is verified as the
face and the non-face region is verified as the non-face are shown.

Table 1. Face verification rates.

Users Face Non-Face Total

User 1 82.1% 77.6% 79.85%

User 2 83.5% 79.3% 81.4%

User 3 85.2% 81.1% 83.15%

User 4 84.7% 80.5% 82.6%

User 5 86.5% 82.5% 84.5%

Total 84.4% 80.2% 82.3%

In Figure 6, we show the results of the proposed system in which face tracking
results are in (a), face detected instants are in (b). In the Figure 6 (a), top row
shows the input images, middle row shows skin regions of input images and
bottom row shows the tracked face region.

Fig. 6. The results of the proposed system: (a) face tracking results, (b) face detected
instants.

5 Conclusions

In this paper, we proposed a system for detection and tracking of face in dynamic
and changing environments from a camera mounted on a walking robot. The
proposed system was operated in real-time and performed in two main steps:
face detection and face tracking. In the input video sequences, first, we detected
the face regions using multi-cues such as color, motion information and PCA.
The tracking of a face is done in such a way that the detected face region is kept
on the central region of the screen through controlling a walking robot motion.
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A robustness of the proposed system in possibly noisy environment was shown
in the experimental results. The proposed system is extensible to other walking
robot systems and gesture recognition systems for human-robot interaction. For
the future work, we will have more experiments of the proposed system in other
big size walking robot environments.
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Abstract. In this paper, we present how appearance-based features can
be used for the recognition of words in American sign language (ASL)
from a video stream. The features are extracted without any segmenta-
tion or tracking of the hands or head of the signer, which avoids pos-
sible errors in the segmentation step. Experiments are performed on a
database that consists of 10 words in ASL with 110 utterances in total.
These data are extracted from a publicly available collection of videos
and can therefore be used by other research groups. The video streams
of two stationary cameras are used for classification, but we observe that
one camera alone already leads to sufficient accuracy. Hidden Markov
Models and the leaving one out method are employed for training and
classification. Using the simple appearance-based features, we achieve an
error rate of 7%. About half of the remaining errors are due to words
that are visually different from all other utterances.

1 Introduction

Deaf people need to communicate with hearing people in everyday life. To fa-
cilitate this communication, systems that translate sign language into spoken
language could be helpful. The recognition of the signs is the first step in these
systems. Several studies on gesture and sign language recognition have been
published. These publications can be separated into three categories according
to the signs they try to recognize.

1. In the first category, researchers propose methods to recognize static hand
postures or the sign language alphabet [1–4]. They use images of the hands
and extract feature vectors according to the static information of the hand
shape. This approach cannot recognize the letters of the sign language al-
phabet that contain local movement made by the wrist, knuckles, or finger
joints, as e.g. the sign for ‘j’ in American sign language (ASL).

2. The researchers in the second category [5, 6] collect sequential feature vectors
of the gestures and, using the dynamic information, recognize letters with
local movement, too. In these approaches, only movement due to changing
hand postures is regarded, while path movement is ignored (movement made
primarily with the shoulder or elbow).

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 511–519, 2005.
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3. The third category of researchers try to recognize sign language words and
sentences [7–10]. In addition to local movement of the hands, signing in-
cludes also path movement of the hands. Therefore, most systems employ
segmentation and tracking of the hands.

Most researchers use special data acquisition tools like data gloves, colored
gloves, location sensors, or wearable cameras to extract features. Some re-
searchers of the first and second category use simple stationary cameras [1, 2]
without any special data acquisition tools but their images only show the hand.
Skin color segmentation allows them to perform a perfect segmentation. In the
third category because of the occlusion between hands and the head of the
signer, segmentation based on skin color is very difficult. Instead of gloves, some
researchers use different methods. For example in [9] the camera is placed above
the signer in front of him. Then in the images captured by this camera the oc-
clusion between the hands and head of the signer is decreased. These methods
or special tools may be difficult to use in practical situations.

In contrast to existing approaches, our system is designed to recognize sign
language words using simple appearance-based features extracted directly from
the frames captured by standard cameras. This means that we do not rely on
complex preprocessing of the video signal. Using only these simple features, we
can already achieve a satisfactory accuracy. Those utterances of the data that are
still misclassified are due to a strong visual difference from the other utterances in
the database. Since our data are based on a publicly available collection of videos,
other research groups are able to compare their results to those presented in this
paper. Furthermore, our system is designed to work without any segmentation or
tracking of the hands. Because we do not rely on an intermediate segmentation
step, the recognition can be expected to be more robust in cases where tracking
and segmentation are difficult.

2 Database

The National Center for sign language and Gesture Resources of the Boston
University published a database of ASL sentences [11]. Although this database
has not been produced primarily for image processing research, it consists of 201
annotated video streams of ASL sentences.

The signing is captured simultaneously by four standard stationary cameras
where three of them are black/white and one is a color camera. Two black/white
cameras, placed towards the signer’s face, form a stereo pair and another camera
is installed on the side of the signer. The color camera is placed between the
stereo camera pair and is zoomed to capture only the face of the signer. The
movies published on the internet are at 30 frames per second and the size of
the frames is 312×242 pixels1. We use the published video streams at the same
frame rate but we use only the upper center part of size 195×165 pixels because
parts of the bottom of the frames show some information about the frame and
the left and right border of the frames are unused.
1 http://www.bu.edu/asllrp/ncslgr.html
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Table 1. List of the words and number of utterances in the BOSTON10 database.

Word Number of utterances

CAN 17

BUY 15

CAR 15

BOOK 13

HOUSE 11

WHAT 10

POSS (Possession) 9

WOMAN 8

IX “far” (Pointing far) 7

BREAK-DOWN 5

Sum 110

Fig. 1. The signers as viewed from the two camera perspectives.

To create our database for ASL word recognition that we call BOSTON10,
we extracted 110 utterances of 10 words from this database as listed in Table 1.
These utterances are segmented manually.

In BOSTON10, there are three signers: one male and two female signers.
All of the signers are dressed differently and the brightness of their clothes is
different. We use the frames captured by two of the four cameras, one camera
of the stereo camera pair in front of the signer and the other lateral. Using
both of the stereo cameras and the color camera may be useful in stereo and
facial expression recognition, respectively. Both of the used cameras are in fixed
positions and capture the videos in a controlled environment simultaneously. In
Figure 1 the signers and the views of the cameras are shown.

3 Appearance-Based Features

In this section, we briefly introduce the appearance-based features used in our
ASL word recognition. The definition of the features is based on basic methods
of image processing. These features are directly extracted from the images. We
denote by Xt(m,n) the pixel intensity at position (m,n) in the frame t.
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Original images (OI). We can transfer the matrix of an image to a vector xt

and use it as a feature vector. To decrease the size of the feature vector, we use
the original image down-sampled to 13×11 pixels denoted by X ′

t.

xt(i) = X ′
t(m,n), i = 13 · n+m

Skin intensity thresholding (SIT). To ignore background pixels, we use
skin intensity thresholding. This thresholding is not a perfect segmentation and
we cannot rely on it easily for tracking the hands because the output of this
thresholding consists of the two hands, face and some parts of the signer’s clothes.

x̃t(i) =
{
xt(i) : xt(i) > Θ

0 : otherwise

Where x̃t is the feature vector at time t with the brightness threshold Θ.

First derivative (FD). This feature measures the rate of change between the
successor frame and the predecessor frame and is denoted by x̂t.

x̂t(i) = x̃t+1(i)− x̃t−1(i)

Positive first derivative (PFD). This feature vector consists of positive mem-
bers of the FD feature vector. The feature vector has the information of some
pixels of the image that in the predecessor frame do not belong to the skin
intensity values but in the successor frame they are in the skin intensity values.

x̂t(i) =
{
x̃t+1(i)− x̃t−1(i) : x̃t+1(i)− x̃t−1(i) > 0

0 : otherwise

Negative first derivative (NFD). In contrast to the PFD feature vector, the
NFD feature vector at time t indicates the intensity of the pixel is decreasing.
This feature has information of some pixels of the image that in the predecessor
frame are in the skin intensity values but in the successor frame hands or face of
the signer leave that region and they do not belong to the skin intensity values.

x̂t(i) =
{
x̃t+1(i)− x̃t−1(i) : x̃t+1(i)− x̃t−1(i) < 0

0 : otherwise

Absolute first derivative (AFD). This feature consists of the combined in-
formation of the PFD and NFD feature vectors by using the absolute value of
the temporal difference images.

x̂t(i) = |x̃t+1(i)− x̃t−1(i)|

Second derivative (SD). The information related to the acceleration of the
changes or movements can be found in the SD feature vector.

x̂t(i) = x̃t+1(i)− 2 · x̃t(i) + x̃t−1(i)
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Fig. 2. Examples for the appearance-based features.

Fig. 3. The topology of the employed HMM.

We apply the skin intensity thresholding to the original frames and then
extract derivative feature vectors. Some examples of features after processing
are shown in Figure 2.

The feature vectors defined above can be concatenated to provide new feature
vectors with more information. In addition, to increase the information extracted
from the signer, we may use the frames of two cameras. One of the cameras is
installed in front of the signer and the second one is fixed at one side. We
concatenate the information of the frames captured simultaneously by these
cameras. We weight the features extracted by the two cameras because we have
more occlusion of the hands in images captured by the lateral camera.

4 Decision Making

The decision making of our system employs Hidden Markov Models (HMM) to
recognize the sign language words2. This approach is inspired by the success of
the application of HMMs in speech [12] and also most sign language recognition
systems [7–10]. The recognition of sign language words is similar to spoken word
recognition in the modelling of sequential samples.

The topology of the HMM is shown in Figure 3. There is a transition loop
at each state and the maximum allowable transition is set to two. We consider
one HMM for each word w = 1, ...,W . The basic decision rule used for the
classification of x̂T

1 = x̂1, ..., x̂t, ... x̂T is:

r(x̂T
1 ) = arg max

w
(Pr(w|x̂t))

= arg max
w

(Pr(w) · Pr(x̂t|w))

2 Some of the code used in feature extraction and decision making is adapted from the
LTI library which is available under the terms of the GNU Lesser General Public
License at http://ltilib.sourceforge.net.
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where Pr(w) is the prior probability of class w and Pr(x̂t|w) is the class condi-
tional probability of x̂ given class w. the Pr(x̂t|w) is defined by:

Pr(x̂t|w) = max
sT
1

T∏
t=1

Pr(st|st−1, w) · Pr(x̂t|st, w)

where sT
1 is the sequence of states and Pr(st|st−1, w) and Pr(x̂t|st, w) are the

transition probability and emission probability, respectively. The transition prob-
ability is calculated by simple counting. We use the Gaussian and Laplace func-
tion as emission probability distributions Pr(x̂t|st, w) in the states. To estimate
Pr(x̂t|st, w) we use the maximum likelihood estimation method for the Gaussian
and Laplace functions, i.e. standard deviation and mean deviation estimation,
respectively. The number of states for the HMM of each word can be determined
in two ways: minimum and average sequence length of the training samples. Mix-
ture densities with a maximum number of five densities are used in each state.

We use the Viterbi algorithm to find the sequence of the HMM. In addition
to the density-dependent estimation of the variances, we use pooling during the
training of the HMM which means that we do not estimate variances for each
density of the HMM, but instead we estimate one set of variances for all densities
in each state of the model (state-dependent pooling) or for all densities in the
complete model (word-dependent pooling).

The number of utterances for each word is not large enough to separate them
into training and test sets, therefore we employ the leaving one out method for
training and classification. That is, we separate each utterance as a test sample,
train the HMM of each word with the remaining utterances, and finally classify
the test utterance. We repeat this process for all utterances in the database. The
percentage of the misclassified utterances is the error rate of the system.

5 Experimental Results

First, we choose the down-sampled original image after skin intensity threshold-
ing and employ the HMM classifier to classify words of the database. The re-
sults of this classification using the Gaussian distribution with different sequence
lengths and pooling are shown in Table 2. Using word-dependent pooling gives
better results than state-dependent pooling or density-dependent estimation of
the variances. Using the Laplace distribution, the performance of the classifier
is similar to these results but the Gaussian distribution performs better.

We employ an HMM of each word with the length of the minimum and aver-
age sequence length of the training samples. As it is shown in Table 2, neglecting
other parameters, the shorter HMMs give better results. This may be due to the
fact that the database is small and if the HMM has fewer states, the parameters
of the distribution functions will be estimated better. In informal experiments
with shorter HMMs the accuracy of the classifier could not be improved.

We use other appearance-based features in the HMM with the Gaussian emis-
sion probability distribution. The length of the HMM for each word is minimum
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Table 2. Error rate (%) of the classifier with different pooling and length parameters.

Pooling

Sequence length Word-dependent State-dependent Density-dependent

Minimum seq. length 7 8 7

Average seq. length 14 15 17

Table 3. Error rate (%) of the classifier using different appearance-based features.

SIT FD PFD NFD AFD SD

Basic features 7 18 27 31 21 32

Basic features+SIT – 10 9 10 10 10

sequence length of the training samples. Table 3 shows how using concatenated
feature vectors is not able to improve accuracy of the system here and simple
SIT feature vectors are the most effective appearance-based features.

All former experiments use frames captured by the camera placed in front
of the signer. We concatenate the weighted feature vectors of the front and
lateral camera. Figure 4 shows the error rate of the classifier using minimum
and average sequence length, with respect to the weights of the cameras. The
minimum error rate occurs when the feature weight of the lateral camera is set
to zero, which means that their frames are ignored. The error rate grows with
increasing weight of the lateral camera. This result is probably caused by the
occlusion of the hands. The HMM classifier with length of the average sequence
length of training samples, increasing the weight of lateral camera, achieves
smaller error rate in some portion of the diagram.

About half of the remaining errors are due to visual singletons in the dataset,
which cannot be classified correctly using the leaving one out approach. For ex-
ample, all but one of the signs for POSS show a movement of the right hand
from the shoulder towards the right side of the signer, while the remaining one
shows a movement that is directed towards the center of the body of the signer.
This utterance thus cannot be classified correctly without further training ma-
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terial that shows the same movement. This is one of the drawbacks of the small
amount of training data available.

A direct comparison to results of other research groups is not possible here,
because there are no results published on publicly available data and research
groups working on sign language or gesture recognition use databases that were
created within the group.

6 Conclusion

In this paper, appearance-based features are used to recognize ASL words. These
features already work surprisingly well for sign language word recognition. Fur-
thermore, our system gives good results without any segmentation or tracking
of the hands, which increases the robustness of the algorithm and reduces the
computational complexity. If we use a color camera and the skin color probabil-
ity instead of a black/white camera and the skin intensity in feature extraction,
this approach can be generalized for other applications with the signers dressed
differently and more cluttered background.

The visualization of the HMM and the analysis of the results show that the
classifier is sensitive to different pronunciations of the same word. Therefore, we
want to make use of explicit pronunciation modeling in the future. Furthermore,
we will use explicit modelling of the variability of the images to cope with geo-
metric changes in the appearance-based features. Using invariant features with
respect to position and scale and modelling of variability will be helpful to make
this feature vectors more effective. It makes the classifier more robust with re-
spect to the changes of camera configuration, too. Obviously, the recognition of
isolated models is only first step in the direction of recognition of complete sen-
tences. One of the main problems in this direction is the scarceness of available
data. We used publicly available data for the first time and we hope that other
research groups will use this database and publish their results. We will apply
our methods on larger databases in the future.
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Abstract. Sign language recognition constitutes a challenging field of
research in computer vision. Common problems like overlap, ambiguities,
and minimal pairs occur frequently and require robust algorithms for
feature extraction and processing. We present a system that performs
person-dependent recognition of 232 isolated signs with an accuracy of
99.3% in a controlled environment. Person-independent recognition rates
reach 44.1% for 221 signs. An average performance of 87.8% is achieved
for six signers in various uncontrolled indoor and outdoor environments,
using a reduced vocabulary of 18 signs.
The system uses a background model to remove static areas from the
input video on pixel level. In the tracking stage, multiple hypotheses
are pursued in parallel to handle ambiguities and facilitate retrospective
correction of errors. A winner hypothesis is found by applying high level
knowledge of the human body, hand motion, and the signing process.
Overlaps are resolved by template matching, exploiting temporally adja-
cent frames with no or less overlap. The extracted features are normal-
ized for person-independence and robustness, and classified by Hidden
Markov Models.

1 Introduction

An important research area in computer vision is the tracking of objects in image
sequences. This is often combined with the computation of features that describe
the observed scene. Applied to human hands, classification methods known from
speech recognition can be used to recognize gestures. The recognition of sign
languages [1–5] is technically a special case of gesture recognition. It allows deaf
people to intuitively control interactive devices in their first language [6].

Gestures can be defined in such a way that common computer vision problems
like overlap, ambiguities, or minimal pairs do not occur. Signs, however, may
only be chosen from a well-defined vocabulary. For sign language recognition,
it is therefore essential to devise algorithms that perform reliably even in the
aforementioned problematic situations.

This work describes a sign language recognition system that combines several
properties previously not reported for a single application:

– It is non-intrusive, using a standard webcam (320× 240 pixel, 25 fps) and a
monocular frontal view. Requirements regarding video quality are very low.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 520–528, 2005.
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– It operates with most uncontrolled backgrounds and lighting conditions, al-
lowing mobile use.

– Person-independent operation is supported.
– Under ideal conditions, person-dependent recognition rates of 99.3% are

achieved on a vocabulary of 232 signs from British Sign Language (BSL).

Section 2 presents the sign language video clips used for training and testing.
System design and algorithms are described in section 3. Results for various
recognition tasks can be found in section 4. Section 5 gives a short conclusion.

2 Application Scenario

A data base of BSL video clips (isolated signs, 2–3 seconds each) was created fea-
turing two different recording setups. An average of 229 signs were performed by
four signers, using strong lighting and homogenous backgrounds (see Fig. 1a,b).
These form the system’s vocabulary and serve for both training and testing. A
subset of these signs was recorded under real-world conditions with a regular
webcam using six other persons (see Fig. 1c,d), and used only for testing. All
signs were repeated five times. Since this work focuses on manual features, signs
differing solely in non-manual features were not included in the vocabulary.

(a) (b) (c) (d)

Fig. 1. Example frames from the training/test data base. a,b: Ideal conditions
(384×288 pixel, 25 fps). c,d: Real-world conditions (320×240 pixel, 25 fps).

3 System Design

The recognition system can be divided into a feature extraction stage and a
feature processing stage, each containing several modules, as shown in Fig. 2.
Section 3.1 explains the feature extraction stage and the high level knowledge
applied therein. The feature processing stage is discussed in section 3.2.

3.1 Feature Extraction

The following sections 3.1.1 to 3.1.4 describe the four feature extraction modules.

3.1.1 Face Detection and Threshold Segmentation. A person and illu-
mination independent skin color model [7] is used to create a skin probability
map that allows robust detection of the signer’s face and hands, but produces
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Fig. 2. Schematic of the recognition system.

(a) (b) (c)

Fig. 3. a: Background model. b: Example frame. c: Foreground pixels (white).

numerous false alarms in real-world settings. Background modelling as described
in section 3.1.2 cannot be applied here because the face itself is mostly static.
The skin probability threshold for the following segmentation is found automat-
ically. A metric has been defined to quantify a given boundary’s deviation from
that of an average face in terms of several geometric features (position, size,
orientation, axis ratio, compactness). A number of thresholds is then tested and
the one which yields the face candidate blob with the lowest deviation is chosen.

The use of skin color leads to the common restriction that the signer must
wear long-sleeved, non-skin-colored clothing to allow a color-based segmentation
of face and hands at least in the absence of overlap [1, 2, 8, 9].

3.1.2 Background Modelling. After the face has been detected and seg-
mented, the image background is excluded from further processing to reduce
computational cost and the number of distractors. This is done on pixel level
since a semantic interpretation is not available at this stage. A simple yet effec-
tive method to create a background model pb(x0, y0) = (rb, gb, bb) for coordinates
(x0, y0) is to compute the median of all pixels p(x0, y0, t) over time t. Fig. 3 shows
the background model for a complete clip (a) and its application to an individ-
ual frame (b,c). In comparison, approaches that model pb(x0, y0) as a mixture
of Gaussians [10–12] proved less robust on short video clips and require multiple
parameters to be specified, whereas the median is parameter-free.
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3.1.3 Hand Localization and Tracking. The only image cue used for hand
localization is color. This is motivated by the hands’ extremely variable appear-
ance, which prevents the use of shape or texture cues. Especially at typical image
resolutions around 320× 240, these cannot be exploited reliably. The principal
drawback of the color cue is its susceptibility to false alarms. It is therefore
important to devise tracking algorithms that explicitly deal with ambiguities.
Fig. 4a shows the skin color segmentation of a typical scene (Fig. 3b). This
observation does not allow a direct conclusion as to the actual hand configura-
tion. Instead, there are multiple interpretations, or hypotheses, as visualized in
Fig. 4b–d. Previous observations may suggest a certain interpretation, but they
may be incorrect, so no decision should be made at this stage.

(a) (b) (c) (d)

Fig. 4. a: Skin color segmentation. b–d: Subset of hypotheses to a (correct: d).
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Fig. 5. Hypothesis space and probabilities for states and transitions.

Therefore, the tracking stage creates all conceivable hypotheses for every
frame. Transitions are possible from each hypothesis at time t to all hypotheses
at time t+1, resulting in a state space as shown exemplarily in Fig. 5. The total
number of paths through this state space equals

∏
tN(t), where N(t) denotes

the number of hypotheses at time t. Provided that the skin color segmentation
detected both hands and the face in every frame, one of these paths represents
the correct tracking result. In order to find this path (or one as close as possible
to it), probabilities are computed heuristically that indicate the likeliness of each
hypothesized configuration, pstate, and the likeliness of each transition, ptransition

(see Fig. 5). High level knowledge is applied as follows:
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– A biomechanical body model is created from the face position, face size,
and hands position. Configurations that are physiologically unlikely or do
not occur in sign language reduce pstate. This considers the three phases of
a sign (preparation, stroke, retraction), as well as the signer’s handedness
(which has to be known in order to correctly interpret the feature vector).

– Even in fast motion, the area enclosed by the hand’s boundary changes only
slowly between successive frames at 25 fps. In case of the start or cessation
of an overlap, the area drops or rises by the size of the individual blobs.
Thus, at time t, an estimate can be computed for time t+1. With increasing
deviation of the actual from the expected area, ptransition is reduced.

– Similarly, hand position changes slowly so that coordinates at time t may
serve as a prediction for time t + 1. Kalman filters have been found not to
increase tracking performance since the direction of movement varies too
quickly during the stroke phase. Also, they would prohibit the application
of the Viterbi algorithm (see below) by adding a memory to each path.

– The above criteria tend to favor slowly moving distractors. To counter this
effect, the average color difference of a hand blob’s pixels between the current
and the previous frame is computed. Higher values increase pstate.

To search the hypothesis space, the Viterbi algorithm [13] is applied in con-
junction with pruning of unlikely paths.

The multiple hypotheses tracking approach ensures that all available infor-
mation is evaluated before the final tracking result is determined. The tracking
stage can thus exploit, at time t, information that becomes available only at time
t1 > t. Errors are corrected retrospectively as soon as they become apparent.

3.1.4 Overlap Resolution. When two or more objects overlap each other
in the image, the skin color segmentation yields only a single blob for multiple
objects. This happens frequently in sign language. A direct extraction of mean-
ingful features is not possible in this case. Low contrast, low resolution, and the
hands’ variable appearance do not allow a separation of the overlapping objects
by an edge-based segmentation either. Most of the geometric features available
for unoverlapped objects can therefore not be computed for overlapping objects
and are interpolated linearly. However, a hand’s appearance is sufficiently con-
stant over several frames for template matching to be applied. Using the last
unoverlapped view of each overlapping object as a template, at least position
features – which fortunately carry much information – can be reliably computed
during overlap. The accuracy of this method decreases with increasing template
age, but the multiple hypotheses framework allows to also access the first unover-
lapped view after the cessation of an overlap and use it as a second template. The
system prefers whichever template produced the better match. This effectively
halves the maximum template age and increases precision considerably.

3.2 Feature Processing

The geometric features computed by the tracking stage to describe each hand’s
configuration are:



Robust Person-Independent Visual Sign Language Recognition 525

– Coordinates x, y of the center of gravity (COG), and their derivatives ẋ, ẏ
– Area a, and its derivative ȧ
– Ratio r of inertia parallel and orthogonal to the main axis
– sin 2α and cosα of the main axis orientation α
– Compactness c and eccentricity e [14]

These elements constitute the 22-dimensional feature vector forwarded to the
classifier and used in the application of high level knowledge. Position (xF , yF )
and width (wF ) of the face are used for normalization (see below), but are not
included in the feature vector. Sections 3.2.1 and 3.2.2 explain the two modules
that constitute the feature processing stage as shown in Fig. 2.

3.2.1 Normalization. a depends on image resolution as well as on the
signer’s distance to the camera. x and y additionally depend on the signer’s
position in the image. For a person-independent real-world application, these
features have to be normalized. The feature processing stage estimates the po-
sition of the signer’s shoulders from xF , yF , and wF , and specifies the position
of the left/right hand relative to the left/right shoulder. Distances and areas are
normalized by wF and w2

F .

3.2.2 Classification. After cropping idle feature vectors at the beginning and
the end, and an optional mirroring for left-handed signers, the feature vector
sequence is forwarded to the HMM classifier. The system allows to only activate
a subset of all HMMs, depending on the application context. For use in an
interactive dialog, this would be the items in the current menu.

4 Evaluation

Due to the lack of standardized benchmarks, recognition rates of different sys-
tems cannot be compared directly since they are valid only for the actual test
scenario. Nevertheless, they give a general idea of a system’s performance and
provide a useful measure when parameters are varied.

Tab. 1 shows the person-dependent recognition rates from a leaving-one-out
test for the four signers recorded as shown in Fig. 1a,b and various test video

Table 1. Person-dependent recognition rates in controlled environments.

Test Signer, Vocabulary Size
Video Features Ben Michael Paula Sanchu �

Resolution 235 signs 232 signs 219 signs 230 signs 229 signs

384 × 288 all 98.7% 99.3% 98.5% 99.1% 98.9%

192 × 144 all 98.5% 97.4% 98.5% 99.1% 98.4%

128 × 96 all 97.7% 96.5% 98.3% 98.6% 97.8%

96 × 72 all 93.1% 93.7% 97.1% 95.9% 94.1%

384 × 288 x, ẋ, y, ẏ 93.8% 93.9% 95.5% 96.1% 94.8%
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resolutions. The training resolution was always 384 × 288. Vocabulary size is
specified for each signer since the number of recorded signs varies slightly. In-
terestingly, COG coordinates alone allow recognition rates up to 96% for 230
signs. On a 2 GHz PC, processing took an average of 11.79s/4.15s/3.08s/2.92s
per sign, depending on resolution. Low resolutions cause only a slight decrease
in recognition rate but reduce processing time considerably. Compared to pre-
vious results, an increase in both vocabulary size and recognition rate has been
achieved. Higher performance has only been reported for intrusive systems.

Table 2. Person-independent recognition rates in controlled environments.

Training Test Vocabulary n-Best Rate
Signer(s) Signer Size 1 5 10
Michael Sanchu 205 37.1% 58.1% 65.0%

Paula, Sanchu Michael 218 31.2% 54.7% 63.4%
Ben, Paula, Sanchu Michael 224 32.9% 57.8% 67.1%
Ben, Michael, Paula Sanchu 221 44.1% 69.6% 79.1%
Ben, Michael, Sanchu Paula 212 31.5% 57.8% 68.5%

Michael, Sanchu Ben 206 3.7% 11.7% 15.3%

Tab. 2 shows results for person-independent recognition. Since the signers
used different signs for some words, the vocabulary has been chosen as the inter-
section of the test signs with the union of all training signs. In case of multiple
training signers, some signs (around 5%) were therefore only trained with a sub-
set of the training signers. No selection has been performed otherwise, and no
minimal pairs have been removed. As expected, performance drops significantly.
This is caused by strong interpersonal variance in signing. In particular, Ben’s
signing differs from the other three. Fig. 6 shows COG traces for identical signs
done by different signers to visualize the degree of deviation. Recognition rates
are also affected by the exact constellation of training/test signers and do not
necessarily increase with the number of training signers.

(a) (b) (c) (d) (e)

Fig. 6. Interpersonal variance. Traces from Michael (white) and Paula (black) signing
“autumn” (a), “recruitment” (b), “tennis” (c), and Michael (white) and Ben (black)
signing “distance” (d), “takeover” (e).
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Table 3. Person-independent recognition rates in uncontrolled environments.

Vocabulary Test Signer
Size Christian Claudia Holger Jörg Markus Ulrich �

6 96.7% 83.3% 96.7% 100% 100% 93.3% 95.0%
18 90.0% 70.0% 90.0% 93.3% 96.7% 86.7% 87.8%

Person-independent performance in uncontrolled environments is difficult to
measure since it depends on multiple parameters (signer, vocabulary, back-
ground, lighting, camera). Tab. 3 shows results for small vocabularies. Each
person was recorded in a different environment (see Fig. 1c,d). The classifier was
trained with Ben, Michael, and Paula. The feature extraction stage performed
well in most scenarios, but inter-personal variance does not allow to recognize
larger vocabularies with comparable accuracy. This problem is aggravated by
noise and outliers invariably introduced in the features when operating in real-
world settings.

5 Conclusion

High recognition performance has been achieved for person-dependent classifi-
cation. The presented system is also suitable for person-independent real-world
applications where small vocabularies suffice, such as controlling interactive
devices. Two main challenges can be identified for robust person-independent
recognition of larger vocabularies: Accurate feature extraction in real-world con-
ditions, and handling inter-personal variance in feature processing. We are con-
fident that multiple hypothesis tracking solves the former, while the latter will
clearly be subject of further research.
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Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

irius@cvc.uab.es

Abstract. In this paper we present a method suitable to be used for hu-
man tracking as a temporal prior in a particle filtering framework such as
CONDENSATION [5]. This method is for predicting feasible human pos-
tures given a reduced set of previous postures and will drastically reduce
the number of particles needed to track a generic high-articulated object.
Given a sequence of preceding postures, this example-driven transition
model probabilistically matches the most likely postures from a database
of human actions. Each action of the database is defined within a PCA-
like space called UaSpace suitable to perform the probabilistic match
when searching for similar sequences. So different, but feasible postures
of the database become the new predicted poses.

1 Introduction

The analysis of motion in image sequences involving humans has become a great
interest area in computer vision because of the wide amount of promising applica-
tions it brings, i.e. automatic surveillance, sports performance analysis, advanced
interfaces, augmented reality and motion synthesis among others. This challeng-
ing domain is referred as Human Sequence Evaluation (HSE) in the framework
presented by Gonzàlez in [3], and provides a general scheme for producing useful
human motion descriptions from images suitable to be used for such applications.

The HSE framework divides the task of evaluating sequences of images involv-
ing human motion in several layers or modules, each one encapsulating different
domains of knowledge. Hence, the interpretation of human motion is treated as
a transformation process from level to level. We focus on the transformation
process between the 3D human body configurations from 2D image sequences.
This tracking and reconstruction task of articulated 3D human motion is a key
point of HSE and has become a wide research topic in the last years [8].

Among others, one critical issue is the high dimensionality and the non-
linearity of the articulated rigid objects to be tracked. For instance, if we consider
a 3D body model of 12 joints with 3 Degrees of Freedom (DOF) per joint,
it results in a model with 36 DOF, which means that our tracking algorithm
must estimate at least 36 parameters at each time step. So several optimization
techniques are usually applied.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 529–536, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The remainder of this paper is organized as follows. Section 2 explains the
probabilistic framework used to face the tracking problem. Section 3 describes
the human action model employed in this work. Section 4 focuses on the problem
of the probabilistic search within the space of actions. Section 5 shows some
experimental results, and section 6 concludes this paper.

2 Probabilistic Tracking Framework

The objective of visual tracking is to estimate the parameters of our model φt at
time t given the sequence of images It up to that moment. In other words, we
need to compute the posterior probability density function (pdf) p(φt|It) over
the parameters φt of the model to be tracked at time t. Thus, using the Bayes’
rule, we formulate the computation of our model parameters over time as [2]:

p(φt|It) = k p(It|φt)
∫
p(φt|φt−1) p(φt−1|It−1) dt , (1)

where φt represents the pose of the human body at time t, It is the image
sequence up to time t, k is a normalizing factor, p(It|φt) is the likelihood of
observing the image It given the parametrization φt of our model at time t, and
finally p(φt|φt−1) is the temporal prior, or dynamic model in this work.

The recursive Bayesian filter provides the theoretical optimal solution. It
decomposes the problem in two differentiated steps, i.e. prediction and update.
On the prediction step, a dynamic model is used to derive the prior pdf at time
t from the already computed posterior pdf at time t-1. On the update step, the
likelihood function is used to compute the posterior pdf at time t.

Unfortunately, Eq.(1) relies on an integral which cannot be analytically calcu-
lated unless strong assumptions about Gaussianity and linearity on the involved
distributions are made. Instead, we can approximate the true posterior distri-
bution p(φt|It) by means of a particle filter [1, 5]. Particle filtering is based on
Monte Carlo Simulation, thus, our posterior distribution at time t is represented
by a set of samples or particles that in our case define a particular human body
posture. Each particle has its own probability of being propagated over time
depending on how likely is its corresponding body posture to be found on the
image It. If a particle is selected to be propagated at time t, a transition model
or dynamic model is used to predict the new location in the parameter space at
time t+1, i.e. the new particle at the following time step.

This Bayesian model-based tracking approach brings us a principled way
for considering multiple hypotheses about the human body posture, and allows
us to integrate prior knowledge about the non-linear human dynamics into the
tracking making it more robust and efficient.

Since the dimensionality of the parameters space is very large in 3D hu-
man motion tracking, a large number of particles may be needed to successfully
track our model parameters over time. However, the number of particles grow
exponentially with the model dimensionality [6]. To overcome this, we need an
appropriate dynamic model in order to reduce the number of particles needed
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to make the tracking task possible. This temporal prior should capture the be-
haviour of human motion accurate enough to predict only new feasible postures,
but generic enough to be able to track any actor and any human motion.

The aim of this work is to present a temporal prior derived from [7], which
is suitable to be used by the particle filter. Hence, the proposed model will
propagate the parameters of our human body model over time while reducing
the number of particles required to track a 3D human body model during a
performance. The goal is focused in generating only the most plausible body
postures within the performance of a particular action, rather than attempting
to randomly propagate the parameters of a generic, high-articulated object.

3 Human Action Modeling Using p-actions

Our method learns the implicit probabilistic model of 3D human motion by using
an example-based approach. Our dynamic model will use a database of learnt
actions in order to predict the most suitable future body poses given a reduced
set of the history of estimated poses. We perform a probabilistic search within a
PCA-like space, called UaSpace [3] , which is built from a training set of human
motions acquired with a commercial Motion Capture system.

In this work we use the human action model and the human action space
defined in [4], called p-action and aSpace respectively. We show how to employ
this action model to develop a dynamic model suitable to be used for human
posture prediction which focuses and restricts the search space to those postures
with highest likelihood values in factored sampling techniques.

An action will be represented as a sequence of postures, so a proper body
model is required, which is learnt from examples. The training data has been
acquired using a commercial Motion Capture system. A set of 19 reflective mark-
ers were placed on several characteristic points of the subject’s body. The body
model employed is composed of twelve rigid body parts (hip, torso, shoulder,
neck, two thighs, two legs, two arms and two forearms) and fifteen joints. These
joints are structured in a hierarchical manner, where the root is located at the
hip. We represent the human body by 37 parameters which describe the relative
elevation and orientation of each limb which are natural to be used for limb
movement description. See [3, 4] for further details.

As a result, the training data set for each action Ai is composed of ri se-
quences Ai = {H1,H2, ...,Hri}, each one corresponding to a cycle or a perfor-
mance of the action to be modeled.

Thus, we define the complete set of human postures for an action Ai as:

Ai = {x1, x2, ..., xfi}, (2)

where each xj of dimensionality n × 1 stands for the 37 values of the human
body model described previously and fi refers to the overall number of training
postures for this particular action Ai.

Then, we perform a Principal Component Analysis (PCA) on the training set
Ai, and compute its aSpace as defined in [4]. Afterwards, for each performance
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Hj, we consider its projections within the aSpace of the captured postures as
the control values for an interpolating curve gj(p), which is computed using
a standard cubic-spline interpolation algorithm. The parameter p refers to the
temporal variation of the posture, which is normalized for each performance,
that is, p ∈ [0, 1]. This process is repeated for each performance of the learning
set, and a mean manifold g(p) is obtained by interpolating between the means
of gj(p) for each index p.

After, a key-frame set K is found for each action by using the Mahalanobis
distance, and the final human action model is represented as a parametric man-
ifold f(p), called p-action, which is built by interpolation between those key-
frames.

For our purposes, we need a common space where all the p-actions can be
represented. We denote this space as the Universal aSpace or UaSpace, and is
defined in the same fashion as the single aSpace for each action, but using all
the postures from all the performances from all the actions of our database.
After applying PCA, the first bU = 15 eigenvectors are chosen to determine the
95% of the variance, and will constitute the basis of the space ΩU where all the
p-actions will be represented.

Finally, an action Ai is modeled within the UaSpace as:

ΓAi = (ΩU,KAi , fAi), (3)

where ΩU defines the eigenvectors and the eigenvalues of the UaSpace, and KAi ,
fAi correspond to the key-frames and the parametric manifold that defines the
p-action, respectively.

Closer points between different manifolds correspond to similar human pos-
tures of several actions. In fact, the distance between two points in the UaSpace
can be considered as a measure of similarity between human postures.

4 Probabilistic Dynamic Model

Multiple hypotheses can be generated by considering different dynamical models.
We consider the human action model ΓAi defined before as the basis for those
dynamical models which can help to generate new samples over time within
a probabilistic framework. As postures can be shared among different actions
(such as in sitting, squatting and tumbling, for example), we need a probabilistic
model which can deal with multiple hypotheses while predicting new postures.
Fortunately, the UaSpace provides the framework where multiple motion models
can be learnt and recognized.

The goal of a dynamic model is to predict new body postures φt+1 at time
t + 1 given the history of the observed motion Φt from time t − d to time t. In
our approach, the motion database used to build the dynamic model is derived
from all the p-actions represented within the UaSpace described in the previous
section. In order to obtain a set of body postures from each parametric manifold,
each cubic-spline fAi(p) is sampled at a constant rate considering that p ∈ [0, 1].



