

Lecture Notes in Computer Science 3532
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Asunción Gómez-Pérez
Jérôme Euzenat (Eds.)

The Semantic Web:
Research
and Applications

Second European SemanticWeb Conference, ESWC 2005
Heraklion, Crete, Greece, May 29 – June 1, 2005
Proceedings

13

Volume Editors

Asunción Gómez-Pérez
Universidad Politécnica de Madrid
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid, Spain
E-mail: asun@fi.upm.es

Jérôme Euzenat
INRIA Rhône-Alpes
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France
E-mail: Jerome.Euzenat@inrialpes.fr

Library of Congress Control Number: 2005926291

CR Subject Classification (1998): H.4, H.3, C.2, H.5, I.2, K.4, D.2

ISSN 0302-9743
ISBN-10 3-540-26124-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26124-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11431053 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 2nd European Semantic Web
Conference (ESWC 2005) held in Heraklion, Crete, Greece, from 29th May to
1st June, 2005.

The vision of the Semantic Web is to enhance today’s Web via the exploita-
tion of machine-processable metadata. The explicit representation of the seman-
tics of data, accompanied with domain theories (ontologies), will enable a web
that provides a qualitatively new level of service. It will weave together an in-
credibly large network of human knowledge and will complement it with machine
processability. Various automated services will help the user to achieve goals by
accessing and providing information in a machine-understandable form. This
process may ultimately create extremely knowledgeable systems with various
specialized reasoning services systems. Many technologies and methodologies
are being developed within artificial intelligence, human language technology,
machine learning, databases, software engineering and information systems that
can contribute to the realization of this vision.

The 2nd Annual European Semantic Web Conference presented the latest
results in research and applications of Semantic Web technologies. Following the
success of the first edition, ESWC showed a significant increase in participation.
With 148 submissions, the number of papers doubled that of the previous edition.
Each submission was evaluated by at least three reviewers. The selection process
resulted in the acceptance of 48 papers for publication and presentation at the
conference (an acceptance rate of 32%). Papers did not come only from Europe
but also from other continents.

The selected papers broadly cover the following main topics:

• Semantic Web services
• Semantic Web languages
• ontologies
• reasoning and querying
• search and information retrieval
• user involvement and communities
• natural language for the Semantic Web
• annotation tools
• Semantic Web applications

In addition, ESWC 2005 also featured a special industry forum providing Eu-
ropean industry with an opportunity to become more familiar with these tech-
nologies. In addition to the main conference, ESWC 2005 included 6 workshops,
5 tutorials, demo and poster sessions. Several European projects had meetings
collocated with the main conference.

ESWC 2005 was sponsored by SDK — a group of three European Commission
6th Framework Programme projects known as SEKT, DIP and Knowledge Web.

VI Preface

Together these projects aim to improve world-wide research and standardization
in the area of the Semantic Web. The conference also received precious sponsor-
ship from British Telecommunications, DERI Galway and Innsbruck, Ontoprise,
AKT and Collexis. Their help was greatly appreciated. We are also grateful to
Springer which accepted again this year to publish the proceedings in its Lecture
Notes in Computer Science series.

We would like to thank the International Program Committee for its enor-
mous effort in the reviewing process (many reviewers had to evaluate up to 10
papers). In all, 115 additional reviewers were called upon to complete the review
process in time.

We owe inexpressible thanks to Miguel Esteban, the Web submission master.
Our gratitude also goes to the entire Conference Organization Committee and
especially to Christen Ensor for holding things together.

April 2005 Asunción Gómez-Pérez
Jérôme Euzenat

Conference Organization

General Chair Jérôme Euzenat (INRIA Rhône-Alpes, France)
Program Chair Asunción Gómez Pérez (UPM, Spain)
Workshops Chair Wolfgang Nejdl (L3S and Univ. of Hannover,

Germany)
Posters Chair Heiner Stuckenschmidt (Vrije Univ. Amsterdam,

The Netherlands)
Demos Chair Stefan Decker (DERI Galway, Ireland)
Tutorials Chair Jos de Bruijn (DERI Innsbruck, Austria)
Industry Event Alain Leger (France Télécom, France)
Publicity Chair York Sure (Universität Karlsruhe, Germany)
Sponsors Chair Christen Ensor (DERI Galway, Ireland)
Local Organizer Christen Ensor (DERI Galway, Ireland)
Local Correspondent Martin Doerr (FORTH, Greece)
Webmaster Johannes Breitfuss (DERI Innsbruck, Austria)
Submissions Webmaster Miguel Esteban Gutiérrez (UPM, Spain)

