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Preface

IbPRIA 2005 (Iberian Conference on Pattern Recognition and Image Analysis) was the
second of a series of conferences jointly organized every two years by the Portuguese
and Spanish Associations for Pattern Recognition (APRP, AERFAI), with the support
of the International Association for Pattern Recognition (IAPR).

This year, IbPRIA was hosted by the Institute for Systems and Robotics and the
Geo-systems Center of the Instituto Superior Técnico and it was held in Estoril, Portu-
gal. It provided the opportunity to bring together researchers from all over the world to
discuss some of the most recent advances in pattern recognition and all areas of video,
image and signal processing.

There was a very positive response to the Call for Papers for IbPRIA 2005. We re-
ceived 292 full papers from 38 countries and 170 were accepted for presentation at the
conference. The high quality of the scientific program of IbPRIA 2005 was due first to
the authors who submitted excellent contributions and second to the dedicated collabo-
ration of the international Program Committee and the other researchers who reviewed
the papers. Each paper was reviewed by two reviewers, in a blind process. We would
like to thank all the authors for submitting their contributions and for sharing their re-
search activities. We are particularly indebted to the Program Committee members and
to all the reviewers for their precious evaluations, which permitted us to set up this
publication.

We were also very pleased to benefit from the participation of the invited speakers
Prof. David Lowe, University of British Columbia (Canada), Prof. Wiro Niessen, Uni-
versity of Utrecht (The Netherlands) and Prof. Isidore Rigoutsos, IBM Watson Research
Center (USA). We would like to express our sincere gratitude to these world-renowned
experts.

We would like to thank Prof. Jodo Sanches and Prof. Jodo Paulo Costeira of the
Organizing Committee, in particular for the management of the Web page and the sub-
mission system software.

Finally, we were very pleased to welcome all the participants who attended IbPRIA
2005. We are looking forward to meeting you at the next edition of IbPRIA, in Spain in
2007.

Estoril, June 2005 Jorge S. Marques
Nicolas Pérez de la Blanca
Pedro Pina
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An Invariant and Compact Representation
for Unrestricted Pose Estimation

Robert Séderberg, Klas Nordberg, and Gosta Granlund
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Abstract. This paper describes a novel compact representation of local
features called the tensor doublet. The representation generates a four
dimensional feature vector which is significantly less complex than other
approaches, such as Lowe’s 128 dimensional feature vector. Despite its
low dimensionality, we demonstrate here that the tensor doublet can be
used for pose estimation, where the system is trained for an object and
evaluated on images with cluttered background and occlusion.

1 Introduction

Pose estimation of objects is of great interest in several industrial applications,
especially in the unsolved bin picking problem. Industrial automation of today
demands very dynamic automation systems since the geometry of the products
changes faster than before. As a consequence, old systems where the objects
are placed in fixtures, will not be sufficient in the future. Instead we need more
advanced procedures that can find the pose of objects, guide the robot toward
the objects and finally grasp them.

Over the years several algorithms have been developed for view centered
pose estimation of objects based on local invariant features [1, 6, 7, 10], where
Lowe’s SIFT features [7] are considered state of the art. These features seem
to deliver a very stable and accurate pose estimate, but the representation of
the local feature is iconic. By using a model based approach to represent these
local features, it is possible to have a more compact representation, and it is also
possible to extract information about the local area which could be useful in a
grouping process.

The approach to pose estimation proposed in this paper uses the scene ten-
sor in 2D [, 9] as a basis for a set of invariant features. The scene tensor is a
representation of one or several line segments, where each segment is represented
by its orientation, center of gravity and covariance relative to a local coordinate
system. A tensor doublet, inspired by the work of Granlund and Moe [!] and
based on the information from the scene tensor is then used as the invariant
representation of the local feature. The tensor doublet only consists of four pa-
rameters which all are invariant to translation, and variations in orientation and

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 3-10, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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scale. In comparison with the SIFT feature’s 128 invariant parameters where
more than 50 percent is non zero, the tensor doublet is a very low dimensional
feature vector. If the database contains a large number of feature vectors, the
lower dimensionality of the feature vector will definitely speed up the rest of the
pose estimation procedure.

In this paper we will show that it is possible to use low dimensional feature
vectors for pose estimation of object and still get comparable results to other
approaches using high dimensional feature vectors.

2 Introduction to the Scene Tensor

Next section presents a doublet descriptor which is invariant to certain transfor-
mations. The descriptor is based on the assumption that we can find corner-like
points in the image and also describe the parameters of the corresponding cor-
ners; the opening angles, their relative orientation and position. Consequently,
we need a detector of corner points and a descriptor of the parameters of the
corner. In the literature, the so-called Harris corner detector [5] is a common tool
for finding interest points for various purposes. This feature, however, does not
give a reliable indication that the corresponding point really is a corner. It also
detects isolated points, crossings of several lines, high frequency textures and
noise, or in principle anything which cannot be characterized as locally constant
or similar to a single line.

For the purpose of finding and describing corner points we here use a tensor
based descriptor presented in [3, 9]. This approach combines the usual orientation
tensor [2] with projective geometry, similar to what was done in [11], but also
employing higher order tensors (4th order). The resulting representation has
some very useful properties presented below.

The fourth order tensor can be rearranged as a second order tensor Soo which
in the 2D case is 6 x 6. In [3] it is shown that Sa3 can be estimated from image
data using only weighted polynomial filters which in addition can be separable.
Assuming that Soo has been estimated from a local region which contains N line
segments it can be written

N
Saz = Z S20.k Sta i (1)

k=1

where Sy, is 6-dimensional vector which contains information about the local
center of gravity and extension of segment k and Sgs 1, is a 6-dimensional vector
which contains information about the position and orientation of the correspond-
ing line. In brief, each pair Sog 1, So2,, describes a local line segment in terms
of its position relative to the local region, its orientation and extension. Conse-
quently, Sos is the superposition of all this information for all N line segments
in the local region from where it has been estimated.

In [8] it is shown that for the case N < 3 the rank of Soo is the same as N, i.e.,
local regions which contains two line segments are characterized by Sgo having
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Fig. 1. Left: test image. Right: A measurement of certainty that the corresponding S22
is of rank two.

rank two. The detection of rank two points can be implemented in different ways,
but it is typically based on analyzing the singular values of Saz, see [3]. In the
2D case, and for these rank two points, it is also possible to analyze Soo further
to extract the position, extension and orientation of both line segments. This is
done by analyzing the full SVD of Sos. This information allows us to characterize
each rank two region, e.g., as a corner, a crossing or a junction. Furthermore, for
each of these cases, the position where the two lines meet and the orientations
of each line can be estimated with an accuracy which make the representation
useful for practical applications, e.g., the one presented in this paper. For a more
detailed presentation of the fourth order tensor representation, see [3].

Figure 1 shows a synthetic test image and the response of a rank two measure.
By considering the local peaks of the response image, and further analysis of the
corresponding Soo at these points, it is possible to determine if the points are
corners and what the parameters of the corners are.

3 Compact and Invariant Representation
of Local Image Data

One very useful feature for a representation is its degree of invariance. If a
representation is invariant with respect to translation, rotation and scale, the
amount of training data required decreases and a learning procedure converges
faster. The scene tensor described in section 2 is not invariant with respect
to orientation and scale and we have consequently implemented an invariant
representation based on both the scene tensor and the work by Granlund and
Moe [4]. The idea is to calculate invariant parameters based on a geometry
including two corners. This representation is called a doublet or more precisely
a tensor doublet, because the corners are detected and represented by using the
scene tensor.

From the corner feature detection process described in Section 2 we get a
list of tensors where each tensor is a description of a local region containing
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Fig. 2. [llustration of the tensor doublet.

two line segments. Each segment is defined in terms of its position, extension
and orientation. By extracting the line parameters from two of these tensors
the tensor doublet illustrated in figure 2 can be computed. The four feature
parameters «y, g, (81, B2 and 7 can be calculated from the line parameters,
where « is the angle between the line segments in each second level feature and
[ is the orientation of each feature relative to the line connecting both features.
These four parameters are invariant to both rotation, translation and scaling
of the image. The position of each feature is defined by the intersection of the
line segments and ~ is the distance between the features. It is more robust to
use the intersection as the feature’s position rather than using the result from
the detection process, since that is dependent on contrast, lighting and even the
angle between the line segments. It is not hard to realize that the parameters
representing the tensor doublet are invariant with respect to translation and
rotation. The v parameter is however not invariant to scale, but is useful in the
grouping process. The process of connecting second level features is not an easy
task and it is necessary to include some kind of perceptual grouping process in
this step. The method employed here is on the lower end of perceptual grouping,
where the rule for connecting two features is simply based on the distance ~y
between the features. If the distance for a feature pair is between certain lower
and an upper bounds, then the features are joined to build a doublet. The
maximal distance should be set to a value that minimizes the probability of
a connection between features from the object and the background. A typical
value is half the object size. The minimal distance should prevent connecting
two tensors estimated from the same feature and the value should be based on
the parameters used in the detection process.

4 Mapping from the Representation
to Object State Parameters

In this approach to pose estimation we have used a matching and clustering pro-
cedure to perform the mapping from feature vectors to object state parameters,
but it is also possible to use an associative network together with these types of
features. The object state parameters are the two pose angles ¢ and 0, figure 3,
the scaling relative to the training view s'/s, the rotation in the image plane «,
and the translation z, y.
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Fig. 3. Definition of the two pose angles.

During training, images are taken from different views of the object using
a rotation table. Tensor doublets are calculated for each image and stored in
a database, called the prototype doublets in figure 4. A label containing the
pose angles, ¢ and 6, together with the positions for the interest points in the
doublet is also stored for each prototype doublet. When a query image, or a test
image, is presented to the system, tensor doublets are calculated. These doublets
are referred to as query doublets in figure 4. Each of these query duplets is then
matched with the prototype doublets and for each match a translation t, rotation
R and scaling s of the object relative to the training image is calculated according
to

p; =t + sRp, (2)

where p, and p, are the positions of one of the points in the doublet in the
query image and in the prototype image, respectively. The transformations have
4 degrees of freedom in total, so one doublet should be sufficient to compute the
transformations.

All doublets computed from interest points on the objects will vote on the
same object state parameters and will therefore cluster in the six dimensional
space illustrated in figure 4. This cluster can be found by a mean-shift filtering
followed by a mean-shift clustering [I, 3]. A confidence measurement is then
calculated for each cluster. This measure is the estimated probability for the
cluster mean multiplied with the number of votes in the cluster.

5 Results

The system has been trained for one of the sockets in figure 6. Images have been
taken from different views of this object where 6 ranges from zero to 40° and ¢
ranges from zero to 180°. The step between the training images is 10° for both
the ¢ and 60 variable.

The pose estimation system has been evaluated with the worst case images,
meaning the images between the training images. The result is illustrated in
figure 5. The MAE (mean absolute error) is 1.6° for the # variable and 1.8°
for ¢.
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Query duplets Prototype duplets
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Fig. 4. Overview of the query mode. The resulting output is an estimated pose, posi-
tion, rotation, and scale of the object. KNN refers to the k nearest neighbor method.
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Fig. 5. Pose estimation test on the socket. The dotted line is the estimated pose and
the solid line represents the ground truth.

The bin picking problem discussed in the introduction often implies in prac-
tice that the objects are stacked in a pile. The pose estimation system is evaluated
for such a situation with good performance, figure 6. Each one of the three ob-
jects can be found with good accuracy. The upper leftmost image illustrates the
pose derived from the cluster with the highest confidence, the upper rightmost
is the cluster with the second highest confidence and the lower leftmost is the
cluster with the third highest confidence. The white mesh illustrating the object
pose is the norm of the gradient of the closest training view, which is scaled and
translated according to the pose estimate. The system also works with other
objects in the background which is illustrated in the lower rightmost image in
figure 6. Figure 7 illustrates the performance when the object has a different
scale relative to the training images.
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Fig. 6. Pose estimation of sockets in a pile and a socket with background. The three
first images is actually the same image, where the first image illustrates the pose
estimate withe highest confidence, the second image illustrates the pose estimate with
the second highest pose estimate and so on. Demonstrably the algorithm can detect
several objects from one image.

Fig. 7. Pose estimation with background and different scales.

6 Conclusion

In this paper we have introduced the tensor doublet, which is a compact and
invariant representation useful for pose estimation tasks. The main difference be-
tween this representation and others is the low dimension of the feature vector,
which will definitely speed up the following steps in the pose estimation algo-
rithm. It is shown by a number of test images that the pose estimation works well
for objects stacked in a pile, an object with a cluttered background and objects
with different scales. Pose estimation of objects stacked in a pile is especially
interesting in industrial automation, for example the bin picking problem.
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Abstract. Some recent works have addressed the object recognition
problem by representing objects as the composition of independent im-
age parts, where each part is modeled with “low-level” features. One of
the problems to address is the choice of the low-level features to appro-
priately describe the individual image parts. Several feature types have
been proposed, like edges, corners, ridges, Gaussian derivatives, Gabor
features, etc. Often features are selected independently of the object to
represent and have fixed parameters. In this work we use Gabor fea-
tures and describe a method to select feature parameters suited to the
particular object considered. We propose a method based on the Infor-
mation Diagram concept, where “good” parameters are the ones that
optimize the filter’s response in the filter parameter space. We propose
and compare some concrete methodologies to choose the Gabor feature
parameters, and illustrate the performance of the method in the detec-
tion of facial parts like eyes, noses and mouths. We show also the rotation
invariance and robustness to small scale changes of the proposed Gabor
feature.

1 Introduction

The object recognition problem has been tackled recently with several successful
results [I—1]. All of these works exploit the idea of selecting various points in
the object and building up a local neighborhood representation for each one of
the selected points. Two related problems are involved in this process: (i) which
points in the object should be used and (i) how to represent the information
contained in their neighborhood. In the present work, we address the latter
problem, assuming that interest points are obtained by some methodology [1—3].
In the experiments we present later, interest points are selected manually.
Regarding the problem of local neighborhood representation, there are sev-
eral types of features being proposed in the literature: gradient magnitude and
orientation maps [1], Gaussian derivatives [2, 3], rectangular features [5] and

* Research partly funded by European project IST 2001 37540(CAVIAR), the FCT
Programa Operacional Sociedade de Informacao(POSI) in the frame of QCA
III, and Portuguese Foundation for Science and Technology PhD Grant FCT
SFRH\BD\10573\2002.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 11-19, 2005.
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Gabor features[(], amongst others. However, the parameters when using Gabor
features are often fixed [7, 8] or chosen manually [0]. In this work we also use Ga-
bor features to represent a local image neighborhood but select their parameters
according to the particular image pattern to detect.

The adaptation of feature parameters to particular object parts was first
exploited in [9]. They propose to select Gabor function parameters in a semi-
automatic fashion, using the “Information Diagram” concept. The Information
Diagram is the representation of Gabor feature magnitude, at a certain image
point, as a function of the Gabor filter orientation and frequency parameters.
The scale and wavelength (inverse of frequency) have a fixed ratio. In our work,
we extend the “Information Diagram” concept to consider scale and wavelength
as independent parameters, thus resulting in a 3-dimensional function. We show
different methodologies to select “good” feature parameters from this Extended
Information Diagram.

In order to evaluate different methodologies for parameter selection, we have
set-up a facial feature learning and detection experiment. The evaluation of
results will be based on the detection rates achieved. Since the focus of the work
is on the selection of feature parameters, we will employ very straightforward
techniques for the learning and detection steps. In the learning step we compute
the object model, consisting in the average and covariance matrix of vectors
containing the response of selected Gabor features in a large training set. In the
detection step, we compute the distance (Euclidean and Mahalanobis) between
novel image points and the acquired models. We have performed experiments in
the identification of facial points like eyes, mouths and noses, and obtain high
success rates with the proposed features. Then we evaluate the robustness of the
method to pattern variations in scale and orientation.

2 Gabor Functions as Local Image Descriptors

The motivation to use Gabor functions is mostly biological, since Gabor-like re-
ceptive fields have been found in the visual cortex of primates [10]. Gabor func-
tions act as low-level oriented edge and texture discriminators and are sensitive
to different frequencies and scale information.These facts raised considerable in-
terest and motivated researchers to extensively exploit the properties of Gabor
functions.

2.1 The Gabor Function

Mathematically, a 2D Gabor function, g, is the product of a 2D Gaussian and a
complex exponential function. The general expression is given by:

96.7,01,05 (T, Y) = exp {—1/2 (zy) M ( y)T} exp {‘7; (z cos® + ysin 9)}

where M = diag(o; 2,05 2). Some examples of Gabor functions are shown in
Fig.1. The parameter 6 represents the orientation, A\ is the wavelength, and
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o1 and o9 represent scale at orthogonal directions. When the Gaussian part is
symmetric, we obtain the isotropic Gabor function:

z? +y? jm .
9o.00(2,y) = exp {— 902 } exp{ \ (2 cosf + ysin 9)} (1)

However, with this parameterization the Gabor function does not scale uni-
formly, when o changes. It is preferrable to use a parameter v = A/o instead
of X\ so that a change in o corresponds to a true scale change in the Gabor
function. Also, it is convenient to apply a 90 degrees counterclockwise rotation
to Eq. (1), such that 6 expresses the orthogonal direction to the Gabor func-
tion edges. Therefore, in the remainder of the paper we will use the following
definition for the Gabor functions:

2,2 ;
90,~,0(T,y) = exp {—I 21-2?4 } exp {’]YZ (xsin@ — y cos 9)}

By selectively changing each of the Gabor function parameters, we can “tune”
the filter to particular patterns arising in the images. In Fig. 1 we illustrate the
variation of parameters(y, 6, o) in the shape of the Gabor function.

(a) v = {1/2,3/2,5/2,7/2} ) 0 =1{0,7/6,7/3,7/2} (c) o = {4,8,12,16}

Fig. 1. Examples of Gabor functions. Each sub-figure shows the real part of Gabor
function for different values of v, 0, and o

2.2 Gabor Response

By convolving a Gabor function with image patterns I(z,y), we can evaluate
their similarity. We define the Gabor response at point (g, yo) as:

Go,v.0(0,Y0) = (I * go..0)(T0,Y0) = /I(xvy)ge,w,a(xo —x,y0 — y)dzdy (2)

where * represents convolution. The Gabor response obtained from Eq. (2) can
emphasize basically three types of characteristics in the image: edge-oriented
characteristics, texture-oriented characteristics and a combination of both.In
order to emphasize different types of image characteristics, we must vary the
parameters o, 0 and v of the Gabor function.

The variation of € changes the sensitivity to edge and texture orientations.
The variation of ¢ will change the “scale” at which we are viewing the world,
and the variation of v the sensitivity to high/low frequencies. We would like to
find the most adequate combinations of o, § and ~y to represent particular parts
of objects for recognition/detection tasks.
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3 Object Part Model

As mentioned in the introduction, we consider objects composed of parts, like
eyes, noses and mouths in human faces. Each part is modeled as random vector
containing (a) the absolute value of Gabor responses, and (b)the real and imag-
inary parts of Gabor responses with different parameters. In the case of (a), the
feature vector is:

. T )
Ve = (Yo oy ) 5 ey = Gonia @)l ()

and (z,y) represents the coordinate of the object part center. In the case of (b),
the feature vector is:

v= (vl’ e ’UZ’ e ”Uzm) ) U2Z = Re(G@m’YnUz‘); Uzl ! = Im(GGm’YmUz‘) (4)

The rationale is to model image parts by analyzing their contents in terms of
edges and textures of different scales, orientations and frequencies. We assume
that the random feature vector follows a normal distribution with average v and
covariance matrix X, viz ) ~ N (02, Z(a,y))-

For the detection of parts, we will compute the distance between the obtained
model and the novel patterns. We consider both the Euclidean and Mahalanobis
distances. The decision of whether a part feature is present or not in a certain
image pixel will depend on the computed distance values.

4 Parameter Selection

In this section we focus on selecting the parameters (orientation, scale and fre-
quency) for each of the Gabor functions used in the feature model. We assume a
limited (constant) number of Gabor filters to constrain the computational cost of
the methods. A straightforward approach to define the parameters would be to
sample the parameter space uniformly. However, this strategy does not exploit
the particular characteristics of the object part under test. Instead, we could
analyse the Gabor response function in the full parameter space(o, ~, 6) and
select those parameters that best describe the particular object characteristics.
However, this strategy could bias the parameter distribution to a narrow range
and reduce the capability to discriminate the modeled object from others. To
enforce some variability in the parameter space and still be able to adapt the
representation to the particular object under test, we will sample uniformly one
of the parameters and perform a 2D search in the remaining dimensions. This
strategy extends the concept of Information Diagram][9].

4.1 Information Diagram

The “Information Diagram” (ID) concept proposed in [9] selects the Gabor filter
parameters semi-automatically. The ID represents the magnitude of the Gabor
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response at a certain interest point (x,y), as a function of § and o, keeping the
~ parameter constant. The ID function is defined as:

IDz,y(ov ‘7) = |G97’Y:1-,0’(I1 y)|

Then, local maxima coordinates of ID are chosen as “good” Gabor function’s
parameters because they represent the object’s characteristic orientations, scales
and frequencies, thus being considered good descriptors of the local image con-
tent.

In this work, we extend the ID concept to consider variability also in the ~
parameter. We define the Extended Information Diagram as the 3D function:

EIvay(ev g, 7) = |G91%U(Ia y)|

Then we denote 6-1D, v-1D, and o-ID as slices of the EID function, keeping
constant one of the parameters, 8§ = 6y, v = vy or 0 = 0¢:

0-ID%, (0,v) = EID, (60, 7v,0);  0-IDS°,(0,~) = EID, ,(6,v, 00);
-1DY° (9 o) = EID, ,,(0,%0,0)

According to our notation, the work in [J] uses a 4-ID with 79 = 1. In Fig. 2 we
show some examples of the 6-ID, o-ID and ~-1D.

o
rEes

Fig. 2. Examples of 0-ID, o-1D, ~4-ID, and o slices in the parameter space from left to
right

4.2 Searching Multiple Information Diagrams

Our strategy to find good parameters for the object part’s model features is based
on uniformly discretizing one of the parameters (say ), and search local extrema
in the resulting set of -ID’s. For example, a set of 6-IDs for 7 = {61,--- ,0,},
at point (z,y) is given by:

T 0’7l
6-IDT = {-ID? -~ ,6-ID%" }

The several §; € 7 are uniformly spaced in the range [0, 7). Then we compute
the parameters of the highest local maximum and smallest local minimum:

("mdx 2 max (Amm ~min

Vi )*argmaxﬁlDl' i )*argmmOID
o oy

Then, the set of chosen Gabor function parameters in Eq.(3) and Eq.(4), are
such that (%,01,01) belongs to {(6iin Amin g ... (¢min 4min g 1 and/or
(P 37 01), - (97 37%,6,).
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5 Experimental Results

In this section we present the results of the tests done for the various approaches
to object modeling and feature parameter selection. Then we select the most
successful approach and perform tests in order to verify the rotation invariance
and robustness to scale changes of the selected feature vector.

The experimental tests performed in this work use 90 subjects from the AR
face database [11], all without glasses, where 60 of them are used for training
(object part modeling) and 30 for testing (object part detection). We represent
four different parts: left eye, right eye, nose and mouth.

5.1 Selection of the Object Model and the Modified ID

Experiments are set-up for evaluating the discretized parameters (o, v or 6),
the number and type of the extrema computed at each ID, the distance metrics
(Euclidean and Mahalanobis), and the feature model type (magnitude vs real-
imaginary parts). A list of the experiments and related configurations is shown
in Table 1.

Table 1. List of the performed tests. Performance in last two columns(%)

Test ID type # local max # local min distance mag re4+im

Mah 68.49 78.33
Mah 85.92 95.83
Mah 58.19 74.16
Mah 54.41 75.83
Mah 58.19 72.50
Mah 50.21 72.50
Euc 31.93 85
Euc 38.87 87.5
Euc 17.86 53.33
Euc 15.55 45
Euc 24.79 74.17
Euc 15.97 75.83

QA2 I QA2 D
N NN N ~DNDN =
—HO R OOKRFROROOR

—_ =
DS ©0-1o Uk Wi~

In every experiment performed we use n = 12 IDs, and choose either one local
maxima and one local minima or two local maxima, so the number of filters is
kept constant (m = 24). The sets of values for the 0, v and 0-1Ds are, respectively,
7 ={0,7/12,--- ;117 /12}, G = {0.5,0.8,--- ,4}, and S = {4,7,--- ,39}.

All IDs are calculated from the mean images T part il the training set, centered
at each object part (left eye, right eye, nose, mouth). To evaluate the performance
of each experiment we count the number of hits (successful detections) in the
test set. Given an object part model, a distance function and an image point, a
hit exists if the global minima of the distance is located inside a circle of radius
r around the center of the object part.
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Considering only the tests using real and imaginary parts of the Gabor re-
sponse, we can see, in Fig. 3 that mean performance is better when using 6-1Ds,
Mahalanobis distance, and 2 local maxima. In this case, success rates are as high
as 95%.

3 5 o
=
5 2

=

Mean perfornane %)
=

=

Mean performance {5%)
5

Mean performance {%)
5

Mean performance {5%)
5

Mndie Hrakirag Hanziashs Fizldzan Ihefa Il camma 3 Agma il YA TRt 1 rar

Fig. 3. Mean detection rate of marginalized tests of table 1

5.2 Rotation Invariance

We test the rotation invariance of the Gabor filters on a synthetic image, and
evaluate, in the face data set, the effects of Gabor response variations to rotated
patters on the correct detection rate. Due to discretization effects and imperfect
filter symmetry, Gabor response presents small variations with the amount of
rotation. In Fig.4 we show the effect of image a-rotation in the response of a
Gabor a-rotated to a synthetic image at the image’s center point. We can observe
that there are some errors in the magnitude and phase that, not being dramatic,
can change the performance of the detection algorithm. The variation in the error
change the success rate in the object part model when using rotated images.
If we shift the angles in every component of the feature vector in Eq.(4), the
rotated model is: v, ) = (v*, -+ 07, - ,vzm)T; vl ) = Re(Go 00,0 (2,Y));
U(Q;;l) = Im(Go,+a,r.0:(z,y)). In Fig. 4 we observe the variation of the success
rate when rotating the image parts and the model. In our tests, for simplicity, we
rotate the image regions every /4, because it does not involve a recomputation
of the filters response. It is important to remark that we use the object model
learned when a = 0, computed in the previous section for test 2 in Table 1. We
observe a very good behaviour of the learned model in the rotated images, with
a performance above 91%.

5.3 Scale Robustness

To check the robustness to scale variations, we compute the success rate in
rescaled images maintaining the object model learned in the original images (6-
IDs, Mahalanobis distance, and two local maxima). In Fig. 4 we observe that
the performance is above 90% for image rescaling upto +20%, corresponding to
a range of about 0.6 octaves. To cope with larger scale variations, one should
cover the scale dimension with additional object part models. If we sample the
scale space every 0.6 octaves we should be able to keep performance above 90%,
provided that an adequate scale selection method is available.
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Fig. 4. Gabor filter rotation invariance tests(magnitude error, phase error, and success
rate variation in rotated images) and scale robustness test, from left to right

6 Conclusions and Future Work

In this work we present an automatic feature selection method that can be
applied to different image regions successfully. The representation is based on
Gabor features and our methodology selects automatically a set of parameters
that are good descriptors for a particular image pattern, representing a part
of an object. The technique is based on the Information Diagram concept [9] ,
that is extended, in this work, to consider optimization along all dimensions of
the Gabor function parameters. We illustrate the richness of the descriptor and
parameter selection methods in a facial feature detection task.
The face detection tests allowed us to evaluate certain design criteria:

— a representation using the full Gabor response (real and imaginary parts) is
more powerful than using the magnitude alone;

— using 6-ID’s provided significantly better performance;

— the Mahalanobis distance outcomes the Euclidean distance in the detection
success;

We also show some tests illustrating the rotation and scale robustness character-
istics of the method. The detection method is based on simple distance metrics
to stress the feature capability in representing image patterns, independently of
sophisticated learning algorithms. Even though the learning algorithm is very
simple, results are promising and should further improve with more powerful
techniques.
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Abstract. Using Comaniciu et al.’s approach as a basis, [9], this paper
presents a real-time tracking technique in which a multiple target model
is used. The use of a multiple model shall enable us to provide the track-
ing scheme with a greater robustness for tracking tasks on sequences in
which there are changes in the lighting of the tracked object. In order
to do so, a selection function is defined for the model to be used in the
search process of the object in each frame.

1 Introduction

Tracking objects through the frames of an image sequence is a critical task in
online and offline image-based applications such as surveillance, visual serving,
gestural human-machine interfaces, video editing and compression, augmented
reality and visual effects, motion capture, driver assistance, medical and meteo-
rological imaging, etc.

Bayesian framework methods have played an important role in tracking
[1][2][3]- The inclusion of a prior offline learning phase enables objects with more
complicated shapes to be tracked [1][5][6]. Exemplar-based methods generate ob-
ject representations from examples and then use distance measures to perform
template matching.

If the objects to be tracked are non-rigid, it is advisable to represent them
with probability distributions. A straightforward way to derive a distribution
model is by using histogram analysis [7][3][9]. The techniques introduced inde-
pendently by Bradski and Comaniciu et al. are based on the following principle:
the current frame is searched for a region, a fixed-shape variable-size window,
whose color content best matches a reference color model. The search is de-
terministic. Starting from the final location in the previous frame, it proceeds
iteratively at each frame so as to minimize a distance measure to the reference
color histogram. Objects are modeled using color distributions and the simi-
larity is then measured between the target and candidate distributions using a
Bhattacharyya coefficient.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 20-27, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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A key component of a successful tracking system is the ability to search
efficiently for the target, as real-time tracking is one of the main goals of our
research.

Comaniciu et al.[9] propose a tracking algorithm in which a scheme for object
representation and tracking is established from the definition of a single target
model. The reference target model is represented by its pdf ¢ in the feature
space. The reference model can be chosen to be the color pdf of the target.
In the subsequent frame, a target candidate is defined at location y, and is
characterized by the pdf p(y). Both pdfs are estimated from the data. In order
to satisfy the low-computational cost imposed by real-time processing discrete
densities, m-bin histograms should be used.

In certain cases, when the target moves in variable lighting conditions, shad-
ows appear which significantly alter the color distributions in the image sequence
(Figure 1). A single pdf will therefore be insufficient for modeling and tracking
the object reliably. Our approach is based on the use of multiple pdfs in a single
target model, when lighting conditions change between frames.

This paper is organized into four sections: Section 2 presents a short review
of the multiple model tracking technique; Section 3 presents some experimental
results; and finally, Section 4 concludes the paper.

Fig. 1. Three frames of a sequence where the target presents different illumination
conditions.

2 Tracking

2.1 Target Representation

In this section, we shall briefly present the main elements defined by Comaniciu
et al. [9] in their tracking scheme. The pdfs defined for the target model and the
target candidate will be given by m-bin histograms.

m
target model: 4= {Gutu=1..m Z qu=1
u=1

target candidate:  p(y)

{ﬁu(}’)}uzl...m Zﬁu =1
u=1

A target is represented by an ellipsoidal region in the image. All targets are
first normalized to a unit circle.
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The function b : R? — {1...m} associates to the pixel at location x} the
index b(x}) of its bin in the quantized feature space. The probability of the
feature w = 1...m in the target model is then computed as:

n

Gu=CY k(| xF )3b(<) - u] (1)

i=1

where § is the Kronecker delta function and C is a normalization constant.

Let {x;}i=1..n, be the normalized pixel locations of the target candidate,
centered at y in the current frame. Using the same kernel profile k(x), but with
bandwidth &, the probability of the feature w = 1...m in the target candidate

is given by:
2

Puly) = G d_R(I Y ™ 2)00b(x;) — (2)
i=1

where (', is a normalization constant.

2.2 Minimization Algorithm

The similarity function defines a distance between the target model and the
candidates. The distance between two discrete distributions is defined as:

d(y) = /1 - p[p(y),d] (3)

where the similarity function will be denoted by:
py) = plp(y).al = > Viu(y)du (4)
u=1

which is the sample estimate of the Bhattacharyya coefficient between p and q
[10].

In order to find the location corresponding to the target in the current frame,
the distance (3) should be minimized as a function of y. This is equivalent to
maximizing the Bhattacharyya coefficient 5(y). For this, Comaniciu et al. [9] use
the mean-shift algorithm with a monotone kernel.

2.3 Model Selection

In order to prevent losses of the target due to lighting changes, we propose a
multiple model M, comprising a set of n pdfs, corresponding to several different
histograms of the object under typical lighting conditions:

MZ{QOvQ17'~'7QH71} (5)

Running the target localization algorithm for each q;, we obtain a set B of
Bhattacharyya coefficients,
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B = {bo,b1,...bp_1}

and a set Y of image positions

Y = {YO7YI7--~Yn—1}

representing the best target location for each model and the corresponding sim-
ilarity levels.

We then need to select the pdf in M which best fits the observed frame.
Selecting the one with the largest Bhattacharyya coefficient may increase the
risk of distractions with image regions having similar histograms to the ones
present in our model. In order to avoid this, we shall also take into account the
position of the maximum given for each q;, and define a probability distribution
based on the difference between the position y; estimated by the tracker, and the
predicted position y of the target. A value of y for each frame can be obtained
by using a dynamical model of the object to be tracked.

Assuming statistical independence between B and Y, we can define the prob-
ability of each q;, given B as:

bi - p(Q:)
Z (bj 'P(flj))

J

p(q;/B) = (6)

with p(q;) being the a priori probability distribution for each pdf in M. Addi-
tionally, the probability of each q;, given Y, is given by:

(@) Y) = p(y —yi) - p(@

)
> (ry - vi)-pla)

J

(7)

In our case, we suppose that the ¥y — y; values follow a zero-mean Gaussian
distribution, i.e. p(y — y;) ~ N(0,0). Expressions (6) and (7) lead us to the
probability distribution used to select the best pdf for each frame:

p(fh/B) qz/Y)

p(élz/BvY) = (q

0‘\/

) (¥ —j) -p(fh))

3 Results

We have tested the efficiency of our method based on multiple target models
by comparing it with a mean-shift tracker using single models [9] with different
sequences and lighting conditions. We have used a three-component multiple
model containing the simple models shown in Figure 2, and compared the ob-
tained results. All of the experiments have been carried out on a desktop PC
(Pentium IV at 2 GHz), at real-time speed (over 40 fps).
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a b C

Fig. 2. Regions used to calculate the RGB models, with their correspondent his-
tograms. The corresponding images belong to different sequences that the ones used
for the experiments.

Frame 180 Frame 525 Frame 885 Frame 930

Fig. 3. Test Sequence 1, tracking with RGB histograms. a), b) and ¢): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

In this paper, we show the application of the mean-shift tracker both for a
simple and a multiple model, on three different sequences. In order to compute
the m-bins histograms required for the tracking algorithm, two color spaces have
been used: RGB quantized into 8 x 8 x 8 bins, and YUV quantized into 16 x
4 x 4, obtaining histograms with the same number of bins, but which are more
sensitive to intensity in the second case.
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Frame 75 Frame 435 Frame 570 Frame 675

Fig. 4. Test Sequence 2, tracking with RGB histograms. a), b) and c): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

The sequences represent a person who is moving in different directions, mov-
ing closer and farther away (scale changes) and varying the speed of the move-
ment. As a result of the presence of shadows in two of the sequences, there are
changes in the lighting of the target on entering or leaving these (see Figure 1).

The tracking carried out in the sequences is defined on an ellipsoidal region
covering the face. The model was obtained using different images, representing
the target in different lighting conditions. Consequently, the target models used
for the experiments do not belong to the test sequences. This is an advantage
since the multiple model may be initialized offline by employing the set of images
that best match the illumination conditions of the sequence.

In Figure 2, the images used to calculate the models are shown, together
with their corresponding histograms, weighted with an Epanechnikov kernel of
the type used in [9].

In order to predict the position §¥**! of the target in the next frame, a very
simple dynamics has been used:

A=\ (y' —y' )+ (1) df 9)
gt =yt 4 dtt!

where y? represents the position of the target obtained by the tracking algorithm
at time ¢, and d° = 0. In our experiments, we have used a value for A of 0.5.
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it I J ; i
Frame 210 Frame 300 Frame 450

Fig. 5. Test Sequence 3, tracking with RGB histograms. a), b) and c): simple models
shown in Figure 2; d): multiple model (on the upper-left corner of the images, the best
model for that frame is shown).

Due to the simplicity of the dynamical model, we have used a o value in
Equation (7) of 0.5. Having a more precise and less general dynamics would
allow this value to be reduced, favoring measurements closer to the expected
position of the target.

Although there are no significant lighting variations in the first sequence
(Figure 3), the multiple model performs better when the hand and the ball
occlude the target, because the dynamics gives less weight to these distracting
events. The results obtained with RGB and YUV-based models are very similar.

In the second and third sequence, significant variations can be observed in
the lighting conditions of the target. The simple model obtained from Image C
(Figure 2) gets distracted at the beginning of the second sequence (Figure 4)
because of the similarity between the histograms of the head and the ground.
For the last sequence, we can see that the selection of the best model for each
frame increases the tracker accuracy (Figure 5).

4 Conclusion

The method presented in this paper enables multiple models to be used in order
to prevent loss when there are significant variations in the target’s histogram,
and allows real-time execution on a desktop computer.
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The experimental results indicate that our method increases the robustness of

tracking when faced with lighting changes in the object. By adequately selecting
the samples for the multiple model, it is possible to track an object from its
generic set of images.
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Abstract. Object-class recognition is one of the most challenging fields of pat-
tern recognition and computer vision. Currently, most authors represent an object
as a collection of parts and their mutual spatial relations. Therefore, two types of
information are extracted: local information describing each part, and contextual
information describing the (spatial) context of the part, i.e. the spatial relations
between the rest of the parts and the current one. We define a generalized correl-
ogram descriptor and represent the object as a constellation of such generalized
correlograms. Using this representation, both local and contextual information
are gathered into the same feature space. We take advantage of this representa-
tion in the learning stage, by using a feature selection with boosting that learns
both types of information simultaneously and very efficiently. Simultaneously
learning both types of information proves to be a faster approach than dealing
with them separately. Our method is compared with state-of-the-art object-class
recognition systems by evaluating both the accuracy and the cost of the methods.

1 Introduction

In this work we deal with the problem of detecting the presence or absence of one object
category in an image. In contrast to simple object recognition, object-class recognition
is not restricted to images of the same physical object (e.g. different images of the same
car), but deals with different instances of the object, e.g. images of different cars. This
introduces a high variability of appearance across objects of our category. The difficulty
is increased by the presence of clutter in the images, partial occlusion and accidental
conditions in the imaging process. Among recent approaches, characterizing the object
as a collection of parts and their spatial arrangement has proved to be a promising
direction [ 1—4].

Classical contextual representations such as Attribute Relational Graph (ARG) [4]
and constellation of parts [3, 5] deal separately with these two forms of information: lo-
cal information is represented by feature vectors associated to each part and contextual
information is represented by a set of relative spatial vectors, i.e. differences in spatial
position.

In this work we define a constellation of generalized correlograms for object repre-
sentation. Correlograms were used to measure the joint distribution of pixel-level color
information along with the spatial distribution [6]. A generalized correlogram is intro-
duced here to deal with higher level properties related to parts of an object. The image

* Work supported by CICYT TIC2000-1635-C04-04, Spain.
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is represented by constellations of such generalized correlograms, instead of using a
unique descriptor as done originally [6]. Belongie et al. [7] introduced constellations of
shape contexts (another type of correlogram) that only deal with spatial arrangements,
i.e. do not consider local information. In our representation, every feature vector in our
feature space gathers local and contextual information. A great advantage of this feature
space is that it can be integrated with an efficient feature selection and learning algo-
rithm such as AdaBoost [8, 9] with weak classifiers based on single dimensions. This
leads to simultaneously learning those spatial relations and local properties of parts that
are characteristic of the object category.

Summarizing, the main contribution of this work is in integrating a new constel-
lation of generalized correlogram representation into AdaBoost with feature selection.
AdaBoost used with weak classifiers based on single dimensions together with our ob-
ject representation lead to an efficient object recognition scheme dealing with the spatial
pattern of the object. We first explain the image representation in Section 2, followed by
the description of the spatial pattern classifier with boosting in Section 3. In Section 4
we report results and conclude in Section 5.

2 Image Representation

In this section we introduce a new representation of the object by using a constellation
of generalized correlograms. Let an image Ij, be represented by a constellation of Uy,
object parts, expressed as Hy = {(0;, h;, x;)}*,. The i-th detected part is represented
by the tuple (o;, h;, x;), where o, is the label identifying the part, h; are the properties
describing the part, and x; is its spatial position in the image. Due to clutter, parts in Hy
might correspond to different objects. Let X = {:cl}ZU:’C1 be the set of spatial positions
of parts from Hj. One way to obtain potential parts of an image is by extraction of
interesting points, also called features or key points [3, 5], this is also our approach.
For our purpose, it is important to not miss any informative location, and to perform
a fast interesting point extraction. By interesting point we mean any point located at
an informative position, such as the edges, we do not mean necessarily corners. Two
levels of interesting points are extracted. First we obtain a dense set of interesting points
representing potential parts of objects. From this dense set, we extract local information
around each point. Let HF = {(ol, hE, :cf)}ZU:’CLl, xL denote this dense set (do not
confuse with the final representation Hy). We extract local information as properties

hE of these parts. Let X} = {zf g:’fl be the dense set of positions from HY. In
our implementation, these positions are located at extracted contours of the image, see
fig. 1(a). From X/} we sample a much more sparse set of interesting points X;, C X/}
covering the different locations from which we measure the relative spatial distribution
of local properties in H. X}, contain the positions of our final constellation Hj. Each
point ¢; € Xj is the position of o;. We associate as descriptor h; a correlogram
that measures the joint distribution of spatial relations (zf — = ;) and local properties
{hZL}g:"L1 Let us express the spatial relation (xX — ;) in polar coordinates: (cv;;,74;),
and the d local properties as hiL = (L1, lia, - - -, lia). The joint distribution is measured
by a histogram based on a partition of the d + 2 dimensional space with vectors v;; =
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(@ijyTijslity lizy -« lia),i = 1,...,UE. The partition of this space is obtained by
intersection of separate partitions made for each individual dimension. Let B,, be the
w-th bin in the final d 4+ 2 space. The j-th correlogram is expressed as : h;(w) =
Ul,f [{vij € Buw,i =1,...,Ul}|, i.e. the w-th bin of h; counts the number of vectors
v;; falling into this bin.

Note that this space contains vectors that express spatial relations and local prop-
erties, and thus the resulting descriptor h; is a correlogram of local properties in H, ,CL
considering their spatial distribution around the point of reference x;. As X C X[,
we are describing in the same vector h; attached to o; the local properties of o;, the
local properties of the rest of parts in the dense set H”, and the spatial distribution of
these parts relative to o;.

The dense set of interesting points in X kL is obtained by extracting the contours
from an over-segmentation with k-means and subsequent postprocessing that obtains
spatially contiguous blobs. The sparse set of points in X}, is sampled from X/} keeping
points with maximum spatial distance to each other, so that X}, covers points of view
from different angles of the image (see fig. 1(b)-(c)). An important characteristic of our
implementation is that it is fast, and the results show that allows accurate representation.

For the spatial dimensions, we use the same log-polar spatial quantization as the
shape-context correlogram of Belongie et al [7] (see fig. 1(b)-(d)). This makes the de-
scriptor h; focus more on local properties around o; (local context) than to the far
context. The dimensions regarding the local properties /1, l;2, - . ., ;4 are linearly quan-
tized; we explain below each of them in turn.

Fig. 1. (a) Dense cloud of points covering interesting parts of the image (edges). (b)-(c) Log-
polar spatial quantization of our correlogram. Each descriptor in (b) and (c) represents a different
“point of view” of the object’s spatial arrangement

As local information, local structure and color around a small neighborhood are
utilized. As local structure, the local direction of the edges is used. Specifically, the
angle is measured along the curve formed by contours. After smoothing the contours,
the angle is taken modulus 7, and we make a quantization into 4 bins. The color is
linearly quantized and mapped into one dimension. We perform a very coarse quan-
tization of the R,G,B space into 3, 2,2 bins to avoid large feature vectors in the final
histogram. As there is not only one dominant color around the local part oF, we take
every color around a small neighborhood and consider the proportion of this color in
this neighborhood, thus a local color histogram is taken. In this way, we are performing
a fuzzy assignment of the part o to bins of the (local) color space, using the local color
histogram h¢ : {1,2,...,12} — [0, 1] as the color membership function of oF.

Different authors have used correlograms [0, 7]. The common feature is to use pixel-
level properties, traditionally only color, considering every pixel in the image. High-
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level entities such parts of objects are not considered in their formulation. Authors do
not consider constellations of their correlograms but aggregate all the descriptors into
one single (spatial) histogram for the image. Belongie et al. [7/] use constellations of
shape contexts but do not use any local information, they describe binary contours by
the presence of a spatial position. The definition presented here can be considered a
generalization of correlograms into a constellation of parts framework. One drawback
of the spatial quantization we use is that it must be scaled with the size of the object to
provide scale invariance. This scaling is done by normalizing the distances 7;; by the
size of the object. As we do not know a priori the size of our objects, we must compute
the contextual descriptors for different scales fixed a priori. Let ng be the number of
scales (experimentally we chose ns = 7). The final representation of the image Iy,
is expressed as A, = {H}Y i tee1, Where H k is the set of parts of I, with contextual
descriptors h scaled according to scale s.