A 3D Dynamic Model of Human Actions for Probabilistic Image Tracking 533

We denote each projected human posture of dimension bU within the UaS-
pace as ψi, and Ψi = [ψT

i , ..., ψ
T
i−d]

T refers to the (d × bU )-dimensional vector
containing all the postures in the database from location i− d to location i, i.e.
the history of motion of the last d postures. In a similar fashion, let φt be the
estimated posture at time t in the tracking framework described in section 2,
and Φt = [φT

t , ..., φ
T
t−d]

T the estimated sequence from time t− d to time t.
To perform the probabilistic tracking using the particle filtering approach, our

final goal is to generate new particles at the prediction step, i.e. to draw samples
φs

t from the dynamic model p(φt|Φt−1). Following the approach described by
Sidenbladh in [7], we can rewrite this distribution as:

p(φt|Φt−1) = p(φt|Ψi−1)p(Ψi−1|Φt−1), (4)

where p(φt|Ψi−1) is defined as 1 if φt = ψi, or 0 otherwise.
Thus, sampling from the prior p(φt|Φt−1) corresponds to sampling from the

distribution p(Ψi−1|Φt−1).This can be seen as performing a probabilistic search
of the estimated motion Φt with a stored sequence Ψi from the database. Assum-
ing that sequences of estimated postures follow a Gaussian distribution around
matching sequences on the database, i.e.:

Ψi = Φt + η(Δd), (5)

the matching probability is given by

p(Ψi|Φt) = k e−
1
2 (Ψi−Φt)

T Δ−1
d

(Ψi−Φt), (6)

where k is a normalizing factor.
The covariance matrix Δd is defined by calculating the covariance Δ of all

the postures ψi from the database, and storing d copies of Δ along the diagonal
of the d · bU × d · bU covariance matrix Δd. By doing this, we give the same
importance to each posture when matching the sequences, see [7] for details.

Thus, the dynamic model will estimate feasible human postures for tracking
by searching only for the most likely stored postures from the database, and
adding an empirically determined Gaussian noise term to them. Since this is a
probabilistic model, we can generate n new different particles φs

t at each time
step by sampling n times from the distribution p(φt|Φt−1) defined using the
learnt p-actions from the database.

5 Experimental Results

The dynamic model has been trained with 9 different basic actions (aRun, aWalk,
aBend, aSit, aJump, aSkip, aSquat, aTumble and aKick) considering near 100
postures for each action, by sampling the parametric manifolds fAi(p) that rep-
resent each action Ai at a constant rate with a sampling step of 0.01, p ∈ [0, 1].

The testing set consisted in 5 performances per action, each one performed
by 9 different actors. This results in 45 performances of all the actions which
were not included in the training set for the calculation of the p-actions.
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Table 1. Confusion Matrix in percentages.

Action aRun aWalk aBend aSit aJump aSkip aSquat aTumble aKick

aRun 97 0 0 0 0 0 0 0 3
aWalk 0 72 0 1 1 23 1 1 1
aBend 0 9 83 2 3 0 1 1 1
aSit 0 21 3 65 0 4 4 3 0
aJump 8 3 0 1 70 7 1 1 8
aSkip 0 10 0 0 0 85 0 0 5
aSquat 5 0 4 0 1 0 90 0 0
aTumble 0 0 0 2 2 0 0 95 1
aKick 1 11 1 2 13 21 2 1 48

In order to explore the coverage of the search space performed by our dynamic
model, we generated all the possible motion histories of length d (d = 10) for each
test performance, and sampled 100 new postures or particles per each motion
history following the procedure described above. After doing this for all the test
performances, the confusion matrix shown in Table 1 was generated, where each
row indicates the class, or p-action of the tested subsequence, and each column
corresponds to the class of the sampled particle using a minimum Mahalanobis
distance criteria.

This table shows that our predictions are not too focused on an specific
action, but still cover the truly performed action well enough. These results
reflect the fact that some actions share a lot of similar postures between each
other, especially at the beginning and at the end of the performances. This
situation is very well handled by our dynamic model, since it is able to throw
multiple hypotheses when the given subsequence is very similar in several actions,
so we do not restrict the searching space to any of them. These hypotheses
will be propagated over time by the particle filter until some of them become
very unlikely over time. For instance, looking at Table 1, we observe that the
action of aWalk has a lot of similarities with the action of aSkip. In the a
aSkip action a subject starts walking, and after some frames it passes over some
obstacle.Thus, the two actions share a lot of postures, especially at the beginning
and at the end. Therefore, multiple hypotheses on what is the agent doing must
be thrown on that situations, which is fulfilled by our dynamic model. We can
find a similar situation between the aBend and the aWalk actions, and between
the aJump, aRun and aKick. The table also shows that most of the actions only
share a few postures, or none at all. So, this result is useful for establishing
relationships between the involved actions. Further study needs to be done in
order to determine similarities between parts of the same action, and not the
action as a whole, in order to analyse the predictions made by the dynamic
model.

In Fig 1.(a) the first 3 dimensions of the UaSpace are drawn together with
a aBend test performance (dashed line). We have generated particles up to
the middle of the performance by our dynamic model and plotted them on
the UaSpace as single dots. We can observe that the predictions made at the
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(a) (b)

Fig. 1. Sampling from the dynamic model within the UaSpace. See text for details.

(a) (b)

Fig. 2. Predicted human postures for the aBend and aSit actions. See text for details.

beginning of the action are split mainly between the bending and other actions
such as aWalk, aJump and aSit. But, as the performance goes over time, almost
all the predictions are concentrated along the bending p-action, since it becomes
very different to the other actions. A similar situation for a aSit test performance
is shown in Fig.1(b).

In Fig 2.(a) and 2.(b) we show the true posture on the right and a set of
predicted postures on the left for a particular frame of the same aBend and aSit
performances used in Fig 1. The set shown is randomly selected from the 100
predicted postures. The results obtained point out that this dynamic model is
focused on generating the most suitable postures while performing an action,
and naturally reduces the searching space avoiding the evaluation of improbable
and impossible body configurations.
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6 Conclusions and Future Work

This paper presents a temporal prior distribution suitable to be used as a dy-
namic human body model for tracking. The drawn particles from this distri-
bution correspond to predicted feasible poses of the body given the history of
estimated poses over time. The method learns a human motion model from a
database of 3D actions acquired with a commercial Motion Capture System.

The results point out that this procedure, if used in a particle filtering frame-
work, will drastically reduce the number of particles needed to track a human
body while performing an action. Even though the proposed example-based dy-
namic model is less flexible than generic models for articulated objects motion,
it is generic and accurate enough for making the tracking of human motion an
achievable task.

Future research relies on integrating this approach into a particle filtering
framework and developing appropriate likelihood measures for human bodies in
2D images. To reduce the problems of extrapolating from the p-action model,
a more refined action model could be developed by probabilistically modeling
each action using Mixtures of Gaussians, for example. Furthermore, transitions
between actions could be naturally modelled by interpolating between the key-
frames of several p-actions. Another open issue is the high computational cost
of the probabilistic search, which could be addressed by efficient indexing the
motion database.
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Abstract. This paper presents a technique to characterize human actions in vis-
ual surveillance scenarios in order to describe, in a qualitative way, basic hu-
man movements in general imaging conditions. The representation proposed is 
based on focus of attention concepts, as part of an active tracking process to de-
scribe target movements. The introduced representation, named “focus of atten-
tion” representation, FOA, is based on motion information. A segmentation 
method is also presented to group the FOA in uniform temporal segments. The 
segmentation will allow providing a higher level description of human actions, 
by means of further classifying each segment in different types of basic move-
ments. 

1   Introduction 

Monitorizing human activity is one of the most important visual tasks to be carried 
out in visual surveillance scenarios. This task includes processes like target tracking, 
human activity characterization and recognition, etc. Human activity characterization 
and recognition is a special topic that has been addressed in the literature from differ-
ent points of views and for different purposes [8] [10] [2] [1] [9]. 

In the work described here, the objective was to characterize, aimed at building a 
feature representation for further recognition, the human activity of people in typical 
visual surveillance scenarios, like airport lounges, public building halls, commercial 
centers, etc., with a great variety of human action types and ordinary, rather poor, 
imaging conditions. The main idea of the proposed techniques is to perform a general 
description of basic human movements, extracting some visual cues that can help to 
understand the people’s actions in higher level recognition tasks. 

In order to understand the activity of a person in a given scenario, the human 
movement can be described as a composition of two different types of movements: 

1. The movements that a person performs with respect to the environment, that is, 
the analysis of trajectories and dynamics, performing target tracking. Some of 
the works are based only on this information [3]. 

                                                           
*  Work partially supported by grant from the Spanish Ministry of Science and Education 
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2. The movements that the different parts of the body a person performs during a 
certain action, with respect to the body point of view. 

According to the classification described by [2], human activity recognition ap-
proaches can be divided in three different groups. Fist group are Generic model re-
covery approaches, in which, at each time, the person pose is recovered trying to fit it 
with a 3D body model. These approaches strongly depend on an accurate 3D feature 
extraction from the image, which usually needs human intervention and controlled 
environments to facilitate image measurements [6]. 

Appearance-based models are an alternative to 3D model recovery, appearance 
based models rely on 2D information extracted from the images, either raw grey level 
distributions or other processed image features, like region templates, contours, etc. 
where an action is described as a sequence of 2D poses of the moving target [7]. 

Finally, motion-based recognition techniques try to recognize the human activity 
by analyzing directly the motion itself, without referring it to any static model of the 
body. The rational of these approaches lie in the fact that different movements of the 
body produce defined motion patterns in the image domain [2] [1] [5] [9]. Therefore, 
some of these works use optical flow measurements as motion features to recognize 
human activities [10] [8]. 

The approach presented here is included in the motion-based recognition tech-
niques, aiming at characterizing human activities directly from the motion informa-
tion. In particular, we will use optical flow information, focusing our attention to the 
movements of different parts of the body, trying to characterize basic body move-
ments. Therefore, we will assume that a certain target extraction and tracking has 
already been performed, that is, we will keep our “active” attention to the target only, 
centering our target in our field of view, the fovea, for further analysis. 

2   FOA Representation of Human Motion Activity 

As it has already been mentioned, the objective is to characterize, for further recogni-
tion, human activities in different scenarios, with variable and realistic conditions that 
may occur, like low image contrast and resolution, different camera-target relative 
positions and viewpoints, occlusions of body parts during the movements, and the 
huge variability of people features and situations. 

However, although the human activity recognition task in such conditions may 
seem unfeasible, it is well known that humans can guess what are the main or basic 
movements that a target is performing with a non very well defined image structure 
[2]. Thus, the underlying motion structure of the movement of a target can provide 
enough visual cues to allow the recognition of basic human body movements. 

Keeping this fact in mind, a motion-based structure to characterize basic and gen-
eral movements of the body is proposed, which has been built on twofold considera-
tions: (a) use of optical flow, and (b) attention centered on the target. 

Therefore, the idea is to describe the person movements with respect to some point 
of the body, assuming the person is being tracked and segmented out from the back-
ground. Thus, a previous tracking and target segmentation is performed, which pro-
vides us at each time information about the position of the target. 
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                                               a                                                      b 

Fig. 1. (a) Expected variation of legs movement around the body centroid. (b) Mean optical 
flow in a given direction 

The center of attention, or fovea center, will be situated at the centroid of the re-
gion corresponding to the segmented target. In order to refer the motion to the center 
of the focus of attention )(tvc , the optical flow of the target pixels )(tvi  will be re-

ferred to the centroid of the target, 

)()()(’ tvtvtv cii −=  

Therefore, the target motion with respect to the image coordinates will be compen-
sated, and only the relative motion of the different parts of the target, with respect to 
the center of attention, will be represented. The objective is to have a qualitative de-
scription of the movement, without segmenting or identifying parts of the body, due 
to the fact that segmenting and tracking each part of the body is a complex and diffi-
cult process that cannot be solved in many situations. 

Let us have a look to the figure 1. We can assume that the body parts are arranged 
around the body centroid, and that certain parts of the body usually move around a 
certain angular range Δθ around the body centroid, for instance, the expected angular 
variation of the legs movements (figure 1a). 

In order we can have a unique reference for all the angular directions with respect 
to the same origin, they can be referred to the vertical axis of a standing up person. An 
estimation of the vertical axis of the body can be obtained either by computing the 
principal axis of the target region, or calibrating the field of view of a static camera, 
determining the vertical direction with respect to the floor at every image point. 

Let us represent the mean optical flow )(tvθ  , at each time t, with respect to the 

centroid at a certain angular direction θ  (figure 1b), as: 

∑
∈

=
θθ

θ
Pk

k tv
N

tv )(’
1

)(  

with θP  being the set of target pixels (xk,yk) that are in the θ  direction with respect to 

the target centroid (xc,yc), and θθ PN =  the number of target pixels in such direction. 

Decomposing the flow )(tvθ  in its normal and radial direction with respect to the 

target centroid, will provide an estimation of the relative motion of that part of the 
body with respect to the centroid in terms of radial (moving from or towards the cen-
troid) and normal (moving in a perpendicular direction to the radius towards either 
up/left or down/right, depending on the area of the body where θ  is situated). 

θΔ

θ
θv
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Representing all angular values of )(tvθ  along time becomes a 2D signal 

) ( ) , ( t v t  foa θ  θ  =  named focus of attention representation (FOA) of the target flow. 

The FOA provides a description of the evolution of the mean flow of the target pixels 
at every direction θ  with respect to the target centroid. The FOA extracted from a 
temporal sequence of a tracked person will provide us information about the general 
movements of the different parts of the body, without having an exact knowledge 
about the position and motion of each part of the body. 

Thus the FOA representation at a given time has the following properties: 

− It is a focus of attention representation, inspired in foveal imaging, where the 
representation is built around a fovea point, in this case, the target centroid. 

− It is an active technique based on focusing the attention on the tracked target. 
− Provides an angular description of the target with respect to the fovea point. 
− The information provided for each angle can be easily interpreted using the 

normal and radial components of the flow. 

Thinking about the discrete form of the FOA representation, it can be further sim-
plified by representing the mean flow of the target along a finite set of orientations; 
θi; 1,...0 −= Ni , where the chosen orientations could integrate the mean flow of 

nearby directions, that is, at each time t, given an orientation θ, the mean flow 
) ( ) , ( t v t   foa 

i i θ  θ  =  , can be expressed as an integration of a receptive field area around 

direction θi. This receptive field area would cover a certain angular range around the 

direction. We can define the response of the receptive field area around θi direction, 

as a Gaussian weighted mean of the FOA in the nearby directions, that is 

∫= −− θθθ θσθθ detfoatfoa i
i

22 2/)(),(),(  

where σθ is the typical deviation of the Gaussian receptive field, determining the 

scope of the receptive field area around each direction. Receptive fields may overlap 
depending on the scope determined by the standard deviation. 

Different types of body movements will activate different receptive fields in differ-
ent ways, forming defined patterns characterizing basic movements like walking, 
rising/putting down arms, bending, sitting, etc. The response of the receptive fields 
forming the FOA representation at each time will provide us a way of identifying 
such a type of basic movements. 

3   Segmenting the FOA Representation 

The final aim of the FOA representation is to allow a recognition of human actions. 
Once we have a representation, in a given feature space, in order to facilitate the rec-
ognition tasks, a temporal segmentation of the body movements would be desirable, 
in order to decompose a certain human action in simple temporal units containing a 
unique type of basic body movements. 

Other works, like [10], were also aimed at segmenting sequences of human activity 
to select key pose actions, in order to describe a higher level human activity descrip-
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tion. The approach presented here is similar to this basic idea used in [10] about linear 
prediction, but using other two different concepts. 

In order to segment the FOA representation along time, we will look for changes in 
the FOA representation along time in a similar way changes in video shot sequences 
are detected. The way changes are detected in the FOA are inspired in the work of [4] 
for video change detection, which uses the main motion present between two images 
of a sequence as a way to predict changes in the same video shot. 

In a similar way, given the ) , 1 ( i t    foa θ  − values of a tracked target for the recep-

tive fields θi at a time t-1, we can predict the FOA response at a time t, ),(*
itfoa θ . 

Thus, given the new measured ) , ( i t   foa θ  , we can define the following difference 

function )(tDfoa  to detect changes: 

∑ −=
i

ii tfoatfoatDfoa ),(),()( * θθ  

Looking for significant local maxima in the )(tDfoa  function, we can identify the 

times at which there is a noticeable change in the body movements performed by the 
target. Bear in mind that the values of   )(),( tvtfoa θθ =  are motion vectors of two 

components, expressed either in the Cartesian components or in the radial-normal 
components mentioned in the previous section. 

To compute the estimate of ),(*
itfoa θ  from ) , 1 ( i t    foa θ  − , the following ap-

proach is used. Given )1(’ −tv k , the vector field referred to the target centroid at time 
t-1, we can estimate the flow field at time t of every pixel belonging to the target at 
time t-1. Given the flow vector )1(’ −tv k  of pixel ),()1( kkk yxtp =− , we can esti-

mate the new position of pixel pk in time t by 

)1(’)1(),()( *** −+−== tvtpyxtp kkkkk  

To the estimated position of the pixel )(* tpk , the flow vector )(* tvk  estimated for 
time t at this position will be figured out by applying an uniform movement assump-

tion, that is , )1(’)(* −= tvtv kk . Therefore, the estimated mean flow field vector at time 
t, that is, the estimated FOA at time t, can be computed as  

∑==
∈ θθ

θθ
Pk

k tv
N

tvtfoa )(
1

)(),( ***  

with θP  being the set of target pixels (xk,yk) that are in the θ  direction with respect to 

the target centroid (xc,yc) at time t, and θθ PN =  the number of target pixels in such a 

direction. 

4   Experiments and Examples 

In order to see the effectiveness of the FOA representation and the performance of the 
FOA segmentation method introduced in section 3, the method has been tested using 
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some sequences of the CAVIAR project [11]. Figure 2 shows some frames of a se-
quence in a hall of a building entrance, where the tracked person performs a move-
ment combining stepping, turning the upper part of the body and rising arms, after-
wards, he stands by for a moment while the arms are up and then he comes back to 
the initial position. 

 

       
frame 1                     frame 10                      frame 19                    frame 28 

       
frame 37                     frame 46                      frame 55                     frame 64 

Fig. 2. Some frames of a sequence of 70 frames of a target person. 

Figure 3 shows the FOA representation of the 70 frames of the sequence in figure 2 
using 20 receptive fields. In this case, the fields are placed every 18 degrees from the 
angle origin, which is placed at the head direction of the principal axis of the target. 
The principal axis at each frame t of the sequence has been estimated from the blob 
corresponding to the segmented target. The center of the FOA representation has been 
chosen as the centroid of the blob, which is also placed on the principal axis. 

 

 

Fig. 3. foa(t, ) representation of the sequence in figure 6 using 20 receptive fields. 

The flow vectors in figure 3 represent, at each time t, the mean flow computed by 
each receptive field θi; 1,...,0 −= θNi , with 20=θN . The flow vectors are expressed 

in terms of the normal and radial components with respect to the direction of the re-

θ

t
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ceptive field, that is, ) )( , ( ) ( ) , ( t v v t v t   foa N R θ  θ  θ  θ  = = . The radial component θRv  of 
each vector is represented along the abscissas axis (t axis) and the normal component 

θNv  is represented along the ordinates axis (θ axis). 

Looking at figure 3, we can notice how the FOA presents differentiated patterns at 
different times, corresponding to the different movements of the parts of the body. For 
instance, the flow field in the first 5 frames corresponds to the activity present at the 
legs, that is, the receptive fields at the middle, which represents the stepping action of 
the person. We can even distinguish the movement performed by each leg in opposite 
direction; all measured with respect to the focus of attention center, that is, the cen-
troid. We can also notice a movement in the upper part of the body, corresponding to 
the firsts and lasts receptive fields. This movement has a strong normal component 
that characterizes the turning movement of the upper part of the body the person is 
performing while stepping, in this case, the person is turning leftwards with respect to 
the principal axis of the body. 

 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70  

Fig. 4. )(tDfoa  of the FOA in figure 3. 

Figure 4 shows the computed Dfoa of the FOA in figure 3, in order to segment the 
FOA representation in basic units with uniform motion values of the different parts of 
the target. The Dfoa has been computed using 72 receptive fields, that is, one every 5 
degrees, and with a standard deviation of =1 degree, that is, without no appreciable 

overlapping between receptive fields. The prediction was approximated by using the 
t-1 segmented target instead of the segmented target at t, for the sake of computational 
efficiency. The local maxima of the Dfoa in figure 4 have been represented by dashed 
vertical lines in the corresponding representation of the FOA in figure 3 to illustrate 
how the segments between these limits show an uniformity in the motion values. 

5   Conclusions and Further Work 

This paper has described a technique to characterize human actions in visual surveil-
lance scenarios in order to describe, in a qualitative way, basic human movements in 
general imaging conditions. The representation proposed is based on the introduced 
focus of attention approach, the FOA, building the representation from the point of 
view of the tracked target, thus becoming part of the active vision process to describe 
target movements. The introduced representation is based on motion information, 
particularly optical flow from respect to the fovea point. 
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The representation has been tested in some sequences from the database of the 
CAVIAR project, and the results obtained show its effectiveness to represent differen-
tiate patters for different types of body moments, which could also be complex or 
combined movements of the different parts of the body. 

The main further work is directed to apply some classification techniques to the 
FOA segments in order to identify and recognize automatically the sequence of basic 
movements. 
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Abstract. In this paper, we examine sensor specific distributions of lo-
cal image operators (edge and line detectors), which describe the appear-
ance of people in video sequences. The distributions are used to describe
a probabilistic articulated motion model to track the gestures of a person
in terms of arms and body movement, which is solved using a particle
filter. We focus on modeling the statistics of one sensor and examine
the influence of image noise and scale, and the spatial accuracy that is
obtainable. Additionally spatial correlation between pixels is modeled in
the appearance model. We show that by neglecting the correlation high
detection probabilities are quickly overestimated, which can often lead to
false positives. Using the weighted geometric mean of pixel information
leads to much improved results.

1 Introduction

Tracking humans is not an easy task. A system is needed that is general enough to
capture all the variations in human appearance, but at the same time is specific
enough to be able to distinguish between humans and other objects with similar
structures.

Many methods have been proposed to track people. A survey can be found in
[1] and in [5]. The complexity of the system depends on the desired level of detail
in which the pose and movement of the human is described and of the a priori
made assumptions about the appearance of people and background. For example,
in surveillance applications, we might merely be interested in whether or not a
person is present, in human-machine interfaces the machine should be able to
read the gestures of the person and in virtual reality applications a complete
three dimensional description of shape, pose and movement is needed to copy
the gestures and movements as faithful as possible. Most of the present solutions
constraint the environment by making some assumptions about the appearance
of people and background. For example, they might assume a static background,
people with special clothes, no moving objects other than humans, . . . The
system we will adapt is based on an article by Sidenbladh [7]. This system
results in a three dimensional description of the pose of a person in every frame
and is applicable in an unconstrained environment.
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In this system the tracking is solved using the particle filter or condensa-
tion algorithm [2, 3]. Herein, an analysis-by-synthesis approach is followed. This
means that first, a model of the human body, consisting of connected cones rep-
resenting the individual limbs, is given a number of poses. Every pose is analysed
through the Appearance Model and assigned a match measure. The best match
for every frame is the desired output of the system. For the next frame new
poses are synthesised based on the best poses from the previous frame and the
expected change in pose modelled by the Temporal Model. For the first frame
the correct pose of the human model is manually initialised.

The Appearance Model calculates a match measure between a state of the
human model and the image information in a particular frame. In a formal way,
the match metric is defined as the probability that a person in the given pose
is present in the current frame and is calculated by comparing the actual image
information, in our case edge and ridge responses, with the expected image
information when a person in the given pose would be present. Originally, the
image information is fused by neglecting correlations (1). To model the expected
image information we learn the distributions of the filter responses, both on and
off people. We use steered edge and ridge operators on different image scales
([7]).

p(Ft|φt) = κ
∏

x∈foreground

∏
i∈cues

pon(fi(x))
poff(fi(x))

. (1)

In this paper we present two improvements to this system: (i) sensor spe-
cific distributions and (ii) information fusing taking into account the correlation
between the information. In [7] general distributions were established based on
(high quality) training images found on the internet. By examining the statis-
tics of one sensor, we are able to model sensor specific noise and blur, which
leads to better performances. This is discussed in Sec. 2. In [7] information from
different information sources, i.e. different cues and different spatial points, are
fused in naive Bayesian fashion, assuming independence between these infor-
mation sources. We show that this leads to very peaked distributions and will
finally result in poor performance. By using the weighted geometric mean for
fusing pixel information, where weights depend on the correlation between the
pixel information, we are able to flatten these distributions, which leads to much
improved results. This is discussed in Sec. 3. Section 4 will present some results
of tracking experiments and in Sec. 5 our conclusions and some ideas for future
work will be formulated.

2 Learning Sensor Specific Distributions

Distributions are learned by annotating a set of training images with the true
location of limb boundaries. Edge and ridge responses are calculated on different
scales, on and off edges and axes of limbs. Histograms are used to estimate
foreground and background distributions of edge and ridge responses.

Obviously, the estimated distributions will depend on the set of training
images used; the question is how much. The training images used by Sidenbladh
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([7]) were collected from the internet, and were taken by different, high quality
cameras. This training set, as well as the annotations of limb edges, can be found
on the internet1. In this paper we investigate how suitable these distributions are
when using cameras with other properties. We do this by comparing the general
distributions with sensor specific distributions obtained with a set of roughly
one hundred training images taken with a standard webcam. These images are
typically noisy and blurry. Examples are shown in Fig. 1.

Fig. 1. Examples of training images for the webcam.

The top row of Fig. 2 shows the foreground and background edge distributions
for the training set used by Sidenbladh, the middle row shows the distributions
for the webcam training set. The distributions for the background show a max-
imum at 0, whereas those for the foreground show two extra submaxima at 1
and −1. As expected high edge responses (in absolute value) are more likely to
belong to a point on the edge of a limb than to a point on the background. The
difference between the distributions of the background and those of the fore-
ground make it possible to distinguish between points on the foreground and
points on the background. Similar results are obtained for ridge responses.

As can be seen, the distributions of the webcam are slimmer than those of
Sidenbladh. Lower edge responses are observed. Additionally, where the distri-
butions found by Sidenbladh are more or less equal on different image scales,
the webcam distributions are clearly different on different image scales. In [6],
Ruderman showed that the statistics of natural images are equal for different
scale levels. We will show that this contradiction is mainly caused by the blurry
images.

To examine the influence of blur on the distributions, we filter the training
images of Sidenbladh repeatedly with a mean filter. The resulting distributions
are shown in the bottom row of Fig. 2. These distributions are very similar with
the distributions obtained with the webcam training set. For all scale levels, the
peak around zero increases and the higher edge responses become less likely.
For higher scale levels the influence decreases, this is due to the subsampling
performed when generating the scale pyramid, which sharpens the images. Rud-
erman [6] observed that blur decreases the energy of high spatial frequencies and
that the influence decreases for lower spatial frequencies, which is in accordance
with our results.
1 http://www.nada.kth.se/˜hedvig/data.html



548 Rik Bellens, Sidharta Gautama, and Johan D’Haeyer

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

ff
)

scale level 0
scale level 1
scale level 2
scale level 3

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

ff
)

scale level 0
scale level 1
scale level 2
scale level 3

background lower arm
(a) Sidenbladh

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

ff
)

scale level 0
scale level 1
scale level 2
scale level 3

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

n
)

scale level 0
scale level 1
scale level 2
scale level 3

background lower arm
(b) Webcam

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

ff
)

scale level 0
scale level 1
scale level 2
scale level 3

−1.5 −1 −0.5 0 0.5 1 1.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

edge response in edge orientation

lo
g

(P
o

n
)

scale level 0
scale level 1
scale level 2
scale level 3

background lower arm
(c) Sidenbladh + blur

Fig. 2. logarithm of the edge distributions of the background and the lower arm for
different scales.

To examine the influence of the training set on the match metric we conduct
the following experiment. The match measure between an image and a number of
states of the human model are calculated, both with the Sidenbladh distributions
and with the webcam distributions. These states all differ in only one parameter,
the elbow angle. As can be seen in Fig. 3, the Sidenbladh distributions are easily
mislead by a small image structure which contains sharp edges. Even when the
edges of a projected state coincide for only a small distance with the edges of
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this structure, with the Sidenbladh distributions, this state will be assigned a
high match metric because of the dominant character of high edge responses.
With the webcam distributions, high edge responses are less dominant, which
results in a higher match metric for a state of which the edges coincide over a
longer distant with blurry image edges.

−2 −1 0 1
4

5

6

7

8

9

10
x 10

−3

Sidenbladh
Webcam

Fig. 3. The match measure calculated with the Sidenbladh distributions (green) and
the webcam distributions (blue) for different poses with different elbow angles. The
Sidenbladh distributions are mislead by sharp edges, even when they only coincide
over a small distance with the edges of the projected limb. The webcam distributions
select the correct state.

3 Spatial Correlation

In [7] information is fused in a naive Bayesian way, assuming independence
between different information sources. As we all know, natural images show high
spatial correlations. Besides spatial correlation, we expect that there will also be
correlation between the edge responses at different scales, since edges which are
clearly visible on one scale, will also likely to be visible on other scales.

Suppose we are fusing information from N totally correlated information
sources in a naive Bayesian way. In that case, the calculated measure is the N th

power of the true probability. As a result all probabilities are underestimated, but
lower probabilities more than higher ones. Since match measures are normalized
to one, this means that high probabalities will be overestimated. In real life cases
the correlation will be less high, but high probabilities will still be overestimated.
In the particle filter not only the best match is used to estimate possible states
for the next frame, but all relative good matches are used depending on their
match measure. This has the advantage that when the best match is not the
correct state, due to shortcomings of the modelling of human appearance or due
to occlusion, the correct state is not lost and the system can recover in the next
frame. When one state is highly overestimated, all other states will be lost and
the performance of the particle filter decreases a great deal.

To solve the problem of overestimation, we propose a new way to fuse the
information from the different information sources by using the weighted geo-
metric mean of marginal probabilities, rather than the simple product. We will
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calculate the joint probability of N events Ai, i = 1..N , as the product of the
marginal probabilities of these events with a correction exponent w to flatten
the result:

p(A1, A2, · · · , AN ) =
N∏

i=1

p(Ai)w (2)

If w equals 1, we get the naive Bayesian approach, which is correct for total
independency. If w equals 1

N , we get the correct calculation in case of total
dependency. The actual dependency will lie in between these two extreme cases.
We will therefore use weights which lie in between those two extremes. The
actual value of the weight w will depend on the average value of the correlation
coefficient between the events Ai ρ and the number of events N as follows:

w(N, ρ) =
1 + (N − 1)(1− ρ)

N
(3)

In case ρ equals zero, we get the formulation for zero dependency, when ρ
equals one, we get the formulation for total dependency. We can consider w as a
metric of the amount of independent information present in the N events. The
correlation coefficients are different for foreground and background, and different
weights are used for different kind of information. First of all the information
from neighboring points will be fused. We will chose N equally spaced points on
the edge or ridge of a limb of a predicted state. For every point we will look up
the marginal probability that it belongs to the foreground or the background in
the learned distributions. The mean distance between the points is calculated
and the average correlation coefficient is looked up in the learned correlation
coefficient curve of foreground and background.

The average correlation coefficient depends on the mean distance between
points. As a result, the amount of independent information will also depend on
the length of the limb. A longer limb will result in higher weights. The human
model we use is three dimensional. When a limb rotates perpendicular to the
image plane, this can result in shorter projected limbs. The edges and ridges
of these projected limbs might still coincide with the edges and ridges in the
image, even when the correct state would have a longer projected limb. When
using the naive Bayes approach and using a fixed number of points on each limb
both states would be assigned the same match metric. When using our approach,
a state which results in longer projected limbs, will have higher fusing weights
and thus, when the edges and ridges coincide over the total distance, will have
a higher match metric than states with shorter projected limbs. Our approach
will thus not only increase the survival rate, but will also be able to distinguish
better between good and bad states. This is shown in Fig. 4.

4 Tracking Experiments

In our first tracking experiment, we try to follow a waving arm using the edge
and ridge cue. Only the arm of the person moves and only parallel to the image
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Fig. 4. The match measure for different poses of the human model resulting in different
projected arm lengths; in red the N th root of the naive Bayesian measure, in blue the
weighted geometric mean measure.

plane. As a result, we only need to estimate two parameters: one of the three
shoulder angles and the elbow angle. All the other parameter have fixed values.
This simplifies the experiment a lot. We tried tracking with naive Bayesian fusion
and with the weighted geometric mean and used thereby 10 particles. The results
are shown in Fig. 5. Although the estimation for certain frames is not very good,
when using weighted geometric mean, we are able to recover from this. When
using the naive bayesian method, once the estimation is no longer correct, the
system can not recover. Using weighted geometric mean leads to more robust
tracking.

(a) naive Bayesian

(b) weighted geometric mean

Fig. 5. Frames 30, 40, 50, 60 and 70 of a tracking experiment of a waving arm (esti-
mating 2 parameters) using 10 particles.

5 Conclusions and Future Work

In this work we have proposed two improvements to the original system. One, by
using sensor specific distributions, the system can better distinguish the correct
state. Two, by using dependency correction when fusing information the tracking
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becomes more robust. Our system is able to track body parts in a fast and
robust manner. When tracking a full body two problems occur: one, the correct
state cannot always be distinguished and two, the computational time increases
exponentially with the complexity of the human model. Solutions for the first
problem can be found in using more image information, e.g. texture, (skin)
colour, motion, . . . Two strategies can be followed for trying to solve the second
problem. One, by using a more advanced temporal model, which is more specific
to human motion, better prior predictions of a new state can be made and less
energy is lost in exploring areas which will not lead to the correct state. Two, one
might try to lower the number of needed particles by using a faster variations of
the particle filter, like partitioned sampling [4].
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Abstract. Enabling natural human-robot interaction using computer vision 
based applications requires fast and accurate hand detection. However, previous 
works in this field assume different constraints, like a limitation in the number 
of detected gestures, because hands are highly complex objects difficult to lo-
cate. This paper presents an approach which integrates temporal coherence cues 
and hand detection based on wrists using a cascade classifier. With this ap-
proach, we introduce three main contributions: (1) a transparent initialization 
mechanism without user participation for segmenting hands independently of 
their gesture, (2) a larger number of detected gestures as well as a faster training 
phase than previous cascade classifier based methods and (3) near real-time per-
formance for hand pose detection in video streams. 

1   Introduction 

Improving human-robot interaction has been an active research field in recent years in 
robotics community. A major challenge is based on detecting and interpreting human 
behaviours in video data, since it is essential for enabling natural human robot interac-
tion. Our attention focuses on the communication with robots via hand gestures, 
which are a natural means of non-verbal communication for people.  

In this paper, a fast and accurate hand pose detection approach that detects hand 
gestures in video streams for human-robot interaction is presented. In our approach, 
the hand pose detection problem is formulated in terms of the integration and combi-
nation of temporal coherence information and a cascade classifier method.  

The cascade classifier method is based on the fasted and most accurate pattern de-
tection approach for faces in monocular grey level-images [1]. This classifier is 
trained to detect wrists as an issue for locating hands in the first frames where the 
interaction with the machine takes place and as mechanism for system reinitialization. 
The main advantage of this approach is that wrists are highly independent from the 
gesture being made, so hands are detected without taking into account the gesture. 
Temporal coherence information is supplied by a template tracker with the aim of 
achieving real-time performance.  
                                                           
*  This work has been supported by the Spanish Government, the Canary Islands Autonomous 

Government and the Univ. of Las Palmas de G.C. under projects TIN2004-07087, 
PI20003/165 and UNI2003/06. 
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2   Related Work 

Nowadays, there are several obstacles for achieving robust and efficient hand pose 
detection methods in video data, mainly due to the fact that the different posed diffi-
culties such as variability and flexibility of articulated hand structure, shape of ges-
tures, real-time performance, varying illumination conditions and complex back-
ground clutter. Therefore, previous works assume different constraints, like a limita-
tion in the number of detected gestures using for example a watershed algorithm on 
the skin-like coloured pixel in collaboration with a particle filtering algorithm [2] for 
segmenting a specific set of hand gestures [3] or a no-real time hand detection against 
arbitrary background with an 86% accuracy rate through the use of an elastic graph 
matching technique for robot control [4]. Also, robust initialization and reinitializa-
tion must be addressed in order to carry out an effective hand pose estimation ap-
proach when a tracking method is used. However, most tracking approaches need to 
be manually initialized and cannot recover themselves when they lose the tracked 
target. As a result, some approaches often assume that the template which represents 
the target object is correctly aligned in the first frame [5]. Other approaches select the 
reference models by a hand-drawn prototype template, i.e., an ellipse outline for faces 
[6]. Moreover, the use of dynamic models that characterize hand motion such as par-
ticle filtering algorithm [2] requires training using the object moving over an unclut-
tered background to learn the motion model parameters before it can be applied to the 
real scene. However, transparent initializations without user participation are required 
for interactive human-robot communication.  

Recent hand pose detection approaches are focused on Viola-Jones [1] cascade 
classifiers, commonly used for detecting faces. Although frontal faces share common 
features (eyes, eyebrows, nose, mouth, hair), hands are not so easily described. Their 
variability and flexibility make them highly deformable objects, so training a cascade 
classifier for detecting hands is a complex and arduous task. For that reason, a differ-
ent classifier for each recognizable gesture has been trained [7], or a single classifier 
for a limited set of hands has been proposed [8]. However, the use of these ap-
proaches leads to the detection of a low number of gestures. Furthermore, real-time 
performance is not achieved with a cascade classifier method such as the one illus-
trated in [9] and only 15º rotations can be efficiently detected with a Viola-Jones 
detector [10]. Most importantly, the training data must contain rotated hand samples 
within these limits. Therefore, our approach changes the detection target to wrists. As 
a result, hands are detected without taking into account the gesture. Additionally, 
there is no limitation in the number of gestures being detected, as long as wrists are 
not occluded. Furthermore, fast computation is achieved incorporating temporal co-
herence information. And, the training time for the cascade classifier is greatly re-
duced. In the following sections, the proposed solution will be described and evalu-
ated with experiments. 

3   System Initialization 

The Viola-Jones based cascade classifier [1] is used in order to automatically initial-
ize the system for detecting hands in the first frames when the interaction takes place. 
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This cascade method combines increasingly more complex classifiers in order to 
quickly discard background areas on the first stages while a deeper analysis is per-
formed in areas of high interest. Hands, however, are highly deformable objects, hard 
to train and classify due to their variability and flexibility. Next subsections describe 
the steps taken from the training of the classifier to the final hand extraction. 

3.1   Training the Classifier 

Training samples must be collected in order to train a cascade classifier. There are 
two categories: negative and positive samples. The first ones are related to non-object 
images while positive samples correspond to object images. However, the underlying 
problem with hand shapes in the training stage is that they are not self-containing 
objects, so patches of non-object images (background) are shown within positive 
samples. This makes the training stage harder and time consuming. Different hand 
samples are shown in figure 1.a. Due to the presence of background patches among 
positive samples, it is necessary a large collection of images showing hands in front of 
different sceneries. This, added to the variation of light conditions and hand postures 
in order to include every possible setting, results in a high computational cost of the 
training stage and an unreliable detection. 

We propose a simplification of the classifier method, using wrist images as object 
samples. Wrists are much simpler objects, so the variability among samples is re-
duced and thus a faster training stage is achieved. Some used wrist samples are shown 
in figure 1.b, while figure 1.c illustrates the difference between the lower and upper 
section of a positive sample, being the former a simpler object. As long as wrists are 
not occluded, their detection leads to their hand, thus fulfilling the original goal. 
 