Program Committee

Dean Allemang (TopQuadrant, Inc., USA)
Jrgen Angele (Ontoprise, Germany)
Sean Bechhofer (University of Manchester, UK)
Richard Benjamins (iSOCO, Spain)
Walter Binder (EPFL, Switzerland)
Paul Buitelaar (DFKI, Germany)
Christoph Bussler (DERI Galway, Ireland)
Fabio Ciravegna (University Sheffield, UK)
Oscar Corcho (iSOCO, Spain)
Hamish Cunningham (University Sheffield, UK)
John Davies (BT, UK)
Ying Ding (DERI Innsbruck, Austria)
John Domingue (The Open University, UK)
Stefan Decker (DERI Galway, Ireland)
Andreas Eberhart (University of Karlsruhe, Germany)
Dieter Fensel (DERI Galway, Ireland and DERI Innsbruck, Austria)
Mariano Fernández-López (CEU, Spain)
Natasha Fridman Noy (Stanford University, USA)
Aldo Gangemi (CNR, Italy)
Mari Georges (ILOG, France)
Fausto Giunchiglia (University of Trento, Italy)

VIII Organization

Carole Goble (University of Manchester, UK)
Christine Golbreich (University of Rennes, France)
Jeremy J. Carroll (HP, UK)
Vipul Kashyap (Partners HealthCare System, USA)
Atanas Kiryakov (Ontotext Lab, Sirma AI, Bulgaria)
Manolis Koubarakis (Technical University of Crete, Greece)
Manuel Lama Penin (Universidad de Santiago de Compostela, Spain)
Alain Léger (France Télécom, France)
Riichiro Mizoguchi (Osaka University, Japan)
Dunja Mladenic (J. Stefan Institute, Slovenia)
Enrico Motta (The Open University, UK)
Wolfgang Nejdl (LS3 and University of Hannover, Germany)
Natasha Noy (Stanford University, USA)
Leo Obrst (MITRE, USA)
Massimo Paolucci (Carnegie Mellon University, USA)
Peter Patel-Schneider (Bell Labs, USA)
Terry Payne (University of Southampton, UK)
Dimitris Plexousakis (University of Crete, Greece)
Alan Rector (University of Manchester, UK)
Marie-Christine Rousset (University of Paris-Sud, France)
Guus Schreiber (Vrije Universiteit Amsterdam, The Netherlands)
Daniel Schwabe (PUC-Rio, Brazil)
Nigel Shadbolt (University of Southampton, UK)
Steffen Staab (University of Koblenz, Germany)
Heiner Stuckenschmidt (Vrije Universiteit Amsterdam, The Netherlands)
Rudi Studer (University of Karlsruhe, Germany)
York Sure (University of Karlsruhe, Germany)
Katia Sycara (Carnegie Mellon University, USA)
Valentina Tamma (University of Liverpool, UK)
Sergio Tessaris (Free Univ. Bozen, Italy)
Frank van Harmelen (Vrije Universiteit Amsterdam, The Netherlands)
Steve Willmott (Universidad Politécnica de Cataluña, Spain)
Michael Wooldridge (University of Liverpool, UK)

Additional Referees

Sudhir Agarwal
Pinar Alper
Anupriya Ankolekar
Grigoris Antoniou
Lora Arroyo
Alessandro Artale
Jesús Barrasa

Uldis Bojars
Kalina Bontcheva
Stefano Borgo
Amel Boustil
Janez Brank
Christopher Brewster
Liliana Cabral

Sam Chapman
Emilia Cimpian
Paul Clough
Jesus Contreras
Monica Crubezy
Olivier Dameron
Martin Doerr

Organization IX

Alistair Duke
Martin Dzbor
Marc Ehrig
Michael Erdmann
Miguel EstebanGutiérrez
Cristina Feier
Pablo Fillottrani
Giorgos Flouris
Stefania Galizia
Raúl Garćıa-Castro
Birte Glimm
Francois Goasdoue
Juan Miguel Gomez
José Manuel

Gómez-Pérez
Rafael González-Cabero
Stephan Grimm
Peter Haase
Armin Haller
Siegfried Handschuh
Andreas Harth
Jens Hartmann
Juan Heguiabehere
Jan Henke
Pascal Hitzler
Laura Hollink
Matthew Horridge
Uwe Keller
Michel Klein
Ioanna Koffina
George Kokkinidis
Jacek Kopecky

Kyriakos Kritikos
Reto Krummenacher
Vitaveska Lanfranchi
Ken Laskey
Holger Lausen
Andrei Lopatenko
Phillip Lord
Francisco