3 Learning Multiple Contextual Representations with Boosting

The explained representation is suitable for combination with a feature selection and
learning method such as AdaBoost with weak classifiers based on single dimensions,
that proved to be very efficient [8, 9]. By learning the relevant dimensions of vectors h
defined in section 2, we are simultaneously learning the properties characterizing every
part of the object and their mutual spatial relations.

In our framework, the model of one object is expressed as 2 = {(w;, p;)} M,
where w; is the label of one model part, ¢; are the parameters for this model part learnt
by the classifier, and M is the number of model parts. We denote as I’ (0j]|o0; € H}) the
likelihood that part o; € H from image I, with scale s represents the model part w;.
We denote as L (H}) the likelihood that any o; in I}, with scale s represents the model
part w;. As we are using contextual descriptors, w; also represents the whole model ob-
Jjectaccording to one particular point of view. Therefore, Ly’ conveys a piece of evidence
of the existence of the model object according to the point of view w;. L¥(H}) is the
likelihood that any o; 6 H;} represents w;, we apply as OR rule the maximum so that
LY (H}) = max,,en: If (0j|o; € H}). This can also be regarded as matchlng w; with
some o, € H}, which is expressed as M (H}) = op, = argmax,;en; I’ (0jlo; €

Based on the individual likelihoods L%, we denote as L’ (H}) the likelihood that
the object exists in I;, with scale s, according to the whole model 2 = {(w;, ;) }4,
As we want all the model points of view w; of the object to contribute to this likelihood,
we use as combination rule the mixture L?(Hj) = S0 | L Lo (Hp).

Recall that the image I}, is represented by different scales A, = {Hj}%= ;. The like-
lihood that the object exists with any scale in the image representation Ak is expressed
as LQ(A;C) = maxpy:ca, L?(Hj}), where we have applied again the maximum as OR
rule. Agaln this can be regarded as matching the model object with some scaled repre-
sentation H}" in A, which we express as M(Ay) = H;" = argmaxpsc a, L(H}).

To learn the model (2, AdaBoost is applied over each separate model point of view
w;. This requires a separate training set for each w;. We denote as T this training set.
T; contains as positive samples the parts o; matching w; with the correct scale in every
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positive image (i.e. an image containing an object of the category we are learning).
As negative samples 7T contains every part o; with every scale in negative images.
The problem of matching is solved in two stages. First, robust matchings are extracted
from a small set of manually segmented images from the training set (we will see that
very few images are enough). This is carried out by performing non-rigid registration
[7] over these manually segmented images, which obtains an initial training set 77 for
each w;. T/ contains as positive instances only those from the segmented subset, but
has many negative instances, as we use every part with every scale in every negative
image. This allows to discard a lot of structures from clutter. We learn an initial model
part w; with 7. With the learnt model part, we can now match corresponding parts o,
with corresponding scales in the rest of images not segmented manually to construct the
final big training set 7;. Registration is not robust in clutter, therefore we match w; with
those o; that have high likelihood according to the previous learning. We apply in every
positive image first the scale matching M (Ay) and then we apply the part matching in
the appropriate scale M (M (Ay)) (see the expressions above). Finally, we train again
the model with the complete training set 7; and obtain the final classifier for the whole
model object 2.

4 Results

We used the CALTECH database (http://www.robots.ox.ac.uk/ vgg/data3.html) col-
lected by Fergus et al. [3, 10], which consists of 7313 images with clutter for object
recognition. Part of this database was also used by other authors such as Agarwal et al.
in [1]. This database contains 7 different categories, which is a big step forward com-
pared to many databases used in other works that are based on one or two categories. A
full description of the database along with examples can be found in [3, 10], we do not
show them here due to lack of space. The object categories can be found in table 1(a).
Most of the object categories have instances under the same bi-dimensional arrange-
ment, except for the spotted-cat category taken from Corel® database. Each category
has roughly 800 images of different objects of this category. From the positive training
set, 10 images are manually segmented. The negative set of images were taken by Fer-
gus et al. from Google® by searching with the keyword “things”. This consists of 520
images, 400 were taken as training and 120 as test. Each time the training consisted of
400 positive images, 400 negative, and the test of 100 positive and 100 negative.

A cross-validation procedure was followed to test a total of 400 negative images
and 400 positive images, average results are shown. Each time, the images included in
the sets were picked randomly, always using disjoint sets for training and test.

Fig. 2(a)-(b) shows a example of results for 2 of the 7 categories, motorbikes in (a)
and faces in (b). Fig. 2(a) shows every image correctly classified as motorbike. Some
images show a heavy clutter and still there are no incorrect matches. Fig. 2(b) shows
images classified as faces. Faces show an incorrect match, that can be seen to be similar
in shape.

In fig. 3 each row shows the matching from a part w; of the learnt model, to a
matched part o; in different instances of the object. In the first row we show matching
of one model part of the car(rear) category. We can see that the model part is consistently
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Fig. 3. Some matchings obtained with in several classes

matched with the same shadow beneath the car in the images. In the second row, another
model part is matched consistently near the left red light in the images. In the motorbike
category (third row), one model part matches with parts in a similar relative position of
the instance motorbikes, despite the clutter. Finally, a model part of the face category
(forth row) matches with parts near the ear of the face instances.

Given a test set with positive and negative images, the goal is to detect what im-
ages contain some instance of the object category and what do not contain any instance.
The classification hit rate is measured using the receiver-operating characteristic (ROC)
equal error rates: p(True Positive)=1-p(False positive). Table 1(a), presents results com-
paring our method against the constellation used by Fergus et al. in [3], they also report
results with other approaches using the same data set (see reference). In all the cat-
egories except the spotted cat and face, our method outperforms the one reported by
Fergus et al. The spotted cat has very different poses which makes the spatial quanti-
zation that we use not so suitable. However, the inclusion of local properties such as
color makes boosting focus more on local information than contextual information in
this category, so that not bad results are obtained. The face category is probably better
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Table 1. (a) ROC equal error rates measures with the method in [3], and our method (b) Com-
putational cost for different stages, see text for explanation, the second row is the inverted file
arrangement cost, only in our system

(@ (b)
Category [3] Ours
Context
Car(Rear) 90.3% 96.9% Step [3] Ours
Plane  90.2% 94.5%  Description per image 15 sec. 6 sec.
Leaf - 96.3% LF. per image - 2 sec.
Motorbike 92.5% 95.0% Training 36 hours 4 hours

Face 96.4% 89.5% Classification per image 3 sec. 0.23 sec.
Spotted Cat 90.0% 86.5%
Car (Side) 88.5 % 90.0%

represented using local appearance and PCA as Fergus does, we can include this in a
future work. For the car (side) category the result is a recall-precision equal error. The
negative set in this category contain images of roads without cars [3], so that a more
realistic experiment can be made.

To speed up the algorithm, we take the non-empty bins of correlograms describing
the current object category, and only use these bins in AdaBoost. That is, bins that are
empty in our positive training set 7; (see section 3) are not used by the classifier. This
also makes the algorithm more robust against clutter because we disregard structures
not found in our object category. A similar idea was used in [| 1] for shape contexts.
We also make use of the high sparseness of our generalized correlograms both in the
training and in the recognition stage. Note that a correlogram is a special type of his-
togram. We only process the non-zero elements of our descriptors, by structuring the
data as inverted files, a technique used in information retrieval [ | 2]. For each dimension
we keep the index of the descriptors that contain a non-zero value for this dimension,
along with the value for this descriptor. Then the descriptors are sorted by the value of
this dimension. This allows to use binary search in the recognition stage when we are
looking for values in one dimension exceeding the threshold obtained by AdaBoost [9].
As our images contain a large constellation of descriptors with different scales (typi-
cally 100 descriptors with 7 scales) this technique speed ups the algorithm by obtaining
a logarithmic cost in the number of scanned descriptors. Although sorting has a cost a
bit higher than linear, it is done only once, saving later a lot of cost in the search for
each model part w;. Furthermore, sorting has linear cost on the number of descriptors
that have a value greater than zero, only 20% of the descriptors due to the sparseness.
This technique is also suitable for retrieving in large databases if we have pre-computed
the descriptors. The time cost for every stage is shown in table 1(b), compared to the
method in [3]. The second row denotes the cost of arranging the description of I as
inverted file and sorting. We used a computer at 2.4 GHz for the experiments, while ex-
periments in [3] were made with a computer at 2.0 GHz. We used Matlab® with some
subroutines in C. Some parts such as the feature extraction and training stage could be
made more efficient.
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5 Discussion

In this work a an object class recognition system has been proposed that is able to learn
the characteristic parts of the object and their spatial relationship in the presence of
clutter. The image is represented as a constellation of very sparse contextual descriptors
and this representation is integrated with an efficient feature selection and learning algo-
rithm such as boosting. We achieved very accurate classifier compared to the approach
of Fergus et al. [3]. Furthermore, making use of the sparseness we showed that an ef-
ficient method can be achieved, suitable for scanning large databases. Summarizing,
our novel contribution is to propose an efficient object class recognition framework that
incorporates a novel constellation of contextual descriptors into an efficient boosting
algorithm used with feature selection.

For future research, we would like to enrich the feature space by combining the log-
polar spatial quantization with other types of spatial quantization less sensitive to shape,
in order to be able to recognize the same object under different spatial configurations
(for example a dog with different poses). By boosting we can combine a descriptor sen-
sitive to different shapes and a (contextual) descriptor robust against shape variations,
and let the classifier learn if the object is very structured.
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Abstract. It is well-known that image pixel values of an object could
vary if the lighting conditions change. Some common factors that produce
changes in the pixels values are due to the viewing and the illumination
direction, the surface orientation and the type of surface.

For the last years, different works have addressed that problem, propos-
ing invariant representations to the previous factors for colour images,
mainly to shadows and highlights. However, there is a lack of studies
about invariant representations for multispectral images, mainly in the
case of invariants to highlights.

In this paper, a new invariant representation to illumination intensity,
object geometry and highlights for multispectral images is presented.
The dichromatic reflection model is used as physical model of the colour
formation process. Experiments with real images are also presented to
show the performance of our approach.

1 Introduction

The image pixel values of an object could vary if the lighting conditions change.
During the image formation process, the main factors that could produce changes
in the pixel values are: viewing direction, surface orientation, highlights, illumi-
nation direction, illumination intensity, illumination colour and inter-reflections.

The aim of invariant image representations is to obtain the same value for
the pixels of an object, independently of the conditions commented above. These
representations can be quite useful to measure or recognize objects in images
or other tasks that require invariance to any of these properties. For instance,
intensity-based edge detectors cannot distinguish the physical cause of an edge,
such as material, shadows, surface orientation changes, etc. This fact produces
poor segmentations and, therefore, bad recognition of objects.

* This paper has been partially supported by projects: DPI2001-2956-C02-02 from
Spanish CICYT and IST-2001-37306 from European Union.
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For the last years, significant works about invariant representations for colour
images have been carried out [2], [1], [!]. Many of them use the reflection model
introduced by Shafer in [7] as a physical model to understand the colour of a
concrete pixel. The reader is addressed to [3] for a comprehensive study.

The next section explains how to obtain invariant representations to illumina-
tion intensity and other geometric factors (as shadows) and highlights, perform-
ing simple mathematical operation with bands (R, G and B, for colour images).
Our approach for multispectral images is based on similar properties, taking
advantage of the Neutral Interface Reflection (NIR) and narrow band filter as-
sumptions. We have named our invariant L, which is invariant to illumination
intensity (assuming white illumination), object geometry and highlights while
approximately preserving the spectral information of the image.

2 Multispectral Invariant Representations

The use of the reflection model is key point to understand how a sensor works.
The Dichromatic reflection model introduced by [7], represents the output value
C of a pixel in the image plane as:

Crn =mp(T, ) /fn (N +my (7,5, /fn (A)dx (1)

for C,, = {C1,...,Cn} giving the Cy, sensor response of a multispectral camera,
¢y and ¢4 are the surface albedo and Fresnel reflectance respectively, A denotes
the wavelength, 7 is the surface patch normal, 5 is the direction of the il-
lumination source and ¥ is the direction of the viewer. Geometric terms my
and m, denote the geometric dependencies on the body and surface reflection
component respectively.

Considering the Neutral Interface Reflection (NIR) model (assuming that
¢s(A) has a constant value independent of the wavelength), narrow band filters
modelled as a unit impulse and white illumination (equal energy density for
all wavelengths within the visible spectrum), then e(A) = e, f = [, fi(A\)d\ =

- = [, fN(A)dX and ¢5(\) = ¢, and hence being constants. Then, with this
assumption, the measured sensor values are given by:

Cp=emy(M, 35K, +ems(T, 5,V )es f (2)

with K, = fn(A)ep(N)dA.
If the object is matte, that is, if it does not have highlights, then the sec-
ond part of the equation 2 can be neglected. Therefore, the equation 2 can be

simplified as follows:
Cn =emy(n,5)K, (3)

It is possible to obtain invariant representations to some conditions, per-
forming simple mathematic operations with the bands. For instance: for matte
objects, dividing two bands 4,5 allows to get an illumination intensity and object
geometry invariant representation, i.e. non-dependent of m; and e factors:
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Ci o emb(ﬁ,?)Ki o Ki (4)
Cj o emb(ﬁ,?)KJ— a Kj
For shiny objects, subtracting one band from another provides a highlights

invariant representation, i.e. invariant to viewpoint mg and specular reflection
coefficient c,:

Ci — Cj = (emp(W, 3)K; + ems(W, 5, 0 )esf)
- (emb W, ?)KJ + ems(ﬁa ?7 7)Csf) (5)
= emb(ﬁ, ?)(Kl - K])

Finally, first subtracting and then dividing bands provides a representation
invariant to highlights, illumination intensity and object geometry:

Ci — Cj _ emb(ﬁ,?)(Ki —Kj) _ Ki —Kj (6)
C’k—Cl emb(ﬁ,?)(Kk—Kl) Kk—Kl

Following these ideas, Stockman and Gevers [3] presented two invariant repre-
sentation for multispectral images, the normalized hyper-spectra and the hyper-
spectral hue.

The normalized hyper-spectra is a representation invariant to e and m;, factor.
It is defined as follows:

Cy

G4+ 0y @)

The calculation of the hyper-spectral hue needs a special attention since hue
orders colors in a circular way. First an equal-energy illumination is obtained
dividing each band by the corresponding sensor response of a white reference
object, and supposing that the filter is a narrow band filter modelled as a unit
impulse [3]. Thus, the object can be made independent of the illumination in-
tensity.

In a second step, all the values are transformed as follows:

Cn

¢n =Cp—min(Cy + -+ Cy) ()

As a result, the transformed spectrum is invariant to highlights.
After the pre-processing of the spectrum, the hue can be calculated using the
following equation:

>, cicos(ay)
>, cisin(ag)

As a result, the transformed spectrum is also invariant to object geometry. The
reader is addresed to [3] for further details.

> ,where «; = (i = 1)2m 9)

H(cl,...,cN)_arctan( N

3 L, Multispectral Invariant

The multispectral Hue is invariant to illumination intensity (assuming white
illumination), object geometry and highlights which are the properties that we
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are looking for. Nevertheless, the fact that it transforms an image with N bands
to an image with just 1 band can produce an import loose of multispectral
information, which can be crucial in many applications.

Therefore, we propose the L,, invariant for multispectral images which trans-
forms an image with NV bands into an invariant representation with N — 2 inde-
pendent bands. It is defined as follows:

Cn — min(Cl, ey CN)
Ej(Cj — min(Cl, ey CN))

In order to make the acquired images independent from illumination, the
aperture times of our multispectral camera have been calculated carefully for
every band to eliminate differences in light intensity that are caused by the
spectrum characteristics of the lamps, the filter and the sensor. This calculation
is done by repeatedly taking multispectral images of a white reference, (i.e. a
white surface with equal reflection properties in a wide spectrum) and adjusting
the aperture times until the light intensity is the same in every band. This process
is called white balancing. These aperture times compensate for the unknown
spectral characteristics of the lamps, the filter and the sensor. Thanks to that
process, we can assume that we are using white illumination and therefore the
acquired images fulfill that e()\) = e,VA. This fact allows to suppose that the
sensor behaviors following Equation 2.

The aim is to obtain an invariant representation where the spectral informa-
tion is preserved, i.e. the invariant pixel value not to be a mixture of other
pixel (wavelengths) values. Lets, C; = empK; + B, C; = emypK; + B and
min(Ch,...,Cn) = Cpin = empKpnin + B, with B = emgcsf being a constant
value along A, my = my(7m,s) and m, = mys(7, s, ). In order to achieve
highlights invariance, we can perform C; — C;, but then, a mixture of body re-
flectance values from both pixels is obtained as an invariant, loosing spectral in-
formation, C;—C; = emy(K;— K;). However, using the minimum value, the spec-
tral information is approximately preserved, since Cy,ip = empKpmin + B ~ B
and therefore C; — Cpin ~ empK; + B — B = em K, i.e. invariant to high-
lights. In addition, L,, is also invariant to e and my, i.e. illumination intensity
and geometry factors, since:

L, = (10)

N empK, K,
X em K 3K

Note that we are dividing all the pixel values by a constant, therefore the
spectral information is maintained.

L (11)

4 Experimental Results

In order to test our approach in real images, a set of multispectral images have
been taken using a specially designed illumination chamber (see Figure 1). The
chamber is a perfect hemisphere with a large number of low-voltage halogen
lamps attached on the inside uniformly distributed through the hemisphere. The
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(c)

Fig. 2. Wooden toys experiment. (a) original image, (b) original edge-image, (¢) Ln
invariant representation, (d) L, invariant edge-image. See text for explanation

lamps illuminate the object from all sides and from equal distances, minimizing
shadows, shine and other effects. For each image, 33 bands have been captured,
from 400nm to 720nm, using a bandwidth of 10nm.

From the experiments performed using the set of images captured, the most
significative ones are reported in this paper. Children toys have been selected as
test objects since they have interesting properties that help us to demonstrate
the invariant behaviour of our approach.

Figure 2 shows the wooden toys” experiment. In figure 2a, the original 33-
bands image is presented. In order to show the image as a RGB image, the
bands 650nm, 540nm, 490nm have been selected to be the R, G and B chan-
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(c)

Fig. 3. Plastic Toys experiment. (a) original image, (b) original edge-image, (¢) Ly
invariant representation, (d) L, invariant edge-image. See text for explanation

nels, respectively. Figure 2b shows the edge-image obtained from the 33 band
original image. White pixels are the ones that are greater than a threshold in
the multispectral gradient of the image. The gradient of the multispectral im-
age has been calculated using the Di Zenzo multispectral gradient [9]. Note the
edges produced by shadows in the objects. Figure 2¢ and 2d show the results of
our approach. Figure 2c shows the L,, invariant representation as a RGB image
(R = 650nm, G = 540nm and B = 490nm). Finally, Figure 2d shows the edge
image obtained from the transformed multispectral image. Note that the effect
of the shadows has been completely eliminated.

The next experiment involves plastic toys whose reflection properties produce
highlights, which are hard to remove. Figure 3a shows the original image. As in
the previous experiment, the bands 650nm, 540nm, 490nm have been selected as
the R, G and B channels, respectively. Figure 3b shows the edge-image obtained
from the 33 band original image. Note the edges produced by shadows and
highlights. Figure 3¢ shows the results of our invariant as a RGB image (R =
650nm, G = 540nm and B = 490nm). Finally, 3d shows the edge image obtained
from the invariant image. Note that the effect of the shadows has been completely
eliminated and the effect of the highlights has been almost completely eliminated.
The brightest points have not been suppressed because of sensor saturation at
these pixels.
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Fig. 4. Orange segmentation experiment. (a) original image, (b) L, invariant repre-
sentation, (c) segmentation results of original image, (d) segmentation results of the
transformed (by the invariant) image

In last experiment, our approach has been tested in an application to seg-
ment orange fruits. Figure 4a shows the original image as a RGB (R = 650nm,
G = 540nm and B = 490nm). In spite of our effort to make an illumination
chamber with a homogeneous illumination, the image of the orange shows vari-
able illumination in different areas of the orange, higher in the center than in
the periphery. Figure 4b shows the invariant representation, note that the illu-
mination problems have been drastically reduced. In order to test if the invariant
representation improves the segmentation of the orange, a multispectral segmen-
tation algorithm has been used (see [0], [7]), using as input the original (Figure
4a) and the transformed image (Figure 4b). Figure 4c and 4d show both results.

Note the poor results of the segmentation using the original image due to the
problems with illumination effects. On the other hand, note the excellent results
of the segmentation process in Figure 4d, where the effect of the illumination
problems have not influenced the extraction of the regions of the orange.
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5 Conclusions

A new invariant for multispectral images has been presented in this paper. Our
approach transforms the image into a new space which is invariant to illumi-
nation intensity (assuming white illumination), object geometry and highlights
while approximately preserving the spectral information of the image.

The presented method has been successfully tested in real multispectral im-
ages with shadows and strong highlights, where it has been demonstrated the
ability of the invariant to deal with those effects in the image and, therefore, can
be used as input of other image processing applications, for instance, segmenta-
tion.
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Abstract. This paper presents a local image feature, based on the log-
polar transform which renders it invariant to orientation and scale varia-
tions. It is shown that this feature can be used for pose estimation of 3D
objects with unknown pose, with cluttered background and with occlu-
sion. The proposed method is compared to a previously published one
and the new feature is found to be about as good or better as the old
one for this task.

1 Introduction

Finding the geometrical state of an object from a single 2D image is of major
importance for a lot of future applications in industrial automation such as bin
picking and expert systems for augmented reality as well as a whole range of
consumer products including toys and house-hold appliances. Previous research
in this field has showed that there are a number of steps that need to fulfill a
minimum level of functionality to make the whole system operational all the
way from image to pose estimate. Important properties of a real-world system
for pose estimation is robustness against changes in scale, lighting condition
and occlusion. Robustness to scale is usually solved by some kind scale-space
approach [9], but there are so far no really good ways to achieve robustness
to lighting changes and occlusion. Occlusion is usually handled by using local
features which is done here also. The local feature and the framework for pose
estimation presented here has been tested in a setting that is constrained to the
case of knowing what object to look for, but with no information on the state of
the object. The inspiration to the work presented here comes from active vision
and the idea of using steerable sensors with a foveal sampling around each point
of interest [1 1]. Each point of interest detected in this work can be seen as a point
of fixation for a steerable camera that then uses foveal sampling as a means of
concentrating processing in the area close to that point.

1.1 Related Research

The problem of estimating object state has been investigated for as long as
automated image processing has been possible. In the early period of the research

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 44-51, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Local Single-Patch Features for Pose Estimation 45

field, a lot of effort was spent on global methods, many without much real-world
success. The work we will present here was in part inspired by one of those global
methods [1]. In the recent years some advances have been made in the area of
pose estimation [12], [10], [6], [¢], of which much seems related to a new focus on
local invariant features. Each local feature detected in an image during training
can in such a setup be viewed as a search key to find the same view again from
the database of learned object views.

1.2 Thesis of This Paper

We propose to use as local feature a patch of either the image or a edge-filtered
version of the image and to use this feature in combination with a voting and
clustering setup. An edge-filtered patch of the image can either be represented
by the absolute value of the edge-vector in each point, or be represented in single
or double angle notation [5]. The double angle representation effectively doubles
the rotation angle around the z-axis for the edge normal in the image plane
and thus has the advantage of not discriminating between lines or edges or the
phase of an edge. This gives patches in double angle representation the chance
to be more robust to changes in background and lighting. In this paper we will
evaluate the performance of single and double angle represented patches.

We further propose that the patches are resampled with log-polar sampling
and then transformed with the Fourier transform. This will in theory give us a
local feature that can be made invariant to position in the image, to rotation
and scale. When using discretized versions of continuous transforms like the log-
polar transform used here, one has to be careful of how the discretization changes
the transform, but we will show that this works in practice and is applicable to
real-world setups for pose estimation.

2 Pose Estimation

In this section we will describe the details behind our setup. What we will not
go into detail about is the Harris corner' detector [7] that we use for feature
selection. It was used since it seems to be one of the fastest and most stable ones
around according to [13].

2.1 The Local Feature

We see a zoom-in on one input image from the training set where Harris points
have been drawn as small circles in Figure 1(a). Around each Harris point a log-
polar sampling grid is placed in either the gray-valued image, see Figure 1(b), or
an edge filtered image, see Figure 2(a). Resampling using this sampling grid and
cubic interpolation yields an approximation to the log-polar transform for that
local neighborhood, see Figure 2(b). In a log-polar sampled image, translation

! Tt is perhaps better to say that it detects non-simple signals.
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(a) Harris points (b) Sample grid around Harris point

Fig. 1. Harris points and log-polar sampling grid
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(a) Edge image with sample grid (b) Log-polar sampled edge image

Fig. 2. Edge image with sample grid and log-polar sampled edge image

equals rotation or scaling in the original image. It is possible to make this patch
invariant to rotation and scale changes in two-steps. First compute the Fourier
transform of the patch, this transfers the information on translation in the log-
polar patch into the phase of the transform. Second, compute the magnitude of
each sample in the Fourier transformed patch, thereby removing the phase and
thus the information on translation from the patch. We now have a local feature
that is invariant to rotation and scale. This corresponds to the Fourier-Mellin
transform used in [1], however the differences in the approaches are that we use
local features and also we will not use phase information to recover the scaling
and rotation.

2.2 Training

During training, the system does the following until all training images have
been processed:
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1. Read in next training image together with pose ground truth.

2. Detect Harris points and sample around each found Harris point with a
log-polar sampling grid.

3. Store the Fourier transform of each feature patch together with information
on the pose and the position it was found at in the database.

It should be noted that we do not perform the second step to make the
feature invariant as detailed in Section 2.1 at this stage.

One advantage of this kind of method is that since we use no kind of opti-
mization, as we would if we used a neural network, new views can be added at a
later time. Storing data in such a database can be seen as a crude way of doing
learning, there is however evidence that the human vision system works as if it
used database look-up functions when recognizing objects [3].

2.3 Matching

When the system is running in query mode, i.e. it has already been trained and
we want to use it to estimate the state of an object, we need to perform matching
to see what votes will be cast. The matching procedure can be visualized by
Figure 3. The second step detailed in Section 2.1, which is performed to make
the features invariant to scale and rotation, is applied. Correlation is then used
to compute the k nearest neighboring matches between the query and prototype
features. The k nearest prototypes to each query feature are selected to cast a
vote. The vote on pose angle as well as position is given by their position in the
database. To compute the votes for scale and rotation angle we apply the inverse
Fourier transform on the selected query and prototype patches to again get the
log-polar transform. A modified circular correlation between each query feature
and its k nearest neighboring prototype features yields a response where we can
find the votes on scale and rotation by locating the peak in that output.

2.4 Clustering

The votes for ¢, 6, rotation in the image plane «, position and scale are inserted
into a 6-dimensional space. We need to find peaks in this space and estimate a
mean of such a peak, or cluster. For this, mean-shift clustering [1],[2] is used.
The algorithm finds one or many clusters and outputs a confidence value for each
cluster that depends on how many votes there are in that specific cluster and
how spread out the votes are. This means that the method can be used to search
for several objects of the same kind as they will form different clusters since it is
not physically possible for two objects to have the same exact state. Furthermore
it should be realized that the method takes longer time to compute the more
features are detected, for instance in the background, and that the more random
and erroneous features there are, the higher the probability of erroneous clusters
forming by chance will be.
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Fig. 3. Overview of the query mode. The resulting output is an estimated pose, posi-
tion, rotation, and scale of the object. KNN refers to the k nearest neighbor method

3 Experiments and Results

As we want to try and estimate the pose of an object we used the turntable
seen in Figure 4 to sample a set of images. The turntable can be controlled very
precisely and can rotate about two axes. The ¢-axis does however tend to align
with the optical axis of the camera at high 6 angles. This alignment means that
rotations in ¢ can be mistaken for rotations in «, i.e rotations in the image plane.
We are using a feature that is supposed to be invariant to rotations in the image
plane and this is the reason why the € angle in the data sets does not go as high
as it could. A subset of the sampled images of a toy car can be seen in Figure 5,
where the 6 angle is on the vertical axis and the ¢ angle is on the horizontal
axis. From this set of sampled images we define the following data sets

b 0

Training  0°, 10°,...,180° 0°, 10°,...,40°

Dataset 1 o luation 5° 15°.... 175° 5°, 15°... 35°
Dataset 2 Training 0%, 20°,...,180 0°, 20°,40

Evaluation 10°, 30°,...,170° 10°, 30°
and evaluation on these two data sets yielded the following mean absolute errors

Single angle Double angle Patch duplets [3]

6 0.53° 0.48° 1.25°

Dataset 1
araset Ly 0.85° 0.80° 1.06°
Dataset 90 242 1.84 421

0 2.26° 1.63° 2.66°
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(a) Turntable (b) Possible rotation angles

Fig. 4. Turntable used to sample images

Fig. 5. Subset of the training images of the toy car

From the above table we can see that for this particular set of images this
method is comparable to the patch duplets [], which is in the right-most column.
We also see that the double angle representation seem to be better suited for
this task than the single angle representation.

To find out how this method behaves on images with structured background
we made some other experiments. Since we do not have ground truth in the
following experiments we choose to overlay the query image with an edge-filtered
version of the closest training view. Since we only have views with a 5° interval
we can have errors up to that level even though the estimates might be more
precise than that. One experiment can be seen in Figure 6, where the scale was
found to be 1.1 and the overlay was scaled accordingly. An other such experiment
can be seen in Figure 7, where scale was detected as 1.05. The experiment seen
in Figure 8 also shows that the method is robust to some occlusion.

4 Conclusions

It is obvious from images presented in Section 3 that the proposed local feature
together with the described matching and clustering works for real-world objects.
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Fig. 6. Toy car on table and closest view overlayed

50 100 150 200 250 300

Fig. 8. Toy car occluded and closest view overlayed

It is also seen that in some cases the method is more precise than the method it
is compared to. Since the properties of the feature allows the method to use only
single patches, in contrast to for example [(] or [¢], it has the chance be more
stable to occlusion than non-single-patch features. The single-patch property
might also make it possible for the method to generalize to similar objects,
which can be a good thing in some cases.
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Abstract. In this paper, a new approach to optical flow estimation in
presence of multiple motions is presented. Firstly, motions are segmented
on the basis of a frequency-based approach that groups spatio-temporal
filter responses with continuity in its motion (each group will define a
motion pattern). Then, the gradient constraint is applied to the output
of each filter so that multiple estimations of the velocity at the same
location may be obtained. For each “motion pattern”, the velocities at
a given point are then combined using a probabilistic approach. The use
of “motion patterns” allows multiple velocities to be represented, while
the combination of estimations from different filters helps reduce the
aperture problem.

Keywords: Optical flow, multiple motions, spatio-temporal models

1 Introduction

Optical flow estimation, viewed as an approximation to image motion, is a very
useful task in video processing [!]. In this framework, an open problem is how
to deal with the presence of multiple motions at the same location [2]. With
the presence of occlusions and transparencies, more than one velocity may be
presented at the same point (for example, let us consider a sheet of glass cross-
ing over an opaque object). In such cases, the techniques which do not consider
the presence of multiple motions will generate erroneous estimations which will
combine into a single vector the different velocities present at one point. These
problems are currently being addressed by the research community with models
such as those based on the use of mixed velocity distributions (usually two) at
each point [3], the models based on line processes [1], the parametric models
[5] or the frequency-based techniques (which use spatio-temporal filters to sepa-
rate the motions [0, 7]). Nevertheless, although they do consider the presence of
occlusions and transparencies in their calculations, the majority of these tech-
niques do not generate a representation as an output which allows more than
one velocity per point.

* This work has been supported by the MCYT (Spain) under grant TIC2003-01504.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 52-59, 2005.
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(1) Input (2) Spatio-temporal filtering
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Fig. 1. A general diagram describing the motion segmentation model.

In order to confront this problem, in this paper we develop a methodology
for optical flow estimation that is able to represent multiple velocities at the
same point. To detect points with multiple motions, the model introduced in [3]
is used. This model is a frequency-based approach that groups spatio-temporal
filter responses with continuity in its motion (each group will define a motion
pattern). Given a motion pattern (a group of filters), the proposed technique
apply the gradient constraints to the output of each filter in order to obtain
multiple estimates of the velocity at the same location. Then velocities at each
point are combined using probability rules.

The rest of the paper is organized as follows. Section 2 introduces the spatio-
temporal filtering approach to motion segmentation and Section 3 shows its
application to optical flow estimation with of multiple motions. Results with real
and synthetic sequences are shown in Section 4 and, finally, the main conclusions
are summarized in Section 5.

2 Motion Patterns

To detect multiple motions at the same location, the frequency-domain approach
introduced in [8] is used. This methodology is based on three main stages:
a spatio-temporal filtering, the computation of the distance between filter re-
sponses, and a clustering process. A diagram illustrating the analysis on a se-
quence corresponding to a handclap is shown in Figure 1 (in this example, the
objective is to separate the two hand motions).



54 Jestus Chamorro-Martinez et al.

In the first stage, the original sequence is represented as a spatio-temporal
volume, where a moving object corresponds to a three-dimensional pattern. Its
Fourier transform is then calculated in order to perform the analysis in the
frequential domain. Given a bank of spatio-temporal logGabor filters, a subset
of these is selected so that significant spectral information may be extracted.
These selected filters are applied over the original spatio-temporal image so that
a set of active responses may be obtained (only one subset of filters is used).

In the second stage, the distances between active filters are obtained. These
distances are computed over relevant points which are calculated as local energy
peaks on the filter response.

In the third stage, a clustering over the set of active filters is performed to
highlight response invariance. Each cluster obtained in this step defines a motion
pattern. In the output box of Figure 1, two collections of filters corresponding
to the two hand motions are shown. For more details about these three stages,
see [3].

3 Optical Flow Estimation

In this section, the frequency-based model described in Section 2 will be used to
optical flow estimation in presence of multiple motions

3.1 Differential Formulation

Within the gradient-based approaches, based on the well known differential
brightness constancy constraint equation, a probabilistic framework to optical
flow estimation was proposed by Simoncelli et al. [9]. In this approach, two
independent additive Gaussian noise terms ny and no are introduced in the con-
stancy constraint equation [9], and the velocity at a given point is defined as a
Gaussian random variable with mean and covariance:

=403 wrdy (1)

K1 ||fe(x"“7y’l“7t)||2 + K2

A= lZ A

-1

(2)

—~ k1 |[fe(@r, yr, 1)]|° + Ko

with fe = (f4, fy) and f; being, respectively, the spatial and temporal derivatives,
where w, is a weighting function that gives more influence to elements at the
center of the neighborhood, with the points in the neighborhood indexed by r,
A, the covariance of the prior distribution P(v), M, and d, defined as

TR0 L0 GG
M. = [fy(r)fm(r) £2(r) } b"_[fy(r)ft(r)] ®)

and rki1and ke two parameters associated to ny and ns respectively (see [9] for
more details)



Dealing with Multiple Motions in Optical Flow Estimation 55

3.2 Estimation for a Spatio-temporal Filter Response

In order to estimate the velocity v; at a given point (z,y,t) of the i-th filter
¢;, the probabilistic approach described in Section 3.1 is used. Using the odd
response of the filter ¢;, the velocity v; is therefore defined on the basis of a
Gaussian random variable v; with mean ., and covariance Ay,:

vi~ N(py,, Ay,) i=1,...N (4)

where py, and Ay, are calculated using Equations (1) and (2). Therefore, given
a point (z,y,t), we shall have a vector of estimations [vy,va,...vy], with N
being the number of active filters

Confidence Measure It is well known that the covariance matrix Ay, can be
used to define a confidence measure of the estimation v; [9]. In this paper, we
shall use the smallest eigenvalue of A;il as the confidence measure of v; [10] and
this will be denoted Ay, :

Av, = min {A], Ay} (5)
where Al and X} are the two eigenvalues of Aj! (for the sake of simplicity, we
have omitted the spatio-temporal parameters (x, y, t) in the notation Ay, (x, y, t)).

Therefore, an estimation v; at a given point (x,y,t) of the i-th filter ¢; will
be accepted if Ay, > T'hresholdy,, where Thresholdg, is a confidence threshold
associated to the filter ¢;. Under the assumption that every relevant point of the
filter will generate a reliable estimation, the following approximation is proposed
to calculate T'hresholdy,:

Thresholdg, = min {Ay,(z,y,t) / (z,y,t) € P(¢:)} (6)

where P(¢;) represents the set of relevant points of the filter ¢;. In this way, we
accept as reliable any estimation which is the same as or better than the worst
estimation obtained for the set of relevant points.

3.3 Estimation for a Motion Pattern

This section shall describe the methodology for integrating the estimations cor-
responding to the set of filters which comprise a motion pattern. Let Sy be the

k-th motion pattern detected in the sequence, and let {¢f}i:1""Lk be the set
of Ly grouped filters in Si. Let {2 be the set of estimations v; ~ N(py,, Ay,)

obtained from {qﬁf}i:l""Lk which are above the confidence threshold. The inte-
gration will be performed on the basis of a linear combination

V;g = Z Q;V; (7)
Vi €S2y
with Vi, representing the velocity at point (z,y, t) of the motion pattern Py, and

«; given by the equation

v, | Avs
(8)
ZVjer ||'uVJ' H AVj

o =
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In this equation, the norm ||py, || measures the “amount of motion” detected at
this point by the filter ¢;, while Ay, measures the reliability of the estimation v;
(Equation (5)). The denominator in (8) guarantees that >, a; = 1.
If we assume that v; are independent variables, v, will be a random variable
with a Gaussian distribution with mean pus =3, a;py, and covariance As =
k k Vi

ng aAy,.

3.4 Representation of Multiple Velocities

The motion patterns allow the relevant motions presented in a given sequence
to be separated; therefore, in the optical flow estimation problem, they can be
used to decide whether there are multiple velocities at the same location or not.
Based on this idea, our scheme will obtain the velocities at a given point (x,y, t)
directly from the estimations calculated for each motion pattern as:

v={Vi}_1 x 9)

where K is the number of motion patterns detected in the sequence, and vy is
the optical flow estimation at point (z,y,t) of the k-th motion pattern Si. It
should be noted that due to the use of confidence measures, we will not always
have K estimations at each point.

4 Results

4.1 Synthetic Sequences

Figure 2 shows two synthetic sequences which have been generated with Gaus-
sian noise of mean 1 and variance 0. The first example (Figure 2(A)) shows
a sequence where a background pattern with velocity (-1,0) frames/image is
occluded by a foreground pattern with velocity (1,0). The second example (Fig-
ure 2(B)) shows two motions with transparency: an opaque background pattern
with velocity (1,0) and a transparent foreground pattern with velocity (-1,0). In
both cases, the figure shows the central frame of the sequence, the motion pat-
terns detected by the model (two in each case), and the optical flow estimated
with our technique. In this example, we have used the values k1 = 0, ko = 1
and k, = le — 5 (with Aj' = ,1 [9]) in Equations (1) and (2) as it is pro-
posed in [9], the spatial and temporal partial derivatives have been calculated
using the kernel 112 (—1,8,0,—8,1), the gradient constraints have been applied
in a local neighborhood of size 5 x 5, and the weight vector has been fixed to
(0.0625,0.25,0.375,0.25,0.0625) [10].

We should point out that in the first example, our technique obtains two
velocities at the occlusion points; in a similar way, in the second example, our
methodology is able to estimate two velocities for each point of the frame. Since
we have access to the true motion field of the synthetic sequences, we can measure
the angular error [10]. Table 1 shows a comparision between our methodology
and other classic techniques such as those studied by Barron et al. [10].
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Original ﬂ Motion Patterns ﬂ Optical Flow
B

Fig. 2. Results with synthetic sequences.

Table 1. Mean error obtained with several techniques applied to the sequences in
Figure 2. MV: Multiple velocities. SV: Single velocity. Density is 100%.

A (occlusion) B (transparency)

Proposed technique MV 0.84° 0.44°
Nestares MV 3.93° 7.76°
Lucas&Kanade SV 4.79° 50.89°
Horn&Schunk SV 2.66° 52.77°
Nagel SV 8.59° 45.81°
Anandan SV 10.47° 47.78°
Singh SV 2.97° 45.27°

Uras SV 3.96° 57.86°
Simoncelli SV 5.97° 49.38°

4.2 Real Sequences

Figure 3 shows some examples with real sequences. In this case, we have used
the values k1 = 0, ko = 1 and k, = 0.5 (as it is proposed in [J]) with the
same partial derivatives and weight parameters used in the synthetic case. For
each example, the figure shows the first and last frame of the original sequence,
the motion patterns detected in each case, the optical flow estimated with our
technique and the optical flow estimated employing the Simoncelli’s technique
[9] as described in section 3.1 (which uses a similar approach, but without a
multiple velocity representation). As we do not have the true motion field for
real image sequences, we can only show the computed flow field.

The first example (Figure 3(A)) shows a case of occlusion where a hand is
crossing over another one. The second case shows an example of transparency
where a bar is occluded by a transparent object (Figure 3(B)). Finally, Figure
3(C) shows an example with an articulated object with two components rotating
and approaching independently. In all the cases, our methodology extracts two
motion patterns and estimates two velocities in the occlusion points.
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5 Conclusions

In this paper, a new methodology for optical flow estimation has been presented.
The proposed technique is able to represent multiple velocities on the basis of
a new frequency-domain approach capable to detect “motion patterns” (that is,
a clustering of spatio-temporal filter responses with continuity in its motion). A
methodology to obtain the optical flow corresponding to a spatio-temporal filter
response has been proposed, using confidence measures to ensure only reliable
estimations. A probabilistic combination of velocities corresponding to the set
of filters clustering in a given motion pattern has been proposed. One of the
main features of the proposal is the possibility of representing more than one
velocity at a point. This is extremely important in situations with occlusions or
transparencies.
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Abstract. In the last few years, the advances in three-dimensional med-
ical image processing have made possible operations like planning or sim-
ulation over real data. Different representations of structures or models
have been proposed, being the implicit surfaces one of the most flexible
models for processing. This paper introduces a new method for comput-
ing the implicit surfaces from the explicit representations of the objects
segmented in three-dimensional images. This proposal is based on the ap-
proximation of the surfaces using distance functions and natural neighbor
interpolation. The system has been tested over C'T images of tibia and
femur where the explicit representation has been extracted through a
TAV model [1]. The results obtained show the suitability of the method
for a correct representation of the target objects.

1 Introduction

Three-dimensional image data from magnetic resonance imaging (MRI), com-
puted tomography (CT) and other scanning techniques allow scientist to interact
with anatomical structures directly mapped from patients. In the last few years,
medical imaging has expanded its use to new applications like surgical planning
an simulation, where a good representation of the organs is necessary. In such
applications, the implicit object representations are adequate due to their suit-
ability for collision detection and physically based animation. These two features
form the basis for intuitive and realistic interaction with solid objects. However,
most of these applications use segmentation processes for the extraction of the
target objects, and most of these processes produce explicit representations of
the surfaces (like polygonal meshes or unorganised points) that must be con-
verted to implicit representations.

There are several techniques for conversion of explicit to implicit represen-
tation. The method based on scan conversion, sample the surface into a binary
volume and then apply a distance transformation algorithm [9]. Breen et al. [4]
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use a similar idea, first sampling the distance to surface into a narrow band near
it and then propagating this information using fast marching method [7]. Some
approaches use implicit function fitting: radial basis functions [10], moving least
squares [3] and level set methods [7] are also used for surface interpolation and
fitting. Finally, geometric approaches have been proposed, some of them based
on the identification of the vertex, edges and facets closest to regions in space [/]
while others use Voronoi diagram for natural neighbor interpolation of distance
functions associated to points on the surface [3, 0].

This paper introduces a framework where the target objects of three-dimen-
sional scenes are extracted using the Topological Active Volume (TAV) model [1].
The result of this process is: a set of points on the surface of the objects, another
set of points inside the object and the topological relations between them. From
this information, we approximate the implicit functions representing the objects
through natural neighbor interpolation of distance functions [3]. The paper is
organised as follows. Section 2 introduces the TAV model. Section 3 describes
method for the reconstruction of implicit surfaces and how the TAV model is
adapted to it. Section 4 shows our preliminary results. And section 5 exposes
the conclusions from our work.

2 Topological Active Volumes (TAV)

The Topological Active Volumes (TAV) model is an active contour model fo-
cused on extraction and modelisation of volumetric objects in three-dimensional
scenes [!]. A Topological Active Volume is a three-dimensional structure com-
posed of interrelated nodes where the basic repeated structure is a cube. There
are two kinds of nodes: the external nodes, that fit the surface of the object, and
the internal nodes, that model its internal topology. The state of the model is
governed by an energy function defined as follows:

1,1 pl
E(U)Z/O /0 /0 Eint(v(r,5,1)) + Eext(v(r, s,t))drdsdt (1)

where E;,; and E.,; are the internal and the external energy of the TAV, respec-
tively. The internal energy controls the shape and the structure of the net. Its
calculation depends on first and second order derivatives that control contraction
and bending, respectively. It is defined by the following equation:

Eint(v(rv Svt)) = O[(|’UT(T, Svt))|2 + |US(T3 S, t))|2 + |vt(T7 Svt))|2) +
B([vrr(r, 8,1))% + |vss (1,8, 1) |2 + [ve (7, 5, 8)[?)+ (2)
2'7(|UTS(T7 S, t)|2 + |UTt(T7 S, t)|2 + |U5t(r7 S, t)|2)

where subscripts represents partial derivatives and «, 8 and v are coefficients
controlling the first and second order smoothness of the net.