 

Fig. 1. Positive sample images: a) whole hand, b) lower part of hands, used by our wrist classi-
fier, c) detail of a sample image, divided in two sections. 

3.2   Finding and Isolating Hand Pattern 

In order to reduce the search space where the wrist cascade classifier is applied, peo-
ple is first located using a cascade classifier as described in [11]. According to aver-
age human body proportions [12], an arm length is around three times the length of a 
head, so a boundary of the distance that a hand can reach knowing the location of a 
head can be computed. The result is that, for typical desktop images, more than a half 
of the original image may be removed from the problem space. If no faces are de-
tected, the search space problem is aimed to the original image dimension. 
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Once a wrist has been located, its enclosing area, given by the cascade classifier, 
is resized in order to include the whole hand taking into account natural hand-wrist 
proportions, where a hand’s height is between 2.9 and 3.1 times its wrist’s width. This 
whole hand area is supplied as the tracking pattern, and will be followed in successive 
frames.  

4   Hand Gesture Detection System 

Our hand gesture detection system is based on a continuous operation that combines 
the results computed by the cascade classifier method with a template tracking mod-
ule. The tracking module is used in order to get benefits from temporal coherence of 
the hand detection information provided by previous frames. 

Robustness to background clutter and low computational costs are the main issues 
that need to be addressed when a tracker module is used in order to follow hands from 
previous frames. With this aim, we make use of the tracking algorithm of [13] that has 
been previously applied to different visual applications such as face and vehicle track-
ing. This algorithm is focused on the framework of representation spaces based on 
second order isomorphism [14] that allows the definition of context objects notion. 
The use of this concept allows taking into account similar objects related to the target 
object and deciding when it is necessary to update the target pattern. Updating hand 
patterns using this concept avoids confusing the tracked target with clutter and similar 
objects from background. 

Our cyclic operating approach involves four different processing stages. The first 
process begins when the classifier finds a wrist in the way described in section 3.2. 
The hand it belongs to is selected as the tracking pattern, so in a second stage the 
tracker will follow it during the next 30 frames or until the pattern is considered lost. 
On the next stage, the wrist cascade classifier is applied again. This second time, 
however, the search space is reduced to an area close to the last tracked pattern posi-
tion. Once again, the result of the classifier is selected as the new tracking pattern, 
which will be followed again during 30 more frames or until the pattern is considered 
lost, as it was achieved in the second stage. Finally, the operation cycle is restarted 
with a new application of the wrist cascade classifier on the whole search space, as 
described in section 3.2.  

The main assumption underlying this approach is that hands can be frequently ex-
pected to enter and exit from view and that a robust reinitialization is required when 
the tracked hand is lost due to exceptional circumstances based on drastic appearance 
transformations in the gesture being made. An overview of the different processing 
stages that take place in our framework is shown in figure 2.  

5   Experimental Results 

In order to carry out empirical evaluations of the system, 12 different video streams 
with an average of 1500 frames each one, 320x240 pixels each frame, were acquired 
at 25 frames per second, and analyzed using a PIV 2.8 GHz. These videos contain 12 
different people with assorted background and light conditions, making more than 20 
vertical hand gestures. The first two subsections describe the results computed with 
the classifier method, analyzing the training stage and the performance of the classi-
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fier method using wrists and using the whole hand. The last subsection shows the 
performance achieved when a tracker module is incorporated. 

5.1   Training Stage 

The used training set consists of 5653 negative samples and 4130 20x20 positive 
samples from our own dataset and other samples selected from available datasets [15]. 
The trainer only takes into account the lower part of those images, 20x10 pixels, 
which show a hand from its wrist to half the palm, including fingertips of flexed fin-
gers and thumbs (both flexed and stretched), as shown in figure 1.b. 

The first advantage of our wrist detector over a whole hand detector is the time 
needed for training. Using the same amount of training images, it takes less than 24 
hours on a PIV 2.8 GHz to train an 18 stages classifier, while the hand classifier needs 
more than a week to train the same number of stages. Mainly because the variability 
of the lower half of a hand is much lower than that of a whole hand, so the classifier is 
able to find similarities among samples much faster.  

5.2   Classifier Performance 

Besides the lower training time, the wrist detector also reduces three times the false 
detection rate given by the hand detector. The high amount of gestures, background, 
people and light conditions present in sample images lead to an unreliable classifier. 
Using the same positive sample images, but taking into account only the lower part of 
them, simplifies the problem and therefore reports a false detection rate reduction. 

The wrist detector, without the aid of the tracking module, was applied on the test 
video set. An average detection rate, in relation to the total number of frames, of 0.88 
was achieved. This rate is not higher because the training set was originally created 
having a hand detector in mind, so it is not optimal for the training of wrists. 

From the amount of frames where wrists were detected, we measured a 0.97 cor-
rect detection. Figure 3 illustrates different results using the wrist detector approach 
for isolating hand patterns with diverse people, background and light conditions.  

 

Fig. 2. Hand Gesture Detection System: a) faces are detected, b) wrists detection in the reduced
search area, due to faces detected, c) hand used as the tracking pattern, d) hand tracked during 
30 frames, or pattern lost, e) new wrist detection, in space around last tracked position f) new 
detection tracked during 30 more frames, or pattern lost. Finally, the continuous cycle restarts 
in stage a. 
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Fig. 3. Hand pose detection results showing wrists detections (dark rectangle) and complete 
hands (white rectangle). 

5.3   Tracking Influence 

A second set of tests were performed combining the wrist detector and the pattern 
tracker, as described in section 4. Even thought the false detection rate raises from 
0.03 to 0.06, the amount of frames with detection also raises, from 0.88 to 0.99. There 
is an absolute increase of true positives of 7%. Figure 4 shows individual results in 
each video using both techniques. Figure 5 illustrates some frames from a video 
stream where the tracker follows a hand, which is both moving and changing gestures. 
The pattern size used for the tracking process is established to 24x24 pixels. 
 

 

Fig. 4. Frame Analysis and False Positive Rate. Results of the classifier used alone in lighter 
bars, while darker bars show results for the classifier and tracker cycle. 

 

Fig. 5. Four frames (210, 220, 230, and 240) from a video sequence, where the centre of the 
tracked pattern is represented by a cross. The rectangle corresponds to the whole hand area 
computed through the use of hand-wrist proportions from the last wrist detected using the clas-
sifier. 
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Fig. 6. Time measured for computing the classifier method and the time measured for comput-
ing the combination of classifier method and the tracker module for two different videos. Face 
location is not significant in relation to speed performance, when combining the classifier and 
the tracker module. 

The average processing rate using the hand gesture detection system proposed in 
section 4 is 16 fps, while the average processing rate using only the classifier method 
reaches a maximum of 5 fps (2 fps when faces are not found). Figure 6 illustrates the 
measured time for two different videos using only the classifier method and using the 
classifier method plus the tracker module. Integrating a tracking module with a classi-
fier based on wrists increases the speed achieved in previous works in relation to real-
time performance [7, 8, 9] and also the number of different gestures detected. From 
these results, we have observed that the influence of face detection and the conse-
quent search space reduction is significant when the classifier is used without the aid 
of the tracker. If the classifier method and the tracker module are combined, detecting 
faces is only significant in order to reduce false positives. 

6   Conclusions and Future Work 

We have developed a fast and robust hand pose detector that integrates temporal co-
herence information and a wrist detector using a continuously operational system. 

We have tested our approach in different experiments which cover diverse people, 
backgrounds and light conditions. Two major conclusions have been obtained from 
the experiments: (i) the classifier method based on wrists reduces the false detection 
rate and the training stage in comparison to a whole hand detector and (ii) combining 
temporal coherence information and a classifier method based on wrist reduces 
greatly the hand pose detection time in respect to previous works based on classifier 
methods [7, 8, 9]. Moreover, the number of gestures detected is also increased. 

Future research is focused on an improvement of the training set, estimating tran-
sition states of the hand gestures over the time with the purpose of only interpreting a 
new gesture, when it has taken place. 
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Abstract. Under illumination variations image change detection becomes a dif-
ficult task. Some existing image change detection methods try to compensate 
this effect. It is assumed that an image can be expressed in terms of its illumina-
tion and reflectance components. Detection of changes in the reflectance com-
ponent is directly related to scene changes. In general, scene illumination varies 
slowly over space, whereas the reflectance component contains mainly spatially 
high frequency details. The intention is to apply the image change detection al-
gorithm to the reflectance component only. The aim of this work is to analyze 
the performance of different homomorphic pre-filtering schemes for extracting 
the reflectance component so that the image change detection algorithm is ap-
plied only to this component. This scheme is not suitable for scenes without 
spatial high frequency details. 

1   Introduction 

The main difficult in image change detection tasks is the illumination variations be-
tween two frames. Some existing image change detection methods try to compensate 
this effect by mapping data and contextual information under an energy function 
which is then minimized through optimization [1,2,3].    

Additionally some works have used the power of homomorphic systems in order 
to separate the reflectance component, so that the image change detection algorithm is 
only applied to this component [4]. This is justified under the assumption that scene 
illumination varies slowly over space, whereas the reflectance component contains 
mainly spatially high frequency details. 

The goal of this work is to analyse the behaviour of three different homomorphic 
filtering strategies in image change detection. They are: the low pass filtering strategy 
given in [4] (TOT), the frequency procedure based on butterworth filtering [5,6] 
(KOV) and the wavelet-based approach described in [7] (GOM). 

                                                           
*  This work has been partially supported by the Spanish CICYT under grant DPI2002-02924. 
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We have selected the image change detection algorithm described in [1] as the 
base method. It is applied with and without previous homomorphic filtering, where 
the homomorphic filtering is implemented according to TOT, KOV and GOM.  

This paper is organised as follows: in section 2 we formulate the homomorphic 
framework and describe the TOT, KOV and GOM strategies. In section 3 the homo-
morphic performance is analyzed. Finally in section 4 the conclusions are presented. 

2   The Homomorphic Framework 

The goal for image change detection between two frames is to obtain equal illumi-
nated frames by processing them in any way. This can be achieved through a special 
class of systems know as homomorphic systems [5]. They are based on the image 
perception. The images people perceive consist of light reflected from the objects. 
The basic nature of intensity may be characterized by two components: (1) the 
amount of source light incident on the scene being viewed and (2) the amount of light 
reflected by the objects in the scene. They are called the illumination and reflectance 
components and are denoted by ik(x,y) and rk(x,y) respectively, where k-th frame and 

(x,y) is the pixel location. As a first approximation for Lambertian objects surfaces 
the intensity of the k-th frame in an image sequence is given by  

),(),(),( yxryxiyxf
kkk

=  . (1) 

The illumination component of an image is generally characterized by slow spa-
tial variations, while the reflectance component tends to vary abruptly, particularly at 
the junctions of dissimilar objects. These characteristics lead to associating the low 
frequencies with illumination and the high with reflectance. 

The goal is to extract the reflectance component in order to minimize the illumina-
tion effects and to consider only the reflectance. This is carried out by first applying 
the logarithm and then extracting the high frequencies. The logarithm transforms the 
multiplicative relation in (1) into an additive one: 

( ) ( ) ( )),(log),(log),(log yxryxiyxf
kkkky +==  . (2) 

Although the log-nonlinearity modifies the spectral content of illumination and re-
flectance components, it is in practice often justified to assume the log-illumination to 
be still spatially slowly varying [5]. Obviously, this scheme should not be suitable for 
scenes without spatial high frequency details. 

2.1   KOV: Through High-Pass Filtering 

In [5,6] the homomorphic system is designed as follows: after applying the logarithm 
to fk in (1), the resulting image yk is fast Fourier transformed, the resulting image is 

high-pass filtered in the frequency domain by designing a high-pass filter based on 
the butterworth scheme. The filter function is obtained so that it affects the low- and 
high-frequency components of the Fourier transform. A trade-off must be achieved to 
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boost the high frequencies relative to the low frequency values. We have chosen this 
relation as a ratio of 25% and 75% for low and high frequencies respectively. So the 
filter function tends to decrease the low frequencies and amplify the high frequencies. 
Once the filtering is carried out, the inverse fast Fourier transformation is applied to 
the filtered result. Exponentiation of the last resulting signal is applied to obtain the 
reflectance image.  

2.2   TOT: Through Low-Pass Filtering 

In TOT [4] the homomorphic system works as follows: after applying the logarithm 
to fk in (1), the resulting yk of (2) is low-pass filtered and then subtracted from the 

logarithmic original yk, yielding a high-pass component. The low-pass filtering can be 

carried out through different filter kernels; we have used a Gaussian one with size 31 
x 31 and standard deviation of 14 as in [4].  

This filter has to trade-off the reduction of illumination and the retention of the 
image structure. Note that the standard deviation is decisive in the filter design. A 
high value of this parameter involves a high filter dimension affecting the high com-
ponents in the image.  

Exponentiation of the filtered signal is applied to obtain the reflectance image. In 
the reflectance image illumination effects are strongly suppressed while object infor-
mation is preserved. In the illumination image, however, the light-spot is very promi-
nent whereas object details are blurred. Of course, the illumination image still con-
tains low-frequency parts from the reflectance and thus separation of the two compo-
nents is only an approximation. Nevertheless this suffices for the intended image 
change detection.  

2.3   GOM: Wavelet-Based Filtering 

This is the scheme described in [7]. As before, the goal is to obtain the reflectance 
component. The process is as follows: first of all we must separate the illumination 
and reflection components. The logarithm applied to fk converts the product from (1) 

to yk which is a sum with two components that are low pass and high pass respec-

tively. Then, these components are separated by using the Discrete Wavelet Trans-
form (DWT). The DWT performs a low and high pass filtering using the scheme 
proposed by Mallat [8]. The scheme can be repeated over the approximation image. 
So we get a multiresolution approximation to the original image. The more we repeat 
the decomposition scheme the more we concentrate the low frequencies energy in the 
approximation image. After several decompositions (depends on image size) the 
approximation image is a representation of illumination of the image. In our approach 
we have used a five level decomposition.  

Now, the illumination is in the approximation image of the DWT. If we want to 
obtain the same illumination in the both frames under processing, the next step is to 
cancel the approximation image and recover the whole image without illumination, 
i.e. only with the reflection component.  
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So, after the five level decomposition we replace the approximation image with a 
zero image of the same size that the approximation image at such level. After this 
replacement we apply the Inverse Discrete Wavelet Transform (IDWT) scheme using 
the reconstruction filters.  

The resulting image is now with no illumination. Now a constant illumination 
level is added. This constant level is set log(128) that corresponds to the mean grey 
level in the byte images representation used in this work. Then, the image can be 
recovered, i.e. the logarithm is undone by using the exponential. As before the expo-
nentiation could be avoided for the image change detection pouposes. 

3   Comparative Analysis and Performance Evaluation 

In order to analyse the performance of the homomorphic systems, we have considered 
two different data sets: a synthetic data set artificially generated and a real data set corre-
sponding to consecutive frames in indoor and outdoor environments where the images 
are captured under different illumination conditions. 

3.1   Synthetic Data Set 

We used as the image reference a region of 400 x 400 pixels from a remote sensing 
image acquired by the commercial IKONOS satellite. This image contains mainly 
high frequency components and was assumed to be the t1 reference image in the full 

sequence (i.e. the image acquired at time t1).  

Then we generate five new synthetic images ti; i = 2,…,6 from t1 by adding 

changes, noise and illumination variations as follows:  

t2: only controlled changes without noise and without illumination variation;  

t3: Gaussian noise (σ2=2.5);  

t4: Gaussian noise (σ2=5) and illumination variation;  

t5: salt and pepper noise (density = 0.05);  

t6: salt and pepper noise (density = 0.10) and with illumination variation.  

Hence, five pairs of images are built with each ti and the reference t1.  

The illumination variation is achieved by shifting the original histogram, so that dif-
ferent light conditions can be simulated between the image with the original histogram 
and the image with the shifted histogram. Figure 1(a) and (b) show the t1 and t4 images. 

Figure 1(c) shows the mapping of the controlled changes. Figures 1(d) and (e) are ob-
tained from (a) and (b) respectively by applying the homomorphic KOV scheme. We 
can see that the illumination is compensated between both images, i.e. the differences in 
the original images are minimized. 

3.2   Real Data Set 

Real data sets for aerial or satellite images are only available in dedicated companies 
which have previously paid the corresponding royalty.  
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(a)  

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

Fig. 1. Synthetic data set used in the experiments. (a) t1 original image, (b) t4 image with con-

trolled changes and Gaussian; (c) map of the areas with simulated changes used as the reference 
map in the experiments; (d) and (e) illumination compensation by homomorphic filtering 

Hence, the real data set used in the experiments consisted of a first group of ten pairs 
of indoor images captured under different illumination conditions. Indeed, we have 
varied the illumination in two ways: 

a) by changing the internal artificial illumination switching on and off different indi-
rect lights,  

b) by moving a blind window, i.e. by changing the external illumination conditions. 
Two representative images of this kind of data are shown in the figure 2(a) and (b). 

In the image (b) we have changed the mobile computer position and the two little ob-
jects placed between the mobile computer and the big monitor. Moreover, the image (b) 
is captured by increasing both, the internal and external illumination conditions. Figures 
2(d) and (e) are obtained from (a) and (b) respectively by applying the homomorphic 
KOV approach. We can see once again that the illumination is compensated between 
both images. 

The second group of real data is captured from an outdoor environment and con-
sists of eight pairs of images; Figures 2(c) and (f) show two representative images. In 
this group the illumination is similar as they are captured in the same instant of time. 

3.3   Evaluation 

To evaluate the performance quantitatively, we used the change detection approach 
described in [1] and define the correct detection rate (CDR) and the false alarm rate 
(FAR) as follows [9].  
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Fig. 2. Real data sets: (a) and (b) original indoor images under different illumination condi-
tions; (d) and (e) illumination compensation by homorphic filtering; (c) and (f) original outdoor 
images under similar illumination conditions 

CDR: the probability of claiming an Area of Interest (AOI) is changed when AOI is 
actually changed or claiming AOI is unchanged when AOI is actually unchanged. 

FAR: the probability of claiming AOI is changed when AOI is actually unchanged or 
claiming AOI is unchanged when AOI is actually changed. 

We have started our experiments with the synthetic data sets, because the changes 
are well controlled. Figure 3(a) and (b) shows graphically the percentage of CDR and 
FAR results for each pair of images obtained through the change detection method in 
[1] with homomorphic filtering (KOV, TOT and GOM) and without homomorphic 
filtering (WHF). 

From results in figure 3, we can infer the following conclusions:  

1. The best performance is achieved when KOV is applied, particularly for im-
ages including differences in the illumination (pairs 3 and 5). 

2. In noisy images the homomorphic filtering does not contribute to the improve-
ment of the results.  

3. The worst results are obtained by GOM; we have verified that this is due to the 
removing of the approximation coefficients in the last decomposition level. 
This implies that in the reconstruction process appears some kind of artifacts, 
affecting the changes. 

Now, taking into account the best performance achieved by using the KOV hom-
morphic filtering scheme, we have processed the real data set (indoor and outdoor) 
considering the results obtained under this filtering as the reference results for com-
parison purposes with the remainder homomorphic filtering schemes. We have aver-
aged the CDR and FAR percentages over each set of data groups. Table 1 summa-
rizes the results obtained for the indoor and outdoor environments for each homor-
phic filtering scheme. 
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Fig. 3. Behaviours of the change detection error (%) with (KOV, TOT, GOM) and without 
(WHF) homomorphic filtering; (a) and (b) CDR and FAR respectively against the pair number 

Table 1. Averaged CDR and FAR percentages for indoor and outdoor image sequences 

indoor environment outdoor environment  
CDR  FAR CDR FAR 

KOV (reference) 100 0 100 0 
TOT 92.86 6.67 99.21 1.12 
GOM 88.12 9.87 96.66 2.46 
WHF 83.32 14.01 98.51 1.11 

 

From results in table 1, the following conclusions can be inferred:  

1. In the indoor images, including changes in the illumination, the homomorphic 
filtering improves the final results. 

2. There are still artifacts affecting the performance when GOM is used. 
3. In the outdoor images, without significant illumination changes, the homomor-

phic filtering is irrelevant. Only some slight improvement is achieved, but 
without filtering the results are equally acceptable in the outdoor environment.  

4   Conclusions 

We have shown the performance of the homomorphic filtering for image change 
detection in image sequences. This is particularly valid with images displaying high 
illumination variability, i.e. for scenes with spatial high frequency details. We have 
also verified that the underlying noise in the images does not affect the final results. 
This works provides the guidelines for applying homomorphic filtering for change 
detection methods. 
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Abstract. A system for finding and recognizing car license plates is pre-
sented. The finding of the plates is based on the analysis of connected
components of four different binarizations of the image. No assumptions
are made about illumination and camera angle, and only mild assump-
tions regarding the size of the plate in the image are made. Recognition
is performed by means of Hidden Markov Models. Experiments on a
database of Spanish number plates show the feasibility of the proposed
approach.

1 Introduction

Car License Plate Recognition (CLPR) has a wide variety of applications [1, 2],
such as control of parking lots, borders or traffic, recovery of stolen cars, etc.
Many of the current CLPR systems work under controlled light settings and
assume that the plate is horizontal and/or perpendicular to the camera direction.
We present a CLPR system that makes no assumptions about illumination and it
makes only mild assumptions about the position of the camera and the relative
size of the plate in the image. Figure 1 shows some typical images from our
database.

Two different problems are faced when building a CLPR system: (1) License
plate extraction: finding the area of the image that corresponds to the plate; and
(2) recognizing the characters in the plate.

In our approach, the license plate extraction phase produces an ordered series
of regions of interest (ROI). These regions are found by analyzing the connected
components of four different binarizations of the image. Character recognition is
performed on each ROI by means of a Hidden Markov Model (HMM) decoding
system. The recognition yields a string of characters and an estimation of the
probability, according to the HMMs, that those are the characters present in the
text in the ROI. This value is used to rescore the ROIs and to select the one
that really corresponds to the license plate.

� This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa
and FEDER under grant TIC2002-02684.
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Fig. 1. Sample pictures of Spanish license plates in the database.

The paper is structured as follows: the next two sections explain the license
plates extraction and recognition procedures, respectively; after that, we present
experimental results of both stages and the whole system on a database of Span-
ish license plates; finally, we comment some conclusions and future work.

2 License Plates Extraction

The aim of this phase is to find a set of quadrangles that can be considered
promising regions for holding a plate. Note that the plate cannot be assumed
to have a rectangular position due to the perspective distortion introduced by
the angle of the camera with respect to the car. For the same reason, the plate
is not assumed to be horizontal. These regions (which we call ROI, for Regions
Of Interest) are searched for by analyzing the connected components of a bina-
rization of the image. This analysis looks for regions in which the components
have certain properties such as being of similar height, having an aspect ratio in
some range, and being roughly aligned.

The analysis of connected components is performed four times, each one
using a different binarization. Similar plate candidates coming from different
binarizations are combined and their scores are readjusted. Up to three candi-
dates are selected by score. For each surviving plate candidate, a ROI is returned
consisting of the minimum area quadrilateral fitting the bounding boxes of the
connected components it contains.

In the following description we assume that the pictures are gray level images
containing the frontal or rear side of a single vehicle. Plate width is assumed to
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(a) Original image. (b) Binarized image.

(c) Edges. (d) Binarized image with edges deleted.

Fig. 2. Effect of removing edges from the binarized image: the characters of the plate
are separated from one another.

be between 25% and 75% of the image width, which in our case is 800 pixels.
Different sizes would need to change the values presented. No assumptions are
made about the angle of the camera with respect to the vehicle. As mentioned
above, this causes distortions in the image.

2.1 Binarization of the Image

Global thresholding is not appropriate in our case because the ROI usually is a
small portion of the image and there can be large lighting differences in a scene.
Therefore, we use a local thresholding technique: for each pixel, the threshold
is computed by substracting a constant c to the mean gray level in an n × n
window centered in the pixel. There is no single setting of n and c that has
proven useful in all images of our training set. Thus, we use three different
settings: (n = 20, c = 2), (n = 20, c = 6), and (n = 9, c = 6).

In some plates, shadows due to direct sunlight may link several characters
(Figures 2 (a) and 2 (b)). To overcome this undesirable effect, a fourth binary
image is produced by applying an edge detector to the original image (Fig-
ure 2 (c)) and removing the edges from the binary image obtained with param-
eters (n = 9, c = 6). This is expected to disconnect the characters that were
linked by the shadow (Figure 2 (d)).

2.2 Connected Component Analysis

Once the image is binarized, the process of analyzing the connected compo-
nents for finding ROIs consists of the following steps: (a) connected components
detection and filtering; (b) ROIs finding; and (c) ROIs scoring.
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Connected Components Detection and Filtering. The binarized image
is decomposed into 4-neighbours connected components. A filter removes small
components (containing less than 100 pixels) and keeps those components whose
width, height, and aspect ratio fall between some limits (25 and 140 for the
height, 5 and 80 for the width, and 0.4 and 14 for the aspect ratio).

A possible problem with this filter is that it may miss some components
corresponding to characters in the plate. However, note that this is only a prob-
lem when it affects to the leftmost and rightmost characters. Furthermore, we
have seen experimentally that it is very unlikely that this happens on all four
binarizations.

ROIs Finding. Once the connected components have been filtered the process
of ROIs extraction begins. The aim of this process is to find sets of connected
components containing at least four connected components of similar size and
whose bounding box centers can be roughly fitted by a straight line. Only max-
imal sets are considered: i.e. if one such set is properly included in another, the
first one is ignored. On the other hand, the sets need not be disjoint: a connected
component can belong to more than one.

A simple analysis of the ROIs is performed in order to remove those compo-
nents that lie too far away from the others. Figure 3 shows the ROIs found in
the images of Figure 1.

ROIs Scoring. Each region of interest is scored attending to its number of
connected components, overlapping of bounding boxes, and slope. The scores
are defined so that higher scores are worst. The actual criteria are:

Fig. 3. ROIs found in the pictures of Figure 1.
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(a) ROI after bilinear transform. (b) Gray level of slant corrected image.

(c) Horizontal derivative of (b). (d) Vertical derivative of (b).

Fig. 4. Preprocess and parameterization for the HMMs.

– The difference between the width of the candidate and the sum of the widths
of the bounding boxes of the components is the basis score.

– If the number of components is below six or above eight, a penalty is added
for each component of the difference with six (if it is below) and eight (if it
is above).

– For each pair of components, the score is increased by the percentage of
overlap between the corresponding bounding boxes.

– Finally, the score is increased with a multiple of the absolute value of slope
of the line joining the centers of the components.

3 License Plates Recognition

We use Hidden Markov Models (HMM) as the basis model for our recognition
engine. HMMs have been successfully used in speech recognition for a long time
and more recently they have been applied to OCR tasks. The recognition begins
with a preprocessing and a parameterization of the ROIs detected in the previous
phase.

Preprocessing. The quadrilateral ROIs of the gray level image are mapped into
rectangles by means of a bilinear transform (see Figure 4 (a)). These regions are
supposed to contain only the plate, so a better binarization can be performed on
them. We use a new local thresholding with a larger window. After binarization,
a new connected component analysis removes noise. The slant of the surviving
connected components is corrected and each component is rescaled to a standard
height of 100 pixels.

Parameterization. We use a parameterization based on the one presented
in [4]. The image is divided into a grid of 20×N cells, where N is proportional
to the width of the ROI. In each cell the average gray level and horizontal and
vertical derivatives are computed. The gray level is a weighted average of the gray
levels of a 5×5 cells neighbourhood, the weights following a gaussian distribution
(see Figure 4 (b)). The same neighbourhood is used in the computation of the
derivatives. The horizontal derivative is defined as the slope of the line fitting
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the average gray level in each row (see Figure 4 (c)). The vertical derivative is
defined analogously (see Figure 4 (d)). With this process, the parameterization
the ROI consists in N vectors of dimension 3× 20.

Hidden Markov Models. An HMMs was trained for each character. Each
model has a Bakis topology [3]: each state has three output arcs, one to itself,
and one to each of the two following states. After some experiments performed
on training images, the total number of states per character was fixed to 12, each
one with a mixture of 128 Gaussian distributions. The models were trained on
manually segmented images with the Hidden Markov Models Toolkit (HTK) [6].

Language Model. A standard practice in speech recognition [3] is to restrict
the possible sequences by means of a language model. This is responsible for
assigning an a priori probability to the different sequences. In our case, the valid
Spanish license plates were encoded in a regular grammar. This is straightforward
as there are currently two models of plate codes: (1) one or two letters that
identify a province, four digits and one or two letters; (2) four digits and three
consonants. In this first approach, all productions with the same left side were
assigned the same probability.

4 Experiments

We have carried out some experiments with a corpus consisting of 468 images
taken with a conventional digital camera (ftp://acrata.act.uji.es/pub
/MATRICS). The images were resized to a standard width of 800 pixels. In
the images, the width of the plate, after rescaling, lies between 25% and 75% of
the width of the image (in pixels, between 200 and 600).

The images were divided in a group of 418 images for training and 50 images
for test. The training images correspond to 341 vehicles (for some vehicles both
the frontal and rear plates were taken) and the test images correspond to 43
vehicles. Care was taken to avoid the overlapping between the vehicles in the
training and the test sets.

To ease the training procedures, the plates were transcribed and the bounding
boxes of each character and plate were manually obtained.

4.1 Extraction Experiments

To evaluate the performance of the ROIs detection method, we have measured
the number of times that the highest scored ROI matches the plate region on
the test data. This happened in 45 of the 50 test plates. If the best three ROIS
are considered, 49 plate regions are correctly identified. In all cases, the best
ROI contained a significant part of the plate region. The result of the bilinear
transforms of the best ROIs is presented in Figure 5.
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Fig. 5. Highest scored ROIs in test pictures after the mapping to rectangles.

4.2 Recognition Experiments

HMMs parameters were estimated using a manual segmentation of the training
images. In order to assess the HMMs, a first experiment was conducted on the
manually segmented images of the test data. 94% of the plates were correctly
recognized. A character accuracy rate of 98.1% was obtained. The errors were
due to problems on overexposed and blurry images.

4.3 Global System Experiments

The ROIs obtained in the plates extraction stage were fed into the HMMs based
recognizer. The average log-probability per column was used to rescore the ROIs
and their associate license plate transcriptions. In this case, 88% of the plates
were correctly recognized. In a additional 4% of the plates, a correct transcrip-
tion was found for one ROI, but the combined score chose a wrong ROI, i.e.
a better rescoring would have increased the recognition rate up to 92%. The
ROI and HMMs scoring did not help to select the correct transcriptions in two
misclassified plates, but the HMM recognizer correctly produced a transcription
for their corresponding ROIs. The character accuracy rate was 95.7%.

5 Conclusions and Future Work

We have presented some preliminary results with a license plate extraction and
recognition system based on connected components analysis and HMMs decod-
ing. The results show the feasibility of this approach.
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From the experimental results we can conclude that, although the ROI detec-
tor performance is very high, an improvement of the rescoring of ROIs is needed:
the decrease in plate recognition from 94% (manual segmentation) to 88% is at-
tributable to the fact that only in 90% of the cases the plate region corresponds
to the first ROI. When all regions are taken into account, the recognition rate
goes up to 92%, which corresponds to the 98% of times that plate region was
one of the three best ROIs.

The HMMs produce near to 100% of correct characters on well parameterized
regions of interest: the few decoding errors are due to extremely low quality
images (severe overexposure) and inaccuracies in ROIs detection.

In the future we plan to improve the extraction by means of texture analy-
sis such as the one proposed in [5]. Preliminary experiments with textures have
shown that its results are not as good as the analysis of connected components,
but it could be used to guide that analysis. We also plan to estimate the width of
the strokes in the digits in order to improve the analysis of the connected compo-
nents. This could be also employed to estimate the size of structural elements for
applying morphological operators [1]. Another line of work is the recognition of
plates in sequences of images from video streams, where movement information
can be helpful to detect regions of interest.
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Abstract. Computer Vision can provide a great deal of assistance to Intelligent 
Vehicles. In this paper an Advanced Driver Assistance Systems for Vehicle De-
tection is presented. A geometric model of the vehicle is defined where its en-
ergy function includes information of the shape and symmetry of the vehicle 
and the shadow it produces. A genetic algorithm finds the optimum parameter 
values. As the algorithm receives information from a road detection module 
some geometric restrictions can be applied. A multi-resolution approach is used 
to speed up the algorithm and work in realtime. Examples of real images are 
shown to validate the algorithm. 

1   Advanced Driver Assistance Systems 

1.1   Motivation 

Several Advanced Driver Assistance Systems (ADAS), that nowadays are being re-
searched for Intelligent Vehicles, are based on Computer Vision [1]. One of them has 
the goal of detecting and tracking other vehicles. Present day, commercial equipments 
are based on distance sensors like radar or laser. These sensors have the advantage of 
giving a direct distance measurement and, above all, they are able to work under bad 
weather conditions. Their main inconvenience is the field of view, which is very nar-
row, so they can only detect the vehicle in front of the sensor. If the vehicle is over-
taken, there is a step input to the system and the response can be unstable. One alter-
native or complementary sensor is vision. Although it is not able to work under bad 
weather conditions and its information is much difficult to process, it gives a richer 
description of the environment that surrounds the vehicle. Besides, many of the cur-
rent traffic accidents happen under good weather and are due to human errors.  

1.2   Previous Work 

The research on vehicle detection based on an onboard computer vision system can be 
classified in three groups: 

• Bottom-up. There are some features that define a vehicle (symmetry, edges, 
shadow), and they are looked for sequentially in the image. Their main inconven-
iences are: the vehicle is lost if one feature is not present enough in the image and 
false tracks can deceive the algorithm. 
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• Top-down. There are one or several models of vehicles and the best model is 
found in the image through a likelihood function. They are more robust than the 
previous algorithms, but slower. The algorithm presented in this article follows 
this approach. 

• Learning based. Mainly, they are based on neural networks. Many images are 
needed to train the network. They are usually used in conjunction with a bottom-
up algorithm to check if a vehicle has been actually detected. Otherwise, they 
have to scan the whole image and they are very slow 

The shadow under the vehicles is looked for in [2]. To do so, a sample of the road just 
in front of the vehicle is taken and darker zones are searched. For these regions, sym-
metry and vertical edges confirm if there is a vehicle. A similar approach is found in 
[3]. In [4] a formula for symmetry is proposed. An elastic net is placed at the maxi-
mum and it is deformed until the vehicle is found. Interesting zones in the image are 
localized in [5] using Local Orientation Coding. A Back-propagation neural network 
confirms or rejects the presence of a vehicle. [6] follows the previous work but adding 
texture and shadows. The tracking is done using the Hausdorff distance to a model. 
Another example of fusing shadow, entropy and symmetry is found in [7]. In [8], 
shadows and symmetry are proposed to localize interesting zones; a neural network 
confirms the hypothesis. Symmetry is used in [9] to determine the column of the im-
age where the vehicle is. After that, they look for an U-form pattern to find the vehi-
cle. The tracking is performed with SSD correlation. They use a multi-resolution 
approach. Edges and symmetry are also used in [10]. In [11] overtaking vehicles are 
detected through motion (image difference) and the other vehicles through correla-
tion. The dimension of the correlation window is calculated through edge detection. 
Several 3D models of vehicles are used in [12]. The road limits are calculated and the 
geometrical relationship between the camera and the road is known. Preceding vehi-
cles are detected in [13]. They calculate a Multiclustered Modified Quadratic Dis-
criminant Function through examples, and look for vehicles in regions of 16x16 pix-
els in the image. 

2   Geometrical Models 

As stated in [14], a global shaped model based image segmentation scheme consists 
of the following blocks: 
• The initial model, M. 
• The deformable model M(Z). This model is obtained from the previous one 

through the deformation parameters, Z. 
• The likelihood probability density function, P(I|Z), which means the probability 

of the deformation set Z occurs, in the image I. 
• A search algorithm to find the maximum of the posterior probability P(Z|I). 
• The likelihood function P(I|Z) has to be designed to reach its maximum value 

when the deformed model matches image I. 

2.1   Geometrical Model of a Vehicle 

Due to shadows, occlusions, weather conditions, etc, the model has to incorporate as 
much information as possible. In this paper, a vehicle is defined by seven parameters 
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(Fig. 1-a): Position (x,y), width and height of the vehicle, windshield position, bumper 
position and roof angle. In a previous research, [15], the seven parameters had a range 
but, while the range of the X and Y position, and the width and height of the vehicle 
were in pixels, the range of the windshield and bumper position and the roof angle 
were a percentage of the height or width. 

A previous detection of the road limits is done in [2] [10]. This can help the vehicle 
detection step because the searched area is smaller. In the present case, both borders 
of the road are found and modelled by equations: 

)()( yfxyfx rl ==  (1) 

that are the slope of the straight lines in this case, but the algorithm would be the same 
if they were parabolas or clotoids. For a specific yv value (Fig. 1-b), the width of the 

road is found: 

lrrvrrvll xxwyfxyfx −=⇒== )()(  (2) 

The xv value of the vehicle and its width are two percentages of the width of the road: 

rwvrxv wKwwKx ==  (3) 

The height of the vehicle is proportional to the width: 

vhv wKh =  (4) 

And finally, the windshield and bumper position and the roof angle are a percentage 
of the height or width. 

vvbbvwiwi wKhKhhKh αα ===  (5) 

Then, the deformation parameter vector is: 

{ }αKKKKKKyZ bwihwxv ,,,,,,=  (6) 

  
(a)     (b) 

Fig. 1. Geometrical model of a vehicle. (a) A vehicle is defined by seven parameters: Position
(x,y), width and height of the vehicle, windshield position, bumper position and roof angle (b)
The values of this parameters are constrained by the detection of the road. 
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2.2   Energy Function 

The energy function considers the following three factors: Symmetry, shape and the 
vehicle shadow (Fig. 2). 

Symmetry 
The symmetry of the vertical and horizontal edges is considered. For this reason, the 
vertical and horizontal gradient components of the image are found (Fig. 2-b, Fig. 2-
c). Only the pixels with a high response in one of the components and low in the other 
are taken into account. Then, the pairs of pixels in the same line vote for the central 
pixel as their symmetry axe. The formulae can be found in [15]. 

Shape 
Shape is defined by two energy terms: one based on the gradient (Fig. 2-b) and the 
other one based on the distance to the edges, found before for the symmetry energy 
(Fig. 2-d). The formulae can be found in [15]. Here, only the distance formula is ex-
plained, because it has changed from the previous research. A distance image is ob-
tained where each pixel shows the distance to the nearest edge. In order to empha-
sized the pixels that are near to the edges, the following look up table is applied 

⎩
⎨
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=
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From that image, a distance to vertical edge energy, DGV, and horizontal edge en-
ergy, DGH, are calculated, where DG is the global distance energy. 
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      (a)                                                        (b) 

 
(c)     (d) 

Fig. 2. Image processing (a) Image (b) Vertical and horizontal gradients (c) Vertical and horizon-
tal edges (d) vertical and horizontal distances 
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Shadow 
The shadow energy, ESOM, of a vehicle with height h, width w, position (x,y), and 
bumper position m, is defined by the average level of grey in the lower part of the 
model. Again, the formulae can be found in [15]. 