Martin-Recuerda
Claudio Masolo
Peter Mika
Knud Moeller
Matthew Moran
Boris Motik
Benjamin Nguyen
Barry Norton
Daniel Oberle
Dameron Olivier
Eyal Oren
Jeff Z. Pan
Massimo Paoulicci
Antonio Pareja Lora
Nathalie Pernelle
Livia Predoiu
Irene Polikoff
Dnyanesh Rajpathak
Christophe Rey
Chantal Reynaud
Marc Richardson
Luis Rodrigo
Dumitru Roman
Sebastian Ryszard Kruk

Ken Samuel
E. Sanches
Francois Scharffe
James Scicluna
Naveen Srinivasan
Ljiljana Stojanovic
Nenad Stojanovic
Michael Stollberg
Umberto Straccia
Maria del Carmen

Suárez-Figueroa
Martin Szomszor
Valentin Tablan
Merwyn Taylor
Christoph Tempich
Patkos Theodore
Ioan Toma
Farouk Toumani
Dmitry Tsarkov
Nikos Tsatsakis
Daniele Turi
Victoria Uren
Véronique Ventos
Laure Vieu
Johanna Voelker
Max Völkel
Miha Vuk
Holger Wache
Wolf Winkler
Jun Zhao
Anna V. Zhdanova
Kerstin Zimmermann

Table of Contents

Semantic Web Services

Automatic Location of Services
Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres,
Dieter Fensel . 1

Feta: A Light-Weight Architecture for User Oriented Semantic Service
Discovery

Phillip Lord, Pinar Alper, Chris Wroe, Carole Goble 17

Optimally Distributing Interactions Between Composed Semantic
Web Services

Ion Constantinescu, Walter Bindrer, Boi Faltings 32

A POP-Based Replanning Agent for Automatic Web Service
Composition

Joachim Peer . 47

Process-Level Composition of Executable Web Services: “On-the-fly”
Versus “Once-for-all” Composition

Marco Pistore, Pierluigi Roberti, Paolo Traverso 62

The OWL-S Editor - A Development Tool for Semantic
Web Services

Daniel Elenius, Grit Denker, David Martin,
Fred Gilham, John Khouri, Shahin Sadaati,
Rukman Senanayake . 78

Languages

Temporal RDF
Claudio Gutierrez, Carlos Hurtado, Alejandro Vaisman 93

Multilingual RDF and OWL
Jeremy J. Carroll, Addison Phillips . 108

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics
Zoi Kaoudi, Theodore Dalamagas,
Timos Sellis . 123

XII Table of Contents

REDD: An Algorithm for Redundancy Detection in RDF Models
Floriana Esposito, Luigi Iannone, Ignazio Palmisano,
Domenico Redavid, Giovanni Semeraro . 138

OWL-Eu: Adding Customised Datatypes into OWL
Jeff Z. Pan, Ian Horrocks . 153

Towards a Fuzzy Description Logic for the Semantic Web (Preliminary
Report)

Umberto Straccia . 167

Consistent Evolution of OWL Ontologies
Peter Haase, Ljiljana Stojanovic . 182

Ontologies

Extending HCONE-Merge by Approximating the Intended Meaning of
Ontology Concepts Iteratively

George A. Vouros, Konstantinos Kotis . 198

Soundness of Schema Matching Methods
M. Benerecetti, P. Bouquet, S. Zanobini . 211

Debugging and Semantic Clarification by Pinpointing
Stefan Schlobach . 226

An Argumentation Ontology for DIstributed, Loosely-controlled and
evolvInG Engineering processes of oNTologies (DILIGENT)

Christoph Tempich, H. Sofia Pinto, York Sure, Steffen Staab 241

Towards an Ontology-Based Distributed Architecture for Paid Content
Wernher Behrendt, Aldo Gangemi, Wolfgang Maass,
Rupert Westenthaler . 257

Efficient Semantic Matching
Fausto Giunchiglia, Mikalai Yatskevich, Enrico Giunchiglia 272

Ontology-Based Policy Specification and Management
Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett,
Charles C. Zhang . 290

Web Explanations for Semantic Heterogeneity Discovery
Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva,
Deborah L. McGuinness . 303

Table of Contents XIII

Reasoning and Querying

Approximating Description Logic Classification for Semantic Web
Reasoning

Perry Groot, Heiner Stuckenschmidt, Holger Wache 318

AIS and Semantic Query
Rana Kashif Ali, Steve Cayzer . 333

Querying RDF Data from a Graph Database Perspective
Renzo Angles, Claudio Gutierrez . 346