FE.,+ represents the features of the scene that guide the adjustment process
and is different for external and internal nodes. It is defined as:
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Eunt (07, 5,1)) = w 1 (0(r, 5,0))]
P 1
TN t) 2 Jolrst) — o) T @)

neN(r,s,t)

where w and p are weights, I(v(r, s,t)) is the intensity value of the original image
in the position v(r, s,t), X(r, s,t) is the neighbourhood of the node (r, s,t) and f
is a function of the image intensity, which is different for both types of nodes. For
example, if the objects to detect are light and the background is dark, function
f is defined as follows in order to minimise the energy value of external and
internal nodes when they are on the surface or inside the objects, respectively:

hILmaz — In(v(r, 5,1))] for internal nodes
fU(v(r,s,t)] = S h[In(v(r,s,t)) + E(Gmaz — G(v(r,5,1)))]  for external (4)
+ DG(v(r,s,t)) nodes

¢ is a weighting term; I, and G,q, are the maximum intensity values of
image I and the gradient image G, respectively; I(v(r, s,t)) and G(v(r, s,t)) are
the intensity values of the original and gradient image in the position v(r, s, t);
In(v(r, s, t)) is the mean intensity in a N x N x N cube and h is an appropriate
scaling function; DG(v(r, s,t)) is the distance from the position v(r, s,t) to the
nearest position in the gradient image that points out an edge.

The TAV model is automatic, so the initialisation does not need any hu-
man interaction as other deformable models. As a broad outline, the adjustment
process consists of the minimisation of the energy of the mesh and, after that,
the breaking of connections between external nodes badly placed, this is, the
external nodes that are not on the surfaces of the objects. The breaking of con-
nections allows a perfect adjustment to the surfaces and the detection of holes
and several objects in the three-dimensional scene [1].

3 Implicit Surface Reconstruction

3.1 Approximating Distance Functions

The most common approach for three-dimensional object surface representation
is the explicit (or parametric) model. In this kind of representation we can easily
identify point coordinates on the object’s surface by varying its parameters.
Opposing to this, in an implicit representation, points on the surface are those
that satisfy an equation like F(z,y,z) = 0, where F(z,y,z) is the so called
implicit function. Thus, the surface F(x,y, z) = 0 divides the space in two areas,
one where F(x,y,z) < 0 and the other where F(x,y,z) > 0. This is often used
for distinguish between the inside and the outside of the object using a function
that takes negative values inside and positive outside (or vice versa).

When we try to convert an explicit representation, like a TAV into an implicit
one, we first have to choose the implicit function to represent the object. In this
paper we use the signed distance function to the surface D(p) as implicit function.
This function is defined as the shortest distance from point p = {x,y, z} to any
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point on the surface. D(p) is positive if p lies outside the object and negative if
p lies inside it.

The implicit function we propose is derived from the interpolation of signed
distance functions associated to the points that are known to be on the object
surface. These functions are approximations of the distance to the object surface
around the points. Our approach uses natural neighbor interpolation of these
distance functions, as it has proved its suitability for surface reconstruction (]3],
[6]) and it is guaranteed to produce correct results when the sampling density
increases enough.

Natural neighbor interpolation is a weighted average of the values at the
neighbour data points using natural coordinates as the weighting measure. Let
S be a set of points s; where the function to be interpolated is known (we know
the local distance function from any point p to the surface ds, (p) at s; nearness),
and Vs the Voronoi diagram of the data sites. The natural neighbors of any point
p in § are those that are neighbours of p in V(sy,). For each s; natural neighbor
of p, the natural region N R} is defined as the region of space that s; loses when
p is inserted in Vs. Denoting ds, (p) as the distance function associated to s; with
respect to point p, the interpolated distance D(p) is computed as:

> wp(si) ds,(p)

_ 8i€S
D(p) - Z wg(si) (5)
s, €S
wy(ss) — L(Vs(si) N Visup)(p) (©)

L(V(sup)(p))

where 0 > 1 is the parameter that controls the relation between weight mag-
nitude and point importance, wpy(s;) is the natural coordinate of the point p
associated to s; and L(R) denotes the Lebesgue measure of the region R (area
in two dimensions, volume in three-dimensional space) and d, (p) is the signed
distance to the tangent plane at s;. Thus, normal information is needed for each
point. The denominator is added for weight normalisation in order to preserve
the distance function magnitude when o > 1.

3.2 Extracting Features from the TAV Model

The results from the segmentation process must be adapted to use the implicit
surface reconstruction method described above. As preciously mentioned, this
method uses points on the surface of the object and normal vectors to them.
The main idea is to get the external node positions of the TAV as the set of
points on the object surface and make an estimation of the normal (direction
and orientation) using the topological information.

Let T be a TAV model and B its boundary, Nr|, denotes the set of external
nodes of T'. For each external node n = {r,s,t} € Nr|,, v(n) denotes the node
position and Fr|,(n) the external facets adjacent to it. The number of adjacent
external facets can vary from three to twelve due to the TAVs ability to make
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topology changes, so we use the normal vector to all these facets for estimating
the normal vector to B around n proceeding as follows.

For each external node n € Nr|,, we compute the direction of the normal
vectors IEI:”« associated to each facet f € Fr|,(n) as well as the displacement
vectors dj s as follows:

Ny = norm(é}lf X éflf) (7)
dng = norm(é,; + ;) (8)

where €, ; and €., are unitary vectors in the direction of the two edges of f
adjacent to n, ‘x’ denotes vector product and norm(?) normalises the vector
v. In order to ensure that the normals point to the outside of the object, the
position of the centroid cy of the cube Cy that f belongs to is used (Cy is unique
since f is external). Then, the oriented normal Ny, s to each facet f associated to
each of its nodes n is:

_ - N if ((cf —w(n)) . N, <0
_ nf S nf
Nnf { Nyt otherwise 9)

¢y = ; Z v(n;) (10)

n,LECf

where ‘.” denotes dot product. Note that vector (¢; —v(n)) points inside the cube
due to internal energy minimisation of the model. This minimisation should as-
sure that the cubes are not degenerated. Hence, normal vector should have an
angle of at least 7 radians with (c¢; — v(n)) and equation 9 gives the correct
orientation. Figures 1(a) and 1(b) represent the vectors involved in this compu-
tation.

Normal orientation N,y to all facets f € Fr|,(n) associated to node n give us
information about how surface B varies around the node position v(n). If these
normals are similar, the surrounding surface can be approximated by a single
plane. If not, see figure 1(c), such approximation differs from original surface and
sub-sampling is needed near v(n). With the aim of identifying the planes that
have to be used for a good approximation of B around v(n), a divisive hierarchical
cluster analysis algorithm (see [0]) over Fr|,(n) is used. Neighbouring facets with
similar orientation are good candidates for being grouped together, so we use
the angle between normals as the dissimilarity measure and divide clusters if
they have at least two normals with difference over a threshold angle (0).

The result of this analysis is a partition of Fr|,(n)), this is, a set of clusters
Pn = {Pn1, Pn2, ..., Por} whose members are sets of similar facets that differ
from the others. Thus, we approximate the surface around the node position
using one plane for each of these clusters. This way, we choose the mean normal
vector Np, . of each cluster P,,; € P, as its representing normal vector:

Np,, = norm( Z Nny) (11)

fePy;
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Fig. 1. Feature extraction from TAV. (a) Vectors involved in computation of N, s and
dny. (b) Npy and dny for all facets in Fr|,(n). (c) Normals to neighbour facets and
clusters. (d) Resulting points and normals. (e) Example of application. (f) Zoom on
high variance area. (g) Zoom on low variance area.

being N, s the oriented normal to facet f associated to node n, and norm(v) a
function that normalises v. Analogously, for selecting the sample point p,; we
proceed as follows. If P,, contains more than one cluster (figure 1(c)), a sample
point py; is selected for each P,; as:

pni = v(n) + §dp,, (12)
dp,, = norm( Z dny) (13)
fE€P:

where § is a displacement constant and dp,, is the mean displacement vector of
cluster P,; (see figure 1(d)). If only one cluster is given, position v(n) is used as
Dni. Figures 1(e), 1(f) and 1(g) show an example of application of this method
on a simple artificial object.
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AN

Fig. 2. Results. (a)(b) Femur and tibia CT slices. (c)(e) TAV results for femur and
tibia. (d)(f) Zero level isosurfaces from femur and tibia resulting implicit functions.
(g)(h)(1) () (k)(1) z,y and z sections from femur and tibia resulting implicit functions.

4 Results

We have used the proposed methodology for the segmentation of C'T gray scale
images that represent sections of the tibia and femur. Figures 2(a) and 2(b) show
three of these slices from tibia and femur respectively.

The CT images (without filtering) were used to compute the external energy.
The gradient images were obtained with a bi-dimensional Sobel filter. TAV pa-
rameters used in the examples were a = 4.0, § = 0.00001, v = 0.00001, w = 4.0,
p=4.0 and £ = 5.0 and we selected them empirically.

Using TAV information from the extracted objects (figures 2(c) and 2(e))
we sampled the interpolated distance functions into three-dimensional volumes
with 50 x 50 x 70 voxels. For normal extraction we had to select values for
two parameters: maximum cluster angle constant # and sample displacement
constant §. We chose 6 = 0.2 radians empirically and § = 0.5 voxel units as a
negligible displacement value, taking into account that node positions have at
least one voxel unit of separation between them (so accuracy is kept) and we
are not interested in taking this value too low in order to avoid numerical errors
in natural coordinates computation. For natural neighbor interpolation we kept
o=1.
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Figures 2(d) and 2(f) show the zero level isosurfaces for the femur and the
tibia traced using Bloomenthal’s polygonizer [2], while the six figures in last row
of figure 2 are isolevel representations of sections traversing x, y and z axes of
the surface for the femur and tibia implicit functions. These images represent
distance values in gray scale. Values in [0,...,127] represent the inside (nega-
tive values) of the object and values in [128,...,255] the outside. For clarity in
representation, we insert a white level between adjacent levels inside the object,
and a black level between adjacent levels outside.

5 Conclusions

In this work we apply Topological Active Volumes (TAV) for CT images segmen-
tation. The TAV model has proved to give good results for this environment [1],
but this time we have proved its usefulness for shape feature extraction using its
topological information.

For the conversion of the TAV model into an implicit surface representation,
we have used the natural neighbor interpolation based method proposed in [3],
that guarantees correct results on a dense enough sample. TAV model produces
sample points on the surface of the extracted objects and topological relations
between them, that provide enough information to estimate normal direction
and orientation. Using this information we analyse object surface and identify
the areas where sampled density needs to be increased. Our preliminary results
show the good performance of the method described.

Acknowledgements

This paper has been partly funded by the Xunta de Galicia through the
grant contracts PGIDIT03TIC10503PR, PGIDT04PXIC10501PN and
PGIDIT04TIC206005PR.

References

1. N. Barreira and M.G. Penedo. Topological Active Volumes for Segmentation and
Shape Reconstruction of Medical Images. Image Analysis and Recognition: Lecture
Notes in Computer Science, 3212:43-50, 2004.

2. J. Bloomenthal. An implicit surface polygonizer. In Graphics gems IV, pages 324—
349. Academic Press Professional, Inc., 1994.

3. J.D. Boissonnat and F. Cazals. Smooth Surface Reconstruction via Natural Neigh-
bor Interpolation of Distance Functions. Proceedings of 16th Annual ACM Sympo-
sium on Computational Geometry, pages 223-232, 2000.

4. D. E. Breen, S. Mauch, R. T. Whitaker, and J. Mao. 3D Metamorphosis between
different types of geometric models. In Eurographics 2001 Proceedings, pages 36-48.
Blackwell Publishers, September 2001.

5. R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley-
Interscience, 1973.



68

10.

José Rouco et al.

V. Leboran, R. Dosil, and X. M. Pardo. Smooth Surface Reconstruction from
Points and Normals using Implicit Surfaces. In Actas del XIII Congreso Espanol
de Informdtica Grdfica (CEIG’03), pages 203—216, 2003.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

Chen S., J. F. O'Brien, and J. R. Shewchuk. Interpolating and Approximating
Implicit Surfaces from Polygon Soup. In Proc. of ACM SIGGRAPH 2004, 2004.
R. Satherley and M. W. Jones. Hybrid distance field computation for volumetric
objects. In Proceedings of the Joint IEEE TCVG and Eurographics Workshop,
pages 121-133, 2001.

G. Yngve and G. Turk. Robust Creation of Implicit Surfaces from Polygonal
Meshes. IEEE Transactions on Visualization and Computer Graphics, 8(4):346—
359, 2002.



Automatic Matching and Motion Estimation
from Two Views of a Multiplane Scene*

Gonzalo Loépez-Nicolas, Carlos Sagiiés, and José J. Guerrero

Dpto. de Informatica e Ingenierfa de Sistemas
Instituto de Investigacién en Ingenieria de Aragén, Univ. de Zaragoza
Edificio Ada Byron, C/ Marfa de Luna 1, E-50018 Zaragoza, Spain

{gonlopez,csagues, jguerrer}Qunizar.es

Abstract. This paper addresses the computation of motion between
two views when 3D structure is unknown but planar surfaces can be as-
sumed. We use points which are automatically matched in two steps. The
first one is based on image parameters and the second one is based on the
geometric constraint introduced by computed homographies. When two
or more planes are observed, corresponding homographies can be com-
puted and they can be used to obtain the fundamental matrix, which
gives constraints for the whole scene. The computation of the camera
motion can be carried out from a homography or from the fundamen-
tal matrix. Experimental results prove this approach to be robust and
functional for real applications in man made environments.

Keywords: Matching points, multiplane scenes, homographies, funda-
mental matrix, motion estimation

1 Introduction

The fundamental matrix encapsulates the geometric information which relates
two different views regardless of the observed scene. The non metric basis of this
matrix makes possible to use uncalibrated cameras. It has been usually computed
through points [I] although lines can also be used when two or more planes
are available [2]. Obviously points can also be used to compute homographies
and, if two or more homographies are available, the fundamental matrix can be
computed from them [3], [1].

In all the cases the matching problem is crucial to make the process work
automatically. The matching of features based on image parameters may give
non matched or wrong matched features. Projective transformations allow image
dependent measures, as cross-correlation, to be a viewpoint invariant, which
make possible to afford wide baseline matching [5]. So, the constraint imposed
by fundamental matrix or homographies must be used for matching points.

Scenes with several planes are usual in man made environments, and the
model to work with multiple views of them is well known. Points or lines in one
image of the world plane are mapped to points or lines in the other image by a

* This work was supported by project DP12003-07986.
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plane to plane homography [6]. We robustly match points between two images
using the projective transformations corresponding to the existing scene planes.
The robust matching of points and the computation of the corresponding ho-
mography is iteratively carried out until we have no more available planes. If two
planes have been computed at least, the fundamental matrix can be computed,
which gives general constraint for the whole scene. It has been reported that the
multi-plane algorithm is not as stable as the general method [3], but when less
than three planes are observed, which is quite usual in man made environments,
the multi-plane algorithm gives better results than the general method.
Camera motion between two views can be obtained from the computed ho-
mography or from the fundamental matrix. Both methods are exposed in this
paper. Normally the computation of motion has been directly considered from
the fundamental matrix, which is a more general model. However, the funda-
mental matrix is ill conditioned with short baseline or when all the points lie on
a plane, which may easily happen in man made environments [6]. In these cases
the fundamental matrix is an inappropriate model to compute camera motion.
Using homographies, we can check the homology conditioning to determine if the
fundamental matrix may be computed. Therefore we can choose the appropriate
motion algorithm from either the fundamental matrix or the homography.

2 Robust Matching

Automatic matching continues to be an unsolved problem in general situations.
The aim is to determine correspondences between points in two images without
knowledge about motion or scene structure.

In this work the points of interest are extracted with the Harris corner ex-
tractor [7]. To obtain a homogeneous distribution of points all over the image,
it is divided in a grid and we establish a maximum number of points per cell to
be extracted. Additionally we establish a threshold of minimum contrast just to
give only good points.

Later, we consider the matching in two steps, the first step is based on image
correlation on a search window around the candidate points. This is actually
the most weak step of our implementation because, as known, correlation is not
invariant to rotations. As some mismatches appear here, we introduce in the
second step, our ”friendship” algorithm. It is similar to the previously proposed
relaxation process [¢]. The idea is to allow only the matches whose neighboring
points move similarly. Those that do not behave as the neighbors are eliminated.

These points can be represented in the projective plane with homogeneous co-
ordinates as p = (x,y,1)”. A projective transformation Hy; exists from matched
points belonging to a plane in such a way that po = Ho1p;.

From the previous relation each couple of corresponding points gives two
homogeneous equations to compute the projective transformation, which can
be determined up to a non-zero scale factor. To compute the homography, we
have chosen the RANSAC method [9], which is a robust method to consider the
existence of outliers. It makes a search in the space of solutions obtained from
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subsets of four matches. Each subset provides a 8 x 9 system of equations whose
solution is obtained from singular value decomposition.

From here on, we introduce the geometrical constraint introduced by the
estimated homography to get a bigger set of matches. Thus, final matches are
composed by two sets. The first one is obtained from the matches selected after
the robust computation of the homography. The second one is obtained making
a rematching of not matched points based on the computed homography.

3 From Homographies to Fundamental Matrix

Fundamental matrix has been stated as a crucial tool when using uncalibrated
images. As known, it is a 3 x 3 matrix of rank 2 which encapsulates the epipolar
geometry. It only depends on internal parameters of the camera and the relative
motion.

Let us suppose the images are obtained with the same camera whose projec-
tion matrixes in a common reference system are P; = K[I|0], P, = K[R|t]; being
R the camera rotation, t the translation and K the internal calibration matrix.
Then, the fundamental matrix can be expressed as Fo; = K7 ([t]x R) KL

Normally, it has been computed from corresponding points [1], [10], using the
epipolar constraint, which can be expressed as xJ Fa; x; = 0. However, the fun-
damental matrix is unstable when points lie in a plane [10]. In [3] is shown that

the multiplane method behaves better than the general method when less than
three planes are available. This constrained structure is usually observed in man
made environments.

In the case of multiplane scenes some alternatives can be used to compute
the fundamental matrix. If at least two homographies (H3;, H37) corresponding
to two planes (71, m2) can be computed between both images, the homology on
the second image Hy = HJ! - (H7?)~!, which is a mapping from one image
onto itself, can be computed. Under this mapping the epipole is a fixed point
es = Hs es, so it may be determined from the eigenvector of Hy corresponding
to non unary eigenvalue [0]. Therefore, the fundamental matrix can be computed
using H3; or H3} as,

Fo1 = [eo] H3j (1)
being [es]x the skew matrix corresponding to e, vector.

On the other hand, the fundamental matrix can also be computed from both
homographies through a system of twelve linear equations extracted from the
following relation [3],

HE{ " Foy + Fo " H =0 . (2)

As we propose to compute fundamental matrix from homographies, a check
on the homology conditioning may help to determine if the fundamental matrix
may or may not be computed. Similarly the homology on the first image can
be computed as H; = (HJ})~! - HJ? and taking into account that for a plane

Hy; =K(R- t’;:T YK ™1, it turns out that the eigenvalues of the H; homology
T
are (1,1,1 + vI'p) being v = KR 't/(1 — 3:11 R™!t) a view dependent vector,
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T T
™1 n

and p = (3 — d:j JK~1 a plane dependent vector, being n,,, n,, the normals

and dg,, dr, the distances of the planes [11].

So, the homology has two equal eigenvalues. The third one is related to
the motion and the structure of the scene. These eigenvalues are used to test
when two different planes have been computed, and then the epipole and the
intersection of the planes can be also computed. The epipole is the eigenvector
corresponding to the non-unary eigenvalue and the other two eigenvectors define
the intersection line of the planes [(]. In case of small baseline or if there is only
one plane in the scene, epipolar geometry is not defined and only one homography
can be computed, so possible homology H; will be close to identity, up to scale.

In practice a filter is proposed using these ideas. Firstly, we normalize the
homology dividing by the median eigenvalue. If there are no two unary eigenval-
ues, up to a threshold, then the computation is rejected. On the other hand, if
the three eigenvalues are similar we check if the homology is close to identity to
avoid the case where two similar homographies are computed.

4 Camera Motion from Two Views

Complete motion (rotation and translation up to a scale factor) can be computed
from homography or from the fundamental matrix if camera is calibrated. As we
have seen before, the homography Hs; can be related to motion in such a way
that Hoy = K (R — th) K1, being n the normal to the scene plane and d its
depth. From here, two solutions (up to a scale factor for t) can be obtained [12].
The main steps of this algorithm is summarized in Algorithm 1.

Algorithm 1 Motion algorithm from homography

1. Compute a calibrated homography HS; = K~ Hy; K

2. Compute the singular value decomposition of matrix HS,, in such a way that
HS, = Udiag(A1, A2, A3) VT with Ag =1

Let be S S = diag(\1, A2, A3), and a = \/}3:;; B= \/iijii

Writing V = [v1, va, v3], compute v, = avi + Sv3

Compute rotation matrix R = [HS; v, HS1 va, HS, v, x H1 va[Ve, Va, Vo xva] T
Compute translation up to a scale factor as t = H5; n — Rn being n = v, X vg
The second solution for R and t can be obtained by making 3 = —(

If A3 = A2, there is a sole solution being the camera translation perpendicular to
the plane (t || Rn) and coming nearer the plane. If A1 = A2 there is also a sole
solution, but now the camera gets away from the plane. Finally, if A\ = A2 = A3
report the sole solution t = 0, and R = HS4

XN ot W

Camera motion can also be computed from the fundamental matrix. As in
previous case, the algorithm provides two solutions up to a scale factor for trans-
lation. Given the calibration matrix, the motion can be deduced from F as sum-
marized in Algorithm 2 [6].
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Algorithm 2 Motion algorithm from fundamental matrix

1. Compute the essential matrix E = KT FK

2. Compute the singular value decomposition of matrix E, in such a way that E =

Udiag(1,1,0) VT

The camera translation, up to a scale factor is t = U (0, 0, I)T

4. The two solutions for the rotation matrix are R= UW V7T and R = UWT V7T,
being W = [(0,1,0)",(~1,0,0)",(0,0,1)"]

w

In case of pure rotation or if there exists only one plane in the scene, the
epipolar geometry is not defined. Then, only the alternative of motion from
homography will be correct.

5 Experimental Results

Many experiments have been carried out with synthetic and real images. The
homology filter just commented has been used to determine when a second plane
has been obtained. Several criteria can be used to measure the accuracy of the
computed motion. With synthetic images, where motion is known, we measure
the rotation error. We also measure the first order geometric error computed as
the Sampson distance [0] for a set of corresponding points manually extracted
and matched.

With real images the matches are automatically obtained for two planes
in scene (Fig. 1). The points extracted are 479 from the first image and 475
from the second. The number of basic matches obtained is 147 with 86.4% of
good matches. Once a homography has been computed, the robust homography
computation and the growing matches process has been iteratively repeated
twice. The experiment has been repeated 50 times using the same basic matches,
and the mean of final matches obtained is 131.8 matches (¢ = 10.5) with 96.9%
of good matches (o = 1.2%). As it can be seen the number and quality of final
matches are quite good.

As we have seen, one of the results of the homology is the intersection line of
the planes. We have proposed to use a filter based on the homology eigenvalues
to avoid situations where a sole homography can be computed or where the
homographies do not give a right homology due to noise or bad extraction. In
these cases the epipole, the fundamental matrix or the intersection line would be
badly computed. In Fig. 2 we can see the intersection lines of the planes for 100
executions with and without the homology filter. As it can be seen the quality
of the results improves significantly with the proposed filter.

With respect to the fundamental matrix computation, we show (Table 1) the
mean of the Sampson distance for 20 points manually extracted and matched.
We consider the images of the college and two synthetic images. The synthetic
scene consists of random points, with white noise of o = 0.3 pixels, distributed
in three perpendicular planes. The experiment has been repeated 100 times and
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Fig. 1. Images of the college to compute homographies. Extracted points (a), (b).
Matches corresponding to the first homography (c), (d) and to the second (e), (f).
(Original images from VGG, Oxford)

(a) (b)

Fig. 2. Intersection of the planes through the eigenvalues of the homology. The lines
corresponding to 100 executions are represented without filter (a), and with homology
filter (b)
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Table 1. Sampson distance for 20 points manually matched (belonging to each plane
for homographies and distributed around the scene for fundamental matrixes). We
show in 100 executions the median and the mean with and without filter. These results
are shown for the homographies (H1, H2) and for the fundamental matrixes: eH1 and
eH2 using (1) with H3] and HJ? respectively, and FH using (2)

Synthetic (pixels) Oxford college (pixels)
H1 H2 eH1 eH2 FH Hl H2 eHl1 eH2 FH
Without filter median 0.581 0.586 0.891 0.789 0.932 0.707 0.683 1.004 1.286 1.906
mean  0.577 0.586 1.619 1.458 1.634 0.709 0.698 4.998 5.187 12.61
With filter median 0.581 0.584 0.740 0.725 0.805 0.687 0.666 0.566 0.796 1.045
mean  0.578 0.587 0.926 0.767 0.883 0.697 0.694 0.642 0.789 1.099

we show mean and median values. The Sampson distance is similar for the three
presented ways of computing the fundamental matrix, although it is a bit worse
using (1). Probably this is because if one homography is less accurate than the
other, (2) collects this inaccuracy, currently we are studying the implications of
these differences.

Table 2. Mean of rotation error (Synthetic) and rotation angle (College) computing
motion through homographies H1 or H2 with algorithm 1, and through fundamental
matrixes, eH1 and eH2 using (1) and FH using (2), with algorithm 2

Synthetic: rotation error (deg) Oxford college: rotation (deg)

Hl H2 eHl eH2 FH Hl H2 eHl eH2 FH

Without filter 0.958 0.454 0.524 0.545 0.562 9.240 10.64 7.777 7.662 8.096
With filter 0.456 0.365 0.225 0.226 0.214 9.691 10.97 9.118 9.115 9.478

Finally, results of the computation of camera motion using homographies and
fundamental matrix are exposed. We have executed these algorithms 100 times.
Table 2 shows the mean of the rotation (Oxford college) and the rotation error
(synthetic data) obtained through homographies (Algorithm 1) and fundamental
matrixes (Algorithm 2). Fundamental matrix is computed in different ways using
equations (1) and (2). The results are exposed with and without the homology
filter and they show the goodness of the proposed filter.

6 Conclusions

We have presented the matching of points, the computation of the intersection of
the planes and the computation of camera motion from two views. This is carried
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out through homographies corresponding to planes, which are quite usual in man
made environments. The robust computation of matches based on homographies
works especially well to automatically eliminate outliers which may appear when
there is no information of scene structure or camera motion. The fundamental
matrix and the intersection line of the planes is properly obtained if the images
correspond to motion and scenes which are geometrically well conditioned. If it
does not happen a homography may be given as a result of the algorithm and
motion can be obtained from this homography.

The main achievement of this work is that all the process is made automat-
ically and works in a robust way. Besides this, the joint use of homographies
and fundamental matrix allows the properly selection of the model to determine
camera motion in real applications. The proposed approach is a good solution
in man made environments, where usually at least one plane is available.
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Abstract. Sport Video understanding aims to select and summarize
important video events that occur in only special fragments of the whole
sports video. A key aspect to this objective is to determine the position
in the match field where the action takes place, that is, the location
context of the play. In this paper we present a method to localize where
in the match field the play is taking place. We apply our method to soccer
videos, although the method is extensive to other sports. The method is
based on constructing the mosaic of the first sequence that we process:
this new mosaic is used as a context mosaic. Using this mosaic we register
the frames of the other sequences in order to put in correspondence all
the frames with the context mosaic, that is, put in context any play.
In order to construct the mosaics, we have developed a novel method
to register the soccer sequences based on tracking imaginary straight
lines using the Lucas-Kanade feature tracker and the vb-QMDPE robust
estimator.

1 Introduction

Distribution of sports video over various networks uses a high bandwidth and for
this reason it is so difficult to find live sources of sports videos in the internet.
However, processing sports sequences, for example detecting important events
and creating summaries, allows to deliver sports videos even over narrow band
networks or wireless, since the valuable semantics generally occupy only a small
portion of the whole content.

It is also very important to index the content in order to make easy to
search due to the ever growing size of content produced. For easy management a
semantic index describing the different events in the content of the document is
indispensable. Since manual annotation is unfeasible because of its tedious and
cumbersome nature, automatic video indexing methods are necessary.

In literature several methods for automatic soccer analysis have been pro-
posed, e.g. [1, 5, 9, 12]. One of the first reported methods was presented in [12].
The authors focus on visualization of ball and player tracks using mosaics. More
recently, methods were proposed that try to narrow the semantic gap. In [1, 9]
camera based detectors are proposed, exploiting the relation between the move-
ment of the ball and the camera. A slow-motion replay detector is proposed in [5]
as a strong indicator for an event of importance that happened beforehand. For
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combination of the visual detectors a statistical Dynamic Bayesian Network is
used in [1, 9], whereas [5] exploits a knowledge based approach.

In this paper we present a method to localize in soccer video sequences where
in the match field the play is taking place. This kind of sequences are character-
ized by the fact that are generally very difficult to register because they contain
a lot of moving objects (the players) and constant regions without texture or
with a poor texture (low gradient) that correspond to the match field. For this
reason we use a novel method in order to register the sequences based on track-
ing imaginary straight lines over the playfield. We want to find the homography
that relates pairs of consecutive images, because the scene is planar (all match
field are) and then the transformation that pass from one to other is a projec-
tive transformation (an homography). It is important to say that there are many
classical methods like robust dense optical flow [2] and parametric methods [3]
but with the presence of constant regions they do not work very fine.

Then we use this information in order to summarize the soccer sequences
synthesizing an image mosaic. By computing the mosaics of different soccer
sequences we can merge these mosaics in order to construct a larger mosaic that
represents a wider area of the match field. Once we have done this wider version,
we have each frame of each sequence in context, that is, localized in the larger
mosaic. That is very important because in soccer sequences we lose sometimes
the contextual reference because the camera focus a part of the field that does no
contain the white lines of the field and therefore we do not have any contextual
reference in order to know in which part of the field corresponds the frame.

The rest of the paper is organized as follows: in section 2 we explain the
mosaic construction method, that includes our novel registration method and
the synthesis of mosaics. Then in section 3 we present our contextual localization
method and finally we present in section 4 the experimental results and in section
5 the conclusions and future work.

2 Mosaic Construction

Algorithms for the construction of image mosaics consist of two main steps:
registration, i.e. estimating the transformations between every pair of consecutive
frames of the video, and mosaic construction, i.e. the synthesis of the image
mosaic from the previously estimated transformations and the frames of the
video.

In our case in order to register the sequences we have developed a method
based on tracking imaginary straight lines over the match field. In general terms,
we have an initial set of features over the first frame and we track these features
in the second frame. Then using the correspondences of these features we can
extract the transformation that relates the two consecutive frames. In the next
sections we explain in more detail the whole method.

2.1 Straight Lines Tracking

We have two consecutive images I; and I;1; and we want to obtain two corre-
sponding sets of features that represents six imaginary straight lines. In order to
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Fig. 1. Left: Initial features F' in frame I;. Right: The corresponding features of the
left image, F’, in frame I,y using the Pyramidal Lucas-Kanade Feature Tracker. We
can see that the estimations are affected by the moving objects (the players) and for
the superimposed scoreboard.

do that, we select as initial features image points of I; that represent six imagi-
nary lines that must have the configuration shown in figure 1. These six lines are
named as control lines. Therefore we have six straight lines R = [r1, - - -, rg] where
each 7; = (a/c,b/c,1)T = (t,u,1)T corresponds to a straight line of equation:

ar+by+c=0 (1)

and we want to compute the homography that relates the transformation be-
tween the frame I; and the frame ;7. It is known that, projective transfor-
mations keep straight lines [6]: so the corresponding features computed for each
straight line in the frame I; will also represent a straight line in the second frame
Iz’+1-

In order to compute the homography, we first compute a vector of features f;
for each straight line r;, using as features, image points along of each line. As re-
sult, we have a set of features F' = [f1, - -, fg], where each f; is the corresponding
vector of features of the straight line r;.

Once we have the set of features of the frame I;, F, we want to find the
respective features in the next frame I;, 1, F’. Therefore, we apply a Pyramidal
Lucas-Kanade Feature Tracker [1] to find this set of features. In figure 1 we can
see the set of features I’ and its corresponding features I’ after applying the
Lucas-Kanade feature tracker in a soccer sequence.

Now, we have the set of features in the frame I;11, F’, and we need a method
to extract the six straight lines that best represent the set of features F’. How-
ever, the features contain a high percentage of outliers, in some cases more than
50% due to the moving objects (soccer players), but always there is a subset of
good features. For this reason, we apply the variable bandwidth QMDPE robust
estimator that is robust with more than 50% of outliers. In figure 2 we shown
the estimation results of the vb-QMDPE, and we compare them with the Least-
Square method. We can find detailed information about the variable bandwidth
QMDPE robust estimator in [10, 11].

2.2 Homography Estimation

Once we obtain the respective six lines R’ = [r],---,7¢] in the frame I;;1, we
know that a line 7; is transformed into 7} using a projective transformation
(homography) [0] in the following way:
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a b

Fig. 2. Images a) and b) contain the straight line estimation results using vb-QMDPE
and Least-Squares methods respectively. The blue crosses are the features and the
red lines the estimated straight lines. We can see that when we use the Least-Square
method we obtain bad estimations due to the fact that we have a lot of outlier features.
In contrast, when we use vb-QMDPE we obtain good estimations because this method
is robust to more than 50% of outliers. In images c) and d), we show the registration
errors using the previously estimations.

ri=(H")r (2)

where r; = (t,u,1)T and H is the homography represented by a non-singular
3 x 3 matrix. Then, each line correspondence in the plane provides two equations
in the 8 unknown entries of H. Therefore, it is necessary to find at least four
line correspondences to define the transformation matrix uniquely, up to a scale
factor. In our case we use six lines in order to make more robust the estima-
tion because we deal with sequences that contain multiple moving objects. The
equations of (2) can be rearranged in matrix form, obtaining the next system
equation:

08 —wit; 0 uj —usu; 01 [ h11 Rz has hot hag hos ha h32}T =% (3)

and solving the above system equation using a Least Squares method we find
the homography that relates the transformation between the frames I; and I; 1.
Then we continue with the frames I;11 and I; 5 using the previous method until
we process the whole sequence.

2.3 Mosaic Synthesizing

Once we have processed the whole sequence we have the transformations between
consecutive frames. However, in order to build the mosaic image we need that
all the frames reference the same initial frame. For this reason, we calculate
firstly the cumulative transformation of each frame with respect to the reference
frame, in our case, the first frame of each sequence. We do that multiplying the
transformation matrices to the left:
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Fig. 3. Right: the context mosaic. Left: the mosaic of the play that we want to put in
context.

Hyy = I343 (4)
Hys = Hy1Hyo

Hln = H11H12H23 e Hn—ln = Hln—lHn—ln

where H;; is the homography between the frames I; and I; (the cumulative
transformation between the frames). Now, in order to construct the final mosaic
we have to transform each frame using its corresponding cumulative transforma-
tion and then we can apply a mean or median operator in order to obtain the
mosaic using the whole transformed frames.

3 Contextual Localization

Now given a sequence we are able to construct its corresponding image mosaic
using the method explained in previous sections. So, given the first sequence we
construct its mosaic: this mosaic will be the context for the next sequences that
we process and we name it as the context mosaic.

Then, in order to process the next sequences, we can use two methods: we
can try to register the frames of the new sequence against the context mosaic, or
we can build the mosaic image of the new sequence and then register this mosaic
against the context mosaic. The first method is unfeasible because we could have
a large transformation between the frame and the context mosaic, and moreover
the frame could not contain contextual information (i.e. white lines of the match
field) necessary to register against the context mosaic. For this reason we use
the second method: we construct the mosaic of the new sequence and then we
register both mosaics. Now, both mosaics contain contextual information and
therefore the registration is feasible.

In figure 3 we can see both mosaics, the context mosaic and the mosaic of
the new sequence. Both mosaics point to the same part of the field, but one is
localized near of the center and the other is localized near of the penalty area.

3.1 Initial Registration

We want to register both mosaics, but, first of all, a preliminary step is neces-
sary in order to pre-register the mosaics because there is a huge transformation
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Fig. 4. The synthesized mosaic using the mosaics of figure 3 after the initialization step
(Hausdorff step) and the mosaic registration. We obtain a larger version that includes
the two mosaics. As we can see it is not necessary that the context mosaic contains the
mosaic of the sequence that we are processing.

between both mosaics. To do that we use the Hausdorff Distance. The Hausdorft
Distance, given two finite point sets A = {a1,---,ap} and B = {by,---, b4}, is
defined as:

H(A, B) = max(h(A, B),h(B,A)) (5)
h(A, B) = mazqc aminpepl|la — b||

where ||a — bl is the Ly or Euclidean norm.

However, the Hausdorff distance measures the mismatch between two sets
that are at fized positions with respect to one another, whereas we are inter-
ested in comparing two images, where one of the images can be transformed
by the action of some transformation group. Therefore, we use the bidirectional
Hausdorff distance defined in [7, 8] to extract an initial registration of the two
mosaics, that corresponds to a translation in = and y directions and a scale fac-
tor. We do not apply directly the Hausdorff distance to the mosaic images: we
first apply a Discrete Laplacian to the mosaic images and then the Hausdorff
distance.

3.2 Mosaic Registration

Using this initial estimation, we can register the two mosaics easily and obtain
a mosaic image of mosaics as shown in figure 4. In this case we can use the
traditional parametric methods or our method based on tracking imaginary lines,
because both mosaics have a lager field of view and therefore are easy to register
(once we have the pre-registration parameters).

Now, we have the cumulative transformations for each mosaic as explained
in section 2.3 , and the transformation between the mosaics. Then, in order to
have the transformations that relates the frames of the sequences and the context
mosaic, we have to obtain:

Htlotaln = Hseq@- Hin (6)

where Hlin is the homography between the frames I,, and I; of sequence i and
Heq, is the homography that relates the transformation between the i sequence
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mosaic and the context mosaic. Finally, H/,,,, is the transformation between
the frame I, of sequence ¢ and the context mosaic.

Once we have processed the new sequence we update the context mosaic using
the mosaic of the new sequence (see mosaic of figure 4), and then we process
the next sequence. We do that to extend the context mosaic with regions that
it does not cover.

4 Experimental Results

Now, using all the extracted information we are able to recover the context of
a frame that does not contain any information about its localization: this fact
gives us a framework to the frame, that is, a context. In figure 5 we can see
this concept graphically. Therefore, we have a compact representation of the
sequences (the mosaic images) and the transformation between them.

Moreover, we can make a larger version of the sequences using the context
mosaic as a background and superimposing the frames. This larger version of
the sequences contains the same information but extended with more contextual
information. We also could use the localization of the frames of a sequence in
order to characterize the sequence as relevant or not in the soccer match.

Fig. 5. Left: a frame of the current sequence. This frame does not contain information
about its localization over the match field as we can see. Right: the previous frame but
with context, that is, printed over the context mosaic. This fact gives us information
about the localization of the frame that with the single frame we do not have.

5 Conclusions and Future Work

We have presented a method to obtain the context of soccer sequences, that is,
localize each frame of a sequence in the playfield. That fact allows us to obtain
information very useful in order to index a soccer sequence or to characterize
the sequence as relevant or not in the soccer match.

As a future work, it would will be very interesting to use the transformation
matrices H, fomln in order to construct a data structure that contains for each pixel
of the context mosaic information about the frames that overlap this position.
This data structure would make possible to index the sequence frames in function
of their positions over the mosaic, and we can make searches like: give me all
the sequences that contain any frame in this position.
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Abstract. Condensation is a widely-used tracking algorithm based on
particle filters. Although some results have been achieved, it has several
unpleasant behaviours. In this paper, we highlight these misbehaviours
and propose two improvements. A new weight assignment, which avoids
sample impoverishment, is presented. Subsequently, the prediction pro-
cess is enhanced. The proposal has been successfully tested using syn-
thetic data, which reproduces some of the main difficulties a tracker must
deal with.

1 Introduction

The increasing interest in visual tracking is motivated by a huge number of
promising applications that can now be tackled in real time thanks to recent
technological advances. These applications include performance analysis, surveil-
lance, video-indexing, smart interfaces, teleconferencing and video compression.

However, tracking agents can be extremely complex and time-consuming. To
start with, strong requirements are mandatory. Real-time processing, extreme
robust performances or high accuracy may be critical. On the other hand, diffi-
culties common to all vision areas could cause system failures, specially in open
environments. Hence, several of the following premises are often assumed: we
can consider outdoors or indoors scenes, static or in-motion background, illu-
mination changes, shadows, presence of clutter or a-priori known objects. Some
foreground assumptions are also taken into account concerning whether a single
or multiple agents should be expected; agents entries and exits from the scene;
smooth, restricted or already-known dynamics; occlusions; carried objects; or
appearance changes.

This paper focuses on solving some tracking problems related to the difficul-
ties described above, such as multiple-agent tracking with unknown dynamics in
presence of background clutter and strong noise. Specifically, we present some
improvements to a well-known tracking algorithm, Condensation [3].

The remainder of this paper is organized as follows. Section 2 covers the
probabilistic framework, revises Condensation, exposing its misbehaviours, and
reviews a Condensation-based algorithm called iTrack [7]. Section 3 proposes
several improvements on Condensation/iTrack. Section 4 shows experimental
results with synthetic data and section 5 concludes this paper.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 85-92, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Image-Based Probabilistic Tracking

The environment is composed of agents, static objects and background condi-
tions. The scene is defined as the piece of environment which a visual sensor can
capture. The aim of the tracking task is to estimate the scene state over time.
In this context, the state will be the parameterised knowledge which will charac-
terise the scene evolution. Due to practical and theoretical ignorance, we do not
have access to the ground truth. A probabilistic framework is commonly used as
a way to perform tracking [5]. Classical approaches, such as the Kalman Filter,
rely on linearity and gaussianity assumptions about the involved distributions.
More recent works make use of Bayesian filters combined with Monte Carlo
Simulation methods in order to deal with nonlinear and non-Gaussian tran-
sition models [I, 2]. Subsequent developments have introduced a re-sampling
phase in the sequential simulation-based Bayesian filter algorithms. Such meth-
ods were first introduced in computer vision in Condensation [3]. However, they
have several important drawbacks as stated in [1]. A great number of improve-
ments have been introduced in recent years [0, 7] but there is still much ground
to cover before solving unconstrained tracking.

2.1 Bayesian Filtering

The computation of the belief state S; given all evidence to date e;.; is called
filtering. The posterior pdf' can be calculated through recursive estimation:

P(S:|et) = f(et | Stl Z \P(St |si—1) p(si—1|ei—1)

~ -~ ~ -

likelihood s:-1 transition mod. previous post. (1)
~ ~ <\~ ~ -
updating prediction

The pdf is projected forward according to the transition model, making a
prediction, and it is updated in agreement with the likelihood function value
based on the new evidence.

2.2 Condensation

Recursive estimation leads to expressions that are impossible to evaluate ana-
lytically unless strong assumptions are applied. Condensation addresses filtering
when no assumption about linearity or gaussianity is made [3]. This problem is
overcome by simulating N independent and identically-distributed samples from
the posterior pdf, {s{;i =1: N}. The temporal prior{s;} is obtained by apply-
ing the transition model to each sample. Weights 7} are assigned according to
the likelihood function. Once all samples have been propagated and measured,

! Notation: bold case denotes vectors and matrices whereas non-bold case denotes
scalars. Matrices are in uppercase. In a probabilistic context, uppercase denotes
probability density functions (pdf) and random variables; lowercase denotes proba-
bilities and variable instances. X,.;, denotes a variable set from time ¢t = a to t = b.
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the set is re-sampled using normalized weights 7! as probabilities. This sample
set represents the new posterior. Expectations can be approximated as:

N jai 1 N i
Eps,jer.) (St) ~ Zizlﬂ'tst = Nzi:1st- (2)

However, it has several unpleasant behaviours as stated in [/]. Sampling
impoverishment is one of the main drawbacks of re-sampling algorithms. Sam-
ples are spread around several modes indicating hypotheses in the space state.
Nevertheless, some of them are spurious. Similarly to genetic drift, there is a non-
negligible probability of losing modes, a low probability of recovering them and
the remaining modes could be all spurious. It can also be derived from this fact
that different runs of the algorithm lead to different results. Therefore, computed
expectations in different runs have high variance although computed expecta-
tions within the same algorithm run have low variance making the tracker look
stable. On the other hand, Condensation has a tendency of clustering samples
even when the likelihood function gives no information at all. In addition, the
sample set size N is kept constant over time. Unfortunately, there is no informa-
tion about how large N should be for a requested precision. Once N have been
heuristically set, it may happen that at later times larger values of N may be
required. Finally, Condensation was designed to keep multiple-hypothesis for a
single agent.

2.3 iTrack

iTrack is a visual tracking algorithm based on Condensation [7], but both tran-
sition model and likelihood function are redefined. It also introduces some im-
provements in order to overcome some Condensation drawbacks and cope with
multiple agents.