Global Energy 
The final energy, E, is: 

))()()()(()( ZEkZEkZEkZEkZE SomDDCGBSimA +++−=  (11) 

where kA, kB, kC and kD allow a weighted sum of the energy terms. 

2.3   Likelihood Probability Density Function 

The estimate of a given deformation Z for the image I, P(I|Z), follows a Gibbs distri-
bution [14]: 

)(exp
1

)|( ZE
K

ZIP −=  (12) 

where K is the normalizing constant. 
The detection problem is the search of the Maximum A Posteriori (MAP) estima-

tion of Z. 
)(minarg)|(maxarg ZEZIPZ

ZZ
MAP ∈∈  (13) 

The energy function is minimal when the deformed model exactly matches with 
the one presented in the image. 

2.4   Search Algorithm 

Search algorithms have to find a balance between two opposite tasks: exploration of 
the complete search space and the exploitation of certain zones. With exploration, the 
search space is covered looking for promising areas in which a more detailed search 
has to be done; that is the exploitation task, where the best solution is looked for in a 
zone known as suitable. The risk is being trapped in a local maximum or minimum. 
Hashing methods are the extreme case of exploration, where gradient-based methods 
(hillclimbing) are the extreme for exploitation. 

Genetic algorithms (GAs) [16] do a parallel search in several directions following 
an optimisation process, which imitates natural selection and evolution. To accom-
plish this task, there is a set of possible solutions (the individuals) that exchange in-
formation depending on the fitness of the result in the search for the global maximum. 
GAs robustness relies in their ability to reach a global maximum surrounded by local 
ones. 
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(a)   (b)   (c) 

Fig. 3. Multi-resolution detection at (a) 160x120 (b) 320x240 (c) 640x480 pixels 

  
(a)     (b) 

  
(c)     (d) 

Fig. 4. Advantages of a multi-resolution approach. (a) small errors in the vehicle detection (b) 
multi-resolution detection (c) wrong detection (d) multi-resolution detection 

3   Results 

The detection of the vehicle is done for multiple resolutions. A Gaussian pyramid is 
built, with dimensions: 160x120, 320x240, and 640x480 pixels. The information of 
the detection of lower levels is passed to greater levels (Fig.3). Working with a multi-
resolution approach has the main advantage of working with the best resolution for 
every circumstance. Take for example Fig. 4-a. The vehicle has been detected but, as 
there are many edges inside the car, there are some small errors in the detection. 
Those edges inside the car have less importance at a lower resolution and the detec-
tion is better (Fig. 4-b). But, not only it is useful to improve the results but also to 
detect successfully a vehicle. As the vehicle is in a cluttered environment, some edges 
in the environment can deceive the algorithm if an image with great detail is used 
(Fig. 4-c). Again, working first with a smaller image improves the results (Fig. 4-d). 
Another advantage is the saving in computational time. In [15] 550 individuals were 
needed to detect the vehicles in front of the camera. With the present approach, only 
32 individuals are needed. That means the algorithm spends now an average time for 
a genetic generation of 0.16 ms instead of the 24ms of [15] (in a Pentium 4 Mobile at 
1.7 GHz). The other parameters of the GA algorithm are: 
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• Crossover probability: 70% 
• Mutation probability: 3% 
• Elitism 

More results are shown, from Fig. 5-a to Fig. 5-e. Some errors are also shown. In  Fig. 
5-f-g, the vehicle detected is taller than the real one. This is because some rectangular 
objects in the environment, like buildings or informative signs are taking as part of the 
vehicle. Also, when the vehicle is very close to the camera, a smaller vehicle is de-
tected (Fig. 5-h). 

4   Conclusions 

A system based on computer vision for the detection of other vehicles has been pre-
sented in this paper. It is based on a geometric model and its energy function includes 
information of the shape and symmetry of the vehicle and the shadow it produces. A 
genetic algorithm has been used to find the optimum parameter values. The algorithm 
is able to detect vehicles in front of the camera, and it can also detect lateral vehicles 
and trucks.  
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Abstract. Background subtraction is a typical approach to foreground segmen-
tation by comparing each new frame with a learned model of the scene back-
ground in image sequences taken from a static camera. In this paper, we pro-
pose a flexible method to estimate the background model with the finite Gaus-
sian mixture model. A stochastic approximation procedure is used to recur-
sively estimate the parameters of the Gaussian mixture model, and to simulta-
neously obtain the asymptotically optimal number of the mixture components. 
The experimental results show our method is efficient and effective.  

1   Introduction 

Background subtraction is a typical approach to segment moving object by comparing 
each new frame with a learned model of the scene background in image sequences 
taken from a static camera. Many researchers have made previous attempts to seg-
ment moving object by background subtraction [1,2,3,4]. An effective and adaptive 
approach to background subtract is to construct a statistical model which represents 
the probabilistic distribution of the pixel’s intensity or color. Wren et al. adopt a sin-
gle Gaussian to represent the background model [1]. However, this system is sensitive 
to the initialization, and is improper to process multi-modal and clutter scenes. An-
other statistical model for background subtraction is the finite Gaussian mixture 
model (GMM) [2,3,4]. Friedman and Russell [2] use a mixture of three Gaussian 
distributions to model the pixel value for traffic surveillance applications. Stauffer et 
al. [3,4] propose a similar algorithm, which uses a mixture of Gaussian distribution to 
model a multi-modal background. However, these methods all have a drawback that 
the number of the mixture components is a pre-set and fixed value. Because the num-
ber of the mixture components mostly determines the number of the need-estimating 
parameters, this drawback may make foreground segmentation time-consuming. 

Obviously, the Gaussian mixture model is an effective approach to background 
subtraction for the multi-modal and clutter scene. However, learning the GMM pa-
rameters is computationally expensive, and an efficient learning algorithm is the key 
to GMM for background subtraction. The previous researchers mostly adopt the Ex-
pectation Maximization (EM) algorithm [5] to learn the GMM parameters. However, 
A serious drawback of the EM algorithm is that it can converge to a poor local maxi-
mum if not properly initialized [6,7,8]. Moreover, there are two important problems 
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when GMM is used to model multivariate data: the selection of the number of com-
ponents and the initialization. Figueiredo and Jain propose an unsupervised algorithm 
for learning a finite mixture model from multivariate data [7]. Their algorithm has two 
properties: 1) automatically selects the number of components, 2) is less sensitive to 
initialize. Recently, Zivkovic and Heijden [8] develop Figueiredo and Jain’s research, 
and propose an online algorithm that estimates the parameters of the mixture model 
and simultaneously selects the number of components. In this paper, we propose a 
flexible method for background subtraction. We still use the finite Gaussian mixture 
model to model the scene background, but a stochastic approximation procedure is 
used to recursively estimate the parameters of the Gaussian mixture model, and to 
simultaneously obtain the asymptotically optimal number of the mixture components 
like [8]. Therefore, our method is highly memory and time efficient. Moreover, our 
method can effectively deal with the outdoor scene and the clutter scene. 

2   Flexible Gaussian Mixture Models for Background Subtraction 

In general, the pixel intensity is modeled by a mixture of K Gaussian distributions to 
model significant variations in the background. K is the component number of the 
mixture corresponding to K modes of the background, and is a fixed number from 3 to 
7 in the most existing papers. However, the mode of most pixels in the scene back-
ground is different, for example, in the same outdoor scene the mode number of the 
pixels that contain tree branches and bushes movement by wind is larger than one of 
the pixels that don’t contain. Clearly, it is unreasonable to specify a fixed number 
mixture model to represent the scene background. Fortunately, the component number 
of the mixture model can be on-line learned as [8]. In our method, we still adopt the 
Gaussian mixture model to model the scene background. However, for each pixel in 
the background, the component number of the Gaussian mixture model is not fixed, 
obtained by on-line estimation as the parameters of the Gaussian mixture model. 

2.1   Flexible GMM for Background Estimation 

Assume that { }1, , tX x x= � �
� is a pixel value process, which can be modeled by a 

mixture of K Gaussian densities with [ ]1 1 1, ; , , ; , ,K K Kw wθ μ μ= Σ Σ� �
� � � . The 
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 is the color or intensity value of the pixel, kw  is the weight of the kth 

Gaussian in the mixture, kμ�  is the mean value of the kth Gaussian in the mixture, kΣ  

is the covariance of the kth Gaussian in the mixture. For simplification, we assume 



A Novel Adaptive Gaussian Mixture Model for Background Subtraction      589 

that the red, green, and blue color channels are independent and have a same variance, 
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As in [7] and [8], we define ( )( )ˆp Kθ
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 as the Dirichlet prior 
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where α  equals to / 2N , and N is the number of parameters per component. 

2.2   Online Parameters Estimation 

For the MAP estimation, let ( ) ( )( )ˆ ˆlog log 0
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are constrained to sum up to 1. By introducing the Lagrange factor λ , we can get�
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After getting rid of λ , for t data samples, we will get 
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where ( ) ( ) ( ) ( )( ) ( )( )ˆ ˆˆ /t t t t
k k k ko x w p x p xθ θ=

� �� � �
 is the ‘ownership’ function that has a 

value from 0 to 1, indicating which class the sample belongs to, 

( ) ( )( )
1 1

K t
t i

k
k i

C o x t Kα α
= =

⎛ ⎞= − = −⎜ ⎟⎝ ⎠
∑ ∑ �

 since ( ) ( )( )
1

1
t

t i
k

i

o x
=

=∑ �
. Then, (6) can be 

rewrite 

( ) ˆ /
ˆ

1 /
t k

k

t
w

K t

ψ α
α

−=
−

, (7) 

where ( ) ( )( )
1

1
ˆ

t
t i

k k
i

o x
t

ψ
=

= ∑ �
 and the bias from the prior is introduced by / tα . The 

bias decreases for large data sets. If a small bias is acceptable, we can keep is constant 

by fixing / tα  to /T Tα α=  with some large T. Then, as [8] we can get the recur-

sive update equation 

( ) ( ) ( )
( ) ( )( ) ( ) ( )

1

1 11ˆ ˆ ˆ1 1
1 1

t t
kt t t T

k k k
T T

o x
w w t w t

K K

α
α α

+
− −+

⎛ ⎞
⎜ ⎟= + + − − +
⎜ ⎟− −
⎝ ⎠

�

, (8) 

where T should be sufficiently large to make sure that 1TKα < . We start with initial 

( )0ˆ 1/kw K=  and discard the kth component when ( )1ˆ 0n
kw + < . While the recursive 

equations of its mean kμ�  and covariance matrix kΣ  is 

( ) ( ) ( )
( ) ( )( )

( )
( ) ( )( )

1

11 1ˆ ˆ ˆ1
ˆ

t t
kt t t t

k k kt
k

o x
t x

w
μ μ μ
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�
� � � �

 (9) 
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t x x

w
μ μ

+

+
− + +

Σ = Σ +

+ − − − Σ
�

� � � � . (10) 

2.3   Background Subtraction 

The Gaussian mixture model with K components as (1) models both the foreground 
object and the scene background without distinction, that is, some of the mixture 
components model the foreground objects, others model the scene background. If one 

mixture component occurs frequently (with high kw ), and does not vary much (with 

low kσ ), it could be deemed to be background. Therefore, the K mixture components 

are ordered based on /k kw σ , moreover, the first B components are chosen as a 

model of the scene background where B is estimated as 
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T is the threshold, the fraction of the total weight given to the background model. 
Background subtraction is performed, by marking any pixel of the input frame that is 
more than 2.0 standard deviations away from any of the B components as a fore-
ground. 

2.4   A Practical Algorithm 

In general, a practical algorithm for foreground segmentation with the Gaussian mix-
ture model comprises four steps: Initialization, Background learning, Background 
subtraction, and Background update.  

1) Algorithm Initialization: In order to make the algorithm time and memory effi-
cient, we start with a proper number of components K. In our experiments, the initial 
component value is 1K = . Then, the first frame can be immediately used to initialize 

the mean ( )0ˆ
kμ� . The initial covariance is a relatively high value, such as ( )0ˆ 0.2kσ = . 

Finally, the initial mixing weights are set as ( )0ˆ 1/kw K= . 

2) Background model learning: For simplification, it is reasonable to fix the influ-

ence of the new samples by replacing the term ( ) 1
1 t

−+  from the recursive equations 

(8), (9), and (10) by 1/Tβ = . A fixed β  can help in forgetting the out-of-date sta-

tistics more rapidly. In addition, it is reasonable to let , since K is a 

small value in our experiments. Then, the equation (8) will be rewritten 

( ) ( ) ( ) ( )( ) ( )( )1 1ˆ ˆ ˆt t t t t
k k k k Tw w o x wβ βα+ += + − −�

. (12) 

Besides, in order to adaptively estimate the number of the mixture components, we 
define two rules, which are the generation rule and the extinction rule. 

• Generation rule: if not ‘match’ any mixture components, generate a new compo-

nent, with 1K K= + , and the initial parameters are ( )1
1

t
Kw λ+

+ =  

( ) ( )1 1
1

t t
K xμ + +

+ = � ( )1
1 0.2t

Kσ +
+ =  , where λ  is a very small fraction. 

• Extinction rule: if ( )1ˆ 0t
kw + < , discard this component k, with 1K K= − . 

3) Background subtraction: As what section 2.3 discussed, we can extract the fore-
ground object by background subtraction. 

4) Background model update: Background model update is same as background 
model learning. Resorting to the online background model update, background model 
can adapt the scene background. 
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3   Experimental Results 

Two experiments are exhibited here, which demonstrate the algorithm performance 
on the outdoor scene and the clutter scene. The image size of all test sequences is 
160 120×  pixels. These experiments are implemented on the MATLAB 6.5 platform 
with the Pentium4 2.4GHz and 512MB memory, and the processing-ratio of two ex-
periments is approximate to 4 fps (frames per second). The experimental results show 
that our method is efficient and effective. 

The first experiment is the outdoor scene. Many outdoor scenes contain not only 
the moving foreground objects, but also the moving background, such as tree 
branches and bushes swaying by wind. In order to model the moving background, our 
method uses the mixture of multiple Gaussian components, while the number of the 
mixture component is online estimate, and is asymptotically optimal. In the test se-
quence, a person walks in front a swaying tree. Fig. 1 shows the foreground segmen-
tation result. In second experiment, the sequence is captured in a cafeteria with many 
people. Moreover, every frame contains moving people. For example, the 420th frame 
contains 3 moving people, and the 450th frame contains 8 moving people. Similarly, 
in order to model the clutter scene, our method uses the asymptotically optimal mix-
ture of multiple Gaussian components. Fig. 2 shows the foreground segmentation 
results. 

The two experimental results show our proposed method is effective for the out-
door scene and the clutter scene. Moreover, our method is also efficient. In our ex-
periments, we find that the mixture component number, which is used to model the 
different pixels in the scene background, may be different. One part of background 
pixels, which are relatively changeless and static, can be represented only by a single 
Gaussian component, while the other part of background pixels, which are changeful 
and non-static, must be modeled by the mixture of multiple Gaussian components. 

 

                                
(a) (b) 

Fig. 1. Foreground segmentation in the outdoor scene with tree branches and bushes swaying, 
(a) is the original image of the 251st frame, (b) is the segmentation result. 

       
(a)                          (b)                            (c)                            (d) 

Fig. 2. Foreground segmentation in the clutter scene, (a) and (c) are the original images of the 
420th and 450th frame, (b) and (d) are the segmentation result. 
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4   Conclusions 

A flexible Gaussian mixture model for background subtraction is proposed. The 
model can handle the outdoor scene where the background is not completely static but 
contains tree branches and bushes motion, and the clutter scene with multiple fore-
ground objects. Moreover, the number of the mixture component is not a pre-set and 
fixed value, but it is online estimated, and is asymptotically optimal. Therefore, our 
method is more time and memory efficient than the Gaussian mixture model with the 
fixed component number. 
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Abstract. In this paper, an intelligent target recognition system is presented for 
target recognition from target echo signal of High Resolution Range (HRR) ra-
dars. This paper especially deals with combination of the feature extraction and 
classification from measured real target echo signal waveforms using X –band 
pulse radar. Because of this, a wavelet   adaptive network based fuzzy inference 
system model developed by us is used. The model consists of two layers: wave-
let and adaptive network based fuzzy inference system. The wavelet layer is 
used for adaptive feature extraction in the time-frequency domain and is com-
posed of wavelet decomposition and wavelet entropy. The used for classifica-
tion is an adaptive network based fuzzy inference system. The performance of 
the developed system has been evaluated in noisy radar target echo signals. The 
test results showed that this system was effective in detecting real radar target 
echo signals. The correct classification rate was about 93% for used target sub-
jects. 

Keywords: Pattern recognition, Radar Target Echo Signal, Feature extraction, 
Wavelet decomposition, Entropy, Wavelet adaptive network based fuzzy infer-
ence system, Intelligent system. 

1   Introduction 

This study will introduce the technique that will aid automatic target recognition, 
enable further research of target recognition, and provide a novel intelligent system 
for target recognition [1-3]. This study uses a combination of wavelet signal process-
ing and adaptive network based fuzzy inference system to efficiently extract the features 
from pre-processed real target echo signals for the purpose of automatic target recog-
nition among variety targets. An algorithm called the intelligent system is developed 
which is advanced pattern recognition approximation.  

In radar automatic target recognition and multiple-target tracking areas, the novel-
ties presented of this paper can be summarized as follow: 

1. The presented first novelty in this study is using an effectively adaptive feature 
extraction method that increases percent of the target recognition.  

2. The presented second novelty in this study is using of the wavelet adaptive net-
work based fuzzy inference system as a new and efficiently method in radar auto-
matic target recognition area.  



Intelligent Target Recognition      595 

In this study, an experiment set is used for obtaining the real target echo signal data 
sets. The Radar experiment set is educational purpose and multi function 9620/21 
Model Lab-Volt radar experiment set. Pulse target echo signals are received to com-
puter media by using an audio card has 44 KHz sample frequencies.  

2   Preliminaries 

2.1   Target Echo Signals 

The echo signal comes back from target to Radar. At the same time, the echo signal 
can be called target range profile. In literature, there are many studies, in which echo 
signal were used for automatic target recognition [1-5]. 

In this study, pulsed radar target echo signals were used as real input space. An ef-
ficiency feature extraction method was developed for eight target objects (small metal 
plaque, large metal plaque, large plexiglas plaque, corner reflector, sphere, the side 
part of cylinder, the lower part of cylinder, and the crosswise part of cylinder) to sepa-
rate one from the others. Experimental application was realized on having educational 
purpose and multi function 9620/21 Model Lab-Volt radar experiment set. Pulse echo 
signals were received to computer media by using audio card has 44 KHz sample 
frequencies.  

2.2   Wavelet Decomposition 

Wavelet transforms are rapidly surfacing in fields as diverse as telecommunications 
and radar target recognition. Because of their suitability for analyzing non-stationary 
signals, they have become a powerful alternative to Fourier methods in many target 
recognition applications, where such signals abound [6]. 

The main advantages of wavelets is that they have a varying window size, being 
wide for slow frequencies and narrow for the fast ones, thus leading to an optimal 
time-frequency resolution in all frequency ranges. Furthermore, owing to the fact that 
windows are adapted to the transients of each scale, wavelets lack of the requirement 
of stationary [7].  

The wavelet decomposition functions at level m and time location tm can be ex-
pressed as Equation 1: 

)
2

tt
()t(x)t(d

m
m

mmm
−

ψ=            (1) 

where mψ  is the decomposition filter at frequency level m. The effect of the decom-

position filter is scaled by the factor 2m at stage m, but otherwise the shape is the 
same at all stages [8].  

2.3   Wavelet Adaptive Network Based Fuzzy Inference System 

Both artificial neural network and fuzzy logic are used in ANFIS’s architecture. 
ANFIS is consisted of if-then rules and couples of input-output, for ANFIS training is 
used learning algorithms of neural network [10].  
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Adaptive network based fuzzy inference systems are good at tasks such as pattern 
matching and classification, function approximation, optimization and data clustering, 
while traditional computers, because of their architecture, are inefficient at these 
tasks, especially pattern-matching tasks [11,12]. As for wavelet adaptive network 
based fuzzy inference system try to combine aspects of the wavelet transformation for 
purpose of feature extraction and selection with the characteristic decision capabilities 
of adaptive network based fuzzy inference system approaches [13]. The wavelet adap-
tive network based fuzzy inference system (WANFIS) is constructed based on the 
wavelet transform theory [14,15] and is an alternative to adaptive network based 
fuzzy inference systems [16]. Wavelet decomposition [9] is a powerful tool for non-
stationary signal analysis. Let x(t) be a piecewise continuous function. Wavelet de-

composition allows one to decompose x(t) using a wavelet function RR: n →ψ . 

Based on the wavelet decomposition, wavelet adaptive network based fuzzy inference 
system structure is defined by  

∑
∑ −ψ

=

i
i

i
iiii

w

))]tx(D[(fw

)x(y     (2) 

where wi are weights of the WANFIS inputs, Di are dilation vectors specifying the 
diagonal dilation matrices Di, ti are translation vectors, and fi are Sugeno output func-
tions of the ANFIS . An algorithm of the hybrid type has been derived for adjusting 
the parameters of the WANFIS [10-12]. Applications of wavelet adaptive network 
based fuzzy inference system in the medical field include for detection of electrocar-
diography changes in patients with partial epilepsy using feature extraction [16], bear-
ing fault diagnosis based on wavelet transform and fuzzy inference  [17], for satellite 
image fusion [18]; however, to date wavelet adaptive network based fuzzy inference 
system analysis of radar target echo signal is a relatively new approach. 

3   Methodology 

Fig. 1 shows the intelligent system we developed. It consists of two parts: (a) data 
acquisition and pre-processing and (b) feature extraction and classification using a 
wavelet adaptive network based fuzzy inference system. 

3.1   Data Acquisition and Pre-processing 

All the original Radar Target Echo (RTE) signals were acquired from the having 
educational purpose and multi function 9620/21 Model Lab-Volt radar experimental 
set. The pulsed radar system parameters were adjusted as below: 

- Pulse width: 2 ns 
- RF oscillator: 9.4 GHz 
- Pulse Repeat Frequency (PRF): 144 Hz 
- Radar receiver antenna – targets table between distances: 115 cm.  
Echo signals of the pulse radar targets which are small metal plaque, large metal 

plaque, large plexiglas plaque, corner reflector, sphere, cylinder were received to 
computer media by using audio card has 44 KHz sample frequencies.  



Intelligent Target Recognition      597 

�����������	
	�	��
����������� ���	����	��

����	��������	
	��

��
�������
������	����


��� !��  �" ��� ���
�������������������� �������������������������������������#��������$�	#�����%��&�'�
��
���������(�������� ��� ����������������������������))*���+��������*
��,
�����

-.��,����,�����$�����
/.�(�����,�����$�����

0.�(�����$��1	���
�$�����
2.����������+������

3.��$����
4.� ���
	���$�����+��*�	����
5.� �����%���$�����+��*�	����

6.� ������

%	
��$�����+��*�	����

���	
	����$���

��������� �
�	����

 

Fig. 1. The algorithm of the intelligent system. 

Pre-processing to obtain the feature vector was performed on the digitized, which 
were received to computer media by using audio card, in the following order: 

(i) Filtering: The stored RTE signals were high-pass filtered to remove unwanted 
low-frequency components, because the RTE signals is generally in the range of 0.5-2 
kHz. The filter is a digital FIR, which is a 50th-order filter with a cut-off frequency 
equal to 500 Hz and window type is the 51-point symmetric Hamming window. 

(ii) White de-noising: White noise is a random signal that contains equal amounts 
of every possible frequency, i.e., its FFT has a flat spectrum [17]. The RTE signals 
were filtered from removing the white noise by using wavelet. The white de-noising 
procedure contains three steps [17]: 

1.Decomposition: Computing the wavelet decomposition of the RTE signal at level 
5 and using the Daubechies wavelet of order 4. 

2.Detail coefficient thresholding: For each level from 1 to 5, soft thresholding is 
applied to the detail coefficients. 

3.Reconstruction: Computing wavelet reconstruction based on the original ap-
proximation coefficients of level 5 and the modified detail coefficients of levels from 
1 to 5. 

3.2   Feature Extraction and Classification 

Fig. 2 shows the WANFIS structure for classification of RTE signal waveform pat-
terns from Radar experimental set. WANFIS embeds experiments about radar target 
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classification topics of the expert human in intelligence system by using ANFIS struc-
ture. Feature extraction is the key for pattern recognition so that it is arguably the 
most important component of designing the intelligent system based on pattern recog-
nition since the best classifier will perform poorly if the features are not chosen well. 
A feature extractor should reduce the pattern vector (i.e., the original waveform) to a 
lower dimension, which contains most of the useful information from the original 
vector. 

The RTE waveform patterns from radar experimental set are rich in detail and 
highly non-stationary. After the data pre-processing has been realized, two steps are 
used to define the kind of these waveforms using MATLAB with the wavelet toolbox 
and the fuzzy toolbox: 

1. Wavelet Layer: This layer is responsible for feature extraction from RTE wave-
form patterns from radar experimental set. The feature extraction process has two 
stages: 

Stage 1 (Wavelet decomposition): For wavelet decomposition of the RTE wave-
forms, the tree structure was used m=5 as level. In this study, eight targets that are 
small metal plaque, large metal plaque, large plexiglas plaque, corner reflector, 
sphere, the side part of cylinder, the lower part of cylinder, and the crosswise part of 
cylinder are used to obtaining the RTE signals. For each of these targets, three RTE 
signals that have different distances with radar transmitter antenna are used. There-
fore, total numbers of the RTE signals, which are obtained from the radar experimen-
tal set, are 24. For wavelet decomposition of the RTE waveforms, the decomposition 
structure, reconstruction tree at level 5 as shown in Fig. 3 was used. Wavelet decom-
position was applied to the RTE signal using the Daubechies-4 wavelet decomposi-
tion filters. Thus, obtaining two types of coefficients: one approximation coefficients 
cA and five –detail coefficients cD. A representative example of the wavelet decom-
position of the radar echo signal of small metal plaque target was shown in Fig. 3. 
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Fig. 2. The structure of wavelet adaptive network based fuzzy inference system for pattern
classification. 
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Fig. 3. The terminal node waveforms of wavelet decomposition at 5 levels of the RTE signal. 

Stage 2 (Wavelet entropy): An Entropy-based criterion describes information-
related properties for an accurate representation of a given signal. Entropy is a com-
mon concept in many fields, mainly in signal processing [6]. A method for measuring 
the entropy appears as an ideal tool for quantifying the ordering of non-stationary 
signals. We next calculated the norm entropy as defined in Eq. (3) of the waveforms 
at the terminal node signals obtained from wavelet decomposition 

N

s
)s(E i

p
i∑= ,   (3) 

where, the wavelet entropy E is a real number, s is the terminal node signal and (si) i 
the waveform of terminal node signals. In norm entropy, P is the power and must be 
such that 2P1 <≤ . During the WANFIS learning process, the P parameter is updated 
by using 0.1 increasing steps together with weights to minimize the error. The resul-
tant entropy data were normalized with N=50. Thus, the feature vector was extracted 
by computing the 6-wavelet entropy values per RTE signal. 

2. Adaptive Network Based Fuzzy Inference System (ANFIS) Layer: This layer real-
izes the intelligent classification using features from wavelet layer. The training pa-
rameters and the structure of the ANFIS used in this study are as shown in Table 1. 
These were selected for the best performance, after several different experiments, 
such as the number of input membership functions, the size of the ANFIS layers, 
value of the moment constant and learning rate, and type of the activation functions.  

3.2.1  Structure of Wavelet Adaptive Network Based   
  Fuzzy Inference System Developed in This Study 
Both artificial neural network and fuzzy logic are used in ANFIS’s architecture. 
ANFIS is consisted of if-then rules and couples of input-output, for ANFIS training is 
used learning algorithms of neural network [10-12].  

For simplicity, we assume the fuzzy inference system under consideration has six 
inputs (x1, x2, x3, x4, x5, x6) that are wavelet entropies, which are given Eq. 3, of the 
obtained cA1, cD1, cD2, cD3, cD4, and cD5 wavelet decomposition coefficients one 
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output z. For a first order Sugeno fuzzy model, a typical rule set with base fuzzy if-
then rules can be expressed as  

If x1 A1   x2 B1  x3 C1  x4 D1 x5 E1 x6 F1  then     

                             uppxssxsxqxrxpxf 6543211 ++++++=                           (4) 

Where, p, r, q, s, ss, pp, u are linear output parameters. The ANFIS’s architecture 
which has six inputs and one output. This architecture is formed by using five layer 
and sixty-four if-then rules: 
Layer-1: Every node i in this layer is a square node with a node function.  

O1,i=μAi(x), for i=1,2,  O1,i=μBi-2(y), for i=3,4   

O1,i=μCi-4(t), for i=5,6       O1,i=μDi-6(k), for i=7,8 

O1,i=μEi-8(t), for i=9,10 O1,i=μFi-10(k), for i=11,12                   (5) 

Where x1, x2, x3, x4, x5, x6 are inputs to node i, and Ai, Bi, Ci, Di, Ei, Fi are linguis-
tic label associated with this node function. In order words, O1,i is the membership 

function of Ai, Bi, Ci, Di, Ei, Fi. Usually we choose μAi(x), μBi(y), μCi(t), μDi(k), μEi(t), 

μFi(k)    to be bell-shaped with maximum equal to 1 and minimum equal to 0, such as 

)2))ia/()icix(exp((10Fi,8Ei),t(6Di),t(4Ci),y(2Bi ,)x(Ai −−=−μ−μ−μ−μ−μμ
 
(6) 

Where ai, ci is the parameter set. These parameters in this layer are referred to as 
premise parameters. 
Layer-2: Every note in this layer is a circle node labeled Π  which multiplies the 
incoming signals and sends the product out. For instance,  

O2,i= wi= μAi(x).μBi-2(y).μCi-4(t).μDi-6(k).μEi-8(k).μFi-10(k), i=1, 2, 3,….,64   (7) 

Each node output represents the firing strength of a rule. (In fact, other T-norm op-
erators that performs generalized AND can be used as the node function in this layer). 
Layer-3: Every node in this layer is a circle node labelled N. The ith node calculates 
the ratio of the ith rules firing strength to the sum of all rule’s firing strengths: 

O3,i= iw =wi/(w1+w2+…+w64), i=1,2,3,….,64                    (8) 

Layer-4: Every node i in this layer is a square node with a node function  

O4,i= iw .fi= iw ( i6i5i4i3i2i1i uxppxssxsxqxrxp ++++++ ), i=1,2,3,….,64    (9) 

Table 1. ANFIS architecture and training parameters 

The number of layers 5 

 Input: 6, Rules number: 64, Output: 1 

Type of Input Membership Functions Bell-shaped 

Training parameters 
Learning rule 
 

Hybrid Learning Algorithm (Back-propagation 
for nonlinear parameters (ai, ci) and Least squre 
errors for linear parameters (pi, qi, ri, si, ssi, ppi, 
ui) ) 

Sum-squared error 
Reaching epochs number to sum-
squared error 

0.0000001   

472 
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Where, wi is the output of layer 3, and {pi, qi, ri, si, ssi, ppi, ui} is the parameter set. 
Parameters in this layer will be referred to as consequent parameters. 

Layer-5: The single node in this layer is a circle node labelled ∑ that computes the 

overall output of WANFIS as the summation of all incoming signals: 

O5,i= overall output = ∑ ∑
∑

=
i

i
i

i
ii

ii w

fw

fw                                           (10)  

4   Experimental Results 

We performed experiments using total 96 the RTE signals of small metal plaque, 
large metal plaque, large plexiglas plaque, corner reflector, sphere, the side part of 
cylinder, the lower part of cylinder, and the crosswise part of cylinder targets. For 
each of these targets, six numbers RTE signals were used that three of these signals 
have different distances with radar transmitter antenna and other three signals are 
noisy signals, which have different white-noise amplitudes (Signal / Noise Rate 
(SNR) = -2 dB, -3 dB, and -5 dB). 24 of these 96 signals were used for training and 
another part in testing the WANFIS. In these experiments, 100 % correct classifica-
tion was obtained at the WANFIS training among the eight different target signal 
classes. It clearly indicates the effectiveness and the reliability of the proposed ap-
proach for extracting features from RTE signals. The WANFIS testing results are 
tabulated in Table 2. 

Table 2. Performance of the intelligence system. 
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Total number of 
samples 

9 9 9 9 9 9 9 8 

Correct classifica-
tion # 

9 9 8 7 8 8 7 1 

Incorrect classifi-
cation # 

- - 1 2 1 1 2 - 

The average 
recognition (%) 

100 100 88.8 77.7 88.8 100 77.7 88.8 

5   Discussions and Conclusion 

In this study, we developed an intelligent system for the interpretation of the RTE 
signals using pattern recognition and the target recognition performance of this 
method demonstrated on the small metal plaque, large metal plaque, large plexiglas 
plaque, corner reflector, sphere, the side part of cylinder, the lower part of cylinder, 
and the crosswise part of cylinder targets. The tasks of feature extraction and classifi-
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cation were performed using the WANFIS. The stated results show that the proposed 
method can make an effective interpretation. The performance of the intelligence 
system was given on Table 2.  

The feature choice was motivated by a realization that WANFIS essentially is a rep-
resentation of a signal at a variety of resolutions. In brief, the wavelet decomposition 
has been demonstrated to be an effective tool for extracting information from the RTE 
signals. The proposed feature extraction method is robust against to noise in the Rte 
signals. 

In this paper, the application of the wavelet entropy in the wavelet layer of 
WANFIS to the adaptive feature extraction from RTE signals was shown. Wavelet 
entropy proved to be a very useful features for characterizing the RTE signal, fur-
thermore the information obtained from the wavelet entropy is related to the energy 
and consequently with the amplitude of signal. This means that with this method, new 
information can be accessed with an approach different from the traditional analysis 
of amplitude of RTE signal. 

The most important aspect of the intelligent system is the ability of self-
organization of the WANFIS without requirements of programming and the immedi-
ate response of a trained net during real-time applications. These features make the 
intelligent system suitable for automatic classification in interpretation of the RTE 
signals. These results point out the ability of design of a new intelligence target rec-
ognition assistance system. The recognition performances of this study show the ad-
vantages of this system: it is rapid, easy to operate, and not expensive. This system 
offers advantage in military application. However, the position of the target and radar 
receiving antenna, which are used for data acquisition from the radar experimental set 
must be taken into consideration.  
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Abstract. In this paper, we present a gesture recognition system for an interac-
tion between a human being and a robot. To recognize human gesture, we use a 
hidden Markov model (HMM) which takes a continuous stream as an input and 
can automatically segments and recognizes human gestures. The proposed sys-
tem is composed of three modules: a pose extractor, a gesture recognizer, and a 
robot controller. The pose extractor replaces an input frame by a pose symbol. 
In this system, a pose represents the position of user’s face and hands. Thereaf-
ter the gesture recognizer recognizes a gesture using a HMM, which performs 
both segmentation and recognition of the human gesture simultaneously [6]. Fi-
nally, the robot controller handles the robot as transforming the recognized ges-
ture into robot commands. To assess the validity of the proposed system, we 
used the proposed recognition system as an interface to control robots, RCB-1 
robot. The experimental results verify the feasibility and validity of the pro-
posed system. 

1  Introduction 

Recently, strong efforts have been carried out to develop intelligent and natural inter-
faces between users and computer systems based on human gestures [1-4]. Gestures 
provide an intuitive interface to both human and computer. Thus, such gesture-based 
interfaces can not only substitute the common interface devices, but also can be ex-
ploited to extend their functionality [5].  

In this paper, we developed a gesture recognition system using hidden Markov 
model (HMM) for a robot control. Fig.1 shows the proposed system. The robot is 
always fixed at the desk with camera located in its head, and moves its arms accord-
ing to the recognition results of human gestures. Our system consists of three mod-
ules: pose extractor, gesture recognizer, and robot controller. A pose extractor extracts 
a pose symbol for each frame. The pose is a 6-D vector, which consists of the posi-
tions of face, left and right hands. Thereafter the gesture recognizer receives a con-
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tinuous pose symbol stream and recognizes a gesture. To recognition the gestures, we 
use the HMM developed in [6]. Generally HMMs have been widely used for many 
classification problems, as well as a gesture recognition problem, as HMMs have 
ability to model non-stationary signals or events. In this paper, the proposed HMM 
takes a continuous stream of pose symbols as an input and can automatically seg-
ments and recognizes human gesture. Finally, robot controller controls the robot as 
transforming the recognized gesture into robot commands. 
 

 

Fig. 1. Outline of the proposed system: The robot is always fixed at the desk with camera lo-
cated in its head, and moves its arms according to the gesture recognition results. 

To assess the validity of the proposed system, we applied a real robot, KHR-1 like 
Fig.1. The results show that the proposed system can provide a convenient and intui-
tive interface and it has a potential to apply for the robot control. 

2  Definition of Gesture Commands 

In our system, a robot is controlled by thirteen gestures. The gestures are that: {UP 
BOTH, UP LEFT, UP RIGHT, STRETCH BOTH, STRETCH LFET, STRETCH 
RIGHT, FOLD BOTH, LIFT BOTH, LIFT LEFT, LEFT RIGHT, DOWN BOTH, 
DOWN LEFT, DOWN RIGHT}. These thirteen gestures are related to the motions of 
robot arms. Fig.2 shows human gestures and the corresponding robot movements. 
Fig.2 (a) and (b) are FOLD BOTH command and UP BOTH command respectively. 
As shown in Fig. 2, the human acts on gesture like left side then the robot operates 
according to the gesture commands like right side. 

3  Gesture Recognition Using a HMM 

We use a HMM for gesture recognition. A continuous pose stream is used as an input 
of HMM, then the pose is defined as a vector to indicate the positions of face, left and 
right hands. We explain how a pose is extracted in subsection 3.1 and describe how 
the extracted pose stream would be recognized in subsection 3.2. Finally, we present 
how to control a robot using the recognized commands in subsection 3.3. 
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an intermediate pose, a distinctive pose, and ending pose}. In Fig.4, T1 is a template 
corresponding to a starting pose and ending pose as a ready pose. And the templates 
of from T2 to T14 are distinctive poses, and the others are intermediate poses.  

 

        
T1 T2 T3 T4 T5 T6 T7 T8 

        
T9 T10 T11 T12 T13 T14 T15 T16 

        
T17 T18 T19 T20 T21 T22 T23 T24 

        
T25 T26 T27 T28 T29 T30 T31 T32 

        
T33 T34 T35 T36 T37 T38 T39 T40 

Fig. 4. Pose templates. 

3.2  Gesture Recognizer 

An HMM is used for gesture recognition, yet conventional HMMs usually work on 
isolated or pre-segmented sequences of input symbol sequences, and this type of seg-
mentation is hard to implement. 

