

Lecture Notes in Computer Science 3520
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oscar Pastor João Falcão e Cunha (Eds.)

Advanced Information
Systems Engineering

17th International Conference, CAiSE 2005
Porto, Portugal, June 13-17, 2005
Proceedings

13

Volume Editors

Oscar Pastor
Valencia University of Technology
Department of Information Systems and Computing
Camí de Vera s/n, 46022 València, Spain
E-mail: opastor@dsic.upv.es

João Falcão e Cunha
University of Porto
Faculty of Engineering
Centres of Competence in Electronic Commerce, Porto, Portugal
E-mail: jfcunha@fe.up.pt

Library of Congress Control Number: 2005926626

CR Subject Classification (1998): H.2, H.3-5, J.1, K.4.3-4, K.6, D.2, I.2.11

ISSN 0302-9743
ISBN-10 3-540-26095-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26095-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11431855 06/3142 5 4 3 2 1 0

Preface

To write a preface means that we have reached the end of this long way, and that
in some way all the incidences and problems have been overcome. We can now
say that it is really a big pleasure for us to welcome all of you to the proceedings
of CAiSE 2005 which was held in Porto.

CAiSE 2005 was the seventeenth in the series of International Conferences on
Advanced Information Systems. Enforcing its tradition, since the late 1990s the
CAiSE conferences have provided a forum for the presentation and exchange of
research results and practical experiences within the field of advanced informa-
tion systems engineering. In 2005, the conference was hosted by the Faculdade de
Engenharia da Universidade do Porto, Portugal, going back to southern Europe,
in particular to the Iberian peninsula, where CAiSE 1997 was held in Barcelona.

The conference theme of CAiSE 2005 was “Improving Communication and
Understanding — Systems and Citizens.” Behind this theme, we find the fact
that the Internet has been changing societies and economies, and the way in-
stitutions and businesses operate has evolved rapidly. Most citizens are now ex-
pected to interact directly with technology-based systems without direct human
intermediation, using different interface appliances. Moreover, many information
systems interact with each other with limited human supervision. The Internet
and its infrastructure play a critical role in this evolution, and it is of the utmost
importance that semantic aspects are taken into consideration on a sound basis.
Improved communication and understanding between people, the final objective
of advanced information systems, requires improved communication and under-
standing between systems and their developers. Advanced information systems
engineering therefore needs to keep improving its methods and technologies in
order to support the proper development of our economies and of our societies.

This challenging proposal of CAiSE 2005 attracted scientists and practition-
ers from all over the world to submit their contributions. Up to 282 submissions
were received, out of which the Program Committee selected 36 top-quality
papers. This fierce competition produced an acceptation rate of 13%, which ex-
plains in itself the hard selection process that we faced. All the submissions
were reviewed by at least three members of the CAiSE 2005 Program Commit-
tee, composed of well-known, relevant scientists related to the different CAiSE
topics. The resulting program reflected the fact that the topic of information
systems engineering encompasses human and organizational issues as well as
technical issues, at all levels of the software production process. This includes
different issues related to conceptual modelling, metamodelling, databases, query
processing, process modelling and workflow systems, requirements engineering,
model transformations, knowledge management and verification, Web services,
Web engineering, software testing and software quality. All of these subject areas
were covered as technical sessions of the final program.

VI Preface

Additionally, the authors of 31 papers presenting emerging ideas were invited
to participate in the CAiSE Forum. The CAiSE Forum was initiated by the
organizers of CAiSE 2003 in Velden as a means of stimulating scientific debate.
It aims at introducing an agora for the presentation of fresh ideas, new concepts,
and experience reports on application experiences and project reports, as well
as demonstration of new and innovative systems, tools and applications. After
the successful experiences of Velden and Riga, the Forum initiative was carried
through to Porto.

The success of the CAiSE conferences is shown by the large number of co-
located events. CAiSE 2005 was accompanied by 11 workshops and 6 tutori-
als that attracted a large number of participants. In addition, the edition of
WER 2005 was co-located with CAiSE 2005. Furthermore, three very relevant
keynote speakers provided a great complement for the technical program: Prof.
Antoni Olivé (Universitat Politècnica de Catalunya) with the keynote “Concep-
tual Schema-Centric Development: a Grand Challenge for Information Systems
Research,” Prof. Jean Vanderdonckt (Université de Louvaine-la-Neuve) with the
keynote “A MDA-Compliant Environment for Developing User Interfaces of
Information Systems,” and Prof. Sudha Ram (University of Arizona) with the
keynote “Toward Semantic Interoperability of Heterogeneous Biological Data
Sources.” We thank them very much for accepting the invitations.

We devote a special thanks to the members of the Program Committee for do-
ing excellent reviewing work. Their dedicated work was instrumental in putting
together yet another high-quality CAiSE conference. We wish also to give special
thanks to the local organizers at the “Faculdade de Engenharia da Universidade
do Porto” and at the “Departament de Sistemes Informàtics i Computació, Uni-
versitat Politècnica de València” for their hard work and devotion. Without their
efforts, we would have had just nothing. Thank you very much.

Finally, the CAiSE 2005 organizers also thank the main conference spon-
sors: UPV, Univ. Politècnica de València, Spain; ERCIM, European Research
Consortium for Informatics and Mathematics; UP, Univ. do Porto, Portugal;
FEUP, Faculdade de Engenharia da Univ. do Porto, Portugal; FCT, Fundação
para a Ciência e Tecnologia, Portugal; FLAD, Fundação Luso Americana para
o Desenvolvimento, Portugal. Their support made possible the success of the
conference.

Thanks for joining us, and we hope that all participants enjoyed CAiSE 2005!

June 2005 Oscar Pastor
João Falcão e Cunha

Organization

Advisory Committee

Janis Bubenko Jr., Royal Institute of Technology, Sweden
Colette Rolland, Université de Paris 1, Panthéon, Sorbonne, France
Arne Sølvberg, Norwegian University of Science and Technology, Norway

General Chair

João Falcão e Cunha, Univ. do Porto, Portugal

Program Chair

Oscar Pastor, Univ. Politècnica de València, Spain

Local Organization

Raul Moreira Vidal, Univ. do Porto, Portugal
Henriqueta Nóvoa, Univ. do Porto, Portugal
José Lúıs Borges, Univ. do Porto, Portugal
João Pascoal Faria, Univ. do Porto, Portugal
Ademar Aguiar, Univ. do Porto, Portugal
Pedro J. Valderas, Univ. Politècnica de València, Spain
Victoria Torres, Univ. Politècnica de València, Spain
Javier Muñoz, Univ. Politècnica de València, Spain

Workshop Chairs

Jaelson Castro, Univ. Federal de Pernambuco, Brazil
Ernest Teniente, Univ. Politècnica de Catalunya, Spain

Tutorials and Panel Chairs

Nuno Nunes, Univ. da Madeira, Madeira, Portugal
Bernhard Thalheim, Kiel University, Kiel, Germany

Forum Chairs

Orlando Belo, Univ. do Minho, Portugal
Johan Eder, University of Klagenfurt, Austria

VIII Organization

Industrial Chairs

Sjaak Brinkkemper, Utrecht University, The Netherlands
Rui Melo, ANETIE, Portugal

Publicity and Communications Chairs

Vicente Pelechano, Univ. Politècnica de València, Spain
Eduarda Mesquita, Impacto Design, Portugal
Jorge S. Carneiro, SAGE Infologia, Portugal

Doctoral Consortium Chair

Ana Moreira, Univ. Nova de Lisboa, Portugal

Web Chairs

Nuno Ramos, Mercatura, Portugal
Joan Fons, Univ. Politècnica de València, Spain

Sponsoring Organizations

UPV, Univ. Politècnica de València, Spain
ERCIM, European Research Consortium for Informatics and Mathematics
UP, Univ. do Porto, Portugal
FEUP, Faculdade de Engenharia da Univ. do Porto, Portugal
FCT, Fundação para a Ciência e Tecnologia, Portugal
FLAD, Fundação Luso Americana para o Desenvolvimento, Portugal

Organization IX

Preconference Workshops

11th International Workshop
on Requirements Engineering:
Foundation for Software Quality
(REFSQ 2005)
Erik Kamsties, Vincenzo Gervasi,
Pete Sawyer

2nd INTEROP-EMOI Open
Workshop on Enterprise Mod-
elling and Ontologies for Interop-
erability (EMOI-INTEROP 2005)
Michele Missikoff, Yves Pigneur

6th Workshop on Business Pro-
cess Modelling, Development,
and Support: Business Processes
and Support Systems: Design for
Flexibility (BPMDS 2005)
Stewart Green, Gil Regev,
Pnina Soffer, Jelena Zdravkovic

10th International Workshop on
Exploring Modelling Methods
in Systems Analysis and Design
(EMMSAD 2005)
Terry Halpin, Keng Siau,
John Krogstie

Ubiquitous Mobile Informa-
tion and Collaboration Systems
(UMICS 2005)
Moira Norrie, Schahram Dustdar

Semantic Web for Web-Based
Learning: Implications in the
Area of Information Systems in
Education (SW-WL 2005)
Marie-Noelle Bessagnet, Danièle Herin

International Workshop on Web-
Oriented Software Technologies
(IWWOST 2005)
Daniel Schwabe, Gustavo Rossi,
Luis Olsina, Vicente Pelechano

International Workshop on Data
Integration and the Semantic
Web (DISWeb 2005)
Zohra Bellahsene, Isabel Cruz,
Dimitris Plexousakis

Philosophical Foundations of In-
formation Systems Engineering
(PHISE 2005)
Esperanza Marcos, Roel Wieringa

Workshop on Adaptive and Self-
managed Enterprise Applications
(ASMEA 2005)
Malu Castellanos, Sara Comai

2nd International Workshop on
Data and Information Quality
(DIQ 2005)
Markus Helfert, Cinzia Cappiello,
Martin J. Eppler

X Organization

Program Committee

Abramowicz, Witold (Poland)
Amaral, Luis (Portugal)
Aguiar, Ademar (Portugal)
Atzeni, Paolo (Italy)
Barzdins, Janis (Latvia)
Belo, Orlando (Portugal)
Bertino, Elisa (USA)
Borges, José Lúıs (Portugal)
Bouzeghoub, Mokrane (France)
Bresciani, Paolo (Italy)
Brinkkemper, Sjaak

(The Netherlands)
Caplinskas, Albertas (Lithuania)
Casamayor, Juan Carlos (Spain)
Castano, Silvana (Italy)
Castro, Jaelson (Brazil)
Celma, Matilde (Spain)
Cunha, Joao (Portugal)
de Troyer, Olga (Belgium)
Delcambre, Lois (USA)
Diaz, Oscar (Spain)
Dori, Dov (Israel)
Dubois, Eric (Luxembourg)
Eder, Johann (Austria)
Ehrich, Hans-Dieter (Germany)
Ermoleyev, Vadim (Ukraine)
Faria, João Pascoal (Portugal)
Fiadeiro, Jose (UK)
Fraternali, Piero (Italy)
Gaedke, Martin (Germany)
Garćıa, Franciso (Spain)
Genero, Marcela (Spain)
Giorgini, Paolo (Italy)
Grundspenkis, Janis (Latvia)
Guarino, Nicola (Italy)
Gustas, Remigijus (Sweden)
Haav, Hele-Mai (Estonia)
Halpin, Terry (USA)
Henderson-Sellers, Brian (Australia)
Hernández, Juan (Spain)
Heuser, Carlos A. (Brazil)
Jarke, Matthias (Germany)
Jeffery, Keith (UK)

Jeusfeld, Manfred (The Netherlands)
Johannesson, Paul (Sweden)
Kangassalo, Hannu (Finland)
Kappel, Gerti (Austria)
Karagiannis, Dimitris (Austria)
Katrib, Miguel (Cuba)
Kirikova, Marite (Latvia)
Koch, Nora (Germany)
Krogstie, John (Norway)
Leite, Julio (Brazil)
Leonard, Michel (Switzerland)
Liddle, Steve (USA)
Ling, Tok Wang (Singapore)
Loucopoulos, Pericles (UK)
Lu, Jianguo (Canada)
Maiden, Neil (UK)
Marcos, Esperanza (Spain)
Mayr, Heinrich (Austria)
Missikoff, Michele (Italy)
Moreira, Ana (Portugal)
Norrie, Moira (Switzerland)
Nunes, Nuno (Portugal)
Olivé, Antoni (Spain)
Olsina, Luis (Argentina)
Opdahl, Andreas L. (Norway)
Palazzo de Oliveira, Jose (Brazil)
Pelechano, Vicente (Spain)
Pernici, Barbara (Italy)
Persson, Anne (Sweden)
Pitt, Jeremy (UK)
Poels, Geert (Belgium)
Pohl, Klaus (Germany)
Ralyte, Jolita (Switzerland)
Regnell, Bjorn (Sweden)
Rolland, Colette (France)
Rossi, Gustavo (Argentina)
Saeki, Motoshi (Japan)
Schewe, Klaus D. (New Zealand)
Schwabe, Daniel (Brazil)
Shoval, Peretz (Israel)
Sindre, Guttorm (Norway)
Snoeck, Monique (Belgium)
Song, Il-Yeol (USA)

Organization XI

Stirna, Janis (Sweden)
Sutcliffe, Alistair (UK)
Teniente, Ernest (Spain)
Thalheim, Bernard (Germany)
Tsalgatidou, Aphrodite (Greece)
Vallecillo, Antonio (Spain)
Vanderdonckt, Jean (Belgium)
Vasilecas, Olegas (Lithuania)

Vassiliou, Yannis (Greece)
Wagner, Gerd (The Netherlands)
Wand, Yair (Canada)
Wangler, Benk (Sweden)
Welzer, Tatjana (Slovenia)
Wieringa, Roel (The Netherlands)
Wohed, Petia (Sweden)
Yu, Eric (Canada)

XII Organization

Additional Referees

Abrahao, Silvia
Acuña, César J.
Ahlbrecht, Peter
Alenljung, Beatrice
Araújo, João
Athanasopoulos, George
Backlund, Alexander
Backlund, Per
Bera, Palash
Biffl, Stefan
Binemann-Zdanowicz, Aleksander
Bos, Rik
Botzer, David
Braganholo, Vanessa de Paula
Casati, Fabio
Catania, Barbara
Cavero, José Maŕıa
Comai, Sara
Dahlstedt, Åsa G.
Damiani, Maria
De Backer, Manu
de Castro, Valeria
Dorneles, Carina Friedrich
Eckstein, Silke
Feijó Nadvorny, César
Fiedler, Gunar
Fons, Joan
Fuentes, Thayzel
Giurca, Adrian
Goethals, Frank
Goulão, Miguel
Graf, Sabine
Grossniklaus, Michael
Hadar, Irit
Haesen, Raf
Haux, Reinhold
Iturrioz, Jon
Jansen, Slinger
Keberle, Natalya
Klein, Hans-Joachim
Koncilia, Christian
Kosch, Harald
Kramler, Gerhard

Leal Musa, Daniela
Lehmann, Marek
Lemahieu, Wilfried
Ma, Hui
Martin, Maria de los A.
Matera, Maristella
Mathiak, Brigitte
Meinecke, Johannes
Michlmayr, Elke
Mouratidis, Haralambos
Muñoz, Javier
Neumann, Karl
Pantazoglou, Michael
Pastrana, José Luis
Pellens, Bram
Piattini, Mario
Pichler, Horst
Pilioura, Thomi
Plessers, Peter
Prévot, Laurent
Riaz-ud-Din, Faizal
Ruiz, Marta
Söderström, Eva
Sánchez, Juan
Sawyer, Pete
Scherzinger, Stefanie
Schmidt, Peggy
Schwinger, Wieland
Sianas, Panagiotis
Sierra, Iskander
Sneiders, Eriks
Somoza, Alfredo
Strand, Mattias
Sturm, Arnon
Torres, Victoria
Valderas, Pedro J.
Vassilakis, Costas
Vela, Belén
Wimmer, Maria A.
Wombacher, Andreas
Woo, Carson
Zannone, Nicola

Table of Contents

Keynotes

Conceptual Schema-Centric Development: A Grand Challenge for
Information Systems Research

Antoni Olivé . 1

A MDA-Compliant Environment for Developing User Interfaces of
Information Systems

Jean Vanderdonckt . 16

Toward Semantic Interoperability of Heterogeneous Biological Data
Sources

Sudha Ram . 32

Conceptual Modeling

The Association Construct in Conceptual Modelling – An Analysis
Using the Bunge Ontological Model

Joerg Evermann . 33

Computing the Relevant Instances That May Violate an OCL constraint
Jordi Cabot, Ernest Teniente . 48

Event-Based Modeling of Evolution for Semantic-Driven Systems
Peter Plessers, Olga De Troyer, Sven Casteleyn 63

Metamodeling

Interoperability in Meta-environments: An XMI-Based Approach
Roberto Riggio, Domenico Ursino, Harald Kühn,
Dimitris Karagiannis . 77

On the Notion of Consistency in Metadata Repository Systems
Ilia Petrov, Stefan Jablonski, Marc Holze . 90

Using Text Editing Creation Time Meta Data for Document
Management

Thomas B. Hodel, Roger Hacmac, Klaus R. Dittrich 105

XIV Table of Contents

Databases

An Object-Relational Approach to the Representation of
Multi-granular Spatio-Temporal Data

Elisa Bertino, Dolores Cuadra, Paloma Mart́ınez 119

Managing Inheritance Hierarchies in Object/Relational Mapping Tools
Luca Cabibbo, Antonio Carosi . 135

BInXS: A Process for Integration of XML Schemata
Ronaldo dos Santos Mello, Carlos Alberto Heuser 151

Query Processing

Query Processing Using Ontologies
Chokri Ben Necib, Johann-Christoph Freytag . 167

Estimating Recall and Precision for Vague Queries in Databases
Raquel Kolitski Stasiu, Carlos A. Heuser,
Roberto da Silva . 187

Querying Tree-Structured Data Using Dimension Graphs
Dimitri Theodoratos, Theodore Dalamagas . 201

Process Modeling and Workflow Systems

Workflow Resource Patterns: Identification, Representation and Tool
Support

Nick Russell, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede,
David Edmond . 216

A Declarative Foundation of Process Models
Birger Andersson, Maria Bergholtz, Ananda Edirisuriya,
Tharaka Ilayperuma, Paul Johannesson . 233

Synchronizing Copies of External Data in Workflow Management
Systems

Johann Eder, Marek Lehmann . 248

Requirements Engineering

Understanding the Requirements on Modelling Techniques
S.J.B.A. Hoppenbrouwers, H.A. Proper, Th.P. van der Weide 262

Table of Contents XV

A Process for Generating Fitness Measures
Anne Etien, Colette Rolland . 277

A Concern-Oriented Requirements Engineering Model
Ana Moreira, João Araújo, Awais Rashid . 293

Model Transformation

Generating Transformation Definition from Mapping Specification:
Application to Web Service Platform

Denivaldo Lopes, Slimane Hammoudi, Jean Bézivin,
Frédéric Jouault . 309

A General Approach to the Generation of Conceptual Model
Transformations

Nikolaos Rizopoulos, Peter Mc.Brien . 326

Building a Software Factory for Pervasive Systems
Javier Muñoz, Vicente Pelechano . 342

Knowledge Management and Verification

Alignment and Maturity Are Siblings in Architecture Assessment
Bas van der Raadt, Johan F. Hoorn, Hans van Vliet 357

Verification of EPCs: Using Reduction Rules and Petri Nets
B.F. van Dongen, W.M.P. van der Aalst,
H.M.W. Verbeek . 372

Measurement Practices for Knowledge Management: An Option
Perspective

An-Pin Chen, Mu-Yen Chen . 387

Web Services

An Ontological Approach for Eliciting and Understanding Needs in
e-Services

Ziv Baida, Jaap Gordijn, Hanne Sæle, Hans Akkermans,
Andrei Z. Morch . 400

Developing Adapters for Web Services Integration
Boualem Benatallah, Fabio Casati, Daneila Grigori,
Hamid R. Motahari Nezhad, Farouk Toumani . 415

Development

XVI Table of Contents

Efficient: A Toolset for Building Trusted B2B Transactions
Amel Mammar, Sophie Ramel, Bertrand Grégoire, Michael Schmitt,
Nicolas Guelfi . 430

Web Engineering

Separation of Structural Concerns in Physical Hypermedia Models
Silvia Gordillo, Gustavo Rossi, Daniel Schwabe . 446

Integrating Unnormalised Semi-structured Data Sources
Sasivimol Kittivoravitkul, Peter Mc.Brien . 460

Model Transformations in the Development of Data–Intensive Web
Applications

Davide Di Ruscio, Alfonso Pierantonio . 475

Software Testing

Automated Reasoning on Feature Models
David Benavides, Pablo Trinidad, Antonio Ruiz-Cortés 491

A Method for Information Systems Testing Automation
Pedro Santos Neto, Rodolfo Resende, Clarindo Pádua 504

Model-Based System Testing of Software Product Families
Andreas Reuys, Erik Kamsties, Klaus Pohl, Sacha Reis 519

Software Quality

Quality-Based Software Reuse
Julio Cesar Sampaio do Prado Leite, Yijun Yu, Lin Liu,
Eric S.K. Yu, John Mylopoulos . 535

On the Lightweight Use of Goal-Oriented Models for Software Package
Selection

Xavier Franch . 551

Measuring IT Infrastructure Project Size: Infrastructure Effort Points
Joost Schalken, Sjaak Brinkkemper, Hans van Vliet 567

Author Index . 583

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 1 – 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Conceptual Schema-Centric Development:
A Grand Challenge for Information

 Systems Research

Antoni Olivé

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

Jordi Girona 1-3, 08034 Barcelona (Catalonia)
olive@lsi.upc.edu

Abstract. The goal of automating information systems building was stated in
the sixties. Forty years later it is clear that the goal has not been achieved in a
satisfactory degree. One of the problems has been the lack of standards in
languages and platforms. In this respect, the recent efforts on standardization
provide an opportunity to revive the automation goal. This is the main purpose
of this paper. We have named the goal “conceptual schema-centric
development” (CSCD) in order to emphasize that the conceptual schema should
be the center of the development of information systems. We show that to
develop an information system it is necessary to define its conceptual schema
and that, therefore, the CSCD approach does not place an extra burden on
developers. In CSCD, conceptual schemas would be explicit, executable in the
production environment and the basis for the system evolution. To achieve the
CSCD goal it is necessary to solve many research problems. We identify and
comment on a few problems that should be included in a research agenda for
CSCD. Finally, we show that the CSCD goal can be qualified as a grand
challenge for the information systems research community.

1 Introduction

The goal of automating information systems building was stated in the sixties [49].
Since then, the goal has been reformulated many times, but the essential idea has
remained stable: To automatically execute the specification of an information system
in its production environment.

Forty years later, it is obvious that the goal has not been achieved in a satisfactory
degree. In the past, there has been a lot of research in “automatic programming
systems”, “automatic code generation”, “integrated computer-aided software
engineering tools” and the like. Currently, several projects are pursuing the same goal,
such as those described in [32, 42]. The progress has been impressive, but it is a
matter of fact that, in most current information systems development and
maintenance projects, the design, programming and testing ac+tivities still require
substantial manual effort. In the professional information systems community, two of

2 A. Olivé

the currently most popular development approaches are the Unified Process [27] and
the agile methods [4]. In neither of the two, automation of the system building plays a
significant role.

It is then natural to pose the question: why has the goal not been achieved?. One
possible explanation could be that the goal is unachievable. However, it is difficult to
single out a characteristic in the goal that could make it so hard. The goal has a
precise formulation. The size of the system that should be built is not larger than that
of other systems our community has built. Probably, there are several successful
software systems more complex than the one that should be built for automating the
building of information systems.

Another possible explanation could be that the goal has not been considered
worthwhile for the research or professional communities. However, this explanation
is easily invalidated by observing the amount of research done or the large effort most
organizations still spend in building their information systems.

The reason why the goal has not been achieved is that a number of important
problems remain to be solved [43]. Most of these problems are technical, but others
are related to the lack of maturity in the information systems field, such as the lack of
standards. The insufficient standardization of languages and platforms has hampered
advances in the automation of systems building.

 Fortunately, however, the last decade has seen the emergence of new standards
related to information systems development. The progress made in standardization
provides an opportunity to revive the automation goal. This is the main purpose of
this paper.

We propose to call the goal “conceptual schema-centric development” (CSCD) in
order to emphasize that the conceptual schema should be the center of the
development of information systems. In conceptual modeling, a conceptual schema is
basically the formal specification of functional requirements [29, 44]. In the next
section, we briefly review the notion of conceptual schemas and analyze the nature of
their relationship with information systems.

In CSCD, conceptual schemas would be explicit, executable in the production
environment and the basis for the system evolution. More details are given in Section
3, where CSCD is also compared with other development approaches.

To achieve the CSCD goal it is necessary to solve many research problems. In
Section 4 we identify and comment on a few problems that should be included in a
research agenda for CSCD. Other relevant agendas have been presented in [12, 53].

The paper ends with an evaluation of the CSCD goal with respect to the grand
challenges for computing research. According to Hoare, a grand challenge:

“represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by a
team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case.” [25].

To be qualified as a grand challenge, a research goal has to meet a number of criteria.
In section 5 we evaluate the CSCD goal according to these criteria.

 Conceptual Schema-Centric Development 3

2 Back to Basics

In this section, first we review the main functions of an information system (IS), and
then we analyze the knowledge required by a particular IS to perform these functions.
The analysis leads us to the definition of conceptual schemas [38].

2.1 Functions of an Information System

ISs can be defined from several perspectives. For the purposes of conceptual
modeling, the most useful is that of the functions they perform. According to this
perspective, an IS performs three main functions [6, p.74]:

- Memory: To maintain a consistent representation of the state of a domain.
- Informative: To provide information about the state of a domain.
- Active: To perform actions that change the state of a domain.

The memory function is passive, in the sense that it does not perform actions that
directly affect users or the domain, but it is required by the other functions, and it
constrains what these functions can perform.

In the informative function, the system communicates some information or
commands to one or more actors. Such communication may be explicitly requested or
implicitly generated when some generating condition is satisfied.

With the active function, the system performs actions that change the state of the
domain. Such actions may be explicitly requested or implicitly generated when some
generating condition is satisfied.

2.2 Knowledge Required by an Information System

To be able to perform the above functions, an IS requires some general knowledge
about its domain, and knowledge about the functions it must perform. In the
following, we summarize the main pieces of knowledge required by each function.

If the memory function of an IS has to maintain a representation of the state of the
domain, then the IS has to know the entity and relationship types to be represented,
and their current population. Some ISs may require to know that population also at
some or all past time points. The entity and relationship types of interest are general
knowledge about the domain, while their (time-varying) population is particular
knowledge.

In conceptual modeling, we call Information Base (IB) the representation of the state
of the domain in the IS. A non-temporal IB represents only the current state of the
domain, while a temporal one represents also the state of the domain at any past time.

The representation of the state in the IB must be consistent. This is achieved by
defining a set of conditions (called integrity constraints) and requiring that the IS satisfies
them at any time. Such integrity constraints are general knowledge about the domain.

The domain state is not static. Most domains change through time, and therefore
their state changes too. A domain event is a state change that consists of a set of
elementary changes in the population of entity or relationship types that are
considered as a single change in the domain. When the state of a domain changes, the

4 A. Olivé

IB must change accordingly. The IS must know the types of the possible domain
events and the effect of each event instance on the IB [39]. This is also general
knowledge about the domain.

If the informative function has to communicate some information or commands on
request, then the IS must know the possible request types and the output it has to
communicate. On the other hand, if there are generated communications then the IS must
know the generating condition and the output it has to communicate when it is satisfied.
Note that this knowledge is not about the domain, but about the functions required to the
IS.

In general, in order to perform the informative function the IS needs an inference
capability that allows it to infer new knowledge. The inference capability requires two
main elements: derivation rules and an inference mechanism. A derivation rule is general
knowledge about a domain that defines a derived entity or relationship type in terms of
others. The inference mechanism uses derivation rules to infer new information.

If, in the active function, the IS has to perform some action on request, then the IS
must know the possible request types and the action it has to perform in each case. On the
other hand, if some action must be performed when a generating condition is satisfied
then the IS must know this condition and the action it has to perform. Note again that this
knowledge is not about the domain, but about the functions required to the IS.

2.3 Conceptual Schemas

The first conclusion of the above analysis is that in order to perform its required
functions, an IS must have some general knowledge about its domain and about the
functions it has to perform. In the information systems field, such knowledge is called the
Conceptual Schema1 (CS).

Every IS embodies a CS [33, 31, 48 (p.417+)]. Without a CS, an IS could not perform
any useful function. Therefore, developers need to know the CS in order to develop an
IS.

Unfortunately, however, the need of CSs in IS development is often overlooked or
ignored. The consequences are negative, both in theory and in practice. To help remedy
the situation we propose to reformulate the need of CSs as a principle, that we propose to
call the Principle of Necessity:

“To develop an information system it is necessary to define its conceptual
schema”.

The principle of necessity can be seen as a consequence of the 100 Percent
Principle stated in the report [26]:

“All relevant general static and dynamic aspects, i.e. all rules, laws, etc. of the
universe of discourse should be described in the conceptual schema. The
information system cannot be held responsible for not meeting those described
elsewhere, including in particular those in application programs.”

1 In the fields of Knowledge Representation and Semantic Web the name given to an (almost)

equivalent concept is Ontology [38].

 Conceptual Schema-Centric Development 5

The same report stated also the Conceptualization Principle, which says that:

“A conceptual schema should only include conceptually relevant aspects, both
static and dynamic, of the universe of discourse, thus excluding all aspects of
(external or internal) data representation, physical data organization and access
as well as all aspects of particular external user representation such as message
formats, data structures, etc.”

The main purpose of the activity of conceptual modeling is to elicit the CS of the
corresponding IS. Given that, as we have seen, any useful IS needs a CS, we easily
arrive to the conclusion that conceptual modeling is an essential activity of
information systems development.

The CS must always exist, but it may take several forms, both externally and
internally to the IS. Externally, the CS may be mental (exists only in the developers’
heads) or explicit (written in some conceptual modeling language). When it is
explicit, the CS documents the common understanding that users, analysts, and
designers have about the domain and the functions imposed to the IS [29]. Internally,
the CS may be diffused among the code of the IS, or be an explicit executable
component. This paper advocates explicit and executable CSs.

3 Conceptual Schema-Centric Development

In this Section we reformulate the vision of a conceptual schema-centric development
(CSCD) of information systems. We first present the characteristics of CSCD and
then we compare it with some of the current development approaches.

3.1 Characteristics

The conceptual schema-centric development of an information system has three main
distinguishing characteristics, that we call Explicit, Executable and Evolving Schema.

Explicit Schema. Once the functions of the IS have been determined there is an
explicit, complete, correct and permanently up-to-date conceptual schema, written in
a domain-independent, formal and declarative language. There is a development
environment with tools that facilitate the validation, testing, reuse and management of
(large) schemas.

Executable Schema. The schema is executable in the production environment. This
may be achieved by an automatic and complete transformation of the CS into
software components (including the database schema) written in the languages
required by the production environment, or by the use of a virtual machine running on
top of that environment. In either case, the CS is the only description to be defined.
All the others are internal to the system, and need not be visible externally.

According to the conceptualization principle, CSs exclude all aspects related to
information presentation. Therefore, the presentation layer of an IS is outside the
scope of CSCD, although it may be based on the CS [16].

6 A. Olivé

Evolving Schema. Changes to the functions of the IS require the manual change of
only its CS. The changes to this schema are automatically propagated to all system
components (including the database schema and data) if needed.

3.2 Comparison with Other Approaches

The CSCD approach may be used either as an alternative to, or in conjunction with,
other development approaches. In what follows we give examples of the two cases,
taking as reference some of the currently most popular development approaches.

Architecture-Centric. One of the distinguishing aspects of the Unified Process [27]
is that it is architecture-centric. This means that the system’s architecture is used as a
primary artifact for conceptualizing, constructing, managing, and evolving the system
under development. An architecture-centric approach develops the functions (use
cases) and the system’s architecture in parallel. The rationale is that the functions
drive the architecture, but at the same time the architecture guides the functions. On
the other hand, an early focus on architectural issues is necessary for an iterative and
incremental development process.

In the CSCD approach, the functions of the system and the CS are determined
without taking into account architectural issues. The architecture of the system is
either predefined or generated automatically. In either case, it is likely that the
architecture is based on one or more architectural patterns widely used in the
information systems field.

Test-Driven Development. Test-Driven Development (TDD) is one of the core
practices of Extreme Programming (XP), a well-known agile method. TDD is an
iterative process. Each TDD cycle is composed of five steps: (1) Write a test that
defines how a part of the software should behave; (2) Run the test and see that it fails;
(3) Make a little change; (4) Run the test and succeed; and (5) Refactor to remove
duplication or any other problems that were introduced to get to test run [5].

CSCD can be used in conjunction with TDD. In CSCD, a test is a sequence of
action requests along with comparisons of actual results with expected results.
Running a test is straightforward because the schema is executable. Changes and
refactoring are done at the schema level [54].

Model-Driven Architecture. The OMG’s Model Driven Architecture (MDA) defines
an approach to system specification that separates the specification of system
functionality from the specification of the implementation of that functionality on a
specific technology platform. In the MDA there are two kinds of models: Platform
Independent Models (PIM) and Platform Specific Models (PSM). The PIMs provide
formal specifications of the structure and behavior of the system that abstracts away
technical details. A conceptual schema is a PIM. The PSMs specify the system in
terms of the implementation constructs that are available in one specific
implementation technology. Both PIMs and PSMs are expressed in the UML [40, 41].

One of the key features of MDA is the notion of mapping. A mapping is a set of
rules and techniques used to transform a model into another one. A PIM to PSM

 Conceptual Schema-Centric Development 7

mapping is used when the PIM is sufficiently refined to be projected to the execution
infrastructure. The projection is based on the platform characteristics. Going from the
conceptual to a domain layer in the J2EE platform is an example of PIM to PSM
mapping. The goal of the MDA is to make the transformation from PIMs to PSMs as
automatically as possible. This goal is expected to be achieved in many cases.

When the conceptual modeling language is the UML, the CSCD approach is
MDA-compliant. However, in some respects CSCD is broader than (the current
version of) MDA because it includes not only the initial development of information
systems, but also their evolution.

Domain-Driven Design. The domain-driven design approach [15] advocates the use
of the CS as the domain layer. The idea is that if the CS is executable in the platform
in which the IS is implemented, then the CS can be the domain layer. The objective is
that the domain layer is literally the CS, without any mapping between both. To make
such a close correspondence of CS and design possible, it is essential to use languages
that serves both purposes.

The approach works well when it is acceptable to express the CS in an
implementation language, such as Java. In general, this is not the case. CSs need to
represent knowledge declaratively, while it must be represented procedurally in the
domain layer. For example, declarative constraints, dynamic and multiple
classification, operation specifications by pre/postconditions or state transition
diagrams do not have a literal representation in object-oriented programming
languages. Different language constructs and different languages are needed in the CS
and in the domain layer.

When the conceptual modeling language used is declarative and executable in the
production environment, the CSCD and the domain-driven design approaches
coincide. However, in some respects CSCD is broader than domain-driven design
because it includes not only the initial development of information systems, but also
their evolution.

4 Towards a Research Agenda for CSCD

CSCD is still a research goal. There are many research problems that must be solved
before CSCD is a widely used approach in the development of industrial information
systems. In this Section, we identify some of the research problems in each of the
three characteristics of CSCD. We emphasize here some problems related to CSCD;
see [12, 53] for other relevant research agendas in conceptual modeling.

4.1 Explicit Schemas

Very Large Conceptual Schemas. The CS of a large organization may contain
thousands of entity types, relationship types, constraints, etc. The development and
management of (very) large CSs pose specific problems not found in small CSs.
Conceptual modeling in the large is not the same as conceptual modeling in the small.
The differences are similar to those observed between programming in the large and

8 A. Olivé

programming in the small [13]. We need methods, techniques and tools to support
designers and users in the development, reuse, evolution and understanding of large
schemas.

So far, work on this topic has focused mainly on CSs for databases [1, 10, 47]. In
CSCD we have to deal with ISs and we have to take into account both the structural
(including constraints and derivation rules) and behavioral schemas.

Business Rules Integration. A business rule is a statement that defines or constrains
some aspect of a business. From the information system perspective, business rules
are elementary pieces of knowledge that define or constrain the contents and the
change of the IB. Business rules are the main focus of a community that advocates a
development approach in which the rules are explicitly defined, directly executed (for
example in a rules engine) and managed [7, 45]. Given that business rules are part of
CSs, we can say that, in what respects to business rules, that community already
follows the CSCD approach.

It is necessary and convenient to integrate the business rules and the CSCD
approaches. It should be possible to extract the rules embedded in a schema, and to
present them to users and designers in a variety of ways and languages, including the
natural language. Automated support for this extraction and presentation is necessary.
On the other hand, it should be easy to capture a particular rule and to integrate it into
the schema. Automated support for this integration is desirable.

Complete and Correct Conceptual Schemas. Completeness and correctness are
two of the quality factors of CSs. A complete CS includes all knowledge relevant to
the IS. A correct CS contains only correct and relevant knowledge. Consistency is
subsumed by validity and completeness [28]. In CSCD, completeness and correctness
are the prime quality factors. They can be achieved by using a very broad spectrum of
approaches, including testing and verification. It should be possible to test and verify
CSs at least to the same extent that has been achieved in software.

There has been some work on testing CSs [23, 32, 17, 54]. There are automatic
procedures for the verification of some properties of CSs in Description Logics [9].
Model checking is being explored as an alternative verification technique [14]. In all
of these topics, a lot of work remains to be done [34].

4.2 Executable Schemas

Materialization of Derived Types. In general, CSs contain many derived entity and
relationship types, with their corresponding derivation rules [36]. For efficiency
reasons, some of these types must be materialized. The determination of the derived
types to materialize should be as automatic as possible. On the other hand, changes in
the population of base types may imply changes in that of one or more materialized
types. The propagation of these changes should be completely automatic.

The work done on the selection of database views to materialize in data
warehouses [21] is highly relevant to the determination of the derived types to
materialize in ISs. Similarly, the large body of work done in the incremental

 Conceptual Schema-Centric Development 9

maintenance of materialized database views [20] is highly relevant to the more
general problem of change propagation in ISs.

Enforcement of Integrity Constraints. Most CSs contain a large number of integrity
constraints [37]. The IS must enforce these constraints in an efficient way. This can
be achieved in several ways [50]. The main approaches are integrity checking,
maintenance and enforcement. In integrity checking and maintenance each constraint
is analyzed in order to (1) determine which changes to the IB may violate the
constraint; (2) generate a simplified form of the constraint, to be checked when a
particular change occurs; and (3) (in maintenance) generate a repair action. In
integrity enforcement each event (transaction) is analyzed in order to (1) determine
which constraints could be violated by the effect of the event; and (2) generate a new
version of the event effect that ensures that no constraint will be violated.

In CSCD, the analysis (whichever approach is taken) should be fully automatic and
able to deal with any kind of constraint. A general method for this analysis does not
exist yet. However, there has been a lot of research and development work in the
enforcement of constraints in the database field, for relational, deductive and object-
oriented databases [11, 51, 30]. The general method is likely to be an extension of this
work.

4.3 Evolving Schemas

Concepts evolution. The most fundamental changes to a CS are adding or dropping
concepts (entity, relationship or event types or states in state machines) and adding or
dropping edges in the concept generalization hierarchy. These changes must be
propagated to the logical schema(s) of the database(s) and to its (their) instances. The
changes may affect also the existing derivation rules, constraints, event effects, etc.
and, thus, the program code that implements them. Change propagation should be as
automatic as possible. On the other hand, changes to the generalization hierarchy may
imply a change (increase or decrease) in the population of some concepts such that
some integrity constraints are violated. The IS should (efficiently) detect these
violations and produce an appropriate response.

There has been an impressive amount of work on database schema evolution,
focusing mainly on concepts evolution [3]. In CSCD the evolution starts at the
conceptual level and it must be automatically propagated to the logical level [24].
Furthermore, more work is needed on the impact of changes to the generalization
hierarchy on general integrity constraints.

Constraints evolution. Adding a constraint may make the IB inconsistent. Changing
a constraint can be seen as a removal (which cannot lead to any inconsistency) and an
addition. When a constraint is added, the IS has to check whether or not the current IB
satisfies it. For very large IBs the checking may need to be efficient. If one or more
fragments of the IB violate the constraint, the IS has to produce some response (reject
the constraint, ignore the inconsistency, repair the fragment or handle the fragment as
an exception).

10 A. Olivé

In the database field, the problem of adding constraints has been studied for some
particular constraints and database models [52]. In CSCD, we need to be able to deal
with particular constraints (like cardinalities) but also with general constraints
expressed in a conceptual modeling language, involving both base and/or derived
types.

Derivability evolution. The derivability of entity and relationship types may change.
A base type may change to derived, or the other way round. Besides, a derivation rule
may change. Changing the derivability of a type may imply a change in its
population, and indirectly in that of other types. If the change affects a materialized
type, then it is necessary to recompute it. For large IBs the recomputation may need to
be efficient. On the other hand, changing the population of a type may induce the
violation of some integrity constraints. The IS should (efficiently) detect these
violations and produce an appropriate response.

There has been some work on this topic [18], but much more needs to be done. A
partially similar problem in the database field is that of “view adaptation” after view
redefinition [22].

5 Is This a Grand Challenge?

CSCD is a research goal. Even if aspects of the CSCD approach may be found in
current information systems development projects, there is a long way to go until its
full potential may be realized in industrial projects.

In this section we assess the CSCD as a research goal. To this end, we use two sets
of criteria:

1) The key properties of a good long-range research goal, proposed by Jim Gray
[19] .

2) The desirable properties of a research goal to qualify as a grand challenge,
proposed by Tony Hoare [25].

5.1 A Good Long-Range Research Goal?

We evaluate first the CSCD research goal with respect to the five key properties of a
good long-range research goal described in [19].

Understandable. The CSCD goal is very simple to state to people working in the
information systems field. The goal may also be understood by the general public.
The distinction between specification and implementation is sufficiently familiar, and
this facilitates the understanding of the goal of easing the development and the
evolution of information systems by focusing only on the specification, and leaving
the implementation details to “the machine”.

Challenging. It is not obvious how to achieve the goal. The ideas of automatic
programming, code generation, model compilers, etc. have been around for a long
time, but the results obtained so far are not sufficient for the needs of most

 Conceptual Schema-Centric Development 11

information systems. Progress made in the automatic evolution of information
systems has been even less satisfactory.

Useful. If the goal is achieved, the results will be useful to most organizations.

Testable. The goal will be achieved when we have a system that (1) facilitates the
development of complete, possibly very large, declarative, tested and verified
conceptual schemas; (2) automatically generates efficient information systems from
these schemas, in the chosen platforms; and (3) evolves (also automatically) existing
information systems from the changes to their schemas.

Incremental. The goal can be decomposed into intermediate milestones, in several
ways. There are several ambition levels in (1) each aspect of the support to the
development of CSs: completeness, coping with largeness, declarativity, testing and
verification; (2) automatic generation: extent covered, platforms supported, degree of
automation and level of performance; and (3) automatic evolution: types of changes
supported and degree of automation.

5.2 A Grand Challenge?

Tony Hoare [25] suggested a set of seventeen criteria that must be satisfied by a
research goal to qualify as a grand challenge. These criteria include the five key
properties indicated above. The additional criteria relate to the maturity of the
discipline and the feasibility of the project. In what follows we evaluate the CSCD
goal with respect to the additional criteria. The order of the criteria is not significant.

Fundamental. Design, implementation and evolution of ISs is a fundamental concern
in the information systems engineering field.

Astonishing. Most of the general public, and even many information systems
professionals, are unaware of the possibility that computers might generate their own
ISs and, above all, that changes to them can be done automatically.

Revolutionary. If the goal is achieved, it will lead to a radical change in the way ISs
are developed and maintained in most organizations.

Research-directed. Significant parts of the goal can be achieved only by the methods
of research. Among them there are improving conceptual modeling languages,
devising methods for dealing with largeness, verification of CSs, generating efficient
code from highly-declarative knowledge specification and the propagation of CS
changes down to implementation.

Inspiring. The goal has the support from (almost) the entire information systems
research community.

12 A. Olivé

International. The goal has an international scope. Researchers from all around the
world can participate in it.

Historical. The goal of automating information systems building was already
formulated in the late sixties [35, 49] and since then it has been reformulated many
times [8, 23, 42, 19]. The goal of evolving information systems from their
specifications was already stated in the late seventies [46, 2] and, as before, it has been
reformulated many times.

Feasible. The goal is now more feasible than ever. The progress recently made in
standardization of languages and platforms has boosted industry interest in the goal.
The basic constructs of conceptual modeling languages are already well known. It is
feasible to improve current development environments. There is a lot of experience in
code generation. Data persistence techniques and patterns are well known and
successfully used in databases and in many data management layers. Many of the
techniques of constraint enforcement, view definition and materialization, and schema
evolution developed in the database field could be adapted to the broader context of
ISs.

Cooperative. The work can be parceled out to teams working independently on
(among others) conceptual modeling languages, testing and verification tools,
persistence management, constraint enforcement and derived types.

Competitive. CSCD encourages and benefits from competition among teams. Most
of the problems in the research agenda admit several solutions, with different range of
application and/or efficiency.

Effective. The promulgation of the CSCD challenge is intended to cause a shift in
the attitudes and activities of the relevant academic and professional communities.
Development teams could consider the explicit definition of CSs a necessary step
that needs to be done at professional quality level, using the right development
environment. IS students could learn that CSs are closer to “working software”
than to just “documentation”. Researchers in conceptual modeling could focus on
the theoretical issues to be solved in order to build CS development environments
for professional use. Researchers of constraint enforcement, materialized views
and evolution in databases could accept the challenge of extending current
solutions to the broader context of ISs.

Risk-Managed. The main critical risks to the project arise from difficulties in
achieving automatic systems evolution, in particular when evolution affects
existing instances. Given that ISs need to evolve very often, the CSCD goal would
fail (in theory and in practice) if it were not possible to define most of the changes
only at the conceptual level. An early and constant focus on the evolution issues is
essential to the success of CSCD.

 Conceptual Schema-Centric Development 13

6 Conclusions

The main purpose of this paper has been to revive the goal of automating information
systems building. We have named the goal “conceptual schema-centric development”
(CSCD) in order to emphasize that the conceptual schema should be the center of the
development of information systems.

We have shown that to develop an information system it is necessary to define its
conceptual schema. In CSCD, conceptual schemas would be explicit, executable in the
production environment and the basis for the system evolution. To achieve the CSCD
goal it is necessary to solve many research problems. We have identified and made some
comments on a few problems that should be included in a research agenda for CSCD.

Finally, we have shown that the CSCD goal can be qualified as a grand challenge
for the information systems research community.

Acknowledgements

I wish to thank the GMC group (Jordi Cabot, Jordi Conesa, Dolors Costal, Xavier de
Palol, Cristina Gómez, Anna Queralt, Maria-Ribera Sancho, Ruth Raventós and
Ernest Teniente) for many useful comments to previous drafts of this paper. This
work has been partially supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

References

[1] Akoka, J.; Comyn-Wattiau, I. “Entity-relationship and object-oriented model automatic
clustering”. Data & Knowledge Engineering, 20 (1996), pp. 87-117.

[2] Balzer, R.; Cheatham, T.E.; Green, C. “Software Technology in the 1990’s: Using a New
Paradigm”, IEEE Computer, 1983, pp. 16-22.

[3] Banerjee, J.; Kim, W.; Kim, H-J.; Korth, H.F. “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases”. Proc. ACM SIGMOD 1987, pp. 311-322.

[4] Beck, K. Extreme Programming Explained. Embrace Change. Addison-Wesley, 2000,
190 p.

[5] Beck, K. Test-Driven Development By Example. Addison-Wesley, 2003, 220 p.
[6] Boman, M.; Bubenko, J.A. jr.; Johannesson, P.; Wangler, B. Conceptual Modelling.

Prentice Hall, 1997, 269 p.
[7] BRCommunity.com (Eds.) “A Brief History of the Business Rule Approach”, Business

Rules Journal, 6(1), January 2005.
[8] Bubenko, J.A. jr. “Information Systems Meyhodology – a Research View”. In Olle,

T.W.; Sol, H.G.; Verrijn-Stuart,A.A. (Eds.) Information Systems Design Methodologies:
Improving the Practice. North-Holland, 1986, pp. 289-318.

[9] Calvanese, D.; Lenzerini, M.; Nardi, D. “Description Logics for Conceptual Data
Modeling”. In Chomicki, J.; Saake, G. (Eds.) Logics for Databases and Information
Systems. Kluwer, 1998, pp. 229-263.

[10] Castano, S.; de Antonellis, V.; Fugini, M.G.; Pernici, B. “Conceptual Schema Analysis:
Techniques and Applications”. ACM TODS, 23(3), 1998, pp. 286-333.

14 A. Olivé

[11] Ceri, S.; Fraternalli, P.; Paraboschi, S.; Tanca, L. ”Automatic Generation of Production
Rules for Integrity Maintenance”, ACM TODS, 19(3), September 1994, pp. 367-422.

[12] Chen, P.; Thalheim, B.; Wong, L.Y. “Future Directions of Conceptual Modeling”. Proc.
ER 1997, LNCS 1565, pp. 287-301.

[13] DeRemer, F.; Kron, H. “Programming-in-the-Large Versus Programming-in-the-Small”.
IEEE Trans. Software Eng. 2(2) 1976, pp. 80-86.

[14] Eshuis, R.; Jansen, D.N.; Wieringa, R. “Requirements-Level Semantics and Model
Checking of Object-Oriented Statecharts". Requirements Engineering 7(4), 2002, pp.
243-263.

[15] Evans, E. Domain-Driven Design. Tackling Complexity in the Heart of Business
Software. Addison-Wesley, 2003.

[16] Fons, J.; Pelechano, V.; Albert, M.; Pastor, O. “Development of Web Applications from
Web Enhanced Conceptual Schemas”. Proc. ER 2003, LNCS 2813, pp. 232-245.

[17] Gogolla, M.; Bohling, J.; Richters, M. "Validation of UML and OCL Models by
Automatic Snapshot Generation". Proc UML 2003, LNCS 2863, pp.265-279.

[18] Gómez, C.; Olivé, A. “Evolving Derived Entity Types in Conceptual Schemas in the
UML”. Proc. OOIS 2003, LNCS 2817, pp. 33-45.

[19] Gray, J. “What Next?. A Dozen Information-Technology Research Goals”. Journal of the
ACM, 50(1), 2003, pp. 41-57.

[20] Gupta, A.; Mumick, I.S. Materialized Views. Techniques, Implementations and
Applications. The MIT Press, 1999.

[21] Gupta, H.; Mumick, I.S. “Selection of Views to Materialize in a Data Warehouse”. IEEE
Trans on Knowledge and data engineering, 17(1), January 2005, pp. 24-43.

[22] Gupta, A.; Mumick, I.S.; Rao, J.; Ross, K.A. “Adapting Materialized Views after
Redefinitions: Techniques and a Performance Study”. Information Systems 26 (2001),
pp. 323-362.

[23] Harel, D. “Biting the Silver Bullet. Toward a Brighter Future for System Development”.
Computer, January 1992, pp. 8-20.

[24] Hick, J-M.; Hainaut, J-L. “Strategy for Database Application Evolution: The DB-MAIN
Approach”. Proc. ER 2003, LNCS 2813, pp. 291-306.

[25] Hoare, T. “The Verifying Compiler: A Grand Challenge for Computing Research”.
Journal of the ACM, 50(1), 2003, pp. 63-69.

[26] ISO/TC97/SC5/WG3 Concepts and Terminology for the Conceptual Schema and the
Information Base, J.J. Van Griethuysen (ed.), March 1982.

[27] Jacobson, I.; Booch, G.; Rumbaugh, J. The Unified Software Development Process.
Addison-Wesley, 1999, 463 p.

[28] Lindland, O.I.; Sindre, G.; Solvberg, A. “Understanding Quality in Conceptual
Modeling”. IEEE Software, March 1994, pp. 42-49.

[29] Loucopoulos, P. “Conceptual Modeling”. In Loucopoulos, P.; Zicari, R. (Eds).
Conceptual Modeling, Databases and CASE: An Integrated View of Information Systems
Development. Wiley, 1992, pp. 1-26.

[30] Mayol, E.; Teniente, E. "Consistency preserving updates in deductive databases", Data &
Knowledge Eng., 47(1), 2003, pp. 61-103.

[31] Mays, R.G. “Forging a silver bullet from the essence of software”. IBM Systems Journal,
33(1), 1994, pp. 20-45.

[32] Mellor, S.J.; Balcer, M.J. Executable UML. A Foundation for Model-Driven
Architecture. Addison-Wesley, 2002, 368 p.

[33] Mylopoulos, J. “The Role of Knowledge Representation in the Development of
Specifications”. Proc IFIP-86, North-Holland, 1986, pp. 317-319.

 Conceptual Schema-Centric Development 15

[34] Mylopoulos, J. “Information Modeling in the Time of the Revolution”. Information
Systems 23(3/4), 1998, pp. 127-155.

[35] Nunamaker, J. F. “A methodology for the design and optimization of information
processing systems”. Proc. Spring Joint Computer Conference, 1971, pp. 283-294.

[36] Olivé, A. “Derivation Rules in Object-Oriented Conceptual Modeling Languages”. Proc.
CAiSE 2003, LNCS 2681, pp. 404-420.

[37] Olivé, A. “Integrity Constraints Definition in Object-Oriented Conceptual Modeling
Languages”. Proc. ER 2003, LNCS 2813, pp. 349-362.

[38] Olivé, A. “On the Role of Conceptual Schemas in Information Systems Development”.
Proc. Ada Europe 2004, LNCS 3063, pp. 16-34.

[39] Olivé, A. “Definition of Events and Their Effects in Object-Oriented Conceptual
Modeling languages”. Proc. ER 2004, LNCS 3288, pp. 136-149.

[40] OMG. “Model Driven Architecture (MDA)”. Document number ormsc/2001-07-01.
2001.

[41] OMG. “MDA Guide Version 1.0.1”. OMG Document omg/2003-06-01. 2003.
[42] Pastor, O.; Gómez, J.; Insfrán, E.; Pelechano, V. "The OO-method approach for

information systems modeling: from object-oriented conceptual modeling to automated
programming", Information Systems, 26(7), 2001, pp. 507-534.

[43] Rich, C.; Waters, R.C. “Automatic Programming: Myths and Prospects”. Computer,
August 1988, pp. 40-51.

[44] Rolland, C.; Prakash, N. “From conceptual modeling to requirements engineering”.
Annals of Software Engineering, 10(2000), pp. 151-176.

[45] Ross, R.G. (Ed.) “The Business Rules Manifesto”. Business Rules Group. Version 2.0,
November 2003.

[46] Ruth, G. R. "Automatic programming: Automating the software system development
process", Proceedings of the 1977 annual conference, pp: 174 – 180.

[47] Shoval, P.; Danoch, R.; Balabam, M. “Hierarchical entity-relationship diagrams: the
model, method of creation and experimental evaluation”, Requirements Eng. (2004) 9:
217-228.

[48] Sowa, J.F. Knowledge Representation. Logical, Philosophical and Computational
Foundations. Brooks/Cole, 2000, 594p.

[49] Teichroew, D.; Sayani, H. “Automation of System Building”, Datamation, 17(16),
August 1971, pp. 25-30.

[50] Teniente, E.; Urpí, T. “On the abductive or deductive nature of database schema
validation and update processing problems”. Theory and Practice of Logic Programming
3(3), pp. 287-327 (2003).

[51] Thalheim, B. Entity-Relationship Modeling. Foundations of Database Technology.
Springer, 2000, 627 p.

[52] Türker, C.; Gertz, M. “Semantic integrity support in SQL:1999 and commercial (object-)
relational database management systems”. The VLDB Journal, 10, 2001, pp. 241-269.

[53] Wand, Y.; Weber, R. “Research Commentary: Information Systems and Conceptual
Modeling – A Research Agenda”. Information Systems Research, 13(4), December 2002,
pp. 363-376.

[54] Zhang, Y. “Test-Driven Modeling for Model-Driven Development”, IEEE Software,
September/October 2004, pp. 80-86.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 16 – 31, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A MDA-Compliant Environment for Developing
User Interfaces of Information Systems

Jean Vanderdonckt

Université catholique de Louvain (UCL), School of Management (IAG),
Information Systems Unit (ISYS), Belgian Lab. of Computer-Human Interaction (BCHI),

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
vanderdonckt@isys.ucl.ac.be

http://www.isys.ucl.ac.be/bchi/

Abstract. To cope with the ever increasing diversity of markup languages, pro-
gramming languages, tool kits and interface development environments, con-
ceptual modeling of user interfaces could bring a framework for specifying, de-
signing, and developing user interfaces at a level of abstraction that is higher
than the level where code is merely manipulated. For this purpose, a complete
environment is presented based on conceptual modeling of user interfaces of in-
formation systems structured around three axes: the models that characterize a
user interface from the end user’s viewpoint and the specification language that
allows designers to specify such interfaces, the method for developing inter-
faces in forward, reverse, and lateral engineering based on these models, and a
suite of tools that support designers in applying the method based on the mod-
els. This environment is compatible with the Model-Driven Architecture rec-
ommendations in the sense that all models adhere to the principle of separation
of concerns and are based on model transformation between the MDA levels.
The models and the transformations of these models are all expressed in
UsiXML (User Interface eXtensible Markup Language) and maintained in a
model repository that can be accessed by the suite of tools. Thanks to this envi-
ronment, it is possible to quickly develop and deploy a wide array of user inter-
faces for different computing platforms, for different interaction modalities, for
different markup and programming languages, and for various contexts of use.

1 Introduction

Today, the development of the User Interface (UI) of interactive applications, whether
they are an information system or a complex, possibly safety-critical system, poses a
series of unprecedented challenges due to the multiplication of several variables [10]:

• Diversity of users: the end users of a same interactive application could no longer
be considered similar as they exhibit various skills, capabilities, levels of experi-
ence and preferences that should be reflected in the UI. Instead of having one sin-
gle UI for all users, a family of different UIs should be developed to cope with the
differences of multiple categories of users, including those who are impaired.

• Richness of cultures: when an interactive application is going to be global, its UI
cannot remain the same for all languages, countries, and cultures. Rather, it can be

 A MDA-Compliant Environment for Developing UIs of Information Systems 17

submitted to a process of localization to tailor the UI to particular constraints or to
a process of globalization to adapt the UI to the largest population possible.

• Complexity of interaction devices and styles: Human-Computer Interaction (HCI)
is an area known for dealing with a wide variety of interaction devices (e.g., bi-
manual mouse, 3D pointers, laser pointer, phantom) and styles (3D tracking, eye
tracking, gesture recognition, speech recognition and synthesis). The handling of
events generated by these devices and their sound incorporation into an interaction
style requires many programming skills that often go beyond the classical capa-
bilities of an average developer of an information system. Even more, when sev-
eral modalities are combines, as in a multimodal application, this complexity is
decupled. Same for virtual reality, augmented reality and mixed reality applica-
tions.

• Heterogeneousness of computing platforms: the market of computing platforms is
submitted to a constant introduction of new computing platforms, each one com-
ing with a new set of constraints to be imposed on the UI that should run on it. For
instance, a significant constraint is the screen resolution and the interaction
capabilities that largely vary depending on the computing platform: mobile phone,
smartphone, Pocket PC, Blackberry, Handbag PC, Tablet PC, interactive kiosk,
laptop, desktop, multi-displays workstation, projected UI, wall screen. All these
computing platforms do not necessarily run the same operating system and the UI
is not necessarily developed with the same markup language (e.g., WML, cHTML,
HTML, DHTML, VoiceXML, X+V, VRML97, X3D) or programming language
(e.g., Visual Basic, C++, Java, C#). Even when a same language could be used,
several peculiarities are present on each platform, thus preventing the developer
from reusing code from one platform to another. The typical end user is using to-
day at least three platforms, sometimes with some synchronization between.

• Multiplicity of working environments: end users are nowadays confronted to a
series of different physical environments where they are supposed to work with
the same reliability and efficiency. But when the environment becomes more con-
straining, e.g., in stress, in noise, in light, in availability of network resources, the
UI is not necessarily adapted to these variations.

• Multiplicity of contexts of use: if a given context of use is defined as a particular
user category working with a given platform in a specific environment, then the
array of potential contexts of use explodes. Of course, not all the contextual varia-
tions should be considered and interpreted in a significant change of the UI, but at
least a reasonable amount of differences exist for context-aware applications.
From a user’s perspective, various scenarios may occur [1,3]:

1. Users may move between different computing platforms whilst involved in a
task: when buying a movie on DVD a user might initially search for it from her
desktop computer, read the reviews of the DVD on a PDA on the train on the
way home from work, and then order it using a WAP-enabled mobile phone.

2. The context of use may change whilst the user is interacting: the train may go
into a dark tunnel so the screen of the PDA dims, the noise level will rise so
volume of audio feedback increases so it can still be heard.

18 J. Vanderdonckt

3. Users may want to collaborate on a task using heterogeneous computing plat-
forms: the user decides to phone up a friend who has seen the movie and look
at the reviews with her, one person using WebTV and the other using a laptop,
so the same information is presented radically differently.

• Multiplicity of software architectures: due to the above variations, the UI should
be developed with dedicated software architecture in mind (e.g., [5]) that is explic-
itly addressing the variations considered as for mobile computing, ubiquitous
computing, context-aware applications (e.g., [1]).

Therefore, it is rather difficult to obtain a UI that addresses these variations while
avoiding reproducing multiple UIs for different contexts of use without factoring out
the common parts. In addition, when in the past, it was possible to code a UI by hand,
today this empirical, opportunistic approach is no longer viable. All these reasons and
others stem for a methodology for User Interface Engineering. This discipline is lo-
cated midway between Software Engineering (SE), Human-Computer Interaction
(HCI) and Human Factors (HF). Its primary goal is to develop a methodology for
developing the UI throughout the development life cycle that can be articulated with
traditional SE concepts. This methodology consists of:

1. A series of models pertaining to various facets of the UI such as: task, domain,
user, presentation, dialog, platform, context of use, etc. These models will be de-
fined in Section 2 and located on a reference framework. These models are uni-
formly and univocally expressed according to a single Specification Language, de-
scribed in Section 3.

2. A step-wise method towards Computer-Aided Design of User Interfaces (CADUI)
based on any combination of the above models. Section 4 will define this method
by combination of models and model transformations so as to be compliant with
the Model-Driven Architecture, to support Model-Driven Development (MDD).

3. A suite of software engineering tools that supports the designer and the developer
during the development life cycle according to the method. A subset of these tools
will be illustrated in Section 5.

Section 6 will summarize the main benefits of the MDA-compliant environment.

2 Models

Our methodology is explicitly based on the Cameleon Reference Framework [3],
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to
manipulate any specific artifact of interest as a model or a UI representation):

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular computing
platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive development environment).

 A MDA-Compliant Environment for Developing UIs of Information Systems 19

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Fig. 1. The Simplified User Interface Reference Framework [3]

2. Concrete UI (CUI): concretizes an abstract UI for a given context of use into Con-
crete Interaction Objects (CIOs) [19] so as to define widgets layout and interface
navigation. It abstracts a FUI into a UI definition that is independent of any com-
puting platform. Although a CUI makes explicit the final Look & Feel of a FUI, it
is still a mock-up that runs only within a particular environment (Fig. 2). A CUI
can also be considered as a reification of an AUI at the upper level and an abstrac-
tion of the FUI with respect to the platform. For example, in Envir3D [18], the
CUI consists of a description of traditional 2D widgets with mappings to 3D by re-
lying on different mechanisms when such a mapping is possible.

3. Abstract UI (AUI): defines abstract containers and individual components [12,13],
two forms of Abstract Interaction Objects [19] by grouping subtasks according to
various criteria (e.g., task model structural patterns, cognitive load analysis, se-
mantic relationships identification), a navigation scheme between the container
and selects abstract individual component for each concept so that they are inde-
pendent of any modality. An AUI abstracts a CUI into a UI definition that is inde-
pendent of any modality of interaction (e.g., graphical interaction, vocal interac-
tion, speech synthesis and recognition, video-based interaction, virtual, augmented
or mixed reality). An AUI can also be considered as a canonical expression of the
rendering of the domain concepts and tasks in a way that is independent from any
modality of interaction. An AUI is considered as an abstraction of a CUI with re-
spect to interaction modality. At this level, the UI mainly consists of input/output
definitions, along with actions that need to be performed on this information (Fig.
3). The AUI is mainly based on the Canonical Abstract Prototypes [4].

4. Task & Concepts (T&C): describe the various user’s tasks to be carried out and the
domain-oriented concepts as they are required by these tasks to be performed.
These objects are considered as instances of classes representing the concepts. Fig.
4 represents a potential task model representing the end user’s viewpoint for an
Internet Radio Player, based on LOTOS operators.

This framework also exhibits three types of transformation types: (1,2) Abstraction
(respectively, Reification) is a process of eliciting artifacts that are more abstrct (re-
spectively, concrete) than the artifacts that serve as input to this process. Abstraction

20 J. Vanderdonckt

Fig. 2. A concrete UI of an Internet Radio Player [15] in GrafiXML

Fig. 3. A Abstract User Interface of an Internet Radio Player [15] in IdealXML [16]

is the opposite of reification. (3) Translation is a process that elicits artifacts intended
for a particular context of use from artifacts of a similar development step but aimed
at a different context of use. Therefore, when there is a need to switch from one con-
text of use (e.g., one platform) to another one (e.g., another platform), the develop-
ment process can cope with adaptation to the new context of use at any level of ab-
straction. Of course, the higher the level of abstraction the adaptation is performed,
the more flexibility we have in the resulting processes.

With respect to this framework, multi-path UI development [12,13] refers to a UI
engineering method and tool that enables a designer to (1) start a development activity
from any entry point of the reference framework (Fig. 1), (2) get substantial support
in the performance of transformation types and their combinations as found in Fig. 1.
Several interesting development paths can be expressed on this framework since not

 A MDA-Compliant Environment for Developing UIs of Information Systems 21

Fig. 4. A task model of an Internet Radio Player [15] in IdealXML [16]

all steps should be achieved in a sequential ordering dictated by the levels. Instead,
locating what steps are performed, when, from which entry point and toward what
subsequent step are important. According to Fig. 1, transcoding tools start with a
FUI for a source context of use () and transforms it into another FUI for a target
context (). Similarly, portability tools start with a CUI for a source context ()
and transforms it into another CUI for another context (), that in turn leads to a
new FUI for that context (). To overcome shortcomings identified for these tools,
there is a need to raise the level of abstraction by working at the AUI level. UI Re-
verse Engineering abstracts any initial FUI () into concepts and relationships
denoting a AUI (), which can then be translated into a new AUI () by taking
into account constraints and opportunities for the new context. UI Forward Engi-
neering then exploits this AUI () to regenerate a new AUI adapted to this plat-
form, by recomposing the CUI () which in turn is reified in an executable FUI
(). In general, UI reverse engineering is any combination of abstraction relation-
ships starting from a FUI (), a CUI () or an AUI (). UI forward engineering is
any combination of reification relationships starting from T&C, AUI or CUI. Simi-
larly, UI Lateral Engineering is responsible for applying any translation at any level
of abstraction to transform the artifacts existing at the level where we are for an-
other context of use at the same level. For instance, when a designer has already
designed a UI for, let us say a desktop, and wants to design a corresponding UI for a
Pocket PC, she may need to apply Graceful Degradation techniques [7], which
consist of a series of transformations to support the translation from the desktop to
the PocketPC, while taking into account the constraints imposed by the new plat-
form.

So far, to support conceptual modeling of UIs and to describe UIs at various levels
of abstractions, the following models have been involved (Fig. 5) [13]:

22 J. Vanderdonckt

Fig. 5. The collection of models for specifying a user interface [12,13]

• taskModel: is a model describing the interactive task as viewed by the end user
interacting with the system. A task model represents a decomposition of tasks into
sub-tasks linked with task relationships. Therefore, the decomposition relationship
is the privileged relationship to express this hierarchy, while temporal relation-
ships express the temporal constraints between sub-tasks of a same parent task.

• domainModel: is a description of the classes of objects manipulated by a user
while interacting with a system. Typically, it could be a UML class diagram, an
entity-relationship-attribute model, or an object-oriented model.

• mappingModel: is a model containing a series of related mappings between
models or elements of models. A mapping model serves to gather a set of inter-
model relationships that are semantically related. It expresses reification, abstrac-
tion, and translation. In addition, other mappings [13] are defined and could be
defined.

• contextModel: is a model describing the three aspects of a context of use in
which a end user is carrying out an interactive task with a specific computing
platform in a given surrounding environment [3]. Consequently, a context model
consists of a user model, a platform model [5], and an environment model.

• auiModel: is the model describing the UI at the abstract level as previously de-
fined.

• cuiModel: is the model describing the UI at the concrete level as previously de-
fined.

• uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
sin any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A user interface
model needs not include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

The conceptual modeling activities that reached to the meta-model of the cuiModel
represented a significant amount of work and is therefore detailed further in the next
subsection. The transformation model is the only remaining model: as such, it is de-
fined in the second subsection.

 A MDA-Compliant Environment for Developing UIs of Information Systems 23

2.1 The cuiModel

A CUI is assumed to be described without any reference to any particular computing
platform or toolkit of that platform. For this purpose, a CUI model consists of a hier-
archical decomposition of CIOs. A Concrete Interaction Object (CIO) is defined as
any UI entity that users can perceive such as text, image, animation and/or manipulate
such as a push button, a list box, or a check box [12,13,19]. A CIO is characterized by
various attributes such as, but not limited to: id, name, icon, content, defaultContent,
defaultValue.

Since a CIO is independent of any computing platform, we do not know yet which
interaction modality is used on that platform. Therefore, each CIO can be sub-typed
into sub-CIOs depending on the interaction modality chosen: graphicalCIO for GUIs,
auditoryCIO for vocal interfaces, 3DCIO for 3D UIs, etc. In this paper, we focus on
graphical CIO since they form the basic elements of a traditional 2D GUI or a 3D,
virtual UI. Each graphicalCIO inherits from the above CIO properties and has spe-
cific attributes such as: isVisible, isEnabled, fgColor and bgColor to depict fore-
ground and background colors, etc.

Each graphicalCIO is then sub-typed into one of the two possible categories (Fig.
6): graphicalContainer for all widgets containing other widgets such as page, win-
dow, frame, dialog box, table, box and their related decomposition or graphicalIndi-
vidualComponent for all other traditional widgets that are typically found in such
containers. A graphicalIndividualComponent cannot be further decomposed. The
model supports a series of widgets defined as graphicalIndividualComponents such
as: textComponent, videoComponent, imageComponent, imageZone, radioButton,
toggleButton, icon, checkbox, item, comboBox, button, tree, menu, menuItem,
drawingCanvas, colorPicker, hourPicker, datePicker, filePicker, progressionBar,
slider, and cursor.

Thanks to this progressive inheritance mechanism, every final elements of the CUI
inherits from the upper properties depending on the category they belong to. The
properties that have been chosen to populate the CUI level have been decided because
they belong to the intersection of property sets of major toolkits and window manag-
ers, such as Windows GDI, Java AWT and Swing, HTML. Of course, only properties
of high common interest were kept. In this way, a CIO can be specified independently
from the fact that it will be further rendered in HTML, VRML or Java. This quality is
often referred to as the property of platform independence.

Similar abstractions exist for auditory, vocal, 3D, virtual, and augmented reality in-
terfaces.

2.2 The TransformationModel

Graph Transformation (GT) techniques were chosen to formalize explicit transforma-
tions between any pair of models [13] (except from the FUI level), because it is (1)
Visual: every element within a GT based language has a graphical syntax; (2) For-
mal: GT is based on a sound mathematical formalism (algebraic definition of graphs

24 J. Vanderdonckt

CUI Model

CIO

graphicalCIO

graphicalContainer graphicalIndividualComponent

CUI ModelCUI Model

CIOCIO

graphicalCIOgraphicalCIO

graphicalContainer graphicalIndividualComponentgraphicalContainergraphicalContainer graphicalIndividualComponentgraphicalIndividualComponent

Fig. 6. Decomposition of a CUI model into concepts

and category theory) and enables verifying formal properties on represented artefacts;
(3) Seamless: it allows representing manipulated artefacts and rules within a single
formalism. Furthermore, the formalism applies equally to all levels of abstraction of
uiModel (Fig. 1). The model collection (Fig. 5) is structured according to the four
basic levels of abstractions defined in the Cameleon Reference Framework [3] that is
intended to express the UI development life cycle for context-sensitive interactive
applications. The FUI level is the only model that cannot be supported by graph trans-
formations because it would have supposed that any markup or programming lan-
guage to be supported should have been expressed in a meta-model to support trans-
formations between meta-models: the one of the initial language to the one of our
specification language (Section 3). It was observed that to address this problem, the
powerfulness of GT techniques was not needed and surpassed by far other experi-
enced techniques, such a derivation rules [2].

3 Specification Language

In order to specify the different UI aspects and related models, a specification lan-
guage is needed that allow designers and developers to exchange, communicate, and
share fragments of specifications and that enables tools to operate on these specifica-
tions. Therefore, a User Interface Description Language (UIDL) is required that satis-
fies at least the following important requirements: software processability (the UIDL
should be precise enough to enable computational processing of the specifications by
an automaton, in particular to interpret or execute them), expressiveness (the UIDL
should be expressive enough to support common SE techniques such as model deriva-
tion, model transformation, mapping), standard format (the UIDL should be ex-
pressed in a format that maximizes its exchange among stakeholders), human read-
ability (the UIDL should be as much as possible legible and understandable by a hu-

 A MDA-Compliant Environment for Developing UIs of Information Systems 25

man agent), concision (the UIDL should be compact enough to be easily exchanged
among interested parties). Since software processability and expressiveness are the
two most important requirements, trade-offs could be accepted to satisfy those two
requirements, while decreasing the value of the two other requirements.

To address the above requirements, we introduced UsiXML (which stands for
USer Interface eXtensible Markup Language – http://www.usixml.org), a XML-
compliant markup language that describes the UI for multiple contexts of use such as
Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory and
Vocal User Interfaces, Virtual Reality, and Multimodal User Interfaces:

• UsiXML is primarily intended for non-developers, such as analysts, specifiers,
designers, human factors experts, project leaders, and novice programmers.

• UsiXML can be equally used by experienced designers and developers.
• Thanks to UsiXML, non-developers can shape the UI of any new interactive ap-

plication by specifying, describing it in the UIDL, without requiring programming
skills usually found in markup languages and programming languages.

• UsiXML consists of a declarative UIDL that capturing the essence of what a UI is
or should be independently of physical characteristics.

• UsiXML describes at a high level of abstraction the constituting UI elements of an
application: widgets, controls, containers, modalities, and interaction techniques.

• UsiXML allows cross-toolkit development of an interactive application.
• A UI of any UsiXML-compliant application runs in all toolkits that implement it:

compilers and interpreters.
• UsiXML supports device independence: a UI can be described in a way that re-

mains autonomous with respect to the devices used in the interactions (e.g.,
mouse, screen, keyboard, voice recognition system). In case of need, a reference to
a particular device can be incorporated.

• UsiXML supports platform independence: a UI can be described in a way that
remains autonomous with respect to the various existing computing platforms
(e.g., mobile phone, Pocket PC, Tablet PC, kiosk, laptop, desktop, and wall
screen). In case of need, a reference to a particular computing platform can be in-
corporated.

• UsiXML supports modality independence: a UI can be described in a way that
remains independent of any interaction modality (e.g., graphical interaction, vocal
interaction, 3D interaction, virtual reality interaction). In case of need, a reference
to a particular modality can be incorporated.

• UsiXML allows reusing elements previously described in anterior UIs to compose
a UI in new applications.

On the other hand, it is not supposed to cover all features of all types of UI:

• UsiXML does not want to introduce yet another language for UI implementation.
Instead, it proposes the integration of some of these formats: cHTML, WML,
HTML, XHTML, VoiceXML, VRML, Java, C++,.... It is up to the underlying im-
plementation to support the transformation of UsiXML into such a format.

• UsiXML does not describe the low-level details of elements involved in the vari-
ous modalities, such as operating system attributes, events, and primitives.

26 J. Vanderdonckt

• UsiXML cannot be rendered nor executed by its own: it relies on an implementa-
tion in any third-party rendering engine.

• UsiXML does not want to support all attributes, events, and primitives of all wid-
gets existing in nearly all toolkits. Instead, it is intended to support a common sub-
set of them that is believed to be representative and significant.

For the moment, the semantics of UsiXML are defined according to the above models
and relationships in terms of a UML class diagram, representing the meta-model of
the UIDL. All class diagrams are maintained in Rational Rose and lead to the defini-
tion of ML schemas that are available at http://www.usixml.org/index.php?view=page
&idpage=5 thanks to a series of systematic transformations. Therefore, any UI speci-
fication is expressed in UsiXML that is in turn compliant with the XML schemas.

4 Method

So far, many attempts to establish a comprehensive model-based approach for devel-
oping the UI have been launched [10,11,20,21], but only a few of them is MDA-
compliant: form information related task (what are the actions carried out by the
user), domain (what are the objects manipulated in this task), user (who is the user),
platform (what is the computing platform), environment (in which environment is the
user working), the presentation, the dialog, the help, the tutorial of one or many UIs
should be derived. Today, no consensus has been reached and no method has really
emerged from these initiatives, namely by lack of standardization. Since 1997, the
Object Management Group (OMG – www.omg.org) has launched an initiative called
Model Driven Architecture (MDA) to support the development of complex, large,
interactive software systems providing a standardized architecture with which:

– Systems can easily evolve to address constantly evolving user requirements.
– Old, current and new technologies can be harmonized.
– Business logic can be maintained constant or evolving independently of the tech-

nological changes.
– Legacy systems can be integrated and unified with new systems.

In this approach, models are applied in all steps of development up to a target plat-
form, providing source code, deployment and configuration files,… MDA has been
applied to many kinds of business problems and integrated with a wide array of other
common computing technologies, including the area of UIs.

In MDA, a systematic method is recommended to drive the development life cycle
to guarantee some form of quality of the resulting software system. Four principles
underlie the OMG’s view of MDA [14]:

1. Models are expressed in a well-formed unified notation and form the cornerstone
to understanding software systems for enterprise scale information systems. The
semantics of the models are based on meta-models.

2. The building of software systems can be organized around a set of models by
applying a series of transformations between models, organized into an architec-
tural framework of layers and transformations: model-to-model transformations

 A MDA-Compliant Environment for Developing UIs of Information Systems 27

support any change between models while model-to-code transformation are typi-
cally associated with code production, automated or not.

3. A formal underpinning for describing models in a set of meta-models facilitates
meaningful integration and transformation among models, and is the basis for
automation through software.

4. Acceptance and adoption of this model-driven approach requires industry stan-
dards to provide openness to consumers, and foster competition among vendors.

Our UI engineering methodology, based on UsiXML (Section 3), is compliant with
these four principles in the following way:

1. All involved models are expressed in UsiXML, a well-formed UIDL based on
XML schema. The semantics of the UsiXML models are based on meta-models
expressed in terms of UML class diagrams, from which the XML schema defini-
tion are derived. Right now, there is no automation between the initial definition
of the semantics and their derivation into XML schemas. Only a systematic
method is used for each new release.

2. All model-to-model transformations are themselves specified in UsiXML to keep
only one UIDL throughout the development life cycle. Model-to-code transforma-
tion is ensured by appropriate tools (see Section 5) that produce code for the target
context of use or platform. For reverse engineering, code-to-model transforma-
tions are mainly achieved by derivation rules that are based on the mapping be-
tween the meta-model of the source language (e.g., HTML, WML, VoiceXML)
and the meta-model of the target language (i.e., here UsiXML). So far, derivation
rules have been proved powerful enough to express reverse engineering rules for
UI, while keeping a relative concision.

3. All transformations are explicitly defined based on a series of predefined semantic
relationship and a set of three primitive ones (abstraction, reification, and transla-
tion). The transformation model could itself contain transformation rules.

4. The last principle, i.e., the standardization process, is only on the way. Only the
future will tell us whether a wide adoption of the above techniques will be effec-
tive.

In addition to the adherence of the basic MDA principles, our UI engineering meth-
odology classifies the involved models in a similar way. Fig. 7 graphically depicts the
distribution of models according to the OMG paradigm of MDA and their UsiXML
counterpart: task and domain models (T&C) are considered as the Computing Inde-
pendent Model (CIM) as they are stated independently of any implementation of any
interactive systems. Such models could be specified for virtually any UI type. The
Platform Independent Model (PIM) is interpreted as the Abstract UI model (AUI) in
UsiXML in the sense that it is independent of any interaction modality: at this level,
we do not know yet whether the UI will be graphical, modal, virtual or multimodal.
The Platform Specific Model (PSM) is interpreted as the Concrete UI model (CUI) in
UsiXML in the sense that it is independent of any vocabulary of markup and pro-
gramming languages. At this level, we have already chosen what kind on interaction
modality will be exploited, but we do not know yet which physical computing plat-
form will run the UI. This is why it should be believed that the CUI is not platform

28 J. Vanderdonckt

specific. Only some aspects of the target platform are selected, the platform being
modeled itself in the platform model. In contrast with other MDA-compliant architec-
tures, the present one can either render the UI directly (by interpretation) or automati-
cally generate code (by generation) that will be compiled, linked with the rest of the
application, and executed. Therefore, there is no ‘model-to-code’ transformation per
se. Rather, different tools produce different results from the UsiXML specifications.
For other ‘model-to-model’ transformations, graph transformation techniques are
exploited throughout the development life cycle to maintain consistency.

Model to Model

Platform
Independent
Model (PIM)

Platform
Specific

Model (PSM)
Model to Code Source code

MDA Components

Techniques proposed based on UsiXML

Computing
Independent
Model (CIM)

Model to Model

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface
Rendering

Final user
interface

UsiXML
models: task,

domain

Graph
transformations

Graph
transformations

Model to Model

Platform
Independent
Model (PIM)

Platform
Specific

Model (PSM)
Model to Code Source code

MDA Components

Techniques proposed based on UsiXML

Computing
Independent
Model (CIM)

Model to Model

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface
Rendering

Final user
interface

UsiXML
models: task,

domain

Graph
transformations

Graph
transformations

Fig. 7. The distribution of UsiXML models according to the MDA classification

5 Tools

Fig. 7 mainly depicts the forward engineering of UIs. As our UI engineering method-
ology is not restricted to this development path, other paths could be followed as well
[13]. Fig. 8 somewhat generalizes the development life cycle, but for one context of
use at a time. To support the application of a particular development path, a suite of
tools has been developed and is currently being expanded (see http://www.usixml.org/
index.php?view=page&idpage=20 for more information). The most significant tools
belonging to this suite are (Fig. 8):

• TransformiXML is a Java-based application that is responsible for defining, stor-
ing, manipulating, and executing productions contained in graph grammars to sup-
port graph transformations (model-to-model transformations)

• IdealXML [16] is a Java-based application containing the graphical editor for the
task model, the domain model, and the abstract model. It can also establish any
mapping between these models either manually (by direct manipulation) or semi-
automatically (by calling TransformiXML).

• KnowiXML [8] consists of an expert system based on Protégé that automatically
produces several AUIs from a task and a domain models for various contexts.

• GrafiXML [12] is the most elaborate UsiXML high-fidelity editor with editing of
the CUI, the context model and the relationships between. It is able to automati-
cally generate UI code in HTML, XHTML, XUL and Java thanks to a series of
plug-ins.

 A MDA-Compliant Environment for Developing UIs of Information Systems 29

• VisiXML is a Microsoft Visio plug-in for drawing in mid-fidelity graphical UIs,
that is UIs consisting exclusively of graphical CIOs. It then exports the UI defini-
tion in UsiXML at the CUI level to be edited by GrafiXML or another editor.

• SketchiXML [6] consists of a Java low-fidelity tool for sketching a UI for multiple
users, multiple platforms (e.g., a Web browser, a PDA), and multiple contexts of
use. It is implemented on top of Jack agent system.

• FormiXML is a Java editor dedicated to interactive forms with a smart system of
copy/paste techniques to support reusability of components. It automatically gen-
erates the complete UI code for Java/Swing.

• Several renderers are currently being implemented: FlashiXML opens a CUI
UsiXML file and renders it in Flash, QtkXML in the Tcl/Tk environment, and
JaviXML for Java.

• VisualiXML [17] personalizes a UI and produces one thanks to generative pro-
gramming techniques for Visual C++ V6.0.

• ReversiXML [2] opens a HTML file and reverse engineers it into UsiXML at both
the CUI and AUI levels.

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML
QtkXML
JaviXML

VisualiXML

TransformiXML

GrafiXML
VisiXML

SketchiXML
FormiXML

KnowiXML

UsiXML model:
Abstract user

interface

UsiXML model:
Concrete user

interface

Rendering

Final user
interface

UsiXML
models: task,

domain
Generative

programming

Graph
transformations

Graph
transformations

Derivation rules

IdealXML

ReversiXML

FlashiXML
QtkXML
JaviXML

VisualiXML

TransformiXML

GrafiXML
VisiXML

SketchiXML
FormiXML

KnowiXML

Fig. 8. The suite of UsiXML tools structured according to the MDA classification.

6 Conclusion

In this paper, we have introduced a UI Engineering methodology articulated on three
axes: models and their specification language, method, and tools that support the
method based on the underlying models. All aspects are stored in UsiXML
(www.usixml.org) files that can be exchanged, shared, and communicated between
stakeholders (designers, developers, and end users). It has been demonstrated that the
global methodology adheres to the principles of MDA and is therefore compliant,
except for the standardization process which is ongoing. It is worth to note that this
environment has been largely studied and scrutinized for user interfaces of informa-
tion systems that are equipped with different types of interfaces (graphical, vocal,

30 J. Vanderdonckt

virtual, and multimodal mainly) on different types of computing platforms. We be-
lieve that a significant portion of UsiXML models could be equally used for the UI of
more sophisticated interactive systems (e.g., [9]), like safety-critical systems, indus-
trial supervision systems, etc. But this is matter of more extensive study. It is likely
that the model transformations will be more complex to discover and to apply.

Acknowledgements

The author would like to thank all members of the Belgian Lab. of Computer-Human
Interaction (BCHI) for their fruitful involvement in the UsiXML initiative. We grate-
fully acknowledge the support of the following projects: the SIMILAR network of
excellence (the European research task force creating human-machine interfaces simi-
lar to human-human communication – http://www.similar.cc), the SALAMANDRE
research project (User Interfaces for Mobile and Multi-platform Interactive Systems,
Initiatives III Research Program, DGTRE, Ministry of Walloon Region), the REQUEST
research project (WIST-Wallonie Information Société Technologies program under
convention n°031/5592), the Cameleon project (Context Aware Modelling for Ena-
bling and Leveraging Effective interaction – FP6-IST5-2000,
http://giove.cnuce.cnr.it/cameleon. html). We also thank very much our colleagues
who have been involved in these projects for their fruitful exchanges and discussions.

References

1. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Soft-
ware Architecture Reference Model for Distributed, Migratable, and Plastic User Interfaces.
In: Proc. of EUSAI’2004. Lecture Notes in Computer Science, Vol. 3295. Springer-Verlag,
Berlin (2004) 291–302

2. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites; In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, 13-16 Janu-
ary 2004). ACM Press, New York (2004) 132–139

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A Uni-
fying Reference Framework for Multi-Target User Interfaces. Interacting with Computers,
Vol. 15, No. 3 (June 2003) 289–308

4. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction De-
sign. In: Proc. of 10th Int. Workshop on Design, Specification, and Verification of Interac-
tive Systems DSV-IS’2003 (Funchal, June 11-13, 2003). Lecture Notes in Computer Sci-
ence, Vol. 2844. Springer-Verlag, Berlin (2003) 1–15. Accessible at http://www.foruse.
com/articles/abstract.pdf

5. Coutaz, J.: PAC, an Object Oriented Model for Dialog Design. In: Proc. of 2nd IFIP Interna-
tional Conference on Human-Computer Interaction Interact’87 (Stuttgart, September 1-4,
1987). North Holland, Amsterdam (1987) 431–436.

6. Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces. In: Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer In-
teraction INTERACT’2005 (Rome, 12-16 September 2005). Lecture Notes in Computer
Science. Springer-Verlag, Berlin (2005)

 A MDA-Compliant Environment for Developing UIs of Information Systems 31

7. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design Method
for Multiplatform Systems. In: Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces
IUI’2004 (Funchal, 13-16 January 2004). ACM Press, New York (2004) 140–147

8. Furtado, E., Furtado, V., Soares Sousa, K., Vanderdonckt, J., Limbourg, Q.: KnowiXML: A
Knowledge-Based System Generating Multiple Abstract User Interfaces in UsiXML. In:
Proc. of 3rd Int. Workshop on Task Models and Diagrams for user interface design
TAMODIA’2004 (Prague, November 15-16, 2004). ACM Press, New York (2004) 121–128

9. Grolaux, D., Van Roy, P., Vanderdonckt, J.: Migratable User Interfaces: Beyond Migratory
User Interfaces. In: Proc. of 1st IEEE-ACM Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services MOBIQUITOUS’04 (Boston, August 22-25,
2004). IEEE Computer Society Press, Los Alamitos (2004) 422–430

10. Jacob, R., Limbourg, Q., Vanderdonckt, J.: Computer-Aided Design of User Interfaces IV.
Proc. of 5th Int. Conf. of Computer-Aided Design of User Interfaces CADUI’2004 (Fun-
chal, 13-16 January 2004). Information Systems Series, Kluwer Academics, Dordrecht
(2005)

11. Kolski, Ch., Vanderdonckt, J.: Computer-Aided Design of User Interfaces III. Proc. of 4th
Int. Conf. of Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes, 15-
17 May 2002). Information Systems Series, Kluwer Academics, Dordrecht (2002)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Proc. of 9th IFIP Work-
ing Conference on Engineering for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Springer-Verlag, Berlin (2005)

13. Limbourg, Q., Multi-path Development of User Interfaces. Ph.D. thesis. Université ca-
tholique de Louvain, IAG-School of Management. Louvain-la-Neuve (Nov. 2004).

14. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Ar-
chitecture. Addison-Wesley, New York (2004)

15. Molina, J.P., Vanderdonckt, J., Montero, F., Gonzalez, P.: Towards Virtualization of User
Interfaces. In: Proc. of 10th ACM Int. Conf. on 3D Web Technology Web3D’2005 (Bangor,
March 29-April 1, 2005). ACM Press, New York (2005)

16. Montero, F., Lozano, M., González, P.: IDEALXML: an Experience-Based Environment for
User Interface Design and pattern manipulation. Technical Report DIAB-05-01-4. Univer-
sidad de Castilla-La Mancha, Albacete (2005).

17. Schlee, M., Vanderdonckt, J.: Generative Programming of Graphical User Interfaces. In:
Proc. of 7th Int. Working Conference on Advanced Visual Interfaces AVI’2004 (Gallipoli,
May 25-28, 2004). ACM Press, New York (2004) 403–406

18. Vanderdonckt, J., Bouillon, L., Chieu, K.C., Trevisan, D.: Model-based Design, Genera-
tion, and Evaluation of Virtual User Interfaces. In: Proc. of 9th ACM Int. Conf. on 3D Web
Tech. Web3D’2004 (Monterey, April 5-8, 2004). ACM Press, New York (2004) 51–60

19. Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic Interac-
tion Objects Selection. In: Proc. of the ACM Conf. on Human Factors in Computing Sys-
tems INTERCHI'93 (Amsterdam, 24-29 April 1993). ACM Press, New York (1993) 424–429

20. Vanderdonckt, J., Puerta, A.R.: Computer-Aided Design of User Interfaces II. Proc. of 3rd
Int. Conf. of Computer-Aided Design of User Interfaces CADUI’99 (Louvain-la-Neuve,
21-23 October 1999). Information Systems Series, Kluwer Academics, Dordrecht (1999)

21. Vanderdonckt, J.: Computer-Aided Design of User Interfaces. Proc. of 2nd Int. Workshop
on Computer-Aided Design of User Interfaces CADUI’96 (Namur, 5-7 June 1996).
Collection « Travaux de l’Institut d’Informatique » n°15. Presses Universitaires de Namur,
Namur (1996)

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, p. 32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward Semantic Interoperability of Heterogeneous
Biological Data Sources

Sudha Ram

Eller Professor of MIS, Director, Advanced Database Research Group,
Eller College of Management, University of Arizona,

Tucson, AZ 85721
ram@eller.arizona.edu

http://vishnu.eller.arizona.edu/ram

Genomic researchers use a number of heterogeneous data sources including
nucleotides, protein sequences, 3-D Protein structures, taxonomies, and research
publications such as MEDLINE. This research aims to discover as much biological
knowledge as possible about the properties and functions of the structures such as
DNA sequences and protein structures and to explore the connections among all the
data, so that the knowledge can be used to improve human lives. Currently it is very
difficult to connect all of these data sources seamlessly unless all the data is
transformed into a common format with an id connecting all of them. The state-of-
the-art facilities for searching these data sources provide interfaces through which
scientists can access multiple databases. Most of these searches are primarily text-
based, requiring users to specify keywords using which the systems search through
each individual data source and returns results. The user is then required to create the
connections between the results from each source. This is a major problem because
researchers do not always know how to create these connections. To solve this
problem we propose a semantics-based mechanism for automatically linking and
connecting the various data sources. Our approach is based on a model that explicitly
captures the semantics of the heterogeneous data sources and makes them available
for searching. In this talk I will discuss issues related to capturing the semantics of
biological data and using these semantics to automate the integration of diverse
heterogeneous sources.

The Association Construct in Conceptual
Modelling – An Analysis Using the Bunge

Ontological Model

Joerg Evermann

School of Information Management, Victoria University,
Wellington, New Zealand

Joerg.Evermann@mcs.vuw.ac.nz

Abstract. Associations are a widely used construct of object-oriented
languages. However, the meaning of associations for conceptual mod-
elling of application domains remains unclear. This paper employs onto-
logical analysis to first examine the software semantics of the association
construct, and shows that they cannot be transferred to conceptual mod-
elling. The paper then explores associations as ’semantic connections’
between objects and shows that this meaning cannot be transferred to
conceptual modelling either.

As an alternative to the use of associations, the paper proposes using
shared properties, a construct that is rooted directly in ontology. An
example from a case study demonstrates how this is applied. The paper
then shows an efficient implementation in object-oriented programming
languages to maintain seamless transitions between analysis, design, and
implementation.

1 Introduction

Object-oriented modelling languages are increasingly being used for describing
business and organizational application domains (conceptual modelling). In or-
der to have well-defined meaning, their constructs must be defined in terms of
the elements of the application domain [1]. The use of constructs without clearly
defined meaning can lead to ambiguous or confusing models.

However, the meaning of the association construct remains unclear, as the
following attempts at a definition show1:

An association is ”the simplest form of a relationship” [2, p. 195].

”An association represents the relationships between objects and classes”
[3, p. 26].

”Relationships associate one object with another” [4, p. 18].

1 Note that this concerns the semantics for conceptual modelling only. Software se-
mantics for associations are discussed in Sect. 3.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 33–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 J. Evermann

”If two classes have an association between them, then instances of these
classes are, or might be, linked.” [2].

”An association sets up a connection. The connection is some type of
fact that we want to note in our model” [5, p. 105].

The original definition by Rumbaugh sheds little light on the issue:

”A relation associates objects from n classes. ... A relation is an ab-
straction stating that objects from certain classes are associated in some
way.” [6, p. 466].

This lack of clarity remains even in the latest UML standard:

”An association defines a semantic relationship between classifiers.” [7,
p. 2-19].

To provide a clear definition of associations in terms of the elements of the
application domain, we must first determine what exists, or is assumed to exist,
in the application domain. Ontologies specify what concepts exist in a domain
and how they are related. Hence, to define the meaning of an association, we
must map them to an ontological concept [1, 8]. This mapping must support the
syntactic features of associations as much as possible. For example, associations
connect two or more classes of objects. Hence, they should be mapped to an
ontological concept that connects two or more sets of things or objects.

Note that this paper is concerned with association semantics from the per-
spective of an application domain analyst, not a software designer or program-
mer. In fact, association semantics are problematic also for the latter case, as
shown in [9, 10]: The relationship between the association construct and pro-
gramming language implementations is often unclear.

The paper proceeds as follows. Section 2 introduces the ontology that is
adopted for this analysis. Next, the paper identifies the usage and the semantics
of associations in software modelling (Sect. 3). It shows that software semantics
cannot be transferred to conceptual modelling. Section 4 examines associations
as ’semantic connections’ and shows that there is no ontological concept with
similar use or meaning. Hence, associations have no semantics when used for
conceptual modelling.

The use of mutual shared properties is proposed as an alternative to the use
of associations in conceptual modelling. We advocate the notation of association
class attributes to represent mutual properties (Sect. 5). An example from a case
study demonstrates this technique using a real modelling situation (Sect. 6).
Finally, Sect. 7 demonstrates that the proposed technique can be efficiently and
transparently implemented in object-oriented programming languages in order to
maintain seamless transitions between object-oriented system analysis, software
design, and implementation.

The Association Construct in Conceptual Modelling 35

2 Ontology

This research does not relate to a particular application domain but to a language
construct that is not domain-specific. Hence, an ontology on a suitable level of
abstraction is required. A number of proposed high-level or upper-level ontologies
exist [11, 12, 13, 14, 15, 16, 17].

Among these, the ontology proposed by Bunge [12] stands out because it
has been empirically validated in a variety of applications and application do-
mains [18, 19, 20]. Furthermore, it has repeatedly been shown to provide a good
benchmark for the analysis of modelling languages and language constructs
[21, 22, 23, 8, 24].

Bunge [12] proposes that the world is made up of things which physically exist
in the world. A thing possesses individual properties, each of which corresponds
to a property in general. For example, being colored red is an individual property
of a particular thing; color is a property in general.

Properties are either intrinsic or mutual. Intrinsic properties are ones that a
thing possess by itself, e.g. color, whereas mutual properties are shared between
two or more things, e.g. voltage of a processor and memory unit, temperature
of a heater and surrounding air, etc.

Two or more things can interact with each other. Interaction is defined by
the history of a thing: If the way in which the properties of a thing change
depends on the existence of another thing, then the second is said to act on the
first. Ontologically, for things to interact, e.g. for a thing A to act on a thing B,
there must exist a mutual property P of A and B. A change of P in A is also
a change of P in B. The change of P may then cause further changes in B. For
example, for a heater to warm the air in a room, the heater and surrounding air
share a mutual property, temperature. When the action of the heater changes
the temperature, this change leads to changes in room temperature.

3 Software Semantics of Associations

Associations, introduced to graphical object-oriented modelling in [6], originate
in object-oriented programming languages. Here, they have well defined mean-
ing: ”Associations are often implemented in programming languages as pointers
from one object to another” [25, p. 27], ”a relation expresses associations often
represented in a programming language as pointers from one object to another.”
[6, p. 466]. For example, the association ”attends” in Fig. 1 may be implemented
in the following way, making use of pointers. These pointers are then used to
enable method calls.

Student
attends

University

Fig. 1. Association example

36 J. Evermann

class University {
void PayFees(int studentno, int semester, float amount);

... }
class Student {

AttendedUniversity *University;
... }

...
AttendedUniversity -> PayFees(12345, 2, 880.00);

The above example shows the software semantics of associations: They pro-
vide the means for interaction by message-passing in software 2. Booch [26] terms
this a usage relationship, Coad & Yourdon [27] call them message connections.
For the remainder of the paper we call them ”use associations” 3.

Associations as enablers of message-passing are useful for describing software.
However, the following arguments show that these software semantics are not
transferable to the conceptual modelling of application domains.

First, the interaction mechanism in [12] is not based on message passing.
Ontologically, for things to interact, e.g. for a thing4 A to act on a thing B,
there must exist a mutual property P of A and B. A change of P in A is
also a change of P in B. The change of P may then cause further changes
in B.

Second, the message passing mechanism for interaction has previously been
examined with respect to Bunge’s ontology and found to be an unsuitable con-
struct or mechanism for describing real world business domains [8, 23, 29]5. Con-
sider the following examples:

– The machine sends a message to the part to move itself to a new location
– The general ledger sends a message to an office desk to depreciate its value
– A truck sends a message to the crate to load itself onto the loading dock

2 Although, as pointed out in [9], UML is contradictory in allowing a dependency to
express dynamic behaviour on the classifier level, while requiring a link, an associa-
tion instance, to enable dynamic behaviour on the instance level. In this paper we
assume that, as the instance level requires a link, the classifier level must require an
association to enable dynamic behaviour.

3 We note that there exists a << use >> stereotype of a dependency in UML. How-
ever, following the argument by [9] in the previous note, we subsume this notion
under our ”use association”. [9] further differentiates between the static pointer as-
pect and the dynamic message-passing aspect. In her terms, we subsume both aspects
under ”use association”.

4 When the term ”thing” is used, the discussion relates to the ontology in [12]. When
the term ”object” is used, the discussion relates to object-oriented languages. Things
in the application domain are represented by objects in an object-oriented description
[28, 22].

5 This also agrees with the informal assessment in [30].

The Association Construct in Conceptual Modelling 37

Such descriptions are common in software specifications but such messages
have not been observed between these things in the real world. Clearly, a ma-
chine does not send messages to parts. Instead the parts are moved by an
operator6.

Third, messages should not be interpreted as ontological things. Interaction
with such message things would necessarily also have to occur by messages.
Hence, a thing A interacts with thing B by exchanging the message thing M1.
For this to occur, A must interact with thing M1 by means of another message
thing M2, etc. This leads to an infinite regress 7.

In summary, as message-passing does not have an ontological equivalent,
”use associations” cannot be mapped to a suitable ontological concept. Thus,
according to [1, 8] they possess no ontological semantics for the modelling of
application domains.

4 Connection Semantics of Associations

Rumbaugh et al. [25] maintain the importance of an association as a conceptual,
real-world construct: ”We nevertheless emphasize that associations are a useful
modelling construct for ... real-world systems ... ” [25, p. 31], ”It is important
that relations be considered a semantic construct” [6, p. 467], ”associations de-
fine the way objects of various types can be linked or connected - enabling the
construction of conceptual networks” [32, p. 259], a ”class relationship might
indicate some kind of semantic connection” [26, p. 96]8.

We claim that associations used as ”connections” between objects (”connec-
tion associations”) have no ontological equivalent for the following reason. The
term ”semantic”, as used in [6, 26], implies meaning and human interpretation.
Hence, semantic connections are imposed on a domain as perceived by an ob-
server, rather than directly observable in the domain. They represent properties
that are relevant or meaningful to a modeller or an observer.

For example, the fact that a student attends a university (Fig. 1) is not
observable in the domain; only the properties (e.g. student number, fee balance),
and the behaviour of the student (e.g. attending class, sitting exams) and the
university are observable. Some behaviour may be relevant and is interpreted as
the student attending the university. To other observers, or for different model
purposes, this behaviour may be irrelevant or may be interpreted as a different
semantic connection.

6 Note that it is quite possible in organizational settings for human actors to pass
messages to each other: Letters can be exchanged, invoices sent and orders received.
In contrast to the messages between parts and machines, ledgers and desks, or trucks
and crates, the letters, invoices, and orders that are exchanged between human actors
are substantial, physical things. .

7 A similar argument is used in [31] to argue against association instances as objects.
8 In Stevens’ analysis [9], associations as connections correspond roughly to ”static

associations”, although the latter are defined by their relationship to implementation,
rather than their relationship to application domain elements.

38 J. Evermann

Examining the way in which associations are used, e.g. the ”attends” associ-
ation in the above example, shows that there exist two distinct types of semantic
associations.

First, some associations represent functions of past interaction of objects.
Consider the association ’enrolled’ between a student and a university. ’Being
enrolled’ is a result of past or ongoing interaction, namely that of the registration
and enrollment process. The definition in terms of interaction also shows that the
association is viewer or modeller dependent: A different definition of ’enrolled’
may be based on class attendance rather than the act of registration. The asso-
ciation ’being on’ between a shipping crate and the loading dock also depends
on interaction, but not between the crate and the dock. These never interacted
directly. Instead, this association is the result of past interaction between e.g.
the crate and the forklift.

Second, consider the association ’distance’ between two objects. Distance is
defined by an observer or modeller based on properties of things, such as their
location. Consequently, different distance measures are possible, for example in
terms of road distance, traveling time, etc. This kind of semantic connection
between objects does not depend on interaction, but represents functions of
individual properties of things.

We conclude that, as semantic associations are observer dependent functions
either of interaction or of intrinsic properties, they do not correspond to any-
thing that exists in the application domain. Hence, they should be explicitly
represented in functional form, rather than by an association construct that,
because of its programming heritage, obscures their nature.

5 Conceptual Modelling with Mutual Properties

The previous sections showed a lack of ontological semantics for associations as
’use associations’ (Sect. 3) and ’connection associations’ (Sect. 4). Hence, they
should not be used for describing application domains. Instead, we propose using
ontological concepts directly. Since ’use associations’ are intended to represent
interaction, and ’connection associations’ represent functions of the interaction
history or individual properties, the relevant ontological concepts are those re-
lated to interaction and properties.
Interaction and Mutual Properties. The adopted ontology [12] specifies that two
or more things may share mutual properties. Hence, any change of a mutual
property in one thing is a change in all the things that share the property
(Sect. 2). When a series of changes in an object A involves changes to a mutual
property P , this may start a series of changes in the things that share this
property, e.g. thing B. Thing A has acted on thing B through property P .

Hence, interaction can be described in terms of mutual properties. Instead
of employing ’use associations’ with poorly defined ontological semantics, we
propose using mutual properties for conceptual modelling.

Using mutual properties in conceptual models requires a language construct
(graphical symbol) to represent them. For this, we use attributes of association

The Association Construct in Conceptual Modelling 39

classes: (1) Intuitively, the idea of an attribute corresponds well to the onto-
logical concept of a property [22, 28]. (2) Attributes of association classes are
graphically shown as connecting two or more objects (e.g. Fig. 2). Intuitively,
this corresponds well with the idea of a single property being shared by two or
more things.

Note that we merely borrow, for sake of convenience and familiarity, the
graphical notation of association class attributes from UML. Associations and
association classes themselves have no ontological interpretation and should not
be used for conceptual modelling, as argued in Secs. 3 and 4. However, UML
requires the use of a class symbol to represent attributes. This is a necessary evil
that we accept in order to avoid introducing a new notation element. For this
reason, association class symbols contain no name in the figures in Sec. 6. An
alternative would be to introduce a new graphical or textual notation for shared
attributes.
Functions of Interaction History. Ontologically, the history of interaction is the
history of changes to mutual properties (Sect. 4). No graphical modelling exists in
common object-oriented languages that could be used to express such functions.
Instead, we propose to use simple textual notation, e.g. the following example
in Prolog like notation:

property(downtown, location, 10).
property(campus, location, 20).
property(hospital, location, 15).

...
distance(O1, O2, D) :-

property(O1, location, X),
property(O2, location, Y),
D is X - Y.

Now we can ask for the distance from downtown to the campus:

distance(downtown, campus, D).

Similarly, an example for a function of the event history of the world is the
following employment association (again in Prolog):

history(acmecorp, johnsmith, hires, 20030701).
history(acmecorp, janedoe, hires, 20031001).
history(acmecorp, johnsmith, fires, 20040101).

...
connection(O1, O2, employs) :-

history(O1, O2, hires, Time1),
\+ history(O1, O2, fires, Time2).

connection(O1, O2, employs) :-
history(O1, O2, hires, Time1),
history(O1, O2, fires, Time2),
Time1 > Time2.

40 J. Evermann

We can now ask whether Acme Corp. employs Jane Doe:

connection(acmecorp, janedoe, employs).

As noted above (Sect. 4), semantic associations are relative to a modeller or
observer. Hence, they should not be a part of the domain model, but explicitly
noted as part of a perspective on or interpretation of the domain. This also
means that different domain observers, modellers, or users of the final informa-
tion system, can define a different set of functions that are relevant to them.

6 Case Study Example

This section presents an example that demonstrates the proposed conceptual
modelling technique. The technique was used in an actual IS development project,
carried out at a large North American university. The project goal was to de-
velop an Internet based system to allow prospective students the opportunity
to update their application information on an ongoing basis and enable them to
see whether they meet application criteria.

This section focuses on the identification and representation of mutual prop-
erties and interaction. Only a brief excerpt of the complete analysis is provided,
focusing on high school students, high schools, teachers, the university and the
application process.

High school students and teachers are modelled as object classes. The relevant
interaction (for purposes of the analysis) between a student and a high school is
that of receiving course grades. Interaction occurs by means of changes to mutual
properties (Sect. 5). Hence this is modelled using attributes of an association
class that represent the mutual properties. In Fig. 2 the attributes are multi-
valued, i.e. there is a course name, a course year and a course grade for each
course the student completed9. Teachers interact with students by changing the
values of these attributes10.

The properties in Fig. 2 arose themselves out of interaction. Therefore, prior
mutual properties between teachers and students must have existed, such as
homework submitted and read. Ultimately, the mutual properties are those of
an interaction medium that is manipulated by the interacting objects. However,
such media are rarely of interest to the conceptual modeller and are thus ab-
stracted from. Note that this abstraction is a conscious decision of the modeller,
and is always dependent on the purpose of the model.

Communication between the high school and the student can lead to mean-
ingful semantic connections. For example, one can model the semantic connection

9 Note again that we borrow only the graphical notation of association class attributes
from UML. Associations and association classes themselves have no ontological inter-
pretation. However, UML requires the use of a class symbol to represent attributes.
Note that the association class itself is not named, as we have not assigned it onto-
logical meaning (Sect. 5).

10 Obviously, there occurs more interaction, e.g. in the classroom, which is not relevant
to the university’s admission system.

The Association Construct in Conceptual Modelling 41

Student High School
1..* 1..*

CourseNumber[0..*]
CourseYear[0..*]
CourseGrade[0..*]
CourseCredits[0..*]

Fig. 2. Example: Student - High School interaction

’has graduated from’ as a function of the interaction history: When the sum of
course credits is above a certain threshold, we consider the student to have grad-
uated11. Having graduated in this sense is an observer- or modeller-dependent
function, rather than an object or event in the application domain. It may be
of interest only in certain contexts, or it may be defined differently by different
observers or modellers, e.g.

history(janeDoe, centralHigh, 100, 20040701).
history(johnSmith, southernHigh, 120, 20040701).
history(jimMiller, northernHigh, 150, 20041201).

...
property(Student, HighSchool, graduated) :-

history(Student, HighSchool, creditEarned, Time1),
creditEarned > 100.

We can now ask whether Jane Doe has graduated from Central High:

property("janeDoe, centralHigh, graduated).

Changing the mutual properties in a certain way will lead to a change in the
student where she considers applying to a university. Applying to the university
is interaction. Interaction implies mutual properties between the student and the
university that can be manipulated by the student. We can either abstract from
this information and simply call it ”application information”, or we can model
the specific properties, e.g. ”program applied for”, ”school grades submitted”,
etc. The student can change these shared properties. As a result of these changes,
the admission process in the university is initiated (Fig. 3)12.

This type of modelling forces the modeller to make a distinction between the
grades awarded by the high school (they are shared between the school and the
student), and the grades reported by the student for the admission request (they

11 Abstracting from the formalities which are often attached for graduating.
12 See previous note.

42 J. Evermann

Student High School
1..* 1..*

CourseNumber[0..*]
CourseYear[0..*]
CourseGrade[0..*]
CourseCredits[0..*]

University
1..* 1..*

sumittedGrades[0..*]
appliedProgram[0..*]

Fig. 3. Example: Student - University interaction

are shared between the student and the university). It may well be that these
are different, e.g. due to the fact that the school may revise preliminary grades,
or the student reports only a subset of grades to the university.

Changes to the shared properties are interpreted as interactions. Conse-
quently, they can be modelled in UML interaction diagrams. Fig. 4 shows an
example corresponding to the above excerpt of the case study.

A subsequent discussion with the project leader showed that modelling of
mutual properties can help explicate the meaning of association class attributes.
It forces the developer to identify precisely what is represented: ”It’s normally
difficult to model a course ..., because it is a relationship. ... What do you mean
by a course? The curriculum, the interaction, the grade?”. In contrast, the above
model (Fig. 2), with the clear ontological semantics proposed in Sect. 5, shows
that students and universities share a set of properties that can be modified by
either to initiate interaction. The lead system designer also noted the beneficial
effect of the clear semantics for association class attributes: ”Visually, this ...
gives you a better sense of the relationships.”

The case study results show that the proposed modelling method is feasible
and can be applied in real projects. The subsequent discussion shows that the
technique leads to clearer models and to models with clearer meaning than the
use of associations for conceptual modelling.

: Student : Teacher

AttendClass

University :
University

Apply

AcknowledgeApplication

Fig. 4. Example: Student - University sequence diagram

The Association Construct in Conceptual Modelling 43

7 Software Design and Implementation Without
Associations

The main advantage of object-oriented methodologies is the seamless transition
from conceptual modelling to system design, and to system implementation using
the same paradigm and set of language constructs. This section shows how the
proposed conceptual modelling technique can be seamlessly transferred to system
implementation.

We describe a technique for object-oriented implementation that does not
use object references or method calling. It implements shared mutual properties
(conceptual level) by ’binding’ object attributes (programming level) of two or
more objects to ensure that they maintain identical values.

Aspect-Oriented Implementation. Attribute binding can be achieved in an ef-
ficient and completely transparent way by using aspect-oriented programming
(AOP) techniques13. For demonstration purposes, an aspect for attribute bind-
ing has been developed in Aspect/J, a widely used AOP extension to Java [33].
The aspect allows binding together any two or more attributes of different ob-
jects. The following code shows two fictitious objects a1 and a2, both instances
of class A, that share a property single mutual property by binding their respec-
tive properties varA of a1 and varB of a2. The example demonstrates that this
binding is transparent to the application developer: No special bound properties
or accessor methods need to be declared.

public class A {
public Integer varA, varB;

}

public static void main() {
A a1 = new A();
A a2 = new A();

PropBinding.addBindings(a1, "varA", a2, "varB", "InteractionName");
}

As can be seen from the example, an interaction name can be associated
with each binding. The aspect monitors the write accesses to bound attributes
and updates them accordingly, ensuring that they maintain identical values. The
aspect also maintains a history of every update of bound attributes. This history
can be accessed and searched by object identifier and interaction name so that
functions of the interaction history (as described in Sect. 5) can be defined.

13 AOP allows the separate development and implementation of different aspects of an
implementation (e.g. logging, security, persistence) in a transparent way. Individually
programmed aspects are woven together when compiling the final software product.
Mature AOP tools are available for most languages (e.g. AspectWerkz, Aspect/J,
AspectC++, Aspect#).

44 J. Evermann

Since two or more bound attributes represent a single shared mutual property,
changes to one attribute are propagated to all bound attributes in a single atomic
step. The aspect recursively propagates changes along bound attributes, until
all bound attributes possess equal values. Only then is the program allowed to
resume execution.

As there exist no object references, objects cannot interact by method calls
along such references. Consequently, in a single-threaded model, explicit notifica-
tion is necessary to pass control from one object to another. In a multi-threaded
model, notification is not necessary, as control is not passed between objects,
but may desirable in certain situations or for certain applications.

Notification in a Single-Threaded Model. In a single-threaded model, the imple-
mentation of the aspect allows explicit registration of a callback method. This
presents two potential problems. First, the order of callback execution must be
determined. In the current implementation, callbacks are executed in the or-
der in which the attribute bindings are declared; other execution orderings are
possible.

Second, a set of objects may possess shared mutual properties in such a
configuration that actions by a notified object change bound attribute values
before all remaining objects have received notification of the original changes.
For example, an object t changes the value of a bound attribute k from value a
to b. After propagating this change to objects u and v, the notification callback
of object u is called and changes the value of the attribute k from b to c before
object v is notified of the change from a to b by calling its callback method.
From the perspective of the object v, the first change to b never happened as the
object never gained control while k possessed value b. Note that objects cannot
be notified before a change has been propagated to all bound attributes. This is
because the attributes represent a single shared mutual property, and thus must
be updated in a single atomic action.

Therefore, in the single-threaded model, the semantics of the implementation
depend on the ordering of execution of callback. This requires great care by the
programmer.

Notification in a Multi-Threaded Model. In multi-threaded applications, no call-
back methods are possible. Instead, all notification must be done by means
of event signaling. The implemented aspect provides an event queue for ev-
ery thread/object into which notifications can be added. Consequently, in the
multi-threaded model the semantics of the attribute binding are well-defined and
independent of the ordering of callback execution.

In this model, too, changes to attributes can occur before prior changes
have been processed by the object. In the multi-threaded model, each object
possesses its own notification queue, containing notifications about attribute
changes. While a change notification for a bound attribute is still queued, i.e. it
has not been processed by the object yet, this attribute may be changed again.
However, for the same reasons as in the single-threaded model, only net change
notifications are provided. Hence, whenever a new change notification is added

The Association Construct in Conceptual Modelling 45

to the queue, the net-effect of this and all previously queued notifications will be
computed. This net-effect notification replaces all other elements in the queue
that notify of changes in the same attribute.

In summary, the implementation of mutual properties by attribute binding
is efficient (linear in the number of bindings between properties), and possesses
well-defined execution semantics.

LibPropC++. As an alternative to the aspect-oriented implementation of mu-
tual properties presented above, an existing programming library has been con-
sidered. Property binding has been proposed and implemented for user-interface
objects in a C++ library (LibPropC++) [34]. However, compared to the previous
approach, this library has a number of weaknesses. (1) Its use is not transparent
as it requires that object attributes must be explicitly declared as properties
and appropriate accessor methods must be provided. (2) Binding of attributes
in LibPropC++ is not designed to replace method calls. Objects still possess ob-
ject reference pointers and need to call methods of other objects. (3) The library
does not maintain an interaction history, so it cannot provide a foundation on
which functions of past interaction can be defined.

8 Conclusions and Further Research

This research was motivated by problems with the meaning of associations in
conceptual models. We identified the semantics of associations with respect to
software and attempted to transfer this to conceptual modelling. However, as
the interaction mechanisms in application domains (specified by an ontology)
do not rely on message passing and method calling, associations as enablers of
message passing have no application domain meaning.

We then discussed the intended use of associations to indicate semantic ”con-
nections” between objects. Our analysis showed that these ”connections” are
used to describe observer dependent properties, rather than substantial elements
in the application domain. Hence, associations as ”connections” have no onto-
logical semantics in conceptual modelling.

This paper proposes an alternative technique for conceptual modelling that
is rooted directly in ontology. To this effect, it defines ontological semantics
for attributes of association classes, by mapping them to mutual properties.
These mutual properties are the linkage between things and the means by which
interaction occurs.

A case study was presented that demonstrates the use of this modelling tech-
nique. The paper further demonstrated that appropriate software technologies
exist to seamlessly transfer this ontologically based modelling technique to soft-
ware design and implementation.

To summarize, since the meaning of associations is undefined, we suggest not
to use them. Instead, we propose using ontological concepts directly, by repre-
senting them as association class attributes. The contributions of this paper are
threefold. (1) We have identified and pointed out ambiguities in the meaning of

46 J. Evermann

associations. (2) We have shown that associations, as intended by their origina-
tors, have no ontological equivalent, i.e. no semantics. (3) We then proposed an
ontologically based modelling technique and shown that it can be implemented
efficiently in object-oriented programming languages.

While the initial case study, described in parts in Sect. 6, shows that the
modelling and implementation approach are feasible, further research in three
areas is needed. (1) The implementation on the programming level must be
further analyzed to firmly define the implementation semantics of the approach.
(2) The approach needs to be evaluated in a wider set of domains. To this effect,
further case study applications will be undertaken. (3) Finally, the benefits of
the proposal, in terms of model interpretation and model understanding, need
to be determined in a controlled setting.

References

1. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”?
IEEE Computer (2004) 64–72

2. IBM: Developing object-oriented software: an experience-based approach. Prentice
Hall, Inc., Upper Saddle River, NJ (1997)

3. Bahrami, A.: Object oriented systems development. Irwin/McGraw-Hill, Boston,
MA (1999)

4. Embley, D.W.: Object-oriented systems analysis: a model-driven approach. Pren-
tice Hall, Inc., Englewood Cliffs, NJ (1992)

5. Siegfried, S.: Understanding object-oriented software engineering. IEEE Press,
New York, NY (1995)

6. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language.
In: Proceedings of the 1987 Conference on Object Oriented Programming Systems
and Languages and Applications, Orlando, FL., ACM Press (1987) 466–481

7. OMG: The Unified Modelling Language Specification. Version 1.5. (2003)
8. Wand, Y., Weber, R.: On the ontological expressiveness of information systems

analysis and design grammars. Journal of Information Systems (1993) 217–237
9. Stevens, P.: On the interpretation of binary associations with the unified modelling

language. Software and Systems Modelling 1 (2002) 68–79
10. Genova, G., Llorens, J., Martinez, P.: The meaning of multiplicity of n-ary associ-

ations in UML. Software and Systems Modelling 1 (2002) 86–97
11. Bennett, B.: Space, time, matter and things. In: Proceedings of the 2001 Interna-

tional Conference on Formal Ontologies in Information Systems FOIS, Ogunquit,
Maine. (2001) 105–116

12. Bunge, M.A.: Ontology I: The Furniture of the World. Volume 3 of Treatise On
Basic Philosophy. D. Reidel Publishing Company, Dordrecht, Holland (1977)

13. Chisholm, R.: A Realistic Theory of Categories - An Essay on Ontology. Cambridge
University Press, Cambridge (1996)

14. Degen, W., Heller, B., Herre, H., Smith, B.: GOL: A general ontological language.
In: Proceedings of the 2001 Conference on Formal Ontologies in Information Sys-
tems FOIS, Ogunquit, MA. (2001) 34–46

15. Fensel, D., van Harmelen, F., Horrocks, I., McGuiness, D.L., Patel-Schneider, P.F.:
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems
(2001) 38–45

The Association Construct in Conceptual Modelling 47

16. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
2nd International Conference on Formal Ontologies in Information Systems FOIS,
Ogunquit, Maine 2001. (2001) 2–9

17. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole, Pacific Grove, CA (2000)

18. Bodart, F., Patel, A., Sim, M., Weber, R.: Should optional properties be used in
conceptual modelling? A theory and three empirical tests. Information Systems
Research 12 (2001) 384–405

19. Evermann, J.: Using Design Languages for Conceptual Modelling: The UML Case.
PhD thesis, University of British Columbia, Canada (2003)

20. Gemino, A.: Empirical Comparisons of Systems Analysis Modeling Techniques.
PhD thesis, University of British Columbia, Canada (1999)

21. Green, P., Rosemann, M.: Integrated process modelling: An ontological analysis.
Information Systems 25 (2000) 73–87

22. Opdahl, A., Henderson-Sellers, B.: Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Software and Systems Modeling 1 (2002) 43–67

23. Parsons, J., Wand, Y.: Using objects for systems analysis. Communications of the
ACM 40 (1997) 104–110

24. Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship
construct in conceptual modeling. ACM Transactions on Database Systems 24
(1999) 494–528

25. Rumbaugh, J., et al.: Object Oriented Modeling and Design. Prentice Hall, En-
glewood Cliffs, NJ (1991)

26. Booch, G.: Object oriented design with applications. Benjamin/Cummings, Red-
wood City, CA (1991)

27. Coad, P., Yourdon, E.: Object-Oriented Analysis. Yourdon Press, Englewood
Cliffs, NJ (1990)

28. Evermann, J., Wand, Y.: An ontological examination of object interaction in
conceptual modeling. In: Proceedings of the Workshop on Information Technologies
and Systems WITS’01, New Orleans, December 15-16, 2001. (2001) 91–96

29. Parsons, J., Wand, Y.: The object paradigm – two for the price of one? In:
Proceedings of the Workshop on Information Technology and Systems WITS 1991,
New York, NY. (1991) 308–319

30. Cook, S., Daniels, J.: Designing object systems: object-oriented modelling with
Syntropy. Prentice Hall, Hertfordshire, UK (1994)

31. Graham, I., Bischoff, J., Henderson-Sellers, B.: Associations considered a bad
thing. Journal of Object-Oriented Programming 9 (1997) 41–48

32. Martin, J., Odell, J.J.: Object-oriented analysis and design. Prentice Hall, Engle-
wood Cliffs, NJ (1992)

33. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications, Greenwich, UK (2003)

34. Porton, V.: Binding together properties of objects. http://ex-
code.com/articles/binding-properties.html (2004) Last accessed Sept 23, 2004.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 48 – 62, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Computing the Relevant Instances That May
Violate an OCL Constraint

Jordi Cabot1,2 and Ernest Teniente2

1
Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya

jcabot@uoc.edu
2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

teniente@lsi.upc.edu

Abstract. Integrity checking is aimed at efficiently determining whether the
state of the information base is consistent after the application of a set of
structural events. One possible way to achieve efficiency is to consider only the
relevant instances that may violate an integrity constraint instead of the whole
population of the information base. This is the approach we follow in this paper
to automatically check the integrity constraints defined in a UML conceptual
schema. Since the method we propose uses only the standard elements of the
conceptual schema to process the constraints, its efficiency improvement can
benefit any implementation of the schema regardless the technology used.

1 Introduction

A conceptual schema (CS) must include the definition of all relevant integrity
constraints (ICs) [6] since they state conditions that each state of the information base
(IB) must satisfy.

The content of the IB changes due to the execution of operations. In general, the
effect of an operation over the IB may be specified by means of a set of structural
events (see for instance [7], [11]). A structural event is an elementary change in the
population of an entity type or relationship type such as: create object, delete object,
update attribute, create link, etc.

The state of the IB resulting from the execution of an operation must be consistent
with regards to the set of ICs specified over the CS. The traditional approach to deal
with this problem is to reject those operations whose application would lead to an
inconsistent state of the IB. This approach is usually known as integrity constraint
checking and it requires verifying efficiently that the IB state obtained as a
consequence of an operation execution does not violate any integrity constraint. For
the sake of simplicity, we assume, without loss of generality, that each operation
constitutes a single transaction and use both terms indistinctly.

In this paper we propose a new method to improve efficiency of integrity
constraint checking in CSs specified in the UML [10] where constraints are written in
the OCL [9]. Note that, as shown in [4], OCL can also be used to represent the
graphic constraints expressed in the UML diagrams.

 Computing the Relevant Instances That May Violate an OCL Constraint 49

Constraints in OCL are defined in the context of a specific entity type, the context
entity type (CET), and must be satisfied by all instances of that entity type. However,
when verifying an IC not all instances must be taken into account since, assuming as
usual that the IB is consistent before the update, only those that have been modified
by the set of structural events applied over the IB may violate the IC.

Consider the running example of Fig. 1 to illustrate these ideas. After executing an
operation that hires a junior employee (i.e. an employee under 25), not all
departments must be taken into account to verify the constraints MaxJuniors and
NumberEmployees. In fact, since the IB is assumed to be consistent before the
operation execution, only the department where the employee starts working in may
induce a violation of one of those integrity constraints.

 Departm ent E mployee

Freelance

{incom plete}

W orksIn em ployee

* *

M anagesm anaged boss

0..1 1

assignm ent : Natural

nam e : String nam e : String
age : Natural

-- A departm ent m ay not have m ore junior em ployees than maxJuniors
context Departm ent inv M axJuniors:
 self.em ployee->select(e | e.age<25)->size()<self.maxJuniors

-- A freelance assignm ent m ust lie betw een 5 and 30 hours
context Freelance inv V alidAssignment:
 self.assignm ent>=5 and self.assignm ent<=30

-- A departm ent m ust have at m ost half of the total num ber of em ployees
context Departm ent inv NumberEmployees:
 self.em ployee->size()<= Employee.allInstances()->size()/2

-- A m axim um of 100 em ployees can be freelances
context Freelance inv M axFreelances: Freelance.allInstances()->size()<=100)

-- The departm ent boss cannot be a Freelance
context Departm ent inv NotB ossFreelance: not self.boss.oclIsTypeO f(Freelance)

em ployer
m axJuniors: N atural

Fig. 1. Example of a conceptual schema

Given a conceptual schema CS with a set of integrity constraints IC, our method
generates a CS’ with additional entity types, required to record the structural events
issued by the operation, and where the definition of the original ICs has been
modified to be able to verify them only in terms of the relevant instances. Moreover,
the way we compute the relevant instances ensures that a constraint will not be
verified if no structural event that may violate it has been issued by the operation.

In addition to the efficiency improvement, the main advantage of our method is
that it works at the conceptual level, i.e. it is technology-independent, since the result
of our method is a standard conceptual schema. Then, any architecture able to treat a
CS to generate automatically its implementation can benefit from our method, no
matter the target technology platform it generates. Pre-processing the original CS with
our method allows any code-generation architecture to automatically generate
efficient integrity constraints that are verified only in terms of its relevant instances.

The problem of efficient integrity checking has been widely addressed. However,
as far as we know, ours is the first proposal to cope with this issue at a specification

50 J. Cabot and E. Teniente

level. Previous work addressing similar problems is always particular for a given
technology. The best approaches are proposed in the fields of deductive [5] or
relational [3] databases.

The work presented here extends our previous work in [1] where we proposed a
method to compute the structural events that may violate an integrity constraint.
However, that work did not care about how to check integrity constraints efficiently
when one such structural event was issued by a transaction. This is precisely the main
concern of this paper.

The paper is organized as follows. Section 2 introduces some basic concepts.
Section 3 classifies the different kind of constraints according to the efficiency level
our method can provide. In particular, our method improves the efficiency of instance
constraints (section 4) and partial instance constraints (section 5). Finally, section 6
presents some conclusions and further work.

2 Determining the Structural Events That May Violate an IC

The first thing we need to take into account when computing the relevant instances of
an integrity constraint is to determine the set of structural events that may cause its
violation, i.e. its set of potentially violating structural events (PSE).

To compute the set of PSEs we consider the following kinds of structural events:

- InsertET(ET): insertion over the entity type ET.

- UpdateAttribute(Attr,ET): it updates the value of the attribute Attr.

- DeleteET(ET): it deletes an instance of the entity type ET.

- SpecializeET(ET): it specializes an instance of a supertype of the entity type ET
to ET.

- GeneralizeET(ET): it generalizes an instance of a subtype of ET to ET.

- InsertRT(RT): creation of a new link in the relationship type RT.

- DeleteRT(RT): it deletes a link of the relationship type RT.

For instance, the event InsertET(Freelance) is a PSE for ValidAssignment since the
new freelance may have an assignment below 5 or over 30, and thus, it may violate
the constraint. On the contrary, the event DeleteET(Freelance) is not a PSE for that
constraint since it may never induce a violation of ValidAssignment.

To compute the PSEs and the relevant instances that may violate an integrity
constraint we assume that OCL constraints are represented as an instance of the OCL
metamodel [9, ch. 8]. Therefore, we treat the OCL expression of the constraint as a
binary tree where each node represents an atomic subset of the OCL expression (an
operation, an access to an attribute or an association, etc.).

The root of the tree is the most external operation of the OCL expression. The left
child of a node is the source of the node (the part of the OCL expression previous to
the node). The right child of a node is the argument of the operation (if any). As an
example, Fig. 2.1 shows the constraint MaxJuniors (self.employee->select(e|
e.age<25)->size()<self.maxJuniors) as an instance of the OCL metamodel. The
operator ‘<’ is the root of the tree. The left child is the source of the operator
(self.employee->select(e| e.age<25)->size()) whereas the right child is the access to

 Computing the Relevant Instances That May Violate an OCL Constraint 51

the attribute maxJuniors with a child representing the access to the self variable. The
rest of the constraint is represented in a similar way.

We use the method proposed in [1] to determine the set of PSEs that may violate
an integrity constraint. This method draws those PSEs from the nodes of the OCL
expression that defines the constraint by means of examining the elements and
operations referred in the constraint as well as its syntactic structure.

As an example, we have that the application of this method over the tree
representing the constraint MaxJuniors would result in the marked tree of Fig. 2. Each
node is marked with the set of structural events that may violate the subexpression it
represents. For instance, the access to the attribute maxJuniors is marked with
UpdateAttribute(maxJuniors,Department) and InsertET(Department) since an update
of the attribute maxJuniors (in particular a decrease of its value) or the creation of a
new department (with more junior employees than permitted) may violate the
constraint. Other PSEs for MaxJuniors are: InsertRT(WorksIn) and
UpdateAttribute(Age,Employee).

 :OperationCallExp
 (<)

:OperationCallExp
 (size)

:OperationCallExp
 (select)

:OperationCallExp
 (<)

:AssociationEndCallExp
 (employee)

:VariableExp
 (self)

:AttributeCallExp
 (age)

:VariableExp
 (e)

:IntegerLiteralExp
 (25)

UpdateAttribute(Age,Employee)

InsertRT(WorksIn)

RESULT:
InsertET(Department)
InsertRT(WorksIn)
UpdateAttribute(Age,Employee)
UpdateAttribute(MaxJuniors,Department)

:AttributeCallExp
 (maxJuniors)

:VariableExp
 (self)

InsertET(Department)
UpdateAttribute(maxJuniors,

Department)

Fig. 2. Computing the set of PSEs for MaxJuniors

3 Constraint Classification

After executing a set of operations over the IB, we must verify all constraints having
as PSEs some of the structural events included in them. A direct computation of the
OCL expression defining a constraint would evaluate it over all instances of the
context entity type (CET). However, this is not always necessary and many times we

52 J. Cabot and E. Teniente

can check a constraint by considering only the relevant instances of its CET (those
affected by the set of structural events).

For instance, consider again the constraint MaxJuniors. After changing the age of
an employee, instead of checking all departments, we only need to verify the
departments where the modified employee works in.

In general, we may distinguish three different types of integrity constraints:
instance, partial instance and class constraints. We classify a constraint as instance if
we can always compute the exact subset of the instances of its CET we need to take
into account to check it. A constraint is a class constraint if we always have to
consider the whole population of the CET to check the constraint. Finally, in some
cases we may need to consider the whole CET population or just a subset depending
on the structural events issued during operation execution. In this case we say the
constraint is partial instance.

MaxJuniors is a good example of instance constraint. We also have that
MaxFreelances (context Freelance inv: Freelance.allInstances()->size()<=100) is a
class constraint. The reason is that after inserting a new freelance we need to access
all instances of the entity type Freelance to verify the number of freelances is still less
than 101. Finally, NumberEmployees (context Department inv: self.employee->
size()<= Employee.allInstances()->size()/2) is a partial instance constraint. Note that
if we assign a new employee to a department, we only need to check the constraint
over that particular department. However, if we remove an employee, we need to
verify all departments, including those where the removed employee did not work.

A constraint can be classified into exactly one of those types just by examining the
syntactic structure of the OCL expression defined in the body of the constraint.
Intuitively, a constraint will be classified as instance if it is defined by means of a
contextual instance (i.e. using, implicitly or explicitly, the self variable). A constraint
will be a class constraint if it is defined using the allInstances operation. A partial
instance constraint is a constraint that includes in its definition both the self variable
and the allInstances operation.

To formally classify a constraint within the above categories, we need to introduce
the concept of subexpression. In short, a subexpression is a sequence of nodes of the
tree representing the OCL expression of the constraint. An OCL expression can
consist of several subexpressions. In particular, each node representing an access to a
variable begins a different subexpression. The reference to an entity type that
precedes the allInstances operation is also considered a variable

Then, we can define a subexpression as the sequence of nodes that starts with this
initial node and includes all its consecutive parent nodes that are traversed up to the
last node of the subexpression. The last node is a node whose parent represents a call
to an arithmetic operation, arithmetic or boolean comparison or a loop expression
having the last node as its right child.

Fig. 3 shows the different subexpressions of the MaxJuniors and Number
Employees constraints. An ellipse circles each subexpression.

We distinguish between two kinds of subexpressions: instance and class ones. A
subexpression is considered an instance subexpression when it begins, directly or
indirectly, with the self variable. A subexpression begins indirectly with the self
variable when begins with a variable v where v<>self and v is defined within a loop

 Computing the Relevant Instances That May Violate an OCL Constraint 53

expression (select, forAll…) included in an instance subexpression. Otherwise, the
subexpression is considered a class subexpression. The same Fig. 3 classifies each
subexpression for the example constraints.

Given a constraint c we define that c is an instance constraint when all the
subexpressions of c including nodes with PSEs are instance subexpressions. We
define that c is a class constraint when all the subexpressions of c including nodes
with PSEs are class subexpressions. Finally, we define c as a partial instance
constraint when it is neither an instance constraint nor a class constraint, and thus, c
includes an instance subexpression and a class subexpression, at least. Our method
improves the verification of instance and partial instance constraints but not the
verification of class constraints (where we always need to examine all the instances).

Applying the previous definitions over the example constraints (Fig. 3) we obtain
that the constraint MaxJuniors is an instance constraint and NumberEmployees is a
partial instance constraint.

 :OperationCallExp
 (<)

:OperationCallExp
 (size)

:OperationCallExp
 (select)

:OperationCallExp
 (<)

:AssociationEndCallExp
 (employee)

:VariableExp
 (self)

:AttributeCallExp
 (age)

:VariableExp
 (e)

:IntegerLiteralExp
 (25)

:AttributeCallExp
 (maxJuniors)

:VariableExp
 (self)

:OperationCallExp
 (<=)

:OperationCallExp
 (size)

:AssociationEndCallExp
 (employee)

:VariableExp
 (self)

:OperationCallExp
 (/)

:OperationCallExp
 (allInstances)

:VariableExp
 (Employee)

:IntegerLiteralExp
 (2)

Instance subexpression (directly)

Instance subexpression (indirectly)

Class subexpression

:OperationCallExp
 (size)

Fig. 3. Subexpressions for MaxJuniors (left) and NumberEmployees (right) constraints

4 Processing Instance Constraints

We explain now the transformation we propose for instance constraints to evaluate
them only over the relevant instances of the IB. As we have just seen, instance
constraints must only be evaluated over those instances of the context entity type that
may have been affected due to the structural events issued during the transaction,
since these are the only instances that can violate the constraint.

Given a constraint c defined over a context entity type CET, the basic idea of our
transformation process is to create a new derived entity type meant to contain only
those instances of the CET that need to be evaluated. More specifically, the
population of the new type will be the set of instances of CET affected by the
structural events. To compute its population we record that set of structural events in a
special kind of entity types, the structural event types. Then, the context of the

54 J. Cabot and E. Teniente

constraint c is changed from CET to the new derived type, and thus, the constraint is
evaluated only over the relevant instances.

In the following, section 4.1 explains the definition and treatment of the structural
event types while section 4.2 explains the creation of the new derived entity type, the
computation of its population and the redefinition of the constraint.

4.1 Definition of Structural Event Types

We need to define structural event types to record explicitly the structural events.
More concretely, these types are devoted to record the information about the
modifications produced by the structural events issued during the transaction.

In general, we need to define a structural event type for each possible structural
event. Therefore we define the following types for each entity type of the CS (see
section 2): iET (to record insertion events over the entity type ET), dET (for deletion
events over the entity type ET), gET (a generalize event over ET) and sET (an
specialize event over ET). Additionally, for each attribute of ET, we define a
structural event type uETAttribute to record the changes in the attribute value.
Moreover, for each relationship type RT we need to define: iRT (insertion of a new
link in RT) and dRT (a deletion of a link of RT).

Nevertheless, since we simply use these types for dealing with instance constraints,
we are only interested in defining the types corresponding to structural events that may
be a PSE for that kind of constraints. Therefore, if a structural event cannot violate any
of the ICs of the CS, we do not define its corresponding structural event type.

As an example, the list of structural event types we will define for the constraint
MaxJuniors, according to its set of PSEs (see section 2), is the following:
iDepartment (insertion of a new department), iWorksIn (insertion in the relationship
WorksIn), uDepartmentMaxJuniors (update of the attribute MaxJuniors), and
uEmployeeAge (update of the attribute age).

Note that we never need to define a structural event type for deletion events over
entity types since this event is never included in the set of PSEs of an instance
constraint. In fact, this kind of structural event can never appear in an instance
subexpression. Since an instance subexpression begins (directly or indirectly) with the
self variable, it is obvious that can not contain the event deleteET when ET=CET (we
only evaluate the constraint over existing instances). Moreover, when ET<>CET, ET
is accessed from a navigational expression starting with the self variable. In such
cases it is the deletion of the link between the instance of ET and the previous
instance in the navigation that can violate the constraint, not the deletion of the
instance itself.

4.1.1 Structure of Structural Event Types
The next question we need to ponder is the internal structure (attributes and
relationship types) of the structural event types. They are stereotyped with the
stereotype <<structural event>> to differentiate them from the entity types of the CS.

We distinguish between structural event types recording structural events that
modify entity types and those that modify relationship types.

The structural event types recording structural events that modify entity types are
defined as types without attributes and with just one relationship type relating the

 Computing the Relevant Instances That May Violate an OCL Constraint 55

structural event type with the corresponding entity type. Through this reference we
can access the entity modified by the structural event

The multiplicity of the relationship type between the structural event type and the
entity type is 0..1:1. The reason is that an instance of the structural event type must
necessarily refer to an instance of its entity type while an instance of the entity type
may appear, at most once, in a structural event type. For the sake of simplicity, the
role next to the entity type in all those relationship types is always named as ref.

Fig. 4. shows, as an example, the structural event type for the event insertET
(Department). Note that the only information recorded for each instance of
iDepartment is a reference to the corresponding new department instance in the
Department type to access its information when needed.

We can opt for this kind of structure because there are no structural event types for
deletion events (see section 4.1), and thus, we can always relate the instance of the
structural event type with the corresponding entity in the entity type.

In the definition of these types we assume that the IB corresponding to the CS is
updated at execution time with the modifications produced by the structural events.
Thus, we can avoid redundancies by not including in the structural event type the
information about the changes produced by the event over the affected entity (i.e. in
the type iDepartment we do not include the information about the attribute values of
the new department, we just use the reference towards the Department type to obtain
this information).

 0..11

ref
Department <<structural event>>

iDepartment

Fig. 4. Structural event type for the event insertET over Department

In a similar way, the structural event types for structural events over relationship
types do not contain attributes either. However, their instances do not refer to the
corresponding link of the relationship type but to the set of participants of that link.

Therefore, a structural event type corresponding to a structural event over a
relationship type RT, contains as many relationship types as the number of
participants in RT. Each one of these relationship types relates the structural event
type with one of the participants of RT. Note that the types dRT (deletion of a link of
RT) are perfectly possible since their instances do not point to the deleted link (which
does not already exist in the IB) but to their participants.

As an example, Fig. 5 shows the structural event type for the event
insertRT(WorksIn). The type iWorksIn presents two relationship types, with
Department and Employee, since these entity types are the participants of WorksIn.

When defining the multiplicity of the relationship types between the structural
event type and the set of participants we distinguish between types for deletion events
(dRT) and types for insertion (iRT) events.

For iRT types, the multiplicity of the relationship type is 1:* since, in general, an
entity of a participant entity type can participate in many links of the relationship type
(for instance, if we assign a set of employees to the same department, several

56 J. Cabot and E. Teniente

instances of iWorksIn will refer to the same department entity) and every instance of
the iRT type must be related to an existing entity of the participant entity type.

refEmployer 1

Department

*

<<structural event>>

*

1

Employeeemployer WorksIn employee

**

refEmployee

iWorksIn

Fig. 5. Structural event type for the event insertRT over WorksIn

For dRT types, the multiplicity may become 0..1:*, because, after deleting the link,
and thus, creating a new instance in the dRT type, it may happen that other events
delete also some of the participants of the link. This is not possible for iRT types since
we cannot delete the participant without deleting before the link itself.

Note that we cannot remove the instance of dRT when deleting one of the
participants since we may still need the information about the deleted link to compute
the relevant instances for constraints including the deletion event as PSE. We can
only delete it when all participants are deleted.

The constraints including as a PSE the event deleteRT over a relationship type R,
either navigate R from E1 to E2 or from E2 to E1, where E1 and E2 are the participant
entity types of R. When, after deleting a link of R, the participant E1 is also deleted,
the information about the deleted link is irrelevant for constraints that navigate R from
E1 to E2. In such a case, it is the deletion of E1 what must be taken into account.
However, for constraints navigating R from E2 to E1, the deleted link is used to
navigate through the affected E2 participant to obtain the relevant instances for the
constraint.

For instance, consider a constraint stating that all departments must have at least
three employees. The constraint can be violated by a deletion over WorksIn. If we
delete the link between a department d and an employee e, a new instance of
dWorksIn is created. Even if, afterwards, we also delete the employee e, the instance
of dWorksIn allows us to know that the department d needs to be considered when
evaluating the constraint.

4.1.2 Instantiating the Structural Event Types
In general, each structural event type will contain as many instances as events of that
kind have been executed over the entity or relationship type. For instance, the
structural event type iDeparment will contain an instance for each new department
inserted during the transaction, uEmployeeAge an instance for each employee that has
changed its age during the transaction, etc.

However, to improve the efficiency of these types we adapt the concept of net
effect [3] and define two additional rules for insertions and deletions over structural
event types:

 Computing the Relevant Instances That May Violate an OCL Constraint 57

- Before inserting an instance in an uETAttribute type we must check that the
same instance does not appear previously in the types iET or uETAttribubte,
as well. For instance, if we update three times the attribute age of the same
employee during a single transaction, we only record this fact once.

- When deleting an entity or a relation, the corresponding instance is also
deleted from the types iET (iRT), gET, sET and uETAttribute if existing. In
addition, if the entity (relation) appears in iET (iRT) we do not need to record
that it has been deleted. For instance, if we update the age of an employee and
later on, during the same transaction, we delete the employee we do not need
to worry about its age update. If the employee was inserted in the same
transaction we neither record his/her deletion.

4.2 Constraint Redefinition

As we said before, to evaluate an instance constraint only over the relevant instances
of its CET we create a new derived entity type meant to contain the exact set of
instances of CET that need to be verified.

This new entity type, called ETConstraint (i.e. the name of the entity type plus the
name of the constraint) is defined as a derived subtype of CET. Then, we replace the
original constraint with a new constraint with the same body but having as a context
entity type the new type ETConstraint. This is possible because, as a subtype,
ETConstraint contains all attributes and relationship types of its supertype. As an
example, Fig. 6 includes the redefinition of the constraint MaxJuniors over the
Department entity type.

Note that with this replacement we obtain an efficient evaluation of the constraint,
since the population of ETConstraint is exactly the set of instances we need to check.
In general, the cardinality of the ETConstraint type is, by far, lesser than the total
number of instances of CET and it can never be greater. Moreover, this approach also
avoids redundant checking. The population of an entity type is a set and this ensures
that we check each instance only once even if the transaction includes several
structural events that affect the same instance.

The last problem we need to address is the computation of the population of the
ETConstraint entity type, i.e. how to automatically define its derivation rule using the
set of structural events recorded in the structural event types explained in the previous
section. In short, the population of ETConstraint is the union of instances of CET
affected by each structural event appearing in the structural event types. Obviously, if
the structural event is not a PSE for the constraint no instances of CET are affected.

4.2.1 Computing the Instances of CET Affected by a Structural Event
Intuitively, given an instance i of a structural event type ev over the entity type ET, we
obtain the set of instances of CET affected by i by doing an inverse navigation from I
to the instances of CET related with i. Roughly speaking, the inverse navigation
involves four different steps:

- To select the subexpression of the constraint where the event ev is included in.
- To reverse the part of the subexpression affected by the event. We reverse the

part of the subexpression that goes from the beginning of the subexpression up
to the element affected by the event ev.

58 J. Cabot and E. Teniente

 Department

/DepartmentMaxJuniors

context DepartmentMaxJuniors inv maxJuniors:
 self.employee->select(e| e.age<25)->size()<self.maxJuniors

Fig. 6. Redefinition of the MaxJuniors constraint

- To remove from the previous result all the elements except for the navigations
over relationship types.

- For each navigation appearing in the reversed subexpression, to navigate
through the same relationship type but in the opposite direction by means of
using the opposite role.

As an example, consider the event UpdateAttribute(Age,Employee) over the
constraint MaxJuniors (context department inv: self.employee->select(e| e.age<25)-
>size()<self.maxJuniors). This event affects the select operation of the constraint so
we need to take into account the subexpression self.employee->select(e|e.age<25).
The subexpression only contains the navigation through the relationship type WorksIn
using the employee role. Therefore, to obtain the affected departments after the age
update, we just navigate from the updated employee to the departments related with
him through the same WorksIn relationship type but using the opposite role (the
employer role).

Formally, assume a constraint defined over a CET with a PSE attached to the node
ni of the tree representing the constraint and where ni is included, at least, in an
instance subexpression sub where sub = [n0, n1,n2, …, ni-1, ni, ni+1,…nn]. n0 is the
initial node of the subexpression and nn the last one. We obtain the set of instances of
CET affected by an execution of the PSE by, first, reversing the sequence of nodes
[n0, n1,n2, …, ni-1, ni] to obtain the sequence [ni, ni-1, …, n2, n1, n0]. Note that the
reversed sequence starts with the node responsible for the PSE.

Then, we delete from the sequence all nodes that do not represent a navigation
through a relationship type (i.e. all nodes not representing an access to an association
end). Finally, for each remaining node, we replace the node with another node
representing an access to the opposite association end.

When the node ni appears in an indirectly instance subexpression sub we need to
concatenate the nodes of sub with those of its parent subexpression and repeat the
process until we reach the node representing the initial self variable. The parent
subexpression is the subexpression containing the iterator where sub is included.
More concretely, if the parent subexpression is of the form parent=[p0, p1, p2 ,…,pi-1,
it, pi+1, …, pn] where it is the iterator where sub is included in, the result of the
concatenation is result=[p0, p1, p2,…,pi-1, n0, n1,…ni-1, ni], and after reversing the order
of nodes [ni,ni-1, …, n2, n1, n0, pi-1, …, p2, p1, p0].

If the same PSE appears in different instance subexpressions or the node ni is
included in several ones we repeat the process for each of them.

As an example, we apply the formalization to obtain the set of departments we
need to check in the MaxJuniors constraint after the event UpdateAttribute
(Age,Employee). The subexpression sub where the event is included is sub = [e, age]

 Computing the Relevant Instances That May Violate an OCL Constraint 59

(see Fig. 3.). Since this is an indirectly instance subexpression we must concatenate it
with its parent subexpresssion (parent=[self, employee, select, size]). The resulting
subexpression is [self, employee, e, age], and once reversed [age, e, employee, self].
We remove all the irrelevant nodes to obtain the sequence [employee] and, once
replacing the node by the opposite role, we obtain the final result [employer], where
employer is the opposite association end of employee, the only node representing an
access to an association end.

Therefore, to obtain the affected departments we need to apply the obtained
subexpression ([employer]) over each updated employee (i.e. each instance of
uEmployeeAge). For instance, if the uEmployeeAge type contains an instance e1, we
access the updated employee using e1.ref (see section 4.1) and then we obtain the
affected departments using the expression e1.ref.employer.

As a more complex example, consider a constraint stating that an employee cannot
be older than the bosses of the departments where he/she works. This constraint could
be expressed as: context Employee inv: self.employer->forAll(d| d.boss.age>
self.age). When computing the set of PSEs for the constraint we see that the event
UpdateAttribute(Age,Employee) is included in both constraint subexpressions. Thus,
to obtain the set of employees we need to check after an age update, we have to apply
the previous process over both subexpressions and join the two sets of affected
employees.

The first subexpression is [self, employer, d, boss, age], and once reversed
[age,boss,d,employer,self]. After removing the irrelevant nodes: [boss,employer] and
the final result, once replacing the nodes with the opposite association ends, is
[managed,employee]. Therefore, to obtain the affected employees we need to
navigate from the updated employee to the department he/she manages (if any), and
then, from the department to the employees of that department.

The second subexpression is [self,age]. It does not include any navigation, and
thus, the final result will be an empty sequence of nodes. This means that given an
updated employee, we only need to check that particular employee.

As a final result we obtain that after an age update we need to check the updated
employee plus all the employees working in the department he/she manages, if any.

4.2.2 Derivation Rule Definition
The derivation rule for the ETConstraint entity type must ensure that the set of
instances of the type be exactly the set of instances we need to check. It must include,
for each instance of the structural event types corresponding to the PSEs for the
constraint, the computation of the affected CET instances, as explained above. Using
the work of [8] we define the population of a derived entity type by means of
redefining its predefined allInstances operation (i.e. the population of the derived type
will be the set of instances returned by the operation).

As an example, consider the previous MaxJuniors constraint. In this case, the
derivation rule for the derived subtype DepartmentMaxJuniors must select, according
to the PSEs for the constraint, all new inserted departments (departments recorded in
the iDepartment structural event type), the departments that have updated its
maxJuniors attribute (departments appearing in the uDepartmentMaxJuniors type)
and the departments with new assigned employees (departments participating in a
new relationship of the WorksIn relationship type, recorded in the iWorksIn type), and

60 J. Cabot and E. Teniente

also, for each employee that has changed his/her age, all the departments where the
employee was working in.

This last set of departments is obtained by applying the role employer over each
updated employee (each instance of the uEmployeeAge type) as computed in the
previous section.

Therefore, the derivation rule for DepartmentMaxJuniors is the following:

context DepartmentMaxJuniors::allInstances() : Set(Department)
body: iDepartment.allInstances().ref->union(
 uDepartmentMaxJuniors.allInstances().ref->union(
 iWorksIn.allInstances().refEmployer->union(
 uEmployeeAge.allInstances().ref.employer))))->asSet()

Note that, we use the special relationship types between the structural event types
and its corresponding entity types to access the modified instances (see section 4.1).
For instance, iDepartment.allInstances().ref, returns the new departments by
accessing the referenced departments from the iDepartment type.

In [2] we show the results of the application of our method over the rest of instance
constraints of our example.

5 Processing Partial Instance Constraints

A constraint is classified as a partial instance constraint if it contains at least an
instance subexpression and a class subexpression, both including nodes marked with
PSEs for the constraint. These constraints can be checked efficiently when the
transaction does not include any of the PSEs included in class subexpressions.
Otherwise, we must check the constraint over all instances of the CET. For instance,
the constraint NumberEmployees (context Department inv: self.employee->size()<
Employee.allInstances()->size()/2) can be checked efficiently after assigning an
employee to a department but not after the deletion of an employee.

To process this kind of constraints we split their set of PSEs into two different
groups: the set of instance PSEs and the set of class PSEs, depending on the kind of
subexpression where they are included. If a PSE is included in both kinds of
subexpressions is considered a class PSE. With the set of instance PSEs we apply
exactly the same process explained in section 4 with just a slight difference
concerning the derivation rule of the ETConstraint entity type, as we explain below.

 For the class set we also create the structural event types. In fact, we are not
interested in knowing the exact instances affected by the class PSEs because we will
need to check all instances. We only need to know whether any of the those events
has been executed, and thus, we could think about creating a new set of singleton
entity types enough to record the presence or absence of each event. However, since
probably most structural event types will be already defined to deal with other
constraints, we think it is worthwhile to reuse the same set of structural event types.

The only difference relies on the dET kind of entity types, which were not needed
before. If there is a deleteET event event among the set of class PSEs, we need to
create the corresponding dET type. As we have explained before, the instances of this
entity type cannot reference the deleted instances since they no longer exist, but this

 Computing the Relevant Instances That May Violate an OCL Constraint 61

does not suppose a problem since we are not interested in knowing those instances.
We just create an empty instance in the dET type.

Afterwards, in a similar way as before, we create a new derived subtype, called
ETConstraint’, under the context entity type, and change the context of the original
constraint to ETConstraint’. Its population will be the same population of the context
entity type if the transaction has executed any class PSE. Otherwise, its population
will be empty. Therefore, the derivation rule for ETConstraint’ is:

 allInstances() = if (ev1.allInstances()->size() + ev2.allInstances->size() + …
evn.allInstances()->size() > 0) then CET.allInstances()
where ev1..evn represent the structural event types corresponding to the class PSEs.