1Track uses a first-order dynamic model in image coordinates to model the
motion of the central point of a bounding box. The [-labeled agent’s state is de-
fined as sf5 = (X¢, Uy, Wy, At)T where each element represents the position, speed,
bounding-box size and pixel appearance, respectively. The label associates one
specific appearance model to the corresponding samples, allowing multiple-agent
tracking. However, multiple-agent tracking causes several problems including
that the agent with higher likelihood monopolizes the sample set. Denoting as
N, the number of samples belonging to the [-labeled agent, :Track proposed the
following normalization to avoid this issue:

il
il s J .
T = _ N o7 where j = 1. (3)
Zi -1 Wz’j N

An initial pdf, provided by a segmentation method, is needed to start the re-

cursive estimation. iTrack also uses this pdf to reinitialize the algorithm allowing

multiple-agent tracking and error recovery. Thus, some samples are generated
according to the prior instead of being propagated.
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3 Improving Condensation/iTrack

3.1 Improvement 1. Sampling Impoverishment

Whether data association is feasible, using the prior density to generate new
samples reduces the risk of sampling impoverishment. However, it is not com-
pletely avoided, since it depends on the probability of generating new samples,
on whether these new samples represent the extincting mode, and on whether
they can be associated to it. This problem is increased in a multiple-agent track-
ing scenario. Without considering new sample generation, losing an agent track
is only a matter of time, according to the sample set size. In this case, those
agents whose samples exhibit lower likelihood have higher probability of being
lost, since the probability of propagating one mode is proportional to the cu-
mulative weights of the samples that constitute it. Two kind of modes can be
distinguished. In the first place, samples with different labels belong to different
modes. Thus, several agents can be tracked simultaneously. Secondly, samples
with the same label could be spread around different modes. This fact allows
us to keep several hypotheses. Hopefully, one of them represents the true agent
state and the others are due to background clutter.

In order to avoid single agent modes absorbing other agent samples, genetic
drift must be prevented. This fact happens due to the lack of genetic memory:
we propose to include a memory term which takes into account the number of
agents being tracked. Hence, weights are normalized according to:

il !

t ZN i N,

) T
i=1"1

where j =1, (4)

where N, is the number of agents being tracked. It does not assign a fixed
number of samples to each agent but ensures that each agent will have the same
probability of being propagated. Furthermore, it can be combined with new
sample generation, thereby improving the general performance. On the other
hand, modes due to clutter are pruned because of differences in their dynamics.
It is unlikely that any sample tracks local clutter since it implies highly abrupt
changes in the dynamics. Non-losing the true mode depends on how accurate
the dynamic model is, and how the different hypotheses are generated.

3.2 Improvement 2. Agent Dynamics
iTrack makes predictions according to the following expressions:
Xp =Xy +uj_ At + €, G =uj_; +&. (5)

The random terms &, &, provide the system with a diversity of hypothesis.
Samples with high likelihood are supposed to be propagated. Sample likelihoods
depend on samples position but they do not depend on their speed. Thus, prop-
agated samples could have an accurate position, but their speed values become
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Frame: 1 Frame: 34 Frame: 300

Fig. 1. Ground Truth

completely different from the agent’s one in a few frames. Agents could be tracked
since we are in a multiple-hypothesis scenario, but an important proportion of
samples are wasted. The j-agent state is estimated according to:

i 1N
8 = N, Zizlst’]. (6)

Our approach proposes to feed-back the estimated agent speed at time ¢ — 1,
denoted as @]_;, into the prediction:

0y =1, +§,. (7)

However, there is still a weak relation between the agent and the estimated
speeds: they are chosen only due to the sample weights, which do not depend
on the current speed. We propose to enhance the estimation by considering not
only the estimated speed from the selected samples but also by calculating the
instant speed according to the history of positions. The following expressions
update the agent position and speed recursively considering this fact:

~q ~7 1 N Qg
X =%{_1 (1 —op)+ <N4 Zi_lxtd> Qp,
[ ti=
o =), (-0 + (x - %, ) o, ®)

where o, o5 denote the adaptation rates. The estimated speed is then fed-back
when predicting the following sample state.

4 Experimental Results

In order to evaluate the algorithm performance, a two-moving-agent synthetic
experiment has been designed. The aim is to cover several difficulties a tracker
can run into, see Fig. 1. The background pixel intensity values are set randomly
following a normal distribution. Both agents’ pixel intensity values also have a
normal distribution around different means. Two vertical strips are drawn in the
background, simulating heavy clutter. Their distributions are identical to both
agent’s ones, thereby mimicking them. Strong acquisition-device noise, modeled
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Fig. 2. Condensation/iTrack performance

Table 1. Performance of improvement 1 Table 2. Performance of improvement 1, 2

Mean normalized error Mean normalized error

Agent 1 Agent 2 Agent 1 Agent 2
Runl 0.1163 0.1309 Run1 0.0715 0.0716
Run 2  3.8864 0.1182 Run 2  0.0849 0.1163
Run 3 0.1222 0.1226 Run 3  0.0987 0.1289
Run 4  0.0980 0.1038 Run 4  0.0645 0.0595
Runb5 0.1612 0.1131 Run5  0.0679 0.1173
Run 6 0.1101 2.4679 Run 6  0.1233 0.0840

as White Additive Gaussian Noise, is simulated?. A highly non-linear dynamic
is simulated: both agents move as projectiles which are shot into an environment
with gravity and air friction. Tracking is performed over T' = 300 frames using
N = 100 samples. We present results of six random runs for each of the three
approaches considered, namely, iTrack and both presented improvements. New
sample generation is not used in order to evaluate only the tracking performance.
In 5 out of the 6 :Track runs, an agent is lost due to the lack of samples, see
Fig. 2. In the remaining one, at time ¢ = 300 an agent got 92% of the samples.
An agent is considered lost when the normalized Euclidean distance, according
to the agent size, between the agent and the estimation position is higher than a
threshold set at 0.5. On the other hand, after the proposed weight normalization,
the mean number of samples per agent fluctuates between 49.5 % and 50.5%.
Table 1 shows the mean normalized error, according to the agent size, in
the estimation of the agent position before applying the new dynamics updating
whereas Table. 2 shows the same results after applying it. A significant error
reduction can be appreciated. Figs. 3, 4 compare the number of samples per
agent that had lost the agent. After considering this improvement, a significant
sample loss reduction is observed. Furthermore, none of the agents is ever lost.

2 The standard deviation is set at 0.03 which implies nearly a ten per cent deviation.
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Fig. 5. Behaviour of the three studied trackers

The trackers behaviour can be seen in Fig. 5: Fig. 5.(a), corresponding to
iTrack, shows how one of the agents absorbs all the samples. Fig. 5.(b), after
applying the normalization improvement, shows agent recovery since the tracker
have preserved enough samples to cope with multiple hypotheses. Thus, both
modes, the agent and the clutter, are tracked until the clutter one disappears.
Fig. 5.(c) shows the tracker performance once both improvements are considered.
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5 Conclusions

In this paper, we have extended Condensation in order to enhance multiple-
agent tracking. A new approach is taken to deal with one of Condensation great
misbehaviours, the sampling impoverishment. This problem becomes critical in a
multiple-tracking scenario. The new sample-weight normalization prevents from
loosing any of the targets due to the lack of samples. The dynamics updating
is modified by feed-backing the estimated speed into the prediction stage. The
agent speed is estimated combining two sources of knowledge: the fittest sample
speed and the position historic. Thanks to both improvements, the tracker copes
successfully with multiple-agent tracking. These agents have a highly non-linear
dynamics which is successfully tracked using a constant-speed approach. More-
over, it also deals with complex clutter, which mimics the agent appearances, and
strong noise. Improvements shown in these synthetic experiments are currently
being applied in real applications relative to traffic surveillance. Encouraging
results are being achieved.
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Abstract. In this paper we propose a new framework to integrate several parti-
cle filters, in order to obtain a robust tracking system able to cope with abrupt
changes of illumination and position of the target. The proposed method is ana-
lytically justified and allows to build a tracking procedure that adapts online and
simultaneously the colorspace where the image points are represented, the color
distributions of the object and background and the contour of the object.

1 Introduction

The integration of several visual features has been commonly used to improve the per-
formance of tracking algorithms [ !, 3, 9, 10]. However, all these methods lack a robust
dynamic model to track the state of the features and cope with abrupt and unexpected
changes of the target’s position or appearance. Particle filters have been demonstrated
to be robust enough to track complex dynamics. Usually, particle filters have been ap-
plied to only one object feature. [4] tracks an object based on multiple hypotheses of
its contour. Subsequently, several approaches [7, 8] predict the target position based on
the particle filter formulation. In our previous work [6] we proposed the use of this
framework to predict the object and background color distributions.

In this work, we introduce a framework for the integration of several particle filters
which are not independent between them, so that we can fuse their respective predicted
features. [5] integrates different particle filter algorithms for tracking tasks, but with the
assumption that the algorithms are conditionally independent. That is, if particle filter
‘PF1 is based on features z; to estimate the state vector x; and particle filter P.F5
uses features z, to estimate xo, for each whole state of the object X = {x1,x2} it is
assumed that, p(z1, z2|X) = p(z1|x1)p(z2|x2). But this assumption is very restrictive
and many times is not satisfied. For instance, a usual method to weigh each one of
the samples of a contour particle filter, is based on the ratio of the number of pixels
inside the contour with object color versus the number of pixels outside the contour
with background color. This means that the contour feature is not independent of the
color feature. In this situation if z; represents the color features and zs the contour ones,
the latter will be function of both x; and z1, i.e. Zz2 = z2(x1,21). Previous equation
should be rewritten as, p(z1,22|X) = p(z1|x1)p(2z2|21, X1, X2). In this paper we will
design a system that verifies this relation of dependence between object features. The
main contributions of the paper are the following:

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 93-101, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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1. Proposal of a framework to integrate several conditionally dependent particle filters.

2. There is no restriction in the number of particle filters that can be integrated.

3. Use the method to develop a robust tracking system that: (a) Adapts online the
color space where image points are represented. (b) Adapts the distributions of the
object and background colorpoints. (¢) Accommodates the contour of the object.

All these features make our system capable to track objects in complex situations, like
unexpected changes of the scene color, or abrupt and non-rigid movements of the target,
as will be shown in the results Section.

In Section 2 we will introduce the mathematical framework and analytical justifica-
tion of the method. The features that will be used to represent the object are described in
Section 3. In Section 4 we will depict details about the sequential integration procedure
for the real tracking. Results and conclusions will be given in Sections 5 and 6.

2 Mathematical Framework

In the general case, let’s describe the object being tracked by a set of F' features,
zi1,...,2Zp, that are sequentially conditional dependent, i.e. feature ¢ depends on fea-
ture 7 — 1. Each one of these features is associated to a state vector X1, ..., X, which
conditional a posteriori probability p; = p(x1|21),...,pr = p(xp|zr) is estimated
using a corresponding particle filter PF 1, ..., PF r. For the whole set of variables we
assume that the dependence is only in one direction:

{zr = 21(26, %), Xk = Xp(x4,2)} =i <k (1)

Considering this relation of dependence we can add extra terms to the a posteriori prob-
ability computed for each particle filter. In particular, the expression for the a posteriori
probability computed by PF; will be p; = p(x;|x1,...,Xi—1,%1,--.,2%;). Keeping
this in mind, next we will prove that the whole a posteriori probability can be computed
sequentially, as follows:

P =p(X|Z) =p(x1,...,XFp|21,...,2F) (2)
= p(X1|Zl)p(X2|X1,Zl,Zz) e 'p(XF|X1= s XEP—-1,71, - -ZF) =pip2 - PF
Proof. We will prove this by induction, and applying Bayes’ rule [2] and Eq. 1:
— Proof for 2 features:
p(X17 X2|Z1,Zz) = P(X2|X1, Zy, Z2)p(X1|Z1,Zz) = P(X1|Z1)P(X2|X1, Zy, Z2)
— For F' — 1 features we assume that
P(Xh --7XF—1|217 --,ZF—1) = (X1|Zl)p(X2|X1,Zl,Zz)
cep(Xpot|X1, ., XFo2,21, . ZF 1) 3)
— Proof for F' features:

p(x17 "7XF|Z17 "7ZF) = p(xF|X17 W XF—1,21, "7ZF)p(x17 ..,XF_1|Z1, -'7ZF—1)

Eq. 3 =p(x1|21)p(x2|x1,21,22) .. . p(XF|X1, ..., XF—1,21,...ZF)



A Framework to Integrate Particle Filters 95

Eq.2 tells us that the whole a posteriori probability density function can be computed
sequentially, starting with PJF; to generate p(xi|z;) and use this to estimate
p(X2|x1,21,22) with PF2, and so on.

In the iterative performance of the method, PF; also receives as input at iteration
t, the output pdf of its state vector x; at the iteration ¢ — 1. We write the time expanded
version of the pdf for PF; as pz(-t) = p(xz(-t)|x§t), o Et)l, ..., E ),pg Y). We
can also expand the expression of the whole pdf from Eq 2 as follows

= p(XD1Z0) = p(x{", .., xP |2, .. 2
t t t 1 t t t t t t—1
:p(x )|Z() )),,,p( )|x() _ x%)l,zg),.z%),p% ))
= pPpH) . p;p

Now let’s describe in some detail the updating procedure of the ¢ — th particle filter,

PF;. Attime t, the filter receives pgt_l) the pdf of the state vector x; at time ¢t — 1. This
distribution is approximated by a set of samples SEJ ), 7 = 1...N;, with associated
(t—1) _(t—1) (t) -

317

weights 7T(J Y Given the set {s
standard particle filter procedure:

} the value of p; is estimated using the

1. The set {s (t=1) q(t= 1)} ] = . N; is resampled (sampling with replacement)

) 17
according to the weights 7r(t 1) . We obtain the new set {s’;; (=1 wz(j )}.

2. Particles s’ (-- D are propagated to the new set {s”)} 7 = 1...N;, based on the

random dynamlc model s 7 =H; s’(t Dy pi,» where H; ~ Aszx3(0,0p,) and
i ~ Tay1(p;, 0p, ). We define the matrlx A and the vector 7 as follows:

14+ain -+ aim
Amxm(,u‘A7UA) = mel(ﬂt70t) = [t17- B 7tm]T (4)

am1 - 1+ amm

where a;; ~ N (:LLAij , crAl.].), ti ~ N (e, 0¢,)-
3. Finally, using some external measure on the feature zgt) (updated with the values of

the set of features {z ,:)} k < i and its corresponding state vectors {x ) }) samples

sg) are weighted in order to obtain the output of iteration ¢, that is {sU , S)}
()

j =1...N;, approximating p, ’.

3 Features Used for a Robust Tracking

In order to design a system able to work in real and dynamic environments we define
a set of features that include both appearance (normal direction of the Fisher plane [0]
and the color distribution of the object) and geometric attributes (contour) of the object.
Next we will describe each one of these features:
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(a) (b) (©) (@) (e)

Fig. 1. Color model. (a) All image points in the RGB colorspace. In the upper left part the original
image is shown. (b) Manual classification of image points in foreground (O) and background (B).
(c) Projection of O and B points on the Fisher plane. (d) MoG of O (the central leave) and B in
the Fisher colorspace. (e) p (O|cF iShe’"), where brighter points correspond to more likely pixels.

3.1 Normal to the Fisher Plane

In [6] we first introduced the concept of Fisher colorspace, and suggested that for track-
ing purposes the best colorspace is one that maximizes the distance between the ob-
ject and background colorpoints. Let the sets C5“? = {cf5P},i = 1,..., No and
CEGB = {cggB}, j = 1,..., Ng be the colorpoints of the object and background
respectively, represented in the 3-dimensional RGB colorspace.

Fisher plane @ = [¢1, ¢2] € M52 is computed applying the nonparametric Linear
Discriminant Analysis technique [2] over the sets CA“® and CE“P. An RGB color-
point c/*“F is transformed to the 2D Fisher colorspace by cis"¢r = @¢TcRGE (see
Fig. 1). This colorspace is adapted online, through the particle filter formulation pre-
sented above, with a 3D state vector corresponding to its normal vector, X; = ¢1 X ¢o.

3.2 Color Distribution of the Foreground and Background

In order to represent the color distribution of the foreground and background in the
Fisher colorspace, we use a mixture of gaussians (MoG) model. The conditional proba-
bility for a pixel ¢/"**"*" belonging to a multi-colored object O is expressed as a sum of
M, gaussian components: p (cI'**h*|0) = Z?i’lp (cfisher|5) P (). Similarly, the
background color will be represented by a mixture of M, gaussians. Given the fore-
ground () and background (B) classes, the a posteriori probability that a pixel cf"*s"¢"
belongs to object O is computed using the Bayes rule (Fig. 1d,e):

p (CFz'sher'lo) P (O)

p (O|cFishe'r) — . :
p(eFisher|O) P () + p (cFisher|B) P (B)

(%)
where P (O), P (B) are the a priori probabilities of O and B.

The configurations of the MoG for O and B are parameterized by the vector G. =
[Pe, ftes A, O] where e = {O, B}, p. contains the priors for each gaussian compo-
nent, ue the centroids, A. the eigenvalues of the principal directions and 6. the angles
between the principal directions and the horizontal. xo = {Go, G} will be the state
vector representing the color model.
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Fig. 2. Flow diagram of one iteration of the complete algorithm.

3.3 Contour of the Object

Since color segmentation usually gives a rough estimation about the object location,
we use the contour of the object, to obtain a more precise tracking. The contour will
be represented by N, points in the image, r = [(u1,v1), ..., (un,,vn,)]T. We assign
these values to the state vector, x3 = r.

4 The Complete Tracking Algorithm

In this Section we will integrate the tools described previously and analyze the com-
plete method for tracking rigid and non-rigid objects in cluttered environments, under
changing illumination. Let’s describe the algorithm step by step (See Fig. 2):

4.1 Input at Iteration ¢

At time ¢, for each i-feature, 7 = 1,...,3, a set of N; samples s(§ 2 ,7=1,...,N;
(with the same structure than x;), is avallable from the previous iteration. Each sample

has an associated weight wg;fl) . The whole set represents an approximation the a poste-

riori pdf of the system, P~1) = p(X(*=1|Z~1) where X = {x;, X2, X3} contains
the state vectors, and Z = {z, z2, z3 } refers to the measured features. Also available
is the set of image points R(*~1) that discretizes the contour of the object, and the input
RGB image at time ¢, 7¢5:(),

4.2 Updating the Fisher Plane pdf

At the starting point of iteration ¢, PF1, the particle filter associated to x;, receives
at its input pgtfl) the pdf of the state vector x; at time ¢ — 1, approximated with Ny

weighted samples {s(t 1), (¢= 1)} 7 = 1,..., Ny. These particles are resampled and

propagated to the set { S, )} accordmg to the dynamlc model. Each sample represents a
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Fig. 3. Generation of multiple hypotheses for each feature. Upper left: Fisher plane. Lower left:
Contour of the object. Right: Color distributions (and the corresponding a posteriori pdfs maps).

different Fisher plane, @;, j = 1,..., Ny. In order to assign a weight to each propagated
sample, we define a region W in the image I7¢5-() where we expect the object will
be (bounding box around the contour R(*~1)). We fit a MoG configuration to the points
inside and outside W, and assign a weight to each Fisher plane ¢; depending on how
well it discriminates the two regions:

(t) 1 Fisher,(t) Fisher,(t)
Ty~ Now Z P (W|I(u,v)j ) Z P (W|I(u v) ) 6)
(u,v)EW (u v)gW
where I Fisher-(1) i the image TGB-(®) projected on the plane &;, and Ny, Ny, are

the number of image pixels in and out of W, respectively.

4.3 Updating the Foreground and Background Color Distributions pdf’s

‘PF2, the particle filter associated to the state vector xg, receives at its input pét_l) ~

{s(t b, (t 1)} j=1,...,Na, approximating the pdf of the color distributions in the
previous 1terat10n and p {s1 ' 7r1 i } k =1,..., Ny, an approximation to the pdf

of the Fisher planes at time ¢. Particles {st )} are resampled and propagated (using

the dynamic model associated to x2) to the set {sg;)} A sample sétj) represents a MoG

configuration for the foreground and background. For the weighting stage, we associate

to this sample, a sample of Fisher plane from PJF, in such a way that those samples

sgtk) of Fisher planes having higher probabilities will be assigned more times to the

samples sé? of MoGs. The weighting function is similar as before, but now the MoGs

are provided by the sample sé?.

1 isher, 1 isher
e > p(O ) O) = B ST p (0l 0) @)

(u,v)eW w (u,v)gW
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Fig. 4. Tracking results of a bending book in a sequence with smooth lighting changes. Upper
row: using the proposed method the tracking works. Lower row: using only a contour particle
filter and assuming smooth change of color the method fails.

4.4 Updating the Contour pdf

PFs, receives at its input p3 —b {s(t b, (t 1)} y =1,. Ng,that approximates

the pdf of the contours in the previous 1terat10n and p {52 e 71'2 i } k=1,...,No,
an approximation to the pdf of the color distributions of foreground and background at
time ¢. The set {sgtj)} (the resampled and propagated particles, see Fig. 3) are weighted
based on pét) through a similar process than described for PF5: first we associate a

sample sé ) to each sample sg J), according to the weight wék) Then we use the a pos-

teriori probability map p(O|I JF isher: (1)) assigned to sék) in the previous step, and the
(t

contour r; represented by s j) to compute the weight as follows:

1 isher, 1 isher,
)~ > p(O ) = ST p (o) @)
I (u

JV)ET; rj (u,v)¢gr;

where Ny; and N, are the number of image pixels inside and outside the contour r;.
The whole pdf can be approximated by a set of samples and weights:

PO = PO (xy, x5, %3021, 29, 25) = p\"pp) ~ {50, 7D} 1=1,..., N5 (9)

Considering these final weights, the output contour is computed as R(*) = l 1 sétl)wl(t).

5 Experimental Results

In this Section we examine the robustness of our system to several changing conditions
of the environment, in situation where other algorithms may fail. In the first experiment
we track the boundary of a bending book in a video sequence, where the lighting condi-
tions change smoothly from natural lighting to yellow lighting. The upper row of Fig. 4
shows some frames of the tracked results. The same video sequence is processed by a
particle filter that only uses multihypotheses for the prediction of the contour feature,
while the color is predicted using a smooth dynamic model. Lower row of Fig. 4 shows
that this method is unable to track the contour of the object and cope with the effects of
self-shadowing produced during the movement of the book.
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Frare #12

Fig. 5. Tracking results of a cluttered sequence with abrupt change of illumination and unpre-
dictable movement of the target. Up: Results using the proposed method, and weight distribution
for each particle filter. Down: Results assuming smooth change of color.

In the second experiment we have tested the algorithm with a sequence of a mov-
ing leave. Although this is a challenging sequence because it is highly cluttered, the
illumination changes abruptly and the target moves unpredictably, the tracking results
using the proposed method are good. Upper images of Fig. 5 show some frames of the
tracking results. We show also the distribution of the weights for the samples of each
particle filter. Observe that during the abrupt change of illumination (between frames 41
and 42), there is a compression of these curves. This means that the number of samples
predicted well has been reduced. Nevertheless, the difference of probability between
these samples and the rest of the samples has increased meaning that in next iteration
the new predictions will be centered on these ‘good’ particles. We can observe that for
frame 43 the tracking has stabilized. On the other hand, the lower images of Fig. 5 show
the inability to accommodate these abrupt changes using a contour particle filter with
smooth color prediction.

6 Conclusions

In this paper we have presented a new technique to integrate different particle filters
that are conditionally dependent. This framework has allowed us to design a tracking
algorithm that accommodates simultaneously the colorspace where the image points
are represented, the color distributions of the object and background and the contour
of the object. We have demonstrated the effectiveness of the method both analytically
and experimentally, tracking real sequences presenting high content of clutter, non-rigid
objects, non-expected target movements and abrupt changes of illumination.
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Stereo Reconstruction of a Submerged Scene*
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Abstract. This article presents work dedicated to the study of refrac-
tion effects between two media in stereo reconstruction of a tridimen-
sional scene. This refraction induces nonlinear effects making the stereo
processing highly complex. We propose a linear approximation which
maps this problem into a new problem with a conventional solution. We
present results taken both from synthetic images generated by a raytracer
and results from real life scenes.

1 Introduction

Physical modelling is, still today, the main tool for testing and designing costal
structures, specially rubble-mound breakwaters. One of the most important fail-
ure modes of this kind of structure is the armour layer hydraulic instability
caused by wave action. Currently, to test the resistance of a proposed design to

Fig. 1. Real and model breakwater.

this failure mode, a scale model of the structure is built in a wave tank or in a
wave flume, such as the one shown in figure (1), and it is exposed to a sequence of
surface waves that are generated by a wave paddle. One of the parameters that
have proved of paramount importance in the forecast of the structure behaviour
is the profile erosion relative to the initial undamaged profile. Thus, measuring
and detecting changes in the structure’s envelope is of paramount importance.

* This work was supported by the Portuguese FCT POSI programme under framework
QCA TII and project MEDIRES of the AdI.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 102-109, 2005.
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Laser range finders are one obvious and easy way of reconstructing the scene,
however, since common lasers do not propagate in the water, the tank (or flume)
have to be emptied every time a measurement is taken.

This is a quite expensive procedure, both in time and money resources. We
propose to use a stereo mechanism to reconstruct a submersed scene captured
from cameras placed outside of the water. This way we can monitor both the
emerged and submerged part of the breakwater.

1.1 Problem Definition

The problem tackled in this article is the reconstruction of a 3D scene with a
stereo pair. Between the scene and the cameras there is an interface that bends
light rays according to Snell’s law.

The main difficulty here is that the known epipolar constraint, which helps
reducing the search for a match, is not usable. Unlike conventional wisdom,
straight lines underwater do not project as straight lines in the image. As figure
1.c illustrates, for each pixel in one image, possible matches are along a curve
which is different for every point on the object. Essentially, this means that most
stereo algorithms are unusable. We show that, if the incidence angle is small,
the linear part of the Taylor Series expansion, which is equivalent to modifying
camera parameters, is precise enough for our purpose. In other words current
stereo algorithms can be used, provided the camera orientation parameters are
within a certain range.

Though with a relatively straightforward solution, to our knowledge, this
problem has not been addressed in the literature since most systems are placed
underwater, thus eliminating the refraction issue.

2 Scene Reconstruction in the Presence of an Interface

2.1 Snell’s Law

Whenever an interface is involved, Willebrord Snell’s Law will necessarily be
spoken of. The law states that a light ray crossing an interface will be bent
according to

k1 sin @; = ko sin @,

where ¢; and ¢, are the angles the incident and refracted light rays have with
respect to the normal of interface at the point of intersection. Considering a
planar interface at z = 0 (see figure 1), a light ray emitted from a point above
the interface will relate to its refracted ray by:

kl kl

vitv) = tor ) = ey )
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This non-linear relation can be simplified by expanding vZ(v;) in its Taylor series

(in the neighborhood of v; = [O 0-1 ] T) and retaining the first order term. This
results in a much simpler (linear) transformation

ko k00 §
ve~ [kv! | = |0k0|v;, wherek= k:l . (2)
v 001 2

2.2 Image Rectification

This approximation leads to a simple image rectification process, cancelling most
of the distortion introduced by the interface. Using equation (2) and classic
geometry, it can be shown that all light rays converge at a single point p1, as
illustrated in figure 2. The relation between both focal points is done by:

100
pP1 = 01(1) P2 . (3)
00!

This fact hints at the possibility of rectifying the image with refraction effects
by only changing the extrinsic camera parameters. In other words, by approx-
imating Snell’s law, the problem with refraction is transformed into a typical
stereo problem “without” air-water interface. All that remains to be done is to
project the original image onto the z = 0 plane, and project it back to a vir-
tual camera with projection center at py. If Py and P; are, respectively, the
original camera projection matrix and the virtual camera projection matrix, the
rectification consists of a homography, given by:

H =P, M(p2)P;5. (4)

Here, the operator {-}* denotes matrix pseudo-inverse which projects a point
in image coordinates onto the camera projection plane (at z = 1 in camera
coordinates). Matrix M(p2) projects a point onto the z = 0 plane using p2 as a
projection center. It is defined by:

z
2

—ps 0

O _mZ

M(p2)=| o o (5)
0 O

o OO

—P3

The intrinsic parameters of the virtual camera are chosen to minimize informa-
tion loss or any other criteria needed by the specific implementation. In particular
in the case of stereo reconstruction, the image rectification process imposes a few
constraints on these parameters.

2.3 Underwater Stereo Reconstruction

The previous rectification process changes the image in such a way that they
become suitable to classic stereo reconstruction algorithms. Be advised though
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that no guarantee was made about epipolar lines. Generally, depending on the
resolution used, baseline, and angle of incidence of the light rays, the epipolar
constraint does not occur due to the effect of higher order terms, neglected by
the Snell rectification. In case the rectification mentioned above is not accurate
enough, two dimensional search must be done to match the images. In these
circumstances, rectification can significantly narrow the band of search around
the estimated epipolar line.

Although the matching process gains considerably by assuming the simplifi-
cation as valid, for greater reconstruction precision the nonlinear terms shouldn’t
be discarded. After the matching has been done, the true Snell deformation can
be taken into account. In other words, equations 1 must be modified to include
the rectification effect on the image coordinates. This is illustrated in figure 3.
Note that vs is the true trajectory of the underwater light beam and not vi.
We known how to obtain vg from va, but now only v, is available. Finding the
intersection of the line through p; tangent to vi with the plane z = 0 yields p;

z 2 T
1 S X T Rt ) (6)

As mentioned before, Snell’s approximation changed the camera’s focal point.
Knowledge about the original camera’s focal point (pz2) allows us to find va:

z 2 i _pi,y
: :

T
T
pz=[p] P! kpi], V2:Pi_P2:[ vl i —kpf}

Replacing this expression of va in equation 1, we can represent vs exclusively
as a function of the virtual camera, that is:
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It is now possible to apply equations (6) and (7) to the left and right cameras to
triangulate for the 3D point. Due to the discrete nature of the sensors the two
lines do not usually intersect, so a least squares error approach is used.

2.4 Implementation Notes

The location of the water plane is obtained during the calibration process using a
floating checkered board. For a description on how to use this plane to calibrate
the cameras’ extrinsic (and intrinsic) parameters please see Bouguet’s work [2]
which is based on Zhang [3] and Heikkila [1]. As stated before, the water plane
is forced (calibrated) to be at z = 0. In order to facilitate point matching, the
calibration data is then used to project the left and right images on a common
plane making the epipolar lines horizontal [5]. These images are then processed
by any classic stereo reconstruction algorithm. In our case we were interested in
a dense stereo reconstruction so we used Sun’s algorithm [6] based on dynamic
programming.

Please note that what is discussed in this paper is valid only for underwa-
ter scenes. If the scene to be reconstructed is only partially submerged, two
reconstructions should be performed. One valid for all the pixels corresponding
to points over water, and another for the pixels corresponding to underwater
points. Since the water plane is at z = 0, it can be written as w = [0 0 1 0]7 in
projective coordinates. This plane can be easily described in disparity space as
wq = H Tw, using the projective transformation

fo 0

_ _|0f ¢ 0
H=DE, where D= 00— —Bf
00 1 0

€ is the world to camera projective transformation and D is the camera to d-
space transformation with f describing the focal length, ¢! the j coordinate (x or
y) of the principal point of camera i (left or right) and B is the baseline between
left and right cameras (see for example [7]). It is then possible to know in a
disparity map which camera pixels correspond to points under or above water.

3 Experiments

To validate the algorithm, two different experiments were made. First a synthetic
scene with planes at different depths was created. Images rendered from this
scene are completely known to us, allowing reconstruction errors to be measured.
The second type of images are real world images from a model breakwater. Since
we do not have “ground truth” we can evaluate performance only qualitatively.

3.1 Synthetic Experiment

A few synthetic images were generated using povray' consisting of textured
planes at various depths. The cameras are placed at 1.3m over the interface

L One of the oldest raytracers still used, which correctly models refraction effects.
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Fig. 4. Reconstruction error in depth (meters) for each pixel. The reconstructed scene
consists of a textured plane at a depth of 1.5m as illustrated in the first image.

(looking slightly away from the perpendicular) with a baseline of 25cm . Please
note that all of these reconstructions assume that the epipolar constraint is valid.
This is clear in all the plane images since the matching algorithm starts to fail
when the incidence angle becomes too great (noticeable in the top corners of the
error images).

The first error image shown in figure 4 describes the reconstruction error
when it is assumed that the disparity space is a projective reconstruction of the
scenery. Note that Snell approximation is still used to help feature matching. The
plane is reconstructed as a paraboloid (barely noticeable in the error images) due
to the fact that higher order terms of Snell’s law are discarded. This effect is
much clearer in figure 5 where the actual plane reconstruction is shown. The top
corners of the error image are poorly reconstructed due to the already mentioned
failure in epipolar geometry.

The second error image shown in figure 4 uses equation 7 to correct the higher
order distortion. Overall error is diminished but since nothing has been done to
improve matching the top corners are still not corrected. For a clearer perception
of the corrected distortion see figure 5 which shows the 3D reconstruction of
the same plane (they are translated in relation to one another for visualization
only) with (bottom plane) and without (top plane) use of equation 5. The plane
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out it.

Fig. 6. 3D view and left image of a model breakwater partially submerged.

Fig. 7. 3D view and left image of another model breakwater partially submerged.

reconstructed as a paraboloid effect mentioned earlier is clearly visible on the
top plane. Although the planes are placed one above the other for comparisson
purposes, they are both at the same depth (1.5m).

Finally, the result of using bi-dimensional matching is shown in the third
error image of figure 4. Note that only a few pixels (depending on the resolution,
baseline and depth of the scene) need be searched away from the epipolar line,
and only where the angle of incidence is greater than a certain tolerance. The
maximum error is now 3 centimeters for the plane at z = —1.5m, which is the
expected error due to the discrete nature of the sensor at the given distance.
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3.2 Real World Experiment

Figures 6 and 7 show two reconstructions of a real breakwater physical model.
The first uses images taken with video low resolution PAL cameras with a base-
line slightly below 40cm and about 1.2m above the water. The second uses images
taken with a beam splitter mounted on a 6 megapixel still camera. The baseline
is about 5cm at 1.2m above the interface. Notice in both reconstructions the
discontinuity near the top where the underwater and overwater reconstructions
are fused. Unlike the synthetic images these are not so feature rich (for example
dark shadows appear between rocks), resulting in some matching errors. Better
results should be possible with algorithms that deal with occlusions and little
texture.

4 Conclusion

We have shown how to diminish the refraction effect introduced by the presence
of an interface between a stereo rig and the scene. The solution described allows
for standard stereo matching algorithms to be used. The results show that the
reconstruction error due to refraction is negligeable, provided the cameras are
looking perpendicularly to the water surface.
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Abstract. In this paper, a functional simplification of the BCS/FCS neurobio-
logical model for image segmentation is presented. The inherent complexity of
the BCS/FCS system is mainly due to the close modelling of the cortical
mechanisms and to the high number of parameters involved. For functional ap-
plications, the proposed simplification retains both the biological concepts of
the BCS/FCS and its performance, while greatly reducing the number of pa-
rameters and the execution time.

1 Introduction

Image Segmentation has been studied for decades by researchers of animal and com-
puter vision. The present state of the art computer vision systems do not even ap-
proach the performance of human vision in image understanding, proving that there is
still much to be learned form biological vision systems. With this in mind, many
computer vision researchers have chosen biomorphic engineering approaches as the
neural networks.

The BCS/FCS [1-4] is a neural network system for boundary segmentation and sur-
face representation, inspired by a model of visual processing in the cerebral cortex.
This model retains part of the biological concepts in which it is based.

Neural network interactions between two subsystems: BCS (Boundary Contour
System) and FCS (Feature Contour System) are the basis of this model. These interac-
tions are produced in the human visual cortex once the lateral genicular nucleus
(LGN), which regulates flow from retina to primary cortex, preprocesses the image
which gets “contrast enhanced”. BC system interacts FC system, complementing one
to each other in order to delimit surfaces in the scene. As a result, invariant properties
of surface shape are usually perceived with high fidelity, despite gross perturbations
of surface appearance. The information about variable aspects of the objects is elimi-
nated or treated as noise [3]. The Boundary Contour system (BCS) model detects and
completes coherent edges that retain their sensitivity to image contrasts and locations,
performing a perceptual grouping. The Feature Contour system (FCS) model compen-
sates for local contrast variations and uses the compensated signals to diffusively fill-
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in surface regions within the BCS boundaries, so that subsystem is responsible for
brightness and surface perception.

Summarizing, BCS/FCS performs the enhancement and conditioning of images
acquired by the visual system. This module is the result of the analysis of several and
detailed experiments with the visual cortex of superior mammals as monkeys and
humans, where the goal is to represent as close as possible the main aspects of neuro-
biological systems. However, the implementation of this system into the practical
applications demanded by the industry is not easily feasible. Problems like the proc-
essing time (mainly due to the recursive nature of the processing), complexity in the
tuning of the intervening parameters (the kind and condition of the scenes processed
can vary greatly and these parameters have to be tuned accordingly), and the lack of
optimal performance due to the limitations of the biological approach have to be
avoided in some way.

In this work, a simplification of the forming stages is presented. All the concepts
contained in the BCS/FCS are used in the new implementation but restraining the
complexity and making it more functional. This is accomplished in two main ways:
the first one is by the reduction in the number of parameters to tune (simplifying func-
tions) which contributes to make this algorithm less dependant of the kind of images
used for each application. The second way towards adapting this system for practical
applications is to reduce the processing time by means of restraining recursivity and
operations performed in each stage. By means of this action the processing speed is
increased in a high rate and, although the model is not so close to biological aspects,
the core of the system still retains the main concepts of the BCS/FCS.

2 Conceptual Description of the BCS/FCS Neural Network

The BCS/FCS neural network model was originally developed by Grossberg & Min-
golla [1-3] through a detailed analysis of biological vision. This is a partial model of
the human visual system and reveals how it detects, completes, and cleans from noise
and useless information general boundaries. The segmentations produced are based in
regions of different texture, color or luminance.

The lower level of the system (Stage 1) is a conditioning operation which boosts
the contrast, normalizes the brightness in the input image and simultaneously reduces
the speckle noise [5, 7]. It is performed by cells at the retinal and Lateral Genicular
Nucleus. Receptive fields of these cells (see Figure 1), with an isotropic (not sensitive
to orientation) center-surround structure, are the core of this stage. Two output chan-
nels, convolving the input image with a combination of two Gaussian functions of
different size (O ), are obtained: one of them detects transitions in the input image
from dark to light - ON channel:

xir o | AP HSi =S (1)
! A+S;+8¢
The other detects transitions from light to dark - OFF channel:

X = AD™ +85 -8} (2)
v A+S5+SE
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S; and S;° are the convolution of the input image with Gaussians of different

width (O ). A, D* and D- are parameters depending of the nature of the input images.
Along this work, the ‘+’ superscript means that only positive values are considered,
while negative values are truncated to zero.

The combination of these channels produces the output of the Stage 1. These chan-
nels do not respond to uniform light in the input image.

Fig. 1. Left: Receptive field of an ON channel. Right: Receptive field of an OFF channel.

The outputs of these cells excite receptive fields at Stage 2. The function of this
second module is mainly the segmentation of the existing borders. Also, a slight
smoothing action on the surfaces enclosed by these borders is performed. It is formed
by pairs of simple cells (which are directional) with the same orientation, which are
sensitive to opposite contrast polarity. Their receptive fields, as can be seen in Figure
2, detect either an increase or a decrease of the activation in their preferred direction.
The simple cell pairs, in turn, pool their rectified and oppositely polarized output
signals at complex cells with the same orientation. These complex cells are not sensi-
tive to direction of contrast. They respond equally well to increase/decrease of inten-
sity. Conceptually, in this module difference of elongated Gaussians (rotated for proc-
essing several orientations) is convolved with the output image of the Stage 1. The
global output image (for each scale g) for this stage is obtained from the sum of the
resulting processing for each orientation k (twelve in this work). The output of the
simple cells is modeled by the equations:

ke = (R.g*’ + I8 )— (R.’?’ + 15 )]* (3)

ijk ijk ijk ijk ijk

sk = - (R_g" + 15 )+ (R.” C+ L )T @

ijk ijk ijk ijk ijk
where R and L are the four convolutions of the ON and OFF channels from Stage 1
with the two elongated Gaussians. The output of the complex cell for each orientation
(k) and scale (g) is:

g5l )

8 —
Ctjk - Stjk ijk

Fig. 2. Left: horizontal simple cell. Right: diagonal simple cell.
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Stage 3 is conformed by a cooperative-competitive loop. This recursive procedure
enhances the segmentation process by the completion of the discontinued borders and
broken connections in collinear segments belonging to the same border (cooperative
action) and by destroying false parallel contours, reducing the noise, and attenuating
the presence of perpendicular lines which could belong to smaller structures and ob-
jects without real interest for the segmentation (competitive action). The boundary
completion is made by the bipolar cells, which act as logical AND functions for col-
linear borders (Figure 3). If both lobes of the cell coincide with collinear lines when
convolving with the image then these lines will be joined. The competitive and coop-
erative modules interact one to each other.

The output of the boundary competition is:

3 3 "
ve _[ BE}* - CI} ] (6)

ijk 3g 3g
A+EX +1}

where E;,f is the pondered combination of the output of Stage 2 and the cooperative

module:
E) =G,ci +G,Z, )
The output of the cooperative module is:
4
o | BEx ®)
YOl A+ES

4g . L .
where Eijkg is a combination of the output of the competitive module and several

convolutions of the bipole cells with Z 5,( .

E =YS$ +H: )

ijk ijk ijk
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Fig. 3. Lobes of a horizontal bipole cell.

The three stages commented previously (LGN stage, simple and complex cells and
cooperative-competitive loop) form the so-called Boundary Contour system (BCS).

Boundary Contour System establishes a barrier to the filling-in (Stage 4) of the sur-
faces delimited by the boundaries. The system that carries out this filling-in is the
Feature Contour System (FCS). For image pixels through which no boundary signals
pass, the resulting intensity values become more homogeneous as diffusion evolves;
but when boundary signal intervene they inhibit the diffusion, leaving a resulting
activity difference on either side of the boundary signal [5]. This diffusiveness opera-
tion is an iterative task intervened not only by boundaries obtained from BCS but also
by ON and OFF cells from Stage 1. Figure 4 shows an example of diffusion.

The diffusive filling-in obeys the equations:
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Fp = X +2p.q Fo P (10)
D+, P
o X5+, FaPi (11)
D+, B
The boundary-gated permeabilities obey
.6 (12)
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eyl + v

where
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k

Fig. 4. Brightness diffusion in FCS. Left: two objects presenting brightness differences due to
shading. Right: after the FCS processing, the two objects now present uniform brightness.

The last stage (Stage 5) is the scale averaging or combination of scales. The final
output image is attained by a weighted combination of the resulting images at differ-
ent scales. The weight for each scale in the global result is heuristically evaluated,
depending on the nature of the images to process.

3 Simplification of the Original Algorithm

Due to the need of getting a higher processing speed and the goal of eliminating as
many parameters as possible, several changes have been made to the last development
of the BCS/FCS by Grossberg et al. [7].

Stage 1 has not been changed. The difference of Gaussians (similar to the Lapla-
cian of Gaussian function) is the best biological approach to date for the modelling of
the LGN cells. Although there are several filters similar in performance to the Differ-
ence of Gaussians function, this filter combines the edge enhancement property with
the removal of the high frequency noise retaining the biological approach.

Stage 2 is composed of directionally sensitive receptive fields (simple cells) which
detect increase or decrease of activation in their preferred direction. The complex
cells, also included in this stage, pool the information from simple cells obtaining the
borders of the image. The receptive field of these cells is similar to the receptive field
of the ON channels and OFF channels. The difference between them causes the ani-
sotropy. This elongation is the essence of the border detection. In the simplified algo-
rithm, this essence has been preserved but implemented in a simpler way. For exam-
ple, for the detection of an edge, in Grossberg’s original system two elongated
difference of Gaussians (simple cells) are applied in the same area for detection of
increase and decrease of activation respectively for a given direction (twelve, in this
work), so the outputs of these two simple cells (one for detecting increase of contrast
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and the other for contrast decrease) are pooled. In the system presented in this work,
only one simple Sobel approximation for the gradient (rotated for each orientation) is
convolved for a given orientation, which reduces the computational load more than a
half for this module. In the original system, the convolutions are made using the two
elongated Gaussians with the ON and OFF channels, so four different outputs are
obtained. An arithmetic combination of these four resulting images is used for the
global output of this stage. We have found that this is functionally equivalent to con-
volving the combination of the ON and OFF channels with a rotated Sobel operator
for each orientation. Therefore, the number of necessary convolutions is reduced in a
quarter and the results obtained are on a par without loosing the main concept in-
volved.

In Stage 3, some modifications have been arranged in order to speed up the proc-
essing. This module is divided into two sub-systems, the first one being the Competi-
tive Stage. It performs a useful cleaning of false and residual borders in the images,
by means of an iterative process in which Stage 2 and the Cooperative Stage are in-
volved. This process is computationally very expensive, so its implementation has
been changed. In spite of implementing a separate task interacting with the coopera-
tive action, the two modules have been joined in the algorithm. This integration obeys
the equation:

Y”: :zcif_k COS|:2(KI _K);]WIUK (14)
k or
where K, —K|<2 or K, - K| - Ny 5, being N . the total number of orientations
2

considered, K the analyzed orientation for the image (0 < K < Nw) and K , the ori-
entation of the W filter (¢ < K, <N, )- This filter is a particularization of the general

dipole receptive field given in [7], and it is shown for 0° orientation in figure 5.