Thus, to solve this segmentation problem and enhance the class discrimination a 
HMM architecture is developed that can automatically segment and recognize human 
gestures [6]. Fig.5 shows the proposed architecture which consists of a single HMM 
composed of thirteen gesture-specific HMMs that independently recognize certain 
gestures. In this work, we assumed that all gestures start and end with a same pose 
and that they can be distinguished by their distinctive pose. Therefore, we can com-
bine all gestures in a single model, as each specific HMM shares a single ready state. 
In our model, each gesture state is composed of 4 states like Fig.5 (b). Then, the 
HMM recognizes a gesture from an input symbol stream using a 3rd state of each 
individual HMM as a path for the corresponding gesture. That is called distinctive 
states. And a gesture is detected and recognized, when the HMM passes this distinc-
tive state.  

The used HMM works as follows. First, the HMM starts with initial state prob-
abilities }{ 0

k

0 ss = , and continuously updates its state probabilities with the arrival of 

each input symbol as shown in Eq.1. If a value of any distinctive state in one of each 
gesture has higher state probability than predefined threshold, a gesture includes that 
state is detected and recognized. 
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Fig. 5. An architecture of proposed HMM : (a) a single HMM, (b) a specific HMM. 

In, Eq. 1, S={sk} denotes the state probability vector, where sk is the state probability 

for the kth state, akn is the probability of making a transition from state sk to sn, bnp is 
the probability of emitting pose symbol vn in state sp.  

Although the HMM’s topology is somewhat complex, it is not too complicated to 
design, as we can design a set of small HMMs for each gesture independently, and 
combine those into a single HMM. And for using a single HMM for recognition sys-
tem makes it easier to utilize the relations between gestures, we hope this topology to 
allow us more systematic approach to the co-articulation problem. Also, although the 
state probability is updated for every input symbol, we expect less computing load for 
this updating requires much less computation compared to the traditional pre-
segmented matching process. And the recognition system responds to the input in real 
time, not waiting for all the isolated candidate sequence selection. 

3.3  A Robot Controller 

This module translates the recognized gestures into commands to control a robot. The 
controlled results are appeared as a motion of robot. The used robot, KHR-1 can move 
his arms to various orientations using a servo control board, RCB-1 equipped in a 
robot like Fig. 6(a). The RCB-1 is operated by HeartToHeart1.0 which is shown Fig 
6(b). To operate a robot, we control the HeartToHeart1.0 program. First, we make 
robot motions by motion generator in HeartToHeart1.0. Thereafter, we assign the 
motion number and memorize the assigned motion by motion controller. Given the 
recognized gesture, a robot controller controls robot motions by operating motion 
numbers. 
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from an input symbol stream using the third state of each individual HMM as a path 
for the corresponding gesture. But most errors happen from users who are unskilled 
for gesture commands.  
 

 
(a) 

 
(b) 

Fig. 7. Examples of controlled robot by human gestures : (a) input frames (b) the controlled 
robot.  

Table 2. Recognition results for the proposed HMM. 

  Gestures recognized 

  LL LB LR SR SB SL FB DB DL DR UR UL UB 
No 

gesture 
Gesture 
given 

2700 214 199 213 208 200 198 194 194 194 195 195 195 200 101 

LL 200 198 - - - - - - - - - - - - 2 
LB 200 - 199 - - - - - - - - - - - 1 
LR 200 - - 199 - - - - - - - - - - 1 
SR 200 - - - 197 - - - - - - - - - 3 
SB 200 - - - - 200 - - - - - - - - - 
SL 200 - - - - - 198 - - - - - - - 2 
FB 200 - - - 11 - - 189 - - - - - - - 
DB 200 - - - - - - - 192 - - - - - 8 
DL 200 8 - - - - - - - 191 - - - - 1 
DR 200 - - 7 - - - - - - 192 - - - 1 
UR 200 - - 5 - - - - - - - 195 - - - 
UL 200 5 - - - - - - - - - - 195 - - 
UB 200 - - - - - - - - - - - - 200 - 
No 

gesture 
100 3 - 2 - - - 5 2 3 3 - - - 82 
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5  Conclusions 

In this paper, the gesture-based interface has been successfully implemented on the 
robot, KHR-1. To recognize a human gesture, we use a HMM which can automati-
cally segments and recognizes the human gesture. Experimental result shows that the 
gesture-based interface provides a more convenient and intuitive to control a robot. 
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Abstract. Principal Component Analysis has been recently proposed
as a nonlinear positioning sensor in the development of tools for Terrain
Based Navigation of Underwater Vehicles [10]. In this work the error
sources affecting the proposed unsupervised methodology will be enu-
merated, the stochastic characterization will be studied, and the attain-
able performance will be discussed. Based on a series of Monte Carlo
experiments for a large set of synthesized terrains, conclusions will be
drawn on the adequacy of the proposed nonlinear approach.

1 Introduction

Navigation systems design for long range missions of underwater vehicles (UVs)
in unstructured environments, without resorting to external sensors, and with
bounded error estimates, has been a major challenge in underwater robotics
[6]. Unmodelled dynamics, time-varying phenomena, and the noise present in
the sensor measurements continuously degrades the navigation system accuracy
along time, precluding its use in a number of interesting applications. To over-
come this limitation, external positioning systems have been proposed and suc-
cessfully operated in the past, as extensively enumerated in [13], and integrated
in navigation systems for underwater applications, as reported in the design ex-
amples found in [1, 14]. Unfortunately, all those positioning systems only locally
provide accurate measurements (a few square kilometers), take long time to de-
ploy, and are hard to calibrate, strongly constraining the area where the missions
can take place, and ultimately the use of UVs.

One alternative central to this work has been exploited in the past: in the
case where the missions take place in areas where detailed bathymetric data
are available, the terrain information can aid to bound the error estimates of
the navigation systems leading to Terrain Based, Terrain Reference, or Terrain
Aided Navigation Systems. Applications with relative success have been reported
in the past for air [2, 4], land [3] and underwater [5, 12] robotic platforms.

Extended Kalman Filtering has been the most common synthesis technique
to tackle the terrain based navigation system design, as reported in [4, 12] and

� Work supported by the Portuguese FCT POSI Programme under Framework QCA
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the references therein. However, examples of performance degradation (including
instability) on the proposed solutions have been reported by the same authors,
precluding their use in general. Correlation techniques [2, 8], image matching
techniques [12], and particle filters [5, 11] have also been proposed requiring
high computational load, with limited performance and robustness.

This paper tries to elucidate on the adequacy of using unsupervised optimal
processing techniques of random signals, namely Principal Component Analysis
(PCA) (based on the Karhunen-Loève Transform) [7], to obtain a nonlinear
positioning sensor instead of using a nonlinear estimator. The performance of
the proposed sensor will be studied in a large set of terrains carefully chosen,
providing bounds on the expected performance for the problem at hand.

The paper is organized as follows: in section 2 the sensor package installed on-
board is introduced and the underlying estimator structure is briefly described.
Section 3 reviews the background on the Karhunen-Loève transform, basis for the
principal component analysis of stochastic signals and details on the approach
for the bathymetric data decomposition. In section 4 relevant terrains are dis-
cussed and the impact of PCA design parameters on the overall performance
are enumerated and studied in detail. A stochastic characterization, resorting
to a series of Monte Carlo experiments, is presented. Finally, in section 5 some
conclusions are drawn on the adequacy of the proposed nonlinear approach and
future work is unveiled.

2 UV Sensor Package and Navigation System

2.1 Notation and Sensor Package

Let {I} be an inertial reference frame located at the pre-specified mission sce-
nario origin with North, East, and Down axes (without loss of generality at
mean sea level), as depicted in Fig. 1 and let {B} denote a body-fixed frame
that moves with an Underwater Vehicle (UV). The vehicle will be equipped
with an Attitude and Heading Reference System (AHRS) that provides mea-
surements of the attitude λ = [φ θ ψ]T , i. e. the vector of roll, pitch, and yaw
angles that parameterize locally the orientation of frame {B} with respect to
{I}, I

BR(λ) and of the angular velocities expressed in body frame B(IωB), i.e.
body-fixed angular velocity. Note that since R is a rotation matrix, it satisfies
the orthogonality condition RT = R−1 that is, RTR = I. To complement the
information available onboard the UV, a Doppler velocity log and a depth cell,
providing measurements of B(IvB) and the vertical coordinate z, respectively,
are used.

To provide measurements for the PCA based positioning system a sonar
ranging sensor is required, with a linear array of beams, where a bearing angle
ε associated with each of the beams is used. See Fig. 1 in detail, where the
seafloor points sensed in several ranging measurements - d(i) - are depicted
in red. Assuming, without loss of generality, that the sonar is installed at the
origin of the reference frame B pointing down, and the bearing angle lies in the
transversal plane (containing the (yB, zB) axes), the ith measurement can be
geo-referenced in the inertial reference frame I using
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Fig. 1. Left: UV inertial and local coordinate frames. Mechanical scanning sonar range
measurements. Right: Block diagram of the nonlinear estimator.

z(i) = p +I
B R(λ)RX (ε)[0 0 d(i)]T , (1)

where RX(ε) is the rotation matrix, relative to the xS axis, from the instan-
taneous sonar bearing to the UV reference frame B and p := [x y z]T is the
UV position relative to the inertial frame I. It is important to remark that no
support from other external systems/devices will be required.

2.2 Navigation System

An estimator for the state estimate ẑ(k) = [p̂T (k) b̂T (k)]T , corresponding to the
vector obtained stacking the position estimate p̂ and the bias estimates b̂, due
to velocity sensor installation and calibration mismatches assumed constant or
slowly varying, can be written resorting to the usual recursions for the Kalman
filter: {

ẑ−(k + 1) = A(k)ẑ+(k) + B1(k)vH(k)
P−(k + 1) = A(k)P+(k)AT (k) + Q(k), (2)

where h is the sampling period, k describes in compact form the time instant
tk = kh, for k = 0, 1, . . . , T (the final mission time), ẑ−(k + 1) is the predicted
state variable estimate, and P−(k) is the covariance of the prediction estimation
error, as detailed in [10]. Given a PCA position measurement, the state and error
covariance updates, ẑ+(k) and P+(k), respectively, will be given by{

ẑ+(k) = ẑ−(k) + K(k)(y −C(k)ẑ−(k))
P+(k) = P−(k)−P−(k)CT (k)(C(k)P−(k)CT (k) + R(k))−1CT (k)P−(k)

(3)
where K(k) = P−(k)CT (k)(C(k)P−(k)CT (k) + R(k))−1 = [KT

p KT
b ]T is the

Kalman filter gain, separable in two diagonal blocks and

R(k) = f rPCA(k) (4)

is the covariance of the observation noise. The factor f , relating the PCA decom-
position covariance and the sensor noise covariance is central for the problem at
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end and will be the subject of a detailed stochastic characterization study. The
resulting nonlinear estimator is represented in Fig. 1 on the right, with some
abuse of notation.

3 Principal Component Analysis

Considering all linear transformations, the Karhunen-Loève (KL) transform al-
lows for the optimal approximation to a stochastic signal, in the least squares
sense. Furthermore, it is a well known signal expansion technique with uncor-
related coefficients for dimensionality reduction. These features make the KL
transform interesting for many signal processing applications such as data com-
pression, image and voice processing, data mining, exploratory data analysis,
pattern recognition and time series prediction.

3.1 PCA Background
Consider a set of M stochastic signals xi ∈ RN , i = 1, . . . ,M , each represented
as a column vector, with mean mx = 1/M

∑M
i=1 xi. The purpose of the KL

transform is to find an orthogonal basis to decompose a stochastic signal x,
from the same original space, to be computed as x = Uv+mx, where the vector
v ∈ RN is the projection of x in the basis, i.e., v = UT (x −mx). The matrix
U = [u1 u2 . . . uN ] should be composed by the N orthogonal column vectors
of the basis, verifying the eigenvalue problem

Rxxuj = λjuj , j = 1, ..., N, (5)

where Rxx is the ensemble covariance matrix, computed from the set of M
experiments

Rxx =
1

M − 1

M∑
i=1

(xi −mx)(xi −mx)T . (6)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥ . . . ≥ λN , the
choice of the first n << N principal components, leads to an approximation
to the stochastic signals given by the ratio on the covariances associated with
the components, i.e.

∑
n λn/

∑
N λN . In many applications, where stochastic

multidimensional signals are the key to overcome the problem at hand, this
approximation can constitute a large dimensional reduction and thus a com-
putational complexity reduction. The advantages of PCA are threefold: i) it is
an optimal (in terms of mean squared error) linear scheme for compressing a
set of high dimensional vectors into a set of lower dimensional vectors; ii) the
model parameters can be computed directly from the data (by diagonalizing the
ensemble covariance); iii) given the model parameters, projection into and from
the bases are computationally inexpensive operations of complexity O(nN).

3.2 PCA Based Positioning System
Assume a mission scenario where bathymetric data are available and that a
terrain based navigation system should be designed. The steps to implement a
PCA based positioning sensor using this bathymetric data will be outlined next.
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Prior to the mission, the bathymetric data of the area under consideration
is partitioned in mosaics with fixed dimensions Nx by Ny. After reorganizing
these two-dimensional data in vector form, e.g. stacking the columns, a set of M
stochastic signals xi ∈ RN , N = NxNy, results. The number of signals M to be
considered depends on the mission scenario and on the mosaic overlapping. The
KL transform is computed a priori, using (5) and (6), the eigenvalues are ordered,
and the number n of the principal components to be used are selected, according
with the required level of approximation. The following data should be recorded
for latter use: i) the data ensemble mean mx; ii) the matrix transformation
with n eigenvectors Un = [u1 . . . un]; iii) the projection on the selected basis
of all the mosaics,computed using vi = UT

n (xi − mx), i = 1, . . . ,M ; and iv)
the coordinates of the center of the mosaics, (xi, yi), i = 1, . . . ,M . During
the mission, the last geo-referenced range measurements are packed and will
constitute the input signal x to the PCA positioning system. The following
tasks should then be performed:

i) compute the projection of the signal x into the basis, using v = UT
n (x−mx);

ii) given an estimate on the actual horizontal coordinates of the UV position x̂
and ŷ, provided by the navigation system, search on a given neighborhood
δ the mosaic that verifies

∀i‖[x̂ ŷ]T − [xi yi]T ‖2 < δ, rPCA = min
i
‖v − vi‖2; (7)

iii) given the mosaic i that is the closest to the present input, its center coordi-
nates (xi, yi) will be selected as the position measurement.

Special attention should be taken next to two well known cases of poor per-
formance: i) if the data correspond to white noise, the decomposition will result
in equal eigenvalues, thus the use of n << N principal components will only
explain the data covariance fraction n/N ; ii) in the case where data is spatially
homogeneous (flatland) the decomposition is not unique, as any eigenvalue with
null components associated, explains the (information empty) data.

4 PCA Positioning Sensor Performance

To study the performance of PCA as a positioning sensor a series of Monte Carlo
tests were carried out using synthesized stochastic terrains

z(x, y) =
100∑

m=1

A(m)sin(Ωx(m)x+ Φx(m))sin(Ωy(m)y + Φy(m)),

where the spatial amplitude A(m) ≈ N (0, 1), i.e. a white noise random vari-
able with zero expected value and unitary variance, spatial frequency Ωi(m) =
2πf(m), i = {x, y}, f(m) ≈ U(0, f) 1, where f is the maximum terrain band-
width, and random spatial phase offsets Φx(m) and Φy(m). The height is known
1 Compact form to describe an uniformly distributed stochastic variable, in the interval

expressed by the first and second arguments, respectively.
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in a lattice x ∈ [x, x] and y ∈ [y, y], at half meter intervals. Note that selecting
f = 1 m, the Nyquist spatial frequency for the terrain representation in the
present study, corresponds to white noise terrain and the flatland case is recov-
ered in the limit where f → 0. Each experiment consists of randomly select a
position (x, y) and bathymetric data (or some percentage of it) of the mosaic size
according to (1), where each SONAR measurement is corrupted by zero mean
white noise with σSONAR = 0.1m. The search in (7) is then performed over all
the PCA data and the average and covariance of the position error are updated
accordingly.

Fig. 2. Covariance relation f from (4), for 1000 Monte Carlo experiments in each
parameter combination, where M = 50 ∗ 50 mosaics were considered. Left: variations
on the percentage of scanned points in the mosaic with dimensions N = 20 ∗ 20 versus
terrain bandwidth. Right: variations on the mosaic leght versus terrain bandwidth.

A number of parameters impact on the PCA positioning sensor performance.
Next, some of the more relevant parameters are enumerated and the impact
is discussed both based on Monte Carlo results and on the properties of the
bathymetric terrain model:

1. Number of Principal Components - the increase on the number of
components n increases the covariance accuracy explained (according to the ratio∑

n λn/
∑

N λN ) [7]. Monte Carlo simulations revealed that a small number of
components, are enough to explain in the excess of 95% of data covariance, thus
validating the use of PCA as a low complexity positioning sensor.

2. Number of Mosaics - In the case where the neighborhood δ →∞ in (7),
as considered in all this study, the performance of the overall PCA positioning
system degrades linearly with the number of mosaics, due to the linear increase
on the number of elements to be searched. In real applications, a careful choice
of this parameter can improve the PCA performance, given an estimated posi-
tion available from the estimator briefly introduced in section 2, as depicted in
figure 1, on the right, thus bounding the positioning sensor error.

3. Percentage of Points Scanned in a Mosaic - Due to the velocity of
propagation of sound in the water, only a fraction of the total mosaic area can be
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scanned with a sonar. A graceful degradation on the performance is confirmed
from the results, along any vertical line on the left of figure 2.

4. Terrain Bandwidth - This parameter is of utmost importance on the
performance of the PCA positioning system, confirmed by the results depicted
in Fig. 2. Note that on both left and right pictures, the white noise and the
”flatland” cases were considered. The variation on f is nonlinear in both cases,
thus prior to be used in real applications a multi model adaptive estimation
strategy should be considered, specially when missions taking place on large
areas are considered.

5. Mosaic Dimension - The mosaic dimension represents a compromise:
small mosaic sizes increase the accuracy of the PCA positioning system, with an
increase on the total number of mosaics. Large mosaic sizes diminish the accuracy
and augments the correlation stored in each mosaic requiring an increase on
the number of components. On the right part of Fig. 2, for a fixed number
of components n, the performance degradation is evident, with a more severe
increase in large mosaics. The impact on the performance is also nonlinear, thus
providing an insight on strategies to tune the mosaic length selection.

The results obtained reinforce the usefulness of the proposed method as a
basic positioning sensor, allowing the design of bounded accuracy underwater
navigation and guidance systems. For a design example on the development of
navigation tools, based on a PCA positioning sensor see [10].

5 Conclusions and Future Work

After performing a large number of Monte Carlo experiments with the proposed
PCA positioning sensor, some conclusions can be drawn: the sensor is non-biased
however it presents nonlinear characteristics for different terrains and PCA pa-
rameters’. In general, equal covariance in both dimensions were found, given the
homogeneous definition of the set of terrains used. Thus, the results obtained
pave the way to the use of the proposed sensor in real positioning applications
for underwater robotics.

Future work will be carried out on the implementation of multi model adap-
tive estimator design and analysis tools for underwater navigation systems, where
Doppler log/PCA and INS/PCA systems are of interest. It is important to re-
mark that the design of navigation systems based on other geophysical sensors,
such as magnetometers and gradiometers, is obvious.
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Abstract. The ability of finding its situation in a given environment
is crucial for an autonomous agent. While navigating through a space,
a mobile robot must be capable of finding its location in a map of the
environment (i.e. its pose < x, y, θ >), otherwise, the robot will not be
able to complete its task. This problem becomes specially challenging if
the robot does not possess any external measure of its global position.
Typically, dead-reckoning systems do fail in the estimation of robot’s
pose when working for long periods of time. In this paper we present
a localization method based on the Monte Carlo algorithm. During the
last decade this method has been extensively tested in the field of mobile
Robotics, proving to be both robust and efficient. On the other hand, our
approach takes advantage from the use of a vision sensor. In particular,
we have chosen to use SIFT features as visual landmarks finding them
suitable for the global localization of a mobile robot. We have succesfully
tested our approach in a B21r mobile robot, achieving to globally localize
the robot in few iterations. The technique is suitable for office-like en-
vironments and behaves correctly in the presence of people and moving
objects.

1 Introduction

The skill of navigating through an environment is a key aspect for a mobile robot.
A mobile robot must be capable of travelling from a starting point in space,
say A to a final point B. Frequently, the space traversed by the robot will be
unstructured, changing and with people moving around. First, the mobile agent
must plan a trajectory that starts at point A and ends at point B. The set of
algorithms that solve this problem are often referred as path planning techniques.
These techniques use a map of the environment to find the best path that reaches
a particular destination from a given start location. While the robot moves along
the planned path it needs to know its position/orientation, otherwise the mobile
agent would not be able to follow it. Naively, the position/orientation of the
robot can be determined using dead-reckoning, that is, using odometry sensors.
However, these sensors lack of accuracy when used for long periods of time, due

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 623–630, 2005.
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to wheel slippage, drifts and other problems. GPS and inertial systems offer an
alternative to dead reckoning, but have a drawback: Often mobile robots working
in indoor environments cannot receive the GPS signal properly. Localization
techniques are used instead, in order to find the position of the mobile agent in
space. Most of them try to match salient characteristics of the space sensed by
the robot with the same characteristics in the map, thus localizing the robot. For
example, in [1] a CCD camera and a laser rangefinder are used to find vertical
and horizontal structures in the space that surrounds the robot (i.e. corners and
walls). Those structures and then matched against a map of the environment.
As a result, the robot can localize itself in the map.

Our approach to localization is based on the Monte Carlo algorithm. During
the last decade this method has been extensively tested in the field of mobile
Robotics, proving to be both robust and efficient. On the other hand, our work is
based on a stereo vision system, which allows us to compute the relative distance
of the robot to significant points of the space. These significant points of space
are usually called landmarks, and are the basis that enables the robot to deduce
its location in a previously built map of the environment. In particular, we have
chosen to use SIFT features as visual landmarks finding them suitable for the
global localization of a mobile robot.

In section 2 we relate our work with previous implementations. Section 3
explains the use of SIFT features, which have been used previously in robotics
applications, such as [2] and [3]. Next, in section 4 we will explain the basics
of Monte Carlo localization. The integration of SIFT features in Monte Carlo
localization will be also explained in section 4. Section 5 describes the experi-
mental setup used to test the MCL algorithm together with the use of visual
SIFT features. Finally, in section 6 we analyze the main results that we have
obtained and propose future work related to our investigation.

2 Relation to Prior Work

As stated previously, a mobile robot must not rely uniquely on its odometry
information to estimate its position: It must use the information provided by its
sensors to observe the space that surrounds it and relate those observations with
a map of the environment.

Vision sensors have been used by different groups for localization tasks. For
example, in [4] Neira et al. use the information provided by a CCD camera and a
laser rangefinder and then extract the significative characteristics from the space
surrounding the robot. Using an EKF, those characteristics are matched with a
previously built map of the environment, thus permitting the estimation of the
robot’s location. Olson [5], proposes the use of salient points in stereo images
extracted using the Förstner interest operator. Afterwards, the 3D position of
each point is calculated an ego-motion measure is estimated by matching the
points accross successive images. This approach reduces significantly the error
in tracking robot’s position, however, it does not provide a solution for the global
localization problem. In [2] and [3] stereo vision is used to track 3D visual land-
marks extracted from an unstructured environment, in particular, SIFT features
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are used as visual landmarks. During an exploration phase, the robot extracts the
SIFT features from stereo images (actually a trinocular stereo system), calculat-
ing their 3D position in space, and stores them in a database (which conforms the
map). Later, when the robot is navigating, the stored SIFT features are found
in the environment and the relative distance to them is computed. Finally, its
pose is calculated by means of a Hough transform.

In our work, we take an approach similar to that of [2] and [3]. That is, we
extract SIFT landmarks from the environment and store them in a database.
SIFT landmarks are characterized using a descriptor. This means that the same
landmark can be recognised by the robot when it navigates through the envi-
ronment, hence, this enables the use of SIFT features for the global localization
problem. However, our localization algorithm differs greatly from the one cited
previously. Indeed, we use a particle filter approach inspired in the work exposed
in [6], [7] and [8], which has proved to be both fast and robust.

3 Sift Features

SIFT (Scale Invariant Feature Transform) features were developed by Lowe for
image feature generation, and used initially in object recognition applications
(See [9] and [10] for details). Lately, SIFT features have been used in robotic
applications ([2], [3]), showing its suitability for localization and SLAM tasks.
The features are invariant to image translation, scaling, rotation and partially
invariant to illumination changes and affine projection. Thus, this enables the
same point in space to be viewed from different poses of the robot, which may
occur while the robot moves around its workplace, thus providing information
for the localization process.

SIFT features are located at maxima and minima of a difference of Gaussian
function applied in scale space. They can be computed by building an image
pyramid with resampling between each level. SIFT locations are extracted by
means of successive filtering. The input image is first convolved with a Gaussian
function of σ =

√
2, resulting in image A. Next, the image is further convolved

with a Gaussian function, yielding image B. SIFT locations are extracted as
maxima and minima from the image C = A−B.

The SIFT locations extracted by this procedure can be understood as sig-
nificant points in space that are highly distinctive. The next step needed is to
describe that point in space, so that the robot can be capable of recognising it in
a later stage, while it navigates through the environment. One simple solution
would be to sample the image around the key location and store the values in a
matrix. Then, a correlation measure could be used in order to identify the fea-
ture. However, this descriptor is very sensitive to illumination and 3D viewpoint
changes, hence this solution does not produce valid results. In our application,
we used a descriptor similar to the one proposed in [10], based on local im-
age gradients, which behaves correctly with illumination and viewpoint changes.
Once the SIFT location is calculated, we assign an orientation to each feature,
based on local image properties. By doing this we can represent the descriptor
relative to this orientation, thus achieving variance to image rotation.
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4 Monte Carlo SIFT Localization

In robot localization we are interested in estimating the pose of the vehicle
(typically, the state x = 〈x, y, θ〉) using a set of measurements Zk = {zk, i =
1 . . . k} from the environment and a set of actions uk performed. This can be
stated in a probabilistic way, that is: Localization aims at estimating a belief
function p(x) over the space of all possible poses, conditioned on all data available
until time k, that is: p(xk | Zk). The estimation process is usually done in two
phases:

Prediction Phase: In this phase, a motion model is used to calculate the prob-
ability density function (PDF) p(xk | Zk−1), taking only motion into account.
Usually it is assumed that the current state xk is only dependent on the previous
state xk−1 and a control input uk−1. The motion model is specified in the form
of the conditional density: p(xk|xk−1,uk−1). The prediction is then obtained by
integration:

p(xk|Zk−1) =
∫
p(xk|xk−1,uk−1)p(xk−1|Zk−1)dxk−1 (1)

Update Phase: In the second phase, a measurement model is used to incor-
porate information from the sensors and obtain the posterior PDF p(xk|Zk).
The measurement model is given in terms of a probability p(zk | xk) which
provides the likelihood of the state xk supposing that a particular measurement
zk was observed. The posterior density p(xk|Zk) can be calculated using Bayes’
Theorem as follows:

p(xk|Zk) =
p(zk | xk)p(xk|Zk−1)

p(zk|Zk−1)
(2)

The process is repeated recursively after update phase. The knowledge about
the initial state at time t0 is represented by p(x0). In the case of global localiza-
tion, where the pose of the vehicle is totally unknown, p(x0) is represented by a
constant function over the space of all possible poses.

Note that in expressions 1 and 2 nothing is said about the representation of
the PDF. This fact leads to a series of different algorithms that are based on
the above prediction-update scheme, mainly: The Kalman filter, Markov grid-
based localization and Monte Carlo localization. The Kalman filter does not solve
for the global localization. On the other hand, Markov grid-based localization
requires large amounts of memory and computation time. Hence, our approach
relies on the Monte Carlo localization method.

4.1 Monte Carlo Localization

Monte Carlo localization can be included in a set of algorithms called particle
filters, which have had a great development during last decade (e.g. [7], [6] and
[11]). In Monte Carlo localization (MCL for short), the PDF p(x) is represented
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by a set of M random samples χk = {xi
k, i = 1 . . .M} extracted from it. Each

particle can be understood as a hypothesis of the true state of the robot (i.e. its
pose 〈x, y, θ〉). The algorithm is calculated in a Prediction-update fashion, as
stated before.

Prediction Phase: A set of particles χk is generated based on the set of par-
ticles χk−1 and a control signal uk. This step uses the motion model p(xk|xk−1,
uk−1) and applies it to every particle in set χk. As a result, a new set of particles
χ′

k is generated, which represents the density p(xk|Zk−1).

Update Phase: In this second phase, we take into account an observation
zk made by the robot. For each particle in the set, a weight ωi

k is computed
(frequently called Importance Factor). This weight is calculated using the ob-
servation model ωi

k = p(zk|x′ik ) resulting in the set χk = {xi
k, ω

i
k}. Finally the

resulting set χk is calculated by resampling with replacement from the set χk,
where the probability of resampling each particle is given by its importance
weight ωi

k. Finally, the set χk represents the distribution p(xk|Zk).
The prediction-update phases are repeated recursively. To localize the vehicle

globally, the initial set of particles is spreaded randomly over the entire state
space. See [11], [6] and [7] for details.

5 Experimental Results

In this section we report the Monte Carlo localization technique that has been
tested together with SIFT features in an office-like environment. A B21r robot
equipped with a calibrated stereo head was used for the experiments. In Fig.
1, an image of the environment is shown. The environment is characterized for
being frequently traversed by people.

The experiment can be divided in two phases: A) Environment exploration
and map creation, and B) Localization.

5.1 Environment Exploration and Map Creation

In this first phase, the robot was commanded to move along the environment,
varying its position and orientation. Simultaneously, images were captured with
both cameras and processed to extract SIFT features. Next, features extracted
in the left image were matched with the ones found in right image. The following
restrictions were applied during this process:

– Epipolarity restriction: The feature location in the right image must be
placed in the same row as the in the left image. In practice, this condition
was relaxed, permitting a maximum ±2 pixel displacement.

– SIFT restriction: The euclidean distance between two SIFT descriptors must
not surpass a certain threshold (determined experimentally).

Each time a SIFT feature is matched correctly in both images, its position
relative to the robot is calculated using stereo vision. In addition, the position
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Fig. 1. B21r robot during data acquisition in the environment.

of the SIFT feature in space is determined relative to a global frame. In order
to minimize the error in robot’s pose, the exploration phase was performed in
several runs. Besides, in order to minimize the error in robot’s odometry, a
tracking procedure of the landmarks was used (similar to the exposed in [2]).
The information gathered is stored in a database, which constitutes the map.

5.2 Localization

During localization, the robot navigates along the environment. Meanwhile, the
robot captures images with its cameras, processes them and finds SIFT features.
Next, a matching procedure is taken, in order to find the relative position of the
feature. Afterwards, the robot tries to match any feature found with its corre-
spondence in the database. The euclidean distance between SIFT descriptors
is used in order to find corresponding features. Some issues appear during this
process:

– The correspondence between the observed feature and a stored landmark is
not direct. The robot may confuse one landmark for another, thus providing
erroneous information for the localization algorithm.

– The use of visual landmarks allows us to localize the robot in populated
environments. It is not necessary for the robot to visualize all SIFT points
in the scene. The robot may only detect a few points and still will be capable
of finding its pose in the map.

The parameters in the observation model were adjusted by experience. It is
worth mentioning that the parameters in motion and observation models have
a great influence in the convergence properties of MCL algorithm. A general
trend is to inflate both motion and observation, which speeds up the localization
process and avoids the possibility of loosing track of the robot ([6], [11]).

In Fig. 2 a global localization process is shown. First, in Fig. 2(a) a random set
of particles is spreaded over the entire space state (we show only the < x, y >
components for clarity). In the following figures a series of prediction-update
phases are shown. Finally, in Fig. 2(f) the particles gather around the last robot
position, hence localizing it. In Table 1 we show a comparison between odometry
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Table 1. Odometry vs MCL comparison.

Odometry MCL

xrob (m) yrob (m) θrob (rad) xrob (m) yrob (m) θrob (rad)

Fig. 2(b) 0.307 0.342 0.403 0.275 0.367 0.397

Fig. 2(c) 0.802 0.541 0.403 0.974 0.608 0.391

Fig. 2(d) 1.268 0.732 0.403 1.347 0.802 0.394

Fig. 2(e) 1.714 0.885 0.403 1.753 0.923 0.394

Fig. 2(f) 2.072 1.065 0.403 2.093 1.071 0.395

(a) (b) (c) (d)

(e) (f)

Fig. 2. MCL localization progress. Image a) shows the set of particles spreaded around
the entire state space. From image and b) to f) the localization progress is presented.
Finally, the robot is localized in image f).

and the MCL estimation. Odometry can be used as a good measure of the robot’s
pose when used in short displacements, thus permits us to compare it with the
result of the MCL estimation.

The algorithm was tested during several runs through the environment. We
obtained similar results to the ones showed, achieving to localize the robot quite
accurately in a few steps.

6 Discussion and Future Work

This paper describes a localization method based on the Monte Carlo algorithm
in combination with visual landmarks. In particular, SIFT features have been
used as visual landmarks, finding them suitable for the global localization prob-
lem. Our approach has been implemented on a mobile platform and tested in a
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real environment. Good results have been achieved, proving the effectiveness of
our solution. However, we plan to further test the algorithm for longer periods
of time. During our experiments, we found that some SIFT features found in
the environment lacked of stability: They were found from a robot’s pose, but
could not be detected from elsewhere. To solve this, we plan to track features
for consecutive frames, hence ensuring that the feature found is stable and can
be detected from different viewpoints.

Note that, in case a sudden change in robot’s position may occur (i.e. the
robot hits an obstacle), the algorithm could fail in localizing the robot. If the par-
ticles concentrate around a certain position and the observation model suggests
that the robot is elsewhere, then the weight ωi

k may be zero for every particle
in the set. This can be avoided by the injection of a random set of particles in
each iteration of the MCL algorithm. We plan to add this feature in a future
approach. On the other hand, as a future work we plan to apply a version of the
MCL algorithm for multi-robot localization. We consider that the localization
problem can be solved efficiently using several robots in combination with the
method exposed in this paper.
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Abstract. This paper describes various innovative algorithms for the on-line es-
timation of the image jacobian, a matrix which linearly relates joint velocity and 
image feature velocity. We have applied them successfully to the static visual 
control of an uncalibrated 3 DOF joint system, using two weakly calibrated 
fixed cameras. The proposed algorithms prove to be particularly robust when 
image features are calculated with an average level of noise, and our results are 
clearly better than those obtained for already existing algorithms in specialized 
literature. 

1   Introduction 

The problem of developing tasks in robotic systems under structured environments, 
with the presence of objects whose position and orientation is perfectly known, has 
been extensively studied. However, operation in unknown and dynamic environments  
involves a large number of additional difficulties not completely solved at present. 
Vision systems can provide extremely useful information in these environments, since 
they offer information about which objects are present in the taskspace and, more 
importantly, their position, orientation and velocity can be determined precisely 
enough. 

The use of vision sensors to close the control loop of a robot is known as Visual 
Servoing. Some of the most comprehensive surveys are those described in [1], [2], 
[3]. Visual servoing systems are mainly classified attending to their control scheme. 
Thus there is Position Based Visual Servoing (PBVS), where the error signal and 
control law are specified in Cartesian coordinates according to the desired and current 
position and orientation. This is also known as 3D visual servoing. On the other hand, 
in Image Based Visual Servoing (IBVS) the error signal and control law are specified 
in the image space according to the desired and current visual features. This is known 
as 2D visual servoing. This method implies calculating or estimating the Image Jaco-
bian, which linearly relates image feature velocity and robot joint velocity. 

In this paper we introduce a method for the on-line estimation of the image jaco-
bian with two fixed cameras overlooking the scene, without need for Euclidean cali-
bration of the cameras nor kinematic calibration of the robot. Its main novelty consists 
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in the use of the fundamental matrix in the calculation of the image jacobian, which 
allows a more robust estimation in the detection of image features in the presence of 
noise. Firstly we detail the terminology and theoretical concepts used in the paper, 
then we put forward the innovative algorithms proposed, and finally we describe our 
experiments and conclusions. 

2   Image Jacobian 

Assume that a robot or positioning system is observed from one or various fixed 

views. Let [ ]T
p21 rrr �=r be the p-dimensional vector that represents the posi-

tion of the end effector in a Cartesian coordinate system. Let 

[ ]T
n21 qqq �=q be the n-dimensional vector that represents the joint position 

of the robot. Let [ ]T
m21 sss �=s be the m-dimensional vector that represents 

the image features (for example the coordinates of a point in one or both images). 

The relation between joint velocity of the robot [ ]T
nqqq ����� 21=q and its cor-

responding velocity in task space, [ ]Tp21 rrr ����� =r , is captured in terms of the 

robot Jacobian, rqJ , as qJr �� rq= . The relation between feature velocities 

[ ]T
m21 sss ����� =s  and task space velocities, is given by rJs �� sr= . Thus, if the 

chosen feature is a point in the image, and the Cartesian coordinates of the camera are 
used, the relation is given by: 
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where vu ,  represent the centered image coordinates, f  is the focal distance, Z  is 

the space coordinate and [ ] [ ]Tzyxzyx
T wwwTTT=WT are the compo-

nents of the traslational and rotational speed of the point. By means of a transforma-
tion matrix we can change over to a task related coordinate system. 

The velocity of the image features can be directly related to joint velocities in 
terms of a composite Jacobian, also known as the full visual-motor Jacobian [4], [5]: 
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Determining this matrix analytically is not simple. It is necessary to remark that in 
its calculation there must be considered: the intrinsic parameters of the camera cali-
bration (focal distance, image center coordinates), the 3D reconstruction of the point 
or an approximation ( Z  coordinate), the kinematic calibration of the camera (relation 
between camera coordinates and joint space origin), and the kinematic calibration of 
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the robot. Most of the previous works on visual servoing assume that the system 
structure and the system parameters are known, or the parameters can be identified in 
an off-line process. A control scheme with off-line parameter identification is not 
robust for disturbance, change of parameters, and unknown environments. One ap-
proach to image-based visual servoing without calibration is to dynamically estimate 
the full visual-motor Jacobian during motion. 

2.1   Estimation of the Jacobian 

Specialized literature gathers two methods for estimating the jacobian described in 
equation (3) [4], [5]. In both cases an initial jacobian is obtained by making n linearly 
independent small movements. 