DRAGO: Distributed Reasoning Architecture for the Semantic Web
Luciano Serafini, Andrei Tamilin . 361

Dually Structured Concepts in the Semantic Web: Answer Set
Programming Approach

Patryk Burek, Rafa�l Graboś . 377

Nonmonotonic Ontological and Rule-Based Reasoning with Extended
Conceptual Logic Programs

Stijn Heymans, Davy Van Nieuwenborgh, Dirk Vermeir 392

Search and Information Retrieval

Product Information Meta-search Framework for Electronic Commerce
Through Ontology Mapping

Wooju Kim, Dae Woo Choi, Sangun Park . 408

Multiple Vehicles for a Semantic Navigation Across Hyper-environments
Irene Celino, Emanuele Della Valle . 423

Activity Based Metadata for Semantic Desktop Search
Paul Alexandru Chirita, Rita Gavriloaie, Stefania Ghita,
Wolfgang Nejdl, Raluca Paiu . 439

An Ontology-Based Information Retrieval Model
David Vallet, Miriam Fernández, Pablo Castells 455

Knowledge Sharing by Information Retrieval in the Semantic Web
Neyir Sevilmis, André Stork, Tim Smithers, Jorge Posada,
Massimiliano Pianciamore, Rui Castro, Ivan Jimenez,
Gorka Marcos, Marco Mauri, Paolo Selvini, Bruno Thelen,
Vincenzo Zecchino . 471

XIV Table of Contents

Users and Communities

Collaborative and Usage-Driven Evolution of Personal Ontologies
Peter Haase, Andreas Hotho, Lars Schmidt-Thieme, York Sure 486

Towards Semantically-Interlinked Online Communities
John G. Breslin, Andreas Harth, Uldis Bojars, Stefan Decker 500

The Personal Publication Reader: Illustrating Web Data Extraction,
Personalization and Reasoning for the Semantic Web

Robert Baumgartner, Nicola Henze, Marcus Herzog 515

Natural Language for the Semantic Web

Generating Tailored Textual Summaries from Ontologies
Kalina Bontcheva . 531

AquaLog: An Ontology-Portable Question Answering System for the
Semantic Web

Vanessa Lopez, Michele Pasin, Enrico Motta . 546

Lexically Evaluating Ontology Triples Generated Automatically from
Texts

Peter Spyns, Marie-Laure Reinberger . 563

AnnotationTools

Pedro Ontology Services: A Framework for Rapid Ontology Markup
Kevin Garwood, Phillip Lord, Helen Parkinson, Norman W. Paton,
Carole Goble . 578

Semantic Annotation of Images and Videos for Multimedia Analysis
Stephan Bloehdorn, Kosmas Petridis, Carsten Saathoff,
Nikos Simou, Vassilis Tzouvaras, Yannis Avrithis,
Siegfried Handschuh, Yiannis Kompatsiaris, Steffen Staab,
Michael G. Strintzis . 592

RELFIN - Topic Discovery for Ontology Enhancement and Annotation
Markus Schaal, Roland M. Müller, Marko Brunzel,
Myra Spiliopoulou . 608

Semantic Web-Based Document: Editing and Browsing in AktiveDoc
Vitaveska Lanfranchi, Fabio Ciravegna, Daniela Petrelli 623

Table of Contents XV

Semantic Web Applications

Semantic-Based Automated Composition of Distributed Learning
Objects for Personalized E-Learning

Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio,
Francesco M. Donini, Azzurra Ragone . 633

Orchestration of Semantic Web Services for Large-Scale Document
Annotation

Barry Norton, Sam Chapman, Fabio Ciravegna . 649

Monitoring Research Collaborations Using Semantic Web Technologies
Harith Alani, Nicholas Gibbins, Hugh Glaser, Stephen Harris,
Nigel Shadbolt . 664

Enabling Real World Semantic Web Applications Through a
Coordination Middleware

Robert Tolksdorf, Lyndon J.B. Nixon, Elena Paslaru Bontas,
Duc Minh Nguyen, Franziska Liebsch . 679

A Semantic Service Environment: A Case Study in Bioinformatics
Stephen Potter, Stuart Aitken . 694