Moreover, we change the derivation rule dr for the ETConstraint type created for
the instance PSEs. The new derivation rule will be: allInstances() = if
(ETConstraint’.allInstances()->size()=0) then dr. This way we ensure that when the
transaction includes a class PSE we check all instances of the original context entity
type (ETConstraint’ will contain the same instances as CET) and avoid redundant
checkings (ETConstraint will be empty). Otherwise, we check the constraint
efficiently (ETConstraint will contain the affected instances of CET whereas
ETConstraint’ will be empty).

In [2] we process the partial instance constraint NumberEmployees.

6 Conclusions and Further Work

We have proposed a new method to improve efficiency of integrity constraint
checking in CSs specified in UML with constraints written in OCL. As far as we
know, ours is the first method to deal with this issue at the specification level.

The basic idea of our method is to record the set of structural events applied over
the IB in order to compute the set of relevant instances for each constraint, and then,
evaluate the constraint only over those instances, avoiding irrelevant verifications.

We believe this efficiency gain justifies the overhead of computing the set of
relevant instances, since, in general, the number of relevant instances will be much
lesser than the total number of instances. Moreover, the number of entity types added
to the CS is limited since structural event types do not depend on the number of
constraints in the CS and for each constraint at most two derived types are defined.

Our method uses only the standard elements of any conceptual schema (entity
types, relationship types, derived elements and integrity constraints) to transform the
original constraints into efficient ones. Therefore, the results of our method can
benefit any implementation of the CS, regardless the technology used. In fact, any
code-generation strategy able to generate code from a CS could be enhanced with our
method to automatically generate efficient constraints, with only minor adaptations.

The expressive power of the OCL language permits to write the same semantic
constraint in a variety of syntactic forms. Since our method relies on the syntactic
definition of the OCL expressions, choosing the simplest representation of a
constraint can entail a more efficient verification of the constraint. As further work,
we plan to study how to automatically transform a constraint definition into its
simplest representation to guarantee the best results when applying our method.

62 J. Cabot and E. Teniente

Acknowledgements

We would like to thank people of the GMC group for their many useful comments to
previous drafts of this paper. This work has been partially supported by the Ministerio
de Ciencia y Tecnologia and FEDER under project TIC2002-00744.

References

1. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an Integrity
Constraint. In: Proc. of the 7th UML Conference (UML'04) , LNCS 3273, pp. 320-334

2. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
constraint. LSI Research Report, LSI-05-5-R, UPC, 2005

3. Ceri, S., Widom, J.: Deriving Production Rules for Constraint Maintenance. In: Proc. 16th
VLDB Conference (VLDB'90), Morgan Kauggmann, pp. 566-577

4. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In: A.
Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer, 2002, pp. 85-114

5. Gupta, A., Mumick, I. S.: Maintenance of materialized views: problems, techniques, and
applications. In: Materialized Views Techniques, Implementations, and Applications. The
MIT Press, 1999, 145-157

6. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. ISO, 1982

7. Olivé, A.: Time and Change in Conceptual Modeling of Information Systems. In: S.
Brinkkemper, E. Lindencrona, and A. Solvberg, (eds.): Information Systems Engineering.
State of the Art and Research Themes. Springer, 2000, pp. 289-304

8. Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages. In: Proc.
15th Int. Conf. on Advanced Information Systems Engineering (CAiSE'03), LNCS, 2681,
pp. 404-420

9. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14), 2003
10. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-

02), 2003
11. Wieringa, R.: A survey of structured and object-oriented software specification methods

and techniques. ACM Computing Surveys 30, 1998, pp. 459-527

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 63 – 76, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Event-Based Modeling of Evolution for
Semantic-Driven Systems

Peter Plessers*, Olga De Troyer, and Sven Casteleyn

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
{Peter.Plessers, Olga.DeTroyer, Sven.Casteleyn}@vub.ac.be

Abstract. Ontologies play a key role in the realization of the Semantic Web.
An ontology is used as an explicit specification of a shared conceptualization of
a given domain. When such a domain evolves, the describing ontology needs to
evolve too. In this paper, we present an approach that allows tracing evolution
on the instance level. We use event types as an abstraction mechanism to define
the semantics of changes. Furthermore, we introduce a new event-based ap-
proach to keep depending artifacts consistent with a changing instance base.

1 Introduction

The Semantic Web is an extension of the current Web; information is given a well-
defined meaning better enabling computers and people to work in cooperation [1].
Ontologies play a major role in the Semantic Web where the meaning of web content
is formalized by means of ontologies. An ontology is defined as an explicit specifica-
tion of a shared conceptualization [2]. We also see that other research domains are
adopting technologies developed within the Semantic Web domain. E.g. ontologies
are used in content and document management, information integration and knowl-
edge management systems to provide extensive reasoning capabilities, intelligent
query possibilities, integration and cooperation between systems, etc. We will use the
term “semantic-driven” systems to refer to such systems.

Systems and their environments are not static but evolve. Domains evolve and
changes in user requirements occur often. To keep semantic-driven systems up to
date, changes in the environment should be reflected in the underlying ontology. Fur-
thermore, also flaws and errors in the design of the ontologies may call for a revision
of the ontology. Manual handling of the evolution process of ontologies as well as
managing the impact of evolution on depending ontologies, instance bases, applica-
tions and annotations, is not feasible because it would be too laborious, time intensive
and complex. Therefore, an automatic mechanism should be provided.

Ontology evolution takes place on two levels: on the instance level (e.g. a ‘prime
minister’ who resigns after an election defeat and becomes a ‘senator’) and on the

* This research is partially performed in the context of the e-VRT Advanced Media project

(funded by the Flemish government) which consists of a joint collaboration between VRT,
VUB, UG, and IMEC.

64 P. Plessers, O.D. Troyer, and S. Casteleyn

concept level (e.g. a new rule that forbids people to be candidate for more than one
parliament). Current approaches for supporting ontology evolution [3], [4] propose a
single approach dealing with evolution on the instance as well as on the concept level.
In this paper, we concentrate on evolution on the instance level (evolution of the con-
cept level is outside the scope of this paper) and the impact of this evolution on de-
pending artifacts. Our approach delivers a number of advantages not found in existing
approaches.

The remainder of the article is organized as follows. In section 2 we give a short
overview of related work. A general overview of our approach is given in section 3,
more details are given in section 4. The approach is further elaborated in section 5
(time aspect) and section 6 (events). Section 7 explains the handling of the impact of
evolution for depending artifacts. Section 8 ends the paper with conclusions.

2 Related Work

The work presented in this paper is related to the fields of temporal databases and on-
tology evolution.

Conventional databases capture the most recent data. As new values become avail-
able, the existing data values are removed from the database. Such databases only
capture a snapshot of reality and are therefore insufficient for those in which past
and/or future data are required [5]. Temporal databases [6] typically allow differenti-
ating between temporal and non-temporal attributes. The temporal database maintains
a state history of temporal attributes using time stamps to specify the time during
which a temporal attribute's value is valid.

Different conceptual models that support the modeling of temporal databases exist.
They can be divided into three categories: extensions to relational data models (e.g.
TER [7], TERM [8] and ERT [9]), object-oriented approaches (e.g. TOODM [10])
and event-based models (e.g. TEERM [11]). The approach described in this paper re-
sembles most the philosophy taken by event-based models. These models don't record
past states of a system, but rather events that change the state. Note that in these mod-
els events are just ‘labels’ i.e. they don’t define the meaning of the event.

Ontology evolution approaches [3], [4] propose methods to cope with ontology
changes and techniques to maintain consistency of depending artifacts. Both ap-
proaches present a meta-ontology to represent changes between ontology versions. A
log of changes is constructed in terms of this meta-ontology. Consistency is main-
tained by propagating changes (listed in the log of changes) to depending artifacts.

The difference with our approach is that we formally define the semantics of
changes (by means of event types). This allows us to reason about changes on a
higher level of abstraction. Furthermore, event types are used to maintain consistency
between an instance base and depending artifacts.

3 Approach: Overview

To keep track of changes to the instance base, we use the following approach. When-
ever a change is made to the instance base, the log of changes is updated. The log is

Event-Based Modeling of Evolution for Semantic-Driven Systems 65

defined in terms of the evolution ontology. Third-party users can use this log structure
to check if a (for their artifact) relevant change occurred. To automate this, third-party
users can specify a set of event types in which they are interested. If after the update
one ore more instances satisfy the definition of one of their event types, an instance of
this event type will be created. The event type is an abstraction mechanism that allows
us to reason about changes on a higher level of abstraction than possible with the log
of changes. The event types and the events itself are captured in a log of events de-
fined in terms of an event ontology.

After a change, the instance base and depending artifacts may be in an inconsistent
state. Instead of forcing third-party users to upgrade their dependent artifacts to main-
tain consistency (as is done in other approaches), we present a technique based on
event types that allows to validate if a dependency is still valid in the current state of
the instance base and if not to refer to a previous state of the instance base. This ap-
proach allows third-party users to update at their own pace (if ever) without causing
inconsistencies in the meantime.

Before proceeding with a more detailed description of our approach, we first intro-
duce an example situation that will be used throughout the paper. We have con-
structed a small domain ontology describing the political domain of a federal state: its
governments, parliaments, ministers, parliamentarians, etc. Also assume an instance
base based on this ontology to populate the web portal of the government. Further-
more, there exists a third-party website listing the current and past ministers of the
governments. The content of the website is annotated using the political instance base.
Note that the owner of the instance base and the owner of the website are not neces-
sarily the same. Moreover, the instance base does not support evolution as it is of no
direct benefit for the government. Also note that the government is not necessarily
aware of third-party users making use of the instance base. In addition, a third-party
user may only be interested in tracing evolution for a very specific part of the changes
that occur. E.g. the owner of the website is only interested in tracing the evolution of
ministers; i.e. he is not interested in parliamentarians.

4 Approach: Details

4.1 Assumptions

Our approach is based on the following assumptions:

1. The underlying domain ontology of the instance base is build up using classes, ob-
ject properties (relations between classes) and datatype properties (relations be-
tween a class and a data type e.g. strings, integers, ...). All these are called con-
cepts.

2. Concepts are identified by a unique identifier that uniquely identifies a given con-
cept during its 'lifetime'.

3. There exists three operations that users can apply to update an instance base:

• Create: a new instance is added;
• Retire: an instance is removed;

66 P. Plessers, O.D. Troyer, and S. Casteleyn

• Modify: an instance is modified. E.g. an instance of a concept A evolves into an
instance of a concept B; the value of a datatype property is changed; etc.

Note that we explicitly need the ‘Modify’ operator as we can't treat it as the com-
bination of a ‘Retire’ and ‘Create’ operator. When we modify an instance by remov-
ing the instance first and afterwards adding a new instance, we cannot assure that it is
the 'same' instance as identifiers can be reused.

As these assumptions are based on common features most systems will satisfy them.

4.2 Evolution Ontology

As explained in the overview, a log of changes made to an instance base is maintained
in terms of the evolution ontology. For every instance of a class in the instance base, a
new unique instance is created in the log of changes. This instance has a reference to
the original instance in the instance base (at least as long as this instance exists in the
instance base). In addition, the log keeps track of all the changes that are made to that
instance. This is done by means of the Change concept.

A Change is defined as a concept with the following properties (see fig 1): a refer-
ence to the instance to which it refers (instanceOf); the operation used to make the
change (hasOperation); and a time stamp identifying the date and time of the change
(hasTransactionTime). We have defined three types of Changes: a change to instances
of a class (ClassChange), to instances of an object property (ObjectPropertyChange),
and to instances of a datatype property (DataTypePropertyChange). For an ObjectProp-
ertyChange and a DataTypePropertyChange we also keep track of respectively the tar-
get instance (hasTargetInstance) and the value of the changed property (hasValue).

Fig. 1. Overview of Change classes

The following OWL code gives an example of a log of changes. It shows the
changes applied to an instance 'john_smith'. The first change denotes that 'john_smith'
is created as an instance of the concept 'Person' (see 1). Next, an instance of the
datatype property 'hasName' was assigned with value 'John Smith' (see 2). Finally, he
becomes politically active: 'john_smith' changes to an instance of 'Politician' (see 3)
and joins a political party (see 4).

Event-Based Modeling of Evolution for Semantic-Driven Systems 67

<EvolutionClass rdf:ID="60f28870">
 <refersTo rdf:resource="…/politics#john_smith"/>
 <changeOccurred>
 <ClassChange rdf:ID="7ece6c60"> (1)
 <hasTransactionTime>07/05/03</hasTransactionTime>
 <instanceOf rdf:resource="#Person"/>
 <hasOperation rdf:resource="#Create"/>
 </ClassChange>
 </changeOccurred>
 <changeOccurred>
 <DataTypePropertyChange rdf:ID="7ece6c61"> (2)
 <hasValue>John Smith</hasValue>
 <hasOperation rdf:resource="#Create"/>
 <hasTransactionTime>08/05/03</hasTransactionTime>
 <instanceOf rdf:resource="#hasName"/>
 </DataTypePropertyChange>
 </changeOccurred>
 <changeOccurred>
 <ClassChange rdf:ID="7ece6c62"> (3)
 <hasTransactionTime>18/10/04</hasTransactionTime>
 <instanceOf rdf:resource="#Politician"/>
 <hasOperation rdf:resource="#Modify"/>
 </ClassChange>
 </changeOccurred>
 <changeOccurred>
 <ObjectPropertyChange rdf:ID="7ece6c63"> (4)
 <hasTarget rdf:resource="#political_party_x"/>
 <hasTransactionTime>19/10/04</hasTransactionTime>
 <hasOperation rdf:resource="#Create"/>
 <instanceOf rdf:resource="#memberOf"/>
 </ObjectPropertyChange>
 </changeOccurred>
</EvolutionClass>

As the use of operations trigger changes, this log can be generated automatically.
Every operation to the instance base leads to a change in the evolution ontology indi-
cating the difference between the current and previous state of an instance. Note that
the reference to the original instance in the instance base is removed as soon as the in-
stance retires from the instance base.

4.3 Event Ontology

The log of changes can be used by third-party users to get an overview of the changes
that have occurred to the instance base they are using. This log of changes forms the
basic mechanism to keep depending systems consistent with the changed instance
base (see section 6). However, the approach also uses an event ontology because the
evolution ontology does not allow to deal with the following situations:

• A third-party user may only be interested in particular changes. Take for instance
our example instance base and annotated web page that lists the names of all cur-
rent and past ministers. For such a page, we are interested in the event where a per-

68 P. Plessers, O.D. Troyer, and S. Casteleyn

son becomes a minister or retires as minister, but we don't care when a minister
changes office, or is promoted to prime minister.

• Reasoning in terms of evolution is not convenient. Changes are defined at the low-
est level and few semantics are captured because no reason or meaning of a change
is given. E.g. what is the reason for deleting an instance of a concept 'Minister'?
Was the minister fired? Did the government fall? Or was it just the end of his term?

To associate meaning to changes and to allow indicating relevant changes, a third-party
user can define a set of event types. Event types are defined in terms of changes. In this
way, events in the real world can be associated with changes in the log of changes. As an
example, a third-party user may define an event type 'retireMinister' as the change of an
instance from being an instance of the concept Minister to a retired instance.

Letting third-party users define their own set of relevant event types, allows tracing
changes from different viewpoints. Although there exists a shared agreement concern-
ing the domain ontology and its instance base, this doesn't mean that there is also a
shared agreement about events. Therefore, different users may define different event
ontologies. Moreover, an event type is an abstraction mechanism that allows to reason
about changes on a higher level than possible with changes in the evolution ontology .

More details and a formal representation for event types will be given in section 6.

5 Time Aspect

An important aspect when tracing evolution is the notion of time. A linear time line T
is therefore used. Changes (in the log of changes) as well as events (in the log of
events) are linked to this time line by means of timestamps. These timestamps repre-
sent transaction times. Transaction time indicates when an instance was created,
modified or retired from the instance base. For each change to an instance i we use the
time line T to represent transaction times. This means that we define an explicit order
on the changes for a particular instance i. This can be seen as an individual, relative
time line. We refer to this time line as Ti where i is a given instance from the evolution
ontology. A variable cti refers to the current time of an instance i, i.e. the moment in
time the last change took place for this instance. If c (∈ N) specifies the total amount
of changes that occurred for an instance i, than we can use cti-a (where a ∈ N, a n)
to refer to the moment in time the (c – a)th change occurred for that instance.

Events contain a reference to the change that triggered them. An event is indirectly
linked to the time line T through the referred changes. Figure 2 gives an overview.

Ti allows us to retrieve properties of instances relative to this time line. This means
that we are able to request the value of a property for an instance at a certain moment
in the past. The following notation is used to retrieve past states of instances:

<property_name>(<inst>, <value> | <var>, <timestamp>)

where <inst> is an instance from the evolution ontology, <value> is the value of a
property while <var> is a substitution, and <timestamp> ∈ Ti. The <timestamp> indi-
cates the moment in time at which we request the property.

Event-Based Modeling of Evolution for Semantic-Driven Systems 69

Fig. 2. Time aspect overview. 't' indicates transaction time

We give two examples. The first example checks if an instance i was an instance of

the concept 'Minister' during the previous state of i. The second example retrieves the
previous telephone number of the instance i; the result is stored in a variable 'x'.

Example 1: instOf(i, 'Minister', cti-1)
Example 2: hasTelephone(i, x, cti-1)

A first step to resolve this query is to transform the abstract timestamp (<time-
stamp> ∈ Ti) into an absolute timestamp t ∈ T. Next, the past state of the instance
base can be reconstructed by applying all stored changes that have occurred before the
absolute time stamp. Finally, the query is resolved against the constructed state of the
instance base.

6 Events

In this section we give more details about our event types. In section 6.1, we intro-
duce basic event types. Basic event types are used to define the semantics of changes
applied to one instance. We have defined a hierarchy of basic event types reflecting
the meaning of basic changes. Users can subtype these basic event types to define
their own set. As basic event types only define the meaning of changes to exactly one
instance, we also have defined complex event types (see section 6.2) for changes in-
volving more than one instance.

6.1 Basic Event Types

Figure 3 gives an overview of our basic event types. The root concept is the abstract
class ‘Event’ and has three subclasses ‘Creation’, ‘Modification’ and ‘Retirement’.
These subclasses define the semantics of the changes resulting from the operations
defined in section 4.1. The ‘Modification’ class is further refined into: ‘Expansion’,
‘Contraction’, ‘Continuation’, ‘Extension’ and ‘Alteration’. The definitions of these
event types are given in Figure 4.

To define the event types, we use the following definitions:

• The set I is the set of all instances of the evolution ontology (i.e. both class and
property instances).

70 P. Plessers, O.D. Troyer, and S. Casteleyn

Fig. 3. Basic event type hierarchy

Fig. 4. Basic event type definitions

• The sets DP, OP and CL are the sets of respectively all datatype properties, ob-
ject properties and classes defined in the domain ontology.

• The set C = DP ∪ OP ∪ CL.

Event-Based Modeling of Evolution for Semantic-Driven Systems 71

As an example event type, we define 'MinisterLeavesGovernment' that describes
the change when a minister leaves a government. It is defined as a ‘Retirement’ event
of an instance of the ‘memberOf’ property. The remainder of the definition checks if
the source and target of the property were instances of respectively ‘Minister’ and
‘Government’.

∀ i ∈ I: MinisterLeavesGovernment(i):
 subtypeOf('Retirement')
 instOf(i, 'memberOf', cti-1) ∧
 ∃ x, y ∈ I: source(i, x, cti-1) ∧ target(i, y, cti-1) ∧
 instOf(x, 'Minister', ctx) ∧
 instOf(y, 'Government', cty)

6.2 Composite Event Types

Basic event types define the semantics of a change of exactly one instance. This fine-
grained type of events is not always sufficient. Often evolution on a higher level, tak-
ing into account changes to more than one instance, is necessary. Therefore, we also
provide composite event types: event types that define the semantics of changes of
more than one instance. We illustrate this with an example. The example defines the
change where two ministers from different governments change places (e.g. a minister
from a regional government switches to the federal government and a minister from
the federal government goes to the regional government). First we define the basic
event type 'MinisterChangesGovernment'. The event type defines the change where a
minister leaves one government to join another one.

∀ i ∈ I: MinisterChangesGovernment(i):
 subtypeOf('Modification')
 ' i remains an instance of 'memberOf'
 instOf(i, 'memberOf', cti-1) ∧
 instOf(i, 'memberOf', cti) ∧

 ∃ x, y, z ∈ I:
 ' get the previous and current target and current
 ' source of i
 target(i, x, cti-1) ∧
 target(i, y, cti) ∧
 source(i, z, cti) ∧

 ' target and source are respectively instances of
 ' Government and Minister
 instOf(x, 'Government', ctx-1) ∧
 instOf(y, 'Government' cty) ∧
 instOf(z, 'Minister', ctz) ∧

 ' but the previous and current government are not
 ' the same instance
 ¬equal(x, y)

72 P. Plessers, O.D. Troyer, and S. Casteleyn

Second, we define a composite event type 'ExchangeOfMinisters' that makes use of
the previously defined event type.

∀ i1, i2 ∈ I: ExchangeOfMinisters(i, j):
 subtypeOf('Event')

 ∃ t1 ∈ Ti, ∃ t2 ∈ Tj:
 ' the 'MinisterChangesGovernment' event occurred
 ' for both i and j
 occurredEvent1 (i, 'MinisterChangesGovernment', t1) ∧
 occurredEvent(j, 'MinisterChangesGovernment', t2) ∧

 ' get governments
 ∃ g1, g2, old_g1, old_g2 ∈ I:
 ' previous government of i
 target(i, prev_g1, cti-1) ∧
 ' current government of i
 target(i, cur_g1, cti) ∧
 ' previous government of j
 target(j, prev_g2, ctj-1) ∧
 ' current government of j
 target(j, cur_g2, ctj) ∧
 'check governments
 equal(prev_g1, cur_g2) ∧
 equal(prev_g2, cur_g1)

The event first checks if the instances i and j both changed government in the past i.e.
the 'MinisterChangesGovernment' event type should have occurred before. Next, we
lookup the governments they both left and joined. The last two statements check if the
two ministers swapped government. Note that we didn't put any time restriction on the
occurrence of the ‘MinisterChangesGovernment’ event. If for instance, a minister leaves
government a and joins government b and three years later another minister leaves gov-
ernment b and joins government a, these changes will match the definition of the 'Ex-
changeOfMinisters' event type. However, in this situation, we can hardly speak of an
exchange. We could solve this issue by adding a time constraint to the event type defini-
tion stating that the exchange must occur within a time frame of for instance 2 months.

7 Consistency Between Instances and Depending Artifacts

A change to an instance remains mostly not restricted to that single instance, but may
have an impact on related instances and depending artifacts. It could bring the com-
plete system (i.e. instance base and depending artifacts) into an inconsistent state. It is
a major requirement for any evolution approach to assure that the complete system
evolves from one consistent state to another.

1 OccurredEvent(i, e, t) checks if an event type e has occurred for an instance i on a moment in

time t.

Event-Based Modeling of Evolution for Semantic-Driven Systems 73

Figure 5 shows an example system. The nodes represent an instance base (a) and
two depending artifacts, the edges indicate the dependencies between them. Some of
these nodes may have the same owner, others not. The circle in the figure indicates
the set of nodes for which an owner has the necessary permissions to make changes.
We call this a set of controllable nodes and refer to this set as Nc.
We distinguish three types of dependencies:

• Intra dependency is a dependency within one node.
• Controllable inter dependency is a dependency from a node a to another node

b where a ∈ Nc and b ∈ Nc.
• Uncontrollable inter dependency is a dependency from a node a to another

node b where a ∉ Nc and b ∈ Nc.

Fig. 5. Example dependency graph

Object properties, annotations, mappings between instances, etc. are forms of de-
pendencies as they define reliance between objects. These are captured by the concept
Dependency. A dependency exists between a source and a target instance. The con-
cept of the source instance is called domain concept of the dependency, the concept of
the target concept is called range concept. Furthermore, we have defined three sub-
types of Dependency: IntraDependency, ControllableInterDependency and Uncon-
trollableInterDependency referring to the distinction we introduced above. We define
the set D as the set of all dependencies.

Current ontology evolution approaches provide solutions for keeping a system con-
sistent by propagating a change to an instance to all depending artifacts [12] [13].
This means that one change may result into a chain of changes to related artifacts to
avoid inconsistencies. While this may be an appropriate approach for intra and con-
trollable inter dependencies (where one has sufficient permissions to make changes),
this solution is not suitable for uncontrollable inter dependencies. In a setting like the
Semantic Web, you cannot force others to update their depending artifacts to enforce
consistency. Consider for example semantically annotated websites. It is not realistic
to require an update of the annotations every time a change to the instance base oc-
curs. Furthermore, it may even be not desirable to update depending artifacts. E.g. this
is the case where a web page shows an image of the current prime minister that is an-
notated with an instance of the concept 'PrimeMinister'. When this instance evolves
into an instance of for example 'Senator', it is not desirable to update the annotation or

74 P. Plessers, O.D. Troyer, and S. Casteleyn

content of the web page when the intention of the page was to show the image of the
prime minister of the particular period.

Instead of propagating changes to depending artifacts, we maintain consistency
without forcing third-party users to update their depending artifacts. This is done by
indicating that a dependency may be state dependent, i.e. is only valid in a particular
state of the instance base. To realize this, the concept ‘UncontrollableInterDepend-
ency’ is associated with an invalidation event type. The invalidation event type is used
to specify that the dependency becomes invalid after the occurrence of the event. In
other words, the dependency is only valid in the state of the instance base before such
an event occurs for the target instance. Consider as example the following situation: m
‘is member of’ g where m is an instance of ‘Minister’ in an instance base (b) (of fig-
ure 5), g is an instance of ‘Government’ in instance base (a) and ‘is member of’ is an
UncontrollableInterDependency between these two instances (the source of the de-
pendency is m and the target is g). Attaching an invalidation event type to this de-
pendency implies that the dependency refers to the state of the instance base (a) be-
fore the occurrence of the invalidation event for instance g. When no such
invalidation event occurred for instance g, the dependency refers to the actual state of
the instance base (a).

To simplify specifications, we have defined a default invalidation event type. The
default invalidation event occurs when the target instance of the dependency is no
longer an instance of the concept defined as range of the dependency. E.g. the retire-
ment of the instance g, would trigger the default invalidation event type because g is
no longer an instance of the range concept (i.e. ‘Government’).

The default invalidation event type is defined as follows:

∀ i ∈ I: DefaultInvalidationEvent(i):
 subtypeOf('Event')
 ∃ d ∈ D: instOf(d, ‘Unc.InterDependency’, ctd) ∧
 ∃ c ∈ C: range(d, c) ∧ target(d, i, ctd) ∧
 instOf(i, c, cti-1) ∧ ¬instOf(i, c, cti)

This event type specifies that there exists an uncontrollable inter dependency d and
the range of the dependency is a concept c. Furthermore, an instance i is the target in-
stance of the dependency d, but is no longer an instance of the range concept c.

Although, we specify a default behavior for uncontrollable inter dependencies, us-
ers can always refine this default setting by adding their own invalidation event types.
Consider an annotated web page where there exist a dependency between page ob-
jects and instances of an instance base. (Note that annotations are a specific type of
dependency as the source instance of the dependency is an instance of a HTML ele-
ment.) Suppose the web page presents an annotated group picture of all ministers of
the current government. Here, the default invalidation event type will not give the de-
sired effect. When one or more ministers leave this government, the picture is no
longer a correct representation of the state of the government. Therefore, the follow-
ing event type should be added to the annotation as an additional invalidation event
type and is defined as follows:

Event-Based Modeling of Evolution for Semantic-Driven Systems 75

∀ i ∈ I: InvalidationEvent(i): subtypeOf('Event')
 occurredEvent(i, 'MinisterLeavesGovernment', cti) ∧
 ∃ d ∈ D, g ∈ I:instOf(d, ‘Unc.InterDependency’, ctd) ∧
 target(i, g, cti-1) ∧ target(d, g, ctd)

The definition checks if the event ‘MinisterleavesGovernment’ (see section 6.1)
occurred for an instance i for which a dependency d exists with as target instance, the
target instance of i.

8 Conclusion

We have presented an approach for ontology evolution on the instance level. A log of
changes is maintained (by means of an evolution ontology) listing all changes applied.
Third-party users can use this log to check if relevant changes occurred by specifying
event types. If, after a change, instances satisfy the definitions of one of the event
types, an instance of this event type is created. The event types are defined in an event
ontology and the events itself are captured in a log of events. Instead of forcing third-
party users to update their dependent artifacts to maintain consistency after a change,
we have presented an event-based technique for maintaining consistency. Event types
are used to invalidate dependencies and to refer to previous states of an instance base.

The advantages of our approach can be summarized as follows:

• Evolution of instances can be maintained without touching the instance base by
means of the evolution ontology.

• Event types allow to filter relevant changes and to establish the semantics of
changes in term of real life events. Furthermore, an event type is an abstraction
mechanism that allows to reason about changes on a higher level of abstraction
than possible with changes in the evolution ontology.

• Depending artifacts can be kept consistent without forcing third-party users to
make updates.

References

1. Berners Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new Form of Web Content
that is Meaningful to Computers will unleash a Revolution of new Possibilities. Scientific
American, 5(1) (2001)

2. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2) (1993) 199-220

3. Klein, M., Noy, N. F.: A Component-based Framework for Ontology Evolution. Proceed-
ings of the Workshop on Ontologies and Distributed Systems (IJCAI ‘03) Acapulco Mex-
ico (2003)

4. Maedche, A., Motik, L., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise
Knowledge Mnangement. IEEE Intelligent System 18(2) (2003) 26-34

5. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.: Temporal data-
bases: Theory, Design and Implementation. Redwood City, CA: Benjamin/Cummings
Pub. (1993)

76 P. Plessers, O.D. Troyer, and S. Casteleyn

6. Ozsoyoglu, G., Snodgrass, R.: Temporal and Real-time Databases: A survey. IEEE Trans-
actions on Knowledge and Data Engineering 7(4) (1995) 513-532

7. Tauzovich, B.: Toward Temporal Extensions to the Entity-Relationship Model. 10th
International Conference on the Entity Relationship Approach (1991) 163-179

8. Klopprogge, M., Lockeman, P.: Modeling Information Preserving Databases: Conse-
quences of the Concept Time. Ninth International Conference on Very Large Data Bases
(1983) 399-416

9. Theodoulidis, C., Loucopoulos, P., Wangler, B.: A Conceptual Modelling Formalism for
Temporal Database Applications. Information Systems 16(4) (1991) 401-416

10. Goralwalla, I., Ozsu, M.: An Object-Oriented Framework for Temporal Data Models.
Spriner-Verlag, ABerlin Heidelberg (1998)

11. Dey, D., Barron, T., Storey, V.: A Conceptual Model for the Logical Design of Temporal
Databases. Decision Support Systems 15 (1995) 305-321

12. Maedche, A., Motik, B., Stojanovic, L.: Managing Multiple and Distributed Ontologies on
the Semantic Web. The VLDB Journal – Special Issue on Semantic Web 12 (2003) 286-302.

13. Maeche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: An infrastructure for Search-
ing, Reusing and Evolving Distributed Ontologies. Twelfth International World Wide
Web Conference (WWW 2003), Budapest Hungary (2003) 51-62

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 77 – 89, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Interoperability in Meta-environments:
An XMI-Based Approach

Roberto Riggio1, Domenico Ursino1, Harald Kühn2,*,
and Dimitris Karagiannis3

1 DIMET, Università “Mediterranea” di Reggio Calabria, Via Graziella,
Località Feo di Vito, 89060 Reggio Calabria, Italy

roberto.riggio@gmail.com, ursino@unirc.it
2 BOC Information Systems GmbH, Rabensteig 2, A-1010 Vienna, Austria

harald.kuehn@boc-eu.com
3 Institute for Knowledge and Business Engineering, University of Vienna,

Brünnerstrasse 72, A-1210 Vienna, Austria
dk@dke.univie.ac.at

Abstract. In this paper we propose an approach conceived to handle the inter-
operability in meta-environments. The paper first illustrates the relevance of
model interoperability in the present software engineering applications; then, it
presents the proposed approach, with a particular emphasis to the relevant role
MOF and XMI play in it. Finally, it illustrates a prototype we have realized for
verifying the applicability of the proposed approach in a real case, namely the
Business Process Management domain.

1 Introduction

One of the most important trends that are presently characterizing the software engi-
neering community is the larger and larger exploitation of the model engineering
paradigm. Its adoption is leading to a revolution analogous to that characterizing the
80’s of last century, when procedural programming has been substituted by the ob-
ject-oriented paradigm.

In such a context models will play the key role; they will be exploited not only for
documentation but also for software development; they will benefit of software auto-
matic generation techniques.

In this scenario, the Object Management Group (OMG) [9] has proposed to shift
from the classic Object Management Architecture (OMA) [3], characterized by an in-
terpretative approach based on the development of complex middleware platforms
such as CORBA [8], to the Model Driven Architecture (MDA) [4] characterized by a
generative approach based on model transformation.

* This work is partially supported by the Commission of the European Communities under the

sixth framework programme (INTEROP Network of Excellence, Contract N° 508011,
<http://www.interop-noe.org>).

78 R. Riggio et al.

One of the key issues characterizing this revolution is the necessity to move model-
relevant information from one development environment to another one in a transpar-
ent and efficient way. This is even more important in case of round-trip engineering
since, in this context, it is necessary to migrate models among modelling platforms in
a bi-directional way.

Model reuse in environments different from those they have been realized in, has
several motivations. Some of the most important ones are the following:

− a single modelling tool typically cannot be used during the whole life cycle of
an information system under development, i.e. from its strategic planning to its
maintenance;

− even in integrated modelling environments, the various components might be
not able to show the best performance for each phase of the system life cycle;

− in the development of highly heterogeneous systems, an organization might de-
cide to use different methods or development processes; as a consequence, a
single development tool might be not capable to satisfy all requirements;

− the life time of some projects might be of several decades; it can be easily fore-
seen that no presently available modelling tool will be available, or at least be
retro-compatible, for such a long time;

− in large projects, spread over different companies, there is only a little chance
that all participants will use the same set of development tools.

All the examples illustrated above allow us to conclude that, without a good inter-
operability among different modelling environments, users will be forced to exploit a
small set of development tools or, alternatively, to totally renounce to their modelling
activity.

The MDA allows the definition of various approaches for handling model interop-
erability; in this paper we propose a solution based on meta-model transformation.
The architecture underlying our solution is shown in figure 1 and is based on the ideas
developed in [12].

The core of our proposal consists of the exploitation of a common meta-meta-
model and a meta-data exchange facility. In our approach, this has been identified in
the Meta Object Facility (MOF) [5, 26] and the XML Metadata Interchange (XMI) [7,
15,]. As it will be clear in the following, the exploitation of these two standards al-
lows uniformity among involved models to be easily gained.

We shall illustrate all details of our approach in the next section. Here, we consider
extremely relevant to point out that its feasibility has been extensively verified in a
real application case, in particular in the Business Process Management domain. In
this field, various process modelling languages exist, some of them focusing on busi-
ness aspects such as ADONIS1 BPMS language [17], Event-driven Process Chains
[19] or UML Activity Diagrams [6], others focus on execution aspects such as Busi-
ness Process Modelling Language (BPML) [2], XML Process Definition Language
(XPDL) [11] or Business Process Execution Language for Web Services (BPEL4WS
or BPEL) [1]. These languages are characterized by significantly heterogeneous para-
digms; therefore, their interoperability is difficult to be gained. In this context our ap-

1 ADONIS is a registered trademark of BOC GmbH. All other brands are property of the par-

ticular companies or organisations.

Interoperability in Meta-environments: An XMI-Based Approach 79

proach can play a key role; indeed, the capability to define mappings between the
meta-models corresponding to the various languages and the MOF meta-model would
automatically imply the possibility to exploit MOF as a common language for defin-
ing meta-models and XMI as a common language for meta-data exchange.

In order to verify the feasibility of our approach we have realized a prototype han-
dling the mapping between the meta-model of ADONIS and the MOF meta-model. In
our opinion, obtained results are encouraging; they are described below.

The outline of the paper is as follows: section 2 presents a general overview of our
approach. Technical details are illustrated in section 3. In section 4 we describe our
prototype for handling the mapping between the meta-model produced by ADONIS
and the corresponding MOF meta-model. In section 5 we provide a brief overview of
related work. Finally, in section 6 we draw our conclusions.

Fig. 1. A general approach for model transformation

2 Overview of the Proposed Approach

The general architecture of our approach is shown in figure 1. Both MOF and XMI
play a key role in it.

Recall that XMI defines the way a generic MOF-compliant model will be repre-
sented as an XML document. For a given meta-model, each XMI-conforming imple-
mentation will produce a DTD (or an XML Schema), representing the meta-model,
and an XML document, representing an instance of the given meta-model.

The specific generation rules rely on a MOF definition of the model’s meta-model;
therefore, a meta-model can have its models interchanged through XMI only if it is
represented as an instance of the MOF meta-meta-model. It is worth pointing out that
XMI works at all abstraction levels of the meta-model architecture defined by MOF.
This implies that it can be used for both the object serialization and the meta-data ex-
change (see below).

80 R. Riggio et al.

Our architecture is a particular case of the MOF meta-data architecture. An exam-
ple of the MOF architecture, tailored for the UML environment, is shown in figure 2.

− The lowest layer, sometimes called original level [18], is that originating the
model and often contains run-time data. At this level XMI can be used for han-
dling the object serialization.

− The model layer includes the meta-data relative to the lowest layer. Meta-data
are aggregated as models. At this level XMI can be used for handling the model
or the meta-data exchange among tools using the same meta-model.

− The meta-model layer includes the description of both the structure and the se-
mantics of the meta-data, i.e. the meta-meta-data. The meta-meta-data are ag-
gregated as meta-models. A meta-model is an “abstract language” for describing
different kinds of data. At this level, XMI can be used for representing the
model language, i.e. the meta-model.

− The meta-meta-model layer includes the description of both the structure and the
semantics of the meta-meta-data. The use of XMI at this level allows an MOF
model to be represented as an XML document.

Fig. 2. The MOF four-layer architecture

In the standard OMG modelling stack, the meta-meta-model (also called MOF
Model) is self-defined and allows the definition of meta-models at the third layer. The
UML meta-model is one of the well-known examples of meta-models; it is possible to
define also other generic languages for meta-modelling. In this paper we shall focus
our attention on the exploitation of XMI at the second layer of the MOF stack.

3 Technical Details

In this section we shall illustrate the proposed architecture into detail. In order to carry
out such a task we shall consider, as an example, the mapping between the ADONIS

Interoperability in Meta-environments: An XMI-Based Approach 81

Business Process meta-model and the MOF meta-model, and the consequent transla-
tion of models produced by ADONIS into XMI-compliant documents. The considered
version of the XMI specification is 1.2.

ADONIS is a business meta-modelling tool with components such as information
acquisition, modelling, analysis, simulation, evaluation, process costing, documenta-
tion, staff management, and import/export [17]. Its main feature is its method inde-
pendence. This means, that starting from the ADONIS meta-tool level, distinct busi-
ness modelling tools with specialized meta-models can be derived. The main
application area of ADONIS is Business Process Management.

Figure 3 contains a fragment of the default ADONIS Business Process meta-
model. By its examination we can observe that such a meta-model consists of a com-
position hierarchy. This is a typical feature of most meta-models. In the hierarchy the
BusinessProcessModel element consists of three sub-elements, namely
FlowObject, Variable and RandomGenerator.

The composition is defined by means of the MOF’s composite association form.
An MOF composite association form is a (conceptually strong) binding among in-
stances; it is characterized by the following properties:

Fig. 3. The ADONIS Business Process meta-model

− it is asymmetrical, with one end denoting the “composite” and the other one rep-
resenting the “components”;

− an instance cannot be a component of more than one composite at a time, under
any composite relationship;

− an instance cannot be a component of itself, of its components, of the compo-
nents of its components, and so on, under any composite relationship;

82 R. Riggio et al.

− when a “composite” instance is deleted, all its components, all the components
of its components, etc., are also deleted;

− an instance cannot be a component of an instance from a different package ex-
tent (composition closure rule).

Fig. 4. A model conforming to the ADONIS Business Process meta-model

Mapping the ADONIS Business Process meta-model into the MOF meta-model
implies to apply suitable production rules to obtain an XMI-compliant XML docu-
ment for each ADONIS Business Process model. A simple Business Process model,
conforming to the Business Process meta-model of figure 3, is shown in figure 4. The
model “BP Contract value enquiries” shows an enquiry of a customer concerning the
value of his insurance contract such as a life insurance contract. After contract check,
the current value of the contract is calculated. The customer will be informed in writ-
ten form, which is done in the sub process “SP Dispatch written evaluation”. In paral-
lel, if no contract value was calculated (here: likelihood of 20%), the customer agent
will be informed to contact the customer.

In the following we illustrate how the production rules for obtaining an XMI-
compliant XML document from an ADONIS Business Process model can be applied.
For this illustration we shall consider the model of figure 4 and the corresponding
meta-model of figure 3.

Production rules are applied starting from the root of the model, i.e. the unique in-
stance of the BusinessProcessModel element. After the root has been consid-
ered, rules are applied throughout the model hierarchy by navigating the composition
links. For each object, including the root, an element start-tag is generated; to this
purpose, the name of the corresponding element in the meta-model is adopted. As an
example, if we consider the root in figure 3, we obtain:

<BusinessProcessGraph.BusinessProcessModel
 xmi.id="od.1">

For each attribute of the current object, a suitable XML element is generated and
the attribute is enclosed in it. The name of the element is derived from the name of the
attribute, as it appears in the meta-model. As an example, the attribute name of the
root in figures 3 and 4 is translated as follows:

Interoperability in Meta-environments: An XMI-Based Approach 83

<BusinessProcessGraph.BusinessProcessModel.name>
 BP Contract value enquiries
</BusinessProcessGraph.BusinessProcessModel.name>

Each composite association is translated in XMI by means of the XML element
containment. As an example, the composite association between the elements Busi-
nessProcessModel and FlowObject in figure 3 is translated as:

<BusinessProcessGraph.BusinessProcessModel.
 ownedElement>

As previously pointed out, after the root has been examined, the other objects of
the model are taken into account. For each of them, a suitable element is written out
in the corresponding XML document; such a task is carried out by following the
guidelines illustrated above. As an example, the XML start-tag for representing the
object Check contract in figure 4 (that is an instance of the element Activity
of figure 3) is the following:

<BusinessProcessGraph.Activity xmi.id="obj.2">

Just as before, an element is created for each attribute of the object. In our exam-
ple, Check contract is an instance of the element FlowObject in figure 4 and
this element has an attribute called name; this attribute is translated as follows:

<BusinessProcessGraph.Activity.name>
 Check contract
</BusinessProcessGraph.Activity.name>

After an element and those linked to it have been examined, the end-tag corre-
sponding to it is generated. As an example, the end-tag associated with the element
FlowObject and the corresponding instance Check contract is as follows:

</BusinessProcessGraph.Activity>

Analogously, after all the elements of a composite association have been exam-
ined, an end-tag relative to it is generated. As an example, the end-tag associated with
the composite association between the elements BusinessProcessModel and
FlowObject is the following:

</BusinessProcessGraph.BusinessProcessModel
 .ownedElement>

Finally, as far as the simple association is concerned, its links are represented in the
content of a suitable element contained in the standard XMI.content element. As
an example, consider the cyclic association subSequent in figure 3, recursively
linking the element FlowObject, and the corresponding instance in figure 4, link-
ing Check contract to Valuating the contract; the associated XML
code is the following:

<BusinessProcessGraph.subSequent xmi.id="con.1">
 <BusinessProcessGraph.subSequent.from>
 <BusinessProcessGraph.Activity xmi.idref="obj.2" />
 </BusinessProcessGraph.subSequent.from>
 <BusinessProcessGraph.subSequent.to>
 <BusinessProcessGraph.Activity xmi.idref="obj.3" />

84 R. Riggio et al.

 </BusinessProcessGraph.subSequent.to>
</BusinessProcessGraph.subSequent>

In an analogous way all the other elements, attributes, composite associations and
simple associations of the model can be represented within the XMI-compliant XML
document.

At the end of the whole process, the end-tag of the root is generated. As far as our
example is concerned, the following end-tag is written out:

</BusinessProcessGraph.BusinessProcessModel>

This closes our discussion about the translation modalities of our approach.
It is worth pointing out, that even if in our discourse we have considered the trans-

lation from ADONIS to MOF, the approach we are proposing here is general and
could be applied for translating any Business Process model to MOF. For this reason,
we can say that it guarantees the interoperability among different meta-models.

4 Prototype

In this section we describe the prototype we have realized for handling the mapping
between the ADONIS Business Process meta-model and the MOF meta-model, and
the consequent translation of models produced by ADONIS into XMI-compliant
documents. Our prototype is characterized by two main features:

− Exporting a model produced by ADONIS into an XMI-compliant XML docu-
ment.

− Importing an XMI-compliant XML document representing a model into
ADONIS.

As a consequence, it allows the model interchange between ADONIS and any
XMI-compliant CASE tool available in the market.

ADOXML
Document

ADONIS
BP Meta-model

BP Model

conforms to

serialize

XMI
Document

OMG’s
UML Meta-model

UML Model

conforms to

serialize

XSLT
Rules

ADOXML
Document

ADONIS
BP Meta-model

BP Model

conforms to

serialize

XMI
Document

OMG’s
UML Meta-model

UML Model

conforms to

serialize

XSLT
Rules
XSLT
Rules

Fig. 5. The architecture of the prototype

Our prototype is strongly based on the W3C family of XML-based standards con-
ceived for handling MOF compatible meta-data. These are very variegated and allow

Interoperability in Meta-environments: An XMI-Based Approach 85

various transformation systems, like XSLT, to be applied to meta-data at any abstrac-
tion level. The overall framework of the prototype is shown in figure 5.

The core of the system consists of a set of XSLT templates; these are applied to the
source XML document returned by ADONIS (hereafter, ADOXML document) and
representing a Business Process model; they produce an XML document compliant
with the XMI specifications (hereafter, XMI document). The XSLT templates can be
applied also for translating an XMI document into an ADOXML one.

The structure of the XSLT templates is shown in figure 6. Three main packages
can be recognized, namely: Import, Export and Language.

Fig. 6. The XSLT template structure of the prototype

The Import package defines the stylesheets used for translating an XMI document
into an ADOXML one. This package is decomposed into the following sub-packages:
(i) The Namespace package defines the stylesheets for fixing the namespace declara-
tions in the source XMI document. (ii) The Engine package defines the stylesheets for
translating UML diagrams into an intermediate ADOXML document. (iii) The Cus-
tom package defines the stylesheets for handling the layout information of specific
CASE tools. This sheet manages also the heterogeneities regarding the representation
of UML attributes and relations [16]. (iv) The Sort package contains the stylesheets
for sorting the intermediate ADOXML document in order to produce a final XML
document compliant with the ADONIS specifications.

The Export package defines the stylesheets used for translating an ADOXML
document into an XMI one. This package is decomposed into the following sub-
packages: (i) The Datatypes package defines the stylesheets for generating the XML
document containing all the data types used in the ADOXML document. (ii) The En-
gine package defines the stylesheets for handling the UML diagrams defined into the
source XMI document. (iii) The Custom package defines the stylesheets for tailoring
the XMI document to a specific CASE tool.

86 R. Riggio et al.

The Language package is a support package for making our prototype available in
various natural languages such as English, German etc.

The behaviour of the Import process is illustrated in figure 7.

XMI Document

Fixing Namespace
Declaration

Generating
ADOXML Document

Is an ADOXMI document?

Translating
Layout Information

ADOXML Document

Yes

No

Sorting ADOXML
Document

Fig. 7. An UML Activity Diagram showing the behaviour of the Import process

For each activity shown in the diagram an XSLT sheet is applied to the input XML
document. The various activities related to the Import process behave as follows:

− Fixing Namespace Declaration. The XSLT technology requires the explicit dec-
laration of the namespaces used during the transformation. However, the UML
namespace declaration is not consistent through different XMI implementations.
Such an inconsistency precludes the stylesheet to work with a generic document.
This activity aims at removing such an inconsistency.

− Translating Layout Information. The XMI document is examined in order to
determine the exporter software. Then, a suitable XSLT sheet is applied to the
document for generating an intermediate XMI document. This sheet also
handles heterogeneities regarding the representation of UML attributes and rela-
tions [16].

− Generating ADOXML Document. An intermediate ADOXML document is
generated starting from the intermediate XMI document.

− Sorting ADOXML Document. In this step the intermediate ADOXML document
is sorted for producing the final ADOXML document compliant with the
ADONIS specifications.

The behaviour of the Export process is illustrated in figure 8. For each activity
shown in the diagram an XSLT sheet is applied to the input XML document. The
various activities related to the Export process behave as follows:

Interoperability in Meta-environments: An XMI-Based Approach 87

− Generating DataType Document. In this step an XML document specifying data
types used in the ADOXML document is generated.

− Generating XMI Document. During this step the output XMI document is gen-
erated starting from the input ADOXML document and the XML document
containing the data type definition produced during the previous step.

− Translating Layout Information. Starting from the ADONIS diagram representa-
tion, a third-party CASE tool diagram representation is generated.

ADOXML Document

Generating
DataType Document

Generating XMI
Document

DataTypes
Document

Tailor for specific tool?

Translating
Layout Information

XMI Document

No

Yes

Fig. 8. An UML Activity Diagram showing the behaviour of the Export process

5 Related Work

In the following we provide a brief overview of three major categories of related
work: data and systems integration, XML-based languages for Business Process Man-
agement, and model transformation approaches.

In the database management domain, issues such as schema integration [13] and
data migration in federated databases [24] focus on comparable problems such as
metamodel integration and model interoperability. Solutions from the systems inte-
gration domain also provide valuable input for data and meta-data integration [20, 22,
25]. Nevertheless, the richness of modelling language semantics needs additional as-
pects to be solved in model interoperability. One of the problems which is not covered
by the aforementioned approaches is the problem of heterogeneous process flow se-
mantics in the exchange of models in different process modelling languages.

Since the advent of XML various XML-based process description languages were
published [23] such as XPDL [11], BPML [2], and BPEL [1]. Additionally, XMI [7]
is a candidate to be accepted as a general model and meta-model exchange format.
These languages will provide valuable support for model interoperability.

88 R. Riggio et al.

But even if XMI will serve as a general model exchange facility, the semantic in-
teroperability of models and meta-models in heterogeneous meta-environments still
needs further mechanisms such as semantic model transformations to connect differ-
ent modelling domains appropriately [21]. In this area, we see a strong contribution
from transformation approaches in the domain of model-driven development and
model engineering. In [14], a good overview of various model-to-model and model-
to-code transformation approaches can be found.

6 Conclusions

The large heterogeneities presently characterizing Business Process Management lan-
guages makes model interoperability to play a key role in the context of meta-
environments management. The presented paper gives a contribution in this setting by
proposing a framework for handling interoperability among different typologies of en-
terprise models. Such a feature is gained by exploiting the MOF and the XMI standards.

We have developed a prototype applying the underlying ideas of the proposed
framework. This guarantees the interoperability between the meta business modelling
tool ADONIS and any XMI-compliant CASE tool available in the market. Obtained
results are particularly encouraging; a proof of this is that an extension of the proto-
type realized, will be made available for ADONIS customers.

Nevertheless, we still see a number of open issues, which will guide our further re-
search. One of these issues is the semantic interoperability of models and meta-models
in different meta-environments. Even if models can be exchanged e.g. using XMI, the
semantic meaning of the models and meta-models in each meta-environment may be
different. Ontology may serve as an appropriate tool in this context.

Other issues for further evaluation are non-functional aspects such as performance,
ease of use and security in model interoperability. E.g. currently one important per-
formance obstacle in the practical application of the presented approach is the exten-
sive main memory usage of the XSLT processor during transformation of large model
bases.

References

1. BPEL4WS (Business Process Execution Language for Web Services) Version 1.1 May, 5
2003. http://www-106.ibm.com/developerworks/library/ws-bpel/.

2. BPMI.org: Business Processing Modelling Language - Specification 1.0.
http://www.bpmi.org/bpml-spec.esp.

3. Object Management Group: Object Management Architecture Guide. http://doc.omg.
org/ab/97-05-05.

4. Object Management Group: MDA Guide, Version 1.0.1, June 12 2003.
5. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4, April

2002.
6. Object Management Group: OMG Unified Modeling Language Specification, Version 1.4,

September 2001.
7. Object Management Group: OMG XML Metadata Interchange (XMI) Specification, Ver-

sion 1.2, January 2002.

Interoperability in Meta-environments: An XMI-Based Approach 89

8. Object Management Group: Common Object Request Broker Architecture.
http://www.omg.org/technology/documents/formal/corba_iiop.htm.

9. OMG, Object Management Group. http://www.omg.org.
10. W3C: XSL Transformations (XSLT) Version 1.0, November 1999.
11. Workflow Management Coalition: Workflow Process Definition Interface - XML Process

Definition Language. Document Number WFMC-TC-1025, Document Status-Version 1.0
Final Draft October 2002. http://www.wfmc.org/standard/docs/TC-1025_10_xpdl_
102502. pdf.

12. Bézivin, J.: From Object Composition to Model Transformation with the MDA. In Proceed-
ings of TOOLS’USA, volume IEEE TOOLS-39, Santa Barbara, California, USA, 2001.

13. Bernstein, P. A., Levy, A. Y., Pottinger, R. A.: A Vision for Management of Complex
Models. Microsoft Research Technical Report MSR-TR-2000-53, Juni 2000.
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-53.pdf.

14. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches.
OOPSLA’03, Workshop on Generative Techniques in the Context of Model-Driven Ar-
chitecture, 2003.

15. Grose, T.J., Doney, G.C., Brodsky, S.A.: Mastering XMI: Java Programming with XMI,
XML, and UML. John Wiley Sons, 2002.

16. Jeckle, M.: OMG’s XML Metadata Interchange Format XMI. In: [23], pp. 25-42.
17. Junginger, S., Kühn, H., Strobl, R., Karagiannis, D.: Ein Geschäftsprozessmanagement-

Werkzeug der nächsten Generation - ADONIS: Konzeption und Anwendungen.
WIRTSCHAFTSINFORMATIK, Vol. 42, No. 5, 2000, pp. 392-401.

18. Karagiannis, D., Kühn, H.: Metamodelling Platforms. Invited Paper. In: Bauknecht, K.,
Min Tjoa, A., Quirchmayer, G. (Eds.): Proceedings of the Third International Conference
on E-Commerce and Web Technologies (EC-Web2002) in conjunction with DEXA2002,
Aix-en-Provence, France, 2002, LNCS 2455, p. 182.

19. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Basis
"Ereignisgesteuerter Prozessketten (EPK)". Publications of Institute of
Wirtschaftsinformatik, No. 89, University of Saarbrücken, 1992.

20. Kohoutková, J.: Meta-Level Transformations in Systems Integration. In: Manolopoulos,
Y., Návrat, P. (Eds.): Proceedings of the Sixth East European Conference of Advances in
Databases and Information Systems (ADBIS’02), Vol. 2 Research Communications, Bra-
tislava, Slovakia, September 2002, pp. 121-130.

21. Kühn, H., Murzek, M., Bayer, F.: Horizontal Business Process Model Interoperability us-
ing Model Transformation. In: Proceedings of the Workshop on Interoperability of Enter-
prise Systems (INTEREST2004) held in conjunction with ECOOP 2004 conference, Oslo,
Norway, June 2004.

22. Linthicum, D. S.: Enterprise Application Integration. Addison-Wesley, 2000.
23. Nüttgens, M., Mendling, J. (Eds.): Proceedings of the First Workshop on XML Inter-

change Formats for Business Process Management (XML4BPM2004). German Informat-
ics Society, Marburg, Germany, March 2004.

24. Sheth, A.P., Larson, J.: Federated Database Systems for Managing Heterogeneous, Dis-
tributed and Autonomous Databases. ACM Computing Surveys, Vol. 22, No. 3, 1992.

25. Skoupý, K., Kohoutková, J., Benešovský, M., Jeffery, K.G.: HYPERMEDATA Approach:
A Way to Systems Integration. In: Proceedings of Short Papers of the 3rd East European
Conference on Advances in Databases and Information Systems (ADBIS’99), Maribor,
Slovenia, September 1999, pp. 9-15.

26. Smith, H.: BPM and MDA: Competitors, Alternatives or Complementary. Business Proc-
ess Trends, 2004.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 90 – 104, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On the Notion of Consistency in Metadata
Repository Systems

Ilia Petrov, Stefan Jablonski, and Marc Holze

Chair for Database Systems, Department of Computer Science,
University of Erlangen-Nürnberg, Martensstrasse 3,

Erlangen, D-91058, Germany
{ilia.petrov, stefan.jablonski, marc.holze}@cs.fau.de

http://www6.informatik.uni-erlangen.de/

Abstract. Repository systems handle the management of metadata and meta-
models. They act as data store with a custom-defined and dynamically adapt-
able system catalogue. This feature finds a useful application in systems such as
process engines, collaborative and information systems, CASE tools and
transformation engines, in which custom-defined catalogues are rarely available
due to their complex nature. In this context repositories would improve those
systems’ ability to adapt and allow for dynamic information discovery. Preserv-
ing the consistency of the repository data is a major challenge. Repository
consistency has several aspects, the most important of which is structural con-
sistency. It is insufficiently specified in the metadata and repository standards,
and is incompletely implemented in existing systems. In this paper we propose
a novel approach to enforcing structural consistency in MOF-based repositories.
We describe its implementation in iRM/RMS - a prototypical OMG MOF-
based repository system [35]. We show how this algorithm overcomes the
deficiencies of the existing approaches and products.

1 Introduction

Repository systems are “shared databases about engineered artifacts” [4]. They facili-
tate integration among various tools and applications, and are therefore central to an
enterprise. Loosely speaking repository systems resemble data stores with a new and
distinguishing feature – a customizable system catalogue. Metadata are data which
refer to other data; they describe (a) certain aspects of the way the data are structured
(structural metadata); (b) auxiliary or system-specific properties of the data (descrip-
tive metadata). Metadata repositories are systems for handling metadata (some handle
also applications’ data). The organization of repository metadata (metadata architec-
ture) is defined in [23, 15, 7, 11, 25]. It exhibits a typical layered, multi-level struc-
ture. Preserving consistency between the different layers (Table 1) is a major chal-
lenge specific to repositories. The relationship between artifacts on two adjacent lev-
els is the type-instance relationship, i.e. definitions on a level are instances of defini-
tions on the next higher level. While in theory this progression can be continued infi-
nitely, in practice it is limited to four layers due to the self-description phenomenon.

On the Notion of Consistency in Metadata Repository Systems 91

A database system contains layers M0 through M2, where M2 is immutable. To pro-
vide a custom-defined and extensible system catalogue repository systems utilize an
additional layer. Therefore the layer M3 is introduced allowing for custom-defined
M2. This however entails the specific problem of consistency between adjacent layers.

Table 1. Layers in OMG MOF Metadata Architecture

Laye
r

Name Description

M3 Meta-meta-
model (MOF)

A standardized language, in terms of which definitions of under-
lying metamodels are expressed.

M2 Meta-model Language for defining the structure (syntax) of a whole set of
application model definitions. Structural definitions may be
extended with the semantics of application domain definitions.

M1 Model Application Model (Application classes, Table definitions etc.).
Alternative term is “information model” [4].

M0 Data Instance Data (e.g. objects, records)

Like many other repository and meta-model standards, OMG MOF (Table 1) does
not explicitly target the lowest layer containing application instance data. OMG MOF
[23] is a meta-meta-model standard. The different layers it defines are shown in Table
1. Self-description here is defined by the fact that the meta-meta-model (e.g. MOF) is
an instance of itself, i.e. M3-layer definitions are instances of themselves.

Consistency in repository systems has several aspects:

• Operational consistency – deals with the interaction between repository applica-
tions and the RMS (see Section 3) and is closely related to the notion of reposi-
tory transactions. There are two sub-aspects: concurrent multi-client access; and
cooperative atomicity [32], i.e. atomic, structurally consistent repository update
operations spanning multiple elementary API operations.

• Metadata integrity – comprises the notions of well-formedness and structural integ-
rity. It must be automatically enforced by the repository management system.
Well-formedness ensures the syntactical correctness of the model definitions
within a meta-layer. Structural integrity (structural consistency [23]) guarantees
the conformance of objects on one level to type definitions on the adjacent higher
meta-level. Structural integrity results from the strict enforcement of the type-
instance relationship across meta-layers. Without structural integrity, repository
applications might create or modify metadata artifacts on Mn-1 inconsistent with
respect to their meta-classes on Mn. For example, an application may read the
value of an attribute of an object whose meta-object does not exist and is there-
fore invalid. Structural integrity violations may occur naturally in repository sys-
tems since they allow for dynamic modification of M2, M1 and M0 at run time.
Other systems do not face this kind of issues because they assume that the cata-
logue is static at run time. More examples are discussed in detail in Section 4.

MOF provides several mechanisms for controlling metadata integrity. However
none of them describes structural integrity, i.e. propagation of changes to underlying

92 I. Petrov, S. Jablonski, and M. Holz

layers when instances exist, and how it can be implemented. Firstly, MOF defines a
set of MOF Model constraints. Secondly, MOF defines a set of closure rules and
computational semantics for the abstract mapping, and JMI defines computational
semantics for the Java mapping. Thirdly, MOF provides the MOF constraint model
element for expressing domain rules. Last but not least, MOF (and JMI) defines a set of
repository interfaces. All of the above contribute to well-formedness. The JMI computa-
tional semantics defines the so called “lifecycle semantics” for different model ele-
ments, describing create, delete or update operations when no instances exist.

This paper discusses various aspects of repository consistency. Its major contribu-
tion is the proposed approach to enforcing consistency in OMG MOF-based reposito-
ries. Here its implementation [35] is also discussed– the iRM/RMS module of the
iRM project [33]. In addition, this paper dwells on some run-time aspects of consis-
tency, which are not touched upon in the current MOF specification version 1.4 [23]
such as repository transactions and changes to the MOF reflective package facilitating
structural integrity.

The paper is organized as follows: the next section describes the related work; Sec-
tion 0 describes the architecture of iRM/RMS outlining its key modules and their
functionality. Section 0 presents an example motivating the need for consistency in
repository systems. It discusses what actions must be taken upon different kinds of
repository data modifications and motivates the need for transactional support. Sec-
tion 0 describes how iRM/RMS implements repository transaction. Section 0 is dedi-
cated to metadata integrity, defining the notions of structural integrity and well-
formedness. It also presents the proposed structural integrity algorithm and provides a
performance evaluation as well as some considerations. Section 0 draws conclusions
form the work described in this paper.

2 Related Work

Repository systems (Unisys Universal Repository Manager [30], CA Platinum Re-
pository, ASG Rochade etc.), metadata repositories (IBM Repository Manager/MVS,
IBM AD/CycleManager, Digital CDD Cohesion etc.), and data dictionaries (IBM
DB/DC DataDictionary, DataCatalogue etc.), are closely related terms for metadata
management systems, among which a significant overlap exists. A key difference
between repository systems and the rest is that repository systems store both data (M0)
and metadata. Data dictionaries store primarily structural metadata (type and schema
definitions), whereas metadata repositories can handle both structural and descriptive
metadata.

There are a number of metadata repository related standards: IRDS [15], PCTE
[31], CDIF [6,7], MOF [23]. The ISO/IEC IRDS framework [15] defines a set of
related standards [16, 17] defining a Data dictionary system (termed information
resource dictionary) operating as a central point of control for a whole enterprise.

MOF (Meta Object Facility) [23] is a standardized, technology independent meta-
meta model from OMG. It is gaining industry acceptance with initiatives such as the
Model-Driven-Architecture, and in the fields of UML (UML Metamodel, UML Pro-
files) or data warehousing (OMG Common Warehouse Metamodel). The OMG MOF
standard defines an abstract meta-meta model and mappings to a generic OO lan-

 e

On the Notion of Consistency in Metadata Repository Systems 93

guage – CORBA IDL, OMG XMI. JMI (Java Metadata Interface) is a standardized
MOF to Java mapping. MOF relies on XMI [24] for exchange (export/import) of
meta-models. In addition, MOF defines two kinds of Meta Object Protocols (MOP): a
general and completely reflective one in terms of the MOF Reflective API (Package);
and a set of generated interfaces, custom-tailored to a concrete meta-model.

There are a number of MOF-based repository implementations: DSTC dMOF [10],
MDR [22], CIM (JMI reference implementation) [29], Adaptive Repository Enter-
prise Edition [1], Unisys Universal Repository Manager [30].

Microsoft Repository [3] is another repository product. It supports only limited
consistency (between M0 and M1, M2 is static). It is currently (Version 3) available as
Metadata Services for the Microsoft SQL Server 2000. Microsoft repository imple-
ments a standard meta-model – MDC Open Information Model.

The idea of supporting consistency across different meta-levels is not repository
system specific - it emanates from the field of computational reflection [21] and Meta
Object Protocols [19]. Metadata integrity is a key characteristic of reflective systems
[5] supporting different Meta Object Protocols: OpenC++ [8], MPC++ [14], SOM
[26]. A number of languages contain built-in reflective facilities supporting MOP
with high levels of intercession: CLOS [18], SmallTalk [12], Schema, Lisp etc. All of
the above MOPs support intercession, which is the kind of reflection most relevant in
the context of metadata integrity. Additional introspective MOPs are also available,
e.g. Java Reflection API or RTTI in C++.

To recapitulate – the concept of repository consistency is not new. But it is insuffi-
ciently specified in MOF and the existing MOF repositories do not support it fully.
The related concept of intercession has a long history and various implementations in
reflective systems.

3 Architecture of iRM/RMS

The architecture of a repository system and the tasks its modules perform are defined
in [3, 4, 7]. The logical architecture of the iRM/RMS module (Fig. 1) will be briefly
described in this section. It provides useful insights as to how the different modules
implementing algorithms discussed here interact. The architecture comprises: a re-
pository client, which is a generic library used to build repository applications on top
of it; Repository Management System (repository manager [4]), handling the meta-
data and providing repository clients with various services; a well defined RMS inter-
face (repository API); persistent data store; and import/export utilities. The iRM/RMS
API is the API of the repository management system. It is based on the JMI Reflec-
tive API [27] and extends it to handle the M0 data. The Metadata Manager handles the
repository metadata organizing it into layers. It implements the JMI Reflective API.
The Lock Manager provides isolation by preventing multiple repository clients from
modifying the same pieces of repository data concurrently by employing a locking
mechanism. The Consistency Manager enforces metadata integrity upon a series of
metadata modification operations. The Data Store Manager handles the persistence of
the metadata and the M0 data, both of which are stored in separate data stores due to
the significant difference of the data properties. Currently iRM/RMS uses Oracle 9i
databases as data and metadata stores.

94

Fig. 1. Conceptual Architecture of the iRM/RMS

4 Introductory Example

In this section we present an example motivating the need for repository consistency.
Fig. 2 shows two meta-models (M2: RDB and M2:RDBEx) and two models
(M1:Schema1 and M1:Schema2). For simplicity reasons we focus only on the interac-
tion between M1 and M2, but the example may be easily extended to include M0.
Without structural integrity, for example, the object M1:Emp1obj (Fig. 2) may be
moved from Schema1 to Schema2, which is clearly an invalid operation since
Schema2 is an instance of another package. If the application then deletes the
M2:RDBEx package and consequently all contained classes and their instances, then
M1:Emp1obj must be deleted too, which would make links (M2:hasAttr instances) to
M1:Col1obj and M1:Col2obj invalid. As a result Schema1 will not conform to the
M2:RDB model because M1:Col1obj and M1:Col2obj are not associated with instance
of table anymore.

Consider the meta-classes M2:Table and M2:Column, the containment relationship
“has” (Fig. 2) and the multiplicity of its role (its association end) “columns”, which
model a rudimentary definition of a database table.

Case 1: The containment relationship “hasAttr” implies that all instances of a
M2:Table (i.e. type definitions or M1 instances) must have an element instance of
“M2:Column” as part of their composite structure. Therefore the RMS must disallow
the creation of an instance M2:Column, not associated with an instance of M2:Table.
This entails two specific problems: (a) the RMS must automatically check whether
any existing instance of Column is associated with instance of table when enforcing
structural integrity; in case of failure the modifications must be undone. (b) the RMS
API object model provides different constructs for creating the different model ele-
ments one-at-a-time. For example, first Emp1obj instance will be created, then the
Col1obj and the link between them. To solve the above problems we need the concept
of repository transactions. Demarcating which RMS operations belong together and
must be executed in an atomic manner as a logical unit (problem (b)) is a classical
transaction processing problem. Structural integrity (problem (a)) can be enforced in
deferred manner, after the end of the transactions. This is the reason why repository
transactions are needed.

Case 2: Modification of models must be handled properly; the respective changes
must be propagated on all underlying levels. Deleting the generalization relationship
between Table and TableEx, for example, would mean that TableEx will not inherit

I. Petrov, S. Jablonski, and M. Holz e

On the Notion of Consistency in Metadata Repository Systems 95

the attributes Name and colCnt. Enforcing structural integrity must result in the re-
moval of the instances of the attributes Name and colCnt from all instances of Ta-
bleEx (e.g. Dept1obj).

Case 3: Deleting just the RDBEx package, would force the RMS to automatically
delete all of its contained elements (TableEx, Trigger and the association triggers) and
their instances when enforcing structural integrity.

Fig. 2. Example of conformance with the metamodel

Existing OMG-MOF repository implementations either completely ignore struc-
tural integrity or implement it only partially. The case of adapting existing instances
after the meta-model has been changed (or revoking the operation) is handled in none
of these products. In the following sections we will describe the structural integrity
mechanism implemented in iRM/RMS.

5 Implementing Operational Consistency

As motivated in Section 0, from the standpoint of a repository client consistency in
repository systems has multiple aspects, most of which are related to providing trans-

96

actional support. The concept of repository transactions was first described in [4]. The
primary aspects are concurrent multi-client access, and cooperative atomicity. [32]
defines cooperative atomicity as “a group of concurrent activities externally viewed as
a single action and synchronized with respect to the group as a whole”.

iRM/RMS repository management system is designed to handle concurrent multi-
client operations. To ensure isolation the iRM repository API provides a locking
mechanism based on long exclusive (X-locks) and short shared (S-) locks. The em-
ployed locking mechanism is 2PL compatible. It extends the traditional locking [14,
28] and especially the multi-granularity locking in OODB [32]. We introduce what
we call instance lattice to accommodate locks on objects on the multiple meta-levels
(M0 .. M2).

Table 2. Extended locking table / instance lattice

 Requested

 X S
X – –
S – +

M2

X – –
S – +

M1

X – –
S – +

M0

Present

In principle, changes to a meta-level Mn (0 ≤ n < 3) affect the structural integrity of
all instance models on all the underlying levels. In other words, once a repository
client makes changes on M2 level model, all M1 instance models and the respective
M0 data, must be altered accordingly by the RMS. Hence the following rule: X-lock
on Mn, (0 ≤ n < 3) will be set if and only if an X-lock can be set on all instance mod-
els (and data) on all underlying meta-levels Mn-p, (0 ≤ p ≤ n) (see Table 2). X- and S-
locks would be set unless a lock is set on all instance models on all of the underlying
levels (Table 2) – hence the name instance lattice. Within a single level the traditional
locking rules [13] hold. More details may be found in [34].

6 Managing Metadata Integrity

Metadata integrity is a vital property of the repository metadata architecture. As
pointed out in Section 1 metadata integrity has multiple aspects, enforced by different
modules of the RMS at different times. Metadata integrity is subdivided into well-
formedness and structural integrity. While well-formedness guarantees syntactical
correctness of the artifacts and models, structural integrity must ensure among other
things that definitions on level Mn, 0<n<3, conform to the model on the next higher
meta-layer. In the next sections we describe these aspects in detail.

I. Petrov, S. Jablonski, and M. Holz e

On the Notion of Consistency in Metadata Repository Systems 97

6.1 Well-Formedness of the Metamodels

Well-formedness guarantees the syntactical correctness of the artifacts defined within
a single meta-layer at the time they are created. For example, well-formedness en-
sures whether the created packages, classes, associations etc. have the proper syntax;
whether an association is not created with just one association end; or whether an
attribute is not defined without a data type. Well-formedness can be enforced ad hoc
without reasoning about the next higher meta-layer.

“Syntactical correctness”, enforced by well-formedness, implies a set of fixed rules
predetermined by the “hard-wired” MOF abstract syntax. Therefore they are formu-
lated as “constraints” (MOF Model Constraints) in the MOF specification. Some of
the syntactical rules have immediate evaluation policy, i.e. after the end of a single
modification operation. Satisfying these rules determines the minimum level of re-
pository consistency. In iRM/RMS well-formedness of this type is enforced by the
Metadata Manager (Fig. 1) alone. Some examples are given below:

• Enforce the properties of generalization hierarchies and containment hierar-
chies. For example, no class or package can be defined as super types of them-
selves; no name conflicts with super-type elements are allowed.

• Check whether containment rules are satisfied. For instance, operations may
contain only parameters, constraints and tags; or operations are allowed to have
at most one parameter marked as return.

• Check whether miscellaneous properties are properly set. Such properties are,
for instance: frozen, root or leaf, singleton for abstract classes. For example,
creating sub-classes of a newly created class whose attribute “isLeaf” is set to
true should be disallowed.

6.2 Structural Integrity

Structural integrity is the major aspect of metadata integrity and a crucial characteris-
tic of the layered repository metadata architecture. Structural integrity ensures cross-
level integrity, i.e. the structure of the objects on a layer Mn conforms to the type
definitions on the upper layer Mn+1, 0≤n<3. It concerns changes of M2 or M1 level
artifacts, whose instance objects exist on underlying levels. In iRM/RMS structural
integrity is enforced automatically by the Consistency Manager (Fig. 1) in deferred
manner. Therefore operational consistency (Section 0) is a prerequisite.

Structural integrity is expressed in terms of conformity to the respective meta-
model (Mn+1) and the so-called structural constraints. Structural constraints (not to be
mixed with MOF Model Constraints) are conditions expressed in any constraint lan-
guage such as OCL.

In section 0 we already introduced some examples as to what should happen when
M2 and M1 models are modified. Such considerations emanate from topics such as
architecture of a meta-language [11, 25] and meta-modeling [9]. Structural con-
straints, which result from the structural constraints of different MOF model elements,
are expressed as follows:

Binary associations express a generic kind of relationship between instances of the
connected model elements. Every association comprises two association ends, which
are of the type of the connected model elements. Creating new association entails the

98

creation of new objects and their respective proxy. If an association is deleted then the
association ends and all respective instances (called MOF links) are to be deleted, too.
Changing the type of an association end requires the new type to be a super-type of
the old one. Type incompatibility leads to repository transaction rollback.

Containment hierarchy and Generalization hierarchy are instrumental to the or-
ganization of the meta-models and the architecture of a meta-language [13 (p. 23)].
While a generalization hierarchy defines model elements, a containment hierarchy
defines nesting and containment rules. Changing the hierarchy means changing the
structure of the lower level artifacts. Restructuring existing instance artifacts is com-
plex and cannot be performed in every case. Therefore an attempt to change a hierar-
chy when instance artifacts exist causes a repository transaction rollback. Such an
action is allowed only if no instances exist.

Multiplicities of association ends or attributes define the number of instances of
type the association end’s type (or attribute type) included in the instance artifact and
whether they are optional or mandatory. Changing a multiplicity, therefore, results in
checking optionality or the lower-upper bound conditions. The repository transaction
is aborted if any of these conditions is violated.

Attributes and attribute types. Attributes of a meta-class serve to define static
properties or properties of the instance artifacts, e.g. name, count etc. Composites, i.e.
attributes of type MOF classes, or aggregation relationships result in nested structures
in the instance artifact. Attributes can be added or deleted. Adding a new attribute
results in creating new instance objects and initializing them to the default value
(NULL, if none is defined). Adding new static attribute requires that a class definition
is changed. The deletion of an instance removes the instance of the attribute associ-
ated with all instances of a class. Deletion of a static attribute causes the class defini-
tion to change. If an attribute type changes the compatibility between the new and the
old data type must be tested. Compatibility of primitive data types is defined in MOF
and JMI. If the attribute is of type class then the new attribute type can only be a su-
per-class of the old one. Type incompatibility leads to transaction rollback.

Classes can be created, deleted or altered. Creating a new class yields the creation
of a new class object and the respective proxy. Deleting a class means deleting its
proxy and all its instances. If the class is a type of an association end, the association
end is deleted as a result of the class deletion, which would subsequently lead to the
deletion of the whole association. The deletion of the class must fail if it violates a
containment or generalization hierarchy.

Packages are generic containers for module elements. Creating a package means
creating its object and its type definition (package proxy). Deleting a package means
deleting its proxy and all contained elements, their proxies and instances.

An additional consideration results from the fact that a repository is a reflective
system [23, 5]. Every repository object must have a respective meta-object. In case of
M0 data – every M0 data element must have a respective M1 metadata element. If the
meta-objects are missing or changed then the respective objects and all instance ob-
jects must be deleted or altered, too. The complementary rule states that upon inser-
tion of a new element to a meta-definition (e.g. an attribute to a class) all instance
objects must be extended with values initialized to the default value of the type, and
the respective M0 data elements must be added. Type definitions in repository systems
must be dynamic. Some implementation languages, e.g. Java or C++, do not support

I. Petrov, S. Jablonski, and M. Holz e

On the Notion of Consistency in Metadata Repository Systems 99

dynamically changeable class definitions in contrast to other languages such as Small-
talk or Eiffel. JMI utilizes the concept of proxies to handle repository managed types
and instances in repository applications. Upon enforcing structural integrity all prox-
ies must be rebuilt to make the repository application coherent with the repository
data. If meta-objects of package, class and association exist without a proxy then their
proxies are automatically created.

6.3 Algorithm for Enforcing Structural Integrity

In this section we define (in pseudo-code) the algorithm for enforcing structural integ-
rity implemented by Consistency Manager. For reasons of simplicity we have skipped
parts of the algorithm handling elements such as operations or complex data types
(e.g. structures or enumerations).

Algorithm 1 triggers structural integrity check for M2 models, eventually triggering
Algorithm 2. Input data is a reference to the package proxy of the respective model. In
Algorithm 1 all elements contained in the respective package are enumerated by trav-
ersing the containment hierarchy (line 1) and then multiplicities of all attributes or
references are checked (3). All deferred well-formedness constraints are enforced (4).
Eventually all M1 instance models are enumerated and for each one a structural integ-
rity check (6) is carried out. Step (6) triggers Algorithm 2.

Algorithm 1: Multiplicity Check
performTACommitChecks(MofPackage rootPkg){

1: for all element in contents(rootPkg) do
2: for all feature in allStructuralFeatures(metaObject(element)) do
3: checkMutiplicity(feature)
 end for
 end for
4: checkDeferredEvaluationConstraints(rootPkg)
5: checkStructuralIntegrity(getM1PackageExtent(rootPkg))
6: createMissingProxyObjects(rootPkg)
}

Algorithm 2: Structural Integrity

checkStructuralIntegrity(RefPackage pkg){
1: if not hasValidMetaObject(pkg) then
2: delete(pkg)
3: return
 end if
4: ifcontainmentOrGeneralizationHierarchy-
Changed(pkg)then
5: throw InconsistencyException("Package has
 been moved to another Package or is not
 inherited any more.");
 end if

6: for all package in refPackagesInPackage(pkg) do
7: checkStructuralIntegrity(package)
 end for

8: for all class in refClassesInPackage(pkg) do
9: if not hasValidMetaObject(class) then
10: delete(class)

11: continue with next iteration
 end if
12: if containmentOrGeneralizationHierarchy-
Changed (class) then
13: throw InconsistencyException("Class has
 been moved to another Package or is not
 inherited any more.");
 end if
14: for all instance in allOfClass(class) do
15: for all instanceAttr in allAttributes(instance)
 do
16: if hasBeenDeleted(instanceAttr) then
17: removeFromInstance(instanceAttr)
 end if
18: if valueCompatibleWithType(instanceAttr)
 then
19: convertValue(instanceAttr)
 else

100

20: throw InconsistencyException("Attribute
 value's type has changed and is not
 compatible.");
 end if
 end for
 end for
21: for all classAttr in allAttributes(class) do
22: if hasBeenDeleted(classAttr) then
23: removeFromClass (classAttr)
 end if
24: if valueCompatibleWithType(classAttr) then
25: convertValue(classAttr)
 else
26: throw InconsistencyException("Attribute
 value's type has changed and is not
 compatible.");
 end if
 end for
27: for all mmAttr in attributesDefinedFor-
Metaobject(class)do
28: if isInstanceScoped(mmAttr) then
29: for all instance in allOfClass(class) do
30: if not hasRepresentation(mmAttr,
 instanc
31: addToInstance(mmAttr, instance)
 end if
 end for
 else
32: if not hasRepresentation(mmAttr, class)
 then
33: addToClass(mmAttr, class)
 end if

 end for
 end for

34: for all assoc in refAssociationsInPackage(pkg)
 do
35: if not hasValidMetaobject(assoc) then
36: delete(assoc)
37: continue with next iteration
 end if
38: if containmentOrGeneralizationHierarchy-
Changed(assoc) then
39: throw InconsistencyException("Association
 has been moved to another Package or is
 not inherited any more.");
 end if
40: for all link in allLinks(assoc) do
41: if not linkEndsMatchAssociationEnd-
Type(assoc, link) then
42: throw InconsistencyException("
 LinkEnd does not match
 AssociationEndType");
 end if
 end for
}
Type(assoc, link) then
42: throw InconsistencyException("
 LinkEnd does not match
 AssociationEndType");
 end if
 end for
 end for
}

6.4 Evaluation

In this section we briefly discuss the performance of iRM/RMS with respect to the
consistency implementation. All presented results reflect the combined effect of en-
forced operational consistency and metadata integrity.

We performed extensive tests to prove experimentally the validity of the proposed
algorithm. The tests were constructed to handle various cases (some of which were
described in Section 0). The algorithm performed successfully in any of the following
cases: changes to the abstraction hierarchies (aggregation and generalization hierar-
chy); creation, deletion and modification of classes; creation and deletion of attrib-
utes; attribute multiplicity checking; changing the data type of an attribute; validity
of references; association end multiplicity and type checking; deletion of packages
(nested and sub-packages). The experimental results cover fully the required compu-
tational semantics described in JMI. In addition the experiments showed that the pro-
posed consistency algorithm behaves correctly.

The performance tests were performed on a Pentium 3, 1.13GHz computer with
512 MB RAM. All measured times are in milliseconds. All tests were performed
without data store support. The reason for this is twofold: to discard the influence of
issues such as distribution; to avoid the influence of the underlying database system
and type of storage schema.

I. Petrov, S. Jablonski, and M. Holz e

On the Notion of Consistency in Metadata Repository Systems 101

0

100

200

300

400

500

600

700

0 25 50 100
M1 model elements / 5 M2 Classes

T
im

e
in

 [m
s]

0

200

400

600

800

1000

1200

1400

1600

1800

0 85 170 460
M1 Model elements / 14 M2 Classes

T
im

e
in

 [m
s]

 a) b)

Fig. 3. Creation of M2 and M1 models

The fist group of measurements (Fig. 3) shows the performance of iRM/RMS
when creating M2 and M1 models of different size.Fig. 3.a depicts the performance in
the case of a small M2 model with 5 Classes (total of 8 elements), while varying the
number of structurally conform M1 model instances and checking for consistency.
Fig. 3.b depicts the system performance in the case of larger M2 and M1 models. An
approximately linear dependency between the consistency enforcement performance
and the number of checked elements can be seen, as it may be expected.

Fig. 4 shows the system performance when carrying out modification operations on
the M2 model with existing M1 model instances. Fig. 4.a shows the performance of the
structural integrity algorithm, when modifying M2 model elements, with existing 40 M1
models with a total of 750 elements. The graph in Fig. 4.a shows that the structural
integrity algorithm exhibits acceptable performance on this relatively small set of data.

The most expensive operations are changing an attribute or operation in a M2 class,
which is root of a generalization hierarchy. Fig. 4.b shows the performance of the
structural integrity algorithm on the same data set, when the M2 model is modified,
and is not inconsistent with the existing data. Fig. 4.b shows a slight exponential
curve. Detecting conflicts with changed attribute types or operation parameter types
in containment or generalization hierarchies is the most time-consuming case.

400

450

500

550

600

1 2 4 3 5
M2 model elements

T
im

e
in

 [m
s]

0
100
200
300
400
500
600
700
800
900

20 40 60 80
Affected M1 Elements

T
im

e
in

 [m
s]

a) b)

Fig. 4. Modification of M2 models

102

The test results show that the iRM/RMS consistency implementation exhibits ac-
ceptable performance, on the average, based on the small set of measurements and
without persisting the repository data in a data store. The results show that the realiza-
tion is suitable for the typical repository use, which involves mainly read and create
operations on repository data on different meta-layers. The results illustrate that vali-
dation or updates on repository data involving structural integrity exhibit acceptable
performance, which could be improved. iRM/RMS fails to show good performance
when enforcing structural consistency on incorrect M1 or M2 models. In a realistic
environment however significant performance penalty is incurred, predominantly due
to the performance of the underlying data store.

Authors of the MOF specification [23] hint at the existence of different degrees of
consistency although the specification does not specify any in particular. We distin-
guish five categories – the lowest denoted by “0”, and the highest being “4” (see
Table 3). Each degree requires that all lower number degrees are satisfied.

Table 3. Degrees of metadata integrity

Degree Description
0 Well-formedness - immediate
1 Transactional support (operational consistency)
2 Well-formedness – deferred
3 Structural integrity
4 Support for MOF Constraints (rules) expressed in a

constraint language, e.g. OCL

Only iRM/RMS covers degree 3, whereas the majority of existing implementations
cover degree 2. iRM/RMS does not have an OCL support therefore it cannot evaluate
dynamically MOF Constraints. This disadvantage prevents metamodel designers from
specifying a whole class of structural constraints reflecting the specifics of an applica-
tion domain on M2.

7 Conclusions

In this paper we presented an approach to providing consistency in OMG MOF-based
repository systems, which is implemented in iRM/RMS. Repository consistency, has
many facets and structural integrity is a major one. It is insufficiently specified and
incompletely implemented in existing MOF-based repository systems.

We showed that the concept of repository transactions is needed for enforcing
structural integrity in a deferred manner. To reflect the specifics of the repository
systems the locking mechanisms known from OODBMS need to be extended. We
proposed such an extension.

In this paper we also describe the way structural consistency was implemented in
iRM/RMS. We define a general algorithm for enforcing structural integrity, which is
the major contribution of the paper.

I. Petrov, S. Jablonski, and M. Holz e

On the Notion of Consistency in Metadata Repository Systems 103

References

[1] Adaptive Ltd. Adaptive Enterprise Repository (White Paper). May 2002
[2] Bernstein, P. Repositories and Object-Oriented Databases. Proceedings of BTW '97,

Springer, March 1997
[3] Bernstein, P., T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, D. Shutt. Microsoft Re-

pository Version 2 and the Open Information Model. Information Systems 24(2), 1999,
pp. 71-98.

[4] Bernstein, P., U. Dayal: An overview of repository technology. Proceedings of the 24th
VLDB Conference Santiago Chile, 1998

[5] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Soft-
ware Architecture - A System of Patterns. John Wiley & Sons. August 1996.

[6] CDIF - Integrated Meta-Model EIA CDIF documents EIA/IS-111 EIA/IS-112, EIA/IS-
114, EIA/IS-115

[7] CDIF CASE Data Interchange Format - Overview EIA CDIF document EIA/IS106
[8] Chiba, S. A metaobject protocol for C++. In 10th Annual Conference on Object-oriented

Programming Systems, Languages and Applications, volume 30 of ACM SIGPLAN No-
tices, pages 285-299, October 1995

[9] Clark T., A. Evans, S. Kent: Engineering Modelling Languages: A Precise Meta-
Modelling Approach. FASE. pp 159-173. 2002

[10] Cooperative Research Centre for Distributed Systems Technology (DSTC). dMOF Ver-
sion 1.1. User guide. 2000.

[11] Erich, O. Repository Systems Teil 1: Mehrstufigkeit und Entwicklungsumgebung" and
"Repository Systems Teil 2: Aufbau und Betrieb eines Entwicklungsrepositoriums" . In-
formatik-Spektrum, Abstract Volume 22 Issue 4 (1999) pp 235-251 and Abstract Vol-
ume 22 Issue 5 (1999) pp 351-363

[12] Foote, B. R. E. Johnson. Reflective Facilities in Smalltalk-80. SIGPLAN Notices. 1989
[13] Gray, J., A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-

mann Publishers, 1994
[14] Ishikawa, Y., A.Hori, M.Sato, M.Matsuda, J.Nolte, H.Tezuka, H.Konaka, M.Maeda,

K.Kubota. Design and Implementation of Metalevel Architecture in C++, MPC++ Ap-
proach. Reflection '96 Conference, April, 1996

[15] ISO/IEC 10027:1990 Information Technology - Information Resource Dictionary Sys-
tem Framework 1990- 06-15

[16] ISO/IEC 10728, Information Technology - Information Resource Dictionary System
(IRDS) Services Interface, April 1993

[17] ISO/IEC 13238-3, Information Technology - Data Management - Part 3: IRDS ex-
port/import facility, Dec. 1998

[18] Kiczales, G., J. Rivieres, D. Bobrow. The Art of the Metaobject Protocol. MIT Press,
1991

[19] Kiczales, G., J.M. Ashley, L. Rodriguez, A. Vahdat, D. G. Bobrow, Metaobject proto-
cols: Why we want them and what else they can do. In Object-Oriented Programming:
The CLOS Perspective, pages 101 - 118. MIT Press, Cambridge, MA, 1993

[20] Lefkovits, H. IBM's Repository Manager/MVS, Wellesley MA:QED Information Sci-
ences. 1991

[21] Maes, P. Concepts and experiments in computational reflection. Conference proceedings
on Object-oriented programming systems, languages and applications. pp. 147 - 155.
1987

[22] Matula, M. NetBeans Metadata Repository (White Paper). March 2003
[23] Object Management Group: Meta Object Facility Specification Version 1.4.
[24] OMG. XMI - XML Metadata Interchange Specification. Version 2.0. OMG Document

formal/03-05-02, May 2003

104

[25] Ortner, E.. Wissensmanagement Teil 1 und 2 Informatik-Spektrum, Volume 23 Issue 2
(2000) pp 100-108

[26] S. Danforth, I. R. Forman. Reflections on metaclass programming in SOM. Proceedings
of the 9-th Conference on Object-oriented programming systems, language, and applica-
tions. pp. 440-452. 1994

[27] SUN. JMI - Java Metadata Interface Specification Version 1.0, June 2002
[28] Traiger, I.L., J. Gray, C. A. Galtieri, B. G. Lindsay Transactions and consistency in dis-

tributed database systems. ACM Transactions on Database Systems (TODS), Volume 7
Issue 3, September 1982

[29] Unisys Corporation. JMI-RI Documentation. CIM Guide. Version 1.3. October 2002
[30] Unisys Universal Repository Manager, http://www.unisys.com/marketplace/urep/
[31] Wakeman, L., J. Jowett. PCTE - The Standard for Open Repositories. Prentice-Hall.

May 1993
[32] Ozsu, M., Tamer. Transaction Models and transaction management in Object-oriented

database management systems, in Advances in Object-oriented Database Systems, Edi-
tors: A.Dogac, M.Tamer Ozsu, A.Bilris and T. Sellis, Series F: Computer and System
Sciences, Vol. 130, 1994, Springer Verlag, New York.

[33] Petrov, I., Stefan Jablonski, An OMG MOF based Repository System with Querying
Capability - the iRM Project. Proceedings of the iiWAS Conference, September 2004

[34] Petrov I., Stefan Jablonski, Marc Holze, Towards efficient locking of repository objects.
Proceedings of IADIS Conference, October 2004.

[35] Petrov I., Stefan Jablonski, Marc Holze, Gabor Nemes, Marcus Schneider, iRM: An
OMG MOF Based Repository System with Querying Capabilities. Demo Paper. ER
Conference, November 2004.

I. Petrov, S. Jablonski, and M. Holz e

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 105 – 118, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Text Editing Creation Time Meta Data
for Document Management

Thomas B. Hodel, Roger Hacmac, and Klaus R. Dittrich

University of Zürich, Department of Informatics,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

{hodel, dittrich}@ifi.unizh.ch, hacmac@gmx.ch

Abstract. Word processing systems ignore the fact that the history of a text
document contains crucial information for its management. In this paper, we
present database-based word processing, focusing on the incorporated
document management system. During the creation process of a document,
meta data are being gathered. This information is generated on the level of the
whole document, on sections of a document or even on individual characters
and is used for advanced retrieval by so-called dynamic folders, which are
superior to advanced hierarchical file systems.

1 Introduction

Text data (documents) are not treated as valuable data (as opposed to business data
like customer, product, finance, etc.) even though a lot of companies’ knowledge is
stored within this structure. For a large-scale document management environment,
local copies of remote data sources are often made. However, it is often difficult to
monitor the sources in order to check for changes and to download data items to the
copies. In many cases, text documents are stored somewhere within a confusing file
structure with an inscrutable hierarchy and low security. On the other hand, data,
which from an organization’s point of view can be classified as crucial, is stored in
databases. Here, the infrastructure and the data are highly secure, multi-user capable
and available to several other tools for compiling reports, content and knowledge.
Reporting and query tools can be specifically defined and applied to such data. Our
idea is to make use of such a philosophy for documents. We therefore strive for the
native storage of texts in a database.

Most users organize their documents by location in hierarchies onto which they
map their own semantic structures. More generally speaking, hierarchies pervade
document and information storage systems. The fundamental organizing principle for
text documents is based on locations with the restriction of only being able to appear
in one location at a time. This forces users to create strict categorizations of
documents and organization. In line with these considerations, the choice of how to
store and search a document has to be redefined. Users need functionality to store and
locate documents without having to specify a location, and without referring to a
fixed hierarchy. As a consequence, we propose that text editing creation time meta
data to be automatically generated and stored (see part 2.1), which enables a

106 T.B. Hodel, R. Hacmac, and K.R. Dittrich

sophisticated document management system (see part 2.2) and at the same time
enriches text mining functionalities.

Until now, document management and text mining solutions ignored the fact that
the history of the creation process of a text document could contain crucial
information. Our database-based word processing application supports not only
editing but also fine-grained security, versioning, business processes, text structure,
layouting, data lineage, and multi-channel publishing - all within a collaborative, real-
time and multi-user environment. All of this data, along with every alteration ever
made to it since its creation (especially during editing), is therefore captured [6].

In this paper, we focus on our enhanced document management system. For
documents, innumerable document management systems exist [6]. According to our
information no document management system has integrated automatically generated
text editing creation time meta data. Realizing such a document management system
involves several aspects. First of all, the word processing application has to be
designed in such a way that it is able to capture all such data. This paper presents the
text editing creation time meta data concept and prototype for our database-based
collaborative editor. With the help of some query examples, we then demonstrate our
system; the result is a completely virtualized management of text documents. The
implementation of ‘dynamic folders’ (see part 3) provides the user with an unlimited
possibility of views on documents stored in the system.

1.1 Problem Description

With the increasing amount of documents produced it becomes more and more
important to find a way of organizing the created documents in an efficient way, so
that they can easily be found when required. Currently it is easier to find and access a
file created by a kid in New Zealand, than to access a file created on your colleague’s
desktop [9]. Crucial information contained in the large number of documents in any
company or organization is at risk of being doomed to become unachievable.

The emerging market of document management and text mining systems
underlines the need for tools which can manage documents in a more sophisticated
way than the file system does. These systems, such as ‘Documentum’, ‘FileNet’,
‘OpenText’, ‘Autonomy’, ‘SAS Text Miner’, and ‘Thunderstone’, just to mention a
few of them, have a very similar philosophy. First, they import documents, which
means that the system either stores the document as it would be stored in a file system
(this is the usual way), or it stores it within the database as BLOB (this is the
exception). Some systems can even use both methods. Secondly, the tool analyzes the
content of the document and creates a full text index. This index is normally stored
within the file system.

However, current document management system solutions do not solve the
problem of how to organize documents. They index the documents and can generate a
response of matching documents for a specific user query using these indexes, but the
underlying data organizational structure is not improved.

Even Microsoft has meanwhile recognized the necessity to revise the old-fashioned
hierarchical file system with its inherent limitations. In its new Windows Version
‘Longhorn’, Microsoft will extend the current file system NTFS with the component
‘Windows Future Storage’ (Win FS) to enable access to the file system in a relational

 Using Text Editing Creation Time Meta Data for Document Management 107

way, as known from standard SQL databases.1 The difference between Win FS and
our dynamic folder concept is that we use primarily automated created metadata and
not like Win FS the content of a document. Based on our knowledge, TeNDaX is the
only existing database based editor and is the only system which is able to create and
store all these metadata.

1.2 Related Work

Several papers have been written emphasizing different aspects of how to leverage
document management. Some of them concentrate on possible improvements in the
way that meta data could be gained from documents, while others propose new ways
of organizing documents, in contrast to file systems. These are also the two main
aspects which will guide us through our paper. To the best of our knowledge, no
previous research paper proposes to use meta data in the way we do nor our method
of organizing it. Next, some of those research papers shall be summarized.

Placeless Documents: The “Placeless Documents” project with its prototype “Presto”
addresses the way in which documents are organized. Meta data can be assigned to
every document, either manually by users or automatically by applications. The meta
data of each document can then be used to create “fluid collections”: these are special
folders, which automatically include or exclude documents, based on the meta data
specified for the folder [2].

KnownSpace2: KnownSpace is an open, programmable, computational environment,
suitable for arbitrary data management applications so that anyone can create
anything. Small, independent programs (called simpletons) are loosely coupled with
the data (called entities) and with each other. Programmers can dynamically attach
arbitrary computations to arbitrary data. Simpletons parse this unstructured data,
building an object-oriented database on it. The frontend may have many faces and is
plugged on the KnownSpace kernel.

Lifestreams: A lifestream is a time-ordered stream of documents that acts as a diary of
your electronic life; every document you create or receive is stored in your lifestream.
The tail of your stream contains documents from the past, whereas the head of it
contains more recent documents [3].

TimeScape: A user of TimeScape can spatially arrange information on the desktop.
Any desktop item can be removed at any time, and the system supports time travel to
the past (to restore desktops) and to the future (to schedule). This allows users to
organize and archive electronic information without being bothered by document
folders or file classification problems [10].

Semantic File System: A semantic file system is an information storage system that
provides flexible associative access to the system’s contents by automatically
extracting attributes from files with file type specific “transducers”. The automatic
indexing of files and directories is called ‘semantic’ because of the use of user
programmable transducers, which ‘understand’ the documents. A semantic file system

1 http://longhorn.msdn.microsoft.com/
2 http://hydrogen.knownspace.org

108 T.B. Hodel, R. Hacmac, and K.R. Dittrich

integrates associative access into a tree structured file system via the concept of a
virtual directory. These virtual directories are interpreted as queries [4].

Looking at the process of creating meta data, none of these approaches above takes
advantage of the way in which documents are created.

Many interesting approaches regarding document organization are described in the
papers mentioned above. If, for example, we focus on the Placeless Documents
project, fluid collections are used to organize documents. Folders do not contain
documents which have been created or moved there, but rather documents whose
meta data correspond with the one specified for the folder. This is a very desirable
quality for the retrieval of documents, but also has a disadvantage since the content of
a folder can change from one second to another. Explicit lists, which the user can
specify for a folder, indicate which documents should be included or excluded in a
specific folder. This somewhat alleviates the uncomfortable situation of the quickly
changing content of folders.

1.3 Underlying Concepts

The concept of our meta data document management system requires an appropriate
architectural foundation. Our concept and implementation are based on the TeNDaX
[6] collaborative database based editing system.

TeNDaX is a Text Native Database eXtension. It enables the storage of text in
databases in a native form so that editing text is finally represented as transactions.
Under the term ‘text editing’ we understand the following: writing and deleting text
(characters), copying & pasting text, defining text layout & structure, inserting notes,
setting access rights, defining business processes, inserting tables, pictures, and so on
i.e. all the actions regularly carried out by word processing users. With ‘real-time
transaction’ we mean that editing text (e.g. writing a character/word, setting the font
for a paragraph, or pasting a section of text) invokes one or several database
transactions so that everything which is typed appears within the editor as soon as
these objects are stored persistently. Instead of creating files and storing them in a file
system, the content and all of the meta data belonging to the documents is stored in a
special way in the database, which enables very fast real-time transactions for all
editing taks [7].

The database schema and the above-mentioned transactions are created in such a way
that everything can be done within a multi-user environment, as is usual done database
technology. As a consequence, many of the achievements (with respect to data
organization and querying, recovery, integrity and security enforcement, multi-user
operation, distribution management, uniform tool access, etc.) are now, by means of this
approach, also available for word processing. TeNDaX creates an extension of DBMS
to manage text. This addition is carried out ‘cleanly’ and the responding data type
represents a ‘first-class citizen’ [1] of a DBMS (e.g. integers, character strings, etc.).

2 The TeNDaX Document Management Approach

We use the following terminology: whenever the term ‘meta data’ is used here, it refers
to the text editing creation time data. A ‘text editing’ process is a logical entity that
represents an editing action on a single character, on a section of a document or on a whole

 Using Text Editing Creation Time Meta Data for Document Management 109

document. An ‘editing action’ is a task a user can do within a word processing application
such as insert (write, paste), delete and change a character or characters [6], define
structure, security, version, business processes, layout, insert notes, and so on [5]. Under
‘creation time’, we understand the date, time, author, roles and specific ‘editing action’
information. All of these (‘text editing’, ‘editing action’ and ‘creation time’ data) taken
together represent the stored ‘meta data’. One or more ‘editing actions’ are combined into
a ‘editing action type’. These types can be accessed and interlinked, and as a
consequence, can be used for document retrieval. A ‘document’ is created through an
arbitrary number of ‘editing actions’. The combination of all ‘editing actions’ assigned to a
certain document in a specific order defines a current document.

2.1 Collecting Text Editing Creation Time Meta Data

As mentioned above, every editing action invoked by a user in the TeNDaX system is
immediately transferred to the database. At the same time, more information about the
current transaction is gathered.

As all information is stored in the database, one character can hold a multitude of
information, which can later be used for the retrieval of documents. Meta data
collected at character level are: Author, roles, date and time, copy-paste references,
local and global undo / redo, security settings, version and user defined properties.

Meta data can be gained from structure, template, layout, notes, security and
business process definitions. Within each section plenty of information is stored: for
example the workflow section [8] contains the business process element name, its
category (content, format, structure and process decision), category types (edit, verify
cation, comment, translate, and sign) process description, date of creation, author,
processors (based on users and roles), due date, time and condition, specific notes,
and access rights settings. Meta data collected on the level of a document section are:
author, date and time, structure affiliation, template affiliation, layout, business
process affiliation, security affiliation, note affiliation, version affiliation, local and
global undo / redo and user defined properties.

Last but not least, on the level of the whole document, there is meta data to be
gathered during its creation and editing. Meta data we collect at the document level
are: Creator, roles, date and time, document object ID, document names, structure
affiliation, note affiliation, security settings, size, authors, readers, state, places within
static folders and user defined properties.

All of the above-mentioned meta data is crucial information for creating content
and knowledge out of word processing documents. We need these meta date for
different functions within our collaborative editor, like local and gloabal und / redo,
version, data lineage, work flow, security collaborative writing, collaborative
multidimensional structuring of text and knowledge management [5], [6], [7], [8]. The
next subchapters show how this meta data can be used for document retrieval and
how the TeNDaX document management system works.

2.2 The Usage of Text Editing Creation Time Meta Data for Document Retrieval

Using the meta data gained, the following example queries can be asked in the
TeNDaX document management system. The concrete form of querying and
presentation of results is discussed in the following chapters.

110 T.B. Hodel, R. Hacmac, and K.R. Dittrich

− Show all documents in workflows which have pending tasks for me, or which I
have written and which have been rejected in a workflow by another user.

− Show all documents of which more than 50% was written by user “Dittrich” and
which haven’t been modified since 1.1.2001.

− Show all documents to which I have write rights and which have been read by
more than 100 users with the role “Employee”.

− Show all documents which have character security restrictions for the role
“Employee”.

− Show all documents edited by team “A” and read by my boss last week?
− Show all documents which have been written by user “Hodel” or “Hacmac”, with

creation date after 1.1.2000 and size more than 1000 characters.
− Show all the documents accessible by the role “Employee”, which have the

document name “*proj*”.
− Show all documents written by myself, with similar sentences and phrases to the

document “Project TeNDaX”.
− Show the document with ID “1230” and all documents with copy-paste references

to this document, created by user “Hodel”.
− Show all documents which are somewhere in a directory called “TeNDaX” and

which are marked by the user defined property “to be done”.
− Which documents were read or printed out by our project manager, and when?
− Who wrote this paragraph originally?
− Which parts have been copied and pasted, and from which source?
− As a final example, we can look at the following situation which could occur in a

company: four documents containing relevant knowledge for an upcoming project
are found. Based on the information about which part was written by which
author, and which part was copied from another document, the system can
pinpoint suitable employees and teams to discuss the new project.

2.3 Document Organization: Static and Dynamic Folders

The question arises as to whether this meta data can be used to create an alternative
storage system for documents. As discussed in part 1.2, several papers have been
written on how to improve document management. In any case, it is not an easy task to
change users’ familiarity to the well known hierarchical file system.

This is also the main reason why we do not completely disregard the classical file
system, but rather enhance it. Folders which correspond to the classical hierarchical
file system, will be called “static folders”. Folders where the documents are organized
according to meta data, will be called “dynamic folders”. As all information is stored
in the database, the file system, too, is based on the database.

2.3.1 Static Folders
Static folders are folders as common. Users can create them, modify their names,
delete, copy and move them and assign access rights if they are authorized to do so.
Their main function is to store documents users create with the TeNDaX word
processor.

 Using Text Editing Creation Time Meta Data for Document Management 111

Static folders are organized as follows:

− There is one private folder for each user which represents the user’s private area.
Under no circumstance can other users access this folder. The user may carry out
any actions he wants to, e.g. create, modify, copy, move or delete folders and
documents. A private folder is quite similar to stored files on a ‘local disc’.

− For each role created, a public static folder is set up automatically by the system. A
user is only able to see a public static folder if he was assigned to the corresponding
role. The rights of the user in this case depend on the rights given to him by the
administrator. Example: a new project is started and a new role (i.e. user group) is
generated for this project. Next, all the people involved are assigned to this role, so
that shared access to this public static folder is granted. These folders are quite
similar to sets of files stored on a ‘file-server’ or within a document management
system.

2.3.2 Dynamic Folders
The place where the meta data can be used for document retrieval, are the dynamic
folders. The dynamic folders build up sub-trees, which are guided by the meta data
selected by the user.

Thus, the first step in using a dynamic folder is the definition of how it should be
built. For each level of a dynamic folder, exactly one meta data item is used to. The
following example illustrates the steps which have to be taken in order to define a
dynamic folder, and the meta data which should be used.

Table 1. Defining dynamic folders (example)

Level Meta data Restrictions Granularity
1 Creator Only show documents which have been

created by the users “Hodel” or “Dittrich”
or “Hacmac”

One folder per creator

2 Business process
affiliation

Only show documents with closed tasks for
the user group “Manager”

One folder per task
status

3 Business process
affiliation

Only show documents with tasks completed
by the user “Meier”

One folder

4 Authors Only show documents where at least 40%
was written by user ‘Hodel’

Each 20% one folder

5 Structure
affiliation

Only show documents which have been
assigned the template “LNI” or “LYNX”

One folder per
template

6 Copy-paste
references

Only show documents which have no copy-
paste references to a document with the
name “DKE TeNDaX”.

One folder

As a first step, the meta data which will be used for the dynamic folder must be
chosen. As we see in Figure 1, the sequence of the meta data influences the structure
of the folder. Furthermore, for each meta data used, restrictions and granularity must
be defined by the user; if no restrictions are defined, all accessible documents are
listed. The granularity therefore influences the number of sub-folders which will be
created for the partitioning of the documents. Figure 1 visualizes the dynamic folder
defined in Table 1. We named this dynamic folder ‘DF_Paper’.

112 T.B. Hodel, R. Hacmac, and K.R. Dittrich

As the user enters the tree structure of the dynamic folder, he can navigate through
the branches to arrive at the documents he is looking for. The directory names
indicate which meta data determines the content of the sub-folder in question. At each
level, the documents, which have so far been found to match the meta data, can be
inspected. This is symbolized in figure 1 by the little document icons below each
folder. For the folders “Creator_Hodel” and “Creator_Hacmac”, the same structure as
that which is shown for the folder “Creator_Dittrich” would be constructed.

DF_
Paper

DF_
Paper

Creator_
Hodel

Creator_
Hodel

Creator_
Dittrich

Creator_
Dittrich

…

Task_for_
Manager_
closed

Task_for_
Manager_
closed

Creator_
Hacmac

Creator_
Hacmac …

Task_
completed_
by_Meier

Task_
completed_
by_Meier

Template_LNI
Template_LNI

Template_LYNX
Template_LYNX

40_60_
by_Hodel

40_60_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Template_LNI
Template_LNI

Template_LYNX
Template_LYNX

60_80_
by_Hodel

60_80_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Template_LNITemplate_LNI

Template_LYNX
Template_LYNX

80_100_
by_Hodel

80_100_
by_Hodel

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

No_ref_to_
DKE_TeNDaX

Level 1 2 3 4 5 6

Fig. 1. Representation of a dynamic folder

Ad hoc changes of granularity and restrictions are possible in order to maximize
search comfort for the user. It is possible to predefine dynamic folders for frequent
use, as well as to create and modify dynamic folders on an ad hoc basis. Furthermore,
the content of such dynamic folders can change from one second to another,
depending on the changes made by other users at that moment.

3 Prototype

3.1 Collecting and Storing Creation Time Meta Data

Some of the meta data used for document management is deliberately gathered for
this purpose only. On the other hand, some of it originates from other functionalities
of the word processor. These functionalities are optimized for best performance. This

 Using Text Editing Creation Time Meta Data for Document Management 113

is the reason why the meta data for document management is not stored in a central
area of the database, but is rather widely distributed. Here, the aspects of operational
functioning and data warehousing are combined in the sense of a hybrid approach.
Figure 2 shows which attributes are located in which database classes. The figure only
shows the attributes relevant for document management; other attributes are omitted.
The associations between the classes are not symbolized by lines, but instead with
attributes in the classes of the type of the associated class.

CSty le

StyleName
StyleDefinition

CExternalFile

Fi leType
Ti tle
Url

CMarking

ActionTime
IsInternal
Position
Type
InternalFileNode : CFileNode
ExternalFile : CExternalFile

CBlockElementBorder
TimeCreated
BorderChar : CChar
UserCreated : CRole

CCharAccess Matrix

ReadOption
WriteOption
GrantOption
Char : CChar
SecurityRole

CZoneAccessMatrix
ReadOption
WriteOption
GrantOption
TextBlockElement : CTextBlockElement
SecurityUser : CRole

CLogDocumentAction

TimeAction
ActionType
FileNode : CFileNode
UserActing : CRole

CUndoHistory

Action
TimeStamp
UserActi ng : CRole
UndoChar : CChar

CRedoHistory

Action
TimeStamp
UserActi ng : CRole
RedoChar : CChar

CCopy Paste

String
ActionType
UserActi ng : CRole
Marking : CMarking

CTaskInstance

CategoryName
Comments
Description
DueType
Duedate
Name
NextTasks
Notes
SecurityLevel
Status
TaskType
TimeCompleted
TimeCreated
TimeModified
TimeStarted
TimeTaskStatus
TextBlockElement : CTextBlockElement
UserCreated : CRole
EditorsTask : CRole
EditorDone : CRole
UsersModified : CRole
Workflow : CWorkflowInstance

CWorkf lowInstance
TimeCompleted
TimeCreated
TimeModified
TimeStarted
UserCreated : CRole
UserModified : CRole
File : CFile

CSty leSheet

StyleSheetName
Style : CStyle

CZoneProperty

Sty leSheet : CSty leSheet
Note : CNote
UserDef inedProperty : CUserDef inedProperty
TextBlockElement : CTextBlockElement

CFileNodeAccessMatrix

ReadOption
WriteOption
GrantOption
SecurityRol e : CRole
Folder : CF ileNode
Fi le : CFile

CDtd

DtdData
Name

CSpiderIndex

ParagraphNumber
SentenceNumber
Word
FileNode : CFileNode

CVersion

Archived
Comment
TimeCreated
VersionId
VersionName
UserCreated : CRole
File : CFile

CLanguage

LanguageName
Profile

CPicture

Name
Picture
Position
TimeCreated
UserCreated : CRole
File : CFile

CUserDef inedProperty

Recurrent
TimeCreated
UserCreated : CRole

CDocumentSession

AccessM ode
Fi leAcc essed : CFi le
Us erAc ti ng : CRole

CChar

CharacterValue
HasRestric tion
Ti meCreated
isAct ive
CharAuthor : CRole
Fi le : CFile
Lang uag e : C Language

CTextBlockElement
BlockType
IsUnique
TimeCreated
StartBorderElement : CBlockElementBorder
EndBorderElement : CBlockElementBorder
UserCreated : CRole
File : CFile

CFileNode

NodeName
NodeType
ParentNodeId
TimeCreated
File : CFile
UserCreated : CRole

CNote

Text

CFile

FileSize
TimeCreated
Note : CNote
UserDefinedProperty : CUserDefinedProperty
EndChar : CChar
StartChar : CChar
Language : CLanguage
Readers : CRole
Authors : CRole
UserCreated : CRole
LastAuthor : CRole
LastReader : CRole
Dtd : CDtd

CRole

IsUser
Name

Fig. 2. Database schema showing only attributes relevant for document management

In part 2 we outline which meta data is held. The meaning of the attributes in the
classes shown in the database diagram should be explanatory.

Obviously, the different attributes cannot all be of the same type nor can they have
the same scopes. Thus for each attribute a separate method handles the scope and
granularity. The next chapter shows how these meta data are handled finally in order
to create the dynamic folders.

3.2 Generating the Dynamic Folders

As described above, each level of a dynamic folder represents a partitioning of the
documents regarding some meta data, each level partitioning the previous one. Thus,

114 T.B. Hodel, R. Hacmac, and K.R. Dittrich

the first step a user must take to be able to use the dynamic folders, is to define the
desired dynamic folders. This definition includes which meta data is decisive for
which level of a dynamic folder, which conditions regarding this meta data the
documents must accomplish, and with which granularity the sub-folders should be
created. Remember: only one meta data can be chosen for each level of a dynamic
folder. Figure 3 describes the process of opening the first level of a dynamic folder.

User Client Database

open the first level of the dynamic folder

get first level of dynamic folder

check which meta data is relevant for the first level

check the conditions which were selected for the first level

create sub-folders according to the selected granularity

partition the relevant documents into the created subfolders

returning the sub-folders and their content

presenting the first level of the dynamic folder

Fig. 3. Sequence diagram ‘opening the first level of a dynamic folder’

When the first level of the dynamic folder is presented to the user, he can then
choose to open the next level. The processing of this action is equal to the one shown
in figure 3, with the difference that the documents which have now to be considered
are only those from the sub-folder the user came from, and not from the whole
document base.

The following lines describe how the meta data is used to create database queries,
i.e. how the relevant documents are selected and filed in the sub-folders of the
dynamic folder.

In the following description, the objects and functions used for creating the
dynamic folders are portrayed. (The elementary functions are assumed to exist.)

The symbol d stands for the object “document”.

d = document

The function collect collects all the documents available to and accessible by the
acting user user. This includes checking the security restrictions, so that documents
for which the user has no access rights are not included into the document base db for
that specific user. The collection of documents db is therefore a set of documents d.
The function collect is only called at the first level of a dynamic folder. The method
used for the higher levels is described later on.

db = {d1, d2, …, dn} = collect(user) ; n =number of documents found

 Using Text Editing Creation Time Meta Data for Document Management 115

The symbol m stands for the meta data and symbolizes one of the selectable meta
data, as described in part 2.1. For reasons of space, not all the meta data are listed
here, but all of these are valid, regardless if they concern the character, section or
document level.

m = ∃ {Author, Roles, …, User defined properties}

The function validate validates if the documents in the document base db
accomplish the conditions which were specified for the meta data, which is decisive
for the current level of the dynamic folder. The scope of validity is defined in the
object sc and must correspond to the type of meta data it applies to. The result of the
function validate is a reduced document base db’.

db’ = validate(db, m, sc)

As the relevant documents are now isolated in db’, we need a function which builds
up the sub-folders in the dynamic folder, as required by the granularity which the user
has chosen. The function partition takes as its parameters the document base db’ valid
for the current user, the meta data m which is decisive for the current level, and the
granularity g which decides upon the amount of sub-folders sf to be created. Also the
granularity g must correspond to the type of meta data it applies to. The result of this
function is a set of sets, i.e. documents filed correctly into the sub-folders.

{sf1, sf2,…, sfx} = partition(db’, m, g) ; x = number of sub-folders created

sf = {d1, d2, dy} ; y = number of documents filed into this sub-folder

The result of the function partition is passed to the client. As the user dives into
one of the created sub-folders, the same procedure of validating and partitioning takes
place. The input for the functions validates and partition is then:

db = sfz ; z = sub-folder selected by the user, z = ∃ {1, 2, ..., x}

m = meta data relevant for the next level of this dynamic folder, as defined by the user

sc = scope for the meta data m, as defined by the user

g = granularity for the meta data m, as defined by the user

If we consider the example from part 2.3.2, the function validate would be called
with the following parameters for the first level of the dynamic folder:

db’ = validate(db, “Creator”, “Hodel or Dittrich or Hacmac”)

The corresponding SQL code is:

SELECT CFileNode.ID As fnID, CFile.UserCreated As Creator

FROM CFileNode INNER JOIN CFile ON (CFileNode.File =
CFile.ID) INNER JOIN CRole ON (CFile.UserCreated =
CRole.ID)

WHERE (CFileNode.IsDynamic = 0) AND ((CRole.Name =
"Hodel") OR (CRole.Name = "Dittrich") OR (CRole.Name =

116 T.B. Hodel, R. Hacmac, and K.R. Dittrich

"Hacmac"))

IsDynamic = 0: static documents

For this purpose, the function validate uses the attribute UserCreated from the
class CFile to evaluate the necessary meta data. The document base db is generated
by the function collect with the help of the class CFileNodeAccessMatrix, which is
responsible for all security issues on the document level. For the second level,
validate is called as follows. s represents the sub-folder selected by the user.

db’ = validate(sfs, “Business Process Affiliation”, “Documents with closed tasks to
the user group ‘Manager’”)

The corresponding SQL code is:

SELECT CFileNode.ID As fnID

FROM CFileNode INNER JOIN CFile ON (CFileNode.File =
CFile.ID) INNER JOIN CWorkflowInstance ON (CFile.ID =
CWorkflowInstance.File) INNER JOIN CTaskInstance ON
(CWorkflowInstance.ID = CTaskInstance.Workflow) INNER
JOIN CRole ON (CTaskInstance.EditorsTask = CRole.ID)

WHERE (CFileNode.NodeType = 2) AND (CFileNode.IsDynamic
= 1) AND (CRole.Name = "Manager”) AND
(CTaskInstance.Status = 1) AND (CFileNode.ParentNodeId
= [Node ID of selected dynamic sub-folder])

CTaskInstance.Status = 1: task closed
CFileNode.IsDynamic = 1: dynamic documents

In this case, the meta data used originates from the attribute EditorsTask, in the
class CTaskInstance.

The steps discussed above would also apply to the next levels of the dynamic
folder. For each meta data, the functions validate and partition provide specialized
methods which use the necessary classes.

4 Conclusion

The dynamic folder concept is a high-level data model. People use a computer to
communicate and to store and organize their personal data. Unfortunately, a computer
does a relatively poor job of allowing users to organize the information so that it can
be found later. When a user forgot exactly where he puts a file, it can take quite a
while to find it again. In the worst case, the entire content of each disk has to be
searched.

One reason why to find information on a computer is difficult, is because of the
limited ability for the user to organize data. The hierarchical folder structure does not
work well when a categorization of data in numerous ways is wanted. Therefore, the
first problem is that lots of files have to be stored and no good way to categorize them
is available. Another problem is that the same stuff is stored in multiple places in
multiple formats. There are a number of problems with current approaches to data

 Using Text Editing Creation Time Meta Data for Document Management 117

storage, like: Multiple applications cannot share common data, the same information
lives in multiple locations, separate copies of data become unsynchronized, and there
are no notifications of data change.

Fig. 4. TeNDaX screenshots

Dynamic folders improve text documents in three ways. First, they store
automatically all thinkable meta data and relate one item of information to another.
Second, it provides a common storage format for information collected. Third, it
promotes data sharing of common information across multiple applications. Dynamic
folder is an active storage platform for organizing, searching for, and sharing all kinds
of information. This system defines a rich data model that allows using and defining
data types that the storage platform can use. All these features together allow four
ways to organize documents with dynamic folders: Hierarchical folder-based
organization, item property–based organization, relationship-based organization,
category-based organization.

TeNDaX reached the status of a quite stable prototype. The system is used in
several pilot projects and within some courses at different universities. The described
dynamic folders are implemented and running quite well (see Figure 4). Performance
is similar to known file-explorer and therefore not an interesting issue. Integration
into the Windows-Explorer was programmed too. Further information and a
demonstration video clip can be found on the TeNDaX3 website.

In this paper we have proposed a dynamic document management system
environment that represents all documents in a database system, working with the

3 http://www.tendax.net/

118 T.B. Hodel, R. Hacmac, and K.R. Dittrich

underlying TeNDaX architecture. This architecture enables different views of
documents in a structured, reliable and real-time co-operation environment.

References

1. S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri, B. Croft, D. DeWitt, M.
Franklin, H. G. Molina, D. Gawlick, J. Gray, L. Haas, A. Halevy, J. Hellerstein, Y.
Ioannidis, M. Kersten, M. Pazzani, M. Lesk, D. Maier, J. Naughton, H. Schek, T. Sellis,
A. Silberschatz, M. Stonebraker, R. Snodgrass, J. Ullman, G. Weikum, Widom, and J.
Stan Zdonik, "The Lowell Database Research Self Assessment," Massachusetts 2003.

2. P. Dourish, W. K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen, M.
Salisbury, D. Terry, and J. Thornton, "A programming model for active documents,"
proceedings of the 13th annual ACM symposium on user interface software and
technology, New York, USA, 2000.

3. E. T. Freeman, The Lifestreams Software Architecture: Yale University Department of
Computer Science, 1997.

4. D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole, "Semantic File Systems,"
proceedings of 13th ACM Symposium on Operating Systems Principles, 1991.

5. T. B. Hodel, D. Businger, and K. R. Dittrich, "Supporting Collaborative Layouting in
Word Processing," proceedings of IEEE International Conference on Cooperative
Information Systems (CoopIS), Larnaca (Cyprus), 2004.

6. T. B. Hodel and K. R. Dittrich, "Concept and prototype of a collaborative business process
environment for document processing," Data & Knowledge Engineering, vol. Special
Issue: Collaborative Business Process Technologies, 2004.

7. T. B. Hodel, M. Dubacher, and K. R. Dittrich, "Using Database Management Systems for
Collaborative Text Editing," ACM European Conference of Computer-supported
Cooperative Work (ECSCW CEW 2003), Helsinki (Finnland), 2003.

8. T. B. Hodel, H. Gall, and K. R. Dittrich, "Dynamic Collaborative Business Processes
within Documents," proceedings of ACM Special Interest Group Conference on Design of
Communication (SIGDOC) 2004, Memphis (USA), 2004.

9. IBM On Demand Workplace, "How electronics companies can become more resilient and
adaptable in a chaotic world," IBM Business Consulting Services, 2003. http://www-
1.ibm.com/services/us/igs/pdf/ibm_ondemand_workplace_electronics_18feb04.pdf

10. J. Rekimoto, "TimeScape: A Time Machine for the Desktop Environment," proceedings of
CHI'99 late-breaking results, 1999.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 119 – 134, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Object-Relational Approach to the Representation
of Multi-granular Spatio-Temporal Data

Elisa Bertino1, Dolores Cuadra2, and Paloma Martínez2

1 ERIAS and CS Department, Purdue University, Recitation Building,
656 Oval Drive, West Lafayette, IN 47907-2086, USA.

bertino@cerias.purdue.edu
2 CS Department, Carlos III University, Avd. Universidad 30, 28911 Leganés, Spain

Fax: 34-91-6249430
dcuadra@inf.uc3m.es, pmf@inf.uc3m.es

Abstract. The notion of spatio-temporal multi-granularity is fundamental when
modeling objects in GIS applications in that it supports the representation of the
temporal evolutions of these objects. Concepts and issues in multi-granular
spatio-temporal representations have been widely investigated by the research
community. However, despite the large number of theoretical investigations, no
comprehensive approaches, have been proposed dealing with the representation
of multi-granular spatio-temporal objects in commercially available DBMSs.
The goal of the work that we report in this paper is to address this gap. To
achieve it, the paper first introduces an object-relational model based on
OpenGis specifications described in SQL3. Several extensions are developed in
order to improve the semantics and behavior for spatio-temporal data types
introducing an approach to represent the temporal dimension in this model and
the multi-representation of spatio-temporal granularities.

1 Introduction

Since 1970 when Codd [5] proposed the relational model, database system technology
has introduced several important changes in the way data are stored and managed. The
relational data model has had a great impact on commercial products, mainly because of
the development of the SQL language, which included several additional features with
respect to those specified by the theoretical definition of the relational model. Since its
initial definition, SQL has been widely extended [9]. A relevant set of extensions has
dealt with the introduction of object modeling capabilities [21], resulting in the notion of
object-relational data model. Such a model combines the simplicity and the power of
SQL the ability of describing new data types with their associated operations, typical of
the object-oriented approach. The object-relational data model is thus a powerful model
combining the best aspects of two different approaches.

The SQL3 standard [10] is the reference language for the object-relational model.
It has been defined by extending the previous SQL92 standard with the ability to
modify, retrieve and define the data types needed to represent a large variety of
application domains. Examples of those extensions include: XML, MULTISET (like
the ARRAY data type, without implicit order), BIGINT and others.

C

120 E. Bertino, D. Cuadra, and P. Martínez

An important class of applications is represented by spatial and GIS applications.
These applications are relevant in a number of different domains, such as
transportation, urban planning, homeland security, and environmental protection.
Spatial data management is often combined with temporal data management, because
in many cases one needs to record the temporal evolution of spatially-related entities.
The resulting data models are thus termed spatio-temporal data models. One of the
most crucial issues when dealing with spatio-temporal databases is the management
of the information concerning moving objects in a spatial context. Such an issue
represents an important requirement in several application domains, like air traffic
control and habitat control of endangered species and so on. So far, the GIS systems
have handled the spatial and the non-spatial data separately, which increases the
complexity of maintaining data integrity. The use of an object-relational database
system to manage this kind of data represents a good alternative, in particular because
such a system is able to homogeneously and efficiently manage user-defined
information, and to improve integrity for data of different nature.

Most of the spatial-temporal data approaches proposed so far do not exploit the
powerful modeling and management features that are provided by recent versions of
commercially available DBMSs. Another main limitation of current approaches is that
they do not support multiple granularities in the representation of spatio-temporal
data. Multiple granularities, defined as a set of measure units for space and time, are
crucial in facilitating the management of information for applications such as air
traffic control, meteorological forecast and so forth [3], [17]. The goal of the work
reported in this paper is to address such limitations by developing an object-relational
approach to the management of spatio-temporal data supporting multiple granularities
for both space and time.

In particular, in the paper we propose a temporal extension expressed in the SQL3
standard, specifically tailored to the OpenGis specifications [29]. Our start point is the
object-relational model and meta-model that verifies the OpenGis specifications from
which we develop an extension of the spatial and non-spatial data types defining a
new data type composed the two parts; the first part is the object value and the second
the valid time for this value. This extension provides the support required to model
multiple spatio-temporal granularities and tools to operate on objects with different
granularities in order to address their integration and inter-operability.

The remainder of this paper is organized as follows. Next section gives an
overview of related work dealing with the spatial and temporal representation in the
object-relational model. Section 3 introduces the notions of spatial and temporal
granularity and their basic properties. Section 4 describes the OpenGis specifications
in SQL3 [29] and presents our extension to supporting multiple spatial granularities.
Section 5 then extends the model and meta-model developed in Section 4 by
introducing time as an extension of the SQL3 data types. The last section concludes
the paper and outlines future work.

2 Related Works

Initial approaches, aimed at supporting advanced data management applications, have
recognized that spatial information [15], [24] and temporal information [25], [22],

An Object-Relational Approach to the Representation 121

[23], [19] are both crucial. However, those early approaches have dealt with space
and time representations separately. Most recent proposals have proposed integrated
approaches able to model both spatial and temporal aspects of data objects.

A first relevant approach has been developed by Guting et al. [16]. The approach
supports the change of the position or extension for geometry through the use of
abstract data type definition capabilities. It develops a set of constructors and query
operators in an abstract model thus giving a compact and uniform vision for every
data type. In the proposed approach [16], some data types, namely Integer, Boolean,
Spatial, can be transformed in a temporal data type. Such an abstract model has been
then transformed in a discrete model [14], closer to the implementation but more
restricted with respect to the abstract model. The discrete model represents the object
values that have a temporal dimension through the use of snapshots. This method is
thus referred to as sliced representation. As part of their work, Guting et al. [14] have
shown how the sliced representation can be mapped onto relational data structures
such as records and arrays. However, they do not have specifically addressed how to
map their abstract model onto the SQL3 standard.

Chen and Zaniolo [6], based on the spatial-temporal representation model proposed
by Worboys [26], propose a number of SQL3 extensions aiming at supporting
advanced queries. Unlike the previous proposals, they adopt a point-based approach
to model the time dimension and queries are expressed through user-defined
aggregate functions. Such an approach to handle time for spatio-temporal databases
represented in a relational framework, it is very simple and minimizes SQL3
extensions in comparison with the complex functions one has to apply when using
based-intervals approaches [13], [19]. Such an approach has then been architected by
solutions supporting efficient storage [7]. Finally, a more recent paper [8] by the same
authors describes how to implement these functions in ATLAS [28] in order to model
specific application domains. This approach keeps the SQL philosophy; therefore it is
easy to use for developers and users. A major drawback of this approach is that it is
not able to support multiple temporal attributes with different granularities in the
same relation.

Another approach very close to implementation has been proposed by Lee [18].
The spatial object history is modeled through the creation of relations. The developed
framework is based on the creation of some special purpose relations, called
dimensions, storing the current values of the object geometry. Besides those
dimension relations, the approach requires the introduction of two additional relations
keeping historical information. The approach by Lee also includes a set of macro
operators that are used to execute queries. The macro operators are applied to spatial
data, temporal data, and spatio-temporal data. Also, an aggregate operator is defined
to manage the history of a spatio-temporal data. The main drawback of this approach
is that it requires executing join operations among the dimension tables in order to
produce complete spatial information. The use and maintenance of data under such an
approach is thus quite complicated.

An extensive analysis of the most important approaches to represent spatio-
temporal in the object-relational model has been carried out by Erwig et al. [12]. This
paper presents an extensive comparison between two approaches to represent the
temporal dimension in a spatio-object-relational model. The first approach is based on
extending each relation storing spatial data objects, with an additional column

122 E. Bertino, D. Cuadra, and P. Martínez

representing temporal information. The column essentially records the temporal
validity of row values. The second approach exploits the expressive power of the
object-relational model. It is based on the definition of an abstract data type (ADT)
joining space and time on the same column. The second approach better represents
the semantics of the original data and allows one to create relations containing time
information at column level.

Compared to previous work, the main contributions of our work are summarized as
follows. First, the spatial representation we adopt is based in the proposal of OpenGis
specifications described through SQL3 [29]. The above approaches, by contrast,
adopt much simpler spatial data models not supporting OpenGis. Second, we provide
support for multiple spatial granularities. Third, we use an abstract data type approach
to represent and manage the temporal dimension; thus our approach is more flexible
than other approaches and supports a finer degree of control over temporal behavior.
Our approach facilitates the formulation of queries in SQL and provides a
representation which is more intuitive and easy to use. Finally, we propose solutions
to maintain multiple granularities, in both space and time, and provide conversion
functions to map data representations among different granularities. None of the
above described approaches provides such functions.

3 Preliminaries: Multi-granular Spatio-Temporal Representation

In this section, we introduce the relevant notions underlying our approach to multiple
granularities in both time and space aspects. From an informal view point, we can
think of a temporal or spatial granularity as a discrete partition of time or space.
Different partitions may be defined, thus resulting in multiple granularities.

The temporal granularity has been defined as the partitioning of a temporal domain
in groups of elements ordered through an index set, where each group is perceived as
an indivisible unit (a granule) [2]. The granularities set is denoted by GT and its
elements are related by the relationship finer_than. A granularity S is finer_than R if
for each index i a index j∈R exists such that S(i) ⊆ R(j), where S(i) denotes the granule
belonging to the i index position. This relation is denoted by S ≤T R. Semantically, when
we define a granularity for an object we specify the time instants at which the object’s
values are relevant to the specific application domain. Days, months and years are
several kinds of temporal granularity; days are finer than months and months are finer
than years. Operations and comparisons between objects at different temporal
granularity require the use of conversion functions. These functions change the temporal
properties of an object from a finer granularity to a coarser granularity and we can
compose a macro function with the function composition. Conversion functions can be
like the ones shown in the Table 1, or aggregation functions available in SQL [4] or
created according to the application’s semantics.

The spatial granularity is defined as the unit of measure in a spatial reference
system. It thus represents the unit according to which spatial properties, like the area,
are measured. The set of the spatial granularity is denoted by GS. The elements of GS
would be meters, kilometers, grades and others. Each one of those elements must be
defined with respect to a spatial reference system. In GS, the relation finer_than is
similar to the temporal granularity given before and it is denoted by M ≤S N.

An Object-Relational Approach to the Representation 123

Table 1. Temporal and spatial conversion functions

Proj
(index)

It returns, for each granule
in the coarser granularity,
the value corresponding to
the granule of position index
at the finer granularity

First,
Last

First and last index in the
Proj (index) function

Main It returns, for each granule in
the coarser granularity, the
value which appears most
frequently in the included
granules at the finer
granularity

All It returns, for each granule in
the coarser granularity, the
value which always appears
in the included granules at
the finer granularity if this
value exists, the null value
otherwise

Contract functions

l_contr It contracts an open line, endpoints
included, to a point

r_contr It contracts a simple connect region
and its bounding to a point

r_thinning It reduces a region and its bounding
lines to a line

Merge functions

l_merge It merges two lines sharing an endpoint
into to single line

r_merge It merges two regions sharing a
boundary line into a single region

Absorption operations

P_abs It eliminates (abstracts) an isolated
point inside a region

l_abs It eliminates a line inside a region

Possible conversion functions are shown in Table 1; we refer the reader to [1] for
additional details. The application of these conversion functions guarantees the
topology consistency.

Suppose we were interested in studying the evolution of a river’s course.
According to this specification, we can define a time unit as century thus obtaining
the representation shown in the Fig. 1. Semantically speaking, the temporal and
spatial granularity integration provides, on the one hand, the timestamp at which a
spatial object is observed and, on the other hand, establishes the spatial measure
within a reference system.

Our approach represents spatial-temporal multiple granularities considering the
spatial representation of an object with respect to one temporal granule. Therefore, we
must specify the observation unit for both space and time. These objects are called
moving objects [16]. The Fig. 1 shows the time variation in the river course with
centuries as temporal granularity.

The temporal and spatial multi-representation is built when executing user queries
by using the conversion functions defined for each application depending on the
domain. In the next section, we show how to specify the conversion functions

(a) River course in 1800. (b) River course in 1900 (c) River course in 2000

Fig. 1. River course evolution

124 E. Bertino, D. Cuadra, and P. Martínez

composition and their composition order what we denote as composition sequence.
The composition of functions is strongly domain-dependent and it is very important to
store it with the scheme definition to provide more semantics.

4 Spatial Framework: Modeling OpenGis Specifications with
SQL3

In this section, we describe the OpenGis specifications in SQL3 considering the
abstract data types to define the Geometry type besides the meta-scheme definition
necessary to manage the spatial data in an object-relational database.

Our approach begins with the framework developed in [29] and provides an
extension through the new meta-information and SQL3 functions to support the
spatial granularity. The proposal is focused on this spatial framework for two reasons;
first, the representation agrees with the OpenGis standard and, second, it is specified
by another standard, the SQL3 language, which provides an easy implementation in
any object-relational DBMS.

4.1 Spatial Data Description

We describe OpenGis from two different viewpoints. The first describes the geometry
data types, their properties and functions related to the spatial relationships among
geometric objects. The second describes the meta-scheme which gives support to the
geometry data type. The meta-scheme is similar to a data dictionary. It is composed of
relations describing the spatial domain. The meta-schema in [29] describes the spatial
domain as geometric objects in ℜ2 space.

The relations belonging to the meta-schema cannot be modified by the user. The
relation definition is fixed in the meta-schema and modifications to it are achieved
through the use of views. We consider a view as a subset of meta-information that can
be modified by the user.

In the spatial meta-scheme presented in [29], framework of our proposal, when we
define a geometric object in an object-relational scheme, the meta-scheme stores the
information concerning its dimension, its geometry type (if it is a point, a line, a
polygon and so on) and the spatial reference system over it is defined. This
information allows, for example, one to check whether the relationships among
geometric objects can be determined. The spatial relationship functions can just apply
to objects with the same granularity and spatial reference.

We introduce a notation to reference this meta-information. We denote by SOR the
spatio-object-relational model and by SOR-M the meta-scheme over SOR defined in [29].

Definition 1: The SOR-M = {RM1,…, RMn} is a set of relations that describe the
spatial domain. We define Vs as a set of views, Vs = {Vs1, …,Vsi} such that Vsj = Ops
(RMk,..,RMj) where Ops is a macro-operator composed of relational algebra
operators.

The meta-information held in Vs can be modified by user. We reference to SOR-M
as the set of views (Vs).

An Object-Relational Approach to the Representation 125

Definition 2: The Geometry data type (G) is defined as an abstract data type whose
features1 are described in two important views, Geometry_Columns and
Spatial_Ref_Sys, such that Geometry_Columns, Spatial_Ref_Sys ∈ Vs.

The geometry type in SOR model is represented using a discrete model because
SOR is a model close to the implementation. The spatial representation is stored as a
set of vertexes that are interpreted through the linear interpolation between them.

According to Fig. 2, the Geometry type has a hierarchical structure that is
specialized into Point, Curve, Surface and Geometry Collection subtypes. Fig. 2 is
based on Geometry Model specified in the OpenGis Abstract Specification restricted
to 0, 1, and 2 dimensions for the collection types named Multipoint, MultiLineString
and MultiPolygon. Therefore, Geometry, Curve, Surface, Multicurve and
Multisurface are introduced as abstract data types. The subtypes of Geometry are
restricted to 0, 1, and 2 dimensions in a coordinate space (ℜ2).

The geometry type includes basic functions that retrieve information about spatial
properties and methods for testing the spatial relationships and analyzing geometric
objects; besides for each type specific functions are defined. In this paper, we do not
show these functions and methods because they are specified in [29]. We focus our
paper on how we can define a geometry object in a relation and how to represent its
spatial properties in SOR-M.

Definition 3: Let R (A1:D1,…,An:Dn) be a relation where Ai is a column defined over
a domain Di. R is a feature relation if ∃ Ai (i ∈ {1,..,n}) such that Ai ∈ G. Ai is called
geometry or spatial column.

When we define a feature relation, the spatial attribute definition shows just the
geometry type. In the SOR model, every geometry column stores its features in the
Geometry_Columns and it is referred to Spatial Reference System (SRS). A Spatial
Reference System (also called Coordinate System) is a way to assign coordinates to a
location and to establish relationships between sets of such coordinates. It enables the
interpretation of a set of coordinates as a representation of a position in a real world
space. Any spatial data in SOR has a coordinate system associated with it through the
Spatial_Ref_Sys view.

To define the geometry column features we introduce procedures to insert these
features in SOR-M in order to make the update operations easy for the users. The
Spatial_Ref_Sys view has defined SRS by default but the user can define other SRSs.
For this reason, we create two SQL 3 procedures.

Definition 4: Let R (A1:D1,…,An:Dn) be a feature relation. We define geometry
features ∀ Ai ∈ G through the following procedures:

• SP (R, Ai, Dimension_Number, DRS_ID) is a SQL3 procedure which inserts the
dimension number and the identifier DRS (DRS_ID) in the Geometry_Columns
view when Ai is defined in a SRS by default (DRS)

• SR (SRID, SRText) is a SQL3 procedure to create a new spatial reference
system. It inserts the identifier reference system and the specification textual in
Spatial_Ref_Sys. The SRText column describes a standard specification defined
in [29].

1 We use the term feature to indicate an attribute of an abstract data type.

126 E. Bertino, D. Cuadra, and P. Martínez

•

Fig. 2. Geometry description in ODMG [21]

Example 1: Let City be a relation defined with two attributes, Name of Varchar type
and Extension of Polygon type. We define the City feature relation as:

City(Name:varchar(60),Extension:Polygon);

The Extension column is defined as a Polygon subtype. If we want to define the
Extension column in City as a polygon with two dimensions at meters in a spatial
reference system by default (DRS_ID = 14), we must specify them with the SP
procedure to insert these features in the Geometry_Columns view:

SP(‘City’, ‘Extension’, 2, 14);

The SP signature indicates with the number 2 that Extension is a two-dimensional
geometry object having 14 as identifier for the spatial reference system (DRS_ID).
This identifier references a row of Spatial_Ref_Sys view.

4.2 Spatial Granularity Description and Proposed Extensions by SOR Model

The spatial granularity is a measure unit in relation to a Spatial Reference System
(SRS). In the previous spatial framework, the spatial granularity is referred to the SRS
chose. We can distinguish between a spatial granularity referred to a default reference
system (DRS) and a new spatial reference. The DRS supported in the OpenGis
specifications appears in [29] and the granularity is always defined according to the
default unit. The definition of a new reference system involves the insertion of a new
row in Spatial_Ref_Sys view. In order to provide an easy interaction with the SOR-M
to define a spatial granularity different with respect to the Unit parameter defined over
DRS we create a new granularity procedure.

Definition 5: Let SOR be a model, we define SG procedure such that
SG(Table_Name, Geometry_Name, DRS_ID, Granularity, Factor) inserts the spatial
granularity of the Geometry_Name column in Table_Name relation concerning a DRS

An Object-Relational Approach to the Representation 127

which is identified by DRS_ID. The Factor parameter indicates the conversion rate
relative to the unit by default supported by DRS.

This procedure defines the spatial granularity in a geometry column when the DRS
has a unit different from the default one. The SG inserts a new row in the
Spatial_Ref_Sys view.

Example 2: Consider example 1. Suppose that the system, defined as DRS_ID = 14
with ‘Meters’ as default unit, is a DRS. To define the Extension granularity in
hectometers, we should use the SG() procedure with the following parameters.

SG (‘City’, ‘Extension’, 14, ‘Hms’, 100.0)

The last parameter indicates the mapping between meters and hectometers.

Another important aspect is to provide functions to compare geometries with
different spatial granularities. Two geometries with different spatial granularities can
be compared if they have associated conversion functions that modify their
granularity while maintaining their topological properties. Thus, we must extend the
set of functions defined in [29] to support the conversion functions and to create a
view in the SOR-M recording how to apply them.

We extend the SOR model by adding the conversion functions shown in Table 1 as
SQL3 functions (Table 3). SOR-M is extended to also include a view called
S_Coarser that specifies what conversion functions can be applied to a geometry
column.

Definition 6: Let R(A1:D1, .., An:Dn) be a feature relation, ∀ Ai (i ∈ {1,..,n}) Ai∈G,
we can define the conversion functions for Ai by modifying S_Coarser view with the
SC procedure, defined as follows:

SC (Table_Name, Geometry_Column, Order, Sg, Eg, Operator_Name, Condition)
The Order attribute indicates the application sequence of the operator the name of

which is stored in Name_Operator. This attribute is needed when a spatial data has
conversion functions concatenation to specify the change to several coarser
granularities. The Sg and Eg record the initial and final granularities necessary to
apply the conversion function and Condition is an expression that indicates what
objects are affected for this operator.

Definition 7: Let R(A1:D1, .., An:Dn) be a feature relation in the SOR model. We
define SGranularity (Name_Attribute, Spatial_Ganularity): Geometry such that
SGranularity() is a SQL3 function transforming the Name_Attribute spatial column
values to values in the indicated granularity by Spatial_Ganularity according to the
specification in S_Coarser view.

Example 3: Following with the example 2, we can specify that the Extension attribute
can change to a coarser granularity through application of the r_thinning operator.
The conversion function for this attribute is specified in the meta-scheme through the
SC procedure the signature of which is the following:

SC (’City’,’Extension’,1,’Hms’,‘Kms’,’r_thinning’,ALL);

As such signature specification shows, the Extension column can change the
hectometers to kilometers granularity by applying the r_thinning function over all

128 E. Bertino, D. Cuadra, and P. Martínez

Extension geometry. In this case, we are indicating that Extension values can be
represented at kilometers as well. The Order attribute records the 1 value although in
this case is not significant because we just apply one conversion operator.

The city names and theirs extensions in kilometers can be queried as:

Select SGranularity (Extension, Kms)

From City; �

Table 2. Functions of spatial conversions

The extended SOR model provides two important semantics restrictions. First, the
spatial granularity definition through the SR procedure defines a new spatial reference
system, and the SG procedure changes the granularity in a default spatial reference
system. The second is the facility supporting the representation of a geometry type in
several spatial granularities using the conversion functions.

5 Temporal Representation in the SOR Model

In the object relational model, the temporal representation can use a point-based
approach or an interval-point approach and it could affect the relation’s tuples, called
tuple level [6], [22], [23], [8] or to the relation attribute, attribute level [13], [14]. As
we discussed in the Section 2, the point-based approach avoids the coalescing
problems and provides a simpler vision of spatial-temporal systems. For this reason,
our proposal represents the time with a point-based approach. Furthermore, it focuses
on attribute level because we believe that is closer to the real world and supports the
definition of several temporal attributes in the same relation.

We consider a temporal granularity as foreseeable or unforeseeable. A foreseeable
granularity describes periodical phenomena. Granules are calculated through a time
function and a temporal seed. The foreseeable temporal granularity can be calculated
by applying the time function to the seed, e.g. if the seed is ’12-1-2003’, and the time
function is to add one day, the ‘13-2-2003’ records the next timestamp. The temporal
seed can be the first value observed or a value chosen by the user. The unforeseeable
granularity is described by random phenomena. For example, if we want to represent
the price changes of shares, we could define the unforeseeable granularity in that we
do not know the time units when the share could change. This temporal granularity
classification allows us to differentiate among several application domains and will be

Contract functions l_contr (G:Line): Point

 r_contr (G: Polygon): Point

 r_thinning (G: Polygon): Line

Merge functions l_merge (L1: Line, L2: Line): Line

 r_merge (G1:Polygon, G2:Polygon):Polygon

Absorption operations p_abs (G:Polygon, P:Point):Polygon

 l_abs (G:Polygon, L:Line):Polygon

An Object-Relational Approach to the Representation 129

represented in our approach by the definition of a temporal reference system within
the Gregorian calendar.

The proposal will carry out a temporal representation with the definition of
abstract data types provided by the standard SQL3 inside the spatial framework
explained before. The new data types will take into account that the temporal
dimension can be expressed as a function over time for a spatial or non-spatial
attribute. This function will be provided by the DBMS or/and customized by the user
to collect the information for a certain domain.

In the next section, we explain the approach we adopt to represent temporal
attributes in the SOR model; specifically; we focus on the presentation of the
foreseeable object moving representation.

5.1 Temporal Attributes

Until now, we can classify the relation columns as atomic or spatial depending on the
data type over which they are defined. The atomic columns are defined over a
predefined SQL3 data type and the spatial columns over Geometry type. Both types
could be grouped and denoted as non-temporal columns (NTD). The temporal column
will be considered as an extension of the atomic and spatial column where the
changes produced along the time in those columns will be reflected. At present, the
spatial o non-spatial representation shows the current values of the application
domain. In this section, we describe how the time evolution is presented.

Let SOR be the spatial relational model. The spatio-temporal object relational
model (TSOR) is defined as an extension of SOR where the data types are specialized
by adding a time attribute. This model is supported by the meta-scheme TSOR-M.

Definition 8: The TSOR-M = {TM1,…, TMn} is a set of relations that describe the
temporal domain. We define VT as a set of views, VT = {VT1, …,VTi} such that VTj =
Opt = (TMk,..,TMj) where Opt is a macro-operator composed of relational algebra
operators.

By using such model extension, we can define the temporal data type as follows.

Definition 9: Let be a data type belonging to NTD, the temporal data type based on
 is denoted by T and it is defined as a pair (Tvalue, Tgranule) where the Tvalue is a

valid value over data type in the Tgranule time instant, such that Tgranule ∈ S
where S ∈ GT and S is the temporal granularity for T .

In order to support attribute evolution we use the collection type defined in SQL 3.

Definition 10: Let R(A1:D1, .., An:Dn) be a relation R. R is a temporal relation if ∃ Ai

(i ∈ {1,..,n}) such that Ai∈Collection_T and Collection_T records a collection of
ordered pairs of T type. Each Ai ∈ Collection_T is denoted as temporal column.

A particular case is when is the G spatial data type. R is a temporal -feature and
∀ Ai (i ∈ {1,..,n}) Ai∈Collection_TG, Ai is denoted as moving column.

The temporal column definition in a relation requires that the meta-scheme, the
Temporal_Columns view to be exact, be updated in order to maintain the data
consistent.

130 E. Bertino, D. Cuadra, and P. Martínez

Therefore, a temporal granularity is defined for each temporal column. The
granularity is defined by using a SQL3 procedure, like the spatial granularity
procedure.

Definition 11: Let TSOR model and R(A1:D1, .., An:Dn) a temporal relation. The
temporal granularity ∀ Ai (i ∈ {1,..,n}) such that Ai∈Collection_T is defined by TG.
TG is a SQL3 procedure which modifies the Temporal_Columns view in TSOR_M
inserting a new row with the following specifications:

TG (Table_Name, Temporal_Column, Unit, Granularity, Seed, Rate, Function)
The TG signature specifies various information. Unit is the temporal domain that

can get the values Y (year), M (month), D (day), H (hour), Mi (minutes) and S
(second), all of them belonging to SQL3 DATETIME. Granularity describes the
chosen temporal unit and Rate denotes the conversion factor to obtain the next
granule from Seed. When the time function is different from an arithmetic succession
of the time, the Function attribute stores the user-defined function name.

According to this definition, we have covered the foreseeable temporal granularities
to represent applications where certain phenomenon is observed at periodic
timestamp.

Moreover, we create the conversion functions described in Table 1 as SQL3
functions to facilitate the integration and comparison among attributes with different
temporal granularities. The SOR-M is extended by including a view denoting
T_Coarser that specify what conversion functions are applied to each temporal
column.

Definition 12: Let R(A1:D1, .., An:Dn) be a temporal relation, ∀Ai (i ∈ {1,..,n}) such
what Ai∈ Collection_Tα, we can define the conversion specification for Ai modifying
T_Coarser view with the TG procedure. The TG signature is:

TG (Table_Name, Temporal_Column, Order, St, Et, Operator_Name, Condition)
where, the Order attribute indicates the application sequence of the operator whose
name is stored in Name_Operator. The St and Et record the initial and final
granularity parameters necessary to apply the conversion function and Condition is an
expression that indicates which objects are affected by this operator.

Definition 13: Let R (A1:D1, .., An:Dn) be a temporal relation in the TSOR model. We
define TGranularity (Name_Attribute, Temporal_Ganularity):Collection_ Tα as a
SQL3 functions that transform the temporal column values, Name_Attribute ∈ Tα , to
values in the indicated temporal granularity, Temporal_Ganularity, according to
T_Coarser view.

Therefore, the TG() procedure and TGranularity() contribute to extend the TSOR
model.

Example 4: In this example, City is a temporal feature relation (see Fig. 3) because the
Extension is defined as a moving column.

City(Name:varchar(60),Extension:Collection_Tpolygon)

TG(‘City’, ‘Extension’, ‘Y’, ’Century’, 100);

SG(‘City’, ‘Extension’, 14, ’Hms’, 100.0);

An Object-Relational Approach to the Representation 131

We use the SG and TG procedures to define the spatio-temporal granularity in
Extension and the SC operator to specify the spatial conversion function that can be
applied.

SC (’City’,’Extension’,1,’Hms’, ‘Kms’, ’r_thinning’,
ALL);

To determine the New York boundary at year 1900, we specify the following query
using SGranularity() operator.

Select SGranularity (c.Extension[].Tvalues, ‘Kms’)From
City c Where c.Name=’New York’ and
c.Extension[].Tgranule = ‘1900’;

Fig. 3. Example to illustrate the City temporal feature relation

The SGranularity() realizes a query to S_Coarser view description to calculate the
correct topology by the geometry. The Extension column changes from hectometers
to kilometers granularity applying r_thinning function.

Each temporal attribute has defined a temporal granularity and the relation is the
context that joins them. For this reason, the database design aspects are more
significant; we must choose the temporal attributes, in a relation, with granularities
that define the domain semantics. With insertion, delete or update operations we must
check the temporal validity according to the definition in the TSOR-M. Therefore, the
temporal validity maintenance could be achieved through the temporal information
that is included in the meta-scheme. The implementation of active mechanisms will
allow to validate the time for each operation in the database. These mechanisms are
strongly domain-dependent because describe the time relationships among the
attributes of a relation.

The temporal granularity for a temporal column is an inherent restriction of the
TSOR model. That is, for each temporal attribute, the model forces one to define a
temporal granularity. A semantic restriction is defined in the TSOR model giving the
possibility to describe the conversion functions. Therefore, this model is semantically
richer and allows one to support a larger variety of application domains.

7 Conclusion and on Going Research

The proposed framework is based on [29] with the definition of the Geometry data
type. We have discussed how the spatial granularity is implicitly defined in the spatial
reference system described in [29]. At the spatial level, our approach proposed the

Temporal granularity

New York

Name

 2000

Extension

 1800

 1900

132 E. Bertino, D. Cuadra, and P. Martínez

following improvements with respect to a SOR model: an extension of the meta-
schema described in [29], referred to as SOR-M, that includes new views, functions and
operators. Among the new views, the S_Coarser view specifies the conversion
functions required to change the spatial granularity preserving the consistency of the
spatial attribute. The conversion operators are added to the functions presented in [29].

With respect to the temporal level, our approach is the first proposal to represent
temporal attributes in the framework described before. We explain and define how the
SQL3 data types can be converted into SQL3 temporal data types. This proposal is
based on [13] but our temporal treatment is addressed to point-based approach. The
temporal representation based on points makes it easy the use of aggregate functions
as proposed in [28]. We define, as well, new views, functions and procedures
extending the SQL3 functionalities. These functionalities are necessary to keep the
consistency between temporal attributes in a relation and to deal with different
granularities.