2.1.1   Estimation Based on the Last Moves 
If the change in image features and the change in joint position are represented re-
spectively by 1−−=Δ kkk sss  and by 1kkk −−=Δ qqq ,and the image jacobian is as-

sumed to be constant, it can then be estimated as the matrix that simultaneously satis-
fies n or more movements: 
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Once the jacobian has been obtained, the joint motion which allows approaching 

the desired features *s  is calculated by: 

( ) ( )k
TT

kk ssJJJqq −+=
−

+
*1

1  (4) 

2.1.2   Recursive Estimation 
In this method the jacobian is estimated recursively, combining the information sup-
plied by the last movement with the previous jacobian. Regarding the former method, 
it has the advantage of gathering information from all the movements. Applying the 
well-known Broyden method [6], [7]: 
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T
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qqJs
JJ

ΔΔ
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3   Proposed Algorithms 

The research line we have followed is the estimation of the jacobian based on already 
performed movements, not necessarily the n last ones. We use the visual information 
supplied by two cameras. We contribute two innovations: on one hand, each move-
ment has been endowed with a certain reliability, so that the most adequate or reliable 
movements can be used. On the other hand, the epipolar constraint has been taken 
into account in the calculation of the jacobian, which significantly increases the ro-
bustness of the method, as will be seen in chapter four. 
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3.1   Reliability Estimation 

The jacobian matrix, equation (1), strongly depends on the position of the point in the 
image (u,v), so the assumption that it is constant will only be valid in the surroundings 
of the point in the image. For this reason, a first possibility would be to promote the 
consideration of those already performed movements with a short path in image fea-
tures. However, these movements are too sensitive to noise, so an agreement must be 
reached between both effects. Movements performed in the joint surroundings of the 
desired movement also seem more adequate. The proposed algorithms rank the al-
ready performed movements according to a reliability which depends on two factors 
that assemble these concepts: 

kiiki FactorFactoryreliabilit 2/1 =  (6) 

Where subindex k represents the last movement performed and subindex i will 
vary amongst those already performed movements which have been stored. We must 
remark that Factor1i depends solely on already performed movements and promotes 

those in which features vary within a range: they are not too large so that the jacobian 
can be considered a constant (aprox. 20 pixels), nor too small so they will not be too 
sensitive to noise (aprox. 1 pixel). Factor2ki also considers the last movement per-

formed and promotes those already stored movements produced in the joint surround-
ings of the desired movement. 

3.2   Adding the Epipolar Constraint 

The projection of a point in two images satisfies an additional constraint known as the 
epipolar condition, [8], [9], expressed by the fundamental matrix (see equation (9)). 
The hereby method considers this constraint in the calculation of the image jacobian, 
equation (3). If the belonging of the variables to each of the cameras is denoted by 
inverted commas, we have the following model: 
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Substituting in (9) the values obtained in (8), we have the following non-linear 
equation for ( )JJ ′′′  , : 
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The linear equations in (3) and the non-linear equations in (10) have been jointly 
solved applying the Levenberg-Marquadt method. 
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3.3   Glossary of Proposed Algorithms 

In the implementation described in the present article, the following algorithms have 
been employed depending on the movements used to calculate the image jacobian: 

• Algorithm A: Last three movements performed 
• Algorithm B: Three most reliable movements amongst the last ten performed. 
• Algorithm C: Last ten movements performed, weighted by their reliability. 

Weighting is introduced multiplying each row in equation (4) by its corresponding 
reliability. 

• Algorithm D: Ten most reliable movements performed. 
• Algorithm E: Ten most reliable movements performed, adding the epipolar con-

straint. 
• Algorithm F: Iterative estimation of the image jacobian. 

Algorithms A, B, C, D, F are used for one or two cameras. 

4   Experiments 

In this section we describe our experimental equipment and results. 

4.1   Experimental Equipment 

The system used in the experiments consists of: 

• A joint system composed of a high precision positioning device and its controller, 
model Newport MM3000 (see figure 1). The system has 3 DOF with a prismatic 
and two revolute joints, and its theoretical precision is of a thousandth of a milli-
meter and a thousandth of a degree. The visual control object, made out of five 
black dots on a white background, the projection of which on the image will be the 
control features, has been attached to the last link of the joint system. 

• An image acquisition and processing system composed by two CV-M50 analogic 
cameras and a Matrox Meteor II-MC image acquisition board, which allows simul-
taneous acquisition from both cameras. The cameras, fixed in the working envi-

  

Fig. 1. Experimental equipment 
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ronment, are separated by about 300 millimeters, both their axes converge towards 
the joint system, and they are separated from it by about 700 millimeters. Visual 
features are detected with subpixel precision, and given the simplicity of the image, 
the error is estimated to be of less than 0.2 pixels. Communication with the joint 
system controller is established through a serial RS-232C cable. 

4.2   Control Objective 

The task entrusted to the system is to get the error between the desired and current 
visual features to be under a certain threshold. Visual features must be reachable and 
the visual object must be visible from both points of view. To ensure coherence, we 
decided to obtain the desired visual features previously by acquiring images in refer-
ence joint positions, chosen randomly within the workspace. To evaluate the effec-
tiveness of each method, we consider four indices, defined as follows: 

• Index 0: Sum of Euclidean distances between desired and current visual features. 
Weighted by number of points, number of cameras and number of trajectories. 

• Index 1: Sum of Euclidean distances in joint space for all of the performed move-
ments, divided by one thousand. Weighted by number of trajectories. 

• Index 2: Average number of movements in which visual features are stabilised for 
each trajectory. We consider visual features to be stabilised when the error norm 
goes below a certain threshold. We used a 0.6 pixel threshold in our experiments. 

• Index 3: Sum of Euclidean distances between desired and current visual features 
when overshooting occurs. 

4.3   Results 

A comparative study was conducted on the proposed algorithms. The comparison 
covers visual features calculated with an estimated error of 0.2 pixels, therefore con-
sidered without noise, as well as visual features with artificially added Gaussian noise 
with a standard deviation of 0.5 pixels. Also, the effect of increasing the number of 
points considered as visual features from 2 to 5 is analysed, as well as the effect of 
working with one or two cameras. Thus, table 1 gathers our results for the six pro-
posed algorithms when using two cameras and analysing 50 trajectories covering the 
workspace, each with 30 movements. Without noise, the globally best-behaved algo-
rithm is F, although others like D or E are also well-behaved. It is remarkable that 
incorporating reliability does not provide a noticeable advantage. When noise is 
added, algorithm F shows the worst behaviour, while D and E are well-behaved. In-
corporating reliability does provide a significant advantage. In short, algorithm E has 
an outstanding immunity to noise, whilst algorithm F is very sensitive to it. Increasing 
the number of points does not imply improving the indices, as it makes a stricter con-
trol necessary. Table 2 gathers our results when using one camera for five of the pro-
posed algorithms, for 50 trajectories, each with 30 movements, and without adding 
noise. The undeniable advantage of using two cameras can be appreciated. In figure 2 
the evolution of algorithms F and E in the presence of noise is represented in joint 
space. Algorithm E is noticeably faster and more precise than algorithm F. 
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Table 1. Values for the four indices, with and without added noise 

WITHOUT NOISE WITH NOISE 
 

ALGO-
RITHM 2 

POINTS 
3 

POINTS 
4 

POINTS 
5 

POINTS 
2 

POINTS 
3 

POINTS 
4 

POINTS 
5 

POINTS 
A 316 328 298 305 696 644 695 731 
B 303 338 298 319 519 523 642 671 
C 273 285 279 285 348 420 432 467 
D 265 278 270 275 284 290 286 287 
E 263 275 270 277 264 281 277 278 IN

D
E

X
 0

 

F 262 271 264 271 553 582 590 704 
A 44.1 43.8 43.6 41.5 90.3 77.6 79.3 70.9 
B 43.5 44.0 42.6 42.8 75.4 65.1 67.8 71.5 
C 41.0 40.3 39.3 39.0 54.2 52.3 53.4 54.5 
D 37.9 37.8 37.3 37.2 44.5 41.5 40.5 40.8 
E 38.0 37.5 37.3 37.3 41.7 39.8 40.4 39.9 IN

D
E

X
 1

 

F 37.7 37.3 37.1 36.9 76.4 77.6 70.3 64.7 
A 11.7 11.4 13.5 13.2 29.4 29.8 29.8 29.9 
B 10.9 11.3 11.0 11.1 26.7 26.1 28.3 28.2 
C 10.1 10.1 9.8 10.1 18.4 20.4 24.0 25.5 
D 9.5 10.0 9.1 9.0 20.0 21.3 21.8 22.9 
E 9.4 10.0 9.1 9.0 15.2 15.5 17.2 21.4 IN

D
E

X
 2

 

F 8.7 8.5 8.5 8.4 29.3 29.0 29.2 28.9 
A 1.7 1.8 3.7 1.7 30.5 31.9 30.9 33.8 
B 0.8 2.7 2.2 2.2 18.7 12.9 17.9 19.2 
C 1.4 1.3 1.1 1.4 6.8 4.7 4.4 7.6 
D 0.9 1.1 0.7 0.5 3.6 2.9 2.4 2.6 
E 1.6 0.8 0.7 0.5 2.3 2.7 3.8 3.1 IN

D
E

X
 3

 

F 0.3 0.1 0.2 0.2 52.9 66.3 56.8 76.9 

Table 2. Values for index 0 for one camera, without added noise 

 ALGORITHM 2 POINTS 3 POINTS 4 POINTS 5 POINTS 

A 376 436 339 328 

B 369 443 342 357 

C 349 345 305 309 

D 298 335 296 308 

IN
D

E
X

 0
 

F 317 336 288 303 

 

  

Fig. 2. Evolution of algorithms F and E in the presence of noise in joint space  

5   Conclusions 

The on-line estimation of the image jacobian is a flexible and versatile method for the 
visual control of a joint structure, since it isolates the obtained results from errors in 
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the calibration of the camera and the joint system. The paper contributes the definition 
of a reliability to calculate the jacobian, and the inclusion of the epipolar constraint or 
fundamental matrix in its calculation. This aspect is not considered in specialized 
literature, and it improves the results significantly when the noise level in feature 
detection increases. The knowledge of the fundamental matrix is no objection, as its 
calculation has been proven to be much more simple, robust and reliable than that of 
the complete calibration of the cameras and joint system. 

Some aspects not dealt with in the present paper which are being currently studied 
are the analysis of the system stability with a control law generated from the jacobian 
estimation and the use of the proposed algorithms to accomplish dynamic tasks. Re-
garding the first aspect, we must remark that algorithm E has never made the system 
unstable throughout the many tests performed. 

This work was supported by the Comisión Interministerial de Ciencia y Tecnología 
of the Spanish Government under the Project DPI2001-3827-C02-01. 
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Abstract. This paper presents a gesture recognition system based on
continuous hidden Markov models. Gestures here are hand movements
which are recorded by a 3D accelerometer embedded in a handheld de-
vice. In addition to standard hidden Markov model classifier, the recog-
nition system has a preprocessing step which removes the effect of device
orientation from the data. The performance of the recognizer is evalu-
ated in both user dependent and user independent cases. The effects of
sample resolution and sampling rate are studied in the user dependent
case.

1 Introduction

Advances in microelectronics have reduced the cost of small and accurate sensors.
As a result, these sensors are now finding their way to small mobile devices. This
has inspired a lot of research effort around multi modal user interfaces.

Small and inexpensive accelerometers are now available. Already some mobile
devices have such sensors embedded. These sensors can be used to record the
movement of the device. It turns out, that simple gestures made by moving the
device are relatively easy to recognize with high accuracy.

The basic tool for recognizing sequences of variable length is the Hidden
Markov Model (HMM)[1]. HMMs have been successfully applied especially to
speech recognition[2] and visual gesture recognition[4–6]. These methods trans-
late almost directly to accelerometer-based gestures.

In this paper, a three dimensional accelerometer was used to record hand
movements. Gestures, such as forming a circle or an upward line were recorded
from 7 people. A recognizer based on continuous HMMs was implemented. The
rest of the paper is organized as follows. In section 2 the preprocessing of the
accelerometer data is discussed. In section 3 the HMM parameter estimation is
described in some detail. Section 4 describes the experimental setup. Section 5
studies the effects of reducing sampling rate and sample resolution. And then
finally section 6 summarizes the results.

2 Feature Extraction

In many recognition tasks it is crucial to extract some informative features from
the recorded data. In speech recognition, this usually involves transformation to

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 639–646, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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frequency domain and decorrelation. One of the advantages of feature extraction
is that it usually reduces the amount of information, both in terms of time
resolution and in terms of dimensionality. Since the computational complexity
of HMM decoding is linearly dependent on the number and dimension of feature
vectors, good feature extraction also increases efficiency.

For accelerometer based gestures, however, the original data is naturally
suited for HMMs. It is a plausible assumption that a gesture constitutes a se-
quence of accelerations to different directions. It is also very natural to assume
that in practice, the recorded accelerations are naturally distributed around the
expected direction.

Accelerometers that can be embedded in a handheld device must work with-
out any outside reference. This usually means that the only observable quantity
is force. A force on the sensor elements, however, is not necessarily due to actual
acceleration. In particular, the gravitational pull of the Earth introduces a force
that is interpreted as acceleration of considerable magnitude. If the gravitational
constant g is expected to be in the direction of the negative y-axis, then a tilt
of only a few degrees will introduce an acceleration on z or x-axis comparable
to accelerations due to motion of the device during a gesture. Thus a lot of
information about the gesture comes from the tilting of the device during the
gesture. This information is easily lost if the device is not held exactly in the
same way for every repetition of the gesture.

These problems can be avoided by simple normalizing methods. Firstly, the
effects of holding the device in a different manner can be somewhat canceled by
rotating the data so that some estimate of g based on the data is pointing to
negative y-axis. Let

D =

⎛⎜⎜⎜⎝
a1

T

a2
T

...
aT

T

⎞⎟⎟⎟⎠ ,

where ai is the acceleration vector sampled at time i, be the acceleration data
recorded from a gesture and gT (D) any linear mapping that estimates the direc-
tion of gravitational pull from the data. Then the normalizing problem is finding
a matrix R such that gT (DRT)T = α(0,−1, 0) with suitable constraints on R,
where α is a positive scalar value. By the linearity of gT this is equivalent to
solving Rg(D) = α(0,−1, 0)T.

In general, this problem has uncountably many solutions, even with the obvi-
ous constraint that R should have full rank. In this paper the constraint is that
R should be orthonormal, i.e. RTR = I. This means that R represents a rotation
or rotoinversion. Other constraints could be more suitable if, for instance, the
sensor axes are not necessarily orthogonal. When the tilting is small, so that the
angle between gT (D) and the negative y-axis is less than 90 degrees, the matrix
R can be found as follows. Let

R =

⎛⎝r1
T

r2
T

r3
T

⎞⎠ (1)
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and r2
T = − gT (D)

|gT (D)| . The small tilting condition implies that r2
Tx̂ and r2

Tẑ

are both nonzero, where x̂ and ẑ are the positive unit vectors in x and z di-
rections respectively. Then complete R to a new base by using Gram-Schmidt
orthogonalization (for example[3]) for r2, x̂ and ẑ. More precisely, let

r1 =
x̂− projr2

(x̂)
|x̂− projr2

(x̂)| , (2)

r3
′ = ẑ − projr2

(ẑ) (3)

and

r3 =
r3

′ − projr1
(r3

′)
|r3

′ − projr1
(r3

′)| . (4)

It is easy to see that this solution is orthonormal when r2 is not parallel with x̂
or ẑ.

One possible choice for gT is the mean of the acceleration vectors in D, i.e.
gT (D) = 1

TD
T1T , where 1T is a vector of T ones. This choice was also used for

the tests in this paper.
The state machine in HMM allows for variable duration of gestures. It is

this fact, that makes HMM so useful for this type of pattern recognition task.
In accelerometer based gestures, however, the magnitude of the observed accel-
erations also depend on the rate of the gesture. In contrast, HMM implicitly
assumes that the state outputs are independent of the rate. Thus the data must
be normalized to meet these assumptions.

The simplest way to do this is to scale by the factor 1
maxt |at| . In the tests,

the scaling improved recognition accuracy by a little over one percent unit.

3 Parameter Estimation

A left to right HMM with continuous normal output distributions was used.
The output distributions were assumed to have diagonal covariance matrices.
Thus the model can be described by 8n parameters, where n is the number of
states in the model. Each state has two transition probabilities and one Gaussian
output distribution. For each state, the three dimensional output distribution is
described by the mean vector μ ∈ R

3 and the three diagonal elements of the
covariance matrix. Altogether eight values per state.

The 8n parameters can be iteratively estimated from training gestures by the
Baum-Welch algorithm[2]. The basic idea is to compute the probability γij(t) of
a transition from state i to state j at time t given that the model generated the
given training gesture. Batch training was used, where the statistics γOk

ij (t) were
first computed for all training gestures Ok.

The improved estimate for the mean of state i is then

μ̂i =

∑
k

∑Tk

t=1

∑
j γ

Ok
ij (t)Ok(t)∑

k

∑Tk

t=1

∑
j γ

Ok
ij (t)

. (5)
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Similarly, the estimate for the l:th diagonal element σ2
i (l) of the covariance

matrix for the output distribution of state i is

σ̂2
i (l) =

∑
k

∑Tk

t=1

∑
j γ

Ok
ij (t)(μ̂i(l)−Okl(t))2∑

k

∑Tk

t=1

∑
j γ

Ok
ij (t)

. (6)

The estimate for the probability of transition from state i to state j is

âij =

∑
k

∑Tk

t=1 γ
Ok

ij (t)∑
k

∑Tk

t=1

∑
j γ

Ok

ij (t)
. (7)

The result by Baum and his colleagues guarantees that for these update for-
mulas the combined probability of producing all the training gestures is increased
or remains fixed. The parameter estimation was iterated three times for every
model, initial parameters being zero mean, unit variance and fifty-fifty transition
probabilities.

4 Experimental Setup

The performance of the recognizer was tested on a set of 10 gestures, 20 samples
per gesture from 7 different persons, totaling 1400 gesture samples. Each model
for all the 10 gestures had eight states. The data was normalized as described in
Sect. 2, with constant scaling.

Two tests were conducted: user dependent and mixed user. For user depen-
dent tests, three gestures samples were used for training per each person. The
rest of the gestures from each person were used for testing. This process was
repeated so that samples 1-3, 4-6, . . . and 16-18 were used for training and the
rest for testing. This cross-validation was used so that the choice of training
vectors would not influence the results.

For 7 persons, 10 gestures, 6 repetitions, and 17 samples per repetition, a
total of 7140 recognition operations were done. Of these, 6909 were successful,
giving a 96.76 percent recognition accuracy.

For mixed user recognition, 3 samples from each person – a total of 21 sam-
ples – were used to train a single recognizer. Then all the remaining samples
were recognized from every person with this recognizer. Again six runs were
conducted, choosing consecutive samples for training and recognizing those that
were not part of the training. Of the resulting 7140 recognition operations, 7123
were successful: a 99.76 percent recognition accuracy.

The fact that user independent performs better is unexpected. The most
likely reason is that too few training vectors were used for user dependent and
the models were over-fitted. On the other hand, mobile applications can hardly
expect the user to repeat the gesture in training phase for more than two or
three times. Since the focus is on mobile devices, only three training samples
were used in the user dependent tests.
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While such an accuracy seems extremely good, it is not entirely unexpected.
Similar accuracy is common in speech recognition, for such a small set of possi-
bilities. Increasing the number of gestures will undoubtedly reduce the accuracy.
Gestures by hand movements, however, are not natural for humans. All the
possible gestures have to be learned and so an extensive set of gestures becomes
unpractical. For example, a user interface based on only ten gestures may already
demand too much learning to be attractive for users.

5 Effects of Data Quality

Especially in consumer mobile devices, memory and processing power can be very
limited. The number of bits per acceleration vector element affects the amount of
memory required. The sampling rate of the accelerometer affects both memory
and processing power.

Since the recognizer performed so well for the original data, it was tested
how much the data could be quantized or decimated before recognition accuracy
suffers. User dependent recognition test, as described in the previous section,
were run on reduced quality data.

5.1 Effects of Quantization

The original data had 12 bits per sample for each axis. This was quantized to
multiples of 2q for q = 0. . .12. In other words, to values representable by 12 to
0 bits respectively. The results are plotted in Fig. 1.

Part of the recognition error for low resolutions is due to pathological training
situation. If the acceleration vectors from all the training samples that affect
the output of some state are equal, the estimated variance becomes zero. The
recognizer implementation was not designed to handle such pathological cases
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Fig. 1. Recognition accuracy as a function of sample resolution.
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and the resulting model cannot be used for recognition. In such a case, all the
samples of that gesture were interpreted as incorrectly recognized.

The results in Fig. 1 are expected. It appears that eight bits per axis is
adequate for discriminating gestures. It is also conveniently a power of two and
very common in commonly available microcontrollers.

5.2 Effects of Sampling Rate

The data was recorded on a mobile device running Symbian platform. The data
polling was timed using Symbian methods and was subject to variability due to
the multitasking nature of the operating system. Thus the actual sampling rate
of the data is approximate and variable. It is, however, in the neighborhood of
30Hz. Certainly no more than 35Hz.

The original unquantized data was resampled to a frequency of q
8Fs, q =

1. . .8, where Fs is the original sampling rate. Results are shown in Fig. 2. It can
be seen, that the original sampling rate is closer to the critical limit than the
resolution was.
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Fig. 2. Recognition accuracy as a function of sampling rate.

Notice that the eight state left to right HMM cannot decode a gesture of
length less than eight. So for example for 8 Hz, gestures that are performed under
a second become unrecognizable. In fact, this is the major source of recognition
failures. Fig. 3 shows the recognition accuracy, when gestures that become too
short are removed from the set for each sampling rate. The statistical significance
of the results for small rates becomes weak, because for example for 4Hz there
are only 236 gesture samples that can be used.

Figure 3 indicates that a major consideration in deciding the sampling rate is
the expected duration and complexity of the gestures. Complex gestures require
more states in the model, which in turn means that more samples per gesture
must be collected.
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Fig. 3. Percentage of gestures recognized, when too short gestures are removed from
the set for each sampling rate.

6 Conclusion

A HMM based recognizer for accelerometer based gestures was implemented and
tested. While actual feature extraction was not found necessary, some normal-
izing of the data was found beneficial. The effects of gesture sampling rate and
quantization were studied.

The acceleration component due to gravitation plays an important role in
the acceleration data resulting from a gesture. The direction of the gravitational
component changes as a result of tilting the device. This occurs naturally, due
to the shapes of the human hand and arm. The original orientation of the de-
vice in the palm can introduce a constant offset to this direction. A method of
normalizing the data to compensate for this was described.

Standard HMM parameter estimation methods were tested and shown to
produce good results. It was empirically shown that sampling rate does not
seem to have a profound effect on the recognition accuracy, except when recorded
gestures become too short to be recognized by the HMM. Eight bits per sample
(per axis) was found to be sufficient resolution. Below 7 bits per sample, the
recognition results start to noticeably deteriorate. These results are valid at least
when the set of possible gestures has 10 gestures as in the tests. If, however, the
gesture set is significantly larger, the gestures become more similar. In this case
quantization in particular could have a more profound effect on the recognition
accuracy.
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Abstract. Online implementation of robotic hand-eye calibration consists in 
determining the relative pose between the robot gripper/end-effector and the 
sensors mounted on it, as the robot makes unplanned movement. With noisy 
measurements, inevitable in real applications, the calibration is sensitive to small 
rotations. Moreover, degenerate cases such as pure translations are of no effect in 
hand-eye calibration. This paper proposes an algorithm of motion selection for 
hand-eye calibration. Using this method, not only can we avoid the degenerate 
cases, but also the small rotations to decrease the calibration error. Thus, the 
procedure lends itself to an online implementation of hand-eye calibration, 
where degenerate cases and small rotations frequently occur in the sampled 
motions. Simulation and real experiments validate our method. 

1   Introduction 

The calibration of robotic hand-eye relationship is a classical problem in robotics, 
which concerns the relative position and orientation between the robot grip-
per/end-effector and sensors, such as a camera mounted rigidly on the gripper. 
Hand-eye calibration is an important task for robot applications involving 3-D vision 
measurement, visual servoing, and tactile sensing.  

On this problem, much work has been done by solving the homogeneous trans-
formation equation AX=XB [1]-[7], which states that when the robot gripper under-
goes a rigid motion A and the corresponding camera motion is B, the two motions are 
conjugated by the hand-eye transformation X. Malm and Heyden [8] perform hand-eye 
calibration using normal derivatives of the image flow field instead of traditional point 
correspondences. And some methods simultaneously calibrate the camera and 
hand-eye relationship [9]-[11]. 

All the mentioned work requires an iterative approach, leading to offline 
least-square solutions. Angeles et al. [12] and Andreff et al. [13][14] first proposed the 
technique of online implementation of hand-eye calibration, allowing reducing human 
supervision required in classical calibration methods. Based on the linear invariants of 
rotation matrices, the former proposed a solution by recursive linear least squares. The 
latter derived a new linear formulation of the hand-eye problem, inspired by Sylvester 
equation: UV+VW=T. Moreover, this method is extended to work with pose estima-
tion by structure from motion. Therefore, it allows to get rid of the target objects 
required by standard approaches and use unknown scenes instead. 

Note that whichever method is used, the hand-eye calibration problem intrinsically 
requires at least two motions with non-parallel rotation axes. This has been shown 
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algebraically [2] and geometrically [3]. So, hand-eye transformation from two inde-
pendent motions sometimes can not be obtained when there exists a degenerate case 
such as pure translation or pure rotation etc., detailed algebraic analysis of the results 
for two independent motions refer to [14]. In addition, Tsai and Lenz made detailed 
analysis on critical factors affecting the accuracy of hand-eye calibration and got five 
observations, see [2]. 

During the online implementation of hand-eye calibration, hand-eye transformation 
is computed from continuously sampled motions, which are unplanned. So the problem 
is that, the sampled motions may be pure translation, pure rotation or their combina-
tions, from which we only get partial calibration [14]. Furthermore, sampled motions 
may include a rotation with a tiny rotation angle, or the angle between two rotation axes 
is very small, both of which will bring on a large error in noisy measurements ac-
cording to observation 1 and observation 2 in [2]. On the other side, according to 
observation 4 in [2], small translation in gripper motion will be much useful in cali-
bration. 

In this paper we propose an algorithm of motion selection for online hand-eye cali-
bration, which can not only avoid the degenerate cases in calibration, but also decrease 
the calibration error by selecting appropriate motion pairs. The remainder of this paper 
decomposes as follows. Section 2 describes the objective problem. Then, given golden 
rules for motion selection, the detailed algorithm of motion selection for online 
hand-eye calibration is presented in Section 3. Section 4 conducts some simulated and 
real experiments to validate the proposed algorithm.  

2   Problem Formulation 

We use upper-case boldface letters for matrices, e.g. X, and lower-case boldface letters 
for 3-D vectors, e.g. x . The angle between two vectors is denoted by )( yx,∠ . 

|||| ⋅ means the Frobenius norm of a vector or a matrix. Rigid transformation is repre-

sented with a 44× homogeneous matrix X, which is often referred to as the couple (R, 
t). At the i-th measurement, the camera pose with respect to reference object is denoted 
by 44 ×  homogeneous matrix Pi, and the recorded gripper pose relative to robot base 
is homogeneous matrix Qi.  

The usual way to describe the hand-eye calibration is by means of homogeneous 
transformation matrices. We denote the transformation from gripper to camera by 
X=(Rx, tx), the i-th motion matrix of the gripper by Ai =(Ra,i, ta,i), and the i-th motion 
matrix of the camera by Bi =(Rb,i, tb,i). The motion of the gripper is computed directly 
from the joint-angle readings by simple composition: 

1
1

+
−= iii QQA                                                      (1) 

With the known intrinsic camera parameters, the camera poses Pi and Pi+1 relative to 
reference object are estimated, then the motion of the camera can also be determined by  

1
1

+
−= iii PPB                                                      (2) 

When dealing with an unknown scene (such as the scene without special calibration 
object), we can use a structure from motion algorithm [13][14] to estimate the camera 
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motion directly. Thus, the well-known hand-eye equation of AiX=XBi can be estab-
lished [1][2], which yields one matrix and one vector equation: 

Ra,i Rx =  Rx Rb,i                                                 (3) 
(Ra,i – I)tx = Rx tb,i – ta,i                                           (4) 

As we know that two motions with non-parallel rotation axes are necessary to 
determine the hand-eye transformation, so another group of motion equations should 
be obtained, 

Ra,i+1 Rx =  Rx Rb,i+1                                             (5) 
(Ra,i+1 – I)tx = Rx tb,i+1 – ta,i+1                                      (6) 

Eqs. (3)-(6) can be combined into the following linear form [13][14]: 

( ) ( )

( )

T

T

vec
× ×

+ + × ×

+ + +

− ⊗⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⊗ − ⎛ ⎞⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟− ⊗ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⊗ −⎝ ⎠ ⎝ ⎠

9 a,i b,i 9 3 9 1

3 b,i 3 a,i a,ix

9 a,i 1 b,i 1 9 3 9 1x

3 b,i 1 3 a,i 1 a,i 1

I R R 0 0

I t I R tR

I R R 0 0t

I t I R t

                  (7) 

where the ⊗ product is the Kronecker product and operator vec reorders (one line after 
the other) the elements of a nm × matrix into a mn vector. Thus, given a pair of 
motions, hand-eye transformation can be linearly computed. 

In practice, however, the movements of robot gripper vary with applications, not for 
hand-eye calibration. So, translations and small rotations usually occur in the sampled 
data, from which we can only get partial calibration or calibrate with big error. In order 
to make the online calibration practicable, we propose an approach of motion selection. 

3   Motion Selection for Online Hand-Eye Calibration 

We firstly give the golden rules for motion selection, and then describe two kinds of 
motion selection methods for online hand-eye calibration according to configurations. 

3.1   Golden Rules 

As a rotation matrix R can be expressed as a rotation around a rotation axis k by an 
angle , the relations between , k and R are given by Rodrigues theorem. Moreover, 
Ra and Rb have the same angle of rotation [1]. We can rewrite Ra and Rb as Rot(ka, ) 
and Rot(kb, ) respectively. Our aim in this paper is to sequentially find the pairs of 
consecutive motions (Ai,Bi) and (Ai+1,Bi+1) for hand-eye computation by motion se-
lection from sampled motion series. In this procedure, we should obey the following 
golden rules inferred from Tsai and Lenz’s observations [2], that is 

Rule 1: Try to make (ka,i, ka,i+1) (which is equal to (kb,i, kb,i+1) [2]) large, the 
minimal threshold is set to be . 

Rule 2: Try to make i large, the minimal threshold is . 
Rule 3: Try to make ||ta,i|| small, the maximal threshold is d.   
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(As observation 3 and 5 in [2] are relative to the system configuration, we don’t con-
sider them in this paper). Thus, we can avoid degenerate motions and small rotations in 
solving hand-eye relationship to obtain higher calibration accuracy. 

3.2   Motion Selection Algorithms 

We denote the i-th sampled hand-eye pose and motion by (Pi,Qi) and (Ai,Bi) respec-
tively in this section. ( , , d) are threshold factors determined by experience and the 
detailed definitions are given in Section 3.1. ( A’ , B’ ) and ( ’A’ , ’B’ ) are selected 
motion pairs for calibration (see Fig. 1). For A’  and ’A’ , the rotation axis, rotation 

angle and translation are denoted by ),,( ’’ ’
atk θa , ),,( ’’’’ ’’

atk θa respectively.  

 

 

Fig. 1. Algorithm of motion selection for online hand-eye calibration. 

Firstly, we consider the case when the camera pose Pi in each time instant can be 
estimated during the procedure. 

At the beginning of the calibration process, we need to estimate ( A’ , B’ ). The 

( A’ , B’ ) is recovered from (P1 ,Q1) and (P2 ,Q2) according to Eqs. (1)-(2). If ’θ >=  

and ||’
at|| <=d, we claim that the ( A’ , B’ ) has been found. Or else, we continue to 

compute ( A’ , B’ ) from (P1 ,Q1) and (P3 ,Q3) and judge the value ’θ and ||’
at||  in the 

same way as before. Repeat this procedure until ’θ and ||’
at||  fulfill the given condi-

tions. Here, we assume that the first ( A’ , B’ ) is estimated from (P1 ,Q1) and (Pi ,Qi). 
After ( A’ , B’ ) has been found, another motion pair ( ’A’ , ’B’ ) can be sought starting 
from (Pi ,Qi) and (Pi+1 ,Qi+1) in the similar way as that of  ( A’ , B’ ), but the constrained 

conditions are changed to be ’’θ >= , ||’’
at|| <=d and ),( ’’

a
’
a kk∠ >= . When both mo-

tion pairs are found, we can make one calibration by solving Eq. (7).  
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In the next calibration, we take the last motion pair ( ’A’ , ’B’ ) as the new motion 
pair ( A’ , B’ ), and then continue to seek for new ( ’A’ , ’B’ ) from the successive 
sampled series and make a new hand-eye calibration in the same way as before. 

We have thus derived an online hand-eye calibration algorithm based on iterative 
motion selection: 

Algorithm I 

1. i 2; 

2. iQQA’ 1
1
−= , iPPB’ -1

1= ; 

3. Compute ’θ  and ’
at from A’ ; 

4. If  ’θ >= ����� ||’
at|| <=d , then  go to 6; 

5. i i +1, go to 2; (Sample one more motion) 
6.  j i +1; (Begin to search for ’A’ ) 

7. ji QQ’A’ 1−= , jPP’B’ -1
i= ; 

8. Compute ),( ’’
a

’
a kk∠ , ’’θ and ’’

at from A’ and ’A’ ;  

9. If ),( ’’
a

’
a kk∠ >= and ’’θ  >= ����� ||’’

at|| <=d, then go to 11; 

10. j j +1, go to 7; (Sample one more motion) 
11. Make one hand-eye calibration by solving Eq.(7); 
12. A’  ’A’ , B’  ’B’ ;  
13. i j , j j +1, go to 7 for next calibration. 

When dealing with an unknown scene, pose estimation has to be replaced by an 
algorithm of structure from motion. Therefore, instead of the camera motion Bi from 

pose estimation, a scaled motion ||)( ib,ib,ib,i t/t,RB ||=
�

 can be estimated, details 

refer to [13][14]. In this case, B’  and ’B’ can be computed by motion synthesis 
described in the following.  

Considering two consecutive camera motions B1 and B2, we can get the equivalent 
motion B as follows:  

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

111 TTT 0

tR

0

tR

0

tR
B b,2b,2b,1b,1bb    b,1b,2b,1bb,2b,1b ttRtRRR +== ,        (9) 

For convenience, we use symbol “ ” in the following to denote the motion synthesis 
operation, thus Eq. (9) can be briefly rewritten as: 

B =B1 B2����������������������������(10)�

The corresponding algorithm for online hand-eye calibration from unknown scenes 
is as follows: 

Algorithm II 

1. i 1; 

2. 2
1

1 QQA’ −= , B’   B1 ; 
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3. Compute ’θ  and ’
at from A’ ; 

4. If ’θ  >= ����� ||’
at|| <=d,  then go to 7; 

else, i i +1; (Sample one more motion)  

5.  1
1

1 +
−= iQQA’ , B’  B’ Bi, go to 3; 

6.  j i +1, i i +1; (Begin to search for ’A’ ) 

7. 1
1

+
−= ji QQ’A’ , ’B’  Bj ; 

8. Compute ),( ’’
a

’
a kk∠ , ’’θ  and ’’

at from A’  and ’A’ ; 

9. If ),( ’’
a

’
a kk∠ >= and ’’θ  >= ����� ||’’

at|| <=d,  then go to 11; 

10.  j j +1, go to 7; (Sample one more motion)  
11. Make one hand-eye calibration by solving Eq.(7); 
12. A’  ’A’ , B’  ’B’ ;  
13. i j +1, j j +1, go to 7 for next calibration. 

In Algorithm I and Algorithm II, motion pairs ( A’ , B’ ) and ( ’A’ , ’B’ ) are sought 
by an iterative procedure. To prevent the iteration from performing too many times, a 
threshold could be set to control the number of iterations. 

4   Experiments 

In this section, experiments on synthetic data and real scenes are carried out to validate 
our algorithm, where we adopt Algorithm I. To compare its performance, we make an 
additional experiment by directly solving Eq. (7) without any motion selection. In the 
following graphs, we denote the proposed method by “new method” and the direct 
approach by “traditional method”. 

The motivation of the synthetic experiments is to test the performance of the new 
method by varying three threshold factors. The simulation is conducted as follows: we 
establish a consecutive motion series with 1000 hand stations Qi. We add uniformly 
distributed random noise with relative amplitude of 0.1% on the rotation matrix and of 
1% on the translation vector. We assume a hand-eye setup and compute the camera 
pose Pi, to which we also add uniformly distributed random noise as before.  

For each factor, we calibrate the hand-eye relationship with different threshold while 
fixing the other two factors unchanged. In this way, we get the estimated rotation 

matrix R
�

 and translation vector t
�

. To qualify the results, we take RMS of the errors in 

the rotation matrix and the RMS of the relative errors |||||||| t/tt
�

− in the translation, 

which are customary error metrics in the literature [2][6][7]. Fig. 2 shows the simula-
tion results. On one hand, the motion selection approach exhibits better behavior than 
the method without motion selection when there exist noisy measurements. The 
characteristics of error varying with different threshold validate the rules in Section 3.1. 

From the results of the experiment, we can find that the impact of variation of d on 
the error is unnoticeable. So, in the second experiment, we test the behavior of the new 
algorithm with fixed d and simultaneous variation in ( , ). Fig. 3 shows the result of 
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the second test, from which we can see that the calibration error is hard to be decreased 
when factors ( , ) are great than 30 . Note that in practice, when the two threshold 
increase, the average number of motions in each selection will increase, which will 
decrease the performance of system in real-time applications. 

We also demonstrate the foregoing algorithm on a real setup composed of an in-
frared marker and a pair of CCD cameras which are attached to the end-effector of a 
6-DOF robot (MOTOMAN CYR-UPJ3-B00), see Fig. 4(a). After the stereo rig is 
precisely calibrated, we mount an infrared filter on each camera. Thus, we get an 
infrared navigation system with stereoscopic vision. Without loss of generality, we 
compute the hand-eye transformation between the left camera and the gripper. 

In the test, the robot is fixed on a workbench and the moving cameras observe the 
static infrared mark. We randomly move the gripper to 24 locations with different 
relative rotation or/and translation controlled by program; repeat the test for 10 times. 
For each time instant, gripper pose Qi can be read from robot controller and pose of 
reference object Pi relative to the camera can be solved by binocular vision. We per-
form the hand-eye calibration using the same methods as in the synthetic experiments. 
In the test with motion selection, the values of three factors need to be set by experience 
at first. 

 

Fig. 2. Performances of the new algorithm with variation in ,  or d, which are compared to the 
traditional method without motion selection. The RMS rotation error is shown on the top and the 
RMS relative translation error is shown on the bottom, where the solid with lable “ ” denote new 
method and the dotted denote traditional method. 

As no ground-truth value is available for comparison in such experiments, we 
compared AiX and XBi for each motion i, and then gathered all these errors into RMS 
errors. This kind of measurement was also adopted by Andreff et al.[13]. The results of 
the experiments are shown in Fig 4(b), where the calibration times of traditional 
method does not include degenerate case. From Fig 4(b) we can see that, the average 
RMS error of proposed method is much lower than that of the traditional method. 
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Fig. 3. Performance of the new algorithm with fixed d and simultaneous variation in ( , ), which 
is compared to the traditional method without motion selection. The RMS rotation error is shown 
on the left and the RMS relative translation error is on the right. 