Towards B2B Integration in Telecommunications with Semantic
Web Services

Alistair Duke, Marc Richardson, Sam Watkins, Martin Roberts 710

Invited Papers

SWebB: Semantic Web Browsing
Fausto Giunchiglia . 725

The Semantic Grid: Past, Present and Future
David De Roure . 726

Author Index . 727

Automatic Location of Services

Uwe Keller1, Rubén Lara2, Holger Lausen1, Axel Polleres1, and Dieter Fensel1

1 Digital Enterprise Research Institute (DERI) Innsbruck, Austria
<firstname>.<lastname>@deri.org

2 Tecnologı́a, Información y Finanzas, Madrid, Spain
rlara@afi.es

Abstract. The automatic location of services that fulfill a given need is a key step
towards dynamic and scalable integration. In this paper we present a model for
the automatic location of services that considers the static and dynamic aspects of
service descriptions and identifies what notions and techniques are useful for the
matching of both. Our model presents three important features: ease of use for
the requester, efficient pre-filtering of relevant services, and accurate contracting
of services that fulfill a given requester goal. We further elaborate previous work
and results on Web service discovery by analyzing what steps and what kinds
of descriptions are necessary for efficient and usable automatic service location.
Furthermore, we analyze intuitive and formal notions of match that are of interest
for locating services that fulfill a given goal. Although having a formal underpin-
ning, the proposed model does not impose any restrictions on how to implement
it for specific applications, but proposes some useful formalisms for providing
such implementations.

1 Introduction

Current Web service technologies around SOAP [22], WSDL [3] and UDDI [1], only
address the syntactical aspects of a Web services and, therefore, only provide protocols
and interface descriptions for services in a rigid way that cannot adapt to changing en-
vironments without human intervention. The human programmer has to be kept in the
loop and scalability as well as economic value of Web services are limited [5]. The vi-
sion of semantic Web services is to describe the various aspects of a Web service using
explicit, machine-understandable semantics, enabling the automatic location, combina-
tion and use of Web services. Semantic Web technologies are being applied to Web
services in order to keep the intervention of the human user to the minimum. The basic
idea is to add semantic markup that can be exploited to automate the tasks of discov-
ering services, executing them, composing them and enabling seamless interoperation
between them [4], thus enabling intelligent Web services.

The description of Web services in a machine-understandable fashion is expected
to have a great impact in areas of e-Commerce and Enterprise Application Integration
(EAI), as it can enable dynamic and scalable cooperation between different systems and
organizations.

An important step towards dynamic and scalable integration, both within and across
enterprise boundaries, is the mechanization of service discovery. Automatically locat-
ing available services to perform a given business activity can considerably reduce the

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 1–16, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

2 U. Keller et al.

cost of making applications and businesses work together and can enable a flexible in-
tegration, where providers are dynamically selected based on semantic descriptions of
their capabilities and maybe other non-functional criteria such as trust, security, etc.

Scope of the Paper. In this paper we will address the dynamic location of services
that can fulfill a given request. Hereby, we concentrate on the most fundamental as-
pect of service descriptions for the problem at hand: the service capability, i.e. what
functionality the service provides. Approaches to automatic service location must pre-
cisely analyze what kind of service descriptions can be used for capturing the static
and dynamic aspects of a given service, and how such descriptions can be exploited for
efficiently and accurately locating a requested service. While a number of proposals are
available in our area of interest e.g. [2, 6, 20, 14, 17], none of them has precisely dis-
cussed these aspects, but they mainly focused on some specific description languages
and frameworks, partly neglecting overall needs. Therefore, we will first define a model
that takes into account pragmatic considerations and defines the border line between
different steps involved in the process of locating services, namely: goal discovery,
goal refinement, service discovery, and service contracting. We will focus on service
discovery and service contracting, analyzing the relevant notions of match. Although
different notions of match have been studied in the literature (e.g. [14, 23, 17]), some
issues involved in the identification of such notions have not been addressed and will
be discussed in this paper.

The remainder of this paper is structured as follows: Section 2 discusses static and
dynamic aspects of service descriptions and our assumptions on the problem domain
providing a general model for the automatic location of services. Service discovery will
be discussed in Section 3 where the relevant notions of match are presented. Service
contracting will be addressed in Section 4. Related works in the areas of Web service
discovery and software component retrieval will be briefly discussed in Section 5. Fi-
nally, we conclude the paper and outline future work in Section 6.

2 A Model for the Automatic Location of Services

A workable approach to automatic service location must precisely define its concep-
tual model and the particular assumptions underlying the proposed solution. For this
purpose, we start by providing a common understanding of what a service is and the
levels of abstraction in its description based on [18], as well as our assumptions on the
elements involved in the location process.