The main problem when we apply the relational model is the bi-dimensional
structure of the relations. This problem reverts in our approximation and generates
some difficulties that we are currently investigating. In a relation with several
temporal attributes, the attribute with the finest granularity will be the marker of the
variability in the relation. To improve the storage problems we are investigating the
use of other SQL3 structures, as the REF type in order to avoid redundant information
and the use of point-based view at the query level and the interval-based view at the
storage level following the approach reported in [25]. The consistency of the temporal
attributes within the same relation is another problem that in this approach has been
commented. As future work, we plan to develop a set of triggers to check the time
validity between attributes of the same relation as well as the execution model and its
implications on the inheritance relationships among object types. Finally, other future
work will dealing with supporting granularities per value instead of per column like
the TOOBIS project approach [31] and the development of an effective and efficient
query processing technique. This is an important issue to improve the retrieval of data
from temporal attributes using new indexing techniques.

References

1. Bertolotto, M. Geometric Modeling of Spatial Entities at Multiple Levels of Resolution.
PhD Thesis, Università degli Studi di Genova (1998).

2. Bettini, C., Jajodia, S. & Wang, X.Time Granularities in Databases, Data Mining and
Temporal Reasoning. Springer-Verlag (2000).

3. T. Bittner and B. Smith. A Unified Theory of Granularity, Vagueness and Approximation.
In Proc. of COSIT Workshop on Spatial Vagueness, Uncertain and Granularity (2001).

4. Camossi, E., Bertolotto, M., Bertino, E., Guerrini, G. A multigranular Spatio-temporal
Data Model. Proc. 11th ACM International Symposium on Advances in Geographic
Information Systems, New Orleans, Louisiana, USA (1998) 94 – 101.

5. Codd, E. F. A Relational Model of Data for Large Shared Data Banks. CACM 13 (6),
June (1970).

6. Chen, C.X. & Zaniolo, C. SQLst: A Spatio-Temporal Data Model and Query Language. In
Proc. of Int. Conference on Conceptual Modeling/ The Entity Relational Approach (2000).

An Object-Relational Approach to the Representation 133

7. Cindy X. Chen, Jiejun Kong and Carlo Zaniolo. Design and Implementation of a
Temporal Extension of SQL. In Proceedings of the 19th International Conference on Data
Engineering (ICDE'03), pages 689-691, Bangalore, India, March (2003).

8. Cindy Chen, Haixun Wang, and Carlo Zaniolo. Toward Extensible Spatio-Temporal
Databases: an approach based on User-Defined Aggregates. In Flexible querying and
reasoning in spatio-temporal databases: theory and applications, Springer
Geosciences/Geoinformation series (2004).

9. Date, C. J. An Introduction to Database Systems. 8th Edition. Addison-Wesley, Reading,
Mass (2003).

10. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E., Zemke, F. SQL: 2003 Has Been
Published. SIGMOD Record, vol. 33, no. 1, March (2004).

11. Elmasri, R. and Navathe, S: Fundamentals of Database Systems. Addison-Wesley, (2004).
12. Erwig, M., Schneider, M. & Güting R. H. Temporal Objects for Spatio-Temporal Data

Models and a Comparison of Their Representations. ER Workshop (1998).
13. Erwig, M., Güting R. H., Schneider, M. & Vazirgiannis, M. Abstract and Discrete

Modeling of Spatio-Temporal Data Types. In Proceedings of the 6th ACM Symposium on
Geographic Information Systems, pg. 131-136, Washington, D.C., Novembre (1998).

14. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M. A data model and data structures for
moving objects database. Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (2000) 319-330.

15. Güting, R.H. An Introduction to Spatial Database Systems. VLDB Journal, vol. 3, (1994)
357-399.

16. R.H. Gütting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider and M.
Vazirgiannis. A Foundation for Representing and Querying Moving Objects. ACM
Ttransactions on Database Systems, Vol.25, No.1 (2000).

17. V. Katri, S. Ram, R.T. Snodgrass and G. O’Brien. Supporting User Defined Granularities
and Indeterminacy in a Spatiotemporal Conceptual Model. Special Issues of Annals of
Mathematics and Artificial Intelligence on Spatial and Temporal Granularity, 36(1-2)
(2002) 195-232.

18. Lee, Y.L. Integrating Spatial and Temporal Relationship Operators into SQL 3 for
Historical Data Management. ETRI Journal, vol. 24, n. 3, June (2002).

19. Lorentzos N.A. and Mitsopoulos Y.G. SQL Extension for Interval Data. IEEE Trans. on
Knowledge and Data Engineering, vol. 9, no. 3, May/June (1997) 480-499.

20. Muller, J.C, Lagrange, J.P. & Weidel, R. (eds). GIS and Generalization: methodology and
practice. Taylor and Francis (1991).

21. OMG (2000). Unified Modelling Language Specification, Version 1-3. Object
Management Group.

22. Snodgrass, R.T. The TSQL2 Temporal Query Language. The TSQL2 Language Design
Committee, Kluwer Academic Publishers (1995).

23. Snodgrass, R. T. Developing Time-Oriented Database Applications in SQL, Morgan
Kaufmann Publishers, Inc., San Francisco, July (1999).

24. Schneider, M. Spatial Data Types for Database Systems-Finite Resolution Geometry for
Geographic Information Systems. LNCS 1288, Springer-Verlag (1997).

25. Toman, D. A Point-Based Temporal Extension of SQL. In Proceedings of the 6th
International Conference on Deductive and Object-Oriented Databases (1997)103-121.

26. Worboys, M. A Unified Model for Spacial and Temporal Information. The Computer
Journal, 37(1) (1994) 26-34.

27. Wang, H. & Zaniolo, C. User Defined Aggregates in Object-Relational Systems. In 16th
International Conference on Data Engineering, Feb (2000).

134 E. Bertino, D. Cuadra, and P. Martínez

28. Wang, H. & Zaniolo, C. Using SQL to Build New Aggregates and Extenders for Object
Relational Model. Proc. of the 26th International Conference a Very Large Databases
(2000) 166-175.

29. www.opengis.org
30. www.oracle.com
31. www.mm.di.uoa.gr/~toobis/

Managing Inheritance Hierarchies in
Object/Relational Mapping Tools

Luca Cabibbo and Antonio Carosi

Dipartimento di Informatica e Automazione,
Università degli studi Roma Tre

Abstract. We study, in the context of object/relational mapping tools,
the problem of describing mappings between inheritance hierarchies and
relational schemas. To this end, we introduce a novel mapping model,
called M2ORM2+HIE , and investigate its mapping capabilities. We first
show that M2ORM2+HIE subsumes three well-know basic representa-
tion strategies for mapping a hierarchy to relations. We then show that
M2ORM2+HIE also allows expressing further mappings, e.g., where the
three basic strategies are applied independently to different parts of a
multi-level hierarchy. We describe the semantics of M2ORM2+HIE in
term of how CRUD (i.e., Create, Read, Update, and Delete) operations
on objects (in a hierarchy) can be translated into operations over a corre-
sponding relational database. We also investigate correctness conditions.

1 Introduction

Enterprise applications are often developed using an object-oriented program-
ming language (e.g., Java or C#) and a relational database. In this common
case, applications need to load data from the database, create objects to repre-
sent this data in main memory, perform computations involving these objects,
and store changes to objects back in the database. Object/relational mapping
tools (or, simply, ORM tools) are frameworks for storing and retrieving per-
sistent objects; their goal is to support the complex activity of managing the
connections between objects and a relational database. ORM tools allow the
programmer to manage the persistence of objects by means of standard API’s,
such as the JDO [11] or the ODMG ones [7], that is, the same way he would
use objects in an object database. Persistence is transparent to the program-
mer, since he does not know actual implementation details. The bridge between
objects and underlying relations is realized on the basis of a data mapping spec-
ification.

The meet-in-the-middle approach is a mapping strategy for ORM tools. It
assumes that data classes (e.g., classes in the application logic holding persistent
data) and a relational database have been developed in an independent way. The
developer should also describe the correspondences between data classes and the
relational database. These correspondences describe a “meet in the middle” be-
tween the object schema and the relational schema; they are used by the ORM

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 135–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

136 L. Cabibbo and A. Carosi

tool to let objects persist by means of the database. The meet-in-the-middle
approach is very versatile, since modifications in data classes and/or in the rela-
tional database can be managed by simply redefining the correspondences. There
are several object/relational mapping tools offering the meet-in-the-middle ap-
proach (e.g., [10, 13, 15, 16]). However, current systems support the meet-in-the-
middle approach still in a limited way, especially because they allow defining
only rather restricted kinds of correspondences.

A main limitation imposed by current ORM tools concerns the representa-
tion of inheritance hierarchies. There are three well known main strategies to
represent a class with its subclasses in a relational schema [2, 9]: (i) by using a
single relation; (ii) a relation for each class; and (iii) a relation for each concrete
(sub-)class (especially if the superclass is abstract). in practice, current ORM
tools do not always offer all the three basic representation strategies for inheri-
tance hierarchies. Furthermore, they usually permit to select, for each hierarchy,
a single representation strategy, to be applied to the whole hierarchy.

In previous work [5, 6], we have introduced M2ORM2 (Meet-in-the-Middle
Object/Relational Mapping Model), a model to describe mappings between ob-
ject schemas and relational schemas, to support the transparent management of
object persistence based on the meet-in-the-middle approach. In M2ORM2 it is
possible to express complex correspondences between groups of related classes
and groups of related relations; it is also possible to express correspondences
describing relationships between groups. It turns out that M2ORM2 general-
izes and extends the kinds of correspondences managed by current proposals
and systems, e.g., [10, 11, 13, 15, 16], thus allowing for more possibilities to meet
schemas. However, until now, we did not take account of inheritance hierarchies
in M2ORM2.

In this paper, we study, in the context provided by M2ORM2, the problem of
establishing mappings between inheritance hierarchies and relational schemas.
To this end, we introduce a novel mapping model, called M2ORM2+HIE , and
investigate its mapping capabilities. We show that M2ORM2+HIE subsumes the
three above cited basic representation strategies for mapping hierarchies to re-
lations. Moreover, we show that it also allows expressing further mappings, e.g.,
where the three basic strategies are applied independently to different parts of a
multi-level hierarchy. We present the structure and semantics of M2ORM2+HIE
mappings; more specifically, we describe how CRUD (i.e., Create, Read, Update,
and Delete) operations on objects in an inheritance hierarchy can be translated
into operations over a corresponding relational database. We also discuss the
problem of verifying the correctness of M2ORM2+HIE mappings involving hi-
erarchies. Again, it turns out that M2ORM2+HIE generalizes and extends the
kinds of correspondences managed by current systems.

The paper is organized as follows. Section 2 recalls some preliminary no-
tions, including the M2ORM2 mapping model and the three basic representation
strategies for inheritance hierarchies. Section 3 introduces M2ORM2+HIE , to-
gether with a number of examples. The semantics of M2ORM2+HIE is described
in Section 4. Section 5 discusses conditions for the correctness of M2ORM2+HIE

Managing Inheritance Hierarchies in ORM Tools 137

mappings. Finally, Section 6 discusses related work and Section 7 draws some
conclusions.

2 Preliminaries

In this section we briefly present the data models and the terminology used in
this paper. We also describe basic notions concerning object/relational map-
pings based on the meet-in-the-middle approach. Finally, we recall three basic
representation strategies for representing hierarchies by means of relations.

2.1 Data Models

Object model. We consider a simple but realistic object model, similar to that of
UML [4] and ODMG [7]. We focus on the structural features of the model.

A class is a set of objects having the same structural (and behavioral) prop-
erties. Each class has a set of attributes associated with it. In this paper we make
the simplifying hypothesis that class attributes are of a same simple type, e.g.,
strings. A class with key is a class in which each object can be identified on the
basis of the value of one of its attributes, called the key attribute of the class.

An association is a binary relation between a pair of classes, whose instances
are links between pairs of objects belonging to the two classes. We consider
navigability and multiplicity of (roles of) associations.

Classes are also related by generalization/specialization relationships. This
relationship is also called inheritance in object-oriented programming, since it
implies attribute, association, and method inheritance from the superclass to
the subclass. We consider single inheritance only. The inheritance relationship
induces inheritance hierarchies (or, simply, hierarchies) on classes. A hierarchy
is a (maximal) rooted tree of classes connected by inheritance relationships.
Because of inheritance, an object may belong to multiple classes; indeed, if an
object belongs to a class C, it belongs to all the superclasses of C as well.
However, as it is customary in object-oriented programming, we assume that
each object o has a unique most specific class, that is, a class C such that o
belongs only to C and the superclasses of C. In a hierarchy, a class C is abstract
if every object that belongs to C must also belong to some subclass of C, that is,
if there cannot be objects whose most specific class is C. By contrast, a class that
is not abstract is called concrete. In hierarchies, leaf classes should be concrete.

An object schema is a set of classes, together with associations and inheri-
tance relationships among such classes. Figure 1 shows a sample object schema,
comprising a hierarchy. Constraint {key} denotes key attributes.

Relational model. In the relational model [8], a relation schema is a set of at-
tributes. We assume that all relation attributes are of a simple type, e.g., strings.
A relational schema is a set of relation schemas. At the instance level, a relation
is a set of tuples over the attributes of the relation.

We consider the following integrity constraints. Attributes can be or not be
non null. Each relation has a primary key (or, simply, key). A key attribute is

138 L. Cabibbo and A. Carosi

-ssn {key}
-name

Person

-activity

Hobby

-dname {key}
-budget

Department

hobbies

** Practice

emps

*

dept

1

Membership

-salary

Employee

-bonus

Manager

-mainOccupation

Clerk

-university

Student

Fig. 1. An object schema

ssn universityRS
S

ssn mainOccRC
C

ssn name salary dept p/eRPE+
PSEC ssn name salary bonus deptRPEM

M

hid activityRHobby

dname budgetRDept

ssn hidRPractice
PSEC ssn hidRPractice

M

Fig. 2. A relational schema

an attribute that belongs to a key; key attributes must be non null. A foreign
key is a non-empty set of attributes of a relation used to reference tuples of
another relation; foreign keys define referential constraints between relations.
Figure 2 shows a sample relational schema. Attributes forming primary keys are
underlined. Referential constraints are denoted by arrows.

2.2 Object/Relational Mappings

Object/relational mapping tools. When an ORM tool is used, objects and links
are manipulated by means of CRUD operations (Create, Read, Update, Delete),
which allow the programmer to create persistent objects, to read persistent ob-
jects (that is, perform a unique search of an object based on its key), as well
as to modify and delete persistent objects. Navigation, formation, breaking, and
modification of persistent links between objects are also possible. In correspon-
dence to such programmatic manipulations of an object schema, an ORM tool
should translate CRUD operations on objects and links into operations over the

Managing Inheritance Hierarchies in ORM Tools 139

underlying relational database. This translation should happen in an automatic
way, on the basis of a suitable mapping between the object schema and the
relational schema, as described next and in the following of this paper.

The M2ORM2 mapping model. We now briefly describe the M2ORM2 mapping
model [5, 6]. (We refer the reader to our previous work on M2ORM2 for a more
detailed presentation of this mapping model.) For the sake of presentation, we
assume here that the object schema does not contain hierarchies. (This limita-
tion will be removed next.) In M2ORM2, a mapping between an object schema
and a relational schema is represented as a graph, comprising nodes and arcs. A
node describes the correspondences between one or more classes and one or more
relations. Usually, a node contains just one class; if there are more than one, a
class is selected as the primary class of the node and it is related to other (sec-
ondary) classes in the node by associations. Similarly, a node contains usually
just one relation; if there are more than one, a relation is selected as the primary
relation of the node and it is related to other (secondary) relations in the node
by referential constraints. The goal of a node is to describe how to represent an
object of the primary class (and possibly further related objects from secondary
classes) by means of a tuple in the primary relation (and possibly further related
tuples in secondary relations). In a node, data (values) flow between objects and
tuples as described by attribute correspondences, each relating a class attribute
to a relation attribute. A mapping can also contain relationship arcs, each de-
scribing the correspondences between a pair of nodes by relating an association
(between the primary classes of the two nodes) and one or more referential con-
straints (involving the primary relations of the nodes, and possibly others). The
semantics of M2ORM2 is described in Section 4.1.

2.3 Basic Strategies for Mapping Inheritance Hierarchies

The problem of mapping a hierarchy to a set of relations is described in several
textbooks (e.g., [1, 2, 9]) where, among others, three main basic representation
strategies are considered. We now describe these strategies, and exemplify their
application to the simple inheritance hierarchy shown in Fig. 3. In giving names
to relations used to represent hierarchies, we write RT

S to denote the fact that
this relation has attributes for classes in the set S and that it contains a tuple
for each object whose most specific class is a class in the set T . We also write
C ↑ to denote the set comprising a class C together with its superclasses, and
C ↓ to denote the set comprising a class C together with its subclasses. Finally,
symbol + denotes that a type attribute is used.

– Single Relation inheritance (SR): A hierarchy H is represented by a
single relation RH

H+. Relation RH
H+ has attributes for all the attributes of

classes in H; furthermore, RH
H+ has a type attribute to indicate the most

specific class for the object represented by a tuple. An object in the hierarchy
is represented by a single tuple in relation RH

H+. For the hierarchy of Fig. 3,
SR leads to a single relation RABC

ABC+(id, a1, a2, b1, b2, c1, c2, t), where t is the

140 L. Cabibbo and A. Carosi

type attribute, whose possible values are A, B, or C. SR is called Single
Table inheritance in [9].

– Class Relation inheritance (CR): A hierarchy H is represented by a
relation RC↓

C for each class C in H. Each relation RC↓
C has attributes for the

attributes of the class C it represents; a relation for a subclass also has a
foreign key towards the relation for its (direct) superclass in the hierarchy.
An object in the hierarchy is represented by multiple tuples: if the most
specific class for the object is C, by a tuple in relation RC↓

C which represents
C, together with a tuple for each relation RC′↓

C′ that represents a superclass
C ′ of C. For the hierarchy of Fig. 3, CR leads to relations RABC

A (id, a1, a2),
RB

B(id, b1, b2), and RC
C(id, c1, c2), where attribute id in relations RB

B and RC
C

references relation RABC
A . CR is called Class Table inheritance in [9].

– Concrete Class Relation inheritance (CCR): A hierarchy H is repre-
sented by a relation RC

C↑ for each concrete class C in H. Each relation RC
C↑

has attributes for the attributes of the concrete class C it represents, but also
for attributes for each superclass of C. An object in the hierarchy is repre-
sented by a single tuple in the relation RC

C↑ for the most specific class C of the
object. For the hierarchy of Fig. 3, assuming that class A is abstract, CCR
leads to relations RB

AB(id, a1, a2, b1, b2) and RC
AC(id, a1, a2, c1, c2). However,

if A is concrete, CCR leads to relations RA
A(id, a1, a2), RB

AB(id, a1, a2, b1, b2),
and RC

AC(id, a1, a2, c1, c2). CCR is called Concrete Table inheritance in [9]
and One inheritance path one table in [12].

To the best of our knowledge, current object/relational mapping tools adopt
mainly these three basic strategies, even tough other representation strategies for
inheritance hierarchies are known (e.g., Map classes to a generic structure [1]).

The basic representation strategies can be applied to an inheritance hierarchy
as a whole. In case of a multi-level hierarchy (e.g., where a subclass can have
its own sub-subclasses, etc.), it is also possible to apply different strategies to
distinct parts of the hierarchy. A possible advice is to apply the representation
procedure recursively, starting from the bottom of the hierarchy and representing
one inheritance level at a time [2].

-id {key}
-a1
-a2

A

-b1
-b2

B

-c1
-c2

C

SR RABC
ABC+(id, a1, a2, b1, b2, c1, c2, t)

CR RABC
A (id, a1, a2)
RB

B(id, b1, b2)
RC

C(id, c1, c2)

CCR RB
AB(id, a1, a2, b1, b2)

A is abstract RC
AC(id, a1, a2, c1, c2)

CCR RA
A(id, a1, a2)

A is concrete RB
AB(id, a1, a2, b1, b2)

RC
AC(id, a1, a2, c1, c2)

Fig. 3. A simple hierarchy and three basic relational representations

Managing Inheritance Hierarchies in ORM Tools 141

In practice, current ORM tools do not always offer all the three above cited
basic representation strategies for hierarchies. Furthermore, they usually permit
to select, for each hierarchy, a single representation strategy, to be applied to the
whole hierarchy. (See Section 6 for a discussion on the management of hierarchies
in current tools.) These facts limit the number of possible mappings that can be
identified among an object schema with hierarchies and a relational database.

3 A Model for Mapping Hierarchies and Relations

We now describe a mapping model for dealing with inheritance hierarchies.
Specifically, we extend M2ORM2 to represent hierarchies by means of a novel
kind of arcs, called inheritance arcs. This extension is called M2ORM2+HIE
(M2ORM2 with inheritance HIErarchies).

In M2ORM2+HIE , a node describes the correspondences between a primary
class and a primary relation, possibly involving other classes (related by associa-
tions and/or inheritance) and other relations (related by referential constraints).

In nodes, apart from attribute correspondences (each relating a class attribute
with a relation attribute), relation attributes can also be related to constant
values by means of literal correspondences.

An inheritance arc from a node N2 to a node N1 represents an inheritance
relationship from the primary class C2 of N2 to the primary class C1 of N1, that
is, the fact that C2 is a (direct) subclass of C1. Normally, an inheritance arc
specifies that attribute and literal correspondences are inherited from the node
for the superclass to the node for the subclass. However, correspondences in a
node can override inherited correspondences.

An inheritance arc can have an associated foreign key correspondence, from
a key attribute of the primary relation in the node for the subclass to the key
attribute of the primary relation in the node for the superclass. This specifies a
referential constraint between the two relations.

In M2ORM2+HIE , some elements can be abstract. An abstract node con-
tains just an abstract class, but no relations. An abstract node defines, implicitly,
an abstract attribute correspondence for each attribute of the class; intuitively,
abstract correspondences specify correspondences that should be provided by
nodes where the abstract correspondences are inherited. An abstract node can-
not contain “concrete” correspondences. An abstract inheritance arc specifies
that the node for the subclass does not inherit correspondences from the node
for the superclass; rather, these correspondences should be considered abstract
correspondences, and they should therefore be redefined in the node for the
subclass. Intuitively, an abstract inheritance arc towards the node for a con-
crete class is similar to an inheritance arc towards the node for an abstract
class.

As in M2ORM2, relationship arcs are also allowed [5, 6].
The following example shows how the mappings implied by the three basic

representation strategies of Section 2.3 can be described in M2ORM2+HIE .

142 L. Cabibbo and A. Carosi

-id {key}
-a1
-a2

A

-b1
-b2

B

A

id a1 a2 b1 b2 c1 c2 tRABC+
ABC

C

RABC+
ABC

-c1
-c2

C

B

RABC+
ABC id a1 a2 b1 b2 c1 c2 t id a1 a2 b1 b2 c1 c2 t

Fig. 4. SR in M2ORM2+HIE

-id {key}
-a1
-a2

A

-b1
-b2

B

-c1
-c2

C

id a1 a2RA
ABC

id b1 b2RB
B id c1 c2RC

C

RB
B.id {FK} RC

C.id {FK}

Fig. 5. CR in M2ORM2+HIE

Example 1. Consider the schemas of Fig. 3.
In M2ORM2+HIE , the mapping for the translation implied by SR can be

represented using a node for each class, NA, NB, and NC, together with inheri-
tance arcs between them, that is, from NB to NA and from NC to NA. Each node
relates a class of the hierarchy to relation RABC

ABC+; moreover, each node has an
attribute correspondence for each attribute of the class of the node (relating it to
the corresponding relation attribute, e.g., A.a1 to RABC

ABC+.a1). Finally, node NA

has literal correspondence RABC
ABC+.t = A, whereas nodes NB and NC override it

as RABC
ABC+.t = B and RABC

ABC+.t = C, respectively.1 Figure 4 shows this mapping.
The mapping for CR can be represented, again, by using three nodes and

two arcs, as it is shown in Fig. 5. Each node relates a class of the hierarchy to
the corresponding relation, e.g., node NA relates class A to relation RABC

A ; each
node has attribute correspondences for the attributes of the class of the node.
In this case, inheritance arcs carry further information needed to complete the

1 Literal correspondences such as RABC
ABC+.b1 = null in NA are not needed, since this

is the default in M2ORM2.

Managing Inheritance Hierarchies in ORM Tools 143

-id {key}
-a1
-a2

A {abstract}

-b1
-b2

B

{abstract}

id a1 a2 b1 b2RAB
B

-id {key}
-a1
-a2

A {abstract}

-c1
-c2

C

id a1 a2 c1 c2RAC
C

-id {key}
-a1
-a2

A {abstract}

Fig. 6. CCR in M2ORM2+HIE (class A is abstract)

mapping specification; in particular, the inheritance arc from NB to NA holds a
foreign key correspondence from RB

B .id to RABC
A .id. The case for the arc from

NC to NA is similar.
Figure 6 shows the mapping for CCR when class A is abstract. Again, three

nodes are needed, as well as inheritance arcs between them. Node NA is abstract,
and as such it has abstract correspondences for attributes of class A. Nodes NB

and NC relate concrete classes B and C to relations RB
AB and RC

AC , respectively.
Each node for a concrete class has attribute correspondences for the attributes
of the class of the node, but also for the attributes of their abstract superclass

-id {key}
-a1
-a2

A

-b1
-b2

B

{abstract}

id a1 a2 b1 b2RAB
B

-id {key}
-a1
-a2

A

-c1
-c2

C
id a1 a2 c1 c2RAC

C

-id {key}
-a1
-a2

A

id a1 a2RA
A

{abstract}

Fig. 7. CCR in M2ORM2+HIE (class A is concrete)

144 L. Cabibbo and A. Carosi

for which an abstract attribute correspondence is inherited, e.g., node NB has
an attribute correspondence between A.a1 and RB

AB .a1.
The mapping for CCR when A is concrete is shown in Fig. 7. Node NA relates

class A to relation RA
A. The mapping contains also abstract inheritance arcs from

NB to NA and from NC to NA. Node NB relates class B to relation RB
AB . NB

has attribute correspondences for the attributes of B, but also for the attributes
of its superclass A, e.g., node NB has an attribute correspondence between A.a1
and RB

AB .a1. The case for node NC is similar. ��
Besides mappings corresponding to the three basic representation strategies

for hierarchies described in Section 2.3, M2ORM2+HIE allows specifying more
complex mappings, as the following example shows.

Example 2. Consider the hierarchy in the object schema of Fig. 1. Assume all the
classes are concrete. Figure 8 shows a complex mapping between this hierarchy
and the relational schema of Fig. 2. (We use letters P , S, E, M , and C to denote
classes Person, Student, Employee, Manager, and Clerk, respectively.) Relation
RPSEC

PE+ has tuples for Persons, Students, Employees, and Clerks (but not for
Managers); relation RS

S holds further data for Students, whereas relation RC
C

holds further data for Clerks; finally, relation RM
PEM holds all information for

Managers. Five nodes are used, together with the three different kinds of arcs

ssn universityRS
S

-ssn {key}
-name

Person

-university

Student

RS
S.ssn {FK}

-salary

Employee

E

-mainOccupation

Clerk

ssn name salary bonus deptRPEM
M

-ssn {key}
-name

Person

-salary

Employee

-bonus

Manager

{abstract}

ssn name salary dept p/eRPE+
PSEC

P

ssn name salary dept p/eRPE+
PSEC

RC
C.ssn {FK}

ssn mainOccRC
C

Fig. 8. A complex mapping over the hierarchy of Fig. 1

Managing Inheritance Hierarchies in ORM Tools 145

(i.e., with and without foreign key correspondence, and abstract). We can think
of this relational schema not as obtained by applying a single representation
strategy to the whole hierarchy, but rather by applying different strategies to
distinct parts of the same hierarchy. ��

We would like to point out that, to the best of our understanding, none of
the systems we have analyzed (including, among others, [10, 13, 15]) is able to
manage a mapping similar to the one described by Example 2.

4 Semantics of Mappings

In this section we present the semantics of M2ORM2+HIE . We first briefly recall
the semantics of M2ORM2 [5, 6] (where inheritance is not allowed).

4.1 Semantics of M2ORM2

In M2ORM2, a node maps a group of classes (a primary class connected by
one-to-one or many-to-one associations to further secondary classes) to a group
of relations (a primary relation connected by referential constraints to further
secondary relations). The goal of a node is to represent an object o of the primary
class, together with objects in secondary classes that are reachable from o by
means of associations represented within the node, as a tuple to in the primary
relation, together with tuples in secondary relations that are reachable from to
by means of referential constraints represented within the node.

In general, we have the following intuitive semantics for CRUD operations
(applied to an object in the primary class of a node): The creation of an object
o in the primary class is managed as the insertion into the database of tuples (in
the primary and in secondary relations) representing both object o and objects
in secondary classes that are reachable from o; values flow from object (i.e.,
class) attributes to tuple (i.e., relation) attributes. To read an object of the
primary class, given its key, a query over the database is executed to retrieve
the tuples (in the primary and in secondary relations) that represent an object o
in the primary class and objects in secondary classes that are reachable from o;
then, the corresponding objects are created in memory; values flow from tuple
attributes to object attributes. The update of attributes of an object (or the
update of links between them, thereof) is managed by modifying the tuples used
to represent the group of objects. The deletion of an object o in the primary class
is managed by deleting the tuple to in the primary relation used to represent
object o.

We do not describe the semantics of association arcs, since its knowledge is
not needed here.

4.2 Semantics of M2ORM2+HIE

Before defining the semantics of M2ORM2+HIE , it is worth to note that, in
a mapping, a relation may be used to contain tuples representing objects from

146 L. Cabibbo and A. Carosi

RPSEC
PE+ ssn name salary dept p/e

1234 Paul null . . . P
5678 Sarah null . . . P
9753 Ella 14K . . . E
8642 Charles 15K . . . E

RS
S ssn university

5678 Stanford

RC
C ssn mainOcc

8642 archivist
RM

PEM ssn name salary bonus dept
7007 Maria 25K 12K . . .

Fig. 9. Relations store classes

multiple most specific classes. For example, in the mapping shown in Fig. 8,
relation RPSEC

PE+ contains a tuple for each object whose most specific class is
either Person, Student, Employee, or Clerk. We say that, in a mapping, a relation
R stores class C if it is intended to contain, among others, a tuple for each object
whose most specific class is C. We have the following characterization for the
“stores” relationship:

– let C be a concrete class; the set of relations that store C can be computed
by visiting the node whose primary class is C and all the nodes that can be
reached from it by climbing up inheritance arcs that are not abstract;

– let R be a relation; the set of classes that are stored by R can be computed
by visiting each node containing R and all the nodes that can be reached
from them by going down inheritance arcs that are not abstract (primary
classes only).

Figure 9 shows how relations store classes with respect to the mapping described
in Example 2.

We can now define the semantics for CRUD operations (applied to objects
in an inheritance hierarchy).

Creation. Consider the creation of an object o in the primary class C of a node.
This class will be the most specific class for the object to be created. Object o
has values for the attributes defined in class C, but also for attributes defined in
superclasses of C. Object o will be represented by a tuple for each relation that
stores C; these relations belong to a path, in the graph describing the mapping,
from a node for some superclass C ′ of C to the node for C. Values flow from
attributes of o to tuples representing o, as described by attribute and literal
correspondences. Specifically, attribute and literal correspondences are applied,
in sequence and downwards, from the node for C ′ to the node for C. Tuples that
are identified in this way are inserted into the database.

For example, consider the mapping described by Example 2. The creation
of an object in class Clerk would involve relations RPSEC

PE+ and RC
C , which store

Clerk. The node for Person specifies the value for attributes ssn and name in
RPSEC

PE+ . In the same relation, the node for Employee specifies the value for
attributes salary and p/e (the literal correspondence in this node overrides the

Managing Inheritance Hierarchies in ORM Tools 147

one in the node for Person). Finally, the node for Clerk specifies the value for
the tuple to be inserted in relation RC

C .

Reading. Consider the reading of an object from a class C, given its key id.
When performing this operation, the retrieved object o should belong to the most
specific class among C and the subclasses of C (this is known as polymorphic
reading). Therefore, the reading starts by identifying, by issuing a number of
database queries q1, q2, . . ., the most specific class C ′ for the object o whose key
is id. Each query qi is relative to some concrete class Ci that is either C or some
subclass of C, and has the goal of checking whether the database represents an
object belonging to Ci whose key is id. Query qi comprises a join of the relations
that store Ci, with selections for the key id and for (possibly inherited) literal
correspondences in the node for Ci. The class C ′ for the object we are reading
is chosen as the most specific class (i.e., the most downwards in the hierarchy)
among those to which the object can belong. Then, the reading proceeds as in
the standard semantics of M2ORM2, by performing a query over the relations
that store C ′ and by creating, in memory, the desired object o. Values flow from
attributes of the retrieved tuples to o (and possibly other related objects), as
described by attribute correspondences.

Consider again the mapping of Example 2. Assume that a (polymorphic)
reading over class Employee has been requested, given the ssn id. Three queries
qe, qm, and qc are performed, to check whether an Employee, a Manager, and/or
a Clerk does exist whose key is id. For example, query qc for Clerk would be:

SELECT * FROM RPSEC
PE+ , RC

C

WHERE RPSEC
PE+ .ssn=id AND p/e=‘E’ AND RPSEC

PE+ .ssn=RC
C.ssn

Assume the result of query qc is not empty. In this case, the most specific class
for the retrieved object will be Clerk ; moreover, the result of query qc will be
used as values for the attributes of the retrieved object.

Update. An update can be the modification of either an attribute of an object
or a link, described by some node. As it is customary in object-oriented pro-
gramming, we assume that modifying the most specific class for an object is not
allowed. In this case, the update of an object o is performed as stated in the
standard semantics of M2ORM2, that is, by modifying tuples used to represent o.

Deletion. The deletion of an object o is performed by deleting tuples used to
represent o. Again, for this case there is no difference with respect to the standard
semantics of M2ORM2.

5 Correctness of Mappings

Correctness is an important aspect of object/relational mappings. Intuitively, a
mapping is correct if it supports, in an effective way, the management of CRUD
operations on objects and links by means of the underlying relational database.

148 L. Cabibbo and A. Carosi

We now briefly discuss correctness conditions concerning the mapping of in-
heritance hierarchies. For the sake of presentation, we now make the following
assumptions: (i) each class is primary in exactly one node; (ii) each node contains
at most one relation. (For a treatment of cases where the above assumptions do
not hold we refer the reader to previous work [5, 6].) In this case, correctness of
a mapping requires, at least, the following conditions to hold:

– for each concrete class C, each of the attributes of C and of its superclasses is
mapped to exactly one relation attribute (apart from possible foreign keys),
among the relations that store C;

– for each relation R and each class C stored by R, each of the attributes of
R is mapped to at most one class attribute;

– key attributes of classes are related to key attributes of relations;
– class attributes that can be null are related to relation attributes that can

be null.

The mapping described by Example 2 satisfies these conditions, and indeed
it is a correct mapping between (the hierarchy of) the object schema of Fig. 1
and (part of) the relational schema of Fig. 2. We would like to point out that,
using other M2ORM2 mapping features, it is possible to define a correct mapping
between the whole schemas shown by Fig. 1 and 2.

6 Related Work

There are several object/relational mapping tools available today (for a compar-
ison of some tools supporting Java see http://c2.com/cgi/wiki?ObjectRelational-
ToolComparison); some of them also offer the meet-in-the-middle approach (e.g.,
[10, 15]). A mainstream application of ORM tools is supporting container-man-
aged persistence (CMP) of Entity Beans in J2EE application servers [18]. Ma-
jor relational DBMS vendors have recently started offering object/relational
mapping tools based on the meet-in-the-middle approach, e.g., Oracle AS Top-
Link [16] and Microsoft ObjectSpaces [13].

In ORM tools, mappings are usually represented by graphs, as we do in
M2ORM2. For example, in TopLink [16] a mapping comprises descriptors (cor-
responding to nodes) and relationships (corresponding to (relationship) arcs).
Often, each node relates just a single class to just a single relation. Some sys-
tems (e.g., ObjectSpaces [13]) allow expressing more complex mappings between
groups of classes and groups of relations, as we do in M2ORM2.

Most ORM tools take inheritance hierarchies into account. However, they
do not always offer all the three basic representation strategies for inheritance
hierarchies described in Section 2.3. Furthermore, they usually permit to select,
for each hierarchy, a single representation strategy to be applied to the whole
hierarchy. For example, ObjectSpaces [13] allows for all three strategies but, to
the best of our understanding, they cannot be applied separately to different
parts of a single hierarchy. In Hibernate [10], different strategies can be applied
to distinct parts of a same hierarchy, but with some limitations: in particular,

Managing Inheritance Hierarchies in ORM Tools 149

if C1 and C2 are two direct subclasses of a same class C, it is not possible to
apply SR to C and C1 and CR to C and C2. On the other hand, M2ORM2+HIE
offers more mapping possibilities with respect to object schemas containing hier-
archies. Indeed, none of these systems allows expressing the mapping described
by Example 2.

The “professional” literature is rich of works on several aspects concerning
the implementation of ORM tools. Many contributions on the topic are now
available as book chapters (e.g., [1, 9]) or as web resources (e.g., [14]). On the
other hand, the scientific literature on ORM tools (e.g., [17]), apart from our
previous work [5, 6], is more limited or, simply, outdated by current technology
offerings. The notion of mapping used in this paper is inspired from one proposed
in the context of model management [3].

7 Discussion

In this paper we have introduced M2ORM2+HIE , a mapping model for ob-
ject/relational mapping tools. With respect to our previous work [5, 6], in this
paper we have investigated the problem of managing inheritance hierarchies. It
turns out that, as other mapping tools, M2ORM2+HIE is able to manage the
most common representations for hierarchies. However, unlike other available
systems and proposals, in M2ORM2+HIE it is also possible to represent more
complex mappings involving hierarchies, e.g., where the three basic strategies
are applied independently to different parts of a multi-level hierarchy.

There are a number of aspects related to ORM tools that we would like
to investigate in the context provided by M2ORM2 and M2ORM2+HIE ; these
include: data types, multi-attribute keys, complex attributes, polymorphic asso-
ciations, and cascade semantics. We believe that such features can be introduced
in our mapping model in a graceful way.

References

1. S.W. Ambler. Agile Database Techniques. Wiley Publishing, 2003.
2. C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design, an Entity-

Relationship Approach. Benjamin-Cummings, 1992.
3. P.A. Bernstein, A.Y. Halevy, and R.A. Pottinger. A vision for the management of

complex models. ACM Sigmod Record, 29(4):55–63, 2000.
4. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.
5. L. Cabibbo and R. Porcelli. M2ORM2: A Model for the Transparent Manage-

ment of Relationally Persistent Objects. In International Workshop on Database
Programming Languages (DBPL), pages 166–178, 2003.

6. L. Cabibbo. Objects Meet Relations: On the Transparent Management of Per-
sistent Objects. In Int. Conf. on Advanced Information Systems Engineering
(CAiSE), pages 429–445, 2004.

7. R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

150 L. Cabibbo and A. Carosi

8. R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-Wesley,
2003.

9. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.
10. Hibernate. http://www.hibernate.org/.
11. Java Data Objects. http://www.jdocentral.com.
12. W. Keller. Mapping Objects to Tables: A Pattern Language. In European Pattern

Languages of Programming Conference (EuroPLoP), 1997.
13. Microsoft ObjectSpaces. http://msdn.microsoft.com/library/default.asp?url=/li-

brary/en-us/dnadonet/html/objectspaces.asp.
14. Object Architects. Patterns for Object/Relational Mapping and Access Layers.

http://www.objectarchitects.de/ObjectArchitects/orpatterns/.
15. ObJect relational Bridge. http://db.apache.org/ojb/.
16. Oracle AS TopLink. http://otn.oracle.com/products/ias/toplink/.
17. J.A. Orenstein. Supporting retrievals and updates in an object/relational mapping

system. IEEE Bull. on Data Engineering, 20(1):50–54, 1999.
18. E. Roman. Mastering Enterprise JavaBeans. Wiley Publishing, 2002.

BInXS: A Process for Integration of XML Schemata�

Ronaldo dos Santos Mello1 and Carlos Alberto Heuser2

1 Universidade Federal de Santa Catarina,
Depto. de Informatica e Estatistica, Cx. Postal 476,

Florianopolis, SC, Brasil 88040-900
ronaldo@inf.ufsc.br

2 Universidade Federal do Rio Grande do Sul,
Instituto de Informatica, Cx. Postal 15064,

Porto Alegre, RS, Brasil 91501-970
heuser@inf.ufrgs.br

Abstract. This paper presents a detailed integration process for XML schemata
called BInXS. BInXS adopts a global-as-view integration approach that builds a
global schema from a set of heterogeneous XML schemata related to a same ap-
plication domain. This bottom-up approach maps all element and attribute defini-
tions in XML schemata to correspondent concepts at the global schema, allowing
access to all data available at the XML sources. The integration process is semi-
automatically performed over conceptual representations of the XML schemata,
which provides a better understanding of the semantics of the XML data to be
unified. A conceptual schema is generated by a set of conversion rules that are
applied to a schema definition for XML data. Once this conceptual schema is the
result of a meticulous analysis of the XML logical model, it is able to abstract the
particularities of semistructured and XML data, like elements with mixed con-
tents and elements with alternative representations. Therefore, the further unifi-
cation of such conceptual schemata implicitly deals with structural conflicts in-
herent to semistructured and XML data. In addition, BInXS supports a mapping
strategy based on XPath expressions in order to maintain correspondences among
global concepts and data at the XML sources.

1 Introduction

The XML format has been extensively used to represent data as well as to interchange
data among users and applications, specially through the Web [7]. Several application
domains, like e-commerce [1, 3] and bibliographic references [2, 4], provides XML in-
formation on the Web. Considering such increasing availability of XML data, schema
integration mechanisms are required to provide an unified access to several heteroge-
neous XML sources on the Web related to a same application domain.

An XML data is a semistructured data [8]. Thus, the integration of XML schemata
is more complex than the integration of database schemata because semistructured
schemata are irregular, allowing the definition of heterogeneous instances in a same

� This work was partially supported by CAPES Foundation.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 151–166, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

152 R. dos Santos Mello and C.A. Heuser

schema. Because of this high heterogeneity, it is difficult to find out semantic corre-
spondences among XML data based on a structural analysis of them, as well as to solve
conflicts of data representation in order to perform a unification.

Database schema integration processes usually convert the data models of the het-
erogeneous databases to a common data model called canonical model [10, 17, 31].
This canonical representation abstracts the heterogeneity of the data models, reducing
the complexity of the integration activity. Considering the specific integration of XML
schemata, there is a choice between: (i) to convert the XML data model to a canonical
model that is able to abstract the high structural heterogeneity of each XML schema or;
(ii) does not perform such conversion. Alternative (i) requires a conversion process and
mappings from one model to the other. However, the complexity of the further integra-
tion is reduced. Alternative (ii) does not require the conversion, but has to deal with the
complexity inherent to the integration of XML schemata.

Several related work on semistructured or XML schema integration apply alterna-
tive (i) [11, 20, 21, 23, 24, 28, 30]. However, their main drawback is that the adopted
canonical model does not consider all the particularities of the XML data model. Con-
sequently, they do not deal with some kinds of conflicts that raise when XML schemata
are unified, like elements with mixed content (text and structure) and elements with
alternative representations.

This paper presents a process for XML schema integration called BInXS1. BInXS
also follows alternative (i), proposing a conceptual canonical representation to a schema
for XML data. Such canonical representation results of a detailed analysis not only of
the XML data model, but also of XML instances in order to improve the understanding
of data semantics. The further schema unification applied on these canonical schemata
takes implicitly into consideration the resolution of conflicts related to XML schemata,
like the ones exemplified before. The main advantage of such approach is that the inte-
gration is applied on a conceptual basis, i.e., on high level and detailed abstractions of
XML schemata. A global conceptual schema is generated at the end of the integration
process. This global schema is useful in the context of a mediation system [12] that
provides access to XML sources on the Web.

This paper is organized as follows. Section 2 gives an overview of the integration
process followed by BInXS. Section 3 describes the conversion of an XML schema to
a conceptual schema. Section 4 describes how the global schema is defined from the
unification of conceptual schemata. Section 5 discusses some related work. Section 6 is
dedicated to the conclusion.

2 BInXS Overview

BInXS is a semi-automatic and bottom-up process for semantic integration of XML
schemata [25]. It is semi-automatic because user intervention is needed in order to vali-
date the semantic intention of data during the integration process. Semantic integration
processes are not fully automatic because the definition of a precise meaning for a data

1 BInXS is an acronym for Bottom-up Integration of XML Schemata.

BInXS: A Process for Integration of XML Schemata 153

Fig. 1. BInXS integration process

is a very subjective matter. BInXS is also a bottom-up process because it generates a
global schema from a set of XML schemata, being classified as a global-as-view inte-
gration approach [18]. Such global schema abstracts the high heterogeneity of the XML
data sources and considers the semantic intention of all of these sources.

BInXS has two phases, as shown in Figure 1. The first phase, called Schema Con-
version, maps each XML logical schema to a correspondent conceptual schema. BInXS
adopts a conceptual canonical model because it provides a high level abstraction for
the XML data. Besides, a same conceptual schema may abstract several XML logical
schemata of a same application domain. The unification of conceptual representations
of XML data reduces the complexity of the integration process because it is much sim-
ple to find out semantic similarities among conceptual schemata, which straightly rep-
resent real world facts and their relationships. The Schema Conversion phase is detailed
in section 3.

Not only XML schematic information are analyzed in this first phase, but also
data in XML documents. Such data analysis is necessary to define a more accurate
conceptual schema, helping on the definition of relationship cardinalities and relation-
ships derived from XML element references, for example. The intervention of an ex-
pert user is expected to validate automatic-generated conceptual schema concepts in
order to obtain a definitive conceptual schema. Mapping information from concep-
tual schema concepts to XML elements or attributes are also generated and kept in a
catalog.

The second phase, called Unification, takes a set of conceptual schema generated
from the previous phase and performs their semantic integration, creating a global con-
ceptual schema. An external tool, called ARTEMIS, is used to find out semantic affini-
ties between concepts in different schemata. User intervention is considered again to
eventually choose one among several alternative semantic meanings for a global con-
cept or relationship representation, or to validate an automatic-generated preliminary
global schema. Section 4 details this phase.

154 R. dos Santos Mello and C.A. Heuser

3 Schema Conversion

The Schema Conversion phase is based on a set of rules that consider the concepts of
the XML model, analysis of XML documents, and user expertise [27]. The conversion
process has three steps: Pre-processing, Conversion and Restructuring.

The Pre-processing step takes an XML schema (a DTD or XSD specification) and
modifies its definition in order to generate a more well-structured and simplified schema
to be further converted. Examples of schema modifications are: removal of elements that
are not semantically relevant (for example, an author-list element as a component
of an element book, acting as an intermediate element between book and author
elements); and the replacing of nested components by a new element type (called virtual
element) that abstracts the set of component elements2. Some of these modifications
require user intervention, like the first example.

The Conversion step takes a pre-processed XML schema and applies a set of con-
version rules on it, generating a preliminary conceptual schema and mapping infor-
mation. Section 3.3 presents these rules. The Restructuring step takes a preliminary
conceptual schema and performs manual and automatic modifications on it to produce
a more semantically correct and simplified conceptual schema (a definitive concep-
tual schema). Examples of manual modifications are: definition of suitable names for
automatic-generated concepts, and the validation of default cardinality constraints for
relationships. An example of automatic modification is the removal of redundant rela-
tionships.

The considered XML and conceptual models are presented in the following, for
sake of understanding of the conversion rules. It is necessary to introduce again the
XML logical model in this paper because BInXS deals with several features of this
model that are not fully considered in related work.

3.1 XML Model

The XML logical model defines elements and attributes. An element is composed by
a start-tag, a content model and an end-tag. The content model defines what is en-
closed between the start-tag and the end-tag. An attribute describes a property of
an element. Its value is specified at the start-tag of the element. Figure 2 (a) shows
an XML document. e3 and e15 are elements and a1 is an attribute of e3. Figure 2
(b) shows the correspondent schema to this XML document 3. A terminology to the
concepts of the XML model is presented in the following. Examples are taken from
Figure 2(b).

A composite element is an element with attributes and/or an element that has a con-
tent model defined by one of two XML grammatical constructs: sequence and choice.
A sequence (ec1, ec2, ..., ecn) defines n ordered component elements, with
n ≥ 1. A choice (ec1|ec2|...|ecm) define m alternatives for component elements,

2 e1Group1 in Figure 2 (c) is a conceptual abstraction of a virtual element. See sections 3.1
to 3.3.

3 Figure 2 (b) is a logical abstraction of a schema defined through a DTD (Document Type
Definition) or an XSD (XML Schema Definition) [5].

BInXS: A Process for Integration of XML Schemata 155

Fig. 2. An XML document (a), an XML schema for the document (b), and a conceptual schema
for the XML schema (c)

with m > 1. The regular expression operators ’?’, ’*’ and ’+’ indicate the allowed num-
ber of occurrences of a composite element, denoting, respectively, 0 or 1 occurrence, 0
to n occurrences, and 1 to n occurrences. e1, e3, e5, e8 and e16 are examples. e3 is an
element defined by a choice and e5 is an element defined by a sequence. A nested com-
ponent is a sequence or choice specification that is embedded into the content model of
a composite element. The composite element e1 has a nested component comprised by
e16 and e17.

A simple element has a content model defined by a single value. e2, e10 to e15, and
e17 are examples. An empty element has no content model, i.e., its content model is
empty. e6 and e7 are examples (labelled by ’E’). A free element allows any kind of
schema element in your content model. It corresponds to an ANY element in a DTD or
XSD specification. e4 is an example (labelled by ’A’).

156 R. dos Santos Mello and C.A. Heuser

A mixed element has a content model that is a mix of values and component el-
ements, i.e., it is a composite element with the following restrictions: (i) its content
model is defined by a choice; (ii) its components may repeat from zero to N times; (iii)
there is a special component (a valued component) without a name. e9 is an example
(labelled by ’M’). The elements e14 and e15, as well as the implicit valued component,
may occur from zero to several times into e9 content.

An attribute is an optional or required property associated to an element, like a2 and
a6. An attribute has a data type and may act as an element identifier (an ID attribute, like
a1). A reference attribute for an element ex is an attribute that establishes a reference
from an ex element instance to one or more values of ID attributes of instances of
elements. a4 is an example (labelled by ’IDREF’ or ’IDREFS’).

3.2 Conceptual Model

BInXS adopts a graphic variant of the ORM/NIAM (Object with Roles Model/Natural
language Information Analysis Method) conceptual model as the canonical model [19].
Figure 2 (c) shows an example of a conceptual canonical schema.

The ORM/NIAM model is based on two types of concepts: lexical and non-lexical
concepts. A lexical concept models information that has an associated value (a dot-
ted rectangle). a5 and e2 are examples of lexical concepts. A lexical concept has a
data type (string or integer, for example), and an optional enumeration of allowed
values, as shown in the concept a5. A non-lexical concept models information that
is composed by other information (a solid rectangle). e1 and e8 are examples of non-
lexical concepts. The model supports binary association relationships (with optional
roles) with cardinality constraints, and inheritance relationships. An association rela-
tionship is defined between the concepts e1 and e1Type1, and an inheritance relation-
ship is defined between e1 and e5, being e5 an specialization of e1. It is still possible
to model mutually exclusive relationships, like the relationships of e3 with e10, e11 and
e12.

The ORM/NIAM model was chosen to be the canonical model because it has a
more straight correspondence with the XML logical model: non-lexical concepts are
suitable to model composite elements, and lexical concepts are suitable to model simple
elements and attributes. Besides, simple elements and attributes (valued information)
may be associated to several composite elements in an XML schema. Such situation is
also possible in the ORM/NIAM model, i.e., a lexical concept may have relationships
with several non-lexical concepts. However, this is not possible in the ER model [9],
for example, where valued information can only be modelled as an attribute, which is
an exclusive property of an entity or relationship.

3.3 Conversion Rules

The conversion rules are the core of the Schema Conversion phase. They are summa-
rized in the following4.

4 For sake of paper space, correctness and completeness of the conversion rules are not dis-
cussed. This is a focus of future work.

BInXS: A Process for Integration of XML Schemata 157

Rule 1 (Simple Element Conversion). A simple element ES generates a lexical
concept El with name ES . The data type of El is the data type defined to the simple
element, if exists; or string, otherwise.

Rule 2 (Empty Element Conversion). An empty element EE generates a lexical
concept eTypei, where i corresponds to the i-esimal converted empty element. The data
type of eTypei is set to string and its enumeration is set to {EE}.

Rule 3 (Free Element Conversion). The conversion of a free element EA proceeds
as follows:

1. a non-lexical concept Enl with name EA is generated;
2. given n the number of lexical or non-lexical concepts NL that corresponds to XML

elements, for i from 1 to n: generate an association relationship Ri between Enl and
NLi with a direct cardinality (0,1) and an inverse cardinality (0,N);

3. all previously defined relationships are set as mutually exclusive.

Rule 4 (Attribute Conversion). The conversion of an attribute ax of a composite
element EC proceeds as follows:

IF ax is a reference attribute and an analysis of XML documents indicates that all
references of ax instances points to instances of a same (target) element type ET

THEN generates an association relationship between EC and the non-lexical con-
cept corresponding to ET with a direct cardinality ([0—1],1), depending if the atribute
is optional or not; and define the inverse cardinality through analysis of XML docu-
ments or assume (1,N) as default

ELSE generates a lexical concept El with name ax. The data type of El is the data
type defined to ax, if exists; or string, otherwise. If ax has an enumeration, it is trans-
fered to El.

Rule 5 (Composite Element Conversion). The conversion of a composite element
EC proceeds as follows:

1. a non-lexical concept Enl with name EC is generated;
2. given {ec1, ec2, ..., ecn} the set of component elements of EC , for each component

element eci (1≤i≤n):
IF eci is not an empty element and it is possible to infer an <EC hyperonym eci>

5

relation with the aid of a lexical database
THEN generates an inheritance relationship Ri between Enl and the concept cor-
respondent to eci

ELSE generates an association relationship Ri between Enl and the concept cor-
respondent to eci with a direct cardinality based on the defined regular expression
operator; and an inverse cardinality defined through analysis of XML documents
or assumed as (1,N) as default;

3. IF EC is a mixed element
THEN generates:
(a) a lexical concept with a name ‘EC‘ + ‘Text‘, and a data type string;

5 t1 hyperonym t2 means that t1 is a more general term than t2.

158 R. dos Santos Mello and C.A. Heuser

(b) an association relationship between Enl and EText with a direct cardinality
(0,N) and an inverse cardinality (1,1);

4. IF Ri associates Enl with a lexical concept La generated from an empty element
and there is another lexical concept Lb also generated from an empty element and
an association relationship Rj between Enl and Lb with the same direct cardinality
THEN merges La and Lb into a lexical concept Lu, and merges Ri and Rj into
an association relationship Ru between Enl and Lu, adjusting properly the direct
cardinality. The set of enumerations of La and Lb are also unified;

5. IF there is more than one relatioship R1, R2, ..., Rk between Enl and a concept Cx

THEN defines default names role1, role2, ..., rolek to each respective relationship;
6. given {a1, a2, ..., am} the set of attributes of EC , for each attribute ai (1≤i≤m) gen-

erates an association relationship between Enl and ai with a direct cardinality (1,1)
or (0,1), depending if ai is required or not, respectively; and an inverse cardinality
defined through analysis of XML documents or assumed as (1,N) as default;

7. IF the content model of EC is defined by a choice
THEN set all previously defined relationships as mutually exclusive.

Figure 2 (c) is the preliminary conceptual schema generated by the application of
the conversion rules on the XML schema in Figure 2 (b)6. The concepts e2 and a2, for
example, are created by Rule 1 and Rule 4 applied to the element e2 and the attribute
a2, respectively. Rule 4 is also applied to the reference attribute a4, defining an asso-
ciation relationship between the concepts e3 and e16. Rule 3 applied to the element
e4 generates a same name concept and their mutual exclusive relationships with other
element-derived concepts. Rule 2 applied to the elements e6 and e7 generates the con-
cepts eType1 and eType2, that are further merged into a single concept eType1 by the
application of Rule 5 to the element e1. It means that an empty element of a composite
element EC is considered a property (or qualification) of EC , being represented as a
lexical concept associated to it with a fixed value. Empty elements with the same direct
cardinality are merged into a single lexical concept, with a set of allowed values.

Besides generating a concept e9, Rule 5 applied to the mixed element e9 generates
a new concept e9Text that abstracts its valued components, and a set of mutually exclu-
sive relationships that comprises the relationship to e9Text and all relationships to the
concepts generated to its component elements, considering that the content model of
e9 is defined by a choice. Rule 5 applied to the element e5 generates two association
relationships from the e5 concept to the e13 concept. Because of this, two default role
names are defined to these relationships. In the Restructuring step, these names may be
changed by the user, or the relationships may be merged if the user assumes that they
have the same semantic meaning.

3.4 Mapping Strategy

Mapping information are defined during the Conversion step to each generated con-
cept or relationship in the conceptual schema. BInXS adopts XPath 1.0 expressions to
specify mappings to an XML schema [6]. XPath was chosen because it is a W3C rec-
ommendation for searching elements and attributes in an XML document.

6 ’I.C.’ denotes an automatic-generated default cardinality.

BInXS: A Process for Integration of XML Schemata 159

The mapping of a concept Cg is defined as an absolute path expression in XPath, i.e.,
a complete path from the root element to the Cg correspondent element or attribute in
the XML schema. Given the conceptual and XML schemata in Figure 2 (c) and Figure 2
(b), the mapping of the concepts e14 and a2 are denoted respectively by the expressions
’/e9/e14’ and ’/e8/@a2’.

The mapping of a relationship is defined as a relative path expression in XPath.
Such expression says how to navigate between related concepts in an XML schema.
Mappings are defined for both relationship directions in order to allow the translation of
any traversal over the conceptual schema graph. In Figure 2 (c), the XPath expressions
’e14’ and ’..’ denote, respectively, the mapping of the relationship between the
concepts e9 and e14 in the directions e9→e14 and e9←e14.

A query language for conceptual schemata called CXPath (Conceptual XPath) was
defined in the context of the BInXS approach. A CXPath query is an XPath-like query
that starts at a concept and traverses the schema graph in any direction in order to
reach a desired related concept. With the proposed mapping strategy, the translation of
a CXPath query does not become complex because the translation process will basically
replace the concepts as well as the relationship traversals in a CXPath expression by
their correspondent mappings in XPath to the schema of an XML source XSi. Once
unified, these XPath expressions define a complete XPath query to be executed at XSi

7.

4 Unification

Once defined a set of conceptual schemata from local schemata8, the Unification phase
performs their semantic integration, generating a global schema [26]. To each global
concept or relationship are associated the mappings to all respective local concepts
or relationships that it represents. These mappings are kept in a global catalog. This
phase follows the traditional database schema integration steps: Schema Comparison,
Merging and Restructuring [10, 17].

The Schema Comparison step defines groups of synonym concepts coming from
different local schemata called affinity clusters. An affinity cluster belongs to one of the
following types: a lexical cluster, that holds only lexical concepts; a non-lexical cluster,
that holds only non-lexical concepts; and a mixed cluster, that holds lexical and non-
lexical concepts. The definition of these clusters is supported by an external tool called
ARTEMIS [14], and it is out of the scope of this paper.

The Merging step is the core of the Unification phase. It generates concepts and
relationships of a preliminary global schema through the merging of concepts in a
same affinity cluster. Such merging is based on semi-automatic unification rules that
are applied on the context of three unification cases: LxL (lexical unification), NLxNL
(non-lexical unification), and NLxL (mixed unification). The next sections detail these
cases.

Once performed the Merging step, the resulting preliminary global schema is vali-
dated in the Restructuring step through a set of automatic, semi-automatic and manual

7 For sake of paper space, CXPath and the translation process are not detailed. See [13].
8 From now on, XML schemata are called local schemata.

160 R. dos Santos Mello and C.A. Heuser

actions to generate the definitive global schema. An example of semi-automatic action
is the definition of new inheritance relationships between global concepts with some
common properties coming from different local schemata. Such relationships are de-
fined with the aid of terminological databases and further user validation. An automatic
action is the generalization of association relationships defined to all specialized con-
cepts in an inheritance hierarchy. Manual adjustments include names of new concepts
and relationship cardinalities.

4.1 Lexical Unification

The LxL case merges the concepts of a lexical cluster, generating a lexical concept LG

at the global schema. It corresponds to the merging of all XML valued content with
affinity in different local schemata: simple elements, empty elements (considered prop-
erties), attributes and valued components of mixed elements. Specific rules determine
the name, data type and allowed values of LG.

Figure 3 shows the unification of two local schemata: S1 and S2. This example
is used to illustrate all unification cases. Several lexical clusters (denoted by (L)) are
defined between local concepts, like 1 and 2. Cluster 1 generates the global concept
Style, with a name chosen by the user between the names in the cluster. As both of the
local concepts have enumerations, they are also unified. Cluster 2 generates the global
concept University, whose name is the one with more incidences in the cluster.

4.2 Non-lexical Unification

The NLxNL case merges the concepts of a non-lexical cluster, generating a non-lexical
concept NLG at the global schema. It corresponds to the merging of all XML element
types that are composed by other elements or attributes: composite elements, mixed
elements and free elements.

To merge relationships, an iterative matching of pairs of concepts in the cluster is
provided, until one single concept (NLG) exists in the cluster. Basically, at each iteration
it is analyzed if two relationships have affinity. Consider two concepts ci and cj in the
same cluster. A relationship ri of ci has affinity with a relationship rj of cj if: (i) ri and
rj have the same type (association or inheritance) and; (ii) both of them associate ci

and cj with concepts in the same affinity cluster ACL. If so, a merged relationship rij

is generated from NLG to the concept that represents ACL in the global schema. User
intervention is required when an association relationship ri has affinity with more than
one relationship of cj (or vice-versa). Such situation raises when cj has two or more
association relationships with a same concept, and these relationships have roles. In this
case, the user must decide if ri has affinity with one of the cj relationship or not. If a
ci or cj relationship has no affinity with other relationships, it is considered an optional
NLG relationship.

The affinity cluster 13 is an example of non-lexical cluster, that generates the global
concept Address. The relationships Address-Country (S1), Address-Street (S2) and
Address-ZipCode (S2) become optional relationships because they have no affinity
with other relationships. The relationships Address-City in S1 and S2 have affinity and
are unified. The cardinality constraints are adjusted to be in accordance to both local
cardinality constraints. The relationship Address-Author in S2 has affinity with two S1

BInXS: A Process for Integration of XML Schemata 161

Fig. 3. An example of unification of two local schemata

relationships: (i) Address-homeAddress-Writer and (ii) Address-workAddress-Writer.
Supposing that user intervention had decided by an affinity with relationship (ii), it is
indicated in the global schema that the relationship Address-workAddress-Author has
mappings to S1 and S2.

A mutual exclusion constraint defined to ci relationships, for example, is directly
represented at NLG if such relationships have no affinity with cj relationships. Oth-
erwise, it is possible that a mutual exclusion constraint conflict exists, and a detailed
analysis of ci and cj relationships must be performed9. In this case, only valid mutual
exclusions are considered over NLG relationships. Basically, a valid mutual exclusion

9 This conflict is implicitly related to the problem of unifying XML elements with alternative
representations.

162 R. dos Santos Mello and C.A. Heuser

is the one that comprises: (i) ci disjoint relationships ri1, ..., rin, and cj disjoint rela-
tionships rj1, ..., rjn with affinity and; (ii) other ci and cj relationships that have no
affinity but are disjoint of ri1, ..., rin and rj1, ..., rjn, respectively. A subset of ci and
cj relationships in a local mutual exclusion constraint without relationship affinity, or
at most with one relationship with affinity, is also a valid mutual exclusion (case (iii)).
Cases (ii) and (iii) preserve local mutual exclusion constraints at the global level.

The unification of the affinity cluster 12 in Figure 3 raises a mutual exclusion con-
straint conflict among the relationships of the local concepts Writer and Author. The
conflict resolution performs as follows: the relationships with University and Enter-
prise are mutually exclusive in both local schemata. Therefore, an exclusion constraint
mei is defined between them in the global schema (case (i)). The relationship Writer-
Research-Institute in S1 has no affinity with S2 relationships but is mutually exclusive
of the two concepts mentioned above. Therefore, it is included in mei in order to main-
tain the S1 constraint (case (ii)). Besides, the relationship subset that comprises Writer-
Research-Institute and Writer-Office is still mutually exclusive in S1. As Writer-Office
is the only relationship with affinity, an exclusion constraint is defined on them at the
global schema (case (iii)).

Again, observe that the global relationships Author-University, Author-Enterprise
and Author-Office are defined as optional Author relationships. Such definitions avoid
that, for example, Author-University and Author-Office always occur simultaneously at
the global level, considering that their correspondent relationships in S1 are mutually
exclusive. Such analysis is also performed during the resolution of mutual exclusion
conflicts.

4.3 Mixed Unification

The NLxL case merges all the concepts of a mixed cluster, generating a global non-
lexical concept NLG. It corresponds to the merging of structured and valued information
with affinity in different local schemata.

The unification proceeds as follows: first, all non-lexical concepts are unified into a
preliminary non-lexical concept NLP by the application of the NLxNL case. After, for
each remaining lexical concept Li in the cluster, the user decides by one of the following
alternatives: (i) Li is mapped to a global lexical concept related to NLP , assuming that
Li has a semantic correspondence with a NLP property; (ii) Li becomes a global concept
and a new non-lexical concept NLU is defined as a mutually exclusive generalization of
Li and NLP . Such alternative assumes that Li corresponds to the union of two or more
NLP properties, and must be denoted as an alternative representation for NLP at the
global level; (iii) Li becomes a global concept associated to NLP , assuming that Li has
no semantic correspondence with NLP properties.

The affinity cluster 14 in Figure 3 is an example of a mixed cluster composed by
the lexical concept Article and the non-lexical concept Paper. Considering that Article
keeps titles of articles in S2, it corresponds to the lexical concept Title associated to
Paper in the global schema (alternative (i)). Then, this mapping to the concept Title is
also kept in the global schema, as shown in Figure 3. Alternative (ii) could be applied
if, for example, Article content was a complete bibliographic reference, including not
only a title, but also other reference information. In this case, a non-lexical concept

BInXS: A Process for Integration of XML Schemata 163

GenericPaper could be defined as a mutually exclusive generalization of Paper and
Article, representing an abstraction of two possible disjoint representations for a paper.

5 Related Work

There are several work related to the integration of semistructured data [11, 21, 23, 24]
or XML sources [15, 16, 20, 22, 28, 29, 30, 32]. Some of them gives support to a man-
ual integration process, acting only as a tool that aids the user to define global views
or mappings among local schemata [24, 30]. Thus, their integration process has a low
quality because they provide a weak automation level. Another point is the canonical
model. There are work that deal with hierarchical models for semistructured data as the
canonical model, or performs the integration straightly over the XML model [15, 16, 24,
29, 32]. As a conceptual schema is not considered, their models enforce the structural
organization of data instead of data semantics.

An approach different from BInXS is followed by [24], that defines mappings among
local schemata instead of creating a global schema. This alternative is not adopted by
BInXS because we are considering the context of the Web, where there are a lot of
available XML sources. In this context, it is preferable to define a global representation
of these sources in order to provide an integrated access to them.

Close related work are [11, 20, 21, 23, 28], which also propose semi-automatic sche-
ma integration of conceptual representation of semistructured schemata. However, they
do not consider all features of the XML logical model, like elements with alternative
representations, mixed elements and references between elements, or do not detail the
mixed unification case as BInXS does. In [22], it is proposed an ER-like conceptual
model for representing XML data that considers XML hierarchical relationships be-
tween elements in the conceptual schemata. As the same related real world facts may
be expressed by different hierarchies in two or more XML schemata, this model is not
suitable to represent an integrated view of these schemata.

6 Conclusion

BInXS is a solution to the problem of schema integration for XML data. The focus
on XML schemata is justified by the widespread use of XML protocols by users and
applications to represent and interchange data, specially over the Web. The bottom-up
approach followed by BInXS is suitable to the context of the Web because it provides
an unified view of a lot of heterogeneous XML sources over the Web. If used as a basis
for querying XML data sources, this unified view avoids that users and applications
must know the schema of each XML source in order to formulate a query.

Compared to related work, the main contributions of BInXS are the following:

– A semi-automatic conversion process of an XML schema to a conceptual schema:
this process is based on a detailed analysis of the XML logical model and XML
documents in order to obtain a correspondent conceptual abstraction where data se-
mantics is much clear. The proposed conceptual representation is able to model all

164 R. dos Santos Mello and C.A. Heuser

types of elements (simple, composite, mixed, etc); attributes; element-to-element
association, element-to-attribute association, references between elements; inferred
inheritance relationships between elements; and alternative representations for ele-
ments;

– A semi-automatic unification process for conceptual representations of XML sche-
mata: this process is suitable to XML schema integration because takes into con-
sideration the implicit merging of heterogeneous XML data, with content models
that may hold a value, a structure composed by other XML data, a mix of value and
structure, and have alternative representations;

– A mapping strategy between a global schema and an XML schema: the XPath lan-
guage is used to define mapping expressions from conceptual data to XML data.
Because XPath is a language for querying XML data, a query defined over the
global schema is easily translated to an XPath query to be executed at an XML
source. No similar strategy was found in related work.

As user expertise is considered in the process, a good integration quality is always
expected. However, future work include the consideration of instance-based integration
techniques at BInXS with the purpose of improving the quality of the results generated
automatically. On combining schema and instance analysis of XML sources, it is pos-
sible to establish semantic correspondences with much precision. The consideration of
semantic integrity constraints of local XML sources is also important. Such information
could be available and associated to concepts and relationships of the global schema in
the global catalog. Thus, if a global query qi defines a selection predicate that is not in
accordance to the semantic constraints of an XML source XSi, qi does not need to be
translated to XSi because no XML instances will be retrieved from there.

References

1. CXML.org. Available at: <http://www.cxml.org>, mar 2005.
2. DBLP Bibliography. Available at: <http://www.informatik.uni-trier.de/l̃ey/db/>, mar 2005.
3. EBisXML. Available at: <http://www.basda.org>, mar 2005.
4. SIGMOD Record. Available at: <http://www.acm.org/sigs/sigmod/record/xml>, mar 2005.
5. W3C XML Schema. Available at: <http://www.w3.org/XML/Schema>, mar 2005.
6. XML Path Language. Available at: <http://www.w3.org/TR/xpath>, mar 2005.
7. Extensible Markup Language (XML). Available at: <http://www.w3.org/XML>, mar 2005.
8. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured

Data and XML. Morgan Kaufmann, San Francisco, California, 2000.
9. C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design: An Entity-Relationship

Approach. Benjamin/Cummings Publishing Company, 1992.
10. C Batini, M. Lanzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Computing Surveys, 18(4):323–364, december 1986.
11. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic Integration of Het-

erogeneous Information Sources. Data & Knowledge Engineering, 36(1):215–249, march
2001.

12. S. Busse, R. Kutshce, U. Leser, and H. Weber. Federated Information Systems: Concepts,
Terminology and Architectures. (Technical Report, 99-9), Berlin: Universitt Berlin, 1999.

BInXS: A Process for Integration of XML Schemata 165

13. S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML Sources
Through a Conceptual Schema. In 22th International Conference On Conceptual Modeling
(ER), pages 186–199, Chicago, USA, 2003. Springer-Verlag.

14. S. Castano, V. Antonellis, and S. C. Vimercati. Global Viewing of Heterogeneous Data
Sources. IEEE Transactions on Knowledge and Data Engineering, 13(2):277–297, march
2001.

15. I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-Based Framework for XML Semantic Inte-
gration. In International Database Engineering and Applications Symposium (IDEAS’04),
pages 217–226, Coimbra, Portugal, 2004. IEEE.

16. A. Doan, P. Domingos, and A. Halevy. Reconciling Schemas of Disparate Data Sources:
A Machine-Learning Approach. In ACM International Conference on Management of Data
(SIGMOD), pages 509–520, Santa Barbara, USA, may 2001.

17. A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of Heterogeneous and Au-
tonomous Database Systems. Morgan Kaufmann, San Francisco, California, 1999.

18. A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 10(4):270–294,
december 2001.

19. T. Halphin. Object-Role Modeling (ORM/NIAM), Handbook on Architectures of Information
Systems, chapter 4, pages 81–102. Springer-Verlag, 1998.

20. P. Lethi and P. Fankhause. XML Data Integration with OWL: Experiences & Challanges. In
International Symposium On Applications and the Internet (SAINT’2004), pages 160–170,
Tokyo, Japan, 2004. IEEE.

21. S. Lim and Y. Ng. An Automated Integration Approach for Semi-structured and Structured
Data. In 3th International Symposium on Cooperative Database Systems for Advanced Ap-
plications (CODAS), pages 12–21, Beijing, China, april 2001. IEEE.

22. B. F. Lscio and A. C. Salgado. Generating Mediation Queries for XML-based Data Inte-
gration Systems. In 18th Brazilian Symposium on Databases (SBBD’2003), pages 99–113,
Manaus, AM, october 2003.

23. J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema Matching with Cupid. In 27th
Conference on Very Large Data Bases (VLDB), pages 49–58, Rome, Italy, september 2001.
Morgan Kaufmann.

24. P. McBrien and A. Poulovassilis. A Semantic Approach to Integrating XML and Structured
Data Sources. In 13th Conference On Advanced Information Systems Engineering (CAISE),
pages 330–345, Interlaken, Switzerland, 2001. Springer-Verlag.

25. R. S. Mello. Uma Abordagem Bottom-Up para a Integracao Semantica de Esquemas XML.
PhD thesis, Universidade Federal do Rio Grande do Sul, july 2002. (In Portuguese).

26. R. S. Mello, S. Castano, and C. A. Heuser. A Method for The Unification of XML Schemata.
Information and Software Technology, 44(4):241–249, march 2002.

27. R. S. Mello and C. A. Heuser. A Rule-Based Conversion of a DTD to a Conceptual Schema.
In 20th International Conference On Conceptual Modeling (ER), pages 133–148, Yokohama,
Japan, 2001. Springer-Verlag.

28. K. Passi, L. Lane, S. K. Madria, B. C. Sakamuri, M. K. Mohania, and S. S. Bhowmick. A
Model for XML Schema Integration. In 3th International Conference On E-Commerce and
Web Technologies (EC-WEB 2002), pages 193–202, France, 2002. Springer-Verlag.

29. C. Reynaud, J. Sirot, and D. Vodislav. Semantic Integration of XML Heterogeneous Data
Sources. In International Database Engineering & Applications Symposium (IDEAS), pages
199–208, Grenoble, France, july 2001. IEEE.

30. P. Rodriguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-Based Data Inte-
gration. In 20th International Conference On Conceptual Modeling (ER), pages 117–132,
Yokohama, Japan, 2001. Springer-Verlag.

166 R. dos Santos Mello and C.A. Heuser

31. A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed, Hetero-
geneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183–236, september
1990.

32. X. Yang, M. L. Lee, and T. W. Ling. Resolving Structural Conflicts in the Integration of
XML Schemas: A Semantic Approach. In 22th International Conference On Conceptual
Modeling (ER), pages 520–533, Chicago, USA, 2003. Springer-Verlag.

Query Processing Using Ontologies

Chokri Ben Necib and Johann-Christoph Freytag

Humboldt-Universität zu Berlin, Germany
{necib, freytag}@dbis.informatik.hu-berlin.de

Abstract. Recently, the database and AI research communities have paid in-
creased attention to ontologies. The main motivating reason is that ontologies
promise solutions for complex problems caused by the lack of a good under-
standing of the semantics of data in many cases. In particular, ontologies have
extensively been used to overcome the interoperability problem during the inte-
gration of heterogeneous information sources. Moreover, many efforts have been
put into developing ontology based techniques for improving the query answer-
ing process in database and information systems.

In this paper, we present a new approach for query processing within single
(object) relational databases using ontology knowledge. Our goal is to process
database queries in a semantically more meaningful way. In fact, our approach
shows how an ontology can be effectively exploited to rewrite a user query into
another one such that the new query provides more meaningful results satisfy-
ing the intention of the user. To this end, we develop a set of transformation
rules which rely on semantic information extracted from the ontology associ-
ated with the database. In addition, we propose a semantic model and a set of
criteria to prove the validity of the transformation results. We also address the
necessary mappings between an ontology and its underlying database w.r.t. our
framework.

1 Introduction

With the rapid growth of data in databases and information sources and the increasing
demands for exchanging information through the internet, the challenges in accessing
data become more complex than in past few decades. The major problems are: (i) hid-
ing the heterogeneity in format and structure of data from the users, (ii) overcoming
the confusion in terminologies caused by employing synonyms and homonyms, and
(iii) providing users with the most relevant answers to his requests in less time and/or
resources. Therefore, the need to ”understand” data of the information sources is in-
creasing. Web search engines, for example, try to replace their syntactic based retrieval
of information by a semantic based one [5]. In this context, researchers become aware
of the usefulness of semantic knowledge to deal with the problems above. Indeed, se-
mantic knowledge about a specific source can be considered as a meta-data layer over
the instances of the underlying source.

Recently, ontologies have become popular candidates to capture such semantics.
The reason is that an ontology can provide a shared common understanding of the ap-
plication domain in concise and consensual manners. In fact, ontologies provide the

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 167–186, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

168 C.B Necib and J.-C. Freytag

meaning of terms and their relationships by which the domain is modelled [20]. They
have been proven to be an important support for managing data in database and informa-
tion systems for overcoming the interoperability problem of heterogeneous information
sources. Thus, users should not care about where and how the data are organized in the
sources. For this reason, in systems like OBSERVER [12] and TAMBIS [16] users for-
mulate their queries over a given ontology without directly accessing the data sources
themselves. In the meantime, ontologies are also used to enhance the functionality of
Web search engines by associating meaning with the content of Web pages. Several
approaches propose to annotate Web resources with ontology knowledge and inference
mechanisms to improve the search [19, 9]. These efforts, among others, converge to
build the so called Semantic Web.

In this paper, we present a new approach on how to improve the answers of database
queries based on semantic knowledge expressed in ontologies. Given a database, we
assume the existence of an ontology which is associated with the database and which
provides the context of its objects. We show how an ontology can be exploited effec-
tively to reformulate a user query such that the new query can provide more ”mean-
ingful” answer meeting the intention of the user. A query can be defined by a set of
selections and projections over database objects satisfying a set of conditions. These
conditions are defined by a set of terms and determine the answer to the query. If
a user wants to retrieve information from a database about certain objects, he might
use terms, which do not exactly match the database values (due to the mismatch be-
tween the user’s world view and the database designer’s world view). However, there
might be values in the database that are syntactically different from one another but
semantically equivalent to the user terms and that express the same intention of the
user. We address this issue as a semantic problem rather than as a pattern matching
problem.

The remainder of this paper is organized as follows. First, we state the problem il-
lustrating it by some examples. Then, the concepts of ”ontologies” are described. In
Section 4 we present our approach for query processing and propose necessary refor-
mulation rules. In order to prove the soundness of the approach a semantic model and
a set of criteria are proposed in Section 5. Mappings used to connect an ontology to
its underlying database are discussed in Section 6. Finally, Section 7 concludes the
paper.

2 Motivation and Problem Statement

Traditional techniques for query processing which rely on syntactic approaches become
insufficient to cope with problems caused by the heterogeneity of data in its format and
structure [22]. Current database and information systems require ”more knowledge”
about information sources in order to retrieve data in an efficient manner and satisfy the
user expectations. For instance, semantic knowledge in the form of integrity constraints
have been extensively used for developing query optimization techniques. There, the
goal is to rewrite a user query into another query which can return the same result
in less time and/or less resources [3]. This paper outlines a new approach for query
processing which exploits data semantics in forms of ontologies to provide users with

.

Query Processing Using Ontologies 169

Table 1. Item relation

A-ID Name Model Price
123 computer ibm 3000 $
124 intelPc toshiba 5000 $
125 notebook dell 4000 $
127 pc compaq 2500 $
128 product hp 3000 $
129 monitor elsa 1000 $
135 keyboard itt 80 $
136 desktop ibm 1000 $
140 macPc mac 2000 $
141 calculator siemens 1500 $

Table 2. Component relation

S-ID M-ID
123 129
123 135
123 136
124 129
124 135
124 136
125 135
127 129
127 135
127 136
128 129
128 135
128 136
140 129
140 135
140 136
141 135

meaningful answers to their queries. The basic idea is to allow the DBMS to deal with
user queries both at the semantic as well as the syntactic level. There, users do not need
to fully understand the database content to issue their queries and the resulting database
answers could fulfil completely their expectations. In fact, if a user attempts to retrieve
information about certain objects from a database, the answer to his query might not
satisfy his needs. This can be justified by several facts. First, the information stored
in databases are usually captured in natural languages. This leads to several variations
in expression of the same concept (synonym problem). Moreover, languages introduce
multiple meanings of the same expression (homonym problem). These problems might
affect the query results when formulating queries using certain terms. Second, there
might be different ways to formulate a query using semantically equivalent terms. We
define two sets of terms to be semantically equivalent if they have the same meaning
i.e. if their relevant concepts and relationships in the ontology identify the same con-
cept. For example, if two terms are synonyms, they are semantically equivalent. There
might be several such sets. Therefore, when a user formulates his query, he might use
terms partially covering these semantics. Third, some results in the answer might not
be related to the same context associated with the query. The context must be defined
by the user. We consider the following example to illustrate these ideas throughout the
paper.

Example 1: Assuming we have a relational database, denoted by DB1. This database
contains information about technical items of a store and includes two relations called
’Item’ and ’Component’: The relation Item contains a set of items described by the
attributes ’name’, ’model’ and ’price’. The relation component contains the parts be-
longing to each item. The relational schema of DB1 is described as follows:

170

ITEM(A-ID, Name, Model, Price)
A-ID: Item identifier
Name: Name of the Item
Model: Model of the Item
Price: Price of the Item
PrimaryKey(A-ID)

COMPONENT (S-ID, M-ID)
M-ID: Main part identifier
S-ID: Second part identifier
Foreign-Key(M-ID) TO ITEM
Foreign-Key(S-ID) TO ITEM
Primary-Key(S-ID,M-ID)

Suppose, at present, that DB1 contains the instances as shown in the Tables 1 and 2.
Querying the database DB1 to retrieve information about the Item ”computer” also
means information about the Items ”data processor” and ”calculator” because these
terms are synonymous with the term ”computer”. Consequently, if a user formulates
his query specifying only the term ”computer” he might miss other tuples concerning
”data processor” and ”calculator”. In addition ”computer” is implied by other terms
which should be considered in the query. This example seems to be simple, but there
could be more complicated ones depending on the nature of the query as we shall see
later. In fact, the difference between the user’s perception of real world objects and the
database designer, who registers information about these objects, might cause semantic
ambiguities including a ”vocabulary problem”. Therefore, it is hard for the DBMS to
solve such semantic problems without additional semantic knowledge like ontologies.

In summary, we state our problem as follows:
Given a database DB, an ontology O and a user query Q, find a reformulated query Q′

of Q by using O such that Q′ returns more meaningful answer to the user than Q.

3 Ontology

3.1 Definition

In recent years, the term ”Ontology” has become a ”buzz word” for researches in the
fields of databases and artificial intelligence. There are many definitions of what an on-
tology is [7, 8, 15, 4, 19]. An initial definition was given by Tom Gruber: ”An ontology is
an explicit specification of a conceptualization” [7]. Ontologies have been increasingly
emerging because of the crucial role that they play: Ontologies provide a concise and
unambiguous description of concepts and their relationships for a domain of interest.
This knowledge can be shared and reused by different participants.

Informally, we define an ontology as an intentional description of what is known
about the essence of the entities in a particular domain of interest using abstractions,
also called concepts and the relationships among them. Basically, the hierarchical or-
ganization of concepts through the inheritance ("ISA") relationship constitutes the
backbone of an ontology. Other kinds of relationship like part-whole ("PartOf") or
Synonym ("SynOf") or application specific relationships might also exist. Further-
more, a set of logical axioms is often associated with the ontology to specify semantics
of the relationships. To the best of our knowledge, there is no work until now addressing
the issue of using ontology relationships at the database instance level.

For clarity, we have to distinguish between the meaning of the term ”concept” and
that of the term ”concept instance”. A concept is a description of a group of real world

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 171

objects in a certain domain whereas a concept instance is a set of values that represent
these objects [2]. Note that many real-world ontologies already combine data instances
and concepts [8]. In our definition we do not consider instances as part of an ontology.

For the remainder of the paper we refer to the set of the ontology concepts as
ζ = {c1, . . . , cn} and the set of ontological relationships as
 = {”ISA”, ”SynOf”,
”PartOf”, . . .}, where ci ∈ ζ and ri ∈
 are non-null strings. We denote the set of
axioms by �.

3.2 Graphical Representation

An ontology can be then represented as a directed labelled graph G(V,E), where V is
a finite set of vertices and E is a finite set of edges: Each vertex of V is labelled by a
concept from ζ and each edge of E is labelled by an inter-concept relationship from
.
Note that instances are not represented in G because they do not belong to an ontology.
Further, we refer to a node by its label (a concept) and refer to an edge by its node
concepts and its label (a relationship). For instance, the statement e = c1 Ri c2 refers
to the edge between the concept nodes c1 and c2 which is labelled by a relationship
Ri. Formally, the graph G can be expressed as a relation G ⊆ ζ ×
 × ζ. Appendix A
gives the most important graph operations that are used to extract concepts for query
reformulations.

Figure 1 gives an example of a graph representation of a fragment of an ontology
called ”Product Ontolgy” (denoted by O1). The ontology describes concepts and their

PRODUCT

ELECTRONIC
NON-

ELECTRONIC

COMPUTER

MACPC INTELPC

KEYBOARD

CLOTHES SCREEN

TUBE

PC

DESKTOP

TV-SCREEN NOTEBOOK PALMTOP

MONITOR

NORMAL

MONITOR

LCD

MONITOR

VEHICLE

CAR VAN

MINIVAN
FULLSIZE

VAN

ISA

PartOf

DATA

PROCESSOR

CALCULATOR

SynOf

Fig. 1. Product Ontology O1

172

relationships related to products. A part of this ontology is adopted from an ontology
described in [11].

In summary, we define an ontology as the following set: O = {G, ζ,
,�} .

4 Ontology Based Query Processing

The objective of our approach to query processing is to determine an alternative way to
reformulate an input query into another ”meaningful” query but not necessary equiva-
lent one. The approach can be applied to the DBMS in a simple manner without any
complex modifications of its core. Figure 2 shows an overview on the system’s ar-
chitecture. The system mainly consists of three components. The first component is
the transformation engine which constitutes the core of the system. It performs a pre-
processing of an input query, say Q, before submitting it to the database. This is done by
reformulating Q into another query, say Q′, in a semantic meaningful way using a set
of semantic rules. These rules rely on additional semantics extracted from an ontology.
Basically, they must contribute to:

– Expand user queries by changing their select conditions using synonyms for the
terms in the condition and others specifying them.

– Substitute the query conditions with other conditions that are semantically equiva-
lent.

– Reduce the scope of queries by restricting its context (see section.

Q

Transformation

Engine

DB

Ontology

Q’

Semantic Rules

Rule Derivations

Mappings

Constraints

DBMS

Fig. 2. System Architecture

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 173

During query reformulation semantic rules are applied uniformly, in any order. This
is done iteratively such that at each iteration the reformulated query obtained in the
previous iteration is used to generate another query until no more reformulations are
possible. It is possible that no rules can be applied to the query and the output query
is then equal to the input query. The rule derivation process is done manually by on-
tology and database experts. We have developed a set of such rules based on infor-
mation mappings between ontological and database entities. The second component
is an ontology which is associated with the underlying database. It could be either
a general or a domain-oriented ontology depending on the nature of the database in
question. Here, the role of the ontology is to provide semantic knowledge about the
data in the database. Its content is adapted to the database instances in such way that
it should be used correctly and completely (see section 5). The dashed arrow repre-
sents a set of constraints that must be satisfied for this purpose. The third component
is the DBMS which processes the output query and returns the answer to the user. The
answer might contain more or fewer tuples than that answer expected by the origi-
nal query. According to this feature we classify the reformulation rules into two cate-
gories: Augmentation rules and reduction rules. In this paper we focus on the second
class. For the first class we describe only one rule; please refer to [14] for additional
rules.

Notations. Let U be a set of attributes A1, . . . , An with domains dom(Ai). Let
DB be a database whose D is the set of all attribute domains. Let ID be the set of
id-attributes of DB. The database schema is defined as a set of relation schemas R1

,. . .,Rm with Ri ⊆ U . We denote by PKEY S(U), the set of primary Keys and by
FKEY S(Ri, Rj) the set of foreign keys in Ri to Rj . Furthermore, we choose the
Domain relational calculus (DRC) to represent user queries [21]. Let δ1 be the map-
ping that represents matchings between relation names of and ontology concepts called
relation-concepts; δ2 be the mapping that represents matchings between attribute names
and ontology concepts called attribute-concepts, and δ3 be the mapping that represents
matchings between database values and ontology concepts called value-concepts. Fi-
nally, let δ4 be the mapping that represents matchings between a pair of attribute names
and ontology relationship-types.

4.1 Augmentation Rules

The goal of these rules is to extend the query answer with results that meet user’s expec-
tations. To this end, we have developed four rules: a Vocabulary-, a Support-, a Feature,
and a Part-Whole rule [13, 14]. The first rule addresses semantic ambiguities discussed
in section 2. The second rule is based on semantics of the relationships from which
the ontology is constituted. The third rule is based on the domain-specific relationships
that are mapped to the database model. In the following, we describe the fourth rule in
details.

The basic idea of the Part-Whole rule is the use of the ”part-whole” properties to
discover new database objects which are closely related to those the given query returns.
Based on the semantic relationship "PartOf" the rule rewrites a user query by substi-
tuting the query terms by other semantically equivalent ones. For this rule, the concepts
corresponding to the substituted terms together with the "PartOf"-relationships spec-

174

ify the same concepts corresponding to the original query terms. Thus, the same type of
the object specified in the query can be defined in another way by using an alternative
set of terms. A formal description of the rule is given in Appendix B.

For example, if a user wants to retrieve data about the Item ”pc” from the database
DB1, the query submitted may look like

Q1 = {(x1, x2, x3, x4)| (x1, x2, x3, x4) ∈ ITEM ∧ x2 = ”pc”}.
This query asks for objects of type ”pc”. According to the ontology O1 we deduce that
a ”pc” is composed out of three parts: a ”desktop” , a ”monitor” and ” a ”keyboard”.
Assuming that all PC-objects in the database are composed exactly out of these parts,
which do not participate in the composition of any other object, enables the identifica-
tion of PCs by means of their components. Thus, the set of terms {”desktop”, ”monitor”,
”keyboard”} and the term ”pc” are semantically equivalent.

By applying the Part-Whole rule to the query Q1 we obtain a reformulated query Q
′
1

that retrieve also objects whose parts are the previous components. A formal description
of Q

′
1 is given in Appendix B. Therefore, it is not surprising that the tuples 123 and 128

with attribute values ”computer” and ”product” meet fully the intention of the user.
When a user poses the query Q1 to the DB1 database, these tuples will certainly be
missed. As a result, the number of tuples will increase.

4.2 Reduction Rules

The main feature of these rules is that after reformulating a user query the number
of tuples in the answer might decrease compared to that number of tuples before any
reformulation.

In the following, we describe one of such rules. We call this rule ”the sensitivity
rule” because its goal is to increase the sensitivity of a user query. A query is called
sensitive if its answer contains as few as possible false positives. We define a tuple as
false positive if it is semantically not correct w.r.t. the user’s expectations.

For example, a problem might occur when querying a database containing homony-
mous terms. If a user queries a database using terms in his query expression that might
be homonymous with some other terms in that database, the answer to his query might
contain tuples that are irrelevant to him. For instance, the term ”bank” has differ-
ent meanings. It means either a container for keeping coins or a piece of furniture
for sitting on or a financial institution for saving money [1]. Therefore, if a user
queries a given database for information concerning an object ”bank”, the database
might return tuples containing data about furniture, containers and institutions of type
bank. This might not meet the user’s intention if the user expects data only on furni-
ture.

To solve this problem, we propose a reformulation rule based on the use of an on-
tology associated with the given database. By applying this rule a context could be
specified for a user query. That is, the context defined by the semantic description of
the data, which uses vocabularies from the ontology to express the user’s intention. The
intuition is to specify user queries sufficiently to derive the relevant meaning based on
the ontology concepts. Thus, in the example above, the user’s intention to find informa-
tion about ”bank” as furniture can be specified by domain specific ontologies which can

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 175

ANYTHING

OBJECT

ARTIFACT

HOLDER

SADDLE

FILTER

CONTAINER

Elec.

DEVICE

DEVICE

BANK

COMPUTER

ANIMAL

Non Elec.

DEVICE

ORGANISM

BANKBOTTLE

FURNITURE

SEAT
BED

CHAIR
BANK

PERSON

SUBSTANCE

METAL

CLAY

WOOD

MATERIAL

RELATION

COMMUNI-

CATION

ABSTRACTION

EXCHANGE

MEDIUM

LANGUAGE

MONEY

FUNDCOINS

ISA

UsedFor

MadeOf

FlUID

FACILITY

DEPOSITORY

MUSEUM

Save

TIME

Fig. 3. Entity Ontology O2

describe different aspects of furniture. Thus, the context of user queries is restricted to
furniture. However, if the ontology is more general i.e. specifies more than one context
(see Figure 3). In this case it would be difficult to determine the user’s intention imme-
diately. For example, the concept BANK might label two different nodes in two different
subgraphs of the ontology. Each subgraph represents the related context of ”bank”. We
suggest that the system asks the user to specify a unique ”context”. This could be done
by providing him with the possibility to choose one of the ontology contexts in terms of
the immediate uncommon concepts (imuc) of the BANK nodes. The immediate uncom-
mon concepts of two given concepts are defined in terms of the least common concept
(lcc) as follows:

Definition 1. Let a, b, l be concepts of ζ. l is a least common concept (lcc) of a and b iff

– a ∈ DESC(”ISA”, l) and b ∈ DESC(”ISA”, l),
– ∀k, k′ ∈ ζ, if a, b ∈ DESC(”ISA”, k) ∩DESC(”ISA”, k′) then k = k′

– if ∃ c′ ∈ ζ | a ∈ DESC(”ISA”, c′) and b ∈ DESC(”ISA”, c′) then
l ∈ DESC(”ISA”, c′)

Definition 2. Let a, b, m, m′, g, and g′ be concepts of ζ. m and m′ (m �= m′) are
immediate uncommon concepts (imuc) of a and b resp. iff

– ∃ l ∈ ζ | l = lcc(a, b) AND
– m = RChild(”ISA”, l) ∧m′ = RChild(”ISA”, l)

176

For example, the immediate uncommon concepts of the concepts BOTTLE and
CHAIR are the concepts DEVICE and FURNITURE, respectively, since their least com-
mon concept is the concept ARTIFACT.

Next, we illustrate the sensitivity rule and its effectiveness by means of an example.
A formal description of the rule is given in Appendix B.

Example 2. We assume a database DB2 containing information about store items. The
DB2 schema might have a relation, called ’Store’, whose schema defines the name of
each object, the material it is made of, its use and its price. An instance of DB2 and a
description of the relation ’Store’ are given as follows:

STORE(A-ID, Name, Made, Use, Price)
A-ID: Store identifier
Name: Store name
Made: Material type
Use: Purpose of use
Price: Item price
Primary-Key(A-ID)

In addition, we assume an ontology, denoted by O2, which describes concepts of
things. A portion of O2 is adopted from [17, 6]. This ontology contains additional do-
main relationships: "MadeOf", "UseFor" and "Save". The meaning of "UseFor"-
relationship, for example, is that if A (a concept) relates to B (a concept) by this rela-
tionship, the objects referred to A are used for purposes given by the objects referred to
B. Figure 3 shows a graph representation of a portion of O2. For the sake of clarity we
omit some nodes and the other kinds of relationships.

Now, suppose that the user wants to retrieve all tuples from DB2 concerning the
container ’bank’. His query can be represented as following:

Q2 = {(x1, x2, x3, x4, x5) | (x1, x2, x3, x4, x5) ∈ STORE ∧ x2 = ”bank”}.
Obviously, the answer from the current DB2 database to the query Q2 contains the tu-
ples 42 and 47. However, the tuple 42 does not meet the intention of the user since it
relates to furniture. By using the ontology O2 the system could deduce that ”bank” is
related to three different contexts: Furniture, device and facility. This is done by retriev-
ing the imuc of BANK concepts. Therefore, it has to ask again the user for specifying
his query providing him the three relevant variants. If the user means a device ”bank”,
the system will be able to specify the concept BANK from O2 that the related objects
are used for keeping coins. Thus, the user query should include terms represented by
the concept COINS to assert the intended context of the answer. The application of
the rule 2 to the query Q2 leads to the following query:

Q
′
2 = {(x1, x2, x3, x4, x5) | (x1, x2, x3, x4) ∈ STORE ∧ (x2 = ”bank”∧

x3 = ”coins”) }.

The answer to this reformulated query will contain then only the tuple 47 as expected
by the user.

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 177

5 Semantic Model and Criteria

In this section, we propose a semantic model and two basic criteria which allow us to
validate the reformulation rules and to ensure the consistency of the ontology with its
underlying database. Due to the lack of space we will not describe the validation of the
proposed rules, please refer to [14] for this issue.

5.1 Semantic Model

The semantic model is stated as an extension of the given ontology, denoted by O∗,
which includes new concepts and additional relationship types. The new concepts rep-
resent relation names, attribute names and attribute values of the database unless they
already exists. We denote these concepts by NCRN , NCAN and NCV , respectively.
We call id-concepts the concepts that represent id-values of the database and denote its
set by Ω.

The additional relationships have to relate the new concepts to the existing ones or
to each other. Their types are defined as follows:

– "ValueOf" is the type of relationship that relates each value-concept to its asso-
ciated attribute-concept.

– "HasA" is the type of relationship between relation-concepts and attribute-concepts.
– "InstanceOf" is the type of relationship that relates an Id-concept to its associ-

ated relation-concept.
– "TupleVal" is the type of relationship that relates value-concepts to each other,

which are associated with a particular tuple.

Figure 4 shows a portion of the semantic model O∗
1 related to the ontology O1 and the

database DB1.
In summary, the extended ontology is defined by O∗ = {G∗, ζ∗,
∗,�∗} where

ζ∗ = ζ ∪NCV ∪NCAN ∪NCRN ,
∗ =
 ∪ {”ValueOf”, ”InstanceOf”, ”HasA”
”TupleVal”}, and �∗ consists of all logical axioms related to
∗.

An extended ontology could also be expressed in a logical language. For instance,
using the First Order Language (FOL) O∗ can be defined as a theory Γ which consists
of an Interpretation I and a set of well formed formulas [18]. I is specified by the
set of individuals ζ∗ and an interpretation function ·I . Appendix C shows a logical
interpretation of O∗

1 .

5.2 Consistency Criteria

The basic consistency criteria are correctness and completeness, which aim at assert-
ing the soundness of our framework. Hence, a set of constraints must be checked for
applying correctly the transformation rules. These constraints affect the design of the
ontology and the implementation of database instances. Note that the ontology must
not be created from scratch but a preexisting one could be reused and adapted to the
underlying database by respecting these constraints [20]. Similarly, database instances
must satisfy the constraints specified by the ontology.

In order to formally define the consistency criteria we need the graph operator
SelectRel (see Appendix A). From a semantic point of view, if two id-concept nodes

178

PRODUCT

ELECTRONIC

COMPUTER

MACPC INTELPC

KEYBOARD

SCREEN

PC

DESKTOP

NOTEBOOK PALMTOP

MONITOR

ARTICLE

ARTICLE

NAME

ARTICLE

MODEL

ARTICLE

PRICE

IBM

ELSA

3000$

129

123

1000$

IsA

PartOf

ValueOf

InstanceOf

TupleVal

HasA

Fig. 4. A portion of the Semantic Model O∗
1 in Figure 1

are adjacent (common edges are of type "TupleVal") then the semantic relationship
between the represented concepts can be deduced from the result of the SelectRel op-
eration on these nodes. For example, if we apply SelectRel-operator on the concept
nodes corresponding to the identifiers 123 and 129, we can deduce that the object iden-
tified by 129 is part of the object identified by 123. We denote by |SelectRelPartOf ()|
the number of "PartOf"-labels returned by the SlectRel-operator.

Definition 3. Let be ic1, ic2 ∈ Ω. ic1 and ic2 are said to be semantically dependent if
and only if SelectRel(G∗, ic1, ic2) �= Ø.

Correctness Criterion. Intuitively, correctness means that any results of the reformu-
lated query, say Q′, can be ”derived” in the extended ontology O∗ i.e. the concepts and
relationships corresponding to database objects in the results of Q′ must be correctly
represented in the model O∗.
Formally, an extended ontology O∗ is a correct model if and only if:
∀id1, id2 ∈ dom(ID), R ∈ DB, ID ∈ PKEY S(R) such that (id1, c1) ∈ δ3 and
(id2, c2) ∈ δ3:

1. IF G∗(c1, ”TupleVal”, c2) THEN c1 and c2 are semantically dependent

C.B Necib and J.-C. Freytag.

2. IF |SelectRelPartOf (G∗, c1, c2)| �= ∅ THEN |SelectRelPartOf (G∗, c1, c2)| = 1

Query Processing Using Ontologies 179

3. IF ∃Ai, Aj ∈ R | ({(Ai, Aj)}, β0) ∈ δ4 THEN ∀μ ∈ R, G∗(ci, β0, cj)
where β0 ∈
, i �= j, (μ[Ai], ci) ∈ δ3 and (μ[Aj], cj) ∈ δ3

The intuition behind the first constraint is that if two database tuples are semantically
related, then there exist in O∗ at least one semantic relationship between the two value-
concepts associated with two attribute values of the tuples. The intuition behind the
second constraint is that only a PartOf-relation level is allowed for all the database
instances i.e. if item A is part of item B and item B is part of item C than the database
does not store explicitly the relation: Item A is part of item C. The third constraint
asserts that if a semantic relationship between two concepts representing two attribute
names exists then the concepts representing the attribute values should be related to
each other through the same relationship.

Completeness Criterion. Intuitively, completeness ensures that any tuple that is ”de-
rived” in O* for a given query Q′ should also be in the answer of Q’ i.e. the value-
concepts together with their relationships corresponding to the results of Q′ at the se-
mantic level must be reflected in the database instance. Completeness constraints are
formally described as follows:

1. ∀id1avp ∃ id2 Key(id1) ∧ TUPV AL(id1, av) ∧ PARTOF (av, p)→
TUPV AL(id1, id2) ∧ TUPV AL(id2, p) ∧Key(id2)

2. ∀id1avp ∃id2 Key(id1) ∧ TUPV AL(id1, av) ∧ COMMONPART (av, p)→
Key(id2) ∧ TUPV AL(id1, id2) ∧ TUPV AL(id2, p)

Due to limited space we describe the predicates of the above formulas in Appendix C.
The first axiom asserts that each decomposition of a concept in the ontology must reflect
the same decomposition for its associated value in the database instance. For example,
each instance of the DB1-database where the Item name is ”pc” should have ”desk-
top”, ”monitor” and ”keyboard” instances. In addition, this condition asserts when the
PartOf-relationship is transitive with respect to the ISA-relationship. A concept, say
B, is a part of a concept, say A, if B is a part of all the sub-concepts of A. For example,
the concept MONITOR is a part of the concept PC because it is a part of both concepts
MACPC and INTELPC, which are sub-concepts of PC. On the other hand, the second
axiom asserts that if all the sub-concepts of A (a concept) have a common part P (a con-
cept) then each DB-instance reflecting A must be related to an instance which reflects P.

6 Mappings Between Ontologies and Databases

In order to accomplish the query reformulation task, mapping information between the
ontology and the underlying database must exist. This information links the concepts
and the relationships of the ontology with the database elements: Relations, attributes,
attribute domains.

180

In this section, we focus on how to define these mappings rather than how to find
them. Regarding the creation of mappings there is currently no automatic method for
solving this issue but semi-automatic methods based on linguistic matchings might be
adequate for this purpose [10]. In the following, we define the necessary properties
that make such mappings adequate for applying the transformation rules. Moreover,
we specify the necessary conditions for each kind of mappings that must be verified
for maintaining the consistency between the ontology and its associated database. We
address each aspect of the mappings separately.

6.1 Mapping Between Attribute Values and Concepts

We define a simple one-to-many mapping δ3 for each value from the set of attribute
domains D. The semantic of this mapping is that each value might be represented by a
single or multiple concepts, but a given concept might represent at most one value. For
example, the concept COMPUTER, in the O2-ontology, is mapped to the value ”com-
puter” of the attribute Name in the relation Item. However, if a value has multiple
homonyms, it might be represented by multiple concepts.
Formally, let A be an attribute name. We define δ3 as a relation between ζ and D :

δ3 ⊆ D × ζ. Then, ∀v0 ∈ dom(A) ∃c0 | (v0, c0) ∈ δ3 and δ3 is injective.

In this context, each tuple in a given relation may be mapped to more than one concept.
For example, tuple 43 in Table 3 can be mapped to two concepts related to the attribute
values ”chair” and ”wood”.

6.2 Mapping Between Attribute Names and the Ontology

Now, we define the mapping of attribute names to concepts and relationships of the
ontology. Like the previous definitions, each attribute name might be mapped to one
or more concepts in the ontology and each concept covers at most one attribute name.
This mapping is also injective. In addition, if such mapping exists then the following
constraints must be satisfied: Each value of the domain of that attribute must be mapped
to a concept in the ontology. This concept must be related to the concept representing
the attribute through the "ISA"-relationship.

Formally, let U be a set of attribute names. We define δ2 as a relation between U
and ζ: δ2 ⊆ U × ζ. Then, The following conditions must be satisfied:

Table 3. Store relation

A-ID Name Made Use Price
41 bed wood kid 120 $
42 bank wood person 300 $
43 chair wood person 150 $
44 flat iron substance clothes 60 $
45 chain gold women 850 $
46 perfume roses women 85 $
47 bank clay coins 50 $
48 cage metal birds 300 $

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 181

(i) IF δ2(A) = c0 ∈ ζ THEN ∀x ∈ dom(A),∃ c ∈ ζ |(x, c) ∈ δ3

and c ∈ DESC(”ISA”, c0) (1)

Furthermore, two attribute names, say A1 and A2, could be mapped to a single
relationship-type in the ontology. The semantic of this mapping is that each concept
corresponding to a value of A1 must be related to a concept corresponding to a value of
A2 through this relationship.
Formally, we define δ4 as a relation: δ4 ⊆ (U × U)×
. Then,

IF ({(A1, A2)}, β0) ∈ δ4 THEN

(i) condition (1) holds for A1 and A2 and
(ii) ∀x ∈ dom(A1),∃y ∈ dom(A2) | ∃ (cx, β0, cy) ∈ G
where (x, cx) ∈ δ3, (y, cy) ∈ δ3, and β0 ∈
.

6.3 Mapping Between Relations and the Ontology

So far, we presented the mappings for attributes and attribute values. Now, we address
the mapping from a given relation in the database to concepts and relationships in the
ontology. Like previous mapping types, a relation name might be mapped to several
concepts. This mapping is also injective. We define two kinds of mappings: Complete
and partial mappings.
The mapping is called partial if there exists a single concept representing the relation
name and at least one concept representing an attribute name of this relation. The latter
concept must be related to the concept corresponding to the relation name through the
"ISA"-relationship. On the other hand, the mapping is called complete if all attribute
names of the relation (except the ID-attribute if it is generic) are represented in the
ontology and satisfy the constraint above.
Formally, let R be a relation, U(R) be a set of its attributes. We define the mapping δ3

as a relation between {R1, . . . Rn} and ζ: δ3 ⊆ {R1, . . . Rn} × ζ.
Let c0 ∈ ζ| (R, c0) ∈ δ3. Then, δ3 is complete iff:

(i) ∀A ∈ U(R) | ∃c ∈ ζ , (A, c) ∈ δ2 and c ∈ DESC(”ISA”, c0).

6.4 Additional Constraints for Mapping Attribute Values

In this section, we formulate a set of constraints to ensure that a semantic model O∗

remains correct when introducing new concepts and relationships in the ontology O to
represent database values which are not already represented in O.

So far, if O does not cover an attribute, say A i.e. there exists a set of attribute values
of A, say V0, which are not represented by concepts in O, then new concepts should be
created in O. To this end, we propose the following principles: for each v0 ∈ V0,
- create a new node n0 in G with label l: (v0, l) ∈ δ3,
- if a node n exists that corresponds to A such that (A, n) ∈ δ1 then relate n0 with that
node using an edge of type "ISA". Otherwise, relate it with the universal concept node
using the same edge type.

So far new concepts are introduced in O, relationships among them and between ex-
isting concepts should be determined. These relationships are specified using the map-

182

ping information defined between attribute pairs and ontological relationship-types. To
this end, each tuple in the database, in which a value v0 of V0 appear is examined as
follows:
Let μ be a tuple of a relation R, and U(R)= {A0, A1, . . . , An} so that v0 = μ[A0]. If
there exists Ak ∈ U(R) such that ({(A0, Ak)}, β0) ∈ δ4, β0 ∈
, then:

- insert edges of type β0 between the node corresponding to v0 and the children nodes
of the node corresponding to μ[Ak] (w.r.t. the ontology design choice).
- if the node corresponding to μ[Ak] has no children then insert one edge of type β0

between the node corresponding to v0 and that node corresponding to μ[Ak].

Concerning the problem of homonyms, the intervention of an ontology expert is needed
for this task.

7 Conclusion

Recently, there is a growing interest in ontologies for managing data in database and
information systems. In fact, ontologies provide good supports for understanding the
meaning of data. They are broadly used in information integration systems to over-
come problems caused by the heterogeneity of data and to optimize query processing
among the distributed sources. In this paper, we use ontologies within a single rela-
tional database and present an approach of query processing using semantic knowledge
from a given ontology to reformulate a user query in such way that the query answer
is meaningful to the users. To this end, we propose a set of query reformulation rules
and illustrate their effectiveness by some running examples. Furthermore, we present a
semantic model and two basic criteria to prove the soundness of our approach. We also
illustrate the semantic of mappings between the ontology and the database.

In the future work, we intend to design and develop a prototype based on this ap-
proach. To this end, we attempt to reuse an existing ontology and adopt it with an
associated database with respect to our framework. In addition, we intend to extend our
approach to enable the use of the semantic rules in federated database systems.

References

[1] Online english dictionary. www.onelook.com, 2005.
[2] R. B. A. Borgida. Conceptual modeling with description logics. The Description Logic

Handbook - Theory, Implementation and Applications. pp: 349-372. Cambridge University
Press, 2003.

[3] S. Bergamaschi, C. Sartori, D. Beneventano, and M. Vincini. ODB-tools: A description
logics based tool for schema validation and semantic query optimization in object oriented
databases. Advances in Artificial Intelligence, 5th Congress of the Italian Association for
Artificial Intelligence, Rome, Italy, 1997.

[4] B. Chandrasekaran, J. Josephson, and V. Benjamins. What are ontologies, and why do we
need them? In IEEE Intelligent Systems, pages 20–26, 1999.

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 183

[5] M. Dzbor, J. Domingue, and E. Motta. Magpie- towards a semantic web browser. In Inter-
national Semantic Web Conference, volume 2870 of Lecture Notes in Computer Science,
pages 690–705, 2003.

[6] C. Fellbaum. Wordnet an electronic lexical database, 1998.

[7] T. Gruber. A translation approach to portable ontology specifications. In Knowledge Ac-
quisition (5) No. 2, USA, pages 199–220, 1993.

[8] N. Guarino and P. Giaretta. Ontologies and knowledge bases: towards a terminological
clarification. In Knowledge Building Knowledge Sharing,ION Press, pages 25–32, 1995.

[9] J. Heflin and J. Hendler. Dynamic ontologies on the web. In AAAI/IAAI, pages 443–449,
2000.

[10] M. Hernandez, R. J. Miller, and L. M. Haas. Clio: A semi-automatic tool for schema
mapping. In ACM SIGMOD, 2001.

[11] A. Kayed and R. Colomb. Extracting ontological concepts for tendering conceptual struc-
tures. Data and Knowledge Engineering, 41(1-4), 2001.

[12] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing on-
tologies. Conference on Cooperative Information Systems, 41:14–25, 1996.

[13] C. B. Necib and J. Freytag. Ontology based Query Processing in Database Management
Systems. In Proceeding on the 6 th international conference on Ontologies, DataBases, and
Applications of Semantics for Large Scale Information Systems (ODBASE’2003), pages
37–99, 2003.

[14] C. B. Necib and J. Freytag. Using Ontologies for Database Query Reformulation. In
Proceeding on the 18 th conference on Advances in Databases and Information Systems
(ADBIS’2004), 2004.

[15] N. Noy and C. D. Hafner. The state of the art in ontology design. AI Magazine, 3(18):53–
74, 1997.

[16] N. Paton, R. Stevens, P. Baker, C. Goble, S. Bechhofer, and A. Brass. Query processing in
the TAMBIS bioinformatics source integration system. Statistical and Scientific Database
Management, pages 138–147, 1999.

[17] A. Pease. The sigma ontology development environment. In IJCAI-03 Workshop on On-
tologies and Distributed Systems (ODS’03),Acapulco, Mexico, Lecture Notes in Computer
Science, 2003.

[18] M. Peim, E. Franconi, N. Paton, and C. Goble. Query processing with description logic on-
tologies over object-wrapped databases. technical report, University of Manchester, 2001.

[19] A. Perez and V. Benjamins. Overview of Knowledge Sharing and Reuse Components:
Ontologies and Problem-Solving Methods. In Proceedings of the IJCAI-99 Workshop on
Ontologies and Problem-Solving Methods (KRR5), 1999.

[20] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and meth-
ods. Data Knowledge Engineering, 25(1-2):161–197, 1998.

[21] J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,
1988.

[22] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and
S. Huebner. Ontology-based integration of information- a survey of existing approaches.
In Proc. of IJCAI, 2001.

184

A Graphical Operations

A set of primitive graph operations: ISAChild, RChild, RParent, ANCES, DESC,
SUBT , SY Ns and PARTs, are needed for formal representations of the transforma-
tion rules.

Let Pths(ci − cj) be a set of directed paths between two concept nodes ci and cj .
Let be c1, c2, sk, sh ∈ ζ and R,Ri ∈
:

– ISAChild(c1) = {c2 | G(c1, ”ISA”, c2)}
– SY Ns(c1) = {c2 |G(c1, ”SynOf”, c2)}
– Rchild(R, c1) = {c2 | G(c1, R, c2)}
– Rparent(R, c1) = {c2 | G(c2, R, c1)}
– SUBT (c1) = {c2 ∈ ζ | ∃Pths(c1 − c2)}
– DESC(R, c1) = {c2 ∈ ζ | ∃p ∈ Pths(c1 − c2) : ∀e = (skRish) ∈ p , Ri = R}
– ANCES(R, c1) = {c2 ∈ ζ | ∃p ∈ Pths(c2−c1) : ∀e = (skRish) ∈ p , Ri = R}
– SelectRel(G∗, c1, c2)= {Ri ∈
 |∃A,B ∈ V,∃ P ∈ Pths(A, B) :

G∗(c1, ”TupleVal”, A), G∗(c2, ”TupleVal”, B) ∧∃ skRish ∈ P}
Informally, ISAChild(c) is the set of the immediate sub-concepts of c (a concept).

Rchild(R, c) is the set of all descendant concepts of c following edges of type R.
Similarly, Rparent(R, c) is the set of all ascendant concepts of c following edges of
type R. DESC(R, c) returns the set of all descendant concepts of c following edges
of type R, whereas ANCES(R, c) returns the set of all ascendant concepts of c by
following edges of type r. Similarly, SUBT (c) returns all descendants of c for any
edge-type and SY Ns(c) returns the set of all synonyms of c. SelectRel returns all edge
types of the paths between two concepts connected with other concepts via edges of
type "TupleVal".

In addition, we define an Outgoings(c) as a set of edge-types going out from the
node of a concept c. We also define a PARTs(c) as a set of concepts that are ”parts”
of the concept c. According to our ontology graph design PARTs(c) is determined
by traversing the nodes related with to c following only edges of type ”PartOf” and
”ISA”. More precisely, two cases must be distinguished:

– Case 1: If Outgoings(c) � ”PartOf” then PARTs(c) = A ∪B ∪ C where
- A = DESC(”PartOf”, c)
- B = DESC(”ISA”, a), a ∈ A
- C = SY Ns(h) ∪ SY Ns(l), h ∈ A and l ∈ B.
Informally, PARTs(c) is the set of concepts obtained by retrieving the labels of all
nodes that are PartOf-children of the node c together with their ISA-descendants
and synonyms.

– Case 2: If Outgoings(c) � ”ISA” then PARTs(c) = PARTs(si)
where si ∈ A and ∀(s1, s2) ∈ A2 PARTs(s1) = PARTs(s2),
A = DESC(”ISA”, c).
Informally, PARTs of a concept c is defined recursively in terms of its sub-concepts.
It is equal to the PARTs of one of its sub-concepts (if they have the same
PARTs).

C.B Necib and J.-C. Freytag.

Query Processing Using Ontologies 185

B Syntax of Query Reformulation Rules

Let be t0 ∈ D and R,R1, R2 ∈ DB. Part-Whole and Sensitivity rules are formulated
as follows.

B.1 Part-Whole Rule

IF Q = {(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ xiθt0}
and ∃A1, A2 ∈ FKEY S(R2, R1)| δ4(A1, A2) = ”PartOf”
and ∃ c0 ∈ ζ | δ3(t0) = c0

and ∀ ci ∈ ζ, ci �= c0, PARTs(c0) �⊆ PARTs(ci)

THEN Q
′
= {(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ xiθt0} ∪

{(x1, . . . , xn) | (x1, . . . , xn) ∈ R1 ∧ [∃(y11, . . . , yn1)|(y11, . . . , yn1) ∈ R2 ∧
x1 = y11∧ ∃(z11, . . . , zn1) ∈ R1 ∧ (z11 = y21 ∧ zi1 = s1)] ∧ . . .∧ [∃(y1m, . . . , ynm)|
(y1m, . . . , ynm) ∈ R2 ∧ x1 = y1m ∧ ∃(z1m, . . . , znm) ∈ R1 ∧ (z1m = y2m ∧ zim =
sm)]}
where sj ∈ I0 = {t ∈ D | δ3(t) ∈ PARTs(c0)}, 1 =< j =< m = |I0|.

By applying this rule on the query Q1 (section r̃efaugmentation rules), the reformu-
lated query is given as follows:

Q
′
1 = {(a1, a2, a3, a4) | (a1, a2, a3, a4) ∈ ITEM ∧ a2 = ”pc”} ∪
{(a1, a2, a3, a4) | (a1, a2, a3, a4) ∈ ITEM ∧ [∃ y1, y2|(y1, y2) ∈ COMPONENT
∧a1 = y1 ∧ ∃(b1, b2, b3, b4) ∈ ITEM ∧ (y2 = b1 ∧ b2 = ”monitor”)]∧
[∃ z1, z2|(z1, z2) ∈ COMPONENT ∧ a1 = z1 ∧ ∃(c1, c2, c3, c4) ∈ ITEM ∧ (z2 =
c1 ∧ c2 = ”keyboard”)] ∧ [∃ u1, u2|(u1, u2) ∈ COMPONENT ∧
a1 = u1 ∧ [∃ d1, d2, d3, d4|(d1, d2, d3, d4) ∈ ITEM ∧ u2 = d1 ∧ d2 = ”desktop”)]}

B.2 Sensitivity Rule

IF Q = {xi | (x1, . . . , xn) ∈ R ∧ xpθt0}
and ∃ c0, cp ∈ ζ | δ3(t0) = c0 and cp = δ2(Ap)
and ∃Ai, . . . , Aj ∈ U(R) | δ4(Ap, Ak) = rk ∈
 \ {”PartOf”}
and c0 ∈ SUBT (ck) ∩ SUBT (cp), ck = δ2(Ak)

THEN Q
′
= {(x1, . . . , xn)| (x1, . . . , xn) ∈ R ∧ (xpθt0)

j∧
k=i

(
m∨

h=1

xkθtkh)}

where tkh ∈ I0 ∪ I1 ∪ I2 , m = |I0 ∪ I1 ∪ I2|
I0 = {t ∈ D | δ3(t) = ckh}
I1 = {t ∈ D | δ3(t) ∈ DESC(”ISA”, ckh)}
I2 = {t ∈ D|δ3(t) ∈ SY Ns(ckh)∨ ∈ SY Ns(a), a ∈ DESC(”ISA”, ckh)}
ckh ∈ DESC(”ISA”, ck) ∩RParent(rk, c0), and
i =< k =< j =< n, k �= p, 1 =< h =< m.

186

C Logical Interpretation

Γ : I = (ζ∗, ·I)
ISAI = {(a, b) ∈ ζ∗2| G∗(a, ”ISA”, b)}
SY N I = {(a, b) ∈ ζ∗2| G∗(a, ”SynOf”, b)}
PARTOF I = {(a, b) ∈ ζ∗2| G∗(a, ”PartOf”, b)}
HASAI = {(a, b) ∈ ζ∗2| G∗(a, ”HasA”, b)}
V ALUEOF I = {(a, b) ∈ ζ∗2| G∗(a, ”ValueOf”, b)}
INSOF I = {(a, b) ∈ ζ∗2| G∗(a, ”InstanceOf”, b)}
KeyI = {a ∈ ζ∗| G∗(a, ”InstanceOf”, b)}
TUPV ALI = {(a, b) ∈ ζ∗2| G∗(a, ”TupleVal”, b)}
WHOLEI = {a ∈ ζ∗|∀ b1 b2 c ISA(a, b1) ∧ ISA(a, b2) ∧ PARTOF (b1, c)→

PARTOF (b2, c)}
∀x. ISA(x, x)
∀x. SY N(x, x)
∀x. PARTOF (x, x)
∀xyz. ISA(x, y) ∧ ISA(y, z)→ ISA(x, z)
∀x.y SY N(x, y)↔ SY N(y, x)
∀xyz. SY N(x, y) ∧ SY N(y, z)→ SY N(x, z)
∀xyz. ISA(x, y) ∧ SY N(y, z)↔ ISA(x, z)
∀xyz. ISA(x, z) ∧ SY N(x, y)↔ ISA(y, z)
∀xy ∃ z. V ALUEOF (x, y)→ HASA(z, y)
∀xy∃z.TUPV AL(x, y)→ INSOF (x, z)
∀xyz. PARTOF (x, y) ∧ SY N(y, z)↔ PARTOF (x, z)
∀xyz. PARTOF (x, y) ∧ SY N(x, z)↔ PARTOF (z, y)
∀xyz. PARTOF (x, y) ∧ PARTOF (y, z)→ PARTOF (x, z)
∀xyz. V ALUEOF (y, z) ∧ ISA(x, y)→ V ALUEOF (x, z)
∀xyz. V ALUEOF (y, z) ∧ SY N(x, y)→ V ALUEOF (x, z)
∀xyz. ∃ w. INSOF (x, y)∧HASA(y, z)→ TUPV AL(x,w)∧V ALUEOF (w, z)
∀xyz. WHOLE(x) ∧ ISA(x, y) ∧ PARTOF (y, z)↔ PARTOF (x, z)
∀xyz1z2. COMMONPART (x, y)↔ ISA(x, z1)∧ISA(x, z2)∧PARTOF (z1, y)∧

PARTOF (z2, y)

x, y, w, z, z1, z2 are variables.

C.B Necib and J.-C. Freytag.

Estimating Recall and Precision
for Vague Queries in Databases

Raquel Kolitski Stasiu�, Carlos A. Heuser, and
Roberto da Silva

Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Av. Bento Gonçalves, 9500, CEP 91501-970 - Porto Alegre, RS, Brazil

{rkstasiu, heuser, rdasilva}@inf.ufrgs.br

Abstract. In vague queries, a user enters a value that represents some real world
object and expects as the result the set of database values that represent this real
world object even with not exact matching. The problem appears in databases that
collect data from different sources or databases were different users enter data
directly. Query engines usually rely on the use of some type of similarity metric
to support data with inexact matching. The problem of building query engines to
execute vague queries has been already studied, but an important problem still
remains open, namely that of defining the threshold to be used when a similarity
scan is performed over a database column. From the bibliography it is known
that the threshold depends on the similarity metrics and also on the set of values
being queried. Thus, it is unrealistic to expect that the user supplies a threshold at
query time. In this paper we propose a process for estimation of recall/precision
values for several thresholds for a database column. The idea is that this process
is started by a database administrator in a pre-processing phase using samples
extracted from database. The meta-data collected by this process may be used in
query processing in the optimization phase. The paper describes this process as
well as experiments that were performed in order to evaluate it.

1 Introduction

In vague queries, the problem is to find all database values that represent the same real
world as the one represented by the value entered by the user in the query. A vague query
accept variation in spelling to consider not exact match in query argument compared to
the values in the database. This type of query is usual in databases that collect data
from different sources or are generated by different users. As an example consider a
query like “Authors that have published at the ‘Intl. Conf. on Very Large Databases’ in
2002”. In the database the name of this conference may be spelled in different ways,
like ‘International Conference on Very Large Databases’ or simply ‘VLDB’.

For this kind of problem a typical Information Retrieval (IR) solution is to rank the
values in the database using some type of similarity metric (e.g. an edit distance [1, 2]

� On leave from Pontifı́cia Universidade Católica do Paraná (www.pucpr.br) and Centro Federal
Tecnológico do Paraná (www.cefetpr.br).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 187–200, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

188 R.K. Stasiu, C.A. Heuser, and R. da Silva

and display them to the user ordered according to this ranking. The values that are more
similar to the query value should be shown first. The user pages through the output
identifying the database values that represent the real object that is being searched.

However, not all queries can be solved by applying a single similarity search over the
database. In more complex queries the values resulting from one similarity search are
used as query values for another similarity search. For example, consider a database that
contains two tables with data collected from the Web: ConfPaper (ConfName,
PaperTitle) and PaperAuthor (PaperTitle, AuthorName). If both ta-
bles are fed with data from different sources it may happen that the title of one specific
paper is spelled differently in both tables. In order to process the example query above,
two similarity searches must be executed: (1) over table ConfPaper retrieving the pa-
per titles for the conference name given in the query and (2) over table PaperAuthor
retrieving the author names for the paper titles found in step (1) (actually this last step
is a similarity join operation [3, 4, 5, 6]).

The classical database solution for processing such types of queries is to build a
query execution plan. An execution plan defines the query operators that are used in
each step as well as the order of execution of those operators. In the context of sim-
ilarity queries additionally to the classical database operators (table scan, index scan,
join,. . .), similarity operators like a similarity table scan [3], similarity index scan [7]
and a similarity join [4, 5] are involved. The problem of building query execution plans
for this type of queries has already been addressed in query systems that handle vague
queries, like Vague and Query Refinement System Architecture [8, 9].

An open problem in these systems is to automatically determine the results that are
relevant for a query. The IR approach described above presents all results to a user and
leaves to him the task of picking up relevant results. This approach is not feasible if we
are handling large data sets. The entire set of database values would appear as result of
each step of the execution plan, leading to unacceptable performance. Thus, thresholds
must be established for each similarity operator involved in the query execution plan.

The threshold to be applied depends on factors like the specific similarity metric
that is being applied and the set of values to be queried. The threshold will depend also
on the quality of the result that the user expects stated, for example, in classical IR
measures like recall or precision [10].

In this paper we focus on the problem of semi-automatically estimating recall and
precision for queries on a specific database column when a specific similarity metric
is applied. The user intervention required in our approach is small. The user must just
provide an approximation of the number of different real world objects that are rep-
resented in a small sample (typically 50 values) of the database column. Using this
number as input and applying the process described in this paper the database system
may generate meta-data that contains estimations of recall and precision for queries on
the column, when different thresholds and different similarity metrics are considered.
This meta-data may be subsequently used during query optimization phase. It may help
the query optimizer in the choice of similarity operators, similarity metrics, as well as
thresholds to be used when processing a specific query.

It should be noted that the idea of gathering information about the values in the
columns in a database is central to query optimization [11, 12]. The query optimizers

Estimating Recall and Precision for Vague Queries in Databases 189

of many commercial DBMS depend on meta-data gathered at specific time points de-
termined by a database administrator. In the case of the process described in this paper
the database administrator would have to additionally provide the information for the
recall and precision estimation process.

This paper is organized as follows. In Section 2 related work is discussed. Section 3
describes our method to estimate recall and precision values. Section 4 presents the
experiments that were performed in order to validate the proposed approach. Section 5
presents the conclusion and discusses future work.

2 Related Work

The idea of vague or inexact queries over databases is not new and has been studied
from several points of view.

Vague or Imprecise Queries Over Database. The Vague System [8] and the Query
Refinement System Architecture [9] are examples of vague query database processing.
The former discusses a query language (an extension of QUEL) and a general model of
vague queries implementation over a relational database. In this system the similarity
metrics (called data metrics) are user provided. The latter discusses the problem of
query refinement in the presence of similarity queries. Both cited approaches assume
the availability of a user provided distance measure.

Another system that implementsvague queriesis theImprecise Query Engine(IQE)[13].
Here the query engine is implemented over a classical query engine to handle vague
queries. The similarity query engine converts the vague query into equivalent precise
queries that appear in an existing query workload.

Probabilistic Algebra. Dey [14] has proposed an extended relational model and new
algebraic operators supporting probabilistic aspects. Fuhr [15] presents the PRA (Prob-
abilistic Relational Algebra) which is a generalization of the relational algebra. PRA
represents a logical data model allowing close integration of IR and database to model
probability values, but makes no assumptions about the underlying physical data model.
The WHRIL [16] system is also based on Fuhrs work and uses text-based similarity
and logic-based data access as known from Datalog to integrate data from heteroge-
neous sources. The work of several other authors follow the same line[17, 18, 19, 20].
These proposals include the use of redefined relational operators as select, join, etc.
with a probability value associated to each attribute or tuple. This value is a measure of
uncertainty obtained from a probabilistic model based on preprocessing of stored data.

These approaches use probabilistic models to compute similarity values in a prepro-
cessing phase. This is similar to our pre-processing phase to create meta-data. However,
in these approaches probability values must be stored associated with tuples or attributes
whereas in our approach similarity values are dynamically computed.

Probabilistic Model and XML. Several proposals explore the probabilistic IR model.
An example considering XML documents is the TIJAH system [21], an XML-IR system

190 R.K. Stasiu, C.A. Heuser, and R. da Silva

where XML documents are treated as ‘flat-text’. This query model extends XPath with
a special function called about. TIJAH is based on region algebra [22] and it is used
to rank node-set trees. The idea behind region algebra [22] is the representation of text
documents as a set of extents where each one is defined by its starting and end position.
Another similar approach is XIRQL [23], which develops an algebra that implements
the querying capabilities found in XPath extended with probabilistic functions. This
approach is different from ours because we apply specific similarity metrics for each
column.

IR-Style Ranking. Several IR-style systems implement k-top queries instead of con-
sidering a rank that is cut by a threshold value [24, 25, 26].

Additionally to the study of similarity searches over data sets, the problem of prox-
imity joins or similarity joins has also received attention. Gravano [4, 5] describes an ap-
proach for similarity based on joins on string attributes. This work is based on the iden-
tification of all string pairs (or set of strings) similar to each other using cosine similarity
metric [10] with weights derived from term frequency-inverse document frequency (tf-idf)
to join similar data. Cohen [27] describes WHRIL, which is also based on cosine sim-
ilarity to integrate information from structured information sources that contain textual
information. Cohen describes efficient algorithms do compute the top scoring matches
of a ranked result set.

Cohen [28] presents a survey comparing several similarity metrics for specific do-
mains. This work shows that the quality of the result of a query may be improved if
specific domain similarity metrics are used.

Schallehn [3, 29] presents a set of redefined relational operators to process vague
queries. His work shows how the operators can be used to evaluate the query using
these redefined operators.

What can be generally observed in related work is that a critical point is how to
specify a threshold to meet requirements regarding efficiency and accuracy [29]. This
should not be done by the user because it would lead to several trial-and-errors cycles.
Our approach differs also in evaluate the quality of intermediate results. None of related
work studied refers to evaluate the result set produced by similarity functions specific
for domains.

3 The Estimation Process

In this section we describe the process by which a vague query engine can estimate
recall and precision for a database column.

At specific time points defined by a database administrator (DBA), traditional DBMS
gathers statistics about the database (number of different values in a column, distribu-
tion of the values in a column,. . .). These statistics are used by the query engine during
so called cost optimization [30].

In our case, the aim of this preprocessing phase is to estimate recall/precision tables
for approximate queries on specific database columns. A recall/precision table contains
estimated precision and recall values for several different threshold values.

Estimating Recall and Precision for Vague Queries in Databases 191

For each similarity metric that may be applied to the column, a recall/precision
table will be generated. These values can be used to optimize the query in the query
processing phase.

The specific metrics that can be used depend on the column domain [28]. For exam-
ple, a column containing author names and a column containing dates probably would
require different similarity metrics. The association of similarity metrics to database
columns could be established in the database schema.

Further for the same domain several different similarity metrics may be applied. For
example, in a column with person names if person names are always written in the same
order (e.g. name, surname) but may spelled in different ways, an edit distance metric
like Levenshtein [1] is adequate. However if the words that comprise the name may
appear in different orders another kind of similarity metric may be used.

Therefore, in our approach we allow several different metrics for each column and
estimate recall/precision for each of them. This information may be used by the query
engine to decide which of them is better suited for the specific set of values that appear
in the database.

Notice that recall/precision tables need to be generated only for those database
columns that may appear as arguments in vague queries.

The process of estimation is executed once for each database column and comprises
the steps described below.

1. Sampling
A random sample of the values in the database column is generated. Our experi-
ments have shown that a sample of 50 values is enough.

2. DBA intervention
The values in the sample are displayed to the database administrator (DBA). The
DBA counts the number of different real world objects that are represented by the
values in the sample. Remember that different values (e.g. “VLDB” and “Very
Large Databases”) may represent the same real world object.
The DBA enters the number no of real world objects that appear in the sample in
the system.

3. For each similarity metric that may be applied to the database column the following
steps are performed.
(a) Clustering

The values in the sample are clustered. Clustering begins with a predetermined
threshold and is repeated iteratively with different thresholds until the num-
ber of clusters nc is equal to the number of real world objects (no) that were
identified by the user in the sample.
The underlying idea is that, if the similarity metric behaves correctly, each
cluster will contain values that represent a single real world object.

(b) Recall/precision computation
The usual approach to compute precision and recall requires user intervention.
In this approach queries are stated against the database and the user identifies
false positives and false negatives in the result set.
In our approach we aim at minimizing user intervention. Recall/precision will
be automatically computed by the procedure described below.

192 R.K. Stasiu, C.A. Heuser, and R. da Silva

Each value in the sample is used as the query value. This means that with a
sample of size 50, we will execute 50 queries. Each query will result in a set of
ranked values.
In order to estimate recall/precision the set of objects that should result from the
query must be identified. This would usually require user intervention. In our
approach we will use the cluster instead in which the query value is contained
as the set of values that should be returned. Therefore, we will use the clustering
result instead of users intervention.
Our approach is based on the assumption that the clustering process has par-
titioned the sample correctly in sets such that each one contains exactly those
values that represent one and only one real world object. Thus, the clusters are
used as the set of values that should be returned.
This way, recall and precision are computed for several thresholds. The av-
erage value of recall/precision considering all queries is regarded as the re-
call/precision for the similarity metric in several thresholds.

(c) Storage of meta-data
Recall/precision values for each threshold and each similarity metric are stored
as meta-data for usage during query optimization phase.

4 Experiments

In this section we describe the experiments performed in order to empirically evaluate
that the estimated recall/precision values hold also for the entire database.

4.1 Data Sets

For the experiments two data sets were chosen. Data set City-DS contains city names
and data set Street-DS contains street names. These sets were taken from a real world
database that contains information about students that are candidates to enrolment in a
Brazilian University. Both data sets refer to the student’s address. Most of these can-
didates come from a single Brazilian state. In both data sets data was entered directly
by the candidates themselves. Thus the names of cities and streets may appear spelled
in several ways due to several factors, like misspelling, different ways of abbreviation,
etc.

The main characteristics of these data sets are shown in Table 1. The number of real
world objects in each data set was counted by an human expert.

Table 1. Main characteristics of the data sets used for the experiments

Number of Number of Average number
Data set instances in the real world of instances

database objects in a cluster
City 10180 387

Street 3500 2377 1.4724

26.3049

Estimating Recall and Precision for Vague Queries in Databases 193

The value distribution in both sets presents several differences:

– The City-DS contains relatively few (387) real world objects represented. As most
of the students come from the same Brazilian state, their addresses concentrate city
names of this state. Approximately 45% of the values correspond to a single real
world object, the largest city in the state. In the average each city appears times
in the database.

– The Street-DS contains many different real world objects (2377) as the number of
different street names is much bigger than the number of cities. In average, each
street is represented 1.4 times in the database.

4.2 Similarity Functions and Clustering Algorithm

As similarity metrics we have applied three well known metrics for comparing strings:
Levenshtein or Edit Distance (Edit) [1], Guth [31] and N-grams [1] with 3 characters in
each gram. Additionally we have applied a similarity metric (Acronyms) developed in
our group that is adequate for the comparison of strings that contain abbreviations and
acronyms [32].

The results of all similarity metrics applied are normalized between 0 and 1.
Clustering was performed using the Hierarchical Agglomerative Clustering Method [33].
The SLINK [34] Algorithm was used to implement clustering process.

4.3 Sample Generation

Due to the fact that the user must count the real world objects represented by the values
in a sample we need to be careful with the sample size. Very small samples are not
trustworthy to represent the database content but large samples are inappropriate to
user interaction.

We have experimented with two sample sizes: 50 instances for the City-DS and 15
instances for the Street-DS. As the experimental results show, a sample size around
50 values leads to correct results compared to the whole database. The values in each
sample were randomly selected in the database.

4.4 Clustering Results

As mentioned above, our approach is based on the assumption that the clustering pro-
cess has partitioned the sample correctly in sets such that each one contains exactly
those values that represent one and only one real world object.

To empirically validate this assumption we extracted 40 samples (each with 50 in-
stances) from the City-DS.

In each sample each cluster was compared to the set of values that a user would
consider as representing a single real world object. In these 40 samples 352 cities were
represented. Two types of errors of the clustering process could be identified:

– The number of clusters does not converge to the number of real world objects. Even
with small variations in the threshold (0.01) either the number of clusters exceeds
the number of objects in the sample or the number of clusters is lower than the

26

194 R.K. Stasiu, C.A. Heuser, and R. da Silva

Table 2. Clustering errors found considering 40 samples clustered and validated by the user

Number of clusters Content of cluster
Metric is incorrect is incorrect

Edit none none
Guth 1.6% 2%

N-Grams 0.4% 0.4%
Acronyms none none

number of objects in the sample. This probably is an indication that the similarity
metric is not adequate for the set of values.

– The correct number of clusters has been identified but their content is not correct,
i.e., values that should appear in one cluster appear in the other.

The number of errors found in this process was very low and is summarized in
Table 2.

For Edit and Acronyms similarity metrics no errors were found. The clustering pro-
cess gave exactly the same results as expected by the user.

For Guth and N-gram similarity metrics a small percentage (around 1%) of clusters
were incorrectly identified.

Those results show an high percentage of correct clusters. We can conclude that it
is acceptable to use the clusters for recall/precision evaluation.

4.5 Recall/Precision Estimation

The other premise in which our approach is founded is that the values of recall/precision
that were calculated for the sample apply also to the entire database. In this section we
will show experimental results to validate this premise.

We have performed experiments with both data sets.

Experiments wi ht City-DS. Using the City-DS we first executed the estimation of re-
call/precision by applying the aforementioned process (Section 3). More specifically
the following steps were executed:

1. We took 4 samples each containing 50 values from the cities data set.
2. For each sample an human expert determined the number of real world objects

(cities in this case) represented by the values in the sample. This corresponds to the
user intervention that should be executed by the database administrator during the
pre-processing phase.

3. The samples were clustered as described above.
4. Each value in a sample was used as a query value in that sample. For each query,

recall and precision were computed by the procedure aforementioned. We took the
following values for the thresholds 0.9, 0.8, 0.7, 0.5 and 0.3. This resulted in 4
tables, one for each sample, containing recall/precision values for each threshold.

5. We took the average of the samples resulting in a single table with estimated re-
call/precision values for each threshold.

Estimating Recall and Precision for Vague Queries in Databases 195

In order to evaluate these results we compared them to the results of queries against
the complete data set. Each of the values in the samples (4 samples ∗ 50 values per
sample = 200 values) was taken as a query value against the database. Again a table
plotting recall/precision for each of the thresholds above was computed. This procedure
was repeated for each of the four similarity metrics.

The results are shown in Figure 1. In this figure each graph corresponds to one
similarity metric. The x-axis corresponds to the thresholds and the y-axis corresponds
to similarity values. The values plotted are recall and precision. Dotted lines represent
actual recall/precision values obtained for the entire data set, whereas continuous lines
represent the estimated recall/precision values obtained from the samples.

As can be seen in the figure, estimated recall/precision follows similar curves to
actual recall/precision for all four similarity metrics.

The results show also that some similarity metrics are more adequate than others. In
this case, Edit and N-Grams are better metrics, since the values of recall and precision
tend to be higher and less dependent from the threshold values. Guth and Acronyms are
less adequate as precision decreases faster whit smaller thresholds.

In order to evaluate how close the estimated results for the sample are to the actual
results calculated over the database, we computed the Mean Square Deviation (MSD)

Fig. 1. City-DS – Comparing sample and database recall/precision

as defined by Equation (1).

196 R.K. Stasiu, C.A. Heuser, and R. da Silva

Fig. 2. City-DS: Mean Square Deviation between samples and database

f(xb
M , xs

M) =
1
n

n∑
i=1

(xb
M,i − xs

M,i)
2, (1)

where xb
M = (xb

M,1, x
b
M,2, ..., x

b
M,n) is a similarity value of the database and xs

M =
(xs

M,1, x
s
M,2, ..., x

s
M,n) is a similarity value of the sample.

In Figure 2 the values of MSD obtained from Equation 1 using thresholds 0.9, 0.8,
0.7, 0.5 and 0.3 with each similarity function are shown. The values shown in that figure
present the mean MSD (MSDm) for all four samples.

As can be seen the values are low showing that the estimated values are close to the
actual values for the database.

We have observed that some clusters contain many duplicate values. This leads to
higher similarity values. We repeated the experiment described above removing the dupli-
cate values from the clusters. In this case similarity values are lower but still the estimated
recall/precision values are similar to the actual recall/precision values for the database.
Due to space restrictions the detailed results of this experiment are not shown here.

Experiments with Street-DS. To test the limits of our approach we also evaluated a
data set much harder to handle, the Street-DS.

Estimating Recall and Precision for Vague Queries in Databases 197

Fig. 3. Street-DS – Comparing sample and database recall/precision

The Street-DS was chosen because the relation between data values and real world
objects is different from that in the City-DS. The number of real world objects is similar
to that of values in the database, i.e. clusters tend to be small, many of them containing
just an instance. In this case the quality of the results depends much more on the ability
of the similarity metric to handle data from this domain. As few values represent each
real world object every false positive or false negative changes the values of recall and
precision by a considerable amount.

The results are shown in figure 3. We have used two metrics, Edit, that gave the best
results in the previous experiment and Guth that gave the worst results. We have also
used smaller samples (15 values) than in the previous experiment.

As can be seen in the figure, in this example the precision that was estimated is
much smaller than the actual precision measured on the database. This difference is due
to the inability of these similarity metrics to correctly identify which values represent
the same real world object and which do not. This inability appears more clearly in the
database than in the sample, because the sample contains less instances and the query
value is part of those instances.

5 Concluding Remarks

This paper presents a contribution to the problem of query execution and optimization in
a query engine that handles vague queries. Specifically we have presented an approach
for estimating recall/precision values for queries with several thresholds. These values
are important for query engines like that described in [8, 9].

The estimation process is to be started by a database administrator when he esti-
mates that the distribution of values in the database has changed. We tried to minimize
user intervention. The database administrator enters just a single information, namely
the number of different real world objects that are represented in a small sample of
the database. Based on our experiments, we can improve the sampling process through
learning methods in future works.

198 R.K. Stasiu, C.A. Heuser, and R. da Silva

We have described the experiments that empirically validate our approach. Specifi-
cally the experiments corroborate two premises.

– In order to estimate recall and precision we need to identify the set of values in a
sample that represent a single real world object. In our approach these sets corre-
spond to the result of the clustering process. The experiments show that the result
of the clustering process may be used instead of the identification of values by a
user.

– When the sample is big enough and similarity metrics are adequate for the column
domain the recall/precision results are very similar to the actual recall/precision
values obtained when querying the database.

However, several problems are still open.
As identified by the experiments (and also by other authors [28, 3]) some similarity

metrics are more adequate than others for handling a specific column. We are working
on heuristics that use the recall/precision estimations to identify what the best similarity
metric for a column is.

Further, the size of the samples obviously affects the results of the estimation pro-
cess. We are working on the problem of identifying what the minimum sample size for
a given data set is.

References

1. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33
(2001) 31–88

2. Santini, S., Jain, R.: Similarity measures. IEEE Transaction on Pattern Analysis and Machine
Intelligence 21 (1999) 871–883

3. Schallehn, E., Sattler, K.U., Saake, G.: Efficient similarity-based operations for data integra-
tion. Data Knowl. Eng. 48 (2004) 361–387

4. Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text joins in an RDBMS for web
data integration. In: Proceedings of the Twelfth International Conference on World Wide
Web, ACM Press (2003) 90–101

5. Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D., Muthukrishnan, S.: Approximate
string joins in a database (almost) for free. In: Proceedings of 27th International Conference
on Very Large Data Bases, September 11-14, VLDB 2001, Morgan Kaufmann (2001) 491–
500

6. Schallehn, E., Geist, I., Sattler, K.U.: Supporting similarity operations based on approximate
string matching on the web. In Meersman, R., Tari, Z., eds.: CoopIS/DOA/ODBASE (1).
Volume 3290 of Lecture Notes in Computer Science., Springer (2004) 227–244

7. Navarro, G., Baeza-Yates, R.A., Sutinen, E., Tarhio, J.: Indexing methods for approximate
string matching. IEEE Data Engineering Bulletin 24 (2001) 19–27

8. Motro, A.: Vague: a user interface to relational databases that permits vague queries. ACM
Trans. Inf. Syst. 6 (1988) 187–214

9. Ortega-Binderberger, M.: Integrating Similarity Based Retrieval and Query Refinement in
Databases. Phd thesis, UIUC - University of Illinois at Urbana-Champaign, Urbana, Illinois
(2002)

10. Baeza-Yates, R.A., Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

Estimating Recall and Precision for Vague Queries in Databases 199

11. Ullman, J.D., Garcia-Molina, H., Widom, J.: Database Systems: The Complete Book. Pren-
tice Hall Inc., Upper Saddle River, New Jersey, USA (2002)

12. Chaudhuri, S.: An overview of query optimization in relational systems. In: Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 1-3, 1998, Seattle, Washington, ACM Press (1998) 34–43

13. Nambiar, U., Kambhampati, S.: Answering imprecise database queries: a novel approach.
In: Proceedings of the fifth ACM international workshop on web information and data man-
agement, ACM Press (2003) 126–133

14. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database
Syst. 21 (1996) 339–369

15. Fuhr, N., Rolleke, T.: A probabilistic relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf. Syst. 15 (1997) 32–66

16. Cohen, W.W.: Integration of heterogeneous databases without common domains using
queries based on textual similarity. In: Proceedings of the 1998 ACM SIGMOD interna-
tional conference on Management of data, ACM Press (1998) 201–212

17. de Keijzer, A., van Keulen, M.: A possible world approach to uncertain relational data. In:
15th International Workshop on Database and Expert Systems Applications (DEXA 2004)
Workshops. SIUFDB-04 1st International Workshop on Supporting Imprecision and Uncer-
tainty in Flexible Databases, Zaragoza, Spain, September 3, 2004, IEEE Computer Society
(2004)

18. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: a flexible proba-
bilistic database system. ACM Trans. Database Syst. 22 (1997) 419–469

19. Fuhr, N.: A probabilistic relational model for the integration of ir and databases. In: Proceed-
ings of the 16th annual international ACM SIGIR conference on Research and development
in information retrieval, ACM Press (1993) 309–317

20. Barbara, D., Garcia-Molina, H., Porter, D.: A probabilistic relational data model. In: Pro-
ceedings of the international conference on extending database technology on Advances in
database technology, Springer-Verlag New York, Inc. (1990) 60–74

21. List, J., Mihajlovic, V., de Vries, A.P., Ramirez, G., Hiemstra, D.: The TIJAH XML-IR
system at INEX 2003. Proceedings of the 2nd Initiative on the Evaluation of XML Retrieval
(INEX 2003), ERCIM Workshop Proceedings (2003)

22. Consens, M.P., Milo, T.: Algebras for querying text regions: expressive power and optimiza-
tion. J. Comput. Syst. Sci. 57 (1998) 272–288

23. Fuhr, N., Grossjohann, K.: XIRQL: a query language for information retrieval in XML
documents. In: Proceedings of the 24th annual international ACM SIGIR conference on
Research and development in information retrieval, ACM Press (2001) 172–180

24. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank
aggregation. In: Proceedings of the 2003 ACM SIGMOD international conference on Man-
agement of data, ACM Press (2003) 301–312

25. Ortega, M., Chakrabarti, K., Mehrotra, S.: Efficient evaluation of relevance feedback for
multidimensional all-pairs retrieval. In: Proceedings of the 2003 ACM Symposium on Ap-
plied computing, SAC 2003, ACM Press (2003) 847–852

26. Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., Porkaew, K.: Evaluating refined
queries in top-k retrieval systems. IEEE Transactions on Knowledge and Data Engineering
16 (2004) 256–270

27. Cohen, W.W.: Data integration using similarity joins and a word-based information repre-
sentation language. ACM Trans. Inf. Syst. 18 (2000) 288–321

28. Cohen, W.W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-
matching tasks. In: Proceedings of IJCAI-03 Workshop on Information Integration on the
Web (IIWeb-03), August 9-10, 2003, Acapulco, Mexico, Morgan Kaufmann (2003) 73–78

200 R.K. Stasiu, C.A. Heuser, and R. da Silva

29. Schallehn, E., Sattler, K.U.: Using similarity-based operations for resolving data-level con-
flicts. In: BNCOD. (2003) 172–189

30. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path se-
lection in a relational database management system. In Bernstein, P.A., ed.: Proceedings of
the 1979 ACM SIGMOD International Conference on Management of Data, Boston, Mas-
sachusetts, May 30 - June 1, ACM (1979) 23–34

31. Guth, G.J.: Surname spellings and computerized record linkage. Historical Methods
Newsletter 10 (1976) 10–19

32. Dorneles, C.F., Lima, A.E.N., Heuser, C.A., da Silva, A., Moura, E.: Measuring similar-
ity between collection of values. In: Proceedings of 6th ACM International Workshop on
Web Information and Data Management (WIDM 2004), Washington DC , USA, ACM Press
(2004) 56 – 63

33. Hartigan, J.A.: Clustering Algorithms. John Wiley and Sons, Inc., New York, NY, USA
(1975)

34. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. The
Computer Journal 16 (1973) 30–34

Querying Tree-Structured Data Using
Dimension Graphs

Dimitri Theodoratos1 and Theodore Dalamagas2

1 Dept. of Computer Science,
New Jersey Institute of Technology,

Newark, NJ 07102
dth@cs.njit.edu

2 School of Electr. and Comp. Engineering,
National Techn. University of Athens,

Athens, GR 15773
dalamag@dblab.ece.ntua.gr

Abstract. Tree structures provide a popular means to organize the in-
formation on the Web. Taxonomies of thematic categories, concept hi-
erarchies, e-commerce product catalogs are examples of such structures.
Querying multiple data sources that use tree structures to organize their
data is a challenging issue due to name mismatches, structural differ-
ences and structural inconsistencies that occur in such structures, even
for a single knowledge domain. In this paper, we present a method to
query tree-structured data. We introduce dimensions which are sets of
semantically related nodes in tree structures. Based on dimensions, we
suggest dimension graphs. Dimension graphs can be automatically ex-
tracted from trees and abstract their structural information. They are
semantically rich constructs that provide query guidance to pose and
evaluate queries on trees. We design a query language to query tree-
structured data. A key feature of this language is that queries are not
restricted by the structure of the trees. We present a technique for eval-
uating queries and we provide necessary and sufficient conditions for
checking query unsatisfiability. We also show how dimension graphs can
be used to query multiple trees in the presence of structural differences
and inconsistencies.

1 Introduction

Tree structures provide a popular means to organize the information on the
Web. Taxonomies of thematic categories, concept hierarchies, e-commerce prod-
uct catalogs are examples of such structures. Since the XML language [3] has
become the standard data exchange format on the Web, organizing data in tree
structures has been vastly established. Even if data is not stored natively in
tree structures, export mechanisms make data publicly available in tree struc-
tures to enable its automatic processing by programs, scripts, and agents on the
Web [11]. Querying capabilities on these structures are provided through path

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 201–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 D. Theodoratos and T. Dalamagas

expression queries. Such queries are formed using some of the query languages
proposed in the literature like XPath [4] and XQuery [5].

Querying multiple data sources that use tree structures to organize their
data is a challenging issue due to name mismatches, structural differences and
structural inconsistencies that occur in such structures, even for a single knowl-
edge domain. Name mismatches appear because tree structures lack semantic
information. For example, laptop computers might be referred to as notebooks
in one product catalog but as portables in another catalog. In this paper, we
do not focus on this issue and we assume that it is resolved using well-known
schema matching techniques [20]. Structural differences and, far more impor-
tant, structural inconsistencies appear because of the different possible ways
of organizing the same data in tree structures. For example, a structural dif-
ference exists when a category appears in a product catalog but does not ap-
pear in another. A structural inconsistency appears when a product catalog for
notebooks classifies new, SONY notebooks with 10in display in the path /note-
books/new/SONY/10in, while another catalog classifies the same products in the
path /SONY/notebooks/10in/new.

A naive approach to cope with structural differences and inconsistencies when
querying multiple tree structures is to generate different versions of the initial
query, considering different subsets of nodes involved in its path expressions and
their different orderings. Clearly this is not efficient due to the large number of
queries that need to be generated. Another approach is to set up a global struc-
ture and define mapping rules between this structure and the local structures
[13]. Such approaches require extensive manual effort, since the global schema is
difficult to construct and the rules should be hard-coded in the application.

In this paper, we suggest a novel approach to query tree structured data. Our
approach exploits semantic information for nodes of the trees which are called
here value trees. We introduce the concept of a dimension that groups together
semantically related values (nodes). The different dimensions of a value tree
are related through precedence relationships incurred by the parent-child and
ancestor-descendant relationships of their nodes. We capture these precedence
relationships between dimensions of a value tree into the concept of a dimen-
sion graph for a value tree. Besides abstracting structural information of value
trees, dimension graphs provide also semantic guidance in posing and evaluating
queries. Query conditions involve dimensions, and thus query formulation is not
dependent on the structure of value trees. The system uses the dimension graph
of the value tree to identify orderings of the values that can possibly exist in
the value tree. Only these value orderings will be used to compute the answer of
the query on the value tree. This step of the computation of the query answer is
performed before the query evaluation reaches the value tree which is, in general,
much larger than its dimension graph.

Contribution. The main contributions of the paper are the following:

• We introduce dimensions to record semantic information for the nodes of
value trees and dimension graphs to capture structural information on value
trees. Dimension graphs can be automatically extracted from value trees.