Only the three closest orientations to the perpendicular to the border are considered
for the competition. This competition attenuates all the borders not belonging to the
real contour of the blob. In the original system all the orientations have been consid-
ered as shown in equation (6). This is a more correct approximation but also slower to
process while leading to similar results.

The second subsystem in the CC loop is the Cooperative. The function defined for
the bipole cells has several adjustable parameters related to the response saturation
level, the threshold for the firing of the lobes, the length of both lobes from the filter
center, the spatial deviation from co-linearity and the orientational deviation from co-
linearity. All of these adjustable values broaden the field of utilization for this system
allowing fine-tuning the parameters according to the nature of the input images. A
much simpler function has been chosen for replacing the original bipolar cells as
shown in figure 5. This alternative has two great advantages. First, the filter size is
considerably reduced. Considering that this stage has recursive implementation and
that this mask must be convolved at each iteration with all the orientations, reduction
in the size of the filter has a very evident effect in the efficiency. The second advan-
tage is the elimination of the need to tune the commented parameters, which is an
arduous task.



116  Pablo Martinez et al.

Fig. 5. Filter (W) replacing the original receptive field of a bipole cell.

Stage 4 is the Surface Filling-in process. As for Stage 1, no major changes have
been made with respect to the original system. The interaction with Stage 1 has been
limited to the output image from that stage and not performed with the ON and OFF
channels separately, so the processing time is reduced on a half.

Stage 5 (scale averaging) has been removed from the algorithm. After several ex-
periments, the conclusion was that no perceptible enhancement over the results ob-
tained having in account only one scale was obtained. This is due to the previous fine-
tuning of the intervening parameters dependant of the size of the blobs of interest. The
smaller and the greater scales are not processed. Considering the three scales, the
processing time would have been multiplied by three, a major inconvenient for the
purpose of this system.

4 Results

A set of basic images used for the analysis and comparison of the results obtained
with the original neural model and the modified one are presented in Fig. 6. These
images have been selected because they allow to test and validate the performance of
the most interesting stages comprising the BCS/FCS For example, in the leftmost
image the broken boundaries in the polygon allow to evaluate the completion of the
boundaries in several directions (Stage 3). Also, the residual blobs existing in this
image are reduced in part by the Stage 1 and by the competition sub-stage in Stage
3.In all the images, the noise (a kind of salt and pepper) is eliminated by the differ-
ence of Gaussians in Stage 1. The center and right images present illusory contours.
These illusory contours can be recognized without actually being seen, and are easily
perceived by humans, but hardly detected by computer vision systems. This is due to
the existence of underlying textures of parallel lines. The ends of these lines form a
line of disjoined points which excite the bipole cells of the cooperative module (Stage
3). In the three images, surface diffusion has been carried out by the FCS system, and
should lead to the differentiation of several uniform surfaces, corresponding to zones
of the original image delimited by borders (real or illusory), o that present a common
texture (like the different line densities in the center image of Fig. 6).

The obtained images processed using both BCS systems are presented in Table 1.
In Table 2 the results of the FCS for the simplified method are shown. No changes
from original system have been made in this stage.
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Fig. 6. Three test images.

Table 1. Images obtained after BCS processing.

Original
BCS

Simplified
BCS

As can be seen in the results presented in the left column of Table 1, the comple-
tion of the boundaries is successfully performed. The variance in the thickness of the
border and the difference in brightness between the two images (up and bottom) are
due to the different functions convolved with the input images in the cooperative
stage. The two columns on the right show the similarity in the results for the comple-
tion of illusory contours with both methods.

In table 2 the intensity values become more homogeneous as diffusion evolves. In
the left figure the borders of the object inhibit the diffusion outside the boundaries.
The same process of diffusion has been initiated outside the object, but at a lower
level. In the centre and right images, the diffusive process continues the work initiated
by the BCS system. Several uniform regions are finally obtained, corresponding to
those zones inside real or illusory borders, or distinct textures, as expected.

5 Discussion

A new functional and simplified implementation of the Neural BCS/FCS model for
image processing is presented. While retaining the functionality and the biological
inspiration of the original algorithm, this simplification eases its use and considerably
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speeds-up the processing. As can be seen in the experiments included in this work,
when applying this simplified revision of the neural system two goals are achieved:
the processing time is reduced considerably and the tuning of the algorithm is made
easier avoiding the need to adjust by hand a great amount of parameters, which intro-
duces an arduous and time demanding task to the system programmer.
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Abstract. In this paper, we propose a new method to extract moving
objects from a video stream without any motion estimation. The ob-
jective is to obtain a method robust to noise, large motions and ghost
phenomena. Our approach consists in a frame differencing strategy com-
bined with a hierarchical segmentation approach. First, we propose to
extract moving edges with a new robust difference scheme, based on the
spatial gradient. In the second stage, the moving regions are extracted
from previously detected moving edges by using a hierarchical segmen-
tation. The obtained moving objects description is represented as an ad-
jacency graph. The method is validated on real sequences in the context
of video-surveillance, assuming a static camera hypothesis.

1 Introduction

Automated video surveillance applications have recently emerged as an impor-
tant research topic in the vision community. In this context, the monitoring
system requirement is to recognize interesting behaviors and scenarios. How-
ever, in such a system, the main problem is to localize objects of interest in the
scene. In this context, every moving area is potentially a good region of interest.

There are three conventional approaches to automated moving target detec-
tion: background subtraction [5—7, 13], optical flow [5, 8] and temporal frame
differencing [5, 10, 14]. In video surveillance, the background subtraction is the
most commonly used technique. However it is extremely sensitive to dynamic
change of lighting. Nevertheless, it requires a prior knowledge of the background,
which is not always available. In the second category of methods, the optical flow
estimation is used as a basis for further detection of moving objects. However,
it is a time consuming task. It is affected by large displacements and does not
provide the accurate values, neither at moving objects contours, nor in large
homogeneous areas.

In this paper, we focus on the temporal frame differencing methods. These
techniques enable fast strategies to recover moving objects. However, they gen-
erally fail to extract accurately both slow and fast moving objects at the same
time. In such case, a tradeoff between missed targets and false detections is very

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 119-127, 2005.
© Springer-Verlag Berlin Heidelberg 2005



120 Loic Biancardini et al.

hard to obtain. To overcome these problems, we first propose a new difference
scheme suited to moving objects boundaries detection. Then, a hierarchical seg-
mentation [I-3] of the current frame is used to complete these contours and
extract the underlying moving regions.

The paper is organized as follows: section 2 introduces the method for motion
boundaries extraction. In section 3, the use of the hierarchical segmentation to
retrieve the moving regions is described. The experimental results are presented
in section 4. Then, we give the conclusions on the proposed method and we
discuss the future work.

2 Moving Edges Detection

The frame differencing methods take advantage of occlusions, which occur at
moving objects boundaries. Various kinds of approaches have been attempted in
the literature [10, 11, 13, 14]. Generally, the presence of the occlusions is detected
using the absolute difference of two successive frames. However, the occlusions do
not correspond to the position of the true object boundaries neither in the first
image nor in the second one. Moreover, depending on frame rate and speed of the
moving objects, the difference map can critically differ. When an object moves
slowly, image intensities do not change significantly in its interior. Consequently,
the resulting difference image exhibits high values only at motion boundaries.
In the opposite case, if the object has completely moved from its position, the
resulting frame difference will exhibit high values inside the object body in both
images. It is the so-called ghost phenomena [12] and leads to false detections.

In [13, 14], the authors propose to use a double-difference operator. The frame
difference is performed on the two pairs of successive images at time (t—1,t) and
(t,t +1). Then, the result is obtained by the intersection of these two difference
maps. However, when an object moves slowly this intersection may be reduced
to an insufficient number of pixels.

2.1 Difference Scheme

In the following, I' : Z? — N indicates a discrete image at a given time ¢ € (0, 7).
We note the reference frame, the frame in which we want to localize and segment
the objects in motion.

The proposed method considers three successive images I*~1, I* and I**!.
We assume that moving edges position depends rather on the gradient changes
in the successive images than in the images themselves.

First, we compute the spatial gradient modulus of I*~! I* and I**! and we
note g = || VI?|| (respectively g'*'). Then, the symmetrical frame difference is
obtained on the two pairs of gradient images. The moving edges measurement
at a given time t is defined as the infimum operator of the two difference maps:

—d'.lg" =g (1)

The infimum operator properties and the analysis of gradient over three
frames yield the interesting behaviors:

t

mem' = inf(‘g“'l
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Fig. 1. Results of mem on three different cases: (a) homogeneous region, (b) assembly
of homogeneous regions and (c¢) textured area

1. a maximum response at moving objects boundaries locations: when a con-
trasted object is moving over a homogeneous area, the mem is equal to the
original gradient in the reference frame.

2. a significant robustness to motion amplitude: in the case of fast moving
objects, the result is not delocalized and the ghost phenomena are drastically
reduced.

3. a significant robustness to random noise (non-repeatable in subsequent
frames).

However, due to low motion, weak contrast with the scene and the aperture
problem (sliding contours), the moving edges measurement will certainly fail to
provide information along the whole contours of a moving object (figure 1). The
forthcoming section explains how to overcome this problem in order to obtain
reliable moving regions.

3 From Moving Edges to Moving Regions

In this section, we propose a method to extract moving regions based on the
new moving edges measurement (mem) proposed in paragraph 2.1. However,
the mem operator does not result in the complete object contours. Thus we
propose to consider an additional information issued from a spatial segmentation
of the reference image. Nevertheless the segmentation process generally results
in an over segmentation of the image, an accurate description of the image
requires multiple levels of details. Thus, in our approach, the moving regions are
searched through the levels of a hierarchical segmentation, which allows to study
the regions at different scales.

We start by extracting an initial set of moving contours corresponding to
spatial edges with a sufficient mem value. Then, the moving objects are detected
by browsing a set of candidate regions extracted from a hierarchical partition.
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3.1 Hierarchical Segmentation and Candidate Set to Detection

Some attempts to extract the meaningful image regions by gathering the regions
of an initial segmentation can be found in [1, 2, 4]. However, they are not based
on exhaustive analysis of region grouping which have a significant computational
complexity. As explained in these publications one way to reduce the number of
candidates is to build a hierarchical segmentation. After an initial partition is
built, a graph is defined, by creating a node for each region and an edge for each
adjacent regions pair. Graph’s edges are weighted according to a dissimilarity
criterion (as example, a grey level difference) between two regions. The hierar-
chical segmentation is obtained by progressively merging regions of the initial
segmentation, in an increasing dissimilarity order. The process is iteratively re-
peated until only one region remains. By keeping track of the merging process,
we construct the candidate set of regions C. Each time two regions merge, the
resulting region is added to the candidate list. Note that the candidates are
sorted according to their level of apparition in the hierarchy. The total amount
of distinct regions in the candidate list is 2N-1 (N is the number of regions of
the initial partition) [1]. This hierarchical segmentation only contains the more
meaningful assembly of regions in the sense of the chosen dissimilarity criterion.

In our approach, we use the set of contours and regions given by the watershed
transform proposed in [3]. We choose a robust dissimilarity criterion based on
the contrast: for a given regions pair, the value of the criterion is defined by the
median value of image gradient modulus along the watershed lines separating
the regions.

3.2 Initialization Step: Extraction of Moving Contours

Once the hierarchical segmentation is built, the next step of the algorithm is
to extract a set of moving contours: the mem is calculated and a threshold is
applied to obtain a binary image. A set of moving points designed as the most
significative contours in motion (mscm) is obtained by intersecting the thresol-
ded mem image with the lowest level’s contours in the hierarchy. The resulting
binary image (section 4, figure 3(b)) may not contain the whole moving object’s
boundary but only some incomplete and fragmented parts. Consequently, the
next step of our method is to gather and complete moving contours coming
from a same object, and discard small or isolated components corresponding to
residual noise. True moving edges are supposed to be distributed with enough
coherence and density around a same region to be gathered as the contours of
this region. A contrario, noise components are sparse and dispersed. They can
not be assembled as the contours of any region in the hierarchy.

3.3 Detection of Moving Regions

The detection step is achieved by independently optimizing a local criterion on
each region of the candidates list defined is section 3.1. In the following, for any
given candidate C; € C, the frontier dC; of the region is defined as the subset of
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watershed points enclosing C;. The matching score of a region C; is calculated as
the proportion of significative contours in motion contained in its frontier 9C;.
This is simply expressed by:

ms(C;) = card(0C; N msem) /card(0C;) (2)

where card refers to the cardinal operator.

Each candidate is successively tested according to its order of apparition in C'.
A candidate is labeled as detected if its score ms(C;) is higher than a predefined
threshold Tpercent € [0,1] .

The method may lead to some incorrect detections as depicted in figure 2(c).
In figure 2(c), the region Co which causes the error is detected because its frontier
in common with the moving region C; (figure 2(b)) is quite long. Nevertheless,
the frontier of C5 is longer than the frontier of C; but does not contain more
moving contours points (figure 2(a)). Consequently, the score ms(C;) of the
region C; is higher than the one of C'y which enables to select the final correct
region.

As explained in section 3.1, each candidate (except those from the initial
partition) comes from a merging sequence of some preceding candidates. Owing
to the construction of C, when Cj is tested as a moving region, it implies that
all the grouping candidates constituting this sequence are already processed and
their scores are known. In the following, we will refer to this set of candidates as
the set of Ancestors of C;. To avoid situations such as depicted in figure 2, we
propose to add the following condition to the detection: If C; exhibits a score
superior to Tpercent, Cs is said to be detected if and only if, its score is higher
than any score of its ancestor. This can be expressed by adding the following
condition:

mS(Cl) - CkeAnrg}e%iirs(Ci)(mS(Ck)) (3)
This is a sufficient way to discard many false detections. However, when can-
didate regions correspond to higher levels of the hierarchy, their frontiers are
longer. Thus, a significant score is more difficult to obtain (a larger portion of
the contour may be missing). In that case, the score can not be constrained
to be strictly higher than the previous ones. Consequently, we propose to test

whether the new matching score is higher than the previous ones multiplied by
a weighting coefficient «, taken in the interval [0,1].

4 Experimental Results

In this section, we present some results on video sequences corresponding to real
situations of video-surveillance.

In the presented results, we use the regularized Deriche gradient [9] to obtain
the moving edges measurement (see section 2). The regularization parameter o
should be chosen greater than 2.0 in order to preserve poorly contrasted or
narrowed structures.
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Fig. 2. (a) the (mscm) set (b) a first candidate matching the contours (c) a later
candidate matching the contours

Fig. 3. (a) original image, (b) set of moving contours initially detected (c) contours of
detected regions after parsing the hierarchy

The threshold parameter T}, used to obtain the mscm mainly depends on
the level of noise in the mem image. Nevertheless the experiments show that it is
stable over time for a given scene and a fixed video camera. In all the presented
experiments this parameters is set T,em = 2.0. The result of msem detection is
presented in figure 3(b).

As it was presented in the section 3, we use the watershed transform to obtain
the initial segmentation. In order to reduce (once again) the computational cost
of the algorithm we propose to use a reduced set of markers. It is obtained
by the h-minima operator with h = 3 [15]. During the detection process, we use
Thercent t0 express the ratio of the target boundary length, which can be missing
without altering the detection of the corresponding region. This parameter was
set to 0.65, which enables to detect the regions from an incomplete set of moving
contours, without generating false detections. The experimentally verified best
values range of parameter « is [0.65,0.85]. The alpha paramater’s influence can
be reduced by taking into account the size ratio of the currently treated region
and its detected ancestors in the algorithm of section 3.3.

The initial set of moving edges is presented in the figure 3(b). The contours
of all the regions detected during the matching process are shown in figure 3(c).
Once the detection is achieved, isolated components with area under 50 pixels
are removed and the remaining regions are merged according to the dissimilarity
criterion. The results of this post-processing step are shown in figures 4(a) and
4(b).
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Fig. 4. From top-left to bottom-right (for each data set): first image of the sequence
and moving regions detected in some subsequent frames

5 Conclusions

This paper focuses on the extraction of moving objects in the video-surveillance
context. The goal is to detect all potential zones of interest and create their
representation suitable for tracking and scene interpretation.

First, we introduce a new method to perform the detection of moving objects
boundaries. The moving edges are extracted with an operator based on the
double differences of three successive gradient images. The defined operator is
robust to random noise and the results are not affected by the displacement speed
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of objects. Then we show how to use the hierarchical segmentation in order to
pass efficiently from the incomplete detected contours to the entire regions in
motion. To obtain the accurate set of moving regions, we propose to combine two
criteria during the detection process: i) the contrast criterion ii) the matching
score criterion. The hierarchical approach also reduces the computation time
that is the limiting factor in the video-surveillance applications.

Another advantage of the method is that the extraction of the moving objects
requires neither motion calculation nor prior knowledge of the scene.

In addition, the moving targets are extracted as an assembly of multiple
homogeneous parts of different size and contrast. Due to the underlying hierar-
chical segmentation structure, their adjacency and inclusion relations are known.
These considerations are very useful to construct a model for the detected tar-
gets. This model can be then used in several ulterior steps such as tracking,
occlusions analysis or pattern recognition.

Consequently, the next stage of our work will concentrate on the study of
the hierarchical graph-based object description for the scene interpretation and
the object tracking in the security domain.
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Abstract. In this paper we present efficient and fast algorithms for the
reconstruction of scenes or objects using range image data. Assuming
that a good segmentation is available, we concentrate on the polygoni-
sation, triangulation and optimisation, i.e. both triangle reduction and
adaptive edge filtering to improve edge linearity. In the processing, spe-
cial attention is given to complex edge junctions. In a last step, vertex
neighbourhoods are analysed in order to robustly attribute depth to the
triangle list from the noisy range data.

1 Introduction

Range images obtained by laser cameras or other devices allow to construct a
3D model of an object or a scene. Normally, the processing required consists of
(a) range data segmentation and (b) the modelling (triangulation) of the seg-
mented data and the attribution of depth to the vertices of the triangle list.
A lot of effort has been devoted to segmentation, see e.g. [1, 2] for a quantita-
tive comparison of existing solutions. Recently, we extended our single-feature
segmentation algorithm in a quadtree to multi-feature, i.e. instead of using only
one component of normal vectors, computed by considering three adjacent pixels
that form a triangle, we use the three components [3]. Here we will focus on the
3D reconstruction and not on the segmentation.

This paper concentrates on the second processing step, i.e. the modelling
and the attribution of depth, using methods that are extremely simple and fast.
Processing speed becomes important when many views of a rotated object need
to be integrated for constructing a consistent and complete 3D model. Another,
complexer and slower modelling approach is the one of Khalifa [1], who uses
bilinear Bézier patches for planar regions and NURBS patches for spherical re-
gions to construct surface CAD models. Figure 1 shows the main steps in our
processing pipeline, which will be explained in subsequent sections.

2 Filtering and Edge Detection

In a first pass, a range image is filtered in order to correct isolated pixels with
values that differ completely from their neighbouring pixels. This filtering is
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Fig. 1. Processing steps excluding surface shading and texture mapping.

important because it highly improves the depth extraction (Section 5). Using a
neighbourhood size of 3 x 3, the centre pixel is compared with its 8 neighbours.
When the difference does not exceed a threshold, the value of which may depend
on the noise of the data, the neighbour is counted as being similar. If the total
count is below 2, the centre pixel is assumed to be an outlier. Its value is replaced
by the average of the biggest group of pixels with similar values, after analysing
all combinations of the 9 pixels in the neighbourhood. We note that this filter
gives much better results than a simple median filter, because it corrects small
regions with different values that are often found at long edges of range images.
The same type of filtering is applied to the segmented range image, but serves
to correct single-pixel regions. In this case, an isolated pixel is substituted by
the value of the majority of its neighbours.

In the second step, edges are detected in the segmented range image. Here,
edges (or transitions) are considered as geometric primitives on the discrete
lattice that encode all available shape information at the pixel level. The result is
another image, initialised with zero, that contains ones in the form of continuous
and closed contours.This discrete representation can be obtained by applying
a very simple operator: if the values of the 4 bottom-right pixels in a 3 x 3
neighbourhood are not equal, the centre pixel is marked as an edge. Below, we
use “edge” to refer to edge contours and “edge pixel” when addressing single
edge points.

3 Polygonisation

The edges detected in the segmented range image can now be used to create
discrete polygouns of all segmented regions (detected planar object faces). This is
done by tracking the edge of each region, as shown in Fig. 2. At each position,
the direction of the next pixel is determined from the 3 x 3 neighbourhood, as
shown in Figure 3. The first 2 cases to the left are tested first, and these depend
on the previous path. The other 4 cases are only tested if the first 2 don’t match.
We note that, if the segmentation contains a chessboard pattern consisting of
single-pixel fields as shown in Fig. 2 (right), only the outline of the pattern will
be tracked. However, such a pattern is impossible because of the filtering referred
to above.

4 Mesh Optimisation

Up to this point we have discrete polygons that consist of many edge pixels.
These edge pixels are vertices, but only in extremely simple cases, for example
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Fig. 2. Examples of edge tracking in different regions.
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Fig. 3. Edge-tracking rules: the position of the next pixel is determined from the 3x3
neighbourhood. Black pixels belong to the region, white ones don’t. Grey pixels are
don’t cares.

a straight horizontal or vertical edge, vertices can be eliminated. Optimisation
aims at reducing the number of vertices of the discrete polygons, while preserving
the geometry, and consists of the following steps: (a) iterative vertex filtering,
(b) path extrapolation at bifurcating vertices, (¢) vertex reduction, and (d) tri-
angulation.

Iterative filtering must be applied to all distinct parts that make up the poly-
gons, processing only once the parts that are shared between two neighbouring
polygons. The shared parts are often isolated by special vertices with more com-
plex junctions, like Y, T and K junctions. Such vertices we simply call “forks”
because of the bifurcations, and the edge between two forks is called “path.”
Every path starts and ends at a fork.

Iterative Filtering: This adaptive filtering is done in floating point, but we
keep working with the discrete vertex lists of all paths between forks. The filtering
is done by taking into account 5 successive vertices, moving only the position of
the centre vertex. The positions of the first two vertices are averaged, as are those
of the last two vertices. The straight line between the averaged two positions is
used to move the centre vertex: it is moved perpendicularly towards the line
such that its projected distance is halved, see Fig. 4. This is done iteratively
for all vertices of a path. The absolute values of all movements are added, and
the filtering of a path stops when the sum of a new iteration is below a certain
threshold value. This filtering is more robust to noise than applying a mean or
median filter.

Path Extrapolation at Forks: Iterative filtering will remove most noise from
the paths. However, since the first 2 and the last 2 vertices of each path are
not filtered, and because the fork vertices themselves are also affected by noise,
special processing of forks and their neighbouring vertices is required.

The first step is to estimate the most probable position of a fork vertex,
taking into account all paths that converge at the fork. For this, we assume that
each path is approximately linear near the fork, and use vertices 4 and 5 from the
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Fig. 4. Adaptive filtering of edges by considering two pairs of vertices, moving the
centre vertex in the direction of the connecting line.
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Fig. 5. Vertex correction by path extrapolation (left), intersection averaging (middle)
and repositioning (right).

path to define such a line (the first 3 vertices are ignored because vertices 1 and
2 are not filtered and vertex 3 still may have a considerable error). An example
of this is shown in Fig. 5 (left). The new coordinates of a fork will be the average
of all intersections of the extrapolated lines (filtered paths), as shown in Fig. 5
(middle). However, if two lines are almost parallel, their intersection will not be
used because of the possibly large error. If there are no useful intersections, the
position of a fork will not be changed. Finally, given the new fork coordinates,
the first 3 vertices of each path are interpolated between vertex number 4 and
the new fork, see Fig. 5 (right).

Vertex Reduction: In order to reduce the number of vertices, we consider
groups of 3 neighbouring vertices along each path, excluding fork vertices, and
compute the angle between the first and second pair. The centre vertex is elim-
inated from the vertex list if the angle is close to 180 degrees, using a threshold
value. After eliminating a vertex, we skip one vertex in order to avoid eliminating
successive vertices in the same iteration, preserving the shape of a path. This
process stops when zero vertices have been eliminated after an iteration.

Triangulation: The triangulation algorithm implemented is a very simple and
straightforward one, see Chapter 1 in [5]. This method has a complexity of
O (n3), with n being the number of vertices. For a better performance, faster but
also more complex methods can be implemented, e.g. the Chazelle triangulation
of O (n). However, the main drawback of these algorithms is that they apply to
simple polygons, and not to polygons with holes.
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Fig. 6. Direct triangulation of part of a noisy range image.

5 Depth Extraction

After having obtained the reduced 2D triangle and vertex lists, depth can be
attributed to the vertices by using the range data. This is not trivial because
(a) the depth may show abrupt changes at discontinuous (jump) edges, (b) the
vertex connectivity must be assured at fold edges, and (c) the range data may
be very noisy. See Fig. 6 for a standard direct triangulation of a range image,
obtained by displaying two triangles at every 2x2 pixel block: clearly the data
are very noisy.

In a first step, we group the vertices having the same coordinates, which
belong to different but neighbouring polygons. Although all polygons have been
triangulated, we keep working with polygons because the detection of depth
discontinuities is much easier and faster. For each vertex of a group we determine
the interior of the polygon it belongs to, and a “search axis” into the polygon
by dividing the inner angle by 2 (see Fig.7 (left)).

Then, for each group, depth discontinuities are detected along all search axes
of the group, using a moving window of size 2-.5; S = 4 implies a search window
of size 8, on which the pixel positions are numbered -4, -3, -2, -1, 0 (the “centre”
pixel), 1, 2 and 3, see Fig. 7 (right). On both parts of the search window, the
depth information is approximated by linear regression, i.e. on [—4,—1] and on
[0,3]. The two depths computed at position —0.5 are compared and ordered,
giving Dy and Dy, as are the actual depth values at positions -1 and 0, D_4
and Dy. The depth values at positions -1 and 0 are considered to represent a
depth discontinuity if all four of the following conditions hold:

|D0 —D_1| >T R Dmax _Dmin >T R |D0 _Dmin| > T and |D_1 _Dmaxl >T s

in which T is a threshold value. If more than one depth discontinuity is found
for a group, only the one closest to the vertex position will be used.
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Fig. 8. Segmented regions after polygonisation, vertex optimisation, path extrapolation
at forks and triangulation.

If a depth discontinuity has been found: (a) the depth of each vertex of
the group is determined in the direction of its own search axis, but starting at
the position of the discontinuity; (b) a search window of 8 pixels is used; (c¢) the
depth along the window is approximated by linear regression; (d) if the difference
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Fig. 9. Different views of a scene with Gouraud shading and texture mapping.
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between the linear regression and the actual depth value at each window position
is not greater than a threshold, the actual depth values are considered to be valid;
(e) the depth of the vertex is calculated by extrapolating the linear regression of
the first window position with valid depth values; and (f) after determining the
depth of each vertex of the group, vertex connectivity is ensured by comparing
depth values (all differences) against a threshold, and by replacing similar values
with their corresponding average.

If no depth discontinuity has been found: (a) the depth will be the same for
all vertices of the group, since they are considered to be connected; (b) the depth
value is obtained directly at the vertex position of the range image; and (c) if, at
this position, the depth is not available, we use the average of the first available
values along all search axes.

6 Results and Discussion

We applied the developed algorithms to the ABW range data set [0]. Average
scene CPU times on a 900MHZ iBook with 640MB RAM were 2 to 3s. Triangu-
lation with our algorithms yields up to 1,000 triangles per scene (direct triangu-
lation yields triangle counts up to 2x511x511=522,242). Thus, our algorithms
clearly enable interactive object visualisation with shading and texture mapping.
Figure 8 shows processing results of the polygonisation, vertex filtering, fork es-
timation and triangulation for one scene. Note the improved positions of the
complex vertex junctions after the fork processing. Figure 9 shows screenshots
from our interactive scene visualiser, obtained from two different viewpoints.
Note the discontinuity at jump edges and the connectivity at fold edges. The
texture mapping (centre and bottom) provides in a more realistic rendering of
the scene.

In this paper we presented very efficient, fast and low-level algorithms for
the reconstruction of objects in 3D scenes. Further optimisation, currently being
explored, concerns the detection of complex vertices (forks) by directly analysing
the range data. This is important because, in the case of objects with planar
faces, a good a priori localisation of forks can save most of the adaptive edge
filtering.
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Abstract. The present paper proposes a system that detects a stereo
disparity map from random-dot stereograms with the grouping process.
A simple operation for random-dot stereograms converts the stereo cor-
respondence problem to the segmentation one. For solving the segmen-
tation problem derived from random-dot stereograms, the stereo vision
system proposed here utilizes the grouping process of our previously
proposed model. The model for the grouping process consists of multi-
ple reaction-diffusion models, each of which governs segments having a
disparity in the stereo vision system. A self-inhibition mechanism due to
strong inhibitory diffusion within a particular reaction-diffusion model
and a mutual-inhibition mechanism among the models are built in the
proposed system. Experimental results for artificially generated random-
dot stereograms show the validity of the proposed system.

1 Introduction

In detecting disparity from stereo images, there are two major problems caus-
ing disparity error. These are the miss-match problem and the occlusion (un-
matched) problem. Most of ordinary methods detect disparity from stereo im-
ages by the pattern matching procedure. When a stereo camera system captures
a 3-dimensional scene having similar objects or not having texture of bright-
ness patterns, we can not distinguish correspondences of patterns between the
stereo images. Similar patterns in the stereo images cause the miss-match prob-
lem. When there are two objects located at different distances of depth in 3-
dimensional space, one of the objects occludes the other one in the stereo images.
The pattern matching procedure can not find the exact correspondence of the
occluded object between the stereo images. This is the occlusion problem.
Ordinary methods detect disparity at a particular pixel site by taking account
of disparities detected at neighbouring pixel sites. For example, some of the
methods propagate disparity over a local neighbouring region with a diffusion
process. Since the diffusion process [1] averages the disparity distribution, it also
averages abnormal disparities caused by the miss-match problem. The diffusion
process also fills in un-matched or un-detected regions by diffusing disparities
obtained within the well detected regions. However, since the diffusion process
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Fig.1. Geometry of a stereo vision system. A point P in 3-dimensional space is
projected onto the position p; on the left image plane I;(x,y) and the position p, on
the right image plane I-(z,y). Optical axes of the two image planes are parallel and
horizontal axes of the planes share a common horizontal line.

also propagates the disparities across object boundaries and around corners of
patterns, it simultaneously causes the over-smoothed problem.

Our previous paper presented a model for the grouping process, which groups
the pixel sites having similar features [2]. The model consists of multiple reaction-
diffusion models, each of which consists of reaction terms and diffusion ones. The
model can suppress the over-smoothed problem, which is often caused by the
simple diffusion model, by the self-inhibition mechanism. A special condition on
the diffusion coefficients and the non-linear reaction terms of the model prevent
the over-smoothed problem. Our another paper also showed that the problem of
finding correspondence relation between stereo images becomes the segmentation
problem with a simple logic operation [3]. Thus, we are expecting that the model
of the grouping process proposed previously solves the segmentation problem
derived from the stereo images without the over-smoothed problem.

The present paper proposes the stereo vision system detecting a disparity
map with the grouping process. The proposed system does not solve explicitly
the stereo correspondence problem, but solves the segmentation problem with the
grouping process. The main goal of the present study is to avoid the miss-match
problem and the occlusion one with the grouping process. The experimental
results for artificially generated random-dot stereograms show the performance
of the proposed system.

2 Stereo Vision System and Random-Dot Stereograms

A stereo vision system captures a 3-dimensional scene through the two cameras
located at two different positions (Fig. 1). The system projects a point P in
3-dimensional space onto the position p; of the left image plane I;(z,y) and
the position p, of the right image plane I,.(x,y). The stereo disparity refers
to difference between the two positions p; and p, on the horizontal axis. Since
the stereo disparity corresponds to the depth one-to-one, it provides the depth
of the point P. For the detection of the disparity, it is necessary to find the
correspondence relation between p; and p, on the stereo images. Most of the
previous studies find the correspondence relation by searching similar brightness
patterns between the stereo images. They often utilize the pattern matching
procedure to obtain the similarity between brightness patterns.
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Fig. 2. Example of random-dot stereograms. (a) The left image I;(z,y) and (b) the
right image I-(x,y) of the stereo images. The black-dot density of the stereo images
is 50(%). (¢) The true disparity map, which has three different disparities d = 0,1, 2
(pixel). The size of the images is 250 x 250 (pixel?).

Fig. 3. Outputs of the XNOR logic operation applied to the random-dot stereograms
(Fig. 2). In the stereograms, a white dot refers to the logical value “true” and a black
dot does to “false”. Overlapping the stereo images [Figs. 2(a) and 2(b)] located at a
difference d = 0, 1,2 (pixel) and computing the XNOR logic operation for the stereo
images at a particular pixel site provided the three outputs L(z,y;d) [see Eq.(1)].
(a) L(z,y;d =0), (b) L(z,y;d = 1) and (c) L(z,y;d = 2).

The random-dot stereograms show that the human visual system can per-
ceive the depth from only the disparity information (Fig. 2) [1]. The random-dot
stereograms have only dot patterns; corresponding dots are located at slightly
different positions in the stereo images. The difference of the corresponding po-
sitions of a dot in the stereo images is the disparity. Finding the correspondence
of the dot between the stereo images provides the disparity, which provides the
depth.

When we focus on the random-dot stereograms, the problem of finding the
correspondence relation between the stereo images becomes the segmentation
problem [3]. Let us suppose that one of the stereo images overlaps the other one,
where the centre of the former image plane differs from that of the other image
plane. The distance between the two centre positions is d (pixel) on the horizontal
axis. We suppose that a black-or-white value at a pixel site in a random-dot
image refers to a logical value of “false” or “true”. The output L(x,y;d) of the
XNOR logic operation,
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Fig.4. Phase plot for ordinary differential equations du/dt = f(u,v)/e and dv/dt =
g(u,v) with the FitzHugh-Nagumo type reaction terms of Eq.(3). The parameter a is
(a) a = 0.25, (b) a = 0.45 and (¢) a = 0.05; the parameter b is fixed as b = 10. The
points A, C and C’ are stable steady states; the points B and B’ are unstable ones.
The systems (a) and (c) having two stable steady states is called the bi-stable system;
the system (b) having one stable steady state is called the mono-stable system.

L(xvy;d):Il(xay)@lr(x_"dvy)a (1)

applied to two dots on the overlapped stereo images I;(z,y) and I,.(x,y) extracts
the region having the disparity d (pixel) as the flat white pattern having the true
value. The random-dot pattern remains in other regions not having the disparity
d. Thus, the segmentation of the white flat region from the random-dot pattern
region for L(z,y;d) extracts the region having the disparity d (Fig. 3).

3 Proposed Stereo Vision System

3.1 FitzHugh-Nagumo Type Reaction-Diffusion Model

A general reaction-diffusion model with two variables u and v consists of two
partial differential equations describing the temporal developments of the two
variables. The equations have diffusion terms of V?u and V2v and reaction ones

flu,v) and g(u,v),
ou
ot

ov

_ 2
o = D, Vv + g(u,v), (2)

1
D, V?u + Ef(um) + ps,
where D, and D, are diffusion coefficients, s(x,y) is a source term and its
coefficient 1 is a small constant (0 < p < 1). The FitzHugh-Nagumo type
reaction terms [5, (] refer to the next functions,

flu,v) =u(l —uw)(u—a)—v, g(u,v)=u—bv, (3)

where a and b are constants.

Figure 4 shows the trajectory of the solution (u,v) under the non-diffusive
system (D, = D, = 0) and without the source term (s = 0). When the model
is the bi-stable system, a solution converges either of two stable steady states;
when the model is the mono-stable system, a solution converges a stable steady
state. The system becomes either of the mono-stable system or the bi-stable
one, according to the parameter values of a and b. In addition, the parameter a
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works as a kind of a threshold value for an initial solution of (v = ug,v = 0).
When up < a, the solution directly converges to the stable steady state A at
the origin (v = 0,v = 0). When ug > a, the solution first moves toward the
point (u = 1,v = 0) along the horizontal coordinate. After that, if the system is
bi-stable, the solution finally converges to the stable steady state C or C’ along
the function du/dt = 0; if the system is mono-stable, the solution does to the
stable steady state A along the trajectory indicated by the arrows in Fig. 4.

3.2 Multiple Reaction-Diffusion Models and Grouping Process

The next set of equations having two variables (uq4,vq) describes the modified
version of the FitzHugh-Nagumo type reaction-diffusion model,

ou 1
d_ D, Vuy + gf(ud’ Vdy Um,) + 14Sd,

ov
at = D,V + glug,va),  (4)

ot

where the output L(z,y;d) of the XNOR logic operation for the disparity d is
provided to the source term sq(x,y). The set of equations Eq.(4) governs the
groups having the disparity d. The disparity is in the range of d =0,1,2,---, D.
Thus, multiple models, the number of which is D + 1, are necessary to govern
the multiple disparity values. The parameter u,, refers to the maximum value
of ug, namely, u,;, = maxq(ugq).

We introduce the mutual-inhibition mechanism among the multiple reaction-
diffusion models, each of which governs the groups of the disparity d. We call the
sate having the high value of ug >~ 1 “excited”. Let us consider that the pixel site
being the excited state has the disparity d. When a model becomes the excited
state, since a particular pixel site has only one disparity value, the other models
must not become the excited state. The original FitzHugh-Nagumo model has
the parameter a, which works as a threshold value. In order to exclusively detect
a disparity value at a pixel site, we introduce the switching function into the
parameter a. Our previous paper [2] proposed the next modified version of the
reaction terms,

flug,va, um) = ug(1 — ug)(ug — alum)) —va,  g(ug, va) = ug — bug, (5)

and the next function a(uy,),
1
alum) = 4{tanh(um +ag) + 1}, (6)

where ag is a constant. When another model becomes the excited state (um,
becomes large), the threshold value a(u,,) also becomes large. Therefore, the
large threshold value inhibits the model governing the disparity d from becoming
the excited state. This is the mutual-inhibition mechanism built in the modified
reaction-diffusion models.

A special condition for the ratio between the diffusion coefficients D,, and D,
causes the self-inhibition mechanism in the reaction-diffusion model. In the con-
dition of D, /D, < 1, spatial distributions of ug4 and vy change as time proceeds.
Edges of spatial patterns in their distributions propagate; their global structures
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dynamically change. In the condition of D, /D, > 1, the strong diffusion of vg,
compared to that of ug, inhibits the edges from propagating (the self-inhibition
mechanism). Our model utilizes the condition for the self-inhibition mechanism
to sustain static patterns expressing the groups of the disparity d.

3.3 Building a Disparity Map
The final stage to build a disparity map is the integration of the outputs ug
of the multiple reaction-diffusion models. When a model with w4 is the excited
state at a pixel site, we can understand that the pixel site has the disparity
d. Thus, we detect a disparity value at a pixel site by searching the maximum
value for all of the outputs uy. The proposed system builds the disparity map
M (z,y,t) by,

Uy = Inélx(ud) = M(z,y,t) =m. (7)

4 Experimental Results

We realized the proposed stereo vision system by numerical methods. The finite
difference method discretized the partial differential equations of the proposed
multiple reaction-diffusion models of Eq. (4). The Crank-Nicolson method with 5
spatial neighbouring points approximates the Laplacian operator V2. The Gauss-
Seidel method solves the set of linear equations obtained by the discretization.
The Neumann boundary condition governs the four sides of the image plane.
Initial conditions of ug and vg are zero over the image plane.

Figure 5 shows the result for the random-dot stereo images of Figs. 2(a) and
2(b). The outputs of Fig. 3 represent the source terms of Eq.(4). Figures 5(a),
5(b) and 5(c) show the distributions of ug4 for d = 0,1, 2, respectively. Equation 7
built the disparity map of Fig. 5(d) from the distributions of ug. By compar-
ing the result of the disparity map Fig. 5(d) with the true one of Fig. 2(c),
we successfully detected the disparity map. For confirming the validity of the
obtained map more quantitatively, we showed the 1-dimensional profiles of the
obtained disparity map and the true one in Fig. 5(e). We can confirm that these
disparity profiles are almost the same except for those around x = 50. Figure
5(f) shows the 1-dimensional profiles of u4. We can confirm that the variables ugy
are almost exclusively distributing in the 1-dimensional space. However, around
x = 50, both the variables u; and us become excited. This caused the disparity
error around z = 50.

An additional experiment shows the performance of the proposed method for
random-dot stereograms having low dot density. Figure 6 shows the result for the
stereo images having the black-dot density of 10(%) [the true disparity map is
the same as Fig. 2(c)]. In the outputs of the XNOR logic operation applied to the
low density stereo images [Figs. 6(c)~6(e)], there exists many pixel sites having
the logical true values (white pixel), compared to those of Fig. 3. Therefore, the
problem of finding the flat true regions becomes more difficult. Figure 6(f) shows
the disparity map obtained by the proposed system. The shapes included in the
obtained disparity map incompletely illustrate the original ones. However, the
global structure of the map is very similar to the true one.
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Fig.5. Experimental result for the random-dot stereograms of Fig. 2. The group-
ing process of the proposed system analysed the outputs of the XNOR logic opera-
tion (Fig. 3) and provided the distribution maps of uq for (a) d = 0, (b) d = 1 and
(¢) d = 2 at t = 50. The parameter values utilized in the present experiments were
D, =1,D, = 4,e = 1/100,a0 = 0.25,b = 10, x = 0.005; the finite differences were
dx = dy = 1/10, 6t = 1/1000. (d) The disparity map M (z,y,t) obtained from the dis-
tributions of uq4. (€) The 1-dimensional profiles of the obtained disparity map compared
with its true map. (f) The 1-dimensional profiles of ug4 for d =0, 1, 2.

5 Conclusions

The present paper proposed the stereo vision system detecting a disparity map
from random-dot stereograms. The problem of detecting stereo disparity be-
comes the segmentation problem by a simple logic operation for the stereo im-
ages. In solving the segmentation problem, the proposed system utilizes the
grouping process realized with the multiple reaction-diffusion models having the
mutual-inhibition mechanism and the self-inhibition one. The integration of the
outputs of the multiple models provides a disparity map. Through the analysis
of random-dot stereograms, the validity of the proposed system was confirmed.
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[1d=0 Mld=1 Md=2 (pixel)

Fig. 6. Experimental results for the random-dot stereograms having low dot density.
The black-dot density of the images is 10(%). (a) Left image and (b) right image. The
size of the stereo images is 250 x 250 (pixelQ). The XNOR logic operation applied to
the stereo images provided the outputs for (c) d =0, (d) d =1 and (e) d = 2 (pixel).
(f) The disparity map M(x,y,t) obtained at ¢ = 50. The parameter values utilized
here were the same as those of Fig. 5 except for p = 0.003.
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Abstract. The acquisition of three-dimensional models of a given surface is a
very interesting subject in computer vision. Most of techniques are based on the
use of laser range finders coupled to a mechanical system that scans the surface.
These techniques lacks of accuracy in the presence of vibrations or non-controlled
surface motion because of the misalignments between the acquired images. In this
paper, we propose a new one-shot pattern which benefits from the use of regis-
tration techniques to recover a whole surface in the presence of non-controlled
motion.

1 Introduction

Three-dimensional reconstruction of real objects is a promising subject with many ap-
plications, such as reverse engineering, robot navigation, mould fabrication and vi-
sual inspection among others. Most range finders are based on the projection of laser
beams because of its robustness against ambient light, easy image processing algorithms
and high given accuracy including optical segmentation and subpixel accuracy. Please,
check a quite recent survey related to laser projection [3] and other reconstruction tech-
niques such as coded structured light [9]. In general, laser projection techniques are
based on the use of a laser emitter coupled to a cylindrical lens that spread the light
forming a plane that is projected to the measured surface. The projection of a laser
plane only lets us to reconstruct a profile of the measuring surface. So, in most cases a
mechanical system is added that permits a scanning. In some applications: a) the laser
plane is projected onto a rotating mirror and reflected towards the surface; b) the laser
beam is attached to a moving worm gear; c) the laser beam keeps motionless while is the
object which is placed on a rotating table. All these techniques permit the reconstruction
of a whole surface with high resolution. However, the accuracy strongly depends on the
mechanical system used so that potential vibrations given by the environment produces
misalignments and consequently the accuracy is considerably influenced. Furthermore,
the sequence of images that are captured in the scanning process forces the object to be
motion controlled reducing the number of applications, i.e. industrial conveyors can not
be considered.

In this paper, a new one-shot 3D sensor is proposed, which is based on registering
a set of 3D images from a non-controlled moving surface. Furthermore, dense cloud of

* This work is partially supported by the Spanish Project TIC2003-08106-C02-02.
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3D points are acquired without using any mechanical system to scan the object so that
misalignments in the reconstruction are neglected. Although one-shot 3D sensors have
been previously used, usually a manual or mechanical process is required to align the
scanned surfaces [7]. In this paper, a pair-wise-based registration method is proposed to
align the cloud of 3D points with the aim of obtaining a complete surface of the scanned
object.