Definition of Service. Recently, it has been pointed out in [18] that the notion of
service is semantically overloaded. Several communities have different interpretations
which makes it difficult to understand and relate single approaches and exchange ideas
and results. In order to reach a common understanding of the problem we address here,
we need to precisely define the term service and, therefore, what kind of entities we aim
at locating. In this document, we use the following interpretation for the term service,
as described in the conceptual architecture for semantic Web services presented in [18]:
Service as provision of value in some domain. This definition regards a service as a pro-
vision of value (not necessarily monetary value) in some given domain, independently

Automatic Location of Services 3

of how the supplier and the provider interact. Examples of services in this sense are
the provision of information about flight tickets or the booking of a trip with certain
characteristics by a tourism service provider.

Usually, a service provider P does not only provide one particular service S, but
a set of coherent and logically related services. For instance, a hotel usually does not
only provide the possibility to book a particular room at a particular date for a given
number of nights, but instead it will offer the general service of booking rooms. Thus,
a provider will be interested in advertising all the services it is able to provide, i.e.
a set AP of services. Following the terminology from [18], we call this collection of
services an abstract service offered by a provider. The smallest unit of advertisement is
considered to be an abstract service.

In order to deliver a service, a service provider P usually needs certain information
from the requester. For instance, a hotel might require the name of the person booking
the room, the requested room features, and a valid credit card number as input informa-
tion in order to book a room. This input data i1, . . . , in will determine what concrete
service [18] S ∈ AP has to be provided by P .

Description of Requester Needs. Following the approach taken by the Web Service
Modeling Ontology (WSMO) [13], a client specifies its needs in terms of what he wants
to achieve by a concrete service S ∈ AP of some provider P . Our assumption is that
a user will in general care about what he wants to get from P , but not about how it
is achieved. The conceptual element which formally reflects a desire in WSMO called
goal. Goals describe what kind of outputs and effects are expected by the client.

A formal Model for Services and Goals. We use a state-based perspective to for-
malize the concepts involved in the process of automatically locating services. A state
w ∈ U (where U is the set of all possible states) determines the properties of the real-
world and of the available information at some point in time e.g. the number of rooms
currently available in a given hotel. An abstract service A is considered as a set of state
transformations i.e. a relation on the state space U . Each concrete service S ∈ A rep-
resents a concrete state transformation S = (w,w′), with w,w′ ∈ U . In particular, the
delivery of a service S determines the outputs and effects which can be observed by the
requester; both can be considered as sets of objects (from some universe U), that are
attached to w′. Formally, we denote these sets outS(w′) ⊆ U and eff S(w′) ⊆ U .

As mentioned above, whether the provision of a service S is possible depends
on some information i1, . . . , in provided by the service requester. What information
i1, . . . , in is needed is different for each provider P and each abstract service AP pro-
vided by P . Hence, A can be considered as a family of relations A(i1, . . . , inA) ⊆
U × U where each relation of the family is determined by the concrete input infor-
mation i1, . . . , inA that the service requester provides i.e. the service description must
specify what can be delivered by the provider under which circumstances. Goals can be
formally represented as two distinct sets of objects denoting the required set of outputs
out(G) ⊆ U and effects eff (G) ⊆ U .

Eventually, a service requester is interested in finding service providers P that
advertised an abstract service A(i1, . . . , inA) such that there is a concrete service
S = (w,w′) ∈ A(i1, . . . , inA) that actually resolves the requesters goal G, i.e. the

4 U. Keller et al.

service S achieves a (final) state w′ ∈ G in which the sets of requested and provided out-
puts outS(w′), out(G) as well as the respective effects eff S(w′), eff (G) match. What
this precisely means is described in detail in Section 3.

Since each element S = (w,w′) of A(i1, . . . , inA) is determined by the respec-
tive initial state w ∈ dom(A(i1, . . . , inA))1 and the input information i1, . . . , inA ,
whether a provider can serve a given concrete service request cannot be determined
without knowing dom(A) and i1, . . . , inA

2. Unfortunately, we cannot assume that
A(i1, . . . , inA) (and therefore dom(A(i1, . . . , inA))) is static over time. In general, the
set will dynamically evolve over time: a hotel will not be able to book a room with a
single bed on a specific date if all such rooms in the hotel are already booked on this
date i.e. this concrete service contained in A(i1, . . . , inA) cannot be provided.