Querying Tree-Structured Data Using Dimension Graphs 203

• We design a query language to query value trees. Queries are not cast on the
structure of a specific value tree, since they are issued on their dimensions.
The user can optionally specify parent-child and/or ancestor-descendent re-
lationships between dimensions in a query.
• We show how queries can be evaluated on value trees, making use of dimen-

sion graphs to determine orderings of dimensions that can possibly generate
non-empty answers. These dimension orderings are then used for generating
path expressions that are evaluated on value trees.
• We introduce the concept of query unsatisfiability which identifies a query on

a dimension graph that has an empty answer on any value tree underlying
this dimension graph. We provide necessary and sufficient conditions for a
query to be unsatisfiable.
• Finally, we show how dimension graphs can be used to query multiple value

trees in the presence of structural differences and inconsistencies.

Outline. The rest of the paper is organized as follows. The next section dis-
cusses related work. In Section 3, we introduce dimensions and we define dimen-
sion graphs for value trees. Section 4 presents the query language used to pose
queries on dimension graphs. It also shows how queries can be checked for un-
satisfiability and how they are evaluated on the underlying value trees. Finally,
Section 5 concludes the paper and presents further work. Due to lack of space,
proofs of propositions are omitted. They can be found in the full version of the
paper.

2 Related Work

Many systems support query evaluation of multiple data sources, using a prede-
fined global structure and defining mapping rules between this structure and the
local structures used in the sources. The Xyleme system[13] copes with the prob-
lem of integrating XML data sources using XML views. In the Agora system[18],
XQuery expressions over a given global XML schema are translated to SQL
queries on local data sources. In [7], query evaluation is based on mapping rules
from global to local schemas in the form of path-to-path correspondences. In [12],
YAT queries are posed on a global schema and evaluated in the data sources us-
ing YAT mapping rules. In [19], Xpath queries are formed and reformulated to
queries on the local catalogs, given a pre-defined DTD. Our approach differs
than the aforementioned techniques in that it does not require the manual def-
inition of hard-coded mapping rules between the virtual tree structure and the
local structures.

Relevant to our work are also techniques where schema descriptions are au-
tomatically extracted from local data sources. XClust [17] generates DTDs to
act as global schemas, applying clustering methods to detect similar DTDs prior
to their integration. Techniques that extract DTDs from collections of XML
documents are also presented in [14]. In [8], a grammar-based model is used to
integrate DTDs. Contrary to our approach, these papers do not deal with query
evaluation.

204 D. Theodoratos and T. Dalamagas

Schema-based descriptions for data with little or no apparent structure have
also been suggested for semistructured databases [6]. Dataguides are introduced
in [15]. They are structural summaries for semistructured data, useful for for-
mulating queries, storing statistics about paths and nodes, and enabling query
optimization. In [10], graph schemas are introduced to formulate, optimize and
decompose queries for semistructured data. These approaches do not provide
a direct solution to the problem of structural inconsistencies and differences in
data sources that we address here. Further, they are purely syntactic. In contrast
to our approach, they do not exploit semantic information.

Integrating tree-structured data is also a popular issue in e-commerce appli-
cations [9, 16]. Facet classification hierarchies [1, 2] also exploit sets of semanti-
cally related categories. In [21], the authors present faceted taxonomies for Web
catalogs. None of these works suggest query evaluation techniques.

3 Data Model

In this section we present a data model for tree-structured data. We introduce
a type of trees, called value trees, to represent tree-structured data. We also
discuss the notion of a dimension, based on which a partitioning can be enforced
on value trees.

3.1 Value Trees and Dimensions

We assume a set of values V that includes a special value r. The elements of V
are used to build value trees.

Definition 1. A value tree is a rooted node-labeled tree T , such that:
(a) Each node label in T belongs to V .
(b) Value r labels only the root of T .
(c) There are no sibling nodes in T labeled by the same value. �

Figure 1 shows examples of value trees T1, T2 and T3 (for the moment, the
dotted labeled rectangles that group the nodes should be ignored). These value
trees are parts of taxonomies used to categorize products related to computer
equipment. The same value may label multiple nodes in a value tree. For example,
value HP labels two nodes in T2. Notice that there are structural differences and
inconsistencies between value trees T1, T2 and T3, although they refer to the
same knowledge domain. For example, there are nodes labeled Multimedia or
Servers in T2 and T3, even though no such nodes appear in T1. Also, a node
labeled Used is a child of a node labeled Sony in T2, although the opposite holds
in T3. Note that we assume that naming mismatches have been resolved. For
instance, nodes labeled by the same value in different trees refer to the same real
world concept.

Values in set V can be grouped to form dimensions. Intuitively, a dimension is
a set of semantically related values. For instance, values Mac, Acer and Compaq
can be interpreted as values of a dimension brand. A semantic interpretation of

Querying Tree-Structured Data Using Dimension Graphs 205

pc_category

pc_type

pda_type
brand

mobile_type

accessories

R

Notebooks

Custom Ultralight Multimedia

Desktops

10''

Servers

8''

PDAs

r

Mac HPSony IBMSony

pc_type

pc_category

mobile_type

brand

HP IBM

mobile_type brand

R

Notebooks

New Used Servers

Desktops PDAs

r

Mac HPSony

pc_type mobile_type

brand

HP IBMMac Sony

Dell Sony

Used New Used

condition

condition brand

R

brand

Notebooks Desktops PDAs

r

Mac

Gateway

HP

Mac

Acer

Compaq

Sony

Cases

Pocket PC

Palm

Used

Used

condition

New Used

New UsedNew

condition

Value Tree T1
(a)

Value Tree T2
(b)

Value Tree T3
(c)

Multimedia

HP IBM

brand

conditionpc_category

Fig. 1. Value trees T1, T2 and T3

values is imposed by a user. A dimension can also be seen as a property with
values.

Definition 2. Let V be a set of values that includes a specific value r. A
dimension set over V is a partition D of V that includes a set R whose single
element is value r. Each element of D is called dimension. �

Figure 2 shows a dimension set D and the names of its dimensions. We use
these dimensions and the value trees of Figure 1 as a running example in this
paper.

Dimension Set D = { R, pc_type, brand, mobile_type, pda_type, accessories, pc_category, condition }

Dimensions: pc_type = { Notebooks, Desktops }
brand = { Mac, Sony, HP, IBM, Gateway, Acer, Compaq }
mobile_type = { PDAs, 10'', 8'' }
pda_type = { Palm, Pocket_PC }

accessories = { Cases }
pc_category = { Ultralight, Multimedia, Server }

condition = { New, Used }

Fig. 2. A dimension set and its dimensions

206 D. Theodoratos and T. Dalamagas

A dimension set also partitions the nodes of a value tree. We are interested in
value trees where every path from the root to a leaf involves values from distinct
dimensions. To describe this type of value trees we introduce the concept of tree
conformity with respect to a dimension set.

Definition 3. Let D be a dimension set over a value set V . A value tree T
conforms to D if and only if there are no two nodes on a path in T labeled by
values that belong to the same dimension in D. �

Consider for example the value trees T1, T2 and T3 of Figure 1. Dotted rect-
angles labeled by dimensions are used to show the partitioning of nodes into
dimensions. The same dimension might label different rectangles in a value tree.
In this case, this dimension comprises the nodes confined by all these rectan-
gles. Dimension pc type in T1 refers to types of personal computers and includes
nodes labeled by values Desktops and Notebooks. Dimension brand in T3 refers
to brand names and includes nodes labeled Mac, Sony, HP, IBM and Dell. All
trees T1, T2, and T3 conform to the dimension set D shown in Figure 2.

Nodes labeled by values of the same dimension need not be in the same level
of a value tree. For example, in T2, the nodes labeled 10” and 8” of dimension
mobile type are not in the same level as the node labeled PDAs of the same
dimension. A value of a dimension may not appear in a value tree. For example,
the value Ultralight of dimension pc category does not appear in value tree T3

nor in T1, although it appears in T2. Further, a dimension may have no value in
a value tree. For instance, no value of pc category appears in T1.

In the following we assume that a dimension set D is given and all value trees
conform to D.

3.2 Dimension Graphs

Values of one dimension can label children or descendants of nodes labeled by
values of any other dimension in a value tree. However, there are cases where
values of one dimension do not label descendants of nodes labeled by values of
some other dimension. For example, none of the values Pocket PC and Palm of di-
mension pda type labels a descendant of the nodes labeled by the value Desktops
or Notebooks of dimension pc type in the value tree T1 of Figure 1. To capture
this type of relationship between dimensions in a value tree, we introduce the
concept of a dimension graph. Dimension graphs can be automatically extracted
from value trees and abstract their structural information. Moreover, they pro-
vide semantic query guidance to pose and evaluate queries on value trees (see
subsequent sections). Before we give the formal definition of a dimension graph
with respect to a value tree, we define dimension graphs as general structures
and we present the notion of a dimension precedence.

Definition 4. A dimension graph over dimension set D is a directed graph
whose nodes are dimensions in D. �

A path in a dimension graph is a sequence D1, . . . , Dk of distinct nodes such
that there is a directed edge from Di to Di+1, where 1 ≤ i ≤ k − 1.

Querying Tree-Structured Data Using Dimension Graphs 207

Definition 5. Let T be a value tree over dimension set D. A dimension Di ∈ D
precedes a dimension Dj ∈ D in T if and only if there are nodes ni and nj in
T labeled by values vi ∈ Di and vj ∈ Dj , respectively, such that nj is a child
node of ni in T . �

For example, dimension pc type precedes dimension brand in T1 of Figure 1,
since a node labeled Mac (a value of brand) is a child of a node labeled Desktops
(a value of pc type).

Based on the definitions of dimension graphs as general structures and the
notion of dimension precedence, we proceed to define formally dimension graphs
with respect to a value tree.

Definition 6. Let T be a value tree over dimension set D. A dimension graph
of T is a dimension graph (N, E), where N is a set of nodes and E is a set of
edges defined as follows:

(a) There is a node D in N if and only if there is a value in T that belongs to
dimension D.

(b) There is a directed edge in E from node Di to node Dj if and only if dimension
Di precedes dimension Dj in T .

If G is a dimension graph of a value tree T , we say that T underlies G. �

Consider for example the value trees T1, T2 and T3 of Figure 1. Figure 3
shows the dimension graphs G1, G2 and G3 of T1, T2 and T3, respectively. There
is an edge from dimension mobile type to dimension pda type in G1, since a node
labeled Palm (a value of pda type) is a child of a node labeled PDAs (a value of
mobile type) in value tree T1. Looking at the lower left part of value tree T3, we
note that a node labeled Mac (a value of brand) is a child of a node labeled New
(a value of condition). However, looking at the lower right part of T3, a node
labeled New is a child of a node labeled Dell (another value of dimension brand).
Thus, dimension brand precedes dimension condition and vice versa. As a result,
there is an edge from dimension condition to dimension brand and an edge from
brand to condition in G3 which are compactly shown in the figures by a double
headed edge.

pda_type

mobile_type

accessories

condition

R R

pc_type

mobile_type
pc_category

brand

pc_type

brand

R

pc_type

brand

mobile_type

condition

pc_category

Dimension graph G2

(b)
Dimension graph G3

(c)
Dimension graph G

1

(a)

Fig. 3. Dimension Graphs

208 D. Theodoratos and T. Dalamagas

The dimension graph of a value tree has a particular form. The following
proposition describes some of its properties.

Proposition 1. Consider a dimension graph G of a value tree T over a dimen-
sion set D. Let v1, . . . , vk be values from the distinct dimensions D1, . . . , Dk ∈
D, respectively. If v1, . . . , vk label, in that order, nodes on a path in T , then
D1, . . . , Dk appear in that order on a path from the root in G. �

4 Queries

We present in this section a simple query language and we outline how queries can
be evaluated. Our intention is not to provide a full-fledged language. For instance,
it does not include selection predicates. Our goal is to show how dimensions can
be used to query value trees. Queries in this language are defined on dimension
graphs. Roughly speaking, a user poses a query by annotating some dimensions in
a dimension graph with permissible sets of values. The answer comprises root-to-
leaf paths on the underlying value tree that involve one value from each of these
value sets. An interesting feature of the language is that the user has the choice
of not specifying or partially specifying parent-child and ancestor-descendant
relationships between the annotated dimensions in a query. The system can
identify possible orderings of dimensions in the paths of the answer based on
the dimension graph only. These orderings are used as patterns for constructing
the path expressions that compute the answer of the query on the underlying
value tree. All the other orderings of dimensions are excluded from consideration
before the computation of the query answer reaches the value tree.

4.1 Syntax

A query on a dimension graph comprises annotations of the graph dimensions
with sets of values and specifications of precedence relationships between the
graph dimensions.

Definition 7. Let G be a dimension graph over a dimension set D. A query Q
on G is a pair (A,P), where:

(a) A is a set of expressions of the from Di = Ai, where Di is a dimension in
G different than R, and Ai is a set of values of dimension Di or a question
mark (“?”). If Di = Ai belongs to A we say that Di is annotated in Q and
Ai is called annotation of Di in Q. Even if not present in A, dimension R is
assumed to be an annotated dimension, annotated with the singleton {r}. A
dimension can be annotated only once in a query.

(b) P is a set of precedence relationships which are expressions of the form
Di → Dj or Di ⇒ Dj , where Di and Dj are annotated dimensions of Q.

Sets A and P can be empty. �

We graphically represent a query Q = (A,P) on a dimension graph G by labeling
its nodes by their annotations in A and by adding to it a single (resp. double)

Querying Tree-Structured Data Using Dimension Graphs 209

pda_type

mobile_type

accessories

RR

pc_type = ?

brand =
{Sony, IBM}

mobile_type

condition =
{used}

pc_type =
{Desktop}

brand =
{Mac, Sony}

pc_category condition =
 {used}

R

pc_type = ?

mobile_type
pc_category

brand =
{Sony, IBM}

Query Q
1
 on G

1
(a)

Query Q
2
 on G

2
(b)

Query Q
3
 on G

3
(c)

Fig. 4. Graphical Representation of Queries

arrow from node Di to node Dj for every precedence relationship Di → Dj

(resp. Di ⇒ Dj) in P. Note that arrows are different than directed edges. The
unqualified word “arrow” refers indiscreetly to a single or double arrow.

Consider for instance the dimension graphs G1,G2, and G3 of Figure 3. Figure
4 shows the graphical representation of different queries on these dimension
graphs. Annotated nodes are shown in the figures with black circles. Precedence
relationships are shown with single or double arrows from one node to another.

Figure 4(a) represents query Q1 = (A1,P1) on dimension graph G1, where
A1 = {brand = {Mac, Sony}, pc type = {Desktops}} and P1 = ∅. In Q1 we do
not specify any precedence relationships between the annotated notes.

In the following we often identify a query with its graphical representation.
Figures 4(b) and (c) represent queries Q2 and Q3. A double arrow from node
pc type to brand denotes the precedence relationship {pc type ⇒ brand} in Q2.

4.2 Semantics

The answer of a query on a value tree T is a set of root-to-leaf paths in T
compactly represented as a subtree of T .

Definition 8. Let G be a dimension graph of a value tree T over a dimension
set D, and Q be a query on G. The answer of Q on T is a subtree T ′ of T such
that:

(a) T ′ and T have the same root r.
(b) Every leaf node of T ′ is a leaf node of T .
(c) Every path from the root to a leaf node in T ′ includes one value from every

value set annotating a node in Q.
(d) Every path from the root to a leaf node in T ′ includes one value from every

dimension annotated with a question mark in Q.
Therefore, for every annotated node (with a value set or a question mark)
in Q, there is one value for the corresponding dimension appearing in every
path from the root to a leaf node in T ′.

(e) For every path p from the root to a leaf node in T ′, and for every precedence
relationship Di → Dj (resp. Di ⇒ Dj) in Q, the value for Dj is a child (resp.
descendent) of the value for Di in p.

210 D. Theodoratos and T. Dalamagas

Value tree T'
1

(a)
Value tree T'

2
(b)

Value tree T'
3

(c)

pc_type

brand

R

Desktops

r

Mac

Sony

Notebooks

Ultralight

Desktops

Servers

8''

r

IBMSony

pc_type

pc_category

brand

IBM

mobile_type brand

R

Used

condition

Used

Used

condition

Notebooks

Used

r

pc_type

brand

Sony

condition

R

Fig. 5. Query Answers

If there is no such a subtree T ′, we say that the answer of Q on T is empty.
Symbol ε denotes an empty answer. �

Annotating a node with a “?” in a query is different than not annotating this
node at all. In contrast to a non-annotated node, a node that is annotated with
a “?” places a value of the corresponding dimension in every root-to-leaf path
in the answer of the query.

Consider the queries Q1, Q2 and Q3 on the dimension graphs G1,G2, and G3,
respectively, graphically shown in Figure 4. Consider also the value trees T1, T2

and T3 of Figure 1. Figure 5 shows the answers T ′
1, T ′

2 and T ′
3 of Q1, Q2 and Q3

on T1, T2 and T3, respectively.
Further, consider the query Q4 = (A4,P4), where: A4 = {pc type =

{Desktops},brand = {HP, Gateway}}, and P3 = {pc type → brand} on the di-
mension graph G1 shown in Figure 3. In the value tree T1 shown in Figure 1(a)
there are values of dimension brand that are children of values of dimension
pc type. However, there is no root-to-leaf path that involves values Desktops and
HP, or Desktops and Gateway. Therefore, the answer of Q4 on T1 is empty.

4.3 Unsatisfiable Queries

A query on a dimension graph G is called unsatisfiable if its answer is empty
on every value tree underlying G. Otherwise, it is called satisfiable. Detecting
the unsatisfiability of a query saves its evaluation on a value tree (which, in any
case, produces an empty answer.) In general, this value tree is much larger than
its dimension graph which might be needed for detecting the unsatisfiability of
the query. The graphical representation of a query provides some intuition on
unsatisfiable queries.

Querying Tree-Structured Data Using Dimension Graphs 211

R

pc_type
= ?

brand
= ?

mobile_type

condition

pc_category

Query Q6 on G2

(b)

condition

R

pc_type = ?

mobile_type
= ?

pc_category

Brand = ?

Query Q
5

on G
3

(a)

R

pc_type

brand

mobile_type = ?

condition
 =?

pc_category

Query Q7 on G2

(c)

= ?

Fig. 6. Unsatisfiable Queries

Consider the dimension graphs G2 and G3 of Figure 3, and the queries Q5 on
G3, and Q6 and Q7 on G2 graphically represented in Figure 6. These queries are
unsatisfiable.

In query Q5 of Figure 6(a), there is no path from the root of G3 that involves
all the annotated nodes. By Proposition 1 there is no root-to-leaf path in a value
tree underlying G3 that involves values for the annotated dimensions in Q5.

In query Q6 of Figure 6(b), there is a path from the root of G2 through all
the annotated nodes (e.g. the path (R, pc type, pc category, brand)). However,
there are two outgoing single arrows from the same node (node pc type). Clearly,
no two values can be children of the same node in a root-to-leaf path of a value
tree underlying G2.

In query Q7 of Figure 6(c), there is also a path from the root of G2 through all
the annotated nodes (e.g. the path (R, mobile type, brand, condition)). However,
there is a double arrow from node condition to node mobile type in Q3 and no
path from node condition to node mobile type in G2. By Proposition 1 there is no
root-to-leaf path in a value tree underlying G2 that involves a value for dimension
condition preceding a value for dimension mobile type.

More generally, we can show the following result that provides sufficient con-
ditions for a query to be unsatisfiable.

Proposition 2. A query Q on a dimension graph G is unsatisfiable if one of the
following conditions holds:

(a) Arrows in Q form a directed cycle.
(b) There are precedence relationships D → Di and D → Dj or precedence

relationships Di → D and Dj → D in Q (Di �= Dj).
(c) There is a precedence relationship Di → Dj in Q but no edge from node Di

to node Dj in G.
(d) There is a precedence relationship Di ⇒ Dj in Q but no edge from node Di

to node Dj in the transitive closure of G (in other words, no path from node
Di to node Dj in G).

(e) The annotated nodes in Q are not on a path from the root of G. �
In order to provide necessary conditions for query unsatisfiability, we intro-

duce the concept of an answer path of a query.

212 D. Theodoratos and T. Dalamagas

Definition 9. Let Q be a query on a dimension graph G. An answer path of Q
in G is a path p in G from the root of G such that:

(a) All the annotated dimensions in Q are on p, and p ends on an annotated
dimension of Q.

(b) If there is a precedence relationship Di → Dj (resp. Di ⇒ Dj) in Q, then Dj

is a child (resp. descendent) of Di in p. �

Consider for instance the query Q2 on dimension graph G2 and the query Q3

on dimension graph G3, which are shown in Figures 4(b) and 4(c), respectively.
One can identify the following answer paths for query Q2 in G2:

R, pc type, brand, condition
R, pc type, pc category, brand, condition
R, pc type, pc category, mobile type, brand, condition

The answer paths for query Q3 in G3 are:

R, pc type, condition, brand
R, pc type, pc category, brand, condition

The following proposition provides necessary and sufficient conditions for a
query to be unsatisfiable.

Proposition 3. A query Q on a dimension graph G is unsatisfiable if and only
if there is no answer path of Q in G. �

4.4 Query Evaluation

When evaluating a query, we first check it for satisfiability. If a query is satis-
fiable, we proceed to compute its answer on a value tree in three steps. In the
first step, we compute all the answer paths of the query. In the second step,
we generate path expressions based on the answer paths. In the third step we
evaluate the path expressions on the value tree and compose the answer of the
query.

To represent path expressions, we use a notation similar to that of XPath [4].
The fragment of XPath we use involves node names (vi), child axis (/), descen-
dant axis (//), wildcards (∗), unions (|). The expression (v1| . . . |vm) represents
any node name in the set {v1, . . . , vm}. For a dimension D, we use the expression
∗D as an abbreviation for the expression (v1| . . . |vn), where {v1, . . . , vn} = D.

Given an answer path, we construct a corresponding path expression as fol-
lows. Let R,D1, . . . , Dk be an answer path of a query Q. The corresponding path
expression has the form r/θ1/ . . . /θk, where, for i = 1, . . . , k,

θi =
{

(v1| . . . |vm) if Di is annotated with the value set {v1, . . . , vm}
*Di

if Di is annotated with a “?” or if Di is not annotated

Notice that even though nodes annotated with a “?” are treated the same
way as non-annotated ones in the construction of path expressions for a query,
they affect differently the answer of a query since they are taken into account in
the identification of answer paths for that query.

Querying Tree-Structured Data Using Dimension Graphs 213

Before showing what the result of a path expression on a value tree is, we
introduce the concept of a merge of a set of value trees (or paths). Let T1, . . . , Tk

be a set of value trees having the same root r. The merge of T1, . . . , Tk, denoted
T1 ∪ . . .∪ Tk, is a minimal1 value tree which has T1, . . . , Tk as subtrees. It is not
difficult to see that this value tree is unique.

We show now what is the result of a path expression on a value tree. Let
e be a path expression and T be a value tree. Let also P be the set of paths
from the root of T to the leafs of T that satisfy e. The result res(e, T) of a path
expression e on a value tree T is the value tree

⋃
p∈P p. Note that the result of a

path expression is different than the result of the same XPath expression. The
result of a path expression is a value tree while the result of the same XPath
expression is a set of nodes [4]. We can use XQuery [5] to compute the result of
a path expression as it is defined here.

The answer of a query on a value tree can be computed by merging the results
of its path expressions on the value tree. Let E = {e1, . . . , en} be the set of path
expressions constructed from all the answer paths of a query Q. The answer of
Q on a value tree T is the value tree

⋃
i∈[1,n] res(ei, T).

As an example consider the query Q2 on dimension graph G2, which is shown
in Figure 4(b). The answer paths for Q2 in G2 are shown in Section 4.3. These
answer paths generate the following path expressions:

r/ ∗pc type /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category / ∗mobile type /(Sony|IBM)/Used

Evaluating these path expressions on the value tree T2 of Figure 1(b), one
can see that the result of the first path expression is an empty value tree. In
contrast, the second path expression contributes one path, while the third one
contributes two paths to the answer of Q2 on T2 (Figure 5(b)).

Consider also the query Q3 on dimension graph G3, which is shown in Figure
4(c). The answer paths for Q3 in G3 are shown in Section 4.3. They generate the
following path expressions:

r/ ∗pc type /Used/(Sony|IBM)
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used

Of those path expressions, evaluating the second one on the value tree T3 of
Figure 1(c) results in an empty value tree. Only the first one contributes a path
to the answer of Q3 on T3 (Figure 5(c)).

4.5 Querying Multiple Value Trees

Consider the value trees T1, . . . , Tn over a dimension set D and let G1, . . . , Gn be
their dimension graphs respectively. The dimension graphs G1, . . . , Gn are not
necessarily the same. In order to query the value trees T1, . . . , Tn together, we
need a “global” dimension graph. Such a graph G can be constructed by merging

1 Minimality is meant with respect to the number of nodes or edges.

214 D. Theodoratos and T. Dalamagas

the dimension graphs G1, . . . , Gn. A query Q on G is defined on a dimension graph
Gi if it does not involve dimensions that occur in G but not in Gi. Otherwise,
it is not defined on Gi and it returns no answers. If Q is defined on Gi, it can
be checked for consistency and evaluated as described in the previous sections.
Notice that a query on the global dimension graph G can be applied to any of
the Gis without the use of mapping rules.

5 Conclusion

We presented a method for querying tree structures, called value trees. Our ap-
proach exploits semantic information for the nodes of value trees. A semantic
relationship between nodes in value trees was captured by the concept of a di-
mension. Dimension graphs were defined to capture structural information on the
dimensions of a value tree. However, dimension graphs are not plain structural
summaries of value trees, but rather semantically richer constructs that assist
query evaluation. We designed a query language to query value trees. Queries are
specified on the dimensions of the value tree and can optionally involve parent-
child and ancestor-descendant relationships between these dimensions. A query
is not restricted by the structure of a specific value tree. We provided necessary
and sufficient conditions for query unsatisfiability and we presented a technique
for evaluating satisfiable queries. Finally, we showed how dimension graphs can
be used to query multiple value trees in the presence of structural differences
and inconsistencies.

We are currently working towards two directions. We are first elaborating on
how our framework can be used for integrating tree structured data. In particu-
lar, we examine how to apply our techniques to query and integrate XML data
sources that conform to different DTDs. The second research direction involves
extending our query language with additional features, e.g. branching path ex-
pressions and disjunctions.

References

1. Exchangeable Faceted Metadata Language, (XFML), 2003, http://www.xfml.org/.
2. XML Topic Maps (XTM), 2001, http://www.topicmaps.org.
3. World Wide Web Consortium site (W3C), http://www.w3c.org.
4. XML Path Language (XPath). World Wide Web Consortium site. W3C, 2003-2005,

http://www.w3c.org/TR/xpath20/.
5. XML Query (XQuery). World Wide Web Consortium site, The Architecture Do-

main. W3C, 2003-2005, http://www.w3.org/XML/Query.
6. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to

Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.
7. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-based Integration of

XML Web Resources. In Proc. of the ICSW’02 Conference, Sardinia, Italy, 2002.
8. R. Behrens. A Grammar-based Model for XML Schema Integration. In Proc. of

the BNCOD’00 Conference, Exeter, UK, 2000.

Querying Tree-Structured Data Using Dimension Graphs 215

9. S. Bergamaschi, F. Guerra, and M. Vincini. A Data Integration Framework for E-
commerce Product Classification. In Proc. of the ICSW’02 Conference, Sardinia,
Italy, 2002.

10. P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding Structure
to Unstructured Data. In Proc. of the ICDT’97 Conference, Delphi, Greece, 1997.

11. A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management. Addison
Wesley, 2003.

12. V. Christophides, S. Cluet, and J. Simeon. On Wrapping Query Languages and
Efficient XML Integration. In Proc. of the ACM SIGMOD’00 Conference, USA,
2000.

13. S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository. In
Proc. of the VLDB’01 Conference, Rome, Italy, 2001.

14. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A
System for Extracting Document Type Descriptors from XML Documents. In
Proc. of the ACM SIGMOD’00 Conference, Dallas, Texas, USA, 2000.

15. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Op-
timization in Semistructured Databases. In Proc. of the VLDB’97 Conference,
Athens, Greece, 1997.

16. D. Kim, J. Kim, and S.-G. Lee. Catalog Integration for Electronic Commerce
through Category-hierarchy Merging Technique. In Proc. of the RIDE’02 Work-
shop, San Jose, USA, 2002.

17. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust: Clustering XML Schemas for
Effective Integration. In Proc. of the CIKM’02 Conference, Virginia, USA, 2002.

18. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over Het-
erogeneous Data Sources. In Proc. of the VLDB’01 Conference, Rome, Italy, 2001.

19. P. J. Marron, G. Lausen, and M. Weber. Catalog Integration Made Easy. In Proc.
of the ICDE’03 Conference, Bangalore, India (poster), 2003.

20. E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4), 2001.

21. Y. Tzitzikas, N. Spyratos, P. Constantopoulos, and A. Analyti. Extended Faceted
Taxonomies for Web Catalogs. In Proc. of the WISE’02 Conference, Singapore,
Dec 2002.

Workflow Resource Patterns: Identification,
Representation and Tool Support�

Nick Russell1, Wil M.P. van der Aalst2,1, Arthur H.M. ter Hofstede1,
and David Edmond1

1 Centre for IT Innovation, Queensland University of Technology,
P.O. Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede, d.edmond}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

P.O. Box 513, NIL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. In the main, the attention of workflow researchers and work-
flow developers has focussed on the process perspective, i.e., control-flow.
As a result, issues associated with the resource perspective, i.e., the peo-
ple and machines actually doing the work, have been largely neglected.
Although the process perspective is of most significance, appropriate
consideration of the resource perspective is essential for successful im-
plementation of workflow technology. Previous work has identified recur-
ring, generic constructs in the control-flow and data perspectives, and
presented them in the form of control-flow and data patterns. The next
logical step is to describe workflow resource patterns that capture the
various ways in which resources are represented and utilised in work-
flows. These patterns include a number of distinct groupings such as
push patterns (“the system pushes work to a worker”) and pull patterns
(“the worker pulls work from the system”) to describe the many ways
in which work can be distributed. By delineating these patterns in a
form that is independent of specific workflow technologies and modelling
languages, we are able to provide a comprehensive treatment of the re-
source perspective and we subsequently use these patterns as the basis
for a detailed comparison of a number of commercially available work-
flow management systems.

Keywords: Workflow, Patterns, Resources, Business Process Modelling.

1 Introduction

Over the last decade there has been increasing interest in process-aware infor-
mation systems (PAIS), i.e., systems that are used to support, control, and/or

� This work was partially supported by the Dutch research school BETA as part of the
PATINT program and the Australian Research Council under the Discovery Grant
Expressiveness Comparison and Interchange Facilitation between Business Process
Execution Languages.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 216–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Workflow Resource Patterns 217

monitor business processes. Typical examples of systems that are driven by im-
plicit or explicit process models are WorkFlow Management (WFM) systems,
Enterprise Resource Planning (ERP) systems and Customer Relationship Man-
agement (CRM) systems. These systems can be configured to support specific
business processes. Recently, several languages have been proposed to support
process-orientation in the context of web-services (cf. BPEL4WS, BPML, WSCI,
etc.). The support of IBM, Microsoft, HP and SAP for a language like BPEL4WS
(Business Process Execution Language for Web Services, [6]) reinforces the fact
that process-awareness has become one of the cornerstones of information sys-
tems development. Existing languages and tools focus on control-flow and com-
bine this focus with mature support for data in the form of XML and database
technology. As a result, control-flow and data-flow are well-addressed by exist-
ing languages and systems. Unfortunately, less attention has been devoted to the
resource perspective. This continues to be the case even with relatively recent
advances such as the language BPEL4WS [6] which does not provide any de-
gree of direct support for resources in business processes based on web-services.
Similarly, languages like XPDL [13], the “Lingua Franca” proposed by the Work-
flow Management Coalition (WfMC), has a very simplistic view of the resource
perspective and provides minimal support for modelling workers, organisations,
work distribution mechanisms, etc. A quote attributable to John Seely Brown
(a former Chief Scientist at Xerox) succinctly captures the current predicament:
“Processes don’t do work, people do!”. In other words, it is not sufficient to
simply focus on control-flow and data issues when capturing business processes,
the resources that enable them need to be considered as well.

In this paper, we focus on the resource perspective. The resource perspec-
tive centres on the modelling of resources and their interaction with a PAIS.
Resources can be human (e.g., a worker) or non-human (e.g., plant and equip-
ment), although our focus will be on human resources. Although PAIS typically
identify human resources, they know very little about them. For example, in a
workflow system like Staffware a human resource is completely specified by the
work queues (s)he can see. This does not do justice to the capabilities of the
people using such systems. Staffware also does not leave a lot of “elbow room”
for its users since the only thing they can do is execute the work items in their
work queues, i.e., people are treated as automatons and have little influence
over the way in which work is distributed. The limitations of existing systems
triggered the research presented in this paper. By identifying resource patterns
and providing a critical analysis of existing workflow management systems we
hope to encourage workflow researchers and workflow developers to improve the
resource perspective in future offerings.

This work extends the Workflow Patterns Initiative1 to the resource perspec-
tive. This research project seeks to identify recurring generic workflow constructs
through review of the conceptual foundations of workflow systems together with

1 See www.workflowpatterns.com for more information, i.e., animations, papers, tool
evaluations, etc.

218 N. Russell et al.

a comprehensive survey of commercial product offerings. These constructs are
then described in the form of patterns. Initially, it examined control-flow depen-
dencies in workflow languages [2]. Later it was extended to include web-services
composition languages [1] and the data perspective [11]. This work3 has directly
influenced tool selection processes, commercial and open-source workflow sys-
tems, and workflow standards. In this paper, we adopt an approach similar to
that in [2] although in this case, the focus is on the resource perspective.

The remainder of the paper is organised as follows. We first introduce some
basic concepts relating to workflow management in general and resource mod-
elling in particular. Then we describe a series of selected resource patterns drawn
from the various categories that have been identified. Note that of the more than
40 resource patterns identified, we only describe a few typical examples and refer
the reader to [12] for a comprehensive discussion of the complete set of patterns.
Section 4 evaluates five existing workflow products using these patterns. Sec-
tion 5 discusses related work and Section 6 concludes the paper.

2 Workflow and Resource Concepts

Before we describe the resource patterns in detail, we present a standard set
of definitions for the various workflow concepts that we will utilise throughout
this paper. In doing so, we first introduce some general terminology for workflow
models and then focus on the concepts relating to the resource perspective.

2.1 Workflow Model

A workflow or workflow model is a description of a business process in sufficient
detail that it is able to be directly executed by a workflow management system.
A workflow model is composed of a number of tasks which are connected in
the form of a directed graph. An executing instance of a workflow model is
called a case or process instance. There may be multiple cases of a particular
workflow model running simultaneously, however each of these is assumed to
have an independent existence and they typically execute without reference to
each other.

There is usually a unique first task and a unique final task in a workflow.
These are the tasks that are first to run and last to run in a given workflow case.

A task corresponds to a single unit of work. Four distinct types of task are
denoted: atomic, block, multiple-instance and multiple-instance block. An atomic
task is one which has a simple, self-contained definition (i.e. one that is not
described in terms of other workflow tasks) and only one instance of the task
executes when it is initiated. A block task is a complex action which has its im-
plementation described in terms of a sub-workflow. When a block task is started,
it passes control to the first task(s) in its corresponding sub-workflow. This sub-
workflow executes to completion and at its conclusion, it passes control back to
the block task. E.g. block task C is defined in terms of the sub-workflow compris-
ing tasks, X, Y and Z. A multiple-instance task is a task that may have multiple

Workflow Resource Patterns 219

Fig. 1. A overview of the basic workflow concepts

distinct execution instances running concurrently within the same workflow case
and a multiple-instance block task is a combination of the two previous constructs
and denotes a task that may have multiple distinct execution instances each of
which is block structured in nature (i.e. has a corresponding sub-workflow).

The control flow between tasks occurs via the control channel which is indi-
cated by a solid arrow between tasks.

Each invocation of a task that executes is termed a work item. Usually there
is one work item initiated for each task in a given case however for a multiple-
instance task, there may be several associated work items that are created when
the task is initiated. Similarly, where a task forms part of a loop, a distinct work
item is created for each iteration.

In general a work item is directed to a resource for execution (although a
resource is not required to undertake automatic tasks). There are a variety of
ways by which this may be achieved which will be discussed subsequently.

A task may initiate one or several tasks when it completes (i.e. when a work
item corresponding to it completes). This is illustrated by an arrow from the
completing task to the task being initiated e.g. in Figure 1, task B is initiated
when task A completes. This may also occur conditionally and where this is the
case, the edge between tasks indicates the condition that must be satisfied for
the subsequent task to be started.

Figure 1 shows the control-flow perspective and only hints at the other per-
spectives (e.g., resources and data). Nevertheless, it sets the scene for discussing
the resource perspective.

2.2 Resource Perspective

Typically, resources are needed to execute work items, i.e., invocations of tasks
for specific cases. A resource is an entity that is capable of doing work and
can be classified as either human or non-human, i.e., a resource that does not

220 N. Russell et al.

correspond to an actual person - e.g. plant and equipment. As mentioned in the
introduction, we focus on human resources. However, many of the concepts and
patterns also apply to non-human resources.

A human resource is typically a member of an organisation. An organisation
is a formal grouping of resources that undertake work items pertaining to a com-
mon set of business objectives. They usually have a specific position within that
organisation, which may have specific privileges associated with it. They may also
be a member of one or more organisational units which are permanent groups
of human resources within the organisation that undertake work items relating
to a specific set of business functions. Details of the organisational structure in
which a human resource may operate are not discussed in this paper. Interested
readers are referred to [12], where these issues are examined in more detail.

A resource may have one or more associated roles. Roles serve as another
grouping mechanisms for human resources with similar job roles or responsibility
levels e.g. managers, union delegates etc. Individual resources may also possess
capabilities or attributes that further clarify their suitability for various kinds
of work items. These may include qualifications and skills as well as other job-
related or personal attributes such as specific responsibilities held or previous
work experience. They may also have features which further describe specific
characteristics that they may possess that could be of interest when allocating
work items. A comprehensive resource meta-model is presented in [12].

2.3 Lifecycle of a Work Item

Of particular interest from a resource perspective is the manner in which work
items are advertised and ultimately bound to specific resources for execution.
Figure 2 illustrates the lifecycle of a work item in the form of a state transition
diagram from the time that a work item is created through to final completion
or failure. It can be seen that there are a series of potential states that comprise
this process.

Fig. 2. State Transition Diagram for Work Distribution

Workflow Resource Patterns 221

Each node in Figure 2 represents a possible state of a work item. Each edge
within this diagram is prefixed with either an S or an R indicating that the
transition is initiated by the workflow system (S) or resource (R) respectively.

Initially a work item comes into existence in the created state. This indicates
that the preconditions required for its enablement have been satisfied and it is
capable of being executed. At this point however, the work item has not been
allocated to a resource for execution. In state created the system can take one
of three possible courses of action: (1) offer the work item to a single resource,
(2) allocate it to a resource, or (3) offer it to multiple resources. The difference
between allocating and offering to a single resource is subtle. If a work item is
allocated, there is a commitment on the part of the resource to execute the work
item. Note that this commitment may be imposed by the system via S:allocate
or by the resource him/herself (via R:allocate s or R:allocate m). No such com-
mitment is implied for offered work items. Depending on the system and the
resource, an offered or allocated work item can be started (cf., state started).
Started work items can be completed, suspended (followed by a resume) or failed.

It is important to note that Figure 2 is just an example of a lifecycle model
for work items. Some of the states and transitions may not be present in a given
system. Moreover, when we consider more advanced patterns we need to assume
an extended lifecycle model, e.g., to capture delegation.

3 Resource Patterns

The patterns presented in this section are intended to be language independent
and do not assume a concrete syntax. In the absence of a commonly agreed
workflow model, the aim is to define them in a form that ensures they are
applicable to the broadest possible range of PAIS. The patterns are grouped
into a number of categories: creation patterns, push patterns, pull patterns, detour
patterns, auto-start patterns, visibility patterns, and multiple resource patterns. In
this section we only describe a selection of the resource patterns. For a complete
overview and detailed descriptions we refer the reader to [12].

3.1 Creation Patterns

The first category of patterns refers to the various restrictions that can be defined
for a work item at design time. These restrictions can refer to the range of
resources that may execute the work item (“Who?”), the time at which the
work item should be executed (“When?”) and the location at which the work
item can be processed (“Where?”). Note that the creation patterns refer to the
design phase, i.e., before there are any work items in existence. Therefore, they
cannot be linked directly to Figure 2.

We have identified eleven creation patterns but in this paper we only describe
the second of these: role-based allocation.

222 N. Russell et al.

Pattern 2: R-RBA (Role-Based Allocation)

Description The ability to specify at design time that a task can only be
executed by resources which correspond to a given role.
Example Instances of the Approve Travel Requisition task must be executed
by a Manager.
Motivation Perhaps the most common approach to work item allocation within
workflow systems, role-based allocation offers the means for the workflow engine
to route work items to suitably qualified resources at runtime. The decision as to
which resource actually receives a given work item is deferred until the moment
at which it becomes runnable and requires a resource allocation in order for it
to proceed. The advantage offered by role-based allocation is that roles can be
defined for a given workflow process that define the various classes of available
resources to undertake work items. Task definitions within the process model can
nominate the specific role to which they should be routed; however the actual
population of individual roles does not need to occur until runtime.
Implementation All of the workflow systems examined support role-based al-
location.

The other ten creation patterns describe additional constraints that can be
specified at design time, e.g., the “separation of duties” pattern (also known as
the four-eyes principle) which specifies that certain tasks cannot be executed by
the same person within the same case. Table 1 lists all eleven creation patterns.

3.2 Push Patterns

Push patterns refer to the ability of the system to offer or allocate work items.
These patterns relate to state transitions S:offer s, S:offer m and S:allocate
shown in Figure 2. Transition S:offer s corresponds to a work item being of-
fered to a single resource, S:offer m corresponds to a work item being offered to
multiple resources, and S:allocate corresponds to a work item being directly
allocated to a specific resource immediately after it has been created. The main
difference between an offered work item and an allocated work item is the level
of commitment implied (i.e. whether the resource is committed to executing the
work item or has merely been advised of its existence). In the case where a work
item is offered to multiple resources, the initiative is left with the resources to
determine which of them will actually execute it. This contrasts with allocated
work items where the decision is made by the system. However, if the work item
is offered to a single resource, the difference is more subtle and in some sys-
tems it will be difficult, if not impossible, to distinguish between S:offer s and
S:allocate s.

There are nine push patterns (cf. Table 1). Here we only discuss two of them:
patterns 13 and 17.

Pattern 13: R-DBOM (Distribution by Offer – Multiple Resources)

Description The ability to offer a work item to a group of selected resources.
Example The Sell portfolio work item is offered to multiple Stockbrokers.

Workflow Resource Patterns 223

Motivation Offering a work item to multiple resources is the workflow analogy
to the act of “calling for a volunteer” in real life. It provides a means of advising
a suitably qualified group of resources that a work item exists but leaves the
onus with them as to who actually commits to undertake the activity. Note that
this pattern corresponds to the ability to take transition S:offer m in Figure 2.

Implementation Several workflow engines support the notion of work groups
and allow work items to be allocated to them. A work group is a group of
resources with a common organisational focus. When a work item is allocated
to the group, each of the group members is advised of its existence, but until
one of them commits to starting it and advises the workflow engine of this fact,
it remains on the work queue for each of the resources.

There are several ways in which a resource can be advised of group work
items: (a) it may appear on each of their individual work queues, (b) each re-
source may have a distinct work queue for group items on which it may appear,
or (c) all resources in a work group may have the ability to view a shared group
work queue in addition to their own dedicated work queue.

Different workflow engines handle the offering of a work item to multiple
resources in different ways:

– WebSphere treats work items offered to multiple resources in the same way
as work items allocated to a specific resource and they appear on the work
list of all resources to whom they are offered. When an advertised work item
is accepted by one of the resources to which it is offered, it is removed from
the work lists of all other resources.

– Staffware and COSA support the concept of distinct user specific work
queues and group work queues. Where an advertised work item is accepted
by a resource, it remains on the group work list but is not able to be selected
for execution by other resources.

– iPlanet supports distinct work queues for offered and queued (i.e. allocated)
work items. Once an advertised work item has been accepted by a resource,
it is removed from all offered work queues and only appears on the work
queue for the resource which has accepted it.

Pattern 17: R-SHQ (Shortest Queue)

Description The ability to allocate a work item to the resource that has the
least number of work items allocated to it.

Example The Heart Bypass Procedure is allocated to the Surgeon who has the
least number of operations allocated to them.

Motivation This allocation mechanism seeks to expedite the throughput of
a workflow process by ensuring that work items are allocated to the resource
that is able to undertake them in the shortest possible timeframe. Typically the
shortest timeframe means the resource with the shortest work queue although
other interpretations are possible. Note that this pattern corresponds to a specific
realization of transition S:allocate in Figure 2, i.e., it is an allocation by the
system based on the number of already allocated work items.

224 N. Russell et al.

Implementation In order to implement this allocation method, workflow en-
gines need to maintain information on the work items currently allocated to
resources and make this information available to the work item distribution al-
gorithm. COSA directly implements this allocation method via the fewwork()
function. iPlanet provide facilities for programmatically extending the work item
distribution algorithm indirectly enabling this pattern to be achieved.

3.3 Pull Patterns

While push patterns focus on work distribution from the system’s perspective,
pull patterns consider the issue from the resource’s viewpoint. After the sys-
tem offers or allocates a work item, the resource can take the initiative to al-
locate or start a work item. This is reflected by the transitions R:allocate s,
R:allocate m, R:start s, R:start m, and R:start in Figure 2. There are six
pull patterns, all related to these transitions. Here, we only discuss two of them:
patterns 21 and 23.

Pattern 21: R-RIA (Resource-Initiated Allocation)
Description The ability for a resource to commit to undertake a work item
without needing to commence working on it immediately.
Example The Clerk selects the Town Planning work items that she will under-
take today although she only commences working on one of these now.
Motivation This pattern provides a means for a resource to signal its intention
to execute a given work item at some point in time although it may not com-
mence working on it immediately. As a consequence, the work item is considered
to be allocated to the resource and it cannot be allocated to or executed by
another resource. Clearly this pattern corresponds to transitions R:allocate s
and R:allocate m.
Implementation The implementation of this pattern generally involves the
removal of the work item from a globally accessible or shared work list and
its placement on a work queue specific to the resource to which it is allocated.
FLOWer directly supports this pattern through its case query construct. COSA
allows a resource to reserve a work item that is displayed on a shared or global
worklist for later execution by a user; however in doing so, the entire process
instance is locked by the resource until the work item is completed.

Pattern 23: R-RIEO (Resource-Initiated Execution – Offered Work
Item)
Description The ability for a resource to select a work item offered to it and
commence work on it immediately.
Example The Courier Driver selects the next Delivery work item from those
offered and commences work on it.
Motivation In some cases it is preferable to view a resource as being committed
to undertaking a work item only when the resource has actually started working
on it, i.e., there is no explicit allocation phase. This approach to work distribution

Workflow Resource Patterns 225

effectively speeds throughput by eliminating the notion of work item allocation.
Work items remain on offer to the widest range of appropriate resources until
one of them actually indicates they can commence work on it. Only at this time
is the work item removed from being on offer and allocated to a specific resource.
This pattern corresponds to transitions R:start s and R:start m in Figure 2.
Implementation This approach to work distribution is adopted by Staffware,
WebSphere and COSA for shared work queues (e.g. group queues). For these
systems, a work item remains on the queue until a resource indicates that it has
commenced it. At this point, its status changes and no other resource can execute
it although it remains on the shared queue until it is completed. iPlanet adopts
this approach for all work items and effectively presents each resource with a
single amalgamated queue of work items allocated directly to it as well as those
offered to a range of resources. The resource must indicate when it wishes to
commence a work item. This results in the status of the work item changing and
it being removed from any other work queues on which it might have existed.
Patterns 21and 23 do not convey the fact that work can be offered in various
ways, e.g. the order in which work is offered may be determined by the system or
by the resources. Table 1 provides a complete listing of pull patterns and gives
an insight into the various bases on which work items can be offered to resources.

3.4 Detour Patterns

The state transitions shown in Figure 2 refer to the basic lifecycle of a work item,
i.e., the “normal way” of handling work. However, there are situations where
pre-existing work allocations are interrupted either by the workflow system or
at the instigation of the associated resource. As a consequence of such events, the
normal sequence of state transitions for a workflow item is varied. Patterns for
dealing with these exceptional situations are called detour patterns. The range
of possible scenarios for detour patterns is illustrated in Figure 3.

Fig. 3. Detour Patterns

226 N. Russell et al.

As shown in Figure 3, detour patterns allow for alternative state transitions.
Possible detour patterns include:

– delegation – where a resource allocates a work item previous allocated to it
to another resource.

– escalation – where the workflow system attempts to progress a work item
that has stalled by offering or allocating it to another resource.

– deallocation – where the system makes a previously allocated or started work
item available for offer and subsequent allocation.

– reallocation – where a resource allocates a work item that it has started work
on to another resource.

– suspension/resumption – where a resource temporarily suspends execution
of a work item and recommences execution of it at a later time.

– skipping – where a resource elects to skip the execution of a work item
allocated to it.

– redo – where a resource repeats execution of a work item completed earlier.
– pre-do – where a resource executes a work item that is ahead of the current

execution point of a workflow case.

In this paper we only describe one of the detour patterns in detail.

Pattern 27: R-D (Delegation)

Description The ability for a resource to allocate a work item previously allo-
cated to it to another resource.
Example Before going on leave, the Chief Accountant passed all of his out-
standing work items onto the Assistant Accountant.
Motivation Delegation provides a resource with a means of re-routing work
items that it is unable to execute. This may be because the resource is unavailable
(e.g. on vacation) or because they do not wish to take on any more work. The
pattern corresponds to transition R:delegate in Figure 3.
Implementation Generally the ability to delegate a work item is included in
the client work list handler for a workflow engine. Staffware, WebSphere and
COSA allow individual queued work items to be redirected to a given resource.
COSA also has an enhanced notion of delegation in which all of the work items
corresponding to a specific task definition can be redirected to another resource.

3.5 Auto-start Patterns

Auto-start patterns relate to situations where the execution of work items is
triggered by specific events in the lifecycle of the work item or the related pro-
cess definition. Such events may include the creation or allocation of a work
item, completion of another instance of the same work item or a work item that
immediately precedes the one in question. The state transitions associated with
these patterns are illustrated in Figure 4.

In this section we describe two of the four patterns: piled execution (pat-
tern 38) and chained execution (pattern 39). These correspond to transitions

Workflow Resource Patterns 227

Fig. 4. Auto-start Patterns

S:piled execution and S:chained execution in Figure 4. Note that the cor-
responding arc is dashed because the completed state of one work item is con-
nected to the started state of the next work item.

Pattern 38: R-PE (Piled Execution)
Description The ability of the workflow system to initiate the next instance of a
workflow task (perhaps in a different case) once the previous one has completed.
Example The next Clean Hotel Room work item can commence immediately
after the previous one has finished and it can be allocated to the same Cleaner.
Motivation Piled execution provides a means of optimising task execution by
pipelining instances of the same task and allocating them to the same resource.
The resource undertakes work items sequentially and once a work item is com-
pleted, if another work item of the same type is present in the work queue, it
immediately commences work on it – in effect it attempts to work on piles of
the same types of work items. The aim with this approach to work distribution
is to allocate similar work items to the same resource which aims to undertake
them one after the other thus gaining from the benefit of exposure to the same
type of task (e.g., reduced set-up time, increased familiarity with the task).
Implementation To implement this pattern requires like work items to be
allocated to the same resource and the ability for the resource to undertake
related work items on a sequential basis, immediately commencing the next one
when the previous one is complete. This is a relatively sophisticated requirement
and none of the workflow systems examined support it.

Pattern 39: R-CE (Chained Execution)
Description The ability of the workflow system to automatically start the next
work item in a case once the previous one has completed.
Example Immediately commence the next work item(s) in the Emergency Res-
cue Coordination process when the preceding one has completed.

228 N. Russell et al.

Motivation The rationale for this pattern is that case throughput is expedited
when a resource is allocated sequential work items within a case and when a work
item is completed, its successor is immediately initiated. This has the effect of
keeping the resource constantly busy progressing work items in a given case.
Implementation In order to implement this pattern effectively, the majority
(if not all) of the work items for a given case need to be allocated to the same
resource and it must execute them in a strict sequential order. This approach to
work distribution is best addressed by a case handling system and not surpris-
ingly FLOWer offers direct support for it.

3.6 Additional Patterns

In [12] we identify additional patterns dealing with visibility (which work items
are visible and who can see them) and multiple resources working on the same
work item (e.g., patterns related to the formation of project teams). In this
paper, we will not elaborate on these patterns and we will also not include them
in the product evaluation presented in the next section.

4 Evaluation of Existing Workflow Products

The resource patterns discussed in this paper have been collected for several
reasons. First of all, the patterns serve as a way to describe workflow function-
ality in a tool-independent manner. Second, the patterns can be used to train
workflow developers and consultants. Last but not least, the patterns can be
used to select workflow products or other PAIS. In this paper, we focus on five
products: Staffware Process Suite version 9 (TIBCO), WebSphere MQ Workflow
3.4 (IBM), FLOWer 3 (Pallas Athena), COSA 4.2 (TRANSFLOW) and iPlanet
6.0 (SUN). An assessment scale with three possible values is used for evaluating
these products with “+” indicating direct support for the pattern, “+/–” indi-
cating partial support and “–” indicating that the pattern is not supported. The
specifics of the rating criteria used are described in [12]. Although “–” indicates
that there is no (direct) support for the pattern, it does not imply that it is
impossible to realise the pattern. Often it is possible to realise the functional-
ity outside of the system, e.g., by calling an external program. However, such
workarounds are not considered to be a feature of the product itself. See [2] for a
similar distinction used when evaluating systems against control-flow patterns.

Lines 1 to 11 of Table 1 shows the support for creation patterns. Only the
first two patterns are supported by all of the products examined.

Lines 12 to 20 of Table 1 report on push patterns. It is surprising to note
that not all systems support simple allocation mechanisms such as round robin
allocation. Lines 21 to 26 illustrate that pull patterns are supported by most
systems. In particular, Staffware, FLOWer and COSA allow for greater initiative
on the part of resources in selecting and commencing work items.

Detour patterns support is shown by lines 27 to 35 of Table 2. COSA provides
resources with a significant degree of autonomy in managing their workload.

Workflow Resource Patterns 229

Table 1. Support for creation, push and pull patterns in workflow systems

Nr Pattern S
ta

ff
w
ar

e
W

eb
S
p
h
er

e

F
L
O
W

er
C
O
S
A

iP
la
n
et

1 R-DA (Direct Allocation) + + + + +

2 R-RBA (Role-based Allocation) + + + + +

3 R-FBA (Deferred Allocation) + + – – –

4 R-RA (Authorisation) – – + + –

5 R-SOD (Separation of Duties) – + + +/– +

6 R-CH (Case Handling) – – + – –

7 R-RF (Retain Familiar) – + + + +

8 R-CBA (Capability-based Allocation) – – + + +

9 R-HBA (History-based Allocation) – – – +/– +

10 R-OA (Organisational Allocation) +/– + +/– + –

11 R-AE (Automatic Execution) + – + + +

12 R-DBOS (Distribution by Offer – Single
Resource)

– – – +/– +

13 R-DBOM (Distribution by Offer – Multi-
ple Resources)

+ + + + +

14 R-DBAS (Distribution by Allocation – Sin-
gle Resource)

+ + + + +

15 R-RMA (Random Allocation) – – – + +/–

16 R-RRA (Round Robin Allocation) – – – +/– +/–

17 R-SHQ (Shortest Queue) – – – + +/–

18 R-ED (Early Distribution) – – + – –

19 R-DE (Distribution on Enablement) + + + + +

20 R-LD (Late Distribution) – – – – –

21 R-RIA (Resource-Initiated Allocation) – – + +/– –

22 R-RIEA (Resource-Initiated Execution –
Allocated Work Item)

+ + + + –

23 R-RIEO (Resource-Initiated Execution –
Offered Work Item)

+ + – + +

24 R-OBS (System-Determined Work List
Management)

+ – + – +

25 R-OBR (Resource-Determined Work List
Management)

+ + + + –

26 R-SA (Selection Autonomy) + + + + +

Other workflow systems do not support the same degree of flexibility although
it is worth noting that the case handling foundation of FLOWer lessens the need
for such “detours” as work items within a case are generally handled by the same
resource. Finally, lines 36 to 39 show the support for auto-start patterns. As was
discussed in Section 3.5, it is remarkable that none of the systems support piled
execution while only one of them supports chained execution.

230 N. Russell et al.

Table 2. Support for detour and auto-start patterns

Nr Pattern S
ta

ff
w
ar

e
W

eb
S
p
h
er

e

F
L
O
W

er
C
O
S
A

iP
la
n
et

27 R-D (Delegation) + + – + –

28 R-E (Escalation) + + – + +/–

29 R-SD (Deallocation) – – – + +

30 R-PR (Stateful Reallocation) +/– + – + –

31 R-UR (Stateless Reallocation) – – – – –

32 R-S (Suspension) +/– +/– – + –

33 R-SK (Skip) – – + + –

34 R-REDO (Redo) – – + – –

35 R-PRE (Pre-Do) – – + – –

36 R-CC (Commencement on Creation) – – – + –

37 R-CA (Commencement on Allocation) – + – – –

38 R-PE (Piled Execution) – – – – –

39 R-CE (Chained Execution) – – + – –

5 Related Work

This paper is part of a bigger initiative (cf. www.workflowpatterns.com) to cap-
ture the functionality of PAIS in terms of patterns. It complements the control-
flow [2] and data [11] patterns. This initiative provides a comprehensive pattern
library for PAIS. There are a variety of other patterns libraries which target spe-
cific domains such as software engineering (http://hillside.net/pattern),
interaction design (http://www.welie.com), and user interface and HCI design
(http://www.cs.ukc.ac.uk/people/staff/saf/patterns/gallery.html).

Research on resource/organisational modelling in workflow systems has been
relatively limited as discussed in [4, 8]. The RBAC (Role-Based Access Control)
model [7] represents one approach for determining suitable users for a task. The
salient features of RBAC are that permissions are associated with roles and users
are made members of roles, thereby acquiring the associated permissions. RBAC
models are useful but they have limitations, in particular they are primarily
permission oriented, from a security point of view, and neglect other aspects of
the organisation such as resource availability. Bussler and Jablonski [5] undertook
pioneering work in the area, identifying many limitations of workflow systems
in modelling policy and organisational issues. Several researchers [3, 9, 10] have
developed so-called meta-models, i.e., object models describing the relationships
between workflow concepts, including aspects of work allocation. However, these
meta-models typically do not describe the dynamic aspects of work distribution.

Workflow Resource Patterns 231

6 Conclusion

In this paper we have presented a collection of resource patterns in the con-
text of process-aware information systems. In addition, we have evaluated five
workflow management systems using these patterns. We have only highlighted
a selection of the available patterns and refer the reader to [12] for a complete
description of all patterns and a detailed assessment of the five products. The
main contribution of this work is that it is the first systematic analysis of the
resource allocation/work distribution functionality desired in PAIS. The “pat-
terns paradigm” was used to represent the different types of functionality. We
do not claim completeness, but it is fair to say that the more than forty pat-
terns identified provide a good coverage of the functionality provided by existing
workflow management systems, as illustrated by the results presented in Section
4. Moreover, the patterns do not only apply to workflow technology but also to
other process-aware systems, e.g., ERP systems such as SAP and PeopleSoft,
which can be analysed and improved through their use.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. W.M.P. van der Aalst and A. Kumar. Team-Enabled Workflow Management Sys-
tems. Data and Knowledge Engineering, 38(3):335–363, 2001.

4. W.M.P. van der Aalst, A. Kumar, and H.M.W. Verbeek. Organizational Modeling
in UML and XML in the context of Workflow Systems. In H. Haddad and G. Pa-
padopoulos, editors, Proceedings of the 18th Annual ACM Symposium on Applied
Computing (SAC 2003), pages 603–608. ACM Press, 2003.

5. C. Bussler and S. Jablonski. Policy Resolution for Workflow Management Systems.
In Proceedings of the 28th Hawaii International Conference on System Sciences,
page 831. IEEE Computer Society, 1995.

6. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services, Version 1.0.
Standards proposal by BEA Systems, International Business Machines Corpora-
tion, and Microsoft Corporation, 2002.

7. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and System Security, 4(3):224–274, 2001.

8. A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribu-
tion in Workflow Management Systems: How to Balance Quality and Performance?
Journal of Management Information Systems, 18(3):157–193, 2002.

9. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

10. M. Rosemann and M. zur Muehlen. Evaluation of Workflow Management Systems
- a Meta Model Approach. Australian Journal of Information Systems, 6(1):103–
116, 1998.

232 N. Russell et al.

11. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der
Aalst. Workflow Data Patterns. QUT Technical report, FIT-
TR-2004-01, Queensland University of Technology, Brisbane, 2004.
http://www.citi.qut.edu.au/about/research pubs/technical.jsp.

12. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University
of Technology, Eindhoven, 2004. http://fp.tm.tue.nl/beta/.

13. WFMC. Workflow Management Coalition Workflow Standard: Workflow Pro-
cess Definition Interface – XML Process Definition Language (XPDL) (WFMC-
TC-1025). Technical report, Workflow Management Coalition, Lighthouse Point,
Florida, USA, 2002. http://www.wfmc.org/standards/docs.htm.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 233 – 247, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Declarative Foundation of Process Models

Birger Andersson, Maria Bergholtz, Ananda Edirisuriya,
Tharaka Ilayperuma, and Paul Johannesson

Department of Computer and System Sciences,
Stockholm University/Royal Institute of Technology,

Forum 100, SE-164 40 Kista, Sweden
{ba, maria, si-ana, si-tsi, pajo}@dsv.su.se

Abstract. In this paper, a declarative foundation for process models is
proposed. Three issues in process management and modeling are identified:
business orientation, traceability, and flexibility. It is shown how these issues
can be addressed by basing process models on business models, where a
business model focuses on the transfer of value between agents. As a bridge
between business models and process models, the notion of activity dependency
model is introduced, which identifies, classifies, and relates activities needed
for executing and coordinating value transfers.

1 Introduction

For information processing systems, it is possible to identify a number of functional
aspects, [16]. The basic aspect is the services the system provides to its environment.
By providing services, the system delivers value to its environment, which is the
raison d’etre of the system. The behaviour, or process, aspect has to do with the
ordering and control flow of services and activities. The communication aspect
concerns interactions with other entities, like people, hardware, and software. Finally,
the meaning aspect addresses the interpretation of symbols used in services. The
process aspect is attracting ever more attention, as witnessed by the advent of new
workflow and process management systems, new process modeling languages, and
dedicated journals and conferences. Despite their success, process technologies and in
particular process modeling techniques face a number of shortcomings and challenges
that need to be addressed. In this paper, we will address three of these:

- Business Orientation. Process models are typically expressed through low
level c\setlength{oncepts like control flow structures and message passing.
Such concepts are not easily understood by business experts and users, who
instead prefer to understand processes through business oriented notions like
value exchanges and resource flows.

- Traceability. Constructing a process model includes taking a number of
design decisions that affect the structure of the model. It should be possible
to trace these design decisions back to explanations and motivations
expressed in business terms.

234 B. Andersson et al.

- Flexibility. In most processes, the main structure is stable over time, while
details may vary from case to case. Process models and systems should,
therefore, allow for flexibility at design time as well as runtime.

One way to address these issues is to base process models on business models. By
business model we mean a model which focuses on providing a high level view of the
activities taking place by identifying agents, resources and the exchange of resources
between the agents [12]. A process model, on the other hand, deals with operational
and procedural aspects of business communication by focusing on the activities
carried out by agents [1]. As the process model concentrates on technical details like
how these activities will be carried out on the operational level, it becomes difficult
for business users to understand it. Because of this it is hard for business experts and
users to understand the connection between the high level view of the business model
and the technical view of the process model.

The purpose of this paper is to propose a declarative foundation of process models
based on business models. In order to bridge the gap between business models and
process models, we introduce the notion of activity dependency model, which identifies,
classifies, and relates activities needed for executing and coordinating value transfers.
Having a declarative foundation will make it easier for designers to justify their design
decisions at the technical level and trace them back to a business model. The paper
builds upon and extends previous work, [1], by taking into account not only value
transfer activities but also complimentary activities needed for their execution.

The paper is structured as follows. Section 2 gives an overview of related research.
Section 3 gives an overview of business models. Section 4 introduces activity
dependency models and shows how they are related to business models. Section 5
gives an overview of process models in a specific notation (BPMN [4]) and shows
how they can be derived from activity dependency models. Finally, Section 6
concludes the paper and gives suggestions for further research.

2 Related Research

There exist several approaches to provide interfaces between technical concepts of
software and systems design and business oriented requirements engineering. One of
the most widely accepted approaches is the Unified Modeling Language, UML, with
associated methodologies like RUP [13], where various types of design models
represent static information in class diagrams as well as behavioral aspects modeled
in interaction and activity diagrams. The UN/CEFACT Modeling Methodology
(UMM) [15] uses UML as a base for specifying business processes involving
information exchange in a technology-neutral and implementation-independent
manner. A weak point in utilizing methodologies such as these, is still how to go
from a business model to a process model in a systematic way. The DEMO
methodology [5] was developed for the purpose of modeling essential business
processes, abstracting completely from their realization. DEMO particularly stresses
the distinction between information processes (generally modeled through low level
message protocols) and the actual business processes, e.g. production acts where the
agents fulfill the mission of the organization and coordination acts where agents enter
into and comply with commitments. Dietz divides the collaboration between agents

 A Declarative Foundation of Process Models 235

into three distinct phases. The Ordering phase, in which an Agent requests some
Resource from another Agent who, in turn, promises to fulfill the request. The
Execution phase, in which the Agents perform Activities in order to fulfill their
promises. The Result phase, in which an Agent declares a transfer of Resource control
to be finished, followed by the acceptance or rejection by the other Agent. The ISO
OPEN-EDI initiative [8] identifies five phases: Planning, Identification, Negotiation,
Actualization and Post-Actualization. In this paper, we use only two phases: a
Negotiation phase in which commitments are proposed and accepted, and an
Execution phase in which transfers of Resources between Agents occur and are
acknowledged.

The approach proposed in this paper resembles DEMO since we also utilize the
distinction between production processes and coordination processes. In our work this
division among processes (or activities) is systematically derived from a business
model through a set of activity dependencies, all expressed in business terms such as
trust, commitments and transfer of value between agents [7] [11]. A similar approach
may be found in the i* framework [17], which has been explored for modeling trust
relationships among strategic actors .The activity dependency models of this paper
may be used as a modeling means to reason about design decisions, just as the models
are in i*. However, the specific aim of the activity dependency models here is to automate the
process of going from business to process model.

In building process models, both an internal and external perspective on
interactions between agents must be observed. In the Agent-Object-Relationship
(AOR) approach [14], organizations and organizational behavior are modeled in two
basic types of models: external and internal ones. An external AOR model adopts the
perspective of an external observer who is observing agents and their interactions in
the problem domain under consideration. In an internal AOR model, the internal
(first-person) view of a particular agent to be modeled is taken. This notion is
mirrored in our work, i.e. the activity dependency models introduced always take the
view of one particular agent. Moreover, any interaction from one agent with respect to
another agent has its counterpart in that other agent’s activity model, i.e. one agent’s
internal activity is modeled as the other agent’s external ditto. PayInvoice as an
activity in one model has a reciprocal relationship with a ReceivePayment activity in
the model of the corresponding agent. While AOR uses the internal business models
as a point of departure to define so called interaction frames to describe the
collaboration between agents, the work reported on in this paper suggests a way to
automatically derive process models from business models. The proposed approach
yields a process model that contains the main procedural logic. To get additional
procedural details for sub-processes the notion of generic process patterns is used.
The hypothesis is that most process models for organizational domains may be
expressed as a combination of well documented design patterns [6] [9].

3 Business Models

The purpose of a business model is to describe and visualise the transfer of value
between agents. A business model consists of three components: agents, value
transfer offerings, and dualities. An agent is a person or (part of) an organisation that

236 B. Andersson et al.

is capable of controlling, acquiring, and providing resources. Examples of agents are
consumers, companies, and government authorities. An agent may transfer resources
to another agent in a value transfer, e.g. the delivery of a product or a payment. A
value transfer offering represents the willingness of an agent to perform value
transfers with other agents. In a business setting, it never happens that one agent
simply transfers a resource to another agent - she always expects to get another
resource back as compensation. As the saying goes, “one good turn deserves another”.
To represent this reciprocity between value transfer offerings, we introduce the notion
of duality. A duality associates two or more reciprocal value transfer offerings, e.g.
the willingness to deliver a product and to pay for it.

Program Committee

Conference
Steering Committee

Reviewers

Authors

Submission

Acknowledgement

Review Report

Payment

Conference
Program

Evaluation

Fig. 1. A Business Model

An example of a simple business model for the well-known scientific conference
case is shown in Fig. 1. For space restrictions, we only consider the submission and
acceptance part of the case. Authors (agent) can submit papers (value transfer
offering) to the program committee (agent), who in return (duality) provides the
authors with evaluations and decisions for acceptance (value transfer offering). In
order to make the decisions, the program committee obtains review reports (value
transfer offering) from reviewers (agents), who in return (duality) will get
acknowledgements in the conference documentation (value transfer offering). The
program committee will based on submitted papers and reviews deliver a conference
program (value transfer offering) to the conference steering committee (agent), who
in return (duality) provides financial reimbursement (value transfer offering). In Fig.
3.1, individual agents are represented by plain ovals, classes of agents by shadowed
ovals, dualities by shadowed small rectangles, and value transfer offerings by arrows
between dualities and agents (either individual agents or classes of agents). More
precisely, a business model is defined as follows.

Definition 3.1: A business model is a directed graph with three types of nodes
IndAgt, ClassAgt, Dual and directed edges called VTO from Dual to (IndAgt ∪
ClassAgt). IndAgt, ClassAgt and VTO are sets representing Individual Agents, Class
Agents and Value Transfer Offering between these Agents, respectively. Dual is a set

 A Declarative Foundation of Process Models 237

of dualities where a duality d is a relation over (IndAgt ∪ ClassAgt) x VTO x (IndAgt
∪ ClassAgt) with the following property: if (x, y, z) ∈ d then ∃ w ∈ VTO such that (z,
w, x) ∈ d

4 Activity Dependency Models

4.1 Concepts and Notation for Activity Dependency Models

The purpose of an activity dependency model is to describe, on a high level, the
activities needed for carrying out the value transfers specified in a business model. An
activity dependency model provides more detail than a business model by identifying,
classifying, and relating activities needed for executing and coordinating value
transfers. On the other hand, an activity dependency model is less detailed than a
process model, as it abstracts from ordering and control flow aspects. In this way,
activity dependency models occupy a middle ground between business models and
process models where they provide business-oriented information on activity
coordination without going into procedural details. An activity dependency model is
always constructed from a particular agent’s perspective, called the base actor, i.e. the
model takes the internal view as discussed in Section 2. This means that an activity
dependency model focuses on one agent in a business model and the dualities
involving this agent.

Structurally, an activity dependency model can be seen as a graph with four kinds
of nodes, representing activities, and four kinds of directed edges, representing
relationships between activities. The four kinds of activities are:

 Value transfer activities. A value transfer activity transfers resources from one
agent to another and corresponds directly to the value transfer offerings in a
business model.

 Assignment activities. An assignment activity relates a specific agent from a
class of agents to the value transfer activities of one duality. An example is the
assignment of a reviewer for reviewing a particular paper.

 Production activities. In a production activity, the base actor produces a
resource required for a value transfer activity.

 Coordination activities. A coordination activity coordinates the value transfer
activities within one duality as well as additional assignment and production
activities.

The four kinds of relationships between activities are:

 Duality dependencies. A duality dependency from a coordination activity to a
value transfer activity expresses that the latter is included in the duality of the
former; recall that each coordination activity corresponds to one duality.

 Flow dependencies. A flow dependency, [10], from one activity to another
expresses that the resource obtained by the first activity is needed as input to the
second activity. An example is a retailer who has to obtain a product from an
importer before delivering it to a customer.

238 B. Andersson et al.

 Trust dependencies. A trust dependency [1], between two value transfer
activities within the same duality expresses that the first activity has to be
carried out before the second one as a consequence of low trust between the
involved agents. Informally, a trust dependency states that one agent wants to see
the other agent do her work before doing his own work. An example could be a
car dealer requiring a down payment from a customer before delivering a car.

 Trigger dependencies. A trigger dependency from a coordination activity to an
assignment or production activity expresses that the latter is to be initiated and
managed by the coordination activity.

The components of an activity dependency model have a clear business motivation,
i.e. they can be explained and motivated in business terms. This makes the activity
dependency model a useful instrument for eliciting and communicating business
knowledge. At the same time, an activity dependency model provides an adequate basis
for constructing more detailed process models, as will be discussed in the next section.

Fig. 2. An Activity Dependency Model

An example of an activity dependency model is shown in Fig. 2, which is based on
the business model from the previous section. The base actor is the program
committee, and the diagram shows three columns of coordination and value transfer
activities corresponding to the dualities of this actor. There is one assignment activity
AssignReviewer (for assigning a reviewer to a paper), one production activity
DecideOnAcceptance (for deciding whether to select a paper), and a number of flow,

 A Declarative Foundation of Process Models 239

trust, and trigger dependencies. For example, there is a flow dependency from
AssignReviewer to AcquireReview meaning that an assignment of a reviewer to a
paper must exist before a review of that paper can be obtained. Furthermore,
cardinalities (as in UML) have been attached to some of the dependencies. For
example, the star on the flow dependency from AcquireSubmission to AssignReviewer
means that for each submitted paper, several assignments of reviewers may exist.

Definition 4.1: An activity dependency model is a directed graph with four types of
nodes VTA, Coord, Ass, Prod and four types of directed edges Dual, Flow, Trust, and
Trigger; where VTA, Coord, Ass, and Prod are sets representing value transfer
activities, coordination activities, assignment activities, and production activities,
respectively and Dual, Flow, Trust and Trigger are relations such that:

• Dual is an injective relation over Coord x VTA.
• Flow is a relation over (VTA ∪ Ass ∪ Prod) x (VTA ∪ Ass ∪ Prod) x {1, *}

x {1, *} such that, if (x, y, z, w) ∈ Flow then (x, y) ∈ {(VTA ∪ Ass ∪ Prod)
x (VTA ∪ Ass ∪ Prod) \ (Ass x (Ass ∪ Prod))} and (z, w) ∈ ({1,*} x {1,*})

• Trust is a relation over VTA x VTA within the same duality
• Trigger is a relation over Coord x (Ass ∪ Prod

4.2 From Business Model to Activity Dependency Model

An activity dependency model can partially be derived from the business model it is
based on. Each duality in the business model gives rise to one coordination activity,
and each value transfer in the business model gives rise to one value transfer activity.
The value transfer activities within one duality are related to the corresponding
coordination activity by duality dependencies. Furthermore, for dualities where the
base actor may choose between several agents in a class of agents (for example
choosing a reviewer for a paper), an assignment activity is added. For each duality,
one production activity may also be added when the base actor has to produce some
resource needed for a value transfer activity. These components of the activity
dependency model are directly derived from the business model, but the activity
dependency model will also contain a number of additional components not derivable
from the business model, namely the flow, trust, and trigger dependencies.

Definition 4.2: Let BM = <IndAgt, ClassAgt, Dual, VTO> be a business model. Let
AM = <VTA, Coord, Ass, Prod, Dual, Flow, Trust, Trigger> be an activity
dependency model. AM conforms to BM if

• for each duality in Dual there is one coordination activity in Coord
• for each value transfer in VTO there is one value transfer activity in VTA
• for each element d = <x, y, z> in a duality in BM-Dual there is a pair <c, v>

in AM-Dual, where c is the coordination activity corresponding to d and v is
the value transfer activity corresponding to y, and a pair <c, w> where c is
the same coordination activity and w is a value transfer activity
corresponding to z.

240 B. Andersson et al.

• for each d in Dual, there is optionally one production activity in Prod
• for each d in Dual related to an element in ClassAgt, there is one assignment

activity in As

5 Process Models

5.1 Concepts and Notation for Process Models

The notation we will use for process models is BPMN [4], a standard developed by
the Business Process Management Initiative (BPMI) [3]. The goal of BPMN is to be
an easily comprehensible notation for a wide spectrum of stakeholders ranging from
business domain experts to technical developers. A feature of BPMN is that BPMN
specifications can be readily mapped to executable XML languages for process
specifications such as BPEL4WS [2].

In this paper, we will use only a selected set of core elements from BPMN. These
elements are Activities, Events, Gateways, Sequence Flows, Message Flows, Pools
and Lanes. Activity is a generic term for work that an Agent can perform. In a BPMN
diagram, an Activity is represented by a rounded rectangle. An Activity can be atomic
or compound. A Compound Activity is composed of other Activities and will be
marked by a ‘+’ sign inside the rounded rectangle. An Activity may also be repeated,
which is graphically shown by a circular arrow inside the rounded rectangle. Events,
represented as circles, are something that “happens” during the course of a business
process. There exist three types of Events: Start, End and Intermediate Events.
Activities and Events are connected by Sequence Flows, shown as arrows, indicating
the order in which Activities will be performed in a business process. Gateways are
used to control the Sequence Flows by determining branching, forking, merging, and
joining of paths. In this paper we will restrict our attention to XOR and AND
branching, graphically shown as a diamond with an ‘X’ or ‘+’, respectively. Pools are
graphical constructs, in the form of oblong rectangles enclosing other BPMN
elements, for separating different sets of activities from each other. Message flows,
shown as dotted arrows, are used for communication between Activities in different
Pools. An example of a BPMN process diagram is given in Fig. 3.

5.2 From Activity Dependency Model to Process Model

Moving from an activity dependency model to a process model is essentially about
specifying the detailed control flow between activities. The starting point is to let each
coordination activity in the activity dependency model become a process defined
within one pool. This means that each pool models the exchange of resources between
the base actor and one other actor as well as the assignment and production activities
needed for this exchange. The entire process model will consist of a number of such
processes within pools that communicate with each other.

A single pool essentially describes a binary collaboration between two partners.
Such a collaboration may consist of several phases as discussed in Section 2,
including planning, identification, negotiation, actualisation, and post-actualisation. In

 A Declarative Foundation of Process Models 241

this paper, we consider only two phases: one Negotiation phase in which
commitments for resource exchanges are proposed and accepted, and one Execution
phase in which resource transfers occur and are acknowledged. Typically, a process
will contain both a Negotiation phase and an Execution phase, but in some cases only
the Execution phase is included. If the Negotiation phase is included, one sub-process
for this phase is added to the pool. Thereafter, for each value transfer activity
associated to the coordination activity, one sub-process is added. Furthermore, if there
are any trigger dependencies from the coordination activity to assignment or
production activities, one sub-process is added for each related assignment or
production activity. There are also additional sub-processes for acquiring relevant
resources, as specified through flow dependencies. Some of the sub-processes within
a pool will be repeating. This occurs when there is a multi-valued flow dependency to
the activity corresponding to the sub-process. The sub-processes are related by adding
sequence flows between pairs of sub-processes if there is a flow or trust dependency
between the corresponding activities. Finally, the negotiation sub-process is related to
the other sub-processes by an AND-gateway.

As each coordination activity gives rise to its own pool, we will end up with a
number of processes in pools that have to be connected to each other via message
flows. Two pools need to be connected if one of the pools requires a resource
provided by the other. There will be one message flow from the resource providing
pool to the resource requesting pool, which informs about the delivery of the resource.
Furthermore, there will be one message flow from the resource requesting pool to the
resource providing if the latter contains a negotiation phase; this message flow is the
request for the resource.

An example of a process based on the coordination activity Coordinate
ConferenceProgram in Fig. 2 is shown in Fig. 3. It is assumed that this process does
not contain a Negotiation phase but only an Execution phase (for reasons of
completeness we also include the processes based on the other two coordination
activities from Fig. 2 Coordinate Review and Coordinate Submission in Fig. 3, where
Coordinate Review is assumed to contain a Negotiation phase) . The two value
transfer activities associated to CoordinateConferenceProgram give rise to two sub-
processes ProvideConferenceProgramme and AcquirePayment. These and other sub-
processes may have a more or less complex internal structure, and we will return to
this issue in Section 5.3. Two more sub-processes are added, AssignReviewer and
DecideOnAcceptance, based on the trigger dependencies in the activity dependency
model. Furthermore, sub-processes that acquire relevant resources need to be added,
in this case ReceiveSubmission and GetReview. ReceiveSubmission is added as there
is a flow dependency from AcquireSubmission to ProvideConferenceProgram in the
activity dependency model. GetReview is added as there is a flow dependency from
AcquireReview to DecideOnAcceptance. Finally, a sub-process DeliverEvaluation is
added due to the flow dependency from DecideOnAcceptance to ProvideEvaluation.
The sequence flows in the diagram are all derived from flow dependencies, except the
one from AcquirePayment to ProvideConferenceProgram, which is based on a trust
dependency. Fig. 3 shows the entire process model for the conference case with
message flows included.

242 B. Andersson et al.

Fig. 3. A Process Model in BPMN

Definition 5.1: Let P be a pool containing an activity A. We will denote that activity
by P.A.

Definition 5.2: Let AM = <VTA, Coord, Ass, Prod, Dual, Flow, Trust, Trigger> be
an activity dependency model. A coordination activity C in Coord will be related
through duality dependencies to one or several value transfer activities in which the
base actor provides resources to another actor. These value transfer activities will be
denoted Out1, … ,Outn. Analogously, the value transfer activities where the base actor
acquires resources from another actor will be denoted In1, … ,Inn.

Definition 5.3: Let AM = <VTA, Coord, Ass, Prod, Dual, Flow, Trust, Trigger> be
an activity dependency model. Let PM be a BPMN diagram. PM conforms to AM if
for each coordination activity C in Coord there is one pool PC in PM fulfilling the
following conditions:

 PC contains optionally one sub-process entitled Negotiation

 For each value transfer activity Ini, there is one sub-process Ini

 For each value transfer activity Outi, there is one sub-process Outi

 For each flow dependency from an activity D.Ini (where D is a coordination
activity C) to a value transfer activity Outj, there is one subprocess get(D. Ini).

 A Declarative Foundation of Process Models 243

The sub-process is repeating if the flow dependency is not injective. There is
one message flow from PD. Ini to get(D. Ini). If PD contains a sub-process
Negotiation, then there is also one message flow from get(D.Ini) to
PD.Negotiation.

 For each trigger dependency from C to an assignment or production activity Act,
there is one sub-process do(Act). The sub-process is repeating if there is a flow
dependency from a value transfer activity D.Ini to Act and get(D. Ini) is included
in PC and repeating, or if there is a flow dependency from Act to C.Outithat is
multi-valued.

 For each flow dependency from an activity Act to a production activity Prod
such that the corresponding sub-process do(Prod) is included in PC, there is one
sub-process do(Act). The sub-process is repeating if do(Prod) is repeating, or if
the flow dependency is not injective.

 If there is a production activity Prod with a flow dependency to a value transfer
activity D. Outi and the sub-process do(Prod) corresponding to Prod is included
in PC, then there is a message flow from do(Prod) to D. Outi.

There is a sequence flow between two sub-processes if there is a flow dependency
or trust dependency between the corresponding activities. When all sub-processes
have been linked in this way, there will be a number of leftmost sub-processes, L1, …
,Lm , i.e. sub-processes with no incoming sequence flow. There will be a gateway G in
PC with a sequence flow from Negotiation to G. There will be sequence flows from G
to each of L1, … ,Lm.

Finally, if a process model PM conforms to an activity dependency model AM and
PM´ is derived from PM as specified below, then PM´ conforms to AM. PM should
contain two repeating sub-processes S and T joined by a sequence flow. PM´ is
derived from PM by replacing the repeating sub-processes and their joining sequence
flow by one repeating sub-process containing S and T joined by a sequence flow.

The reason for the last paragraph of the definition is to allow for more flexibility in
the process design. Without it, there would be an unwanted restriction, namely how
repeating activities are treated. It would be assumed that if there are two subsequent
repeating activities then there must be a repetition over the first activity followed by a
repetition over the second. For example, in Fig. 3 all submissions have to be received
before any assignment is made. However, this assumption is too restrictive in many

Fig. 4. An alternative Process Model in BPMN

244 B. Andersson et al.

cases, as an alternative is to have a single repetition over a sequence of the two
activities. For example, in Fig. 4 a received submission may be directly followed by
an assignment.

Due to space limitations we have only considered the success path, or “happy
path”, of a process, i.e. we have not included exceptions, failed negotiations, etc.
Extensions for these possibilities are obviously needed, but they are standard and do
not affect the basic relationships between activity dependency models and process
models.

5.3 Process Patterns

A process model derived from an activity dependency model, as described above,
contains only the main procedural logic. Additional procedural details for the sub-
processes of the process model are needed. One approach is to treat sub-models as the
main model, i.e. detailed views of the main business model is provided and sub-
activities and sub-processes derived according to the transformation described in the
previous section. We believe, however, that a more flexible way to provide the
procedural details is to use the notion of process patterns. The idea is that each sub-
process is based upon a generic process pattern.

Generic Process Patterns
UN/CEFACT has defined a number of business transaction patterns as part of UMM
with the intention of providing an established semantics of frequently occurring
business interactions. Individual sub processes such as, for example, negotiations and
fulfillments of earlier commitments to perform value transfers are easily expressed or
assembled on an arbitrary level of granularity through the usage of generic transaction
patterns. Below we list a number of patterns from [15] and [1].

Negotiation Phase Patterns
The Contract proposal [11] transaction pattern models the non-legally binding
negotiation phase in a contract formation, whereas the Commercial (Offer-Accept)
[1515] tra nsaction pattern expresses the formal creation phase of a contract. These
patterns may be assembled into more complex patterns of collaborations between
partners. An example of the latter is the UMM “simple negotiation pattern”, which
combines variants of proposals and offers for contracts of transfer of value resources.
The assembling of patterns is based on a layered approach where each base pattern
constitute a sub-process in the assembled pattern, and where the “happy path”
sequence flow of each pattern serves as connector between the pattern.

Fig. 5. Simple Negotiation pattern [15]

 A Declarative Foundation of Process Models 245

Execution Phase Patterns
The fulfillment pattern specifies the completion of a Value transfer between two
partners. The Bi- and Unilateral Cancellation transaction patterns refer to the
unilateral or bilateral cancellation of a contract or to commitment(s) within a contract
for value transfers.

Fig. 6. Fulfillment, Fulfillment Accept/Reject, bilateral and unilateral cancellation transaction
patterns [1]

Fig. 7. Fulfillment collaboration pattern [1]

Fig. 8. Instantiation of Fulfillment collaboration pattern

The fulfillment collaboration pattern specifies relevant transaction patterns (Fig. 7)
and the rules for transitioning among these within the completion of a value transfer.
The pattern is assembled from the Fulfillment and Unilateral Cancellation transaction
patterns defined in the previous section.

Finally, as an example of an instantiation of a generic collaboration pattern,
consider the case of sub-process “Get-payment” from the Conference case, where the
procedural details may be defined in a flexible way through combinations of generic
transactions patterns. In fig 8 the “Get-payment” sub-process is modeled through the

246 B. Andersson et al.

Fulfillment collaboration pattern, which specifies relevant transaction patterns and the
rules (variants of the rules for when an how to break a contract of value transfer
amounts to choosing the right combination of patterns) for transitioning among these
within the completion of a value transfer.

6 Conclusions and Further Work

In this paper, we have proposed a declarative foundation of process models based on
business models. A key element of the approach is the activity dependency model,
which works as a bridge between a business and a process model. We believe that this
approach effectively addresses the issues introduced in Section 1:

- Business Orientation. Instead of going directly into procedural details, an
activity dependency model allows business experts and users to describe the
underlying business reasons that govern the flow of processes. In particular,
relations between activities can be specified in terms of notions like resource
flow, trust, coordination, and reciprocity.

- Traceability. A process model is based on an activity dependency model,
which in turn is based on a business model. This means that components in a
process model can be explained by and tracked back to business oriented
notions and motivations.

- Flexibility. The transformations from business model to activity dependency
model to process model give the main structure of a process. However, the
approach allows for flexibility by letting sub-processes be based on patterns.
This means that the lower-level details of a process model can be tailored to
the situation at hand by selecting appropriate patterns from a repository.

We have introduced the notion of activity dependencies for capturing relationships
between the activities within a process. Four kinds of dependencies have been
identified, flow, trust, trigger, and duality dependencies. These can be stated
declaratively, have a clear business motivation, and are used for the construction of
the process model. A topic for further work is to investigate whether additional kinds
of activity dependencies are required. Another topic for further research is to study
how to include more phases in the process models, in addition to the negotiation and
execution phases.

References

1. Bergholtz M., Jayaweera P., Johannesson P., Wohed P., “A pattern and dependency based
approach to the design of process models”, in Proc. of the 23rd International Conference
on Conceptual Modeling(ER2004), Shanghai, China

2. Business Process Execution Language for Web Services, OASIS WS-BPEL Technical
Committee, Valid on 20041115, http://www.ebpml.org/bpel4ws.html

3. Business Process Management Initiative (BPMI), Valid on 20041115, http://
www.bpmi.org/

 A Declarative Foundation of Process Models 247

4. Business Process Modelling Notation (BPMN), Valid on 20041115, http://
www.bpmn.org/

5. Dietz J.L.G, Deriving “Use Cases from Business Process Models”, ER2003, LNCS2813,
pp.131-143, L-Y Song et al. (Eds.), Springer-Verlag Berlin Heidelberg 2003

6. Gamma, E., Helm, R., Johnson, R.,Vlissides, J.: Design Patterns, Addison-Wesley, 1995
7. Gordijn J., Akkermans J. M. and Vliet J. C., “Business Modelling, is not Process

Modelling”, Proc. of the 1th International Workshop on Conceptual Modeling
Approaches for e-Business (eCOMO’2000), held in conjunction with the 19th
International Conference on Conceptual Modeling (ER’2000), Salt Lake City, Utah, USA

8. Open-EDI phases with REA, UN-Centre for Trade Facilitation and Electronic Business,
Valid on 20040419, http://www.unece.org/cefact/docum/download/02bp_rea.doc

9. Larman, C., “Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development”, 3rd Edition, 2004, ISBN: 0131489062

10. Malone et al.: “Towards a handbook of organizational processes”, MIT eBusiness Process
Handbook, Valid on 20040419, http://ccs.mit.edu/21c/mgtsci/index.htm

11. Osterwalder, A, Parent, C., and Pigneur, Y., “Setting up an ontology of business model”,
CAISE/EMOI'2004 (INTEROP workshop), 2004

12. McCarthy W. E., “REA Enterprise Ontology”, Valid on 20040419, http://www.msu.edu/
user/mccarth4/rea-ontology/

13. Rational Unified Process (RUP) Valid on 20041115, http://www-306.ibm.com/
software/awdtools/rup/

14. Wagner, G.,. “The Agent-Object-Relationship Metamodel: Towards a Unified View of
State and Behavior”. Information Systems 28:5 (2003)

15. UN/CEFACT Modeling Methodology (UMM-N090 Revision 10), Valid on 20040419,
http://webster.disa.org/cefact-groups/tmg/doc_bpwg.html

16. Weiringa, R., Blanken, H., Fokkinga, M. , Grefen, P., Aligning Application Architecture
to Business Context, Caise 2003, LNCS 2681 pp. 209- 225

17. Yu, E., Liu, L., “Modelling Trust in the i* Strategic Actors Framework” Proceedings
of the 3rd Workshop on Deception, Fraud and Trust in Agent Societies. Barcelona,
Catalonia, Spain (at Agents2000), June 3-4, 2000

Synchronizing Copies of External Data
in Workflow Management Systems

Johann Eder and Marek Lehmann

Alps-Adria University Klagenfurt,
Department of Informatics-Systems
{eder, marek}@isys.uni-klu.ac.at

Abstract. Workflow management systems integrate applications and
data resources in business processes. Frequently they have to keep local
copies of data in the so called workflow repository. We introduce and
define synchronization policies for these copies with their external data
sources ranging from the provision of fully synchronized replications of
external data sources to unsynchronized storage of read results. We ana-
lyze in detail the effects of combining various pull and push policies and
show in an example how these policies can be used in different situations.

1 Introduction

Workflow management systems (WfMSs) [7, 15] are instrumental in automat-
ing business processes, enacting activities due to business logic represented in
workflow definitions and documenting the execution history. Workflow systems
also frequently integrate separate information systems, using and manipulating
data from various sources. Nevertheless, research on access to and integration of
data by workflow systems is scarce compared with the intensive research on the
control flow aspects [3].

A WfMS coordinates the execution of different activities which can access
different data sources. To determine the state transitions of a workflow (e.g.
transition conditions) the WfMS uses workflow relevant data [15], which may
be accessed both by the WfMS and the applications. Usually, the WfMS needs
direct access to the workflow relevant data and, therefore, stores these data in an
internal workflow repository. This raises the issue of synchronizing the replicas
in the workflow repository with their originals, which typically may be altered
by other applications unnoticed by the workflow system. Being unaware of pos-
sible synchronization problems (e.g. decisions based on stale copies of data, lost
updates, unawareness that data needed for past decisions has changed, timely
propagation of changes to copies, etc.) leads to potential application errors.

Synchronization of copies of external data in workflow repositories is, how-
ever, not trivial. Workflows might be long-running. Some copies need be re-
freshed, others not. Changes might be local or might need externalization, etc.
Mere replication management is not sufficient, since it is frequently not adequate
and more sophisticated synchronization policies are required to allow workflow

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 248–261, 2005.
Springer-Verlag Berlin Heidelberg 2005

Synchronizing Copies of External Data in Workflow Management Systems 249

designer to achieve the required behaviour. We would like to provide synchroniza-
tion based on policies, such that the designer can chose a synchronization policy
and thus select the exact semantics and properties of data access operations.

Currently, access to external data is typically provided by invoking automated
activities or other means which are not a part of the WfMS (e.g. Automatic Steps
and Scripts in Staffware [13] or Java code attached to the activities in @enterprise
[8]). The problem is that the programmers have to hardcode the mechanisms for
accessing external data in automated activities. A workflow definition can con-
tain a hundred or more activities, use data from dozens of external data sources
like legacy systems, web services etc. Therefore, additional activities responsible
only for keeping a copy of some data in the workflow repository increases the
complexity of the workflow definition up to date. Such workflow definitions be-
come difficult to maintain, in particular, when it is necessary to add new data
sources or replace exiting ones. It may not always be clear whether an activity
overwrites a local copy with the data from an external source or pushes local
changes from the workflow repository to the environment. If such activities are
tailored to one workflow definition, then it is difficult to reuse them in an other
definition. These are activities which serve a purely technical purpose and do
not represent any step in the business procedure. These activities, furthermore,
have subtle relationships and interdependencies with other activities increasing
the complexity of maintenance and evolution.

We propose an abstraction layer for WfMS which allows transparent access
to any data source [6]. This is achieved by data access plug-ins, reusable and
interchangeable wrappers around external data sources, which present to the
WfMS the content of underlying data sources, manage the access to it, and
provide thus also the basic synchronization operations. The functionality of the
external data source is abstracted in these plug-ins. We introduced the workflow
language WDL-X (an extension of WDL [5]) which makes use of these plug-ins
and provides a coherent seamless data view of workflow data and external data.

In this paper we extend WDL-X with a transparent and manageable mech-
anism for maintaining copies of external data in a workflow repository.

The remainder of this paper is organized as follows: Section 2 describes new
mechanisms for copying external data into the workflow repository in our work-
flow definition language WDL-X. In Section 3 we discuss in detail different main-
tenance policies for such copies. An example application of these policies is pre-
sented in Section 4. We discuss related work in Section 5 and finally draw some
conclusions in Section 6.

2 Copying External Data into a Workflow Repository
with the WDL-X

2.1 WfMS Architecture Including Data Access Plug-Ins

The work we present here is a continuation of our work in workflow systems. Our
workflow system Panta Rhei [5] used a form-flow metaphor to provide access to

250 J. Eder and M. Lehmann

Fig. 1. WfMS architecture

workflow specific data. In [6] we proposed a uniform treatment of all kinds of
business data in a workflow definition. We used XML as data access language in
our workflow definition language WDL-X [6], which replaced the earlier WDL [5].
The transparency of data location and logical and physical data independence of
workflow systems is achieved in WDL-X by using specialized wrappers around
external data sources called data access plug-ins. In this paper we describe an
extension of the WDL-X and the WfMS functionality, which allows to manage
copies of external data in the workflow repository.

The data access plug-ins introduced in WDL-X provide an abstraction layer
between the WfMS and the actual storage and format of the data. WDL-X
uses XML as unifying data format which allows to integrate data from external
sources, data exchange between workflow systems or web services, and internal
data handling. A data access plug-in is a wrapper presenting to the WfMS the
content of external data sources as documents of a predefined XML Schema type.
Data sources might be legacy systems, relational or object relational DBMSs,
files stored in a file system or native XML databases etc., both in- and outside of
an enterprise. A data access plug-in exposes to the WfMS a simple interface for
the creation, selection, update and deletion of an XML document in a collection
of many documents of the same XML Schema type and the evaluation of the
XPath expressions on a selected document. The task of the plug-in is to translate
these operations on XML documents to the underlying data sources. A workflow
designer can specify in a workflow definition, which document should be accessed
by which data access plug-in. The WfMS calls the associated data access plug-
in each time an operation on a specified XML document is performed. This
provides the transparency of actual data location and allows to use external
data to control the flow of a workflow. Data access plug-ins are collected in a
library and might be used in several workflows.

The overall WfMS architecture is presented in Fig. 1. The workflow engine is
responsible for execution of instances of workflows based on process definitions.
Both process definitions and instances are stored in the workflow repository.
The worklist manager is responsible for the worklists of human actors and for the
interaction with the client software (worklist handlers). The program interaction

Program
Interaction
Manager

Worklist

Manager
Data Access

Plug-ins

Data Access
PlugIn Manager

WfMS

External
Systems

Workflow

Engine

Workflow Repository
data stored only in
workflow repository

data stored only in
external data sources

Legend:

data copied
in both

Worklist handlerExternal Data
Sources

Synchronizing Copies of External Data in Workflow Management Systems 251

manager calls programs implementing automated activities. The workflow engine
can access data stored either in the workflow repository or in external data
sources. The engine uses data access plug-ins to transparently access external
data.

2.2 Workflow Repository and External Data

Sometimes it is necessary that a WfMS works on a copy of external data stored
in the workflow repository. The synchronization needs of these copies are quite
different, depending on the application. In some cases it may be required that the
WfMS operates on a stale copy, e.g. during a processing of some application the
marital status of an applicant at the starting time of the process is important,
even if the status has changed in the meantime. In other cases it may be required
to restrict the possibility to externalize modifications made locally to the copies
in the workflow repository, e.g. these modifications cannot be propagated to the
original data until they are proven correct. Therefore, we argue that a WfMS
needs a transparent and manageable mechanism for making and synchronizing
copies of external data. We propose to use the functionality of data access plug-
ins to copy external data into the workflow repository combined with a set of
different policies for synchronizing these copies.

External data and their copies in the workflow repository are independent.
External data may be read and updated by external systems and their copies in
the workflow repository may be read and updated by the workflow instances. A
workflow designer has to define in a WDL-X script a desired policy for synchro-
nizing a copy with its original:

– Refresh policy for a copy in the workflow repository:
• refresh – the WfMS automatically refreshes the copy with external data

before each read access to the copy made within a process instance,
• refreshOnDemand – the workflow designer has to use explicitly theWDL-X

command forceRefresh to refresh the copy,
• doNotRefresh – keeps the copy isolated from the changes made in the

original data.
– Push policy for changes made locally in the workflow repository:
• immediatePush – the WfMS automatically pushes to the environment

each change made to the copy in the workflow repository,
• pushOnDemand – the workflow designer has to use explicitly the WDL-X

command forcePush to push the copy,
• doNotPush – keeps all the changes locally in the workflow repository.

To refresh and to push a copy the WfMS uses a data access plug-in associated
with a document copied from an external data source. The refresh mechanism
depends on the capabilities of a data access plug-in and an underlying data
source. A passive data access plug-in is not capable of monitoring original data
for changes and, therefore, the WfMS has to use the plug-in to reload the original
document each time it refreshes a copy. An active data access plug-in ia able to
monitor original data for changes (e.g. using triggers in an underlying database)
and reload the original data only if these data were changed.

252 J. Eder and M. Lehmann

2.3 Workflow Definitions with Data Access Plug-Ins

In WDL-X the process variables are bound to XML documents of predefined
XML Schema types. A variable can be bound either to an existing document by
the WDL-X command openDocument or to a new document created during a
process execution. If no document is bound to a variable, then the variable is not
initialized. The process variables are local to a process instance. Activities can
receive parameters in one of the following modes: IN - as an input parameter,
OUT - as an output parameter and INOUT - as an in- and output parameter.
Conditions may be tested on a process variable, e.g. to evaluate the control flow
of a workflow.

Based on this description an example variable declaration in WDL-X looks
as follows:

documents customerData : customerType accessedBy customerDbPlugIn
doNotRefresh doNotPush;

The semantics of this example is: In a workflow definition a variable named
customerData of the XML Schema type customerType is declared. The variable
should be bound after the initialization to an XML document created as a copy
of a document accessed by a data access plug-in named customerDbPlugIn. The
copy stored in the workflow repository should not be refreshed and the changes
made to the copy should not be pushed back to the original document.

3 Policies for Synchronizing Copies of External Data in
WfMSs

Documents bound to process variables may be stored in the external data sources,
be stored in the workflow repository, or the workflow repository contains a copy
of external data (see Fig. 1). In this paper we focus only on the latter case.

3.1 Basic Operations on Documents

We refer to the set of documents stored in the external systems as X, and X̃
denotes the set of documents stored in the workflow repository:

X = {x : x is a document stored in an external data source} (1)
X̃ = {x̃ : x̃ is a document stored in the workflow repository} (2)

On the elements of both X and X̃ read and write operations are allowed.
The operation r(x) returns the actual value of the document x. The operation
w(x, val) writes the value val to the document x. We define the preconditions
and postconditions to the operation r(x) as follows:

r(x) (3)
preconditions : ∃x
postconditions : ∃x : x = r(x)

Synchronizing Copies of External Data in Workflow Management Systems 253

We define the preconditions and postconditions to the operation w(x, val) as
follows:

w(x, val) (4)
preconditions : none
postconditions : ∃x : x = val

Using these two operations we can pull a document x ∈ X from the external
data source to the workflow repository or push a document x̃ ∈ X̃ from the
workflow repository to an external data source. The operation op pull(x̃, x) is
equivalent to w(x̃, r(x)). The operation op push(x̃, x) is equivalent to w(x, r(x̃)).

op pull(x̃, x) ≡ w(x̃, r(x)) (5)
preconditions : ∃x ∈ X

postconditions : ∃x̃ ∈ X̃ : x̃ = r(x)

op push(x̃, x) ≡ w(x, r(x̃)) (6)
preconditions : ∃x̃ ∈ X̃

postconditions : ∃x ∈ X : x = r(x̃)

If one of either operations op pull(x̃, x) or op push(x̃, x) was performed, then
we say that documents x ∈ X and x̃ ∈ X̃ are in the copy relation K. The
document x is called the original of x̃ and the document x̃ is called a copy of x:

(x, x̃) ∈ K, K ⊆ X × X̃ (7)

The copy relation K has the following properties:

∀x̃ ∈ X̃ : x̃ is a copy of at most one x ∈ X (8)
∀x ∈ X : x is the original of none or many x̃ ∈ X̃ (9)

3.2 WDL-X Operations on Documents

The WDL-X commands and operations mentioned in Sec. 2 can be now defined
with the presented basic operations. Passing a variable to a simple activity in
IN or INOUT mode, or testing a condition on a variable is equivalent to a read
operation on a document bound to the variable. Receiving a variable from an ac-
tivity in OUT or INOUT mode is equivalent to a write operation on a document
bound to the variable. If the variable was not bound to any document, a new
document is created and bound to the variable. The exact semantics of these
WDL-X operations depends on a chosen policy. In each policy the WDL-X com-
mand openDocument will create a copy of an external document in the workflow
repository and will bind a variable to a newly created document. The refresh
policies influence WDL-X read and forceRefresh operations as presented in
Tab. 1. The push policies influence WDL-X write and forcePush operations as
presented in Tab. 2.

254 J. Eder and M. Lehmann

Table 1. Semantics of WDL-X operations in the refresh policies

WDL-X operations
Basic operations

refresh refreshOnDemand doNotRefresh

openDocument(var,x) op pull(x̃, x)
variable var will be bound to a new copy x̃ of x

r(~x) if ∃x ∈ X : (x, x̃) ∈ K
then op pull(x̃, x) r(x̃)
else raise error

r(x̃) r(x̃)

forceRefresh(~x) not allowed if ∃x ∈ X : (x, x̃) ∈ K
then op pull(x̃, x)
else raise error

not allowed

w(~x,val)
not influenced by these policies

forcePush(~x)

Table 2. Semantics of WDL-X operations in the push policies

WDL-X operations
Basic operations

immediatePush pushOnDemand doNotPush

openDocument(var,x) op pull(x̃, x)
variable var will be bound to a new copy x̃ of x

r(~x)
not influenced by these policies

forceRefresh(~x)

w(~x,val) w(x̃, val)
op push(x̃, x)

w(x̃, val) w(x̃, val)

forcePush(~x) not allowed op push(x̃, x) not allowed

The policies refreshOnDemand and pushOnDemand imply that in a WDL-X
script there should be at least one forceRefresh and forcePush command
respectively. Otherwise the policies degenerate to doNotRefresh and doNotPush
respectively. Both problems are detected during the compile time and warnings
are generated.

3.3 Combinations of Refresh and Push Policies

A workflow designer may define a different combination of refresh and push poli-
cies for each document copied into the workflow repository. In this section we
shortly discuss each of the nine possible combinations. Each policy combina-
tion has to be analyzed separately for the documents copied into the workflow
repository with the openDocument command and for the documents created first
locally in the workflow repository.

1. In the policy combination refresh immediatePush documents copied into
the workflow repository will be refreshed before each read operation and
pushed after each write operation. Documents created in the workflow reposi-

Synchronizing Copies of External Data in Workflow Management Systems 255

tory will be pushed immediately after the first write operation and afterwards
the situation is the same as for the copied documents.

2. In the policy combination refresh pushOnDemand documents copied into the
workflow repository from external sources will be refreshed before each read
operation. Local modifications of the copy in the workflow repository will
be pushed only on an explicit forcePush command in a WDL-X script. A
workflow designer has to be aware that, if in a sequence of WDL-X operations
there is a read operation between a write operation and the forcePush, then
the effect of this write operation will be overwritten by the refresh policy.
If a new document was created in the workflow repository then this policy
combination will lead to an error, when before a read operation the refresh
policy tries to pull the document, which has not yet been pushed by the
forcePush command.

3. In the policy combination refresh doNotPush documents copied into the
workflow repository from external sources will be refreshed before each read
access. Effects of all write operations will never be pushed and they will
be always overwritten by the pull operations performed before subsequent
reads. Any attempt to read a new document created locally in the workflow
repository will always cause an error. Therefore, in this policy combination
no write operations are permitted and the copy is read only.

4. In the policy combination refreshOnDemand immediatePush any write op-
eration on a document copied into the workflow repository from an external
source will be pushed immediately. Documents created locally in the work-
flow repository will be pushed immediately after the first write operation
and afterwards the situation is the same as for the copied documents. To
refresh the copy a workflow designer has to use explicitly the forceRefresh
command.

5. In the policy combination refreshOnDemand pushOnDemand a workflow de-
signer has full control by specifying when to pull and push a document copied
into a workflow repository by using explicitly forceRefresh and forcePush
commands respectively. The designer has to be aware that a new docu-
ment created locally in the workflow repository has to be pushed before it
can be pulled (i.e. forcePush has to precede forceRefresh). Otherwise the
forceRefresh command will cause an error.

6. In the policy combination refreshOnDemand doNotPush any write opera-
tion on a document copied into the workflow repository from an external
source will never be pushed and a workflow designer has to be aware that
the forceRefresh command will always overwrite the effects of a preceding
write operation. Any attempt to use forceRefresh on a document created
locally in the workflow repository will always cause an error. Therefore, for
all documents created only locally in the workflow repository this policy com-
bination degenerates to the policy combination doNotRefresh doNotPush.
Such a situation can be detected during the compile time, because in the
WDL-X script there will be no openDocument command for the documents
local to the workflow repository.

256 J. Eder and M. Lehmann

7. In the policy combination doNotRefresh immediatePush a document copied
into the workflow repository from an external data source is pulled only once
after the WDL-X command openDocument. A document created locally in
the workflow repository will be immediately pushed. All write operations are
immediately pushed. In this policy combination a workflow instance works
on a local copy and externalizes all modifications made to this copy.

8. The policy combination doNotRefresh pushOnDemand is similar to the pol-
icy combination doNotRefresh immediatePush with the difference that to
push modifications made to a document in the workflow repository a work-
flow designer has to explicitly use the command forcePush. In this policy
combination a workflow instance works on a local copy, which is externalized
only on demand.

9. In the policy combination doNotRefresh doNotPush a document copied into
the workflow repository from an external data source is pulled only once
after the WDL-X command openDocument. Afterwards the copy is never
synchronized. A document created only in the workflow repository is never
pushed and always stays a local document.

4 Example

We illustrate our approach with a simplified example of a credit application
processing workflow. The workflow graph representing the workflow definition is
presented in Fig. 2. The rectangles represent activities. Each activity has a name
and an assigned agent specified in brackets underneath the name. Arrows be-
tween activities represent the control flow. A circle with a question mark inside
and outgoing arrows represents an exclusive choice, whereas a circle with incom-
ing arrows represents a simple merge. The WDL-X definition of the workflow is
presented in Fig. 3.

Fig. 2. Workflow graph of a credit application processing

Synchronizing Copies of External Data in Workflow Management Systems 257

Fig. 3. WDL-X script definition of a credit application processing

A credit application is passed to the process as an input parameter (line 1).
A salesperson validates the application for correctness. The applications which
are not valid are rejected. A sum of the credit in a valid application may be
given in one of several currencies (e.g. USD, JPY, GBP). If the sum of the
credit recalculated into Euro exceeds a value of 50 000 EUR, then the control
department of the credit institution has to check the credibility of the customer.
In any case valid applications have to be checked by a clerk. According to his / her
judgment the salesperson accepts or rejects the application.

In the process apart from the credit application are used two additional doc-
uments: customer data (line 2) and the exchange rate table for a currency of
the credit application (line 4). Both documents are stored locally in the work-
flow repository as copies of correspondent documents received from external
data sources by data access plug-ins. According to policies defined by a work-
flow designer the customer data should be refreshed before each access and local
changes should be pushed only after an explicit forcePush command, and the ex-
change rate table should be refreshed before each read and never pushed (lines 3
and 5).

The document describing customer data is copied from the external database
according to the customer’s id given in the application (line 11) and the exchange
rate table is copied for the currency describing the credit sum (line 12). The
exchange table is automatically refreshed before recalculating into Euro and
checking the credit sum (line 13). Checking of the customer’s credibility (line
14) may change the customer data in a significant manner. These changes are

258 J. Eder and M. Lehmann

therefore pushed to the original data source (line 15). Changes possibly made to
the customer data by any other activity are never pushed and always overwritten
from the original source before each read access in the workflow, e.g. before
checking the application (line 17) and accepting the application (line 21). No
modifications to the exchange rate table are allowed.

The example illustrates the versatility of our simple yet powerful mechanism.
Our synchronization policies can model large spectrum of requirements ranging
from fully synchronized replicas, through read only data to data local just to
the workflow repository. In the example on the one hand the policy combination
refresh pushOnDemand gives the workflow designer a control when to exter-
nalize updates made to the local copy of data. On the other hand the policy
combination refresh doNotPush allows to model read only data. The former
case allows to push to the original source and to take into account in the further
workflow processing only important and verified data modifications. This is par-
ticulary important if activities and subprocesses are reused in different workflow
definitions. If a subprocess reused in a workflow definition modifies the data, this
modification can be simple discarded by the refresh policy or preserved by the
forcePush command. The latter case describes the situation when in a workflow
are used data, which are completely managed outside the context of an active
workflow instance. These data cannot be changed by the workflow instance, nev-
ertheless, the control flow of the workflow depends on them. Such read only data
are currency exchange rate (as in our example), a marital status of a person,
credit card validity, position of an employee, tax rates, metal and oil prices and
many more.

5 Related Work

Data aspects in workflow systems did not yet receive the same attention as
process aspects. There were even questions whether workflows had lost sight of
the dataflow [3]. The Workflow Management Coalition (WfMC) in its glossary
[15] defines three classes of data in workflows. Workflow control data managed
by a WfMS and describing workflow execution are not in scope of our interest
here. Application data are managed by the applications supporting the process
instance and generally are never seen by the WfMS. Workflow relevant data
are used by the WfMS to determine the state transitions of a workflow (e.g.
transition conditions). In the traditional WfMSs workflow relevant data must be
stored in the workflow repository and the application data are beyond the WfMS.
In [16] the WfMC defined environmental data, as data which may be accessed
by workflow activities or used by the WfMS in the evaluation of conditional
expressions in the same way as workflow relevant data. Unfortunately the WfMC
does not specify in [16] anything else in this matter.

The analysis of commercial WfMSs shows that most of the activity program-
ming is related to updating application databases [1]. Some products provide
constructs for accessing external data sources. Typically these are specific ele-
ments that can be included in a process definition [11]. For example Staffware

Synchronizing Copies of External Data in Workflow Management Systems 259

provides Automatic Steps and script commands which enable specific items of
data to be requested from external systems [13]. In @enterprise [8] to each ac-
tivity can be attached Java code, which e.g. can fetch external data. In many
systems (e.g. MQWorkflow [9]) access to external data occurs within individual
simple activity implementation.

On the contrary we present a complete mechanism for accessing the external
data by the WfMS. The data from the external systems may be used to control
the flow of a workflow or copied into the workflow repository according to the
policies defined by a workflow designer in a workflow definition.

The project Exotica/FMQM was extended to incorporate data management
capabilities into the WfMSs [2]. Its architecture was based on a fully distributed
workflow engine for control flow, and a set of loosely synchronized replicated
databases which provided the common distributed repository for all the sites
participating in the execution of a process. In this approach only control data
were replicated in the distributed repository, whereas we provide the WfMS with
a mechanism for copying and synchronizing data between external systems and
the workflow repository.

Replication is a well known problem both in distributed systems and in
databases [10, 12, 14]. In these domains data are usually replicated to provide
better performance and data availability. Our proposal is specific to the work-
flow environment and has to deal with different requirements and problems. Mere
replication management lacks the flexibility of more sophisticated synchroniza-
tion policies. But according to the terminology in this domain in our case we can
say that we have a multimaster replication. Data are stored in an external source
and in the workflow repository and can be accessed and modified independently
in both of them. Both copies are synchronized in a lazy manner. For simplicity
we consider only a state transfer between copies. The main difference to the
other work is that the copy conflicts are solved according to the policy defined
by the workflow designer (e.g. the policy combination refresh doNotPush gives
superiority to the external data source).

A more general approach to change propagation in heterogeneous informa-
tion systems was presented in [4]. Dependencies between data objects stored in
different information systems were managed by a separate system called Prop-
agation Manager. This approach used wrappers to connect to external systems
and allowed to specify scripts with data transformation definitions. In our pro-
posal the WfMS decides when to propagate changes according to synchronization
policies and a workflow definition. External data sources are accessed by special-
ized wrappers called data access plug-ins, which also provide the required data
transformations.

6 Conclusions

This work contributes to a better handling of data in workflow management
systems. We argue that data should get more attention in workflow systems and
that making data access explicit rather than hiding it in activities has several

260 J. Eder and M. Lehmann

advantages, in particular, it improves understandability, maintainability and au-
ditability of workflow definitions. With suitable abstractions and policy based
synchronization workflow development will also be improved significantly.

We offer a simple and transparent way for accessing external data and thus,
in particular, make the relationship between external data and workflow deci-
sion data more visible. We offer a transparent and manageable mechanism for
synchronizing copies in the workflow repository with the external data with a
clear semantics of operations on data copied into the workflow repository. The
synchronization is policy driven relieving the workflow developer from low level
programming details. Overall, the concepts introduced in WDL-X are intended
to simplify workflow definition and maintenance.

A workflow designer can choose whether to access environmental data in
external systems via data access plug-ins directly or to copy these data into
the workflow repository. In the latter case he has full flexibility in choosing
the synchronization policy. The mechanisms described in this paper builds a
solid foundation for further support of workflow definition languages where syn-
chronization specification is more automated by correctness specifications and
analysis of workflow definitions.

References

1. Martin Ader. Workflow and business process management comparative study.
volume 2. Technical report, Workflow & Groupware Stratégies, June 2003.

2. Gustavo Alonso, Berthold Reinwald, and C. Mohan. Distributed data manage-
ment in workflow environments. In Proceedings of the 7th International Workshop
on Research Issues in Data Engineering (RIDE ’97) High Performance Database
Management for Large-Scale Applications, page 82. IEEE Computer Society, 1997.

3. Christoph Bussler. Has workflow lost sight of dataflow?, 1999. High Performance
Transaction System Workshop 1999.

4. Carmen Constantinescu, Uwe Heinkel, Ralf Rantzau, and Bernhard Mitschang.
A system for data change propagation in heterogeneous information systems. In
Proceedings of the International Conference on Enterprise Information Systems
(ICEIS), volume I, pages 51–59, Cuidad Real, Spain, April 2002.

5. J. Eder, H. Groiss, W. Liebhart: The Workflow Management System Panta Rhei.
In: A. Dogac, L. Kalinichenko, T. Öszu, A. Sheth (Eds.): Workflow Management
Systems and Interoperability, Springer-Verlag 1998

6. Johann Eder and Marek Lehmann. Uniform access to data in workflows. In
Kurt Bauknecht, Martin Bichler, and Birgit Pröll, editors, Proceedings of the 5th
International Conference on E-Commerce and Web Technologies, EC-Web 2004,
number 3182 in LNCS, pages 66–75, Zaragoza, Spain, August/September 2004.
Springer-Verlag.

7. Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: from process modeling to workflow automation infrastructure.
Distrib. Parallel Databases, 3(2):119–153, 1995.

8. Groiss Informatics GmbH @enterprise Documentation available at:
http://www.groiss.com.

9. IBM Corporation. IBM WebSphere MQWorkflow Concepts and Architecture.
GH12-6285, 2003

Synchronizing Copies of External Data in Workflow Management Systems 261

10. Adbelsalam A. Helal, Abdelsalam A. Heddaya, and Bharat B. Bhargava. Replica-
tion Techniques in Distributed Systems. Kluwer Academic Publishers, 1996.

11. Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van der
Aalst. Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland
University of Technology, Brisbane, Australia, April 2004.

12. Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Report MSR-
TR-2003-60, Microsoft Research, October 2003.

13. Staffware plc. Staffware Technical Overview. Issue 1, October 2001.
14. Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme, and Gus-

tavo Alonso. Understanding replication in databases and distributed systems. In
Proceedings of the The 20th International Conference on Distributed Computing
Systems (ICDCS 2000), page 464. IEEE Computer Society, 2000.

15. Workflow Management Coalition. Workflow Management Coalition Terminology
& Glossary, 3.0 edition, February 1999.

16. Workflow Management Coalition. Workflow Process Definition Interface - XML
Process Definition Language (XPDL), wfmc-tc-1025 edition, 2002.

Understanding the Requirements on
Modelling Techniques

S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{S.Hoppenbrouwers, Th.P.vanderWeide, E.Proper}@cs.ru.nl

Abstract. The focus of this paper is not on the requirements of an in-
formation system to be developed, but rather on the requirements that
apply to the modelling techniques used during information system devel-
opment. We claim that in past and present, many information systems
modelling techniques have been developed without a proper understand-
ing of the requirements that follow from the development processes in
which these techniques are to be used. This paper provides a progress
report on our research efforts to obtain a fundamental understanding of
the requirements mentioned. We discuss the underlying research issues,
the research approach we use, the way of thinking (weltanschauung) that
will be employed in finding the answers, and some first results.

1 Introduction

In past and present, many information systems modelling techniques have been,
and are being, developed [1, 2, 3, 4]. With the term modelling technique we
(roughly) refer to the combination of a modelling language/notation and proce-
dures/guidelines for the creation of models. This definition is in line with defi-
nitions that can be found in e.g. [3, 4, 5]. The authors of this paper have them-
selves contributed their fair share of modelling techniques [6, 7, 8, 9, 10, 11]. The
plethora of modelling techniques that is available to developers of information
system has, in the past, already been referred to as “a jungle” [3]. This jungle
leaves developers of information systems with the burden of selecting modelling
techniques that are apt for the modelling tasks at hand.

The UML [12] aims to provide a standardisation of some of the diagramming
techniques used. However, to a large extent it is still up to the modelers to choose
the right diagramming technique for a given task, and the best way to apply it
to this task. What is more, there are bound to be modelling tasks for which
none of the UML standard techniques suffice. There is no silver bullet [13] for
modelling techniques.

This leads us to the key questions with which the research, as reported in
this paper, is concerned:

– What are the purposes that modelling techniques should serve when used in
information system development?

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 262–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Understanding the Requirements on Modelling Techniques 263

– What requirements does this set for the modelling techniques to be used?
– How should one go about selecting and applying modelling techniques for a

given task in a development process?
In our view, selecting and applying modelling techniques depends strongly on
the goals of the tasks that are to be executed in the development process. These
goals dictate the requirements that should be set for the modelling technique
and their usage. In this paper, we will show how these requirements depend on
a multitude of factors. In doing so, we will base ourselves both on theoretical
considerations and on input from interviews with practitioners.

In finding answers to the questions raised above, we employ the action re-
search paradigm [14]. This entails that our work will progress (evolutionary)
through two major stages (taken from [15]):

Diagnostic stage – This stage involves a collaborative analysis of the social
situation by the researcher and the subjects of the research. Theories are
formulated concerning the nature of the research domain.

Therapeutic stage – This involves collaborative change experiments. In this
stage changes are introduced and the effects are studied [16].

We are currently in transition from the diagnostic stage to the therapeutic
stage. In the execution of the diagnostic stage, we have used a three-pronged
approach, which has also inspired the structure of the remainder of this article:

Articulate way of thinking – This sub-stage refers to the way of thinking
(or weltanschauung) concerning information system development we will em-
brace in seeking the answers to the questions raised above. The current status
of this sub-stage is discussed in section 2.

Define conceptual framework – The focus of this sub-stage is on a further
refinement and concretisation of the way of thinking in terms of a conceptual
framework. This framework is needed to position and “code” the empirical
results that will follow from the execution of the next stage (the therapeutic
stage). The current status of this sub-stage is addressed in section 3.

Initial findings – The elaboration of the conceptual framework took place in
conjunction with a number of interviews with experienced modelers (in par-
ticular enterprise architects)1. These interviews and discussions already pro-
duced some results that provide a more practical perspective on the theo-
retical framework. These results are presented in section 4.

2 Communication-Driven Knowledge Transformation

In this section we discuss our fundamental way of thinking with regard to sys-
tem development. It provides a frame of thought against which one can better
understand the (communicative) requirements posed on modelling techniques.

1 This part of the research was conducted within the context of the ArchiMate project
(http://archimate.telin.nl), a research projects that aims to provide concepts
and techniques to support enterprise architects in the visualisation, communication
and analysis of integrated architectures.

264 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

2.1 Communication-Driven

Key to our view on the utility of modelling techniques is their role as a means
of communication in system development. In the past we have already taken a
communication-driven perspective on modelling activities in information system
development [11, 17, 18, 19, 20], as well as on the act of system development
itself [21]. We are certainly not alone in doing so [22, 23].

To understand the role of modelling techniques in system development, we have
extended our communicative perspective to cater for the fact that the communica-
tion taking place during during system development leads to the creation and dis-
semination of knowledge. In essence, we regard system development as a communi-
cation-driven knowledge transformation process whereby conversations are used
to share and create knowledge pertaining to the system being developed as well
as the development process as such. The notion of conversation should be inter-
preted here in the broadest sense, ranging from a single person producing a model
(description), via one-on-one design/elicitation sessions, to workshops with several
stakeholders, and even the broad dissemination of definitive system designs.

Our aim of viewing information system development as a knowledge trans-
formation process is to use this perspective on system development to better
understand and articulate the requirements that should be set for modelling
techniques. From this perspective, modelling techniques should be regarded as
a means (a language) to an end (system development), not unlike a functional
perspective (What is it to be used for?) on language [24].

2.2 Development Community

Given our focus on communication, it is important to identify the actors and ob-
jects that could play a role in the communication that takes place during the sys-
tem development process. The actors are likely to have some stake with regards
to the system being developed. Examples of such actors are: problem owners,
prospective actors in the future system (such as the future ‘users’ of the system),
domain experts, sponsors, architects, engineers, business analysts. The actors,
however, are not the only items playing an important role in system develop-
ment. In addition, consider a number of objects: the many different documents,
models, forms, etc., that represent bits and pieces of knowledge pertaining to the
system that is being developed. Actors and objects combined, and the different
roles they can play, is what we shall refer to as a system development community.

The actors in a system development community will (typically as a con-
sequence of their personal goals and stakes) have some specific interests with
regard to the system being developed. This interest implies a sub-interest re-
garding (the contents of) the system descriptions that are communicated within
the community. This interest is, in line with [25], referred to as the concern of a
stakeholder. Some examples of concerns are:

– The current situation concerning the computerized support of a business
process.

– The requirements of a specific stakeholder with regard to the desired situation.

Understanding the Requirements on Modelling Techniques 265

– The improvements/benefits which a new system may bring to a pre-existing
situation in relation to the cost of acquiring the system.

2.3 System Development Knowledge

The system development community harbours knowledge about the system being
developed. To be more precise, the members of the system development commu-
nity can be regarded as knowledge carriers harbouring knowledge pertaining to
(their view on) a sub-domain within the system being developed (and/or its de-
velopment process). In this vein, the communication occurring within a system
development community essentially aims to create, further, and disseminate this
knowledge. Importantly, the actual knowledge can pertain to the system being
developed, as well as the development process as such. In the next section, we
will provide a more elaborate discussion on the kinds of knowledge that may
(have to) be communicated.

Depending on the concerns of a stakeholder, she will be interested in differ-
ent knowledge topics pertaining to the system being developed. For example: a
financial controller will be interested in an investment perspective on the overall
scope of a future system, a designer will be interested in all aspects of the design
chain from different perspectives, etc.

2.4 Transformations of Knowledge

During the development of a system, the knowledge about the system and its
development will evolve. New insights emerge, designs are created, views are
shared, opinions are formed, design decisions made, etc. Consequently, the knowl-
edge as it is present in a development community can be seen to evolve through
a number of knowledge states. At present, we identify two dimensions for the
knowledge states of the development community: (1) level of sharing, and (2)
level of explicitness.

Knowledge needs to be introduced into the community first, either by creating
the knowledge internally or importing it from outside of the community. Once the
knowledge has been introduced to a community, it can be shared among different
knowledge carriers. Sharing knowledge between different knowledge carriers may
progress through a number of stages. Of the two kinds of knowledge carriers
(objects and actors) in a development community, only the actors are “allowed”
to cast judgement on the level of sharing between two knowledge carriers. We
actually distinguish three major stages of knowledge sharing:

Aware – An carrier may become “aware” of (possible) knowledge by way of
the sharing by another carrier (possibly from outside the community), or by
creating it themselves.

Agreed – When shared, carriers can make up their own “minds” about the
shared knowledge, and decide wether or not to agree to the knowledge shared.

Committed – Carriers who “agree” to a specific knowledge topic may decide
to actually commit to this knowledge. In other words, they may decide to
adopt their future behaviour in accordance to this knowledge.

266 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

There is no way to objectively and absolutely determine the levels of awareness,
agreement, and commitment of a given set of knowledge carriers. It is in the eyes
of the beholder.

The actual knowledge that is harboured by a knowledge carrier can also not
be taken into account explicitly since the knowledge that is available from/on/in
a knowledge carrier is subjective and context-dependent by nature [26]. The
harbouring of a knowledge topic by some knowledge carrier may occur at differ-
ent levels of formality, completeness, executability, etc. In the field of knowledge
management, a key distinction is made between explicit and tacit knowledge [27].
Explicit knowledge refers to knowledge that can be externalised in terms of some
representation. In representation of knowledge, we refer to the process of encod-
ing knowledge in terms of some language on some medium. Our focus is on the
communication of system development knowledge by way of explicit representa-
tions. In other words, explicit knowledge, where the representations pertain to
an existing or future system; its design, the development process by which it
was/is to be created, the underlying considerations, etc.

3 Conceptual Framework

Following the general way of thinking as discussed in the previous section,
in this section we present a conceptual framework. This framework will be
used in the further development of our theories based on its use in practical
settings.

3.1 System Development Knowledge

We start by briefly exploring the kinds of knowledge that are relevant to a system
and its development, in other words: the knowledge topics that can be discerned.
During system development, members of the system development community
will create and exchange knowledge pertaining to different topics. A first dis-
tinction can be made between:

Target domain – Knowledge pertaining to the system being developed.
Project domain – Knowledge about the development process that brings forth

the system.

We have borrowed the terms target domain and project domain from the Infor-
mation Services Procurement Library (ISPL) [28]. For both of these knowledge
domains, further refinements can be made with regards to the possible topics.
One can identify the following additional characterizations:

Perspective – Artifacts, such as systems, can be considered from different per-
spectives. Some examples are: (1) Business, application, and infrastructure
aspects of a (computerized) information system; (2) Social, symbolical, and
physical aspects of a system; (3) Process, information, actors, and technology
featuring in a system.

Understanding the Requirements on Modelling Techniques 267

Scope – Given a domain, such as a system or a development project, several
scopes can be identified when approaching the domain. Some examples are:
(1) enterprise wide; (2) department specific; (3) task specific.

Design chain – When considering the design of some artifact, a distinction
can be made between: (1) the purpose for which an artifact is needed; (2)
the functionality which the artifact should provide to its environment; (3)
the design of the artifact, i.e. how it should realize the functionality; (4) the
quality of the artifact, i.e. how well it should do so; (5) the cost at which
it will/may do so, and at which it may be constructed.
Based on these distinctions, knowledge topics can be characterized in terms
of their focus on, for example, functionality or quality in isolation, or their
focus on bridging the gaps between purpose, functionality and design in
terms of the underlying design rationale.

Historical perspective – Given an artefact with a design, one may consider
different versions of this design over time. One could, for example, make a
distinction between a strategic (5-10 years), a tactical (1-5 years), and an
operational perspective (now).

Abstraction level – When considering a domain, one may do so at several
levels of abstraction. Various forms of abstraction can be distinguished, for
example type-instance, generalisation, is-a-kind-of, encapsulation, and the
hiding/encapsulation of implementation details.

In general, each of the above characterizations of knowledge topics applies to
both target and project domains. As mentioned before, depending on their con-
cerns, stakeholders may be interested in different knowledge topics.

3.2 Explicitness of Knowledge

Given our focus on system development, a more precise classification can be
made with regard to the level of explicitness as mentioned in section 3.2. Based
on [28, 29], the following dimensions of explicitness for representations of system
development knowledge (pertaining to both target domain and project domain
knowledge) can be identified:

Level of formality – The degree of formality indicates the type of represen-
tation language used. Such a language could be formal, in other words a
language with an underlying well-defined semantics in some mathematical
domain, or it could be informal –not mathematically underpinned; typically
texts in natural language, graphical illustrations, animations, etc.

Level of quantifiability – Different aspects of the designed artefact, be it
(part of) the target or the project domain, may be quantified. Quantification
may be expressed in terms of volume, capacity, workload, effort, resource,
usage, time, duration, frequency, etc.

Level of executability – The represented knowledge may, where it concerns
artefacts with operational behaviour, be explicit enough so as to allow for ex-
ecution. This execution may take the form of a simulation, a prototype, gen-
erated animations, or even fully operational behaviour based on executable
specifications.

268 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

Level of comprehensibility – The knowledge representation may not be com-
prehensible to the intended audience. Tuning the required level of compre-
hensibility of the representation, in particular the representation language
used, is crucial for effective communication. The representation language
may offer special constructs to increase comprehension, such as stepwise re-
finements, grouping/clustering of topically related items/statements, etc.

Level of completeness – The knowledge representation may be complete, in-
complete, or overcomplete with regard to the knowledge topic (see previous
subsection) it intends to cover.

3.3 Conversation Strategies

The knowledge transformations as discussed in section 2.4 are brought about
by conversations. The scope of these conversations may range from ‘atomic’
actions involving a small number of actors, via discussions and workgroups, to
the development process as a whole. This has been illustrated informally in
figure 1.

Fig. 1. Example sequence of conversations

Each conversation is presumed to have some knowledge goal : a knowledge
state which the conversation aims to achieve (or maintain). This knowledge
state can best be regarded as a multi-dimensional vector, positioning: (1) the
knowledge topic (see section 3.1); (2) the level of explicitness of the knowledge
(see section 3.2); (3) the level of sharing (see section 2.4).

In achieving a knowledge goal, a conversation will follow a conversation strat-
egy. Such a strategy is needed to achieve the goal of the conversation, starting
out from the current state:

Knowledge goal – The knowledge goal; a desired knowledge state which the
conversation will aim to achieve/contribute towards.

Initial state – The initial knowledge state as it holds at the start of the con-
versation.

Conversations take place in some situation in which resources may or may not
be available for execution of the conversation. A conversation situation may be
characterised further in terms of situational factors [28]. We identify three classes
of situational factors:

Understanding the Requirements on Modelling Techniques 269

Availability of resources – Refers to the availability of resources that can
be used in a conversation. The availability of resources can be refined to
more specific factor such as: time for execution, actors present, intellectual
capacities required from the actors, and financial means.

Complexity – The resources needed for the conversation, the knowledge be-
ing conversed about, etc., will exhibit a certain level of complexity. This
complexity also influences the conversation strategy to be followed. Exam-
ples of such complexity factors (inspired by [28]) are: heterogeneity of actors
involved, quantity of actors involved, complexity of technology used, com-
plexity of knowledge being conversed about, and size of the gap between the
initial knowledge state and the desired knowledge state.

Uncertainty – In determining a conversation strategy fit for a given situation,
assumptions will have to be made about the knowledge goal, the initial
state, the availability of resources, and the complexities of these factors.
During the execution of a conversation, some assumptions may prove to
be wrong. For example: the commitment of certain actors may be lower
than anticipated (initial state); materials needed for a workshop may not be
available on time (resources); during a requirements elicitation session it may
emerge that the actors involved do not (yet) have enough knowledge about
the future system and its impact to formulate/reflect on the requirements
of the future system (initial state). Typical uncertainty factors could relate
to: the knowledge goal, the initial state, the abilities of actors involved, the
availability of resources, and the complexities as discussed above.

In formulating a conversation strategy, all of the above factors should be taken
into account. A conversation strategy should typically cover at least the following
elements:

Execution plan – As mentioned before, a conversation can be composed of
sub-conversations. Each of these sub-conversations focusses on a sub-goal,
but they all contribute towards the goal of the conversation as a whole.
The execution plan of a (composed!) conversation consists of a set of sub-
conversations, together with a planned execution order.

Description languages – The description languages to be used in the conver-
sation(s).

Media – The kind of media to be used during the conversation(s).
Cognitive mode – The cognitive mode refers to the way in which knowledge

is processed/gathered by the collective of actors involved in a conversation.
Typically, a distinction is made between an analytical and experimental ap-
proach.

Social mode – The social mode is the way in which the actors executing the
system development process collaborate with the actors from the business
domain. We distinguish between an expert-driven and a participatory ap-
proach.

Communication mode – A small number of basic patterns of communication
can be distinguished, as covered by combinations of the some basic factors:

270 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

speaker-hearer ratio, requirements on hearer response, allowed time-lag, lo-
cality, and persistency. Combinations of these factors can be used to typify
many different modes of communication, which can have a major impact
on the resources required for communication and the likelihood a knowledge
goal is achieved.

4 Guidelines for the Usage of Modelling Techniques

This section concerns guidelines that should help practitioners in selecting mod-
elling techniques for communication tasks at hand. These guidelines are based
on interviews with a number of architects. In general, the use of a modelling
technique will pass through a number of phases. These phases are:

Phase 1 – Scoping: Select (an) appropriate modelling technique, select the
(sub)domain that needs to be represented/modelled in terms of (a) model(s),
and determine the constraints that apply to the domain being modelled.

Phase 2 – Creation of models: Create/select the actual content of the mod-
els. This can pertain to the selection of a part of a larger (pre-existing) model,
or the creation/refinement of a part of a model.

Phase 3 – Validation: Validate the resulting model. Do the stakeholders agree
to the fact the model is a correct representation of the actual/intended sit-
uation?

Phase 4 – Obtaining commitment: If agreement has been reached among
the key stakeholders involved, the next step will be to create commitment
for the results. In other words, do the stakeholders commit themselves to
the (potential) impact of what is described by the model?

Phase 5 – Informing: Inform other stakeholders of the results. These stake-
holders will be those members of the development community whose explicit
commitment has, in a conscious decision, been considered not to be crucial.

Note that these phases will not necessarily be executed in a linear order. Practi-
cal circumstances usually dictate a more evolutionary approach. Any modelling
techniques is to be used in activities from each of the above phases. The guide-
lines resulting from the interviews are categorised according to these phases, and
are discussed below.

4.1 Scoping

The importance of focussing on the concerns of stakeholders and the extent to
which a specific modelling technique addresses these concerns, was confirmed by
the outcomes of the interviews:

– Quite a number of important business-related concerns are left out by the
regular (technology-oriented) modelling techniques. Most notable are legal,
ethical and economical aspects of a system.

– When communicating to business managers, only those models are needed
that enable a discussion of factors deserving special attention. Typically,

Understanding the Requirements on Modelling Techniques 271

these are factors that have a high impact if they fail and also have a high risk
of indeed failing. For communication with the actual software developers, on
the other hand, more detailed models are crucial.

The selection of modelling techniques should be deliberate and based on ratio-
nal considerations. What is more, architects stated that this decision, and its
rationalisation, must be readily available for communication during the different
phases:

– The modelling techniques to be used, the goals for which the models are to
be created, as well as the underlying rationale, should be known beforehand.

– It is quite possible that a stakeholder (usually a technology-oriented one) will
ask for more detail in a model than you can give her, or want to give her, in
that particular phase of the project. A modeller/designer should be prepared
to better clarify the goals of the particular model and phase, and why the
requested details are not yet relevant (or even harmful).

– Even if the stakeholders do not always need to know why a certain model or
way of modelling is used, the modeler should know this perfectly well, at all
times.

4.2 Creation of Models

During the creation of a model, in particular when actual modelling (i.e. not
elicitation etc.) is concerned, it is considered sensible to limit the number of
participants in a conversation:

– Graphical models may or may not be used in communication with stakehold-
ers, but most actual modelling is done by individuals, two people at most.
Genuine group modelling sessions are very rare.

During the early stages of system design, it is often considered a bad thing to
“think” in terms of “solutions”. According to some of the interviewed architects,
however, it is sometimes defendable to let this “thinking in terms of examples”
run its course, as long as the results are expressed at the correct level of abstrac-
tion:

– When detailed modelling takes place in a cooperative setting, give informants
some room to think in terms of “solutions” even if pure requirements thinking
(what, not how) does not officially allow for this.
Most people just think better in terms of in concrete solutions; it is a vital
part of their creativity. Just be sure that requirements thinking is returned to
in due time.

The above observation is actually a concretisation of a more abstract observation:

– When discussing models with stakeholders and informants, in particular when
trying to establish a common understanding, it is sensible to discuss differ-
ent scenarios and alternatives to the model being considered. Doing so leads
to an exploration of the meaning and impact of the model taking shape, and
also leads to improved mutual understanding.

272 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

The use of concrete examples is but a way to make the different potential sce-
narios more tangible.

The graphical notation that is part of a modelling technique should be ap-
proached flexibly when it comes to communicating with stakeholders (in partic-
ular non-technical ones):

– If people are not used to or prepared to deal with abstract graphical models,
do not use them. It is pointless. Use other forms of visualization; anything.
Iconised diagrams work particularly well. However, be prepared to point out
the relation between the alternative visualisation and your abstract models if
asked to. Also do use your models for your own insight, and for generating
extra questions you can ask your stakeholders.

Finally, during a modelling session, several things may come to the fore that will
influence the further process. External events may occur that are a threat to the
process as a whole:

– Be prepared to stop modelling if executive commitment is withdrawn. It may
be frustrating, but from a business perspective it may also be crucial. It is
simply part of a flexible project setup.

– If the informants turn out to be less informed than expected, it is better to
stop than to try to “make the best of it” and produce an ill-conceived model.

4.3 Validation

In validation, a clear difference should be made between validation of content
(qualitative validation, by modelers and experts) and validation in terms of
commitment (by executives). Both are crucial, but very different. Obtaining
(and validating) commitment is discussed in the next subsection.

Whether good mutual communication and understanding about a model is
being reached is often a matter of intuition:

– If people involved have a mutual feeling that “their thoughts are well in sync”,
then dare to trust that feeling. However, if the opposite is the case, be prepared
to invest in substantial discussion of concrete examples – or face the dire
consequences of poor validation.

Validation is an activity that should be conducted in limited groups:

– “Feedback Rounds” involving a larger number of people, by e-mail or printed
documentation, do not really work. If you want feedback that is worth some-
thing, find key people and discuss the models, preferably face to face.

4.4 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtaining com-
mitment for the impact of this design on the future system and its evolution, as
well as the costs/resources needed to arrive at this future system. This means
that the message that one needs to get across to the stakeholders involves:

Understanding the Requirements on Modelling Techniques 273

– What are the major problems in the current situation?
– How bad are these problems (to the concerns and objectives of the stake-

holders)?
– How will this improve in the new situation? (Benefits)
– At what costs will these improvements come?

When discussing costs and benefits with stakeholders, it is important to realize
the following:

– Make costs and benefits as SMART (Specific, Measurable, Attainable, Real-
isable, and Time-bound) as possible.

– Make sure that the stakeholders agree, up front, to the criteria that are used to
express/determine costs and benefits. It is their commitment that is needed.
They will be the judge. Let them also decide what they want to base their
judgement on! Create shared responsibility towards the outcomes.

Selecting the stakeholders that should be involved when obtaining commit-
ment is also of key importance. Involving the wrong stakeholders, or leaving out
important ones, will have obvious repercussions. At the same time, selecting too
large a group of stakeholders may make the process bog down.

– Though ideally “everyone” should be heard, this is generally a practical im-
possibility. Therefore, choose your experts carefully. Aim for the opinion lead-
ers, and also accept that you cannot please everyone. Be aware that some
people will not be perfectly satisfied, prepare for it, and deal with it.

– People who actually make the decisions are usually those who are just outside
the group of people who really know what is going on. Make sure that the
former people are also involved and aware of what is happening.

– Careful reflection about the stakeholders that should be involved in obtaining
commitment often lacks in practice. There is a natural tendency to involve
only like-minded stakeholders, i.e. to “preach to the converted”.

The architects interviewed also noted some potential pitfalls in obtaining com-
mitment:

– Communication between a representative and her group is vital, but may also
do damage if conducted clumsily. Interestingly, too much communication may
be a bad thing: it may create unnoticed and uncontrolled discussion outside
the main discussion, leading to twisted conceptualisations and expectations.
Therefore, communication between representatives and their group should at
least be monitored.

– Getting executive commitment may actually be technologically dictated. If
their business is heavily technological, business people do not see technology
as secondary, and will only commit to anything if they are assured that “their
organization will be able to run it”.

– Sharing design decisions and their underlying considerations at a late stage
has a negative impact on the commitment of stakeholders. Start commitment
building early on in the process.

The latter point clearly confirms that the linear ordering of the “technique use
phases” as provided at the start of this section should not be applied strictly.

274 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

4.5 Informing

Once commitment from the opinion leaders has been obtained, other stakehold-
ers may be informed about future plans and their impact. In doing so, it still
makes sense to concentrate on cost/benefit considerations when trying to “sell”
the new system. Below, we have gathered some observations that apply to the
informing phase. However, due to their general communicative nature, some of
these observations are also applicable to the creation, validation, and commit-
ment phases.

– Do not impose presumed information system terminology on true business
people. Use their terminology. Even a concept like “service” is suspect be-
cause it is relatively technology-oriented and often unknown by stakeholders
that are strictly on the business side.

– Models are particularly important in giving stakeholders a feeling that they
are “part of the larger whole”. Often, just knowing where in the model “they
can be found” is important to stakeholders, even if they do not understand
the fine points of the model.

– Even if people are willing to and capable of reading models thoroughly, text
(spoken or written) needs to be added. Models alone never suffice.

5 Conclusion

We presented a progress report on one of our ongoing research efforts. We dis-
cussed our way of thinking regarding system development as a communication-
driven knowledge transformation process, and refined this way of thinking in
terms of a conceptual framework. Finally, some first results have been discussed.
These results are guidelines based on interviews with (enterprise) architects,
which were conducted as part of the “diagnostic” stage of the action research
paradigm.

We are currently in the process of initiating the “therapeutic” stage of the
action research paradigm. Our plan is to participate in selected activities in
development processes taking place in large Dutch cooperations and/or govern-
mental agencies.

References

1. Bubenko, J.: Information System Methodologies - A Research View. In Olle, T.,
Sol, H., Verrijn-Stuart, A., eds.: Information Systems Design Methodologies: Im-
proving the Practice. North-Holland/IFIP WG8.1, Amsterdam, The Netherlands,
EU (1986) 289–318.

2. Avison, D., Wood-Harper, A.: Information Systems Development Research: An
Exploration of Ideas in Practice. The Computer Journal 34 (1991) 98–112.

3. Avison, D.: Information Systems Development: Methodologies, Techniques and
Tools. 2nd edn. McGraw-Hill, New York, New York, USA (1995). ISBN 0077092333

Understanding the Requirements on Modelling Techniques 275

4. Bernus, P., Mertins, K., Schmidt, G., eds.: Handbook on Architectures of Informa-
tion Systems. International Handbooks on Information Systems. Springer, Berlin,
Germany, EU (1998). ISBN 3-540-64453-9

5. Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol, H., Assche, F.v., Verrijn-
Stuart, A.: Information Systems Methodologies: A Framework for Understanding.
Addison-Wesley, Reading, Massachusetts, USA (1988). ISBN 0-201-54443-1

6. Bommel, P.v., Hofstede, A.t., Weide, T.v.d.: Semantics and verification of object-
role models. Information Systems 16 (1991) 471–495.

7. Hofstede, A.t., Weide, T.v.d.: Expressiveness in conceptual data modelling. Data
& Knowledge Engineering 10 (1993) 65–100.

8. Bronts, G., Brouwer, S., Martens, C., Proper, H.: A Unifying Object Role Mod-
elling Approach. Information Systems 20 (1995) 213–235.

9. Creasy, P., Proper, H.: A Generic Model for 3-Dimensional Conceptual Modelling.
Data & Knowledge Engineering 20 (1996) 119–162.

10. Campbell, L., Halpin, T., Proper, H.: Conceptual Schemas with Abstractions –
Making flat conceptual schemas more comprehensible. Data & Knowledge Engi-
neering 20 (1996) 39–85.

11. Hoppenbrouwers, J., Vos, B.v.d., Hoppenbrouwers, S.: Nl structures and conceptual
modelling: Grammalizing for KISS. Data & Knowledge Engineering 23 (1997) 79–
92.

12. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA (1999). ISBN 0-201-57168-
4

13. Brooks, R.: Studying programming behavior experimentally: The problems of
proper methodology. Communications of the ACM 23 (1980) 207–213.

14. Avison, D., Lau, F., Meyers, M., Nielsen, P.: Action research. Communications of
the ACM 42 (1999) 94–97.

15. Baskerville, R.: Investigating Information Systems with Action Research. Com-
munications of the Association for Information Systems 2 (1999).

16. Blum, F.: Action research – a scientific approach? Philosophy of Science 22 (1955)
1–7.

17. Derksen, C., Frederiks, P., Weide, T.v.d.: Paraphrasing as a Technique to Support
Object-Oriented Analysis. In Riet, R.v.d., Burg, J., Vos, A.v.d., eds.: Proceed-
ings of the Second Workshop on Applications of Natural Language to Databases
(NLDB’96), Amsterdam, The Netherlands (1996) 28–39.

18. Frederiks, P., Weide, T.v.d.: Information modeling: the process and the required
competencies of its participants. In Meziane, F., Métais, E., eds.: 9th International
Conference on Applications of Natural Language to Information Systems (NLDB
2004). Volume 3136 of Lecture Notes in Computer Science., Manchester, United
Kingdom, EU, Springer-Verlag, Berlin, Germany, EU (2004) 123–134.

19. Bleeker, A., Proper, H., Hoppenbrouwers, S.: The role of concept management
in system development – a practical and a theoretical perspective. In Grabis,
J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th Conference on
Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia, EU, Faculty of
Computer Science and Information Technology, Riga Technical University, Riga,
Latvia, EU (2004) 73–82. ISBN 9984-9767-0-X

20. Proper, H., Hoppenbrouwers, S.: Concept evolution in information system evolu-
tion. In Gravis, J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th
Conference on Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia,
EU, Faculty of Computer Science and Information Technology, Riga Technical
University, Riga, Latvia, EU (2004) 63–72.

276 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

21. Veldhuijzen van Zanten, G., Hoppenbrouwers, S., Proper, H.: System Development
as a Rational Communicative Process. Journal of Systemics, Cybernetics and
Informatics 2 (2004). http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

22. Embley, D., Kurtz, B., Woodfield, S.: Object-Oriented Systems Analysis – A
model-driven approach. Yourdon Press, Englewood Cliffs, New Jersey, USA (1992).
ASIN 0136299733

23. Halpin, T.: Information Modeling and Relational Databases, From Conceptual
Analysis to Logical Design. Morgan Kaufman, San Mateo, California, USA (2001).
ISBN 1-55860-672-6

24. Cruse, A.: Meaning in Language, an Introduction to Semantics and Pragmatics.
Oxford University Press, Oxford, United Kingdom, EU (2000). ISBN 0-198-70010-5

25. The Architecture Working Group of the Software Engineering Committee, Stan-
dards Department, IEEE: Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report IEEE P1471-2000, The Ar-
chitecture Working Group of the Software Engineering Committee, Standards
Department, IEEE, Piscataway, New Jersey, USA (2000). ISBN 0-738-12518-0
http://www.ieee.org

26. Peirce, C.: Volumes I and II – Principles of Philosophy and Elements of Logic.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA (1969). ISBN 0-674-13800-7

27. Nonaka, I., Takeuchi, H.: The knowledge-creating company. Harvard Business
Review (1991) 97–130.

28. Franckson, M., Verhoef, T., eds.: Managing Risks and Planning Deliveries. Infor-
mation Services Procurement Library. ten Hagen & Stam, Den Haag, The Nether-
lands (1999). ISBN 9076304831

29. Proper, H., ed.: ISP for Large-scale Migrations. Information Services Procure-
ment Library. ten Hagen & Stam, Den Haag, The Netherlands, EU (2001). ISBN
9076304882

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 277 – 292, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Process for Generating Fitness Measures

Anne Etien and Colette Rolland

Centre de Recherche en Informatique – University Paris 1,
90 rue de Tolbiac, 75013 Paris, France

{aetien, rolland}@univ-paris1.fr

Abstract. It is widely acknowledged that the system functionality captured in a
system model has to match organisational requirements available in the
business model. However, fitness measures are rarely integrated in design
methodologies. The paper proposes a framework to ease the generation of
fitness measures adapted to a given methodology in order to quantify to which
extent there is fit between the business and the system. The framework
comprises a generic level and a specific level. The former provides generic
evaluation criteria and metrics expressed on the basis of business and system
ontologies. The specific level is dealing with a specific set of metrics adapted to
specific business and system models. The paper presents the process for
generating a specific set of measures from the generic set, illustrates it with two
specific models and shows how the use of the generated metrics can help in
making design decisions in the development of a hotel room booking system.

1 Introduction

Fitting information systems (IS) to business processes (BP) that they support, is
equally considered important by researchers and by professionals [1], [2]. Recent field
surveys seem to demonstrate this importance. For example, a 2001 study conducted in
226 companies [3] clearly proofs that alignment of IS to BP significantly improve
business performance. Complementarily, Henderson and Venkatraman [4] show that
the lack of fit of information systems to business strategies is the reason why business
processes fail in providing the return on IT investments.

Researchers are interested by mechanisms to get the alignment done. Most IS
development methodologies propose a step-wise process to ensure that the designed
IS matches the business needs and strategies. Old methodologies such as the
participative method [5], more recent object oriented methodologies [6] and the entire
requirements engineering community [7] promote approaches based on goal models
to capture the business strategies and on transition rules to operationalise goals into IS
solutions. However, these methodologies do not provide means to evaluate if there is
fit and to which extent.

P. Soffer [8] suggests that identification of unfit requires the application of a fit
measurement method. Measurement is indeed a way to avoid a subjective evaluation
of the degree of fit. We follow this line and our concern is to define a set of fit
measures that could be easily incorporated in any existing methodology. This raises

278 A. Etien and C. Rolland

two issues: (a) the definition of the concepts of fitness and fitness measurement and,
(b) the production of fitness measures for a specific methodology.

In dealing with issue (a) we adopt the view of Regev [9], who defines the concept
of fitness “as the correspondence between a set of components”. In the case of BP/IS
fitness evaluation, this view implies a precise identification of the types of
correspondence between components of the business model (BM) and the system
model (SM). The measurement of BP/IS fit is therefore, based on the degree of
correspondence between BM and SM components. We propose the use of fitness
criteria and associated metrics to measure these.

To addressing issue (b) we base the process of producing fitness measures for a
specific methodology on the framework shown in Fig. 1. The specific set of measures
is derived from a generic set of measures. The former is based on correspondences
established between components of a specific business model and a specific system
model whereas the latter are associated to correspondences between generic
constructs found in the Wand and Weber [10] and Soffer and Wand [11] ontologies,
respectively. These two ontologies are adaptations of Bunge’s ontology [12], [13]
which is largely recognized for its theoretical foundations. We believe that there are a
number of advantages of proceeding in this way, (1) the generic measures are based
on a solid theoretical ground provided by the Bunge’s ontology (2) the generic
measures serve as a guide to define the specific ones: the latter is just a specialisation
of the former, (3) the process of producing the specific measures is easier and less
error prone and, (4) specific sets of fit measures are consistent with each other as they
are generated from the same mould and this facilitates comparisons across methods.

Business
Ontology

System
Ontology

Generic
fitness

measures

Business
Model

System
Model

Business
Schema

System
Schema

Generic
level

Specific
level

Case study
level

Specialises

Specialises

Instantiates

Instantiates

Specific
fitness

measures

Fitness
values

Are derived
from

Are calculated
from

Fig. 1. Framework for generating specific fit measures

In this paper, we illustrate the use of our generic set of fitness measures to generate
a specific set of measures. For this purpose, we propose a three steps process. In the
two first steps, a correspondence between constructs of the specific business model
(respectively, system model) and those of the business ontology (respectively, system
ontology) is established. The third step consists in the specification of the generic
metrics based on the correspondences identified in the two previous steps.

 A Process for Generating Fitness Measures 279

The rest of the paper is organized as follows. Section 2 provides an overview of the
ontologies and of the generic set of fitness criteria and associated metrics. Section 3
presents the process to generating specific metrics and illustrate it with the MAP [14]
and O* [15] models. In section 4 the use of the specific metrics generated in section 3
is discussed in a case of a hotel room booking. Finally, conclusions are drawn in
section 5.