2  One-Shot 3D Sensor

Nowadays, there are a considerably amount of lenses which can be coupled to a laser
emitter which spreads the light forming a given pattern: planes, circles, dots and stripes.
However, it has been demonstrated that stripe patterns are the most suitable in measur-
ing processes because of the easy segmentation and the use of subpixel techniques in
the detection of the stripe peaks. Stripe patterns also ease the search of correspondences
among the slits projected and the ones acquired by the camera. The number of stripes
projected is directly related to the surface resolution and to the image processing com-
plexity. A compromising stripe pattern forming 19 slits has been chosen and the images
are acquired by a on-the-shelf camera coupled with a 635 nm optical filter.

3 Calibration

Calibration is an offline process which aim is the computing of the geometry that re-
lates the 3D points on the measuring surfaces with the projection of these points in the
acquired image. This relation can be linearly approximated to the following equation:

Py =""Ty - p; ey

Once "'T7, is known, 2D points in the image frame can be directly transformed to
3D points in the world reference frame. This matrix is computed by orthogonal least
squares from a set of correspondences, also known as calibrating points. In order to
search for correspondences, the complete quadrangle is used [2]. The original method
has been adapted to calibrate the set of 19 planes obtaining the 19 transformation ma-
trices which describes the geometry of the sensor. For every plane calibration the fol-
lowing steps are processed:

— Detection of the points of the laser profile in the image plane,

— Find the correspondences between points in the image plane and 3D points in the
calibrating plane,

— and Compute the T matrix using the correspondences given by the previous step.

In the following sections, the three steps are described.

3.1 Points in the Laser Profile

When a unique plane is projected to the scene, the peak detection with subpixel accu-
racy can be determined with high accuracy using a FIR filter approach [4]. However,
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when more planes are projected, the derived curve of the profile (shown in fig.1b) is
high influenced by the neighborhood. In some situations, the derived curve does not
cross to zero at the maximum value of the intensity profile. To solve this problem, an
adapted methodology that is based on a previous work related to coded structured light
is used [&]. First of all, the first derivative is computed using the convolution of each
row with the vector [-1 -1 -1 01 1 1]. Then, the second derivative is computed obtaining
the enhancement of the peaks compared to the intensity image. A threshold is finally
used to segment the stripes as follows:

{0 if i < mean(f) +var(f) 2)
255 otherwise
fr=conv([l =1 =101 11],[f(pi —3): f(pi +3)]) G)

where f is the intensity profile curve and f;” is the second derivative in each pixel of the
row. As can be seen in the fig. 1c, the interval of each peak can be found easily analyzing
all the pixels in a consecutive order. For each interval, the central value is computed as
an approximation of the position of each maximum. Then, a local derivative is computed
in each estimated peak as follows:

where conv is the convolution, and f(p;) is the value of the intensity profile in the
ith estimated peak. The pass to zero of the f; function give us the sub-pixel position
of the peak of each laser stripe. Furthermore, if the intensity value of this points is less
than a threshold, this peak is not considered.

(a) Image obtained by (b) Intensity profile of a row of (c) Binarized second derivative
a camera with optical the image of on row of the image
filter after peak
detection

Fig. 1. Process of obtaining the laser peaks

3.2 Correspondences Between Points in the Image and 3D Points

The methodology is based on the complete quadrangle [ ]. The principle of this method
is the cross-ratio between the complete quadrangle and the acquired image of this quad-
rangle (see fig. 2).

APy APy

= 4
AG T AG X
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As A,B are known 3D points, and A’, B’ and P, can be found analyzing the acquired
image, P4 can be determined. The same principle is applied with point Pp. If quadran-
gle is moved along the Z-axis, a set of 2D-3D correspondences can be found for each Z
position. Using this set of correspondences, eq. 1 can be solved determining the trans-
formation matrix. In general, only two points are used for every plane position. Note
that calibration accuracy is related directly to the number of correspondences used. In
order to improve the accuracy, a set of points along the laser stripe are selected. More
details are presented in [2].

Fig. 2. Cross-ratio and the complete quadrangle used to determine 2D-3D correspondences

3.3 Compute T Matrix Using Known Correspondences

Now the transformation matrix can be obtained by minimizing eq. 5 which has been
easily obtained arranging eq. 1.

: : : : : t12

Uq vil 0000 OO—’U,Z'~X7; —vi~X7; —Xi t13 0

00 Oui ’Uil 000 —’IMYVZ —Ul"Y; —5/1' t21 = 0 (5)
tas

where t;;’s are the parameters of the W' T}, matrix. The solution is obtained from the
computation of the vector 6 that minimizes equation A-6 = 0. A good estimation using
Orthogonal Least Square technique is computed from the eigenvector corresponding to
the smaller eigenvalue of matrix A” - A.
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4 Reconstruction

Once the system is calibrated and the transformation matrices for every stripe com-
puted, the 3D points can be reconstructed by using their corresponding transformation
matrix. So, next step in reconstruction is stripe segmentation and the correspondence
problem. A robust stripe identification has been implemented which label every stripe
when all them are present for a given image row [3]. This information is used as a seed
to complete the stripe identification by region growing that allows us to identify the
stripes in the presence of occlusions and cuts. Then, once every image pixel is labelled
to the corresponding stripe, the surface reconstruction is accomplished.

A further step deals with the interpolation of the 3D profiles obtained with the aim
of obtaining a continuous surface. The function used to approximate the surface is the
following:

z=ax’ + by’ + cxy+dr+ey+ f (6)

The parameters are obtained by Least Squares as follows:

21

: T1T1 Y1y1 T1y1 w1 21 1
=(H"H)'H" | 2 | where H= S )

TnTn YnYn TnlYn Tn Tp 1

o a0 o

Zn

The results of the reconstruction are shown in fig 3. In spite of only 19 planes are used
to acquire the surface, the resolution of the final reconstruction is enough in free-form
shape objects. Furthermore, details not acquired by the sensor can be obtained in the
registration process, where some partial views are fused.

i,
b
€N
(a) Free form shape (b) Image of the laser stripe (©)
Object projection Reconstructed
surface

Fig. 3. Experimental results with a real object

S Registration

When a set of free views from a given object are already available, registration can be
applied to align all these views among them with respect to a reference system and
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a)Real Object b)Final Registration c)Real Object d)Final Registration

Fig. 4. Final Results

Table 1. Registration results of the frog using real data

Rotation angle error

Pair-wise (ICP) Our proposal
Real angle Computed angle Error Computed angle Error
45° 44.11° 0.89° 44.11° 0.89°
90° 88.41° 1.59° 88.41° 1.59°
135° 132.92° 11.08° 124.20° 10.80°
180° 168.60° 11.40° 183.86° 3.86°
225° 213.00° 12.00° 228.27° 3.27°
270° 256.39° 13.61° 271.67° 1.67°
315° 300.75° 14.25° 316.03° 1.03°

obtain a complete reconstruction of the object. A state-of-art of Registration methods
has been recently published [6]. The results of this work pointed out that the best tech-
nique to register range images is a robust variant of ICP [|0] which was classified as a
pair-wise registration technique. Once all the images have been registered in pairs using
Zimfer method, a global minimization is applied with the aim of reducing the global
error. A graph of connectivity is constructed analyzing if two views are connected by
a common surface region. The goal is to compute the transformation of each view to
the reference frame throughout the path in the graph with minimal residual error, where
the error is computed as the mean of the distances between point correspondences for
every pair of views [5]. Dijkstra algorithm is applied to determine the optimal path in
graphs to solve this problem, obtaining a reduced graph. At last, the paths with min-
imal error are the ones used to register the set of views and the object reconstruction
is completed. Figure 4b shows an example of the registration of 8 different views of
an object where the images has been captured by using a Minolta Vivid 700 Scanner
and the object where placed on a non-controlled rotating table. This figure evaluates the
accuracy of the proposing registration method. In table 1, the rotation error obtained
is compared with the results of traditional pair-wise without refinement. Furthermore,
figure 4d shows the results of the registration of ten views captured by the one-shot
scanner proposed. Obviously, reconstructions are not as accurate as the Minolta equip-
ment, but note that the proposed scanner captures 3D information in a single image and
moreover the registration can be refined by the capturing of more and more views of
the same object.
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Fig. 5. The accuracy obtained related to depth, i.e. the Z-axis

6 Experimental Results

A set-up consisting of one on-the-shelf CCD camera, a 635 nm LASIRIS laser emitter
and an optical lens which spreads the laser beam into 19 planes has been arranged con-
forming the imaging system. Both camera and laser are located on a portable platform
where their optical axis form a angle of 60° and the distance between them is approx-
imately 20cm. A calibrating quadrangle has been located at several distances from the
system in increments of 2 mm. The closest plane is located at 20 cm. from the imaging
system. For every quadrangle position, two images are acquired: a) the first is an image
of the quadrangle; b) the second is the projection of the laser on the quadrangle. The
first image is used to determine the parameters of the quadrangle while the second the
geometry of the laser. Then, every laser stripe is determined by a sequence of 16 corre-
spondences which are used to compute the transformation matrix for each stripe. The
accuracy of the system is computed from the discrepancy between the reconstructed
3D points and the 3D points used in the calibration process. The results are shown in
fig. 5. The error is represented with respect to Z-axis which is the axis more sensitive
and directly related to depth. The results gives a good accuracy in a narrow area covered
the center of the calibration area while the accuracy decreases in the vicinity.

7 Conclusions

This paper presents a new one-shot imaging system, which is based on a single on-the-
shelf camera and a stripe laser pattern. The system benefits from one-shot techniques to
recover the 3D shape of surfaces in non-controlled motion environments or even in the
presence of vibrations. Registration is used to align every 3D acquisition with respect to
a world coordinate system obtaining a complete reconstruction of the measuring object.
The calibration benefits from the use of the complete quadrangle and image processing
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from the use of a nice stripe peak detector with subpixel accuracy. Experimental results
show that the accuracy obtained in the reconstruction step is quite acceptable (less than
0.5 mm. in the centered area) and the visual quality of registered surface satisfactory.
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Abstract. A practical way for obtaining depth in computer vision is the use of
structured light systems. For panoramic depth reconstruction several images are
needed which most likely implies the construction of a sensor with mobile el-
ements. Moreover, misalignments can appear for non-static scenes. Omnidirec-
tional cameras offer a much wider field of view than the perspective ones, capture
a panoramic image at every moment and alleviate the problems due to occlusions.
This paper is focused on the idea of combining omnidirectional vision and struc-
tured light with the aim to obtain panoramic depth information. The resulting
sensor is formed by a single catadioptric camera and an omnidirectional light
projector.

1 Introduction

The omnidirectional vision sensors enhance the field of view of traditional cameras
by means of special optics, structures of still or gyratory cameras or combinations of
lenses and mirrors. Yagi [ | 4] surveyed the existing techniques for building cameras with
a wide field of view and Svoboda [ | 3] proposed several classifications of the existing
omnidirectional cameras according to their most important features.

The catadioptric sensors use reflecting surfaces (convex or planar mirrors) coupled
to a conventional camera and are usually classified depending on the way they gather
the light rays. When all the observed light rays converge into a point, called focus, the
sensors are known as Single View Point (SVP) [1]. The SVP enables distortion-free
reconstruction of panoramic images in a familiar form for the human users.

Stereo catadioptric sensors are special structures of mirrors and lenses designed
for obtaining depth from images with a wide field of view. In order to obtain distinct
points of view of the scene the camera is pointed towards a structure of convex [3] or
planar [5] mirrors. The results obtained by stereoscopic vision depend on the accuracy
of matching the points between the observed images. Structured light based techniques

* This work is partially supported by the Spanish project CICYT TIC 2003-08106-C02-02 and
by the AIRE mobility grant provided by the Generalitat of Catalunya that allowed a four month
stay in the CREA lab from Amiens, France.
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are a particular case of stereo vision where one of the cameras is replaced by a pattern
projector [ 12]. Using this technique is similar to placing visible landmarks in the scene
so that image points can be identified and matched faster.

This paper presents an omnidirectional sensor that provides 3D information using
structured light. The sensor is formed by a single-camera catadioptric configuration
with an embedded omnidirectional structured light projector. By mounting the om-
nidirectional sensor on a mobile robot applications such as 3D map building, robot
navigation and localization, active surveillance with real-time object detection or 3D
reconstruction can be performed within a horizontal field of view of 360 degrees. The
sensor design and the calibration of the whole system is detailed in section 2. The ex-
perimental results are shown in section 3. The article ends with conclusions, presented
in section 4.

2 Sensor Geometry

In the proposed solution, see Figure 1, the omnidirectional camera is coupled with a
structured light projector that has a field of view of 360 degrees. A more compact sensor
can be build by placing the light projector within the blind zone of the omnidirectional
camera as shown in [8] where a similar sensor was described and analyzed by simu-
lation. However, for the realization of the first prototype of the physical sensor the two
parts have been separated for more maneuverability.

I 'Bl‘a:lDlI:ll'”ll'lD' T
\ } /!
|

|
.
) S

s

L ;—:':—:,
il ~. 3 Basitimimne o
jec Ny

Fig. 1. a. Catadioptric omnidirectional camera with embedded structured light projector. b. Lab-
oratory prototype.

The circular pattern projected by the laser is reflected by the conical mirror and
becomes a light-stripe on the scene. The parabolic mirror reflects the scene into the
camera and the laser-stripe can be immediately identified. With the models for both
components of the sensor a precise triangulation can be carried out.

The traditional approach for calibrating a structured light system takes two steps.
The camera is calibrated at first and the light projector is subsequently calibrated based
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on information provided by the camera. A method based on the cross ratio invariance
under perspective projection providing a direct image to world transformation was pro-
posed by Huynh [6]. Since our intention was to model the light projector and the camera
independently the two steps calibration method was preferred.

2.1 Omnidirectional Camera Model

Assuming that the pair camera-mirror possesses a SVP, the omnidirectional camera can
be modelled as the projection onto the sphere followed by the projection to a plane, as
stated by Geyer and Daniilidis in [2]. Another way of approaching camera calibration is
by considering the mirror surface as a known revolution shape and modelling it explic-
itly, for instance considering that the reflecting surface is a paraboloid and the camera
is orthographic. Both models were tested and the comparative results were reported in
[©]. The omni camera used for this work has a SVP but contains two reflecting surfaces
so the first mentioned method was preferred.

c Pw

== image plane

Fig. 2. Image formation using the projective equivalence of a SVP catadioptric projection with
the projection on the sphere.

The calibration is performed using a set of known 3D points distributed on the four
walls of a cube placed around the sensor. Consider a scene point Py, = [, Y, Zuw)s
and P; = [z, ys, 25| the intersection of the light ray emitted by the point P,, with the
sphere of radius R = 2h (see Figure 2). We can write equation (1) where all points are
represented with respect to the camera coordinate system.

Ts = A Ty
ys:)\'yw (1)
Zs = N\ Zuy

Since the points belong to the sphere: 22 + y? + 22 = R2.
The perspective projection of Py on the image plane from a point C' = [0, £] pro-
duces a point P; = [x, y] as expressed in equation (2)
Ts _ @
—zs +
{ 3 o _ 13 he )
E—2s o
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Adding the intrinsic camera parameters q.,, o, Ug, Vo, the pixel coordinates of the
image points are shown in eq. (3)

_ vy (E+9)Tw
U= U
622 Hy2 22—z + o 3)
- ay (§+¢)Yw + g

€4/22, 492 +22 — 20

The parameters of the model are £, which depends on the eccentricity; ¢ which is
a function of both the eccentricity and the scale; «,,, «,,, ug,vg, the intrinsic camera
parameters; rx (¢), ry (0), . (), and ¢, t,, t., the six extrinsic parameters that model
respectively the orientation and the translation between the world coordinate system
placed in the upper corner of the first calibration plane and the camera coordinate sys-
tem. The orientation vectors are functions of the three angles (¢, 8, ¢) which define the
rotation on each axis and are expressed in radians while the translations are measured
in millimeters, as detailed in [11].

The difference between the positions of the calculated image points and the posi-
tions of the real image points is the calibration error of the model. Minimizing the above
error by means of an iterative algorithm such as Levenberg-Marquardt the model of the
omnidirectional camera is calibrated.

2.2 Omnidirectional Laser Projector Model

The omnidirectional light projector is formed by a laser which emits a circle and is
pointed to a conical mirror so that the projected light covers the entire field of view of
the catadioptric camera. The proposed projector can be seen as a reversed omni-camera
where the light flows in the opposite sense. So, the projector benefits of the attributes
revealed by previous studies of catadioptric cameras based on the conical mirror shape.
Lin and Bajcsy [7] pointed out that the conical mirror can be used for building true SVP
configurations with the advantage that it preserves image points brightness better than
other mirrors since it does not distort the image in longitudinal directions. Yagi [!4]
highlighted the fact that the conical mirror on vertical section behaves like a planar
mirror and consequently provides a much better resolution than any other omni-mirror
shape. Baker and Nayar [ 1] proved that the curved mirrors (such as parabolic, hyper-
bolic, etc.) increase defocus blur because of their bend. Consequently, the cone bears
out to be the ideal shape of mirror to be used for building the structured light projector.

Unlike the camera, the light projector does not provide “image points” therefore no
correspondences can be established. The bright spots on the scene are observed by the
calibrated omnidirectional camera which possesses an unique center of projection. This
property allows calculating the direction of the light source for each image point. Since
the locations of the calibration planes are known, the 3D coordinates of the laser-stripe
lying on those planes can be determined. A set of such points can be used for calibrating
the pair laser-mirror.

Ideally, when the laser is perfectly aligned with the conical mirror, the 3D shape
formed by the reflected laser pattern can be imagined as a circular cone, called “laser-
cone”. Unfortunately, the precision of obtaining the coordinates of the bright spots is
bounded by the catadioptric camera calibration accuracy and by its resolution. More-
over, a perfect alignment of the laser and the conical mirror is difficult to guarantee so a
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more general shape than the circular cone should be considered. Since the perspective
projection of a circle placed on a plane I/ onto a plane that is not parallel with I7 is
an ellipse it can be deduced that a suitable shape for modelling the laser-cone is a rev-
olution surface whose intersection with the plane perpendicular on the omnidirectional
camera optical axis is and ellipse.This shape, the elliptic cone, was used in [9] and
proves to be more accurate than the circular cone. Still, for a large amount of noise, the
elliptical cone can not be uniquely determined.

Therefore, the general quadratic surface was chosen for modelling the laser projec-
tion. Consider P,,;(x,y, z) the bright spots on the calibration walls with known coor-
dinates. The quadratic surface that passes through all the points is represented in eq. 4.
Let H be the matrix that contains the coordinates of the points, A the matrix of the pa-
rameters and F' the free term matrix. Writing H - A = F', the matrix A can be obtained
by A= (H'-H)~'.H'-F.This is a simple method for calibrating the omni projector.
Since no iterations are needed it is much faster than the iterative minimization methods.
However, its main drawback is that the matrix H can not be controlled and, for noisy
data, it is likely to be singular.

o
[a? y? 21 2z1y1 22121 2y121 270 291 221 ] Zzi [ ]
Do : oo aiz -1
o} yi 2f 2wy 2wizi 2z 2w 25 2% | - |ais | = | -1 )
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| B33 |

Therefore, a more robust method for finding the parameters of the general quadratic
surface must be considered. Lets assume, without loss of generality, that the world ref-
erence system is placed such that the calibration planes are perpendicular on the X and
Y axis. The intersections of the quadratic with the calibration planes are arcs described
by a subinterval of the parameter domain: the arcs contained in the planes perpendic-
ular on the X and Y axis provide information on the parameters of the quadratic with
r = ct and y = ct, respectively. Writing the quadratic as in eq. 5, its intersection
with the planes X and Y are shown in eq. 6 and eq. 7, respectively. The parameters of
the arcs for each plane are obtained by fitting the corresponding points into the subse-
quent equations. Taking into account that the 323 matrix is symmetric, the full set of
parameters of the quadratic surface can be retrieved from equations 6 and 7.
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Fig. 3. a. One of the calibration planes. b. Error for the 285 calibration points, measured in pixels.

Table 1. The calibrated parameters for the omni camera.

€ 2 Qi Qy uo Vo Tz Ty Tz [2% ty t.
1.06 -9.64 -32.53 33.24 429.51 292.72 0.02 0.01 -0.009 -26.45 -0.82 -754.1

Dividing the calibration in two parts the number parameters to be simultaneously
minimized decreases which leads to a robust calibration method.

3 Experimental Results

The system was build using off the shelf components. The optics and the mirror used
for the omnidirectional camera were provided by Remote Reality [!0]. The camera is
a Sony SSC-DC198P with the ccd of 1/3”. The laser and its optics are produced by
Lasiris, the diode power is 3mW and produces red light with a wavelength of 635nm.

The camera calibration is performed using a set of 285 dots distributed on the four
planes placed around the sensor. The distance between the centers of any two adja-
cent dots on the same plane is 6cm and the height of the calibration plane is 80cm.
A semi-automatic point extraction method is performed. For each plane, several dots
are selected by the user and their centers are determined with sub-pixel accuracy. The
centers of the remaining dots are automatically found with the same precision. The cali-
brated parameters of the camera-model are listed in the Table 1. The average calibration
error is u = 2.3px and the sample standard deviation o = 2.542.

The conical mirror used for building the laboratory prototype has a height h =
4.4 cm and the cone aperture angle is § = 52 degrees. The laser projects a circular
cone with a fan angle o = 11.4 degrees. Given that the relation between the two angles
is 8 ~ 0.5(a + 7/2), the laser is reflected along a very flat surface which can be
approximated to a plane: ax + by + cz + d = 0, see Figure 4.b. The center of the laser
stripe is determined with sub-pixel accuracy using the peak detection method described
by Forest [4] and the discrete points are used for calibrating the parameters of the plane:
a=—0.13,b=—0.001,c=1and d = 78.99.
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Fig. 4. a. Projection of the laser pattern. b. Flat surface fitted to a set of discrete points from the
laser stripe. The three dotted rectangles are the points used for calibrating the camera.
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Fig. 5. Omnidirectional 3D profile obtained along the laser stripe. The dots stand for the recon-
structed 3D points. a. Lateral view b. Upper view.

With the sensor surrounded by four planes depth was calculated using a set of dis-
crete points of the laser pattern. For a scene containing two cylinders the result is pre-
sented in Figures 5 with the two cylindrical shapes correctly identified. It is also notice-
able that the points on the walls fall on the corresponding planes. In terms of accuracy,
the radius of the cylinder was measured and has 93cm while the range finder returned a
result of 95cm.

4 Conclusions

It is noticeable that the use of 360 degrees images and of scene-depth information is
ideal for robot navigation tasks. Starting from this observation we combine the advan-
tages of omnidirectional vision and structured light. We presented here the geometry
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and the calibration for a prototype of a panoramic range finder. The two omnidirec-
tional systems that compose the sensor are calibrated and the resulting model is used
for measuring depth in a real scene. The accuracy of the sensor is enhanced by the use
of sub-pixel accuracy techniques at calibration and reconstruction stages. The results
obtained are encouraging and prove that this sensor can be used in real robot navigation
and depth perception applications.
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Abstract. The paper presents a novel particle filtering framework for vi-
sual object tracking. One of the contributions is the development of a like-
lihood function based on one of machine learning algorithm—AdaBoost
algorithm. The likelihood function can capture the structure character-
istics of one class of objects, and is thus robust to clutters and noise
in the complex background. The other contribution is the adoption of
mean shift iteration as a proposal distribution, which can steer discrete
samples towards regions which most likely contain the targets, and is
therefore leading to computational efficiency in the algorithm. The effec-
tiveness of such a framework is demonstrated with a particular class of
objects—human faces.

1 Introduction

Particle filtering is widely investigated in recent years in computer vision, be-
cause of its powerful ability to deal with general non-linear and non-Gaussian
problems. Particularly in visual tracking, measurement model (likelihood func-
tion) is often non-linear due to clutter or noise in the background [1], causing
the posterior distribution of the system state being non-linear. It is why particle
filtering receives so much attention in the domain. Two factors weight heavily for
the effectiveness of particle filter. One is likelihood function, responsible for ex-
tracting visual information from images. The other is the proposal distribution,
from which a set of discrete samples will be drawn. The paper has contributions
in both aspeacts.

1.1 Likelihood in Particle Filter

Many researcher are devoted to development of a effective measurement like-
lihood. Isard et al. presents a contour likelihood function based on edges [l].
The measurement is performed along the normal lines to the discrete sampling
points on the contour, and the Canny edge detector is applied to these nor-
mals to obtain the local maximum as features. Under the assumption of the
feature outputs on distinct normal lines are statistically independent, together
with some other assumptions, a likelihood function is derived and used in the

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 161-167, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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framework of particle filter. Chen et al. [2], who argue that the measurement
of adjacent normals is statistically dependent, extends the above likelihood in
the framework of Hidden Markov Model (HMM), integrating the edge as well
as color information. Nummiaro et al. [3] adopted a metric defined on weighted
multi-channel color histogram [4], which represents the target distribution, as
the likelihood in the framework of particle filter [3].

We have also seen that machine learning has gradually played an important
role in the design of visual measurement model. Mikolajczyk et al. [5] incorpo-
rates the face detector of Schneiderman and Kanade [(] into particle filter for
face detection and tracking. Two detectors —frontal and profile face detectors
are combined to estimate the pose and give measurement probability. Avidan
integrates the Support Vector Machine (SVM) classifier into an optical flow,
and maximizes the SVM classification score, instead of minimizing the intensity
difference function between successive frames [7]. Furthermore, an approach of
Gaussian pyramid in both learning and tracking stages is introduced to handle
large motions in image plane.

Motivated by these work, we independently propose a likelihood function
based on AdaBoost algorithm. This likelihood function provides the probability
of a measurement given the input image, in addition, the computation of which
is efficient, as will be explained in the next section. This kind of likelihood
is particularly suited to some classes objects, e.g. faces, cars and pedestrians
tracking.

1.2 Proposal Distribution in Particle Filter

How to get an effective and efficient proposal distribution is a challenging prob-
lem. Isard et al. [3] proposes an importance-sampling method, which relies on an
independent global segmentation and tracking of human-skin block. Li et al. [9]
introduces proposal distribution based on Kalman filter and unscented Kalman
filter, which depends on the learned motion model and edge-based likelihood.
Wu et al. [10] present a novel particle filter, as an approximation of a factorized
graphical model, in which shape and color samples are interactively drawn from
each other’s measurements based on importance sampling.

In the paper, we introduce a general and efficient proposal distribution (im-
portance function) resulting from mean shift iteration. It is general because it
use weighted multiple-channel color histogram to represent the distribution of
the object, not specific to, for instance, human skin color; it is efficient because
the optimization of the metric based on gradient descent is fast which measures
the similarity of two distributions defined on the target and candidate [1].

2 Likelihood Function Based on AdaBoost Algorithm

In the face detection area, Viola and Jones [11] first realize the selection of crit-
ical visual features from a large set of Harr-like features and the training of
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Adaboost simultaneously [12]. Thanks to the introduction of a new image rep-
resentation called “Integral Image”, which allows the features used to be com-
puted efficiently, and combination of weak classifiers in a cascade, which allows
background regions of the image to be quickly discarded while spending more
computation on promising object-like regions, their algorithm is computationally
efficient.

Based on the work of Viola and Jones and the Real AdaBoost algorithm [13]
that can give conditional probability density of an test belonging to one specific
class, as well as the potential of machine learning in visual tracking, the authors
propose training a likelihood function. The main idea is that since in probabilistic
visual tracking, we are concerned with the probability of a candidate (expressed
by a system state), we therefore look forward to training such an likelihood
function which captures the structural characteristics of one class of objects and
gives a probabilistic interpretation. There is, however, a fundamental difference
for the use of AdaBoost in the paper from that in [11]. For the purpose of face
detection (classification problem—two classes: face or nonface) in one image, they
perform exhaustive search at different locations and at different possible scales.
They thus adopt cascade structure to reject gradually candidate regions that
most probably contain non-faces. Whereas in tracking, we are only concerned
with one image candidate region and its probability belonging to the target, so
cascade structure is not necessary any more.

2.1 Training a Likelihood Function Based on AdaBoost Algorithm

To accommodate face poses variations, we collect training examples which in-
cludes faces in different views: frontal, half-left and right profiles, left and right
profiles, and in each views, the faces demonstrate a degree of upside-down rota-
tions and in-plane rotation. These training examples are collected widespread in
Internet as well as captured in our lab. Some of non-face examples are collected
in internet, others are randomly sampled form windows in the image dataset.

The training of the likelihood function is illustrated in Figure 1:

The output Equ. (1) of the real AdaBoost algorithm has a probabilistic in-
terpretation, which gives a probability of an image patch x belonging to human
faces. The justification of Equ. (1) may be found in [13].

3 A Particle Filtering Framework for Object Tracking

In the paradigm of particle filtering (also known as sequential importance sam-
pling) [9], the system is described by p(X|Xk_1), p(Yi|Xk). The transition
prior p(Xy|Xk—1) indicates the the evolution of the state is a Markov process,
and p(Yy|X})) denotes the observation density (likelihood function) in the dy-
namical system, in which the measurements are conditionally independent of
each other given the states. The posterior density is approximated by a set of

discrete samples, called particles, {(X,(:),w,(j), i =1...,N}. The computation
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1. Given a collection of fixed size (for example, 20 X 20) N; face images and N2 non-face images

{(xi,yi),1 =1, , N}, where N = N; -|—N27 y; = +1 denotes face example, y; = —1 denotes
non-face cxamplc Sct weights D1 (i) = 2N1 ) 2Ny for y; = +1, -1
2. for k=1, , T
a. For a set of weak functions (see [I1] for details), fj(x;),j =1, -+, M, choose the weak

function as the kth weak leaner hy(e) = f;= (e) for which
pp,, (f+(xi) # yi) = argminjpp, (f;(xi) # vi)

b. Update the weight oy assigned to hy(e):

where g+ = pp, [hK(x:) # vl
c. Update distribution Dyj41(%) associated with training set

Dy (4) exp(—akyihi (xi))

Dy11 (1) = Z

)

where Zj, is a normalization factor (chosen so that Dj4q will be a distribution).
3. Output the final hypotheses H(x) = > 7_, arhy(x) and

exp H(x)

exp H(x) + exp —H(x) @)

ply=1)=

Fig. 1. The AdaBoost algorithm for training face detector.

of weights concerns an introduction of an importance function, called a pro-
posal density, m(Xx|Xg—1, Y1.x), from which particles can be easily drawn, and
which approximates the posterior density. As such, the weights can be computed
iteratively as follows

p(Y X )p(X 1% )

Xl Xe—1, Y1) = )
(X Xk-1, Y1) T(XelXi 1Y)

(2)

3.1 Mean Shift Iteration

Mean shift iteration is targeted at seeking the candidate which has the most
similar distribution with the target in a local region [!]. The search is based on
gradient optimization of a scale-invariant metric between target and candidate

distribution
) =/1-p(q.p(y)) (3)

where p(q,p(y)) is Bhattacharyya coefficient. The distribution is generally in

the form of weighted multi-channel color histogram, ¢ = {qu}u=1,..m with
oot qu =1 for target, and 13( ) = {pu(y)}u=1,...,m with > p,, = 1 for can-
didate. In this case, p(g, p(y 1\/pu Y)qu. Let us denote z; i = 1,...,n

the pixel locations of one face candldate, centered at y in the current frame, the
distribution of the face candidate can be expressed as p(y) = {pu(¥)}u=1....m
where
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1. Initialisation ) o
Draw particles from the prior p(Xél)) to obtain a set {(XE;L)7 1/N), i=1,---,N},
2. Sampling and updating step
fori=1,--- ,N:
a. Generate a random number « € [0, 1], uniformly distribution.
b. If @ < g use mean shift algorithm to determine proposal distribution. Specifically,
use mean shift algorithm in the current frame to seek the state Xk, which has the
most similar distribution with X _;. Draw XS) from N(Xk, P). Compute the proposal

distribution T((X(Z) \X(Z) ,Y1.,) according to

(XKD | Vi) = V1 - paZxr), 5XD))

and then compute the weight of the sample X,(:) according to Equ. (2)
c. If & > ¢ use the transition prior p(Xy|Xx_1) as the proposal distribution. Draw X,(:)
from the proposal distribution. Compute the weight of the sample X,(:)
o) = p(YrlXy)
3. Output step
Output a set {(ng)7 w,(:)), ¢ = 1,---,N} of particles that can be used to approximate
the posterior distribution as p(Xk|Y1 )~ SN w( )5 XEJ))7 and the system mean
(tracking result) X, ~ SN | w,(:)XS)
4. Selection (resampling) step
Resample the particles {(X(Z) (1))} with probability w(l) to obtain N i.i.d random particles

{5(,(:), 1/N}, approximately distributed according to p(Xy|Y1.x)
5. E=k+1, go to step 2.

Fig. 2. The framework for visual tracking.

n

S k(Y I6(b(z) — u) (4)

2) i=1

where h is the radius of a candidate region, b(z;) is a function which associates to
the pixel at location z; the index b(z;) of the histogram, and §(-) is the Kronecker
delta function. The weighting function is adopted as Epanechnikov kernel.

The distribution of target is adopted as that of the tracking result in the
previous frame and has similar form to Equ. (4).

1
PO s k(e

=1

3.2 Tracking Algorithm

Apart from the initialization, the framework operates in three steps: sampling
and updating, output, and re-sampling (or selection) step. While the mean shift
is efficient [4] in seeking the promising target, it depends on color information and
is thus not robust to lighting changes [3]. So we will not draw all particles from
the proposal distribution (step 2b): some will be sampled from the transition
prior for diversity of particles (step 2c). Let X, be the converged result of mean
shift iteration, it is reasonable and simple to assume that the distribution of the
potential target state is Gaussian ./\/(Xk, P), where X, is the mean and P is the
covariance. The detailed algorithm is presented in Figure 2.
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4 Experiments

The initialization of the particle filtering algorithm is accomplished using Ad-
aBoost face detector of Viola and Jones [11]. The transition prior is a random
walk

X = X1+ Qi (5)

where Xy, = [Tk, Yk, Sk], (¥r, yx) are the coordinate of the center of the tracked
region and sj, is the scale. The likelihood function is represented by Equ. (1).

The algorithm is implemented with Visual C+4 5.0 on a laptop of Pentium
1V-2.2GHz CPU with Microsoft XP.In the image sequence, both the camera
and the subject are moving, and the motion of target is agile and large. The
background is complex and in some snapshots the color resembles to human
face. The algorithms rely only on edge [1], or rely only on relying only on color
[1], fail to track object. Our likelihood is aimed at finding out the structural
information of human face and is able to neglect background clutter. Together
with the aid of mean shift as importance sampling function, and the proposed
algorithm can robustly track the face in real time (about 20 ms) throughout
the whole image sequence. Some of typical tracking result are demonstrated in
Figure 3.

Fig. 3. Some of tracking results in the image sequence. It can be seen that complex
background, significant pose variations, partial occlusion are all well dealt with.

5 Conclusions and Discussion

In the paper, a novel likelihood function is developed based on AdaBoost train-
ing algorithm, which is capable of capturing the structural characteristics of the
human faces and gives a probability interpretation, and is not sensitive to il-
lumination changes. Furthermore, the general and efficient mean shift iteration
is considered as a means to produce the proposal distribution in the particle
filter, which can steer the particles towards most probable locations of target
in images and thus leads to efficacy of the algorithm. Although in the area of
face detection, a single classifier trained on all poses appears to be inaccurate,
the likelihood function, trained on all poses based on probabilistic version of
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AdaBoost, works satisfactorily in tracking. Experiments show that the particle
filter, with the proposed likelihood function but without mean shift iteration as
the proposal distribution, can well track the object, yet with the longer tracking
time. It is also found that mean shift iteration plays a much larger part when the
features of faces are not distinct, for example, in poses beyond profiles. The vali-
dation of the framework is demonstrated with experiments dealing with tracking
of human faces. However, it can naturally extends to some other categories of
objects, for example, pedestrians and cars. Future research will focus on this
aspect.
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Abstract. Recent developments have suggested alternative multiper-
spective camera models potentially advantageous for the analysis of the
scene structure. Two-slit cameras are one such case. These cameras col-
lect all rays passing through two lines. The projection model for these
cameras is non-linear, and in this model every 3D point is projected by a
line that passes through that point and intersects two slits. In this paper
we propose a robust non-iterative linear method for the calibration of
this type of cameras. For that purpose a calibrating object with known
dimensions is required. A solution for the calibration can be obtained us-
ing at least thirteen world to image correspondences. To achieve a higher
level of accuracy data normalization and a non-linear technique based
on the maximum likelihood criterion can be used to refine the estimated
solution.

1 Introduction

Projection models constitute a relevant issue in computer vision. The mathe-
matical model that describes the formation of the most common type of images
is the perspective projection model. Most of the commercialized optical devices
generate images whose geometrical properties are described in this model. There-
fore, the classic pinhole and orthographic camera models have long been used in
3D imaging applications.

However certain special vision problems can benefit from the application of
alternative projection models, as recent developments have suggested. Besides,
those developments in image sensing make the perspective model highly restric-
tive. These multiperspective models have been providing advantageous imaging
systems for understanding the structure of observed 3D scenes. Examples of
such camera models are bi-centric [13], crossed-slits (also known as x-slits) [17],
general linear [1/] and rational polynomial [!] models. Multiperspective imaging
has also been explored in computer graphics[].

In the bi-centric model the centers of horizontal and vertical projections lie
in different locations on the camera’s optical axis. Perspective and pushbroom
cameras [3] are particular cases of this model, if the horizontal and vertical
projections lie in the same locations and if only the horizontal projection resides
on the infinity (corresponds to a vertical strip of a sensor translating sideways),
respectively. In [13] it was also shown that a straight line in the scene is projected
into a hyperbole in the image. The pushbroom model collects rays along parallel
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planes from points swept along a linear trajectory [3]. The most visible distortion
in the images that follow the pushbroom model is the variation of aspect-ratio.

General linear and cubic camera are general models. The general linear cam-
era model unifies most projection models used in computer vision, including
perspective and affine models, optical distortions models, x-slits models, stereo
systems and catadioptric systems [14]. A cubic camera maps the image points
as rational polynomial functions, of degree less than four, of the coordinates of
a world point [1]. This camera model treats projective, affine, pushbroom and
x-slits cameras as particular cases.

In the x-slits model the projection ray of a generic 3D point is defined by
the 3D line that passes through the point and two lines, referred as slits. The
image is obtained by the intersection of every projective ray with the image
plane. This model was initially designed by one of the pioneers of the color
photography, Ducos du Hauron, in 1888 [7], under the name “transformisme en
photographie” [0]. He thought that his device would be used in the 20" century
to “create visions of another world’ [7]. However, it was a restricted model in
terms of the slits positions, which were parallel and orthogonal between each
other (this situation was later referred as parallel-orthogonal x-slits, or pox-slits
[15]). An interesting aspect is that pox-slits projection equations are similar to
the bi-centric model [1]. A particular case of the pox-slits camera, in which the
vertical slit resides at infinity, is the pushbroom camera.

One century later, the pox-slits model was revised and generalized by Kingsla-
ke, who concluded that it was similar to the perspective projection model in
which the image is stretched or compressed in one direction more than the other
[6]. This fact shows its adequacy to the use in wide-screen technologies.

Zomet et al, in [15], expanding the Kingslake generalization, introduced the x-
slits projection model. According to their study, one advantage of of this model
is the fact that x-slits images can be easily generated by perspective images.
Shortly, this procedure is performed by pasting together vertical or horizontal
samplings of a sequence of images captured from a perspective camera, which
moves, respectively, along a horizontal or vertical line. With a more complex
procedure new x-slits views can be generated even when the camera motion
is not parallel to the image plane [I]. The idea of sampling columns from im-
ages has been explored before, but using a constant sampling function [10]. This
traditional mosaicing technique is similar to the one used to create pushbroom
panoramas [13]. Another remarkable aspect of this camera is that perspective
model is a particular case of the x-slits camera, in which the vertical and hori-
zontal slits lie in the same plane. The optical center of the perspective camera
is the intersection of the slits.

In spite of the extensive analysis of x-slits cameras by [15], they have only
focused on aspects related to image generation. In this paper we deal with the
problem of calibrating this type of cameras.

Grossberg et al, in [2], presented a different camera calibration algorithm,
referred to as the generic imaging model. In that case calibration consists in de-
termining, for every image pixel, the associated 3D projection ray. This method
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is also used in [¢] and [10]. This mapping can be conveniently described using
a set of virtual sensing elements, called raxels. Raxels include geometric, radio-
metric and optical properties.

As an extension to [2], [12] introduce a generic calibration approach. In this
method at least three images of a calibration object are acquired. The fact that
a projective ray is a 3D line yields a constraint that allows the recovery of both
the motion and the camera’s parameters. This constraint is formulated via a set
of trifocal tensors that can be estimated linearly. In [9] this calibration method
is used in a 3D reconstruction process, with a parametric reprojection to refine
the obtained solution, based on bundle adjustment.

In the calibration method described in this paper, we use the non-linear x-
slits equations. For estimation purposes the equations are rewritten so that linear
estimation methods can be used. For good levels of accuracy in the estimates,
data normalization and a non-linear technique based on the maximum likelihood
criterion can be used [7].

P{X.Y.Z)

Shelt

" lmage Plane

1 e pixy)

Fig. 1. X-slits projection model.

2 X-Slits Projection Model

Consider the x-slits projection configuration represented in figure 1. The pro-
jective ray of a generic 3D point, P, must intersect two lines, or slits, [; and
lo. Point P together with each slit defines one plane. The intersection of those
planes defines the projective ray. The projection of the 3D point in the image,
p, is obtained by the intersection of the projective ray with the image plane.

To define the two slits, let u; and v; (with ¢ = 1,2) be two generic planes
defined in a space of 3 dimensions, given by their parametric coordinates. The
slits, I;, are defined through the intersection of those planes. These slits can be
represented by the dual Plucker matrix [5], whose equation is

0  Liza Lo  Lios
—Liaa 0 Liza —Las
—Lia2 —Lina 0 Li2
—Li23 Liz —Lij2 0

T T
Li" = wviw —viug =

if we use the Plucker coordinates of the slits.
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The projective ray, [, is the intersection between two planes, defined by each
slit /; and the 3D point P (L;*P and Lo* P, respectively), and can be defined
by the dual Plucker matrix, through

L* = (L1*P) (Ly*P)" = (Ly*P) (L,*P)"

Assuming that the image plane, I, is defined by the points Py, P; and Ps,
any point that belongs to I can be expressed by the linear combination of those
points, given by

k:EP() + kypl + kPQ

As a result any point from a 2D space vector defined in the image plane, in
. N T
homogeneous co-ordinates, is given by p = [ka ky k|~ [11].
The projection of a 3D generic point P in the image plane I generates a 2D
point p. This projection is given by the intersection of the projective ray [ with
the image plane I. Therefore [ must belong to both planes L;*P. Therefore,

PTLy"Py PTLy"Py PTLy"Py| 0 (1)
PTLy*Py PTLy"P, PTLy" Py | P~

The solution for equation (1) is the right null space of the matrix. This
solution is obtained by using the cross product between the elements of the
matrix, as

PTL* (PR" — P,P") Ly*P
kp= | PTL,* (P,P" — PoP,") Ly*P
PTL* (PoP" — PLR)") Ly*P

The homogeneous relation between 3D world scene points and 2D image
points, in pixels, for the x-slits projection model is

kz Y Cx PTLlloLQP
kp = 0 kU Cy PTLlllLQP (2)
0 1 PTL Ly P

where [y, I; and I are the Plucker matrices corresponding to the z and y axis of
the image plane and the line at infinity. k, and k, are the focal lengths. (¢, ¢y)
are the coordinates of the principal point and ~ is the image skew. According to
[15], this solution is unique unless it resides on the line joining the intersections
of the two slits with the image plane.

3 Calibrating X-Slits Projection Model

In this section we describe an algorithm to calibrate the x-slits camera. We begin
with a particular case of this camera, known as pox-slits, and then we address
the general case.
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3.1 Pox-Slits Case

We show how to calibrate the pox-slits camera because this camera is similar to
the bi-centric camera and a generalization of the pushbroom camera.
Let us define,

ur=1[1000]" 0, =[001-Z]" u=1[0100]" wv,=[001—-2]"
Let us also consider three homogeneous points
R=[1000]" P =[0100]" P =[0001]"
which belong to the image plane. As a result, equation (2) is given by
z ke 7 Cx -7 Zi(Zl
Ely| =10 kycy —Zs ZE/ZQ (3)
1 001 1

The calibration algorithm aims at estimating the intrinsic camera parameters
ky, ky, ¢z, ¢y and 7 and the slits parameters Z; and Zs. From equation (3) we
can obtain

—kzleZ + kzZ1Z2X — "yZQYZ + "yZlZQY + CIZ2 — chlZ — CIZQZ—F (4)
—I—CleZQ + Z1IZ + ZQZEZ — leQI = {EZ2

and
cyZ — cyZy — kyZoY + Zoy = Zy (5)
Assuming, without loss of generality, , C1 = ¢, Z2 and Cy = k,Z>, we can
rewrite equation (5), matrix form, as

Cy
C
[Z -1-Y y] C; = Zy

Za

Using, at least, four world to image correspondences, we obtain a system of
equations whose solution can be obtained using any numerical linear method, e.g,
SVD. The solutions of this system of equations yield estimates for the intrinsic
parameters k, and c,, and the slit parameter Zs.