We identify two sources of dynamics for the set A of concrete services that can
be provided by a given service provider: (1) the input information i1, . . . , inA that the
requester is able and willing to provide and (2) the respective set of concrete services
A(i1, . . . , inA) that can currently be delivered for this input. Such dynamics must be
considered for determining matches between A and a user goal G. Due to these dynam-
ics, some interaction between the parties involved in the matching process – service
requester and provider – will be needed in general to determine if a concrete service S
fulfilling the requester goal can be provided. This interaction involves communication
between the parties and, thus, can be expected to be rather costly. However, it is this
communication which enables location results with high precision. We believe that a
scalable framework for finding suitable services must address this problem. Our solu-
tion to this problem is to split the process into two successive steps, as done in [18]: A
first step identifies possible candidate services using less accurate and static descriptions
of abstract services (so-called abstract capabilities), and a second step which applies
precise (and possibly dynamic) service descriptions (so-called contracting capabilities)
and the costly checks (involving communication) of the candidates identified in the first
step. We call the first step service discovery, whereas the second step is called service
contracting.

The abstract capability of a service is defined as the set of states that can potentially
be reached by the provision of such service, independently of the afore-mentioned dy-
namic factors. It describes only what an advertised service can provide but no longer un-
der which circumstances a concrete service S can actually be provided. The contracting
capability describes what concrete services can be delivered under what circumstances.
It fully describes the family of relations A(i1, . . . , inA). This might involve interaction
between both parties for determining if the input available from the requester side can
indeed lead to a state w′ fulfilling the requester goal.

Assumptions. In order to define a model for the overall location process (including ser-
vice discovery and contracting), we need to make clear our assumptions on the domain
from which we derive the model. Such assumptions are discussed below:

1 Here dom(A(i1, . . . , inA)) denotes the domain of the state-space relation A(i1, . . . , inA)
2 More generally, we should consider only input information i1, . . . , inA the requester is able to

provide and willing to disclose to the provider of an abstract service A. As discussed in [16],
this might involve the use of information disclosure policies and a trust negotiation process.

Automatic Location of Services 5

Pre-defined goals. Human service requesters are not expected to have the required
background to formalize their goals. Thus, either goals can be expressed in a familiar
language (such as natural language for requesters) or appropriate tools should be avail-
able which can support requesters to express their precise needs in a simple manner.
Hence, we expect that pre-defined, generic, formal and reusable goals will be available
to the requester, defining generic objectives requesters may have. They can be refined
(or parameterized) by the requester to reflect his concrete needs, as requesters are not
expected to write formalized goals from scratch. We assume that there will be a way for
requesters to easily locate such pre-defined goals, e.g. by keyword matching.

Abstract capabilities. Abstract capabilities will abstract contracting capabilities in the
sense that they abstract from the input information that is provided by the requester, as
well as from the dynamics of the available set of concrete services for this input and
at a specific point in time. Abstract capabilities are expected to be complete but not al-
ways correct [18]: every concrete service S that can be provided will be a model of the
description, but there might be concrete services that are models of the description but
cannot be provided by P . For example, a tourism service that provides flights within
Europe (but not all possible flights) will describe its abstract service as being able to
provide any flight within Europe. However, there might be flights that are a model of
this description i.e. they are flights within Europe, but that cannot be provided by P for
some reason. This incorrectness is a consequence of the abstraction necessary to make
descriptions manageable and the matching of candidate services efficient. Therefore,
whether a concrete service can indeed be provided will be determined during the con-
tracting phase i.e. during the contracting phase only providers that can actually provide
a suitable concrete service S will be matched.

Contracting capabilities. A service provider will describe the concrete services he can
provide by describing its contracting capability. The contracting capability will also
include the description of what conditions have to be fulfilled for a successful service
provision, as well as the relation of the required input to the results of the service. The
abstract capability might be automatically derived from the contracting capability and
both must be consistent with each other.

It is assumed that the requester goal resulting from refining a pre-defined goal will
include the information necessary for contracting, such as the input information the
requester can or is willing to offer to a provider. We do not impose that this (possibly
big) set of information has to be listed for every goal, but it can be made available
to the discovery process by other means e.g. an additional service that provides the
information that the requester has available and is willing to disclose. A service will
not be selected if the requester is not able to provide all the information required by the
provider to actually deliver the required concrete service.

Finally, the communication between requesters and providers will be transparent to
us in the descriptions of contracting capabilities i.e. we will not describe and deal with
service choreographies but only with a logic representation of the communication act.