2 Generic Level: Overview of the Fitness Measurement System

This section provides an overview of the generic set of criteria and metrics that we
defined to measure to which extent there is fit between the software system and the
business it supports. We first, recall the Soffer and Wand (SW) and Wand and Weber
(WW) ontologies, which we use to represent system and business components,
respectively. We then, present our view of the fit as the degree of correspondence
between SW and WW elements computed by metrics. We finally sum up the fit
criteria and associated metrics.

2.1 Ontologies Overview

The Soffer and Wand ontology (SW) [11] and the Wand and Weber (WW) [10]
ontology are summed up in the meta-models of Fig. 2. Both ontologies are
specialisations of the Bunge ontology [12] and therefore, share a number of
constructs. The core concept is the one of thing. A thing has some properties that are
perceived in terms of attributes. For a given thing, the set of values of all its attribute
functions is called its state. Properties can change and therefore, things undertake
state changes called events. There exist rules governing possible states and possible
state changes called state laws and transition laws, respectively.

The SW ontology differs from the WW ontology by emphasizing the constructs of
goal and process. A goal is defined as a set of stable states and a process as a
sequence of unstable states leading to a goal.

Property

State

Event

Thing
Stable

Unstable

Internal External

System

Input Output

has

is percieved
as

0..*

1

1 1
Attribute

Environment
Property Attribute

Stable

Transition law

External Internal

Unstable

Resource

StateThing

has

is percieved

as 0..*

1

1 1

reaches

causes

Path

Goal

Process

triggers

Event

Actor

Activity

Law Law

UnlawfulLawfulTransformation

Fig. 2. Meta-model of the SW (left) and the Wand and Weber (right) ontologies

280 A. Etien and C. Rolland

2.2 Correspondences Between SW and WW Constructs

In line with Regev [9], we view the fit between the system and the business as the
degree of correspondence between SW and WW components. We found that two
types of correspondence links were relevant, namely maps and represents. The former
expresses equality between SW and WW identical constructs. The latter specifies that
a WW construct has an impact on a SW construct. Thus, two constructs of different
nature, for example a WW thing and a SW property or a WW event and a SW activity
can be linked by a represents link.

A SW construct X maps (M) a construct Y of the same nature if there exists a
function f such as the set of elements f(X) equals the set of elements f(Y)

X M Y ⇔ f(x) = f(y)
In the case of things for example, f(X) corresponds to the set of properties of the

thing X. Between two states, f(X) corresponds to set of values of X. The maps link
between a state X at the business level and a state Y at the system level implies that
(i) the set of values of all the attribute functions of one thing equals the set of values
of all the attribute functions of the other thing but also that (ii) these two sets of
attribute functions are identical and thus that the two things X and Y map each other.

A WW construct represents (ℜ) a SW construct if the existence of the former
affects the behaviour, the value or the existence of the latter.

X ℜ Y ⇔ X Y, where signified that X acts on Y.

Notice that if X maps Y, Y maps X and vice versa. There is no reflexivity for the
represents link.

These two links maps and represents allow to define correspondence between
constructs. They are used in the definition of the fitness metrics.

2.3 Fitness Criteria and Metrics

In order to measure the degree of correspondence between components of the two
ontologies we use fitness criteria and metrics. We adapted the Cavano and McCall
framework [16] and organized the fitness measurement system in three levels, factors,
criteria and metrics. As shown in Table 1 we identified four factors along which the
fit can be measured namely, the intentional factor, the informational factor, the
functional factor, and the dynamic factor. Each factor has associated criteria, which are
in turn, related to metrics that allow the actual computation of the degree of fit. As
highlighted in Table 1, the criteria and metrics are based on the maps and represents
links between components of the SW and WW ontologies. Components are made
explicit in the third and fourth column of the table. They are marked in italics in the
short definition of the metrics whereas the type of link used in metrics is shown in bold.

Along the intentional dimension, the objective is to measure to which extent the
system is meeting the business purpose. This is achieved by providing four
associated to the intentional factor dealing, respectively, with the business activity
and the goal support, and the actor and resource representation.

 A Process for Generating Fitness Measures 281

Table 1. Generic Fitness metrics

Factors Criteria SW construct WW construct Metrics

Support ratio Activity Event
Number of business activities represented by system
events / Number of business activities

Goal
satisfaction

Goal States
Number of goals for which each state constituing them
maps a state in the system / Number of goals

Actor
presence

Actor Thing
Number of business actors mapping a system thing /
Number of business actors

Resource
presence

Resource Thing
Number of business resources mapping a system thing /
Number of business resources

Information
completeness Thing Thing

Number of business things mapping a system thing /
Number of business things

Information
accurracy

States States
Number of business states mapping a system state /
Number of business states

Activity
completeness

Thing Thing
Number of business things of a given activity mapping a
system thing / Number of business things of this activity

Activity
accurracy

States States
Number of business states of a given activity mapping a
system state / Number of business states of this activity

System
reliability

Law Law

Number of business laws for which each business state
maps a system state and the transformation between
business states are possible between system states /
Number of business laws

Dynamic
realism

Path States
Number of paths for which each business state maps a
system state and the succession of these system states is
possible / Number of paths

Intentional

Informational

Functional

Dynamic

The informational factor complements the intentional factor by supporting a
deeper analysis of the way activities are supported in the system. In order to provide a
good fit between the system and the business processes, the system must (i)
manipulate all the business process objects and (ii) support all the business process
object states associated to the business processes. Two criteria have been defined in
order to permit such an evaluation, the Informational completeness and the
Informational accuracy, respectively.

The functional factor aims to measure the degree to which activities in the system
correspond to business activities. The correspondence is based on involvement of
things and their states in business and system activities, respectively. Each individual
activity of a business process is so analysed separately using the Activity completeness
and Activity accuracy based metrics.

The fourth factor, the dynamic factor aims to evaluate the extent to which the
dynamicity of business processes is reflected in paths of system state transitions. It
has two criteria namely, the System reliability and the Dynamic realism criterion.

All metrics are formally defined. As an example, let us present the Support ratio
based metric:

 Number of activities represented by system events
Support ratio (Sr) = --
 Number of activities

A business activity is supported by the system if there exists an event in the system
that represents it. Let:

• Ab be the set of business activities (i.e. activities present in the business process),
card(Ab) = the number of elements contained in Ab.

• Es be the set of system events

282 A. Etien and C. Rolland

• Ab
r be the set of business activities for which there exists a system event

representing it; Ab
r = {a, a ∈ Ab | ∃ e ∈ Es ∧ e ℜ a} and card(Ab

r) = number of
elements contained of Ab

r

Using these notations, the metric associated to this criterion is:

Sr = card(Ab
r) / card (Ab)

A complete definition of the generic fit measurement system can be seen in [17].

3 Specific Level: Generating a Specific Fit Measurement System

In this section, we show how the generic measurement system overviewed in the
previous section guides the generation of a specific set of metrics. Specific metrics
involve the correspondence between components of two specific models, to capture
the business and the system, respectively. We selected the MAP representation
formalism [14] for the former and the O* model [15] for the latter. We present first,
the generation process and secondly illustrate it in the case of MAP and O*.

3.1 The Generation Process

The generic fit measurement system presented in section 2 has two key components:
(a) the two SW and WW ontologies, which identify components of interest in the
representation of the business in one hand, and the system which supports it, on the
other hand; (b) the set of criteria, which identifies correspondences between
components of the WW and SW ontologies that are relevant to measure the fitness
and metrics which compute the degree of correspondence and thus, the degree of fit.

The use of ontologies in this fitness measurement system is a way of being
independent of the business and system models, thereby leading to a generic
expression of the component correspondences and their associated metrics.
Obviously, the generic system can serve as a mould to define a specific fitness
measurement system thus, avoiding to redefine the relevant component
correspondences and metrics for each specific set of models. This requires to establish
the liaison between the set of specific models and the ontology set and then, derive
the specific formulation of metrics.

This leads to the following three-steps generation process:

(a) Relate constructs of the chosen business model to those of the SW ontology.
(b) Relate constructs of the chosen system model and those of the WW ontology.
(c) Adapt the generic metrics.

It shall be noticed that step 1 and 2 concentrate on finding the concepts of a
specific model which correspond to the ontology constructs involved in one (or
several) fitness criteria. In other words, the instantiation of the ontology for a specific
model can be limited to those parts which are relevant to perform step 3 of the
generation process. Given the correspondence between an ontology construct and the

 A Process for Generating Fitness Measures 283

specific model concept, the metric formulae can be adapted easily. We illustrate this
generation process in the following.

3.2 Generating the MAP/O* Fitness Measurement System

Relating MAP to SW. The MAP representation system allows to represent a process
model expressed in intentional terms. Goals (intentions) to be accomplished are
explicitly represented in the process model together with the different alternative
ways (strategies) for achieving them. MAP provides a representation mechanism
based on a non-deterministic ordering of intentions and strategies. As shown in Fig.
6, a map is a labelled directed graph with intentions as nodes and strategies as edges
between intentions. The directed nature of the graph shows which intentions can
follow which one. An edge enters a node if its strategy can be used to achieve the
intention of the node.

The key concepts of MAP are intentions (goals to achieve or maintain), strategies
(means or manners to attain a goal) and sections which are triplets <Ii,Ij,Sij> where Ii is
the source intention, Ij the target intention and Sij the strategy to attain when Ii has
been achieved. MAP includes a refinement mechanism by which a section in a map
can be modelled as a map in its own. This leads to the representation of a business as
a hierarchy of maps.

Formally, an intention I is defined as a set of desirable states GI and every section
has an initial condition and a final condition, both expressed in terms of states. A
section S from intention I to intention J starts in a subset of states IS ⊆ GI and ends on
a subset of states FS ⊆ GJ.

MAP and SW share a goal-oriented view of a business process. However the latter
does not employ a goal construct as an integral part of the model but as an external
property whereas in the former goals are integral parts of the process model.

Property Attribute

Stable

Transition law

External

Unstable

Resource

StateThing

has

is percieved

as 0..*

1

1 1

reaches

Path

Intention

Map

triggers

Event

Object

Strategy

causes

refines

Process

Goal

Actor

Internal

Law State Path

Section
Activity

Actor ResourceThing

Fig. 3. Relating MAP to SW

284 A. Etien and C. Rolland

Fig. 3 shows the instantiation of the MAP representation system in SW terms and
highlights the correspondence between SW constructs and MAP concepts. To
facilitate the reading of this correspondence in Fig. 3, we noted the names of the most
important SW constructs (in particularly, those involved in metrics) in the right corner
of the boxes that represent the equivalent MAP concept in the figure. It can be seen
that the map component in MAP corresponds to the process component in SW and
that the section concept of MAP relates to the SW notion of activity. In both models
the process is viewed as a path (of sections from Start to Stop in MAP and activities
in SW). The MAP strategy involved in a section ensures a mapping between subsets
of states, hence it specifies the SW law. A process model expressed as a map contains
discontinuity related to events that can be external (a map is triggered by an external
event arising in a thing and resulting from the action of some other thing called actor)
or internal (section triggering). Resources (i.e. some things which do not take further
actions) and objects appear in the map specification as parameters of the intention and
strategy linguistic formulation.

Relating O* to WW. O* is a model which allows a conceptual representation of the
system to be developed in an object oriented manner. In O* an object is viewed has
undertaking changes due to events. The specification of an object class therefore, goes
beyond the traditional description with attributes and methods to include the
description of events as state changes of objects which trigger operations on other
objects, change their states and then, generate other events. O* is based on a causal
behavioural paradigm: events trigger operations which change states of object and
generate state changes that maybe events which in turn trigger operations etc. Fig. 4
(a) illustrates this in a graphical mode. Fig. 4 (b) sketches the specification format of
an O* Class.

Object Class O1

Event EV1

Object Class O2 Object Class O3

Operation OP21 Operation OP31

Operation OP33

Operation OP12

Class O1
Property

P1: domain D1
P2: domain D2

Assertion
assertion A1

Operation
operation OP11 /*action on object*/
operation OP12

Transition graph
{S0, State1, State2}State1→ State2

Event
Event EV1

Predicate
OLD.state = ‘State1’
and NEW.state = ‘State2’

Triggers
OP21 on O2, OP31 on O3 if C1
OP33 on O3 if C1, OP12 on O1 a

b

C1

C1

Fig. 4. Description of an object class

The WW ontology and the O* model both allow to describe a system with a static and
a dynamic point of view. The static part provides description of durable links between

 A Process for Generating Fitness Measures 285

constructs (such as composition), where as the dynamic part focuses on behavioural
interactions between constructs or with the environment in response to events.

Property

State

Event

Stable

Unstable

System

Input Output

has

is percieved
as

0..*

1

1 1
Property

Environment

Law

LawfulOperation Dynamic
Transition

triggers

materialised
in

Assertion

Unlawful

Law State

Event

Transition Law

Object
Thing

Attribute

Internal ExternalTemporal

Fig. 5. Instantiation of the WW ontology with the O* model

Fig. 5 presents the instantiation of the O* model in WW terms and highlights the
relationship between WW constructs and O* concepts. As for the MAP instantiation,
the names of WW constructs and particularly those involved in metrics are noted in
the right corner of the boxes that represent the equivalent O* concepts.

The object component in O* relates to the WW thing construct. They both have
properties and see their states change in response to events. The event in O* can be
external (an external event has for origin a stimulus coming from the environment of
the system. It is associated to an actor), internal (it responds to a particular state
change of a system object) or temporal (if it occurs at a foreseen point of time). The
O* notion of operation, which changes states, correspond to the transition law
construct in the WW ontology. An O* assertion corresponds to the WW construct of
unlawful state.

MAP/O* Fit Measurement System. Based on these relationships between the
generic constructs of SW and WW ontologies and the MAP and O* concepts the
conversion of generic metrics into specific ones is easy to carry out.

Table 2 informally presents the ten metrics to measure the fit between a business
expressed in MAP terms and the system specification expressed with the O*
language.

Let us considered the specific Support ratio metric in comparison to the generic
one given in section 2.

In generic terms, the support ratio metric measures the degree of correspondence
between the number of activities represented by system events and the total number of
activities in the business process. At the specific level, the measure is established
between the number of map sections represented by events and the total number of
map sections. The generic formula provided in section 2 is adapted as follows:

286 A. Etien and C. Rolland

Table 2. Specific metrics for measuring business/ system fit modelled in MAP and O* terms

Criteria MAP constructs UML constructs Specific metrics
Support Ratio Section Event number of sections represented by events / number of sections

Goal Satisfaction Intention State
Number of intentions for which each state maps a state in the
system / Number of intentions

Actor Presence Actor Object
Number of business actors mapping a system class / Number of
business actors

Resource Presence Resource Object
Number of business resources mapping a system class / Number
of business resources

Information
Completeness

Object Object
Number of business objects mapping system class / Number of
business objects

Information Accuracy State State
Number of business states mapping to system states / Number of
business states

Activity Completeness Object Object Same as Information Completeness but for one given section
Activity Accuracy State State Same as Information Accuracy but for one given section

System Reliability Law State
Number of business laws for which each business state maps a
system state and the transformation between business states are
possible between system states / Number of business laws

Dynamic Realism Path State
Number of paths for which each business state maps a system
state and the succession of these system states is possible /
Number of possible paths

Let:

• Sb be the set of business sections, card(Sb) = the number of elements contained in
Sb.

• Es be the set of events

• Sb
r be the set of business sections for which it exists event representing them;

Sb
r = { s, s ∈ Sb | ∃ e ∈ Es ∧ e ℜ s } and card(Sb

r) = number of elements contained
in Sb

r

Using these notations, the metric associated to the Support Ratio is:

Sr = card(Sb
r) / card (Sb)

All the metrics have been adapted in a similar manner. A brief summary is as

follows.
The generic Goal satisfaction metric compares the number of goals supported by

the system to the number of business goals. The goal as defined in the SW ontology
corresponds to the MAP intention. An intention I is supported by the system if each
state constituting the goal set GI maps to a state of an object in the O* model.

At the generic level, the Actor presence metric calculates the ratio of business
actors present in the system on the total number of business actors. The construct of
actor exists in the MAP model and is present in the system if it maps a system thing
that triggers actions on another thing.

The generic Information completeness allows to measure to which extent a
business thing maps a system thing. The SW and WW constructs of thing are related
to the MAP object and O* object respectively. A MAP object is supported by the
system if there exists an O* object that maps it.

The generic Information accuracy brings SW and WW states into play. These two
constructs respectively correspond to MAP and O* states. At the specific level, the
Information accuracy metrics allows to compare the number of MAP states that map
an O* state to the total number of MAP states.

At the generic level, the Activity completeness and Activity accuracy provide
information for a given activity on thing and states, respectively. The SW activity

 A Process for Generating Fitness Measures 287

construct corresponds to the MAP section. Thus, at the specific level, these criteria
allow the analysis of a given section by calculating (1) the number of objects in the
MAP section that maps to an O* object by comparison with the total number of
objects in the section and (2) the ratio of states occurring in the section that
individually maps an O*state.

The generic System reliability metric compares the number of business laws
implemented in the system to the number of business laws. A business law is
implemented in the system if each business state occurring in the law maps a system
state and the transformations between these business states are possible between
system states. The SW and WW constructs of state correspond to the MAP and O*
concept of state respectively. The System reliability metric is then identical to the
generic metric but using MAP and O* states.

The purpose of the generic Dynamic realism is to compare the number of paths
present in the system to the number of paths. The path, as defined in the SW ontology
corresponds to the MAP path. A path is present in the system if each state constituting
it maps an O* state and the succession of these system states is possible.

4 Applying Fitness Metrics in the Hotel Room Case Study

In this section, we illustrate the usage of the specific fitness measurement system in a
hotel room booking case study.

4.1 Description of the Case Study

Competition with international hotel chains being always harder, the owners of
several small hotels made the decision to become partners in order to offer attractive
products and provide better services to their clients. They believe that offering
packages of products combining room booking, sport activities and cultural
manifestations will give them a competitive advantage. They consider important to
facilitate the booking process as much as possible and to offer multiple different sale
channels. Finally, they opted for both proactive and reactive strategies in order to
attract new customers and to utmost satisfy the customers’ needs.

These objectives are reflected in the business process modelled with MAP and
presented in. Fig. 6.

The map comprises two intentions: “Offer packages” and “Manage customer
relationship” that are in line with the business decisions made. There are a number of
strategies associated with each of these two intentions, particularly with the “Manage
customer relationship”. These strategies reflect the desire to concentrate the business
towards satisfying the customer, facilitating his/her booking and being proactive to
ensure customer loyalty. The ‘ by offering booking facilities’ strategy for example, is
a cluster showing that booking can be done on the spot, by Internet or through an
agency. ‘By proactive offering’ is a strategy which aims at selling a new booking to
an old customer whereas the ‘by rewarding’ strategy contributes evidently to keep a
customer loyal to the hotels group. The process terminates only if the client
withdraws his booking or by necessity because his/her behaviour is reprehensible.

288 A. Etien and C. Rolland

By package removal

Manage customer
relationship

By customer
suggestion

Stop

Start

By booking
cancellation

By exclusion

By conception
of packages
(type)

By rewarding
customer By managing

customer’s
information

By Product
consumption

By Customer
demand

By offering
booking facilities

on the spot
with web site

by agency

C1
C10

C4

C2

C5
C6

C13

C12C11

C8

C9

By marketing

By managing
resources

By partial
consumption

C7

C3

Offer packages

C14

By proactive
offering

<Provide booking system>

Fig. 6. The room booking business as a map

In order to get a complete understanding of business intentions and strategies, it
was necessary do refine a number of sections of the above map. In total, we modelled
five maps organised in two levels of abstraction. The complete specification includes
39 sections, 3 actors (the hotel keeper, the partner and the client), 6 objects (Hotel,
Destination, Demand, Booking, Client, and Package) and 21 states.

4.2 Measuring the Degree of Fitness

To develop the supporting information system, the hotel owners were having a
restricted budget. They decided to adapt a legacy information system and to cope with
their budget; they considered the three following options:

− Option 1: the system offers different sale channels to book a package and
maintains the customer data over time. But the system does not manage pending
requests. Thus, requests are dealt in real time and either transformed into bookings
or abandoned.

− Option 2: the system handles pending requests but does not keep customer data.
Clients must register at every booking.

− Option 3: combines the management of pending requests and customers data.
However, the system does not manage automatically the reorganisation of a
booking affected by events such floods or typhoons that make the hotel resources
temporarily unavailable.

In order to facilitate the choice of one of the three design options, we proposed to
the hotel owners to measure the degree of fit in each of the three cases. We modelled
the three options with O* and then, applied the 10 metrics. Results are shown in Table
3 (note that the Activity completeness and Activity Accuracy criteria have been
measured for the <Define, customer request, Management of the pending request,
Through wait-listing> section).

 A Process for Generating Fitness Measures 289

Table 3. Fitness measures

Criteria Design alternative 1 Design alternative 2 Design alternative 3
Support Rate 0,9(35/39) 0,9(35/39) 1 (39/39)

Goal Satisfaction 0,8 (4/5) 0,6 (3/5) 0,6 (3/5)
Actor Presence 1 (3/3) 1 (3/3) 1 (3/3)

Resource Presence 1 (2/2) 0,5 (1/2) 1 (2/2)
Information Completeness 1 (7/7) 0,86 (6/7) 0,86 (6/7)

Information Accuracy 0,91 (20/22) 0,86 (19/22) 0,86 (19/22)
Activity Completeness 1 (5/5) 0,8 (4/5) 1 (5/5)

Activity Accuracy 0,75 (3/4) 0,75 (3/4) 1 (4/4)
System Reliability 0,89 (54/61) 0,93 (57/61) 0,79 (48/61)
Dynamic Realism 0,79 (53/67) 0,53 (36/67) 0,84 (56/67)

4.3 Discussion

Table 3 considered at the glance, shows that none of the options provides a complete
fit as a number of measures are inferior to 1. Option 3 is the only one showing a full
system support of all business activities (support ratio = 1) but none of the three
options completely supports the satisfaction of business goals (Goal satisfaction <1).
The business actors representation is good in the three options (Actor presence =1)
but the resource fit is low in option 2. Thus, measures demonstrate difference in the
Intentional fit provided by the different options. Vice versa, measures shows that the
three options deal in a similar manner with the Informational factor with an advantage
to option 1 where all business objects are represented and managed by the system
(Information completeness =1). Along the Functional factor, option 3 is the most
fitting solution for the given section as the Activity completeness measure and the
Activity accuracy equal 1. Finally, measures along the Dynamic factor are all inferior
to 1. In all options some business states do not exist in the system (Goal satisfaction <
1) thus implying low measures of the fit related to dynamic aspects (System reliability
and dynamic realism).

Let us complement this overall evaluation of options by a more in depth reasoning
based on the fitness measures. Option 3 is appealing because the support ratio equals
1, i.e. the system supports every business activity. However, other measures have to
be considered because each criterion brings a different viewpoint on the degree of fit.
Two design options can have the same value for a fitness criterion (e.g. Support ratio
equals 34/39 in option 1 and 2) and different ones for other criteria (five criteria have
different values for these two options). Option 3 has against it the low measure of
Goal satisfaction fit which in turn, implies a lower value of dynamic fitness measures
compared to option 1.

The decision about the option to implement can be based on its ability to evolve in
the future and the fitness metrics can help in this long term perspective. A better fit
requires either a business adaptation or a system change. For example, it can happen
that some planned strategy in the map of Fig. 8 reveals inefficient in practice and will
be abandoned. Vice versa, a better Information completeness measure in option 3 can
be achieved by adding the representation of one or more business objects. Thus,
taking into account the cost of adding new system objects and its subsequent impact
on the improvement of measures in the future can help making the decision now in
favour of option 3.

290 A. Etien and C. Rolland

There are dependencies between criteria and these have to be taken into account
during this selection phase. For example, if some SW things do not map WW things,
the states of these things cannot map WW states. Therefore, the Information
completeness value influences the Information accuracy value. In the same way, the
absence of mapping of states influences Goal satisfaction, System reliability and
Dynamic realism measures. The improvement of the Goal satisfaction criterion in
Option 3 will contribute to raise the value of the dynamic fit.

The introduction of thresholds for measures can facilitate decisions. Thresholds
can be determined by stakeholders in order to avoid a situation of unacceptable unfit.
In our case, assume that the threshold for the Dynamic realism criterion has been
established at 0.8. Options 1 and 2 will be eliminated on this basis.

Finally, it is possible for stakeholders to allocate weights to the different activities
involved in the business to reflect priority given to certain activities against others.
Priority can be given for example, to client satisfaction, profitability, activity
frequency, etc. Weighting activities related to customer satisfaction in our case
showed that option 3 was the best over the three options and decision was made to
implement it. Indeed, option 3 was having a competitive advantage as the business
parts weakly represented in the system have no impact on clients. An analysis of the
Activity completeness and Activity accuracy criteria strengthens this position.
Furthermore, by introducing weighting depending on activity frequency confirmed
the choice for option 3. Indeed, the measures help stakeholders realise that
exceptional events which have to be handled manually in option 3 are relatively rare
and that the low fit due to these can be accepted.

5 Conclusion

In this paper, a process for generating metrics to evaluate the fit between specific
business and system models was presented and illustrated. This process uses a set of
generic criteria and metrics as a mould for producing the specific fit measurement
system. The criteria and metrics developed adopt fit measurement that takes the
business view as a reference and compare the system view with it. Therefore in any
metric, the denominator always refers to constructs of the system model. This process
has been used to generate fitness metrics for the MAP and O* models that
respectively represent the business and the system.

We used the generated metrics to show how fitness measures during system design
can feed back to improve the fit of the system-under-construction. We considered
three design options in the construction of a system to support hotel room booking
and based the choice of the option to be implemented on the fit measures. We showed
that or each criterion, it is possible to define a threshold value: If the metric
determines a value lower than the associated threshold, the business process and
supporting software systems are misfiting, motivating corrective action. This action
can be a modification of either the business model or the system. Thus thresholding
leads to a beneficial cycle of design-measurement-design for better fit.

In order to better take into account the characteristics of each project in the
calculation of the fitness measures, we intend to explore the weighting technique that

 A Process for Generating Fitness Measures 291

we illustrated in the case study. This allows to attribute relative importance to the
different constructs of the SW ontology, according to, for example, the added value,
the customers satisfaction, the frequency… For example, the definition of the Support
ratio considers the number of automated activities and ignores the relative value
addition of activities in the business. Thus, it can happen that the support ratio is high
but the most value adding activities are not automated. Appropriate weighting
obviates this problem.

Our research agenda relies on two key issues: (i) the use of the fitness
measurement system in a context of evolution and (ii) the development of a tool to
support the proposed process and the calculation of the fitness measures for a given
project.

References

[1] Giaglis GM (2001) A Taxonomy of Business Process Modelling and Information
Systems Modelling Techniques. Journal of Flexible Manufacturing Systems 13 (2), pp.
209-228.

[2] Fifth Workshop on Business Process Modeling, Development, and Support BPMDS'04
(2004), Riga, Latvia.

[3] Sabherwal, R. and Y. E. Chan (2001). Alignment Between Business and IS Strategies: A
Study of Prospectors, Analyzers, and Defenders. Information Systems Research, March,
12(1): 11-33.

[4] Henderson, J. C. and N. Venkatraman (1993). Strategic Alignment: Leveraging Information
Technology for Transforming Organizations. IBM Systems Journal, 32(1): 4-16.

[5] Munford, E. (1981) Participative Systems Design: Structure and Method systems,
Objectives, Solution, Vo. 1, North-Holland, 5-19.

[6] Rubin KS, Goldberg A (1992) Object Behavior Analysis, Communications of the ACM,
vol 35, N°9.

[7] Dardenne A., Lamsweerde A., Fickas, S. (1993): Goal-directed Requirements
Acquisition, Science of Computer Programming, 20, Elsevier, pp.3-50.

[8] Soffer P (2004) Fit Measurement: How to Distinguish Between Fit and Misfit, note for
BPMDS'04, Riga, Latvia

[9] Regev G, Wegmann A (2004) Remaining Fit: On the Creation and Maintenance of Fit.
Proceedings of BPMDS’04, Riga, Latvia, 2004.

[10] Wand Y, Weber R (1992) An Ontological Model of an Information System, IEEE
Transactions on Software Engineering, November, pp. 1282-92

[11] Soffer P, Wand Y (2004) Goal-Driven Analysis of Process Model Validity. Proceedings
of CAiSE’04, Riga, Latvia.

[12] Bunge, M (1977) Treatise on Basic Philosophy: Ontology I. The Furniture of the World,
Reidel.

[13] Bunge, M (1979) Treatise on Basic Philosophy: Ontology II. A World of Systems,
Reidel.

[14] Rolland C., Prakash N. (2001) Matching ERP System Functionality to Customer
Requirements, Proceedings RE'01, Toronto, Canada, pp. 66-75.

[15] Lee S.P., Rolland C., Brunet J.. Abstraction in an Object-Oriented Analysis Method. in
Malaysian Journal of Computer Science, Vol. 10, No 1, June 1997, p. 53-63.

292 A. Etien and C. Rolland

[16] Cavano J.P., McCall J.A (1978) A Framework for the Measurement of Software Quality.
Proceedings of the Software Quality and Assurance Workshop, San Diego, pp. 133–139,.

[17] Etien A. and Rolland C. (2005) Measuring the Fitness relationship, submitted to the
special issue Coordinated Development of Business Processes and their Support Systems
of the Requirements Engineering Journal

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 293 – 308, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Concern-Oriented Requirements
Engineering Model

Ana Moreira†, João Araújo†, and Awais Rashid‡

† CITI/Dept. Informática, FCT, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

‡ Computing Department, Lancaster University,
Lancaster LA1 4YR, UK

{amm, ja}@di.fct.unl.pt, awais@comp.lancs.ac.uk

Abstract. Traditional requirements engineering approaches suffer from the
tyranny of the dominant decomposition, with functional requirements serving as
the base decomposition and non-functional requirements cutting across them. In
this paper, we propose a model that decomposes requirements in a uniform
fashion regardless of their functional or non-functional nature. This makes it
possible to project any particular set of requirements on a range of other
requirements, hence supporting a multi-dimensional separation. The projections
are achieved through composition rules employing informal, often concern-
specific, actions and operators. The approach supports establishment of early
trade-offs among crosscutting and overlapping requirements. This, in turn,
facilitates negotiation and decision-making among stakeholders.

1 Introduction

The tyranny of the dominant decomposition [21] refers to the limited mechanisms
used by traditional methods to decompose complex systems into separate concerns.
Modern approaches propose mechanisms for decomposition and composition.
However, they mostly use a dominant dimension as the base decomposition, with
other possible dimensions cutting across them. For example, approaches, such as the
NFR framework [2], use non-functional requirements as the dominant dimension with
the functional dimension added a posteriori. Other existing requirements engineering
(RE) approaches, such as viewpoints [7, 19] and use cases [9], use functional
requirements as the dominant decomposition with analysis conducted against a set of
non-functional requirements cutting across the base.

It has been argued that crosscutting is a phenomenon that is not limited to non-
functional requirements and that functional requirements can also often cut across
parts of a system [16]. Existing separation of concerns mechanisms at the RE level do
not explicitly account for such crosscutting nature of functional requirements.
Consequently, they cannot be handled effectively leading to a lack of identification
and characterisation of their influence on other concerns in the system. Furthermore,
an initially non-crosscutting set of requirements (functional or non-functional) might
become crosscutting in future. The two-dimensional nature of existing decomposition
approaches does not provide support to deal with such unanticipated evolution.

294 A. Moreira, J. Araújo, and A. Rashid

In this paper, we propose a model that decomposes requirements in a uniform
fashion regardless of their functional or non-functional nature. This makes it possible
to project any particular set of requirements on a range of other requirements, hence
supporting a multi-dimensional separation. A projection specifies the influence of a
given concern on other concerns and is achieved through composition rules
employing informal, often concern-specific, actions and operators. The rules specify
the projection of a particular concern onto other concerns it relates to. The various
projections make it possible for us to compose a range of reflected projections
contributing to an individual concern. The approach supports establishment of early
trade-offs among crosscutting and overlapping requirements. This, in turn, facilitates
negotiation and decision-making among stakeholders. The uniform nature of the
decomposition also makes it possible to deal with situations where an initially non-
crosscutting set of requirements evolves to have a wider influence in the system.

Section 2 discusses existing approaches to separate crosscutting concerns at the RE
level and highlights how these suffer from the tyranny of dominant decomposition.
Section 3 presents our model for multi-dimensional separation of requirements level
concerns. Section 4 provides an overview of the realisation of the model using XML
and applies it to a case study of a location and context sensitive tourist guide. Section
5 discusses some related work, while Section 6 concludes the paper and identifies
directions for future work.

2 Background

Separation of concerns has been contemplated by well-known RE approaches such as
goal-oriented techniques and viewpoints. In goal-oriented approaches [12], such as
KAOS [3] and i* [23], a goal is an objective that the system under consideration
should achieve. It can be formulated at different levels of abstraction and covers
concerns in two dimensions, i.e., functional and non-functional. KAOS uses a formal
language (first-order temporal logic with real-time constraints) to specify critical parts
of the system, besides allowing informal modelling. Goals are used to detect and
manage conflicts among requirements. The i* framework identifies and models
organisational requirements and adopts the goal and softgoal modelling concepts as
its dimensions. A softgoal represents a non-functional requirement we expect to
satisfy within acceptable limits.

Separation of crosscutting properties has also been considered in PREView [19], a
viewpoint-oriented requirements engineering method. A PREView viewpoint
encapsulates partial information about the system. Requirements are organised in
terms of several viewpoints, and analysis is conducted against a set of concerns
intended to correspond broadly to the overall system goals. In applications of the
method, the concerns that are identified are typically high-level non-functional
requirements. Here again the separation of concerns is two-dimensional: one being
the viewpoints that handle functional requirements and the PREView-specific notion
of concerns which encapsulate non-functional properties.

The Aspect-Oriented Requirements Engineering (AORE) model presented in [17]
is based on treating PREView concerns as adaptations of the aspect-oriented
programming [6] notion of aspects and, consequently, carries out the analysis of

 A Concern-Oriented Requirements Engineering Model 295

broadly scoped properties against a base set of viewpoints. A refinement of this
model, presented in [16], supports separation of the specification of aspectual
requirements, non-aspectual requirements and composition rules in modules
representing coherent abstractions and following well-defined templates. This
modularisation makes it possible to establish early trade-offs between aspectual
requirements hence providing support for negotiation and subsequent decision-
making among stakeholders. However, the composition rules have to be written with
reference to a dominant decomposition that aspects cut across.

The discussion above demonstrates that, while existing RE approaches support
analyses of system requirements from the perspective of non-functional properties,
support for identifying the influence of crosscutting functional properties (or a
combination of functional and non-functional properties) is not available. Nor is there
any support for incorporating such an influence during trade-off analysis and
subsequent negotiation among stakeholders. The multi-dimensional approach
presented in this paper addresses the above issues by eliminating the dominant
decomposition through uniform treatment of the various types of requirements in the
system. In deriving our multi-dimensional model we have built on the strengths of the
model in [16], mainly the informal composition rules with concern-specific actions
and operators and the effective support for establishing trade-offs and negotiations
among stakeholders.

3 A Concern-Oriented Model for RE

Modern systems have to run in highly volatile environments where the business rules
change rapidly. Therefore, systems must be easy to adapt and evolve. In order to
facilitate adaptability and evolution, it is essential that the influence of any set of
requirements on the system can be determined. In existing RE approaches, such
analyses focus on the influence of non-functional requirements. Functional
requirements that might have a wide impact on other functional or non-functional
requirements are not effectively dealt with. In Section 2, we argued that this is a direct
consequence of having a largely two-dimensional decomposition.

Our proposed model addresses this problem by treating all concerns in a uniform
fashion. Concerns in our model imply any coherent collection of requirements. We do
not classify concerns into viewpoints, use cases or aspects though our concerns still
encapsulate coherent sets of functional and non-functional requirements. As shown in
Figure 1, we perceive the concern space at the requirements level as a hypercube.
Each face of the hypercube represents a particular concern of interest. By treating all
concerns as equal we can choose any set of concerns as a base to project the influence
of another concern or set of concerns onto this base. This flexible, multi-dimensional
view makes it possible to handle both crosscutting functional and non-functional
requirements in an effective fashion.

Our RE model is shown in Figure 2. We start by identifying and specifying concerns.
Concern identification is carried out using a synthesis of existing requirements
elicitation mechanisms such as viewpoints [7], use cases [9] and goals [12]. The
identified concerns are specified using well-defined templates (cf. Section 4.1.1).

296 A. Moreira, J. Araújo, and A. Rashid

Fig. 1. Concern space represented as a hypercube (the block arrows represent projections)

Identify coarse-grained
concern relationships

Specify concern
projections using
composition rules

Build
contribution
table

Attribute weights
to conflicting
concerns

Resolve
conflicts

Handle conflicts

Revise
Concerns

Specify concern
dimensions

Identify & specify concerns

Identify reflected
projections
through folding

Fig. 2. RE model based on uniform treatment of concerns

The next step is to identify coarse-grained relationships among concerns by
relating concerns to each other through a matrix. These relationships are identified
using techniques such as domain analysis [10], ethnography [22] and natural language
processing [18]. Looking at the matrix (cf. Table 1) we can see which concerns
influence other concerns and whether any reciprocal influence exists.

Notice that in this paper, we do not focus on the exact kind of relationships
between two concerns. In [3] interested readers can find a model for requirements
interdependencies and inter-relationships.

Once the coarse-grained relationships between concerns have been established, the
next step is to specify the possible projections of each concern on other concerns. This
is achieved through composition rules. These rules operate at the granularity of
individual requirements and not just the concerns encapsulating them. Consequently,
it is possible to specify how a requirement in the concern in question influences or
constrains the behaviour of a set of requirements in various other concerns. At the
same time, if desired, trade-offs among concerns can be observed at a finer
granularity. This alleviates the need for unnecessary negotiations among stakeholders
for cases where there might be an apparent trade-off between two (or more) concerns
but, in fact, different, isolated requirements are being influenced by them. It also
facilitates identification of individual, conflicting requirements with respect to which
negotiations must be carried out and trade-offs established.

After specifying the various projections with the aid of composition rules,
identification and resolution of conflicts among the concerns is carried out. This is
accomplished by:

 A Concern-Oriented Requirements Engineering Model 297

1. Building a contribution matrix (cf. Table 2) where each concern may contribute
negatively (-) or positively (+) to the others (empty cells represent “don’t care”
contributions). The diagonal is marked with the concern names to support
observation of reflected projections in step 2. This matrix is inspired on the NFR
framework [2].

2. Folding the table along its diagonal (cf. Figure 3) to obtain the cumulative effect
for situations where two concerns directly influence each other. An example of
this folding is shown for C1 and Cn-1 in Figure 3. The folded table provides us the
reflected projections: the combined influence of a set of concerns on a particular
concern.

3. Attributing weights to those concerns that contribute negatively to each other in
relation to a particular concern. Each weight is a real number in the interval [0 .. 1]
and represents the priority of a concern in relation to the concern it is projected on.

4. Solving the conflicts with the stakeholders, using the above prioritisation
approach to help negotiation and decision-making.

Table 1. Relating concerns to each other

 C1 C2 … Cn

C1 √

C2 √

… …

Cn √

Table 2. Contributions between concerns

 C1 C2 … Cn

C1

C2

…

Cn

Conflict resolution might lead to a revision of the requirements specification
(concerns and/or composition rules). If this happens, then the projections are revised
and any further conflicts arising are resolved. The cycle is repeated until all conflicts
have been resolved through effective negotiations.

Concernn

Concernn-1

Concernn

Concernn-1

Concern1 Concern2

Fig. 3. The concern contribution table folded along its diagonal

The last activity in the model is identification of the dimensions of a concern. As
observed in [17], concerns at this early stage can have an impact on artefacts at later
development stages that can be described in terms of two dimensions:

- Mapping: a concern might map onto a system feature/function (e.g., a simple
method, object or component), decision (e.g., a decision for architecture choice)
and design (and hence implementation) aspect (e.g., mobility cf. Section 4.1.1).

298 A. Moreira, J. Araújo, and A. Rashid

Note that despite their crosscutting nature at this stage, some concerns might not
directly map onto an aspect at later stages.

- Influence: a concern might influence different points in a development cycle, e.g.,
availability influences the system architecture while mobility influences
specification, architecture, design and implementation.

4 Realisation of the Model

We have employed the eXtensible Markup Language, XML, as the definition
language to specify the concerns and the composition rules to relate them with each
other. The concerns and composition rules are specified using pre-defined templates.
These templates can, optionally, be enforced using XML schemas. XML has been
chosen because, as demonstrated by the following case study, there is a need for
concern-specific actions and composition operators when defining the composition
rules. The extensible model offered by XML coupled with the rich specification
model of the XML schema language makes it an ideal choice as it is virtually
impossible to anticipate the various types of composition operators and actions that
might be required. Since the XML schema language is extensible – it is based on
XML itself – it is possible to enforce constraints on the specification of composition
rules when new operators and/or actions are introduced. Furthermore, the ability to
define semantically meaningful tags and informal operators ensures that the
readability of the requirements specification is not compromised as the specification
resides in the stakeholders’ domain and must be readable by them.

The use of XML makes it possible to select any projections of interest by using
XPath queries and observe their cumulative effect. The selected projections and their
effect can also be visualised using the eXtensible Stylesheet Language (XSL). This
aids scalability in the presence of a large number of concerns.

4.1 Case Study

The case study we have chosen is a location and context sensitive tourist guide system
inspired by a real system implemented at Lancaster [5]:

“The system provides an electronic hand-held guide that offers the following facilities
to the visitors: (1) retrieve information about the city, including information about their
current location; (2) provide route guidance to help visitors move between locations on the
tour; (3) enter a set of preferences and interests to generate suitable tours of the city; (4)
access external services, such as hotel and theatre ticket reservations.”

4.1.1 Identify and Specify Concerns
There are some concerns that are probably easier to identify as they directly represent
stakeholders views on the basic functionality of the system. For example, we
definitely have a concern that reflects the visitor needs and another for tourist
information centre. Other concerns reflect more global properties of the system. For
example, mobility will be a concern, as the system needs to react while the visitor is
moving around. This brings immediately to our minds the context concern as the
system needs to recognise the visitor’s change in location. This, in turn, suggests
portability as another one, since the visitor needs to carry with her/himself the

 A Concern-Oriented Requirements Engineering Model 299

electronic device to access the system while on the move. Other concerns such as
compatibility and availability are two obvious ones, since the system must be
compatible with other external services (hotel and ticket reservation systems) and
available anytime the visitor is using it. The concerns we identified are as follows:

- Visitor: users that can retrieve information from the system, including their
current location.

- Tourist Information Centre: decides which information goes into the system.
- Electronic Device: used by the visitors to access the system.
- Portability: the electronic devices to access the system must be carried around

by the visitors and therefore must be portable.
- Mobility: the system must handle mobility as the visitor will need to access the

system on the move during his/her tour.
- Context: the system must recognise and handle the visitor’s change in location.
- Compatibility: the system must be compatible with the external services it has to

interact with, in particular, hotel and theatre ticket reservations.
- Availability: the system must always be available to react to stimuli (e.g., be

accessed by the visitor) and for data updates.

We will be using the concerns Visitor, Mobility and Compatibility to illustrate our
approach. Figures 4 through 6 show these concerns specified in XML.

- <Requirement id="4">
 The visitor will be able to access external
services.

 <Requirement id="4.1">
The visitor will be able to access

hotel reservation.
</Requirement>

 <Requirement id="4.2">
The visitor will be able to access

theatre ticket reservation.
</Requirement>

 </Requirement>
 </Concern>

Fig. 4. The Visitor concern in XML

<?xml version="1.0" ?>
- <Concern name="Mobility">
 - <Requirement id="1">

 The system will be accessed on the move.
 <Requirement id="1.1">

The system will be accessed from
within a limited area.

 </Requirement>
 </Requirement>
 </Concern>

Fig. 5. The Mobility concern in XML

<?xml version="1.0" ?>
- <Concern name="Visitor">
 - <Requirement id="1">
 The visitor will be able to retrieve information

from the system.
 <Requirement id="1.1">

The visitor will be able to access
information about the attractions.

</Requirement>
- <Requirement id="1.2">

The visitor will be able to access
information about his/her location.

 <Requirement id="1.2.1">
The visitor will be able to validate

the information about the location if it

does not correspond to what s/he
sees.

</Requirement>
 </Requirement>
 <Requirement id="1.3">

The visitor will be able to obtain a
list of available preset tours.

</Requirement>
 </Requirement>

- <Requirement id="2">
 The visitor will be able to create a custom tour.

 <Requirement id="2.1">
The visitor will be able to specify

preferences.

 </Requirement>
 </Requirement>
- <Requirement id="3">

 The visitor will be able to follow a tour.

 <Requirement id="3.1">
The visitor will be able to

reconfigure the tour.
</Requirement>

 </Requirement>

<?xml version="1.0" ?>
- <Concern name="Compatibility">

 <Requirement id="1">
The system must be able to interact with

external services.

</Requirement>
 </Concern>

Fig. 6. The Compatibility concern in XML

300 A. Moreira, J. Araújo, and A. Rashid

The structure is self-explanatory: a Concern tag denotes the start of a concern
while a Requirement tag denotes the start of a requirement. Refinements such as sub-
requirements are represented via the nesting of the tags. Each requirement has an id
which is unique within its defining scope i.e. the concern. Concern names are unique
within the case study. However, XML namespaces can be used for the purpose as well.

4.1.2 Identify Coarse-Grained Concern Relationships
As we identify and describe concerns we can relate them, by building the matrix in
Table 3. The tick indicates a unidirectional relationship, from left to right, between
two concerns. For example, Tourist Information Centre has an impact on Visitor, as it
is responsible to make available the information visitors can access. Between Visitor
and Mobility, on the other hand, we can identify two unidirectional relationships (as
they are semantically different cf. composition rules in Section 4.1.3): one from
Visitor to Mobility indicating that visitors require mobility; and another from Mobility
to Visitor indicating that mobility has to support information access for visitor.

4.1.3 Specify Concern Projections Using Composition Rules
Having studied the impact of each concern on all the others we can now start by
analysing in more detail each relationship. The fundamental idea is that we can
project each concern on all the others with which the first has a relationship. The
projection specifies the influence of a given concern (represented in a row in Table 3)
on other concerns (represented in columns in Table 3). Whenever a concern affects
several other concerns it has a broadly scoped impact on the system and, therefore,
can be classified as a crosscutting concern. As we can see from Table 3, not only non-
functional concerns such as Mobility are crosscutting but also functional concerns
such as Visitor have a similar nature.

Table 3. Matrix relating concerns (Vis: Visitor; TIC: Tourist information centre; Port: Portability;
Mob: Mobility; ED: Electronic device; Cont: Context; Comp: Compatibility; Avail: Availability)

Concerns
Concerns

Vis TIC Port Mob ED Cont Comp Avail

Vis

TIC

Port

Mob

ED

Cont

Comp

Avail

The materialisation of these projections is accomplished here by defining a set of
composition rules, one for each projection. Composition rules define the relationships
between concerns requirements at a fine granularity (unlike the relationship matrix in
Section 4.1.2 which is aimed at identifying coarse-grained relationships).
Composition rule definitions can be governed by an XML schema. However, for
simplification we describe the structure of composition rules with reference to some
examples and not the XML schema definition. As shown in Figures 7 through 9, a

 A Concern-Oriented Requirements Engineering Model 301

coherent set of composition rules is encapsulated in a Composition tag. Figure 7
encapsulates all compositions (i.e. projections) for the Visitor requirements while
Figures 8 and 9 do so for Mobility requirements and Compatibility requirements
respectively. The semantics of the Requirement tag here differ from the tags in the
concern definition. If a concern requirement has any sub-requirements these must be
explicitly excluded or included in the Constraint imposed by a concern requirement.
This is done by providing an “include” or “exclude” value to the optional children
attribute. A value of “all” for a concern or id value implies that all the requirements
within the specified concern are to be constrained.

The Constraint tag defines an, often concern-specific, action and operator defining
how the concern requirements are to be constrained by another concern requirement.
Although the actions and operators are informal, they have clearly defined meaning
and semantics to ensure valid composition of concerns. This provides the architects
and designers a systematic means to interpret the requirements specification. The
Outcome tag defines the result of constraining the concern requirements with another
concern requirement. The action value describes whether another concern
requirement or a set of concern requirements must be satisfied or merely the
constraint specified has to be fulfilled (see Table 6).

The informality of the actions and operators ensures that the composition
specification is still readable by the stakeholders, an important consideration during

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Visitor" id="all">
- <Constraint action="ensure"

operator="during">
 <Requirement concern="Mobility" id="1"
children="include" />

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Visitor" id="all">

- <Constraint action="provide" operator="by">
 <Requirement concern="ElectronicDevice"
id="all" />

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
 </Composition>

Fig. 7 Composition rule for Visitor

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Mobility" id="1"
children="include">
- <Constraint action="provide" operator="for">

 <Requirement concern="Visitor" id="all" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Mobility" id="1"

children="exclude">
- <Constraint action="enforce" operator="for">

 <Requirement concern="Portability" id="1" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>

- <Requirement concern="Mobility" id="1"

children="include">

- <Constraint action="affect" operator="on">
 <Requirement concern="Context" id="1"

children="include" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Mobility" id="1.1">

- <Constraint action="affect" operator="on">
 <Requirement concern="Availability" id="all"/>

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
 </Composition>

Fig. 8 Composition rule for Mobility

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Compatibility" id="1">
- <Constraint action="ensure" operator="with">

 <Requirement concern="Visitor" id="4"
children="include" />

 </Constraint>
- <Outcome action="satisfied">

 <Requirement concern="Mobility" id="1"
children="include" />

 </Outcome>
 </Requirement>
- <Requirement concern="Compatibility" id="1">

- <Constraint action="ensure" operator = "with">
 <Requirement

concern="TouristInformationCent

re" id="2" />
 </Constraint>
 <Outcome action="fullfilled" />

 </Requirement>
 </Composition>

Fig. 9 Composition rule for Compatibility

.

.

.

302 A. Moreira, J. Araújo, and A. Rashid

Figure 7 and focus on the values in bold we get the following: “All Visitor
requirements must be ensured during requirement 1 of Mobility, including its
children, with the outcome that the Visitor’s requirements are fulfilled”.

Tables 4 to 6 describe the semantics of the actions and operators, which we have
defined so far, for Constraint and Outcome. The initial set of these actions and
operators was first defined in [16]. Here, we have validated that proposal and
identified one new action: affect.

Table 4. Description of Constraint actions Table 5. Description of Constraint operators

The interesting point to note here is that not all operators are concern-specific, e.g.
XOR is a generic operator. Also, the actions for the Outcome are generic and not
specific to a particular concern. It is, however, not possible to say whether Outcome
actions are always generic, as more case studies need to be carried out before arriving at
such a conclusion. It is also worth noting that although the same operator might apply to
different concern requirements, not all operator-action combinations are valid in the
Constraint specification for a particular concern. More case studies need to be carried
out to validate the set of operator-action combinations.

Table 6. Description of Outcome actions

Outcome Action
Type Description

satisfied Used to assert that a set of viewpoint requirements will be satisfied after the
constraints of a concern requirement have been applied.

fulfilled Used to assert that the constraints of a concern requirement have been successfully
imposed.

Constraint Action

Type Description

enforce Used to impose an additional condition
over a set of concern requirements.

ensure Used to assert that a condition that should
exist for a set of concern requirements
actually exists.

provide Used to specify additional features to be
incorporated for a set of concern
requirements.

applied Used to describe rules that apply to a set
of concern requirements and might alter
their outcome.

exclude Used to exclude some concerns or
requirements if the value all is specified.

affect Used to specify that a set of concern
requirements will alter the state of
another concern.

onstraint Operator

Type Description

during Describes the temporal interval during
which a set of requirements is being
satisfied.

between Describes the temporal interval falling
between the satisfaction of two
requirements. The interval starts when
the first requirement is satisfied and ends
when the second one is to start being
satisfied.

on Describes the temporal point after a set of
requirements has been satisfied.

for Describes that additional features will
complement the concern requirements.

with Describes that a condition will hold for
two sets of requirements with respect to
each other.

in Describes that a condition will hold for a
set of requirements that has been
satisfied.

AND,OR,
XOR

Conjunction, disjunction and exclusive-
OR (when either requirement is satisfied
but not both)

requirements engineering. For example, if we look at the first composition rule in

 A Concern-Oriented Requirements Engineering Model 303

4.1.4 Handle Conflicts
The composition rules leads to the identification of conflicts among concerns whose
requirements constrain the same or overlapping sets of other concern requirements. In
case of our approach this process is optimised as any potential interaction or conflict
can be deduced from the composition rules. Conflict resolution is carried out in the
four steps described below.

Build the Contribution Table. The contribution table (cf. Table 7) shows in which
way (negatively or positively) a concern contributes to the others. Each cell shows a
unidirectional contribution between a concern located in a line and a concern located
in a column. In this case, Availability contributes positively to Visitor and Tourist
Information Centre and negatively to Mobility and Electronic Device.

Table 7. Contribution table

Concerns
Concerns

Vis

TIC

Port

Mob

ED

Cont

Comp

Avail

Vis

TIC

Port

Mob –
ED

Cont

Comp –

Avail – –

Identify Reflected Projections Through Folding. Having studied the contribu tions
between concerns we can now fold the table in order to reduce the range of
projections we have to deal with. During folding, concerns that have a symmetric
projection on each other have their effects accumulated. This is shown in Table 8.
The columns in the table show the reflected projections of various concerns on an
individual concern.

Table 8 shows that Compatibility and Availability contribute negatively to
Mobility. We can help resolve such conflict by attributing weights to the concerns
involved in the conflicting situation.

Table 8. Folded table w/ reflected projections

Vis Vis

TIC TIC

Port Port

Mob Mob

ED ED

Cont Cont

Comp – Comp

Avail – – Avail

304 A. Moreira, J. Araújo, and A. Rashid

Attribute Weights to Conflicting Concerns. Weighting allows us to describe the
extent to which a concern may constrain another. The values are given according to
the importance each concern has with respect to another one. The scales we are using
are based on ideas from fuzzy logic and have the following meaning:
- Very important takes values in the interval] 0,8 .. 1,0]
- Important takes values in the interval] 0,5 .. 0,8]
- Average takes values in the interval] 0,3 .. 0,5]
- Not so important takes values in the interval] 0,1 .. 0,3]
- Do not care much takes values in the interval [0 .. 0,1]

Using fuzzy values (very important, important, not so important, etc.) facilitates
the stakeholders’ task of attributing priorities to conflicting concerns.

Weights will be given to concerns with respect to the concern for which we have
specified a composition rule. For example, with respect to Mobility, Compatibility can
have a weight of 0.5, since accessing external services is not a fundamental issue in
our system. In turn, Availability is very important for Mobility (a weight of 1.0), as
without the system being available, we cannot offer mobility.

Table 9. Weighted (folded) contribution table

Vis Vis

TIC TIC

Port Port

Mob Mob

ED ED

Cont Cont

Comp 0,5 Comp

Avail 1,0 1,0 Avail

Resolve Conflicts. The conflicts mentioned above for Mobility should not be too
difficult to resolve, as the weights express priorities. If this was not the case
negotiation would be needed among the stakeholders. Once all the conflicts have been
resolved the specification is revised and recomposition carried out to identify any
further conflicts.

4.1.5 Specify Concern Dimensions
Specification of a concern’s dimensions makes it possible to determine its influence
on later development stages and identify its mapping onto a function, a decision or an
aspect. The various concerns in our case study and their mappings and influences are
shown in Table 10.

Consider our Compatibility concern. The requirements derived from this concern
will influence parts of the system specification, architecture and design pertaining to
requirements derived from other concerns constrained by it. They will also influence
system evolution as change of the external services must be anticipated. The
Compatibility concern will, however, map on to a function allowing visitors to
connect to both hotel and ticket reservations. The Mobility concern, on the other

 A Concern-Oriented Requirements Engineering Model 305

Table 10. Concern dimension specification

Concern Influence Mapping

Visitor Specification, design, evolution Function
Tourist inf. centre Specification, design, evolution Function

Portability Specification, architecture, design, implementation Decision

Mobility Specification, architecture, design, implementation Aspect
Electronic device Specification, architecture, design Function
Context Architecture, design, implementation Aspect
Compatibility Specification, architecture, design, evolution Function
Availability Architecture Decision

hand, will influence the specification, the type of architecture chosen and the design
of the classes realising the requirements constrained by Mobility. It will map to an
aspect at the design and implementation level because mobility properties cannot be
encapsulated in a single class and will be otherwise spread across a number of classes.

5 Related Work

Multi-dimensional separation of concerns is supported by Hyperspaces [21] and
Cosmos [20]. The Hyperspaces approach employs hyperslices as a decomposition
mechanism where concerns are organised according to multiple dimensions, where
each dimension is partitioned by concerns of the same type (e.g classes, functions). A
hypermodule is a set of hyperslices together with a composition rule that specifies
how the hyperslices are composed to form a more complex hyperslice. Our model can
be seen as a specific instantiation of the hyperspaces model at the requirements level.
Concerns in our model can be perceived as hyperslices while composition rules
defining the projections can be seen as a specific instance of hypermodules. Cosmos
is a concern-space modelling schema. Here a concern is any matter of interest in a
system. A concern-space is an organised representation of concerns and their
relationships. Similar to our work, Cosmos generalises the idea of a concern
hyperspace (or hyperslice). It models concern-spaces through concerns, relationships
and predicates. Concerns are classified as logical (representing concepts) and physical
(representing elements of software systems). Some of the concerns and relationships
e.g. physical ones are not relevant at the requirements level. Moreover, the projections
of concerns on other concerns are not truly achieved.

Grundy proposes an aspect-oriented requirements engineering method targeted at
component based software development [8]. The approach provides a categorisation
of diverse aspects of a system that each component provides to end users or other
components. A UML compliant approach to handle quality attributes (i.e. non-
functional requirements) at the early stages of the development process is proposed in
[14]. In both of these approaches, the separation of concerns is two-dimensional (i.e.,
functional and non-functional concerns (or aspects)). Moreover, the projections are
limited from aspects to functional requirements.

In the Architecture Trade-off Analysis Method (ATAM) [11] various competing
quality attributes and their interactions are characterised. This is achieved by building
and maintaining both quantitative and qualitative models of these attributes. The

306 A. Moreira, J. Araújo, and A. Rashid

models are used as a basis to evaluate and evolve the architecture. The main focus of
ATAM is on identifying the trade-off points at the architecture level. The work
described in this paper focuses on identifying conflicting concerns in a uniform
fashion and establishing critical trade-offs before the architecture is derived.
Consequently, it is closer to the Twin Peaks model [15] which focuses on developing
requirements and architectures in parallel in order to develop an early understanding
of the system’s technical feasibility, discover further requirements and constraints and
evaluate alternative design solutions.

Theme/Doc [1] provides support for aspect-oriented analysis. Analysis is carried
out by first identifying a set of actions in the requirements list which are, in turn, used
to identify crosscutting behaviours. A theme is a collection of structures and
behaviours that represent one feature. It is related to a concern in the work described
here. While Theme/Doc is useful to identify themes in a requirements document, our
approach complements this work by considering not only the identification of
concerns, but also their specification and composition.

6 Conclusions and Future Work

In this paper, we have proposed a model to support multi-dimensional separation of
concerns at the requirements level. This multi-dimensionality is achieved through a
uniform treatment of both functional and non-functional properties. This is in direct
contrast with existing RE approaches which typically focus on identifying the effects
of non-functional requirements with reference to the functional requirements.
Consequently, any broadly scoped influence of functional properties is not effectively
dealt with.

The uniform treatment of concerns in our model makes it possible for us to define
the projections of each concern on any set of concerns it relates to. By folding the
resulting contribution matrix, we obtain a set of reflected projections which are then
used for analysing the contribution of multiple concerns towards one particular
concern. It is a difficult and complex task to derive such reflected projections
otherwise.

The trade-off analysis and stakeholder negotiation supported by our RE model is
based on a simple yet natural separation of concerns. This offers a powerful
mechanism to identify influences of the various concerns in the system in a multi-
dimensional fashion. This, in turn, supports better understanding of both crosscutting
functional and non-functional requirements. Also, if a previously non-crosscutting set
of requirements evolves to have a wider impact, the approach can easily deal with
such a change through revision and recomposition of its projections. Any changes to
relationships among concerns can be identified through requirements level impact
analysis techniques [13].

Our future work will focus on developing case studies to further validate the
proposed model and our set of concern specific actions and operators. In the near
future we aim to incorporate the approach in our concern composition and decision
support tool ARCADE which already provides support for the composition rules used
for our case study. We are also interested in exploring the use of fuzzy logic for trade-

 A Concern-Oriented Requirements Engineering Model 307

off analysis based on the weights we may give to concerns. This could help us
identify a process to rank concerns by degree of importance in a system and use the
result as a basis for incremental development.

Acknowledgements

This work is supported by EPSRC Grant MULDRE (EP/C003330/1) and Portuguese
FCT Grant SOFTAS (POSI/EIA/60189/2004).

References

[1] E. Baniassad and S. Clarke, “Theme: An approach for aspect-oriented analysis and
design”. In 26th International Conference on Software Engineering (ICSE), (Edinburgh,
Scotland), 2004.

[2] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering: Kluwer, 2000.

[3] Å. Dahlstedt and A. Persson, "Requirements Interdependencies - Moulding the State of
Research into a Research Agenda". The Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ 2003), Klagenfurt/Velden,
Austria, pp 71-80, 2003

[4] A. Dardenne, A. Lamsweerde, and S. Fickas, "Goal-directed Requirements Acquisition",
Science of Computer Programming, 20, pp. 3-50, 1993.

[5] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat, "Using and Determining Location in a
Context-Sensitive Tour Guide", IEEE Computer, 34(8), pp. 35-41, 2001.

[6] T. Elrad, R. Filman, and A. Bader (eds), "Theme Section on Aspect-Oriented
Programming", CACM, 44(10), 2001.

[7] A. Finkelstein and I. Sommerville, "The Viewpoints FAQ." BCS/IEE Software
Engineering Journal, 11(1), 1996.

[8] J. Grundy, "Aspect-Oriented Requirements Engineering for Component-based Software
Systems", 4th IEEE International Symposium on Requirements Engineering, 1999, IEEE
Computer Society Press, pp. 84-91.

[9] I. Jacobson, Object-Oriented Software Engineering - a Use Case Driven Approach:
Addison-Wesley, 1992.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-Oriented
Domain Analysis (FODA) Feasibility Study", Software Engineering Institute Technical
Report CMU/SEI-90-TR-21 1990.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, "The
Architecture Tradeoff Analysis Method", Proc. ICECCS, 1998, IEEE Computer Society
Press, pp. 68-78.

[12] A. Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided Tour", 5th
International Symposium on Requirements Engineering, 2001, IEEE Computer Society
Press, pp. 249-261.

[13] S. Lock and G. Kotonya, "An Integrated, Probabilistic Framework for Requirement
Change Impact Analysis", Australian Journal of Information Systems, 6(2), 1999.

[14] A. Moreira, J. Araújo, and I. Brito, "Crosscutting Quality Attributes for Requirements
Engineering", In 14th International conference on Software Engineering and Knowledge
Engineering (SEKE), 2002, ACM, pp. 167-174.

308 A. Moreira, J. Araújo, and A. Rashid

[15] B. Nuseibeh, "Weaving Together Requirements and Architectures", IEEE Computer,
34(3), pp. 115-117, 2001.

[16] A. Rashid, A. Moreira, and J. Araújo, "Modularisation and Composition of Aspectual
Requirements", In International Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM, pp. 11-20.

[17] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo, "Early Aspects: A Model for Aspect-
Oriented Requirements Engineering", In International Conference on Requirements
Engineering (RE), 2002, IEEE Computer Society Press, pp. 199-202.

[18] P. Rayson, L. Emmet, R. Garside, and P. Sawyer, "The REVERE Project: Experiments
with the application of probabilistic NLP to Systems Engineering", Proc. NLDB 2000,
LNCS 1959, pp. 288-300.

[19] I. Sommerville and P. Sawyer, Requirements Engineering - A Good Practice Guide: John
Wiley and Sons, 1997.

[20] S. M. Sutton and I. Rouvellou, "Modeling of Software Concerns in Cosmos", In
International Conference on Aspect-Oriented Software Development (AOSD), 2002,
ACM, pp. 127-133.

[21] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton, "N Degrees of Separation:
Multi-Dimensional Separation of Concerns", In International Conference on Software
Engineering (ICSE), 1999, ACM, pp. 107-119.

[22] S. Viller and I. Sommerville, "Social Analysis in the Requirements Engineering Process:
From Ethnography to Method", In International Conference on Requirements
Engineering (RE), 1998, IEEE Computer Society, pp. 6-13.

[23] E. Yu, "Modelling Strategic Relationships for Process Reengineering": PhD Thesis,
University of Toronto, 1995.

Generating Transformation Definition from
Mapping Specification:

Application to Web Service Platform

Denivaldo Lopes1,2, Slimane Hammoudi1, Jean Bézivin2, and Frédéric Jouault2,3

1 ESEO, France
2 Atlas Group, INRIA and LINA, University of Nantes, France

3 TNI-Valiosys, France
{dlopes, shammoudi}@eseo.fr

{jean.bezivin, frederic.jouault}@lina.univ-nantes.fr

Abstract. In this paper, we present in the first part our proposition for mapping
specification and generation of transformation definition in the context of Mo-
del Driven Architecture (MDA). In the second part, we present the application of
our proposition to Web Services platform. We propose a metamodel for mapping
specification and its implementation as a plug-in for Eclipse. Once mappings are
specified between two metamodels (e.g. UML and WSDL), transformation defi-
nitions are generated automatically using transformation languages such as Atlas
Transformation Language (ATL). We have applied this tool to edit mappings be-
tween UML and Web Services. Then, we have used this mapping to generate ATL
code to achieve transformations from UML into Web Services.

Keywords: Model Driven Architecture (MDA), Web Services, Tools for MDA.

1 Introduction

Recently, the OMG has proposed the Model Driven Architecture (MDATM)1 [1] to sup-
port the development of complex and large software systems providing an architecture
with which:

– systems can evolve for meeting new requirements.
– old, current and new technologies can be harmonized.
– business logic is protected against the changes in technologies.
– legacy systems are integrated and harmonized with new systems.

In this approach, models are applied in all steps of development up to a target plat-
form, providing source code, files of deployment and config, and so on. MDA proposes
an architecture to address the complexity of software development and maintenance
which has no precedents. It claims that software developers can create and maintain

1 MDATM is a trademark of the Object Management Group (OMG).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 309–325, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

310 D. Lopes et al.

software artifacts with little effort. However, before this becomes a mainstream rea-
lity some issues in MDA approach need solutions such as mapping specification and
transformation definition [2].

In this paper, we use the term mapping as a synonym for correspondence between
the elements of two metamodels, while transformation is the activity of transforming
a source model into a target model in conformity with the transformation definition.
In our approach, a transformation definition is generated from a mapping specification.
The distinction between mapping specification and transformation definition is detailed
in later sections.

The objective of this paper is fourfold. First, to provide a precise definition of the
concepts of mapping and transformation. Second, to provide a general metamodel for
mapping specification in the context of MDA. Third, to present a tool based on Eclipse
enabling the editing of mappings and the generation of transformation definition from
mapping specifications. Fourth, to apply our tool to Web Service Platform.

This paper is organized in the following way. Section 2 is an overview of MDA.
Section 3 presents our approach for mapping specification between two metamodels in
the context of MDA. Section 4 illustrates our approach applied to Web Services. Section
5 shows the implementation of our proposed metamodel for mapping through a plug-in
for Eclipse, and its application to Web Services. Finally, section 6 concludes this paper
and presents the future directions of our research.

2 Overview

At the beginning of this century, software engineering needs to handle software systems
that become larger and more complex than before. The object-oriented and component
technology seems insufficient to provide satisfactory solutions to support the develop-
ment and maintenance of these systems. To adapt to this new context, software enginee-
ring has applied an old paradigm, i.e. models, but with a new aspect, i.e. Model Driven
Architecture (MDA).

Some ideas around the MDA approach are not new. For example, the generation of
code from a model exists from the 80’s, the transformation from models into a target
platform was applied some time ago to the database domain (e.g. transformation from
entity-relationship to relational-tables and SQL schema). However, the standardization
of an approach based on models to enable the development and maintenance of software
systems is a big advance in software engineering. The change from object-oriented and
component paradigm to the model paradigm was inevitable and should be irreversible.
However, this does not mean the end of the former, but the introduction of models
as a supplementary layer to address the development of complex and large software
systems. In fact, models are the top layer and the other paradigms are the bottom layer
in the MDA approach.

We cannot yet advocate that the MDA approach will resolve all problems in soft-
ware system development because some issues are not well settled such as mapping,
transformation, semantic distance, traceablity, and so on. However, several case stu-
dies have demonstrated that MDA is a potential solution and the future for developing
software systems [3].

Generating Transformation Definition from Mapping Specification 311

Fig. 1. Architecture with four meta-layers

2.1 The Architecture with Four Meta-layers

MDA is based on an architecture with four meta-layers [4]: metametamodel, meta-
model, model and information (i.e. an implementation of its model). Figure 1 presents
the idea and the relationships between different levels of models. In this approach, ev-
erything is a model or a model element, and a high level of abstraction about a problem
and its solution are provided.

In level M3, a metametamodel is a well-formed specification for creating metamo-
dels. In level M2, a metamodel is a well-formed specification for creating models. In
level M1, a model is a well-formed specification for creating software artifacts. In level
M0, an operational example of a model is the final representation of a software system.
According to this architecture, we can envisage the existence of few metametamodels
such as MOF [4] and Ecore [5], several metamodels such as UML, UEML [6] and
EDOC [7], more models describing real life applications such as a travel agency, and fi-
nally infinite information such as the implementation of this travel agency model using
Java. Here, it is important to pay attention to the existence of several metamodel lan-
guages, providing a Domain-Specific Language [8] or a general-purpose language (e.g.
UML). In fact, the four layers are models. However, it is important to understand that
each model level achieves a different goal in software development.

The development of software systems using MDA is based on the separation of con-
cerns (e.g. business and technical concerns) which are afterwards transformed between
them. So, business concerns are represented using Platform-Independent Model (PIM),
and technical concerns are represented using Platform-Specific Model (PSM).

3 Mapping and Transformation

Nowadays, MDA suffers from a lack of agreement on terminology, especially concer-
ning the concepts of mapping and transformation. In MOF QVT [2], mapping is defined

312 D. Lopes et al.

as specification of a mechanism for transforming the elements of a model conforming
to a particular metamodel into elements of another model that conforms to another
(possibly the same) metamodel. In MDA distilled book [9], mapping is defined as the
application or execution of a mapping function in order to transform one model to
another, and mapping function is defined as a collection of mapping rules that defines
how a particular mapping works. In both references and others discussed in [10], the
concepts of mapping and transformation are not so clear, since these terms can refer to
many different concepts. Moreover, they are usually defined without explicit distinction
between them.

According to our vision, the concepts of mapping and transformation should be
explicitly distinguished, and together could be involved in the same process that we
denominate transformation process. In fact, in the transformation process, the mapping
specification precedes the transformation definition. A mapping specification is a de-
finition (as declarative as possible [11]) of the correspondences between metamodels
(i.e. a metamodel for building a PIM and another for building a PSM). Transforma-
tion definition 2 contains a minute description to transform a model into another using a
hypothetic or concrete transformation language. Hence, in our approach the transforma-
tion process of a PIM into a PSM can be structured in two stages: mapping specification
and transformation definition. Finally, we define the term transformation as the manual
or automatic generation of a target model from a source model, according to a transfor-
mation definition.

From a conceptual point of view, the explicit distinction between mapping specifi-
cation and transformation definition remains in agreement with the MDA philosophy,
i.e. the separation of concerns. Moreover, a mapping specification could be associated
with different transformation definitions, where each transformation definition is based
on a giving transformation definition metamodel.

Figure 2 illustrates the different concepts of MDA according to our vision where
mapping specification is a mapping model, and transformation definition is a transfor-
mation model. In this figure, a mapping model is based on its metamodel, and it relates
two metamodels (left and right). A transformation model is based on its transformation
metamodel, and it is generated from a mapping model. A transformation engine takes
a source model as input, and it executes the transformation program to transform this
source model into the target model.

Several research projects have studied the mapping specification between metamo-
dels [13] [14]. However, the ideas around mapping specification are not sufficiently
developed to create efficient tools to enable automatic mappings in the context of MDA.

Nowadays, transformation languages are not yet very well explored to make choices
about a standard transformation language such as desired by OMG [2]. In the next few
years, the submitted propositions [15] [16] in response to QVT RFP might converge to
a standard language, which will provide a new step forward in the evolution of MDA.
However, wisdom tells us that one problem can be resolved using different solutions, but
one solution for all problems does not exist. Thus, it is clear that this standard language

2 In [12], transformation definition is a set of transformation rules that together describes how
a model in a source language can be transformed into a model in the target language.

Generating Transformation Definition from Mapping Specification 313

Fig. 2. Transformation process within MDA: from mapping to transformation

will not provide a sufficient solution for all types of model transformations around MDA.
However, this will not be a limitation for applying MDA, because a transformation lan-
guage is also a model, thus one transformation language can also be transformed into
another transformation language. A priori, transformations between transformation lan-
guages seem unnecessary and unproductive. However, several examples such as Struc-
tured Query Language (SQL) (i.e. a standard query language for manipulating databases)
have demonstrated that a standard is beneficial, because it establishes a unique and well-
known formalism for understanding a problem and its solution. On the one hand, SQL
provides a universal language for manipulating databases. On the other hand, SQL can be
transformed into a proprietary language for execution into a database engine. A transfor-
mation from SQL into a proprietary language provides some benefits such as improved
performance, reduction of memory-use, and so on. Making an analogy between SQL
and a standard transformation language, we can expect that a standard transformation
language can provide some benefits without imposing severe limitations.

Mapping and transformation have been studied for a long time ago in the database
domain [11] [17]. However, they have taken another dimension with the sprouting of
MDA. This does not mean that they are well-studied and ready to be applied in the
MDA context. In fact, mapping specification and transformation definition are not yet
an easy task. Moreover, tools to enable the automatic creation of mapping specifica-
tion and automatic generation of transformation definition are still under development.
Some propositions enabling the mapping specification have been based on heuristics
[18] (for identifying structural and naming similarities between models) and on ma-
chine learning (for learning mappings) [19]. Other propositions enabling transformation
definition have been based on graph theory [20] and compilers.

In this section, we start briefly presenting a foundation for mapping and afterwards
we discuss our proposition for specifying mappings (i.e. correspondences between me-

314 D. Lopes et al.

tamodels). This approach for mapping is based on a metamodel and implemented as a
tool on Eclipse. This tool provides mapping support that is a preliminary step before
the generation of a transformation definition.

3.1 Foundation for Mapping Specification

A mapping specification can be formalized as follows:
Given M1(s)/Ma, M2(s)/Mb, and CMa→Mb

/Mc, where M1 is a model of a sys-
tem s created using the metamodel Ma, M2 is a model of the same system s created
using the metamodel Mb, and CMa→Mb

is the mapping between Ma and Mb cre-
ated using the metamodel Mc, then a transformation can be defined as the function
Transf(M1(s)/Ma, CMa→Mb

/Mc)→M2(s)/Mb. In this section, we aim to detail
CMa→Mb

/Mc. In general, Ma, Mb and Mc are based on the same metametamodel
which simplifies the mapping specification. For now, we can define the mapping as
CMa→Mb

⊇ {Ma ∩Mb}, where ∩ is a binary operator that returns the elements of Ma

and Mb which have equivalent structure and semantics.
We can also represent a mapping as a set. So, given:
Ma = {a1, a2, a3, ..., am} and Mb = {b1, b2, b3, ..., bn}
Then,
CMa→Mb

= {c1, c2, c3, ..., cp}
Where:
ci = {ak, bj}
i = {i ∈ N |1 ≤ i ≤ p}, k = {k ∈ N |1 ≤ k ≤ m} and j = {j ∈ N |1 ≤ j ≤ n}.
In fact, models (i.e. in the general sense: models, metamodels and metametamodels)

can be represented as sets. However, these sets are complex and heterogeneous, because
their elements are classes, attributes, relationships, enumerations and datatypes. Thus,
the creation of a mapping is not an easy task.

For clarity reasons, we divide elements of a metamodel into two categories: ba-
sic elements and relationships. Basic elements groups classes, attributes, enumerations
and datatypes. Relationships relate classes. So, CMa→Mb

must satisfy the following
requirements to be a complete mapping:

1. Basic element preservation: each basic element of Ma must verify one of the
following requirements:

– it corresponds to an equal (=) basic element of Mb.
– it corresponds to a set of basic elements of Mb that are similar (∼=)3.
– it is part of a set of basic elements from Ma that together are similar to one

basic element in Mb.
2. Relationship preservation:

– each relationship in Ma must verify one of the following requirements:
• it has a corresponding relationship in Mb.
• it has a corresponding set of relationships of Mb that are similar (∼=).
• it can be implicitly preserved in Mb (i.e. through aggregating attributes or

merging classes).

3 As in [17], by similar, “we mean that they are related but we do not express exactly how“.

Generating Transformation Definition from Mapping Specification 315

If Mb requires one basic element or relationship that can be deduced from two or
more elements or relationships, respectively, from Ma, then the need for element and
relationship preservation is satisfied.

If a mapping cannot satisfy the two requirements, then it is not complete, and the
transformation definition is also not complete. Consequently, a target model genera-
ted from a source model using this transformation definition does not contain all the
information of the source model.

The process of identifying and characterizing inter-relationships between metamo-
dels is denoted schema matching [18]. In fact, mapping describes how two metamodels4

are related to each other. So, schema matching results in a mapping. According to mo-
del management algebra [17], a mapping is generated using an operator called match
which takes two metamodels as input and returns a mapping between them. We have
adapted this operator as follow: given Ma, Mb and CMa→Mb

/Mc, the adapted match
operator is formally defined as Match′(Ma,Mb) = CMa→Mb

/Mc.
The identification of inter-relationships between two metamodels is generally based

on the metamodel structure. A metamodel structure is a consequence of relationships
between its elements. These relationships have some characteristics such as kind. Gene-
rally, five relationship kinds can relate one element to another element [14]: Association,
Contains, Has-a, Is-a, Type-of. These relationships have been used for a long time in
software engineering. For example, they are common in UML: Association is associa-
tion; Contains is composition; Has-a is aggregation; Is-a is inheritance; Type-of relates
a class that is a type of an attribute. These relationship kinds can be formalized as follow:

– Association: A(a, b) means a is associated with b.
– Contains: C(c, d) means container c contains d.
– Has-a: H(e, f) means e has an f .
– Is-a: I(g, h) means g is an h.
– Type-of: T (i, j) means i is a type of j.

In [14], the authors propose the following cross-kind-implications:

– if T (q, r) and I(r, s) then T (q, s).
– if I(p, q) and H(q, r) then H(p, r).
– if I(p, q) and C(q, r) then C(p, r).
– if C(p, q) and I(q, r) then C(p, r).
– if H(p, q) and I(q, r) then H(p, r).

In [14], two models are considered equivalent “if they are identical after all im-
plied relationships are added to each of them until a fixed point is reached”. Apply-
ing these relationship kinds and cross-kind-implications in MDA context, metamodels
can be simplified and compared to find equivalences or similarities. Moreover, ap-
plying these principles and the operator Diff ′(defined hereafter) based on the same
principles presented in [17], the semantic distance [21] can be quantified. This ope-
rator Diff ′ takes a metamodel Ma and a mapping CMa→Mb

/Mc, and returns a sub-
set containing the elements of Mb that do not participate in the mapping. Formally,

4 In our approach, we prefer to employ the term metamodel in the definition of the term mapping.

316 D. Lopes et al.

Diff ′(Ma, CMa→Mb
/Mc) = Md, where Md ⊂ Mb. We could quantify semantic dis-

tance using a numeral value, but as metamodels can be considered as a set, then we
prefer to quantify semantic distance as a sub-set of Mb. In spite of [17], we do not con-
sider the result of Diff ′ a sub-metamodel as expected, because we understand that this
difference will return only fragments of a metamodel.

3.2 A Metamodel for Mappings

A metamodel for mapping must enable the specification of inter-relationships (i.e. cor-
respondences) between the elements from two metamodels without modifying them. It
should also provide support to handle different versions of a mapping.

Figure 3 presents a metamodel for mapping specification that meets these require-
ments.

In this metamodel, we consider that a mapping can be unidirectional or bidirec-
tional. In unidirectional mapping, a metamodel is mapped into another metamodel. In
bidirectional mapping, the mapping is specified in both directions. Thus, we prefer to
call two metamodels in a mapping as left or right metamodel.

This metamodel for mapping presents the following elements:

– Element is a generalization for the other elements.
– Historic enables the explanation of the different choices taken for making the

mapping. It has the date of the last update, a note, and the number of the last version,
and a collection of Definitions.

Fig. 3. Metamodel for Mapping Specification

Generating Transformation Definition from Mapping Specification 317

– Definition is the main element and it contains all Correspondences between
two metamodels (i.e. each correspondence has one left element and many right
elements).

– Correspondence is used to specify the inter-relationship between two or more
elements, i.e. one left and one or more right elements. The correspondence has
a filter that is an OCL expression. When bidirectional is false, a mapping
is unidirectional (i.e. left to right), and when it is false it is bidirectional (i.e. in
both directions). It has two TypeConverters identified by typeconverterRL

and typeconverterLR. typeconverterRL enables the conversion of the ele-
ments from a right metamodel into the elements from a left metamodel. type-
converterLR enables the conversion of the elements from a left metamodel into
the elements from a right metamodel. Often we need to specify only the type-

converterLR.
– Left is used to identify the left element of a mapping.
– Right is used to identify the right elements of a mapping.
– MetaModelHandler is used to navigate into a metamodel. It has the information

necessary for accessing a metamodel participating in a mapping. A mapping is itself
a model, and it must not interfere with the two metamodels being mapped.

– ElementHandler enables access to the elements being mapped without changing
them.

– TypeConverter enables the type casting between a left and a right element. If one
element of a left metamodel and another element of a right metamodel are equals,
then the mapping is simple and direct. However, if one element of a left metamodel
and another element of a right metamodel are similar, then the mapping is complex
and it is achieved using type converter, i.e. a complex expression to adapt a left
element to a right element.

3.3 A Graphical Notation for Mapping

In order to simplify the mapping task, the description of a mapping specification based
on our proposed metamodel for mapping should have a simplified graphical notation
such as depicted in figure 4.

According to figure 4, some metamodel elements have a graphical representation.
Historic is represented using a table. MappingDefinition is represented using a
form that has correspondences. Correspondence is represented by a circle. Left is
represented by a single arrow. Right is represented by a double arrow.

4 Applying MDA for Web Services

Nowadays, MDA is not sufficiently developed and experimented. In our research, we
develop the MDA approach and we use Web Services as a target platform to experiment
it.

Web Services have been introduced to resolve the problem of interoperability on
the Internet. In fact, Web Services were created using the standards suitable for Inter-
net. Consequently, they are more adapted to Internet than previous solutions such as

318 D. Lopes et al.

Fig. 4. Metamodel for mapping and its graphical notation

CORBA, Java RMI and EJB. However, they only provide support to the development
of software systems in low level, thus the interoperability is only guaranteed in the level
of implementation. MDA approach proposes an interoperability in the level of models
which seems to be a promising solution. In addition, it provides mobility, i.e. a same
business model can be implemented on different target platforms.

4.1 Web Services

The concept of services was introduced before Web Services. In fact, this concept
has been used for a long time by OSF’s Distributed Computing Environment (DCE),
OMG’s CORBA, Sun’s Java RMI, and Microsoft’s Distributed Component Object Mo-
del (DCOM) 5. A service is an abstraction of programs, business process, and other
artifacts of software defined in terms of what it does.

Service Oriented Architecture (SOA) [22] describes how a system composed of ser-
vices can be built. Developing applications on SOA requires the adoption of a service-
oriented design6 which is based on the requirements determined in the strategy and
business process levels.

Figure 5 shows the main SOA elements. An AgentProvider has Services. These
Services are described through a meta-data representation, i.e. ServiceDescrip-
tion. Afterwards, the AgentProvider stores information about its Services in a
Registry. An AgentRequester searches in the Registry for a specific service
according to a determined criterion. The Registry returns information about a de-
sired service. The AgentRequester finds the meta-data about this service and uses it
to exchange messages with the service. According to this figure, Universal Description,

5 The actual COM+ is descendant of DCOM.
6 Web Services is not inherently compliant to service-oriented design and to SOA.

Generating Transformation Definition from Mapping Specification 319

AgentProvider

Services ServiceDescription

1..*+services

Describes

+service

AgentRequester

Registry
Publish 1..*

+registry

Search1..*

+registry

+serviceDescription

MessageExchange

0..* +serviceInterface

1..*Publish

1..*+services

+service

Describes

1..*

+registry+registry

Search

+serviceInterface0..*

MessageExchange

+serviceDescription

Fig. 5. Service Oriented Architecture (fragment)

UDDI

WSDL

SOAP

HTTP SMTPFTP

Service

+refReferences

Publishes

+businesService

+service

Describes

Uses +soap

+http
+ftp

+smtp+http
+ftp

+smtp

+refReferences

Publishes

+businesService

+service

Describes

Uses +soap

Fig. 6. Web Services (main technologies)

Discovery, and Integration (UDDI) [23] implements the Registry. Web Service Des-
cription Language (WSDL) [24] implements the ServiceDescription. Services
use Simple Object Access Protocol (SOAP) [25] as a communication protocol, and
SOAP uses HTTP or FTP or SMTP as transport protocol. Figure 6 presents the main
technologies of Web Services and their relationships.

However, some issues related to Web Services still need solutions such as service
composition, security and availability. Web Service composition can be static or dy-
namic. In a static composition, the services are determined and composed in the design
time, while in the dynamic composition, the services are determined and composed at
runtime. Some languages were proposed to take into account the service composition
such as Business Process Execution Language for Web Services (BPEL4WS) [26].

4.2 MDA and Web Services: Mapping Specification

Web Services are the main target platform used in our experiments, and B2B applica-
tions are our privileged domain. In this paper, we present the application of our tool
to map UML into Web Services, and afterwards to generate the corresponding trans-
formation definition with Atlas Transformation Language (ATL). In order to simplify
the presentation of this paper, we only show experiments with UML, WSDL [24] and
BPEL4WS [26].

Figure 7 depicts a mapping specification from UML into WSDL. This representation
is based on the graphical notation presented in section 3.3. For the moment, we have
used this graphical notation to illustrate mappings, but we aim to introduce it in the next
version of our plug-in.

320 D. Lopes et al.

Fig. 7. A mapping from UML into WSDL (fragment)

According to figure 7, P2D maps Package into Definition, C2S maps Class into
Service, Port, Binding and PortType7, and so on. It is important to note that C2S
is a mapping one-to-many, i.e. it takes one element and maps it into many elements.

5 Tool for Mapping

A tool for supporting mappings between metamodels should provide the following cha-
racteristics:

– importation of pre-existing metamodels from XMI file.
– graphical visualization of the mapping model and metamodels.
– edition of the mapping model.
– verification of conformity between mapping model and its metamodel.
– another simplified representation of a mapping model such as textual representa-

tion.
– navigation between the metamodels that are being mapped.
– semi-automatic matching.

7 PortType was renamed to Interface in WSDL 1.2

Generating Transformation Definition from Mapping Specification 321

– generation of a transformation definition from a mapping specification (i.e. map-
ping model).

– exportation of a mapping model using XMI file.

Our proposed tool supports all these characteristics, except the semi-automatic mat-
ching which is the next step for its improvement.

5.1 Mapping Modeling Tool (MMT)

Figure 8 shows our plug-in for Eclipse denominated Mapping Modeling Tool (MMT)
that supports the mapping modeling. MMT presents a first metamodel on the left side,
a mapping model in the center, and a second metamodel on the right. In this figure,
the UML metamodel (fragment) is mapped into a WSDL metamodel (fragment). At
the bottom, the property editor of mapping model is shown. A developer can use this
property editor to set the properties of a mapping model.

Before specifying mapping using our tool, we need to create metamodels based
on Ecore [5]. Some tools support the editing of a metamodel based on Ecore such as
Omondo [27] or the Ecore editor provided with EMF [5]. The application of our tool
using UML and WSDL metamodel can be explained in the following steps:

1. We created a project in eclipse and we imported the UML and WSDL metamodel
into this project.

Fig. 8. Applying the tool to specify a mapping from UML into WSDL

322 D. Lopes et al.

Fig. 9. The generated ATL code to transform UML into WSDL

2. We used a wizard to create a mapping model. In this step, we chose the name for
the mapping model, the encoding of the mapping file (e.g. Unicode and UTF-8),
the files of metamodel in the format XMI.

3. The UML and WSDL metamodels are loaded from the XMI files, and the mapping
model is initially created, containing the elements Historic, Definition, and
left and right MetamodelHandlers. For each MetamodelHandler are also
created ElementHandlers that are references to the elements of the correspon-
ding metamodel.

4. We edit the mapping model. First, we define the inter-relationships between the
metamodels creating Correspondences between their elements. Second, we cre-
ate for each Correspondence nested Correspondences. Third, for each nested
correspondence, we create one Left and one or more Right elements. In addi-
tion, each Left and Right element has a ElementHandler. If it is necessary, the
TypeConverter is created to explicit the casting between two mapped elements.

5. The mapping model can be validated according to its metamodel, and it can be used
to generate a transformation definition (e.g. using ATL language).

According to figure 8, C2S maps Class into Service, Port, Binding and Port-

Type.
MMT can generate transformation definition from a mapping model. For the mo-

ment, we have implemented a generator for ATL[28]. The resulting code in ATL of the

Generating Transformation Definition from Mapping Specification 323

Fig. 10. Applying the tool to specify a mapping from UML into BPEL4WS

mapping between UML (fragment) and this WSDL metamodel is presented in figure 9.
In this figure, a fragment of an ATL code is presented as module uml2wsdl;... and
the rule C2S.

Figure 10 depicts the mapping model from UML into BPEL4WS [26] using our
proposed tool. In this figure, Ag2P maps ActivityGraph into Process, Dt2V maps
DataType into Variable, and so on. Since this mapping model is complete, MMT
can generate the ATL code to realize transformations.

In this experiment, the ATL code was generated on the basis of the mapping model.
This proposed tool left the developer free to think only at the point of the mapping
between two metamodels, helping him to specify how the metamodels can be inter-
related. Afterwards, it generated the code to transform models.

6 Conclusion

In this paper, we have discussed the MDA approach providing a detailed description of
transformation process, distinguishing mapping and transformation. We have proposed
a metamodel for mapping and a tool to support mappings. To illustrate our tool, we
have specified mappings between UML as PIM and Web Services as PSM.

The schema matching was not yet integrated in our plug-in, because, at this stage,
we are more interested in addressing the creation of mappings driven by models.

Some formalisms have been simplified and do not distinguish model, metamodel
and metametamodel. Here, we have explicitly differentiated all model levels, because

324 D. Lopes et al.

a model can be created using different metamodels. Moreover, the diffusion of MOF,
Ecore and DSL will stimulate an increase in available metamodels.

In future research, we will develop further the graphic representation (discussed in
section 3.3) and the schema matching in order to integrate them also into our plug-in
for Eclipse.

Acknowledgments

The work described in this paper was partly financed by “Conseil Général de Maine-et-
Loire”, through a fellowship provided to Denivaldo Lopes.

References

1. OMG: Model Driven Architecture (MDA)- document number ormsc/2001-07-01. (2001)
2. OMG: Request for Proposal: MOF 2.0 Query/Views/Transformations RFP. (2002)
3. Middleware Company: Model Driven Development for J2EE Utilizing a Model Driven Ar-

chitecture (MDA) Approach. Technical report, The Middleware Company (2003)
4. OMG: Meta Object Facility(MOF) Specification. (2002) Version 1.4.
5. Eclipse Tools Project: Eclipse Modeling Framework (EMF) version 2.0. (2004)
6. UEML.org: Unified Enterprise Modeling Language (UEML) (2003) Available at

http://www.ueml.org.
7. OMG: UML Profile for Enterprise Distributed Object Computing Specification. (2002)
8. Cook, S.: Domain-Specific Modeling and Model Driven Architecture. MDA Journal (2004)

1–10
9. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven

Architecture. 1st edn. Addison-Wesley (2004)
10. Favre, J.M.: Towards a Basic Theory to Model Driven Engineering. UML 2004 - Workshop

in Software Model Engineering (WISME 2004) (2004)
11. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation under Evolving Schemas. Pro-

ceedings of the 29th VLDB Conference (2003) 584–595
12. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice

and Promise. 1st edn. Addison-Wesley (2003)
13. Caplat, G., Sourrouille, J.L.: Model Mapping in MDA. Workshop in Software Model Engi-

neering (WISME2002) (2002)
14. Pottinger, R.A., Bernstein, P.A.: Merging Models Based on Given Correspondences. Pro-

ceedings of the 29th VLDB Conference (2003) 826–873
15. DSTC, IBM, CBOP: MOF Query / Views / Transformations - Second Revised Submission.

(2004) ad/2004-01-06.
16. QVT-Merge Group: Revised submission for MOF 2.0 Query/Views/Transformations RFP

(ad/2002-04-10). (2004) Available at http://www.omg.org/docs/ad/04-04-01.pdf.
17. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. Procee-

dings of the Conference on Innovative Data Systems Research (CIDR 2003) (2003)
18. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB

Journal 10 (2001) 334–350
19. Martin S. Lacher, G.G.: Facilitating the Exchange of Explicit Knowledge through Ontology

Mappings. 14th International FLAIRS Conference (2001) 21–23

Generating Transformation Definition from Mapping Specification 325

20. Agrawal, A., Levendovszky, T., Sprinkle, J., Shi, F., Karsai, G.: Generative Programming
via Graph Transformation in the Model-Driven Architecture. OOPSLA 2002 Workshop on
Generative Techniques in the Context of Model Driven Architecture (2002)

21. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA Approach for Web Ser-
vice Platform. 8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC 2004) (2004) 58–70

22. W3C: Web Services Architecture (WSA). (2004)
23. UDDI.ORG: Universal, Description, Discovery and Integration (UDDI) Version 3.0. (2002)
24. W3C: Web Services Description Language (WSDL) 1.1. (2001)
25. W3C: Simple Object Access Protocol (SOAP) 1.1. (2001)
26. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language
for Web Services (BPEL4WS) version 1.1. (2003)

27. Omondo: Omondo Eclipse UML. (2004) Available at http://www.omondo.com.
28. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First Experiments with the ATL

Model Transformation Language: Transforming XSLT into XQuery. 2nd OOPSLA Work-
shop on Generative Techniques in the context of Model Driven Architecture (2003)

A General Approach to the Generation
of Conceptual Model Transformations

Nikolaos Rizopoulos and Peter Mc.Brien

Dept. Computing, Imperial College London, London SW7 2AZ
{nr600, pjm}@doc.ic.ac.uk

http://www.doc.ic.ac.uk/automed

Abstract. In data integration, a Merge operator takes as input a pair of schemas
in some conceptual modelling language, together with a set of correspondences
between their constructs, and produces as an output a single integrated schema.
In this paper we present a new approach to implementing the Merge operator that
improves upon previous work by considering a wider range of correspondences
between schema constructs and defining a generic and formal framework for the
generation of schema transformations. This is used as a basis for deriving trans-
formations over high level models. The approach is demonstrated in this paper to
generate transformations for ER and relational models.

1 Introduction

Initial research into data integration [1, 13] was concerned with the type of transfor-
mations that can be performed on the data source schemas [12, 24], while more recent
research has focused on schema matching [15, 14, 8], i.e. identifying correspondences
and semantic relationships between schema constructs. The process of model man-
agement incorporates the above by providing operators such as Match, Merge, etc for
schemas [2]. In this paper, we are not concerned with the Match operator, which pro-
duces a set of correspondences between the schema constructs, but focus on the Merge
operator, that takes as input two schemas, together with the result of Match, and pro-
duces as output a single integrated schema.

In [16, 6], schemas in a high level conceptual modelling language (such as ER, Re-
lational, ORM, etc) are modelled in a nested hypergraph data model (HDM) [25, 22,
23]. We base our approach to implementing the Merge operator on determining how se-
mantic relationships between nodes and edges in the HDM will cause transformations
on the HDM to be generated, which can be mapped to BAV transformations [23, 18] on
the high level modelling language. Based on these foundations, we provide a generic
framework that can be used for merging schemas irrespective of the high-level mod-
elling language used to represent them. This works by using the semantics of the high
level modelling language to determine which of the low level rules may be applied.

Our methodology has the advantage of providing a generic solution to the problem
of generating transformations, since it relies on the underlying graphical properties of
data modelling languages, and not on the specific modelling language that is being used
in a particular universe of discourse (UoD). In addition, it deals with with a variety of
semantic relationships — subsumption, disjointness, intersection, and equivalence —

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 326–341, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A General Approach to the Generation of Conceptual Model Transformations 327

between schema constructs, while most existing merging techniques deal with just the
equivalence semantic relationship [3, 19]. As a result, our approach does not only merge
schemas but it also improves them to remove any structural redundancy.

The structure of this paper is as follows. Section 2 describes the types of semantic
relationships we use as input to our Merge operator. Section 3 gives an example of
how a systems integrator might use a given set of semantic relationships to perform
manually data integration with BAV transformations. An informal justification of how
the BAV transformations are derived from the semantic relationships is given, and this
acts as a motivation for the generic rules. Section 4 reviews details of the HDM, and
illustrates how it is used to represent the ER and relational schemas we use in this
paper. Then Section 5 shows how a set of generic rules operating over the HDM may be
used to generate transformations in the higher level modelling languages from semantic
relationships, and in particular the transformations of Section 3. Related work is in
Section 6 and our summary and conclusions are found in Section 7.

2 Semantic Relationships

Various types of semantic relationships between schema constructs have been defined in
the literature. We adopt similar relationship definitions to [12], except for disjointness.
The four types of semantic relationship between schema constructs A, B are based on
the comparison of their intensional domains Di(A), Di(B), i.e. the set of real world
entities associated with the constructs. The relationships are:

1. equivalence: Two schema constructs A and B are equivalent, A
S= B, iff

Di(A) = Di(B)
2. subsumption: Schema construct A subsumes schema construct B, B

S⊂ A, iff
Di(B) ⊂ Di(A)

3. intersection: Two schema constructs A and B are intersecting, A
S∩ B, iff

Di(A) ∩Di(B) �= ∅,∃C : Di(A) ∩Di(B) = Di(C)

4. disjointness: Two schema constructs A and B are disjoint, A
S

�∩ B, iff
Di(A) ∩Di(B) = ∅,∃C : Di(A) ∪Di(B) ⊆ Di(C)

It is important to notice that construct C in the definition of intersection and dis-
jointness may or may not exist in the schemas. The notation ∃C : condition means that
there is a real-world concept in the domain of the data source examined, that can be rep-
resented by an existing or non-existing schema construct C that satisfies the condition.

3 Motivating Examples of Integration

We now present two examples of data integration, where the examples differ only in the
modelling language being used, and not in the UoD being considered. The examples
will illustrate the intuition of how schema matching performed between data sources
drives the integration process and leads to integration rules. Of course the integration
rules necessarily differ in detail according to the data modelling language being used,

328 N. Rizopoulos and P. Mc.Brien

but they are triggered by the same conditions, they have common objectives and they
perform analogous schema transformations.

Ser
1

staff

sid
name

car?
worksin

1:1
0:N

dept did ⇒

Ser
2

boss

sid

bonus?
car

worksin
1:1

0:N
dept id ⇒

M
a
tch

Ser
1 :〈〈dept〉〉 S

= Ser
2 :〈〈dept〉〉

Ser
1 :〈〈dept,did〉〉 S

= Ser
2 :〈〈dept,id〉〉

Ser
1 :〈〈worksin,staff,dept〉〉

S⊃ Ser
2 :〈〈worksin,boss,dept〉〉

Ser
1 :〈〈staff〉〉 S⊃ Ser

2 :〈〈boss〉〉
Ser

1 :〈〈staff,sid〉〉 S⊃ Ser
2 :〈〈boss,sid〉〉

Ser
1 :〈〈staff,car〉〉 S

= Ser
2 :〈〈boss,car〉〉

Merge ⇓ 1 – 5

Ser
12

boss
bonus?

car

worksin
1:1

0:N
dept didstaff

sid

name
�⇐

Ser
3

sales

sid
name

bonus?

pension
sid

value

⇐

M
a
tc

h
Ser

12 :〈〈staff〉〉 S⊃ Ser
3 :〈〈sales〉〉

Ser
12 :〈〈staff,sid〉〉 S⊃ Ser

3 :〈〈sales,sid〉〉
Ser

12 :〈〈staff,name〉〉 S⊃ Ser
3 :〈〈sales,name〉〉

Ser
12 :〈〈staff〉〉

S
�∩ Ser

3 :〈〈pension〉〉
Ser

12 :〈〈staff,sid〉〉
S
�∩ Ser

3 :〈〈pension,sid〉〉
Ser

12 :〈〈boss〉〉 S∩ Ser
3 :〈〈sales〉〉

Ser
12 :〈〈boss〉〉

S
�∩ Ser

3 :〈〈pension〉〉
Ser

12 :〈〈boss,bonus〉〉 S
= Ser

3 :〈〈sales,bonus〉〉
Merge ⇓ 6 –18

Ser
g

salesboss

� �
bonus?

sales

�
boss

�
car

staff

name

worksin
1:1

0:N
dept did

person sid

pension

�

value

Fig. 1. Three ER models being integrated. The ER model has key attributes underlined, and op-
tional attributes followed by a question mark. Generalisations are indicated by hexagons, and
dictate that their sub-entity classes are disjoint

3.1 ER Model Integration

Figure 1 illustrates a process where three ER schemas are integrated. First Ser
1 and Ser

2

are compared, and a set of semantic relationships is produced by Match. These rela-
tionships input into Merge, which integrates Ser

1 and Ser
2 into schema Ser

12 . We then
match Ser

12 with Ser
3 , producing another set of semantic relationships, which are then

used to form the final global schema Ser
g . We will use BAV to specify the transforma-

tions necessary during data integration [18, 4], and adopt the three step conform, merge,
restructure approach to schema integration [1]. Starting with integrating Ser

1 and Ser
2 ,

A General Approach to the Generation of Conceptual Model Transformations 329

during the conform phase, the fact that 〈〈dept,did〉〉 attribute in Ser
1 is equivalent to the

〈〈dept,id〉〉 attribute in Ser
2 causes one to be renamed as the other:

1 renameAttribute(〈〈dept,id〉〉, 〈〈dept,did〉〉)
During the merging phase, the fact that the concept of 〈〈boss〉〉 in Ser

2 is subsumed
by 〈〈staff〉〉 in Ser

1 causes a subset relation to be introduced between the two entities:
2 addSubset(〈〈staff,boss〉〉)

During the restructuring phase, we remove any redundancy that exists between the
schemas. Since 〈〈worksin,boss,dept〉〉 in Ser

2 is subsumed by 〈〈worksin,staff,dept〉〉 in
Ser

1 , we can delete the former construct without losing information in transforma-
tion 3 . The fact that we are not losing information is verified by supplying a query that
restores the extent of the construct we are deleting. Here we use a list comprehension
[7] based language called IQL [11] used in the AutoMed system [5]. The expression
in 3 states the we take those {x} values in entity 〈〈boss〉〉, and then take those {x, y}
found in relationship 〈〈worksin,staff,dept〉〉 with the same x value, and hence find those
values of the worksin relationship that are associated to the boss entity. Also note that
the rough semantics of each transformation is that the extent of the scheme in the first
argument can be derived from the query that is second argument. If the first argument
is a constraint, then it has no extent, and hence there is no second argument. Similarly,
since 〈〈boss,sid〉〉 is subsumed by 〈〈staff,sid〉〉, we eliminate 〈〈boss,sid〉〉 in transforma-
tion 4 . The fact that 〈〈staff,car〉〉 and 〈〈boss,car〉〉 are equivalent means that we should
eliminate 〈〈staff,car〉〉 in 5 since it is the less specific case of the car attribute, and can
state as the IQL query that its values were all those instances of 〈〈boss,car〉〉.
3 deleteRelationship(〈〈worksin,boss,dept,1:1,0:N〉〉,

[{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈worksin,staff,dept〉〉])
4 deleteAttribute(〈〈boss,sid,key〉〉, [{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈staff,sid〉〉])
5 deleteAttribute(〈〈staff,car,null〉〉, 〈〈boss,car〉〉)

The resulting Ser
12 is an integration of Ser

1 and Ser
2 that obeys one important feature

of the integration rules of the framework: that pathway S → S′ of transformations from
schema S to S′ satisfy the relationship preservation property (RPP). The RPP states
that if the reverse pathway P ′ = S′ → S is followed, then the relationships initially
existing in S are still true, i.e. the semantic relationships between the constructs are
preserved. Implicitly, this means that the intentional domains of the constructs are not
affected by the rules, i.e. they do not cause any real-world entity loss nor gain. The RPP
is ensured by the fact that all add and delete transformations in the pathway 1 – 5 that
add or delete constructs that have an associated extent (i.e. set of values) are supplied
with queries that fully define that extent in terms of other constructs in the schema.

Integration now proceeds to match Ser
12 with Ser

3 . Since no naming conflicts are
found, we proceed directly to merging phase. The fact that there is a intersection rela-
tionship between 〈〈sales〉〉 of Ser

3 and 〈〈staff〉〉 of Ser
12 means we can introduce a com-

mon subset entity 〈〈salesboss〉〉 by transformations 7 – 9 . The IQL expression in 7

ensures that the new entity has instances that appear in both 〈〈sales〉〉 and 〈〈staff〉〉, and
this is also explicitly stated in the schema structure by the two subset constructs added
by 8 and 9 . The fact that there is a disjointness relationship between 〈〈pension〉〉 and
〈〈staff〉〉 means we can introduce a generalisation of them in the form of the 〈〈person〉〉
entity with transformations 10 and 11 . In 10 the IQL append operator ++ is used to
append all values of 〈〈pension〉〉 to those of 〈〈staff〉〉.

330 N. Rizopoulos and P. Mc.Brien

6 addSubset(〈〈staff,sales〉〉)
7 addEntity(〈〈salesboss〉〉, [{x} | {x} ← 〈〈sales〉〉; {x} ← 〈〈boss〉〉])
8 addSubset(〈〈sales,salesboss〉〉)
9 addSubset(〈〈boss,salesboss〉〉)
10 addEntity(〈〈person〉〉, 〈〈pension〉〉 ++ 〈〈staff〉〉)
11 addGeneralisation(〈〈person,pension,staff〉〉)

During restructuring, transformations 12–14 perform attribute specialisation, com-
bining the equivalent 〈〈sales,bonus〉〉 and 〈〈boss,bonus〉〉 into 〈〈salesboss,bonus〉〉. Then
15–17 perform attribute generalisation, combining 〈〈pension,sid〉〉 and 〈〈staff,sid〉〉. Fi-
nally 18 removes the redundant 〈〈sales,name〉〉 that is subsumed by 〈〈staff,name〉〉. The
result of these transformations is the final integrated schema Ser

g in Figure 1.
12 addAttribute(〈〈salesboss,bonus,null〉〉, 〈〈sales,bonus〉〉)
13 deleteAttribute(〈〈sales,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
14 deleteAttribute(〈〈boss,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
15 addAttribute(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉 ++ 〈〈staff,sid〉〉)
16 deleteAttribute(〈〈pension,sid,key〉〉, [{x, y} | {x, y} ← 〈〈person,sid〉〉; {x} ← 〈〈pension〉〉])
17 deleteAttribute(〈〈staff,sid,key〉〉, [{x, y} | {x, y} ← 〈〈person,sid〉〉; {x} ← 〈〈staff〉〉])
18 deleteAttribute(〈〈sales,name,notnull〉〉, [{x, y} | {x, y} ← 〈〈staff,name〉〉; {x} ← 〈〈sales〉〉])

3.2 Relational Model Integration

Figure 2 shows the integration of three relational schemas Srel
1 , Srel

2 and Srel
3 that are

equivalent to the schemas Ser
1 , Ser

2 and Ser
3 . However, due to differences in the mod-

elling language, the semantic relationships that are identified, and the integration trans-
formations required are different from those discussed for the ER integration above. The
final integrated schema Srel

g is almost equivalent to the final Ser
g in Figure 1; the differ-

ence in semantics being that the relational model is unable to express the disjointness
of 〈〈staff〉〉 and 〈〈pension〉〉 that is represented by the ER generalisation hierarchy. Our
discussion of the relational integration focuses on comparing it with the ER integration,
and stating why it is different. First in integrating Srel

1 and Srel
2 , the conforming phase

has a transformation analogous to 1 :
19 renameColumn(〈〈dept,id〉〉, 〈〈dept,did〉〉)

When merging Srel
1 and Srel

2 we have a transformation analogous to 2 , except
foreign keys are specified on the column of a table rather than the entity class (which
ER subsets are defined over):
20 addFK(〈〈〈〈boss,sid〉〉,〈〈staff,sid〉〉〉〉)

Then during restructuring, transformation 21 is analogous to removing the relation-
ship worksin in 3 , but since foreign keys are constraints, no IQL query needs to be
supplied. The next two steps are analogous to 4 and 5 .
21 deleteFK(〈〈〈〈staff,did〉〉,〈〈dept,did〉〉〉〉)
22 deleteColumn(〈〈boss,id,notnull〉〉, [{x, y} | {x} ← 〈〈boss〉〉; {x, y} ← 〈〈staff,did〉〉])
23 deleteColumn(〈〈staff,car,null〉〉, 〈〈boss,car〉〉)

The resulting relational schema Srel
12 is equivalent to the ER schema Ser

12 . Proceeding
to integrate Srel

12 with Srel
3 , during merge, the first step is analogous to 6 . Transfor-

mations 25–28 are similar to 7 – 9 , but we need to additionally add a 〈〈sales,sid〉〉
column, since in the relational model each table must have key columns (whereas in
the ER model, 〈〈salesboss〉〉 may inherit the sid attribute from 〈〈sales〉〉 and 〈〈boss〉〉). By

A General Approach to the Generation of Conceptual Model Transformations 331

Srel
1

dept jdid

staff jsid jname jcar? jdid

� ⇒

Srel
2

dept jid

boss jsid jbonus? jcar jid

� ⇒

M
a
tch

Srel
1 :〈〈dept〉〉 S

= Srel
2 :〈〈dept〉〉

Srel
1 :〈〈dept,did〉〉 S

= Srel
2 :〈〈dept,id〉〉

Srel
1 :〈〈staff〉〉 S⊃ Srel

2 :〈〈boss〉〉
Srel

1 :〈〈staff,sid〉〉 S⊃ Srel
2 :〈〈boss,sid〉〉

Srel
1 :〈〈staff,car〉〉 S

= Srel
2 :〈〈boss,car〉〉

Srel
1 :〈〈staff,did〉〉 S⊃ Srel

2 :〈〈boss,id〉〉

Merge ⇓ 19–23

Srel
12

dept jdid

staff jsid jname jdid

�

boss jsid jbonus? jcar

�⇐

Srel
3

sales jsid jname jbonus?

pensionjsid jvalue
⇐

M
a
tc

h

Srel
12 :〈〈staff〉〉 S⊃ Srel

3 :〈〈sales〉〉
Srel

12 :〈〈staff,sid〉〉 S⊃ Srel
3 :〈〈sales,sid〉〉

Srel
12 :〈〈staff,name〉〉 S⊃ Srel

3 :〈〈sales,name〉〉
Srel

12 :〈〈staff〉〉
S
�∩ Srel

3 :〈〈pension〉〉
Srel

12 :〈〈staff,sid〉〉
S
�∩ Srel

3 :〈〈pension,sid〉〉
Srel

12 :〈〈boss〉〉 S∩ Srel
3 :〈〈sales〉〉

Srel
12 :〈〈boss,sid〉〉 S∩ Srel

3 :〈〈sales,sid〉〉
Srel

12 :〈〈boss〉〉
S
�∩ Srel

3 :〈〈pension〉〉
Srel

12 :〈〈boss,sid〉〉
S
�∩ Srel

3 :〈〈pension,sid〉〉
Srel

12 :〈〈boss,bonus〉〉 S
= Srel

3 :〈〈sales,bonus〉〉
⇒
24
|

37

M
erg

e

Srel
g

person jsid pensionjsid jvalue

staff jsid jname jdid

�
dept jdid

�
sales jsid

�
boss jsid jcar

�

salesboss jsid jbonus?

� �

Fig. 2. Three relational models being integrated. The relational models show the columns of a
table in white boxes, with the table name placed to the left of the boxes. Primary key columns are
underlined, and nullable columns are followed by a question mark. Foreign keys are shown by
drawing dashed arrowed lines

a similar argument 29–32 have an extra step compared to 10–11 . Also, they do not
express the semantic constraint that 〈〈pension〉〉 and 〈〈staff〉〉 are disjoint.
24 addFK(〈〈〈〈sales,sid〉〉,〈〈staff,sid〉〉〉〉)
25 addTable(〈〈salesboss〉〉, [{x} | {x} ← 〈〈sales〉〉; {x} ← 〈〈boss〉〉])
26 addColumn(〈〈salesboss,sid,key〉〉, [{x, y} | {x, y} ← 〈〈sales,sid〉〉; {x, y} ← 〈〈boss,sid〉〉])
27 addFK(〈〈〈〈salesboss,sid〉〉,〈〈sales,sid〉〉〉〉)
28 addFK(〈〈〈〈salesboss,sid〉〉,〈〈boss,sid〉〉〉〉)
29 addTable(〈〈person〉〉, 〈〈pension〉〉 ++ 〈〈staff〉〉)
30 addColumn(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉 ++ 〈〈staff,sid〉〉)
31 addFK(〈〈〈〈pension,sid〉〉,〈〈person,sid〉〉〉〉)
32 addFK(〈〈〈〈staff,sid〉〉,〈〈person,sid〉〉〉〉)

During restructuring, transformations 33–35 are analogous to 12–14 . However,
when combining 〈〈pension,sid〉〉 and 〈〈staff,sid〉〉 only transformation 36 can be per-
formed — the relational analogy of 15–17 — because the columns 〈〈pension,sid〉〉 and
〈〈staff,sid〉〉 are keys and cannot be removed without making the tables invalid. Trans-
formation 37 is analogous to 18 . The result of these transformations is Srel

g in Figure 2.

332 N. Rizopoulos and P. Mc.Brien

33 addColumn(〈〈salesboss,bonus,null〉〉, 〈〈sales,bonus〉〉)
34 deleteColumn(〈〈sales,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
35 deleteColumn(〈〈boss,bonus,null〉〉, 〈〈salesboss,bonus〉〉)
36 addColumn(〈〈person,sid,key〉〉, 〈〈pension,sid〉〉 ++ 〈〈staff,sid〉〉)
37 deleteColumn(〈〈sales,name,notnull〉〉, [{x, y} |

{x, y} ← 〈〈staff,name〉〉; {x} ← 〈〈sales〉〉])

4 Representing Models in the HDM

The integration examples in the previous section show that the manual schema trans-
formation and integration processes are driven by intuitive rules based on semantic re-
lationships between schema constructs. The analogy of the rules for the different mod-
elling languages imply that there are also generic rules that hold. In order to capture and
define these generic rules a generic framework is necessary, e.g. the hypergraph data
model (HDM) [23].

A hypergraph data model (HDM) M is a tuple 〈Nodes, Edges, Cons〉, where
Nodes is a set of nodes of a graph, Edges is a set of nested hyperedges, and Cons is
a set of constraint expressions over the Nodes and Edges. In [6] a set of primitive con-
straint constructs was proposed for the HDM, which will be used here in modelling a
higher level modelling language in the HDM:

– inclusion N1 ⊆ N2: The extent of node N1 is a subset of the extent of N2.
– exclusion �∩(N1 . . . Nn): For every x, y for which 1 ≤ x < y ≤ n, the extent of

node Nx does not intersect with the extent of Ny .
– mandatory N � E: node N is connected by edge E, and every instance in the

extent of N must appear at least once in the extent of E.
– unique N � E: node N is connected by edge E, and every instance in the extent

of N may appear no more than once in the extent of E.
– reflexive N

id→E: when a instance of N appears in edge E, then one of the instances
of E is that value of N as the value of all its nodes. Whilst by itself not very useful,
reflexive combined with mandatory and unique defines a notion of a key value.

The HDM model can represent any structured data modelling language [16, 6]. Here
we use the approach in [16] that classifies constructs of higher level data modelling lan-
guage into one of four basic representations in the HDM, which are listed below. Table 1
shows how an illustrative subset of the constructs in Figures 1 and 2 are represented in
the HDM.

A nodal construct is one that may appear in isolation in a model, and which has
an associated extent. For example, an ER model entity can be created without being
associated to other entities, and represents some set of objects in the UoD. Thus the
entity 〈〈staff〉〉 is represented in HDM as a single node 〈〈staff〉〉. Since entities have no
associated constraints, there are no constraints in the HDM. Relational tables are also
nodal constructs, are have a very similar mapping to the HDM.

A link construct is one that associates other constructs with each other, and which
has an extent which is drawn from those constructs. For example, the ER relation-
ship construct associates existing entity constructs, and hence is a link construct. Thus,

A General Approach to the Generation of Conceptual Model Transformations 333

node
sch construct scheme
Ser

g entity 〈〈person〉〉
Srel

g table 〈〈person〉〉
Ser

g attribute 〈〈person:sid〉〉
Srel

g column 〈〈salesboss:bonus〉〉
Ser

g entity 〈〈dept〉〉
Srel

g table 〈〈dept〉〉
Ser

g entity 〈〈pension〉〉
Ser

g entity 〈〈staff〉〉
Ser

g entity 〈〈salesboss〉〉
Srel

g table 〈〈salesboss〉〉

edge
sch construct scheme
Ser

g attribute 〈〈 ,person,person:sid〉〉
Srel

g column 〈〈 ,salesboss,salesboss:bonus
〉〉

Ser
g relationship 〈〈worksin,staff,dept〉〉

cons
sch construct scheme op scheme
Ser

g relationship 〈〈person〉〉 � 〈〈worksin,person,dept〉〉
Ser

g relationship 〈〈person〉〉 � 〈〈worksin,person,dept〉〉
Srel

g foreign key 〈〈person〉〉 ⊆ 〈〈person:sid〉〉
Ser

g attribute 〈〈person〉〉 id→ 〈〈 ,person,person:sid〉〉
Ser

g attribute 〈〈person〉〉 � 〈〈 ,person,person:sid〉〉
Ser

g attribute 〈〈person〉〉 � 〈〈 ,person,person:sid〉〉
Ser

g attribute 〈〈person:sid〉〉 � 〈〈 ,person,person:sid〉〉
Srel

g column 〈〈salesboss〉〉 � 〈〈 ,salesboss,salesboss:bonus〉〉
Srel

g column 〈〈salesboss:bonus〉〉 � 〈〈 ,salesboss,salesboss:bonus〉〉
Ser

g subset 〈〈boss〉〉 ⊆ 〈〈staff〉〉
Ser

g generalisation 〈〈pension〉〉 ⊆ 〈〈person〉〉
Ser

g generalisation 〈〈staff〉〉 ⊆ 〈〈person〉〉
Ser

g generalisation 〈〈pension〉〉 	∩ 〈〈staff〉〉

the ER 〈〈worksin,person,dept,1:1,0:N〉〉 relationship is represented in the HDM by the
edge 〈〈worksin,person,dept〉〉, which is also associated with constraints that represent
the relationship’s cardinality constraints. For example the 1:1 role for 〈〈person〉〉 in the
relationship causes there to be a mandatory and unique constraint in the HDM be-
tween HDM nodes 〈〈person〉〉 and 〈〈worksin,person,dept〉〉. No constructs in the rela-
tional model are link constructs.

A link-nodal construct is one that has an associated extent, but may only exist when
associated with some other construct. They are represented in the HDM by an edge
associating a new node with some existing node or edge. For example, ER attributes
are link-nodal constructs, and the 〈〈person, sid, key〉〉 ER attribute is represented by a
node 〈〈person:sid〉〉, and a nameless edge 〈〈 ,person,person:sid〉〉 linking that node to the
node representing the entity 〈〈person〉〉. The fact that an attribute may not exist without
its attached entity means that all attributes have a mandatory constraint between the
attribute node and the edge (e.g. between 〈〈person:sid〉〉 and 〈〈 ,person,person:sid〉〉).
The key constraint is represented by all mandatory, unique and reflexive constraints

Table 1. Representation of some constructs from Ser
g and Srel

g in the HDM

334 N. Rizopoulos and P. Mc.Brien

between 〈〈person〉〉 and 〈〈 ,person,person:sid〉〉. If the attribute had been null then the
reflexive and mandatory constraints would be omitted, and if the attribute had been
notnull then only the reflexive constraint would be omitted. Relational columns are
also link-nodal constructs, and have a very similar mapping to the HDM as do ER
attributes.

A constraint construct is one that has no extent associated with it, and just re-
stricts the extent that other constructs may have. For example, the ER subset is a
constraint construct, the subset 〈〈staff,boss〉〉 is represented by a subset constraint be-
tween HDM nodes 〈〈boss〉〉 and 〈〈staff〉〉. ER generalisations are also constraint con-
struct, and are represented by a subset between each child entity and the parent entity,
plus an exclusion between the child entities, as illustrated in Table 1 for generalisa-
tion 〈〈person,pension,staff〉〉. Relational foreign keys are also constraint constructs, and
have a similar mapping to the HDM as do ER subsets.

5 Generic Framework for Transformation Generation

Based on the definitions in the previous section, we now define a generic framework
for the integration of schemas irrespective of the high level conceptual modelling lan-
guage used to represent them. We specify a set of integration rules that derive BAV
transformations from the presence of semantic relationships between nodal, link, and
link-nodal HDM constructs. These generic rules can then be translated into high level
model specific rules, using techniques from [16, 6]. These higher level model rules are
then applied to schemas, and generate BAV transformations such as those presented in
Section 3. Four cases of generic rule to specific rule translation are identified:

1. Exact Translation: the generic rule can be translated into a model-specific rule
by performing a one to one mapping between the HDM constructs and transfor-
mations and their model-specific equivalents, e.g. an addNode transformation in a
generic rule would map into an addEntity transformation in the corresponding ER
model rule, and an inclusion constraint would map onto a foreign key constraint in
a relational model rule.

2. Model Limitations: in some cases the translation of a generic rule in a high level
modelling language cannot be exact because a construct or a transformation in the
generic rule does not have an equivalent construct or transformation in the high
level language. Therefore, some conditions and/or actions of a generic rule might
not be translatable. For example, the HDM exclusion constraint cannot be modelled
in the relational model, and therefore the addition of such a constraint cannot be
translated in a relational model rule.

3. Meta-constraint Requirements: because some modelling languages have meta-
constraints, extra conditions and actions might be necessary for the translation
of a generic rule into a model-specific rule. For example, a meta-constraint of the
relational model is the existence of a key column for every table. Therefore, a key
column must be added by the relational model rules for every table that they add.

4. Meta-constraint Restrictions: conditions and/or actions of a generic rule might be
restricted in the translated model-specific rule, if they violate the meta-constraints

A General Approach to the Generation of Conceptual Model Transformations 335

of the modelling language the rule is translated into, e.g. the deletion of a link-
nodal construct in a generic rule might be restricted by the corresponding relational
model rule, if the link-nodal is a key column.

Since we adopt the standard conform-merge-restructure integration approach [1], in-
tegration rules for each stage must be defined. Examples of generic rules for each stage
are presented next, together with explanations of their translation into high-level rules
for the ER and the relational model, and their application on the schemas in Section 3.

5.1 Naming Conforming

In the first stage we deal with naming conflicts: synonyms when equivalent constructs
have distinct names, and homonyms when non-equivalent constructs have identical
names. Generic Merge and Distinction rules resolve these two conflicts. Two auxiliary
predicates are required at this stage: identicalNames(C1,C2) returns true when con-
structs C1,C2 have identical names, false otherwise, and uniqueName(N) supplies a
new name not used by any construct. For example, the Link-Nodal Merge rule:

LN1
S
= LN2

¬ identicalNames(LN1,LN2)

renameLNgen(LN1, LN2)

deals with synonymous link-nodals. It examines the existence of the equivalence rela-
tionship between two link-nodals LN1 and LN2 with non-identical names and assigns
to them a common name. The Link-Nodal Distinction rule:

¬ LN1
S
= LN2

identicalNames(LN1, LN2)
uniqueName(LN ′)
renameLNgen(LN1, LN ′)

deals with homonym link-nodals. It assigns to one of them a unique name to explicitly
make the two link-nodals distinct. The Nodal and Link Merge and Distinction rules are
defined in the same manner.

These generic naming conforming rules can be translated into high level models by
Exact Translation. Simply, the generic rename transformations will be replaced by the
model-specific rename transformations [16]. For example, the Attribute and Column
Merge rules for the ER and the relational model are produced from the generic Link-
Nodal Merge rule by replacing renameLNgen with renameAttribute and renameCol-
umn, respectively. In the examples of the previous sections, applying these rules would
result into transformations 1 and 19 , respectively.

The naming conforming rules satisfy the RPP since the intentional domain of the
constructs is not affected, only equivalent constructs are assigned identical names.

5.2 Schema Merging

In the next stage of the integration, the schemas are merged and a single schema is
produced. Pair of equivalent constructs, which now have identical names, collapse into

336 N. Rizopoulos and P. Mc.Brien

single constructs, new constructs are added and constraints are introduced. The purpose
of the rules of this stage is to identify any possible concepts that do not appear explicitly
in the schemas. The rules satisfy the RPP since constructs are not deleted from the
schema, only added. Therefore the intentional domain of the existing constructs is not
affected.

〈〈N2〉〉 S⊂ 〈〈N1〉〉
addCons(N2 ⊆ N1) N2

N1

�

N2

⊆

N1

(a) Inclusion Introduction

〈〈N1〉〉 S∩ 〈〈N2〉〉
uniqueName(N ′)
addNodalgen(〈〈N ′〉〉, [{x} | {x} ← 〈〈N1〉〉; {x} ← 〈〈N2〉〉])
addCons(〈〈N ′〉〉 ⊆ 〈〈N1〉〉)
addCons(〈〈N ′〉〉 ⊆ 〈〈N2〉〉)

N2

N1

�

⊆

⊆

N′

N1

N2

(b) Addition of Intersection

〈〈N1〉〉
S

	∩ 〈〈N2〉〉
uniqueName(N ′)
addNodalgen(〈〈N ′〉〉, 〈〈N1〉〉 + + 〈〈N2〉〉)
addCons(〈〈N1〉〉 ⊆ 〈〈N ′〉〉)
addCons(〈〈N2〉〉 ⊆ 〈〈N ′〉〉)
addCons(〈〈N1〉〉 	∩ 〈〈N2〉〉)

N2

N1

�

N2

N1 ⊆

⊆

N′�∩

(c) Addition of Union

Fig. 3. Generic Schema Merging Rules

The integration rules at this stage examine the existence of subsumption, intersec-
tion and disjointness relationships between nodal constructs. When a subsumption re-
lationship is identified between two nodals then an inclusion constraint must be added
between them (Figure 3(a)). When two nodals N1,N2 intersect, then a new nodal should
be added to represent the common intentional domain of N1 and N2. The appropriate
inclusion constraints must also be introduced as illustrated in Figure 3(b). Finally, when
two nodals are disjoint, an exclusion constraint is added between them and the union
nodal is introduced to represent the union of the disjoint nodal domains (Figure 3(c)).

Exact Translation can be applied on these rules to produce the ER corresponding
ones. The addNodalgen actions would translate into addEntity transformations and the
addition of inclusion constraints would become addSubset transformations. In Sec-
tion 3, the ER Inclusion Introduction rule generates transformation 2 and the ER Ad-
dition of Introduction generates 7 – 9 transformations. Finally, the three HDM con-
straints in the Addition of Union rule map onto an ER generalization, therefore the ER
Addition of Union rule can also be produced by Exact Translation. The complete rule,
which in our examples generates transformations 10–11 , is defined next:

A General Approach to the Generation of Conceptual Model Transformations 337

〈〈E1〉〉
S

	∩ 〈〈E2〉〉
uniqueName(E′)
addEntity(〈〈E′〉〉, 〈〈E1〉〉 + + 〈〈E2〉〉)
addGeneralisation(〈〈E′, E1, E2〉〉)

Producing the corresponding merging rules for the relational model does not only
require Exact Translation but there is also a Meta-Constraint Requirement and a Model
Limitation case. For example, if we examine the Addition of Union rule we have that
the generic addNodalgen would become an addTable transformation by Exact Trans-
lation. Because of the Meta-Constraint Requirement of the relational model that each
table must have a key column, the rule is required to perform an extra addColumn
transformation. Conditions keyColumn that identify the key columns of the disjoint ta-
bles are also additionally added. Notice that the constraints added by the generic rule
cannot be represented entirely in the relational model. The Model Limitation is the
exclusion constraint, which does not have a corresponding construct in the relational
model. Therefore, only the addition of the inclusion constraints is translated (into ad-
dition of foreign keys). The complete rule is defined below. An application of it can be
seen in transformations 29–32 .

〈〈T1〉〉
S

	∩ 〈〈T2〉〉
uniqueName(T ′)
uniqueName(KC′)
keyColumn(〈〈T1〉〉,〈〈T1, KC1〉〉)
keyColumn(〈〈T2〉〉,〈〈T2, KC2〉〉)
addTable(〈〈T ′〉〉, 〈〈T1〉〉 + + 〈〈T2〉〉)
addColumn(〈〈T ′, KC′, key〉〉, 〈〈T1, KC1〉〉 + + 〈〈T2, KC2〉〉)
addFK(〈〈〈〈T1, KC1〉〉, 〈〈T ′, KC′〉〉〉〉)
addFK(〈〈〈〈T2, KC2〉〉, 〈〈T ′, KC′〉〉〉〉)

5.3 Schema Restructuring

In the final stage of the integration, the schema produced during merging is restruc-
tured in order to remove structural redundancies. The restructuring rules are defined
based on the identified semantic relationships between links and link-nodals. For each
relationship between links or link-nodals, all the possible relationships between the cor-
responding attached nodes are examined. All the possible constraint configurations are
also considered. We illustrate this approach with two examples.

Figure 4 examines one case of link subsumption and defines the Generic Optional
Link Removal rule. More specifically link e1 = 〈〈E1, N1, N

′
1/2〉〉 subsumes link e2 =

〈〈E2, N2, N
′
1/2〉〉 and node 〈〈N1〉〉 subsumes 〈〈N2〉〉. Since the domain of e2 is subsumed

by e1, link e2 can be considered for deletion. In order to be able to fully restore e2 after
its deletion and hence to satisfy the RPP, it must be ensured that the entities of e1 that
do not appear in e2 associate with 〈〈N ′

1/2〉〉 only the entities of 〈〈N1〉〉 that do not appear
in 〈〈N2〉〉. If this restriction is true then e2 can be restored by identifying the entities of
e1 that are associated with entities of 〈〈N2〉〉. The constraints that force this restriction
are: 〈〈N1〉〉� 〈〈E1, N1, N

′
1/2〉〉 and 〈〈N2〉〉� 〈〈E2, N2, N

′
1/2〉〉. Notice that before the link

is deleted any constructs that depend on it have to be examined. Dependent constraints,

338 N. Rizopoulos and P. Mc.Brien

〈〈E2, N2, N
′
1/2〉〉

S⊂ 〈〈E1, N1, N
′
1/2〉〉

〈〈N2〉〉 S⊂ 〈〈N1〉〉
〈〈N1〉〉 � 〈〈E1, N1, N

′
1/2〉〉

〈〈N2〉〉 � 〈〈E2, N2, N
′
1/2〉〉

constraints(,〈〈E2, N2, N
′
1/2〉〉,Cons)

deleteConstraints(Cons)
moveDependents(〈〈E2, N2, N

′
1/2〉〉,〈〈E1, N1, N

′
1/2〉〉)

deleteLinkgen(〈〈E2, N2, N
′
1/2〉〉, [{x, y} | {x, y} ← 〈〈E1, N1, N

′
1/2〉〉; {x} ← 〈〈N2〉〉])

N1

N2

⊆ N′
1/2

�

� �

N1

N2

⊆ N′
1/2

�

Fig. 4. Generic Optional Link Removal

identified by constraint, are deleted and all other dependent constructs are moved to
the remaining link.

The translation of this generic Optional Link Removal rule in the ER language is a
simple Exact Translation:

〈〈E2, N2, N
′
1/2, 1:N, Card2〉〉 S⊂ 〈〈E1, N1, N

′
1/2, 0:1, Card1〉〉

〈〈N2〉〉 S⊂ 〈〈N1〉〉
constraints(,〈〈E2, N2, N

′
1/2〉〉,Cons)

deleteConstraints(Cons)
moveDependents(〈〈E2, N2, N

′
1/2〉〉,〈〈E1, N1, N

′
1/2〉〉)

deleteRelationship(〈〈E2, N2, N
′
1/2, 1:N, Card2〉〉, [{x, y} |

{x, y} ← 〈〈E1, N1, N
′
1/2〉〉; {x} ← 〈〈N2〉〉])

The HDM deleteLinkgen becomes an deleteRelationship transformation and the manda-
tory and unique constraints map to cardinality constraints as explained in [6]. The con-
straints between 〈〈N1〉〉 and e1 map into a 0:1 cardinality constraint, which is less re-
strictive than 1:1, and the mandatory constraint between 〈〈N2〉〉 and e2 maps into a 1:N
cardinality constraint. In our examples, an application of the ER Optional Link Removal
rule generates transformation 3 .

Another example of a restructuring rule is illustrated in Figure 5. The case that
is examined here is the existence of a disjointness relationship between link-nodal con-
structs 〈〈X1, N1〉〉, 〈〈X2, N2〉〉when 〈〈X1〉〉,〈〈X2〉〉 are also disjoint. In this case, the link-
nodal constructs can be generalized by moving them from the sub-nodes 〈〈X1〉〉,〈〈X2〉〉
to the union node 〈〈X ′〉〉 added during the merging stage and identified by predicate
createdNodal. The rule adds the union link-nodal onto 〈〈X ′〉〉 and then deletes the ex-
isting link-nodals. Translating this rule to a high level model (such as transformations
15–17 in the ER model) requires an examination of Meta-Constraint Restrictions, ex-
cept from performing Exact Translation of the BAV transformations.

For the ER model, the predicate addLNgen can be redefined by Exact Translation.
Before performing the corresponding high level transformation, i.e. addAttribute, the
common constraints of the existing attributes must be identified and cascaded into the
new attribute. Also note that the deleteLNer must implement the meta-constraint that
either the attribute is not key, or its attached entity is a child of a subset or a generalisa-
tion.

A General Approach to the Generation of Conceptual Model Transformations 339

〈〈X1, N1〉〉
S

	∩ 〈〈X2, N2〉〉
〈〈X1〉〉

S

	∩ 〈〈X2〉〉
createdNodal(X1, X2, X

′)
uniqueName(N ′)
addLNgen(〈〈X ′, N ′〉〉,[〈〈X1, N1〉〉] + +[〈〈X2, N2〉〉],

〈〈X1, N1〉〉,X2, N2)

deleteLNgen(〈〈X1, N1〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X1〉〉])
deleteLNgen(〈〈X2, N2〉〉, [{x, y} |
{x, y} ← 〈〈X ′, N ′〉〉; {x} ← 〈〈X2〉〉])

X′

⊆

⊆

X2

X1

X2:
N2

X1:
N1

�

�

�∩

X′

⊆

⊆

X2

X1
�

X′ :
N′�∩

�

Fig. 5. Link-Nodal Generalisation

addLNer(〈〈X,N〉〉,Q,〈〈X1, N1, C1〉〉,〈〈X2, N2, C2〉〉) :-
C1=C2, addAttribute(〈〈X,N,C1〉〉, Q).

deleteLNer(〈〈X,N,C〉〉,Q) :-
¬C = key, 〈〈X ′, X〉〉, 〈〈X ′, . . . , X, . . . 〉〉, deleteAttribute(〈〈X,N,C〉〉,Q).

Translating the rule in the relational modelling language, an extra restriction is required.
In the redefinition of addLNgen a new column cannot be added if it is the union of key

columns, because table 〈〈N ′〉〉 has already got a key column, added by the Addition o
f

Union rule. In the case of deleteLNrel, a Meta-Constraint Restriction applies which
does not allow the deletion of key columns.

addLNrel(〈〈X,N〉〉,Q,〈〈X1, N1, C1〉〉,〈〈X2, N2, C2〉〉) :-
C1=C2, ¬ C1=key, addColumn(〈〈X,N,C1〉〉, Q).

deleteLNrel(〈〈X,N,C〉〉,Q) :-
¬ C = key, deleteColumn(〈〈X,N,C〉〉,Q).

6 Related Work

Many approaches to generating schema transformations can be found in the literature.
Early work can be found in [12, 21], where formal definitions of semantic relationships
between schema constructs similar to ours are given. However, both approaches are
concerned with integrating schemas defined in an extended ER language, which induces
restrictions compared to our generic approach of using the low-level HDM. We define
a wider set of formal rules and examine all possible constraint configurations.

In [10] similar semantic relationships to ours are used, where schema integration is
performed based on corresponding ontologies and concepts. However, the steps for the
creation of the integrated schema are not formally defined, nor is the data mapping, and
further restrictions are imposed, e.g. one schema construct can only map to only one
other construct.

The work most related to ours is [3], where a low-level graph-based modelling lan-
guage is also adopted, called Vanilla, which models both the schemas and the corre-
spondences between their constructs. There is an example showing how an extended
ER language can be supported by Vanilla, however there is no extensive explanation
of how schemas can be translated from Vanilla into a high level modelling language.

340 N. Rizopoulos and P. Mc.Brien

The advantage of using the HDM as the common modelling language is that the trans-
lation to and from Relational, ER, XML and UML schemas [16, 17] has already been
studied. Additionally, the schema integration approach in [3] is based only on semantic
equivalence between nodes, while we deal with a wider range of semantic relationships
between all types of generic constructs (nodals, links and link-nodals). However, the
advantage of [3] is that data-level correspondences between constructs are also consid-
ered, e.g. data level correspondence would specify that the instances of two constructs
can be concatenated. Our approach has a more semantic perspective than a data-level
one. Another difference between the two approaches is that we explicitly deal with
constraints and they are a necessary part of our rules. Finally, as for [19] where another
schema integration approach is proposed based entirely on equivalence relationships,
our methodology has the advantage of not only removing integrating schemas but addi-
tionally removing structural redundancies.

7 Summary and Conclusions

In this paper, we have presented a generic and formal framework to generate schema
transformations in the Merge operator. We use the low level HDM as the common
data modelling language, which permits the extension of this framework to any higher-
level modelling language. Our integration rules take as input four types of semantic
relationships — equality, subsumption, disjointness and intersection — and generate
BAV transformations over the HDM. Using the correspondence between the HDM and
higher-level models, these rules can be translated into rules that apply to higher-level
models. In this paper examples of translating generic rules into ER and relational mod-
elling language rules have been presented.

Since we adopt the BAV integration methodology, we are able to reason about the
transformation steps, demonstrate that we preserve information during the integration
and prove the correctness of the process.

Since we deal with a wide variety of semantic transformations, our framework can
be used in conjunction with most schema matching techniques [14, 15] both for merging
and improving schema structure.

In future work we will consider more complicated mappings as in [8, 20, 9], and
rules for removing redundant constraints. Relationships between different types of con-
structs might also prove useful. Our target is to implement a tool that based on this
formal framework can assist in the automatic integration of schemas.

References

1. C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

2. P. Bernstein. Applying model management to classical meta data problems. In Proc. CIDR,
2003, 2003.

3. Philip A. Bernstein and Rachel A. Pottinger. Merging models based on given correspon-
dences. In Proc. 29th VLDB Conference, Berlin, 2003.

A General Approach to the Generation of Conceptual Model Transformations 341

4. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, volume
3084 of LNCS, pages 82–97. Springer-Verlag, 2004.

5. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. Overview of the
automed repository. Technical Report No. 26, AutoMed, 2004.

6. M. Boyd and P.J. McBrien. Towards a semi-automated approach to intermodel transfor-
mations. In Proc. EMMSAD 04, CAiSE Workshop Proceedings Volume 1, pages 175–188,
2004.

7. P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.
8. Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domingos.

iMAP: discovering complex semantic matches between database schemas. In Proc. SIG-
MOD 2004, pages 383–394. ACM Press, 2004.

9. Anca Dobre, Farshad Hakimpour, and Klaus R. Dittrich. Operators and classification for
data mapping in semantic integration. In Proc. ER 2003, pages 534–547, 2003.

10. F. Hakimpour and A. Geppert. Global schema generation using formal ontologies. In Proc.
ER02, volume 2503 of LNCS, pages 307–321. Springer-Verlag, 2002.

11. E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimisation in
the AutoMed data integration framework. In Proc. Baltic DB&IS04, volume 672 of Scientific
Papers, pages 13–30. Univ. Latvia, 2004.

12. J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449–463, April 1989.

13. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233–
246. ACM, 2002.

14. L.Xu and D.W. Embley. Discovering direct and indirect matches for schema elements. In 8th
International Conference on Database Systems for Advanced Applications (DASFAA ’03),
Kyoto, Japan, March 26–28, 2003, pages 39–46, 2003.

15. J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proc.
27th VLDB Conference, pages 49–58, 2001.

16. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

17. P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML and structured
data sources. In Proc. CAiSE’01, volume 2068 of LNCS, pages 330–345. Springer, 2001.

18. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

19. Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: a programming platform for
generic model management. In Proc. SIGMOD 2003, pages 193–204. ACM Press, 2003.

20. R.J. Miller, M.A. Hernández, L.M. Haas, L.-L. Yan, C.T.H. Ho, R. Fagin, and L. Popa. The
Clio project: Managing heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

21. C. Parent and S. Scappapoetra. View integration: A step forward in solving structural con-
flicts. Research Report, EPFL-Computer Sc. Dept. Lausanne, 1990.

22. A. Poulovassilis and M. Levene. A nested-graph model for the representation and manipu-
lation of complex objects. ACM Trans. on Information Systems, 12(1):35–68, 1994.

23. A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28(1):47–71, 1998.

24. S. Scappapietra and C. Parent. View integration: A step forward in solving structural con-
flicts. IEEE Transactions on Knowledge and Data Engineering, 6(2):258–274, April 1994.

25. C. Zaniolo and M. Melkanoff. A formal approach to the definition and the design of concep-
tual schemata for database systems. ACM TODS, 1982.

Building a Software Factory for Pervasive
Systems Development�

Javier Muñoz and Vicente Pelechano

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia,
Camı́ de Vera s/n, E-46022, Spain
{jmunoz, pele}@dsic.upv.es

Abstract. The rise of the number and complexity of pervasive systems
is a fact. Pervasive systems developers need advanced development meth-
ods in order to build better systems in an easy way. Software Factories
and the Model Driven Architecture (MDA) are two important trends
in the software engineering field. This paper applies the guidelines and
strategies described by these proposals in order to build a methodologi-
cal approach for pervasive systems development. Software Factories are
based on the definition of software families supported by frameworks.
Individual systems requirements are specified by means of domain spe-
cific languages. Following this strategy, our approach defines a framework
and a domain specific language for pervasive systems. We use the MDA
guidelines to support the development of our domain specific language
and the automatic generation of the specific source code of a particu-
lar system. The approach presented in this paper raises the abstraction
level in the development of pervasive systems and provides high reusable
assets to reduce the effort in the development projects.

1 Introduction

Computing based systems growth is arriving to all environments of our daily life.
Pervasive systems live around us providing services to the inhabitants of a home,
the workers of an office or the drivers in a car park. We know that requirements
for current and future pervasive systems involve a great diversity of types of
services [14]. Such different services as multimedia, communication or automa-
tion services need hardware devices that different manufacturers provide. These
devices live in several networks running on different platforms. The development
of such systems is a very hard task because it should achieve devices interoper-
ability in an heterogeneous environment in order to satisfy system requirements.

Therefore, there is a need of new solid engineering methods for developing ro-
bust pervasive systems. Recently, two compatible approaches have been proposed

� This work has been developed with the support of MEC under the project DESTINO
TIN2004-03534 and cofinanced by FEDER.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 342–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Building a Software Factory for Pervasive Systems Development 343

for developing software systems in a highly productive and cost-effective way.
Software Factories [4] and the Model Driven Architecture (MDA) [10] provide
strategies for raising the abstraction level in the software development process
and making affordable the development of complex systems. The application of
the guidelines defined in this approaches to pervasive systems development can
help to build better systems in an easier way than applying traditional methods.
Software Factories focus on producing reusable assets that reduce the overall
development time. On the other hand, MDA promotes the use of high abstrac-
tion level models which provide the system developers with an intuitive way for
describing the system. These models should be automatically transformed to the
final implementation code.

The work presented in this paper proposes a methodological approach to
pervasive systems development following Software Factories principles and MDA
guidelines. The contribution of is this work is double. On the one hand, we apply
the Software Factories proposal to a concrete domain. Then, this work provides
an application case that can be used as a recipe for the construction of Software
Factories for other domains. On the other hand, our approach contributes to the
state of the art in pervasive systems development. We provide a model driven
development method for the specification and implementation of pervasive sys-
tems. Our approach establishes a methodological framework for automating the
construction of high-quality pervasive systems in a productive way

The structure of the paper is the following: Section 2 briefly introduces the
Software Factories and MDA approaches. We justify the application of these
proposals to Pervasive Systems development. Section 3 describes Pervasive Sys-
tems main characteristics and it presents our point of view for developing these
kind of systems. We introduce a Pervasive System for a meetings room in order
to illustrate our approach. Section 4 describes our application of Software Fac-
tories and MDA to Pervasive Systems. We present our strategy to apply MDA
guidelines into our methodological approach. We propose techniques for every
MDA building block. The Pervasive Modeling Language (Perv-ML), a modelling
language for describing Pervasive System using high abstraction level constructs,
is introduced. Next, a framework for developing Pervasive Systems is presented.
Finally, section 5 includes some conclusions and further work.

2 Software Factories and MDA

A Software Factory, as defined in [4], is a software product line that config-
ures extensible tools, processes and content [...] to automate the development
and maintenance of variants of an archetypical product by adapting, assembling
and configuring framework-based components. Therefore, Software Factories fo-
cus on the development of similar systems encouraging the reuse of architectures,
components and know-how.

On the other hand, MDA is, as described in the IEEE Software special issue
on Model Driven Development [8], ”a set of OMG standards that enables the
specification of models and their transformation into other models and complete

344 J. Muñoz and V. Pelechano

systems.”. Following this approach, system developers build high level abstrac-
tion models (called Platform Independent Models, PIM) and transform them
obtaining models that directly represent the final software product (called Plat-
form Specific Model, PSM).

Therefore, there is a natural integration of these two approaches. MDA tech-
niques can be used to support the development of domain specific languages for
building high level abstraction models. Then, these models can be transformed
in order to obtain the specific source code of a system in the context of a family
of systems.

Although the use of OMG languages is explicitly avoided and criticized in
[4], we think that the use of standards is a key aspect for the success of these
approaches, even when the standards are not as good as we would like.

In short, we are interested in the strengths of both approaches:

– from Software Factories we get their focus on reuse by means of domain
specific development.

– from MDA we get their focus on high level abstraction models and automatic
code generation.

In order to describe this specific domain, next section points out pervasive sys-
tems main characteristics.

3 Pervasive Systems

Pervasive systems try to build environments where computation elements dis-
appear from the user point of view but their functionality is still provided. This
vision was initially described by Weiser [15] in the early 90s and it is based on
the construction of computing-saturated environments properly integrated with
human users. The big challenge of this vision is the integration of several existing
technologies (handheld computers, broadband communications, sensor devices,
etc.) in an homogeneous whole. The development of such a kind of systems
requires the contribution of several engineering and research fields: hardware
designers, human-computer interaction experts, software engineers, etc. We can
find pervasive systems in environments like cars, offices, public building and, of
course, our homes.

Requirements for current and future pervasive systems involve a great diver-
sity of types of services [14]. Such different services as multimedia, communica-
tion or automation services need hardware devices that different manufacturers
provide and external software systems. These elements live in several networks
running on different technological platforms, but they can not satisfy isolatedly
all system requirements. The elements that compose the system must work to-
gether for achieving some system goals. Therefore we can distinguish two sources
of service providers: commercial off-the-shelf (COTS) elements1 and the
software system that integrates all the elements of the pervasive system.

1 We extend the definition of COTS to include hardware devices

Building a Software Factory for Pervasive Systems Development 345

5075mm

31
75

m
m

700mm

55
0m

m

3675mm

55
0m

m

700mm

31
75

m
m

208mm0mm0mm

14
9m

m0mm

14
9m

m

208mm0mm

1800mm

90
0m

m
90

0m
m

T M

Smart Blackboard

Presence
detector

Blinds

Fluorescent
panel

Lamps

Fig. 1. The map of a smart meetings room

Considering this point of view, the development of a pervasive system consists
of :

– The selection of the suitable COTS devices or external software
systems. These elements should provide the services that users require ei-
ther isolatedly or interacting with other elements.

– The development of the software system that integrates the exter-
nal elements in order to provide the services that users require.
The development of that software may imply the use of different technologies
but some gateway technology should exist.

We describe a pervasive system for a meetings room in order to illustrate
our approach. In such a system, depicted in Fig. 1, users require services like
lighting management by rooms presence, blinds management or drawings sharing.
Users do not mind what devices compose the system, they just need a specific
functionality. System architects deal with selecting the most suitable devices
(like lighting bulbs or a smart board in our case of study) for providing that
functionality.

4 A Software Factory for Pervasive Systems Development

As outlined in section 3, the development of a pervasive system implies the use of
many different technologies in order to satisfy all users requirements [13, 6]. Usu-
ally these technologies provide low abstraction level constructs to the developer.

346 J. Muñoz and V. Pelechano

Therefore, applying a MDA approach to pervasive systems supposes jumping a
very wide abstraction gap that must deal with the technology heterogeneity.

Following the Software Factories approach, a framework for pervasive systems
should be developed applying domain engineering principles. This framework
raises the abstraction level of the target platform and, therefore, the amount of
code is sensibly reduced.

Thus our proposed methodological approach to pervasive systems develop-
ment is based on:

– the construction of a domain specific language for the description of pervasive
systems.

– the construction of a framework that raises the abstraction level by providing
similar constructs to those defined by the domain specific language.

– the definition of mappings or rules for the transformation of models, that
are built using the domain specific language, to code that fulfils the defined
framework.

Next subsections describe both the MDA point of view of the proposed ap-
proach and the main architecture of the framework for pervasive systems. Sub-
section 4.1 presents the techniques for the construction of the domain specific
language and the definition of the mapping rules. Subsection 4.2 introduces the
implementation framework for developing pervasive systems.

4.1 MDA for Pervasive Systems

As we have justified in section 2, the MDA approach can be used in a Software
Factory to support the development of domain specific languages and the auto-
matic code generation step. The standard defines several building blocks for the
definition of MDA based methods, but it does not specify concrete techniques
to be used in each step. In order to put MDA in practice we should provide con-
crete techniques for each building block. These techniques must be defined using
OMG standards. Our approach proposes the following techniques for applying
MDA (see Fig. 2) to pervasive systems development:

1. Aprecise language forbuilding Platform IndependentModels (PIMs).
This is the domain specific language for precisely describing pervasive sys-
tems using high abstraction level constructs. We have defined the Pervasive
Modeling Language (Perv-ML) (outlined next) in order to build PIMs.

Source
Code

PIM Model to Model
Transformation

PSM Model to Code
Transformation

MDA
Components

Proposed
Techniques

OSGi Code

Perv-ML Graph Grammars
OSGi

Metamodel Templates

Fig. 2. MDA building blocks and our proposed techniques for pervasive computing

Building a Software Factory for Pervasive Systems Development 347

2. One or many modelling languages for building Platform Specific
Models (PSMs). The conceptual primitives of these languages must be di-
rect representations of constructs of the technology they model. In our case,
the target platform is the framework for pervasive systems developed as re-
sult of the domain engineering activity. As we will see next, this framework
is tightly based on OSGi [7]. OSGi is a standard defined by the Open Ser-
vice Gateway Initiative (OSGi) that describes a framework that was initially
created for hosting software of residential gateways. Then, we have defined
an OSGi metamodel for building Platform Specific Models.

3. PIM to PSM transformations. These transformations define how a PIM
can be converted to a PSM. Currently, model transformations is a hot re-
search topic. We apply graph grammars for defining the transformations
from Perv-ML to OSGi.

4. PSM to source code transformations. Finally, the code generation from
the PSMs is the last step of the development method. We are applying
templates to the elements of models in order to obtain the source code.

4.1.1 Pervasive Modelling Language (Perv-ML): The PIM Language
Perv-ML is a language designed with the aim of providing the system analyst
with a set of constructs that allow to precisely describe the pervasive system.
Perv-ML promotes the separation of roles where developers can be categorized
as analysts and architects. Fig. 3 shows the language organization. The dashed
arrow of Fig. 3 defines the construction order of the conceptual models that
our approach proposes. In short, systems analysts capture system requirements
and describe the pervasive system at a high level of abstraction using the ser-
vice metaphor as the main conceptual primitive. Analysts build three graphical
models that constitute what we call the Analyst View. On the other hand,
system architects specify what COTS devices and/or existing software systems
realize system services. Architects build other three models that constitute what
we call the Architect View. Next we give a more detailed description of the
language.

Analyst

Architect

Services
Model

Structural
Model

Binding
Providers

Model

Interaction
Model

Functional
Model

Component
Structure

Model

Fig. 3. The six models of Perv-ML

348 J. Muñoz and V. Pelechano

setIntenisty(entrada value : int)

intensity : int

«service»
GradualLighting

switch_on()
switch_off()

its_lighting : bool

«service»
Lighting

raise()
lower()

«service»
BlindManagement

start()
finish()
updateSketch(entrada new_draw : Sketch)
saveCurrentSketch()
deleteCurrentSketch()
emptySavedSketches()

working_sketch : Sketch
saved_sketches : List
work_in_progress : bool

«service»
SharedBlackboard

presence : bool

«service»
PresenceDetection

send(entrada data : Object, entrada address : string)

«service»
InformationDelivery

newMeeting(entrada data : Meeting)
deleteMeeting(entrada id : int)
newAttender(entrada attender : Attender)
asignAttender(entrada meeting_id : int, entrada attender_id : int)

meetings_list : List
current_meeting : Meeting

«service»
MeetingsManagement

«service»
LightingByPresence

0..*

1

0..* 1..*

Fig. 4. Meetings room Services Model

The Analyst View. The Analyst describes a pervasive system specifying a
set of functional elements that provide a specific set of services that the user of
the system requires. Those functional elements are what we call service instances.
For instance, if the meeting room described above has two binds and any user
wants to control them independently, the pervasive system must provide two
elements (instances) that provide the bind management service. Following this
approach we propose a step previous to the building of the Pervasive System
Conceptual Structure. In this first step, we introduce the Services Model where
the analyst defines services and their relationships. Perv-ML uses and extends
UML Class Diagram for representing the description of the services, and the
State Transition Diagram for modelling the behaviour. Fig. 4 shows the Service
Model of our meeting room.