Assuming now, without loss of generality, C3 = k. Z1, Cy = ¢, Z1, C5 = Z17
and Cg = ¢, Z1, and substituting the estimated parameters in equation (4) we
get

£L'Z2 — LL‘ZZQ = (—XZ + XZQ)Cg — YZZQ’)/ + YZQC5 + (Z2 — ZZQ)C;E+
+(—Z + ZQ)CG + (acZ — ,TZQ)Zl

Similarly, and using at least six world to image correspondences, we obtain a
system of equations whose solutions yield estimates for the the intrinsic parame-
ters k., ¢, and «y, and the slit parameter Z;. To obtain a higher level of accuracy,
Hartley et al, in [5], suggest data normalization and a non-linear technique based
on the maximum likelihood criterion. Therefore to calibrate the pox-slits camera
six world to image correspondences, at least, must be used.
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3.2 General Case
Let us now address the case of the general x-slits camera. Assuming
C1 = Lia2Lo3s — L13aLoss C2 = L11aL23s — L13aLo1a Cs = LiaaLo13 — L113Loao

C4 = L13aL213 — L113L23a Cs5 = L11aL223 — L123L21a Cs = Li123L23a — L13aLoos
C7 = Li1aLoa2 — L1a2L21a Cs = L123L213 — L113L223 Co = L11aL213 — L113L214
Cho = L13aL212 — L112L23sa C11 = L112L214 — L114aL212 C12 = L113L212 — L112Lo13
C13 = L1a2La23 — L123L242 C1a = L123L212 — L112L223 C15 = L1a2L212 — L112L242
Vi=C3+4+Cs Vo=—c,C1 —kyCs5 + kz:Cio+7vC13 Vs =caCs Voo = ¢yCs
Vi = —czCo —vC3 + kCy +vCr0 Vi = —coVi + kaCi2 +7vC1a Vs = ¢, Cs +7yCs
Vo = ceCs + kzCs Vi = —c,C7 4+ kaC11 +7C15 Vo = katCys +vCs Vip = ko Cs
Vi = —kyC3 4+ kyCio — ¢yC2 Vig = kyCiz — cyC1 Viz = kyCis — ¢yCr Viz = kyCy
Vii =~79Cy Vis = kyCs+¢yCs Via =kyCs Vig = kyCra — cyVi Vig = ¢, Cs
without loss of generality, equation (2) can be rewritten as

—Vio —Vo zC1 + Vo zCs — Vs
0 —Vii2Ce+VzxzCy— V5

T _
Plo 0 worvvraviena | P70
0 0 0 xCs — Vs
and
0 —Via yChi + Vie yCs — Vig
pT 0 —Viz yCa + Vi2 yC4 — Vis P=0

0 0 yC7r+4+Vir yVi+ Vis
0 0 0 yCs — Vo
The general model of this camera is specified by 15 parameters and therefore
the total number of unknowns is also 15. However, as a result of rewriting the
equations so that a linear numerical method can be used, we end up with 26
unknowns. Therefore at least 13 world to image correspondences are required.

4 Experimental Results

The experimental results presented in this paper use synthetically generated
data. In addition we only present results for the case of the pox-slits model.
Results for the general case are still being obtained.

As it can be seen in figure 2(a), a sphere is used as calibration object. This
random sphere, with radius 20 and center (—22.33,43.37, —226.93), is made up
of 1891 3D known points. In the figure we also show the image plane (bottom)
and the planes that contain the slits (the two upper planes). Figure 2(b) repre-
sents the pox-slits image of the sphere points, with resolution 1600 x 800. Using
equation (3), the pox-slits camera is defined with Z; = 100, Zy = 50, k,, = 47 ,
ky = 63, ¢z = 320, ¢y, = 240 and v = 25.

To calibrate the camera we start by normalizing the image coordinates as
suggested by Hartley [5]. Gaussian white noise with 0 mean and o2 variance
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(b)

Fig. 2. (a) Visualization of the calibration object, with the image plane and the planes
that contain the slits; (b) Pox-slit image of calibration object.
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Fig. 3. Relative mean error in the estimation of the camera parameters plotted as
function of the noise variance.

was added to the image coordinates of the points. The noise variance was varied
between 0.1 pixels and 20 pixels. For each value of noise variance 150 runs were
performed. The percent error in the estimates for each parameter was computed.
The averages (for each noise variance level) of the percent errors are presented
in Figure 3. As it can be seen in the figure, errors increase almost linearly with
the noise level. We also computed the variance of errors in the estimates of
the parameters. The values of the error variances are below the floating point
precision. Therefore we can assume that this algorithm can be used to estimate
this type of camera.
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5 Conclusions

In this paper we present a robust non-iterative linear algorithm to calibrate
a pox-slits camera. The algorithm requires at least with six world to image
correspondences. Normalization of the coordinates of the image points is an
essential step of the algorithm.

The algorithm for the general x-slit camera is also described briefly.
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Abstract. Home entertainment systems are trending to be integrated to a single
system and to be more complex and difficult to control. Due to it, the methods
developed for specific entertainment system are difficult to be applied to inte-
grated systems. Accordingly, this paper presents a vision-based interface for in-
tegrated home entertainment system. The proposed interface has two types of
modes: mouse control mode and instruction mode. The first mode move mouse
point and click the icons using hand motion and shape and the second make in-
struction by hand gestures. The proposed interface is able to make predefined
several gestures mapped to several similar tasks from different entertainment
systems, which reduces the number of gestures and makes the interface more
intuitive.

1 Introduction

Because of development of home network and multimedia systems, recently home
entertainment systems such as home theater, games, audios and internet service sys-
tems are growing in popularity.

The interfaces for the interaction between human and the systems have been re-
searched [1-9]. Among these interfaces, vision based interfaces have been the center
of public attention due to cheap hardware and ease to use.

Freeman et al.[5] studied how a viewer could control a television set remotely by
hand gestures. They use just a hand position to control channel and volume of a tele-
vision. Lee et al.[6] implemented the PowerGesture system with which one can
browse presentation program using predefined gesture commands. Shin et al.[7] de-
scribed a gesture recognition system for visualization navigation. They gave an
analysis of the hand motion trajectory in the registered 3-D data and classified ges-
tures using a geometric method using Bezier curves. However, home entertainment
systems are trending to be integrated to a single system and to be more complex and
difficult to control. Due to it, the methods developed for specific entertainment sys-
tem are difficult to be applied to integrated systems.

In this paper, we propose a vision-based interface for integrated home entertain-
ment system. For this, the proposed interface has two types of modes: mouse control
mode and instruction mode. In mouse control mode, users use their hand to move
mouse point and click. The mode make user able to select an application by clicking a
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icon and enjoy web surfing by control mouse point. In instruction mode, users make
command to use applications such as television, games, and moving picture players.
The proposed interface is able to make predefined several gestures mapped to several
similar tasks from different entertainment systems, which reduces the number of
gestures and makes the interface more intuitive.

2 System Overview

The home entertainment system using the proposed interface is shown in Fig. 1. User
can control the home entertainment system with hand gestures in front of camera
without any hand-held device. The distance between user and camera is about 2~3
miter. The system was implemented using a PC and a web cam without additional
devices such as data gloves and frame grabber boards.

Fig. 1. System Environment

Our entertainment system includes three entertainment applications: television,
moving picture player and web browser. To control the applications, the Interface has
two types of mode as mouse control mode and instruction mode.

2.1 Mouse Control Mode

The mouse control mode is used for selecting one of the applications and surfing
web. In the mode, open hand position control mouse point and the hand closing acts
as mouse click. To select an application, user click the application icon in the user
interface linked the entertainment application that user wants to use. Web browsing
can be achieved by the same way. User can use the functions of web browser and
hyper-links by mouse pointing and clicking.
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2.2 Instruction Mode

The instruction mode is used to control applications such as moving picture player
and television. In the mode, the functions of the applications can be used by hand
gesture instructions shown in Table 1. The interface use the hand shape, open and
close, to separate meaningful gestures and unintentional movements. Therefore, for
control the applications, user can act the predefined gestures with open hand.

Table 1. Each entertainments’ defined gestures

moving picture and

defined gestures DVD player TV application
/1 play
1] stop
A temporary stop
L, volume up volume up
2L volume down volume down
AN next content channel up
N before content channel down
s exit exit

3 Vision Based Interface

To provide user-friendly remote controls, the gesture recognition system should have
real-time interaction and good recognition performance across a variety of users. For
this, we use hand position, shape and motions.

In the mouse mode, we use hand position and shape in an image. To estimate hand
position and shape in a frame captured from camera, Skin color regions are extracted
using skin color model described by 2D Gaussian model in chromatic color space
[10].

In the instruction mode, we use predefined gestures as a meaningful sequence of
the right hand motion [6]. The motion of the hand is defined as inter-frame position
change of its region. The motion is quantized to one of the symbols which mean 8
directions. To identify the beginning and the end of the gesture, we use the shape of
the hand. Hand shapes, open and close, are easily classified using size of hand region.
Hand opening and closing indicate the beginning and the end of the gesture, respec-
tively. For modeling and recognizing the gestures, we use HMMs which are robust to
analyze and describe sequential data have spatiotemporal variability. Fig. 2 shows the
overview of gesture recognition.

3.1 Hand Extraction

In this section, we describe the method for extracting hand region from a color image.
The proposed method detects skin color pixels from a color image using skin color
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model described by 2D Gaussian model in chromatic color space. To remove noises,
morphological operations are used. Then bounding boxes of regions composed of
connected components are generated. Finally, among the bounding boxes, the largest
area is considered as the face, and the second and third ones are considered as hands.
Fig.3 shows the results of the procedure.

Camera Image
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Fig. 3. Hand extraction results
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Fig. 4. “Play” gesture and codeword sequence
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3.2 Feature Extraction and Vector Quantization

To recognize the user gestures, we used motion of right. The motion of the hand is
defined as inter-frame position change of its region. We convert the feature vector to
one of the 8directional codewords shown in Fig. 4(a). Accordingly, a given image is
represented as a symbol and a gesture is represented as symbol sequence. Fig. 4(b)
shows trajectory of “Play” gesture and extracted codewords.

3.3 Gesture Recognition

We defined gestures as a meaningful sequence of the open right hand motion. So we
need to identify the beginning and the end of the gesture. Gestures begin when open
hand appears and end when close hand appears. Open and close hand is easily classi-
fied using size of hand.

To recognize gestures, we use left-right HMMs. Given a symbol sequence, the rec-
ognizer finds the best gesture model. A gesture is recognized if the likelihood of the
best gesture model is higher than the threshold value. The likelihood is estimated
using forwarding algorithm [11, 12, 13]. Each gesture model consisted of five states
in the left-right model and the number of state determined by experiments. Training
of the HMMs followed the Baum-Welch re-estimation formulas [11, 12, 13]. Given
any finite observation sequence as training data, we choose the parameters of 8 ges-
ture models.

4 Experiment and Result

The interface was implemented using MS Visual C++ 6.0 and OpenCV beta3.1 to get
320%240 and 24-bit color images captured 15 frames/s without an additional frame
grabber board. Fig. 5 shows the user interface. At the top, there is an image display
showing the captured image from the camera. And just below there is an image dis-
play showing the hand tracked image. This allows the user to see and keep his/her
hand within the camera’s field of view. At the left bottom, there are a result display
and application icons. The result display is reporting the recognized gesture and ges-
ture start and end. Application icons are composed of three type icon: movie picture
player, TV, and web browser.

The skin-color model is obtained from 200 sample images. Means and covariance
matrix of the skin color model are as follows:

m=(r,g)=(117.588,79.064) ,
s o’ vayaga,]_[ 24.132 —10.085}

5 =

Pxy0.0, o, -10.085  8.748

The proposed interface was evaluated through testing 4 persons in the mouse con-
trol mode and in the instruction mode. In instruction mode, each person tried many
times to perform each gesture. In the mouse control mode, each person tried many
times to move mouse cursor to target and then click.
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In the mouse control mode task, the gestures are succeeded in performing when
person moves mouse cursor to target and then click at a time. Each 4 persons at-
tempted it 20 times. Table 2 shows the gesture recognition performance in the mouse
control mode.

Captured
image

Application

- Hs!nd tracked
image

4
Result display about gesture on, off and
recognized gesture

Fig. 5. User interface

Table 2. Gesture recognition results in the instruction mode

Number of attempt success Success ratio(%)
80 62 77.50

In the instruction mode task, we estimated gesture recognition performance by Lee
et al. [6]’s test method. There are three types of errors: The insertion error occurs
when the recognizer reports a nonexistent gesture, the deletion error occurs when the
recognizer fails to detect a gesture, and the substitution error occurs when the recog-
nizer falsely classifies a gesture. The detection ratio is the ratio of correctly recog-
nized gestures over the number of input gestures as follows:

correctly recognized gestures

Detection ratio = - (1)
Input gestures .

In calculating the detection ratio, the insertion errors are not considered. The inser-
tion errors are likely to cause the deletion errors or the substitution errors because
they often force the recognizer to remove all or part of the true gestures from obser-
vation. To take into account the effect of the insertion errors, another performance
measure, called reliability, is introduced that considers the insertion errors. The reli-
ability ratio is the ratio of correctly recognized gestures over the number of input
gestures and insertion errors. Reliability is as follows:
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correctly recognized gestures

Reliablity = 2

input gestures + insertion errors

Consequently, Table 3 shows the gesture recognition performance in the instruc-
tion mode. The experiment showed 91.13 percent detection ratio and 88.33 percent
reliability. In Table 3, ‘I’ is the insertion errors, ‘D’ is the deletion errors, and ‘S’ is
the substitute errors.

Table 3. Gesture recognition results in the instruction mode

Number Error type Detection Reliability
command of corrent ( 9 ) ( % )

gestures I D S ¢ ¢
Play 78 73 2 0 3 93.59 91.25
Stop 80 74 2 1 3 92.50 90.24
Temporary 78 70 2 2 4 89.74 87.50
Stop
Volume 82 74 3 1 4 90.24 87.06
Up
Volume 77 68 4 1 4 88.31 83.95
down
Next 80 73 3 1 3 91.25 87.95
Content
Before

79 7 2 2 3 91.14 88.89

Content
Exit 77 71 2 1 3 9221 89.87
Total 631 575 20 9 | 27 91.13 88.33

5 Conclusions

This paper presents a vision-based interface for integrated home entertainment sys-
tem. The proposed interface has two types of modes: mouse control mode and in-
struction mode. The first mode move mouse point and click the icons using hand
motion and shape and the second make instruction by hand gestures. The proposed
interface was able to make predefined several gestures mapped to several similar
tasks from different entertainment systems, which reduces the number of gestures and
makes the interface more intuitive. Experimental results showed that the proposed
interface is robust to integrated home entertainment system include several applica-
tions.
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Abstract. In this work an approach to an adaptive vision system is
presented. It is based on a homeostatic approach where the system state
is represented as a set of artificial hormones which are affected by the
environmental changes. To compensate these changes, the vision system
is endowed with drives which are in charge of modifying the system
parameters in order to keep the system performance as high as possible.
To coordinate the drives in the system, a supervisor level based on fuzzy
logic has been added. Experiments in both controlled and uncontrolled
environments have been carried out to validate the proposal.

1 Introduction

The performance of most computer vision applications relies heavily on the
“quality” of the images supplied by the acquisition subsystem, normally a video
camera. But this “quality” is influenced by factors as hardware, camera and
acquisition board, lighting conditions, size and position of the object of inter-
est and many others. The variations of some of these factors can be limited for
some tasks as machine vision or indoor applications. However there exists more
challenging computer vision applications where some of the previous factors can
not be controlled as mobile robot applications and indeed human computer in-
teraction in indoor scenarios. So it is necessary to endow these systems with
mechanisms which allow them to survive in environments where the conditions
can vary in a wide range of values.

In nature, living beings can survive in a world where the environmental con-
ditions are continuously changing and they can perform their tasks with success.
Homeostasis is one of the mechanisms that the living beings own to adapt their
behavior to the enviromental changes. Homeostatis is defined in the Merriam
Webster on line dictionary as “a relatively stable state of equilibrium or a ten-
dency toward such a state between the different but interdependent elements or

* This work has been partially supported by the Spanish Ministry of Education and
Science and FEDER funds under research project TIN2004-07087, the Canary Is-
lands Regional Goverment under projects P12003/165 and PI12003/160 and the Uni-
versity of Las Palmas under projects UNI2003/10, UNI2004/10 and UNI2004/25.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 184-191, 2005.
© Springer-Verlag Berlin Heidelberg 2005



A Proposal for a Homeostasis Based Adaptive Vision System 185

groups of elements of an organism, population, or group”. The state of equilib-
rium is normally related to the survival of the animal in an environment making
sure that it gets enough to eat or it does not overheat or freeze.

The idea of homeostasis has been introduced by some authors in the construc-
tion of systems that have to develop their activity in complex environments.
Arkin and Balch [!] propose a homeostatic regulation system which modifies
the performance of the overall motor response according to the level of inter-
nal parameters such as battery or temperature. Another work which includes a
homeostatic regulation mechanism is the proposal of Hsiang [2] who introduces
it to regulate the dynamic behavior of the robot during task execution.

The works reviewed above are mainly related to robotics since robots possess
effectors to act on the environment, but we have none tackling the introduction
of homeostasis in a vision system. However, since the introduction of the Active
Vision paradigm [3], vision systems include perception strategies which are con-
trolled by the interaction with the environment when a specific goal is pursued.
Thus, we can consider the introduction of a homeostatic regulation in such vision
systems because they share with the previously described systems the fact that
a goal has to be achieved (survive) in a changing environment and they have to
adjust their behavior in order to get always the best possible performance.

Some important considerations must be taken into account when putting
homeostatic regulation into practice. Initially, a homeostasis regulation mecha-
nism can be configured as a set of independent drives operating at a predefined
frequency. However, in practice the execution of some drives can affect others
requiring a certain level of coordination to avoid undesired effects. Additionally,
active-vision and mobile robotic applications are usually conceived as tactical
multipurpose systems. This requires an implementation based on multiple peri-
odic tasks executing concurrently on systems with limited resources [1]. If not
correctly managed, this contention could lead to poor performance, threaten sys-
tem security or even block it, when in competition for CPU time, for example [7].
Thus our base homeostatic regulation level must incorporate a higher supervisor
level.

Some alternatives that have been proposed for computational adaptation
include any-time processing scheme [6], imprecise computation [7] or variable
frequency [3]. In our context, adaptation should deal with several aspects such
as drives coordination, inter-level coordination, priority-based degradation, and
resource management (CPU processing time, memory, energy). For this pur-
pose we have selected a fuzzy inspired adaptation control that complements the
homeostatic regulation.

This paper explores the introduction of a homeostatic adaptive mechanism
in a computer vision system based on artificial hormones which are regulated by
means of drives, this first level of adaptation is described in Section 2. Section
3 considers the introduction of a higher level of adaptation based on fuzzy rules
to take into account the possible interdependences among drives. Finally, in
Section 4 the experiments carried out with an implementation of the architecture
proposed here are presented.
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2 The Homeostatic Regulation Mechanism

In computer vision applications where the environment E is completely con-
trolled, i.e. industrial applications, the camera parameters that define the quality
of the image are initially tuned to get the best performance. This is illustrated
in Figure 1 where the set of camera parameters J is the one which maximizes
the performance of the system under the environmental conditions E. If the en-
vironment changes to E’, for example due to different lighting conditions, the
performance of the system will be maximum for another set of camera param-
eters ¢’ as it is shown in Figure 2. So if the system does not have an internal
mechanism to detect the new environment E’, its performance diminishes be-
cause it will continue using the initial parameter setting ¢, and we must rely on
an external agent to readjust the parameter setting to ¢’.

System Performance
System Performance

> >

] ] o]
3

Parameters 5 & Parameters

Fig. 1. Setting of camera parameters for Fig.2. Setting of camera parameters for
an environment E an environment E’

In order to adopt in our proposal the affective computing framework [9] which
establishes that systems must be “bodily” because human emotions involve both
the body and the mind, we simulate the physiological changes that affect the
homeostasis mechanism. Canamero [10] proposes synthetic hormones to imitate
physiological changes in the body of a robot which evolves in a two-dimensional
world and the motivations of the robot respond to the levels of the synthetic hor-
mones. We adopt this approach in our system and implement a set of synthetic
hormones that reflect the internal state of the system “body”.

The homeostatic mechanism is governed by the value of the hormones which
are computed from the controlled parameter by means of a sigmoid mapping
(Fig. 3). In this way, adaptive strategies can be implemented more easily in the
drives defining normal and urgent recovery zones which are independent of the
range of values of the controlled parameter [11]. In our system the hormones are
associated to the image luminance (h luminance), contrast (h contrast), white
balance (h whitebalance) and size of the object (h size).

The luminance of the image is controlled by dividing the image into five
regions similarly to the method proposed by Lee et al. [12]. This image partition
allows different luminance control strategies by giving different weights to the
average luminance in each region according to the nature of the task. To compute
the contrast of the image, a measure [13], which exhibits a maximum when the



A Proposal for a Homeostasis Based Adaptive Vision System 187
Hormone Value

Urgent Recovery

Normal Recovery

Normal Recovery

Urgent Recovery

Understimulate Homeostatic  Overwhelmed
regime regime regime

Fig. 3. Hormone value mapping from the variable of interest

image is at the best focus proposed, was used in an auto-focus algorithm that
obtain the best focus position avoiding a hill-climbing search [I1]. For white
balance, we adopt the Grey World [13] assumption which tries to make the
average amount of green, blue and red in the image equal, by adjusting the red
and blue gain parameters. Finally to control the size of the object in the image
we act on the zoom of the camera.

As previously stated, an important element in a homeostatic mechanism is
its adaptive aspect. When the internal state of the body is too far away from the
desired regime, the homeostatic mechanism must recover it as soon as possible,
giving less priority to other tasks if it is necessary. To accomplish this, we have
included a higher level in the proposed architecture, that will be described in
the following section.

3 Rule Based Coordination Level

At low level, homeostatic drives should be coordinated to take into account
interdependencies, as several homeostatic drives are executing simultaneously
it can produce side effects on each other that make the settling times larger
than if execution sequence is supervised. In other cases, simply it makes not
sense executing some drives when others are far out from their desired regime
values (e.g. focusing on a very dark image). Additionally, some high processing
level tasks depend on the stabilization of the homeostatic level to produce valid
results, so their execution should be conditioned to this situation.

On the other hand, if the vision system is on a mobile robot, regulation
mechanism must deal with a multiple-task shared-resource system. The global
system operation normally requires the execution of multiple homeostatic drives
as well as high-level application tasks concurrently. In case of resource shortage,
low priority tasks have to be slowed-down or postponed, releasing resources for
higher priority tasks. Some examples include execution on a saturated CPU or
low-battery conditions.

Thus, the basic homeostatic mechanism described previously has been com-
plemented with a higher level in order to improve performance. Figure 4 shows
the architecture proposed combining both regulation levels, homeostatic and
rule based level. It can be noticed that homeostatic drives run independently
according to the values of the hormones associated to the measures obtained
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Fig. 4. Elements of the homeostatic adaptive regulation mechanism

from the image. A fuzzy-based approach has been selected for supervision, as we
consider it specially suitable for this vision based context, is implemented and
it takes into account the global state of the system to modify the operation of
the homeostatic drives.

The whole regulation architecture proposed in this work has been based on
the configuration of each task in the system as a periodic process, with a de-
sired frequency of operation to be met whenever possible; this includes both
homeostatic drives and high level application tasks. So the upper adaptive level
modifies the operation periods of the tasks by means of frequency commands,
allowing a modification on resource demands such us CPU processing time. Al-
though other actions can be generated as quality commands, they have not been
considered in this implementation.

The rules implemented in this work take the form of fuzzy implications with
conditions on state system (hormones) as antecedents, and actions on system
tasks as consequents. A rule is characterized by a priority value and a method to
combine the certainty of each premise to give the certainty of the rule (minimum,
mean, product). Additionally, the action part is defined by the type of control
action and its target. Some examples of these rules are the following ones:

R1: High Priority IF h_luminance is not zero THEN Decrease white
balance drive operation frequency

R2: Normal Priority IF h_whitebalance is zero THEN Decrease white
balance drive operation frequency

R3: Normal Priority IF h_luminance is zero THEN Decrease luminance
drive operation frequency
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Fig. 5. Evolution of the operation frequency in drives depending of h luminance hor-
mone value for the first experiment

In previous rules zero is a fuzzy linguistic label whose membership function
can be obtained from the hormone value which is bounded in the interval [-
1,41] (Fig. 3). The highest priority rule, R1, is responsible of giving the most
CPU resources to the recovery of the luminance hormone when it is out of the
homeostatic regime. The other two rules, R2 and R3, relax the drives associated
to the luminance and white balance hormones when they have their desired
values, reducing the load of the CPU that can be assigned to other tasks in the
system.

4 Experiments

Some tests have been performed to evaluate the proposal presented in this paper.
A first bunch of experiments was realized in a controlled environment with fixed
lighting conditions to validate the obtained results against the expected behavior
of the system. In these experiments we used a static firewire color camera and
changed the luminance of the object of interest. The application consists on
two hormone drives controlling simultaneously luminance and white balance
hormones of the image and a set of fuzzy rules to change the operation frequency
of each drives according to the luminance hormone value.

In Figure 5, the value of the luminance hormone is shown together with fre-
quency degradation factors for luminance and white balance drives (1 means no
degradation). As it is shown, when hormone value separates from homeostatic
regime (centered in 0), luminance drive runs faster to recover image quality as
soon as possible, while white balance drive slows down its operation because
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Fig. 6. Hormone values and operation frequencies of the associated drives for the second
experiment

it makes no sense to recover the white balance until luminance is close the its
homeostatic regime. When luminance is close to the desired value, the associ-
ated drive can relax and the white balance drive recover its normal operation
frequency.

A second experiment was carried out making use of a mobile robotic platform
performing a line following task in a uncontrolled environment with changing
lighting conditions, with a specially dark area near the beginning of the path
due to the existence of a kind of tunnel that the robot must traverse, so that,
without homeostasis the robot task fails.

In Figure 6, the luminance hormone values are represented together with
execution frequency values for luminance and white balance drives. As it is
shown, when luminance hormone goes far from homeostatic regime, luminance
drive runs faster to recover image quality as soon as possible, while white balance
becomes slower. This effect becomes more noticeable when traversing the dark
zone, between seconds 75 and 100. In homeostatic regime, white balance drive
is allowed to execute at a higher frequency while luminance drive gets relaxed,
for example when the robot is on the first straight segment and the first curve
(seconds 100 to 125). The robot velocity is also governed by the image quality
to avoid lossing the desired path.

5 Conclusions

The introduction of the homeostatic regulation mechanism improves the perfor-
mance of an active vision system, as the mean quality of the sensor data increases
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in dynamic environments. The combination of this low-level adaptation mech-
anism with a high-level fuzzy adaptive control has exhibited a better outcome
under variable run-time conditions. The result, as illustrated in the experiments,
is a highly-configurable framework that improves the system performance and
extends its range of operation.
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Abstract. In this paper we present a new approach to computational
colour constancy problem based on the process of surface matching. Clas-
sical colour constancy methods do not usually rely on this important
source of information and they often use only partial information in the
images. Our proposal is to introduce the use of a set of canonical sur-
faces and its matching versus the content of the image using a ‘relaxed’
grey-world assumption to perform colour constancy. Therefore, our ap-
proach takes into account information not considered in previous meth-
ods, which normally rely on statistical information in the image like
highest luminance or image gamuts. Nevertheless the selection of the
canonical surfaces is not a trivial process and should be studied deeply.

1 Introduction

The human visual system has the capability to perceive the same colour for a
given surface regardless the colour of the illuminating light. This is a fundamental
property to colour vision and pursues the perception of a stable coloured world,
even though the stimulus reaching the retina differs for the same surface under
different conditions of illumination. The perceived colour of a white patch under
a blue sky compared to the same patch in a room with a light bulb is perceived
as the same colour. Actually in the first situation the reflected light reaching the
eye has a bluish spectrum compared to the reddish reflected light of the second.
This ability is known as colour constancy, the constant appearance of surface
colours despite changes in the colour of the illumination. The mechanisms of
human colour constancy have not yet been completely understood, and there
are different approaches trying to explain them [I—4].

2 Background

RGB images are formed by the light reflected from different surfaces reaching
three sensors that integrate the incident light at different wavelengths. The color
of a surface depends on the surface reflectance and the colour of the incident light.
The aim of computational colour constancy is to find an illuminant invariant de-
scription of a scene from an image taken under unknown lighting conditions.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 192-199, 2005.
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This process is often performed in two steps: (1) estimate the illuminant param-
eters and (2) use those parameters to build illuminant independent description
of the scene. For these methods a canonical illuminant must be defined, i.e. an
illuminant for which the camera is balanced and the colours appear in a trust-
worthy form. Under this illuminant, the RGB values of an image of a scene can
be taken as descriptors of the surfaces. There is a wide literature on computa-
tional colour constancy methods [5—10]. None of them performs perfectly on all
kind of images under weak assumptions.

Many of these methods directly estimate the illumination change from the
unknown illuminant to the canonical illuminant. Considering the von Kries adap-
tation model [11], the transform of an illuminant change can be modelled by a
linear diagonal model, as proven in [12]. For example, the RGB response of a
camera to a white patch under an unknown illuminant is (RY,GY, BY) and the
response under the canonical illuminant is (RS, GS, BY), the illuminant change
from the unknown to the canonical illuminant can be obtained by scaling the
three channels by RS /RY, GS /GY, BS /| BY respectively. Thus, the colour of the
illuminant of an RGB image can be modified by a diagonal change (1),

a0 RY
(RC,GY,BYy=10p0 GY (1)
00~y BY

where o = R$/RY, 8 = G$/GY,v = BS/BY. In a typical colour constancy
problem, we have acquired the image under an unknown illuminant,
(RY,GY,BY), and try to obtain the surface descriptors, (R¢,GY, B¢). The
triplet (c, 8,7) is called a map, and knowing the actual map implies a guessing
of the unknown illuminant.

The different methods proposed in the literature can be sorted in different
classes regarding the assumptions they are based on. The first family of algo-
rithms are established upon the Retinex theory of human vision [13], which
goes beyond simple illuminant estimation. The theory assumes that slight spa-
tial changes in the response are due to changes in illumination or noise, and
large changes correspond to surface changes. The idea is to run random paths
from every surface and compute the ratio of the responses in each channel. The
descriptor of a pixel is given by the average of the ratios from different paths
beginning at the same pixel.

Another group are the Grey World methods. They are based on the assump-
tion that the scene is colorimetrically unbiased (no particular colour predomi-
nates). In other words, supposes that a complex scene contains a wide range of
reflectances, whose mean is a grey reflectance (for instance, a uniform reflectance
with half of the maximum energy). Therefore, to correct the illumination of an
image the map that takes the average of the image to the average of the canonical
gamut is used as an estimation of the illuminant change.

One of the most important groups to date are the Gamut Mapping methods.
All of them are based on the idea of canonical gamut firstly introduced by
Forsyth in [5]. If we consider all the possible reflectances under a canonical
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illuminant we obtain a convex set of RGB values, which are the whole set of
values that can be perceived under the canonical illuminant for a given camera.
This introduces a device/illuminant restriction, and it can be used to build a set
of illuminant changes that are feasible, i.e. which map the image gamut within
the canonical gamut. To build the feasible set of illuminant changes, the image
gamut is computed first. All the maps from a single colour in the image gamut
to each colour in the canonical gamut form a convex set. The intersection of the
convex sets obtained for each vertex in the image gamut results in a convex set
of feasible maps. This feasible set, which is given in the map space, a3~y-space,
normally contains a wide range of assorted maps unless the gamut of the image
is large enough to reduce the possible bindings of the image gamut inside the
canonical gamut. A selection step is needed to choose the optimal map inside
the feasible set, i.e. the best approximation to the unknown illuminant. Different
heuristics have been used to obtain a single answer. The most successful heuristic
[11] is the selection of the map that maximises the volume of the mapped image
gamut, i.e. the map that makes the image gamut as colorful as possible within
the bounds of the canonical gamut, also known as CRULE. Other heuristics like
the average map of the feasible set have also been studied. Several methods have
derived from Forsyth first approach, [9, 15].

Another kind of methods are those based on Colour by Correlation which pro-
pose to study the chromaticities of an image to decide among a set of proposed
illuminants the one that is more compatible with the chromaticities found [16]. A
correlation matrix is pre-computed and describes for each of the selected illumi-
nants the occurrence of image chromaticities. Each row in the matrix corresponds
to a different training illuminant and matrix columns to possible chromaticity

ranges.
An interesting study comparing the preformance of these different methods
described can be found in [14]. There are more contributions which are important

in colour constancy but they do not adapt to the context we work in, as they
deal with the recovery of surface spectral reflectances using reduced sets of linear
bases [0].

3 Surface Matching

The method we propose in this paper tries to introduce the surface matching
phenomenon, previously studied as one of the cues of how the human visual
system performs colour constancy [, 17], to reduce the number of possible map
solutions. Nevertheless the idea has not yet been explored when performing
computational colour constancy. In the process of guessing the illuminant of an
image, it is likely to match the colours that we find in the image with colours
that we have previously learned, which are a set of colours we already know
for its significance. It can be easily assumed that when looking at an image
a part of the colour constancy process is the matching of the colours that we
see in the image with colours that we ‘expect’ to find in the image. This refers
to a previously learned knowledge of common colours as seen under an ideal,
canonical, illuminant.
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Considering this idea, we can pair the colours that are present in our image
with ‘reference’ colours. The values of these colours as they would be seen under
the canonical illuminant can be computed and they can be named as canonical
colours or ‘canonical surfaces’. Therefore, we can match every surface in our
image with a ‘canonical surface’. This is the surface matching process, also known
as ‘asymmetric colour matching’ and depicted in [!]. To perform the ‘surface
matching’ process, we need the set of surfaces to match with. In our surface
matching approach, we propose to use a reduced set of ‘canonical surfaces’,
carefully selected to represent the most important and frequent colours. The
selection of these canonical surfaces is a hard goal that should be addressed.

4 Relaxed Grey-World

Surface matching implies to match every image surface with every canonical sur-
face, that is to generate all the possible combinations of matchings. Even using a
reduced and significant set of image surfaces and a small set of canonical surfaces
the set of pairs of matches that can be derived is too large and introduces lots of
non-consistent pairs of matchings (if a reddish image surface is matched with a
bluish canonical surface, it is not coherent to match another bluish image surface
with a reddish canonical surface). This leads us to introduce an assumption to
constrict the set of matchings, in order to build a consistent set losing minimum
performance.

The Grey-World assumption, as depicted before, supposes the average of an
image is grey. Even though this is a strong assumption it can help us to find the
consistent constriction that maintains the colour structure of the image gamut.
In order to relax this assumption we propose another one:

Relaxed Grey-World Assumption. The image gamut under the canonical
illuminant contains grey or its average is close to grey.

Considering this assumption the set of canonical surfaces that can be paired
with each image surface can be reduced to the canonical surfaces which are close
to the image surfaces when the grey-world map is applied to the image, figure 1.
That is, the grey-world assumption is relaxed in order to find the solutions near
the grey-world, enabling some sort of flexibility near this solution.

The relaxed grey world asumption combined with surface matching lead us
to the new approach we propose in this paper. The method matches the image
surfaces with canonical surfaces that we have previously selected, but only with
the surfaces that are consistent with the relaxed grey-world assumption, i.e. the
canonical colours near a neighbourhood in the grey world transform.

First of all we need to select a representative set of surfaces and compute their
RGB values for the canonical illuminant, which is selected to be well balanced
with our sensor. Hence we have a set of k canonical surfaces, denoted as S¢ =
(5€,5¢,...,5C).

Thus, for a given image, I, acquired under an unknown illuminant U, the
matching algorithm is carried out with the following steps:
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Fig. 1. The relaxed grey-world assumption leads us to find a set of nearest-neighbour
canonical surfaces for each image surface. The image is maped to the center of the
canonical gamut (a),(b) and there the nearest-neighbour canonical surfaces for each
image surface are selected (c).

1. Getting RGB values of surfaces from the image I, denoted as SY(I) =
{SV,8Y ..., SYY, where n is the number of surfaces.

2. Applying the grey world transform to SY(I), which places the center of the
image gamut in the center of the canonical gamut (fig. 1 a,b). It is denoted
as SEW(I).

3. For each surface, i = 1...n, of SW(I) we select the m nearest neighbours
surfaces from the canonical surfaces (fig.1 c), S, we denote this set as SNV,

4. Computing the set of all possible correspondences between each SY with
all the surfaces in S}V, we name this set RCorr = {Sf = SN, SY =
Sé\fg, oo, SY = S,]XZJ)\Q;Vpi =1,...,m}, where #RCorr = m™.

5. For each element of RCorr, the corresponding a3y map is computed, and
we obtain a set of maps, M APfﬂqYO”.

6. All the maps in M APO{%[,QYOTT out of the feasible set are removed, as we do not
want to deal with impossible maps.

Once we have generated the set of maps, M APO%C;"”, we propose to use
one of the existing heuristics to select one map within this set. In the following
section we show the results using the heuristics of maximum gamut volume and
average of the set. A simplification of the process can be seen in figure 2.

5 Experiments and Results

To evaluate our method in this first approach we have looked at its performance
using only synthetic data. This is a first way to evaluate methods because perfor-
mance is not affected by image noise and we are able to evaluate performance over
hundreds of synthetic images and thus obtain a reliable performance statistic.
Otherwise, with real data these problems arise, and also the available datasets
are not large enough to extensively test the method.

To build the RGB of the canonical surfaces, we have chosen a synthetic
planckian illuminant with CCT=6500K (fig. 3 (a)). A gausian narrow-band sen-
sor has been built, with centers in 450, 540 and 610 nm (fig. 3 (b)). Hence, the
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Fig. 2. An illustration of how the relaxed grey world algorithm proceeds.
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Fig. 3. The synthetic illuminant (a) and sensor (b) used in the experiments.

1995 reflectances of the Munsell chips have been used to synthesise the RGB
values of our canonical set of surfaces.

Once we have selected the canonical surfaces we generate synthetic images
to test the algorithm. 400 images consisting of 10 reflectances per image (from
Munsell chips randomly selected) under a random illuminant, chosen from a
frequently used selection of 11 different illuminants [14]. To test the method, we
have selected 6 surfaces from each image and found their 5 nearest neighbours
surfaces from the canonical surfaces, that is n = 6 and m = 5.

We have used as recovery error the angular error between the RGB of the

— C
estimated illuminant, RGB,,, and the RGB of the canonical illuminant used,
RGBS (as it is done in [11]). These RGB values of the illuminants are normally
unknown in real images, but they can be computed easily working with synthetic
data.

— C
recovery error = angle(RGB,,, RGBS)
In table 1 we can see the performance of the proposed method versus one

of the most significant colour constancy algorithms that normally achieves best
results [11], CRULE (introduced by Forsyth in [5]). The performance varies
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Table 1. Comparison of the performance of the two methods. The value shown is the
root mean square of the angular errors computed for the 400 synthetic images.

Heuristic CRULE Relaxed Grey-World
Maximum Volume map 7.09° 7.55°
Average map 9.35° 6.62°

depending on the heuristic used to select the optimal map within the computed
maps. As it can be seen, the best performance is obtained taking the average
map of the proposed Relaxed Grey World. This improvement reinforces the
use of the relaxed grey-world assumption. Also, in figure 4 the different sets of
maps generated with the two algorithms can be compared. With our method,
we avoid to generate a large set of maps that includes the worse maps. We look
for a reduced set of maps which includes the best solutions. In this sense we
have computed the average value of the best angular error for each of the 400
images and it has resulted to be 1.9°, which means that an optimal map is
included in our set of maps in the most of the cases. This result combined with
the performance of our method using the average as heuristic justifies the use of
the reduced set of maps.

Fhaelums

Waevalume

i s
Annubr Errar Anquisr Ener

Fig. 4. Comparison of the sets of maps generated with CRULE (dark dots) versus the
set of maps generated with our method (bright dots) for 2 different images. In the x-axis
is represented the angular error and in the y-axis the maximum volume heuristic.

6 Discussion

As it has been proven, the introduction of the surface matching approach to solve
computational colour constancy opens a new line of research in this problem that
can help in reducing the error of current methods, that ignore image information
that can be introduced by surface matching. The method proposed performs
good in the synthetic world and this encourages us to go on with its improvement.
The selection of canonical surfaces is an important step to pay more attention
and to be focus of a deep study. Indeed, the number of canonical surfaces used
in our experiments may seem too large to depict representative colours, but it
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has been used as a first approach to the surface matching method, to test how
good it could perform. Further work needs to be done in the selection of the set
of canonical surfaces, as they should represent more trustworthily our knowledge
of colours. When done, this part of the process of colour constancy in the human
visual system will be enabled to take part in computational approaches.
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Abstract. This paper describes a framework for analyzing video se-
quences of a driver and determining his level of attention. The proposed
system deals with the computation of eyelid movement parameters and
head (face) orientation estimation. The system relies on pupil detection
to robustly track the driver’s head pose and monitoring its level of fa-
tigue. Visual information is acquired using a specially designed solution
combining a CCD video camera with an NIR illumination system. The
system is fully automatic and classifies rotation in all-view direction,
detects eye blinking and eye closure and recovers the gaze of the eyes.
Experimental results using real images demonstrates the accuracy and
robustness of the proposed solution.

1 Introduction

The ever-increasing number of traffic accidents in the EC due to the diminished
driver’s vigilance level has became a serious problem to society. Driver fatigue
resulting from sleep deprivation or sleep disorders is an important factor in
the increasing number of accidents on today’s roads. Statistics shows that a
leading cause for fatal or injury-causing traffic accidents is due to drivers with a
diminished vigilance level. Automatically detecting the visual attention level of
drivers early enough to warm them about their lack of adequate visual attention
due to fatigue may save a significant amount of lives and personal suffering.
Therefore, it is important to explore the use of innovative technologies for solving
the driver visual attention monitoring problem.

Many efforts have been reported in the literature on developing non-intrusive
real-time image-based fatigue monitoring systems [2, 7-9, 11]. Measuring fa-
tigue in the workplace is a complex process. There are four kinds of measures
that are typically used in measuring fatigue: physiological, behavioral, subjective
self-report and performance measures [15]. An important physiological measure
that has been studied to detect fatigue has been eye-movements. Several eye-
movements were used to measure fatigue like blink rate, blink duration, long
closure rate, blink amplitude, saccade rate and peak saccade velocity. An in-
creasing popular method of detecting the presence of fatigue is the use of a
measure called PERCLOS [15]. This measure attempts to detect the percentage
of eye-lid closure as a measure of real time fatigue.The present solution focuses

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 200208, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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on rotation of the head and eye blinking, two important cues for determining
driver visual attention, to gather statistics about the driver’s visual attention
level.

The organization of the paper is as follows. In section 2, the image acquisition
system and illuminator is presented. The pupil detection solution based on the
Purkinje images is presented on section 3. This entails pupil detection, tracking
and eye gaze estimation. In section 4, the automated driver visual attention
statistics and some results are given and in section 5 the details of the 3D
head orientation and results are presented. Finally, conclusions are presented in
section 6.

2 Image Acquisition System and Illuminator

To take advantage of the Purkinje images, a special camera-illuminator de-
vice was constructed. For that purpose, several NIR light emitting diodes (the
TSHAG650 from Vishay Telefunken) were distributed evenly and symmetrically
along the circumference of two coplanar concentric rings [3] (see fig. 1). The
center of the rings coincides with the camera optical axis. The IR light source
illuminates the driver’s eye and generates two kinds of pupil images: bright and
dark pupil images. The bright pupil image is produced when the inner ring of IR
leds is on and the dark pupil image when the outer ring is on. In order to take
dark and bright pupil images simultaneously, the inner and outer ring control
make use of the even/odd video signal information. The first Purkinje image,
the so-called glint, is observed in both pupil images. A narrow band NIR filter
(700-900 nm) was placed in front of the optical system of the camera to min-
imize interference from light sources beyond IR light and to maintain uniform
illumination under different light conditions.

3 Pupil Detection, Tracking and Gaze Estimation

A robust and accurate pupil detection is crucial for the subsequent eyelid move-
ments monitoring, eye gaze determination and face orientation estimation. Pupil
detection is obtained by IR illumination after removing external illumination dis-
turbance, and the result will be used on pupil tracking via Kalman filtering.

Fig. 1. Image Acquisition and NIR Illuminator.
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Fig. 2. The bright and dark pupil effect.

3.1 Pupil and Glint Detection

At the NIR wavelength, pupils reflect almost all the IR light they receive along
the path back to the camera, producing the bright pupil effect. If illuminated off
the camera optical axis, the pupils appear dark since the reflected light will not
enter the camera lens. This produces the so-called dark pupil effects.

Pupil detection involves locating pupils in the image. The narrow band NIR
filter that was attached to the camera lens almost remove the ambient light
interference. To robustly detect the pupils, each frame is separated into two
image fields, representing the bright and dark pupil images separately (fig. 2).
The image subtraction of these two image fields will produce an image with an
high intensity contrast between the pupils and the rest of the image, allowing
easy pupil segmentation via a simple global thresholding. This yields a binary
image consisting of binary blobs that may represent the pupils. The pupils are
detected by searching the entire image to locate two blobs that satisfy certain
size, shape and distance constraints. The relationship between the shape and
size of the pupils and the distance between each other is defined based on the
anthropometric measures of the human face. After the correct detection of both
pupils, an ellipse fitting is applied to each pupil and the centroid of the resulting
ellipse is returned as the position of the detected pupil.