5   Conclusion and Open Issue 

In this paper, we propose an algorithm of motion selection for online hand-eye cali-
bration, which can not only avoid the degenerate cases in hand-eye calibration, but also 
try to decrease the calibration error by selecting appropriate motion pairs. Experimental 
results from simulated data and real setup show that the method can greatly decrease 
the error of online hand-eye calibration. 
 

 

Fig. 4. Real experiment for online hand-eye calibration. (a). Experimental system. (b) Results of 
the real experiment. 

However, the characteristics of gripper motion in different applications are diver-
siform, so the threshold of the three factors should be chosen by experience according 
to the real setup. Open issue includes the following problem: “What is the optimal 
motion selection for online hand-eye calibration?” 
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Abstract. Nowadays, the market-place offers quite powerful and low cost re-
configurable hardware devices and a wide range of software tools which find 
application in the image processing field. However, most of the image process-
ing application designs and their latter deployment on specific hardware de-
vices is still carried out quite costly by hand. This paper presents a new ap-
proach to image processing application development, which tackles the historic 
question of how filling the gap existing between rapid throwaway software de-
signs and final software/hardware implementations. A new graphical compo-
nent-based tool has been implemented which allows to comprehensively de-
velop this kind of applications, from functional and architectural prototyping 
stages to software/hardware co-simulation and final code generation. Building 
this tool has been possible thanks to the synergy that arises from the integration 
of several of the pre-existent software and hardware image processing libraries 
and tools. 

Keywords: image processing applications, component-based development, pro-
totyping, co-simulation, automated code generation 

1   Introduction 

Today, Image Processing (IP) techniques find application in many different domains 
such as automated visual inspection of industrial products, medical imaging or bio-
metric person authentication, among others [1][2]. The marketplace offers many IP-
related products, ranging from platform-optimized software and hardware libraries to 
high-level prototyping and simulation tools. Nevertheless, none of these products 
actually covers the whole process of building IP applications. Actually, the historic 
question of how bridging the gap between design models and final system implemen-
tation remains still open, also when talking about these systems.  
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This paper presents a novel approach to IP application development which is 
aimed to cover the whole life cycle of this kind of products. In order to put this ap-
proach into practice, a new tool has been implemented which, following the growing 
trend toward component-based application development [3], integrates some of the 
previously existing IP-related products, instead of being built from scratch.  

The rest of this paper is organized as follows. The common procedure followed to 
build IP applications is briefly reviewed in Section 2. In Section 3, a new IP Compre-
hensive Development (IP-CoDe) Tool is presented, which is intended to help building 
and evaluating both functional and architectural IP prototypes. The use of this tool to 
develop a complete study case is presented in section 4. Finally, some conclusions 
and future research lines are included in Section 5. 

2   Building IP Applications 

Building IP applications usually requires an initial rapid prototyping stage which 
helps selecting the algorithms that fulfill the system functional requirements. Com-
monly, this functional prototype is implemented by means of a high level program-
ming language (C++, MATLAB, Java, etc), and generally incorporates the function-
ality provided by one of the multiple available IP libraries, e.g. Intel© Open Com-
puter Vision (free Open Source library) [4], Intel© Integrated Performance Primitives 
[5], Matrox© Imaging Library [6], Mathworks© IP Toolbox [7], etc. 

Once the functional prototype has been carefully tested, the application architec-
ture must be defined in terms of a specific platform which might be composed of 
several processors, whether SW or HW, or both. Thus, the initial prototype is parti-
tioned into functional units that can be mapped into the different processing elements. 
This architectural design stage produces a co-prototype which must be tested in order 
to ensure that cost and performance constraints are met for each particular applica-
tion. Testing the selected co-prototype is usually accomplished by means of co-
simulation techniques, which allow evaluating both software and hardware, and their 
interactions (synchronization, data transfer, etc).  

Thus, building IP applications requires a great deal of IP algorithms and configura-
tions to be explored. In fact, different functional prototypes can fulfill the initial IP 
requirements. For each prototype, different SW/HW partitions can be obtained and, 
for each partition, different mappings of its functional units into the various elements 
of the platform can be selected. Finally, different platforms can be considered candi-
dates for a given application.  

Each of these design tasks can be developed by means of different tools, but as 
stated in [8] “a new generation of tool is required which helps bridging the gap be-
tween the exiting design tools. Such tool, should address the functional and architec-
tural design stages, and reach both the software and hardware domains”. 

3   The IP-CoDe Tool: An Integration Experience 

Prototyping is a rapid and inexpensive way to validate system requirements. Usually, 
different prototypes are built in order to test different aspects of the application under 
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development. As a matter of fact, functional models are built as software throwaway 
prototypes by means of specialized tools, different from those needed for architec-
tural co-prototyping, where HW devices must be also taken into account. Integrating 
these tools under a unified environment would ease evolving functional prototypes to 
the corresponding co-prototypes, thus filling the existing gap between application 
design and implementation.  
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Fig. 1. Scheme of the IP application development life cycle using the IP-CoDe Tool. 

In the following sections, our experience with IP product integration to build an IP 
Comprehensive Development Tool is detailed. This tool covers the whole IP applica-
tion development life cycle, as shown in Fig. 1.  

3.1   Functional Design 

The first stage when building any application is to define its functional and non-
functional requirements. IP application functional requirements typically deal with 
the selection of the algorithms that must be applied to input images in order to extract 
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relevant visual features (color, shape, texture, etc), while non-functional requirements 
are commonly related to cost, synchronization and timing issues.  

As stated in section 2, the functional modeling stage is usually accomplished by 
means of one of the multiple IP libraries available. Although these libraries are func-
tionally overlapped to some extent, they cover different aspects and consequently, 
they can be considered complementary. Thus, being able to simultaneously employ a 
mixture of them for building functional prototypes would be both useful and enrich-
ing. However, each IP library uses its own defined data structures, function calling 
conventions and error handling mechanisms, making it difficult to join them together.  

In order to integrate the functionality provided by several of the existing IP librar-
ies and toolboxes [4-7], the IP-CoDe Tool provides a wrapping mechanism which 
allows building homogeneous and inter-connectable IP components from heterogene-
ous IP functions. Wrappers allow mapping data representations, adding functionality 
to (or masking unneeded functionality of) components, and provide a higher level of 
abstraction to the components [9][10].  

The IP-CoDe Tool provides a template for homogeneous IP component genera-
tion. In order to fill in this template, the user must provide (1) the signature of the 
function being wrapped, i.e. the number and type of its parameters, (2) the external 
interface of the component, i.e. the number and type of its connectors, and (3) the 
function that links each component connector to one of the function parameters. Once 
this template has been filled in, the IP-CoDe Tool automatically generates the corre-
sponding wrapper, and thus a new component which is added to a repository of ho-
mogeneous and inter-connectable IP components for its latter use.  

The IP-Code Tool allows building functional prototypes in a very rapid and intui-
tive way due to its Graphical User Interface (GUI), which makes it possible to “drag 
and drop” and interconnect any number of components selected from the repository. 
Any functional model depicted using this tool may be wrapped as well, in order to 
build a new higher-level functional component. 

When the depicted functional prototype seems to be complete, the user can auto-
matically obtain the corresponding code, which can be compiled and linked in order 
to produce a running prototype that allow testing the functional behavior using differ-
ent input data (see Fig. 1). 

3.2   Architectural Design 

Building an architectural co-prototype implies selecting a specific platform on which 
to deploy the functional prototype. Thus, at this stage a SW/HW partitioning must be 
decided and non-functional requirements must be tested. As mentioned in section 2, 
these tests require a co-simulation tool.  

Among the existing simulation tools, Simulink [11] is one of the most popular, 
mainly owing to its straight forward connection to MATLAB and to its graphical 
easy-to-use interface. Actually, Simulink can be used as a co-simulation tool, as both 
SW and HW blocks can be incorporated as a part of the system under simulation. SW 
blocks can be obtained from the many existing Simulink Toolboxes, and can also 
encapsulate MATLAB, C/C++, FORTRAN and Ada functions (S-functions). HW 
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blocks can be obtained from the various HW device-specific Toolboxes (e.g. System 
Generator [12] for the Xillinx FPGA1).  These are some of the reasons why Simulink 
has been selected as the co-simulation tool for the IP-CoDe Tool. 

After a SW/HW partitioning of the functional prototype has been decided (manu-
ally so far), the IP-CoDe Tool automatically deploys the corresponding Simulink co-
prototype (mdl file). Each SW block in this co-prototype is then automatically filled 
in with an S-function automatically built by the IP-CoDe Tool from the correspond-
ing component in the functional prototype. The estimated execution time of each SW 
block is then calculated, as this information is required for timing and synchroniza-
tion purposes during the co-simulation (see Fig. 1).  

In order to fill in the HW blocks, a library of IP high-level HW components has 
been created from a set of low-level functions included in the System Generator Tool-
box for Simulink [11]. Some other HW blocks have also been included in this library 
directly from VHDL2-cores using a wrapper mechanism to allow their interconnec-
tion with the former ones. It is worth noting that all these HW blocks can be directly 
simulated by Simulink3 without needing to buy any specific HW device. However, 
Simulink can also be used for generating and transferring the corresponding VHDL 
code for each HW block to a target FPGA in order to speed up the co-simulation. 

Once the co-prototype is finished, co-simulation allows checking the non-
functional requirement fulfillment. For instance, the execution time information pro-
vided by the co-simulation allows checking whether the synchronization and timing 
requirements are met. In the same way, other low-level HW requirements (e.g. maxi-
mum working frequency or FPGA area occupancy), can also be retrieved and 
checked.  

3.3   Implementation 

After carefully testing and fine-tuning the co-prototype, the final code of the IP appli-
cation can be automatically obtained. Actually, the code associated to each software 
block is obtained during the functional prototyping stage, and the VHDL code corre-
sponding to the HW blocks is straightly obtained by the System Generator Toolbox. 

4   A Practical Study Case: Detecting Contours in Skin Regions 

In order to test the IP-CoDe Tool, a complete IP application has been developed 
which allows detecting contours in human skin regions contained in color images.  

Firstly, a functional prototype of the study case application was graphically built 
using the depicting and interconnection facilities provided by the IP-Code Tool GUI. 

                                                           
1  FPGA stands for Field Programmable Gate Array. 
2  VHDL stands for VHSIC (Very High-Speed Integrated Circuit) Hardware Design Language. 
3  System Generator blocks are supplied with a functionally equivalent software Simulink 

block that can be used for simulation. On the other hand, HW blocks directly obtained from 
VHDL-cores can also be simulated in Simulink using an external tool, e.g. ModelSim [13]. 
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When the prototype seemed to be finished it was compiled and the corresponding 
executable version was automatically generated. However, after testing this prototype 
using several input images, some errors were detected and thus, the prototype had to 
be modified, fine-tuned and recompiled and again.  

Once the functional prototype had been tested and the execution time associated to 
each component had been measured, the corresponding architectural co-prototype 
was built by manually selecting which components should be implemented in HW 
and which ones in SW, thus allowing the Simulink model (mdl file) to be automati-
cally generated and co-simulated. 

It is worth noting that, despite the changes and adjustments introduced during the 
functional prototyping, completing this stage took just a few minutes. On the other 
hand, it also should be noticed that despite the small size of the images employed, the 
co-simulation took about fifteen minutes to complete. In the case of full-sized images, 
the co-simulation time should be measured in hours. This leads to the conclusion that 
changes introduced at the architectural level have a much greater impact in the de-
ploying time than those performed at the functional level.  

 

 

Fig. 2. Simulink co-simulation screenshot. SW blocks are shown in a plain-color while pat-
terned ones denote HW components. Images resulting from each SW/HW processing step are 
shown together with the corresponding temporization. 

The final co-prototype and the co-simulation results are shown in Fig. 2 where dif-
ferent kinds of blocks are shown: patterned blocks represent HW components while 
plain-color ones correspond to SW elements. HW blocks were obtained from two 
different sources: System Generator Simulink Toolbox (Xillinx), and a wrapped 
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VHDL-core obtained from Nallatech [14]. Similarly, SW blocks were obtained from 
Matlab C/C++ and Intel OpenCV functions. White blocks represent components 
needed for the simulation (visualization probes or external elements, e.g. a camera 
model) but that will not have any code associated in the final implementation.  

Fig. 2 shows the images resulting from every SW/HW processing step. These im-
ages show the instant when they have been generated, thus allowing estimating the 
temporization of the final implementation. Fig. 3 shows the results obtained by the 
co-prototype using a different input image. This example proves that the designed 
application is robust to different skin colors. 

 

 

Fig. 3. Results obtained using a different input image. From left to right: original image, 
smoothed intensity component, skin mask obtained by applying a threshold to the chroma 
components, Canny contours [15], and logical AND applied to the two previous images. 

5   Conclusions and Future Research 

This paper presents a new approach to IP application development that covers from 
functional and architectural prototyping stages to SW/HW co-simulation and final 
code generation. Building such a comprehensive tool has been possible thanks to the 
synergy that arises from the integration of several preexistent IP-related products. A 
complete IP application for contour detection in human skin regions has been wholly 
developed using the IP-CoDe Tool as a study case. 

At present, the IP-CoDe Tool only allows building feed-forward functional proto-
types. Extending this functionality to allow the presence of loops will widen the range 
of applications that could be created. It would also be interesting to find new tools, 
which being integrated with the existing ones could help automating the SW/HW 
partitioning to some extent, finding bottlenecks, or detecting which parts of the gen-
erated code are more susceptible of being parallelized.  
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Abstract. This paper shows how the Xilinx System Generator can be used to 
develop hardware-based computer vision algorithms from a system level ap-
proach without the necessity of in-depth knowing neither a hardware descrip-
tion language nor the particulars of the hardware platform. Also, it is demon-
strated that Simulink can be employed as a co-design and co-simulation plat-
form for rapid prototyping of Computer Vision HW/SW systems. To do this, a 
library of optimized image processing components based on XSG and Matlab 
has been developed and tested in hybrid schemes including HW and SW mod-
ules. As a part of the testing, results of the prototyping and co-simulation of a 
HW/SW Computer Vision System for the automated inspection of tangerine 
segments are presented. 

Keywords: image processing applications, FPGAs, prototyping, co-simulation, 
Simulink.  

1   Introduction 

Nowadays, the key for implementing high-performance digital signal processing 
(DSP) systems, especially in digital communications, video and image processing 
applications, is the use of programmable logical devices, in particular Field Pro-
grammable Gate Arrays (FPGAs). However, for those applications in which high-
level complex algorithms are involved, a complete HW implementation is unpracti-
cal. In these cases it is usual to employ a hybrid SW/HW implementation, in which 
the hardware (typically a FPGA) carries out the acceleration of specialized functions 
and a processor, usually a conventional CPU, accomplishes general purpose comput-
ing. 

Traditionally, the HW/SW application prototyping is performed in different envi-
ronments, using a high-level programming language for the SW, e.g. C, C++ or Mat-
                                                           
*  This work has been partially supported by the Spanish CITYT Project COSIVA (TIC 2000-

1765-C03-02).  
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lab, and a Hardware Description Language (VHDL or Verilog) for the HW descrip-
tion. This makes the co-simulation difficult, and leads to two versions of the same 
code in different programming languages. Moreover, the rapid evolution of FPGAs 
makes the time employed in the development of hardware-based applications be a 
critical parameter. For these reasons, some efforts have been made to construct co-
design environments allowing rapid prototyping, high-level modeling, co-simulation, 
and straightforward HW/SW code generation [1-3]. 

Currently, there exist two main tendencies in the system-level co-design environ-
ments: high-level languages [4] and dataflow-based visual environments [5, 6]. High 
level languages are efficient for specification modelling and algorithm verification, 
but they are not suitable for the implementation of high-performance dataflow sys-
tems as in the Computer Vision Systems (CVS). On the contrary, the visual dataflow-
based environments are similar to the traditional schematic-based tools, which usually 
provide libraries composed of blocks with a high degree of functional abstraction that 
allow graphically constructing system models.  

Simulink is an extension of the widely-used MATLAB environment that is spe-
cifically oriented for graphic prototyping and simulation of dynamical systems [7]. It 
also has a natural interface with MATLAB, so that its analysis and graphical repre-
sentation tools can be used in the MATLAB workspace for post-processing and visu-
alization. Like MATLAB, Simulink supports the extension of its functionalities by 
means of the add-in of application-specific libraries of components (toolboxes). Since 
the inclusion of toolboxes that allow the simulation and generation of hardware com-
ponents, as the DSP Blockset toolbox or more recently the Xilinx System Generator 
(XSG) [5] and the Altera DSP Builder Altera [6] toolboxes, Simulink has become a 
powerful tool for HW/SW co-design [8, 9]. 

The Xilinx blockset contains high-level blocks that map intellectual property (IP) 
cores that have been handcrafted for efficient implementation in the target Xilinx 
FPGA. However, the XSG toolbox includes only some basic blocks that can be used 
as “bricks” for developing more complex structures. Based in these simple blocks, in 
this work the development of a visual processing library is presented. The library 
components have been optimized both in processing efficiency and in FPGA occu-
pancy. Taking advantage of the XGS link with Matlab, the library blocks have been 
parameterized. This greatly eases the use of the library, as it can be used for a wide 
variety of applications without the need for the user of changing the code. Also, some 
Matlab-based software components have been implemented to allow co-simulation. 
They constitute the foundations of a complete HW/SW co-design and co-simulation 
Simulink-based scheme that will allow the rapid prototyping and implementation of 
hybrid CVS applications using Xilinx FPGAs.  

The rest of this paper is organized as follows. The blocks of the visual processing 
library, jointly with a brief description of some of the underlying algorithms are ex-
plained in Section 2. The steps followed to design an HW/SW CVS using this library 
are briefly reviewed in Section 3. In Section 4, the use of this library to develop a 
complete study case is presented. Finally, conclusions and future research lines are 
included in Section 5. 
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2   The HW-SW Visual Processing Library 

The designed CVS library consists of Simulink blocks. This library, whose purpose is 
the modelling and generation of HW-SW image processing and computer vision 
applications, behaves as any other Simulink library, and fully integrates with the 
Matlab/Simulink simulation environment. The design of a HW-SW system is thus 
performed by “dragging and dropping” the library blocks onto the Simulink editor, in 
which they are linked to construct the functional prototype. 

2.1   HW Blocks 

The HW components process the input pixels as they come in raster-scan order (from 
left to right and from top to bottom), so there is no necessity of having a whole image 
stored to begin the processing. This reduces the storage requirements and the amount 
of memory accesses, which generally constitute a bottleneck.  

All the blocks have been homogeneously designed to assure interconnectivity. At 
each clock cycle, every block receives jointly with the input data (usually a pixel 
value) two control signals corresponding with the synchronization signals: line blank 
(LBL) and frame blank (FBL). Besides of the output data (generated at each cycle), 
the blocks include two additional output signals corresponding with the LBLo and 
FBLo control signals of the output stream.  

The designed blocks are straightforwardly parameterized, so that they can be used 
for processing images with different sizes or formats without reprogramming. The 
arithmetic precision of the blocks in the data path is specified using Matlab expres-
sions, making possible to minimize the hardware used, and avoiding the possibility of 
overflow. Therefore, changing parameters automatically gives an appropriately cus-
tomized implementation. 

Several image processing algorithms have been implemented using XSG. 

• Colour space conversions. 
• Image cropping. 
• Brightness/Contrast shift and scale. 
• Threshold and double threshold. 
• Specific filters: Gaussian, Laplacian, Prewitt, Sobel, Mean, Sharpening Me-

dian… 
• Generic convolutions 3x3 and 5x5. 
• Morphological binary operations with generic 3x3 and 5x5 structuring elements: 

erosion and dilation. 
• Logical and Arithmetic operations: and, or, nor, add, sub… 
• Connected Component Labelling. 
• Calculus of the zero and first-order moments.  

Some of them are detailed in the following lines. 
Specific convolutions: As there exist some very frequently used convolution ker-

nels, as the Prewitt, Laplacian and the Sobel kernels for edge detection, the Mean and 
Gaussian filters for noise filtering or the Sharpening kernel for image enhancement, 
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specific optimized code has been developed for them, to minimize resources while 
achieving high performance. 

The input data stream arrives to the convolver in “row scan” format, which means 
that for every processing pixel it is necessary to wait until all the elements involved 
are available. Therefore, it is required a delay to store N-1 image lines (N being the 
row number of the convolution mask) that is implemented using N-1 FIFO memories.  
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Fig. 1. Two implementations of a 3x3 convolution. Left: proposed scheme. Right: Lisa’s 
scheme.  

Lisa [10] offers a column-access architecture, which minimizes the amount of re-
sources used in the FPGA by in-parallel processing the columns of pixels involved on 
each computation. Besides, by decomposing the mask weights in their binary repre-
sentation, many multipliers can been replaced by shift-registers and adders. From the 
Lisa architecture, the convolutions have been optimized by decreasing the number of 
adders. To illustrate the followed procedure, in Fig. 1 the Lisa scheme for a simple 
filter is shown on the right, while the implemented one is shown on the left of the 
figure.  

Another implemented algorithm that requires special mention is the connected 
component labelling. This algorithm is usually in the base of high-level image proc-
essing. Its input is a binary or grey-level image, while its output is a symbolic image, 
in which a label (usually a natural number) is attributed to each pixel in the image to 
symbolize that it belongs to an object represented by the label.  

Since the shape of the object can be arbitrary, connected component labelling in-
volves significant data computation and communication between the pixels in the 
image. To solve this problem, several sequential and parallel algorithms have been 
proposed [11]. In the library, the classical algorithm, which makes two forward raster 
scan passes through the image, has been implemented.  

However, most times labelling is only required as a previous step for calculating 
properties of the objects as their masses, centres-of-mass or higher-order moments. 
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Taking this into account, special blocks have been constructed that perform these 
calculations without needing the second forward pass through the image, thus saving 
processing time and FPGA occupancy. 

2.2   SW Blocks 

Generic high-level image processing algorithms have been implemented by encapsu-
lating in Simulink blocks some functions from the Image Processing Toolbox of 
MATLAB. In the construction of these wrappers, it has been taken into account that 
while the hardware processing is pixel-oriented, the software processing is frame-
oriented. This causes synchronization problems, as the SW and HW will typically run 
on different frequencies. To tackle this, each SW block has been provided with an 
enable input that is marked as TRUE every time a frame is available from the HW. 

For allowing the simulation of a whole system including acquisition, some blocks, 
which do not generate code in the final implementation, have been developed.  

Camera blocks. Several camera blocks are provided, which model the behaviour of 
various common digitizers and non-interlaced digital cameras. Currently, there are 
available three kinds of blocks, giving YCrCb 4:2:2, Luminance and RGB output 
signals respectively. These blocks read one or more image files (they accept most of 
the common file formats for image storage) and provide, jointly with the correspond-
ing pixel values, the appropriate LBL and FBL synchronization signals.  

Viewer blocks. A number of viewer blocks have been built, to allow an easy inspec-
tion of the data flowing by the pipelines. At the moment, there are viewers for all the 
image types given by the camera blocks, plus several specific viewers that show the 
outputs of some blocks like the labelling block or the area and centre-of-mass blocks. 

3   Design Flow 

Using this library, to create a CVS application the user must only drag the corre-
sponding blocks from the library and drop them into a Simulink empty model, then 
interconnect the blocks to form the application flow diagram. The constructed model 
can be simulated in Simulink, employing the stimuli and visualization blocks in-
cluded in the library. This simulation allows verifying if the desired functionality has 
been achieved, and it is considerably faster than simulations performed by specific 
hardware simulators as ModelSim [12]. Due to the library HW blocks are made up of 
XSG simple blocks, for the HW the simulation results are identical to those that 
would be obtained in the real FPGA implementation. 

After simulation, if the functional requirements are met, the user must decide on 
the target platform for the HW partition. Once the target platform has been selected, 
the hardware code (VHDL) can be automatically generated. This code incorporates 
optimized Xilinx LogiCORES, thus assuring that the implementation will be efficient. 

The generated HW code is automatically encapsulated inside a VHDL project, in 
which the specific code for I/O interfacing related to the selected platform is in-
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cluded. This is required because XSG is a good setting in which to implement data 
paths, but is less well suited for sophisticated external interfaces that have strict tim-
ing requirements (for example, it can not work with several external clock sources). 
To tackle this, a HDL wrapper has been created that automatically generates the nec-
essary code for the I/O interfaces, i.e. the video transfer from the digitizer (or from 
the camera), the transfers to/from external memories and the data transfer to/from SW 
blocks. As said before, this wrapper is specific for each HW target platform.  

This enveloping VHDL project can then be automatically synthesized. As a result 
of the synthesis, the cost (measured in FPGA area occupancy), the maximum working 
frequency for the FPGA and the HW execution time are obtained. 

Finally, if the temporal requirements are fulfilled, the FPGA on the HW platform 
is configured with the bitstream file (automatically generated during the synthesis), 
by means of the appropriate tool provided by the manufacturer. 

4   A Practical Study Case 

In order to test the capabilities of the library, a CVS for tangerine segment inspection 
has been constructed from scratch. The objective of the CVS is to reject the tangerine 
segments that appear split in pieces, or that are simply too small to be canned. This 
must be done in real-time, because the inspection system is working on line in the 
final step of the canning line. This canning line is composed of a conveyor belt, 
which transports the tangerine segments under a camera and through several air-jet 
ejectors to the canning mechanism. 

The scheme of the HW/SW proposed CVS is shown in Fig 2. The algorithm works 
as follows: as the pixel information is submitted from the camera, a cropping is per-
formed to discard pixels from areas outside the conveyor belt. On the passing pixels, 
a 3x3 Gaussian filter (with standard deviation = 0.9) is applied to remove noise. Thus, 
a thresholding is carried out to separate the tangerine segments (dark) of the conveyor 
belt (bright). A binary opening (erosion + dilatation) is then performed with a 3x3 
solid structural element, to remove binary noise in the form of small blobs. After this, 
the pipeline forks. In one of the lines, the binary image is processed to obtain the area 
and center-of-mass of the blobs. This information is fed into a HW/SW interface 
block which pumps the data into the SW blocks. Simultaneously, in the other line, 
edge detection is carried out, so that a binary image containing the borders of the 
blobs is obtained. This image is processed by a block that gives the area of these 
borders. In this way, a measure of the perimeter of the blobs is obtained and, though 
the HW/SW interface block, it is fed to the SW processing blocks.  

The HW part of the algorithm was implemented in a Nallatech Ballynuey 3 card 
[13]. This card is a general-purpose PCI board, specially designed for prototype de-
velopment, and it is based on a Virtex 2V3000 FPGA. It incorporates two external 
ZBT SSRAM memories (8 Mb) and four DIME slots of expansion. In one of them, a 
Nallatech Ballyvision module was connected, to allow input from an external PAL 
camera. 
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Fig. 2. Simulink co-simulation screenshot. SW blocks are shown in a plain-color while pat-
terned ones denote HW components. Images resulting from some SW/HW processing steps are 
shown together with the corresponding temporization cycles. 

As a result of the synthesis on the Virtex 2V3000 FPGA, the proposed hardware 
architecture is able of processing 778x576 images with a cycle time of 11.62 ns (82 
MHz). This implies that more than 190 frames per second can be processed, thus 
allowing a high pace to the conveyor belt.  

5   Conclusions 

In this work, a CVS library has been developed, which allows using the Mat-
lab/Simulink environment for prototyping, co-simulating and automatic HW code 
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generation of HW/SW computer vision systems. The hardware blocks, based on the 
XSG tool, have been parameterized and optimized. Also, the HW code generation has 
been fully automated, including wrapping mechanisms that extend the original capa-
bilities of the XSG. The result is a library of blocks fully integrated in Mat-
lab/Simulink that greatly eases the functional prototyping, verification and final im-
plementation of HW/SW computer vision systems without the necessity of mastering 
neither a hardware description language nor the intricacies of the hardware platform.  

To test the CVS library, a HW/SW computer vision system for the automated in-
spection of tangerine segments has been constructed form scratch, with excellent 
results. 
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Abstract. An effective matrix operation is critical to process 2-D DCT. This 
paper presents a hierarchically controlled SIMD array (HCSA) well suited to 
matrix computations, in which a conventional 2-D torus is enhanced with the 
hierarchical organization of control units and the global data buses running 
across the rows and columns. The distinguished features of the HCSA are the 
diagonally indexed concurrent broadcast and the efficient data exchanges 
among PEs through either row or column broadcast. Therefore, the HCSA can 
provide significant improvement on computation steps of DCT. For the per-
formance evaluation, an algorithmic mapping method is used and the number of 
computation steps is analytically compared with semisystolic architecture. 

1   Introduction 

The demand of high-speed computing architecture for discrete cosine transform 
(DCT) has been increased continuously due to the dominant popularity of digital 
signal processing and video compression. Moreover, it has been included in current 
image/video standard specifications.  

The primitive operation of DCT is based on matrix computations in which parallel 
processing techniques must be considered for real time processing with large 2-D 
data-sets. This operation is characterized as data intensive tasks accompanied by 
heavy memory accesses; on the other hand, their computational complexities are 
relatively low. Thus, it naturally maps onto SIMD (Single Instruction Multiple Data 
stream) parallel processing on 2-D array processors with distributed memory. Corre-
sponding to the growing fabrication technology and CAD tool advances, which allow 
the implementation of a complex system on a chip, SIMD arrays become increasingly 
important as coprocessors in domain specific systems with the form of application 
specific integrated circuits (ASICs) [1, 2] and reconfigurable systems [3]. 

This research proposes a modified 2-D SIMD array architecture, called hierarchi-
cally controlled SIMD array (HCSA), in which a conventional 2-D mesh of n2 proc-
essors with wrap-around links is enhanced with the hierarchical organization of con-
trol units and the global data buses. They enable efficient data movements on the 
proposed architecture, so that the HCSA is well suited for implementing 2-D DCT 
using row-column decomposition method by reducing the computation steps and 
cycles.  
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In the next section, we describe the DCT algorithm and the computational com-
plexity. Section 3 introduces the architecture and operational model of the HCSA 
system. In Section 4, 2-D DCT is mapped on the HCSA and the result is compared in 
Section 5. Finally, the paper ends with conclusions in Section 6. 

2   2-D DCT Algorithm  

The 2-D DCT can be described as a transformation from a 2-D matrix of pixels to 
that of spatial frequency information. The transformed matrix contains many small 
values or zero entries, so that the compression of such data using standard techniques 
becomes very straightforward. 

For an input matrix x(m, n) and an output matrix z(k, l) with {0  m, n, k, l  N-
1}, the forward N×N 2-D DCT is defined as 
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Equation 1 can be rewritten in matrix form as 

TAXAZ = , (2) 

where X is the source pixel (spatial domain) data, Z is the DCT output coefficients 
(frequency domain), and A is an orthogonal matrix defined as 
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A naive implementation of Equation 1 requires N 
4 multiplications. Alternatively, 

the 2-D DCT can be computed by applying the 1-D DCT by rows (columns) and 
then, by columns (rows) due to separable property of 2-D DCT. This approach is 
called the row-column decomposition method and requires 2N instances of N-points 
1-D DCT to implement an N×N 2-D DCT, resulting in 2N 3 multiplications.  

The 1-D DCT may be computed by using a direct approach based on the fast co-
sine transform (FCT) method [4] or an indirect strategy based on the discrete fourier 
transform [5]. Even though the indirect approach usually requires more number of 
operations than the direct approach, it has been shown [6] that efficient algorithms 
can be obtained by transforming two input data streams simultaneously. These ap-
proaches need to transpose the intermediate results by using a memory array, thus 
leading to a high circuit complexity and a long latency for loading and unloading.  

Another approach to compute directly the 2-D DCT was proposed without decom-
posing it into two successive 1-D DCTs [7]. Although this approach requires the least 
number of multipliers and adders, the structure of the resulting architecture is very 
complicated and the interconnection complexity is high. 
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3   The Architecture and Operational Model 

The HCSA consists of a global control unit (GCU), n local control units (CUs), n2 
processing elements (PEs), and n row buses and n column buses, as shown in Fig. 
1(a). All PEs are connected with the torus interconnection. Both CUs and PEs have 
their own memory, called the control memory (CM) and the processing memory 
(PM), respectively. Here, an example of 4×4 PE configuration is shown. 

Differently from the conventional SIMD array having a single control unit, the 
control system of the HCSA is configured hierarchically, consisting of a GCU and n 
local CUs. The GCU controls and synchronizes all n local CUs, providing all the 
interfaces with outsides for programming and communications. The n local CUs are 
configured diagonally and controls the PEs connected to its corresponding group. In 
addition, two types of global bus are enhanced for horizontal data broadcast with 
row-control mode (RC-mode) and vertical data broadcast with column-control mode 
(CC-mode). 

The HCSA could be utilized for the matrix-oriented data intensive applications 
with efficient data movement. First, the HCSA can allow the diagonally indexed 
concurrent broadcast, which enables the efficient delivery of each operand vector to 
other PEs at the same time rather than sending each element of an operand vector that 
is a common way in conventional 2-D SIMD arrays. Therefore, the matrix-by-vector 
products can be performed in a single cycle because the transmission operation of an 
operand vector can be overlapped with multiplication. Second, the HCSA can provide 
a direct connection between the PEs connected to the same bus by the RC-mode and 
CC-mode, which are especially suitable for the computational model of DCT.  
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Fig. 1. Architecture: (a) Overall structure, (b) PE organization. 

Each PE in the HCSA is a simple processor consisting of an ALU, a shifter, a set 
of general-purpose registers, several special-purpose registers, and dual ported mem-
ory as shown in Fig. 1(b). Special purpose registers are devised for row/column 
broadcasting and neighboring PE communications. Under SIMD mode, all PEs are 
receiving instructions from local CUs and executing same operation with different 
data. 
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As described above, the HCSA system has two different types of controllers: the 
GCU and local CUs. The GCU performs the interaction between the HCSA and the 
outer system, i.e., host processor (HP) or master processor (MP). The interaction 
mechanism of the control transfer between the outer system and HCSA is performed 
via the conventional subroutine calling mechanism, which can initiate its correspond-
ing HCSA subroutine call in order to differentiate it from any other conventional 
subroutine calls. The local CUs directly perform the control of their associated PE 
groups. 

The control mode of the HCSA system is classified as RC-mode and CC-mode. In 
the RC-mode, each local CU can control the same row PE group and in the CC-mode, 
the same operation is performed on the column basis. The overall execution flow is as 
follows. First, the HP compiles an application program and stores it on the secondary 
storage. When this program is to be executed, the HP loads that program into its 
memory. At this moment, the parallel code and data blocks are loaded into the CM 
and the PMs, respectively. After that the HP starts executing that program. When the 
HP encounters any calling instruction to initiate the HCSA, the control is transferred 
to the GCU of HCSA. And this control will be returned back to the HP when the 
GCU completes the called HCSA subroutine. Once the HCSA is initiated, the GCU 
sequentially broadcasts the parallel instructions to the local CUs, and then local CUs 
broadcast the control signals to their associated PE groups concurrently.  

4   2-D DCT on HCSA 

The HCSA system can effectively map 2-D DCT using the row-column decomposi-
tion approach without the transposed matrix that is generally required in the existing 
architectures [1]. For our mapping processes, the following assumptions for the 
HCSA system and 2-D DCT are made. The source input matrix X, the DCT coeffi-
cient matrix A, and its transposed matrix AT for 2-D DCT are supposed to be stored in 
the memory block of each PE prior to the processing. The size of each matrix and the 
number of DCT block number of any source input are assumed to be N×N and L, 
respectively. The size of macro block is 8×8, so that it is assumed that the number of 
processing units, i.e., P, is not smaller than 82. 

The pseudo code of the proposed 2-D DCT algorithm is shown in Fig. 2(a). Here, 
each PEi,j for all 0  i, j P -1 computes in parallel by accessing the memory 

block PMi,j. First, every PEi,j fetches the element ai,j of Ai,j and aj,i of Aj,i into their 

local registers in parallel in line 3 and 4. Second, every PEi,j fetches the element xi,j[l] 

of the l-th DCT block matrix X [l] to their local registers in parallel in line 8. Third, 
the parallel 1-D row DCT procedure, rowDCT-HCSA(l) and the parallel 1-D column 
DCT procedure, colDCT-HCSA(l), are consecutively called shown in Figs. 2(b) and 
2(c). Finally, every PEi,j stores the element zi,j of the DCT output matrix Zi,j[l] to their 

local memory. Those 2~4 Steps are iteratively performed for l = 0, 1,…, L-1 as 
shown in lines 6~15 of Fig. 2(a).   



2-D Discrete Cosine Transform (DCT) on Meshes with Hierarchical Control Modes      679 

The row DCT procedure, rowDCT-HCSA(l) is shown in Fig. 2(b) and the comput-
ing process is described as follows. First, every PE m(j), j (m(j) = (j+k) mod P ) con-

currently broadcasts the element aj,m(j) to its own column processor group by CC-

mode; and then every PEi,j multiplies the operand broadcasted by the element xi,m(j)[l] 

and accumulates the result product as shown in lines 5~7. After finishing the multi-
ply-and-accumulate (MAC) operation, every PEi,j shifts the element xi,m(j)[l] to the left 

as shown in line 8. The above processes are repeated until finishing the computation 
for the entire matrices. The computing process of the column DCT procedure, 
colDCT-HCSA(l) is basically the same as the row DCT procedure, except broadcast-
ing mode and shift direction. The column DCT procedure uses RC-mode for broad-
casting and operand shift up shown in Fig. 2(c).  

 

Algorithm 2. Row DCT Stage on HCSA

     { define macro for index }
1.    #define  m(x) ((x+k) mod N)
     { Row DCT procedure on the HCSA }
2.  procedure rowDCT-HCSA ( l )               { Y = XAT }
3.  for k = 0 to N -1 do
     {input-by-transposed DCT coefficient MAC operation }
4.            parbegin all 0 = i  = N-1, 0 = j = N-1 do
5.         PEm(j), j[l] broadcasts aj, m(j) by CC-mode;
6.    PEi, j[l] computes xi,m( j)[l] aj, m(j);
7.         PEi, j[l] computes yi j[l] += xi,m( j)[l] aj, m(j);
8.    PEi, j[l] shifts left xi,m( j)[l];
9.            parend  {line 4 parbegin}
10.      endfor  {line 3 for}
11.  endprocedure

Algorithm 1. 2-D DCT
{ 2-D DCT procedure on the HCSA }

1.    procedure 2D-DCT ( )
   // 2-D DCT ( row-column decomposition method )

2.    parbegin all 0 = i = N-1, 0 = j = N-1 do { DCT coefficients loading }
3.        PEi, j reads aj, i; { for rowDCT-HCSA }
4.        PEi, j reads ai, j; { for colDCT-HCSA }
5.    parend  {line 2 parbegin}

6.    for l = 0 to L  -1 do
7.        parbegin all 0 = i = N-1, 0 = j = N-1 do { input pixel loading }
8.        PEi, j[l] reads xi, j[l];
9.        parend  {line 7 parbegin}
10.      rowDCT-HCSA (l); // call procedure rowDCT-HCSA
11.   colDCT-HCSA (l); // call procedure colDCT-HCSA
12. parbegin all 0 = i = N-1, 0 = j  = N-1 do { output pixel storing }
13.   PEi, j[l] writes zi, j[l];
14. parend  {line 12 parbegin}
15. endfor  {line 6 for}

16.   endprocedure

Algorithm  3. Column DCT Stage on HCSA

     { define macro for index }
1.    #define  m(x) ((x+k) mod N )
     { Column DCT procedure on the HCSA }

2.   procedure colDCT-HCSA ( l )  { Z = AY }
3. for k = 0 to N -1 do
      {DCT coefficient-by-rowDCT value MAC operation }

4.           parbegin all 0 = i  = N-1, 0 = j = N-1 do
5.    PEi, m(i)[l] broadcasts ai, m(i) by RC-mode;
6.    PEi, j[l] computes ai, m(i) ym( i), j[l];
7.    PEi, j[l] computes zi, j[l] += ai, m(i) ym( i), j[l];
8.    PEi, j[l] shifts up ym( i), j[l];
9.           parend  {line 4 parbegin}
10.     endfor  {line 3 for}
11.  endprocedure

(a)

(b) (c)  

Fig. 2. Algorithms: (a) 2-D DCT, (b) Row-DCT, (c) Column-DCT. 