Analyst defines the pervasive system functional structure in the Structural
Model. This model specifies the service instances of the system which are rep-
resented by a component. Perv-ML provides components as abstractions of the
low-level elements that realize the services. Every system component provides
one of the services described in the Services Model. In Fig. 5. we can see that
the LightingManagement component has dependency relationships with the
MainLighting and the Presence components due to the aggregation relation-

GradualLighting PresenceDetection

LightingByPresence

BlindManagement BlindManagement

MeetingsManagement SharedBlackboard

InformationDelivery

PresenceMainLighting

LightingManagement

LeftBlind RightBlind

MeetingRoom201 Blackboard201

MainDeliverySystem

Fig. 5. Components that provide the services of our case of study system

Building a Software Factory for Pervasive Systems Development 349

MainLightingLeftBlind RightBlind

{BlackBoard201.work_in_progress = true}

lower()

lower()

setIntensity(20)

Fig. 6. An interaction that lowers blinds and sets lighting to 20% of its maximum

intensity

ship defined in the Services Model. Perv-ML represents the Structural Model as
a UML Component Diagram.

As we have said in section 3, system services must cooperate in order to
satisfy all the system requirements. Analyst describes services cooperation in
the Interaction Model. An interaction is a communication between services for
providing a specific functionality, so analyst must describe as many interactions
as joint functionality the system provides. Every interaction is described by an
adapted UML Sequence Diagram, therefore the Interaction Model is composed
by several sequence diagrams. Fig. 6 shows an interaction for suiting lighting
when the blackboard service is being used. It lowers both blinds and it sets the
lighting service at a 20% of its maximum power. This interaction takes place
when somebody starts using the blackboard.

The Architect View. We need to build a detailed specification of the lower
level artefacts that realize system services in order to have a complete and opera-
tive pervasive system description. We use the term Binding Provider for referring
artefacts that the pervasive system manages to interact with its physical or log-
ical environment. A device, a sensor, an actuator or an external software system
can be binding providers. Architect describes every binding provider type that
is introduced to implement system services in the Binding Providers Model.
A type of binding provider represents a set of devices or software systems that
provide a similar functionality without detailing manufacturer specific informa-
tion. The Binding Provider Model is depicted using a stereotyped UML Class
Diagram. Fig. 7 shows some binding providers of our meeting room. The usage
of Lamp and FluorescentPanel actuators is different although both can be used
for lighting a room.

The System architect uses the Component Structure Specification to
specify the bindings providers that realize a component of the Structural Model.
For instance, a component that provides a lighting management service can be
realized by three lamps and a fluorescent panel. In such a case, the Binding
Providers Model must contain the lamp description. See Fig. 8 of the Structure

350 J. Muñoz and V. Pelechano

on()
off()

«actuator»
Lamp

onAll()
offAll()
onOne(entrada tube_id : int)
offOne(entrada tube_id : int)

tubes : int

«actuator»
FluorescentPanel

send(entrada message : Text, entrada attachments : List, entrada e-mail : string)

smtp_server : string
max_size : int

«software_service»EmailService

Fig. 7. Some elements of a Binding Providers Model

«actuator»
L1 : Lamp

«actuator»
L2 : Lamp

«actuator»
L3 : Lamp

«actuator»
MeetingRoomPanel : FluorescentPanel

Fig. 8. Structure Specification of the MainLighting component

Specification for the MainLighting component included in our meeting room
Structural Model (see Fig. 5).

Finally, architect must specify how every component operation is realized.
In the Component Functional Specification architect defines the sequence
of actions that the component realize when an operation is invoked. Architect
specifies actions using the UML Action Semantic Language (ASL). ASL does
not have an official concrete syntax, but many proposed syntaxes are available
like the one by Kennedy Carter [16].

Using the Perv-ML approach the system is completely described in a tech-
nology and manufacturer independent way. When a new technology emerges,
system description does not need to be modified. Moreover, if we want to use a
device of a new manufacturer we only have to develop a driver that adapts its
interface to the generic interface used in the Binding Providers Model. Even if
the system architect decides to change a component specification, analyst view
remains unmodified. We have isolated changes by means of stratification through
abstraction levels.

4.1.2 OSGi Metamodel: The PSM Language
As described above, there are a lot of implementation technologies for developing
pervasive systems. Using only a low-level technology for control (LonWorks, EIB,
UPnP) , data (Ethernet, Bluetooth, WiFi) or multimedia (IEEE1394, HAVi)
networks is not possible because of the diversity of services required, therefore
we have selected OSGi, a middleware platform that has bridges to many of
them and provides high-level constructs for building pervasive systems. This

Building a Software Factory for Pervasive Systems Development 351

middleware help us notably for filling the abstraction gap between the domain
specific language and the target implementation technology.

The Open Service Gateway Initiative (OSGi) [7] is an association of compa-
nies, that includes Sun Microsystems, IBM, Oracle and Nokia, created with the
aim of developing an open standard for service gateways. A service gateway is
the platform where resides the software for providing home services. It manages
home devices and it communicates with external networks. The standard defines
Java APIs for libraries that the OSGi platform provides and several standard
services like Logging, HTTP Server, Device Management, etc. Our own frame-
work is built on top of this middleware using their runtime environment and
services.

In order to integrate OSGi in the MDA phase of our development method, we
have to create models which are built using OSGi concepts. We have developed
an OSGi metamodel for specifying these concepts and their relationships. The
models built with a OSGi-only metamodel cannot be seen as final implemen-
tation models because every OSGi concept is actually implemented as a Java
entity. For instance, an OSGi Bundle is implemented as a JAR package, and an

-isInterface : Boolean
-fullName : String

JavaClass

JavaPackage

-name : String

JavaElement

-visibility : VisibilityKind

ClassFeature

ClassMember

BehaviouralFeature

Method

-type : String

TypedElement

FieldFeatureParameter

-kind : CodebaseKind
-uri : String

Codebase

-javaPackage1

-classes0..n

-classes

0..n

-codebase 1

-declaredBy 0..1

-features

0..n

1

-parameters 0..n

OSGiProperty

-relativeName : String

ClassResource

-resources0..n
-codeBase1

OSGiBundle

OSGiMethod

OSGiServiceImplementationOSGiServiceInterface

OSGiParameter

OSGiBundleActivator

OSGiManifest

OSGiOperation

Fig. 9. An OSGi/Java metamodel

352 J. Muñoz and V. Pelechano

OSGi Service Implementation is implemented through a Java Class. Therefore,
a fully functional modelling language for specifying OSGi based systems should
include a complete Java metamodel. Then, the inclusion of OSGi concepts can
be done as Java entities extensions with new specific constraints.

Our complete OSGi/Java metamodel is based on the Java metamodel de-
veloped by the NetBeans Community 2. This metamodel has been adapted and
extended to fit it in our needs. Fig. 9 shows a view of the Java metamodel with
our extensions. Elements that are mapped from the OSGi metamodel have been
depicted in grey.

4.1.3 Graph Grammars. Defining the Model Transformation Engine
As noted earlier, the definition of transformations between PIM and PSM involve
jumping a wide gap between abstraction levels. Currently standards for the
definition of transformations do not exist [2]. OMG published a Request For
Proposal [9] in order to achieve a language for defining transformation between
metamodels built with its Meta Object Facility (MOF). In the meantime, we are
using graph grammars [3] as the model transformation engine. There exist many
works [1, 5, 12] that propose graph grammars as a suitable technique for model
transformation. From a mathematical point of view, a model can be seen as a
graph where model elements are labelled nodes and the relationships between
model elements are edges. In this way we can apply all the existing knowledge
for defining graph transformations in order to achieve model transformations in
the MDA context. Graph grammars have many advantages over other proposed
techniques: a formal mathematical sound, algorithms for their application and
a graphical representation for intuitively defining transformations.

Fig. 10 shows two rules for model transformation from Perv-ML models to
OSGi-based models. Every rule is composed by a Left Hand Side (LHS), that
defines a pattern to be matched in the source graph, and a Right Hand Side that
defines the replacement for the matched subgraph. For instance, first rule says
that when a Perv-ML Component element is found it must be transformed into
a Bundle element and references to a Java Class and Manifest elements have
to be created and linked to the Bundle. Following this approach, transformation
from Perv-ML models to OSGi-based models is defined following a set of rules
like those defined in this section.

4.2 A Framework for Pervasive Systems Development

The framework for pervasive systems has been developed for supporting Perv-
ML, the domain specific language for this kind of systems. Therefore, the scope
and approach of the framework is inherited from the language. This means that,
as in Perv-ML, the framework is based on the assumption that the software of
a pervasive system must integrate many devices and external software systems
in order to provide the services that the users require. Following this approach,
users should deal with services and the software is in charge of the management of

2 http://java.netbeans.org/models/java/java-model.html

Building a Software Factory for Pervasive Systems Development 353

:=

:=

1)

3)
2)

1')

2)

1)

2)
1')

3)

name : String = ???

 : PervML_Component
name : String = match(1).name

 : OSGi_Bundle

relativeName : String = manifest.mf

 : OSGi_Manifest
isInterface : Boolean = false
fullName : String = match(1).name+'Activator'

 : Java_Class

name : String = ???

 : PervML_Service

isInterface : Boolean = false
fullName : String = ???

 : OSGi_ServiceImplementation

name : String = SystemServices

 : OSGi_Bundle

isInterface : Boolean = false
fullName : String = match(2).name

 : OSGi_ServiceImplementation

isInterface : Boolean = true
fullName : String = match(1).name

 : OSGi_ServiceInterface

name : String = SystemServices

 : OSGi_Bundle

3)

Fig. 10. Two rules that define models transformation

the devices or external systems for providing that services. Then, our framework
provides implementation primitives for directly supporting Perv-ML conceptual
primitives.

As described in subsection 4.1, we are using OSGi as platform for the devel-
opment of pervasive systems. This technology fits smoothly in our approach and
minimizes the abstraction gap to be filled. Many Perv-ML conceptual primitives
maps directly to OSGi implementation concepts, so OSGi can be considered a
key component of our framework.

Several architectures can be used when developing with OSGi. Fig. 11 shows
the global structure of the systems developed with our method. Packages in the
figure represent sets of resources (classes, interfaces, icons, etc.) with a common
goal. Dashed arrows represent dependence relationships. For instance, the Ser-
vice 2 package requires some resource located in the Device 1 package. We use a
three-tier architecture adapted to this kind of systems. Layers of the architecture
are described next.

4.2.1 User Interface Layer
The user interface layer is currently implemented as web pages using the HTTP
Service integrated in the OSGi platform. We divide this layer in two components.

– The main user interface is the entry door to the system and is in charge
of the organization of the access to the system services (by localization, by
kind of service, by more used services, etc.) and security issues.

– The individual services interface manage the interaction of every par-
ticular service in the system. Services of the same type have the same user
interface. For instance, in Fig. 11 services 2 and 3 (maybe lighting services)
are managed by the user interface 2 (UI2).

354 J. Muñoz and V. Pelechano

User Interface

UI 1 UI 2 UI n

Service 1 Service 2 Service 3 Service n

Driver 1 Driver 2 Driver 3 Driver n

...

...
Management

Services

Fig. 11. Global architecture of the framework

4.2.2 Logical Layer
Elements in the logical layer can be classified in two groups attending their
purpose:

– Services for supporting the functionality specified in the Perv-ML
model. These services are implemented as Java Classes and registered as
OSGi Services. All of them must implement the PervMLService interface for
ensuring a proper execution of the system. This interface has operations for
checking invariant constraints, managing concurrent execution, error han-
dling, etc.

– Services for the management of the system execution. This set of
services are in charge of ensuring global constraints satisfaction, checking
trigger conditions, providing web services and other auxiliar functionality.
These services are common to all the applications based on this frame-
work.

4.2.3 Communication Layer
Finally, the Communication Layer manages the interaction of the pervasive
system with its physical or logical environment. This layer is composed by drivers
that are used by the services in the upper layer. Every device or external soft-
ware system is repesented in this layer by a driver. Drivers in this layer are
implemented as Java Classes and registered as OSGi Services.

For avoiding interface heterogeneity, a unified interface is used for all similar
devices (or software systems). This means that, for instance, in our example

Building a Software Factory for Pervasive Systems Development 355

there is a unique interface for all lamps, all instant messaging systems or all
video projectors. Then, the driver is in charge of adapting that interface to the
actual device interface. The selection of the specific drivers for every generic
device interface happens in model compilation time.

5 Conclusions

In this paper we have presented a methodological approach for the development
of pervasive systems. Following the Software Factories strategy, our approach is
based on the construction of a framework for a family of similar systems and
a domain specific language (Perv-ML) for the specification of family members
requirements. We follow the MDA standard for the definition of the domain spe-
cific language and the automatic code generation step. This merged approach can
help to build better pervasive systems in an easier way than applying traditional
methods.

We have experimented many of these benefits in the development of Informa-
tion Systems. Our research group have developed a model driven method (called
OO-Method [11]) with full code generation capabilities that has been imple-
mented in the OlivaNova Model Execution System 3. Our aim is to apply these
successful ideas to pervasive systems development. This work was initially devel-
oped in the context of a R&D project together with Telefonica I+D. Perv-ML
has been applied for the specification of applications for Smart Homes.

We are currently working on providing tool support for several steps of the
method, like the construction of models using Perv-ML and the automatic trans-
formations of that models. Another important ongoing work is the specification
of the transformation rules from Perv-ML to OSGi code to implement the spe-
cific part of the framework. Finally, we are implementing pervasive systems with
our framework in order to obtain feedback for tuning our proposal.

References

1. György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,
and Dániel Varró. VIATRA: Visual automated transformations for formal verifi-
cation and validation of UML models. In Julian Richardson, Wolfgang Emmerich,
and Dave Wile, editors, Proc. ASE 2002: 17th IEEE International Conference on
Automated Software Engineering, pages 267–270, Edinburgh, UK, September 23–
27 2002. IEEE Press.

2. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, 2003.

3. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on
Graph Grammars and Computing by Graph Transformation, volume 2 Applica-
tions, Languages and Tools. World Scientific Publishing Co., Inc., 1999.

3 http://www.care-t.com/

356 J. Muñoz and V. Pelechano

4. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories.
Wiley Publising Inc., 2004.

5. Reiko Heckel, Jochen Küster, and Gabriele Taentzer. Towards automatic trans-
lation of UML models into semantic domains. In Proc. AGT 2002: Workshop on
Applied Graph Transformation, pages 174–188, 2002.

6. M. Hwang, Y. Jeon, and J. Kim. Standarization activities and technology com-
petitors for the in-home networking. In Internation Conference on Communication
Technology, 1998.

7. Dave Marples and Peter Kriens. The Open Services Gateway Initiative: An Intro-
ductory Overview. IEEE Communications Magazine, 39(12):110–114, 2001.

8. Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ intro-
duction: Model-driven development. IEEE Software, 20(5):14–18, 2003.

9. Object Management Group. OMG MOF 2.0 Query, Views, Transformations Re-
quest for Proposals.

10. Object Management Group. Model Driven Architecture Guide, 2003.
11. Oscar Pastor, Jaime Gómez, Emilio Insfrán, and Vicente Pelechano. The OO-

Method Approach for Information Systems Modelling: From Object-Oriented Con-
ceptual Modeling to Automated Programming. Information Systems, 26(7):507–
534, 2001.

12. Shane Sendall. Combining Generative and Graph Transformation Techniques for
Model Transformation: An Effective Alliance? In 2nd OOPSLA Workshop on
Generative Techniques in the context of Model Driven Architecture, 2003.

13. Kenneth Wacks. The successes and failures of standardization in home systems.
In 2nd IEEE Conference on Standardization and Innovation in Information Tech-
nology, 2001.

14. Roy Want, Trevor Pering, Gaetano Borriello, and Keith I. Farkas. Disapearing
Hardware. Pervasive Computing, 1(1), 2002.

15. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, Sept. 1991.

16. Ian Wilkie, Adrian King, Mike Clarke, Chas Weaver, and Chris Rastrick. UML
ASL Reference Guide. Kennedy Carter Limited, 2001.

Alignment and Maturity Are Siblings
in Architecture Assessment

Bas van der Raadt, Johan F. Hoorn, and Hans van Vliet

Vrije Universiteit, Faculty of Exact Science,
Information Management and Software Engineering,

1081 HV Amsterdam, The Netherlands
Fax +31 20 598 7718

{bvdraadt, jfhoorn, hans}@few.vu.nl

Abstract. Current architecture assessment models focus on either ar-
chitecture maturity or architecture alignment, considering the other as
an explaining sub-variable. Based on an exploratory study, we conjec-
ture that both alignment and maturity are equally important variables
in properly assessing architecture organizations. Our hypothesis is that
these variables conceptually differ, correlate, but do not explain one an-
other. In this paper we describe our Multi-dimensional Assessment model
for architecture Alignment and architecture Maturity (MAAM), which
contains six main interrelated sub-variables that explain both alignment
and maturity. We used existing models, literature from business and IS
domains, and knowledge gained from previous research to identify the
explaining variables. We constructed MAAM using structured modeling
techniques. We are currently using a structured questionnaire method to
construct an Internet survey with which we gather data to empirically
validate our model. Our goal is to develop an architecture assessment
process and supporting tool based on MAAM.

1 Introduction

Many large organizations suffer from the complexity of their business and IT
structures and processes. This complexity makes it extremely difficult to keep
an overview of the organization. Such overview, however, is needed to make im-
portant high-level strategic decisions about both business and IT priorities and
activities. It also obstructs the identification of inconsistencies between business
strategy and its supporting business and IT structures and processes, as well
as possible bottle necks in those structures and processes. Furthermore, an or-
ganization needs a central point of reference to its business and IT situations
in order to allow a meaningful communication about organizational decisions.
Therefore these organizations are increasingly using architecture as a means of
abstraction and communication, and as a management instrument to get a grip
on their often incomprehensible business and IT situations, and the fit between
the two [27].

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 357–371, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

358 B. van der Raadt, J.F. Hoorn, and H. van Vliet

The introduction and use of architecture within organizations, however, of-
ten does not go without a struggle. Applying architecture as a means to solve
problems often also creates new problems. Therefore, the need is growing within
organizations to assess the current architecture program and organization in
order to identify the constraints and problems that hinder their success, and
to specify the points of focus and a roadmap for improvement. Several assess-
ment models have been constructed to individually evaluate either business-IT
alignment (e.g., [6], [19]), or architecture maturity (e.g., [2], [10], [12], [25]).
Both types of models indicate that there is a relationship between alignment
and maturity. Maturity models see alignment as a sub-variable that (partly) ex-
plains the level of maturity of an architecture organization. Alignment models
see maturity as such an explaining sub-variable. That there is a relationship be-
tween alignment and maturity also becomes evident from the fact that the two
types of models both generally use the same factors to assess either maturity or
alignment – variables such as governance, process, communication, scope, and
partnership/involvement.

Unlike these existing assessment models, we see alignment and maturity as
two conceptually different variables that do not explain one another. However, we
do have strong indications that they correlate – from an exploratory study we ob-
served that when architecture maturity increases, alignment generally improves
too [27]. Also, in our view, only assessing either the alignment or maturity of an
architecture organization is not enough. They should be used in combination,
as two equally important variables, in order to properly assess an architecture
organization.

Trying to improve an architecture organization is like driving a car. While
driving a car, both velocity and direction are important variables. Without one
of these, the destination of the journey cannot be reached. These two variables
are conceptually different, but can nevertheless be related or affect one another.
For example, when the car makes a turn, the driver is likely to slow down. This is
because he or she wants to stay on the road or does not want to run into another
car. When driving on an oval racing circuit, the same driver probably would not
slow down. Although the two variables direction and velocity may be correlated
or may have an impact on one another, changing direction does not explain
why a car slows down. However, the driver’s carefulness does. Viewed this way,
velocity partially mimics architecture maturity and direction might symbolize
architecture alignment. A poorly aligned architecture organization translates
to a car that only turns right; it will end up driving in circles. By focusing
on both business and IT aspects, and applying them properly, an architecture
organization, quite like a car driver, is able to set out a course for maturity
improvement and change direction when needed.

In this paper we introduce our Multi-dimensional Assessment model for archi-
tecture Alignment and architecture Maturity (MAAM) that allows assessing an
architecture organization on both architecture alignment and architecture ma-
turity. MAAM allows an assessor to better draw conclusions and identify points
of improvement. We started constructing our model from the main variables

Alignment and Maturity Are Siblings in Architecture Assessment 359

that explain both alignment and maturity in existing maturity and alignment
assessment models. We extended these rather high-level variables by adding sub-
variables using general theories from business and IS literature, which we adopted
to the enterprise architecture domain, inspired by, among others, Henderson et
al. and Chan. For example, Henderson et al. adopted the business theory of
external positioning and internal arrangement for maximizing economical per-
formance to the IT domain [16]. Chan found that the informal organizational
structure is essential to IT alignment [5]. We introduced additional variables
based on the architecture aspects and critical success factors we identified dur-
ing an exploratory study at architecture active organizations, which is described
in [27]. We used Structural Equation Modeling (SEM) techniques [29] to con-
struct our model. We hope to validate MAAM using data gathered from the field
through a structured questionnaire. The goal of this research is to develop an
assessment process and tool support based on MAAM.

This paper is structured as follows. In Section 2 we describe related work
on business-IT alignment (Section 2.1) and architecture maturity (Section 2.2).
In Section 3.1 we clarify how we measure both alignment and maturity of an
architecture organization. We give a brief introduction to the six main variables
in MAAM that explain both alignment and maturity in Section 3.2, and illustrate
the depth of our model by describing in detail two of these variables, namely
architecture governance, and organizational support for architecture activities.
Section 3.3 shortly describes the practical application of the model. We end this
paper with our conclusions in Section 4.

2 Related Work

2.1 Alignment

Since fundamental early work by Henderson and Venkatraman (e.g., [15], [16]),
much is written about alignment in the literature. The notion and importance
of alignment are well understood. Many definitions exist, but there is general
consensus what alignment entails; the fit between business strategy, IT strategy,
organizational structures and processes, and IT structures and processes (e.g.,
[5], [16], [18]). The goal of alignment is for IT activities to support those of the
entire business [5].

Several alignment assessment models have been constructed. Luftman’s strate-
gic alignment assessment presents an approach for determining a firm’s business-
IT alignment based on six variables, namely communications, competency/value
measurements, governance, partnership, skills, as well as scope and architecture
[19]. This last variable is used to evaluate IT maturity, which indicates that
Luftman sees the level of IT maturity as an explaining variable for the level of
alignment. In [19], each of these six variables is assigned five levels of alignment.
The model provides a short description of the aspects of each level. The level
of alignment for each individual variable is determined by the answers to 6 or
7 questions. The model also describes the process of conducting an alignment

360 B. van der Raadt, J.F. Hoorn, and H. van Vliet

assessment. Luftman created this alignment assessment model based on his ex-
tensive research and practical experience. The model has been used to assess nu-
merous Fortune 500 firms in order to fine tune and validate the model, and allows
for cross-organizational benchmarking. Luftman’s model is quite pragmatic, but
ignores the interrelations between the variables that explain business-IT align-
ment, which our model does address. It also focuses on the general issues of
business-IT alignment, rather than architecture specific issues, although there is
much resemblance.

The Chief Information Officer (CIO) Council, a consortium of US Federal
executive agency CIO’s, developed an architecture specific alignment and assess-
ment guide [6]. This guide describes a process which consists of three phases, the
select phase, control phase, and evaluate phase. First, the select phase entails
assessing business alignment; whether and to what degree a proposed invest-
ment aligns with business strategy. Second, in the control phase the technical
alignment is assessed on how well the technology of investments aligns with the
infrastructure architecture. Finally, the third phase evaluates both the architec-
tural products and the architecture development process itself. This architecture
assessment does not describe any core variables, which disables the identification
of specific points of improvement, as well as interrelations between these vari-
ables. Also this assessment is quite specific to federal agencies, where our model
will be applicable in assessing different types of organizations.

2.2 Maturity

Not so much fundamental research is done on architecture maturity. There is no
real definition or clear description of architecture maturity in the literature. How-
ever, we could derive such a definition from other maturity studies in the field
of IT, such as the SEI Capability Maturity Model [26]. Architecture maturity
involves an organization’s ability to organization-wide manage the development,
implementation and maintenance of architectures on various levels – e.g. busi-
ness, information systems, technical infrastructure, etc. Please note that with
architecture maturity we focus on the entire architecture organization responsi-
ble for architecture development, and not merely on the architecture products
they create, such as descriptions and models.

Also assessment models have been constructed to evaluate a firm’s architec-
ture maturity. These models come from two types of organizations, consulting
firms such as Gartner [12] and METAGroup [2], and federal agencies, such as
the US Office of Management and Budget (OMB) [25] and the US department
of commerce (DoC) [10]. These models generally all work the same, in a way
comparable to Luftman’s alignment assessment model. They use a number of
variables, ranging from 4 to 12, to assess architecture maturity. Typical vari-
ables are process, governance, communication, technology, alignment (business
linkage), etc. The latter indicates that these models perceive the fit between
business and IT to be an explaining variable for architecture maturity. Each
variable knows five maturity levels, which are provided with a description of
aspects. The individual level of maturity for each variable is based on answers to

Alignment and Maturity Are Siblings in Architecture Assessment 361

generally 1 to 4 questions. Also, the assessment processes of these models share
many similarities with that described by Luftman [19].

Assigning assessed organizations a level of architecture maturity or archi-
tecture alignment contains an element of danger. Reaching the next level of
maturity or alignment could become a goal, although an assessment is meant
as a means for improvement. This obsession of reaching the next level draws
the attention away from the real important issues. Our model does not assign a
maturity or alignment level to an assessed organization. MAAM is able to give
a more dynamic, multi-dimensional diagnosis that shows how the interrelations
between variables influence and characterize the maturity and alignment of the
architecture organization.

3 Assessing an Architecture Organization

In this section we explain how an architecture organization is assessed on its
alignment and maturity using MAAM. We first define how these two variables
are to be measured and in which way the sub-variables explain both architecture
alignment and architecture maturity. In addition, we clarify why alignment and
maturity covary.

3.1 Alignment and Maturity

Architecture is a multi-dimensional phenomenon with different aspects originat-
ing from different fields of study, such as management and organization, busi-
ness psychology, software architecture and engineering, knowledge management,
and quality assurance. Maturity – the ability of an architecture organization
to company-wide manage the development, implementation and maintenance of
architectures on various levels – depends on how many of these aspects an archi-
tecture organization has identified as important and is using in performing its
activities. Companies using only few aspects of architecture have a low maturity,
and companies using many aspects have a high level of maturity [27]. Therefore,
we assess architecture maturity by measuring how many aspects are being used
by the architecture organization.

Alignment as the fit between business and IT is about business management
and IT personnel communicating with each other and understanding each other.
Thus, alignment comes from two sides. For example, a company is properly IT
to business aligned when its IT personnel have business knowledge and are able
to understand the business goals as well as create technological solutions to
reach those goals. When a firm’s senior (business) management knows what IT
might offer them and is able to express their needs to IT personnel it is well
business to IT aligned [5]. Therefore, in assessing alignment we measure how
much IT knowledge business management and employees have, and how much
IT management and personnel know about business issues.

From the above descriptions of alignment and maturity, it becomes clear that
both are conceptually different, independent variables that characterize an ar-

362 B. van der Raadt, J.F. Hoorn, and H. van Vliet

chitecture organization. However, these two variables do correlate. For instance,
some aspects of architecture specifically focus on business issues and others par-
ticularly on IT issues. When the number of architecture aspects that an architec-
ture organization uses increases, an architecture organization becomes more ma-
ture. Another aspect of a mature architecture organization is the increasing ex-
change of architectural knowledge between different architecture functions, also
between business-oriented and technical focused architecture functions, which
makes them communicate and understand each other better. Therefore, with
increasing maturity, business-IT alignment is likely to improve too.

Conversely, when alignment improves, the knowledge that senior (business)
management have about IT increases, which makes them more aware of the
opportunities IT offers them. The support of business executives boosts the
priority of architecture-related projects. More money is invested in architecture,
which results in more available architecture means – e.g., educating IT and
business personnel, attracting experienced architects, acquiring or developing
more architecture methods and techniques, etc. – and the presence of more
architecture aspects. Therefore, alignment improvement results in an expected
increasing maturity.

3.2 MAAM

Based on existing models ([2], [19]), existing theories from business and IS litera-
ture (e.g., [5], [16]), and findings from exploratory research ([27]) we identified six
key variables that explain both the level of maturity and the level of alignment:

– architecture development process
– architecture governance
– organizational support for architecture activities
– communication through and about architecture
– organizational and logical scope of architecture
– human and other architecture resources

Fig. 1 shows the top-level variables of MAAM, how they are all interrelated,
that they all explain both alignment and maturity, and that alignment and
maturity correlate. In the figure, a single-headed arrow (→) from one variable
to the other shows that the source variable explains the destination variable. A
double-headed arrow (↔) represents a correlation between two variables. These
notations are taken from SEM, a framework for statistical analysis that also
contains a variety of powerful analysis techniques we wish to use to validate our
model.

In the remainder of this section we describe two variables in Fig. 1 into more
detail, namely architecture governance and the organizational support for archi-
tecture activities. By describing these two variables in detail, we show the man-
agement and organization aspects and business psychological aspects of MAAM,
clarify how these variables explain each other, and we show the structure and
depth of our model. The contributions of the lowel-level structures in Fig. 2 and
Fig. 3 to the dependencies between these two top-level variables in Fig. 1 are

Alignment and Maturity Are Siblings in Architecture Assessment 363

Alignment Maturity

Process

Scope

Support
Communi-

cation

Resources

Governance

Architecture
Organization

Fig. 1. The six main interrelated sub-variables that explain the two correlated variables

alignment and maturity of an architecture organization

included in the discussion in the following notation: (Explaining variable → Ex-
plained variable). An internal working paper [28] gives a full description of all
six main variables of MAAM in a similar manner as in this section.

Governance. represents the management and organizational aspects of archi-
tecture. Like any organization, an architecture organization has to create a policy
that states its mission, vision and strategy concerning architecture. In order to
reach its strategic goals it has to structure and plan the activities of its architec-
ture program. Fig. 2 shows the interrelated sub-variables that further explain the
top-level variable governance in Fig. 1, using the same notation. The three main
explaining, interrelated sub-variables of governance are: (1) architecture policy,
(2) structure of the architecture organization, and (3) planning of architecture
activities.

Policy. An architecture organization needs to identify its environment (both in-
ternal and external to the company [16]), and clearly state its role, added value,
and goals in a policy. An architecture policy consists of the mission, vision, and
strategy concerning the architecture organization. The mission statement formu-

364 B. van der Raadt, J.F. Hoorn, and H. van Vliet

Planning

TermPriority

Approach

Long
Middle-

long Short

Top-
down

Bottom-
up

Quality
Time &
money

StructurePolicy Tasks &
functions

Responsibilities
& authorizationsMission

Strategy

Vision

Standing
plans

Methods Proce-
dures

Guide-
lines

Governance

Communication
& co-ordination

Strategy-
making

Fig. 2. The interrelated sub-variables that explain governance of the architecture or-

ganization

lates the justification of the architecture organization’s existence and its value
to the business, its business partners, and the employees of the entire company.
Further, the vision statement defines the goals and strengths of the architecture
organization based on this mission statement. Finally, an architecture organiza-
tion’s strategy lays the plans for accomplishing architectural goals; it puts the
vision in action and clarifies goals and tactics. All three parts of the policy are a
result of the strategy-making process [21]. The architecture strategy should be
aligned with the business strategy of the entire company. Communicating the
architecture mission [3], together with the vision and strategy of architecture [27]
to those stakeholders improves organizational commitment and support (Gover-
nance policy → Support commitment).

Structure. When one employee cannot perform all activities of a company’s ar-
chitecture organization, these activities need to be divided and structured. An
organizational structure consists of three parts. Firstly, it shows the division of
work into functions such as architects, and IT-managers, and their tasks. Sec-
ondly, it assigns authorizations and responsibilities to functions so that they are
able to carry out their tasks. Thirdly, the organizational structure defines the
communication and coordination means – e.g., work feedback, discussion and
reports of progress, and coordination committees – to glue the divided work
together [22].

Alignment and Maturity Are Siblings in Architecture Assessment 365

The assignment of responsibilities and authorizations, and the introduction of
communication and coordination means depend on the way work is divided into
tasks and functions. After a while, existing communication and coordination
means, as well as responsibilities and authorizations can become part of the
culture of an organization; ‘the way work is done here’ (Governance structure
→ Support flexibility).

The architecture organization’s structure is part of the structure of the en-
tire organization; it is typically a staff or line department. It should also be a
reflection of the architecture policy and be aligned with the policy and struc-
ture of the entire firm. Ideally structure follows strategy [4], but in practice
making a new policy requires paying attention to existing organization struc-
tures and operational processes [22]. In this the architecture organization is no
exception.

Planning. An architecture organization needs to plan its activities. Planning is
the process of information processing that results in decisions about and coordi-
nation of future acts so that these acts can be controlled. Decisions about future
activities can be made on long, middle-long, and short term. An important short
term goal is communicating the added value of architecture to senior and middle
management [19]. Improving the quality and structure of information systems
and infrastructure is typically a long-term goal [27]. The architecture organi-
zation’s planning should serve the architecture strategy [23], but strategy also
depends on the available planning means. When short-term goals are empha-
sized, middle-long and long term goals will be influenced negatively, hence the
covariance between the three different variables.

Clearly assigning priority to either the quality of architecture products or the
availability of resources, such as time and money, may prevent many problems.
Architects prioritize quality because they are responsible for the quality of a
design. Management, however, is more likely to prioritize the use of resources
because they are responsible for finishing projects within time and budget. In
practice this difference in responsibilities and prioritizing often results in tension
between the two groups [27]. The choice of prioritizing quality has a negative
correlation with the use of time and money, and vice versa.

The planning process knows two approaches. The first is a top-down approach
that starts with senior management initiating the planning of architecture ac-
tivities. This approach greatly depends on senior management’s ability to get
operational support. The second is a bottom-up approach where the planning
of architecture activities starts within the departments or divisions; they seek
senior management support (Support involvement → Governance planning). In
practice, the planning and execution of architecture activities often combines
both approaches [27].

Standardization of the architecture processes is accomplished by making
standing plans. Three kinds of standing plans exist: policy guidelines, standard
methods, and standard procedures. Firstly, policy guidelines are general indi-
cators of expected behavior or decisions in general situations. Secondly, stan-
dard methods are a refinement and specification of policy guidelines. They in-

366 B. van der Raadt, J.F. Hoorn, and H. van Vliet

dicate how to deal with specific situations. Thirdly, standard procedures pre-
scribe the range of connected tasks that form a unity with a precise rounded off
outcome.

The planning of the architecture activities should reflect the architecture
policy. Planning – a means of coordination of future activities – depends on the
structure it has to coordinate, but the organizational structure also depends on
the availability of means for planning those structured activities.

Support. characterizes the psychological and social aspects of architecture. In-
troducing and using architecture inflicts organizational changes, which can only
be successfully carried through with organizational support. Fig. 3 depicts the
interrelated sub-variables that more specifically explain the key variable support
in Fig. 1. Organizational support depends on three variables: (1) organizational
acceptance of architecture-driven changes, (2) the flexibility of an organization
in adjusting to its environment, and (3) organizational involvement in the archi-
tecture program.

Flexibility. Changing organizational behavior requires changing the organiza-
tional culture, which refers to the shared values and opinions, habits, and at-
titudes in an organization [9] and is typically difficult to change [17], [24]. A
culture’s compatibility with the intended changes influences the ability to make
those changes.

Involvement

AcceptanceFlexibility

Stimulate
Intention to

behave

Expectancy
Instrumen-

talityValence

Feedback
& coaching

Give right
example

Clear
obstacles

Change
existing

structures

Senior
manage-

ment

Software
engineers

Culture

Informal
structure

Middle
manage-

ment

Support

Commit-
ment

Shared
values

Habits Attitudes

Architects
IT-

manage-
ment

Fig. 3. The interrelated sub-variables that explain organizational support for architec-

ture activities

Alignment and Maturity Are Siblings in Architecture Assessment 367

In theory, changing the structure of an organization is quite simple, but in
practice it often has unexpected repercussions because of the existing informal
structure (Support flexibility → Governance structure). The informal structure
is the behavior of organization members, which is not explicitly structured in
advance. It consists of informal networks of personal contacts. Most companies
see informal networks as a burden rather than an aid. Senior executives often
work around them, or try to ignore them [7]. This hinders acceptance of deci-
sions and slows change down. When it comes to realizing alignment, informal
structures play a vital role [5].

Organizational commitment – the degree to which employees feel connected
to the organization – is an important explaining variable of organizational flex-
ibility. Personnel might completely internalize organizational values [24], which
makes culture difficult to change. They may also conform to only typical be-
havior without the underlying values. This group works according to the rules,
which are easy to change, and does not care about the shared values, which are
hard to change. Finally, organization members could share the central values of
an organization and at the same time criticize those values when needed. This
group is open for innovation and (architecture-driven) changes. It is important
to involve these innovative employees in architecture activities.

Commitment could be a shared value and be part of an organization culture.
If commitment is low, an organization member is more likely to go against the
rules and use the informal structure to get work done. Working by the rules
might also be a shared value – especially in hierarchical organizations – which
disables the arise and use of an informal structure (Governance structure →
Support flexibility).

Acceptance. In order to carry through architecture-driven changes, old organiza-
tional behavior needs to be transformed to new behavior. Many phase models for
changing organizational behavior exist (e.g., [9], [17]). They show many similar-
ities. First of all, the change-initiators – e.g., architects, IT-managers, or senior
management – should give the right example of how things should be done in the
future. Secondly, they should motivate organization members in adopting new
behavior by creating expectations and making clear what value these changes
can be to them. Expectancy-theory may be used to measure motivation and con-
tains three variables: (1) the expectancy that certain behavior leads to a certain
result, (2) the instrumentality that a certain result leads to a certain reward, and
(3) the valence (subjective appreciation) of that reward [30]. Thirdly, change-
initiators should give feedback about wrong, old behavior, and coach employees
in new behavior. The fourth variable is clearing obstacles that thwart change,
like a manager on a key position who is unwilling to change, or the old reward
system that stimulates old behavior. Therefore it is important to change these
existing structures so that they stimulate new behavior and prevent old behavior
(Governance structure→ Support acceptance). All these above factors should be
combined into one change program for the architecture program. Therefore they
are likely to covary.

368 B. van der Raadt, J.F. Hoorn, and H. van Vliet

Acceptance greatly depends on whether the intended changes will alter the
balance of power in the organizational structure. If so, people who will lose power
because of the architecture-driven changes are unlikely to cooperate, and vice
versa (Governance structure → Support acceptance).

Involvement. The involvement of key organization members – senior management
[18], line management, IT-management, software engineers, and architects [2] –
is critical to the architecture program’s success. For example, senior management
support for an architecture program would automatically create support by a
large part of the organization, because of their leadership position.

Architecture might have its origin in different parts of an organization, ei-
ther at the IT department, or at business management. If architecture has its
origin at senior management, middle management is vital in passing on the ar-
chitecture program to the operational level where the architecture should be
implemented. If the architecture program is an initiative of the IT-department,
IT-management and architects play an important role in selling architecture to
senior management and the rest of the organization [27].

The involvement of software engineers is vital because they build the soft-
ware systems architects design. The methods and techniques architects use and
the quality of the architectures they produce play an important role in getting
the software engineers to accept that architecture. If architects use practically
oriented methods and techniques that result in comprehensible designs that fit
the practice of implementing software systems, software engineers will be more
likely to accept those designs [27].

Because all groups have such different interests, it is unlikely that their lev-
els of involvement covary. For instance, a high level of involvement of software
engineers – who are developing software according to the architecture – does
not result in a higher senior management involvement. Every group has another
reason to adopt or reject the architecture program, so they all need separate
attention in raising their involvement.

3.3 Assessment Process

We are planning to gather data through a questionnaire (for an example, see Ap-
pendix), which allows us to validate MAAM. In our assessment process, the same
questionnaire is used to gather data among employees within one department, a
division, an entire firm, or even across enterprises, to assess the involved archi-
tecture organization(s). In order to visualize the results of each individual ques-
tionnaire in a supporting tool we use the Architecture Alignment Model (AAM),
introduced in [27]. This model relates architecture maturity on the horizontal
axis with architecture alignment on the vertical axis. If clustering the results of
the individual questionnaires shows groups with large differences when it comes
to alignment, efforts to re-align these groups should receive high priority. Com-
bining all results into an overall architecture assessment allows benchmarking an
architecture organization with competitors, which might indicate the necessity
to improve architecture maturity in order to keep up with them.

Alignment and Maturity Are Siblings in Architecture Assessment 369

4 Conclusion

In this paper we indicate the importance of a multi-dimensional approach to
assess an architecture organization. We introduce our Multi-dimensional Assess-
ment model for architecture Alignment and architecture Maturity (MAAM) that
is able to establish the current situation of a firm’s architecture organization,
identify the points of improvement, and construct a plan to address these points.

Existing architecture maturity assessment models assume that architecture
alignment explains architecture maturity. On the other hand, architecture align-
ment assessments see architecture maturity as an explaining variable for ar-
chitecture alignment. This indicates that there is an interrelation between the
two. We view architecture alignment and architecture maturity as conceptually
different. Also, in our view architecture alignment is not an explaining factor
of architecture maturity, and vice versa. Our hypothesis is that they correlate.
When architecture maturity increases, architecture alignment generally increases
too, and vice versa.

To construct our model, we used variables of existing assessment models ([2],
[19]), theories from literature from various research fields adopted to the IT
domain (e.g., [5], [16]), and previous research on the aspects and critical success
factors of architecture in practice [27]. Our model contains six main interrelated
variables that all explain each other and both alignment and maturity. These
six variables are again individually explained by other sub-variables.

We are currently constructing a self-administered Internet survey, using a
structured questionnaire method [11], to internationally gather data at archi-
tecture active organizations of all types and sizes. Using these data, we hope
to validate MAAM using SEM analysis techniques. This involves validating the
hypothesis that alignment and maturity correlate and do not explain each other,
and determining the strength of the relationships between the sub-variables that
explain both alignment and maturity as well as how these two explain the ar-
chitecture organization. An empirical study within the business-IT alignment
domain with an approach related to ours is conducted by Croteau et al. [8].

References

1. Bass, L., Clements, P., and Kazman, R.: Software Architecture in Practice (2nd
ed.). Addison-Wesley (2003)

2. Burke, B.: Evolving Architecture Maturity, Enterprise Planning and Architecture
Strategies. EPAS META Practices, No. 67. META Group, Inc. (2002)

3. Campbell, A., and Tawadey, K.: Mission and Business Philosophy; Winning Em-
ployee Commitment. Heinemann Professional Publishing (1990)

4. Chandler, A.D.: Strategy and structure: Chapters in the history of the industrial
enterprise. MIT Press (1962)

5. Chan, Y.: Why haven’t we mastered alignment? The importance of the Informal
Organization Structure. MIS Quarterly Executive Vol. 1, No. 21. (2002) 76–112

6. Federal Architecture Working Group: Architecture Alignment and Assessment
Guide. The Federal Chief Information Officers Council (2000)

370 B. van der Raadt, J.F. Hoorn, and H. van Vliet

7. Cross, R., and Prusak, L.: The People Who Make Organizations Go–or Stop. Har-
vard Business Review, June. (2002) 104–112

8. Croteau, A.M., and Bergeron, F.: An information technology trilogy: business strat-
egy, technological deployment and organizational performance. Journal of Strategic
Information System, Vol. 10. Elsevier (2001) 77–99

9. Dawson, S.: Analysing organisations (3rd ed.). Macmillan, London (1996)
10. The Department of Commerce Enterprise IT Architecture Advisory Group: IT

Architecture Capability Maturity Model. Department of Commerce, USA (2003)
11. Dillman, D.A.: Mail and Internet Surveys: The Tailored Design Method (2nd ed.).

John Wiley and Sons (1999)
12. Gartner Consulting: Architecture Maturity Assessment Evaluation. Gartner Inc.

(2002)
13. Guttman, L.: A faceted definition of intelligence. Studies in Psychology, Vol. 14.

(1965) 166–181
14. Harter, D.E., and Slaughter, S.A.: Process Maturity and Software Quality: a Field

Study. Proceedings of the 21th International Conference on Information Systems
(ICIS2000). Association for Information Systems (2000) 407–711

15. Henderson, J.C., and Venkatraman, N.: Strategic Alignment: A Framework for
Strategic Information Technology Management. Center for Information Systems
Research Working Paper No. 190. Massachusetts Institute of Technology, Cam-
bridge, MA (1989)

16. Henderson, J.C., and Venkatraman, N.: Strategic Alignment: Leveraging Technol-
ogy for Transforming Organizations. IBM Systems Journal, Vol. 32, No. 1. (1993)
4–16

17. Kotter, J., and Heskett, J.: Corporate Culture and Performance. The Free Press,
New York (1992)

18. Luftman, J.N., Lewis, P.R., and Oldach, S.H.: Transforming the Enterprise: The
Alignment of Business and Information Technology Strategies. IBM Systems Jour-
nal, Vol. 32, No. 1. (1993) 198–221

19. Luftman, J.N.: Assessing Business-IT Alignment Maturity. Communications of
AIS, Vol. 4, Article No. 14. Association for Information Systems (2000)

20. META Group, Inc.: Architecture Capability Assessment. META Practice, Vol. 4,
No. 7. META Group, Inc. (2000)

21. Mintzberg, H.: Crafting Strategy. Harvard Business Review, July-Aug. (1987) 66–
75

22. Mintzberg, H.: The Structuring of Organizations. Prentice Hall (1979)
23. Mintzberg, H.: The Fall and Rise of Strategic Planning. Harvard Business Review,

Jan-Feb. (1994) 107–114
24. Neuijen, J.A.: Diagnosing Organizational Cultures. Wolters-Noordhoff (1992)
25. OMB FEA Program Management Office: OMB Enterprise Architecture Assess-

ment v1.0 Guidelines. The Office of Management and Budget, The Executive Office
of the President, USA (2004)

26. Paulk, M.C., Curtis, B, Chrissis, M.B., and Weber, C.V.: Capability Maturity
Model, Version 1.1. IEEE Software, Vol. 10, No. 4. IEEE Computer Society Press
(1993) 18–27

27. van der Raadt, B., Soetendal, J., Perdeck, M., and van Vliet, H.: Polyphony in
Architecture. Proceedings 26th International Conference on Software Engineering
(ICSE2004). IEEE Computer Society (2004) 533–542

28. van der Raadt, B., Hoorn, J.F., and van Vliet, H.: Assessing Architecture Align-
ment and Architecture Maturity. IMSE Internal Working Paper. Vrije Universiteit,
Amsterdam, the Netherlands (2004)

Alignment and Maturity Are Siblings in Architecture Assessment 371

29. Rigdon, E.E.: Structural equation modeling. Modern methods for business research
G. Marcoulides (ed.). Lawrence Erlbaum, Mahwah, NJ (1998) 251–94

30. Vroom, V.H.: Work and motivation. Wiley, New York. (1964)

Appendix: Examples of Alignment and Maturity Scales

Below we give two example scales to measure alignment and maturity using Lik-
ert items with a rating scale from 0 to 5 (‘completely disagree’ to ‘completely
agree’). We plan to test these scales on their psychometric quality by checking
the convergent and discriminant validity of their items. Ultimately, we plan to
use a combination of SEM analysis techniques (correlation, regression, factor
analysis, path analysis, and model fit [11]) to validate MAAM.

Architecture Alignment Scale:
indicative
item A1: Business and IT strategy have the same priorities.
item A2: Senior management is involved in developing both strategies.
item A3: Business and IT strategy facilitate one another.
item A4: Business and IT managers understand each other.

contra-indicative
item A5: Business and IT strategy have different priorities.
item A6: Senior management is involved in establishing only one strategy.
item A7: Business and IT strategy constrain one another.
item A8: Business and IT managers misunderstand each other.

Architecture Maturity Scale:
indicative
item M1: Business architecture is well established.
item M2: IT architecture is well developed.
item M3: Business architecture is accepted.
item M4: People approve of the IT architecture.

contra-indicative
item M5: Business architecture is badly established.
item M6: IT architecture is ill-developed.
item M7: People reject the business architecture.
item M8: People oppose to the IT architecture.

Verification of EPCs: Using Reduction Rules
and Petri Nets

B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{b.f.v.dongen, w.m.p.v.d.aalst, h.m.w.verbeek}@tm.tue.nl

Abstract. Designing business models is a complicated and error prone
task. On the one hand, business models need to be intuitive and easy
to understand. On the other hand, ambiguities may lead to different in-
terpretations and false consensus. Moreover, to configure process-aware
information systems (e.g., a workflow system), the business model needs
to be transformed into an executable model. Event-driven Process Chains
(EPCs), but also other informal languages, are intended as a language
to support the transition from a business model to an executable model.
Many researchers have assigned formal semantics to EPCs and are using
these semantics for execution and verification. In this paper, we use a
different tactic. We propose a two-step approach where first the infor-
mal model is reduced and then verified in an interactive manner. This
approach acknowledges that some constructs are correct or incorrect no
matter what interpretation is used and that the remaining constructs
require human judgment to assess correctness. This paper presents a
software tool that supports this two-step approach and thus allows for
the verification of real-life EPCs as illustrated by two case studies.

1 Introduction

Nowadays, process-aware information systems such as Workflow Management
(WFM) [4, 15] and Enterprise Resource Planning (ERP) [12] systems are used
to support a wide range of operational business processes. These systems are
often configured on the basis of a process model and therefore it is of the utmost
importance that the process model is correct. Therefore, many researchers have
worked on the verification of process definitions. Several tools and approaches
have been developed for the workflow domain. The basis for most of the work in
this area is typically the construction of mathematically sound and executable
semantics for a specific modeling language. However, when looking at process
modeling techniques, we see that very often, such semantics do not exist, or
are too complex for a process designer to comprehend. Still, creating models in
these languages is usually easy to do and the resulting models are understood
by a broad audience. In this paper, we will focus on one of these modeling
languages: Event-driven Process Chains (EPCs) [11, 12, 22]. EPCs are used in
a large variety of systems, most notably SAP/R3, the Aris Toolset and Aris

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 372–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verification of EPCs: Using Reduction Rules and Petri Nets 373

EPC ready to
be verified

Apply Reduction
Rule

No reduction
possible,

EPC is trivial

More reduction
rules can be

applied

No reduction
possible,

EPC is not Trivial

EPC is correct and
executable

Check Result Check Result Check Result

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Calculate initial
events

Initial Events
are known

Transform to
Petri net

Ready for
transformation

Possible
combinations

of initial Events

Safe Petri net
with one

initial place
ready

Calculate state
space

Possible final
Markings known

Ready for
analysis

Allowed final
Markings

Color the state
space

All states
are colored

Not all states
are colored,

but all transitions
are covered

Some OR-
transitions

are not covered

Remove OR-
transitions if

allowed

All allowed OR
transitions are

removed

Not all transitions
are covered

Fig. 1. EPC describing the EPC verification process

Process Performance Monitor (PPM). We will not provide “yet another formal
semantics” for EPCs to be used as a basis for verification. Instead, we look at
verification from a designer point of view. We help the designer to find structural
conflicts, and give feedback about possible semantical problems. Furthermore,
if there is a trivial executable semantics, we will also provide this information
to the designer. However, in case of possible semantical problems, we leave the
designer in charge and let him decide what to do.

Since this paper is about the verification of EPCs, we use an EPC to describe
our approach. Figure 1 shows the details of the verification process in terms of
an EPC. The process consists of two main parts. First we take the EPC that is
defined by a process designer and, using simple reduction rules, we extract the
possibly problematic area. Then we translate the result into a Petri net and use
variants of existing Petri-net-based verification techniques to give feedback to
the designer.

As we discussed before, we will look at verification from a designers per-
spective, instead of from a formal perspective. Therefore, we will look at a more
relaxed correctness notion (similar to relaxed soundness [8, 7]). This process con-
sists of multiple steps. First, we introduce fictive nodes to make an EPC with one
initial event and one final event. Then, we use some reduction rules to eliminate
the “easy” constructs for which we know that they are correct.

374 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

In Section 4 we will discuss these reduction rules. If the EPC under investiga-
tion reduces to the trivial EPC, it is correct. In the reduction step, all functions
and events except initial and final event are removed. Furthermore, local choices
and trivial synchronization constructs are eliminated. If the result of the reduc-
tion is not the trivial EPC, the next step is to translate the EPC into a Petri
net in a rather simplistic way. In the last step we use the theory of workflow
nets [2, 4] and its related concepts such as soundness [2] and relaxed soundness
[8, 7]. The last step will provide the designer with one of the following three
answers:

The Petri net is sound, which means that the original EPC is correct and
no further reviewing is necessary.

The Petri net is relaxed sound, which means that some constructs need fur-
ther reviewing of the designer.

The Petri net is not relaxed sound, which means that there are unrecover-
able problems with the EPC. Corrections are necessary to create a correct
EPC.

We have developed a tool for the analysis of EPCs using the approach de-
picted in Figure 1. The tool is implemented in the context of the ProM frame-
work1.

In the remainder of this paper we will first look at some related work in Sec-
tion 2. Then, in Section 3 we introduce concepts like EPCs, Petri nets, soundness,
and relaxed soundness. As mentioned before, Section 4 introduces a set of power-
ful but simple reduction rules for EPCs. In Section 5 we translate the EPC into
a Petri net and discuss the verification process in more detail. In Section 6, we
briefly describe two case studies: one involving the trade process within a large
Dutch bank and the other involving the SAP R/3 reference models. Section 7
concludes the paper.

2 Related Work

Since the mid-nineties, a lot of work has been done on the verification of process
models, and in particular workflow models. In 1996, Sadiq and Orlowska [19]
were among the first ones to point out that modeling a business process (or
workflow) can lead to problems like livelock and deadlock. In their paper, they
present a way to overcome syntactical errors, but they ignore the semantical
errors. Nowadays, most work that is conducted is focusing on semantical issues,
i.e. “will the process specified always terminate” and similar questions. The work
that has been conducted on verification in the last decade can roughly be put
into three main categories. In this section, we present these categories and give
relevant literature for each of them.

1 See www.processmining.org for details.

Verification of EPCs: Using Reduction Rules and Petri Nets 375

2.1 Verification of Models with Formal Semantics

In the first category we consider the work that has been done on the verifica-
tion of modeling languages with formal semantics. One of the most prominent
examples of such a language are Petri nets [9, 17, 18]. Since Petri nets have a
formal mathematical definition, they lend themselves to great extent for for-
mal verification methods. Especially in the field of workflow management, Petri
nets have proven to be a solid theoretical foundation for the specification of
processes. This, however, led to the need of verification techniques, tailored to-
wards Petri nets that represent workflows. In the work of Van der Aalst and
many others [2, 6, 8, 10, 23] these techniques are used extensively for verifica-
tion of different classes of workflow definitions. However, the result is the same
for all approaches. Given a process definition, the verification tool provides an
answer in terms of “correct” or “incorrect”. However, not all modeling lan-
guages have a formal semantics. On the contrary, the most widely used model-
ing techniques, such as UML and EPCs are merely an informal representation of
a process. These modeling techniques therefore require a different approach to
verification.

2.2 Verification of Informal Models

Modeling processes in a real-life situation is often done in a less formal language.
People tend to understand informal models easily, and even if models are not
executable, they can help a great deal when discussing process definitions. How-
ever, at some point in time, these models usually have to be translated into a
specification that can be executed by an information system. This translation
is usually done by computer scientists, which explains the fact that researchers
in that area have been trying to formalize informal models for many years now.
Especially in the field of workflow management, a lot of work has been done
on translating informal models to Petri nets. Many people have worked on the
translation of EPCs to Petri nets, cf., [1, 3, 7, 14]. The basic idea of these authors
however is the same: “Restrict the class of EPCs to a subclass for which we can
generate a sound Petri net”. As a result, the ideas are appealing from a scientific
point of view, but not useful from a practical point of view.

Also non-Petri-net based approaches have been proposed for the verification
of informal modeling languages. One of these ideas is graph reduction. Since
most modeling languages are graph-based, it seems a good idea to reduce the
complexity of the verification problem by looking at a reduced problem, in such
a way that correctness is not violated by the reduction, i.e. if a model is not
correct before the reduction, it will not be correct after the reduction and if the
model is correct before the reduction, it will be correct after the reduction. From
the discussion on graph reduction techniques started by Sadiq and Orlowska in
1999 [20, 21] and followed up by many authors including Van der Aalst et al.
in [5] and Lin et al in [16], it becomes clear that again the modeling language
is restricted to fit the verification process. In general this means that the more
advanced routing constructs cannot be verified, while these constructs are what
makes informal models easy to use.

376 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

The tendency to capture informal elements by using smarter semantics is
reflected by recent papers, cf. [3, 7, 13]. In these papers, the problem is looked
at from a different perspective. Instead of defining subclasses of models to fit
verification algorithms, the authors try to give a formal semantics to an informal
modeling language. Even though all these authors have different approaches, the
goal in every case is similar: try to give a formal executable semantics for an
informal model.

2.3 Verification by Design

The last category of verification methods is somewhat of a by-stander. Instead
of doing verification of a model given in a specific language, it is also possible to
give a language in such a way that the result if always correct. An example of
such a modeling language is IBM MQSeries Workflow [15]. This language uses a
specific structure for modeling, which will always lead to a correct and executable
specification. However, modeling processes using this language requires advanced
technical skills and the resulting model is usually far from intuitive.

In this section, we have presented an overview of the literature on process
model verification. We have categorized the various methods in three main cat-
egories and pointed out why many of them are not used in practice. The main
difference between the technique presented in this paper and existing literature
is that we will not restrict an informal modeling language to fit our verification,
nor will we give an executable specification of an informal model. Instead, we
combine the best of existing literature and provide a system designer with a
tool to find possible problems in a specification. We do not aim at solving these
problems. Instead, we assume the designer to be able to decide whether or not
a specification is correct. The result of our work will be a verification plug-in,
implemented in the Process Mining (ProM) Framework, that is able to import
EPCs defined in the Aris Toolset2 and will provide the designer with feedback
about possible problems.

3 Preliminaries

In this section, we introduce some basic concepts needed for the verification
process. We introduce the modeling language of EPCs and Petri nets. Fur-
thermore, we introduce the notion of soundness and relaxed soundness of Petri
nets.

3.1 Event-Driven Process Chains

The concept of Event-driven Process Chains is to provide an intuitive modeling
language to model business processes. They were introduced by Keller, Nüttgens
and Scheer in 1992 [11]. It is important to realize that the language is not
intended to be a formal specification of a business process.

2 See www.ids-scheer.com for information about the ARIS toolset.

Verification of EPCs: Using Reduction Rules and Petri Nets 377

An EPC consists of three main elements. Combined, these elements define
the flow of a business process as a chain of events. The elements used are:

Functions, which are the basic building blocks. A function corresponds to an
activity (task, process step) which needs to be executed. A function is drawn
as a box with rounded corners.

Events, which describe the situation before and/or after a function is executed.
Functions are linked by events. An event may correspond to the position of
one function and act as a precondition of another function. Events are drawn
as hexagons.

Connectors, which can be used to connect functions and events. This way, the
flow of control is specified. There are three types of connectors: ∧ (and), ×
(xor) and ∨ (or). Connectors are drawn as circles, showing the type in the
center of the circle.

Functions, events and connectors can be connected with edges in such a
way that (i) events have at most one incoming edge and at most one outgoing
edge, but at least one incident edge (i.e. an incoming or an outgoing edge), (ii)
functions have precisely one incoming edge and precisely one outgoing edge,
(iii) connectors have either one incoming edge and multiple outgoing edges, or
multiple incoming edges and one outgoing edge, and (iv) in every path, functions
and events alternate (no two functions are connected and no two events are
connected, not even when there are connectors in between.)

From the definition of an EPC it is clear that a process always starts when a
certain event occurs. Such an event should be one of the events without incoming
edges. After the process is finished, the events that have not been dealt with yet
should be events without outgoing edges. If this is the case, we call the EPC
correct.

3.2 Petri Nets

Petri nets are a formal language that can be used to specify processes. Since
the language has a formal and executable semantics, processes modeled in terms
of a Petri net can be executed by an information system. In this paper, we use
a variant of the classic Petri-net model, namely Place/Transition nets. For an
elaborate introduction to Petri nets, the reader is referred to [9, 17, 18]. A Petri
net consists of two modeling elements:

Transitions, which typically correspond to either an activity (task, process
step) which needs to be executed, or to a “silent” step that takes care of
routing.

Places, which are used to define the preconditions and postconditions of tran-
sitions. A transition can be fired (executed) if the precondition is satisfied.
The result of such a firing will be that the postcondition holds.

Transitions and places are connected through directed arcs in such a way that (i)
places and transitions have at least one incident edge and (ii) in every path, tran-
sitions and places alternate (no place is connected to a place and no transition
is connected to a transition.)

378 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

To denote the state a process execution the concept of tokens is used. A
token is placed inside a place to show that a certain condition holds. Each place
can contain arbitrarily many of such tokens. If a transition execution occurs
(or fires), one token is removed from each of the input places and one token is
produced in each of the output places. This restricts the behavior in such a way
that a transition can only occur when there is at least one token in each of the
input places. The distribution of tokens over the places is called a state, or a
marking.

In this paper, we mostly consider Workflow nets (WF-nets). WF-nets are a
subclass of Petri nets tailored towards workflow modeling and analysis. A WF-
net has one source place and one sink place and all transitions are on a path
from source to sink. Based on WF-nets correctness notions such as soundness
[2, 4], generalized soundness [10] and relaxed soundness [8, 7] have been defined.

3.3 State Space

Petri nets can be used as executable specifications of business processes. When-
ever a Petri net is given, together with an initial marking it is possible to capture
all possible behavior in a state space. The only caveat here is that the Petri net
should be constructed in such a way that there is a maximum number of tokens
that can appear in a place. This property is called boundedness, and a special
case is when the maximum number of tokens in each place is one. In that case
this is called safeness.

In this section, we introduced EPCs and Petri nets. In the remainder of
this paper, we show the process of EPC verification. The first step is made in
Section 4, where we reduce the verification problem of a large EPC to that of a
smaller EPC. In Section 5, we use Petri nets and state spaces to decide whether
the EPC is correct.

4 Reduction Rules

In general, EPCs can contain a large number of functions, events and connectors.
However, for the verification of EPCs, not all of these elements are of interest.
In particular, we are interested in the routing constructs that are used in the
EPC, since that is where the errors can be. Furthermore, it is obvious that some
constructs are trivially correct, for example if a split of some type is followed by
a join of the same type. In this section, we introduce a set of reduction rules.
These rules can be applied on any EPC in such a way that, if the EPC is correct
before the reduction, then the result after reduction is correct and if the EPC
is not correct before reduction, then the result after reduction is not correct,
i.e. these rules are correctness preserving. However, we do not intend these rules
to be complete. Instead, they merely help to speed up the verification process,
by removing trivial parts before going to the more complex steps in terms of
computation time.

It is easily seen that the applying the reduction rules does not result in an
EPC, since functions and events no longer alternate. However, for the process of

Verification of EPCs: Using Reduction Rules and Petri Nets 379

verification, this is not a problem and we will refer to this reduced model as a
reduced EPC.

f

t
1

e

Fig. 2. Trivial construct

t1

t
2

t1

t
2

t1 = t2

OR

t2 = \/

Fig. 3. Simple split/join

t1

t
2

t
1

t
1

= t
2

Fig. 4. Similar joins

t1

t
2

t1t
1

= t
2

Fig. 5. Similar splits

X

X

X

X

Fig. 6. XOR loop

\/

t
1

\/

t
1

t
1
 = x

OR
t
1
 = \/

Fig. 7. optional OR loop

Figure 2 shows the reduction rule for trivial constructs. It shows that a func-
tion f , an event e or a connector with type t1 with precisely one ingoing and
one outgoing edge can be removed completely. As stated before, we are only in-
terested in routing constructs and functions, events or connectors with only one
incoming and only one outgoing edge do not provide any routing information.
Therefore, they can be removed while preserving correctness.

Figure 3 shows the reduction rule for a split that is followed by a join con-
nector. This rule can be applied if both connectors are of the same type (i.e.
AND, OR or XOR), or if the join connector is of type OR. Again it is trivial to
see that correctness is preserved.

Figures 4 and 5 show the rules for two connectors of the same type that
directly follow each other. These two connectors can then be merged into one
connector of the same type. Note that syntactical restrictions of (reduced) EPCs
do not allow for more then one edge between the first and the second connector,
since connectors are either a split or a join and never both.

380 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

EPC ready to
be verified

EPC is correct and
executable

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Initial Events
are known

Possible
combinations

of initial Events

Possible final
Markings known

Allowed final
Markings

Fig. 8. Reduced EPC for the verification process

Finally, figure 6 and 7 show two very similar reduction rules that deal with
loops. In these cases correctness preservation is less straightforward. For Figure 6
it is clear that removing the possibility to loop back is correctness preserving,
because the “backward arc” does not introduce any new states. Figure 7 shows
an optional rule. Unlike the others it is not correctness/incorrectness preserving
in any situation like the first five rules. The rule assumes that the intended
semantics is safe (i.e., no multiple activations of functions and no events that are
marked multiple time). This implies that if t1 is an OR-join either the backward
arc is taken or any combination of the other arcs.

Figure 8 shows the result of applying reduction rules to the EPC of Figure 1.
The resulting reduced EPC does not contain any functions, and only some of
the connectors from the original EPC. We know that none of the reduction rules
will make the reduced EPC incorrect if the original was correct, and they will
not make the reduced EPC correct if the original was incorrect. Therefore, we
can now proceed with the verification process using this reduced EPC and the
result can directly be translated back to the original EPC.

5 Verification of the Reduced EPC

In the previous section, we introduced reduction rules for EPCs in such a way
that we can use a reduced EPC for the verification process. In this section,
we will translate the reduced EPC into a safe Petri net (i.e. a Petri net where a
place contains at most one token). This is also the part of the verification process
where user interaction plays an important role. The user has to provide us with
possible combinations of initial events. These combinations are then translated
into initial markings of the Petri net. By calculating the state space, we can then
provide the user with all possible combinations of final events that can happen.
It is again up to the user to divide those into a set of desired and undesired
combinations. Using this information we go into the final stage, where we use a
simple coloring algorithm on the state space to decide whether the reduced EPC
is correct. This is then translated back to the original EPC.

Verification of EPCs: Using Reduction Rules and Petri Nets 381

The whole process of verification described in this section is implemented
in our the ProM framework. This tool interacts with the Aris toolset, which is
widely used in industry for modeling business processes.

User Interaction 1. As we stated before, the process of EPC verification relies
on user interaction at two points. The first point is where the user has to specify
which combinations of initial events can appear to initiate the process described
by the EPC. Using this information from the user, we can calculate which ini-
tial markings are possible for the Petri net that we will build. If we consider
the example from Figure 1, then there is only one combination of events that
can start the process. This is the combination of the events “EPC ready to be
verified”, “Possible combinations of initial events” and “allowed final markings”.
It has to be noted that the events “Possible combinations of initial events” and
“allowed final markings” can only appear as a consequence of some choice that
was made in the model. However, these causalities are not expressed in the EPC,
and therefore they cannot be known to the verification system. As can be seen
in the procedure shown in Figure 1, we are now ready to transform the EPC
into a Petri net.

Translation to Petri Net. Many authors have described algorithms to trans-
late EPCs to Petri nets. In this paper, we use a modified version of the translation
proposed in [8, 7]. The translation presented there gives a translation into normal
Petri nets, whereas we use the same translation algorithm, but assume the result
to be a safe Petri net, or elementary net. In terms of an EPC, this corresponds
to ruling out the situation where an event can occur more then once before it is
dealt with. Converting an elementary net into a Petri net again is a trivial step,
since it only requires the duplication of all places. The choice for elementary nets
is motivated by the idea that an EPC should clearly reflect its behavior from its
design. When one event is allows to appear again, before it is dealt with by some
function, this does not hold any more. The result of the transformation process
is shown in Figure 9. Note that in the layout of the Petri net the reduced EPC
from Figure 8 is visible.

Using the combinations of initial events calculated in the previous step, we
are ready for the state space generation.

State Space Generation. As we stated in Section 3.3, it is possible to calculate
the entire state space for a Petri net, if it is bounded, and the Petri net is not
too large. In our case, the Petri net is likely to be of limited size, since we used
the reduction rules to get a model that is as small as possible. Furthermore, the
Petri net contains at most one token in each place. Therefore we are likely to be
able to calculate the state space.

User Interaction 2. Now that we have calculated the state space, we are able
to provide the user with details about the possible outcomes of the process. In
our example, there are many different outcomes that were not intended to be
there. The reason for this is in the informal definition of the OR-connector in the
process. From this paper it will become clear that you either have both events

382 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

Fig. 9. Petri net translation of the reduced EPC

“Ready for analysis” and “Allowed final markings”, or you have “All allowed
OR transitions are removed”. However, from the description of the EPC, this is
not clear. Therefore, we require the user to select those possible outcomes that
correspond to correct executions of the process.

The Decision Process. Finally, we have all the ingredients we need to decide
whether the EPC is correct. We have a state space, of which we know all initial
states and all allowed final states. The first step toward the final decision is to
color everything from the state space that appears on a path from a initial state
to one of the allowed final states. The colored part of the state space then de-
scribes all the behavior that the user allows. Then, we look for all transitions that
do not have a colored edge in the reduced state space. We call those transitions
“not covered”.

In principle, transitions that are not covered show that there is possible in-
correct behavior. Translating this back to an EPC would result in saying that
a certain connector is used incorrectly. This is indeed the case for connectors of
type XOR and AND. However, for connectors of type OR, we need to perform
an additional step. When people use connectors of type OR, they do not neces-
sarily want all the possible behavior to appear. For example an OR split on two
functions A and B can be used to express that you want to execute either A, or
A and B, but never just B. In the verification process, this needs to be taken
into account. If for example the transition that goes only to B is not covered,
then it can safely be removed. However, this can only be done if the transition

Verification of EPCs: Using Reduction Rules and Petri Nets 383

to A and B is covered. This check is performed for all transitions that belong
to OR connectors and are not covered. Some of them will be removed from the
Petri net. The state space is then recalculated without the need for user inter-
action. Again, the coloring process is repeated and finally, when we know all the
transitions that are covered, we can provide the final answer.

There are three possible answers, namely:

The EPC is correct. This is the case if the entire state space is colored. If
the EPC is correct, then it is always possible to execute the process without
ending up in some undesired state.

The EPC can be correct. This is the case if the state space is not entirely
colored, but all transitions are covered. This result tells the designer that
the EPC can be executed, but special care has to be taken to make sure that
an execution does not end up in some undesired result.

The EPC is incorrect. This is the case when not all transitions are covered.
Basically this means that there is some part of the EPC that cannot be
executed without running into some undesired behavior.

In this section, we have presented a step by step algorithm for the verification
of EPCs. We have shown that we need user interaction on two levels, and that the
resulting answer is not “black or white”. Instead, there is a gray area where the
EPC can be executed correctly, but can also run into problems. This gray area
is not a flaw of the verification process. Instead, it shows the difference between
a conceptual modeling language such as EPCs and an executable specification
in terms of a Petri net. The EPC should be used to talk about the process
and not as an executable specification. However, it is possible to derive such an
executable specification from the EPC.

6 Two Case Studies

When developing methods for the verification of informal modeling languages,
such as EPCs, there is a need to show applicability in real life. Therefore, we
tested our approach in two different settings. The first case study was conducted
within the Trade Department of a large Dutch bank.3 There we applied our
approach and tool on a trade execution process. We were not primarily interested
in the outcome of the algorithm, i.e., whether the EPC analyzed was correct or
not, but whether the consultants that modeled the EPC would understand the
concepts described in this paper, and whether they would be able to use the
tools we developed. The second case study was not conducted within an external
organization. Instead we used our tool for the verification of some SAP reference
models present in SAP R/3 and Aris for MySAP. Also in the second case study,
we found some interesting problems.

3 We cannot disclose the name of the bank.

384 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

6.1 Verification of Trade Execution Process in a Dutch Bank

Within the bank, business consultants made large EPCs modeling the trade exe-
cution process. They used the Aris toolset for modeling their business processes.
They approached us to verify these processes. We applied the approach and the
conclusion of the ProM tool was that the EPC could be correct. In other words,
there existed possible executions that were not desirable. Using our tool, the
consultants were able to identify the problem area’s and from that they con-
cluded that the model was correct and that the intended behavior would not
lead to undesirable outcomes. Performing this test on their trade execution pro-
cess made them decide to keep on using the ProM tool in the future. Figure 10
shows the trade execution process in our ProM tool.

Fig. 10. ProM showing the trade process Fig. 11. ProM showing the SAP process

6.2 Verification of SAP Reference Models

The SAP reference models are widely used in industry as a starting point for the
configuration of SAP implementations. Of course, one would expect all these ref-
erence models to be correct, or at least to be possibly correct. Surprisingly, many
reference models contained unrecoverable errors, and they would (if applied di-
rectly in industry) definitely lead to undesired behavior of the SAP system. In
Figure 11 we show our tool highlighting the problem area of one of the SAP
reference models. The model shown here is the “Procurement of Materials and
External Services” process, where a mistake was made in one of the connectors,
since it was modelled as a XOR-join instead of an AND-join.

The two case studies highlight the applicability of the approach. Unfortu-
nately, we cannot elaborate on them because a detailed discussion would make
the paper too long.

7 Conclusion

In this paper, we have presented an algorithm for the verification of EPCs. In
contrast to many authors, we do not assume EPCs to be an executable specifica-

Verification of EPCs: Using Reduction Rules and Petri Nets 385

tion of a process, nor do we translate the EPC into one. In order to still be able
to say something about the correctness of EPCs, we developed an interactive
way of verifying EPCs. In this interactive process, we assume the user to have
deeper knowledge of the EPC and we assume the user to be able to interpret the
results. Besides that, we acknowledge the fact that EPCs are conceptual models
and therefore our result cannot be expressed in a binary way. An EPC obviously
is incorrect, if some part of it will always lead to undesired behavior, and it is
correct if no part will ever lead to undesired behavior. However, there is a gray
area in between those two extremes, where the EPC does allow for undesired
behavior on the level of the model. This however, does not mean that there is
no way of deriving an executable specification using the EPC as a basis.

References

1. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

2. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer-
Verlag, Berlin, 2000.

3. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
November 2002. Gesellschaft für Informatik, Bonn.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way
to Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo, and
M.T. Ozsu, editors, Proceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE’02), volume 2348 of Lecture Notes in
Computer Science, pages 535–552. Springer-Verlag, Berlin, 2002.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 25(1):43–69, 2000.

7. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

8. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01), vol-
ume 2068 of Lecture Notes in Computer Science, pages 157–170. Springer-Verlag,
Berlin, 2001.

9. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

10. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and
E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.

386 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

11. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

12. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

13. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

14. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event
driven Process Chains. In J. Desel and M. Silva, editors, Application and Theory
of Petri Nets 1998, volume 1420 of Lecture Notes in Computer Science, pages
286–305. Springer-Verlag, Berlin, 1998.

15. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

16. H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to
Identify Structural Conflicts. In Proceedings of the Thirty-Fourth Annual Hawaii
International Conference on System Science (HICSS-35). IEEE Computer Society
Press, 2002.

17. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

18. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

19. W. Sadiq and M.E. Orlowska. Modeling and verification of workflow graphs. Tech-
nical Report No. 386, Department of Computer Science, The University of Queens-
land, Australia, 1996.

20. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Iden-
tifying Structural Conflicts in Process Models. In M. Jarke and A. Oberweis,
editors, Proceedings of the 11th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, Berlin, 1999.

21. W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

22. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

23. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Work-
flow Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science,
pages 475–484. Springer-Verlag, Berlin, 2000.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 387 – 399, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Measurement Practices for Knowledge Management:
An Option Perspective

An-Pin Chen and Mu-Yen Chen

Institute of Information Management, National Chiao Tung University,
Hsinchu, 300, Taiwan, ROC

{apc, mychen}@iim.nctu.edu.tw

Abstract. This article develops an option pricing model to evaluate knowledge
management (KM) activities from the following perspectives: knowledge crea-
tion, knowledge conversion, knowledge circulation, and knowledge carry out.
This paper makes three important contributions: (1) it provides a formal theo-
retical grounding for the validity of the Black-Scholes model that might be em-
ployed to KM; (2) it proposes a measurement framework to enable leveraging
knowledge assets effectively and efficiently; (3) it presents the first application
of the Black-Scholes model that uses a real world business situation involving
KM as its test bed. The results prove the option pricing model can be act as a
measurement guideline to the whole KM activities.

1 Introduction

In a knowledge economy where the only certainty is uncertainty, one source of lasting
competitive advantage is knowledge and its manipulation [26]. Today, there is a
growing recognition by researchers and practitioners about the importance of manag-
ing knowledge as a critical source for competitive advantage. As the resource com-
mitments to knowledge management (KM) continue to escalate, the following types
of questions are being asked more frequently than ever before: Is that investment in
KM really worthwhile? Is that KM we implemented a success? Is our KM productive
and effective?

Recent surveys indicate that issues such as ‘measuring the value of KM’ and
‘evaluating KM performance’ are of great importance to managers in places like Asia
[1], the United States [29] and the United Kingdom [30]. Given the increasing role of
KM in upgrading business competitiveness, the wide interest of managers in measur-
ing and evaluating both KM performance and benefit is not surprising [8].

At another level of analysis, the productivity paradox has become a contentious is-
sue among both economists and the information technology (IT) community [7] [28].
Indeed, many KM practitioners have used IT to practice KM in form of a knowledge
management system (KMS). Unfortunately, several researches indicate that while the
level of IT investment is correlated to corporate revenues, it is not correlated to either
productivity or profitability [11] [15]. Managers have found it difficult to demonstrate
tangible returns on the resources expended to plan, develop, implement and operate
KM. For example, since effectiveness and innovation cannot be readily quantified in

388 A.-P. Chen and M.-Y. Chen

terms of traditional outputs, these improvements are not reflected in economic effi-
ciency statistics. Certainly, the fundamental issue of measuring and evaluating KM
investments and performance remains unresolved.

This paper aims at proposing option pricing models in such a way that they become
part of the managerial practice when evaluating KM solution. Its main contribution is
the description of a real-life case study that demonstrates the usage of option valua-
tion methods for analyzing KM. Regarding the organization of this paper; we start by
giving an overview of prior research on KM evaluation in Section 2. We then describe
the methodology of KM evaluation and integrate with balanced scorecard (BSC) in
Section 3. Section 4 briefs on how the option models can serve as an evaluation tools
for KM managers. The above-mentioned case study is presented in section 5. Finally,
the conclusion and future work are discussed in Section 6.

2 Preliminary

KPMG [22] reports that the reasons for the creation of knowledge management initia-
tives cited by most companies are facilitating better decision making, increasing
profit, and reducing costs. However, KM suffers from the same challenges as many
other management issues: it assumes that knowledge is a ‘thing’ which is amenable to
being ‘managed’ by a ‘manager’. First, which KM process is the key point to achieve
competitive advantage? Second, which measurement method is the remarkable view-
point to appraise KM performance?

KM performance measurement methods are broad category of research issues. We
can see the method developments are diversified due to researchers’ backgrounds,
expertise, and problem domains [23]. In our research, we can classify KM evaluation
methods according to three types: qualitative and quantitative, financial and non-
financial, internal and external performance approaches.

2.1 Qualitative and Quantitative Approach

A qualitative research approach was refined using the outcomes of a pilot study and
reviews by researchers of organization learning. For example, the success of knowl-
edge sharing in organizations culture, are not only technological but also related to
behavior factors. Besides, expert interviews, critical success factors method (CSFs),
and questionnaires are used to implement qualitative methods for exploring specific
human problem.

Table 1. The benefits in the qualitative and quantitative index

Knowledge Management Benefits
Qualitative Index Quantitative Index

 Improving employees skills
 Improving strategies quality
 Improving core business processes
 Developing customer relationship
 Developing supplier relationship
 Developing innovative cultures

 Decreasing operation costs
 Decreasing product cycle time
 Increasing operation productivity
 Increasing market sharing
 Increasing shareholder equities
 Increasing patent income

 Measurement Practices for Knowledge Management: An Option Perspective 389

In opposition, a quantitative research approach was designed to represent a tangi-
ble, visible and comparable ‘ratio’. It can be measured by financial and non-financial
index. We will discuss in next paragraph. Table 1 shows the KM benefits and classes
with qualitative or quantitative indexes.

2.2 Financial and Non-financial Approach

Traditional quantitative methods focus on well-known financial measures, such as the
payback period, the return on investment (ROI), the net present value (NPV), the
return of knowledge (ROK), and the Tobin’s q. These methods are best-suited to
measure the value of daily transaction processing systems. Unfortunately, evaluation
methods that rely on financial measures are not as well-suited for complicated IT
applications. These systems typically seek to provide a wide range of benefits, includ-
ing many that are intangible in nature. For example, it is difficult to quantify the full
value of a point-of-sales (POS) system [4] or an enterprise resource planning (ERP)
system [32].

Non-financial measures method is different from traditional financial statement
analysis. It uses non-financial index, such as the frequencies, times, counts, and num-
bers. For example, the topic numbers of discuss board in KMS, are related to behavior
factors and system usage situation.

2.3 Internal and External Performance Approach

Internal performance measurement methods focus on process efficiency and goal
achievement efficiency. These methods evaluate KM performance through the gap
between target and current value. The well-known methods are including ROI, NPV,
balanced scored (BSC), and activity-based costing (ABC).

External performance measurement methods always compare itself with bench-
mark companies, primary competitions, or whole industry average. For example,
benchmarking is the process of determining who is the very best, who sets the stan-
dard, and what that standard is. When we apply the benchmarking concept in busi-
ness, the following types of questions are being asked: Which company has the best
manufacturing operation? And how do we quantify that standard?

2.4 Option Valuation Approach

A number of researchers have written on the use of option models in IT investment
decision making. The pioneering work of DosSantos [13] employs Margrabe’s ex-
change option model [25] for valuing an IS project that uses a novel technology for
testing. He argues the option model would be better than NPV to evaluate new IT
project. Similarly, Kambil et al. [17] use the Cox-Rubinstein binomial option pricing
model [10] to determine whether or not a pilot project should be undertaken.

For a software platform, several options usually are relevant. In analogy to Kester’s
“growth options” for firms [21], Taudes investigates options for evaluating “software
growth option” [31], which can be valued software platforms and benefit.

Benaroch and Kauffman [4] investigate the problem of investment timing using the
Black-Scholes model in a real world case study dealing with the development of
point-of-sale (POS) debit service. Their contributions are not whether an investment

390 A.-P. Chen and M.-Y. Chen

should be undertaken, but when to exercise the option held, i.e., when to implement a
particular IT solution. In a follow-up paper, Benaroch and Kauffman [5] use sensitiv-
ity analysis to probe Black-Scholes valuation for IT investment opportunities. Taudes
et al. [32] also compare NPV with Black-Scholes valuation method for employing
SAP R/2 or to switch to SAP R/3. These results also indicated that, in the absence of
formal evaluation of the time option, traditional approaches for evaluating informa-
tion technology investments would have produced wrong recommendations.

3 Method and Evaluation Design

A universally accepted definition of KM does not yet exist. While there is debate as to
whether knowledge itself is a cognitive state, a process, an object, the description of
KM as a process, based on understanding organization as a knowledge system [14].
This view examines the nature of individual knowledge and collective knowledge,
and their interactions.

3.1 The Methodology of KM Evaluation

While authors differ in the terminology used in describing the KM process, the aggre-
gate of their works can be described as a simple KM process as depicted in Fig.1. We
generalized a conclusion from a collection of related KM researches and defined the
“4C” process of KM activities: creation, conversion, circulation, and carry out.

Knowledge creation relates to knowledge addition and the correction of existing
knowledge. Nonaka and Takeuchi [27] suggest four modes of knowledge creation:
socialization, externalization, internalization, and combination. The model empha-
sizes interactions between individuals and organizations.

Fig. 1. KM process (see [2] [3] [9] [12] [24] [27] [33])

 Measurement Practices for Knowledge Management: An Option Perspective 391

Knowledge conversion relates to individual and organizational memory. While or-
ganizational memory reflects the shared interpretation of social interactions, individ-
ual memory depends on the individual's experiences and observations.

Knowledge circulation is the dyadic exchange of knowledge between source and
receiver. Transfer occurs at various levels: Transfer of knowledge between individu-
als, form individuals to explicit sources, form individuals to groups, between groups,
across groups, and from the groups to the organization.

An import aspect of the knowledge carry out is that the source of competitive ad-
vantage resides in the knowledge itself. Here a major challenge is how to integrate
internal knowledge and the knowledge gained from outside.

In order to present important research issues the pursuit of which would lead to the
enhancement of knowledge usage in an organization, research questions related to each
step of KM process can be integrated into four perspectives with BSC framework.

3.2 The Integration with BSC Framework

Underlying Kaplan and Norton’s [18,19,20] concept of the BSC is that all aspects of
measurement have their drawbacks; however, if companies offset some of the draw-
backs of some measures with the advantages of others, the net measure can lead to
decisions resulting in both short term profitability and long term success. As a result,
they suggest that financial measures be supplemented with additional ones that reflect
customer satisfaction, internal business processes, and the ability to learn and grow.

In a BSC framework, there are some metrics that drives performance improvement
and enables the top management team to make well-informed decisions that prepare
their organization for the future. The major elements are including: (1) vision: an
image of what the organization will look like and do in the future; (2) strategy: that
gives a sense of purpose to their organization; (3) objectives: the mission and vision
are translated into objectives; (4) performance measures: the objectives can be meas-
ured through well-chosen indicators. Table 2 outlines the four perspectives included
in a balanced scorecard, and Fig.2 shows the relationships between them.

The BSC concept can also be applied to measure, evaluate and guide activities that
take place in specific functional areas of a business. For this reason, we integrated the
conception of BSC and 4C process of KM.

The following four perspectives have been suggested for a balanced KM scorecard:
creation, conversion, circulation, and carry out. The relationship between these four
new perspectives is illustrated in Fig.3.

Table 2. The four perspectives in a BSC

Perspective Mission
Financial To focus on the themes of (1) revenue growth and mix, (2) cost reduc-

tion and profitability, and (3) asset utilization and investment strategy.
Customer To achieve desired overall performance, by improving customers’

satisfaction, retention, and acquisition rate.
Internal Business To identify processes those are most critical for achieving customer

and ownership objectives, i.e., quality, cycle time, and innovation.
Growth and
Learning

To identify needed developments within the organization to provide
the infrastructure for future growth, i.e., employee capabilities, pro-
ductivity, and empowerment.

392 A.-P. Chen and M.-Y. Chen

Fig. 2. Relationship between the four perspectives in the BSC

Fig. 3. Relationship between the four perspectives in the balanced KM scorecard

 Measurement Practices for Knowledge Management: An Option Perspective 393

4 Applying the Black-Scholes Model

The field of finance has developed a variety of option pricing models, with the fun-
damental ones being the Black-Scholes model. Because these models were originally
developed to evaluate options on securities traded in the financial markets, they make
certain assumptions that more naturally apply to options on traded assets. Over time,
these models and their extensions have also been used in a variety of evaluative set-
tings involving capital budgeting investments embedding real option. This pape
makes three important contributions in this context: (1) it provides a formal theoreti-
cal grounding for the validity of the Black-Scholes model that might be employed
toKM; (2) it proposes a measurement framework to enable leveraging knowledge
assets effectively and efficiently; (3) it presents the first application of the Black-
Scholes model that uses a real world business situation involving KM as its test bed.

4.1 Fundamental Option Pricing Model

In section 2, we sought a range of issues for KM valuation. Consequently, the key to
understanding the KM performance evaluation in which option pricing is worthwhile
to use relates to basic elements of the Black-Scholes model. For example:

(1) KM infrastructure investments often are made without any immediate expectation
of payback. However, these can be converted investment opportunities into the option’s
underlying asset. Some examples of these investments include intranet and Internet
environment, data warehousing and data mining technologies, and web service.

(2) KM embedded technologies are often difficult to forecast value payoffs in the
face of unpredictable, implementation, and maintenances costs. Some examples of
these technologies include search engine, enterprise information portal, and auto-
mated workflow systems.

(3) Knowledge investments represent that the knowledge is a core part of a com-
pany’s competition advantages. Therefore, knowledge can be viewed as a product and
gain tangible or intangible profits. Nevertheless, the knowledge has its “product life
cycle” through newborn, mature, and abandoned phase. Here, the knowledge usage
conception is similar to option pricing as time remaining to exercise.

4.2 Assumption About Black-Scholes Model

The Black-Scholes option pricing formula [6] prices European call or put options on a
stock that does not pay a dividend or make other distributions. The formula assumes
the underlying stock price follows a geometric Brownian motion with constant vola-
tility.

(1) The Definition of Black-Scholes formula

Option pricing formula prices= Intrinsic Value + Time Value (1)

Equation (1) can be explained that perfect financial markets are arbitrage-free in
the sense that no investor can make a profit without taking some risk or expending
some capital. Such gains could be made if an option were priced differently than a
portfolio consisting of the underlying asset and a risk-less security with the amounts

394 A.-P. Chen and M.-Y. Chen

being continuously adjusted so that the value of the portfolio replicates the value of
the option. In equation (1), the value of a company or an asset based on an underlying
perception of the value is called intrinsic value. For call options, this is the difference
between the underlying stock price and the strike price; and further, time value is
represented the portion of the option premium that is attributable to the amount of
time remaining until the expiration of the option contract. Basically, time value is the
value the option has in addition to its intrinsic value.

(2) Applying the Black-Scholes formula
In the Black-Scholes model [16], the value of a call option is its discounted ex-

pected terminal value, E [
TC]. The current value of a call option is given

by () t
T rCEC −+= 1][, where () tr −+1 is the present value factor for risk-neutral

investors. A risk-neutral investors is indifferent between an investment with a certain
rate of return and an investment with an uncertain rate if return whose expected vale
matched that of the investment with the certain rate of return. Given that

TC = max [0,

TS -K], and assuming that
TS is log-normally distributed, it can be shown that:

Black-Scholes formula: () () ()21 1 drKdSC t Φ+−Φ⋅= −

where
()

σ

σ

t

tr
K

S

d

2

1

5.0ln ++
=

()
σ

σ

σ
td

t

tr
K

S

d −=
−+

= 1

2

2

5.0ln

(2)

As shown in Equation (2), the Black-Scholes formula contains fewer parameters
that are easier to determine. In addition to “ease to use” issue, applying option pricing
concepts is attractive because of the conceptual clarity it brings to the analysis. Many
knowledge management initiatives indicate the high potential variance of expected
revenues from KM would be the key element in making the right decision. In this
sense, option pricing seemed just right. We assume parameters of Black-Scholes
model to be applied for KM. We employ the following notation in Table 3.

Table 3. The notations for Black-Scholes option pricing model and apply to KM

Notation Black-Scholes Option Pricing Model Apply to KM
C The theoretical call premium Value of investment
S The value of option’s underlying stock price Value of expected revenues
K The option’s exercise price Actual costs / expenses
ó The standard deviation of the expected rate of

return on S
Uncertain factors

(d1) The exposure of the option price with respect
to the stock price

Measurement of KM in-
vestment and output

(d2) The cumulative standard normal distribution
evaluated at (S>K) or (S<K)

Probability of KM success
or fail

 Measurement Practices for Knowledge Management: An Option Perspective 395

5 Case Study

In this paper, we use case study methodology to evaluate the performance of option
pricing model, quite a lot of tests are preformed. To demonstrate how the test was
executed, one experiment which is involves one high-technical company was selected
and the research process as shown in Fig.4.

Fig. 4. Case study research process

5.1 General KM Evaluation

In order to acquire the importance for each measure in proposed four perspectives
balanced KM scorecard, we design a questionnaire and interview end-users. Addi-
tional, we use fuzzy linguistic analysis to decide the default value for importance in
each measure.

(1) The questionnaire analysis
In this questionnaire survey, 74 questionnaires were sent, 60 valid questionnaires

were retrieved, and the ratio of valid retrieves was 81%.
(2) Setting up triangular fuzzy number

 We used fuzzy Delphi method to adjust the fuzzy weight value for each measure.
Then, we calculated the triangular fuzzy number for each measure. For example, the
final measure of “innovation ability” in knowledge creation perspective was described
as follows.

)9.0,61.0,2.0(
~ =innovationW

() () () () ()[]

9.0

6125.09.045.02275.0113.098.01460
1

2.0

=

=∗+∗+∗+∗+∗=

=

innovation

innovation

innovation

c

b

a

396 A.-P. Chen and M.-Y. Chen

Where () nkcbaW kkk ,.....2,1,,,
~ ==

{ } { }lk
l

k

m

l
lkklk

l
k ccb

m
baa MaxMin ===

=
,

1
,

1

(3)

As shown in Equation (3),
~

W represents the kth measure’s importance of the lth
participation’s valuation.

(3) Averaging the evaluation measures
After above step, we average each fuzzy weight value kW

~
, and get the mean

value kS . For example, the mean value kS of “innovation ability” in knowledge crea-
tion perspective was described as follows. Table 4 shows an example of four perspec-
tives measures value.

57.0
3

9.061.02.0 =++=innvoationS

According to the results, we can understand the KM performance in each perspec-
tive. However, we cannot gather significant discoveries because of there are not dif-
ferentiable measure values in Table 4. Therefore, we will use our proposed option
pricing model to estimate KM performance for each perspective.

5.2 Using Black-Scholes Option Pricing Model

In this section, we use Black-Scholes model to estimate knowledge creation per-
spective as an example. In Equation (4) ~ (6), we use parameters of Black-Scholes
model to calculate the appropriate value which can be represented total key per-
formance index (KPI). Even as Equation (7), we can determine which KM process
or perspective must to be improved by KPI. As shown in Table 5, the knowledge
carry out process is the most weakness in whole KM activities (PKI=0.0014).
Therefore, the manager will enhance related objectives in this perspective according
to the above statement.

 (1) Calculating the investment costs of KM (S)

+++== toperationttimetlabortequipmentCS
t

KMKM coscoscoscos
1

 (4)

(2) Calculating the expected revenues of KM (K)

+== revenuesinvisiblerevenuesphysicalRK
t

KMKM
1

 (5)

(3) Calculating the uncertain factors (σ)

() ())1(,
1

2

−−=
−

=
tStSS

n

SS
KMKMi

n

i

KMi (6)

(4) Calculating the total key performance index (KPI)

KMBS KPIvalue =

() () ()21 1 drKdSCKPI t Φ+−Φ⋅== −

(7)

 Measurement Practices for Knowledge Management: An Option Perspective 397

Table 4. The value of four perspectives in a balanced KM scorecard

KM Process Objective Measure Value
Continuously training and development 0.64
The innovation abilities for users 0.57 Creation
The average seniority for users 0.73

0.65

Users’ experiences 0.62
Users’ professional skills 0.48 Conversion
User’s satisfaction 0.52

0.54

The incentive systems for users 0.55
The sharing culture among users 0.57 Circulation
The standardization of documents 0.51

0.54

Ensure the KM project provides business value 0.62
The quantities / qualities of knowledge database 0.42 Carry Out
The numbers of patents 0.50

0.51

Table 5. KPI of Black-Scholes model

Intrinsic value
(S-K) Time value

KM Process
S K σ t

Black-Scholes
option value

Creation 2400 3215 12 2 35.8174
Conversion 2150 3000 12 2 20.2288
Circulation 2000 3400 12 2 1.0652
Carry out 2000 4600 12 2 0.0014

5.3 Sensitivity Analysis Using Black-Scholes Model Derivatives

Sensitivity Analysis aims at showing how the results of an analysis change as its un-
derlying assumptions change. As shown in Table 6, we can evaluate the benefits or
costs in the KM project with derivative analysis.

Table 6. Sensitivity Analysis

KM Process (Delta) (Gamma) (Vega) (Theta) (Rho)

Creation 0.176 0.0006 878.0326 -49.5336 773.0867

Conversion 0.1208 0.0006 611.0055 -32.6966 478.8825

Circulation 0.0098 0.0001 73.9137 -3.3267 36.9776

Carry out 0.0 0.0 0.2634 -0.0093 0.0744

A major challenge for KM research lies in making models and theories to evalua-
tion its performance and values. However, traditional methodologies have long relied
on NPV, simple cost-benefit analysis, critical success factors and other less-structured
techniques to perform their assessment. Thus, our experiment has been to critically

398 A.-P. Chen and M.-Y. Chen

review the case for using option pricing as a basis for KM performance analysis and
to evaluate its merits in an actual real word business setting.

6 Conclusions

In this paper, we have made the argument the option pricing model can be applied to
KM performance valuation. In the initial stage, we generalized a conclusion from a
collection of related KM researches and defined the 4C process of KM activities: crea-
tion, conversion, circulation, and carry out. In the next stage, we pursuit of which proc-
ess would lead to the enhancement of KM performance in a firm, hence we integrated
KM process into four interrelated main research streams with BSC framework. Finally,
we illustrated how the Black-Scholes model can be applied in the case of a real world
KM performance option, where significant uncertainties that are not appropriately han-
dled using traditional financial analysis were present. The results have proven the option
pricing model can be act as a measurement guideline to the whole KM activities.

Future research will focus on several issues. First, we will investigate other firms
into KM performance valuation by our approach. Second, we will gauge the risk as-
sociated with the KM project in a firm. Finally, we will improve the estimation pa-
rameters methods. Especially, more general guidelines could make the option valua-
tion of KM performance less time-consuming and more reliable.

References

1. Ahn, J.H., and Chang, S.G.: Assessing the Contribution of Knowledge to Business Per-
formance: the KP3 Methodology. Decision Support Systems, Vol. 36 (2004) 403 – 416

2. Alavi, M. KPMG Peat Marwick U.S.: One Giant Brain. Harvard Business School(Case),
9- 397- 108 (1997)

3. Beckman, T.: A Methodology for Knowledge Management. Proceeding of the IASTED
International Conference on AI and Soft Computing (1997)

4. Benaroch M. and Kauffman R.J.: A Case for Using Real Options Pricing Analysis to
Evaluate Information Technology Project Investments. Information Systems Research,
Vol. 10, Iss. 1 (1999) 70-86

5. Benaroch M., and Kauffman R.J.: Justifying Electronic Banking Network Expansion Us-
ing Real Options Analysis. MIS Quarterly, Vol. 24, Iss. 2 (2000) 197-225

6. Black, F., and Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal of
Political Economy, Vol. 81, No. 3 (1973) 637-659

7. Brynjolfsson, E. and Hitt, L.: Paradox Lost? Firm-level Evidence on the Returns to Infor-
mation Systems Spending. Management Science, Vol. 42, Iss. 4 (1996) 541-558

8. Brynjolfsson E., Renshaw, A.A., Alstyne, M.V.: The Matrix of Change. Sloan Manage-
ment Review, Vol. 38, No.2 (1997) 37–54

9. Chen, M.Y., Tsai, M.J., and Wu, H.R.: The Research of KM Operation Module in Science
& Technology Industry – Case Study of TSMC. Proceedings of the 12th International In-
formation Management Conference, Taiwan (2001) A-75

10. Cox, J., Ross, S., and Rubinstein, M.: Option Pricing: A Simplified Approach. Journal of
Financial Economics, Vol. 6 (1979) 229-263

11. Das, A.: Knowledge and Productivity in Technical Support Work. Management Science,
Vol. 49, Iss. 4 (2003) 416-431

 Measurement Practices for Knowledge Management: An Option Perspective 399

12. Davenport, T.H., Long, D.W., and Beers, M.C.: Successful Knowledge Management
Projects. Sloan Management Review, Vol. 39, No. 2 (1998) 43-57

13. DosSantos, B.L.: Justifying Investments in New Information Technologies. Journal of
Management Information Systems, Vol. 7, Iss. 4 (1991) 71-90

14. Grant, R.M.: Prospering in Dynamically-Competitive Environments: Organizational Ca-
pability as Knowledge integration. Organization Science, Vol. 7, No. 4 (1996) 375-387.

15. Holsapple, C.W., and Singh, M.: The Knowledge Chain Model: Activities for Competi-
tiveness. Expert Systems with Applications, Vol. 20 (2001) 77-98

16. Hull, J.C.: Options, Futures, and Other Derivative Securities (2nd edition). Prentice Hall,
Englewood Cliffs, NJ (1993)

17. Kambil, A., Henderson, J., and Mohsenzaden, H.: Strategic Management of Information
Technology Investments: An Option Perspective. in Strategic Information Technology
Management: Perspectives on Organization Growth and Competitive Advantage, Idea
Publishing Group (1993) 161-178

18. Kaplan R., Norton, D.: The Balanced Scorecard: Measures that Drive Performance. Har-
vard Business Review, Vol. 70, No. 1 (1992) 71–79

19. Kaplan R., Norton, D.: Putting the Balanced Scorecard to Work. Harvard Business Re-
view, Vol. 71, No. 5 (1993) 134-142

20. Kaplan R., Norton, D.: Using the Balanced Scorecard as a Strategic Management System.
Harvard Business Review, Vol. 74, No. 1 (1996) 75-85

21. Kester, W.C.: Today’s Options for Tomorrow’s Growth. Harvard Business Review, Vol.
62 (1984) 153-161

22. KPMG.: Knowledge Management Research Report, (1998) URL: http://www.kpmg.com
23. Liao, S.H.: Knowledge Management Technologies and Applications—Literature Review

from 1995 to 2002. Expert Systems with Applications, Vol. 25 (2003) 155-164
24. Liebowitz, J.: Key Ingredients to the Success of an Organization’s Knowledge Manage-

ment Strategy. Knowledge and Process Management, Vol. 6, No. 1 (1999) 37-40
25. Margrabe, W.: The Value of an Option to Exchange One Asset for Another. Journal of

Finance, Vol. 33, No. 1 (1978) 177-186
26. Nonaka, I.: The Knowledge Creating Company. Harvard Business Review, Vol. 69, No. 6

(1991) 96-104
27. Nonaka, I and Takeuchi, H.: The Knowledge Creating Company. New York, NY: Oxford

University Press (1995)
28. Pinsonneault, A. and Rivard, S.: Information Technology and the Nature of Managerial

work: From the Productivity Paradox to the Icarus Paradox. MIS Quarterly, Vol. 22, Iss. 3
(1998) 287-311

29. Schultze, U. and Leidner, D.E.: Studying Knowledge Management in Information Systems
Research: Discourses and Theoretical Assumptions. MIS Quarterly, Vol. 26, No. 3 (2002)
213-242

30. Shin, M., Holden, T., and Schmidt, R.A.: From Knowledge Theory to Management Prac-
tice: Towards an Integrated Approach. Information Processing and Management, Vol. 37
(2001) 335-355

31. Taudes, A.: Software Growth Options. Journal of Management Information Systems, Vol.
15, Iss. 1 (1998) 165-185

32. Taudes, A., Feurstein, M. and Mild, A.: Options Analysis of Software Platform Decisions:
A Case Study. MIS Quarterly, Vol. 24, Iss. 2 (2000) 227-243

33. Wiig, K.: Knowledge Management: Where Did It Come From and Where Will It Go.
Expert Systems with Applications, Vol. 13, No. 1 (1997) 1-14

An Ontological Approach for Eliciting and
Understanding Needs in e-Services�

Ziv Baida1, Jaap Gordijn1, Hanne Sæle2, Hans Akkermans1,
and Andrei Z. Morch2

1 Free University, FEW/Business Informatics,
De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands

{ziv, gordijn, elly}@cs.vu.nl
2 Dep. of Energy Systems, SINTEF Energy Research,

7465 Trondheim, Norway
{Hanne.Saele, azm}@sintef.no

Abstract. The lack of a good understanding of customer needs within e-
service initiatives caused severe financial losses in the Norwegian energy
sector, resulting in the failure of e-service initiatives offering packages
of independent services. One of the causes was a poor elicitation and
understanding of the e-services at hand. In this paper, we propose an
ontologically founded approach (1) to describe customer needs, and the
necessary e-services that satisfy such needs, and (2) to bundle elementary
e-services into needs-satisfying e-service bundles. The ontology as well as
the associated reasoning mechanisms are codified in RDFS to enable
software support for need elicitation and service bundling. A case study
from the Norwegian energy sector is used to demonstrate how we put
our theory into practice.

1 Introduction

Today, e-Business still focuses on supporting the production, sale, and consump-
tion of physical products. However, in real-life, many products are actually ser-
vices, in contrast to goods that you can drop onto the floor. Consequently, a new
paradigm in e-Business is emerging: e-services [20].

E-services are a web-based version of traditional services, defined as business
activities, deeds and performances of a mostly intangible nature [16, 18, 25, 17].
In the rest of this paper we refer to this definition when we use the term ‘e-
service’. Note that e-services are not the same as web-services. E-services are
commercial services, provisioned over the Internet, whereas web-services are a
paradigm to arrive at truly distributed computing (more information on the
differences between e-services and web-services can be found in [6]).

� This work has been partially supported by the European Commission, as project
No. IST-2001-33144 OBELIX (Ontology-Based ELectronic Integration of compleX
products and value chains) and by the Dutch Ministry of Economic Affairs, as the
FrUX project (Freeband User eXperience).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 400–414, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Ontological Approach for Eliciting and Understanding Needs 401

In e-Business scenarios, it is important that all participants have a shared un-
derstanding of the goods and services offered and requested. For instance, many
efficiency gains in supply chain management rely on information integration
along this chain; to arrive at such an integration each party in the chain should
have the same understanding of the good or service to be delivered. Moreover,
since e-Business scenarios use software components extensively almost by defi-
nition, it is also important to have a formal, or at least machine interpretable
understanding of the services and goods. As an example, consider a software
component that proposes a bundle of services or goods (potentially delivered by
multiple suppliers) that as a bundle satisfies a specific customer need. Such a
bundling component should be able to reason about meaningful combinations of
products1. This can only be done if the service and good descriptions are ma-
chine interpretable. Making a shared, formal conceptualization of, in this case,
goods and services is the field of ontologies [10]. Existing product ontologies have
a strong emphasis on physical goods (see e.g. [2, 1]) and not yet on services.

To address this shortcoming, we developed and tested an ontology to rep-
resent e-services [3], and implemented a prototype software tool. This ontology
can be used, first to build a catalogue of e-services, and second to compose bun-
dles of e-services, which as a bundle satisfy a customer need. Bundling is a well
known economic principle in building service offerings [16]. Elementary services
in a bundle can be offered by different enterprises that form a partnership. An
ontological approach is really needed here; all businesses in such a partnership
should have a shared and formal understanding of their elementary e-services to
facilitate automated reasoning about commercial viable e-service bundles.

So far, our ontology has been stated in supplier-oriented terminology. Cus-
tomers have to formulate their customer needs (or requirements) in supplier-
oriented terminology to arrive at meaningful bundles of e-services. Obviously, a
customer wants to express his needs in his own terminology, which can be differ-
ent from the terminology used by the supplier. This paper presents an extension
to our ontology that allows a customer to do so.

This work is unique in a number of ways. First, it recognizes the commer-
cial nature of services, in contrast to web-service ontological approaches, which
are strong at facilitating distributed computing but poor in the commercial in-
terpretation of ‘service’. Second, our ontology is capable of doing automated
bundling of elementary e-services into e-service bundles using a configuration
problem solving method borrowed from AI. And now, our ontology can be used
to derive, based on customer needs, bundled e-service offerings.

Our work is not limited only to e-services, but applies to any service offer-
ings. Nevertheless, our work is of much greater importance for e-services, since
they require automating the processes that may otherwise be performed in the
minds of service personnel. Consequently, for e-services realization it is abso-
lutely necessary that domain knowledge is conceptualized, formalized and made
machine-interpretable. This is what we aim to achieve in our work.

1 Both services and goods are subclasses of product.

402 Z. Baida et al.

This paper starts with an introduction of our case study in Section 2. Then
we present a summary of earlier work on our e-services ontology (Section 3).
In Section 4 the ontological extension to cover customer needs, wants, and de-
mands is introduced. Then, in Sections 5 and 6, we show how this extension uses
known theory from Requirements Engineering to come from customer needs to
service-outcomes, to be produced by suppliers. Section 7 discusses existing and
envisioned tool support. Finally, in Section 8 we present our conclusions and
identify directions for future research.

2 Case Study: Service Bundles in the Norwegian Energy
Sector

This paper uses a case study, based on a real-life e-service elicitation project we
carried out in Norway. The study at hand is about electricity supply. Electricity
is an anonymous product. Due to a fierce competition in generation and supply
of electricity, the difference in electricity retail prices per kWh between suppliers
is diminishing. Electricity fits ideally to definition of “perfect substitute”, since
electricity which is sold from one supplier has exactly the same physical charac-
teristics as electricity sold by another supplier, and also prices are very similar.
Consequently, many suppliers are seeking for ways to differentiate their offerings
from competitors, so that customers are able to distinguish the individual offer-
ings from suppliers. One way to do so is to add complementary and additional
services such as Internet access and home comfort management to the electricity
supply offering. In our study for an electricity supplier in Trondheim, Norway, we
analyzed possible service bundles that can be offered via the Web to customers
who wish to buy electricity. Service bundles had to be designed so that (1) they
are commercially interesting, and (2) they meet customers’ demands. We focus
on the first question in [5]. The present article focuses on the second question.

3 Ontological Framework: A Service Ontology

On a high level of abstraction, our service ontology [3] embodies three interre-
lated top-level perspectives:

The service value perspective captures knowledge about adding economic
value from a customer viewpoint. It expresses customer needs, expectations and
experiences, and is driven by a customer’s desire to buy a certain service of a
certain, often vaguely defined quality, in return for a certain sacrifice (including
price, but also intangible costs such as inconvenience costs and access time). As
the service value perspective is the main contribution of this paper, we elaborate
more on this perspective in Section 4.

The service offering perspective represents the supply-side viewpoint: it pro-
vides a hierarchy of service components (e.g. a core service and supplementary
services) and outcomes, as they are actually delivered by the service provider in
order to satisfy customers’ needs.

An Ontological Approach for Eliciting and Understanding Needs 403

The service process perspective encapsulates knowledge about putting the
service offering into operation in terms of business processes. In contrast to the
usual production process of physical goods, customers often take active part in
the service production process.

Our earlier work focused on the service offering perspective (see [7] for a
detailed discussion). For the current discussion it suffices to understand that
the provisioning of a service requires a set of service inputs and results in the
availability of a set of service outcomes. Very often the service outcomes reflect
the customer benefits from a service, whereas the customer sacrifice is mapped
into service inputs (e.g. payment). Service inputs and outcomes are referred to as
resources. Hence a service is described by its resources: its requires inputs and its
generated outcomes. Section 4 presents the service value perspective. Sections 5
and 6 describe how both perspectives can be related in order to support reasoning
on needs-driven service bundling.

4 Service Value Perspective

The service offering perspective of our service ontology describes service elements
including their input- and outcome-resources, as well as customer requirements
in supplier-oriented terms. The motivation for doing so is that the service offer-
ing perspective aims at configuring the various e-services elements of different
suppliers in a more comprehensive bundle, and for doing so we need the actual
service elements that can be provisioned by these suppliers.

Customers however do not articulate their needs in terms of supplier-oriented
requirements but employ their own, subjective terminology for expressing de-
mands. To deal with these demands, we extend our ontology with needs, wants,
demands, and miscellaneous constructs. In brief, customers state their demands,
which can (partly) be satisfied by a series of bundled resources, which in turn
are provisioned by service-elements (see Figure 1).

Fig. 1. Configuring service bundles based on customer demands

404 Z. Baida et al.

The service value perspective is sketched in Figure 2 and is explained below.
Needs, wants and demands. The starting point for the discipline of mar-

keting lies in the human needs and wants [18]. The term need refers to what
humans need and want (to buy). Kotler [18] distinguishes between needs, wants
and demands:

– A human need is a state of felt deprivation of some basic satisfaction.
– Wants are desires for specific satisfiers of these deeper needs.
– Demands are wants for specific products that are backed up by an ability

and willingness to buy them.

Needs are often vague; the need for “financial security” can be interpreted in
many ways. Customers concretize their needs by transforming them into wants
and demands, for example based on exposure to existing services and to market-
ing campaigns. Often when a customer is interested in a service, he has already
transformed his needs into wants and demands. He has, in fact, already found a
solution for his problem (need). Example: indoor comfort (need); lighting (want);
energy supply (demand). An exploration of customer needs, wants and demands
for the energy utility we investigated is provided in Table 1.

Service quality is the degree and direction of the discrepancy between a
customer’s expectations and the perception of the service [9]. Customer expec-

Fig. 2. Service sub-ontology representing the service (customer) value perspective

An Ontological Approach for Eliciting and Understanding Needs 405

tations embrace several different elements, including desired service, predicted
service and a zone of tolerance that falls between the desired and adequate service
levels [8]. Expectations are based on word of mouth communications, personal
needs, past experience and external communications from service providers [25].
At least two widely accepted generic methods for defining service quality are
used in business science: that of the Nordic school [16] and that of the North
American school (SERVQUAL, see [25]). Example: In electricity supply, quality
can be seen as the allowed deviations in voltage, frequency, the allowed occur-
rences of outages, etc. Customers, for instance with respect to power outages,
have different views on this (some customers have high-availability requirements,
while others have not).

Next to quality, also other criteria may play a role, e.g. location and time
(where and when the service should be provided). For this reason we introduced
the concept Property in our ontology, as a super class of ‘service quality’. In
the rest of this paper whenever we use the term ‘desired quality’ we refer also
to other properties.

Sacrifice. The customer sacrifice includes the price of the service as well
as relationship costs: direct (e.g. investment in office space), indirect (e.g. time
that the customer has to devote to maintaining the relationship) or psychological
costs (e.g. lack of trust in a service provider; unpleasant sensory experiences such
as noise) [16]. Example: time spent waiting to be served; travel costs; switching
costs (from one supplier to another).

5 From Service Value Perspective to Service Offering
Perspective

5.1 Need, Want and Demand Hierarchies

The notions goals and dependencies have been acknowledged in the field of Goal
Oriented Requirements Engineering (GORE) as suitable for transforming high-
level organizational needs to concrete system requirements [13]. We utilize this
GORE terminology to relate the service-value perspective to the service-offering
perspective.

Needs, Wants, and Demands (further collectively referred to as “needs”) cap-
ture the answer for the question why a service bundle is offered. Hence needs
are equivalent to goals in system/software design: needs represent why a service
bundle is needed; goals represent why a system/software is needed.

Goals, at different levels of abstraction, capture the various objectives that
the system under consideration should achieve [22, 23]. Just like goal hierarchies
exist in GORE [15], also the marketing literature acknowledges hierarchies of
needs [18]. As shown in Section 4, a need is a state of felt deprivation of some basic
satisfaction; it can be concretized by wants, and further by demands: wants for
specific products that are backed up by an ability and willingness to buy them.

Table 1 presents our hierarchy of needs, wants and demands (further referred
to as ‘need hierarchy’) for the energy case study at hand. The notations H/I refer

406 Z. Baida et al.

Table 1. Customer needs, wants and demands for the energy utility TrønderEnergi

Customer’s Needs Customer’s Wants Customer’s Demands

Indoor comfort (H,I) Lighting (H,I);
Home services (cooking,
washing) (H);
Comfort temperature (H,I)

Energy supply (H,I);
Hot tap water (H,I);
Room heating (H,I);
Air conditioning (H,I)

Energy regulation for bud-
get control (H,I)

Energy regulation for budget
control (H,I), with different
characteristics (manual / au-
tomated; on-site regulation /
location-independent

Temperature regulation for
increased comfort (H,I)

Temperature regulation (H,I)
with different characteris-
tics (manual / automated,
on-site regulation / location-
independent)

Social contacts and
Recreation (H);
Business contacts (I)

Communication (H,I) Telephone line (H,I);
Mobile phone line (H,I);
Internet (broadband) (H,I)

Safety (H,I) Increased security (H,I);
Reduced insurance pre-
mium (H)

Safety check of electrical instal-
lation (H);
Internal control of electrical in-
stallation (I)

IT support for business
(I)

IT-services (I) ASP-services (I); Hardware (I);
Software (I)

to the customer type: Household or Industrial. As can be seen from the table,
demands may either indeed refer to concrete services (e.g. a mobile phone line),
or be more abstract, when a customer does not necessarily know which service
can satisfy his need, or when a diversity of solutions exits (e.g. the demand for
temperature regulation).

5.2 A Need Goal Tree

Needs, wants, and demands can be arranged in an AND/OR goal tree as we know
from GORE. In GORE, links between goals are aimed at capturing situations
where goals positively or negatively support other goals [23]. Hard-goals can be
refined through AND/OR graph structures. Soft-goal refinement uses the same
AND/OR structures, as well as weaker links: A contributes positively to B and
A contributes negatively to B. By using links to refine goals it becomes possible

An Ontological Approach for Eliciting and Understanding Needs 407

to reason about goals. We therefore suggest to introduce the same AND/OR
refinements used in GORE also for need hierarchies. In such a need hierarchy,
needs are concretized in wants, which in turn are concretized in demands. De-
mands are the leafs of the tree. An example of such a need-hierarchy is given in
the left-most part of Figure 3. Note that the marketing literature does not make
a distinction between types of needs or refinements in need hierarchies.

Our case study showed that the use of above refinement structures requires
adding a context dimension, since customer needs differ per customer type, and
thus the refinement changes per customer type. This needs-differentiation relates
to the notion of market segment in marketing literature [18]: “a market segment
is defined as a concept that breaks a market, consisting of actors, into segments
that share common properties”. These common properties depend on the specific
context.

For example, the customer want for ‘communication’ can be refined to three
demands: (regular) telephone line, mobile phone line and Internet access.Whereas
one customer may require only a regular phone line, another may want Internet
access and a mobile phone line, and no regular phone line. This illustrates pre-
cisely why supplier stated requirements are not sufficient for e-service bundling:
suppliers present services in terms of what they can offer, while customers ini-
tially think in vague terms such as ‘communication’.

Quality attributes are stated as properties of demands in Table 1. For in-
stance, consider temperature regulation with quality properties manual, auto-
mated, on-site, etc.

By following the AND/OR relations, the knowledge required for reasoning
about potential service outcomes satisfying a need is thus available on the de-
mand level, rather than on the more abstract want or need levels. Since demands
are satisfied by outcomes (resources) provisioned by e-services, demands are a
good starting point for finding service bundles that may satisfy higher needs.

6 Demands and Resources Are Features and Solutions

6.1 Demands Are Satisfied by a Service That Provides Certain
Resources

The purpose of building a need hierarchy is twofold. First the hierarchy is used
to find context depending demands, based on more abstract wants and needs.
Second, found demands should be satisfied by service-outcomes (resources) pro-
visioned by suppliers. We employ Feature-Solution graphs [11, 12] to relate de-
mands and resources.

6.2 Linking Demands to Resources

A link between customer demands and resources provisioned by services can be
viewed as a production system consisting of production rules, a knowledge rep-
resentation formalism used in the AI field. Production rules have the form: if

408 Z. Baida et al.

Fig. 3. Partial FS-graph of the energy case study

situation X is encountered then select solution Y. De Bruin et al. [11, 12] sug-
gested the use of a context-aware Feature-Solution graph (FS-graph) to model
these production rules. FS-graphs capture and document context-sensitive do-
main knowledge, so that it becomes possible to reason about feasible solutions
and the requirements they support. An FS-graph includes three spaces, orga-
nized in hierarchies of AND-(EX)OR decompositions:

1. Feature space: describes the desired properties of the system (or: service)
as expressed by the user. In our case, these are customer demands.

2. Solution space: contains the internal system (services) decomposition into
resources that are required for or produced by available services.

3. Context space: contextual information relevant for the domain (e.g. cus-
tomer types, geographic restrictions).

Links between elements of the Feature-space (demands) and elements of the
Solution-space (resources) may have the semantics of selection (if demand A then
resource B), rejection (if demand A then not resource B) or weaker relations:

An Ontological Approach for Eliciting and Understanding Needs 409

Fig. 4. FS-graph constructs in the service ontology

positively influenced by or negatively influenced by. The FS-graph offers levels of
flexibility as a result of the different decomposition possibilities of features and
solutions.

An example FS-graph, adapted for our case, can be found in Figure 3. For
visualization reasons we present only a fraction of the need hierarchy tree, and
we mention the type of hierarchy (AND/OR/XOR) explicitly only in a few of
the places. As can be seen, contextual information can change the behavior of a
production rule. This is modeled by a context switch. If a switch node is selected,
the switch is closed and establishes context-dependent relations between features
and solutions [12]. Context may include location, but also customer type (see
the discussion on market segments in Section 5.2).

While the FS-graph can be used to visually communicate above production
rules, its constructs need to be added to the earlier presented service ontology
in order to facilitate the automated support of linking demands and resources.
Figure 4 shows how we incorporate FS-graph structures in the service ontology.

The service value perspective of our service ontology – including the con-
cepts needs, wants, demands, sacrifice and quality – reflects a customer view
on services. As such it is by definition context-sensitive: every customer type
may have a different viewpoint on a service, based on his/her situation (time,
location, role), on different expectations and on past experiences.

6.3 Relevance of Relations in the FS-Graph

We applied the FS-graph approach to the energy case study, considering cus-
tomer demands as features, and available resources as solutions. This resulted
in lessons learned regarding the four types of relations between features and
solutions.

1. A selection relation hardly exists. There is not really a single resource for a
possible demand, but alternatives exist.

410 Z. Baida et al.

2. A rejection relation may be required, but does not occur often. An example
is the demand for energy supply with quality descriptor ‘green energy’ and
the resource ‘energy’ with quality descriptor ‘nuclear’.

3. A positively influenced by relation is the basis for our model. It denotes that a
customer demand can be fulfilled by certain resources, and hence by certain
services.

4. A negatively influenced by relation may occur, but not often. For example,
when a demand is specified by quality descriptors implying that the customer
is interested in a cheap service, whereas a suggested resource is specified by
the quality descriptor ‘high’.

As can be seen, the positively influenced by relation plays the main role in
our case. One could thus question the use of the FS-graph constructs, which
include four relations. There are two answers for this question. First, a con-
ceptualization and formalization of domain knowledge is an absolute necessity
for automated reasoning and solving problems about that knowledge. The FS-
graphs approach, using goal hierarchies, has shown to be an effective approach
for making this knowledge explicit, and suitable for systematic automated rea-
soning using production rules. Second, when adding also acceptable sacrifices
(i.e. price) to the graph, we will receive a richer FS-graph, in which the rejection
relation and the negatively influenced by relation will occur much more often (a
low acceptable sacrifice will disqualify expensive solutions).

6.4 Reflecting Back on the Case Study

We modeled a variety of services in the energy case study, including electric-
ity supply, broadband Internet access, hot water supply and energy control and
more (see [7]), analyzed links between services and customer demands, and cre-
ated service bundles to satisfy customer demands. As a result of the modeling
of service elements and the automated generation of service bundles, the energy
utility at hand succeeded in defining service bundles for specific groups of cus-
tomers in such a way that these bundles fit the requirements of their respective
customers. Furthermore, our analysis helped understand which service bundles
should not be offered to specific groups of customers, because they do not satisfy
the requirements of these customers well enough, or because other bundles can
satisfy the same requirements better.

An important advantage of ontologies is that they help reason with domain
knowledge. Our ontological approach, summarized in Figure 1, enabled reason-
ings as the following. The customer need for ’indoor comfort’ is reduced to three
wants, including ’temperature regulation’. We found three service bundles that
satisfy this want. All of them include electricity supply plus extra services, sup-
plied by different suppliers. In other words, these service bundles compete with
each other. An electricity supplier can then decide whether to offer all of these
bundles or just a subset thereof. The choice of a bundle to offer implies also a
choice of a business partner to work with, since the extra services are offered
by other suppliers. The same want is further specified by several demands. Rea-
soning on the demand level, we see that whereas the competing bundles provide

An Ontological Approach for Eliciting and Understanding Needs 411

a solution to the same want, they target different demands, that encapsulate
differing quality levels. A supplier can then decide whether it wants to provide
all quality levels (and thus sell all generated bundles), or address only a specific
target group (high-end, low-end).

7 Tool Support

The service offering perspective of our ontology was implemented in a CASE tool
(a prototype is available at www.cs.vu.nl/˜ziv/tool). The tool presents an easy-
to-use GUI, with which business analysts and domain experts can model services
from a supplier perspective. Subsequently, the tool is capable of transforming
the visually-modeled services into a computer-interpretable RDF representation,
based on our service ontology, and to generate also an RDF representation of
supplier-oriented bundling requirements (i.e. in terms of resources: service inputs
and service outcomes). We then use a configuration tool (based on a configura-
tion ontology [4]) to generate service bundles based on the service descriptions
and on these requirements. The tools communicate by exchanging RDF files:
the service modeling tool provides service descriptions and bundling (configu-
ration) requirements. The configuration tool provides solutions: service bundles
that meet the requirements. Using our service ontology as its fundaments, our
software is capable of configuring bundles of services, when requirements are
specified in terms of resources.

In the present paper we have shown how we derive such requirements: by
adding an earlier step in which we formalize customer demands, and map them
into available resources. We are currently involved in a project where the empha-
sis is put on this earlier step, for which software support will be implemented
as well. Two main issues should be solved for effective software support: (1)
understanding the nature of contextual information that influences production
rules, and (2) conflict resolution concerning weak production rules (the posi-
tively/negatively influenced by relations). These issues are still ongoing work.
Conflict resolution may be performed in advance, and not in real-time, because
it is often desired to know in advance which bundles may be generated; in a busi-
ness environment it may turn not to be desirable to enable customers to generate
any valid service bundle, because some bundles may be valid, but yet not finan-
cially interesting for service suppliers. Consequently, a needs-driven analysis can
be performed as part of a business analysis, thereby identifying and solving con-
flicts offline, and then the space of possible solutions (service bundles) can be
limited to those bundles that were examined and found feasible.

8 Conclusions and Future Work

Only a few years ago, when the ’dotcom” wave was still rolling, it was almost
impossible to find an electric utility in Norway, which did not offer so-called
bundles via its website. One could observe a great variety of products and ser-

412 Z. Baida et al.

vices, which were offered together with electricity retail contracts. Despite costly
marketing campaigns, these offerings were mostly not appreciated by customers
and failed. Experience shows that the bundling of services without sound logical
fundaments of the bundles-configuration process (as applied in [7]) and without
reasoning about customer needs and demands may cause severe financial losses
[19, 14]. The need for such fundaments, combined with an online process, was
the driving force behind our case study.

In Sections 6.3 and 6.4 we give examples of results we obtained in this case
study from modeling customer demands and available services with an ontology.
Domain experts declared to have gained insight into their domain by the use of
an ontology to model domain knowledge. We investigated and modeled service
bundles for two market segments of energy consumers: households and industrial
customers. Our analysis resulted in identifying sets of services to be offered to
these market segments (or: customers), to meet specific needs and demands. In
other words, whereas multiple services could be offered to a customer, reasoning
about his needs is required in order to satisfy the client. If this knowledge is
conceptualized and formalized, software can perform this reasoning instead of
humans. This conceptualization and formalization takes place in what we refer
to as Needs Engineering.

Knowledge and expertise from business science, information science and com-
puter science have been intertwined in our research to solve the problem at hand.
We split the process into a customer perspective, a supplier perspective and a
transformation process between the two. By expressing both perspectives using
a formal ontology, also expressible in a machine-interpretable language (RDFS),
we ensure that domain knowledge is formalized in such a way that it can be
checked for consistency and used for reasoning by software.

Business science literature concerning customer needs acknowledges the exis-
tence of (need) hierarchies. However, it lacks a few elements, necessary for making
business knowledge machine-interpretable: (1) a definition of hierarchical decom-
positions (e.g. AND/OR/XOR structures) of customer needs; (2) a well-defined
description of services; (3) a definition of possible relations (links) between needs
and solutions; and (4) an understanding of how demands (functional require-
ments) differ from desired service quality (non-functional requirements). As we
have shown in this article, we use existing requirements engineering practices
to add the necessary formalism to business concepts: we use goal hierarchies,
goal links and production rules to relate features (needs, demands) to solutions
(services, described by resources). By embedding these constructs and business
concepts in a service ontology, expressible in a machine-interpretable language,
we create a framework with which a reasoning can be performed: first customer
demands trigger the selection of resources (benefits), and then a configuration
process creates bundles of services that provide these customer benefits.

Our work aims at facilitating automated reasoning processes through concep-
tualizing and formalizing domain knowledge. Automating reasoning processes is
a necessity in order to facilitate complex e-service scenarios. In this paper we
show how research from various disciplines can be combined to achieve this goal.

An Ontological Approach for Eliciting and Understanding Needs 413

We showed how our approach helped domain experts analyze a complex case
study.

So far our research has dealt with demands. We modeled also a set of service
quality criteria, but we have not explored how their analysis should differ from
that of demands. As we have already seen positive results from the use of the
i∗ modeling framework [24] in value-oriented modeling [21], adopting i∗ for our
current research as well seems promising.

Another future research direction concerning service quality is incorporat-
ing the SERVQUAL model [25] (which is broadly-used in business science) in
the service ontology to describe service quality from a customer perspective us-
ing SERVQUAL’s generic dimensions that customers use for evaluating service
quality.

We have demonstrated how the mapping between the customer perspective
and the supplier perspective can be performed by production rules, as mod-
eled with FS-graphs. Future work should further investigate the nature of these
production rules. We have noticed so far that some of them relate a demand
– specified by (e.g. quality) properties – to a resource itself – disregarding its
(quality) properties – whereas others relate a demand to a combination of a
resource with (quality) properties.

References

1. eCl@ss website. 2005. http://www.eclass.de.
2. UNSPSC website. 2005. http://www.unspsc.org.
3. Hans Akkermans, Ziv Baida, Jaap Gordijn, Nieves Peña, Ander Altuna, and Iñaki

Laresgoiti. Value webs: Using ontologies to bundle real-world services. IEEE
Intelligent Systems - Semantic Web Services, 19(4):57–66, 2004.

4. Ander Altuna, Alvaro Cabrerizo, Iñaki Laresgoiti, Nieves Peña, and Daniel Sas-
tre. Co-operative and distributed configuration. In Net.ObjectDays (NODe) 2004,
pages 69–80, Erfurt. Germany, 2004.

5. Ziv Baida, Jaap Gordijn, Andrei Z. Morch, Hanne Sæle, and Hans Akkermans.
Ontology-based analysis of e-service bundles for networked enterprises. In Pro-
ceedings of The 17th Bled eCommerce Conference (Bled 2004), Bled, Slovenia,
2004.

6. Ziv Baida, Jaap Gordijn, Borys Omelayenko, and Hans Akkermans. A shared
service terminology for online service provisioning. In Proceedings of the Sixth
International Conference on Electronic Commerce (ICEC04), Delft, NL, 2004.

7. Ziv Baida, Jaap Gordijn, Hanne Sæle, Andrei Z. Morch, and Hans Akkermans.
Energy services: A case study in real-world service configuration. In Proceedings of
the 16th International Conference on Advanced Information Systems Engineering
(CAiSE 2004), pages 36–50, Riga, Latvia, 2004. Springer-Verlag.

8. L.L. Berry and A. Parasuraman. Marketing Services: Competing through Quality.
The Free Press, New York, NY, 1991.

9. E. Bigné, C. Mart́ınez, and Maria José Miquel. The influence of motivation, expe-
rience and satisfaction on the quality of service of travel agencies. In Paul Kunst
and Jos Lemmink, editors, Managing Service Quality (Volume III), pages 53–70,
London, UK, 1997. Paul Chapman Publishing Ltd.

414 Z. Baida et al.

10. Pim Borst. Construction of Engineering Ontologies for Knowledge Sharing and
Reuse. PhD thesis, Universiteit Twente, Enschede, NL, 1997.

11. Hans de Bruin and Hans van Vliet. Top-down composition of software architec-
tures. In Per Runeson, editor, Proceedings of 9th International Conference and
Workshop on the Engineering of Computer-Based Systems (ECBS2002), pages 1–
10, Lund, Sweden, April 2002. IEEE Computer Society.

12. Hans de Bruin, Hans van Vliet, and Ziv Baida. Documenting and analyzing a
context-sensitive design space. In J. Bosch, M. Gentleman, C. Hofmeister, and
J. Kuusela, editors, Software Architecture: System Design, Development and Main-
tenance; Proceedings of the 3rd Working IFIP/IEEE Conference on Software Ar-
chitecture (WICSA-02), pages 127–141, Montreal, Canada, August 2002. Kluwer
Academic Publishers.

13. Paolo Donzelli. A goal-driven and agent-based requirements engineering frame-
work. Requirements Engineering, 9(1):16–39, 2004.

14. Anne Flæte and Gregers Ottesen. Telefiasko for viken. Dagens Næringsliv (Nor-
wegian newspaper), 13/14 October 2001.

15. Ariel Fuxman, Lin Liu, Marco Pistore, Marco Roveri, and John Mylopoulos. Speci-
fying and analyzing early requirements: Some experimental results. In Proceedings
of the 11th IEEE International Requirements Engineering Conference (RE’03),
pages 105–114, Monterey Bay, California, 2003. IEEE Computer Society.

16. C. Grönroos. Service Management and Marketing: A Customer Relationship Man-
agement Approach, 2nd edition. John Wiley & Sons, Chichester, UK, 2000.

17. H. Kasper, P. van Helsdingen, and W. de Vries jr. Service Marketing Management:
An International Perspective. John Wiley & Sons, Chichester, UK, 1999.

18. P. Kotler. Marketing Management: Analysis, Planning, Implementation and Con-
trol, 6th edition. Prentice Hall, Englewood Cliffs, NJ, 1988.

19. K. F. Marthinussen. KANKAN som kunne... (presentation). In ITEnergi 2002
Conference, 2002. Available at www.itenergi.com/kari_martinussen.ppt, last vis-
ited March 2005.

20. Roland T. Rust and P.K. Kannan. E-service: a new paradigm for business in the
electronic environment. Communications of the ACM, 46(6):36–42, 2003.

21. Bas van der Raadt. Business-oriented exploration of web service ideas: Combin-
ing goal-oriented and value-based approaches. Master’s thesis, Vrije Universiteit,
Amsterdam, NL, 2004.

22. Axel van Lamsweerde. Requirements engineering in the year 00: a research perspec-
tive. In Proceedings of the 22nd international conference on Software engineering,
pages 5–19, Limerick, Ireland, 2000. ACM Press.

23. Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour,
invited minitutorial. In Proceedings of RE’01 - International Joint Conference on
Requirements Engineering, pages 249–263, Toronto, Canada, 2001. IEEE.

24. Eric S. K. Yu. Modelling Strategic Relationships for Process Reengineering. PhD
thesis, University of Toronto, Toronto, Canada, 1995. Also appears as Technical
Report DKBSTR-94-6.

25. V.A. Zeithaml, A. Parasuraman, and L.L. Berry. Delivering Quality Service: Bal-
ancing Customer Perceptions and Expectations. The Free Press, New York, NY,
2001.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 415 – 429, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Developing Adapters for Web Services Integration

Boualem Benatallah1, Fabio Casati2, Daniela Grigori3,
Hamid R. Motahari Nezhad1,4, and Farouk Toumani5

1 SCSE, University of New South Wales, Sydney NSW 2052, Australia
{boualem, hamidm}@cse.unsw.edu.au

2 HP Labs, Palo Alto, CA, 94304 USA
fabio.casati@hp.com

3 PriSM, Université de Versailles, 45 avenue des Etats-Unis,
78035 Versailles Cedex, France,

daniela.grigori@prism.uvsq.fr
4 NICTA, Australian Technology Park, Bay 15 Locomotive Workshop,

Sydney NSW 1430, Australia,
5 LIMOS, ISIMA, Campus des Cezeaux, BP 125, 63173 Aubière Cedex, France

ftoumani@isima.fr

Abstract. The push toward business process automation has generated the need
for integrating different enterprise applications involved in such processes. The
typical approach to integration and to process automation is based on the use of
adapters and message brokers. The need for adapters in Web services mainly
comes from two sources: one is the heterogeneity at the higher levels of the in-
teroperability stack, and the other is the high number of clients, each of which
can support different interfaces and protocols, thereby generating the need for
providing multiple interfaces to the same service. In this paper, we characterize
the problem of adaptation of web services by identifying and classifying differ-
ent kinds of adaptation requirements. Then, we focus on business protocol
adapters, and we classify the different ways in which two protocols may differ.
Next, we propose a methodology for developing adapters in Web services,
based on the use of mismatch patterns and service composition technologies.

1 Introduction

The push toward business process automation, motivated by opportunities in terms of
cost savings, higher quality and more reliable executions, has generated the need for
integrating the different enterprise applications involved in such processes. Applica-
tion integration has been one of the main drivers in the software market during the
late nineties and into the new millennium. The typical approach to integration and to
process automation is based on the use of adapters and of message brokers [YeSt97,
CFPT03]. Adaptors wrap the various applications (which are in general heterogeneous,
e.g., have different interfaces, speak different protocols, and support different data for-
mats) so that they can appear as homogeneous and therefore easier to be integrated.
Message brokers, and message-oriented middleware in general, provide an efficient and
reliable way to transport messages (typically corresponding to operation invocations or

416 B. Benatallah et al.

their replies) among the adapters, which in turn interact with the wrapped application.
While very effective and relatively successful, this approach presents several limita-
tions. In particular, process integration efforts require a high number of different
adapters, as the level of heterogeneity in IT infrastructures is typically very high. Fur-
thermore, whenever new versions of the wrapped applications are deployed, adapters
need to be modified to account for the differences in protocols and formats supported
by these new versions. This is also why enterprise application integration (EAI) plat-
forms are very expensive.

Web services were born as a solution to (or at least as a simplification of) the inte-
gration problem [ACKM04]. The main benefit they bring is that of standardization, in
terms of data format (XML), interface definition language (WSDL), transport mecha-
nism (SOAP) and many other interoperability aspects. Standardization reduces het-
erogeneity and makes it therefore easier to develop business logic that integrates dif-
ferent (Web service-based) applications. Web services also represent the most
promising technologies for the realization of service-oriented architectures (SOAs),
not only within but also outside companies' boundaries, as they are designed to enable
loosely-coupled, distributed interaction [BeCT04].

While standardization makes interoperability easier, it does not remove the need
for adapters. In fact, although the lower levels of the interaction stacks are standard-
ized (as discussed later), different Web services may still support different interfaces
and protocols. In addition, the novel opportunities enabled by Web services have an
implication in terms of adaptation needs. In fact, having loosely-coupled and B2B in-
teractions imply that services are not designed having interoperability with a particu-
lar client in mind (as it was often the case with CORBA-style integration) [CFPT03].
They are designed to be open and possibly without knowledge, at development time,
about the type and number of clients that will access them, which can be very large.
The possible interactions that a Web service can support are specified at design
time, using what is called a business protocol or conversation protocol [BeCT04].
A business protocol specifies message exchange sequences that are supported by
the service, for example expressed in terms of constraints on the order in which ser-
vice operations should be invoked. This is important, as it rarely happens that ser-
vice operations can be invoked at will independently from one another. Hence, ad-
aptation should not be limited to handling heterogeneity at the operation level, but
also at the business protocol level.

This paper presents a framework for developing Web service adapters. First, we
characterize the problem of adaptation by identifying and classifying different kinds
of adaptation needs (Section 2). Then, we focus on interface and business protocol
adapters and we classify the different ways in which two interfaces and protocols may
differ (Section 3). These differences are captured using mismatch patterns. Patterns
help users in analyzing differences and in resolving them. In fact, among other infor-
mation, patterns include a template of business logic that can be used to semi-
automatically develop adapters to handle the mismatch captured by each pattern. We
provide a number of built-in patterns corresponding to the possible mismatch we have
identified at the interface and protocol levels. Finally, we discuss related work, con-
clusions and future directions in Sections 4 and 5.

 Developing Adapters for Web Services Integration 417

2 Toward a Methodology for Web Service Adapters

This section presents an overview of the proposed approach to semi-automated devel-
opment of service adapters. We first characterize the interoperability problem in gen-
eral, then we define the focus of our work, and finally we describe at a high level the
approach we adopt.

2.1 Interoperability at Business-Level Interfaces and Protocols

Interoperability among Web services, just like interoperability in any distributed sys-
tem, requires that services use the same (or compatible) protocols, data formats, and
semantics. In our work, we focus on interoperability issues at business-level interfaces
and protocols. To interact, services must have compatible:

− Interfaces (i.e., the set of operations supported by services),
− Business protocols (i.e., the allowed message exchange sequences). These can

be expressed for example using BPEL abstract processes, WSCI, or other proto-
col languages (see, e.g., [BeCT04]).

More precisely, we classify the need for adaptation in Web services in two basic cate-
gories: adaptation for compatibility and adaptation for replaceability. The first cate-
gory refers to wrapping a Web service S so that it can interact with another service C.
For example, consider a service S, offered by provider SP, allowing companies to or-
der office supplies. If SP wants to be able to do business with certain retailers (say,
Wal-Mart or Target), then it needs to adapt its service S so that it can interoperate
with these retailers. In general, many adapters can be defined depending on the num-
ber of different client protocols that SP must interact with. Hence, in this case, adapta-
tion is performed by considering the client's protocol. Note that adaptation may be re-
quired for one or more of the interoperability layers identified above, since for two
services to interact, compatibility must be achieved at all layers.

Adaptation for replaceability refers to modifying a Web service so that it becomes
compliant with (i.e., can be used to replace) another service. This is important espe-
cially in those business environments where the interaction, even at the interface and
business protocol level, has been standardized either de jure or de facto (e.g. due to
the presence of a dominant player in the market). For example, the RosettaNet consor-
tium standardizes the external behaviour of services in the IT supply chain space. In
these cases, service providers may have to adapt their services so that they can follow
the guidelines prescribed by the standards.

Adaptation for replaceability is also needed when a new version of a service is de-
veloped, possibly with a different external behaviour, but we want to preserve back-
ward compatibility (that is, an adapter should be provided so that the service is also
offered in a version that behaves like the old one). Replaceability may be partial or
total [BeCT04a]. Total replaceability occurs when a service SR behaves externally
like another service S. This means that any service that interacts correctly (i.e., with-
out generating runtime faults) with S will also be able to interact correctly with SR
(note that the opposite is not necessarily true). Partial replaceability occurs when a
service SR can behave like S only in certain interactions (that is, SR behaves like S in
some but not all conversations). For example, an ordering service SR may need or be

418 B. Benatallah et al.

able to replace ordering service S only for orders of certain products but not other, or
may able to process all orders but does not allow cancellations, while S does. We re-
fer the reader to [BeCT04a] for a detailed definition of compatibility and replaceabil-
ity among services, as well as other important relations among different elements of
service descriptions.

This paper proposes a technique for developing adapters to achieve total replace-
ability. As mentioned above, this is a very important and relevant problem. The re-
lated issues of partial replaceability and compatibility can be handled in an analogous
manner. We also decided to initially focus on developing adapters to resolve differ-
ences at the interface and business protocol level. Replaceability at the lower layers
has been either addressed by standardization (e.g., messaging) or has been the subject
of excellent research work by other groups [RyWo], and hence research on protocol
replaceability constitutes the next level up the interoperability stack in supporting in-
teraction among services. Incidentally, although we discuss the problem of protocol
replaceability in the context of business protocols, analogous techniques can be used
for other service aspects characterized by protocols (e.g., trust negotiation protocols
or basic coordination).

2.2 Developing Service Adapters Using Mismatch Patterns

The intended benefit of this work is to help programmers develop adapters through a
methodology and semi-automated code development, starting from the protocol defi-
nitions. The adapters have the goal of making a service SR, characterized by protocol
PR, "look like" (interact as) another service S that has protocol P, so that SR can then
interact with any client that can interact with S (see Figure 1).

Service SR

Service S

Client

Client

Interacting based
on protocol P

Interacting based
on protocol P

Adapter A

Interacting based
on protocol PR.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1. Adapters allows achieving protocol replaceability

Hence, the adapter A for SR is a Web service that, to clients, behaves like S from
an interaction perspective. In particular, if S supports protocol P, then adapter A also
supports protocol P when interacting with clients. Adapter A will implement protocol
P by invoking methods of SR. From the perspective of SR, A looks like a service
whose protocol is compatible with PR (Figure 1).

The approach proposed in this paper to adapter development is based on mismatch
patterns, which are design patterns that can be used to capture the possible differences
among services (and specifically among interfaces and protocols). We have analyzed
interfaces and protocols to identify common differences and for those we have speci-
fied the corresponding mismatch patterns. Indeed we believe that the identification of

 Developing Adapters for Web Services Integration 419

the various kinds of differences among interfaces and, most of all, protocols, is a con-
tribution in itself. Developers can, however, add to the set of patterns if there are spe-
cific mismatches that they would like to handle differently or if there are mismatches
that are not captured in the built-in set.

Besides capturing differences, patterns can be used both as guidelines for designer
in developing adapters and as input to a tool that automatically generates the adapter
code. In fact, mismatch patterns contain both formal and informal descriptions of the
type of adapter (called adapter template) used to resolve that type of mismatch. The
table below summarizes the structure of an adapter pattern. In the following of this
section we discuss and exemplify in more detail the part related to adapter templates
and their instantiation.

Name Name of the pattern
Mismatch Type A description of the type of difference captured by the pattern
Template parame-
ters

Information that needs to be provided by the user when instantiat-
ing an adapter template to derive the adapter code

Adapter template

Code or pseudo-code that describes the implementation of an
adapter that can resolve the difference captured by the pattern

Sample usage The sample usage section contains information that guides the de-
veloper in customizing (or manually generating) the adapter, by
providing examples on how to instantiate the template

To describe the approach to adapter template specification and adapter generation

and to motivate our choices, we begin by discussing what is expected of an adapter
and how they can be modelled and implemented. As mentioned above, the job of an
adapter consists in mapping interactions with protocol P into interactions with proto-
col PR. This requires performing activities such as receiving messages, storing mes-
sages, transforming message data, and invoking service operations. These tasks can
be very well modelled by process-centric service composition languages such as
BPEL (http://www-128.ibm.com/developerworks/library/ws-bpel/). Hence, our aim is
to leverage patterns to manually or automatically generate process skeletons that map
interactions according to protocol P into interactions according to protocol PR.
Analogous solutions can be identified if third-generation programming languages like
Java or C# or if other process languages instead of BPEL are used. In any case, the
generated specifications can be then enacted by the corresponding execution engine
(e.g., a BPEL engine, or a Java virtual machine). We chose a process-based notation
because it is well-suited to model business logic and because it is easy to derive the
protocol specifications of a service when its implementation is specified as a business
process [BBCT04] (although, as we will see, other aspects such message transforma-
tions need to be modelled). A high-level process-based notation is also appropriate to
compose complex adapters from primitive adapter templates, possibly leveraging one
of the many process management tools available on the market. In addition, this nota-
tion can be mapped to others (e.g., state machines or state-charts), which are endowed
with formal semantics. Using a high level notation allows, e.g., using formal analysis
techniques to verify the correctness of adaptors.

Given that we aim at generating and customizing a process definition, it was natu-
ral to select a process language for defining the adapter templates as well, as using a

420 B. Benatallah et al.

similar modelling framework simplifies adapter generation, especially when it is per-
formed manually. Indeed, we borrow BPEL notation, concepts, and terminology for
this purpose, endowed with additional annotations to specify adaptation abstractions.
In particular, the additional annotations may include XQuery
(www.w3.org/TR/xquery/) functions to specify message transformations that are
commonly needed in adapters, directives to help developers understand how to instan-
tiate certain elements of the adapter template.

Example. As an example, consider the MapPoint (www.microsoft.com/mappoint/)
and Arcweb (www.esri.com/software/arcwebservices/) route Web services, which of-
fer similar functionalities for finding driving routes between two points using differ-
ent WSDL interfaces (operations CalculateRoute and findRoute, respectively).
Suppose that Arcweb corresponds to service SR and MapPoint to service S according
to the architecture presented in Figure 11. The names, number, and types of the in-
put/output parameters of the operations CalulateRoute and findRoute differ.
The operation CalculateRoute requires one input parameter called Specification
whose type is SegmentSpecification. The operation findRoute requires two
parameters: routeStops and routeFinderOptions whose types are RouteStops
and RouteFinderOptions, respectively. The values of both parameters routeS-
tops and routeFinderOptions can be computed from the value of the parameter
Specification.

This type of difference is handled by a mismatch pattern called SMP (Signatures
Mismatch Pattern). This pattern concerns differences that occur when two services S
and SR have operations that have the same functionality but differ in operation name,
number, order or type of input/output parameters. In general, adapters that resolve this
kind of differences need to perform the actions described below, which therefore con-
stitute our adapter template for this pattern (written here in pseudo-code for ease of
presentation):

Template
Parameters

Signatures of operations O of service S and OR of service SR, XQuery
functions for message transformations
Receive the input message OI of operation O from client (BPEL receive ac-
tivity)
Transform OI into a format that is compliant with the type of input message
ORI of operation OP, using XQuery transformation functions (one or more
BPEL assign activity, depending on the parameters to be transformed)
Invoke operation OR (BPEL invoke activity)
Transform output message ORO of operation OR into a format that is com-
pliant with the type of the output message OO of operation O, using
XQuery transformation functions (one or more BPEL assign activity, de-
pending on the parameters to be transformed)

Adapter
Template

Send reply of operation O to client (BPEL reply activity)

Note that the template is parametric: to instantiate it and generate an executable
BPEL process, the user needs to provide several parameters. In this case, the parame-
ters are the signatures of the operations that have a mismatch and the XQuery trans-

1 The idea for using the arcweb vs MapPoint example is taken from [PoFo04].

 Developing Adapters for Web Services Integration 421

formation functions. The parameters that the user needs to specify are part of the tem-
plate parameters field of the pattern. This information is used to (manually or automati-
cally) generate a process skeleton from the template. The developer may then want or
need to further customize the resulting process skeleton to add some custom business
logic, or can just directly use the generated process skeleton to deploy the adapter. For
built-in patterns, we have automated code that actually generates adapters given the pat-
tern name and template parameters. Note that complex adapters, i.e., those resolving
several mismatch types, can be constructed by composing primitive templates.

Figure 2 shows an adapter that resolves the signature mismatch among operation
CalculateRoute of S and operation findRoute of SR according to the adapter
template of SMP pattern.

CalculateRouteIn

CalculateRouteOut

Client
Provider SR

(Arcweb)

Receive CalculateRoute <Specification>

Assign routeFinderOptions
XQuery_TransformOptions (Specification. Options)

Invoke findRoute <inputVariable: routeStops, routeFinderOptions,
outputVariable: Result >

Assign CalculateRouteResult XQuery_TransformResult (Result)

Reply CalculateRoute <CalculateRouteResult>

findRouteIn

findRouteOut

Assign routeStops XQuery_TransformStops (Specification)

CalculateRouteIn

CalculateRouteOut

Client
Provider SR

(Arcweb)

Receive CalculateRoute <Specification>

Assign routeFinderOptions
XQuery_TransformOptions (Specification. Options)

Invoke findRoute <inputVariable: routeStops, routeFinderOptions,
outputVariable: Result >

Assign CalculateRouteResult XQuery_TransformResult (Result)

Reply CalculateRoute <CalculateRouteResult>

findRouteIn

findRouteOut

Assign routeStops XQuery_TransformStops (Specification)

Fig. 2. Sample usage of SMP

In the process skeleton, the parts in bold indicate the parameters that are provided by
the adapter developer. The symbol "<>" is used to denote parameters of operations. We
also identify the input and output messages of operations by adding "In" and "Out" to
the end of operation name in the examples.

In Figure 2, the adapter first receives a message that contains the value of the input
parameter Specification of operation CaculateRoute (hence behaving like S).
Then it computes the values of routeStops and routeFinderOptions (i.e, input pa-
rameters of the operation findRoute) from the value of the parameter Specifica-
tion, via XQuery transformation functions. These functions are specified by the devel-
oper, possibly by using one of the many XQuery tools being developed by major
software vendors. After performing message transformations, the adapter invokes the
operation findRoute of SR (Arcweb), and performs symmetric actions on the reply. In
this example, the configuration of the template activities consists of specifying XQuery
functions, namely XQuery_TransformStops, XQuery_TransformOptions and
XQuery_TransformResults.

We conclude the section by pointing out aspects that are outside the scope of this
work. The work in this paper does not address the problem of automatically identifying
differences between two actual protocols. For example, a type of difference occurs
when protocol P requires two messages, ma and mb to be in sequence, while PR allows

422 B. Benatallah et al.

them to be in any order. Referring to this example, we do not present here a mecha-
nism for finding out that the difference between P and PR consists in the different or-
dering constraints on ma and mb. The problem of identifying the actual differences
constitutes a separate research thread in itself and is extremely complex. This is, how-
ever, an orthogonal issue. In this paper, we assume that an analyst will identify the
differences and the corresponding pattern. For example, an analyst (or, in the future, a
tool) will look at P and PR and identify that there is a difference of type ordering con-
straint involving ma and mb. From there, we derive the corresponding mismatch pat-
tern that resolves the difference so that the adapter can appear as supporting protocol
P and is implemented by invoking operations of PR.

3 Characterizing and Resolving Differences Between Business
Protocols

This section describes our approach for developing Web service adapters at the inter-
face and business protocol levels. For each level, we present a taxonomy of possible
mismatches and propose a solution to tackle each kind of mismatch. The rationale be-
hind the proposed taxonomy is to characterize differences based on how we can ap-
proach/solve them. For each pattern we also provide an example (which corresponds
to a sample usage for that pattern).

3.1 Differences at the Operation Level

In addition to SMP pattern that we described in section 2.3 for resolving operation
signatures mismatch, in this section we describe a mismatch pattern called PCP (Pa-
rameter Constraints Pattern) that handles parameter constraints mismatch as de-
scribed below. This type of mismatch occurs when the operation O of S imposes con-
straints on input parameters, which are less restrictive than those of OR input
parameters in SR (e.g., differences in value ranges).

Template
Parameters

Signatures of operations O of service S and OR of service SR, XQuery
functions for checking parameter constraints
Receive the input message OI of operation O from client (BPEL receive ac-
tivity)
If OI verifies OR constraints (BPEL switch activity):

Invoke operation OR (BPEL invoke activity) Then
Send reply of operation O to client (BPEL reply activity)

Adapter
Template

Else Raise a constraint-violation exception and terminate conver-
sation (BPEL reply activity)

In this adapter template, input messages of operation O are first checked to verify

if they are compliant with OR constraints. For instance, suppose that element Pref-
erence (a sub-element of the parameter Specification of operation Calcu-
lateRoute) accepts "quickest", "shortest" and "Least Toll" as possible values. But,
element RouteType (an element of parameter routeFinderOptions of operation
findRoute) accepts "quickest" and "shortest" as possible values. In this case, there is
no possible value of RouteType that corresponds to the value "Least Toll" of Pref-

 Developing Adapters for Web Services Integration 423

erence. If the value of RouteType is in {"quickest", "shortest"}, the adapter will
forward the invocation message to Arcweb. Otherwise, the adapter will raise a con-
straint violation exception. Figure 3 shows an adapter resolving this constraint mis-
match. We observe again that in the case of built-in patterns we have pattern-specific
code that generates the adapter given the user-defined parameters. However, the same
can be done manually by the developer by looking at the adapter template field of the pat-
tern and at the sample usage. Note that constraint-checking conditions is expressed using
XQuery queries. For example, the condition Verify_Specifica tion_Constraints
checks if Specification verifies the constraints of RouteType.

Client Provider SR
(Arcweb)

Invoke findRoute

findRouteIn

findRouteOut

CalculateRouteIn

Receive CalculateRoute <Specification>

Reply CalculateRouteCalculateRouteOut

Switsch

Reply Constraint-Vio lation

[Verify_Specification_Constraints][Not Verify_Speci fication_Constraints]
Constraint-Violation

Fig. 3. Sample usage of PCP

3.2 Differences at the Protocol Level

We now consider the problem of developing adapters to resolve service mismatches
that occur at the protocol level. We build our approach using the extend business pro-
tocol model presented in [BeCT04]. That protocol model allows a richer description
of the external behavior of a service by providing specific abstractions that enable, for
example, to model temporal and transactional properties of service conversations.