To take advantage of the high contrast between the glint and the rest of the
image, the glint is detected using the dark image field. The bimodal intensity
distribution of the dark image field allows a robust detection of the glint via
simple image thresholding in the neighborhood region of the pupils. Once again,
the shape and position distribution of the glints are used to constrain the seg-
mentation results. Since the glints are visible in both image fields, the glints
detected in the dark image field are cross-checked with the results obtained with
the bright image field. The centroid of the segmented blob of a glint is returned
as the image position of the glint.

3.2 Pupil Tracking

To continuously monitor the driver visual attention, it is important to track the
eyes in real-time. We implemented a Kalman filter tracker to accomplish this
task. This tracker is aimed to fulfill two purposes: estimate the position and
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uncertainty of moving targets in the next frame and to filter out noise input
data.

The target state vector is X = [p; pr g1 g Pt Dr Gi gr] where p; =
(@i, Yi)limprp, a0d Pi = (Z4,9i)|i=p,..p, are the image position and image ve-
locity of the pupils and g; = (s, Yi)|i=g,.q and i = (%, ¥i)|i=g,..q, are the image
position and image velocity of the glints.

The system model used is the following discrete model:

]T

Xk:f(kal,k—l)—O—Wk Zk:h(Xk,k)+Vk (1)

where Wy, is a discrete-time white noise process with mean zero and covari-
ance matrix @), Vi is a discrete-time white noise process with mean zero and
covariance matrix R, and W, Vy, and X, are uncorrelated for all j and k. We
considered the assumption that trajectories are locally linear in 2D, resulting for
the system model the following linear difference equation Xy = A - X1 + Wy
where the system evolution matrix, Ay, is based on first order Newtonian dy-
namics and assumed time invariant.

The measurement vector is Zx = [p; pr ¢i 9] and is related to the state
vector via the measurement equation Z = C' - X + V.

The state covariance matrix P encodes the information of the ellipse of
uncertainty of the estimation and can be used to compute the search area for
the pupils and the glints. Specifically, the search area size was chosen as [H, W] =
204+ 0.2 Pi(y,y),25+ 0.3 - Py(z,x)].

]T

3.3 Head-Eye Gaze Estimation

As stated before, the first and the fourth images of Purkinje (dual-images of
Purkinje) supply a very reliable information for head-eye gaze estimation [3, 10].
When the head-eye is panned horizontally or vertically, the relative positioning
of the glint and the centre of the bright-eye change accordingly, and the direction
of gaze can be calculated from these relative positions.

For a roll free head rotation, the locations of the pupils will share a common
image line. In case of a pure roll head rotation (frontal orientation), the orienta-
tion of the line defined by both pupils gives an estimation of the roll angle of the
head and the relative positioning of the glint and the pupil is the same in each
one of the eyes. In the case of a head-eye yaw rotation, this relative positioning
is different for each one of the eyes, being equal for the case of a pitch head-eye
rotation. This observation is used to obtain a rough estimation of the direction
of gaze.

Assuming roll free head rotation, the dual-images of Purkinje supply the
following measures

Dy = (|xp7‘_xgr|)_(|xpl_‘TQZD DPitel = 0'5*((ym_ygr)+(ypz_ygz)) (2)

that are used to estimate the head-eye gaze orientation. DY*" is null for a frontal
head pose and shows positive/negative values for right/left head rotations. The
eye gaze orientation is measured on the eye with less pupil-glint relative position.
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Fig. 3. PERCLOS (left) and AECS (right) measurements over a period of 80 seconds.

Using these measures, the head-eye gaze orientation is obtained via a linear
mapping procedure. To make these measures scale invariant, they are normalized
by dividing over the inter-pupil distance value of the front view. An off-line
calibration procedure was carried on, quantizing the head gaze orientation in
steps of 5°.

4 Automated Driver Visual Attention Statistics

Of the drowsiness-detection measures, the measure referred to as PERCLOS was
found to be the most reliable and valid determination of a driver’s alertness level.
PERCLOS is the percentage of eyelid closure of the pupil over time and reflects
slow eyelid closures (droops) rather than blinks. To measure eyelid closure of
the pupil, the size of the pupil was taken as the average size of both pupils and
the rate of closure is defined as ratecipsure = 1 — (pupilsize)/max(pupilsize),
defining a closed eye if ratecjpsure > 0.8.

AECS is the average eye closure speed [9], which means the amount of time
needed to fully close the eyes and to fully open the eyes. An individual eye closure
speed is defined as the time period during which the 0.2 < ratecossure < 0.8.
Figure 3 show the PERCLOS and AECS for a period of 80 seconds.

5 Driver Head Orientation

The presented approach models the shape of the driver’s face with an ellipse,
since human faces can be accurately modelled with an ellipse and is less sensitive
to facial expression changes. To recover the 3D face pose from a single image,
it is assumed that the ratio of the major and minor axes of the 3D face ellipse
is know. This ratio is obtained through the anthropometric face statistics. Our
purpose is to recover the three angles of rotation: yaw (around vertical axis),
pitch (around horizontal axis) and roll (around the optical axis).

5.1 Image Face Ellipse Detection and Tracking

The image face ellipse detection and tracking is based on three major steps: i)
obtain an approximate location of the face based on the positions of the eyes.
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Fig. 4. Image face ellipse detection.

Since the pupil position varies as a function of the eye gaze movements, the
approximate location of the face is based on the location of the glints which are
invariants to the eye gaze. ii) determine the best fitted ellipse for the image face
by maximizing the normalized sum of the gradients around the edges of the face.
iii) Ellipse face tracking using a Kalman filter.

In order to correctly detect the face ellipse, some constraints must be consid-
ered, in special size, location and orientation. The distance between the detected
glints and their location are used to constrain the size and location of the image
face ellipse. The orientation of the line that passes through both glints is directly
related to the 3D face roll rotation. For roll free face poses this line remains hor-
izontal, which means that it is invariant to the yaw and pitch rotations. Under
this constraints, the roll angle () is defined by ¢ = atan[(yp, —vp,.)/(Tp, — Tp,.)]-

Under frontal orientation, a weak perspective projection can be assumed and
the face symmetry for the location of the eyes within the 3D face ellipse hold
for the image face ellipse. This means that the major axis of the face ellipse is
normal to the line connecting the two glints and pass through the center of the
line. In fact, these constraints doesn’t hold for non-frontal orientation and the
orientation of the major line is not normal to the connecting line. Although,
the solution adopted kept the constrain that the major axis of the ellipse pass
through the center of the line, considering the existence of an angle o between
the major axis and the normal to the line that connect the two glints.

Assuming the existence of an ellipse coordinate frame located at the middle
point of the glints connecting line, with the X and Y axis aligned with the minor
and major axes of the ellipse, respectively, the image face ellipse is characterized
by four parameters (m;,n;,d, ), where m; and n; are the lengths of the major
and minor semi-axis of the ellipse, respectively, d is the distance to the image
ellipse center and « is the rotation angle.

Taking the approach proposed by Birchfield [1], the image face ellipse can be
detected as the one that minimizes the normalized sum of the gradient magnitude
projected along the directions orthogonal to the ellipse around the perimeter of
the ellipse. This can be formulated has ¢ = vazl In(i) - g(i)|*> where n(i)
is the unit vector normal to the ellipse at pixel i, g(i) is the pixel intensity
gradient and (-) denotes dot product. The best face ellipse is x = arg maxec g (¢?)
where the search space E is the set of possible ellipses produced by varying the
four parameters of the ellipse. In order to constraint the searching space, the
rough estimation of the 3D face orientation obtained via the dual-images of
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Purkinje is used to define an initial estimate for these parameters. The four
ellipse parameters are tracked via a kalman filter. Figure 4 show the result of
the image face ellipse detection.

5.2 Face Orientation

Consider an object coordinate frame attached to the 3D face ellipse, with its
origin located on the center of the ellipse and its X and Y axes aligned with the
major and minor axes of the ellipse. The Z axis is located normal to the 3D ellipse
plane. The camera coordinate frame is located at the camera optical center with
the X, and Y. aligned with the image directions with the Z. along the optical
axis. Since the 3D face ellipse is located on the plane Z = 0, the projection
equation that characterizes the relationship between an image face ellipse point
pi = (z,9,1)T and the corresponding 3D face ellipse point P; = (X,Y,1)7 is
given by p; = BK[R|t]P; where K represents the camera intrinsic parameters

matrix, M = [R|t] = [r1 r2|t] is the extrinsic parameters matrix and 5 = \/f is
an unknown scalar.
Representing
a ¢/2d/2] [z
[zyl]|c/2 b e/2| |y|=0 (3)

d/2e/2 f | |1

the matricial generic formula of an ellipse, the 3D face ellipse and the image face
ellipse can be defined, respectively, as

(xvi1]Q[xy1]' =0 [zyl]A[zy1]" =0. (4)
Substituting p; = BKM P; to Eq. 4 lead to
(XY 1] BMTKTAKM [X Y 1]7 = 0. (5)

Denoting B = KT AK, the 3D ellipse matrix Q yields Q = 3MTBM.

Let the length of the major and minor axis of the 3D face ellipse be m and
n, respectively, and since the object frame is located on the center of the ellipse,
the ellipse matrix @) is parameterized as

[1/m?2 0 0
Q= 0 1/n% 0 (6)
| 0 0 1
resulting the equation
1/m?> 0 0] T Bry r¥ Bry rT Bt
0 1/n? 0 | =8 |rIBrirdBryrl Bt (7)
0 0 —1] t"Bry t"Bry t" Bt

Due to the symmetry of the matrix, there are only six equations (constraints)
for a total of nine unknowns.
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Fig. 5. Head face orientation estimation.

Since the roll angle was already obtained, the face orientation can be defined
just by the yaw and pitch rotation. Assuming a null translation vector, the
rotation matrix obtained from the yaw and pitch rotation is

cos(o) sin(o)sin(v) —sin(c)cos(v)
R=R,R,=[rirar3] = 0 cos(v) sin(v) . (8)

sin(o) —cos(o)sin(v) cos(o)cos(v)

Assuming that the ratio between the major and minor axis if the 3D face
ellipse is know by anthropometric face analysis, and letting ¢ = m?/n? represent
this ratio, the 2 x 2 sub-matrix yields

3 rIBrirIBry]  [1/m? 0 )
r¥BryrIBry| | 0 1/n?
resulting the following constraint equations
r{ Bry =0 (10)

TpB B 2
671">m;”1 _ 67"12/227”2 = rlTBﬁ = ;2 T2TBr2 = TQTBTQ — crlTBrl =0. (11)

Using these two equations it is possible to solve for the pitch and yaw iter-
atively. The initial estimates of 0° for both angles has been used with correct
convergence results. This approach was tested with several real images with good
results. Although, the accuracy obtained with this approach is highly dependent
on the image face ellipse obtained. Figure 5 show the results obtained with the
face orientation estimation approach.

6 Conclusions

A Real-time Driver Visual Attention Monitoring System was presented. A spe-
cial hardware image acquisition and illuminator system was described to take
advantage of the dual-images of Purkinje. A efficient and simple solution for
pupil detection was presented that were used to take some drossiness measure in
real-time. A rough estimation of the head-eye gaze was described based on the
dual-images of Purkinje and finally an ellipse based face orientation estimation
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was presented. Although the good results obtained with the face orientation es-
timation, it reveals to be highly dependent on the image face ellipse detection.
Further research is necessary in order to improve the accuracy of the image face
ellipse detection.
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Abstract. We present an approach to vision-based person detection in
robotic applications that integrates top down template matching with
bottom up classifiers. We detect components of the human silhouette,
such as torso and legs; this approach provides greater invariance than
monolithic methods to the wide variety of poses a person can be in. We
detect borders on each image, then apply a distance transform, and then
match templates at different scales. This matching process generates a
focus of attention (candidate people) that are later confirmed using a
trained Support Vector Machine (SVM) classifier. Our results show that
this method is both fast and precise and directly applicable in robotic
architectures.

1 Introduction

Detection and recognition of objects from images disregarding orientation, scale
and view is a very important research subject in computer vision. People de-
tection in images and video sequences is a research subject in this area. We are
interested in this problem from a robotic application point of view since we are
currently in early development stages of a robotic application for search and
rescue operations [2].

The problem of people detection is very complex and has not been solved in
its generality, but there have been advances where the pose is fixed, such as in
the case of pedestrians [1, 9, 14]. However not much attention has been given
to the problem when the camera cannot be assumed stationary (therefore not
having a explicit scene model).

Our approach uses fast template matching as a focus of attention. Basically
it discards locations where there is no silhouette matching the human body. And
from those candidate locations (ideally, a very reduced set), we query a full scale
SVM.

The contributions pretended are two-fold: first the design and implementa-
tion of a vision system that integrates top-down template matching with bottom-
up classifiers; and second a concrete implementation on board a robot in an
embedded application.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 209-216, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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The rest of the paper is organized as follows, first we describe distance trans-
forms for template matching and then support vector machines for pattern recog-
nition, after that we describe the system details, then the results are presented.
Finally, the discussion and conclusions are presented and then ideas for future
work are given.

2 Distance Transform for Template Matching

A distance transform (DT) converts a binary image (containing values 0 and co)
to an image where each pixel value denotes the distance to the nearest feature
pixel. From this definition of the distance transform problem, a O(n*) algorithm
can be readily constructed (for an n x n image). However, over the last 20 years
the state of the art has advanced either approximating the EDT in a O(n?) time
or providing an exact solution in a O(n?) time.

Many DT algorithms exist, the differing characteristic is the distance metric
and the propagation of local distances. In particular we use Euclidean distance
and Maurer’s line-column scanning method [10].

After the image has been adequately preprocessed the template matching
step begins. As described in by Gavrila [7], a given image [ is said to be matching
a template T" when:

D(T,I) <6 (1)

where 0 is a user defined threshold on the maximum acceptable dissimilarity
between the DT image and the template, and D(T, ) is given by:

DI = . S dilt) 2)

teT

where |T| is the number of features in T" and dy(t) is the distance between feature
t € T and the closest feature in I.

3 Support Vector Machines for Pattern Classification

Support vector machines (SVMs) is a principled machine learning technique that
is well founded in statistical learning theory.

SVMs have two outstanding characteristics: (1) they have a solid mathemati-
cal foundation and (2) strong practical results in large-scale, real-world problems.

Traditional machine learning methods such as backpropagation, minimize
the training error, while SVMs minimize a bound on the empirical error and
the complexity of the classifier, simultaneously. Therefore, SVMs are likely to
perform better than conventional techniques, such as backpropagation trained
neural networks. The decision surface of an SVM is given by:

N
f(x) = sgn <Z iy K (x, ;) + b) (3)
i—0
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where N is the number of support vectors (points closest to the separating
hyperplane, in terms of which the decision boundary is defined); x is the point
to be classified, x; is a support vector, and «; is the corresponding Lagrangian
multiplier. K is a kernel satisfying Mercer’s conditions. For a complete review
of SVMs for pattern recognition (see [4]).

4 System Details

At its core, our system for person detection uses template matching employing
Euclidean distance transform (EDT) to evaluate candidate people by indepen-
dent components (such as torso, leg, arm, head). These matched components are
immediately verified using a SVM specialized for that component. If valid, the
component is adequately marked on the image. The very first step is preprocess-
ing. Each input image is grayscaled and contour-filtered using the Marr-Hildreth
method[11]. After that, the contoured and grayscaled (CG) image is transformed
using an EDT. Figure 1 shows the result of running the preprocessing step on
three example images.
We have devised two simple methods for image scanning:

— Using exhaustive scanning. In an X x Y image with an N x M template,
we first try to match the window defined by the rectangle (0,0, N, M); after
that the one defined by (1,0, N + 1, M), and so on until reaching the end of
the image at that scale.

— Using random sampling. In an X x Y image with an N x M template, we
select a fixed number of samples proportional to the size of the image. This
scanning method accelerates the process with a sacrifice in precision.

In the offline experiments we use exhaustive scanning because runtime perfor-
mance is not an issue. However, the online version uses the randomized method.

After experimentation we settled with 12 templates. More templates means a
better definition of the class of interest but also translates into a slower matching
process. The templates are taken from photographs of the object of interest after
contour filtering it and obtaining the relevant connected components.

When an image window matches a template, a previously trained and boot-
strapped SVM is queried. If the SVM classifies the window as a valid component,
the component is then marked in the original image taking into account the scale.
Compared to template matching, SVM query phase is very slow. We have looked
into simplifying the verification and use Burges’s method [3] but later noticed
that a homogenous quadratic kernel does not perform well on some of these
component datasets.

This approach is not new. Heisele et al. [9] and Gavrila [7], both use some type
of hierarchical quick discard method. However, our method is very simple and
uses a small amount of templates compared to the results reported by Gavrila
[7].

The initial prototype of the current system was written in Python. It uses
the LIBSVM support vector machine library [5]. For image processing, we used
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Fig. 1. (a) is the original image, (b) is the contoured and grayscaled image and (c) is
the distance transformed image ready for template matching.
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Fig. 2. Chessboard feature selection for various sizes. White squares represent selected
pixels, black squares represent non-selected pixels.

the Python Imaging Library (PIL). The production version of the system is
written in C+4 and uses LIBSVM and ImageMagick. The main difference in
the two implementations is mainly performance. On our 1.6 GHz Pentium IV
machine, the C4++ version runs at 3 frames per second. The system does not
use movement as a focus of attention; using movement our system should be
considerably faster.

5 Results

We use a chessboard sampling of the pixels in the input image, as presented in
Fig. 2. The ROC (Receiver Operating Characteristic) curves in Fig. 3 (right)
show that the loss in accuracy is not significant while this feature selection
method makes real time performance feasible for our approach. The fact that
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Fig. 3. Left: ROC Graphic of the SVM classifier with an RBF (Radial Basis Function),
quadratic and linear kernel and C=5. Both classifiers are of similar complexity. Notice
the poor performance of the linear and quadratic kernels. Right: ROC Graphic of the
SVM classifier with an RBF (Radial Basis Function) and different chessboard intervals.
The loss in accuracy can also be observed in Table 1.

Table 1. Chessboard feature: selection and mean and standard deviation of the clas-
sification rate doing a 5-piece cross-validation of the torso classifier.

Features Mean + Std. Dev.
1x1 89% + 1%

2x2 86% + 1%

3x3 86% + 1%

5x5 87% + 1%

=<7 83.5% + 1%

this type of very simple feature selection approach works shows that the training
data are highly redundant.

We applied a 5-piece cross-validation of the training set and report the mean
and standard deviation of the classification accuracy rate of the torso classifier
in Table 1. Results show that we obtained high accuracy rates on a very large
complex dataset.

In Fig. 3 (left) it can be clearly observed that the linear and quadratic kernel
perform very poorly in this domain. While using a quadratic kernel, Burges’s
method [3] can be readily applied, as reported by Papageorgiou and Poggio [13]
after results reported by Osuna et al. [12] in another domain. We consider the
precision loss to make this approach prohibitive.

We present several examples of the output of the offline version of the system
in Fig. 4. Notice that kids are detected by the system. We consider this to
be encouraging since their characteristic proportions are different to those of
an adult. The system is also able to correctly classify a naked torso. This is
remarkable since the torso of a naked person is considerably different to the
torso of a dressed person.
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Fig.4. The first two rows contains examples of the system running on several images
offline. The last row shows results obtained by the online version of the system in our
office environment.

6 Robotic Application

We tested the system onboard an ActivMedia Robotics Pioneer 2 mobile robot.
The online version (onboard the robot) uses the randomized scanning method
previously described.

It is important to note that because the camera is not stationary and the
background is constantly varying, simple techniques of background substrac-
tion cannot be used for getting the foreground objects. We execute multi-scale
exhaustive scanning at each frame.

Because a robotic application usually needs to be run on hardware that is
not last generation, we found the querying an SVM on every candidate quickly
becomes a cripling bottleneck. We eliminated the SVM querying step from the
online version.

The performance (as measured by false positives and false negatives) degen-
erated significantly. To handle this we adjusted (downwards) the value of © in
the template matching step. Further, to enhance the precision of the system in
our office environment, we measured the correlation of the value pixels on the
DT image over the template as described in equation 2 and called this value 3
and measured the percentage of matching non-data points in the template com-
pared to the contoured image and called this value a. So the matching criteria
is:
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g>7 (4)

where v is an experimentally set threshold value. The matching criteria seeks
a balance of many matched points with low matching error (derived from the
distance measure of the EDT image ). This refinement of the matching criteria
significantly decreases the false-positive rate and eliminates the need of querying
an SVM to have acceptable results.

The online version of the system works at 3 Hz.

7 Conclusions

We have presented an approach to vision-based person detection in robotic ap-
plications that integrates top down (high speed) template matching with bottom
up classifiers. We detect components of the human silhouette such as torso and
legs; this approach provides greater invariance than monolithic methods to the
wide variety of poses a person can be in.

The torso detection methodology presented currently works very well even
though each pattern contains more than 1400 features. We have found that the
torso can be characterized as very noisy data due to the presence of clothes. The
trained SVM classifier correctly captures the relevant information to classify a
torso from CG image data, yet querying it is a bottleneck that makes unfeasible
to run the system in real time. We presented an alternative using only template
matching.

We believe this shows the wide range of applicability of our approach. Our
torso dataset contains 924 torsos (from the MIT Pedestrian dataset) and 2072
non-torsos (the non-torsos were generated after a bootstrapping process).

Developing classifiers and templates for other components of the human body
(more important in other poses) for use by this method constitutes promising
future work. By detecting components of the human body our method is more
resilient to occlusion than monolithic approaches.

Our system is not ready for mission critical applications. Performing a prin-
cipal component analysis (instead of the described chessboard) for feature se-
lection would be a challenging future direction with this large-scale dataset. In
the future, we intend to automatically construct shape models using techniques
such as described by Duta et al. [6] and Gavrila et al. [8] to generate a larger
template set before continuing on to the development of the classifiers for search
and rescue poses.
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Abstract. Visual tracking based on pattern matching is a very used
computer vision technique in a wide range of applications [1]. Updating
the template of reference is a crucial aspect for a correct working of this
kind of algorithms. This paper proposes a new approach to the updating
problem in order to achieve a better performance and robustness of track-
ing. This is carried out using a representation technique based on second
order isomorphisms. The proposed technique has been compared experi-
mentally with other existing approaches with excellent results. The most
important improvements of this approach is its parameter-free working,
therefore no parameters have to be set up manually in order to tune the
process. Besides, objects to be tracked can be rigid or deformable, the
system is adapted automatic and robustly to any situation.

1 Introduction

Visual tracking based on pattern matching is a very used computer vision tech-
nique in a wide range of applications [4]. Its working is simple, a template of
reference is searched in the current image. However, updating the template of ref-
erence is a crucial aspect since the object of interest normally modifies its visual
aspect through the time. Therefore, an adaptation of the pattern is necessary in
order to keep the object.

Two problems can arise due to the insufficient or excessive frequency of the
number of updates. In the first of them, the visual aspect of the object of interest
can become too different from the pattern and, in this way, the searching algo-
rithm can find other part of the searching window more similar to the current
pattern. This produces a jump in the object of interest. The other problem is
due to applying too and unnecessary updates to the tracking process. The digital
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Science and FEDER funds under research project TIN2004-07087, the Canary Is-
lands Regional Goverment under projects P12003/165 and PI12003/160 and the Uni-
versity of Las Palmas under projects UNI2003/10, UNI2004/10 and UNI2004/25.
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nature of images and patterns can cause drifting due to an accumulative sub-
pixel error in every update. Sometimes, the random movement of the object can
counteract the effect of the drift, but with certain kind of movements the drift
can be significant and end up losing the object. Every update causes a potential
drift.

This work proposes a new template updating approach within the framework
of representation spaces based on second order isomorphisms. Among its advan-
tages are a parameter free working, no parameter have to be set up manually
prior working, and a better performance than the traditional updating methods.

2 Second-Order Isomorphisms

The 7objects” are located in the real world and, after Shepard [11], we will
name to this world Distal Space. Every object in this space will have its own
representation in an inner space ®, named Prozimal Space. In this work we define
Visual Object to any physical entity in the real world which has associated its
own internal representation. In the proximal space the goal of the visual system is
to assign to every visual object in the distal space a unique symbol in a proximal
space, and thereby to establish an isomorphism between both spaces, [0].

Besides this correspondence, it is even much more useful to establish rela-
tions among objects in a distal space and their respective representations in the
proximal space. A second order isomorphism [7, 11] should accomplish that if
similarity between two distal objects A and B is greater than between distal ob-
jects B and C, then the distance between their respective representations (A’
B’ and C’) should verify that d(A’, B') < d(B’,C"). Therefore, the representa-
tion schema not only stores information about the objects but also information
about their relationships.

3 View-Based Representation Spaces

View-based approaches have experienced a renewed interest in the computer
vision community in the last decade. After Bergen and Adelson [1], the appear-
ance of a visual object in terms of images is described by the plenoptic function.
That is, if the plenoptic function of a visual object is known, then every possible
view of that object can be generated. This function depends on a set of param-
eters, like viewing position and lighting conditions, whose variability defines the
appearances subspace corresponding to the visual object [3] in the views space.

This function was originally defined for rigid objects. However, if time varying
parameters are included among the set of parameters p(t), the plenoptic function
V((x), p(t)) will be able of dealing with non-rigid visual objects. We can call to
this function generalized plenoptic function. Unfortunately, finding the plenoptic
function corresponding to an object in a certain scene is a very complex problem.

In order to overcome this drawback much effort has been done in the study
of the views space. To characterize precisely the variability of images and other
perceptual stimuly, a mathematical approach can be taken.
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The views space can be modelled in image coordinates, based on considering
the set of n x m pixels corresponding to each image as a R"*" vector. We can
consider each image as a vector with dimension m x n. The set of all possible
images of any distal object is a continuous subset of the views space [10]. This
continuity is related to the smooth variation of visual aspect with respect to
the plenoptic parameters. This can be stated as a continuity principle in the
following manner: given an arbitrarily small 7 and J4, the following condition
will comply:

AV (@: p(t)), V(@ p(t + 7))] < 6, Vo € S (1)

Where S corresponds to the support set of V' and d is a defined distance function.
Varying ¢, in the generalized case, the set of points corresponding to the images
of a distal object are in a manifold [10] M, of the Views Space. The manifold
of a certain object O MY is a lower dimensional subspace embedded [3, 7]
in the views space with the [ parameters of the plenoptic function as intrinsic
dimensions:

MC = {V(; p(t)) | p € '} (2)

During a tracking process of an object, this does not show all possible views of
itself included in its manifold but just a subset of them. This manifold subset,
I(z;t) € M2, will shape as a parametric curve of the time. We name this curve
Visual Transformation Curve of the Object.

The tracking process tries to follow the visual object through this curve
obtaining the values aq corresponding to the location of the best match at time
t, through a function like:

oo (1) = argmin 3 d(W (I(w: ); ), T (@ 1)) (3)

Where I(.;.) is the image where looking for the template T(.;.) by means of a
windowing function W (.;.), which extracts an area of the same size than T'(.;.)
at position a. ag(t) will be the minimum of the matching function, valued over
all possible values of . That is, position of the window W over the image V.

The template tracking depends on the definition of several elements. Once
defined the matching strategy and distance function to be used, the fundamental
element to be defined is the template update strategy or, in other words, the
steps in which the visual transformation curve is tracked.

4 Existing Updating Techniques

A number of strategies have been proposed to define the template to be used
during the tracking process. In [2, 9] there are good surveys about these tech-
niques. Strategies goes from no template updating at all, others with very naive
approaches and some of them using similarity thresholds.

Among them, template update based on statistics [3] tries to overcome the
inherent problems of drifting and jumps of interest seeking a balance in the
number of updates to perform. This updating schema takes into account that
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exceeding a similarity threshold provides only specific information and does not
provide information at all about the rest of the image.

However, the quality of a maximum (or minimum) relies on the values that
surround it. Therefore, this statistical method of updating considers the rest
of values of the similarity function, in such a way that if the maximum (or
minimum) is differentiated enough from the rest of values then the quality of
the current pattern is good. This level of differentiation is calculated based on a
statistical function, [3].

5 Proposed Template Matching Updating Technique

In order to describe the procedure proposed in this paper, we will denote as p to a
point corresponding to the representation of a visual object in the proximal space
® at a certain time, i.e. p will correspond with the template T' (see expression
3) in the space defined by R™*™. A distance d can be established in ®. In this
work, the distance d between two points p; and ps is based on the Lo norm.
This distance will be used between input image and template in order to obtain
the best match.

Visual Transformation Curve
of the object

my my

Proximal space

Fig. 1. The figure depicts the points corresponding to the symbolic representations of
the different searches over an image in a tracking process. The diagram c) illustrates
the consequences of a lack of required updating.

After applying the distance function between image and pattern sliding the
template over the searching window according to expression 3, a variable number
of local minima will show up, among them, the absolute one. In ®, see figure
1, a) the vector p corresponds to the pattern of reference, i. e. the view of the
object of interest to look for. The vector m; will be the absolute minimum since
it is the visual object most similar to the object of interest. The existence of
more local minima, ms and mg, implies that there are other similar objects in
a certain degree to the object of interest. We name them objects of the contet.
These objects, like the object of interest, have also their own curve of visual
transformation included in their manifolds of the proximal space. Although for
the sake of simplicity these objects of the context will remain static, see figure 1,
b). The Visual Transformation Curve of the object of interest is the loci of the



A New Approach to the Template Update Problem 221

points corresponding to the different minima after the matching process on input
images during a certain time. This curve will be composed by the nearest vectors
(my1,m), mY,...) to the pattern of reference (p). Therefore, m; corresponds to
the closest point to p in the moment ¢t = 0, m corresponds to the closest point
to p in the time ¢ = 1 and so on. However, if there exist, at least, one object of
the context, mg, and the pattern of reference (p) is not updated, it may occur
that, after a number of frames, the absolute minimum does not correspond to
the real object of interest but to the most similar object of the context, as figure
1, ¢) shows. Thus, the area of the searching window corresponding to the point
meo will be taken as the object of interest, resulting in an error of the tracking
process, that is an interest jump error, which is a very common error of updating
techniques that do not update the pattern just in time.

The origin of the problem is caused by the lack of updating or an inappro-
priate updating rate of the pattern of reference. It can be seen in figure 1, ¢)
that d(p,m1) < d(p,m2) and d(p, m}) < d(p,mz) but d(p,my) > d(p,ms).
For the sake of clarity the most similar object of the context, ms, does not move
and consequently does not draw any visual transformation curve.

It is clear that the pattern should be updated before any object of the context
can be more similar to the pattern of reference than the current view of the object
of interest. To accomplish this an updating threshold must be set up taking into
account the closeness of the objects of the context. Therefore, when a new view
of the object of interest is taken as current pattern a new updating threshold
is also computed automatically. The assigned value can be obtained by the rule
of dividing by two the distance to the closest object of the context to the new
pattern.

6 Experimental Results

Pattern updating is necessary if the view of the object of interest changes through
the time. Besides, this updating must be done at the right moment in order to
avoid the two most significant errors in a tracking process: drifts and interest
jumps. These two kinds of error will mark experimentally the goodness of the
different updating approaches.

Several experiments have been done in order to evaluate the performance
of the proposed solution. Among them, two critical sequences, described in this
paper, demonstrate the higher level of robustness of the new approach in com-
parison with the existing updating methods. Actually, only statistics updating
based method [3] is used as the other methods are too simple and their limita-
tions are obvious.

A complete tracking module has been developed to carry out the presented
experiments. To obtain the results only the updating schema of this algorithm
has been changed. In order to evaluate the updating approaches, the best method
will be the one that carries out a correct tracking (without interest jump nor
drifting errors) with the smallest number of updates.

In the first experimental sequence, see figure 2, a person walks and her face
is tracked. At first sight, it seems a not problematic task. However, an error
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Fig. 2. Different frames of a sequence where a face is tracked. Sometimes, at first sight
and if similarity function is not displayed, it does not look that the minimum of the
similarity function can be so confused.

Table 1. Above, number of updates based on statistical pattern updating and errors of
jumps for different reliability threshold. Below, number of updates in the same sequence
using context based pattern updating approach.

Statistical approach
Reliability threshold Number of updates Jump errors

0.75 - Yes
0.80 - Yes
0.85 - Yes
0.90 468 No

Context based approach
Reliability threshold Number of updates Jump errors
— 106 No

happens due to the existence of local minimums near the absolute one, and all
of them surrounded by a very different environment. Such a situation drives to a
not pattern updating, and a consequent interest jump error, when the constant
threshold and statistic based update algorithms are used.

Things that we perceive or think as quite different may not result be so
to a certain similarity function. Figure 2 illustrates such error. Every frame is
shown beside its corresponding similarity function. To fix the problem, using the
statistic based update method, it is necessary to increase the level of certainty
and so the number of updates. Table 1 shows the resulting values of the two
compared algorithms. Carrying out both of them a correct tracking process the
difference raises in the number of updates needed. The less number of updates
the less probability of drifting. The second experiment shows how the proposed
updating method can adapt the rate of updates according to the proximity of
very similar objects. In figure 3 can be seen a frame of a four seconds sequence
where the object of interest is a fish that swims into a shoal, so it is surrounded
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Fig. 3. The figure shows a frame of a sequence where the object of interest is sur-
rounded by very similar others. The right function depicts the shape of the scene in
the representation space. The absolute minimum corresponds to the object of interest
and the local minima are objects of the context.

Table 2. Number of updates needed by the two methods in order to achieve a correct
tracking.

Statistical approach
Reliability threshold Number of updates Jump errors

0.75 - Yes
0.80 - Yes
0.85 28 No

Context based approach
Reliability threshold Number of updates Jump errors
- 26 No

by other very similar fishes. In order to avoid the loss of the object, the frequency
of updates should be high due to the current pattern can be rapidly confused
with objects of the context. The function next to the frame shows graphically
the object of interest, as the absolute minimum, and the objects of the context
(two fishes) as local minima nearest to the absolute minimum.

7 Conclusions

As conclusions from the experiments carried out in a wide range of environments
and conditions we can state three major ones:

— The number of required updates is minimized achieving a correct tracking
process, and minimizing the drift risk.

— Achievement of an automatic template updating method for any environ-
mental condition.

— The update algorithm is computationally light what allows it to be imple-
mented in low cost general purpose computers.
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Abstract. Image registration is a problem that arises in many image processing
applications whenever information from two or more scenes have to be aligned.
In image registration the use of an adequate measure of alignment is a crucial
issue. Current techniques are classified in two broad categories: area based and
feature based. All methods include some similarity measure. In this paper a new
measure that combines mutual information ideas, spatial information and fea-
ture characteristics, is proposed. Edge points are used as features, obtained from
a Canny edge detector. Feature characteristics like location, edge strength and
orientation are taken into account to compute a joint probability distribution of
corresponding edge points in two images. Mutual information based on this
function is minimized to find the best alignment parameters. The approach has
been tested with a collection of portal images taken in real cancer treatment ses-
sions, obtaining encouraging results.

1 Introduction

Image registration techniques find applications in several medical fields, like tissue or
injury evolution monitoring. In some medical applications there is a need of integrat-
ing complementary information from different imaging sensors, that is, different ra-
diological imaging modalities, and also in matching images from the same modality
taken at different times.

Portal imaging consists of sensing therapeutic radiation applied from electron ac-
celerators in cancer treatment [1]. They are formed by the projections of anatomical
structures over the sensing area after it goes through the body. Due to the high energy
of the radiation, there is a poor contrast in portal images compared to x-ray, axial
tomography or magnetic resonance images. Introduction of electronic portal imaging
devices has increased the quality of portal images.

Detection of patient pose errors during or after treatment is the main use of portal
images. For patient pose monitoring, portal images are compared to higher quality
simulated portal images used as reference, or to a reference portal image taken at the
first therapy session. Any misalignment has to be detected and corrected. Misalign-

* Work partially supported by the Spanish Ministry of Science and Technology under Project
TIC2003-06953, and by Fundacié Caixa Castello under project P1-1B2002-41.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3522, pp. 227-234, 2005.
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ments are traditionally detected manually after the session. Automatic misalignment
detection before the session, using an innocuous dose, is desirable.

Several registration methods with some degrees of automation, designed to com-
pare portal images among them and with their corresponding simulation images, have
been reported in the literature [2, 3, 4, 5].

This work is being developed as part of a project between the Radiotherapeutical
Oncology Department at Provincial Hospital of Castellén, Spain, and University
Jaume I, Castelldn. It is aimed at automating and improving quality control in radio-
therapy, mainly focused at patient positioning. We describe a registration method
based on ideas of mutual information. Instead of a joint probability distribution de-
rived from grey levels, used in conventional mutual information registration, we pro-
pose a joint probability function derived from the spatial localization of features, and
features similarity. The minimization of the mutual information based on this function
provides the alignment parameters between two images. The method has been tested
with portal and magnetic resonance images.

2 Related Work

Registration algorithms have applications in many fields. They are valuable tools in
medical imaging, remote sensing, computer vision, etc. Currently, research is directed
to multimodal registration and to cope with region deformations [6].

Many different registration algorithms have been proposed, and almost all share a
common framework: optimizing a cost function that measures the alignment between
images [7]. In feature-based approaches the cost function is computed from character-
istics of features (edges, ridges) extracted before registration. In the case of portal
images, features from the irradiation field geometry have been used [8], where the
distance measure is based on the Hausdorff distance modified by using a voting
scheme that is expressed as a parameter introduced in the expression of this distance.
This modification makes the method tolerant to small position errors like those that
occur with automatic edge detectors. Techniques that use manually selected land-
marks to be matched have been also used, [9]. In this work contours of the irradiation
field are manually selected and their points used for registration using chamfer match-
ing [10].

Pixel-based approaches use all the pixels of an image. A Fourier transform-based
cross correlation operator was used in [4] to find the optimal registration, accounting
for translations and rotations. A new image alignment measure was introduced in [11,
12] based on entropy concepts developed as part of Shannon’s information theory:
mutual information. It was used to measure the statistical dependence between image
intensities of corresponding pixels in two images.

Hybrid techniques that combine both approaches have been proposed. In [13] mu-
tual information is computed using feature points locations instead of image intensity.
In [14] the registration function includes spatial information by combining mutual
information with image gradient.

Our method uses edges detected from portal images from conventional edge ex-
tractors. The registration function is derived from the mutual information concept, and
combines three attributes of edges: edge point location, edge strength and edge orien-
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tation. These attributes provide spatial information, and are used to build a probability
estimate of the possible correspondence of two edge points in two images. A joint
probability table is computed for all possible correspondences, and minimization of
the mutual information is applied to obtain the best match and the alignment parame-
ters.

3 Registration Based on Entropy Minimization

Mutual Information

Mutual Information is a concept from information theory, and is the basis of one of
the most robust registration methods [15]. The underlying concept of mutual informa-
tion is entropy, which can be considered a measure of dispersion of a probability
distribution. In thermology, entropy is a measure of the disorder of a system. A ho-
mogeneous image has a low entropy while a high contrast image has a high entropy.
If we consider as a system the pairs of aligned pixels in two images, disorder, and
joint entropy, increases with misregistration, and correct alignment gives a minimum
of the mutual information of the two images.
Given two images A and B, the definition of the mutual information /(A,B) is:

1(A,B) = H(A) + H(B) - H(A,B) , 1)
H(A) and H(B) being the entropies of images A and B, and H(A,B) being the joint
entropy. Correct registration corresponds with maximization of the mutual informa-
tion. Following Shannon’s information theory, the entropy of a probability distribu-
tion P is computed as:
H=-% plogp. ()
peP

Typically, the joint probability distribution of two images is estimated as a normal-
ized joint histogram of the intensity values [12]. The marginal distributions are ob-

tained by summing over the rows or over the columns of the joint histogram.

Including Feature Information

We propose a new measure of mutual information computed only from features. We
use edge points as features, and point location, edge strength and edge orientation as
feature characteristics. Edge points are a significant source of information for image
alignment, they are present in portal images and in simulated radiographies obtained
from a treatment planner, so they are useful for intra and inter modality registration.
In optimal alignment position edge points from one image should match their corre-
sponding points in location and also in edge strength and orientation.

In [13] a new mutual information-based measure was introduced. Instead of using
image intensity for estimation of mutual information it uses feature points location
information. Let {a,,a,,....ay} and {b,b,,....by} be two sets of feature points in two

images A and B. The mutual information is a function of the joint probability:
T

p“
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where p;; represents the joint probability between feature point i in A and feature point
jin B:
(-a0])
T

_ e
Pi=5 )

T stands for the spatial mapping (rigid, similarity, affine) applied for aligning one
point set with the other. D] is a distance measure between two points a, and b (e.g.

Euclidean distance). p; is a measure of the correspondence likelihood between those

two feature points, while 2 p; and Z p; are the marginal probabilities.
i J
In [14] the mutual information measure is extended to include spatial information.
Locations with valuable spatial information (e.g. transition of tissues) are denoted by
strong gradients. The extension is accomplished by multiplying the mutual informa-
tion extracted from grey level probability distributions with a gradient term. This term
includes the gradient magnitude and orientation. The mutual information measure
proposed in [14] is:
I,.(AB)=G(A,B) I(AB), (3)
with G(A,B) being the gradient term obtained as:
GAB= Y Ot(Va,. ,Vb, )minQVa,.

(a,b,)EANB

>

). (6)

Vb,

a; and b; denote two points in images A and B, and «is the angle between two gradi-

ent vectors.
When the two images are registered, point a; will be located close to its matching

point b;. If a joint probability table is built considering the distances from each a; to all
the bj with j=1, 2, ..., M, in one of the M cells of the i-th column, there will the a
maximum of that column, point b, so having the biggest likelihood of being the
match of a,. Re-computing the table for different spatial mappings 7, one of the joint
probability tables obtained will be the best, having the smallest distances of matched
points. Similarly, with the images registered, an edge point g¢; will match some b,
having similar edge strength since they represent the same edge point. The edge ori-
entation after the mapping has to be also similar.

Denoting as D;; the distance between ¢, and b;, @, the difference in edge strength,
and O, the difference in edge orientation after the mapping, we can base the mutual
information measure on these feature points characteristics:

Our main contribution is the use of several feature attributes to estimate the joint
probabilities. We use the gradient magnitude at a feature point as an estimation of the
edge strength and the gradient direction as an estimation of the edge orientation:

, L Va V!
S OU =COS" ———— .
‘Vai HVb/

Gradient magnitude at edge points can be different in corresponding edges detected

in different images due the possibly different sensing devices used to take the images.
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This can be overcome by scaling the gradient magnitude at edges in both images,
giving, for example, a relative measure between zero and one.
To estimate the joint probability of match between two edge points in two images

we introduce an exponential function based on the feature attributes. If D; s ¢ij, Oj

are small, there is a higher probability of correspondence between those edge points.
The proposed joint probability is expressed as follows:

7 T

D, ®, O,

exp —| —+—+—
/A 7> 14

D, ® 0
|

with ¥ being constants. Using the probability distribution function given in (9), mu-

T_
Py =

€))

tual information is computed as described in (3).

The main advantage of our approach compared to the classical mutual information
is that this latter method does not use the neighbouring relations among pixels at all,
all spatial information is lost, while our approach is precisely based on spatial infor-
mation. Compared to the method reported in [13], we propose a combination of fea-
ture attributes, compared to the method in [14], our approach is only based on feature
points.

Edge Detection

Extraction of edges can be done by several methods, first derivative-based methods
(Sobel masks), or second derivative-based, like Laplacian of a Gaussian or Canny
[16]. In this work we have used the Canny edge detector, that selects edge points at
locations where zero-crossings of the second derivative occur.

Optimization

Optimization of the registration function is done by exhaustive search over the search
space. We assume a rigid transformation to align one image with the other, a rotation
followed by a translation, both in 2D, so the search space is three-dimensional.

A revision of optimization strategies can be found in [17]: Powell’s method, and
simplex method, conjugate-gradient and Levenberg-Marquardt methods. Since the
principal purpose of our work is to prove the feasibility of a new form of obtaining
the joint probability used for the computation of the mutual information, no analysis
on the convenience of using a certain optimization has been made.

Exhaustive search is a sufficiently simple method for a bounded three-dimensional
search space, and it finds a global optimum, avoiding the main drawback of other
optimization algorithms of converging to a local optimum.

4 Results

We have tested our approach with about fifteen pairs of medical images of different
sources, portal images provided from sessions of radiotherapy treatments at Provincial
Hospital of Castellén, and Magnetic Resonance (MR) images obtained from the inter-
net [18].
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For portal image registration, image alignment parameters were determined by
human operators and compared to the results of our approach. For MR images the
alignment parameters were available along with the images.

The influence of each feature in (9) was tested by making several experiments

T T AT
where each term: Dl.j , Qpij , Oij ,

was observed when the three characteristics are used.
In the computation of p; the values of v,, v, and y; were fixed heuristically (20,

was included or not. The overall best performance

VA T T
10, and 1). They were selected by computing e” | e® and €% using the edge sets

without applying any transformation, and observing the graphical representation of

o

these functions. As our intention was that small values of D i

lj B
high correspondence probability, we fixed v,, ¥, and 7y, as values close to the time

O/ represent a
ij TeP

constants of the exponential functions.
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Fig. 1. Portal image of a hip with patient in a) 