Consequently, the number of computation steps required for the parallel 1-D row 
DCT and column DCT by the HCSA system can be obtained as 
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In the above equation, each of Tbroadcast, Tmult, Tadd, Tsend, and Tstore is assumed to 

take one unit time. According to Algorithm 1 of Fig. 2(a) and Equation 4, the number 
of computation steps required to perform the DCT of the L input block by the HCSA 
system can be obtained as 
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Therefore, the total number of cycles for computing 2-D DCT becomes 2LN and a 
4×4 2-D DCT requires 8 (= 2×L×N = 2×1×4) cycles. The communication steps of the 
row DCT, Y = X×AT and the column DCT, Z = A×Y are illustrated in Figs. 3(a) and 
3(b) for N =4 and P =16, respectively. 

As a result, the HCSA system does not require the transpose memory for transpo-
sition, which consumes much area for global connections and much time for loading 
and unloading. In addition, the HCSA system is not restricted by the transform length 
N to be a prime number [8] or an integer power of 2 because this proposed system 
can be easily scaled without modifying the basic control scheme and PE structure.  
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Fig. 3. Communication steps: (a) Row DCT Y = X ×AT, (b) Column DCT Z = A ×Y. 

5   Performance Evaluation 

Lim et al. proposed semisystolic arrays for the unified computation of 2-D DCT that 
did not require transposition [8], in which an intermediate approach was allowed to 
design an architecture having throughput and circuit complexity between the ex-
tremes of the previous cases. Therefore, this semisystolic architecture is compared 
with the proposed algorithm onto HCSA in terms of computation cycles. 

Kung [9] proposed two types of semisystolic array for the multiplication of two 
N×N matrices: Type 1 and Type 2. In Type 1, output data are not produced in the 
boundary cells of the array; in Type 2, input data are needed to be preloaded into the 
cells of the array. Fig. 4(a) depicts the architecture of two types of semisystolic array 
for matrix multiplication C=AB with N=4 with their PE structure. Here, Hin and Hout 

represent the horizontal input and output, respectively; Vin and Vout represent the ver-

tical input and output, respectively. Rij is a value saved in a register of the the ij-th 

PE. 
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Fig. 4. Performance comparison: (a) Semisystoric array, (b) The computation cycles as the 
image size M changes (P=64). 

In Type 1 semisystolic array shown in Fig. 4(a), each PE performs a multiply-
accumulate operation. In N cycles, each PE computes an inner product of a row of the 
horizontal input and a column of the vertical input. The latency is defined as the 
elapsed time between the first data entry point and the moment when output data are 
available. The cycles per datum (CPD) is the number of clock cycles to compute each 
point of the transform which is an indication of the average latency. This N×N sys-
tolic array has a latency of 3N–2 and a CPD of N. This array can be defined as semi-
systolic since the output data are not produced in the boundary cells of the array, such 
that it has overhead for the output to be shifted out of the array. In Type 2 semisysto-
lic array, to compute C=AB, each component of matrix B is preloaded into the array 
with one element of the matrix in a register within each PE, while matrix A is fed into 
the array. Each PE multiplies the horizontal input by the register value and adds this 
to the vertical input to produce the vertical output. The inner product of a column of 
the input matrix and a column of the stored matrix is computed for every N. In [8], 
two types of systolic arrays are combined into one array, so that input and output 
move along the axes and intermediate result does not move. In this way, the systolic 
array does not require any transposition and the total cycles for computing 2-D DCT 
becomes (4N–2)L when L is the number of DCT blocks. 

Consequently, the number of computation cycles on the HCSA with its corre-
sponding algorithms could be reduced significantly compared with that of the semi-
systolic array. Furthermore, the semisystolic array requires the different behaviors of 
PEs because of combining the two types of semisystolic arrays; on the other hand, 
HCSA performs the same behaviors of PEs owing to using the SIMD execution. 

For performance evaluation, an 8×8 DCT block (N=8) is used. Fig. 4(b) shows the 
number of computation cycles as the size of an image varies from 8×8 to 1024×1024 
when the number of processors is 64. The value in parenthesis of the x-axis presents 
the number of DCT blocks in the corresponding image size. According to Fig. 4(b), 
the performance is improved in proportion to the size of image, i.e., the number of 
DCT blocks, and also it shows that the performance of HCSA is better than semisys-
tolic array by reducing 46.7%~50.0% of the total cycles. 
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6   Conclusion 

A new 2-D torus is presented. It is enhanced with the hierarchical organization of 
control units and the global data buses and targeted at achieving a high performance 
on the matrix computations of 2-D DCT. It has the advantages of the diagonally in-
dexed concurrent broadcast and the efficient data movements between PEs. There-
fore, the proposed array can achieve considerable performance gains on matrix com-
putations by reducing data movements frequently occurred in previous SIMD archi-
tectures, so that it is suited to the operations for matrix-by-vector and matrix-by-
matrix multiplication. For the performance evaluation, an algorithm mapping method 
is used and the computation step is compared analytically with the semisystolic array. 
The HCSA could reduce 46.7% ~ 50.0% of the cycles required by 2-D DCT algo-
rithm mapped on the semisystolic array.  
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Abstract. In this paper we present a codesign methodology for high-
performance Automated Visual Inspection systems (AVIs). The proposal con-
sists in reference hardware/software architecture and its associated co-
verification environment. The codesign method is stepwise refinement-based 
process that starts with a preliminary hw/sw partition based on the reference ar-
chitecture. During refinement the selected hardware blocks are coded using the 
high level language Handel-C, and the rest of the system using a plugin library. 
This library allows to model different external components to hardware (soft-
ware, external devices, etc…) with a behavioural, timing and performance view 
using software languages like C/C++. As a result of this design flow, we are 
able to verify and develop AVI systems with a significant improvement on tra-
ditional hardware/software codesign times.     

1   Introduction 

Product inspection is an important part of today’s highly competitive industrial pro-
duction (textile, agriculture and food, canning, etc..). The implementation of auto-
matic systems that carry out this tasks show multiple advantages, however factors as 
throughput or economic cost are decisive in order to evaluate its viability. For appli-
cations that have to be integrated in production lines (on-line AVIs), which generally 
require a high speed response, hardware/software systems based on reconfigurable 
devices (mainly FPGAs) are, a priori, a valid alternative compared with commercial 
systems based on general purpose microprocessors and/or DSPs [1] [2].  Indeed, re-
configurable devices are an easy way to implement specific pieces of hardware for 
accelerating the more time consuming processes of a system. However, due to the 
processing heterogeneity that inspection algorithms perform, FPGAs are, at the mo-
ment, unable of supporting entirely this application specific domain and it is neces-
sary a combined use of hardware and software components to reach both economics 
and performance requirements. Nevertheless, although has been reported some recon-
figurable prototypes developed for this aim [3], the number of them implanted on 
industrial environments is very limited. One of the main reasons is that programming, 
verifying and fine tuning of these hardware/software systems is still a costly task that 
increases the cost and the development time.  
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In this respect, several tools have been developed for the simulation of image proc-
essing systems coded with HDLs (hardware description languages) [4], [5]. Due to 
the low-level of the description style (normally structural or RTL) we get very realis-
tic performance and area estimations but this generally results in very long simula-
tions times, and is thus rarely used.  In addition, HDLs are not very popular between 
the vision systems developers that normally work with software high-level languages. 
Other approaches are being adopted from system level view using languages that 
support both hardware and software specification, e.g. SystemC [6] or MAT-
LAB/Simulink + Xilinx System Generator [7].  In this way, the functional co-
verification can be performed quickly but, at this level, we get very limited informa-
tion about performance or resource usage. Therefore, a later HDL low-level simula-
tion is needed.  

Our proposal is a hybrid approach that makes use of Handel-C, a high-level HDL 
that support the description of hardware with the syntaxes of C/C++. The co-
verification is supported on commercial Celoxica DK (a toolset around Handel-C) [8], 
which provides cycle-accurate simulation and gate count so throughput and resource 
usage estimations can be performed at the same time that functional specifications are 
verified. As start point for the codesign we propose the onAVI reference architecture 
for the specific domain of on-line AVIs, that comprises the functionalities of a wide 
range of these systems, and of which several approximations have already been im-
plemented with good results [9]. It serves as preliminary hw/sw partition for succes-
sive refinements, limiting the number of decisions the designer has to take and, 
thereby providing faster development time through extensive design reuse.  

This paper is organized as follows. In Section 2, the features of a generic architec-
ture for AVIs and a preliminary partition are proposed.  In Section 3, the codesign 
environment and codesing flow are described. Finally, some experimental results are 
shown in Section 4 and conclusions are given in Section 5. 

2   onAVI Reference Architecture for On-Line AVI Systems 

In general, although there is confirmation of multiple commercial inspection systems 
implanted, in no case exists a methodology that permits, regardless of the characteris-
tics of the process, to entirely configure the AVI system. For this reason, the works 
developed show, mainly, particular solutions attending the inspection conditions. 
Even so, reviewing scientific literature on the matter and basing on our experience, it 
has been possible to detect some common subsystems.  

The following subsystems form our proposal for the generic architecture (fig. 1): 
Image acquisition subsystem: it is in charge of illumination control, capture, condi-
tioning and images storage. Electro-Mechanical subsystem: it carries out two tasks 
mainly; on one hand it prepares products to be inspected (alignment, positioning, etc) 
sending signals to notify when the product is ready to be inspected, on the other hand 
it receives signals from the control subsystem to handle the product once it is in-
spected (defects labelling, quality grading, products rejection, etc…). Processing 
subsystem: it run vision and classification algorithms. Control subsystem:  it controls 
the whole system, it receives signals from the mechanic subsystem and decides when 
must be triggered the camera. It also receives the inspection results and decides the 
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actions that are going to be carried out to inspected products. Management subsystem: 
it includes the user interface. It manages the inspection results and allows the user to 
start and stop the system as well as configure the inspection parameters. 

 

 

Fig. 1. Subsystems and preliminary Hw/Sw partition 

From the study of the nature of the different tasks that perform these subsystems, 
two different computation models can be observed. In first place, a fine grain compu-
tation with high level of parallelism. This computation involves a large amount of 
data (integer type) on which it is carried out simple and repetitive operations (fixed 
point arithmetic and logic). This type is characteristic of tasks associated with data 
acquisition and low/middle level vision algorithms. 

In second place, a coarse grain computation, that is carried out on a smaller amount 
of data (real type or integer type) but with multiple complex operations (fixed point 
and/or floating point arithmetic). This type of computation comprises high level vi-
sion algorithms, classification algorithms, management and control. These two com-
putational models define a preliminary Hw/Sw partition (fig. 1) that serve as start 
point to successive refinement.  

Architecture Description 
We propose the use of a reconfigurable computation system to implement the first 
type of processes, attached to a general purpose microprocesssor to run the second. 
The main blocks of onAVI are outlined in Figure 2. The interface between hw and sw 
was implemented with two blocks. The hardware block, SwIface, is in charge of the 
communication with the host for single word transfers (command, status and parame-
ters) and DMA transfers. The drivers and communication subroutines that run on the 
microprocessor compose the software block, HwIface. The PCI bus was used to 
communicate both sides of the architecture, in order to guarantee the necessary band-
width. In addition, a double buffer (Bank0 and Bank1 in the figure) is included to 
allow hw and sw blocks to work concurrently. to which both hw and sw can access 
exclusively in a “ping-pong” fashion. This double buffer can be a shared resource or a 
local resource of the hw.  
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In order to achieve on-line processing, the work cycle is determined by the time of 
capturing a frame, a frame can be composed by several images, (TF), which includes 
the time between the capture of consecutive images (TIB) and the capture time for 
each image (TI). Another important issue to consider is the time of data transfer be-
tween Hw and Sw (TT), since it limits the maximum time that the sw has to complete 
its tasks. 

 

 

Fig. 2. Overview of onAVI reference architecture 

With this approach, the on-line processing requirements are reduced to the TFPH 
and TFPS constrains: 

Max. time for frame processing in Hw: TFPH ≤ TF = ni*(TI+TIB);  ni ≡ images/frame (1) 

                   TI=nl*(TL+TLB);   nl ≡ lines/image, TL ≡line time , TLB ≡ time between 

lines 
 

Max. time for frame processing in Sw: TFPS ≤ TF-TT (2) 

The hardware blocks work within different clock domains to fit the special features 
of every subsystem. The Video_Domain is synchronized with the camera’s clock. It 
uses to work at frequencies between 5 and 40 MHz. This clock manages the transfer 
of the video data coming from the camera’s interface block (CamIface), which uses to 
be composed of external circuits (video decoders for analog cameras or receiv-
ers/transceivers for digital cameras). These circuits usually have several configuration 
registers that can be written by the block CamConf with the information stored in the 
registers block ConfRegs. Video Data is decoded afterwards by the VidInput block 
that generates the video signal (with the appropriated format) and the information 
relative to horizontal/vertical synchronization. 

The Process_Domain is driven by the processing clock, it usually work at a higher 
frequency so as to speed up the data processing (up to 100 MHz or superior). No 
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specific ImgProc block is included in the reference architecture but several frame-
works for the different types of processes. Following these frameworks the processing 
modules must be designed to form a pipeline by which data and synchronization or 
control signals flow jointly. The guidelines support segmentation at pixel or line lev-
els, in order to start the work as soon as the pixel/lines arrive to the ImgProc block 
without waiting until the whole image is available. This reduces the necessary storage 
resources as well as the number of memory accesses, what can be a bottleneck in 
neighbourhood operations. In some cases, the whole image must be processed before 
to continue with the following task, e.g. connected component labelling algorithms, in 
these situations the segmentation will be made at image level. Once the data exits 
from this block, must be aligned and packaged for storing in the memory banks or for 
transmitting to the SwIface block. A parameterised DataBlk block was implemented 
to perform this task. 

The Interface_Domain is synchronized with the clock of the PCI local bus (up to 
50 MHz). This domain includes the global control block, GBCtrl, and the configura-
tion registers, ConfRegs, which store the configuration parameters for the different 
parts of the system. These blocks can be accessed directly by the Sw through the con-
figuration bus, ConfBus, which is also used to send commands to the control block. 
The TrigCtrl block produces the trigger signal of the camera using the information 
collected by the sensors and following the parameters written on its internal configu-
ration registers.  

3   ConAVI a Codesign Environment for On-Line AVIs 

Using as reference the onAVI architecture, a codesign/coverifcation environment has 
been developed. The environment has three basic components: an onAVI simulable 
and sinthesizable design described with Handel-C, the framework for software side of 
the architecture, and a plugins library for cosimulation purposes.  

The onAVI reference design was described with Handel-C. In order to provide the 
necessary flexibility to fit a wide range of applications, two strategies were adopted. 
Firstly, some libraries of blocks were built to cover different kind of devices. For 
example, a library of CamIface blocks for different video formats or a library of driv-
ers for both asynchronous and synchronous static RAMs (SRAM, ZBT SSRAM).  

Secondly, the code is parameterised to support the application particularities like 
image or pixel size. Some of the parameters are fixed in compilation time and others 
can be change in run time by means of software and GBCtrl+ConfRegs blocks. 

Additionally, a common interface was defined to allow the interconnection of the 
image processing modules in a pipeline fashion. This is based on the channels 
mechanism that Handel-C provides. Communications over channels are performed 
seamlessly and can take from one up to four cycles, since those are implemented with 
a blocking scheme, which waits until sender and receiver become ready.  The transfer 
protocol is very simple, every block in the pipeline has an associated latency during 
which is enable to accept data from the previous block. Once the internal pipeline is 
full, it has to wait for send new data until the next block in the pipe is prepared to 
accept it. Following this specification a library of image processing modules was 
coded. Its functionality is equivalent to software components usually found in com-
mercial image processing libraries, reason why they are easily interchangeable facili-
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tating the refinement process of the hw/sw partition. If others are necessary, the engi-
neer can easily describe them on his own using the architecture framework provided. 

For clock domains interconnection, channels for synchronization and double port 
memories for data transmission were chosen, although others structures as double 
clock FIFOs can be used since Handel-C can be combined with other HDLs.  

The software framework includes the PCI drivers that depend on the reconfigur-
able board chosen (generally provided with it). In addition, a minimum staff of func-
tions to send and receive data and commands are developed to meet the SwIface re-
quirements. These functions are encapsulated in a Dynamic Link Library (dll) and can 
be called from any standard C code. 

The Handel-C toolset, DK, provides several mechanisms for cosimulation. One of 
them is the plugin, informally speaking a plugin is a component described using soft-
ware high-level languages (C/C++, Visual Basic, etc…) that can be connected to the 
Handel-C clock and ports, by means of a dll. This library (plugin.dll) incorporates the 
necessary functions to synchronize the component work with the system clock and to 
allow the data communications. This way the parts not included in the reconfigurable 
devices (cameras, electro-mechanicals components, software, etc…) were modelled 
using the plugins library, allowing the system can be verified under “realistic” condi-
tions.  

For example, a progressive scan camera were modelled including all the signals 
and functionalities of the real component: external trigger, line valid, frame valid, 
pixel clock, configuration bus, data bus, etc…The model generates the image data 
synchronously with the associated signals. The language employed was C/C++ that 
allows an easy access to image files to generate the test patterns for the system. A 
special plugin was developed to display partial results during the cosimulation. This 
plugin, called viewer, can be connected to any part of the processing pipeline to detect 
bugs in the image processing blocks. This viewer has a graphical interface that is 
firstly showed at the instance initiation. This interface allows showing the received 
information per pixels, per lines or per whole images. 

Additionally, HwIface plugin was developed to emulate the functionality of the 
correspondent software subroutine. It has a simple semaphore like mechanism to 
access exclusively to the double buffer memory banks. It uses two ports, the State 
port (that is written by the Hw part) and the Control port (that is written by the Sw 
part) to synchronize the accesses. By means of these ports, it is possible to communi-
cate messages as “data ready” or commands. It also has the buses that allow the sys-
tem configuration.  

Finally, using the plugin methodology the software part of the system was easily 
encapsulated and communicated with the hardware simulation. However, the data 
transfer timing cannot be modelled easily because it depends on indeterminist factors 
and not specified variables (e.g. the bus load). Thus, no timing model was adopted for 
software simulation, and consequently equation (2) must be verified on the final sys-
tem.  

The codesign flow defined by the ConAVI environment is stepwise refinement-
based process. It starts from a functional description written in C/C++ that could 
come from a previous implementation of the AVIs using a commercial system. Then 
an initial version is built selecting the appropriated blocks in the onAVI architecture, 
and encapsulating the sw part on a plugin. The cosimulation is performed to check the 
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entire system functionality, the clock cycles and the resource usage (estimated by DK) 
of the hw side. In the other hand the execution time of sw side can be estimated with 
software profiling tools: if functionality requirements are not achieved, we should 
revise the hw design in the Handel-C code using its debugger tools; if speed require-
ments are not achieved, we can try to optimise the hw code to reduce the number of 
clock cycles or we can refine the partition moving new modules to hw. 

Several iterations can be necessary until reach the specifications. 

4   Results 

A real problem of quality control of preserved orange segments was used as case 
study. The inspection must be performed while the segments travel on a conveyor belt 
and faulty segments have to be extracted by means of wind ejectors.  To model the 
Electro-Mechanical subs. two plugins were added to the library; one for simulating an 
encoder that registers the conveyor belt movement and the other to simulating a row 
of ejectors. Basically, the Processing Subsystem is composed by three image process-
ing blocks (two bias thresholding, 3x3 binary convolution and component labelling), 
one geometrical extractor, one statistical extractor (inertia central moments), and one 
classifier.  

As implementation platform, the Nallatech Ballynuey and BallyVision boards were 
used. The first is a PCI board populated with one FPGA (XCV300) and two SSRAM 
banks, the second is an add-on board that include the video decoder, two banks of 
memory and a second FPGA.  

Following the preliminary partition defined in the onAVI, the Acquisition, Electro-
Mec. and Control Subsistems were mapped in hardware by means of library blocks.  
The initial implementation the platform gave a resource usage of 390CLBs(14%) + 
8BRAM(50%) for the first FPGA and 576CLBs(18%) + 8BRAM(50%) for the sec-
ond. The cosimulation of the onAVI without the ImageProc block takes only 59 sec-
onds and represents the environment overhead in the cosimulation.  

Table 1. Design space exploration with ConAVI 

Sw//Hw partition Hw  
(gates/RAMbits) 

Throug. 
(img/s) 

Cosim. 
(s) 

Sw based system  0 5 -- 

I. Bin //Conv+Labell+ Geom+Stat+Class 99K /12.288 5,5 75  

II. Bin+Conv // Labell+ Geom+Stat+Class 131K/13.738 9 181  

III. Bin+Conv+Labell // Geom+Stat+Class 192K/54.730 18 212  

IV. Bin+Conv+Labell+Geom // Stat+Class 200K/54.730 18 232 

 
The ConAVI environment was used to explore the design space starting from a 

validated description written in C/C++ with the Matrox Image processing Libraries 
(MIL). Running this code on PentiumIII (@1GHz) workstation we get a performance 
of 5 images/sec (725x582). The ImageProc modules were gradually moved to hard-
ware and the results are shown in the table below. First column represents the total 
hardware usage estimated by DK. The second column is the throughput of the system, 
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this was calculated based on the number of cycles obtained in the cosimulation and 
the TT parameter measured on the real platform. The third column shows the time of 
cosimulation for the whole system, as can be seen the number of cycles per second 
simulated is enough to get tolerable times even for complex hw processing tasks.  

The analysis of results allows the election of the best system implementation taking 
into account both, the performance requirements of the application and the physical 
resources of the platform.   

5   Conclusions 

This paper presents a codesign/coverification environment, ConAVI, especially con-
ceived for the specific domain of the Automated Visual Inspection Systems. A 
codesign framework has been developed based on a preliminary partition derived 
from a generic architecture proposed in this work. This facilitates the system design 
and reduces the development time of hw/sw systems. 

The tools chosen for the environment allow the simulation of the whole system and 
even the external hardware parts. The codesign flow stars with a software specifica-
tion and both sides of the system are described in a high level language facilitating the 
movement of the blocks between hw and sw. It is shown that by using the proposed 
framework the exploration of the design space and the verification time of an AVI 
system can be similar to software development times.  
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Abstract. In the last decade, consumer graphics cards have increased
their power because of the computer games industry. These cards are
now programmable and capable of processing huge amounts of data in a
SIMD fashion. In this work, we propose an alternative implementation of
a very intuitive and well known 2D template matching, where the most
computationally expensive task is accomplished by the graphics hard-
ware processor. This computation approach is not new, but in this work
we resume the method step-by-step to better understand the underly-
ing complexity. Experimental results show an extraordinary performance
trade-off, even working with obsolete hardware.

1 Introduction

Object recognition problems are described as a labeling problem based on models
of known objects [1]. Template matching is a very well known feature detection
technique used in low level Image Processing and Computer Vision tasks, such
as object recognition and tracking. As an image matching technique it compares
portions of images against one another [2]. Many kind of implementations have
been proposed, although the most basic one is related to the cross-correlation
computation in order to compare the image and a pattern using a distance
measure.

The template matching calculation involves a pixel by pixel analysis of the
template into an image portion, evaluating every location of the target image. In
a generalized approach template matching should be invariant under scale and
rotation transformations. As a consequence, this technique is computationally
very expensive.

Computer graphics have been very popular during the last two decades for
the rapid expansion of computer generated special effects in films, multimedia
and computer games. This fact has allowed the evolution of graphics hardware
to unprecedent limits. Commodity graphics hardware has evolved since the mid
90’s giving a considerable amount of programming power to developers in order
to customize their rendering effects in real time. Apart from that, a consumer
graphics processing unit (GPU) has become inexpensive and can be considered
a kind of programmable stream processor. Their programmable capabilities has
helped the development of applications far beyond rendering purposes. Many

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 691–698, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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authors have demonstrated that these consumer GPUs have a great raw perfor-
mance, some times even superior to the most common and powerful CPUs [3–6].
They have been used as a co-processor for the central processing unit (CPU)
remaining the idea that they can be encountered in most off-the-shelf desktop
computers. Examples of it can be found in applications that exploits the power
of the GPU for linear algebra calculations [9–12], physically-based simulations
[6], image and volume processing [4, 13–15], neural network implementations
[16, 17] or even acceleration of database operations [18] among others [19].

In this work we demonstrate that an efficient template matching based on
cross-correlation calculation can be achieved using a commodity graphics card.
It has been implemented exploiting the intrinsic parallelism of the graphics hard-
ware. Additionally, we have proposed three kinds of models to increase the effi-
ciency of the process step by step, showing details of their implementation and
encountered difficulties. Apart from that, we propose a not-new but recent frame-
work for image processing development that can give ideas to other researchers
for customizing their implementations.

2 Graphics Hardware

Commodity graphics hardware has evolved drastically since the mid 90’s. With
the aid of the rapid expansion of computer games and multimedia technolo-
gies these consumer graphics processing units (GPUs) have also become very
powerful and inexpensive hardware.

Traditionally, these 3D graphics cards implemented a fixed pipeline for the
processing of primitive descriptions tuned as a state machine from an API such as
OpenGL. But their previously fixed graphics pipeline stages were replaced with
programmable components, the transform and lighting (T&L) and the multi-
texturing one, providing great versatility and power to the developer [7].

The hardware accelerated programmability of GPUs has been exposed to
programmers for the development of programs called shaders. These shaders are
loaded into the graphics card for replacing the fixed functionality. There are two
kinds of shaders, respectively called vertex and fragment shaders. They consti-
tute the executable code of the corresponding programmable components of the
graphics pipeline. These shaders are primarily used for rendering complex spe-
cial effects and realistic images in real-time. The basic CPU/GPU architecture
model is outlined in Figure 1.

The programmability of the GPU is very well suited for stream computations,
in which a simple kernel operation is executed over a large number of elements
in a single-instruction multiple-data (SIMD) fashion [8, 9].

Textures and the multi-texturing capability provides some ways of efficient
SIMD computation. In this context, a texture is an image that can be mapped
to a polygonal structure to provide realism to the model. Basically, as an image,
it can represent four values (R, G, B, A) as color and transparency components
in every accesible location, called fragments or texels. The programmer is re-
sponsible for organizing its data in a grid way to convert them into a texture, so
creating textures in which texels keep numerical values of interest. As it will be



Hardware-Accelerated Template Matching 693

CPU

TEXTURE

Transform

&

Lighting

GPU

Rasterizer
Multi-

texturing
FRAMEBUFFER

TEXTURE

PROGRAMMABLE

VERTEX PROCESSOR

PROGRAMMABLE

FRAGMENT PROCESSOR

MULTIPASS

FIXED GRAPHICS PIPELINE

R
E
N

D
E
R
IN

G

R
E
A

D
B
A

C
K

Fig. 1. Basic CPU/GPU programming model. When enabled, programmable vertex
and fragment execution paths replace their corresponding stages of the fixed graph-
ics pipeline (represented in dot-lines). Also note the possibility of direct rendering to
framebuffer or rendering to another texture (pbuffer), that can be used again as input
data in the multipass approach.

shown in Section 3 and 4, it is desirable to fill the whole capacity of the textures.
This is because, in the fragment program, the processing cost of a single channel
in comparison to the processing cost of the entire quadruple (RGBA) is similar.

In order to operate on the texels, the texture is fixed to a well determined
grid. Then, a custom fragment shader is enabled and the operation kernel is
executed over every fragment by simply rendering. A schematic visualization of
a number of textures applied as input for a fragment program can be seen in
Figure 2.

The output result can be redirected to the input (by means of a pbuffer) in
a multi-pass approach for continuing the processing task (see Figure 1). At this
point, it is important to remark that the readback process from video memory
to host memory after the rendering step is a computation bottleneck.

In this model, a shader is a program executed by the GPU. Originally they
had to be coded in assembly, but as the graphics hardware increased in func-
tionality and programmability, these shaders were more difficult to implement.
Even more, the rapid evolution of GPUs forced to rewrite previous shaders to get
maximum performance when a new family of graphics hardware were released.
The solution came with the apparition of comercial high level shading languages
and their compilers, which helped in portability and legibility, so improving effi-
ciency in the development process. Nvidia’s Cg, Microsoft’s HLSL and recently
OpenGL Shading Language have been the first commercially available languages
for commodity graphics hardware with major acceptance. A brief classification,
chronology and explanation of these languages can be found in [20].

3 Application to Pattern Recognition: Template Matching

We have developed three models of a basic template matching for being processed
on the GPU. Each one of the models increase its complexity but also its efficiency.
For demonstration purposes they do not consider rotations and scales.
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Fig. 2. Simple fragment program computation. A common fragment program will be
executed over every position of the input textures (Tex0-TexN), for example returning
a value at (s,t) in the output texture for values at (s,t) in the input textures.

The first model does not exploit the SIMD capability of the graphics pipeline.
It only computes the cross-correlation between the template and each location
inside the image in a GPU architecture approach.

The second model uses the four channels (RGBA) of the template and target
textures to compute the cross-correlation in four different positions at a time
(at each rendering pass). This model is preferable in respect to the previous one
although it is not as efficient as it could be.

The third model uses the same philosophy as the second one but computes
much more positions. It exploits not only the RGBA data allocation fashion but
also the repetition of the template in a texture of equal size than the target
image texture.

For every model we consider three stages of processing: initialization, distance
measurement calculation for a single position and new position estimation or
updating. In the initialization stage we can preprocess the input images. In
this application, if input images were in color format, an RGB to gray scale
conversion is executed as a preliminar rendering with the appropriate fragment
program enabled. Another kind of preprocessing could be done in this stage,
such as a gaussian filtering to reduce noise artifacts.

An intrinsic limitation of the GPU architecture is the lack of global registers
in the programmable rendering pipeline. For the template matching, a subwin-
dow is computing a distance function among pixels and, after that, a sum for
all distance values is computed in order to get the cross-correlation result. This
sum has to be kept for every position to compare the evaluations. As there is
no accumulative register, this sum of distance values must be computed in an
alternative fashion. A typical way to proceed is by asking for a reduced level
of detail (mipmap) of the output texture. That level will offer average values
of the corresponding neighborhood of the texture at each fragment. With that
average it is easy to obtain the corresponding summation multiplying by the
ratio between the number of fragments of the original texture and the number
of fragments of the resulted mipmap. This process can be done for power-of-two
textures and in cases where precision of one byte is enough for the result. In
other cases, a “ping-pong” strategy with two pbuffers is needed.
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Fig. 3. a) Model 1 only takes advantage of the R channel and Tex1 have to be updated
at each evaluation to complete the matching. b) Model 2 takes advantage of the RGBA
channels. Four subwindows are loaded into an RGBA texture (Tex1). Also, the gray
scale template is repeated in each channel of Tex0. Thus, four positions are evaluated
in each pass.

3.1 Model 1: Red Channel Exploitation

This is the most limited model but it is easy to understand. It does not exploit
the entire quadruple of an RGBA texture, but it can open the mind for next
approaches.

First, we load the template and an equal size portion of the target image into
two textures (Tex0 and Tex1). The RGBA textures have the gray value of each
fragment in its RGB channels. It is easy to calculate the difference between the
R channels of both textures fragment-by-fragment. By the explained limitation
of the GPU, the global value of the matching fitness is done reducing the output
texture to one pixel, thus returning in the pixel the average of the whole output
texture. This average value is a proportional measure of the summation, and can
be kept in system memory to be compared to other results. Figure 3.a outlines
the procedure. The performance of this model is very limited because of in each
pass we just evaluate one position. Once we have evaluated the matching of the
template in that position, we have to “move” the texture coordinates of the
target image to load another subwindow and repeat the entire process. Then,
the number of rendering passes is proportional to the number of pixels of the
target image.

3.2 Model 2: RGBA Channel Exploitation

This model exploits the RGBA texture channels. Now, the programmer is re-
sponsible for organizing its data to produce the textures. The key point is the
decomposition of four portions of the target image into the RGBA channels of
Tex1 as shown in Figure 3.b. Also, it is important to note that the template is
repeated in each channel of Tex0 to make the fragment program work in RGBA.

Again, after each rendering pass the texture that contains the subwindows
have to be updated (Tex1), allocating portions of the original image in the
texture. This process can be computationally expensive, even a main bottleneck
depending on the performance of the results readback.
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Fig. 4. In Model 3 the target image (Lenna) is loaded into the RGBA channels of Tex1,
the arrows represent different offsets. The template image is loaded and repeated along
the Tex0. In each rendering pass this model evaluates many positions in parallel.

3.3 Model 3: Vectorization and Repetition

This model is much more efficient than the previous ones. An outline of this
model can be seen in Figure 4. The target image (NxN pixels) is loaded into
the RGBA channels of a texture (Tex1). However, there is an offset of 1 pixel
in the horizontal direction in each channel except the first one. On the other
hand the template (nxn pixels) is loaded into the RGBA channels of Tex0,
repeated until having a size equal to the target texture (Tex1). In this way,
every texels will have correspondence one each other in the fragment program.
The offset of the GBA channels of Tex1 provides a way to evaluate 3 more
different positions at the same time, so for each RGBA template subwindow
of Tex0, 4 positions are evaluated. As the template is repeated N

n xN
n times in

Tex0, the number of parallel evaluations in each rendering pass is increased to
4xN

n xN
n . For a 1024x1024 target image and a 32x32 template this leads to 4096

evaluated positions for each rendering pass. The updating rule for this model is
quite simple because it only needs the translation of the whole template texture
over the target texture. This translation implies no data reallocation after the
rendering pass and thus it eliminates a previous explained bottleneck.

4 Experimental Results

Experiments have been performed using 3 different graphics cards. The first
platform is a Nvidia GeForce4 Ti4600 VGA card (NV25) in a 1.4GHz Pentium
4, 128 MB RAM, AGPx4 (named CPUx4). The second and third platforms use
a 3.2GHz Pentium 4, 1GB RAM, AGPx8 (named CPUx8) and respectively a
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Fig. 5. a) Different models for three different GPUs (target image: 1024x1024; template
image: 32x32). b) Comparison between CPU vs GPU (Model 3) performance. Different
sizes of square templates and target images are considered.

Nvidia GeForce FX5200 (NV34), and a Nvidia 6800GT (NV40). GPU applica-
tions have been coded in C using OpenGL as rendering API, Cg 1.2 as shading
language and Nvidia v66.93 drivers, while CPU programs were coded in C.

Figure 5 shows the experimental results. We have considered the previous
3 models for the GPU implementation and 5 different platforms. In respect to
the GPU implementations Model 1 is the worst in terms of efficiency, while, as
described before, Model 3 exploits the intrinsic parallelism of the graphics card.
Note that Figure 5 a) is semilogarithmic. Figure 5 b) shows that in the latest
GPU the performance of this algorithm is very high, even superior to its host
CPU performance.

5 Conclusions

We have presented a step-by-step alternative implementation of a well known ob-
ject recognition method. We have demonstrated that the processor of a modern
graphics card can afford better performance than a modern CPU under certain
conditions, in particular, allocating data in a regular and parallel manner. The
GPU should operate in a SIMD fashion to get the most performance hit. Exper-
imental results show that the graphics card can be exploited in order to execute
non-rendering tasks freeing some computational load to the CPU.
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4. Goodnight, N., Wang, R, Woolley, C., Humphreys, G.; Interactive Time-Dependent
Tone Mapping Using Programmable Graphics Hardware, Eurographics Symposium
on Rendering , (2003) 1–13.

5. Purcell, T.: Ray Tracing on a Stream Processor, Ph. D Thesis, Univ. of Stanford
(2004).

6. Harris, M. J.: Real-Time Cloud Simulation and Rendering, Ph. D Thesis, Univ. of
North Carolina at Chapel Hill (2003).

7. Olano, M.: A Programmable Pipeline for Graphics Hardware. Ph.D. thesis, Uni-
versity of North Carolina at Chapel Hill (1998).

8. Venkatasubramanian, S.: The Graphics Card as a StreamComputer, Workshop on
Management and Processing of Data Streams, San Diego, California, USA (2003).

9. McCool, M., Du Toit, S., Popa, T., Chan, B., Moule, K.: Shader Algebra, ACM
Transactions on Graphics (2004).

10. Larsen, E. S., McAllister, D.: Fast Matrix Multiplies using Graphics Hardware, In
Proc. Supercomputing 2001.

11. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers of the GPU:
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Fernández, César I-623
Ferreira, Ricardo I-102
Ferrer, Miquel II-139
Figueiredo, Mário A.T. II-355
Fisher, Mark I-292
Flandrin, Georges II-199
Fofi, David I-145
Forest, Josep I-145
Freixenet, Jordi II-431
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Gómez, Pedro A. II-614
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Gruber, Peter II-75
Guerra, Cayetano I-184, I-217
Guerrero, José J. I-69
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Sánchez, Ángel I-691
Sánchez, Gemma II-115
Sánchez, J. Salvador II-27, II-35, II-59
Sánchez, Joan Andreu II-163, II-586
Sánchez-Nielsen, Elena I-553
Sánchez-Palma, Pedro I-659
Sanchiz, José M. I-227
Sanfeliu, Alberto I-93, II-131, II-139, II-263
Sánta, István I-469
Santos, João A. I-102
Santos-Victor, José I-11, I-335, I-537
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Valdovinos, Rosa M. II-59
Valiente, José Miguel II-666
Van der Weken, Dietrich I-368
Vanrell, Marı́a I-192, II-666
Vázquez, Fernando II-35
Vega, Miguel I-343
Vera-Candeas, Pedro II-571
Vergés-Llahı́, Jaume II-263
Vicente, Asunción I-623
Vicente-Chicote, Cristina I-659, I-667
Vidal, Enrique II-363, II-630
Viksten, Fredrik I-44
Vilar, Juan M. I-571
Vilares, Jesus II-638

Vilares, Manuel II-638
Villanueva, Juan J. I-85
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