In this section we use a supply chain example to illustrate adapter templates. For
instance, protocol P may expect to exchange messages in the following order: clients
can invoke login, then getCatalogue to receive the catalogue of products includ-
ing shipping options and preferences (e.g., delivery dates), followed by submitOr-
der, sendShippingPreferences, issueInvoice, and makePayment operations.
In contrast, protocol PR allows the following sequence of operations: login, get-
Catalogue, submitOrder, issueInvoice, makePayment and sendShipping-
Preferences. This is possible, e.g., because provider SR does not charge differently
according to the shipping preferences. Clients are allowed to specify their shipping
preferences at a final step. Note that for the sake of clarity, we omitted the acknowl-
edgements from the message sequences.

Message Ordering Mismatch
This type of difference is concerned with the order in which protocols expect to re-
ceive certain message. Mismatch occurs when protocols P and PR support the same
message but in different orders. This type of difference is handled by a mismatch pat-
tern called OCP (Ordering Constraint Pattern) described below:

424 B. Benatallah et al.

Template
Parameters

Protocols P and PR, message m to be re-ordered

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Receive message m according to protocol P (BPEL receive activity)
Store m in the adapter (BPEL assign activity)

Adapter
Template

Send m to SR when it is expected (BPEL invoke activity)

Figure 4 shows an adapter that resolves the ordering constraints for the message

sendShippingPreferencesIn. From the input parameters of the template, it is
possible to determine the message ordering constraints of protocols P and PR. In this
case, the adapter can temporarily store the parameter of operation sendShipping-
Preferences of protocol P and forward the operation to service SR according to the
messages choreography of protocol PR. Note that the adaptation will be more com-
plex if protocol P issues a reply or acknowledgement for the sendShippingPref-
erencesIn message and the client expect receiving such message. We will discuss
such a scenario in the following when we discuss the need for generating missing
messages.

Receive sendShippingPreferences <ShippingPrefIn>

Client Provider SR
… other activities (the operations issueInvoice and

makePayment in this example)…

sendShippingPreferencesIn

Other messages

sendShippingPreferencesIn

Assign ShippingPref ShippingPrefIn

Invoke sendShippingPreferences <ShippingPref>

Other messages

Fig. 4. Sample usage of OCP

Extra Message Mismatch
This type of differences occurs in situations where protocol PR issues an extra mes-
sage that protocol P does not issue. This type of difference is handled by a mismatch
pattern called EDP (Extra Message Pattern). The adapter template of EDP allows inter-
cepting and discarding the extra message in order to make PR look like P. It should be
noted that such an adaptation makes sense only if the extra message of PR does not af-
fect the semantics of the target protocol (i.e., does not change the functionality of PR).

Template
Parameters

Protocols P of S and PR of SR, message m of PR to be discarded

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)

Adapter
Template

Discard m when received (BPEL receive activity)

 Developing Adapters for Web Services Integration 425

In the supply chain scenario, assume that protocol PR sends an acknowledgement
after receiving message issueInvoiceIn but protocol P does not. Figure 5 shows an
adapter that when receives the message InvoiceAck, it discards it (does not perform
any action).

Receive issueInvoice

Receive InvoiceAck

Reply issueInvoice

Provider
SR

issueInvoiceIn

issueInvoiceOut

InvocieAck

issueInvoiceIn

issueInvoiceOut

Client

Receive issueInvoice

Invoke issueInvoice

Receive issueInvoice

Receive InvoiceAck

Reply issueInvoice

Provider
SR

issueInvoiceIn

issueInvoiceOut

InvocieAck

issueInvoiceIn

issueInvoiceOut

Client

Receive issueInvoice

Invoke issueInvoice

Receive issueInvoice

Assign InvoiceAck
Acknowledgement

Reply issueInvoice

Client Provider
SR

issueInvoiceIn

issueInvoiceIn

issueInvoiceOut

InvoiceAck

Invoke issueInvoice

Receive issueInvoice

reply InvoiceAck

issueInvoiceOut

Receive issueInvoice

Assign InvoiceAck
Acknowledgement

Reply issueInvoice

Client Provider
SR

issueInvoiceIn

issueInvoiceIn

issueInvoiceOut

InvoiceAck

Invoke issueInvoice

Receive issueInvoice

reply InvoiceAck

issueInvoiceOut

 Fig. 5. Sample usage of EMP Fig. 6. Sample usage of MMP

Missing Message Mismatch
This type of differences occurs when protocol P issues an extra message that protocol
PR does not issue. It should be noted that this extra message does not affect the se-
mantics of the protocol PR. This type of difference is handled by a mismatch pattern
called MMP (Missing Message Pattern). The adapter template of MMP generates a
new message to make PR look like P.

Template
Parameters

Protocols P of S and PR of SR, message m of P to be generated

Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Generate m when expected by P (BPEL assign activity)

Adapter
Template

Reply m according to P (BPEL reply activity)

Consider the opposite case of the previous example, where protocol P issues an ac-

knowledgement when receiving a request for invoice (i.e., the message issueIn-
voiceIn), while protocol PR does not. Figure 6 shows an adapter that generates the
message InvoiceAck and sends it to the client after receiving the message issue-
InvoiceIn and invoking the operation issueInvoice of SR.

Message Split Mismatch
This type of differences occurs when the protocol P requires a single message to
achieve certain functionality, while in protocol PR the same behavior is achieved by
receiving several messages. This type of difference is handled by a mismatch pattern
called OMP (One to Many messages Pattern) described below:

426 B. Benatallah et al.

Template
Parameters

Protocols P and PR, message m of P to be split and messages mr1, ...,
mrn of PR to be extracted from m, XQuery functions for parameters
extraction
Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)

Adapter
Template

 Generate mr1, ..., mrn from m when m is received, send mr1, ..., mrn as pre-
scribed by PR (BPEL assign, invoke activities)

Suppose that protocol P requires to receive the purchase order as well as shipping
preferences in one message called submitOrderIn, while protocol PR needs two sepa-
rate messages for this purpose, namely, sendShippingPreferencesIn and submi-
tOrderIn. Figure 7 shows an adapter that resolves this mismatch. In this case, when
the adapter receives submitOrderIn, it generates the parameters of the operations
sendShippingPreferences and submitOrder of PR from the parameter of the op-
eration submitOrder of P, using XQuery transformation functions, namely
XQuery_SplitShipping and XQuery_SplitOrder. Following that messages sub-
mitOrderIn and sendShippingPreferencesIn are forwarded to SR. Note that in
other cases, since messages are stored in the adapter, the adapter can forward them to
SR in the order prescribed by PR.

Receive submitOrder <OrderPrefIn>

Assign ShippingPrefIn
XQuery_SplitShipping (OrderPrefIn)

Client Provider
SR

submitOrderIn

submitOrderIn

sendShippingPrefIn

Invoke submitOrder <OrderIn>

Invoke sendShippingPref <ShippingPrefIn>

Assign OrderIn
XQuery_SplitOrder (OrderPrefIn)

Receive submitOrder <OrderPrefIn>

Assign ShippingPrefIn
XQuery_SplitShipping (OrderPrefIn)

Client Provider
SR

submitOrderIn

submitOrderIn

sendShippingPrefIn

Invoke submitOrder <OrderIn>

Invoke sendShippingPref <ShippingPrefIn>

Assign OrderIn
XQuery_SplitOrder (OrderPrefIn)

Assign OrderPrefIn
XQuery_MergeOrder (Order, shippingPref)

Client
Provider

SR

submitOrderIn

Receive sendShippingPreferences <ShippingPrefIn>

Invoke submitOrder <OrderPrefIn>

submitOrderIn

sendShippingPreferencesIn

Assign Order OrderIn

Assign shippingPref ShippingPrefIn

Receive submitOrder <OrderIn>

Fig. 7. Sample Usage of OMP Fig. 8. Sample usage of MOP

Message Merge Mismatch
This type of differences occurs when protocol P needs to receive several messages for
achieving certain functionality while protocol PR requires one message to achieve the
same functionality. This type of difference is handled by a mismatch pattern called
MOP (Many to One message Pattern) described below.

Template
Parameters

Protocols P and PR, messages m1, ..., mn of P to be merged into mes-
sage mr of PR, XQuery function for parameter computation
Perform activities as prescribed by P for parts that do need adaptation
(BPEL receive, invoke, reply activities)
Receive m1, ..., mn according to P (BPEL receive activities) and store them
until mr is generated (BPEL assign activities)

Adapter
Template

Generate mr by merging m1, ..., mn when mr is expected by PR (BPEL as-
sign, invoke activities)

 Developing Adapters for Web Services Integration 427

Suppose that protocol P requires messages submitOrderIn and sendShipping-
PreferecesIn separately, but protocol PR needs all of this information included in
the submitOrderIn message. Figure 8 shows an adapter that resolves this mismatch.
In this template, when the adapter receives the messages submitOrderIn and send-
ShippingPreferencesIn, it generates the parameter of operation submitOrder of
PR using an XQuery function, namely XQuery_MergeOrder that merges the pa-
rameters of the operations submitOrder and sendShippingPreferences of P.
The adapter knows the order of messages of protocols P and PR from the input, so it
is able to generate receive and storage activities for messages and to invoke opera-
tions of SR according to PR.

It should be noted that differences can be complex (i.e., cannot be reduced to one
of the above primitive patterns). Adapters resolving several mismatch types can be
constructed by composing primitive templates. We plan to extend the set of protocols
management operators provided in our framework and reported in [BeCT04a] to cater
for adapter templates composition.

4 Related Work

Although a lot of work and progress has already been done in the area of web services
in the last few years, efforts have been mostly focused on service description models
and languages, and on automated service discovery and composition [ACKM04].

Very recently, authors in the academia have published papers that discuss similar-
ity and compatibility at different levels of abstractions of a service description (e.g.,
[BeCT04a, Bordeaux04, DHMN+04, PoFo04, WMFN04]). In terms of protocols
specification and analysis, existing approaches provide models (e.g., based on pi-
calculus or state machines) and mechanisms to compare specifications (e.g., protocols
compatibility and replaceability checking). In particular, the work that is more related
to ours, also in terms of overall line of research, is that of Lenezirini and Mecella's
group. Specifically, in [Bordeaux04] a protocol analysis framework based on con-
cepts analogous to those of replaceability and compatibility is presented. In
[PoFo04], the authors proposed a framework for handling differences among service
interfaces, but protocols are not discussed.

The framework we propose in this paper builds upon this previous work as well as
on work we did over the past three years in the area of service protocols modeling,
analysis, and management to classify differences among service protocols providing
similar functionalities and bridge these differences via adapters (see [BeCT04,
BeCT04a] for representative examples of our line of research).

Our aim is to provide a comprehensive framework for managing differences at
various abstraction layers including interface, protocol, and policy aspects. In this pa-
per, we focus on both interface and protocol levels. To the best of our knowledge,
there is no existing work that considers the classification and management of differ-
ences between service protocols and the development of adapters to resolve them.

In the software engineering area, few approaches exist for analyzing software
components mismatch. In [ZaWi97], the authors focus on analyzing differences re-
lated to data types and to pre- and post-conditions in component interfaces. In
[YeSt97, CFPT03] the focus is on specifying interface mappings and using these

428 B. Benatallah et al.

mappings to build component adaptors. These efforts provide mechanisms that can
be leveraged for Web service protocols adaptation, but are not sufficient. In fact, ser-
vice protocols require richer description models than component interfaces. This is
because clients and services are typically developed by separate teams, possibly even
by different companies, and service descriptions are all client developers have to un-
derstand to know how the service behaves.

5 Discussion and Ongoing Work

We argue that, while standardization is crucial in making service oriented computing
a reality, the effective use and widespread adoption of service technologies and stan-
dards requires high-level frameworks and methodologies for supporting automated
development and interoperability (e.g., mechanisms for analyzing protocol compati-
bility, replaceability and compliance, semi-automated generation of adaptors). We see
the evolution of the work in Web services interoperability as mirroring in a way, at
least conceptually, the work done in databases over the last thirty years and leading to
standard models and languages, algebras, theoretical foundations, and transformation
techniques. We believe that Web services protocols require the same kind of back-
ground work in terms of simple models, operators, algebras, and support for manipu-
lation/transformation. The work we have been doing goes in this direction, and the re-
search presented in this paper is a key part of it. Indeed. The framework presented in
this paper is one of the components of a broader CASE tool, partially implemented,
that manages the entire service development lifecycle.

In this paper, we focused on identifying differences among heterogeneous business
protocols in Web services and on semi-automatically resolving such differences when
possible via adapters. We have identified mismatch patterns as a convenient mean to
capture the differences among interface/protocols of two services and to encapsulate
the solution to such differences. This solution is in the form of process fragments that
can be manually or automatically instantiated to generate actual adapters. Other com-
ponents of our framework focus on modeling and specifying service abstractions:
composition logic, business protocols, and trust negotiation policies [BeCT04,
SBC03]. Based on these models, service lifecycle can be automated, from develop-
ment through analysis, management, and enforcement [BBCT04, BeCT04a]. We be-
lieve that this work will result in a comprehensive methodology and platform that can
support large-scale interoperation of Web services and facilitate service lifecycle.

As the reader will have noticed, there are several aspects that we have not dis-
cussed in this paper, some due to lack of space, others because we have not developed
a solid, validated solution as yet. An issue is that of automated code generation in re-
lation to the adapter template. In the current framework, the code for generating the
adapter is pattern-specific, that is, each pattern comes with an associated function that
takes actual values for the pattern parameters as input and generates the adapter code.
If a user wants to develop a new pattern, then the functions must also be provided. In
reality, in the current version of the framework these functions do not access the
adapter templates, which can therefore be specified semi-formally (its main purpose
right now is to help the developer understand the pattern and its solution, especially in
case a manual adapter generation is needed). In the future we plan to define a formal

 Developing Adapters for Web Services Integration 429

language (an extension of BPEL) that can be used to formally specify adapter tem-
plates. Then, generic (as opposed to pattern-specific) code will generate adapters by
reading the adapter template. As mentioned, we use annotated BPEL for this purpose,
but at the time of writing we have not finalized the language design nor the generation
code. We believe this will be an improvement as pattern developers can use this
BPEL-like language to specify the template and do not need to write low-level code
for adapter generation.

References

[ACKM04] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archtec-
tures, and Applications. Springer Verlag (2004).

[BBCT04] Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-Driven Web Service De-
velopment. Procs of CAiSE’04, Riga, Latvia (2004).

[BeCT04] Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: A Cor-
nerstone for E-Business Automation. IEEE Internet Computing, vol. 8, no. 1 (2004).

[BeCT04a] Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Services
Protocols. ER’04, Shanghai, China (2004).

[Bordeaux04] Bordeaux, L., et al: When are two Web Services Compatible?. VLDB TES'04.
Toronto, Canada (2004).

[CFPT03] Canal, C., Fuentes, L., Pimentel, E., Troya, J., Vallecillo, A.: Adding Roles to
CORBA Objects. IEEE TSE, vol. 29, no. 3 (2003).

[DHMN+04] Dong, X., A., Halevy, Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search
for Web Services. VLDB’04. Toronto, Canada (2004).

[PoFo04] Ponnekanti, S. R., Fox, A.: Interoperability among Independently Evolving Web Ser-
vices. Middleware’04. Toronto, Canada (2004).

[RyWo] Ryan, N. D., Wolf, A. L.: Using Event-Based Translation to Support Dynamic Proto-
col Evolution. ICSE'04. Edinburgh, Scotland, United Kingdom (2004).

[SBC03] Skogsrud, H., Benatallah, B., Casati, F.: Model-Driven Trust Negotiation for Web
Services. IEEE Internet Computing, vol. 7, no. 6 (2003) 45-52.

[YeSt97] Yellin, D. M., Strom, R. E.: Protocol specification and Component adaptors. ACM
TOPLAS, vol. 19, no. 2 (1997).

[WMFN04] Wombacher, A., Mahleko, B., Fankhauser, P., Neuhold, E.: Matchmaking for Busi-
ness Processes based on Choreographies. EEE’04, Taipei, Taiwan (2004).

[ZaWi97] Zaremski, A. M., Wing, J. M.: Specification Matching of Software Components.
ACM TOSEM, vol. 6, no. 4 (1997).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 430 – 445, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient: A Toolset for Building Trusted B2B
Transactions

Amel Mammar1, Sophie Ramel2, Bertrand Grégoire2,
Michael Schmitt2, and Nicolas Guelfi1

1 Software Engineering Competence Center (SE2C), University of Luxembourg,
6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg-Kirchberg, Luxembourg

{amel.mammar, nicolas.guelfi}@uni.lu
2 Centre d’Innovation par les Technologies de l’Information (CITI),

Centre de Recherche Public Henri Tudor,
29, Avenue John F. Kennedy L-1855 Luxembourg-Kirchberg, Luxembourg

{sophie.ramel, bertrand.gregoire, michael.schmitt}@tudor.lu

Abstract. The paper introduces an approach to the specification, the
verification and the validation of B2B transactions. Based on the usage of a
subset of formally defined UML diagrams complemented with business rules,
we introduce two facilities offered by the supporting Efficient toolset, namely
the checking of formal properties expected from the produced models as well as
the animation tool allowing business experts to understand and ‘play’ with
business transactions models before they are implemented. The overall
approach is illustrated through the experiences gained in the performance of a
real transactional Import/Export business case.

1 Introduction

Message-based Electronic Data Interchange as specified by industry standards such as
EDIFACT, EDIFICE, ANSI X12 or VDA is progressively being replaced by
transaction-based and extensible specifications covering the needs of the whole
business process. XCBL [23], ebXML [3] and Rosettanet PIPs [14] are a few
examples of new recommendations that illustrate this trend. These initiatives are
defining a set of harmonized business scenarios along with the respective rules,
messages and technical requirements that facilitate their implementation. Trading
partners that are planning to set up an E-Commerce transaction can develop their own
scenario by selecting and adapting an existing standard in accordance with their
business needs. The basic building blocks of an E-Commerce scenario are the flow
and the rules according to which business documents (messages) are exchanged
among the actors participating in the transaction. Together with this new business
transaction perspective is also adopted XML[6] and a set of associated non-
proprietary technologies as the new syntax for representing the exchanged messages.

Regarding the design of the B2B transactions new recommendations like those
included in the UMM method [17] proposes the use of UML[18] in order to produce a
set of precise models of the transaction. However, as already experienced by many

 Efficient: A Toolset for Building Trusted B2B Transactions 431

practitioners, some UML diagrams are not enough precise to have a unique
interpretation. Furthermore all the semantics of a B2B transaction cannot be captured
in terms of UML diagrams that need to be complemented with additional descriptions
expressed in natural language. To overcome these problems we have developed a
specific CASE tool supporting the design of fully formal UML based models.
Associated with these models, and taking direct profit of the absence of ambiguities in
them, we have developed two additional facilities, which allow to discover errors in
these models, namely

• A verification tool which, based on a proof system, allows to check the
consistency and the completeness of the UML models.

• A validation tool which, based on an animator system, allows business experts
to understand and ‘play’ business transactions before they are implemented.

These two facilities allow to discover errors in the UML models at the design time
rather than at the implementation and test time. The direct consequence is not only a
gain of resources due to an early discovery of errors already at the design time of the
transaction, but also an enhancement of trust from business experts into the produced
models.

The Efficient approach differs from related work ([26], [27]) in that the business
requirements formulated and modeled by a group of business experts are first
validated automatically to check that they contain no logic errors, and then translated
into an animation that permits the business experts themselves to validate that the
transaction models correspond to their business needs.

The rest of the paper is structured as follows. In Section 2, we present the overall
approach supported by the Efficient CASE tool. In Section 3, we then focus on the
specification layer and illustrate its purpose by means of a case study illustrating a
real B2B Import/Export business case. Section 4 details the business rules language
that is used in complement to the UML models. Finally, verification and validation
facilities are described in Section 5. Section 6 wraps up with conclusions and future
directions.

2 Overview of the Efficient Process

Underlying the Efficient CASE tool is a proposed methodology, which makes three
layers of descriptions distinct, as illustrated in Fig. 1:

• The business layer provides a top-level view on the business scenario that
governs the transaction. It depicts the transaction configuration and allows the
trading partners to develop a common understanding of the business goals, of the
roles and responsibilities that apply, of the various business activities it involves
and of each actor’s contributions and benefits. In sum, this layer addresses the
question of who exchanges what with whom and expects what in return. The
main actors along with their respective activities are modeled by a UML use case
diagram associated with scenarios capturing the transaction. Furthermore, a
global UML class diagram captures the core business concepts and their
relationships that are at the heart of the information exchange. We refer to this
class diagram as the business domain underlying the transaction.

432 A. Mammar et al.

• The specification layer details the flow and the business documents (messages)
that the trading partners exchange in the transaction. We use UML activity
diagrams to model the flow of the transaction and UML class diagrams to specify
the content of a business document or message. Each document regroups a subset
of the elements of the business domain depending on the information needs
related to the business activity the recipient of a message will need to act upon.
Each message may be further annotated with a set of business rules (expressed
both in an informal and formal way).

• At the technical layer, after the transaction has been formally verified, the
business transaction is executed using a workflow engine. The infrastructure that
this layer is based upon (workflow engine, interfaces, XML messages, rules
checker) is automatically configured and generated on the basis of the models
developed in the other two layers. The architecture of the Efficient tool set is
distributed and Internet-based, allowing trading partners from different sites to
participate in the execution of the transactions using a Web browser interface.

Fig. 1. The modeling layers of the Efficient tool set

More information about the business layer can be found in [16]. Details about the
technical layer and more specifically about automated generation of code from UML
models are available in [4]. The rest of this paper focuses on the specification layer
with a specific focus on the proposed business rules.

3 The Specification Layer

The following sections presents the specification of the static and dynamic aspects of
an e-business transaction in the form of UML diagrams, which requires a joint effort
of both the IT experts who understand the requirements of the formal modeling
languages and the business experts who help to formulate the requirements the
transaction must meet. To create these models, the Efficient framework uses a

 Efficient: A Toolset for Building Trusted B2B Transactions 433

commercial UML CASE tool called MagicDraw [11] to which a plug-in has been
developed that caters for the generation and validation activities discussed in the next
sections.

In the rest of the paper we illustrate our ideas on a real business case that we have
performed within the context of the EU “EA2” project (Euro-Asian EDI Integration),
whose goal is to help the country of Vietnam with the appropriation of international
EDI standards to the particular needs of their socio-economic context. The transaction
we selected in this case study is based on a European initiative to standardize data
exchange between customs (New Computerized Transit System). It defines the
various data exchanges required in an Import/Export transaction.

3.1 Business Domain

To begin with, the actors implied in the global transaction must be identified, as well
the different associated transactions. In the NCTS import/export transaction, the
following roles have been identified:

• The Principal Trader: the party that sends the goods
• The Destination Trader: the party that receives the goods
• The office of Departure: the customs office in the country of departure
• The office of Destination: the customs office in the country of destination
• The office of Transit: the customs office in a country where the consignment is

supposed to cross the external border(s)
• The office of Guarantee: the office in the country of departure that registers and

maintains a guarantee for the goods listed under the export agreement.

Then the key concepts of the business sector, what we refer to as the business
domain, are identified and documented in a class diagram This diagram contains
classes without operations and hence consists only of classes, attributes and relations.
A part of the business domain of our transaction is represented on Fig. 2.

Fig. 2. Part of the NCTS Business Domain

434 A. Mammar et al.

3.2 Dynamics of the Transaction: Activity Diagram

Once the basic blocks have been described, the transaction is further specified with
more details: the model of a transaction is composed of one activity diagram that
describes the flow of business messages among its participants, accompanied by one
class diagram for each message exchanged. The activity diagram is composed of:

• Swim-lanes representing the different roles of the transaction
• Activities performed by these roles
• Object flows representing messages exchanged. Each object flow must be

preceded and followed by activities belonging to different swim-lanes, these
swim-lanes being associated with the role sending and the role receiving the
message respectively

• One initial state
• Only one final state (to avoid misunderstandings with workflow formalisms)
• Pseudo-states like forks, joins, decisions and merges (for the same reason,

shortcuts on these pseudo-states, like having more than one transitions arriving
to or leaving an activity, are forbidden). Only “reported” decisions are supported
at the moment: they are decisions without any guard condition, allowing users to
choose between 2 or more alternative messages.

Fig. 3. Beginning of the NCTS transaction

Fig. 3 represents the first part of the NCTS activity diagram: the principal trader
submits an export declaration to the Office at Departure, which allows or rejects the
transaction. If permission is granted, the Office of Guarantee issues a guarantee and
the transaction may go on.

3.3 Structure of Messages: Class Diagrams

For each message of the transaction, we define what information it must include
depending on the information needs of the recipient at this stage of the transaction. To

 Efficient: A Toolset for Building Trusted B2B Transactions 435

do so, we have chosen to use a limited version of UML class diagrams, containing
only constructs that can be used to represent XML messages. In order for an XML
implementation to be possible, a class diagram must be limited to include only
hierarchical relationships, that is, no loops and a unique root class that specifies the
root of the message.

Class diagrams we consider contain:

• A “root” class, meaning a class with no navigable relation incoming.
• Classes with attributes of type UML data-types or of another class
• Relations between classes: only binary oriented associations, compositions or

aggregations, and generalizations. These relations can have role names, and a
multiplicity.

• Possibly additional constructs, like the “enumeration” stereotype, or “XOR”
constraints

Fig. 4. Part of the class diagram of the “Declaration_Data_IE15” message

The class diagrams associated with the different messages are directly built from
the global business domain diagram showed in Fig. 2. The information included in the
message is a subset of the business domain information.

A part of he class diagram representing the message called “Declaration_
Data_IE15” of the NCTS transaction is shown on Fig. 4. This message contains
information about the transit operation, the type of guarantee, the trading parties, and
the cargo to be exported.

436 A. Mammar et al.

4 Expressing Business Rules Associated with a Transaction

The Oracle DataBase community has taken over the term "business rule" to designate
any data rule than could not be directly represented in their relational database. This
table-based rule representation sometimes leaded to a splitting of one rule in many
places of the system. We situate ourselves more in the context of the "logical business
rules" community founded by Ron Ross and Terry Moriarty using the name "The
Business Rules Group" [15]. Their perspective on business rules is quite similar to
what a traditional systems person might call a "system requirement": trying to
formalize what a system should do (in English from their point of view).

A business rule is part of an accurate description of a transaction. Such a rule states
upon specific aspects of this process to lead business participants in doing the right
choices.

Formally speaking OCL [12] is the language recommended for expressing rules
besides UML diagrams (see e.g. [2]). In practice we have experienced two problems
with OCL. On the one hand, the language is not readable at all by business experts, on
the other hand the validation of XML documents with regard to such specification is a
useless technical challenge. As a conclusion, we have tried to identify the required
subset of these rules and choose an ad-hoc formalism for expressing them.

We decided to differentiate 2 kinds of rules: simple, repetitive rules that link the
values of elements between different messages, further called inter-message rules, and
full-featured business rules allowing the expression of more complex rules.

4.1 Inter-message Rules

Inter-message rules are a means to link classes, association ends or attributes of
different messages together. They are associated with an element of a class diagram
describing a message and specify how the value of this element is related to the
content of an element that occurs in a previous message of the current transaction.
This kind of rule is especially useful in transactions where most of the data is passed
from one message to its successors. Inter-message rules are specified differently from
business rules, using simple UML notes, because that makes them much easier and
quicker to be added, as we expect that message diagrams contain many such rules.

Some default inter-message rules can be generated automatically by the Efficient
plug-in, based on an algorithm that creates a rule each time an element from a
previous diagram is re-used with the same attributes and outgoing relations. These
default rules can then be modified by the business expert according to his/her needs.

We have differentiated two kinds of rules: the “references” rules express that the
value of the referenced element should be recopied, while the “cardinality reference”
rules mean that the cardinality of the referenced relation should be preserved. We also
have defined optional variants of these rules, which only serve as a help to pre-fill
messages but are not enforced. These rules are written as notes on the UML class
diagrams, stating the kind of the rule that applies to the linked element, and the “path”
(in XML style) of the referenced element on the other diagram. We also have built a
small user interface to choose these elements by choosing from a list of classes,
associations and attributes.

 Efficient: A Toolset for Building Trusted B2B Transactions 437

As you can see on Fig. 5, there are two “reference” rules described by notes
containing the name of the rule and the “path” of the referenced element in the
“Declaration_Data_IE15” message. Here, it means that the Local Reference Number
(LRN) of the operation must be the same in the two messages, and also that the Office
at departure must be the same. This message also contains other rules not shown on
this figure.

Fig. 5. Inter-message rules on the "MRN_Allocated_IE28" message

4.2 Complex Business Rules

At the level of the expression of more complex rules, the challenge of choosing a
good formalism is twofold: on the one hand the rule needs to be understandable by
business experts, to help them communicating, on the other hand it should be easily
parsed and understood by computers. We therefore propose to interpret the same rule
in a natural language form (English and French are already supported), and in a
computable form (namely Xlinkit, an XML representation of first order logic
predicates). The grammatically correct natural language interpretation of the rule is
achieved thanks to the open source Grammatical Framework (GF) tool of Chalmers
University of Technology in Göteborg [7], a strong-typed generic grammar
framework.

The "business rules" to be used in the Efficient framework is composed of a
condition and the (right) behavior that responses to such a condition occurrence. The
condition describes a situation of the "real life" that may occur during the transaction.
We propose to include any factor of the environment that may trigger the transaction
as a very part of it, that is: as information provided by some actor of the transaction.

The reaction to a condition occurrence is specified as a particular flow of the
transaction, in the UML activity diagram described in Fig. 3, while the way of
expressing and computing conditions is detailed below.

Business Rules Facts and Conditions
For the sake of ease, a rule is being built in a progressive refinement of a tree-like
structure, directly mapped onto its natural language meaning to be sure the
refinements chosen by the business experts match his intentions. This is done using
the graphical user interface of GF [7].

438 A. Mammar et al.

A business rule ranges over business facts (see [15]) that represent constructs of
the real world in terms of information available during the transaction. Many business
facts are derived from the specification of each message, and hence they differ from a
transaction to the other. Facts include, among others:

• the simple occurrence of a document
• the exact time at which this document was sent
• any field (element) of the sent document
• any field of the document that is of same kind

From the document of Fig. 4 we propose, for instance, "the name of any
Organization" as a fact that describes the name of any of the mentioned traders. The
above business facts are combined using typed operators, either common in the
business all-day-life as:

• a document or field existence
• a maximal or minimal delay between documents or dates
• a date expiry

or computed using classical arithmetic, boolean and set operators. The case all
operators are typed prevents the business expert to refine rules that would not be
computable, while the simultaneous natural language interpretation of the rule ensures
its semantics.

Business Rule Context
Technically speaking, a rule may apply under some circumstances (only during a
working day, for instance). Those circumstances form what we call the context of a
rule, users of the Efficient framework may use the facts detailed above to specify a
particular context, or simply state that the rule applies either

• always
• after or before a particular document is sent
• between the occurrence of 2 documents (when a rule is triggered and expires)

User Interface
The graphical interface provided by GF displays the current state of the tree-form of
the rule, as well as its natural-language interpretation, while giving the ability to
further refine the rule by selecting the appropriate element. Here is an example rule,
shown in its natural-language form by the tool: "The 'StatusDate is not expired' rule
constraints the current transaction after a Declaration_Data_IE15 document is sent.
StatusDate of Status in Declaration_Rejection_IE16 is not expired."

We easily identify the rule context at the beginning of this statement.

4.3 Generation of Code for the Business Rules

As explained in Section 2, all the code associated with a transaction is fully and
automatically generated from the specification models. Details about the generation of
code associated with XML Schemas, workflow procedures and graphical GUI can be
found in [5]. It follows according the following principles, that are fully compatible
with the ebXML initiative:

 Efficient: A Toolset for Building Trusted B2B Transactions 439

• for the structure of messages, we chose to use W3C XML Schema files [24],
because XML Schema is a well-known format from the W3C and because
there are many open source tools available for data validation and
manipulation.

• For the flow of messages, we use a format that is understood by the workflow
engine, and that is based on a standard: XPDL (XML Process Definition
Language, [25]), from the Workflow Management Coalition [19].

Regarding the code associated with complex business rules, the tree structure that
represents a business rule may be interpreted either in English, French, or any other
interpretation for which a mapping exists to Xlinkit.

Xlinkit [22] is used to verify consistency constraints that have been defined for a
set of XML documents, in our case the XML messages exchanged. Xlinkit
implements the most basic logical predicates of the set theory, relying on XPath
expressions for the definition of sets of nodes in documents.

First Order Logic Mapping
The interpretation of a business condition as a first order logic (FOL) predicate is
quite straightforward, as illustrated below on the same rule as before.

• a business fact is mapped onto its corresponding XPath expression.
• a condition that may trigger the rule (defined in its context) is translated as a

premise of a logical implication operator, whose conclusion is the below
operator combination.

• a typed operator is mapped either onto its FOL equivalent if there is one, or onto
a function call that implements it.

Xlinkit provides extension mechanisms that allowed us implementing some
business-oriented operators (as a date expiration check) and integrating them as
common function calls into the animation framework.

Fig. 6. 1st order logic interpretation of a business condition

5 Verification and Validation of Transactional Models

The development and the implementation of the Efficient formal modeling language
pursues two objectives: the formal representation of the various aspects (flow,
content, governance and rules) that impact on an e-business transaction and its

440 A. Mammar et al.

verification. In the context of the Efficient project, the validation of the e-business
requirements is achieved by two complementary approaches:

• Automatic verification: the approach based on a proof system aims at verifying
that a given property is verified for each possible scenario of the system. . A
scenario is associated with one possible execution of the transaction, i.e. one
possible path in the activity diagram. In particular, it can be used to verify that the
restrictions on the UML language imposed by the Efficient framework are
respected in the model, and that there are no logic errors in the model.

• Validation through animation: the animation of transactions aims at discovering
errors before the actual implementation of the transaction. Such errors include
deadlocks, live locks, missing or non-adequate information content, missing
messages or wrong flow of messages, etc. It is the business experts themselves
who check the validity of the transaction by visualizing the execution of a set of
scenarios that involves the different messages. They simply play the roles of the
transaction's actors by receiving messages and sending answers.

Fig. 7. The Efficient verification and validation activities

5.1 Formal Verification

Although the animation approach is well suitable for business experts, its efficiency
depends on the relevance of the scenarios chosen. The effectiveness of this approach
decreases with the complexity of models that are to be verified: it becomes difficult to
find suitable test cases for discovering errors. Besides, this approach can only detect
the presence of failures, but cannot prove the correctness of the system we are testing.
Contrary to this approach, automatic verification can discover errors that may not be
found in the first step because of defects of the test cases. Nevertheless, it is not yet
suitable for business experts and thus cannot be used to verify that the model
corresponds to their needs.

 Efficient: A Toolset for Building Trusted B2B Transactions 441

In the two following subsections, we report about some properties that define a
correct e-business process, and then we illustrate their verification approach.

Properties of Correct e-Business Processes
After studying different kinds of errors discovered during validation by animation,
three property categories have been elected:

1. Structural properties: this type is closely related to the topology of the diagrams.
Structural properties can be directly verified on the UML diagrams without animating
the transactions. They are necessary conditions that ensure the feasibility of the
transaction. If one of them is not fulfilled, we can assert firmly that the transaction
must be erroneous. The structural properties that must be verified by an e-business
transaction can be classified into two categories. The first category facilitates the
definition of the formal semantics for the class and activity diagrams that make up the
transaction. This category comprises the following properties:

a) A class diagram must not contain circuits. The algorithm used for generating
the XPDL code imposes this property.

b) Each activity diagram must have one initial state and one to several final
states. The first part of this property determines the starting point of the
transaction; the second specifies its end point. Reaching a final point means
that the transaction has been fully accomplished.

c) The number of incoming/outgoing transitions of each activity is equal to one.

The second category corresponds to general reachability properties. This category
includes the following properties:

a) Each node must be reachable from the initial node. This property ensures that
there are no superfluous nodes on a diagram.

b) From each state, there must exist a path such that one of the final states can be
reached. This property ensures that whatever the node reached during the
execution of transaction, it may be possible to get to a final state: the system
will hence correctly terminate.

c) To avoid circular dependencies, we assume that for each input node A of a join
node C, there must not exist a path from C to A. In fact, on the one hand, the
fact that A is an input node of C implies that the node C will follow the node
A, on the other hand, a path form C to A would imply that the node A will
follow node C: detection of a deadlock.

2. Real time properties: these properties aim at evaluating the system in terms of
their time responsiveness. Placing constraints on the different activities, we want to be
able to determine if the system can answer in a limited amount of time. The different
type of time constraints that can be stated on activities include delay, duration, timed
events of the form When (t) or After (t), etc.

3. Dynamic properties: the dynamic feature of these properties means that they are
related to two or more states of the system. Its verification is achieved on a set of

442 A. Mammar et al.

states describing a possible evolution of the system. Among the possible set of
dynamic properties, we cite the two following safety /liveness properties:

a) Each guard associated to a transition is not always false (a contradiction). This
property is used to eliminate dead paths.

b) In most domains, applications are desired to be deterministic, that is, at each
moment; at most one behavior is possible. For that reason, we impose that the
guards must be disjoint.

c) The disjunction of all the guards yields TRUE. This property is used to
eliminate a potential deadlock.

Our Verification Approach
The verification process begins by checking the structural properties according to the
approach we have defined in [8]. This approach is based on the USE approach fully
described in [13]. If these properties are fulfilled, then the real time properties are
checked by following a formal approach based on the PROMELA language and its
tool support SPIN [10]. More details about this approach can be found in [9]. The
reason for checking the structural properties at the beginning of the verification
process lies in the fact that these properties are rather simple and fast to verify.
Moreover, they allow us to rule out a wide range of ill-defined transactions without
getting involved in a deep semantics analysis that may be very time consuming. Fig. 8
depicts the different verification phases.

UML specification of
an e-business transaction

Class Diagrams

Activity Diagram

Under MagicDraw CASE tool

USE specification

Structral check:
USE tool

errors

PROMELA specification

Real time check:
SPIN tool

translation

correction

translation

errors

correction

Fig. 8. The verification process

At current time, the verification of structural properties, which is integrated as a
Plug-in in the MagicDraw CASE tool, is fully automated. The tool states the number
of properties that were verified, including those that were not satisfied, along with the
time consumed by the verification task.

5.2 Validation Through an Animation

The animator tool orchestrates a process in a distributed scenario: it allows the
business users to exchange messages according to the activity diagram of the
transaction. When a message is sent, its structure is checked, along with the validity
of the business rules specified for the message.

 Efficient: A Toolset for Building Trusted B2B Transactions 443

The animator tool is composed of a set of modules, which are integrated around a
workflow engine that orchestrates the transaction. The process to be executed by the
workflow engine is based on the process modeled in the activity diagram, enriched
with the following additional activities (see Fig. 9):

• Before a message can be sent by a role, an additional activity is introduced
informing the different participants about the messages that they can send.

• The reception activity is called when the message is received. It stores the
XML message received in a XML database

• Then the structure of the message is checked as well as the associated
business rules, in a “check” sub-process (see Checker sub-flow on Fig. 9).

• If the checking returns an error, an error message is sent to its sender
• Otherwise, the message is forwarded to its recipients (with eventually pre-

filled values, depending on the inter-message rules associated with it)

Fig. 9. Process for each message in the animator, and checker sub-flow

Efficient provides the recipients with a web based client tool that allows them to:

• Instantiate one of the processes for which the animator is configured, by
identifying potential participants along with the roles they play in the transaction

• Receive messages addressed to one of the roles they play (using web services)
• Send messages, after the animator has executed a corresponding “information”

activity, by using web-based forms to input data and web services to send it.
The forms are XForms files [21], and are displayed using an open source
XForms implementation called Chiba [1]

• See the list of previously received messages

In general, in the animator tool and in the client, we have favored XML standards
over other formats, as well as the use of open source tools over proprietary tools. For
example, the animator uses an open source workflow engine called WFMOpen [20],
and use different XML libraries to parse and validate XML files.

444 A. Mammar et al.

6 Conclusion

This article introduces the Efficient toolset, a comprehensive environment for
designing and evaluating e-business transaction. Efficient facilitates the
communication between business experts and IT analysts and allows them to
progressively elaborate the specification by generating a prototype of what the
transaction might look like, without having to implement it. Current and future work
will focus on the enhancement of the expressiveness of the modeling language:
choices between two or more activities may be e.g. based on the actual values of a
message form, a more flexible definition of roles will be investigated on, and we are
going to evaluate the use of time constraints. Also, an upgrade to UML 2.0 will be
considered. From the verification point of view, we plan to extend the developed
verifier tool to take real-time features into account. Another interesting direction is to
consider nested transactions. The concept of “nested transactions” allowing a
specification reuse, it would be interesting to study how the correctness of a nested
transaction can be established (or deduced) from the correctness of the sub-
transactions that compose it.

References

1. Chiba, open source Xforms implementation, http://chiba.sourceforge.net
2. Corréa et C. Werner, Precise Specification and Validation of Transactional Business

Software, in Proc. of IEEE Joint International Requirements Engineering Conference
(RE'05), Kyoto, Japan, 2005.

3. ebXML, http://www.ebxml.org/
4. R. Eshuis, P. Brimont, E. Dubois, B. Grégoire, S. Ramel, EFFICIENT: A Tool Set for

Supporting the Modelling and Validation of ebXML Transactions, poster and short paper
at ESEC/FSE 2003, http://efficient.citi.tudor.lu/

5. R. Eshuis, P. Brimont, E. Dubois, B. Grégoire, S. Ramel. Animating ebXML Transactions
with a Workflow Engine, In Proc. CoopIS 2003, volume 2888 of LNCS, Springer, 2003.

6. extensible Markup Language, http://www.w3.org/TR/2004/REC-xml-20040204/
7. Grammatical Framework, open source tool, http://www.cs.chalmers.se/~aarne/GF/
8. N. Guelfi, A. Mammar, B. Ries, A Formal Approach for the Specification and the

Verification of UML Structural Properties: Application to E-Business Domain,
International Workshop on Software Verification and Validation (SVV 2004), workshop
of ICFEM'04, Seattle, WA, USA, 2004.

9. N. Guelfi, A. Mammar. A Formal Approach for the Verification of E-Business Processes
Using the PROMELA Language. Submitted to FASE’05.

10. G.J. Holzmann, The Model Checker SPIN, Software Engineering 23(5)pp.279-95, 1997.
11. MagicDraw, commercial tool, http://www.magicdraw.com/
12. Object Constraint Language (OCL), http://www.omg.org/cgi-bin/doc?formal/03-03-13
13. M. Richters, A Precise Approach to Validating UML Models and OCL Constraints, PhD

Thesis, University of Bremen, 2001.
14. RosettaNet Partner Interface Program (PIP), http://www.rosettanet.org
15. R. Ross, The Business Rule Book: Classifying, Defining and Modeling Rules, Second

Edition, 1997.

 Efficient: A Toolset for Building Trusted B2B Transactions 445

16. M. Schmitt, B. Grégoire, C. Incoul, S. Ramel, P. Brimont and E. Dubois, If business
models could speak! Efficient: a framework for appraisal, design and simulation of
electronic business transactions, ICEIMT 04, http://efficient.citi.tudor.lu

17. UN/CEFACT Modeling Methodology (UMM), http://www.ebxml.eu.org/umm.htm
18. Unified Modeling Language, Object Management Group specification,

http://www.omg.org/uml
19. WfMC, Workflow Management Coalition, http://www.wfmc.org/
20. WFMOpen, open source workflow engine, http://wfmopen.sourceforge.net/
21. Xforms, W3C standard, http://www.w3.org/TR/2003/REC-xforms-20031014/
22. Xlinkit, commercial tool, http://www.systemwire.com/xlinkit/
23. XML Common Business Library (xCBL), http://xml.coverpages.org/cbl.html
24. XMLSchema, W3C standard, http://www.w3.org/XML/Schema
25. XPDL, standard from the WfMC http://www.wfmc.org/standards/XPDL.htm,
26. W.M.P. van der Aalst, H.M.W. Verbeek, and A. Kumar, XRL/Woflan: Verification and

Extensibility of an XML/Petri-net based language for interorganizational workflows,
http://tmitwww.tm.tue.nl/staff/wvdaalst/publications/p139.pdf

27. Nick Szirbik, Gerd Wagner, Steps Towards Formal Verification of Agent-based E-
Business Applications, http://www.informatik.uni-hamburg.de/TGI/events/ moca01/
wagner-final.pdf

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 446 – 459, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Separation of Structural Concerns in Physical
Hypermedia Models

Silvia Gordillo1,3, Gustavo Rossi1,4,**, and Daniel Schwabe 2 ††

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{gordillo, Gustavo}@sol.info.unlp.edu.ar

http://www-lifia.info.unlp.edu.ar
2 Departamento de Informática, PUC-Rio, Rio de Janeiro, Brasil

dschwabe@inf.puc-rio.br
http://www.inf.puc-rio.br

3 Also CICPBA
4 Also CONICET

Abstract. In this paper we propose a modeling and design approach for build-
ing physical hypermedia applications, i.e. those mobile applications in which
physical and digital objects are related and explored using the hypermedia para-
digm. We show that by separating the geographical and domain concerns we
gain in modularity, and evolution ease. We first review the state of the art of
this kind of software systems, arguing about the need of a systematic modeling
approach; we next present a light extension to the OOHDM design approach,
incorporating physical objects and “walkable” links; next we generalize our ap-
proach and show how to improve concern separation and integration in hyper-
media design models. We compare our approach with others in the field of
physical and ubiquitous hypermedia and in the more generic software engineer-
ing field. Some concluding remarks and further work are finally presented.

1 Introduction

The idea of physical hypermedia (PH) was first introduced in [7] to support design
activities and to organize collections of different media, and in [15] as a formalism to
build augmented reality applications. In these software systems, physical objects are
augmented with digital information which can be accessed by the mobile user, for
example while standing in front of the object. Physical objects can be further consid-
ered as nodes in a hypermedia network and thus linked with other nodes either physi-
cal or digital. When dealing with digital objects, the user will traverse the link using
the well-known navigation paradigm (e.g. as in the WWW); in other cases (e.g. when
physical objects are involved) the link will have to be “walked” by the user [9].

** Gustavo Rossi is partially funded by Universidad Abierta Interamericana in its project “Con-
ceptual Modelling of Web Applications”.

††
Daniel Schwabe is partially funded by CNPq – Brasil.

,

 Separation of Structural Concerns in Physical Hypermedia Models 447

A simple example scenario is a museum in which visitors are equipped with portables com-
puter devices. When the visitor stands in front of an artwork, he gets multi media information
about the artwork in his portable device. Additionally, he is presented with a set of anchors that
allow him to navigate to other objects (hypermedia nodes) related with the artwork. When one
of these nodes is another artwork in the museum, he can be shown how to reach this artwork;
he can then choose to traverse the physical space (walk the link) towards this node, or just
continue his actual tour. Notice that we are not just augmenting the physical object (artwork)
with some digital information but also providing some kind of linking to other digital or physi-
cal objects.

These ideas allow to apply the hypermedia paradigm to the real world; it has been
shown elsewhere [5] that we can also build rich social interactions when users can link
their own comments to a physical object, for example as digital graffiti or recommenda-
tions, and these comments can be accessed or further discussed by other users.

In our research we are interested in how to model and design these applications,
i.e. in analyzing which software modeling and design issues we face while building
PH applications, which software abstractions we need to clearly indicate the intended
structure and behavior of a PH network, and the way in which those abstractions re-
late with each other.

In this paper we present a novel approach for the design of PH applications; this
approach seamlessly extends the Object-Oriented Hypermedia Design Method
(OOHDM) [18] to support physical objects and “walking” navigation. We show that,
by clearly separating the fundamental concerns in this kind of software, we improve
modularity and ease of evolution. We also show how to go further with this approach
in complex application domains, by applying well-known techniques for separation of
orthogonal (or partially overlapping) concerns.

The main contributions of this paper are the following:

• We indicate which design issues must be faced while modeling PH applications,
• We present a concise design approach that can be easily adapted by other hy-

permedia and Web modeling methodologies like UWE [11] or WebML [3] to
extend their scope to the physical world.

• We present an approach for designing navigational structures that depend on
application concerns. We define concern-driven navigation as an extension of
our approach of concern decoupling in physical hypermedia.

The rest of the paper is organized as follows: In Section 2 we introduce our model-
ing approach; we briefly explain the OOHDM framework and indicate how we ex-
tended it to support PH and we analyze several navigation issues. In Section 3 we
discuss how to generalize our basic approach to include other concerns. In Section 4
we compare our work with others both in the hypermedia and software engineering
fields. Some further work and concluding remarks are finally described in Section 5.

2 Modeling Physical Hypermedia Applications

While researchers have emphasized the feasibility of the PH paradigm by building soft-
ware infrastructures that support these ideas [8,9,15] and performing usability studies
[7], modeling and design issues have been so far ignored. We believe that the inherent
complexity of these applications requires a special emphasis in modeling and design.

448 S. Gordillo, G. Rossi, and D. Schwabe

To make this discussion concrete, we define a PH application as a hypermedia ap-
plication (i.e. the access to information objects is done by navigation) in which all or
some of the objects of interest are real-world objects which are visited by the user
“physically”. The most usual scenario for these applications involves a mobile user
and some location sensing mechanism and underlying software that can determine for
example when the user is within interaction range of one of these objects.

In this specific domain we need to express, in an implementation-independent way,
which are the objects of interest and their properties (including their location), how
they are linked, which links should be implemented as conventional and which should
be “walked” by the user. We should be able to cope with technology evolution and
heterogeneity, i.e. the design model should not be compromised with details on loca-
tion-sensing technology and at the same time it should allow to build models that can
gracefully evolve together with new technical possibilities.

We have extended the OOHDM [18] design approach by adding a few concepts
such as physical objects and slightly changing some navigation semantics to adapt
them to the physical hypermedia field. The object-oriented nature of OOHDM and its
open meta-model allowed us to achieve this objective easily, without changing the
basic assumptions and primitives of the methodology. In the following sub-sections
we stress those modeling constructs that are fundamental to the development of this
kind of context-aware software. In particular we emphasize how to describe basics
structures and behaviors in a high level way. We purposely ignore aspects related
with user modeling and user context-aware adaptation that have been discussed else-
where [1,10,19].

2.1 The OOHDM Design Approach

OOHDM partitions the development space into five activities: requirements gather-
ing, conceptual design, navigation design, abstract interface design and implementa-
tion. The first step is to elicit stakeholders’ requirements which helps to identify ac-
tors and the tasks they must perform. Scenarios are collected by means of User inter-
action Diagrams, a special form of Use Cases. During conceptual design we describe
the application classes and their relationships using UML [21].

For each user profile we can define a different navigational structure according to
the tasks this kind of user must perform. The linking structure of a Web application is
then defined by a navigational schema, built from navigational meta-classes such as
nodes, links, anchors and access structures such as indexes. Each node is defined as a
view over conceptual objects, acting as an Observer on those objects [6]. The separa-
tion between objects and their views allows customizing the structure of nodes and
the linking topology to the needs of the corresponding user profile and task.

Additionally, the navigational contexts schema defines the meaningful sets of
nodes that the user will traverse and the intra-set navigation topology. For example,
we can specify the navigational context “Artworks by Painter” to denote the set of
paintings of a particular painter, and specify that sequential navigation (from one
artwork to the next, according to some specified ordering) is allowed. Since the same
artwork might belong to different sets, e.g. Artworks in a Time Period or Artworks in
a Room, the differences when accessing it in one context or others, are expressed
using InContext classes, that extend the basic features of a node in the particular navi-
gational context. Details on these primitives can be found in [19].

 Separation of Structural Concerns in Physical Hypermedia Models 449

The abstract interface model defines which interface objects the user will perceive
(in particular how nodes will look like) and which interface transformations will take
place. Finally, during the implementation activity the whole set of models is mapped
into a run-time environment. Though OOHDM does not prescribe a particular strat-
egy for implementing a hypermedia or Web application, its approach can be naturally
mapped to object-oriented languages and architectural styles, such as the Model-
View-Controller. In the following sub-sections we concentrate in the conceptual and
navigation design activities.

2.2 Dealing with Physical Objects

We extended the OOHDM conceptual meta-model by adding the concept of Physical
Object and a simple User Model. Though the user model is not described here for the
sake of conciseness, it suffices to say that it contains information about the current
user’s position together with his (general or application specific) preferences. Details
on the introduction of user’s information in OOHDM models are discussed in [19].

A physical object is an application object that can be explored “physically”, i.e. it
has a physical presence in the system and the user can be tracked if he is within inter-
action range of it. In the museum example, we can be interested in modeling artworks,
rooms, corridors or other places as physical objects.

To find a suitable approach for modeling physical objects, we need to consider that
not all objects of the same class (e.g. Artwork) should be tagged as physical: for ex-
ample, in the museum, we might want to relate artworks in the museum with others
that are not in exhibition, or are in another geographical place, or simply do not exist
anymore. The “physicality” of an object is a completely separate concern from its
other characteristics, such as its (sub) type. Therefore, representing physical objects as
sub-classes of a particular class (e.g. Artwork) introduces a specialization criteria that
might collide with others in the intended domain (paintings, sculptures, etc) and also
prevents us for considering an artwork alternatively as physically accessible or not for
when it is not longer in the museum or when it is presented in an exhibition. To ac-
commodate this, we have then chosen to model physical objects as roles that can be
assumed by conceptual objects. Roles have been extensively used to model and inte-
grate different points of views on the same reality [13], both as conceptual modeling
and design artifacts [14,20]. Roles can easily be mapped to simple implementations
either using decorators as shown in [14] or even Java interfaces.

A role type (in this case a sub-type of the basic role Physical) indicates those prop-
erties and behaviors of an object when playing that role, i.e. when the object has a
physical presence. In Fig. 1 we show a simple conceptual model for the physical mu-
seum; roles are described using the notation in [14]. Small white boxes indicate that
the corresponding class can play the corresponding physical role, i.e. any object of the
class can be considered physical.

Physical objects are characterized by an attribute location whose semantics de-
pends on the location model being used, and an operation to change location (if the
object is mobile or can be changed of place); location can be just an identifier (e.g. if
we use code bars or infrared sensing), or we might need a more complex representa-
tion. In our meta-model we provide a set of basic geometries and reference systems

450 S. Gordillo, G. Rossi, and D. Schwabe

Museum

Technical
Data

Artist
Historical
ContextBoutique

Room

Artwork relatedWith

livedIn

soldIn

describedBy

createdBy

contains

createdIn

Fig. 1. Conceptual Model of the museum including physical objects

for locations as shown in Fig. 2. A designer might choose one of them or define his
own location model. Using the simple solution of Fig. 2, we can deal with different
representations and location-sensing technologies even for the same class of objects; for
example if an artwork is located in a square outside the museum we could use global
coordinates, as usual with GPS technology. This design structure also simplifies evolu-
tion when location or sensing technology changes, as the design model can be seam-
lessly adapted to the evolution, for example by adding a new type of reference system.

PhMuseum PhRoom PhArtwork

PhysicalObject
Geometry

RefSystem

Location

GlobalRS LocalRS

Polygon Line Point

interpretedIn

describedBylocatedIn

PHBoutique

Fig. 2. Decoupling Location model from physical objects

The location of a physical object involves a value expressed in a Geometry (point,
line, polygon, etc.) and interpreted in one reference system. For the sake of simplicity
we do not explain details of location interpretations, which has been well covered in
the literature of geographic information systems [12].

Physical (role) objects possess a default behavior that allows them to handle the
event signaled by the user being within interaction range, by opening (activating) the
corresponding node. Additionally, they could be able to inform how the user can
reach them from any location; this behavior is triggered by “walkable” links (See 2.3)
to indicate how the user can “navigate” physically to the object. The object can either
answer its absolute location, a plan or the route one must follow to reach it from the
actual location. The designer must specify this last and eventually other behaviors as
they are application dependent. In Fig. 3 we schematize the fundamental spatial be-
haviors.

PhR

PhM
PhA

PhB

 Separation of Structural Concerns in Physical Hypermedia Models 451

PhysicalObject

withinInteractionRangeOf()
howToReachFrom()

withinInteractionRangeOf(user)

opens the corresponding node when,according to the
object geometry and location sensing mechanism, the user
has been sensed to be in the area of the physical object

howToReachFrom (location)

returns a plan, map or route indicating
how to reach the physical object from
the location in the parameter

Fig. 3. Spatial Behaviors of Physical objects

Fig. 4. Relationships among Physical Objects

Physical objects may be related using a variety of spatial and geographical rela-
tionships and predicates which give us a tool to build interesting navigational struc-
tures as will be described in Section 2.3. In Fig. 4 we show some well-known spatial
relationships. Notice that their implementation in a particular system might need that
they are specified in an instance basis (e.g. an artwork in_front_of another). In other
cases they can be calculated using the corresponding geometrical behaviors [12].
Designers can devise new relationships specific to their domain of interest. These
relationships will be shown in the model of Fig. 1 as relationships between the physi-
cal roles of the corresponding classes.

2.3 Navigation Issues

Navigation in PH applications is also described by a navigational schema with the
OOHDM semantics. This allows us to eventually let a user explore a physical object
even when not physically near it, by just defining the corresponding Node class; in
our example this is useful for those artworks under restoration, which will be only
accessed physically by specialists.

There are, however, two major differences between a conventional and a physical
hypermedia regarding the operational semantics expressed by the navigational
schema: the activation of nodes and the semantics of link traversal.

PhMuseum PhRoom PhArtwork

PhysicalObject

is_near_to
in_front_of

is_inside_of
on_the_right_of

452 S. Gordillo, G. Rossi, and D. Schwabe

In conventional hypermedia a node is opened when we navigate a link having that
node as a target. While we want to preserve this behavior for “pure” digital nodes, a
node that stands for a physical object should be opened when the user is within inter-
action range of the object. Of course we might also want to build a “conventional”
web interface for that object which can be trivially done using the viewing mecha-
nisms of OOHDM, so we won’t discuss this possibility here.

We decided not change the basic Node class hierarchy; as we explained in Section
2.2, a node corresponding to a physical object will be opened when the user is within
interaction range of the object as a consequence of the default behavior specified for
its role as a physical object. We can of course implement more sophisticated context-
aware or personalized activating behaviors; this can be done by using the strategies
discussed in [19].

Meanwhile, to implement a different navigation semantics, we defined “walkable”
links (or WLinks) as those links whose target node is the digital counterpart of a
physical object. The main difference between the operational semantics of a naviga-
tional and a walkable link is that, while the former usually closes the current node and
opens the target node, the latter just indicates the user intention to reach the corre-
sponding physical object.

WLinks are designed by changing the default link traversal algorithm, which is ex-
pressed in OOHDM as a Strategy [6] on Link classes as described in [18] and shown
in the left of Fig. 5. In order to achieve the desired behavior, the link traversal algo-
rithm invokes the howToReachFrom behavior (Fig. 3) in the physical object corre-
sponding to the target node; the actual user location used as a parameter is the loca-
tion of the link source node. A schema of the decision structure of the WalkingLink
traversal is shown in Fig. 5.

DynamicTraversalSimpleTraversal

LinkTraversal

traverse()

Link

travAlg

traverse()

traverse()
travAlg. traverse (self)

WalkableLink

traverse()

traverse (L)
return (L.target.howToReachFrom (L.source.position)

Fig. 5. Walkable links as Strategies on Links

This design style allows implementing different types of “walking” semantics by
specifying a different algorithm as another Strategy class, either at the same level of
WalkableLink or as a concrete sub-class that re-writes the method traverse. For exam-
ple, in a production line application, we might want that the target object moves to-
wards the user, so instead of asking for a map we could send a message such as
L.target moveTo (L.source.position).

Decoupling links from their traversal algorithms also allows us to express differ-
ences at the link instance level, for example when an instance of a WLink class has an
exceptional “non-walking” semantic, i.e. it behaves as a conventional link, and we

 Separation of Structural Concerns in Physical Hypermedia Models 453

show digital information of the object even if the user is not in front of it. In Fig. 6 we
show the navigational schema for the visitor user role that corresponds to the concep-
tual model in Fig. 1. WLinks are shown with a <<W>> in the style of UML stereo-
types [21]. We omit the name of link classes for the sake of simplicity. With this solu-
tion we also cope with evolution problems that are mapped to changes in instances of
the corresponding Link class instead of requiring changes in the overall class.

WLinks, in the same way as navigation links, allow us to explore physical objects
by mapping conceptual relationships shown in Fig. 1 into walkable links. For example
two artworks that are closely related might be linked to suggest the user a less con-
ventional museum visit. Notice that additional usability issues arise, e.g. to avoid
suggesting the user to perform long walks: they also become a design concern. Inter-
esting discussions on this subject can be found in [7,8].

Physical objects can also be related through rich spatial relationships either generic
as shown in Fig. 4 (e.g. near, in front of) or application specific (e.g. in the same
room), that may also induce interesting navigation relationships and structures. These
relationships can help to create navigational contexts by grouping objects according
some location property; for example we can describe the set of Rooms close to the
Boutique, or the set of Artworks located not far from a certain zone in the Museum. In
a tourist application we might want to visit the monuments along a road or a river, or
those that are near a particular place. It is interesting to note that, when using WLinks
to implement intra-set navigation in a navigational context, the context represents a
real guided tour along a geographical space. Furthermore, these location-based rela-
tions can be combined with the other types of relations in defining meaningful con-
texts; for example, while traveling in southern France, one may wish to see the Art-
works by Van Gogh depicting scenes in that region.

<<W>> Technical
Data

Artist

Boutique

Room

Artwork
<<W>>

<<W>>

Fig. 6. Navigational Schema with WLinks

3 Advanced Concern Separation

In previous sections we showed how to decouple conceptual properties from spatial
properties of physical objects. We have also shown that the spatial perspective opens
new yet unexplored possibilities for building navigation structures. While the spatial
concern is crucial for physical hypermedia, we can generalize this discussion to other
non-spatial concerns. Some of them will be orthogonal with the others: for example,
the user model could be described without directly affecting application classes [19].

454 S. Gordillo, G. Rossi, and D. Schwabe

Other types of concerns however are more difficult to handle. Suppose that in the
Museum example we want to model the history of the museum, e.g. how the building
and collections evolved over time, when artworks arrived at the museum, and why.
Should we clutter the existing model (e.g. Fig. 1) with information and relationships
related to this new concern? Additionally, how do we deal with the cognitive over-
head eventually produced by links belonging to different “themes”? We introduce
these ideas in the following sub-sections by first formalizing how to clearly separate
spatial from conceptual modeling.

3.1 Conceptual Versus Spatial Modeling

By using well known techniques for concern separation such as Role Modeling [16]
or Subject-Oriented Design [4], we can re-think the conceptual model of Fig. 1, as
dealing with two separate sub-models and specify them as shown in Fig. 7, with UML
packages, namely KernelMuseum and PhysicalMuseum.

Thus, each model can be engineered separately, and relationships can be thought
and evolve independently thus improving modularity. When two classes with the
same name exist in both models (e.g. Room, Artwork, Boutique) we need to solve this
overlap when integrating the models. We did this as shown in Fig. 1 by using roles in
classes with the same name. Fig. 1 therefore represents a design refinement of the
higher level model in Fig. 7.

Fig. 7. Decoupling design concerns

Notice that the PhysicalMuseum model might also contain relationships between
application classes, that will be mapped onto relationships between the corresponding
(physical) role classes.

3.2 Extending the Approach to Other Concerns

We can use the same design philosophy shown in Fig. 7 when introducing other con-
cerns into the conceptual design activity. Generalizing the ideas behind Fig. 7, we
show in Fig. 8 a model that adds the Historical concern of the Museum to the previ-
ous example.

PhysicalMuseum

Museum

Technical
Data

Artist
Historical
Context Boutique

Room

Artwork

KernelMuseum

PhysicalObject

Room Artwork Boutique

 Separation of Structural Concerns in Physical Hypermedia Models 455

Fig. 8. Multiple concerns in conceptual models

In Fig. 8 we considered the KernelMuseum concern as the central one; historical
and physical classes and relationships should be further integrated with those in the
kernel. This can be done again using roles in overlapping classes; in this example we
will have a Historical role for Artwork and Museum; each role will host attributes and
relationships that belong to the corresponding concern. Interesting problems arise
when dealing with more complex applications or behavioral requirements (see for
example [4]). Other techniques such as Subject-Oriented Design [4] or Aspect Ori-
ented Design [2] can be used to describe the conceptual model when cross-cutting
requirements exist, though they are usually applied to more technical or programmatic
concerns as discussed in section 4.

3.3 Discussion: Towards Concern-Driven Navigation

It is interesting to analyze the impact of introducing multiple concerns in the naviga-
tional model; in our example, what does it mean to navigate the hypermedia space
following one of those concerns? What kind of software abstractions do we need in
order to support this kind of navigation?

We say that a hypermedia application supports concern-driven navigation, when it
is possible to choose one particular application concern and emphasize the informa-
tion and links corresponding to that concern, even at the expense of eliminating oth-
ers. For example, a user exploring the Historical concern of the museum might want
to ignore all information not related with this concern, or perhaps be able to “switch”
from one concern to another. Meanwhile, a person on a tourist trip might just want to
be “pointed” to places of interest, instead of just navigating through digital data. Some
concerns might be mutually exclusive, while others might be pervasive; e.g. in the
physical museum, the spatial concern is always accessible, since the user is traversing
the museum physically.

The discussion in 3.2 also applies to the navigation model; a designer might derive
different navigational schemas, one for each possible concern, using OOHDM primi-
tives, and then integrate them in a single schema, once again using roles. In the role

ocurredIn

involved

livedIn

Person

influenced

Artwork exhibitedIn

changedIn

Museum

TimePeriod

Historical
Event

Building

HistoricalMuseum

 PhysicalMuseum

 KernelMuseum

456 S. Gordillo, G. Rossi, and D. Schwabe

model, while the base node class specifies information that the nodes always exhibit,
a role type will indicate which additional information and links a node will show
when playing the corresponding role, i.e. when accessed within the corresponding
concern. Navigational role types are derived from those roles representing concerns in
the conceptual model. It is a designer choice to decide which navigation concerns are
useful for a particular user profile or task, e.g. using the OOHDM viewing mechanism
for a specific hypermedia application. A similar solution has been used in [17] for
solving more general navigation problems.

We do not impose a particular kind of association among roles and nodes. Whereas
the standard unidirectional association is taken as a default (roles know about base
nodes but not vice versa), a designer might want to make nodes aware of the roles it
can play, in order to provide additional navigation operations. He can design an op-
eration for changing the actual concern (role) by another to allow more flexibility in
the user navigation; this can be useful, for example, for adaptive hypermedia. For
example, while exploring one node from a historical point of view, we might want to
see the “other face” of the node and continue exploring the physical concern. The idea
of concern-driven navigation opens many additional design issues, outside the scope
of this paper.

4 Related Work

Some of the design problems addressed in this paper have been the focus of interest-
ing research projects in the hypertext and object-oriented communities. We next dis-
cuss some of them to highlight our contributions.

4.1 Hypermedia

In [8] a comprehensive framework (HyCon) for deploying applications in which the
hypermedia paradigm is extended to the physical world is presented. The authors not
only show how to provide situated authoring and browsing but also show different
usage patterns in this kind of applications. In [15] meanwhile, an object-oriented
framework called HyperReal, based on the Dexter hypertext reference model is pre-
sented. As in [8] the authors show a powerful software substrate for building aug-
mented reality software. Our research is more oriented towards the modeling and
design of physical hypermedia applications: once the intended structure and behavior
of a PH application has been specified using the extended OOHDM, it could be im-
plemented for example using HyCon or HyperReal. We believe, however, that for
these technologies to become mainstream, some standardization at the level of im-
plementation architectures is needed. We are now studying how to extend the MVC
metaphor to include the physical dimension (See Section 5).

The goal of Adaptive Hypermedia (AH) [1] has been to improve the usability of
hypermedia applications by taking into account user interests and profiles. In this way
adaptive hypermedia has studied how to adapt the contents (nodes) and topology
(links) of the application according to a user model. Mature research in AH has led to
separating the user model from adaptation rules and from the domain model. The
UWA project [10] meanwhile has dealt with providing ubiquitous access to Web

 Separation of Structural Concerns in Physical Hypermedia Models 457

applications. A comprehensive modeling and design approach including user models
and adaptation rules has been devised.

Although PH is a kind of ubiquitous and adaptive hypermedia software, our re-
search has a different intent with respect to providing adaptive behaviors. First, we are
studying how to design applications in which real and digital objects are linked with
the hypermedia paradigm, and exploring how to build meaningful navigation struc-
tures that take into account the spatial domain. Besides, we are carrying separation
one step further than in UWA and AH by applying it to specific application concerns,
e.g. the physical concern.

4.2 Object-Oriented Modeling and Design

Separation of concerns has been a recurrent theme in the software engineering and in
particular the object-oriented field. Many researchers have argued that the object
abstraction is not enough to solve problems such as cross-cutting concerns, misalign-
ment between requirements and designs and evolving behaviors. These problems have
been addressed using Aspect-Oriented Programming [2], Subject-Oriented Program-
ming and Design [4] and Role Modeling [16]. Aspect-orientation has focused mainly
on technical domains, such as persistence, caching, security, etc. Subject-Oriented
Programming has been first used at the programming level and more recently for
aligning requirements with designs.

Our work is grounded on the ideas of Role Modeling (in fact we use the role con-
struct heavily in our approach), but with an original application focus: to separate
physical from more conceptual aspects. Subject and Aspect Orientation have not been
used in the field of hypermedia so far. Our concept of concern-driven navigation
meanwhile has not been addressed previously in the literature, although the original
OOHDM InContext class primitive can be seen as a first step in this direction.

5 Concluding Remarks and Further Work

In this paper we have presented an original approach for modeling physical hyperme-
dia applications, i.e. those applications in which physical and digital objects are re-
lated using the hypermedia paradigm. We have shown how to extend our approach to
a broader domain: to build hypermedia applications in which there are many different
concerns, for example corresponding to application “themes” or subjects. For space
reasons we have not discussed customization and personalization issues; given that
PH applications are a particular example of context-aware software, these issues are
fundamental. It is relatively straightforward to apply previous ideas on Web applica-
tions customization [19] in this extended OOHDM framework.

We are currently working on several research directions. One of them relates with
providing better modeling tools to express navigational structures. Physical naviga-
tion introduces a new kind of context, different from the OOHDM idea of naviga-
tional context: the actual location of the user is relevant to provide him (physical)
navigation cues, for example in the form of links or landmarks. Suppose that the user
is in front of an object of interest (e.g. an artwork); the corresponding node exhibits
two kind of links: navigational and Wlinks, the latter ones allow navigation to other

458 S. Gordillo, G. Rossi, and D. Schwabe

physical objects in the environment. A reasonable design decision could be to keep
those links active (visible) while the user navigates to other digital objects related
with the artwork (as he is still in the same physical position). In this way, he is always
aware of the actual physical navigation options he has from this location. This is cer-
tainly a navigational design problem; we want to express that some of the nodes
reachable from one particular node (the one corresponding to a physical object) “in-
herit” the walkable links of this node. We are studying how to solve this design re-
quirement by using a slight modification of the OOHDM concept of composite nodes.

We are also improving our notation to make it more “standard” by exploring the
use of UML stereotypes and the OCL [21] to express design constraints. We are also
researching on the exploitation of the geo/spatial dimension in order to find a better
way to integrate it into other design concerns. We are finally working on implementa-
tion issues, such as adapting the MVC architectural style to physical hypermedia
applications. In the context of a prototype implementation for the Museum of Natural
Sciences in La Plata we are also experiencing usability aspects and their relationships
with the concepts presented in this paper.

References

1. Adaptive Hypermedia Home Page: http://wwwis.win.tue.nl/ah/
2. Special Issue on Aspect Oriented Programming. Comm ACM, October 2001.
3. Ceri, P., Fraternali, P.: Web Modeling Language (WebML): a modeling language for de-

signing web sites. Computer Networks and ISDN Systems, 33(1-6), June (2000) 137-157
4. Clarke, S.: Composition of Object-Oriented Software Design Models. Ph.D. Thesis, Janu-

ary 2001, Dublin City University. In: www.cs.tcd.ie/Siobhan.Clarke/papers/SClarkeThe-
sis.pdf

5. Espinoza, F ,Persson, P, Sandin, A., Nystrom, H., Cacciatore, E. , Bylund, M.: GeoNotes:
Social and Navigational Aspects of Location-Based Information Systems”. Proceedings of
Third International Conference on Ubiquitous Computing (Ubicomp 2001), Springer
Verlag, 2-17

6. Gamma, E., Helm, R., Johnson, J., Vlissides, J. : Design Patterns. Elements of reusable
object-oriented software, Addison Wesley 1995

7. Gronbaek, K., Kristensen, J., Eriksen, M.: Physical Hypermedia: Organizing Collections
of Mixed Physical and Digital Material. Proceedings of the 14th. ACM International Con-
ference of Hypertext and Hypermedia (Hypertext 2003), ACM Press, 10-19

8. Hansen, F., Bouvin, N., Christensen, B., Gronbaek, K, Pedersen, T. ,Gagach, J.: Integrat-
ing the Web and the World: Contextual Trails on the Move. Proceedings of the 15th. ACM
International Conference of Hypertext and Hypermedia (Hypertext 2004), ACM Press.
2004

9. Harper, S., Goble, C., Pettitt, S.: proximity: Walking the Link. In Journal of Digital Infor-
mation, Volume 5, Issue 1, Article No 236, 2004-04-07. Available at: http//jodi.ecs.so-
ton.ac.uk/Articles/v05/i01/Harper/

10. Kappel, G., Proll, B., Retschitzegger, W.: Customization of Ubiquitous Web Applications.
A comparison of approaches. International Journal of Web Engineering and Technology,
Inderscience Publishers, January 2003

11. Koch, N., Kraus, A.: The authoring process of UML-based Web Engineering Approach. In
Proceedings of the 1st International Workshop on Web-Oriented Software Construction
(IWWOST 02), Valencia, Spain (2001) 105-119

 Separation of Structural Concerns in Physical Hypermedia Models 459

12. Laurini, R., Thompson, D.: Fundamentals of Spatial Information Systems, Academic Press
Ltd, 1992

13. Pernici, B.: Objects with Roles. Proceedings of the ACM-IEEE Conference on Office In-
formation Systems (1990) 205-215

14. Riehle, D.: Role Model Based Framework Design and Integration. In Proceedings of the
1998 Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’98). ACM Press (1998) 117-131

15. Romero, L., Correia, N.: HyperReal: A Hypermedia model for Mixed Reality. Proceed-
ings of the 14th ACM International Conference of Hypertext and Hypermedia (Hypertext
2003), ACM Press, 2-9

16. Reenskaug, T: Working with objects. The OOram Software Engineering Method. Man-
ning/Prentice Hall 1996.

17. Rossi, G., Nanard, J., Nanard, M: Engineering Web Applications using Roles. Technical
Report LIRMM, University of Montpellier, May 2004

18. Schwabe, D, Rossi, G.: An object-oriented approach to web-based application design.
Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4,
October, 1998, 207-225.

19. Schwabe, D, Guimarães, R., Rossi, G.: Cohesive Design of Personalized Web Applica-
tions. IEEE Internet Computing 6(2): (2002), 34-43

20. Steimann, F.: On the Representation of Roles in Object-Oriented and Conceptual model-
ing. Data and Knowledge Engineering 35 (2000) 83-106

21. The UML home page: www.omg.org/uml/

Integrating Unnormalised
Semi-structured Data Sources

Sasivimol Kittivoravitkul and Peter Mc.Brien

Department of Computing, Imperial College London, London SW7 2AZ
{sk297, pjm}@doc.ic.ac.uk

http://www.doc.ic.ac.uk/automed

Abstract. Semi-structured data sources, such as XML, HTML or CSV files,
present special problems when performing data integration. In addition to the hi-
erarchical structure of the semistructured data, the data integration must deal with
the redundancy in semi-structured data, where the same fact may be repeated in
a data source, but should map into a single fact in a global integrated schema. We
term semi-structured data containing such redundancy as being an unnormalised
data source, and we define a normal form for semi-structured data that may be
used when defining global schemas. We introduce special functions to relate ob-
ject identifiers used in the global data model to object identifiers in unnormalised
data sources, and demonstrate how to use these functions in query processing,
update processing and integration of these data sources.

1 Introduction

Areas of application development such as the WWW, electronic commerce, bioinfor-
matics and other scientific disciplines, have led to a growing demand for data represen-
tations that support complex, nested and rapidly evolving structures. Often applications
in these areas use a semistructured data (SSD) data model, such as XML, HTML
or one of a variety of flat-file formats (including CSV and TSV). With the prolifera-
tion of distributed and heterogeneous SSD, there is a clear need for techniques to per-
form data integration over these SSD sources, and provide a global unified view of the
data.

One of the main tasks in data integration is to define the mappings between indi-
vidual data sources and the unified global view of those sources. Two basic approaches
for specifying this mapping are global-as-view (GAV) and local-as-view (LAV) [10].
The former approach defines the concepts in the global schema as views over the local
source schemas whereas the latter approach defines the sources as views over the global
schema. Recently, a new approach called both-as-view (BAV) [13] has been proposed
that specifies a bi-directional mapping between each source and the global schema.
Such bi-directional mappings allow data and queries to be translated in either direction
from the global schema to the sources, and vice versa. This is important, for example,
when integrating data in peer-to-peer contexts [14]. The use of BAV has been investi-
gated in the integration of structured data sources [11], and some work has been carried
out on integrating XML data sources [12, 20]. The work on the XML integration has

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 460–474, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Integrating Unnormalised Semi-structured Data Sources 461

concentrated on specifying schema relationships and made strong assumptions about
the data. In particular, they have assumed that there is no redundancy in the data to be
integrated.

〈root〉
〈student〉
〈name〉Ann〈/name〉
〈tutor〉Peter〈/tutor〉
〈course code=“DB”〉

〈dept〉CS〈/dept〉
〈lecturer〉Simon〈/lecturer〉
〈year〉1〈/year〉
〈grade〉A〈/grade〉

〈/course〉
〈course code=“Stat”〉

〈dept〉MA〈/dept〉
〈lecturer〉Jane〈/lecturer〉
〈year〉2〈/year〉
〈grade〉C〈/grade〉

〈/course〉
〈/student〉
〈student〉
〈name〉Mark〈/name〉
〈tutor〉Alex〈/tutor〉
〈course code=“DB”〉

〈dept〉CS〈/dept〉
〈lecturer〉Simon〈/lecturer〉
〈year〉1〈/year〉
〈grade〉B〈/grade〉

〈/course〉
〈/student〉

〈/root〉

(a) F1 XML file of undergraduates

[DB,CS,Ace]
student=Ann

level=UG
year=1
grade=A

[OS,CS,Ace]
student=Mark

level=UG
year=2

[Stat,MA,Biet]
student=Ann

level=UG
year=2
grade=C

student=Mary
level=PG
year=4
grade=A

(b) F2 Text file of
students

Fig. 1. Example unnormalised semistructured data sources

Fig. 1(a) and 1(b) illustrate two SSD sources which both contain a degree of redun-
dancy, and which overlap with each other. Since they contain redundancy we call them
unnormalised SSD sources — more precisely we regard anything with less than the
SSD equivalent of second normal form as unnormalised. Fig. 1(a) contains an XML
file F1 with details of undergraduate students, where each course a student is sitting is
placed within the student element. For each course, there is a record of the department
that manages the course, the lecturer of that course, and the year of study and grade that
the student has achieved in the course. Note that there is redundancy in this SSD, since

462 S. Kittivoravitkul and P. Mc.Brien

the fact that the CS department runs the DB lectured by Simon is repeated for the two
occurrences of that course.

Fig. 1(b) illustrates a structured text file F2 containing information of courses taken
by undergraduate and postgraduate students. The information in Fig. 1(b) is similar to
that of the source in Fig. 1(a), but it is structured in different way i.e. student information
is nested within course information, and provided information about the department
building, which is not in F1. It avoids the redundancy of F1, in that the department of
each course is only recorded once, but has its own redundancy in that the level of a
student (UG or PG) is repeated for each course a student sits.

When integrating F1 and F2 we have to transform at least one of the files, and
in particular deal with inverting the hierarchy present in one file to match that of the
other. For example, if we choose in our global schema to model courses as containing
multiple students (i.e. the F2 view of the data) then when we transform F1 we would
want to have just one course department pair produced for each distinct code and dept
pairing that exists in F1: i.e. produce a set of records containing just two courses, DB
and Stat, with two students under the first, and one under the second. Further, for each
course, we would only want to have one dept value, but maintain the multiple year and
dept associated with each student.

In this paper, we extend the BAV approach to the integration of SSD sources by
relaxing assumptions or conditions in the preliminary work i.e. allowing unnormalised
SSD sources to be integrated. The highlight of our approach is a semistructured data
model which includes the notion of key constraints, and a mechanism to deal with
redundancy of the data that allows data to be correctly translated in both directions, that
is from sources to the global schema and vice versa. In contrast, most previous work in
semistructured data translation/transformation [3, 5, 15] has focused on retrieving data
from data sources to the global schema, and only defined a one way mapping where data
can be migrated from source to global schemas, but not vice versa. Popa et al. [16, 17]
proposed a framework that semi-automatically generates invertible mappings between a
relational source and an equivalent nested XML schema. Their mappings are not strictly
invertible, since when there is more than one source, the reverse mapping gives back not
only an original data but also information acquired by other sources. To our knowledge,
no previous work specifically deals with normalisation of SSD sources in the context
of data integration. Also, the subject of invertible mappings in SSD integration context
has not been fully addressed.

The paper is structured as follows. Section 2 reviews a SSD modelling language
called YATTA we shall use for representing SSD data sources. We use the YATTA model
as basis for defining normal forms of SSD in Section 3, based on the well known notions
of normal forms in relational models. This notion of second normal form is used as a
basis for specifying our mappings using the keys in Section 4. It should be noted that it
is only the global schema that must obey the second normal form, and the sources may
remain unnormalised if we want to take a simple union of data, or they must be in the
SSD equivalent of first normal form if actual data (as opposed to schema) integration
is to take place. Section 5 shows how queries and updates are processed using this
mapping approach. Our summary and conclusions are in Section 6.

Integrating Unnormalised Semi-structured Data Sources 463

2 The YATTA Data Model

We adopt the YAT for Transformation-based Approach (YATTA) model [2] to model
SSD sources. YATTA is a variation of the YAT model [4] that has two levels of abstrac-
tion, called the schema level the data level.

+

k ∗

k ?

root

{}
ug

name
string

tutor
string

{} course

code
string

dept
string

lecturer
string

year
integer

grade
string

(a) YATTA schema S1

+

k ∗

k ?

root

{} course

code
string

dept
string

building
string

{}
ug pg

name
string

level
string

year
integer

grade
string

(b) YATTA schema S2

Fig. 2. The YATTA schemas of the XML and text file Fig. 1(a) and 1(b)

A YATTA schema represents the structure of a SSD source. Each node in a YATTA

schema is labelled with a pair of strings, representing its name and data type. The
data type for a leaf node is one of the atomic types which are string, integer and real
whereas the data type for a non-leaf node is of type list or set, represented by ‘[]’
and ‘{}’. Fig. 2(a) and 2(b) represent YATTA schemas for the XML and text files in
Fig. 1(a) and 1(b).

Each YATTA schema edge between nodes 〈i,j〉 can be labelled with a cardinality
constraint that determines the number of times corresponding nodes j may occur under
each node i in a YATTA data tree, where ‘∗’ indicates zero or more occurrences, ‘+’
indicates one or more occurrences, ‘?’ indicates zero or one occurrence, and label ‘1’
indicates exactly one occurrence (and is implied if the edge is unlabelled). The symbol
‘k’ on an edge indicates that a j is a key node, the values of which must be distinct
from the values of other j nodes that appear as siblings of i. Hence k also implies the
‘1’ constraint. In S1, the key node of the course node is code, and says that each course
for a particular ug will have a distinct code value.

Unlike a YATTA schema, a YATTA data tree has no labels on its edges. Each node
is labelled by a tuple representing its name and value. The values of leaf nodes are
the actual data in a data source whereas the values for non-leaf nodes are assigned by
the system using integer identifiers (denoted by ‘&’ followed by a number e.g. ‘&0’).
The root node is always named root, and its identifier differentiates between particular
source files (such as D1) that obey a schema (such as S1).

Fig. 3(a) and 3(b) illustrate YATTA data trees of the XML and text files, and which
match the YATTA schemas S1 and S2. For each data tree node there is a corresponding
schema node with the same path, such that the data tree node value is compatible with
the data type of that schema node. For example, the path 〈〈root,ug,course,grade〉〉 in D1

leads to three grade data nodes. We will describe the extent of such nodes by listing

464 S. Kittivoravitkul and P. Mc.Brien

root
&0

ug
&1

ug
&2

name
‘Ann’

tutor
‘Peter’

course
&3

course
&4 name

‘Mark’
tutor

‘Alex’
course

&5

code
‘DB’

dept
‘CS’

lecturer
‘Simon’

year
1

grade
‘A’

code
‘Stat’

dept
‘MA’

lecturer
‘Jane’

year
2

grade
‘C’

code
‘DB’

dept
‘CS’

lecturer
‘Simon’

year
1

grade
‘B’

(a) D1 The data tree of the XML file

root
&0

course
&1

course
&2

course
&3

code
‘DB’

dept
‘CS’

building
‘Ace’

ug pg
&4

code
‘OS’

dept
‘CS’

building
‘Ace’

ug pg
&5

code
‘Stat’

dept
‘MA’

building
‘Beit’

ug pg
&6

ug pg
&7

name
‘Ann’

level
‘UG’

year
1

grade
‘A’

name
‘Mark’

level
‘UG’

year
2

name
‘Ann’

level
‘UG’

year
2

grade
‘C’

name
‘Mary’

level
‘PG’

year
4

grade
‘A’

(b) D2 The data tree of the text file F2

Fig. 3. Examples YATTA data trees for Fig. 1

their values along with the identifiers of the parent, and hence 〈〈root,ug,course,grade〉〉
gives [{&3,‘A’},{&4,‘C’},{&5,‘B’}]. In the schema, the same path leads to a simple
string type node, which matches the type of the second value in each of the tuples in the
extent list.

The occurrences of the data node follow the cardinality specified by the symbols on
the incoming edges of the corresponding node in the schema. For example, in Fig. 3(a),
each student has exactly one tutor, as specified by implied ‘1’ on the incoming edges
of tutor in S1, and each code of course only exists once for a particular undergraduate
student which is also defined name as a key node. The label ‘k’ on the incoming edges
of name and code in S1 means the two ug nodes always have different name and no
undergraduate student may take two courses with the same code.

3 Normal Forms for Semistructured Data Sources

In practice, many SSD sources have the property that each subrecord has a distinguish-
ing attribute or set of attributes that uniquely identifies the subrecord of a given record.
We now formalise this idea into the notion of normal forms for SSD that may be used
when defining global schemas to help avoid data redundancy, inconsistency and unde-
sirable updating anomalies in the integration.

Normal forms have been extensively investigated in the relational model [6] and
have recently been extended to SSD [1, 8, 19]. Both [1] and [8] defined a normal form
for XML, called XNF, but the two approaches differ. [1] proposed the concept of func-
tional dependency for XML, and defined BCNF for XML documents. In [8], an XML
document is in XNF if its specification does not contain potential redundancy w.r.t. a
specified set of constraints. Their definition is comparable to the requirement of 3NF

Integrating Unnormalised Semi-structured Data Sources 465

in the relational model. [19] defined a normal form for SSD represented in the XML
model, called NS-SS, which appears to be analogous to BCNF. In order to define NS-
SS, they introduced the concept of ‘extended functional dependency’, which extends
functional dependency in the relation model to support hierarchical data, and the notion
of key constraints.

+ +

k k

k ?

root

{}
ug

{} course

name
string

tutor
string

{} course

code
string

dept
string

lecturer
string

code
string

year
integer

grade
string

(a) S1 in 2NF

root
&0

ug
&1

ug
&2

course
&6

course
&7

name
‘Ann’

tutor
‘Peter’

course
&3

course
&4 name

‘Mark’
tutor

‘Alex’

course
&5 code

‘DB’
dept

‘CS’
lecturer

‘Simon’
code
‘Stat’

dept
‘MA’

lecturer
‘Jane’

code
‘DB’

year
1

grade
‘A’

code
‘Stat’

year
2

grade
‘C’

code
‘DB’

year
1

grade
‘B’

(b) The corresponding YATTA data tree

Fig. 4. The 2NF of YATTA source in Fig. 3(a)

The BCNF or 3NF proposed by [1, 8, 19] gives a well-designed data source, but
also increase the complexity in accessing a data source, and the use of SSD models is
to achieve flexibility i.e. not too rigid design. Thus we work with weaker normal forms,
comparable to first and second normal forms in the relational model, which are the
minimum to achieve data integration.

In the relational model, first normal form (1NF) states that each attribute of a
relation is functionally determined by its key value, and implies that each relation has
a key, and that the non-key attributes take single values. We will define 1NF in SSD as
saying that each non-root, non-leaf node in the schema contains at least one key child
leaf node (i.e. there is at least one k beneath each non-leaf node), and that all leaf nodes
do not use * or + cardinality constraints. This means that the non-key leaf nodes can be
identified by combining all the key nodes in the path to the non-key leaf node. Schema
S1 obeys our 1NF, and this means we can identify each ug and its tutor leaf node by
name values, and we can identify each course and its dept, lecturer, year and grade leaf
nodes, by the combination of its key node values i.e. code and name values. Note that
in order to truely integrate data, as opposed to just the schema holding the data, sources
must be in 1NF, since that allows us to identify data values by a natural key (NK)

466 S. Kittivoravitkul and P. Mc.Brien

(i.e. a set of values from the real world) rather than the artificial key (AK) (i.e. object
identifiers) used by the system.

In the relational model, second normal form (2NF) states that each attribute of
a relation is functionally determined by primary key, but not by any proper subset of
the key. In the YATTA model, this corresponds to the schema being in 1NF, with the
additional constraint that all of the key nodes are necessary to determine each non-key
node. S1 is not in 2NF, since dept and lecturer are determined by code alone, and not
code and name combined.

We can normalise schema S1 to that shown in Fig. 4, by forming a copy of the
course under the root, with just those non-key nodes which are determined by code
alone being moved to the new course node, the remaining nodes staying as they were
in S1.

In this paper, we call sources not in the 2NF, unnormalised data sources. As in the
relational model, the redundancy in unnormalised SSD sources leads to difficulties with
updates, and in integration also leads to inefficiencies since the mapping tables based on
the keys will contain redundant information. For example, to update the department for
the ‘DB’ course from ‘CS’ to ‘MA’ in Fig. 3(a), we are faced with either the problem
of searching the tree to find every course containing ‘DB’ and ‘CS’ (and changing it)
or the possibility of producing an inconsistent result, for example that the department
for ‘DB’ might be given as ‘MA’ in one record and ‘CS’ in another. The next section
explains how we write mapping rules that take account of this redundancy.

4 Mapping Semistructured Data Sources Using Natural Keys

The BAV approach integrates data sources by transforming source schemas into a global
schema through sequences of transformations called pathways. Each transformation
makes a ‘delta change’ to a schema, adding, deleting, or renaming a single schema
node. Each transformation contains a query that specifies the instances of a node in the
corresponding data tree. We use the BAV transformation rules for the YATTA model that
are defined in [2].

Suppose we want to integrate the 1NF SSD sources in Fig. 1(a) and 1(b). First we
design a global schema Sg, such as that in Fig. 5, and then give mapping rules that define
how each node of a global schema can be defined from the source schemas. Based on the
approach described in [2], when adding or deleting a node, we describe a scheme for the
node which contains the pathway to the node, the type of the node, and the cardinality of
the edge that leads to the node from its parent. For example, the scheme of the student
node in Sg is 〈〈root,student,set,+〉〉 and the name is 〈〈root,student,name,string,k〉〉.

The schemas S1 and S2 are transformed into Sg by applying a pathway of YATTA

transformation rules, where each pathway consists of a growth phase in which nodes
in Sg that do not exist in the source schema are added, followed by a shrinking phase
in which nodes that exist in the source schema but not in Sg are deleted. When a new
node is added in the source schema, the query specifies how the instances of a node
in the corresponding data tree should be populated. When an existing node is deleted
in a schema, the query specifies how the instances of the node in the corresponding data

Integrating Unnormalised Semi-structured Data Sources 467

tree can be restored from the remaining nodes. The mapping of the data sources to the
global schema is therefore specified through the queries in a pathway.

+ +

k ?
∗

k ? +

k ? k

root

{}student {} dept

name
string

level
string

tutor
string

{} results

dname
string

building
string

{} course

code
string

year
integer

grade
string

code
string

lecturer
string

Fig. 5. The global schema Sg

To ensure that source data is correctly mapped with the global schema, the transfor-
mations must take into account the following issues:

Identifier Conflicts Different data sources might be given different identifiers for the
nodes representing the same thing, and the same identifier might be given for differ-
ent things. For example, the identifier ‘&1’ is assigned to the student node in S1 in
Fig. 3(a) and the course node in S2 in Fig. 3(b). Hence, in specifying the mapping,
a mechanism to resolve these conflicts is required.

Hierarchical structure The global schema might be structured in a different way from
the source schemas, as shown in the examples. In this case, the mapping therefore
involves preserving the relationships between data elements that are implied by the
hierarchical structure of the data source.

To resolve identifier conflicts, we apply the concept of a surrogate keys (SK) [7],
which provides a way of mapping between a NK used in the real world, and an AK
used by the system. This mapping is realised using two functions generateGID and
generateSID, which are used in the queries of the add and delete transformations, re-
spectively. The functions use the data values (NKs) to associate source identifiers sids
(AKs) with global identifiers gids, which are generated as surrogates.

The generateGID function takes a source schema name, a sid, a list of data values
and the name of a node that the transformation applied to. The function returns a new
OID (gid) for every distinct list of data values, and returns the same gid for the same
list of data values. Hence each gid serves as a surrogate for some set of data values.
When a global schema is in 2NF, these set of data values are the key values of the node
that a transformation applied to.

Conversely, the generateSID takes a source schema name, a list of data values and
the name of a node in the global schema. The function returns a source OIDs (sid) that
have been used in generating gid for the same global schema node. The generateSID
function can be thought of as the reverse of the generateGID function in the sense that
generateGID takes sid in the source and generates gid for the global view whereas
generateSID returns sid of the source.

468 S. Kittivoravitkul and P. Mc.Brien

For these functions to be applied in the pathway, the data sources and global schema
must be at least in 1NF. This allows the key values in the different sources to be mapped
to those of the global schema, thereby allowing data from those sources to be combined.
If data sources or global schema are not in 1NF, the integration will just take the union
of the respective sources, which is not a real data integration.

To illustrate the generateGID and generateSID functions, we explain how they are
used in the pathways S1→Sg and S2→Sg, an extract from which is shown below. Note
that S1 and S2 are in 1NF whereas Sg is in 2NF to avoid redundancy in the integrated
data. The student node in Sg is created by the add transformations 1 in S1→Sg and
5 in S2→Sg.

S1 → Sg

1 addYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S1, u, [n], ‘student’)} |
{r, u} ← 〈〈root, ug〉〉; {u, n} ← 〈〈root, ug, name〉〉)])

2 addYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S1, u, [n], ‘student’), n} |
{u, n} ← 〈〈root, ug, name〉〉])

3 addYattaNode(〈〈root,student,level,string,1〉〉, [{generateGID(S1, u, [n], ‘student’), ‘ug’} |
{u, n} ← 〈〈root, ug, name〉〉])

4 addYattaNode(〈〈root,student,tutor,string,?〉〉, [{generateGID(S1, u, [n], ‘student’), t} |
{u, n} ← 〈〈root, ug, name〉〉; {u, t} ← 〈〈root, ug, tutor〉〉])

S2 → Sg

5 addYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S2, p, [n], ‘student’)} |
{r, c} ← 〈〈root, course〉〉; {c, p} ← 〈〈root, course, ug pg〉〉;
{p, n} ← 〈〈root, course, ug pg, name〉〉])

6 addYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S2, p, [n], ‘student’), n} |
{c, p} ← 〈〈root, course, ug pg〉〉; {p, n} ← 〈〈root, course, ug pg, name〉〉])

The IQL [18] query in 1 finds in the generator {r,u} ←〈〈root, ug〉〉 the tuples
{&0, &1}, {&0, &2}, and {u,n} ←〈〈root, ug, name〉〉 the tuples {&1, ‘Ann’}, {&2,
‘Mark’}. Then the generateGID function is called with (S1,&1,[Ann],‘student’) and
(S1,&2,[Mark],‘student’). The function generates &101 and &102 as new global inte-
ger identifiers (gids) for each list of the data value, [‘Ann’] and [‘Mark’], which are
the key values of student in Sg. Hence the list [{&0,&101},{&0,&102}] will be as-
sociated with 〈〈root,student〉〉. A similar analysis for transformation 2 will give list
[{&101,‘Ann’},{&102,‘Mark’}] being associated with 〈〈root,student,name〉〉, and so
on for the remaining transformations. The mapping of sids to gids for the student
node through the values of the name node, which is the key node of student, is shown
in Fig. 6 (though at this stage, the S2 part of the graph should be ignored).

Similarly, the query in transformation 5 finds the tuples: {&0, &1}, {&0, &2},
{&0, &3} from {r,c} ←〈〈root, course〉〉, then the tuples {&1, &4}, {&2, &5}, {&3,
&6}, {&3, &7} from {c,p}←〈〈root, course, ug pg〉〉, and finally the tuples {&4,‘Ann’},
{&5,‘Mark’}, {&6,‘Ann’}, {&7,‘Mary’} from {p,n} ←〈〈root, course, ug pg, name〉〉.
This causes generateGID to receive (S2,&4,[Ann],‘student’), (S2,&5,[Mark],‘student’),
(S2,&6,[Ann],‘student’) and (S2,&7,[Mary],‘student’). Since the gids for [Ann] and
[Mark] already exist, the function returns &101 and &102 and generates a new gid

Integrating Unnormalised Semi-structured Data Sources 469

S1:ug

S2:ug pg

[name] Sg:student&1

&2

&4

&6

&5

&7

[‘Ann’]

[‘Mark’]

[‘Mary’]

&101

&102

&103

Fig. 6. The mapping between sids and gids of the student node

&103 for [Mary]. Transformation 5 gives a list [{&0,&101},{&0,&102}, {&0,&103}]
being associated with the scheme 〈〈root,student〉〉.

As illustrated in Fig. 6, the generateGID function groups together the ug and ug pg
nodes related to the same name, and creates a gid for each group. This resolves the
identifier conflicts among data sources and minimises the data redundancy in the inte-
gration. The data that is related to name such as tutor, is also put under the student
node related to such name as specified in the query in the transformation 4 . The gids
created by the generateGID function as well as its parameters can be stored as shown
in Fig. 7 and 8.

Below are the transformations in the shrinking phase of S1→Sg that remove the
tutor, name and ug nodes in S1(we omit details of how before these transformations,
grade, year, lecturer, dept, code and course are deleted). The generateSID function is
applied in this phase to allow the reverse transformation to recover the original data.
This reversibility ensures information preservation in the transformation. Importantly,

local schema sid NK name

S1 [&1] [‘Ann’] student
S1 [&2] [‘Mark’] student
S2 [&4] [‘Ann’] student
S2 [&5] [‘Mark’] student
S2 [&6] [‘Ann’] student
S2 [&7] [‘Mary’] student

. . . .

Fig. 7. sids and the data values

gid NK name

[&101] [‘Ann’] student
[&102] [‘Mark’] student
[&103] [‘Mary’] student

. . .

. . .

. . .

. . .

Fig. 8. gids and the data values

470 S. Kittivoravitkul and P. Mc.Brien

it allows data, queries and updates to be automatically migrated or translated in either
direction between source and the global schemas.

S1 → Sg

7 delYattaNode(〈〈root,ug,tutor,string,1〉〉, [{generateSID(S1, [n], ‘student’), t} |
{s, n} ← 〈〈root, student, name〉〉; {s, t} ← 〈〈root, student, tutor〉〉;
{s, ‘ug’} ← 〈〈root, student, level〉〉])

8 delYattaNode(〈〈root,ug,name,string, k〉〉, [{generateSID(S1, [n], ‘student’), n} |
{s, n} ← 〈〈root, student, name〉〉; {s, ‘ug’} ← 〈〈root, student, level〉〉])

9 delYattaNode(〈〈root,ug,set,+〉〉, [{r, generateSID(S1, [n], ‘student’)} |
{r, s} ← 〈〈root, student〉〉; {s, n} ← 〈〈root, student, name〉〉;
{s, ‘ug’} ← 〈〈root, student, level〉〉])

Transformation 7 removes the tutor node from ug. The query in the transformation
states that the values of tutor in S1 can be restored from tutor in Sg . It finds the tuples
{&101, ‘Ann’}, {&102, ‘Mark’}, {&103, ‘Mary’} from {s,n}←〈〈root, student, name〉〉,
then the tuples {&101, ‘Peter’}, {&102, ‘Alex’} from {s,t} ←〈〈root, student, tutor〉〉,
then the tuples {&101, ‘ug’}, {&102, ‘ug’} from {s,‘ug’}←〈〈root, student, level〉〉. The
generateSID function is called with (S1,[‘Ann’],‘student’) and (S1,[‘Mark’],‘student’).
The function then looks up the key values in the table of Fig. 7, and restores the values
of the ug node in S1 with &1 and &2, which are the sids related to ‘Ann’ and ‘Mark’ in
the source S1. The queries in 8 and 9 can be read in a similar manner.

5 Queries and Updates over the Mapping

After defining the mappings of data sources to the global schema, one may want to
query or update data sources through the global schema. The bi-directional mappings
allow queries and updates posed on the global schema to be automatically translated to
ones poses on data sources.

5.1 Query Translation

To translate a query Qg posed on the global schema to a query on data source Sx,
we need only consider delete transformations in the pathway Sg → Sx. Every deleted
construct appearing in the query Qg are substituted by the query in the transformations.
For example, suppose we pose the query Q1 on Sg asking for all students, which in the
IQL would take the form:

Q1 = [{x, y} | {x, y} ← 〈〈root, student, name〉〉]
The pathways Sg→S1 and Sg→S2 can be automatically derived from S1→Sg and

S2→Sg, respectively, by replacing delete for add, and replacing add for delete. Below
are the inverse steps 2 – 1 in transformations 1 – 4 , and 6 – 5 in transformations
5 – 6 .

Sg → S1

4 delYattaNode(〈〈root,student,tutor,string,?〉〉, [{generateGID(S1, u, [n], ‘student’), t} |
{u, n} ← 〈〈root, ug, name〉〉; {u, t} ← 〈〈root, ug, tutor〉〉])

Integrating Unnormalised Semi-structured Data Sources 471

3 delYattaNode(〈〈root,student,level,string,1〉〉, [{generateGID(S1, u, [n], ‘student’), ‘ug’} |
{u, n} ← 〈〈root, ug, name〉〉])

2 delYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S1, u, [n], ‘student’), n} |
{u, n} ← 〈〈root, ug, name〉〉])

1 delYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(‘student’, u, [n])} |
{r, u} ← 〈〈root, ug〉〉; {u, n} ← 〈〈root, ug, name〉〉)])

Sg → S2

6 delYattaNode(〈〈root,student,name,string, k〉〉, [{generateGID(S2, p, [n], ‘student’), n} |
{c, p} ← 〈〈root, course, ug pg〉〉; {p, n} ← 〈〈root, course, ug pg, name〉〉])

5 delYattaNode(〈〈root,student,set,+〉〉, [{r, generateGID(S2, p, [n], ‘student’)} |
{r, c} ← 〈〈root, course〉〉; {c, p} ← 〈〈root, course, ug pg〉〉;
{p, n} ← 〈〈root, course, ug pg, name〉〉])

To translate the query Q1 into source ones, the construct 〈〈root, student, name〉〉 is
replaced by the queries q1 and q2 in transformations 2 in the pathway S1 → Sg and
6 in the pathway S2 → Sg, combined by the OR operator [9].

Q1 = [{x, y} | {x, y} ← (q1 OR q2)]

The query q1 returns a list [{&101,‘Ann’}, {&102,‘Mark’}] whereas the query q2

gives a list [{&101,‘Ann’}, {&102,‘Mark’}, {&103,‘Mary’}] as described in the previ-
ous section. Using union semantics for the OR operator, we therefore get are all students
from both data sources:

Q1 = [{&101, ‘Ann’}, {&102, ‘Mark’}, {&103, ‘Mary’}]
In this simple example, the generateGID function reduces the redundancy by ensur-

ing that ‘Ann’ is returned only once. Without the generateGID function, the name ‘Ann’
would appear three times as a result of different identifiers of student nodes in the data
sources.

In general, the generateGID function combines data that requires merging but has
different identifiers in the sources (e.g. student nodes with identifiers &2 and &5, which
are related to ‘Mark’), and avoids combining distinct data that has the same identifier in
different sources (e.g. course nodes with identifiers &2 in D1 and D2, which are related
to ‘Mark’ and ‘OS’, respectively). In addition, the function allows related information in
different sources to be brought together by the key values. For example, the information
about the department building and the lecturer are in different sources, but by posing
the query Q2 below on Sg,

Q2 = [{x, y, z, w} | {x, y} ← 〈〈root, dept, building〉〉;
{x, c} ← 〈〈root, dept, course〉〉;
{c, z} ← 〈〈root, dept, course, code〉〉;
{c, w} ← 〈〈root, dept, course, lecturer〉〉]

the query results in a list of the departments, the building names, the course codes,
and the lectures for the courses as shown below, since they are joined by the natural
keys identifying dept and course.

Q2 = [{‘CS’, ‘ACE’, ‘DB’, ‘Simon’}, {‘CS’, ‘ACE’, ‘OS’, ‘Void’},
{‘MA’, ‘Beit’, ‘Stat’, ‘Jane’}]

472 S. Kittivoravitkul and P. Mc.Brien

5.2 Update Translation

Applying an update U requires giving the scheme of the construct to be updated, and the
new value of the construct tuple. For example, to change the tutor which is associated
to student with identifer &101 to ‘Fred’, the update statement can be written as:

U1 = update(〈〈root, student, tutor〉〉, {&101, ‘Fred’})
Translating updates posed on a global schema to ones on data sources is different

from translating queries described earlier. In update translation, all delete rules in path-
ways Sx → Sg that use the scheme of the construct to be updated should be retrieved.
For the example, only 7 in the pathway S1 → Sg matches the criteria for U1, since
its IQL query contains 〈〈root,student,tutor〉〉. The data source is then updated by pro-
cessing the queries accompanying the delete transformation using the new value of the
construct tuple. In the example, the query accompanying 7 in the pathway S1 → Sg is
processed using the new value {&101, ‘Fred’}. The association between the gid &101
and sid &1 is obtained by the generateSID function. The value {&1,‘Peter’} in the
〈〈root,ug,tutor〉〉 of S1 is then updated to {&1,‘Fred’}.

Note that there may be multiple source nodes to update for some update statements.
For example, with the update on Sg to change the department name of the course with
value &110 to ‘Math’ such as the following:

U2 = update(〈〈root, course, dept〉〉, {&110, ‘Math’})
There would be potentially several data source nodes that would be returned when

the rules contain 〈〈root,course,dept〉〉 are found.

6 Summary and Conclusions

In this paper we have considered the issue of normalisation of SSD as part of a data
integration process. We defined a SSD first normal form that allows us to identify data
values in sources by the use of a natural key, and hence perform data (as opposed to just
schema) integration. It is proposed that the global schema be in second normal form
to allow updates to data sources to be made in a consistent manner, and to minimise
the size of the mapping tables between source and global schema object identifiers.
The normal forms considered in this paper are weaker (and simpler) than those defined
in the literature, but if required, our approach could easily be extended to use higher
normal forms, such as those defined in [19]. However, 2NF is sufficient for our approach
to work, and provided a data source is not denormalised by the data integration rules
(i.e. brought down from a higher normal form to 2NF), then no update anomalies will
be introduced by the process of data integration.

We introduced the functions generateGID and generateSID, which use a natural
key to relate object identifiers in the 1NF (or higher) source schemas to identifiers
in the global schema, and showed how these functions are used in the bi-directional
transformation pathways of the BAV approach to data integration. The generateGID
function allows data from different sources that require merging/joining to be correctly
combined. It solves the identifier conflicts among local data sources, mapping them
to a single global schema identifier, by relating them via a natural key. This reduces

Integrating Unnormalised Semi-structured Data Sources 473

redundancy in the integrated schema, and allows updates to be performed without in-
troducing anomalies. The generateSID function allows the original data sources to be
restored. It ensures the pathways are reversible, and therefore allows updating from
the global schema to the sources, and allows data and queries to be migrated in both
directions — a functionality particularly important in peer-to-peer contexts.

Our approach has been implemented in the AutoMed data integration system (de-
tails of which may be found at (http://www.doc.ic.ac.uk/automed). The generateGID
and generateSID functions have been integrated into the query processor to allow the
system to correctly combine data from different sources, to support updating of data
sources and to enable the original data sources to be restored. For the future work,
we will be building larger case studies focusing on the integration of biological data
sources, which are often held in the form of flat files, HTML or XML.

References

1. M. Arenas and L. Libkin. A normal form for xml documents. ACM Transactions on
Database Systems, 29(1):195–232, 2004.

2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, volume
3084 of LNCS, pages 82–97. Springer-Verlag, 2004.

3. V. Christophides, S. Cluet, and J. Siméon. On wrapping query languages and efficient xml
integration. SIGMOD Rec., 29(2):141–152, 2000.

4. S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! In
Proc. SIGMOD’98, pages 177–188. ACM Press, 1998.

5. S. Cluet and J. Siméon. Data integration based on data conversion and restructuring. Tech-
nical report, Verso database group- INRIA, France, 1997.

6. C.J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition edition, 2004.
7. C.J. Date, H. Darwen, and D. McGoveran. Relational Database: Selected Writings 1994–

1997. Addison-Wesley, 1998.
8. D.W. Embley and W.Y. Mok. Developing xml documents with guaranteed “good” properties.

In Proc. 20th ER, pages 426–441, 2001.
9. E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimisation in

the AutoMed data integration framework. In Proc. Baltic DB&IS04, volume 672 of Scientific
Papers, pages 13–30. Univ. Latvia, 2004.

10. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233–
246. ACM, 2002.

11. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

12. P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML and structured
data sources. In Proc. CAiSE’01, volume 2068 of LNCS, pages 330–345. Springer, 2001.

13. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

14. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view
rules. In Proc. DBISP2P, at VLDB’03, Berlin, Germany, 2003.

15. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator sys-
tems. In Proceedings of the 22th International Conference on Very Large Data Bases, pages
413–424. Morgan Kaufmann Publishers Inc., 1996.

16. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin. Translating web data. In
Proc 28th VLDB, pages 598–609, 2002.

474 S. Kittivoravitkul and P. Mc.Brien

17. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, and R. Fagin. Translating web data.
Technical report, Department of Computer Science, University of Toronto, 2002.

18. A. Poulovassilis. The automed intermediate query language. Technical report, Department
of Computer Science, Birkbeck College, 2001.

19. X. Wu, T.W. Ling, S.Y. Lee, M. Lee, and G. Dobbie. Nf-ss: A normal form for semistructured
schema. In ER 2001 Workshops, pages 292–305, 2001.

20. L. Zamboulis and A. Poulovassilis. Using automed for xml data transformation and in-
tegration. In Z. Bellahsene and P.J. McBrien, editors, Proc. DIWeb04, CAiSE Workshop
Proceedings Volume 3, pages 58–69, 2004.

Model Transformations in the
Development of Data–Intensive Web

Applications

Davide Di Ruscio and Alfonso Pierantonio

Dipartimento di Informatica,
Università degli Studi di L’Aquila,

67100 L’Aquila, Italy
{diruscio, alfonso}@di.univaq.it

Abstract. Over the last few years, Web-based systems became com-
monplace. Despite the complexity and the economic significance of such
applications, current practice does not always apply robust and well-
understood principles. Model driven architecture (MDA) separates the
application logic from the underlying platform technology and represents
them with precise semantic models. Web application development there-
fore has potentially the most to gain from adopting such techniques that
can offer a greater return on development time and quality factors than
traditional approaches. In particular, the paper presents model-driven
transformations between platform-independent (conceptual descriptions
of Web applications) and platform-specific (Model-View-Controller con-
formant) models. The design of such transformations is documented (and
possibly animated) through mathematically rigorous specifications given
by means of Abstract State Machines.

1 Introduction

Over the last few years, Web-based systems became commonplace and under-
went frequent modifications due to technological and commercial urges. Web
sites rapidly evolved from simple collections of static pages to data-intensive ap-
plications which rely on dynamic contents usually stored in databases enabling
a much wider range of interaction.

Despite the complexity and the economic significance of such applications,
current practice does not always apply robust and well-understood principles.
Model driven architecture [15] (MDA) separates the application logic from the
underlying platform technology and represents them with precise semantic mo-
dels. Web application development therefore has potentially the most to gain
from adopting such techniques that can offer a greater return on development
time and quality factors than traditional approaches.

In this paper, we describe a systematic approach to model-driven develop-
ment of data-intensive Web applications meant as hybrid between hyperme-
dia and information systems [13]. Starting from a suitable UML profile, called

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 475–490, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

476 D. Di Ruscio and A. Pierantonio

Webile [24], conceptual descriptions of these systems are given as platform-
independent models (PIMs), i.e. abstract descriptions that do not refer to the
technologies they assume to exist. The process of transforming a PIM to ob-
tain concrete implementations on the target architecture described by platform
specific models (PSMs) is the ultimate consequence of shifting the focus of soft-
ware development from coding to modeling. Different PSMs can be generated
from a Webile model in order to describe different aspects of J2EE Web ap-
plications designed according to the Model-View-Controller [14] architectural
pattern.

Model transformation presents intrinsic difficulties. It requires “specialized
support in several aspects in order to realize the full potential, for both the end-
user and transformation developer” [25]. The ability to simulate arbitrary algo-
rithms on their natural levels of abstraction, without implementing them, makes
Abstract State Machines [7] (ASMs) appropriate for high-level system design and
analysis [5] and a candidate for specifying model transformation as well. Gene-
rating models in a formal setting can facilitate information traceability, reuse and
evolution of software systems, but also represents a basis to reason about the
intuitions encoded into unambiguous transformation descriptions. Furthermore,
the ASM execution environment [2] represents an open framework with built-in
support to syntax–tree manipulation (see [3]) useful for both tool integration
and automatic transformation.

The paper is organized as follows. The next section illustrates an extended
version of the Webile profile, which is used for the description of PIMs. Section 3
presents the founding elements for modeling J2EE Web applications designed
according to the MVC architectural pattern. After introducing some basics about
the ASMs, next section presents the ASM rules for transforming Webile models.
Sect. 6 relates the work presented in this paper with other approaches. Finally,
the last section draws some conclusions.

2 Webile

Webile [24] is a UML profile for describing in a uniform and conceptual way the
proper aspects of data-intensive Web applications without referring to platform-
specific assets. Leveraging the recurrency of certain application patterns which
typically compose Web applications permits to raise the level of abstraction
adopting a model-centric development whose main artifacts are models. These
models are supposed to span the entire life cycle of a software system and ease
the software production and maintenance tasks.

Descriptions encompass several concerns by capturing data, pages and navi-
gation into extended class diagrams. In particular, data are given similarly to
E/R models exploiting stereotyped classes and associations to model entities and
relations, respectively. The profile prescribes the DataEntity!, DataRelation!,
 DataStrongRelation! and DataAttribute! stereotypes for modeling data. For
instance, in Fig. 1 the elements contained in the dotted area, represent a

Model Transformations in the Development of Data 477

Fig. 1. A fragment of an academic site

simplified1 conceptual data model of an academic site fragment, where professors
(Professor) can have different publications (Publication), each belonging to one or
more research areas (ResearchArea).

Pages and their fragments are denoted by means of StructuredContent!
stereotyped classes that are eventually associated with data entities providing
contents by means of DataSource! stereotyped associations. These associations
are qualified with a collection of tagged values, amongst them Cardinality describes
the cardinality of the items to be included in the content, i.e. whether the content
consists of a single item or a list of them. In the figure, the Professors structured
content contains the list of all professors in the database, which are retrieved
through the associated entity Professor, in contrast with HomePage which contains
information about one professor, respectively, because of the different specified
cardinalities. Relevant aspects of the data source association affect the way the
data are retrieved to form structured contents. In fact, different data source
associations converging on the same structured content and denoted by the same
tagged value Label define the same query operation (see Sect. 5). On the contrary,
in HomePage two different query operations are defined, because the labels on
the associations with Professor and ResearchArea are different.

Hyperlinks are modeled by means of the CLink! and NCLink! stereo-
typed associations which denote contextual and non-contextual links, respe-
ctively. The main difference among them lies in the fact that the formers pro-
pagate parameters from the source structured content to the target one. These

1 For presentational purposes, we omitted attributes and other information which are
not relevant at this stage of the discussion.

478 D. Di Ruscio and A. Pierantonio

parameters are used when data source associations have the tagged value Bound

set to true to filter the data retrieved from the corresponding entities. For in-
stance, in Fig. 1 the contextual link going out from Professors allows the user to
select a single professor in order to access her/his personal profile in HomePage,
which is collected by means of the DataSource! stereotyped associations with
the entities Professor and ResearchArea. Analogously, the contextual link outgoing
from HomePage provides with the access to Publications of the selected research
area. Non contextual links are much simpler since they connect structured con-
tents which are not semantically correlated.

Support to modularity is also important to achieve pragmatic qualities. In
fact, the structured contents do not describe only pages but also portion of
them, as with Header which is shared by the Professors and HomePage structured
contents via the correspondent compose! stereotyped associations. Further
stereotypes have been defined to cover additional aspects. In particular, the as-
sociation DataEntry! between a page and some data entities is used to declare
data entry forms. Moreover, structured contents can be subject to authentica-
tion/authorization in order to secure certain contents accessible only to specific
users and/or groups specified by the User! and/or Group! stereotyped
classes. Due to space limitations, we did not report data entry forms and pro-
tected pages in the examples. Finally, a relevant case study has been produced
by modeling a large institutional site in order to validate the expressiveness of
the profile (see [12]).

The Webile profile was originally devised to generate code directly from mo-
dels in an one-step fashion without any human intervention. The approach has
shown immediately problems not limited to poor consistency and traceability
between models and code, as the formers start to diverge from the latter as soon
as changes are operated on the generated system. Thus, the approach has been
considerably extended introducing proper model transformations able to map
Webile models into model chains which, at different level of abstractions, are
descriptions of the chosen implementation.

3 Describing PSMs

MVC is an architectural pattern which aims at minimizing the degree of coupling
between elements to relate the user interface to underlying data models in an ef-
fective way. Increasingly, the MVC pattern is used in program development with
object-oriented languages and in organizing the design of J2EE Web applications
proposing a three-way factoring paradigm based on the following

– the model holds all data relevant to domain entity or process, and performs
behavioral processing on that data;

– the view displays data contained in the model and maintains consistency in
the presentation when the model changes; and

– the controller is the glue between view and model reacting to significant
events in the view, which may result in manipulation of the model.

Model Transformations in the Development of Data 479

Webile

Conallen’s WAE

View-Controller

XDW

Model

EJB JDO Hibernate

J2EE Web Application

Fig. 2. Different Views of the MVC pattern

The description of PSMs referring to the J2EE platform may distinguish the
model from the view and the controller. This separation of concerns is motivated
by the abundance of persistence frameworks, such as EJB [11] and JDO [18]
to mention a few, which suggests further refinements of the model into more
specific PSMs retaining the view-controller design (see Fig. 2). According to
the figure, a Webile specification is mapped into platform-specific descriptions
of the view-controller and the model, respectively. This mapping is automatic
and mathematically defined by executable ASM transition rules as described in
Sect. 5. In the proposed approach, the View-Controller package (see Fig. 2) is
given by means of Conallen’s Web Applications Extension [10] (WAE) whereas
the Model package is given by means of the data part of Webile opportunely
extended to some abstraction for realizing given business tier patterns [1].

3.1 View-Controller: Conallen’s WAE

The Web Application Extension (WAE) is an extension of UML for modeling
Web applications proposed by J.Conallen. Web pages are modeled by giving
both server-side and client-side aspects by means of Server Page! and Client

Page! stereotyped classes, respectively. A server page can be associated with
other server-side objects, i.e. database, middle-tier components and so on, al-
though we are not going to model data aspects here. The Client Page! stereo-
type represents a HTML page which is usually associated with other client or
server pages. In the last case the build! stereotyped association is used to state
that a server page builds a client one. An hyperlink between pages is modeled by
a link! stereotyped association. If the hyperlink includes parameters, they are
modelled as link attributes of the association. A directional relationship between
one server page and another server or client page is modeled by the forward!
stereotyped association. This association represents the delegation of processing
client’s requests for a resource to another server-side page and it is a pivotal
aspect proper of the view-controller metaphor.

480 D. Di Ruscio and A. Pierantonio

Fig. 3. Conallen’s View-Controller description

In fact, referring to Fig. 3 and according to the adopted pattern, client
requests are processed by the controller server pages which perform the data
retrieval by invoking the proper operations on the business delegate object (as
explained in the next section). Each controller declares exactly the operation
which must be invoked according to the data source associations in the con-
ceptual model, e.g. the server page class HomePage Controller depends on the
methods getProfData() and getProfResArea() to retrieve the data. Once the data
are available to the controller, the request is forwarded to the corresponding
view server page. In particular, the figure illustrates how to implement the ap-
plication logic of the system described in Fig. 1 by means of several views and
controllers; each structured content is mapped to a pattern consisting of linked
client page, view and controller server pages. Alternatively, the front controller
pattern [1], i.e. a unique controller which serves as a centralized access point for
requests and link, could have been adopted. It is a solution which is widely used
by software developers, which encodes information about the navigation in the
url requests, thus is less convenient to illustrate how the navigation in Webile is
propagated during model transformation.

Finally, the idea of adopting Conallen’s approach for specifying PSMs in not
novel, since it mainly represents the implementation and is therefore suitable for
PSMs rather than PIMs [21, 22].

3.2 Model: eXtended Data Webile

This section presents how to describe the Model component of the MVC pattern
by means of an extension of the data part of Webile, called eXtended Data We-
bile (XDW). A better maintenance and flexibility in accessing business services
requires specific abstraction layers as the ones realized by means of the business
delegate and the transfer object design patterns [1]. In particular, the business
delegate hides implementation details of the business service and encapsulates ac-
cess and lookup mechanisms; whereas the transfer object serves to optimize data

Model Transformations in the Development of Data 481

Fig. 4. XDW Model description

transfer across tiers. Instead of sending or receiving individual data elements, a
transfer object contains all the data elements in a single structure required by
the request or response. To summarize, a controller can access business services
by performing requests to a business delegate which implements the services and
returns the result as a transfer object. For instance, Fig. 4 depicts a diagram
which describes by means of XDW the Model components of the application
which has been modeled in Fig. 1. It comprehends only the data aspects of the
original model and additionally introduces the business delegate and a transfer
object for each different query operation defined within the business delegate.
To understand how such elements are defined, let us consider the data source
association in Fig. 1 labeled ProfData between HomePage and Professor, this asso-
ciation defines the query operation in the business delegate called getProfData()

which returns a transfer object of type ProfDataTO. In order to keep a certain
degree of abstraction, the query operations in the business delegate are specified
by means of relational algebra expressions which are computed by ASMs rules
presented and commented in Sect. 5.

4 Abstract State Machines

Due to space limitation, we only briefly introduce ASMs here insisting on few
introductory aspects. For more information, the reader is referred to [6, 7]. ASMs
bridge the gap between specification and computation by providing more versa-
tile Turing-complete machines. The ability to simulate arbitrary algorithms on
their natural levels of abstraction, without implementing them, makes ASMs ap-
propriate for high-level system design and analysis (see [5]). Additionally, ASMs
are executable and several compilers and tools are available both from academy
and industry.

ASMs form a variant of first-order logic with equality, where the fundamental
concept is that functions are defined over a set U and can be changed point-wise.
The set U referred to as the superuniverse in ASM terminology, always contains
the distinct elements true, false, and undef. Apart from these, U can contain
numbers, strings, and possibly anything, depending on the application domain.

Being slightly more formal, we define the state λ of a system as a mapping
from a signature Σ (which is a collection of function symbols) to actual functions.

482 D. Di Ruscio and A. Pierantonio

We write fλ for denoting the function which interprets the symbol f in the
state λ. Subsets of U , called universes, are modeled by unary functions from
U to true, false. Such a function returns true for all elements belonging to the
universe, and false otherwise. A function f from a universe U to a universe V
is a unary operation on the superuniverse such that for all a ∈ U , f(a) ∈ V and
f(a) = undef otherwise. The universe Boolean consists of true and false.

A basic ASM transition rule is of the form

f(t1, . . . , tn) := t0

where f(t1, . . . , tn) and t0 are closed terms (i.e. terms containing no free varia-
bles) in the signature Σ. The semantics of such a rule is this: evaluate all the
terms in the given state, and update the function corresponding to f at the
value of the tuple resulting out of evaluating (t1, . . . , tn) to the value obtained
by evaluating t0. Rules are composed in a parallel fashion, so the corresponding
updates are all executed at once. Apart from the basic transition rule shown
above, there also exist conditional rules where the firing depends on the evaluated
boolean condition-term, do-for-all rules which allow the firing of the same rule
for all the elements of a universe, and lastly extend rules which are used for
introducing new elements into a universe. Transition rules are recursively built
up from these rules. Of course not all functions can be updated, for instance the
basic arithmetic operations are typically not redefinable.

5 Model Transformations

The main motivation behind MDA is to shift the focus of software development
from coding to solution modeling by assuming models as the primary artifacts
of the development. Key concepts of MDA are model transformations intended
as programs which mutates one model into another similarly to a compiler.

In the sequel, unidirectional stateless transformations are given to map We-
bile models into Conallen and XDW ones. Unidirectional transformations map
the source metamodel into the target metamodel but not the converse. Although
this may appear a limitation, in practical cases this is essentially unavoidable
since a bidirectional transformation implies the adoption of declarative rule-
based formalisms which pose severe questions about the termination of transfor-
mations. A persistent (in contrast with stateless) model transformation enables
change propagation, in the sense that performing the transformation when the
source model has changed does not always result in a newly creation model.
In fact, persistence implies version policies towards the target model which in
combination with information tracking allows not to rewrite completely the tar-
get model for different incarnations of the transformation. An interesting and
detailed discussion on model transformation languages can be found in [25].

The transformations are defined as ASM rules which starting from an algebra
encoding the source model, return an algebra encoding the target model. The sig-
nature of an algebra encoding a model is induced by the UML metamodel whose

Model Transformations in the Development of Data 483

elements define the sorts of the signature, for instance the class and association
elements give place to the Class and Association sorts, i.e. the algebra has two
universes containing distinguished representatives for all the classes and asso-
ciations in the model. Stereotypes extending the model elements define subsets
in the universes induced by the extended elements itself. This is nicely modeled
since ASMs allow subsorting, for instance in the Webile profile the DataEntity!
and DataSource! stereotypes induces the following subsorting relations

DataEntity < Class and DataSource < Association

Additionally, the metamodels induce also functions which provide with support
to model navigation, e.g. the associations have source and target functions

source, target : Association→ Class

which return the source and the target class of the association. Methods are
represented by the sort Method and the class they belong to is computed by the
function

belong : Method→ Class

further functions defined over methods are name and body which return the
name and the body of a method, respectively. Also tagged values are encoded by
means of functions, for example the tagged value Cardinality of the DataSource!
stereotyped association defines

cardinality : DataSource→ {single,multiple}

Moreover, further functions and sorts are given by the basic data types and by
those functions which are used in transition rules to accumulate information
during the transformation. As an example, the algebraic encoding of the model
in Fig. 1 is illustrated in Fig. 5.

In the next sections, the ASM rules for generating the PSMs for the Model
and for the View and the Controller are presented, respectively, according to the
Fig. 2.

5.1 Model Transformation: View-Controller

The transformation introduced here consists of a number of ASM rules, in parti-
cular for each structured content the rule StructuredContent extends the algebra
encoding the source model with three new classes, two server pages modeling
the view and the controller and a client page which is generated by the view
server page. Furthermore, the rule introduces the following functions

controller, serverView : StructuredContent→ ServerPage
clientView : StructuredContent→ ClientPage

used to track the structured contents from which the client and server pages
have been generated. The rule is

484 D. Di Ruscio and A. Pierantonio

DataEntity

StructuredContent

DataSource

CLink

Compose

DataRelation

Professor

Publication

ResearchArea

dr1
dr2

ds2

ds3
ds4

cp1

cp2
cl1

cl2

sc(ProfessorList)

sc(HomePage) sc(Publications)

sc(Header)

ds1

source

source

source

source

source

source

target

target

target target

target
target

Fig. 5. A model encoded in an algebra

asm StructuredContent is
do forall x in StructuredContent

extend ServerPage with s1,s2 and ClientPage with c and Build with b
and Forward with r and Use with u
source(b) := s1, target(b) := c
source(r) := s2, target(r) := s1
source(u) := s2, target(u) := bd (1)
controller(x) := s2, serverView(x) := s1, clientView(x) := c
extend Operation with op

name(op) := ”process request”
body(op) := Invocations(x) (2)
belong(op) := s2

endextend
endextend

enddo
endasm

Line (1) in the above rule contains a reference to bd, the representative of the
business delegate component which is incrementally assigned the query opera-
tions; line (2) contains the invocations to the Invocations sub-machine which
computes and returns the list of method names which the controllers have to
invoke in their body.

The CLink rule for each CLink! stereotyped association in Webile extends
the universe Link with a new element whose source and target are the linked
ClientPage and ServerPage, respectively

asm CLink is
do forall x in CLink

extend Link with l
source(l):=clientView(source(x)), target(l):=controller(target(x))

Model Transformations in the Development of Data 485

endextend
enddo

endasm

The rules described up to now are not very complex, they could even be conside-
red declarative, since they make use only of the update rule (simpler than in
attribute grammars, for instance, which requires some resolution). Algebraically,
they can be given as a set of positive conditional equations which induce a (free)
functorial transformation on the source algebras. Finally, the rules for handling
the composition of structured contents and non-contextual links are missing,
since their complexity is comparable to that of the rules above.

5.2 Model Transformation: Model

The most interesting rules are not just attributions as the ones above. It is
crucial, to be able to collect information while navigating the model, as when
computing the transitive closure of a relation for instance. The following rule
DataSource has to generate the specification of the query operations in the busi-
ness delegate as relational algebra expressions starting from the data sources in
the Webile model. Depending on the tagged value Label of the DataSource! as-
sociations, the way the contents are retrieved is defined giving place to different
expressions. All the DataSource! stereotyped associations related to a spe-
cific StructuredContent! can be grouped according to their Label tagged value
and associated to a Label -indexed query operation. The rule has to navigate the
source model to understand which data entities are involved in the relational
algebra expressions. The DataSource rule is defined as follows

asm DataSource is
DefineAllContents
do forall x in StructuredContent and l in Label : cont(x,l)!=undef

extend Operation with op
belong(op) := bd
name(op) := ”get”+name(l)
choose t in TransfObject : name(t)=name(l)+”TO”

type(op) :=t
endchoose
body(op) := Expr(x,l)

endextend
enddo

endasm

where DefineAllContents sub-machine creates lists of data sources according to
the Label tagged value partitioning explained above. The rule is given below and
makes use of addListElement which adds elements to a list

asm DefineAllContents is
do forall x in StructuredContent

do forall y in DataSource : target(y)=x
do forall l in Label : label(y)=l

addListElement(cont(x,l),y)
enddo

486 D. Di Ruscio and A. Pierantonio

enddo
enddo

endasm

The sub-machine Expr of DataSource generates the relational algebra expression
whose evaluation supplies the content l for the structured content x.

asm Expr(x, l) is
extend Body with y

join(y) := unify(findPath(cont(x,l)))
selectionKey(y) := findKey(cont(x,l))
return y

endextend
endasm

To better understand this rule, let us consider Fig. ?? where an abstract
representation of a Webile model is presented. The structured content SC is fed
by three data sources ds1, ds2 and ds3 with the same cont1 label. In order to
obtain a relational algebra expression

σF (T1 ��c1 T2 ��c2 T3... ��cn−1 Tn)

two macro steps have to be executed:

– the definition of joins between the right relations and,
– the definition of the selection formula F .

The former is obtained by means of the unify rule, the latter by means of the find-
Key one. Note that the definition of the expression is not trivial and, due to space
limitation, we present the solution by outlining the description for the findPath,
unify and findKey rules. Two data entities involved in the definition of a content
by means of two DataSource! associations, may give place to ambiguous scenar-
ios. In fact, E1 and E3 in Fig. 6, are related by means of two different paths. This
causes problem for the definition of the joins involving them. Webile deals with this

Fig. 6. An abstract representation of a Webile model

Model Transformations in the Development of Data 487

problem by means of the tagged value Relations of the DataSource! stereotype.
This is used by the findPath rule which, for each pair of entities involved in the
content definition, finds the right path of relations connecting them.

For this rule, the set Path is defined as DataRelation∗×Bool whose elements
are terms path(R,C), where the first parameter R is the list of relations defining
the path in the source model, the second parameter C is a boolean denoting
whether the conditions of the joins involving the entities in the relation chain
are empty or equals to conjunctions of equations involving the corresponding
keys. For instance, in Fig. 6, findPath returns the list containing the following
elements: {path(Rk, Rm, ..., Rn, true), path(R1, ..., Ri, false)}.

The unify rule evaluates the paths and defines the joins between the logical
relations in the paths recursively, whereas findKey defines the selection formula
for the final expression. Accordingly, if E1 contained the attribute att1 in Fig. 6,
the formula F would be the equation E1.att1 = att1. Otherwise, if E2 contained
the attribute att1, then the key propagated by the contextual link has no effect
and the selection formula is empty. The relational algebra expression defined with
this process represents the body of a server-side operation part of the server page
obtained by means of the transformation of the structured content SC.

The last rule handles the creation of the transfer objects, i.e. each query in
the business delegate returns a different transfer object type which needs to be
defined, as follows

asm CreateTransfObj is
do forall l in Label

extend TransfObject with t
name(t) := name(l)+”TO”
do forall d in DataSource : label(d)=l

do forall a in DataAttribute : belong(a)=source(d)
extend Attribute with a1

name(a1) := name(a), type(a1) := type(a)
endextend

enddo
enddo

endextend
enddo

endasm

6 Related Work

Model transformations are increasingly gaining attention in different areas of
software design, development and integration. Such significance is also witnessed
by the OMG’s Queries/Views/Transformations RFP [16] issued to define a stan-
dard way of performing model transformations. The submitted proposals range
from imperative unidirectional stateless transformations [23] to declarative per-
sistent bidirectional ones [9]. The former does not allow any form of persis-
tence, while the latter may easily lead to solutions which can take potentially
unbounded time to execute [25]. Other approaches are considered hybrid, such

488 D. Di Ruscio and A. Pierantonio

as ATL [4], since they wrap imperative bodies inside declarative shells to specify
unidirectional transformations.

Focusing on the languages for describing Web applications, many topics may
be related to the work proposed here, among them many are suggesting ex-
tensions to model web applications using UML. Apart from Conallen’s work,
it is worth mentioning the approaches proposed by Koch and Hennicker [17].
In particular, they structure the design of web applications into three different
aspects: content, navigational structure and presentation (the data dimension is
not considered). Since these aspects are related together, they propose to model
each one using a different UML model and to relate them together using map-
ping rules. This separation (present also in other approaches [8, 20]) is currently
missing in Webile. Differently from us, Koch and Hennicker use UML class and
sequence diagrams to describe and model behavior.

Regarding model-based code generation for the Web, Kraus and Koch [19]
show how the UML design models produced in [17] can be automatically mapped
into XML documents. Araneus [20] and WebML [8] represent the more intere-
sting model-based approaches for the Web, especially WebML which is supported
by the WebRatio commercial tool.

7 Conclusions and Future Work

This paper describes a model-driven approach for the development of data-
intensive Web applications. Starting from conceptual models that do not re-
fer to any technological asset, formal model transformations are used to obtain
several PSMs for different aspects of an MVC conformant J2EE application.
Compared with techniques which allow one-step model-to-code generation, flexi-
ble and practical model transformations enhance traceability and consistency
between models and code, since they tend to diverge as soon as changes are
manually operated on the generated applications.

Model transformations are intrinsically difficult. According to our experience
they should combine desirable features as formality and declarativeness with
good pragmatic qualities. The transformations introduced above are applicable
in a declarative way since models are queried by means of first-order predicates
and subsequently manipulated in an operational fashion.

Model composition is also important, since generating models from the same
source model requires to merge them on certain correspondences. Exploiting alge-
braic and categorical constructions (in the sense of category theory), which have
been investigated since decades, we plan to define a theory of transformation com-
position to perform complex model weaving and transformation maintenance.

Acknowledgments

We thank Amleto Di Salle and Fabio Mancinelli for the lively and enlightening
discussions. Also, we are grateful for the insightful comments we received from
the anonymous reviewers.

Model Transformations in the Development of Data 489

References

1. D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Sun Microsystems Press
(Prentice Hall), 2nd edition, 2003.

2. M. Anlauff. XASM – An Extensible, Component-Based Abstract State Machines
Language. In Abstract State Machines: Theory and Applications, volume 1912 of
LNCS, pages 69–90. Springer, 2000.

3. M. Anlauff, S. Chakraborty, P. Kutter, A. Pierantonio, and L. Thiele. Generating
an action notation environment from Montages descriptions. Int. J. Software Tools
for Technology Transfer, 3(4):431–455, 2001.

4. J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J.E. Rougui. First Experiments
with the ATL model transformation language: Transforming XSLT into XQuery.
In 2nd OOPSLA W. Generative Techniques in the context of MDA, 2003.

5. E. Börger. Why Use Evolving Algebras for Hardware and Software Engineering?
In Procs. SOFSEM ’95, 22nd Seminar on Current Trends in Theory and Practice
of Informatics, volume 1012 of LNCS, pages 236–271. Springer, 1995.

6. E. Börger. The Origins and the Development of the ASM Method for High Level
System Design and Analysis. J. Universal Computer Science, 8(1):2–74, 2002.

7. E. Börger and R. Stärk. Abstract State Machines - A Method for High-Level System
Design and Analysis. Springer, 2003.

8. S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a Mod-
eling Language for Designing Web sites. Computer Networks, 33(1–6):137–157,
2000.

9. Compuware and Sun. XMOF queries, views and transformations on models using
MOF, OCL and patterns, 2003. OMG Document ad/2003-08-07.

10. J. Conallen. Modeling Web Application Architectures with UML. Comm. ACM,
42(10):63–71, 1999.

11. Enterprise JavaBeans. http://java.sun.com/products/ejb/.
12. E.Romina. Modellazione concettuale di un portale mediante UML. Master’s thesis,

Università degli Studi dell’Aquila, 2003/04. In italian.
13. P. Fraternali. Tools and Approaches for Developing data-intensive Web Applica-

tions: A Survey. ACM Computing Surveys, 31(3):227–263, 1999.
14. S.T. Pope G.E. Krasner. A cookbook for using the model-view controller user

interface paradigm in Smalltalk-80. J. Object-Oriented Programming, 1(3):26–49,
1988.

15. Object Management Group. OMG/Model Driven Architecture - A Technical Per-
spective, 2001. OMG Document: ormsc/01-07-01.

16. Object Management Group. MOF 2.0 Query/Views/Transformations RFP, 2002.
OMG document ad/02-04-10.

17. R. Hennicker and N. Koch. Systematic Design of Web Applications with UML.
In Unified Modeling Language: Systems Analysis, Design and Development Issues,
chapter 1, pages 1–20. Idea Publishing Group, 2001.

18. Java Data Objects. http://java.sun.com/products/jdo/.
19. A. Kraus and N. Koch. Generation of Web Applications from UML Models using

an XML Publishing Framework. In Procs. 6th World Conference on Integrated
Design and Process Technology (IDPT), volume 1, 2002.

20. P. Merialdo, P. Atzeni, and G. Mecca. Design and Development of data-intensive
Web sites: The Araneus approach. ACM Trans. on Internet Technology, 3(1):49–
92, 2003.

21. P.-A. Muller, P. Studer, and J. Bezivin. Platform independent web application
modeling. In UML 2003, volume 2863 of LNCS, pages 220–233. Springer, 2003.

490 D. Di Ruscio and A. Pierantonio

22. A. Vallecillo N. Moreno. Using MDA for Designing and Implementing Web-based
Applications. In Int. Conf. on Web Engineering, Munich, Germany, 2004. Tutorial.

23. OpenQVT. Response to the MOF 2.0 Queries / Views / Transformations RFP,
2003. OMG Document ad/2003-08-05.

24. D. Di Ruscio, H. Muccini, and A. Pierantonio. A Data Modeling Approach to Web
Application Synthesis. Int. J. Web Engineering and Technology, 1(3):320–337,
2004.

25. L. Tratt. Model transformations and tool integration. J. Software and Systems
Modeling, 2004. To appear.

Automated Reasoning on Feature Models�

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos,
University of Seville, Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides, trinidad, aruiz}@tdg.lsi.us.es

Abstract. Software Product Line (SPL) Engineering has proved to be an effec-
tive method for software production. However, in the SPL community it is well
recognized that variability in SPLs is increasing by the thousands. Hence, an au-
tomatic support is needed to deal with variability in SPL. Most of the current
proposals for automatic reasoning on SPL are not devised to cope with extra–
functional features. In this paper we introduce a proposal to model and reason
on an SPL using constraint programming. We take into account functional and
extra–functional features, improve current proposals and present a running, yet
feasible implementation.

1 Introduction and Motivation

Research on SPLs is thriving. Unlike other approaches reuse in SPL has to become
systematic instead of ad–hoc. In order to achieve such a goal, SPL practices guide orga-
nizations towards the development of products from existing assets rather than the de-
velopment of separated products one by one from scratch. Thus, features that are shared
by all SPL products are reused in every single product. Most of the existing methods
[3, 6] for SPL engineering agree that a way for modelling SPL is needed. In this context
feature models [7, 9, 11, 13, 22] have been quoted as one of the most important contri-
butions to SPL modelling [7, pag.82]. As in other cases, first applications in routine
production are stimulating the development of a supporting science for improving the
production methods [17].

Feature models are used to model SPL in terms of features and relations amongst
them. In this type of models, the number of potential products of an SPL increases with
the number of features. Consequently, a large number of features lead to SPLs with a
large number of potential products. In an extremely flexible SPL, where all features may
or may not appear in all potential products, the number of potential products is equal to
2n, being n the number of features. Moreover, current feature models are only focused
on modelling functional features and in the most quoted proposals [7, 9, 11, 13, 22] there
is a lack of modelling artifacts that deal with extra–functional features (features related
to so–called quality or non–functional features). If extra–functional features are taken

� A preliminary version of this paper was presented at [4]. This work was partially funded by the
Spanish Ministry of Science and Technology under grant TIC2003-02737-C02-01 (AgilWeb)
and PRO-45-2003 (FAMILIES).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 491–503, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

492 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

into account the number of potential products increases even further. Although it is
accepted that in an SPL it is necessary to deal with these extra–functional features
[5, 11, 12], there is no consensus about how to deal with them.

Automated reasoning is an ever challenging field in SPL engineering [18, 23]. It
should be considered specially when the number of features increases due to the in-
crease in the number of potential products. To the best of our knowledge, there are only
a couple of limited attempts by Van Deursen et al. and Mannion [8, 14] that treat au-
tomatic manipulation of feature models. Although those proposals only consider func-
tional features, leaving out extra–functional features. Van Deursen et al. [8] explore
automated manipulation of feature descriptions providing an algebra to operate on the
feature diagrams proposed in [7]. Mannion’s proposal [14] uses first–order logic for
product line reasoning. However it only provides a model based on propositional–logic
using AND, OR and XOR logical operators to model SPLs. Both attempts have sev-
eral limitations:

1. They do not allow to deal with extra–functional features (both attempts leave this
work pending).

2. They basically answer to the single question of how many products a model has.
3. As far as we know, they have no available an implementation.

In addition, Mannion’s model uses the XOR (⊕) operator to model alternative re-
lations, which is either a mistake or a limitation because the model becomes invalid if
more than two features are involved in an alternative relation.

The contribution of this paper is threefold. First, we extend existing feature models
to deal with extra–functional features. Secondly, we deal with automatic reasoning on
extended feature models answering five generic questions, namely i) how many poten-
tial products a model has ii) which is the resulting model after applying a filter (e.g.
users constraint) to a model, iii) which are the products of a model, iv) is it a valid
model, and v) which is the best product of a model according to a criterion and finally
giving an accessible, running implementation.

The remainder of this paper is structured as follows. In Section 2, we propose an
extension to deal with extra–functional features. In Section 3, we present a mapping
to transform an extended feature model into a Constraint Satisfaction Problem (CSP)
in order to formalize extended feature models using constraint programming [15]. In
Section 4, we improve current reasoning on feature models and we give some definitions
to be able to automatically answer several questions on extended feature models. In
Section 5, we show how our model can be applied to other important activities such as
obtaining commonality and variability information. In Section 6, we briefly present a
running prototype implementation. Finally, we summarize our conclusions and describe
our future work in Section 7.

2 Extending Feature Models with Extra–Functional Features

2.1 Feature Models

The main goal of feature modelling is to identify commonalities and differences among
all products of a SPL. The output of this activity is a compact representation of all po-

Automated Reasoning on Feature Models 493

HIS

Supervision systems Control Services

fire intrusion flood

light control temperature

appliances
control

Video on
Demand

Internet
Conection

ADSL WirelessMandatory Feature
Optional Feature

Alternative Feature

Or Feature

Power Line

Fig. 1. Feature model of an SPL in the HIS domain

tential products of an SPL, hereinafter called ”feature model”. Feature models are used
to model SPL in terms of features and relations among them. Roughly speaking, a fea-
ture is a distinctive characteristic of a product. Depending on the stage of development,
it may refer to a requirement [10], a component in an architecture [2] or even to pieces
of code [16] (feature oriented programming) of a SPL.

There are several notations to design feature models [7, 9, 11, 13, 22]. We found that
the one proposed by Czarnecki is the most comprehensible and flexible as well as being
one of the most quoted. Figure 1 depicts a possible feature model of an SPL for the
domain of Home Integration Systems (HIS) using Czarneky’s notation. This example
is partially inspired by [13].

Czarnecki’s notation proposes four relations, namely: mandatory, optional, alter-
native and or–relation. In these relations, there is always a parent feature and one (in
the case of mandatory and optional relations) or more (in the case of alternative and
or–relation) child features.

– Mandatory: the child feature in this relation is always present in the SPL’s products
when its parent feature is present. For example, Every HIS is equipped with i) fire
and intrusion supervision systems and ii) light and temperature control.

– Optional: the child feature in an optional relation may or may not be present in
a product when its parent feature is present. For Example, there are HISs with
services and others without them.

– Alternative: a child feature in an alternative relation may be present in a product if
its parent feature is included. In this case, only one feature of the set of children is
present. For example, in a HIS product if an Internet connection is included, then
the customer has to choose between an ADSL, powerline or wireless connection,
but only one.

– Or–relation: the child feature in an or–relation may be present in a product if its
parent feature is included. Then, at least one feature of the set of children may be
present. For example, in a HIS the products may have Video or Internet or both at
the same time.

494 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

This model includes 32 potential products (you can check this on http://www.tdg-
seville.info/topics/spl). Examples of them are: i)Basic product: consisting of a fire and
intrusion supervision systems and light and temperature control. ii)Full product: a prod-
uct with all supervision and control features as well as a power line, ADSL or wireless
Internet connection.

2.2 Extended Feature Models

Current proposals only deal with characteristics related to the functionality offered by
an SPL (functional features). Thus, there exists no solid proposal for dealing with the
remaining characteristics, also called extra-functional features. There are several con-
cepts that we would like to clarify before analyzing current proposals and framing our
contribution:

– Feature: a prominent characteristic of a product. Depending on the stage of devel-
opment, it may refer to a requirement [10] (if products are requirement documents),
a component in an architecture [2] (if products are component architectures) or even
to pieces of code [16] (if products are binary code in a feature oriented program-
ming approach) of an SPL.

– Attribute: the attribute of a feature is any characteristic of a feature that can be
measured. Availability and cost are examples of attributes of the Service feature
of figure 1. Latency and bandwidth may be examples of attributes of an Internet
connection.

– Attribute domain: the space of possible values where the attribute takes its val-
ues. Every attribute belongs to a domain. It is possible to have discrete domains
(e.g:integers, booleans, enumerated) or continuous domains (e.g.:real).

– Extra–functional feature: a relation between one or more attributes of a feature. For
instance: bandwidth = 256, Latency/Availability > 50 and so on. These relations
are associated to a feature.

In figure 1, every feature refers to functional features of the HIS product line so
that every product differs because of its functional features. However, every feature of
figure 1 may have associated extra–functional features. For instance, considering the
services feature, it is possible to identify extra–functional features related to it, such
as relations among attributes like availability,reliability, development time, cost and
so forth. Likewise the Internet Connection feature can have extra–functional features
such as relations among latency or bandwidth. Furthermore, the attributes’ values of
extra–functional features can differ from one product to another. It means, every product
not only differs because of its functional features, but because of its extra–functional
features too.

Consider the full product of the HIS product line example presented formerly with
the same functional features. It is possible to offer several products with the same func-
tional features but different extra–functional features, for instance: i) High quality full
product: a product with full functionality and high quality: high availability and relia-
bility and high cost too. ii) Basic quality full product: a product with full functionality
but lower quality: lower availability and reliability and lower cost too.

Automated Reasoning on Feature Models 495

Services

Video on
Demand

Internet
Conection

ADSL WirelessPower Line

DTIME in {1000..2000} DTIME in {1500..2500} DTIME in {3000..4000}

PRICE in {100..200} PRICE in {100..200} PRICE in {150..250}

DTIME in {18000..25000}

PRICE in {80..100}

DTIME = POWERLINE.DTIME +
ADSL.DTIME + WIRELESS.DTIME

PRICE = 20 + POWERLINE.PRICE
+ ADSL.PRICE +

WIRELESS.PRICE

DTIME = VIDEO.DTIME +
INTERNET.DTIME

PRICE = VIDEO.PRICE + INTERNET.PRICE

Fig. 2. Extended feature model for an SPL in the HIS domain

To date, we have not found any proposal dealing with functional and extra–
functional features in the same model. However, there are some works in the litera-
ture that suggest the need of dealing with extra–functional features: Kang et. al have
been suggesting the need to take into account extra–functional features since 1990 [11,
pag. 38] when they depicted a classification of features, although they did not provide
a way to do it. Later, in 1998 Kang et. al [12] made an explicit reference to what they
called ’non–functional’ features (a possible type of what we call extra–functional fea-
tures). However the authors still did not propose a way to solve it. In 2001 Kang et. al
[5], proposed some guidelines for feature modelling: in [5, pag. 19], the authors once
again made the distinction between functional and quality features and pointed out the
need of a specific method to include extra–functional features, but they did not provide
this specific method on this occasion either.

2.3 A Notation for Extended Feature Models

We propose to extend Czarneki’s feature models with extra–functional features and
improve previous vague notations proposed in [20] by allowing relations amongst at-
tributes. Using the HIS example, every feature may have one or more attribute relations,
for example, the price (PRICE) and development time (expressed in hours) (DTIME)
taking a range of values in both a discrete or continuous domain (integer or real for
example). Thus, it would be possible to decorate the graphical feature model with this
kind of information. Figure 2 illustrates a piece of the feature model of figure 1 with
extra–functional features with our own notation inspired by [20].

In this example, every sub feature of the Service feature has two attributes: PRICE

and DTIME . Each of the attributes of leaf features are in a domain of values. For
instance, the price of an ADSL connection can range from 100 to 200 1. In the case
of parent features, the values of the attributes are the addition of their children values.
For example, the price of an Internet connection is the sum of the prices of the possible
Internet connections.

1 These values are just illustrative, they may have nothing to do with real values.

496 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

3 Mapping Extended Feature Models onto CSP

3.1 Preliminaries

Constraint Satisfaction Problems [21] have been object of research in Artificial Intelli-
gence in the last few decades. A Constraint Satisfaction Problem (CSP) is defined as a
set of variables, each ranging on a finite domain, and a set of constraints restricting all
the values that variables can take simultaneously. A solution to a CSP is an assignment
of a value from its domain to every variable, in such a way that all constraints are satis-
fied simultaneously. We may want to find: i) just one solution, with no preference as to
which one, ii) all solutions, iii) an optimal solution by means of an objective function
defined in terms of one or more variables. Solutions to a CSP can be found by searching
(systematically) through all possible value assignments to variables.

In many real-life applications, we do not want to find any solution but a good solu-
tion. The quality of a solution is usually measured by an application dependent function
called objective function. The goal is to find a solution that satisfies all the constraints
and minimize or maximize the objective function, respectively. Such problems are re-
ferred to as Constraint Satisfaction Optimization Problems (CSOP), which consist of a
standard CSP and an optimization function that maps every solution (complete labelling
of variables) to a numerical value. These are some basic definitions of what a CSP is.

Definition 1 (CSP). A CSP is a three–tuple of the form (V,D,C) where V �= ∅ is a
finite set of variables, D �= ∅ is a finite set of domains (one for each variable) and C is
a constraint defined on V .

Consider, for instance, the CSP: ({a, b}, {[0..2], [0..2]}, {a + b < 4})
Definition 2 (Solution). Let ψ be a CSP, a solution of ψ is whatever valid assignment
of all elements in V as satisfies C.

In the previous example, a possible solution is (2, 0) since it verifies that 2 + 0 < 4.

Definition 3 (Solution space). Let ψ be a CSP of the form (V,D,C), its solution space
denoted as sol(ψ) is made up of all its possible solutions. A CSP is satisfiable if its
solution space is not empty.

sol(ψ) = {S | ∀si · si ∈ S ⇒ C(si) = true}
In the previous example, there are eight solutions. The only assignment that does not

satisfy a + b < 4 is (2, 2). Nevertheless, if we replace the constraint with a + b < −1,
then the CSP is not satisfiable.

Definition 4 (CSOP). A CSOP is a four–tuple of the form (V,D,C,O) where V , D
and C stand for a CSP and O is a real function defined on D.

Consider, for instance, the CSOP: ({a, b}, {[0..2], [0..2]}, {a + b < 4}, a)

Definition 5 (Optimum space). Let ψ be a CSOP of the form (V,D,C,O), its opti-
mum space denoted as max/min(ψ, O) is made up of all solutions that maximize or
minimize O.

max(ψ, O) = {s | ∀s′ · s′ ∈ sol(ψ) ∧ s′ �= s ⇒ O(s) ≥ O(s′)}

Automated Reasoning on Feature Models 497

min(ψ, O) = {s | ∀s′ · s′ ∈ sol(ψ) ∧ s′ �= s ⇒ O(s) ≤ O(s′)}
In the previous example, max(ψ, a) = {(2, 0), (2, 1)}.

3.2 The Mapping

In [1] we presented an algorithm to transform an extended feature model into a CSP.
The mapping between a feature model and a CSP has the following general form: i)
the features make up the set of variables, ii) the domain of each variable is the same:
{true, false}, iii) extra–functional features are expressed as constraints and iv) every
relation of the feature model becomes a constraint among its features in the following
way:

– Mandatory relation: Let f be the parent and f1 the child in a mandatory relation ,
then the equivalent constraint is: f1 = f

– Optional relation: Let f be the parent and f1 the child in an optional relation, then
the equivalent constraint is: f1 ⇒ f

– Or–relation: Let f be the parent in an or–relation and fi | i ∈ [1 . . . n] the set of
children, then the equivalent constraint is: f1 ∨ f2 ∨ . . . fn ⇔ f .

– Alternative relation: Let f be the parent of an alternative relation and and fi | i ∈
[1 . . . n] the set of children, then the equivalent constraint is:
(f1 ⇔ (¬f2 ∧ . . . ∧ ¬fn ∧ f))∧ (f2 ⇔ (¬f1 ∧ ¬f3 . . . ∧ ¬fn ∧ f))∧
(fn ⇔ (¬f1 ∧ . . . ∧ ¬fn−1 ∧ f))

There may be several different algorithms to map extended feature models. The one
presented in [1] is a possible one. Hereinafter, we refer to the equivalent CSP resulting
from the mapping as ψM . Using this mapping, constraints for functional and extra–
functional features can be handled together. Thus, table 1 shows the equivalent con-
straints for figure 1 with the extra–functional features of figure 2. Constraints of extra–
functional features are denoted by an asterisk. POWERLINE, ADSL and WIRELESS

extra–functional features are not shown for lack of space as they are very similar to the
V IDEO. ones.

4 Automated Reasoning on Extended Feature Models

Since we go toward automated reasoning on feature models, a formal model of SPL
becomes necessary. We propose to use Constraint Programming to reason on extended
features models.

Our model is able to answer the following questions:

4.1 Number of Products

One of the questions to be answered is how many potential products a FM contains.
This is a key question in SPL engineering because if the number of products increases
the SPL becomes more flexible as well as more complex.

498 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

Table 1. A trace of the algorithm presented in [1] for HIS example

Relation ψHIS

HIS 1 (SUPERV ISION = HIS)

HIS 2 (CONTROL = HIS)

HIS 3 (SERV ICES ⇒ HIS)

SUPERVISION 1 (FIRE = SUPERV ISION)

SUPERVISION 2 (INTRUSION = SUPERV ISION)

SUPERVISION 3 (FLOOD ⇒ SUPERV ISION)

CONTROL 1 (LIGHT = CONTROL)

CONTROL 2 (APPLIANCE ⇒ CONTROL)

CONTROL 3 (TEMPERATURE = CONTROL)

SERVICES 1 ((V IDEO ∨ INTERNET) ⇔ SERV ICES)

SERVICES * (SERV ICES.PRICE = V IDEO.PRICE + INTERNET.PRICE)∧
(SERV ICES.DTIME = V IDEO.DTIME + INTERNET.DTIME)

VIDEO * ((V IDEO.PRICE ∈ [80 100]) ⇔ V IDEO)∧
((V IDEO.PRICE = 0) ⇔ ¬V IDEO)∧
((V IDEO.DTIME ∈ [18000, 25000]) ⇔ V IDEO)∧
((V IDEO.DTIME = 0) ⇔ ¬V IDEO)

INTERNET 1 (POWERLINE ⇔ (¬ADSL ∧ ¬WIRELESS ∧ INTERNET))∧
(ADSL ⇔ (¬POWERLINE ∧ ¬WIRELESS ∧ INTERNET))∧
(WIRELESS ⇔ (¬POWERLINE ∧ ¬ADSL ∧ INTERNET))

INTERNET * ((INTERNET.PRICE = ADSL.PRICE + WIRELESS.PRICE

+POWERLINE.PRICE + 20) ⇔ INTERNET)∧
((INTERNET.PRICE = 0) ⇔ ¬INTERNET)∧
((INTERNET.DTIME = ADSL.DTIME + WIRELESS.DTIME

+POWERLINE.DTIME) ⇔ INTERNET)∧
((INTERNET.DTIME = 0) ⇔ ¬INTERNET)

Definition 6 (Cardinal). Let M be an extended feature model, the number of potential
products of M , hereinafter cardinal, is equal to the solution number of its equivalent
CSP ψM .

cardinal(M) = |sol(ψM)|
In the HIS example of figure 1 cardinal(HIS) = 32, simply by adding for exam-

ple a new service like Radio Streaming, the number of potential products raises to 64.
Likewise adding the attributes of figure 2 cardinal(HIS) = 260.

4.2 Filter

There should be a way to apply filters to the model. These filters can be imposed by
the users. A filter acts as a limitation for the potential products of the model. A typical
application of this operation occurs when customers are looking for a product with a
specific set of characteristics, that is, they are not interested in all potential products but
in some of them only (those passing the filter).

Automated Reasoning on Feature Models 499

Definition 7 (Filter). Let M be an extended feature model and F a constraint repre-
senting a filter, the filtered model of ψM , hereinafter filter, is equal to ψM adding the
constraint F .

filter(M,F) = (ψM ∧ F)

A possible filter for the HIS example would be to ask for all products with video
on demand, making the number of potential products decrease from 32 to 16. It is also
possible to apply filters to attributes. For example, it would be possible to ask for all
products whose prices are lower than 200, 12then

cardinal(filter(HIS, SERV ICES.PRICE< 200)) = 44
(when any filter is imposed, it decreases from 260 to 44).

4.3 Products

Once ψM is defined, there should be a way to get the solutions of the model, that is the
products of ψM .

Definition 8 (Products). Let M be an extended feature model, the potential products
of the model M , hereinafter products, is equal to the solutions of the equivalent CSP
ψM .

products(M) = {s ∈ sol(ψM)}
In the HIS example we would want to get all the possible products of the model or

even apply a filter and then get the products. Thus M = filter(HIS,VIDEO = true) and
products(M) = {s ∈ sol(ψHIS∧ VIDEO=true))}.

4.4 Validation

A valid extended feature model is a model where at least one product can be selected.
That is, a model where ψM has at least one solution.

Definition 9 (Valid model). A feature model M is valid if its equivalent CSP is satisfi-
able.

valid(M) ⇐⇒ products(M) �= ∅
The HIS model of the example is valid, but there might be situations where the

constraints are not satisfiable, making the model invalid. For instance, if the Service’s
price is lower than 100, and a filter is imposed to have INTERNET , then the model
is not valid:

valid(filter(HIS, INTERNET = true ∧ SERV ICE.PRICE < 100)) = false

4.5 Optimum Products

Finding out the best products according to a determinate criterion is an essential task in
our model.

500 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

Definition 10 (Optimum). Let M be an extended feature model and O an objective
function, then the optimum set of products, hereinafter max and min, is equal to the
optimum space of ψM .

max(M,O) = max(ψM , O)
min(M,O) = min(ψM , O)

It is also possible to apply a filter to the HIS example and then ask for an optimal
product. Thus, a possible optimum criterion for the HIS example would be to ask for all
products with video on demand, and the minimum value for the multiplication of price
and development time. In this case selected products Popt are:
The model presented in this section can support current feature models. The only dif-

M = filter(HIS, V IDEO = true)
O = SERV ICE.PRICE ∗ SERV ICE.DTIME

Popt = min(M, O)

ference is that current feature models do not support extra–functional features which
means that when using our model to reason on current feature models, attributes are
not taken into account. Thus, the algorithm presented in [1] and all previous definitions
remain valid for current feature models.

5 Realising the Benefits

Compared to others, our approach is very flexible because it is so easy to extend. Be-
low, we show two more definitions based on the previous ones to demonstrate how our
approach can be extended and give valuable information to SPL engineers.

5.1 Variability

As mentioned previously, feature models are composed of a set of features and relations
among them. If relations restrict the number of products to only one, we are consider-
ing the lowest variability while a feature model defining no possible product would be
considered a non-valid model. On the other hand, considering no relations, the number
of products within the feature model would be the highest. This case would represent
the highest variability. Relations restrict the number of potential products, so variability
depends on relation types.

Let a leaf feature be a feature that has no child feature. Parent features add no vari-
ability to the model, because they are feature aggregates. We define the variability factor
as follows.

Definition 11 (Variability Factor(VF)). Let M be an extended feature model, and ψM

the equivalent CSP. Let MV be another extended feature model, considering the leaf
features in M and no relation among its features, and ψV

M the equivalent CSP.

V F (M) =
cardinal(M)
cardinal(Mv)

=
|sol(ψM)|
|sol(ψV

M)|

Automated Reasoning on Feature Models 501

The variability factor in the real domain would take values ranging from 0 to 1.
VF can assist decision making. For instance, when many products are going to be

developed one of the first decisions to be taken, is whether the SPL approach or tradi-
tional approach is going to be applied. A high VF may suggest an SPL approach; a low
VF may suggest a traditional approach.

5.2 Commonality

In a feature model, some features will appear in every product, some in only one product
and others in some products. When deciding the order in which features are going to be
developed, it is very important to know which are the most common features in order
to prioritize their building. Obtaining commonality information from the feature model
can be feasible by asking questions to our model. We define the feature commonality
as the percentage of products containing that feature.

Definition 12 (Commonality). Let M be an extended feature model and F the feature
we want to know its commonality.

commonality(M,F) =
cardinal(filter(M,F = true))

cardinal(M)

6 Implementation

We have already implemented some of the ideas presented in this paper using OPL
Studio, a commercial CSP solver. This implementation is available at http://www.tdg-
seville.info/topics/spl.

Three modules have been developed in our implementation: first, a feature markup
language and XML Schema were agreed on. This language allows to represent the
Czarnecki’s feature model [7]. Secondly, a parser to transform this XML documents to
a CSP following the algorithm described in [1] was developed. Finally, a web–based
prototyping interface was made available to allow to test some of the capabilities of
the model. In order to test our implementation, we have modeled four problems (two
academical and two real product lines) that are available on the web site.

In order to evaluate the implementation, we measured its performance and effec-
tiveness. We implemented the solution using Java. We ran our tests on a WINDOWS
XP PROFESSIONAL machine that was equipped with a 1.5Ghz AMD Athlon XP mi-
croprocessor, and 496 MB of DDR 266Mhz RAM memory. The test was based on the
feature model in Figure 1, adding new features. Several tests were made on each feature
model in order to avoid as many exogenous interferences as possible.

We have experimentally inferred that the implementation presented has an exponen-
tial behavior while increasing the number of features in the feature model and maintain-
ing a constant variability factor. We have measured the solving time for products(M),
which is the most complex to obtain, and have considered it for different values of VF
as shown in Figure 3. Our test determines our model has a good performance up to 25
features while the VF is kept constant.

502 D. Benavides, P. Trinidad, and A. Ruiz-Cortés

0
200
400

600
800

1000
1200

1400
1600
1800

15 17 19 21 23 25
Number of features

T
im

e
(m

s)

VF = 0.0313 VF = 0.0156 VF = 0.0078

Fig. 3. Empirical performance test for products(M)

7 Conclusion and Further Work

In this paper we set the basis for reasoning on SPL with features and attribute relations
at the same time and in the same model using constraint programming.

There are some challenges we have to face in the near feature, namely: i) extending
our model to support dependencies such as a feature that requires or excludes another
feature (e.g. video on demand requires ADSL128) that are also proposed in other feature
models ii) extending our current feature markup language to include extra–functional
features iii) developing a case tool to validate our model on an industrial context, iv)
performing a more rigorous validation of our implementation, studying the influences as
well as the number of solutions, the types of relations, the number of features, and so on,
v) comparing our work with others in the product configuration field[19].

References

1. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic reasoning on soft-
ware product lines. In Proceedings of the 2nd Groningen Workshop on Software Variability
Management, November 2004.

2. M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software systems with
process algebras. ACM Transactions on Software Engineering and Methodology, 11(4):386–
426, 2002.

3. J. Bosch. Design and Use of Software Architectures. Addison-Wesley, 1th edition, 2000.

Automated Reasoning on Feature Models 503

4. J. Bosch and H. Obbink. Proceedings of the 2nd Groningen Workshop on Software Vari-
ability Management. Technical Report to be published, University of Groningen, November
2004.

5. G. Chastek, P. Donohoe, K.C. Kang, and S. Thiel. Product Line Analysis: A Practical
Introduction. Technical Report CMU/SEI-2001-TR-001, Software Engineering Institute,
Carnegie Mellon University, June 2001.

6. P.C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series
in Software Engineering. Addison–Wesley, August 2001.

7. K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.

8. A. van Deursen and P. Klint. Domain–specific language design requires feature descriptions.
Journal of Computing and Information Technology, 10(1):1–17, 2002.

9. M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB. In
Proceedings of theFifthInternational Conference on Software Reuse, pages 76–85, Canada,
1998.

10. S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant requirements in domain
modeling. The Journal of Systems and Software, 68(3):171–182, 2003.

11. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

12. K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A feature–oriented
reuse method with domain–specific reference architectures. Annals of Software Engineering,
5:143–168, 1998.

13. K.C. Kang, J. Lee, and P. Donohoe. Feature–Oriented Product Line Engineering. IEEE
Software, 19(4):58–65, July/August 2002.

14. M. Mannion. Using First-Order Logic for Product Line Model Validation. In Proceedings
of the Second Software Product Line Conference (SPLC2), LNCS 2379, pages 176–187, San
Diego, CA, 2002. Springer.

15. K. Marriot and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

16. Christian Prehofer. Feature-oriented programming: A new way of object composition. Con-
currency and Computation: Practice and Experience, 13(6):465–501, 2001.

17. M. Shaw. Prospects for an engineering discipline of software. IEEE Softw., 7(6):15–24,
1990.

18. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework for Modeling
Variability in Software Product Families. In Proceedings of the Third Software Product Line
Conference (SPLC04), San Diego, CA, 2004.

19. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a general ontology of con-
figuration. AI EDAM, 12(4):357–72, 1998.

20. D. Streitferdt, M. Riebisch, and I. Philippow. Details of formalized relations in feature mod-
els using ocl. In Proceedings of 10th IEEE International Conference on Engineering of
Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE Computer Society, pages
45–54, 2003.

21. Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.
22. J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software prod-

uct lines. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), IEEE Computer Society, pages 45–54, 2001.

23. A. Wasowski. Automatic Generation of Program Families by Model Restrictions. In Pro-
ceedings of the Third Software Product Line Conference (SPLC04), San Diego, CA, 2004.

1,2 1 1

1

2

©

UserUser InterfaceInterface Domain LogicDomain Logic

Data Data SourceSource
Persistence Persistence

LayerLayer

UserUser InterfaceInterface Domain LogicDomain Logic

Data Data SourceSource
Persistence Persistence

LayerLayer

A4 - Boundary
Class Detail

A6 - Boundary Class
Behavior Description

A5 - Navigation
Description

A3 - Scenario
Description

A8 - Test Case
Data Generation

A9 - Test
Execution

A2 - Entity
Class Detail

Testers review the MODEST generated
Test Plan and MODEST generated test
execution reports.

A1 - Basic Operation
Identification

A7 - Test
Planning

: userActor : MainWindow : LoginHandler : User
 :

ControlException

1: login(login, password)

2: login(login, password)

3: loginValid(login)

4: ControlException(Message.UMM.INVALID_LOGIN)

invalid(login)

5: passwordValid(password)

6: ControlException(Message.UMM.INVALID_PASSWORD)

invalid(password)

7: read(login)

8: ControlException(Message.UMM.NO_USER)

User.read(login) == null

9: ControlException(Message.LOM.MISMATCHED_PASSWORD)

User.read(login).getPassword()
!= password

10:

11: makeWITH_USER()

16: setMode()

12: isCashier()

13: isManager()

14: isPurchaseManager()

15: isStockManager()

<< >> << >>

⇒
⇒< | <= | > | >= | == |! =

⇒ | | | | |
⇒ +| − | ∗ |/

⇒ < >
⇒ |
⇒ < >

⇒
⇒ < >

<< >>

<< >>

SearchWindowUsersWindow

-searchWindow

search
<<link>>

{login == ""}

select
<<link>>

cancel
<<link>>

MainWindow

close
<<link>>

-usersWindow

users
<<link>>

WITHOUT_USER

login[invalid(login)] / Message.UMM.INVALID_LOGIN

WITH_USER

login[invalid(password)] / Message.UMM.INVALID_PASSWORD
login[User.read(login) == null] / Message.UMM.NO_USER

login[User.read(login).getPassword() != password] / Message.LOM.MISMATCHED_PASSWORD

login[User.read(login).getPassword()
== password]

Enable Fields: login, password.
Not Enable Fields: passwordConfirmation.
Not Visible: -.

Enable Commands: login.
Not Enable Commands: logoff, changePassword,
passwordConfirmation, management, users.
Not Visible Commands: -.

Enable Fields: -.
Not Enable Fields: login, password,
passwordConfirmation.
Not Visible: -.

Enable Commands: logoff, changePassword,
management, users.
Not Enable Commands: login.
Not Visible Commands: -.

logoff

←
←

←

←

←

←

�=

<< >>

Executor

Populator

Test

Management

Extractor

Test Planner

Test Case

Data Generator

MODESToo

Software

Specification

Software

Under Test (SUT)Executor

Populator

Test

Management

Extractor

Test Planner

Test Case

Data Generator

ExecutorExecutor

PopulatorPopulator

Test

Management

Test

Management

ExtractorExtractor

Test PlannerTest Planner

Test Case

Data Generator

Test Case

Data Generator

MODESToo

Software

Specification

Software

Under Test (SUT)

28

23
21

10

22 22

30

0

5

10

15

20

25

30

Dev1 Dev2 Dev3 Dev4 Dev5 Dev6 MODEST

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 519 – 534, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Based System Testing of Software
Product Families1

Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis

University of Duisburg–Essen, Software Systems Engineering,
Schuetzenbahn 70, 45117 Essen, Germany

{Reuys, Kamsties, Pohl, Reis}@sse.uni-essen.de

Abstract. In software product family engineering reusable artifacts are
produced during domain engineering and applications are built from these
artifacts during application engineering. Modeling variability of current and
future applications is the key for enabling reuse. The proactive reuse leads to a
reduction in development costs and a shorter time to market. Up to now, these
benefits have been realized for the constructive development phases, but not for
testing. This paper presents the ScenTED technique (Scenario based TEst case
Derivation), which aims at reducing effort in product family testing. ScenTED
is a model-based, reuse-oriented technique for test case derivation in the system
test of software product families. Reuse of test cases is ensured by preserving
variability during test case derivation. Thus, concepts known from model-based
testing in single system engineering, e.g., coverage metrics, must be adapted.
Experiences with our technique gained from an industrial case study are
discussed and prototypical tool support is illustrated.

1 Introduction

Software product family engineering (PFE) is an emerging discipline. The goals of
PFE are to reduce development costs and Time-to-Market as well as to increase
quality of individual applications [4]. An essential concept is proactive reuse [14].
Following this concept, PFE is structured into domain engineering (development for
reuse) and application engineering (development with reuse) [21]. Reusable artifacts
are created during domain engineering and are reused during application engineering
to create customer-specific applications.

The increased productivity in product family engineering requires a more efficient
test approach than those used in single system engineering. Testing consumes up to
50% of the total effort in single system engineering [1]. This percentage increases in
PFE, because the effort for constructing applications decreases due to comprehensive
reuse. Testing becomes a serious bottleneck of product family development.

1 This work was partially funded by the CAFÉ-project “From Concept to Application in System

Family Engineering“ (BMBF, Foerderkennzeichen 01 IS 002 C) and the ITEA Project
ip02009 FAMILIES ”FAct-based Maturity through Institutionalisation Lessons-learned and
Involved Exploration of System-family engineering“, Eureka Σ! 2023 Programme.

520 A. Reuys et al.

We argue that the idea of proactive reuse should be extended to product family
testing to accelerate this activity [12]. Following this idea, reusable test cases are
created in domain engineering, which are reused for testing an application.

The ScenTED technique (Scenario based TEst case Derivation) adapts model-
based testing to product family engineering and supports the proactive reuse of test
cases. Model-based testing is an approach to systematically derive test cases in single
system engineering. In essence, model-based testing consists of two steps (see Fig. 1).
A test model is built from the requirements. It is common to use state charts [17] or
activity diagrams [9] as representation for the models. In a second step, test cases are
created using coverage criteria or other derivation techniques.

Requirements Test Model
Test Cases

Creation / Completion
of the Test Model

Coverage / Derivation
of Test Cases

Step 1 Step 2

Fig. 1. Model-based Testing in Single System Development (adapted from [6])

Model-based testing offers several advantages, e.g. test cases can be created in a
systematic, i.e., repeatable fashion, and stopping rules can be defined [17]. Therefore,
model-based testing is considered a prerequisite for automated test generation [3][6].
Another very important aspect is that test engineers validate the requirements by
creating the test model. Defects in requirements, such as ambiguities and
incompleteness, may be detected during the development of the test model, which is
cheaper than correcting them in later development phases. These benefits can be
realized for product family engineering by adapting model-based testing.

Variability is the key challenge for adapting model-based testing in product family
engineering. The variability of a product family specifies the differences among
applications to be build and is defined during domain engineering. Functionality is
called a variant whenever it is not planned to be part of all applications. For example
pay per credit card is a variant in an eShop, because it is not part of all applications.
To cope with variability, it is necessary to adapt the test model, its creation process,
test case derivation, and representation of test cases. In summary, the goals of our
approach are:

− to achieve a reduction in test case development effort compared to the use of
single system techniques in product family engineering, and

− to realize the benefits of model-based testing for product families by considering
variability in test models and techniques.

In the following, the related work on product family testing is reviewed.

 Model-Based System Testing of Software Product Families 521

1.1 Related Work

Three approaches support the idea of extending proactive reuse to product family
testing. McGregor [13] and Geppert et al. [17] create reusable test cases during
domain engineering, but these approaches are not model-based. The test cases are
derived from natural language requirements [13] and generalized from existing test
cases [7].

Nebut et al. [16] follows also the idea of proactive reuse. They consider scenario
fragments in domain engineering that are assembled to test case scenarios. However,
there is no test model that guides the assembling of these fragments during domain
engineering. Dependencies between use cases are specified in a use case transition
graph, but test case scenarios are only derived for specific applications when the
variability has already been bound.

Hartmann et al. [10] use an activity diagram as test model, which contains
variability, but test cases are derived only in application engineering. Therefore, it is a
model-based testing approach, but does not consider the reuse of test cases. Bertolino
and Gnesi [2] do not use a test model, but a structured test specification that contains
variability. Test cases are created for each application based on this specification.

In summary, the approaches by McGregor, Geppert et al. and Nebut support the
idea of extending proactive reuse to product family testing. Hartmann et al. support
the idea of model-based testing in product family engineering. However, there is no
approach for product family testing up to now, which combines pro-active reuse with
the benefits of model-based testing.

1.2 Overview

In this paper the ScenTED technique (Scenario based TEst case Derivation) is
presented. ScenTED is a model-based technique for system testing in product family
engineering. The key idea of the technique is to create reusable test case scenarios in
domain engineering and to reuse these test case scenarios in application engineering.

The adaptation of model-based testing for product family engineering and its
realization in ScenTED is explained in Section 2. The ScenTED activities for model-
based testing are described in Section 3. ScenTED has been used in an industrial setting
where a case study has been performed to measure the reuse benefit. This case study is
described in Section 4. Section 5 gives an overview on prototypical tool support for
ScenTED. The paper concludes with a summary and outlook on future work.

2 Model-Based System Testing in Product Family Engineering

In this section we present an adaptation of model-based testing. Test models used
within the ScenTED technique are defined, whereas the technique itself is explained
in the next chapter.

Model-based testing has to be performed in domain engineering as well as in
application engineering. It has to be conducted in domain engineering for two
reasons. First, the domain test model and the test cases are used to facilitate an early
validation of the domain requirements. Second, the test cases are created for reuse in
application engineering.

522 A. Reuys et al.

Test models must contain variability and techniques must consider this variability
in domain engineering (Fig. 2). Commonalities and variability are specified in domain
requirements [8]. As requirements include variability, test cases must also contain
explicit variability information. Test cases that include variability are called variant
test cases. Test cases without variability are called common test cases and can be
applied to all applications.

Requirements Test Model Test Cases

Requirements Test Model
Test Cases

Domain Engineering

Application Engineering

Containing Variability

Binding Variability

Fig. 2. Model-based Testing in Software Product Family Engineering

The model-based testing approach has to be conducted during application
engineering, too. Thereby, no new test models must be created, but the test models
that contain variability must be adapted to application specific needs. Application test
models are required for two reasons. First, test models and test cases document the
test activities. This is necessary when customers or laws and standards demand a
proof that requirements have been tested successfully (e.g. U.S. Food and Drug
Administration requires a proof of requirement coverage in testing). Second, an
application test model is required to identify reusable test cases from domain
engineering and to derive application-specific test cases.

In application engineering, the application engineer defines requirements with a
customer. The application test model is built based upon the application requirements
and by reusing the domain test model. Variability within the domain test model is
removed and new requirements from customers may be added to get the application
test model. Test cases are identified and derived in the following two steps. First, the
reusable test cases from domain engineering are selected. Some of these test cases
require an adaptation due to the selected variability in the application. Secondly, new
test cases must be derived, if new requirements were incorporated into the test model.

The ScenTED technique is based on the assumption that requirements have been
specified as use cases (Fig. 3). Activity diagrams are used as test model from which

 Model-Based System Testing of Software Product Families 523

test case scenarios are derived. The test case scenarios are specified in sequence
diagrams. Test case scenarios describe the test engineer’s actions and the responses of
the system without specifying concrete test data.

Use Cases
(Requirements)

Activity Diagrams
(Test Model)

Sequence Diagrams
(Test Cases)

Actor

Use Case C

Use Case A

Use Case D

Use Case B Use Case E

A1 A2

A3

A4

: Actor
System

Fig. 3. Models Used within ScenTED

We have chosen use cases as requirements specification, because use cases are
well suited to elicit and document customer requirements for information systems in
single system engineering as well as in product family engineering (see [8] for a
survey on the extension of use cases for PFE). Use cases serve also as good starting
point for system testing as they describe the system behavior from an external point of
view, which is the focus of the system test. Activity diagrams or state charts are the
most common test models to represent possible scenarios of use cases in single
system engineering and have already been used for model-based system testing [9].
Sequence diagrams are simple forms of representation to negotiate the test scenarios
with requirements engineers and can be incorporated into commercial test tools [11].

Test case scenarios are related to test case specifications. A test case specification
refines a test case scenario and comprises detailed test inputs (e.g., 4711 as valid PIN
number), expected results (e.g., system response Enter withdraw amount), additional
information (e.g., to use a touch screen or number block), and test scripts relevant to
this scenario. Test case scenarios can be generated automatically, but test case
specifications are usually developed manually, which is a time-consuming task. Thus,
it is desirable to create both test case scenarios and specifications in domain
engineering and to reuse them during application engineering [4][7][13].

We do not describe the creation of the test case specification, as it is out of the
scope of this paper. However, it is important to recognize that the reuse of test case
scenarios implies the reuse of associated test case specifications and thus reduces the
amount of test specifications that have to be created manually.

3 Product Family System Test with ScenTED

In this chapter, the activities of ScenTED for the model-based system testing are
explained. During activity 1 (Fig. 4) requirements specified in use cases are modeled
as domain activity diagram containing variability (Section 3.1). During activity 2 in

524 A. Reuys et al.

domain engineering test case scenarios are derived using an adapted coverage
criterion for product family engineering (Section 3.2). Activity 3 comprises the
adaptation of these test case scenarios for a customer-specific application (Section
3.3). Traceability information created during the first two activities is required to
perform the third activity (depicted by the dotted arrows).

Domain
Engineering

Domain
Test Case
Scenario

Domain
Use Case

Domain
Activity
Model

Application
Engineering

Application
Test Case
Scenario

Application
Use Case

Application
Activity
Model

New
Requirements

1 2
3

Fig. 4. ScenTED Activities

3.1 Creating the Hierarchical Activity Diagram

Within the first activity of ScenTED (Fig. 4) domain use cases are taken as input and
a hierarchical activity diagram is created. In a first step, one activity diagram per use
case is created that represents all scenarios specified within the use case. In a second
step, the activity diagrams are integrated into an overall activity diagram enabling the
derivation of end-to-end scenarios.

A prerequisite to use activity diagrams in domain engineering is the ability to
represent variability in the control flow [20]. A variation point is documented as a
special decision within the activity diagram. The variants are represented as different
control flows, e.g. as sequences of activities at the variation point [19]. Variants may
be optional, alternative, or co-existing. Optional means that the variants may be
chosen additionally for an application ([0..1 out of 1]-dependency). Alternative is a
[0..1 out of n]-dependency, meaning that one variant out of many variants may be
chosen at maximum. Co-existing enables the selection of zero to m variants out of n
possible variants ([0..m out of n]). A variation point is called mandatory, if at least
one variant has to be chosen. In that case, an alternative-dependency has a cardinality
of [1 out of n] and a co-existing-dependency is [1..m out of n]. Variation points that
are not mandatory are also called optional.

For system testing it is necessary to create end-to-end scenarios. Therefore, the
activity diagrams are arranged in one hierarchical diagram. The starting point to
create the hierarchical diagram is the use case model. The top level of the hierarchy is
a diagram, which contains the use cases that a user can perform directly. These use
cases are modeled as activities, each activity includes another activity diagram. These
activity diagrams on the second level model the behavior within the use cases.
Included use cases are modeled on the next level and variants on the last level.

 Model-Based System Testing of Software Product Families 525

The creation of the hierarchical activity diagram is shown for the example of an e-
Shop, depicted in Fig. 5. The use case diagram in Fig. 5a) shows that the buyer may
Register or Buy goods. The use cases Search goods and Search catalogue are not
directly initiated by the buyer, but included in use case Buy goods. Diagram b) shows
the resulting overall activity diagram. The user may register or buy goods as he enters
the eShop. These two activities are the only activities in the activity diagram as these
are the only activities directly triggered by the actor.

a) Use Case Model eShop

b) Activity Diagram for
the Use Case Model

d) Activity Diagram for
Variant Credit card

c) Activity Diagram for
Use Case Buy goods

Register Buy goods

Search goods Search catalogue

Mark articles

VP1
<<VP>>

Announce credit

<<variant>>

Announce invoice
billing information

<<variant>>

Start payment

VP1
Co-existing
1..2 out of 2

Register

Buyer
Search goods

Buy goods

Search catalogue

<<include>>

<<include>>

card information

Enter name

Enter number

Enter
validNumber

Fig. 5. Activity Diagrams containing Variability

The activity diagram for a single use case is shown in diagram c). This is the
diagram for use case Buy goods, which is the refinement of the activity Buy goods in
the activity diagram on the top level. The activity diagram for Buy goods represents
all possible scenarios specified in the use case. Variability defined within the use
cases is represented by the specific decision point (stereotype <<VP>>) and outgoing
branches that are additionally marked with stereotypes [19]. Customers of future
applications must choose if their application should provide the credit card variant,
the invoice billing variant, or both variants as VP1 is specified as co-existing.

The next level of activity diagrams bears the included use cases Search goods and
Search catalogue as well as diagrams for the variants CreditCard and InvoiceBilling.
The activity diagram for variant Credit Card is depicted in diagram d).

526 A. Reuys et al.

3.2 Deriving Test Case Scenarios

In the second ScenTED activity, the test model created during domain engineering is
used to derive test case scenarios. This is achieved by using a coverage criterion. The
adaptation of well known code coverage criteria for model-based testing, esp. activity
diagrams is also considered in [3]. Important criteria are the statement coverage
criterion, the path coverage criterion, and the branch coverage criterion. The
statement coverage criterion is only a weak criterion whereas the path coverage
criterion leads to a huge amount or even an infinite number of scenarios in a complex
system [15]. The branch coverage criterion is most commonly used in single system
development. Therefore, we adapted this criterion for product family engineering
within ScenTED.

The original branch coverage criterion is fulfilled when all branches of the activity
diagram are covered by at least one scenario. But variability within the activity
diagrams may lead to the fact that branch coverage is no more fulfilled during
application engineering as a result of bound variants. Consider the following example
of two scenarios for use case Buy goods (Fig. 5c), which fulfill the branch coverage
criterion:

SC1: {Search goods, Mark articles, Announce credit card information, Start payment}
SC2: {Search catalogue, Mark articles, Announce billing information, Start payment}

If only variant Credit Card is selected for an application, then the second scenario
is invalid. So the original branch coverage criterion fails when performed during
domain engineering. Therefore, we adapted the branch coverage criterion:
Each branch of the control flow for every possible application has to be covered by at
least one scenario.

In order to derive scenarios that fulfill this criterion, the key idea is to abstract
temporarily from the variability, to derive the scenarios, and afterwards to detail the
variability again. This works for all mandatory variation points, but only if the
variability in the flow of events has only local impact. The application of this idea on
the example leads to the following temporary scenarios in domain engineering for
Buy goods.

SCVtemp1: {Search goods, Mark articles, { }VP1, Start payment}
SCVtemp2: {Search catalogue, Mark articles, { }VP1, Start payment}

These two temporary test case scenarios cover all branches except for the branches
containing variability. Therefore, the variants have to be added now, thereby
preserving variability. This leads to the following two domain test case scenarios.
SCV1: {Search goods, Mark articles, {Announce credit card information, Announce
billing information}VP1, Start payment}
SCV2: {Search catalogue, Mark articles, {Announce credit card information,
Announce billing information}VP1, Start payment}

This approach works for the example, but only because of the mandatory variation
points and because the variation point is independent, i.e. the flows of events of both
variants continue with the same activity (Start payment). For optional or dependent
variation points this approach has to be modified. In a first iteration the variants and
variation points are not considered during the coverage criterion. This leads to an

 Model-Based System Testing of Software Product Families 527

initial set of test scenarios that fulfills the branch coverage, besides the branches with
variability. In a second iteration, the branches of the variants are covered and
integrated into end-to-end scenarios. The resulting step is to merge the scenarios from
the two iterations to the set of domain test case scenarios.

Test case scenarios contain more information than scenario steps. The result of
each test case scenario step must be verifiable. Therefore, test data and the expected
results of each step must be documented. Furthermore, the preconditions and post-
conditions denoted in use case must be considered.

Diagram e) in Fig. 6 shows the domain test case scenario SCV1 for use case Buy
goods. Sequence diagrams are used in ScenTED to represent the test case scenarios.
Additional information on test data and expected results are documented in notes.
This information cannot be derived completely by the model-based approach. The test
data is often difficult to generate from the test model. Moreover, the expected result is
mostly determined by the test engineer. This information can be described in the
domain test case scenario and reused during application engineering to reduce effort.

The variability preserved in the activity diagrams is still included within test case
scenarios. The test case scenario contains variation point VP1 as well as the corresponding
variants. The variable region within the diagram is emphasized with a note.

System

System

<<Use Case>> Search goods : User

: User

Display found goods

Mark articles

Articles marked

(V1.1) Announce credit card information

(V1.1) Display credit card information

(V1.2) Announce billing information

(V1.2) Display billing information

Push button “start payment”

Show approval

<<Use Case>> Search goods

Display found goods

Mark articles

Articles marked

(V1.1) Announce credit card information

(V1.1) Display credit card information

Push button “start payment”

Show approval

Selection of
V1.1

Articles are
shown with
their order
number

Articles
highlighted

Card
number and

end date

Status in
browser-
header:

Paid

Articles are
shown with
their order
number

Articles
highlighted

Card
number and

end date

Status in
browser-
header:

Paid

Street and
City

VP1:
Payment
[1..2 of 2]

e) Test Case Scenario in
Domain Engineering

f) Test Case Scenario in
Application Engineering

Fig. 6. Binding Variants in Test Case Scenarios

3.3 Deriving Test Case Scenarios for Specific Applications

The third ScenTED activity uses the domain test case scenarios and the application
requirements (use cases) to create the set of application test case scenarios. The key
idea is to reuse test case scenarios from domain engineering. The variability within
the domain test case scenarios must be bound for the derived application and the test
scenario is used to document the test case execution.

Customer requirements are elicited at the beginning of application engineering.
Thereby, possibilities of the software product family are explained to the customer

528 A. Reuys et al.

and the customer defines the application requirements [8]. The result is documented
in the application use case model.

Basically, the test engineer has to perform the same two steps as in domain
engineering, but the test models created during domain engineering serve as blueprint.
In the first step, the hierarchical activity diagram is used and adapted according to the
application requirements. Essentially, variants are chosen for the specific application.
Furthermore, it is possible that use cases or use case scenarios may be added or
deleted. In the second step, the test engineer determines which test case scenarios
derived during domain engineering are still valid for the application, i.e. all common
test case scenarios are reviewed to decide if they are applicable or out-dated by
changes. Thereby, the following cases may be distinguished:

− Test case scenarios for unchanged commonalities are directly reused.
− Test case scenarios for changed functionality are left out.
− Test case scenarios for variability are bound with the according variants.

Furthermore, additional, application-specific test case scenarios must be created, if
there are still uncovered branches within the application activity diagram, esp. for
changed functionality. The original branch coverage can be used as the application
activity diagram does not contain variability anymore.

Fig. 6 shows the binding of variability for the test case scenario SCV1. The variant
V1.1 Pay per credit card (diagram e)) is chosen for the application. The resulting
scenario is shown in diagram f), which does exclude any not-selected variant.

The three activities of ScenTED can reduce effort in test case creation for software
product families. This is achieved by reusing test case scenarios created during
domain engineering. The time spent in the creation of test case specifications (e.g.
scripts, data, and results) can be economized if the domain test case scenarios are
related to the specifications and are reused in application engineering.

The described technique has been formalized and implemented into a prototype.
The prototype will be sketched in Section 5.

4 Case Study: ScenTED at Siemens

ScenTED has been applied within a case study at Siemens AG Medical Solutions HS
IM. The goal of the case study was to reduce the effort for test creation by reusing test
case scenarios.

Siemens Medical Solutions develops workplaces for radiologists. The radiologists’
tasks include the creation of an examination request, the filming of images, and the
completion of a patient report. The considered product family supports the tasks of
creation and administration of patient records and image data. The recorded data is
stored on a central server. The creation of a report and image-post processing take
place at a client workstation. Several different clients are developed based on the
same documents (requirements, architecture, and code). The clients have different
qualitative variants as well as functional variants. The qualitative variants define
workstations, which either view images on a normal monitor or on several dedicated,
high resolution monitors. The functional variants define applications that are only

 Model-Based System Testing of Software Product Families 529

able to view images or may copy the images to other embedded applications, e.g. 3D
viewing applications.

4.1 Adaptation and Application of ScenTED

This section describes the adaptation of the three ScenTED activities to Siemens-
specific needs. Use of commercial tools within the application of ScenTED is shown.

Creation of the Activity Diagram: The developers at Siemens already use a
hierarchical activity diagram. The described notation of variability in activity
diagrams (see Section 3.1) has been introduced and adapted. Fig. 7 shows such an
activity diagram. The notation was slightly changed. The stereotypes specify now the
activities that can be used in the specific application (Product A/B/C). A stereotype
has been defined for each meaningful combination of applications. The activity
diagram therefore represents the domain test model with its possible variants as well
as the application test model, and thereby the connection between variant
functionality and applications is made explicit. Activities without stereotype are
supported by all applications. Thus, these activities represent common functionality.

openImagesViaX
<<Product AB>>

openImagesViaY
<<Product ABC>>

scrollImages dictateReport

openImagesInOtherApplication
<<Product A>>

Fig. 7. Adapted Activity Diagram used at Siemens

Derivation of Domain Test Case Scenarios: Test case scenarios are derived from the
activity diagram using the adapted coverage criterion. There were a lot of optional
variation points, because one application realizes a lot of functionality, but others do
not. According to the described approach in Section 0, the branches without
variability are considered first, creating the test case scenarios for common
functionality. Then test case scenarios are derived that contain variability. The test
case scenarios are supplemented with information on application restrictions, i.e. on
which application they are usable. This information is taken from the stereotype in the
activity diagram. The resulting scenarios are also modeled in IBM Rational Rose. The
diagrams include the test data and expected results.

Derivation of Test Case Scenarios for an Application: Test case scenarios for an
application are derived from domain test case scenarios. All common test case
scenarios are reused and test case scenarios that are possible for the considered
application (specified within the domain test case scenarios) are selected additionally.
Application test case scenarios are administrated in the test tool Mercury TestDirector
(Fig. 8). The steps to ensure the precondition are marked as Startup and Precondition
in the comment field. The field Expected Result describes the result for each step. The
steps to validate the overall test case result and post-condition are specifically marked
in the comment. Furthermore, the comment contains the specification in which
application the test case scenario is applicable.

530 A. Reuys et al.

The benefit from the test tool is that test cases for common behavior and test steps
from variability containing test cases may be reused in a copy-and-paste manner with
only minor adaptations. This is working for the test case design (see Fig. 8) as well as
for the underlying test script.

An idea developed from the Siemens test engineers is to define a library that
contains a test script fragment for each activity within the activity diagram. Each
fragment can be called with a parameter for test data. This library thus includes test
fragments for all activities within the Rational Rose model. New test case scenarios
can be created using drag-and-drop whenever the scenario is derived from an existing
and already covered activity diagram.

Fig. 8. Test Case Scenario in Mercury TestDirector

4.2 Results

ScenTED has been evaluated regarding two aspects: the amount of reused test cases
and the test engineer’s opinion whether ScenTED supports reuse of test cases.
Therefore, the number of reused test case scenarios was determined at the end of the
testing phase and a questionnaire was given to the test engineers.

The analysis of the applied test case scenarios led to the following results: 27 end-
to-end test case scenarios were created during domain engineering. 63 test case
scenarios were derived from these domain scenarios during application engineering.
Each of the 27 test case scenarios had to be implemented in the TestDirector first. The
63 test case scenarios were reused from the originating 27 scenarios. Applying single
system testing techniques would result in the implementation of 63 independent test
case scenarios. Therefore, the reuse-size and frequency measure Rsf for reuse within
single systems engineering from [5] leads to a value of Rsf = (63 - 27) / 63 = 0.57.
This means that 57% of the needed artifacts are created by reuse. Thus, we have a

 Model-Based System Testing of Software Product Families 531

benefit of 57% for the considered part of the system compared to single system
development.

A questionnaire was used to get an estimation of the test engineers’ opinion
regarding the support of reuse offered by ScenTED. Statistical analysis has shown
that ScenTED really supports the creation and reuse of test case scenarios. Details
regarding the analysis of the questionnaire can be found in [18].

The case study stresses that the ScenTED technique reaches the goal of reduction
in test creation effort. Due to the derivation and reuse of domain test case scenarios
reduced test creation effort was achieved.

5 Tool Support for ScenTED

During the case study, the need for tool support was raised by the test engineers from
Siemens. Especially the derivation of test case scenarios from activity diagrams was a
time-consuming activity. The coverage had to be considered and navigation in the
activity diagram hierarchy required concentration. Moreover, the retrieval of the
application test case scenarios is cumbersome. Meanwhile, we have developed
prototypical tool support for the ScenTED technique. We focused on the automated
derivation of test case scenarios in domain engineering.

We have adapted an existing algorithm for branch coverage. This algorithm has
been extended by the different cases specified in Section 3.1, i.e. the mandatory and
optional as well as dependent and independent variation points. The formalization of
the product family branch coverage criterion and its implementation led to the
ScenTED-DTCD tool (Domain Test Case Scenario Derivation) as depicted in Fig. 9.

Fig. 9. Tool Support for Derivation of Domain Test Case Scenarios

The input for the tool is the mdl-file created by Rational Rose. The tool is able to
deal with variation points and variants as far as they are specified as described in
Section 3.1. The outputs of the tool are test case scenarios that describe the test
engineer’s activities and the system’s response if modeled within the activity diagram.
These scenarios are shown in the right section of this tool, but may also be saved

532 A. Reuys et al.

within a text file. An extension allowing the export of test case scenarios to a test case
administration tool is currently under construction.

The screenshot in Fig. 9 shows the derivation test case scenarios for the eShop
example. Three scenarios cover all branches of the example (see Fig. 5). The
variability is preserved within the scenarios as shown in the right part of the image.
The depicted scenario is one end-to-end scenario. All derived scenarios are
independent scenarios due to the given example; therefore the field required variant
is empty.

The implementation of the tool shows the formalization of the coverage criterion.
We have explicitly defined variability in models and considered variability within test
case scenario derivation. Model-based testing enables automation and the tool shows
that this advantage is still available after the extension to software product family
engineering.

6 Summary and Outlook

Testing is a serious problem in product family engineering. The productivity gains
that have been realized for the constructive development phases could not be realized
for testing until now. Moreover, the variability of the product family complicates
testing in domain engineering.

In this paper we have presented the ScenTED technique for the system test of
software product families. The contribution of this paper is the adaptation of
modelbased testing to product family engineering: Test artifacts in domain
engineering are extended to represent variability, in particular activity and sequence
diagrams. The activities to derive test cases are enriched by an adapted branch
coverage criterion for product family engineering and the binding of variants in test
case scenarios.

ScenTED leads to reduction of test case development effort. In a case study within
a recent project at Siemens Medical Solutions, the reuse benefit was up to 57%
compared to application of single system testing techniques. Due to this success
Siemens Medical Solutions HS IM adapted their testing process. ScenTED was put
into daily practice and it is currently propagated to other departments at Siemens.

The advantages of model-based testing are realized by our technique, esp. early
validation and automated test generation. During the application of ScenTED at
Siemens, it was observed that requirements and in particular the variability within the
requirements could be validated early due to the creation of the domain test case
scenarios. Moreover, we demonstrated using a prototypical tool that the coverage
criterion can be formalized and implemented.

Our future work aims at improving the technique and its tool support. We plan to
improve ScenTED to save even more effort in product family testing. Effort can be
saved in test case execution, if only those test cases are executed that test differences
to a previously tested application. Even though there is a prototypical implementation,
the technique lacks integrated tool support. The test models can be created in
commercial tools like RationalRose or TestDirector, but creating the activity diagrams

 Model-Based System Testing of Software Product Families 533

as well as reusing test case scenarios for application testing has still to be performed
manually. Our current work aims at providing full tool support for ScenTED.

Acknowledgements

We would like to thank the staff at Siemens Medical Solutions HS IM that ontributed
to the case study, especially Helmut Goetz, Frank Rometsch, Juergen Neumann, and
Harald Lauritsch. Last, but not least we would also like to thank Thomas Rinke for his
support in the creation of the prototype.

References

1. Beizer, B.; “Black box testing”, Van Nostrand Reinold, New York, 1990.
2. Bertolino, A.; Gnesi, S.; “PLUTO: A Test Methodology for Product Families”, 5th Intl.

Workshop on Product Family Engineering (PFE-5), Siena, Italy, November 2003.
3. Binder, R.; “Testing Object-Oriented Systems: Models, Patterns, and Tools”, Addison-

Wesley, Reading, 2000.
4. Clemens, P.; Northrop, L.; “Software Product Lines: Practices and Patterns”, Addison-

Wesley, Reading, 2002.
5. Devanbu, P.; Karstu, S.; Melo, W.; Thomas, W.; “Analytical and Empirical Evaluation of

Software Reuse Metrics”, 18th Intl. Conference on Software Engineering (ICSE), pp. 189-
199, July 1995.

6. El-Far, I. K.; “Enjoying the Perks of Model-Based Testing”, Software Testing, Analysis,
and Review Conference (STARWEST 2001), 2001.

7. Geppert, B.; Li, J.; Roessler, F.; Weiss, D.; “Towards Generating Acceptance Tests for
Product Lines”, 8th Intl. Conference on Software Reuse 2004, Madrid, Spain, Springer,
New York, pp. 35-48, 2004.

8. Halmans, G.; Pohl, K.: “Communicating the Variability of a Software Product Family to
Customers“, Software and Systems Modeling (SoSyM), Vol. 2, pp. 15-36, Springer,
Hamburg, March 2003.

9. Hartmann, J.; Vieira, M.; Foster, H.; Ruder, A.; “TDE/UML: A UML-based Test
Generator to Support System Testing”; 5th Annual International Software Testing
Conference in India, 2005.

10. Hartmann, J.; Vieira, M.; Ruder, A.; “UML-based Approach for Validating Product
Lines”, Intl. Workshop on Software Product Line Testing (SPLiT), Avaya Labs Technical
Report, pp. 58-64, Boston, USA, August 2004.

11. Hauber, R.; Ziegler, M.; Erskine, M.; Hilsenbeck, R.; “Modellbasiertes Testen”,
Objektspectrum, No 3, pp. 20 – 24, 2003 (in German).

12. Kamsties, E.; Pohl, K.; Reis, S.; Reuys, A.; “Testing Variabilities in Use Case Models“,
5th Intl. Workshop on Product Family Engineering (PFE-5), Siena, Italy, November 2003.

13. McGregor, J.: “Testing a Software Product Line”, Technical Report CMU/SEI-2001-TR-
022, December 2001.

14. McGregor, J.; Northrop, L.; Jarrad, S.; Pohl, K.; “Initiating Software Product Lines”,
IEEE Software, Vol. 19, No. 4, pp. 24-27, July/August 2002.

15. Myers G.; “The Art of Software Testing”, Wiley, New York, 1979.

534 A. Reuys et al.

16. Nebut, C.; Fleurey, F.; Le Traon, Y.; Jézéquel, J.-M.; “A Requirement-based Approach to
Test Product Families”, 5th Intl. Workshop on Product Family Engineering (PFE-5), Siena,
Italy, November 2003.

17. Offutt, J.; Abdurazik, A.; “Generating Tests from UML Specifications”, 2nd Intl.
Conference on UML’99, 1999.

18. Reuys, A.; Goetz, H.; Neumann, J.; Weingaertner, J.; “Medizintechnik bei Siemens AG
Medical Solutions HS IM”, In: Boeckle, G.; Knauber, P.; Pohl, K.; Schmid, K. (eds);
“Software-Produktlinien: Methoden, Einführung und Praxis”, pp. 247-259, dpunkt,
Heidelberg, 2004 (in German).

19. Reuys, A.; Reis, S.; Kamsties, E.; Pohl, K.; “Derivation of Domain Test Scenarios from
Activity Diagrams“; Intl. Workshop on Product Line Engineering The Early Steps:
Planning, Modeling, and Managing (PLEES'03), Erfurt, Germany, September 2003.

20. Riebisch, M.; Boellert, K.; Streidtferdt, D.; Franczyk, B.; “Extending the UML to Model
System Families”, World Conference on Integrated Design and Process Technology
(IDPT 2000), Dallas, USA, June 2000.

21. van der Linden, F.; “Software Product Families in Europe: The Esaps & Café Projects”,
IEEE Software, Vol. 19, No. 4, pp. 41-49, July/August 2002.

Quality-Based Software Reuse

Julio Cesar Sampaio do Prado Leite1, Yijun Yu2, Lin Liu3,
Eric S.K. Yu2, and John Mylopoulos2

1 Departmento de Informatica,
Pontifı́cia Universidade Católica do Rio de Janeiro,

RJ 22453-900, Brasil
2 Department of Computer Science,

University of Toronto,
M5S 3E4 Canada

3 School of Software, Tsinghua University,
Beijing, 100084, China

Abstract. Work in software reuse focuses on reusing artifacts. In this context,
finding a reusable artifact is driven by a desired functionality. This paper proposes
a change to this common view. We argue that it is possible and necessary to also
look at reuse from a non-functional (quality) perspective. Combining ideas from
reuse, from goal-oriented requirements, from aspect-oriented programming and
quality management, we obtain a goal-driven process to enable the quality-based
reusability.

1 Introduction

Software reuse has been a lofty goal for Software Engineering (SE) research and prac-
tice, as a means to reduced development costs1 and improved quality. The past decade
has seen considerable progress in fulfilling this goal, both with respect to research ideas
and industrial practices (e.g., [1, 2, 3]).

Current reuse techniques focus on the reuse of software artifacts on the basis of de-
sired functionality. However, non-functional properties (qualities) of a software system
are also crucial. Systems fail because of inadequate performance, security, reliability,
usability, or precision, to name a few. Quality concerns, therefore, should also be front
and centre in methods for software reuse. For example, in designing for the NASA Mars
Spirit spacecraft, one would not adopt a “cosine” function from an arbitrary mathemat-
ical library. Instead, one must look for, and possibly adopt, a reusable component that
meets stringent requirements in precision, performance and reliability.

Despite this practical need, few methods for reuse have focused on non-functional
requirements (NFRs). The typical object of software reuse as surveyed in [1], is an
artifact, initially executable code, and more recently large-scale components, software

1 Improved software productivity and reduced development costs result from building with
reuse; building for reuse actually has an overhead cost.

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 535–550, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

536 J.C.S. do Prado Leite et al.

architectures, designs, frameworks, and software product lines. All of these are predom-
inantly reused on the basis of functionality. One will not find precision, performance or
reliability as components ready-made for reuse. Needless to say, it will be invaluable to
reuse the knowledge about these critical requirements accumulated from the design of
software for other spacecrafts, or from other domains.

Why is it hard to incorporate quality requirements into reuse methods? One impor-
tant reason for this is that software artifacts include both functional and quality frag-
ments. Some of the quality fragments are hard to recognize since they are mingled with
the functional fragments in order to be executable.

Our goal is to focus on qualities as reusable assets. Would it be possible to sepa-
rate knowledge about how to achieve a quality, such as “performance” from a specific
function, say “cosine”? Would it be possible and reasonable to look for knowledge on
performance, instead of looking for different implementations of “cosine”? Would it be
possible to retrieve useful knowledge relative to a concern that is applicable in several
domains? This is exactly the issue that we want to address in this paper.

Unfortunately, the cross-cutting nature of quality attributes in software makes them
hard to classify. Cataloging them in terms of taxonomies [4, 5] is not sufficient support
for proper software quality reuse. On the other hand, in traditional function-oriented
classification, quality information is not discernible in the reusable artifact. This diffi-
culty increases when there are multiple quality concerns being dealt within one artifact,
which is often the case.

To overcome these difficulties, we combine insights and techniques from research in
non-functional requirements [6, 7], goal-oriented requirements engineering [8], aspect-
oriented programming [9], software reuse [1] and quality management. In particular
we rely on the results of combining aspect-oriented programming with goal-oriented
requirements engineering [10].

This combination proves to be effective because it unites a goal refinement and
classification strategy with a packing strategy provided by aspect-oriented program-
ming, making use of well-defined relations among functional and quality fragments,
we provide mechanisms for weaving those fragments together. We define a coher-
ent process that uses an asset library to find quality characteristics and apply those
to a software functional description. We show that it is possible to store qualities, re-
trieve it for reuse, specialize it for different contexts and integrate it with functional
descriptions. The process works both for graphs holding implementation information,
as the detailed operationalization of goals (into tasks), or for graphs without such de-
tail. The reuse process is therefore applicable at requirements as well as implementation
level.

The paper is organized as follows. Section 2 provides some background on the con-
cepts of goal-oriented requirements, on aspect-oriented programming, and on reuse.
Section 3 reviews the obstacles to quality reusability, presents the concept of goal as-
pects, and proposes a language to support software quality reuse. Section 4 describes
the overall process we foresee for automating part of the quality reuse process. Section
5 illustrates the process by demonstrating how the quality Usability can be reused. We
conclude in Section 6 by noting the contributions and limitations of this work, position-
ing it with respect to the literature, and discuss future directions.

Quality-Based Software Reuse 537

2 Goals, Aspects and Reuse

As stated in the introduction, we are using insights from different areas of research in
software engineering as well as in management. Our aim is to provide means to make
it possible to reuse software quality.

The starting point of our approach is the work on non-functional requirements [7]
(NFRs) that treats them as softgoals in a goal dependency graph. This graph depicts
interactions among goals where one goal can influence positively or negatively other
goals. The similarity among NFRs and the concepts of aspect-oriented programming
has been discussed in the literature and was exploited in [10]. Since both lines of
work structure software with respect to qualities, they were central to our approach
which uses goal graphs as a medium to organize software in relation to qualities, and in
relation to functionality.

Goals. A goal represents a stakeholder intention. A goal can be either fulfilled or
not [11], and may depend on sub-goals through AND or OR refinements. Goal-oriented
requirements engineering [8, 11] focuses on goals which are “roughly speaking, precur-
sors of requirements” [12]. Some goal-based modeling approaches, such as i* [13, 14],
also model the actors who hold these intentions.

Most variations of goal models in the literature use AND/OR trees to represent
goal decomposition [6, 11] and define a space of alternative solutions to the problem
of satisfying a root-level goal. There are several proposals for goal analysis techniques.
For example, obstacle analysis [15] explores possible obstacles to the satisfaction of
a goal. Along a different dimension, qualitative goal analysis [16] allows qualitative
contributions from one goal to another, and shows how to formalize and reason with
them. In whatever form, goal-oriented requirements engineering has been attracting
considerable attention within the software engineering community [17, 18, 19, 20].

In [6], the concept of a softgoal has been proposed as a means for modeling and an-
alyzing NFRs. Softgoals, unlike goals, can be partially satisfied or denied, and may de-
pend on other goals and softgoals through Make(++), Help(+), Hurt(−), and Break(−−)
relations, also known as contribution links [6]. With goal models, software development
proceeds by refining goals, identifying collections of leaf goals that together fulfill root-
level goals, and assigning responsibilities for the fulfillment of leaf-level goals. Figure 1
provides an example of a goal model. In this paper, we use an ellipse, a rectangle and
a cloud to represent a goal, a task, and a softgoal (quality) respectively. Each node has
a type and a topic. A type describes a generic function or a generic NFR (a quality at-
tribute). A topic, denoted in between “[” and “]”, describes contextual information. For
instance, the goal “contact” refers to a “friend”, the softgoal “reliable” refers to “reply”.

Aspects. Factoring or factorization involves the decomposition of an object into a
structure of smaller objects, or factors, which when combined together give the original.
For example, the number 15 factors into primes as 3 × 5; and the polynomial x2 − 1
factors as (x − 1)(x + 1). The principle has been echoed in the software refactoring
community [21] where refactoring is the process of rewriting material to improve its
readability or structure, while preserving its meaning or behavior. For example, refac-
toring x2 − 1 as (x + 1)(x − 1), reveals an internal structure that was previously not
visible (such as the two roots of the polynomial at +1 and -1). Similarly, in software

538 J.C.S. do Prado Leite et al.

Contact
[Friend]

-

+

++ +

OR
Email
[Friend]

Call
[Friend]

Reliable
[Reply]Responsive

[Reply]

Goals

Qualities

Mail
[Friend]

++
--

Edit
[Text]

SMTP
[Protocol]

AND

Tasks

Fig. 1. A requirements goal model

CC

C C

AspectC

Fig. 2. Factoring principle in structured design and AOP

refactoring, the change in visible structure can often reveal the “hidden” internal struc-
ture of the original code. Extracting commonalities can also simplify the representation
of potentially complex artifacts, e.g. re-expressing 20 + 20 + 20 as (1 + 1 + 1)× 20 or
3× 20 .

Aspect-Oriented Programming (AOP) [9, 22, 23] gives a different perspective to the
factoring principle. Figure 2 illustrates how AOP is related to, and yet different from
Structured Design [24]. The commonality may be modularized or refactored into a mod-
ule C to avoid duplication. In Structured Design it is the responsibility of the user of
a function to hold the address/name of the called module, whereas in AOP the respon-
sibility of knowing where an aspect is needed relies on the aspect. One of the goals in
structured design is to increase the fan-in of a module, a motivation shared with reuse.

An aspect [9] names the address of where it is needed as a pointcut. Pointcuts are not
absolute addresses; they are virtual ones, making it possible that an aspect be applied
in several places where the same conditions apply. An aspect keeps the information of
what it does, as an advice. Through separation of crosscutting concerns, aspect-oriented
languages offer simpler and more readable code structures. In order to execute the fac-
tored code, aspect-oriented environments use a reverse process known as weaving.

It is important to stress that the factoring principle as implemented in structured
design and in aspect-oriented programming is to help reuse by consolidating similar
information in just one place, thus making it easy to store and retrieve information.

Quality-Based Software Reuse 539

An example aspect expressed in AspectJ syntax is as follows:

aspect DisplayUpdating {
pointcut move(): call(void FigureElement.moveBy(int, int)) ||
call(void Line.setP1(Point)) || call(void Line.setP2(Point))||
call(void Point.setX(int)) || call(void Point.setY(int));

after() returning: move() { Display.update(); } }

The aspect DisplayUpdating includes the advice Display.update() that
will be woven into the component code after the move() pointcut. A pointcut is a
virtual address for the inclusion of the advice in a component. This virtual address is re-
solved through matching. For example, every time a Line.setP1(Point) appears
in a component, the advice, Display.update() will be woven in that component.

Reuse. Aspects that crosscut different parts of the system arise likely to address global
concerns of quality attributes represented by softgoals in the requirements goal model.
The link among softgoals and aspects brings the possibility of using these concepts as
basic entities to represent and organize qualities. On top of that we use a framework
from quality management to better organize qualities.

We are anchoring our understanding of software reusability in Krueger’s taxonomy
for software reuse processes [1]. Krueger lists five key processes that should happen
for a software artifact to be reused: classification, abstraction, selection, specialization
and integration. Classification organizes the stored information to help future queries
and updates, both by those who build for reuse, and by those who build with reuse.
Abstraction helps understandability by hiding low-level details and implementation.
Selection is the process where the actor building with reuse chooses what to reuse from
the available reusable artifacts. Specialization is necessary in white box reuse, where
an artifact needs to be changed to become reusable. To contrast, in black box reuse, an
artifact is used as is. Finally, integration is necessary to make the artifact being reused
fit into the context where it is going to operate.

Although this process taxonomy is primarily concerned with functional reuse, we
will use it to highlight the obstacles facing the reuse of qualities next.

3 A Goal- and Aspect- Driven Representation

This section outlines the key challenges when attempting to reuse qualities. We con-
clude that a better representation language is needed to achieve an effective reuse pro-
cess. The primary insight is that a goal based representation allows qualities to be for-
mally related to functional tasks through softgoal refinements and operationalizations.

3.1 Obstacles to Reusing Software Qualities

As we have noted before, cataloging quality requirements as taxonomies are not yet
sufficient to support proper quality reuse as it is not clear about which functionalities
are bound to the quality concerns. On the other hand, software representation languages
are known to lack non-functional concepts [12], which makes NFRs hard to be traced
in the different representations used along the software construction process. As quality

540 J.C.S. do Prado Leite et al.

softgoalgoal

task

correlation

contributions

Fig. 3. A V-shape goal model

concerns impact both high-level architectural changes and low-level code changes, they
create difficulties in reuse when different levels of abstraction are related.

The selection of a particular incarnation of a given NFR is possible only if there
is a way of linking the different incarnations with the required NFR. Since these in-
carnations are embedded in functional implementations, we also need to know how
much these implementations satisfice 2 the given NFR. As such selection, from the
non-functional perspective is a problem if the proper linkage and correlations among
functions and qualities are not bound together.

We do not see an easy way for black-box reuse in the context of quality reusability.
The key aspect in reusing qualities is how the selected instance of a given quality will
be specialized into a new context. Specialization of a quality concern is hard, mainly
due to its cross-cutting characteristic.

Last but not least, integrating a quality concern that was selected and specialized is
another obstacle. The need for well-defined interfaces among the reusable and the new
context is more complex than when dealing with functional concerns only.

3.2 Goal Aspects

Goal aspects were proposed in [10] to relate goal models representing functional re-
quirements to softgoal models representing NFRs. Goals, softgoals and tasks are re-
lated by means of a V-graph, which is a graph with an overall shape of the letter V
representing the three types of nodes (Figure 3).

The top two vertices of the V represent respectively functional and non-functional
requirements in terms of goal models. Following [7] we represent NFRs in terms of
softgoals, i.e., goals with no clear-cut satisfaction. Both models are AND/OR trees with
lateral correlation links. The bottom vertex of the “V” represents a set of tasks that
contribute to the satisfaction of both goals and softgoals.

A systematic requirements engineering process [10] uses the V-graph to elicit as-
pects, as in AOP terminology. We call these aspects, goal aspects, since they simplify
the V-graph by removing the correlation links and putting functional and non-functional
issues into separate AND/OR decomposition hierarchies. We have used it in the Media

2 Herbert Simon [25] used the term satisfice to denote the idea of “good enough” solutions to an
untractable problem. The NFR framework [7] is founded on the premise that NFRs (softgoals)
are “satisficed” when they admit a partial, but good enough solution.

Quality-Based Software Reuse 541

Shop case study [26]. The advantage of having a systematic process for discovering
goal aspects is that finding them early on, makes it easier to trace quality concerns to
aspect-oriented implementations. Although the V-graph representation helps the trace-
ability of requirements and as such helps the processes of integration, specialization and
selection, it does not fully support the classification and abstraction processes that are
necessary for reusability. Next, we detail our proposal for a goal-oriented representation
language to support quality reusability.

3.3 Q7: A Language for Organizing Qualities

As we have seen before, one of the key challenges in quality reusability is the multi-
dimensional characteristic of quality issues. Classification of quality requirements and
abstraction mechanisms to deal with them are obstacles to be overcome. These would
require a language that could handle not only the characteristics of the quality knowl-
edge, but that could relate those with functional descriptions as well. As such, we would
need proper representation for the following concepts: functions, topics, quality types,
pre-conditions, pointcuts (relations among functions, topics and quality types), contri-
bution structures and quality operationalizations.

The source of inspiration for coming up with the abstract language was an analogy
involving natural science and automobile design. In designing a sports car, a dominant
quality to strive for is speed. If we think about speed in the context of marine life,
we will observe that the fastest swimming animals have a common streamline shape.
Further we will recognize that the streamline shape is manifested at different parts of
the animal: the tail, the body and the front. If we based our automobile design on this
concept we would need a car that would have special attention to the shapes of the rear
part, the body and the front part. Although there is a huge gap in “reusing” this shape
information, the analogy helped us in understanding that to locate a quality issue we
would need to know why we need it, where it is applicable, and how to implement it. So,
in the car as in the fish, when we need speed, the quality of speed needs to be applied
to different parts of the fish or car, which when operationalized, are implemented as
streamline shapes.

We could paraphrase the above as: having a reason (that is why), a place to apply
the reason (where), and the details of the implementation to attain the reason(which is
how). Once we made this connection, it came to us that the structure of the 5W2H used
in quality management could be useful in classifying qualities.

Let’s see how the 5W2H fits into our context of quality reusability by examining
each of the 7 questions (also known as Q7).

– Why? This question is central to a quality view; it addresses intentionality and fo-
cuses on the rationale of an intention. Non-functional requirements was initially
proposed to describe quality attributes [6] to answer “Why an artifact needs a qual-
ity attribute?”. So the “why” question refers to the soft-goal or the quality informa-
tion we want to reuse. In the NFR framework this is also known as “type”.

– Who? The “who” characterizes the main target of the quality attribute. In our anal-
ogy the fish and the car would be the target or the artifact to receive the speed
attribute. So in our case, the “who” is representing the artifact associated with the
soft-goal or the quality we would like to attain.

542 J.C.S. do Prado Leite et al.

– What? The “what” characterizes contextual information of a given “who”, that will
be the target of a quality attribute (“why”). It is a necessary triggering characteristic
that the artifact must have to reuse the software quality. In the NFR framework this
is also known as “topic”.

– Where? The “where” is the specific addresses of the quality concern in the artifact.
In our V-graph goal model it is the pointcuts where the goal aspects will point to.
This address is discovered by examining the correlations, in the NFR framework
sense, found in a V-graph. “Where” is exactly the point in the V-graph that a goal
aspect (“why”) will be woven. To be applied to this point the goal aspect has to
comply with the “who” and “what” related to the reuse task at hand.

– When? The “when” is used to indicate a pre-condition that needs to hold before the
operationalization (“how”) could be applied in a given pointcut (“where”). In the
NFR framework is also known as a “claim”.

– How? This question addresses the refinement of the quality concern into a func-
tional description. In the NFR framework this is known as the operationalization
of a NFR [6]. It is how the NFRs will be implemented. In our model it will be the
advices in our goal aspects.

– How much? The impacts andside-effects of applying the operationalizations (“how”)
to the artifact. In the NFR framework it is the set of contributions links that relate
the operationalizations with NFRs. Impacts can be implicit when they relate the
operationalization and its parent softgoal.

Table 1 summarizes what is listed above and gives an example of the questions for the
Media Shop case study.

Based on the above intuitions, we define the BNF grammar for the Q7 language,
which organizes the knowledge for the purpose of software quality reuse.

START := Advice*
Advice := [When] [Who] Why [What] [Where] [How] [HowMuch]
When:= "(" Expr ")" "=>"
Who:= "<" id ">" "::"
Why:= id
What := "[" id { "," id}* "]"
Where:= "<=" Pointcut { "," Pointcut }*
How:=’{’ BoolOp Advice* ’}’
HowMuch:= "=>" Effect { "," Effect }*

Table 1. Classifying the NFRs knowledge, such as the “Usability” aspect in Media Shop

artifacts quality topics quality types claims pointcuts operationalizations contributions
Who What Why When Where How How much

MediaShop interface usability lang. conventions communicative -productivity
MediaShop interface usability operations memorizability operability -productivity
MediaShop interface usability usage always training -productivity
MediaShop lang. communicative words natural lang. lang. customization -productivity

...
...

...
...

...
...

...

Quality-Based Software Reuse 543

Expr:= "true" | "false" | id | Expr BoolOp Expr
Effect:= HowMuchOp [Who "::"] Why ["[" What "]"]
Pointcut:= HowMuchOp [("*"|Who) "::"] ("*" | Why) [("[" "*" "]" | What)]
BoolOp := "&" | "|"
HowMuchOp:="++"|"+"|"-"|"--"

We have designed a parser to convert a Q7 program into the Telos knowledge represen-
tation in our OpenOME tool.

Next we describe how the Q7 language is central to our process for reusing qualities.
If we look at Q7 just from the point of view of an organization scheme, it may look sim-
ilar to a set of fixed facets. Faceted classification was proposed by Prieto-Diaz [27] to
better organize a library of software components, where each component would have a
description written as a set of facets. Although the facets may be defined at will, usually
the examples shown in the literature did focus on the functional part of the components.
Q7 goes beyond facets, by providing specific relationships among functional and qual-
ity concerns using an AND/OR graph as the basic representation scheme.

4 A Process for Quality-Based Reuse

Having framed the obstacles found in quality reuse in terms of the 5W2H framework,
we now present a partially automated process to support quality reuse.

Fig. 4. The Media Shop build for reuse in OpenOME: the asset library is shown as the Protégé
ontology to the left; the V-graph is viewed to the right

544 J.C.S. do Prado Leite et al.

Fig. 5. A process for quality reusability

Figure 5 shows that our process is centered around the idea of an asset library. We
have implemented this library by using a knowledge base approach with Protégé [28]
on top of OWL [29, 30]. We have developed an OME/Telos (a tool for modeling NFRs)
plugin for the Protégé 2.1.1 (Figure 4), which is capable of populating (TELL) and
querying(ASK) the asset library. Figure 5 shows on the left hand side the input to the
asset library – V-graphs for software systems (products) containing both functional
and non-functional information, written in Q7. This description was produced from
the point of view of building for reuse. The right part of the figure shows the products
that are necessary in order to achieve quality reuse. We start with a general query on
available assets for a given quality, retrieve a candidate for reuse, specialize the candi-
date by manual enumeration of pointcuts for a given functional description, and finally
integrate the resulting goal aspects for the given functional description.

Abstraction and Classification. The processes of abstraction and classification are
tasks for building for reuse, which we do not detail here. As said before we have de-
veloped basic infrastructure to support these tasks, by means of a parser for Q7 and the
integration of Protégé with OME.

Selection. The selection process is performed by the software engineer using a Protégé
plug-in to query the asset library. A query is performed to retrieve a needed quality that
a developer is trying to reuse. This is done with the “why” operand, that is the query
will return a partial V-graph with the softgoal sub-graph. This graph may be pruned by
performing queries that narrow the search using the “when” and “how much” operands.
It is possible to check for preconditions on the softgoal graph by the “when” operand,
and to check for the satisficing levels (contribution links) of a given sub-graph by the
“how” operands, to check the effects on other quality attributes by the “how much”
operands.

Quality-Based Software Reuse 545

Specialization. The process of specialization uses two V-graphs as inputs to produce
the goal aspect graph for the chosen quality. The inputs are the V-graph retrieved from
the selection process and the target V-graph, that is the V-graph representing the func-
tional part where the quality has to be applied. As of now, we are using a manual inspec-
tion of both graphs to compose the resulting goal aspect graph. This task has to identify
“where” in the functional representation the goal aspects must be woven. Doing this
we are looking for the “what” or topic to which the advice of the goal aspect will be
woven into. Note, that although Figure 5 does not explicitly have a feedback loop to
the selection process, it occurs as we try to find a better candidate due to difficulties in
the specialization process. We foresee several automation strategies to lessen the bur-
den of a manual specialization: using matching patterns for topics in the inputs; using
an automatic tool to locate bottlenecks of the artifact that needs operationalized quality
improvements (e.g., using a profiling compiler that detects performance bottlenecks of
the execution that needs the tuning advices); or using an external intelligent agent that
performs the selection and specialization as a black-box reuse.

Integration. Once we have the V-graph for the selected and specialized goal aspect,
we can use an automatic procedure, similar to an AOP weaver, to integrate the quality
into the functional description. Unlike AOP, the weaving here not only insert the ad-
vices before/after/around the existing functionalities, but also allows a modification of
the existing tasks by more advanced semantics, such as goal satisfactions, or function-
preserving transformations.

In this paper, we studied a simple form of pointcuts specialization and weaving
based on the goal satisfaction at the high-level requirements [10]. We believe it is exten-
sible to low-level code weaving using existing tools such as AOP, compiler and trans-
formation systems. The simple weaving is done as follows. The goal aspect V-graph
produced by the specialization step and the functional V-graph provided by the soft-
ware engineer are encoded in Q7, which are the inputs to the weaver, as described by
the following procedure:

for each softgoal s
P = WHERE POINTCUTS(s)= test(WHEN CONDITION(s), all functional goals)
for each pointcut p of P

for each functional goal g /* a candidate join point */
if match(WHO(g), WHO(p)) and match(WHY(g), WHY(p))

and match(WHAT(g), WHAT(p)) then
weave(HOWMUCH OP(p), HOW(g), HOW(s)) end if

The routine test uses the guard condition in the “when” clause to test whether any
functional goal can apply the quality advice. These functional goals will be enumerated
as the pointcuts in the quality aspect. To be more useful, these pointcut expressions can
use wildcards to keep the virtual addresses.

The routines match checks whether a hard goal g matches the specifications of a
pointcut softgoal s. They match if g has the same “who”, “why” and “what” as those of
the pointcut of s. Wildcard “*” in the pointcut specification can match any name.

The operation weave combines g and s using the pointcut operator (similar to
“howmuch” operator), which is one of ++, +, − and −−. First, a correlation link

546 J.C.S. do Prado Leite et al.

g ⇒ op s is created as an obligation on the joinpoint g. To fulfill this obligation, if
the operator is ++(−−), then all the subgoals of g (how) must add the operationalized
tasks (anti-tasks) of s (how). If the operator is + (−), then at least one of the subgoals
of g must add the operationalized tasks (anti-tasks) of s. The semantic of the addition
can be implemented using one of the “before”, “after”, “around” semantics in AOP.

In the next Section we show, with an example, how we have applied this process to
retrieve usability from the asset library and reuse it in a different software system.

5 Reusing the Usability Asset

This section uses two software systems, Media Shop and Web Based Training (WBT),
in order to illustrate the feasibility of our reuse process. The goal model describing the
Media Shop case study was obtained using a goal aspect discovery process [10] and the
goal model describing the WBT case study was obtained from an i* model presented
in [31]. Our aim is to reuse one of the qualities “usability” present in the Media Shop,
and apply it to a different system – the WBT system.

For the Media Shop study we used both a requirements level description [26] and a
real implementation, osCommerce [32], to trace the goals and softgoals to tasks and
operationalized tasks. The goal aspect discovery process was applied on a V-graph
merging the requirements level description with the recovered abstraction of the im-
plementation. This V-graph is the asset we classified and stored in the asset library,
which contains operationalizations for qualities such as security, usability, responsive-
ness and integrity [10]. An abstraction of the asset library is stored in the nested Q7
format. We only show the necessary parts for illustration purposes:

<MediaShop>::Front[Shop] { &
Shopping[Shop] { ShoppingCart[product, item] ... }
Informing[Shop] { ... } Managing[Shop] { ... }

} => ++Security, ++Usability, ++Integrity, ++Responsiveness
Security[System] { ... }
Usability[UI] { & Usability[lang.] { & Communicative[Language] { &
(NaturalLanguages) => LangCustomization[Words] <= ++<MediaShop>::ShoppingCart,

... } ... } ... } Integrity[Data] { ... } Responsiveness[Transaction] { ... }

We rewrote the functional part for the WBT system [31] using Q7. Below we list a
partial description of the resulting goal model.

<WBT>::Build[System] { &
CoursePattern[System] { |
CoursePattern[InstructorLed] { &
SchedulePresentation[Instructor] OptionalTopics[Learner]

} CoursePattern[LearnerLed] { &
ActAsLearningResource[Instructor] SetCoursePace[Learner]

}} Collaboration[System] { |
Collaboration[Email]Collaboration[NewsGroupForum]Collaboration

[ChatRoom] Collaboration[SharingScreen] Collaboration[AVConf]
} CommonLessonStructure[System] { |

Quality-Based Software Reuse 547

Classic[Tutorial] ActivityCentered[Lessons] LearnerCustomized[Tutorial]
KnowledgePaced[Tutorial]Exploratory[Tutorial]Generated[Lessons]

}}

Given the functional description, our aim is to implement an interface for WBT that
considers aspects of usability. Following the process in Figure 5, we reuse the usability
asset as in our library. First we select from the asset library a softgoal hierarchy using a
query (why=”Usability”), resulting in an aspect without pointcuts in Q7:

Usability[UI] { &
(Conventions) => Communicative[Language] { &

(NaturalLanguage) => LangCustomization[Words]
} (Conventions) => Communicative[Custom] { &

(Classifications) => Customization[WordsOrder]
} (Memorizability) => Operability[Operations] { &

(MultipleWidgets) => Similar[LookAndFeel]
(MultipleFonts) => Stylized[Font]
(MultipleActions) => HierarchicalMenus[Navigation]

} Training[Usage] { &
ProvideUserManual[UseScenarios]
ProvideContextSensitiveHelp[Actions]
LearnByExamples[Tutorial]

} } => -Productivity

For the root advice (why=“Usability”), we have (what=“UI”, when=“Conventions”,
howmuch=“-Productivity”). The decomposition of the goal is nested inside the braces
as detailed advices (how). We discard information stored in the asset library that is
specific only to the asset. For example, (where = “ShoppingCart [product, item]”)
is a goal in the (who=“MediaShop”) domain that needs language customization for
usability. To reuse the Usability in the “WBT” domain, however, “ShoppingCart” is
irrelevant. Therefore we would only retrieve information that can be applied to any
domains, such as (when=“NaturalLanguage”).

We perform the process of specializing the reusable asset as a goal aspect by updat-
ing the pointcuts. Currently, a human agent has to manually identify pointcut functional
goals in the new domain according to the “when” condition in the queried aspect. For
example, in WBT, any functional goal that involves “natural language” may consider the
“language customization” advice. Therefore, one may enumerate the topics “Email”,
“ChatRoom”, “NewsgroupForum”, “Tutorial” and “Lessons” into the pointcut:

<WBT>::Usability[UI] { &
(Conventions) => +Communicative[Language] { &
(NaturalLanguage) => LangCustomization[Words] <= ++*[Email],

++*[ChatRoom], ++*[NewsgroupForum], ++*[Tutorial], ++*[Lessons]
} ... /* omitted */ } => -Productivity

The integration process is performed automatically and the resulting product is a Q7
description of WBT woven with the goal aspect of Usability. According to the Usability
goal aspect, the operationalized task “LangCustomization[Words]” is only woven with
the functional goals that match the pointcut.

548 J.C.S. do Prado Leite et al.

<WBT>::Build[System] { &
CoursePattern[System] { |

CoursePattern[InstructorLed] { &
SchedulePresentation[Instructor] OptionalTopics[Learner]

} CoursePattern[LearnerLed] { &
ActAsLearningResource[Instructor] SetCoursePace[Learner]

} } Collaboration[System] { |
Collaboration[Email] => ++LangCustomization[Words]
Collaboration[NewsGroupForum] => ++LangCustomization[Words]
Collaboration[ChatRoom] => ++LangCustomization[Words]
Collaboration[SharingScreen] Collaboration[AVConf]

} CommonLessonStructure[System] { |
Classic[Tutorial] => ++LangCustomization[Words] }
ActivityCentered[Lessons] => ++LangCustomization[Words]
LearnerCustomized[Tutorial] => ++LangCustomization[Words]
KnowledgePaced[Tutorial] => ++LangCustomization[Words]
Exploratory[Tutorial] => ++LangCustomization[Words]
Generated[Lessons] => ++LangCustomization[Words]

} } => -Productivity

Since the V-graph of Media Shop also had the actual implemented goal aspects
(given by osCommerce as explained in [32]) the final reuse will be the reuse of the
code that implements the goal aspect, that is the desired quality. As such we rely on an
operational semantics as to validate our final result. The fitness of the integration will
depend on the quality of the specialization that was performed. Note that, by merging
the two graphs, the semantics of the composed parts are preserved.

6 Conclusions

We have presented a method for making quality requirements a prominent dimension
in software reuse. It is based on combining results from different research directions:
requirements reuse and aspect-oriented programming

There are still several problems to be addressed, both from the point of view of
supporting mechanisms as well as the feasibility of dealing with a large number of
assets. The problem of scalability, dealing with huge graphs, is not itself the prime
concern here, but how different strategies for partitioning the result of selection queries
would be handled. It is also not clear where the strategy may break and how it will deal
with very general quality concerns, for instance reusability. However this problem is
general and also applies to the AOP view. Further research and experiments are needed.

As stated up front, reusing qualities is not an issue that received much attention in
the literature. Two works, from different perspectives did approach the issue indirectly.
One, [33], deals with the problem from the perspective of design patterns, while the
other, [34], from the perspective of aspects. While Clarke and Walker [34] focus on
parameterizing aspects to make them more flexible, Gross and Yu [33] propose to ex-
plicitly deal with quality concerns in design patterns and, as such, propose an explicit
encoding of the intentionality for each pattern. In our proposal we provide a broader
view of the problem and address all the five software reuse key processes.

Quality-Based Software Reuse 549

References

1. Krueger, C.: Software reuse. ACM Computer Survey 24 (1992) 131–183
2. Prieto-Diaz, R.: Status report: Software reusability. IEEE Software 10 (1993) 61–66
3. van Vliet, H.: Software Engineering: principles and practice, 2nd Ed. John Wiley (2000)
4. Sommerville, I.: Software Engineering, 4th Ed. Addison-Wesley (1992)
5. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality. In: ICSE,

International Conference on Software Engineering, IEEE Computer Society Press (1976)
592–605

6. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Trans. Softw. Eng. 18 (1992) 483–497

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishing (2000)

8. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented requirements anal-
ysis. CACM 42 (1999) 31–37

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect oriented programming. LNCS 1241 (1997) 220–242

10. Yu, Y., do Prado Leite, J.C.S., Mylopoulos, J.: From goals to aspects: Discovering aspects
from goal models. In: RE 2004 International Conference on Requirements Engineering,
IEEE Computer Society Press (2004) 38–47

11. van Lamsweerde, A.: Goal-oriented requirements engineering: From system objectives to
UML models to precise software specifications. In: ICSE 2003. International Conference on
Software Engineering, IEEE Computer Society Press (2003) 744–745

12. Feather, M.S., Menzies, T., Connelly, J.R.: Relating practitioner needs to research activi-
ties. In: RE 2003. International Conference on Requirements Engineering, IEEE Computer
Society Press (2003) 352–361

13. Yu, E.S.K., Mylopoulos, J.: From E-R to A-R – modelling strategic actor relationships
for business process reengineering. Int. Journal of Intelligent and Cooperative Information
Systems 4 (1995) 125–144

14. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: RE 2003. International Conference on Requirements Engineering, IEEE Com-
puter Society Press (2003) 151–161

15. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Trans. Softw. Eng. 26 (2000) 978–1005

16. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models.
LNCS 2503 (2002) 167–181

17. Anton, A.I., Carter, R.A., Dagnino, A., Dempster, J.H., Siege, D.F.: Deriving goals from a
use-case based requirements specification. Requirement Engineering 6 (2001) 63–73

18. Rolland, C., Prakash, N.: From conceptual modelling to requirements engineering. Annals
of Software Engineering 10 (2000) 151–176

19. Kaiya, H., Horai, H., Saeki, M.: Agora: Attributed goal-oriented requirements analysis
method. In: RE 2002. International Conference on Requirements Engineering, IEEE Com-
puter Society Press (2002) 13–22

20. Bolchini, D., Paolini, P., Randazzo, G.: Adding hypermedia requirements to goal-driven
analysis. In: RE 2003. International Conference on Requirements Engineering, IEEE Com-
puter Society Press (2003) 127–137

21. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley (1999)

22. Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Robillard, M.P., Lai, A., Kersten, M.A.K.:
Does aspect-oriented programming work? CACM 44 (2001) 75–77

550 J.C.S. do Prado Leite et al.

23. Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns using struc-
tural program dependencies. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE-02), New York, ACM Press (2002) 406–416

24. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of Com-
puter Program and Systems Design, 1st ed. Prentice-Hall (1979)

25. Simon, H.A.: The Science of the Artificial, 3rd Edition. MIT Press (1996)
26. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems en-

gineering: the tropos project. Information Systems 27 (2002) 365–389
27. Diaz, R.P.: Implementing faceted classification for software reuse. Commun. ACM 34 (1991)

88–97
28. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating

semantic web contents with Protege-2000. IEEE Intelligent Systems 16 (2001) 60–71
29. W3C: Web ontology language, http://www.w3.org/2004/owl (2004)
30. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.: OIL: an

ontology infrastructure for the semantic web. IEEE Intelligent Systems 16 (2001) 38–45
31. Liu, L., Yu, E.: Design web-based systems in social context: A goal and scenario based

approach. In: CAiSE 2002. Volume 2348., Springer-Verlag (2002) 37–51
32. : (Open Source E-Commerce Solutions, http://www.oscommerce.com)
33. Gross, D., Yu, E.S.K.: From Non-Functional Requirements to Design through Patterns.

(Requirements Engineering)
34. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable aspects.

In: ICSE 2001. International Conference on Software Engineering, IEEE Computer Society
Press (2001) 5–14

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 551 – 566, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On the Lightweight Use of Goal-Oriented Models
for Software Package Selection

Xavier Franch

Universitat Politècnica de Catalunya (UPC),
UPC – Campus Nord, Omega-122, 08034 Barcelona (Spain)

franch@lsi.upc.edu
http://www.lsi.upc.edu/~gessi

Abstract. Software package selection can be seen as a process of matching the
products available in the marketplace with the requirements stated by an
organization. This process may involve hundreds of requirements and products
and therefore we need a framework abstract enough to focus on the most
important factors that influence the selection. Due to their strategic nature, goal-
oriented models are good candidates to be used as a basis of such a framework.
They have demonstrated their usefulness in contexts like early requirements
engineering, organizational analysis and business process reengineering. In this
paper, we identify three different types of goal-oriented models useful in the
context of package selection when some assumptions hold. Market segment
models provide a shared view to all the packages of the segment; software
package models are derived from them. The selection can be seen as a process
of matching among the organizational model and the other models; in our
proposal this matching is lightweight, since no model checking is performed.
We define our approach rigorously by means of a UML conceptual data model.

1 Introduction

In the last years, software-package (SP)-based information systems have become not
the exception but the rule in the software-based solutions for managing the
informational resources of organizations worldwide. This is true for both SP that have
a visible impact in the services offered by the organization, such as ERP and CRM
systems, and SP that take care of the daily functioning of the organization, such as
mail or meeting scheduler systems, and security-related tools.

Successful SP-based system development requires a unique set of activities to be
performed, among which we find the selection of the SP themselves. This activity is
becoming increasingly more and more critical, due to the ever-growing nature of the
SP market, both in the variety of market segments (MS) available and the SP offered
therein. As a consequence, several SP selection methodologies, processes and
techniques have been formulated [1, 2, 3, 4], which propose different ways of eliciting
requirements and evaluating SP in the context of package selection. In spite of this
variety, we think that these proposals do not address in an effective way 2
fundamental questions:

552 X. Franch

• MS variety: How can we describe the different existing MS in a way such that an
organization becomes aware of their applicability in a particular selection problem?

• SP proliferation: How can we describe the great deal of SP belonging to a MS
in a way such that their comparison can be made uniformly?

The answer to these questions should take into account the following facts:

• Complexity of the problem: Not only the SP market is large, also the number of
requirements can be very high in typical selection processes for information
systems, as well as the number of quality factors that characterise a particular
kind of SP. As a consequence, we cannot aim at considering the detailed system
requirements nor all the SP quality factors from the beginning.

• Intertwining of requirements elicitation and SP evaluation: We need ways to
facilitate the identification and reformulation of requirements from the
observation of the SP market.

• Evolution of the SP market: New SP, and versions of existing SP, appear
continuously, preventing therefore the use of exhaustive descriptions of these SP.

A natural way for answering the raised questions considering the enumerated facts
is to rely on goals in the early stages of SP selection, rather than on detailed
requirements, specifications or quality models [5]. In fact, this idea aligns with the
observation that current goal-oriented analysis methods and languages such as KAOS,
i*, GRL or TROPOS [6, 7, 8, 9] are widespread in the requirements engineering
community for the refinement and decomposition of the customer needs into concrete
goals in the early phase of the requirements specification [10]. In our context, goals
and goal-based analysis can be used to model organizational needs, to identify which
MS are interesting for the problem at hand and to make a screening of the candidate
SP belonging to these identified MS. Of course, detailed requirements and evaluation
of interesting quality factors should be made, but at a later stage when the whole
scenario has been clarified and the solution space has been pruned down to a small set
of candidate SP.

Once the applicability of goals to SP selection has been stated, we face a problem.
Existing goal-based methodologies for software systems construction (e.g., TROPOS,
KAOS methodology) do not handle explicitly the particularities of SP selection. In
other words, they seem to be addressed more to support the development of bespoke
software rather than the construction of systems based on the composition of SP.

In this paper, we use of goal-oriented models for supporting SP selection. More
precisely, we propose dependency-based goal-oriented models, i.e. models that state
which are the actors involved in the information system and which actor goals depend on
which other actors. We use i* Strategic Dependency models [7] with this purpose. We
distinguish 3 types of models: 1) organizational models for modelling the needs of the
organization; 2) MS models for modelling the services that a particular MS addresses; and
3) SP models for modelling the services that a SP belonging to a particular MS offers. We
show how the relationships among these 3 models can be defined and how do they help to
answer the 2 fundamental questions above taking the 3 identified facts into account (see
fig. 1). We provide a rigorous description of all the models and their relationships through
a UML conceptual model [11], including a complete set of constraints that are presented
in textual form (see [12] for their OCL form).

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 553

Organiza-
tional model

SP model

MS model

What type of
packages apply
to the problem?

How a concrete
package refines the
concepts of its type?

How are the
requirements influen-

ced by the market?

How well a concrete
package fits to the problem?

Fig. 1. Using goal-oriented models in the selection process

2 Scope of the Proposal

This research has been motivated by a collection of selection processes in which we
have been recently involved, some of them reported elsewhere [13, 14, 15]. These
experiences have resulted in the identification of the questions and facts presented in
the introduction and they have yield to the adoption of goal-oriented models as
explained in this paper. Therefore, we may say that our proposal has been validated
through experiments with the following assumptions:

• Usefulness: The MS addressed is a segment of general interest. This means that a
great deal of organizations need to select SP from this MS. Some examples are:
communication infrastructure (mail servers, videoconference, etc.), ERP systems,
security-related systems, etc.
− Consequence: The number of selection processes that take place in this MS will

be high and then reusability of the models likely to occur.

• Variety: There are a lot of SP offered in this MS that are competitive enough. The
first part of the statement is a direct consequence of the previous point: if there is a
universal need, of course lots of products will be offered. The second point
excludes some particular MS like operating systems in which options are few and
the analysis we propose does not pay.
− Consequence: The number of SP to be analysed in selection processes in this

MS will be high and then we need a common framework as a basis for analysing
and comparing them.

• Size: The type of SP offer a great deal of features. This makes SP understanding
more difficult, time-consuming and cumbersome. SP such as ERP systems are
typical examples, whilst time or currency converters are not.
− Consequence: The concepts embraced by the type of SP are much and then light

descriptions focusing in the most fundamental notions are needed for pruning
the set of candidates in a cost-effective manner before detailed evaluations occur

• Continuity: The selection activity is monitored by an organization that
accumulates experience from past selection processes. This organization will find

554 X. Franch

valuable to have means to transfer knowledge from one experience to another and
to assist their clients in the maintenance of their SP-based information system.
− Consequence: The organization will be involved in an increasing number of

selection processes being able to transfer knowledge while improving its skills.

• Uncertainty: The starting requirements stated by the organization are vague,
incomplete and often ill-justified. Sometimes the organization even does not know
exactly which MS is addressing to.
− Consequence: The statement of the organizational departing needs must cope

this incompleteness focusing in the strategic underlying needs instead of the
concrete requirements. Furthermore, it should be possible to add new needs
from the SP analysis, which means that both organizational and software models
should be described similarly.

The use of our approach in SP selection processes with different assumptions
would require further experimentation.

3 Background: Strategic Dependency Models in the i* Notation

An i* Strategic Dependency (SD) model comprises two types of elements, actors and
dependencies among them. Actors are intentional entities, that is, there is a rationale
behind the activities that they carry out. Dependencies connect source and target
actors, called depender and dependee. Altogether they form a network of knowledge
that allows understanding “why” the system behaves in a particular way [16].

For our purposes, actors play roles that are abstract characterizations of a behaviour
within some specialized context or domain of endeavour [7]. We distinguish four
types of actors: human, organizational, software and hardware. We find convenient to
allow the definition of hierarchies using the typical is-a construct.

SD models express dependencies using four main types of dependency link (see
fig. 2). For goal dependencies the depender depends upon the dependee to bring about
a certain state in the world. A goal represents a condition or state of the world that can
be achieved or not. For task dependencies, the depender depends upon the dependee
to carry out an task. A task is a detailed description of how to accomplish a goal. For
resource dependencies, the depender depends upon a dependee for the availability of
an entity. Resources can be physical or informational, and considered as the
availability of some entity or even the finished product of some process. For soft goal
dependencies, the depender depends upon the dependee to perform some task that
meets a non-functional requirement, or to perform the task in a particular way.

Fig. 3 presents a the class diagram from a UML conceptual model that formalizes
the concept of SD model; the integrity constraints required here are: (IC1) an actor
shall not be a specialization of itself; (IC2) specialization shall preserve the type and
model of an intentional element; (IC3) the depender and dependee of a dependency
shall belong to the same model and shall not be the same neither one a specialization
of the other. We include in the diagram the 3 specializations of SD models
enumerated in the introduction that will be presented next.

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 555

Actor ActorTask

Actor ActorGoal

Actor ActorSoft Goal

ResourceActor Actor

Actor ActorTask

Actor ActorGoal

Actor ActorSoft Goal

ResourceActor Actor

Fig. 2. Graphical representation of i* Strategic Dependency actors and dependencies

+typeD : DependencyType

Dependency

+typeA : ActorType

Actor -

1 *

1 *

1*

*

0..1

super

dependee

-typeE : IntentionalElementType

Intentional Element

sub
depender

*

*

1

1

+human
+software
+hardware
+organization

«enumeration»
ActorType

+goal
+softGoal
+task
+resource

«enumeration»
DependencyType

+actor
+dependency

«enumeration»
IntentionalElementType

typeE

owner

{disjoint, complete}

-typeSD : SDType

SDmodel

SPmodelOrgModel

{disjoint, complete}typeSD

MSmodel

+OrgModel
+MSmodel
+SPmodel

«enumeration»
SDType

Fig. 3. A UML conceptual model representing SD models and their specializations

4 A Goal-Oriented Model for Stating Organizational Needs

As mentioned in the introduction, the classical use of goal-oriented models in the
context of information systems is to provide an early specification of the system-to-be
focusing on strategic aspects [5, 10]. We consider that the first set of temptative,
incomplete and high-level requirements in a selection process is the formulation of
such a model, which is obtained using some methods widespread in the requirements
engineering community such as GBRAM [17]. Since this is not a contribution of our
work, in this section we just introduce an example that we are going to use in the rest
of the paper.

Let’s consider an organization concerned with ensuring data integrity when data
interchange take place with human users. Fig. 4 presents its intentional elements.
Users who interchange data require the organization to keep their information
preserved (D1) and not to send them undesired information of any kind (D2). Since
users are aware that they may submit incorrect information, they also require the
organization to warn them in this case (D3). Information checking shall be transparent
to users (D5). At its turn, the organization just requires users not to submit hazardous
information of any kind (D4). On the other hand, the organization needs support to
discern whether its managed information contains unwanted data or not (D6). This
gives light to a third actor –a data integrity expert, capable of informing whether the
information suffers from some hazards or not.

556 X. Franch

D

Organization
(O)

Data
Integrity
Expert
(DIE)

User
(U)

D

D

D

D

D

D

D

D8: Information
to be Checked

D2: Undesired
Information not

Received

D

D

D1: Own
Information
Preserved

D
D D3: Warning Received

when Sending Undesired
Information

D4: Hazardous
Information not

Received

D

D

D5: Information
Checked in a

Transparent Manner

D6: Information
Hazards Identified

D7: Information
to be Processed

DD

Fig. 4. SD model for an organization with data integrity needs

5 i* SD Models for the Strategic Description of Market Segments

i* SD models are appropriate artefacts to describe the services that SP belonging to a
MS offer to organizations. When used with this purpose, we call them market segment
SD models, MS models to abbreviate. MS models are characterised by the following
properties (see fig. 5):

• There is a designated actor that represents the type of SP characterising a MS.
• There is at least another actor representing the main SP beneficiary, that most of

the cases is an organization. Sometimes, this actor is specialized into different
subactors using an “is-a” construct.

• Often there are some other actors bound to the type of SP of interest, for
instance:

− Abstract software actors, standing for software that may require connection
to the type of SP of interest but that is unknown in advance.

− Human users representing stakeholders have particular interests that are
distinguishable from those organizational ones (e.g., end users).

− SP administrator, in charge of administration duties when packages are large.

• The dependencies among the actors are kept to the minimum extent. There are
two main reasons for this decision:

− The model shall be general enough to be inclusive, i.e., every single SP of
the modelled type must be compliant with that model.

− SP selection will include a matching process involving this model, and in this
context it is convenient to handle models of a reasonable size.

• Most dependencies are goal dependencies. Soft goal dependencies are restricted
to crucial non-functional requirements on the type of SP. Resource depen-

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 557

dencies are restricted to fundamental concepts of the MS that stand for some
kind of data. Task dependencies are restricted to activities that are out of the
control of the depender.

+typeA : ActorType

Actor

-typeSD : SDType

SDmodel1*

-typeE : IntentionalElementType

Intentional Element

Software

MSmodel

*

*1

1

packageType

**

1

beneficiary

1..*

{subset} {subset}

{xor}

1*

typeA

typeSD

+OrgModel
+MSmodel
+SPmodel

«enumeration»
SDType

typeE

Fig. 5. A UML conceptual model representing MS models

D

Anti-Virus
Software
Package
(AVSP)

Anti-Virus
Administrator

(AVA)

Anti-Virus
Client
(AVC)

D

D

D

D

D

D

D

D

D

E3: Warning when
Submitting Infected Files

D

D

E1: Viruses in
Infected Files

Detected

E2: Infected Files
made Inocuous

E4: File to be
Scanned

E5: Activation done
Automatically

Organization
(O)

D

E7: Infected Files
Rejected

D
Anti-Virus
Provider

(AVP)

D

D

E8: Virus List
Updated Timely

D

D

E9: Virus List

D

D

E10: System
Configured Easily

E11: System Services
Exploited Adequately

D
D

D

D

E13: System kept
Updated

D

E14: Customers
List Updated

D

E12: Virus-
Related Tasks

Managed

Other
Software
Package

(OSP)

Human User
(HU)

is-a

D
D

E15:
Communication
Means Available

is-a

D

E6: Package used
Transparently

D

Fig. 6. An SD model for the market segment of anti-virus software packages

558 X. Franch

A MS that can be used for satisfying the organizational model presented in section
4 is the one of anti-virus software packages (AVSP) (see fig. 6). This segment fulfils
the requirements outlined in section 2 in order to be a valid target of our proposal.

The guidelines concerning dependencies can be checked in the figure. For instance,
some non-functional properties such as efficiency are not required at any point –of
course we would like the solution to be efficient, but we consider that for AVSPs,
efficiency is not as critical as for other types of packages and therefore it does not
appear in this highly strategic model. The two resource dependencies show the two
most significant data concepts: the target of the SP (the file to be scanned, E4) and the
object that threatens the file (the viruses, E9). Task dependencies reveal that AVSP
activation (E5) and task management (E12) occur in a particular manner.

6 Software Package Description Using i* SD Models

As mentioned, a MS model exhibits a fundamental property: every single SP of this
segment shall be compliant with this model. This helps to tackle one of the funda-
mental questions identified in the introduction, namely SP proliferation. However,
each package may have its own peculiarities with respect to the services offered to
and requested from its environment. We propose to use again i* SD models to
represent them and, in particular, we claim that the description of a particular SP shall
be build starting from the MS model. We call this model software package SD model,
or SP model. The process of obtaining a SP model from a MS one is called derivation.

In SP models, intentional elements can be of 3 types depending on their
relationship with MS models:

• Kept elements are those already appearing in the MS model. They stand for
intentional elements that are not further refined for any of the following reasons:

− They are resources or tasks detailed enough in the departing MS model.
− Their refinement would not add strategic value to the selection process.

• Refined elements are those not present in the MS model but refining one or more of
this model, which are called refinable elements. Refined elements express some
MS concept in a more concrete way. Thus, some situations are not allowed, more
precisely a task or resource dependency cannot be refined into a goal dependency.
Non-kept SP actors that are defined as specializations also fall into this category,
since in our context specialization may be conceptually considered as refinement.

• New elements are those not present in the MS model and not refining any of its
elements. Usually they express advanced capabilities of a particular SP that are not
standard in the corresponding MS.

As an example, we derive a SP model for a particular kind of AVSP, the McAfee
VirusScan v. 4.5.1 [18], see fig. 7. Kept and refined dependencies identify which
elements of the corresponding MS model for AVSP (cf. fig. 6) they correspond to.
We introduce two new software actors inheriting from the “Other Software Package”
actor, because the VirusScan supports connection with mail systems and web
browsers. In both cases, communication is implemented via some files placed at some
designated directories; this yields two refined dependencies. On the contrary, the

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 559

AVSP actor: in the case of the mail system, refines the concept of “File to be
Scanned” into “Attached File”; in the case of web browser, requires a specification of
the addresses that must be avoided in visits, which are new dependencies generated
by the new actor. The other actors are kept from the MS model.

D

Anti-Virus
Software
Package

Anti-Virus
Administrator

Anti-Virus
Client

D

D

D

D

D D

D

D

D

 E3: Warning
when Submitting

Infected Files

D
D

E1: Viruses in
Infected Files

Detected

Infected Files
Repaired when
Possible (E2)

E4: File to be
Scanned

Activate when
Activation Conditions

Met (E5)

Organization

D

E7: Infected Files
RejectedD

Anti-Virus
Provider

D

D

E8: Virus List
Updated Timely

D

D

E9: Virus List

D

D

Task Parameters be
Versatile (E11)

D
D

D

D

D

D

E12: Virus-
Related Tasks

Managed

Other
Software
Package

Human User

is-a

D

D

is-a

D

D

Mail System
Web Browser

Communication
Files (E15)

D

D

Communication
Files (E15)

is-a

is-a

D

D
Infected Files

Moved, Ignored or
Deleted (E2)

Default Actions
Supported (E6)

D
D

Activation Possibilities
be Versatile (E5)

Send Update
Notifications (E13)

D

D

Downloable AVSP
Version made Available

Timely (E13)

Task Templates
(E10)

D

Task List (E10)

D D

Log File (E10)

D
D

D

Show Tasks
Information (E10)

D

D

Attached File
(E4)

D

D

Suspicious URL
and IP

Addresses

Subscription
Form (E14)

D

D

Suspicious URL
and IP not Visited

Fig. 7. An SD model for the VirusScan anti-virus SP (grey: kept elements; white: refined
elements; black: new elements; enclosed in parenthesis, references to the MS model).

Fig. 8 models the concept of derivation as an association among MS and SP
models. At its turn, the derivation concept can be defined as a set of links among
elements from the MS and SP models1. To do so, elements of the involved models are
bound to the association class and then put together with the DerivationLink

1
 We could have used a ternary association, but splitting into two binaries makes the integrity

constraints easier to write, specially in their OCL form.

560 X. Franch

ElemSPElemMS

-typeSD : SDType

SDmodel1*
-typeE : IntentionalElementType
-/typeM : SDElemType

Intentional Element

*1

/typeM

+ElemOrg
+ElemMS
+ElemSP

«enumeration»
SDElemType

{disjoint, complete}

SPmodelMSmodel

{disjoint, complete}

* *

Derivation

*

*

1

*

*

*

*

*

ElemSPinDerivElemMSinDeriv

typeSD

1*

1..* 1..*

DerivationLink

ElemOrg

elements owner

OrgModel

+OrgModel
+MSmodel
+SPmodel

«enumeration»
SDType

Fig. 8. Derivation from MS to SP models

ElemSPinDerivElemMSinDeriv

1..* 1..*

/DerivationLink

Keepable

-/typeE

Refinable NewKept Refined

**

Keep

* *

Refine

{disjoint, complete}

{disjoint, complete}

{disjoint, complete}

1 1..*1..* 1

RefinableActor

{incomplete}/typeE

*

*

1..*

1

RefineActor

typeEMSderiv typeESPderiv

typeDV

Fig. 9. Derivation from MS to SP models (detailed view).

association class. Five integrity constraints are required to state that the derivations
shall preserve the type of their intentional element (IC4), the type of their actors
(IC5), their specialization hierarchies (IC6) and also the actors involved in their
dependencies (taking actor specialization into account; IC7), and shall belong to the
same model (IC8). We need an additional constraint to state that derivations shall be
complete (i.e., each element from the MS model shall be derived into the SP model;

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 561

IC9). Then, at fig. 9 we further distinguish among kept, new and refined elements
which allows to define more detail in the model, specially concerning multiplicities
and particularly in the case of actors. We introduce also two more integrity constraints
to state that kept dependencies preserve their type (C10) whilst refined ones do not
allow converting tasks or resources into goals or soft goals (C11).

7 Matching MS and SP Models with Organizational Models

MS and SP models can be compared with organizational models. In the first case, we
address the other fundamental question mentioned in the introduction, namely the
variety of MS. In the second case, we can use this comparison to carry out a first
screening of candidates and eliminate those that clearly do not apply to the case under
consideration. In both cases, furthermore, new goals can be generated and
incorporated into the organizational model. The comparison takes the form of a
matching process among the actors and dependencies of the involved models.

The matching can be classified according to:

• Coverage of the organizational model: a matching is complete if every intentional
element of the organizational model is matched with one or more intentional
elements in the MS or SP model, otherwise it is incomplete.

• Coverage of the MS model: a matching is surjective if every dependency of the MS
model that is linked to at least one actor that is matched with some actor of the
organizational model, is also matched with one or more dependencies in the
organizational model, otherwise it is overloaded. In other words, the definition of
coverage cannot take into account dependencies that link actors that have arisen in
the MS model.

Note that every combination of the two pairs of classes is valid. For instance, in
our example, the matching with the MS model is complete and surjective, as shown in
table 1; therefore, we may conclude that the MS of anti-virus packages is useful for
the problem at hand. In the figure, please note that the software and administrator
actors (AVSP and AVA) are not matched with any organizational actor; therefore,
according to the explanation above (coverage of the MS model), the dependencies
among them are not considered. Of course, if the matching with the MS is complete,
so will be the matching with any of the SP, since we force SP models to be a
derivation from MS ones.

Table 1. Matching among organizational and MS models (left, actors; right: dependencies)

Org MS E1 E2 E3 E4 E5 E6 E7 E8 E9 E13 E14 E15
AVC D1 x x
HU D2 x x U
OSP D3 x

O O D4 x
DIE AVP D5 x x x

 D6 x x x
 D7 x
 D8 x

562 X. Franch

Unlike this example, model matching will usually be incomplete and overloaded.
In the case of MS, if the degree of incompleteness is too high, the MS will not apply
to the problem. Otherwise, one or more of the following statements will hold: 1) the
information-system-to-be will combine SP coming from different MS; 2) some glue
code is necessary to achieve the expected functionalities; 3) uncovered organization
requirements must be prioritised to decide if they can be relaxed; 4) the MS offer
some functionalities or behavioural characteristics that were not foreseen by the initial
requirements of the system and that can be incorporated. Even a complete matching
does not exclude that other MS are also selected as applicable. In our case, in addition
to AVSP, we could thought of data encryption and spyware tools MS as applicable.

The UML class diagram for specifying the matching concept is presented in fig.
10. There are some similarities with the specification of derivation presented in the
previous section, both for the class diagram itself and the integrity constraints2: we
remark that IC4 hold and also IC6, IC7 and IC8 but just partially: dependencies in the
organizational model may be matched with dependencies in the MS or SP models
among the same two actors up to specialization (and then IC6 to IC8 apply) or among
one of the organizational actors and one the new actors (the system, the administrator,
…). There are not further restrictions about the type of actors or dependencies. On the
other hand, both types of matching are closely related: we need an integrity constraint
(IC11) stating that if an intentional element A belonging to an organizational model
matches with an intentional element B belonging to a MS model and with an
intentional element C belonging to a SP model, then C shall be derived from B (either
kept or refined). We define as derived attributes the coverage of matching.

As already mentioned, the matching can be used to point out new organizational
needs for the organization. In particular we may say the following:

• When matching with a MS model, it holds that: each dependency D in the MS
model that links a new actor (one that does not match with a organizational actor)
and a matched actor (one that matches with a organizational actor) is indicating
some dependency that is not identified in the departing organizational model.

• When matching with a SP model, it holds that: for each dependency D in the SP
model that links a new actor and a matched actor:

− If D is derived or kept from a dependency E that appears in the MS model from
which the SP model derives, then analyse the matching among the MS model
and organizational model and behave as in the case before. We act this way
because the MS model is more abstract and then closer to the organizational
point of view.

− Otherwise, the dependency D itself is considered.

On the other hand, actors in the MS and SP models that inherit from other actors
that are matched to organizational one, are also worth to be considered for inclusion
in the organizational model. This is the case of the mail system and web browser
actors from the McAfee VirusScan model.

2 In [12] we have defined some metaclasses that generalise the derivation and matching

concepts and we define some of the associations and integrity constraints in the superclasses.

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 563

ElemSPElemMS

-typeSD : SDType

SDmodel
-typeE : IntentionalElementType
-/typeM : SDElemType

Intentional Element

**

/typeM {disjoint, complete}

MSmodelSPmodel

{disjoint, complete}

-coverage

SPmatching

*

*

1

**
ElemSPinMatchElemMSinMatch

typeSD

1*

MSmatchLink

ElemOrg

elements owner

OrgModel

-coverage

MSmatching

* *

ElemOrgInMSMatch

**

* *

1..*

1..*

ElemOrgInSPmatch

1..*

1..*

SPmatchLink

Fig. 10. Matching among organizational, MS and SP models.

Please note that we are not proposing automatic updating of the organization
model, since this requires a careful strategic analysis. The contribution here is that we
provide a systematic way to identify candidate modifications to be performed.

8 Conclusions

We have presented an approach for using a widespread specification technique such
as goal-oriented modelling in the increasingly important context of software package
selection. Our proposal is based on the notions of matching and derivation which bind
intentional elements belonging to different goal-oriented models. We classify our
approach as lightweight because these 2 kinds of correspondences have been defined
without any type of model-checking techniques to validate that the elements involved
satisfy some formula. We have provided a rigorous meaning to the proposal by means
of a UML conceptual model. We believe that our proposal has a positive impact to
both the context of SP selection and goal-oriented modelling. For SP selection:

• It provides a starting point for this activity, focusing on goals before more
detailed issues such as measurable requirements.

• It acts as a high-level documentation for recording the most strategic decisions
and services arisen in the selection process.

• It supports the classical SP-based software systems life cycle in which SP
selection and requirements elicitation are two complementary activities.

564 X. Franch

• It supports transfer of knowledge (and therefore return on investment) from one
selection process to other of the same MS.

• It fits well with the extreme volatility of the market, because of the traceability
implied by the derivation and matching notions.

Concerning goal-oriented modelling, existing approaches such as TROPOS [9] are
primary concerned with the use of goals for guiding software development. We think
that our approach can be linked to TROPOS to obtain a slightly different
methodology aimed at SP-based software development, in which the requirements
elicitation phase may be defined using the concepts presented in this paper and system
implementation may be seen mainly as a SP integration activity. Addressing to these
issues is part of our future work.

As a possible criticism, it could be argued that building this type of models may be
time-consuming and requires a medium-high level of expertise. This is why in section
2 we have stated that our method is not intended to be universal, it requires some
conditions to be applicable: 1) the MS addressed is of general interest: 2) there are a
lot of SP offered in this MS; 3) SP are big; 4) the selection activity is monitored by a
team that accumulates experience from past selection processes; 5) the requirements
are not absolutely known in advance. Although it seems to be a lot of restrictions, a
great deal of selection processes in the information systems development satisfy them
altogether (communication infrastructure, packages of various kinds: CRM, ERP,
document management, …); furthermore, the economical impact of the selection
process in such cases is very high. We think that departments, institutes and teams
continuously involved in selection activities, namely consultant companies (e.g.,
Gartner, Forrester, etc.), IT divisions in large organizations (including public ones)
and groups of expert with academic profile, either large or smaller (e.g., our own
team) are therefore the main targets of our proposal.

One could aim at formalizing in the future the decision of applicability of a MS or
SP to a problem and convert our lightweight approach into heavyweight, but we must
be aware that this requires lot of work to be done in the selection. First, the non-
matching elements of the organizational model should be weighted somehow (as done
for instance in [19] using AHP with all the involved stakeholders). Second, one
should decide the threshold in which one MS become non-applicable. Third, some
kind of decomposition of the goals is surely needed to further explore organizational
needs and SP services. A lightweight approach is cost-effective and useful enough to
have a first organizational analysis of the elements involved in selection; the
utilization of a heavyweight one should be studied carefully.

For related work, we specially mention the notion of goal matching presented by
Rolland [20] and the CARE approach by Chung and Cooper [21]. Both proposals are
more comprehensive than ours in the sense that they propose to use goal models for
driving the whole selection process, focusing on goal decomposition and creating goal
graphs; whilst in our proposal the goal-oriented framework is to be used for a first
approximation of the problem, with the goal of clarifying the high-level
organizational model and pruning the solution space. In this sense, we may say that
the late treatments proposed by Rolland and Chung are not contradictory but
complementary to our proposal; in other words, they could be part of the heavyweight
approach mentioned in the previous paragraph. For the rest of their proposals, the
following fundamental differences arise:

On the Lightweight Use of Goal-Oriented Models for Software Package Selection 565

• They compare directly organizational needs with product functionalities; no
notion of MS model is proposed. This is a significant difference, in connection
with the 2 fundamental questions stated in the introduction (proliferation and
variety). We have already given arguments supporting the existence of this
intermediate model.

• It is not clear how they tackle the usual situation in which a single SP does not
solve the problem at hand. They mention the use of glue code and the further
customization of the selected SP, but our experiences show that usually the
information system must combine several SP. Our proposal deals with this
situation in a natural way.

• Our formalization using UML is a good starting point for developing tool
support in the future.

Acknowledgements

This work has been partially supported by the CICYT programme, project TIN2004-
07461-C02-01.

References

1. J. Kontyo. "A Case Study in Applying a Systematic Method for COTS Selection". In
Proceedings 18th ICSE, 1996.

2. N. Maiden, C. Ncube. "Acquiring Requirements for COTS Selection". IEEE Software
15(2), 1998.

3. C. Alves, F. Alencar, J. Castro. “Requirements Engineering for COTS Selection”. In
Proceedings 3rd WER, 2000.

4. S. Comella-Dorda, J. C. Dean, E. Morris, P. Oberndorf. “A Process for COTS Software
Product Evaluation”. In Proceedings 1st ICCBSS, LNCS 2255, 2002.

5. A. van Lamsweerde. “Goal-Oriented Requirements Engineering: A Guided Tour”. In
Proceedings 5th ISRE, 2001.

6. A. Dardenne, A. van Lamsweerde and S. Fickas. “Goal-Directed Requirements
Acquisition”. Science of Computer Programming Vol. 20, North Holland, 1993.

7. E. Yu, Modelling Strategic Relationships for Process Reengineering, PhD. thesis,
University of Toronto, 1995.

8. GRL web page. http://www.cs.toronto.edu/km/GRL/. Last accessed November 2004.
9. A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, P. Traverso. “Specifying and

analizing early requirements in Tropos”. Requirements Engineering Journal, 9(2), 2004.
10. E. Yu. “Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering”. In Proceedings 3rd ISRE, 1997.
11. Object Management Group. UML 2.0. http://www.omg.org/. Last accessed Nov. 2004.
12. X. Franch. “On the Lightweight Use of Goal-Oriented Models for Software Package

Selection”. Technical Report LSI-04-58-R, LSI-UPC, November 2004.
13. X. Burgués, C. Estay, X. Franch, J.A. Pastor, C. Quer. “Combined Selection of COTS

Components”. In Proceedings 1st ICCBSS, LNCS 2255, 2002.
14. J.P. Carvallo, X. Franch, C. Quer. “A Framework for Selecting Workflow Tools in the

Context of Composite Information Systems”. In Procs. 15th DEXA, LNCS 3180, 2004.

566 X. Franch

15. J.P. Carvallo, X. Franch, C. Quer. “Towards the Selection of a Requirements Management
Tool”. Book chapter in Requirements Engineering for Sociotechnical Systems, J.L. Maté,
A. Silva (ed.), IDEA Group, 2005.

16. E. Yu, J. Mylopoulos. “Understanding "Why" in Software Process Modelling, Analysis,
and Design”. In Proceedings 16th ICSE, 1994.

17. A.I. Anton. “Goal-Based Requirement Analysis”. In Proceedings 2nd ICRE, 1996.
18. McAfee web page. http://www.mcafee.com. Last accessed November 2004.
19. H. Kaiya, H. Horai, M. Saeki. “AGORA: Attributed Goal-Oriented Requirements

Analysis Method”. In Proceedings 10th RE, 2002.
20. C. Rolland. “Requirements Engineering for COTS Based Systems”. Information and

Software Technology, 41, Elsevier, 1999.
21. L. Chung, K. Cooper. “Defining Goals in a COTS-Aware Requirements Engineering

Approach”. System Engineering Journal, 7(1), 2004.

Measuring IT Infrastructure Project Size:
Infrastructure Effort Points

Joost Schalken1, Sjaak Brinkkemper2, and Hans van Vliet1

1 Vrije Universiteit, Department of Computer Science,
De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands

{jjp.schalken, jc.van.vliet}@few.vu.nl
2 Utrecht University, Institute of Information and Computing Sciences,

Padualaan 14, 3584 CH Utrecht, The Netherlands
{s.brinkkemper}@cs.uu.nl

Abstract. Our objective is to design a metric that can be used to mea-
sure the size of projects that install and configure COTS stand-alone
software, firmware and hardware components. We call these IT infras-
tructure, as these components often form the foundation of the informa-
tion system that is built on top of it. At the moment no accepted size
metric exists for the installation and configuration of stand-alone soft-
ware, firmware and hardware components. The proposed metric promises
to be a viable instrument to assess the effectiveness and efficiency of IT
infrastructure projects.

1 Introduction

Organizations no longer create software intensive systems from scratch. The use
of pre-existing software components, not created by the organizations them-
selves, becomes ever more prevalent in the creation of large software systems
[1, 2]. These pre-existing components are often called commercial-of-the-shelf
components (COTS components) in software engineering literature. In this pa-
per we however prefer to use the term non-developmental items (NDIs) [3] for
these pre-existing components.

The integration of NDI components that are packaged as stand-alone pro-
grams differs significantly from traditional software development. Many software
engineering metrics that have been applied to software development (such as
function points [4, 5], lines of code [6], object points [7], or bang metrics [8])
cannot be applied to projects that integrate these NDI components into larger
systems. After all most effort in infrastructural IT projects is not in program-
ming a system, but in installing and configuring the system. In this paper we
propose a new software metric to measure the size of projects that integrate
stand-alone NDI components into software-intensive systems.

The metric we propose is not only applicable to the integration of stand-
alone non-developmental software components, but also to the integration of

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 567–581, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

568 J. Schalken, S. Brinkkemper, and H. van Vliet

firmware1 and hardware components into software-intensive systems. We use the
term Information Technology infrastructure (IT infrastructure) to refer to NDI
hardware, firmware and stand-alone software components, as these components
often form the foundation of the information system that is built on top of it.

Examples of IT infrastructure projects are: operating system upgrades, in-
stallations of a database system, deployment of new desktop computers and
memory upgrades of servers.

Up until now no size metric in the area of IT infrastructure development
has received broad acceptance by industry. Although no standard size metric
for IT infrastructure exists, it does not mean that there is no need for such a
metric. On the contrary, the need for such a size metric is increasing. Empirical
knowledge of NDI-based systems is still at an early stage of maturity [9]. Pro-
cesses are quite different from traditional projects [10] and project estimation
and tracking are less effective for NDI-based development [10]. This is prob-
lematic as the use of NDI components is becoming ever more prevalent [1, 2].
The metric we propose in this paper uses information part of which only be-
comes available late in a project. Consequently, it’s intended use is to assess
and validate the effectiveness and efficiency of projects, rather than upfront cost
estimation.

1.1 IT Infrastructure Defined

The absence of consensus on the meaning of COTS within the academic com-
munity [3, 11] necessitates a definition of the related concept IT infrastructure
in this section. The definition of IT infrastructure marks which projects can and
which projects cannot be measured with the new size metric.

The term IT infrastructure has been inspired by the term technical infrastruc-
ture [12]. In this paper the following definition of IT infrastructure development
will be used: “the deployment, installation, connection and configuration of both
new and upgraded, non-developmental hardware, firmware and stand-alone soft-
ware components”.

The development of IT infrastructure is concerned with pre-existing hard-
ware and software components that have not been developed by the organiza-
tional unit that installs these components. In software engineering literature a
pre-existing software component is often called a commercial-of-the-shelf com-
ponent (COTS component). In this paper we however prefer to use the term
non-developmental item (NDI) [3], as the term COTS implies that the compo-
nent comes from a commercial vendor. In this paper the term NDI refers not
only to software components, but also to firmware and hardware components.

Non-developmental software components can be packaged in several ways
[11], either as source code, static libraries, dynamic libraries, binary components
or stand-alone programs. The type of packaging also has a direct impact on how

1 As firmware has remarkable similarity with software (with respect to its configura-
tion), everywhere were software is written, on should read software/firmware unless
explicitly stated otherwise.

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 569

these components are integrated and delivered to the customer. NDI components
that are provided in source code or library form usually require programming
to integrate the components into the software system under construction. These
kinds of NDI components are usually delivered as inseparable subcomponents
of the system under construction. On the other hand NDI components that
are provided as stand-alone programs usually require little or no programming,
but require so much the more configuration. These NDI components are usually
not delivered as an inseparable system, but instead the components need to
be installed separately or are installed by the installation program as separate,
stand-alone components or programs.

The development of IT infrastructure not only entails the installation and
configuration of stand-alone software components, but also the deployment, con-
nection and configuration of hardware components. As the choice of software
components is not independent hardware components and because the integra-
tion of the components is frequently performed in a single project, we have cho-
sen to measure the size of software, firmware and hardware components using a
single, composite size metric.

The development of IT infrastructure consists of deploying the hardware
(placing the physical components), installing the stand-alone software (loading
the software from the installation medium into the target hardware), connecting
the hardware (installing sub-modules and wiring the hardware) and configuring
the software (setting and testing the configurable parameters and settings).

1.2 Related Work

This section describes related work in the field of IT infrastructure size metrics
and algorithmic cost estimation models for IT infrastructure. Cost estimation
models are included in the overview, as they can be seen as size models that do
not only take the inherent problem size into account, but also the capability of
the environment to deal with the complexity at hand. In this article we focus
solely on the costs of labor for the installation and configuration of the IT infras-
tructure. Selection effort, hardware costs, such as discussed in [13], and license
costs lie outside the scope of this paper.

There are two cost estimation methods that are commonly used in practice:
IT infrastructure service costing and IT infrastructure product costing. The IT
infrastructure component is either viewed as a service whose costs are of a recur-
ring nature or as a component that is delivered to an organization as product or
a one-off service delivery. Examples of IT infrastructure services are cpu cycles
on a mainframe and network ports. Examples of IT infrastructure products are
configured servers and software upgrades.

The most crude approach to IT infrastructure costing consists of amortizing
the total costs generated by a class of IT services or IT products by total amount
of service units or products delivered.

A more sophisticated approach to IT infrastructure service costing is offered
by Van Gorkom [14] in the form of Service Point Analysis. The Service Level
Agreement is decomposed into Service Level Agreement components. Based on

570 J. Schalken, S. Brinkkemper, and H. van Vliet

the Service Level Agreement components standardized cost estimates can be
made.

Another more sophisticated approach to IT infrastructure product sizing is
the SYSPOINT method [15]. The IT infrastructure product to be provided is di-
vided into primitive components (servers, workstations, printers, LAN’s, WAN’s,
server applications and client applications). Based on the relative complexity and
count of the primitive components, tables can be used to calculate the total size
of a project in SYSPOINTs.

COCOTS [16, 17] is an advanced cost-estimation model for NDI software,
based on the COCOMO suite of cost estimation models. The COCOTS model
allows the estimation of not only the implementation of the system, but also the
selection costs and modification costs. The COCOTS tailoring model estimates
the implementation and configuration costs of a system, based on parameter
specification, script writing, reports & gui, security and the availability of tai-
loring tools. Each of the factors is measured on a five-point scale.

The last method discussed in this section is data envelopment analysis, which
can be applied to measure the relative efficiency in creating IT infrastructure
[12]. Data envelopment analysis allows the efficiency of projects to be compared
on a variety of output measures simultaneously. In that sense it is not a cost
estimation or size measurement procedure, but the method does shine a light on
the project’s productivity. The method solves the problem that IT infrastructure
can have multiple outputs (e.g. servers can have connected users, storage space
and processing speeds as output measures).

Amortizing product or service costs, Service Point Analysis and the SYS-
POINT method share the drawback that estimates can only be made for IT
infrastructural systems that consist of known infrastructural product or service
components. The costs for IT infrastructural systems that contain novel product
components or service components cannot be estimated.

Data envelopment analysis can only analyze the implementation efficiency
of projects that implement similar products or services. Different IT infrastruc-
tural projects will yield very different primitive outputs. Compare the efficiency
in providing network throughput with the efficiency of providing storage space
(both measured in gigabytes). This explains why comparisons are only possi-
ble between projects that have similar end results, comparing throughput with
storage of data is of course not meaningful.

Our method measures the size of IT infrastructure on a continuous, interval
scale. It is reasonably precise, whereas COCOTS measures each attribute on
a rough 5-point scale. The metric allows different types of IT infrastructural
products to be compared to each other and does not depend on the existence of
a list of known IT infrastructure components.

1.3 Structure of Paper

Having discussed the necessity of IT infrastructure metrics and the definition of
IT infrastructure, the remainder of this paper is structured as follows: In Sect. 2
the metaphor that guided the design of the infrastructure metric is presented

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 571

together with the formal definition of the metric. Section 3 discusses the cal-
ibration of the measurement formulas presented in Sect. 2. Section 4 provides
the results of the preliminary calibration and validation of the metric during the
feasibility study. Section 5 describes the conceptual validation of the proposed
metric for IT infrastructure. And the last section wraps up the paper with some
concluding remarks and further work.

2 Infrastructure Effort Points

In this section we present our metric to measure the size of IT infrastructure
projects, the Infrastructure Effort Point or IEP for short. First the the underly-
ing principles that guided the design of the size metric are explained. Following
the theory design of the metric a detailed description of Infrastructure Effort
Points and its measurement procedure is given.

Infrastructure Effort Points only measure the size of the installation and
configuration effort of the IT infrastructure. The NDI component selection effort,
training effort, hardware costs, and license costs cannot be measured using this
metric.

2.1 Theory Design

In this section we explain the design of the size metric for IT infrastructure using
a metaphor. A metaphor helps to create a common understanding [18]. It can
be used to explain the underlying principles and assumptions of a measurement
procedure.

The metaphor gives an intuitive justification for a metric. For example func-
tion point analysis counts the variety and complexity of the data records that
are received, stored, transmitted and presented by an information system. Func-
tion point analysis is able to measure the size of different classes of information
systems by abstracting each information system to a manipulator of flows of
information. This is the guiding metaphor of function point analysis. It is based
on the assumption that the complexity of an information system is equal to the
complexity of its information flows.

IEP model parameters

IEP model

atomic measurements
IEP size drivers

measurement
size

calculation project size [in IEPs]

IEP model parametersIEP model parameters

IEP modelIEP model

atomic measurements
IEP size drivers

atomic measurements
IEP size drivers

measurement
size

calculation project size [in IEPs]project size [in IEPs]

Fig. 1. Calculation of size based on project characteristics

572 J. Schalken, S. Brinkkemper, and H. van Vliet

Table 1. Atomic measurements for IEP of hardware installation

Group Size driver Symbol Unit of measurement

main components number of components ci -
average weight cw

i kilo
installation or removal ca

i {installed, removed}
subcomponents number of subcomponents si j -

average number of connections sc
i j -

installation or removal sa
i j {installed, removed}

external connections number of connections wi j -

average length wl
i j meter

installation or removal wa
i j {installed, removed}

Infrastructure Effort Point analysis considers the development of IT infras-
tructure to consist of two activities: wiring and placing hardware boxes during
the deployment and connection of hardware components and the manipulation
of configuration settings during the configuration of software components and
configurable hardware.

The guiding metaphor for Infrastructure Effort Points is based on the follow-
ing three assumptions:

1. Infrastructural IT projects are composed of a hardware and a software com-
ponent.

2. The effort of the hardware component of the project depends on the number
of hardware boxes that need to be installed and the number of connections
that need to be made.

3. The effort of the software component of the project depends on the number
of configuration parameters that need to be set.

2.2 Hardware Effort Points

Two distinct tasks in IT infrastructure projects have been identified: tasks re-
lated to hardware and tasks related to software. Verner and Tate [19] argue that
different types of system components can have different size equations. In this
section we identify the size drivers and size equations that are applicable to the
deployment and connection of hardware components.

A bottom-up size model, as the Infrastructure Effort Points, consists of a
number of size drivers and one or more size equations. A size driver is “any
countable, measurable, or assessable element, construct, or factor thought to be
related to the size” of a component [19]. The size drivers form the input to a
size equation that combines the different counts on a specific size driver into a
single size measurement.

For the hardware side of the Infrastructure Effort Point equation we distin-
guish three major size drivers: main components, subcomponents and connec-
tions. Each of the major size drivers has associated minor size drivers that can be
used to fine-tune the size equations in the future. Although technically there is
no difference between a major and a minor size driver, practically we expect the

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 573

major size drivers to have greater influence on the size of the IT infrastructure
project.

The first major size driver is the number of main components ci of a cer-
tain type of hardware that has been installed or removed. Main components are
those pieces of hardware that are considered to form a functional whole by their
average end users. E.g. an end user will identify a scanner as a main component,
whereas the separate automatic document feeder for the scanner is seen as a
subcomponent, as the automatic document feeder cannot be seen as an indepen-
dent machine that offers functionality on its own. Associated minor size drivers
are the average weight of the main component cw

i and whether the components
were installed or removed ca

i .
The second major size driver is the number of subcomponents si j of a certain

type that have been installed or removed from main component ci. (The index
i refers to the main component to which the subcomponents are attached, the
index j refers to this particular group of subcomponents.) Subcomponents that
have not been installed or removed, but instead were already assembled with
the main component should not be counted. Minor size drivers that are asso-
ciated with the size driver number of subcomponents are the average number
of connections between the subcomponent and the main component and other
subcomponents sc

i j and whether the subcomponents were installed or removed
sa

i j .
The third and last major size driver for the hardware side is the number of

connections wi j between the outside world and main component ci. The con-
nections size driver considers all physical connections (wires) between the main
component and the outside world, but not the mutual connections between sub-
components and connections between subcomponents and the main component
as these have already been counted (in sc

i j). Examples of connections are the
power cable and the network cable of a personal computer, but not the keyboard
cord. Associated minor size drivers are the average length of the connection wl

i j

and whether the connections were installed or removed wa
i j .

These three major size drivers and their associated minor size drivers form
the input for the size equation that combines the measurements on the individual
size drivers, see Fig. 1 for a schematic overview. The size equations consist of a
model combined with calibrated model parameters. The equation model states
which size drivers need to be taken into account and in which manner. E.g. a
size model might state that the size of a task is equal to the number of main
hardware components multiplied by a constant plus the number of connections
multiplied by a constant, i.e. size shw

i = θ1 ·ci+θ2 ·wi j . The exact size equation is
determined during the calibration process in which the most appropriate values
for the constants in the equation are determined using empirical data.

The calibration of a size model, once the empirical data has been collected,
is conceptually easy, albeit computer-intensive (more information on the cali-
bration process can be found in Sect. 3). The selection of the appropriate model
is more complicated. Apart from the selection of an appropriate form for the
equation (linear, logarithmic or quadratic) one needs to be careful to select the

574 J. Schalken, S. Brinkkemper, and H. van Vliet

Table 2. Atomic measurements for IEP of software configuration

Attribute Metric Symbol Unit of measurement

configuration parameters number of parameters pi -
parameter type pv

i {text, number, boolean,
binary}

input type pt
i {gui, text interface,

configuration file,
configuration database,
script file,
dip-switch/jumper,
other}

configuration group number of parameters gi j -
parameter type gv

i j see above.

input type gt
i j see above.

right amount of size drivers for the model. Too few size drivers makes the size
equation perform poorly, as insufficient information is taken into account. Too
many size drivers creates the risk of over-fitting the size model, causing the size
equation not to capture the real hardware size but instead some random patterns
that exist in the observed data. The risk of over-fitting the model is increased
when many size drivers are included relative to the amount of empirical data.

For the first empirical validation we propose to use only a single size driver to
prevent over-fitting the data. When more data becomes available more complex
size models can be examined. The most important hardware size driver is the
number of main components. We therefore propose to use the following simple
formula to calculate the size of the hardware part shw.

shw =
∑
i=1

θhw
1 · ci (1)

2.3 Software Effort Points

For the hardware side of the Infrastructure Effort Point equation we should be
able to apply the method to all possible situations, for the software side of the
Infrastructure Effort Point equation we differentiate between two usage scenar-
ios. In the first scenario the software is configured for the first or second time
in the organisation (configuration engineering), whereas in the second scenario
the organisation has a degree of experience in configuring the software (config-
uration roll-out). In a large deployment of software within an organisation one
usually starts with configuration engineering and when all the required informa-
tion about configuring the software has been gathered the project proceeds with
configuration roll-out.

The difference between a first-time configuration and a repeat configuration
is the familiarity with the software product. During a first installation one needs
to examine all configuration parameters to determine which parameters require
adjustment. When one is familiar with a system one knows which parameters
require adjustment and which factory settings are already correct.

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 575

For the software side of the Infrastructure Effort Point equation we distin-
guish one or two major size drivers. With configuration roll-out projects the ma-
jor size driver is the number of configuration parameters. In recognising the effort
required to determine which parameters to change, configuration-engineering has
a second major size driver the total amount parameters in a group of parameter
settings, that measures all available configuration parameters.

The major size driver for software configuration tasks is the number of con-
figuration parameters pi that require modification. During the installation of
a software component the software is loaded from the installation medium to
the target execution platform and simultaneously the settings of the compo-
nents are set. The type of settings that determine the behaviour of a component
can vary, broadly from installation directories, subsystem selection, user account
creation, user settings to script files. Associated minor size drivers are: the type
of values a parameter can store pv

i j and the input method that is required to
change the parameter value pt

i j . The type of parameter values has an influence
on the effect size of the task, because binary strings are much harder to enter
and test compared to boolean parameters. The input method also has influence
on the configuration size, as for example configuration using a gui is easier than
configuring a system using a configuration file.

The other major size driver for configuration engineering tasks is the number
of configuration parameters in the configuration group gi j that belong to the
configuration parameter pi. As configuring a system with only a few parameters
is easier as configuring a system with a large number of parameters, the number
of available configuration parameters also needs to be taken into account into the
size equation. Therefore, all existing configuration parameters, that are seen by
the IT team during installation and configuration are counted. The associated
minor size drivers are the same as those described for the size driver number of
configuration parameters.

To calculate the size for roll-out configuration tasks, the following model
formula can be used:

ssw =
∑
i=1

θsw
1 · pi (2)

To calculate the size for configuration-engineering tasks, the following model
formula can be used:

ssw =
∑
i=1

(θsw
1 · pi) +

∑
j=a

(θsw
2 · gi j) (3)

2.4 Infrastructure Effort Points

Having explained both the hardware and software part of the Infrastructure
Effort Point measurement, we are ready to combine these two measurements
into the overall Infrastructure Effort Point measurement.

To obtain the (total) Infrastructure Effort Point measurement the Hardware
Effort Points and the Software Effort Points are added. To prevent one of the

576 J. Schalken, S. Brinkkemper, and H. van Vliet

IEP
parameter

optimization

error
calculation

model error

IEP model parameters

IEP
parameter

optimization

error
calculation

model errormodel error

IEP model parametersIEP model parameters

Fig. 2. Optimization of the IEP model parameters

two measurements overruling the other measurement, a scaling factor θscale is
used. This leads to the following equation:

shw = shw + θscale · ssw (4)

3 Calibration Process

The purpose of the calibration is to find the IEP model parameters for an IEP
size model. Together with the size model, the IEP model parameters make up
the estimation equation of the Infrastructure Effort Points.

A good size metric should correlate well with development effort. We therefore
define an optimal set of IEP model parameters to be those parameters that
allow a cost estimation model to make the best possible prediction/explanation
of the costs of a project. The advantage of using a cost estimation model as
an intermediate to correlate size with development effort are twofold. First the
cost estimation model can take phenomena as diseconomy of scale and schedule
compression into account. The second advantage is that once the model has been
calibrated using empirical data, other people can more easily recalibrate the
model to their specific environment; the only need to recalibrate the estmation
parameters.

To find the optimal calibration of the measurement model, empirical data
about the infrastructural size drivers and the development effort is needed. The
optimization process consists of the cyclic process of improving/modifying the
initial IEP model parameters and consequently calculating error of the estima-
tion algorithm (compared with the historical performance), see Fig. 2.

4 Feasibility Study

Having described the definition of the Infrastructure Effort Points and its cal-
ibration process, we describe the results of a preliminary feasibility study con-
ducted to test the practicality of the data collection and its associated calibration
process.

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 577

Table 3. Aggregated data from feasibility study

configuration configuration
roll-out engineering

project name effort components parameters parameters parameters
changed changed total

Easy Icon Maker 7 min 0 1
Internet Explorer 5.5 10 min 13 20
MS Office 200 Professional 35 min 11 169
MS Virtual PC 2004 20 min 12 29
MS Windows ME 113 min 29 375
Printer installation 30 min 1
Staff computer installation 120 min 1
TCP/IP setup Windows ME 12 min 6 54
User info in MS Word 2000 9 min 5

To test the data collection and calibration process, we collected measurements
and effort data of nine projects that were collected in a controlled environment.
The projects consisted of both hardware and software infrastructure projects.
The aggregated results can be seen in Table 32.

The conclusion of the feasibility study is that it is possible to collect the
required data in an efficient manner that does not disrupt the IT infrastructure
project itself. All that is required is some degree of discipline in recording the
steps during the project. Based on the data we are able to obtain a preliminary
calibration of the data, however as this calibration is based only on nine projects
it is not statistically significant.

5 Measurement Validation

Software metrics need to be validated to ensure that they measure what they
purport to measure [20]. The validation of the metric should check whether the
metric is valid and/or correct.

The validity of a software metric refers to its ability to provide measure-
ments that can be used by practitioners in the context in which the metric was
gathered. The correctness of a software metric refers to generic “laws” that gov-
ern measurements in general. An example of a correctness requirement is that
addition of two measurement values should lead to a meaningfull total. This re-
quirement and other many correctness requirements are codified in measurement
theory (see e.g. .

As correctness requirements on software metrics have been extensively dis-
cussed in the academic literature (e.g. [21, chap. 3]) they will not be discussed
in more detail in this paper. In following section we pay more attention to the
validity of the Infrastructure Effort Point metric. The validity requirements that
are discussed in this section are: the focus aspect, the objectivity aspect, the
timeliness aspect, the granularity aspect, and the genericity aspect.

2 The full dataset of the preliminary data collection is available in Microsoft Access-
form, from the following address: http://www.cs.vu.nl/reflection/infra-metrics/.

578 J. Schalken, S. Brinkkemper, and H. van Vliet

5.1 Validity Requirements

The focus aspect of a software size metric determines whether the emphasis of
the size of an IT solution lies on the size of the problem to be solved with an
IT solution or on the size of the IT to create the solution. Certain complex
function requirements on a system might take little implementation effort given
the right tools whereas certain apparently simple functional problems might re-
quire a large amount of implementation effort because tool support is lacking.
Metrics with a value focus pay more attention to the size of the problem and
less on the size of the IT required to solve the problem. Metrics with a work
focus pay more attention to the size of the IT solution as compared to the
problem.

The IT infrastructure size metric has a work focus, as typical infrastructural
IT projects are not free to choose which infrastructure to implement to support
the functional requirements of the user. Lacking influence on the choice and
availability of suitable IT infrastructure, it would not be fair to hold projects
accountable for their implementation efficiency.

The objectivity aspect of a software size metric dictates whether the deter-
mination of the size of a software can be based partly on human judgment or
can only be based on rules that can be interpreted in only a single manner. Ob-
jective metrics require only the application of clear rules and require no human
judgment. Subjective metrics on the other hand do require human judgment and
interpretation before a size can be determined. C.f. lines of codes [6] which can
be counted automatically by a computer (a fully objective metric) with function
points [5] (a partially subjective metric) which require a human function point
counter to interpret the requirements specification. Size metrics should be as
objective as possible, as subjectivity leaves room for disagreements on the real
functional size and causes inaccuracies (e.g. [22]). The objectivity aspect of a
metric is not a crisp distinction between objective and subjective, but a wide
spectrum of nuances is possible.

The IT infrastructure size metric is an objective measure of the size of an
IT infrastructural task. The determination of which hardware components are
main components and which are sub-components does involve some subjective
judgement. The same holds for the determination of the number of parameters
in a parameter group, as the boundaries of the parameter group are not always
very clear.

The timeliness aspect of a software size metric determines in which phase
of the project one needs to be able to determine the size. Size measurements
require information about a project or piece of software that becomes available
in the course of the project. Certain information is available already at an early
stage of a project whereas other information only becomes available near the
end of the project.

The IT infrastructure size metric is meant to be used for assessment and
evaluation of methods and practices. This usually takes place at the end of a
project, in contrast to practices such as estimation and project tracking that
take place at an earlier phase of the project. As assessment and evaluation take

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 579

place at the end of a project, it is not problematic if some of the required data
only becomes available near the end of a project.

The granularity aspect of a software size metric refers to the aggregation
level to which the metric is applied. The efficiency can be determined of a sin-
gle project, of all work related to a single product type or of all work in an
organizational unit. E.g. the efficiency of single network installation project can
be measured (project-level granularity) or the efficiency of all networking op-
erations in an organization based on cost per network point can be measured
(organizational-level granularity). Between project-level and organizational-level
metrics lie the product-level metrics that measure the efficiency of implementing
a single type of product (e.g. a Linux server).

The IT infrastructure size metric needs to have a project-level granularity to
explain in which contexts methods do work and in which contexts they do not
work. Metrics with an organizational-level granularity would obscure the reasons
why certain processes do or do not work.

The genericity aspect of a software size metric indicates how broad the ap-
plicability of the metric should be. General-purpose metrics can be applied to
a broad range of software products, whereas special-purpose metrics can only
applied to a limited range of software products.

The IT infrastructure size metric needs to be a general-purpose metric. IT
infrastructure includes a broad area of products. One can only meaningfully
compare efficiency rates that are based on the same size measurements. It would
therefore be beneficial if most IT infrastructure can be measured with the metric,
allowing comparisons of the applicability of processes in different infrastructural
domains.

6 Conclusions

In this paper we discuss the design and principles of the Infrastructure Effort
Point metric for IT infrastructure projects. The metric is an objective metric
that can be used to measure the size of IT infrastructure projects. It outper-
forms other existing size metrics for IT infrastructure in genericity and objec-
tivity.

Infrastructure Effort Points can help to assess the effectiveness of processes
and techniques, making it a valuable tool for process improvement for organiza-
tions that deliver IT infrastructure.

The Infrastructure Effort Point metric is unsuitable for the upfront estimation
of a project’s schedule or costs. The required information to feed into the size
equation is available only at a late stage of the project. However with the aid of
additional techniques (e.g. PROBE [23, pp. 109–134]) it might well be possible
to fruitfully use the metric for estimation as well.

The results look very promising, but some work still needs to be done. First,
data about IT infrastructural project containing at least the IEP size drivers
and the effort consumed by the project needs to be collected. This collected
database will be used to calibrate the parameters in the Infrastructure Effort

580 J. Schalken, S. Brinkkemper, and H. van Vliet

Point model and to analyse how good Infrastructure Effort Points correlate with
the real expended effort.

References

1. Abts, C., Boehm, B.W., Clark, E.B.: Observations on COTS soft-
ware integration effort based on the COCOTS calibration database. In:
Proceedings of the Twenty-Fifth Annual Software Engineering Workshop
(SEW 25), NASA/Goddard Space Flight Center (2000) Available from:
http://sel.gsfc.nasa.gov/website/sew/2000/topics/CAbts SEW25 Paper.PDF.

2. Morisio, M., Seaman, C.B., Basili, V.R., Parra, A.T., Kraft, S.E., Condon, S.E.:
COTS-based software development: Processes and open issues. Journal of Systems
and Software 61 (2002) 189–199

3. Carney, D., Long, F.: What do you mean by COTS? finally, a useful answer. IEEE
Software 20 (2000) 83–86

4. Albrecht, A.J.: Measuring application development productivity. In: Proceedings
of the Joint SHARE/GUIDE/IBM Applications Development Symposium. (1979)
83–92

5. Albrecht, A.J., Gaffney, Jr., J.E.: Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions
on Software Engineering 9 (1983) 639–648

6. Park, R.E.: Software size measurement: A framework for counting source state-
ments. Technical Report CMU/SEI-92-TR-020, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, USA (1992) Available from:
http://www.sei.cmu.edu/.

7. Banker, R.D., Kauffman, R.J., Wright, C., Zweig, D.: Automating output size and
reuse metrics in a repository-based computer-aided software engineering (CASE)
environment. IEEE Transactions on Software Engineering 20 (1994) 169–187

8. DeMarco, T.: Controlling Software Projects: Management, Measurement & Es-
timation. Yourdon Computing Series. Prentice-Hall, Inc., Englewood Cliffs, NJ,
USA (1982)

9. Basili, V.R., Boehm, B.: COTS-based systems top 10 list. Computer 34 (2001)
91–93

10. Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., Condon, S.E., Kraft, S.E.:
Investigating and improving a COTS-based software development process. In:
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000), Limerick, I, IEEE Computer Society Press (2000) 32–41

11. Morisio, M., Torchiano, M.: Definition and classification of COTS: a proposal.
In Dean, J., Gravel, A., eds.: Proceedings of the 1st International Conference on
COTS Based Software Systems (ICCBBS 2002). Volume 2255 of Lecture Notes in
Computer Science., Berlin, D, Springer-Verlag (2002) 165–175

12. Stensrud, E., Myrtveit, I.: Identifying high performance ERP projects. IEEE
Transactions on Software Engineering 29 (2003) 398–416

13. Ardagna, D., Francalanci, C., Trubian, M.: A cost-oriented approach for infrastruc-
tural design. In: Proceedings of the 2004 ACM symposium on Applied computing,
ACM Press (2004) 1431–1437

14. van Gorkom, V.: Service Point Analysis: A study on its effectiveness and usefulness.
M.sc. thesis, CIBIT, Utrecht, NL (2002)

Measuring IT Infrastructure Project Size: Infrastructure Effort Points 581

15. Raghavan, S., Achanta, V.: SYSPOINT: Unit of measure for IT infrastructure
project sizing. Journal of Computing and Information Technology 12 (2004) 31–
46

16. Abts, C.M., Boehm, B.W.: COTS software integration cost modeling study. Tech-
nical report, Center for Software Engineering, University of Southern California,
Los Angeles, CA, USA (1997)

17. Boehm, B.W., Abts, C.M., Bailey, B.: COCOTS software integration cost model:
Insights and status (1999) Presented at: Ground System Architectures Workshop
(GSAW-99).

18. Robinson, H., Sharp, H.: XP culture: Why the twelve practices both are and are
not the most significant thing. In: Proceedings of Agile Development Conference,
Washington, DC, USA, IEEE Computer Society Press (2003) 12–21

19. Verner, J., Tate, G.: A software size model. IEEE Transactions on Software
Engineering 18 (1992) 265–278

20. Schneidewind, N.F.: Methodology for validation software metrics. IEEE Transac-
tions on Software Engineering 18 (1992) 410–422

21. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
2nd edn. International Thomson Computer Press, London, UK (1998)

22. Kemerer, C.F.: Reliability of function points measurement: a field experiment.
Communications of the ACM 36 (1993) 85–97

23. Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley Profes-
sional, Boston, MA, USA (1994)

Author Index

Akkermans, Hans 400
Andersson, Birger 233
Araújo, João 293

Baida, Ziv 400
Benatallah, Boualem 415
Benavides, David 491
Bergholtz, Maria 233
Bertino, Elisa 119
Bézivin, Jean 309
Brinkkemper, Sjaak 567

Cabibbo, Luca 135
Cabot, Jordi 48
Carosi, Antonio 135
Casati, Fabio 415
Casteleyn, Sven 63
Chen, An-Pin 387
Chen, Mu-Yen 387
Cuadra, Dolores 119

da Silva, Roberto 187
Dalamagas, Theodore 201
De Troyer, Olga 63
Di Ruscio, Davide 475
Dittrich, Klaus R. 105
dos Santos Mello, Ronaldo 151

Eder, Johann 248
Edirisuriya, Ananda 233
Edmond, David 216
Etien, Anne 277
Evermann, Joerg 33

Franch, Xavier 551
Freytag, Johann-Christoph 167

Gordijn, Jaap 400
Gordillo, Silvia 446
Grégoire, Bertrand 430
Grigori, Daneila 415
Guelfi, Nicolas 430

Hacmac, Roger 105
Hammoudi, Slimane 309
Heuser, Carlos Alberto 151, 187
Hodel, Thomas B. 105
Holze, Marc 90
Hoorn, Johan F. 357
Hoppenbrouwers, S.J.B.A. 262

Ilayperuma, Tharaka 233

Jablonski, Stefan 90
Johannesson, Paul 233
Jouault, Frédéric 309

Kamsties, Erik 519
Karagiannis, Dimitris 77
Kittivoravitkul, Sasivimol 460
Kühn, Harald 77

Lehmann, Marek 248

Leite, Julio Cesar Sampaiodo Prado 535

Liu, Lin 535
Lopes, Denivaldo 309

Mammar, Amel 430
Mart́ınez, Paloma 119
Mc.Brien, Peter 326, 460
Morch, Andrei Z. 400
Moreira, Ana 293
Muñoz, Javier 342
Mylopoulos, John 535

Necib, Chokri Ben 167
Neto, Pedro Santos 504
Nezhad, Hamid R. Motahari 415

Olivé, Antoni 1

Pádua, Clarindo 504
Pelechano, Vicente 342
Petrov, Ilia 90
Pierantonio, Alfonso 475
Plessers, Peter 63
Pohl, Klaus 519
Proper, H.A. 262

584 Author Index

Ram, Sudha 32
Ramel, Sophie 430
Rashid, Awais 293
Reis, Sacha 519
Resende, Rodolfo 504
Reuys, Andreas 519
Riggio, Roberto 77
Rizopoulos, Nikolaos 326
Rolland, Colette 277
Rossi, Gustavo 446
Ruiz-Cortés, Antonio 491
Russell, Nick 216

Sæle, Hanne 400
Schalken, Joost 567
Schmitt, Michael 430
Schwabe, Daniel 446
Stasiu, Raquel Kolitski 187

Teniente, Ernest 48
ter Hofstede, Arthur H.M. 216
Theodoratos, Dimitri 201
Toumani, Farouk 415
Trinidad, Pablo 491, 535

Ursino, Domenico 77

van der Aalst, Wil M.P. 216, 372
van der Raadt, Bas 357
van der Weide, Th.P. 262
van Dongen, B.F. 372
van Vliet, Hans 357, 567
Vanderdonckt, Jean 16
Verbeek, H.M.W. 372

Yu, Eric S.K. 535
Yu, Yijun 535

	Frontmatter
	Keynotes
	Conceptual Schema-Centric Development: A Grand Challenge for Information Systems Research
	A MDA-Compliant Environment for Developing User Interfaces of Information Systems
	Toward Semantic Interoperability of Heterogeneous Biological Data Sources

	Conceptual Modeling
	The Association Construct in Conceptual Modelling -- An Analysis Using the Bunge Ontological Model
	Computing the Relevant Instances That May Violate an OCL Constraint
	Event-Based Modeling of Evolution for Semantic-Driven Systems

	Metamodeling
	Interoperability in Meta-environments: An XMI-Based Approach
	On the Notion of Consistency in Metadata Repository Systems
	Using Text Editing Creation Time Meta Data for Document Management

	Databases
	An Object-Relational Approach to the Representation of Multi-granular Spatio-Temporal Data
	Managing Inheritance Hierarchies in Object/Relational Mapping Tools
	BInXS: A Process for Integration of XML Schemata

	Query Processing
	Query Processing Using Ontologies
	Estimating Recall and Precision for Vague Queries in Databases
	Querying Tree-Structured Data Using Dimension Graphs

	Process Modeling and Workflow Systems
	Workflow Resource Patterns: Identification, Representation and Tool Support
	A Declarative Foundation of Process Models
	Synchronizing Copies of External Data in Workflow Management Systems

	Requirements Engineering
	Understanding the Requirements on Modelling Techniques
	A Process for Generating Fitness Measures
	A Concern-Oriented Requirements Engineering Model

	Model Transformation
	Generating Transformation Definition from Mapping Specification: Application to Web Service Platform
	A General Approach to the Generation of Conceptual Model Transformations
	Building a Software Factory for Pervasive Systems Development

	Knowledge Management and Verification
	Alignment and Maturity Are Siblings in Architecture Assessment
	Verification of EPCs: Using Reduction Rules and Petri Nets
	Measurement Practices for Knowledge Management: An Option Perspective

	Web Services
	An Ontological Approach for Eliciting and Understanding Needs in e-Services
	Developing Adapters for Web Services Integration
	Efficient: A Toolset for Building Trusted B2B Transactions

	Web Engineering
	Separation of Structural Concerns in Physical Hypermedia Models
	Integrating Unnormalised Semi-structured Data Sources
	Model Transformations in the Development of Data--Intensive Web Applications

	Software Testing
	Automated Reasoning on Feature Models
	A Method for Information Systems Testing Automation
	Model-Based System Testing of Software Product Families

	Software Quality
	Quality-Based Software Reuse
	On the Lightweight Use of Goal-Oriented Models for Software Package Selection
	Measuring IT Infrastructure Project Size: Infrastructure Effort Points

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