Conceptual Model for Service Location. Based on our formal model for services and
goals, and the assumptions on the domain given above, we provide a conceptual model
for the semantic-based location of services that includes the reuse of pre-defined goals,

6 U. Keller et al.

Fig. 1. A conceptual Model for the Dicovery Process

the discovery of relevant abstract services, and the contracting of concrete services to
fulfill a requester goal. Figure 1 depicts such conceptual model. The different steps of
the overall process are:

(1) Goal Discovery: Starting from a user desire (expressed using natural language or
any other means), goal discovery will locate the pre-defined goal that fits the requester
desire from the set of pre-defined goals, resulting on a selected pre-defined goal. Such
a pre-defined goal is an abstraction of the requester desire into a generic and reusable
goal. (2) Goal Refinement: The selected pre-defined goal is refined, based on the given
requester desire, in order to actually reflect such desire. This step will result on a for-
malized requester goal. (3) Service Discovery: Available services that can, according
to their abstract capabilities, potentially fulfill the requester goal are discovered. As the
abstract capability is not guaranteed to be correct, we cannot assure at this level that
the service will actually fulfill the requester goal. (4) Service Contracting: Based on
the contracting capability, the abstract services selected in the previous step will be
checked for their ability to deliver a suitable concrete service that fulfills the requester’s
goal. Such services will eventually be selected.

Let us take as an example a requester who wants to find information about flights
from Innsbruck to Madrid on December 21st, 2004. Such requester can express his
desire as a text of the form ”Search information about flights from Innsbruck to Madrid
on December 21st, 2004”. This text can be used to perform keyword-based matching of
existing pre-defined goals, such as a pre-defined goal for searching flight information.

Once such formal pre-defined goal has been located, it will be refined to reflect
the concrete origin and destination given by the requester, as well as the date. This
refinement can be done manually (supported by appropriate tools) or automatically from
the textual desire.

If a tourism service provider is available and it describes that it can provide flights
from any place in Austria to any other place in Europe (as its abstract capability), this
service will be considered in the contracting phase. Notice that at this level the dynamics

Automatic Location of Services 7

of the service provision e.g. availability of seats is not considered. Furthermore, we do
not expect the service provider to accurately describe all the actual flights it can provide
information for, as in general it is not realistic to expect flight information providers to
replicate their flight databases in the service description. They will, instead, provide an
abstraction of what they can provide.

During the contracting phase it will be checked whether the selected service A can
indeed provides the requested flight information: it will be tested ifA can provide infor-
mation about flights from Innsbruck to Madrid on the given date. For that purpose, the
contracting capability of the service will be used. It might include logic predicates that
will actually query the database of the provider to check whether the requested flight in-
formation is available. In addition, in case the provider requires extra information from
the requester to deliver its service (e.g. personal data of the customer) it will be checked
whether the requester can provide such information.

If all the above criteria are fulfilled, the service will be selected and eventually the
concrete service provided. In the following sections we concentrate on the notions of
match involved in service discovery and service contracting. A more detailed analysis
of goal discovery and refinement is beyond the scope of this paper.

3 Service Discovery

As we have sketched in Section 2, the capability of an abstract service can be consid-
ered on various levels of abstraction: The most fine-grained perspective on an abstract
service A is to consider it as a family of relations on a state space U . In our discussion,
we identified the problem of dynamics in abstract service descriptions when performing
accurate and efficient matching and proposed a solution based on a separation of con-
cerns in the overall location process: a service discovery phase based on more abstract
and less accurate capability descriptions to identify possible candidates, followed by a
service contracting step based on precise capability descriptions which might involve
interaction between service requester and provider.

In this section, we discuss the description of abstract services to be used during the
first step of the location process, namely abstract capabilities of services. An abstract
capability of an abstract service is a description which does not depend on dynamic
factors, i.e. the current state of the world as well as the requester input needed by the
provider. The abstract capability describes only what an advertised abstract service A
can potentially deliver but no longer under which circumstances the single services
S ∈ A can be actually provided.

The proposed modelling of abstract capabilities has been designed in a way such
that it provides a formal yet comprehensive model of the description of service capa-
bilities and goals. One particular design goal has been the independence of the formal
framework from specific logics. For this reason, we chose a set-based approach for the
description of abstract services and goals. How to ground this modelling and discovery
approach in logics is shown in [10] (using a slightly different terminology).

Modelling Abstract Services by Means of Abstract Capabilities. A (concrete) ser-
vice S (of an abstract service A(i1, . . . , inA)) corresponds to a state transformation

8 U. Keller et al.

on the state space U : when starting in a specific state w ∈ U we end up in a
state w′ ∈ U where the world has changed (some effects are observable) and some
output has been provided to the user. Both effects eff S(w, i1, . . . , inA) and outputs
outS(w, i1, . . . , inA) can be seen as sets of objects depending on the initial state w and
the input information i1, . . . , inA which has been provided to the service provider by
the service requester in w. The circumstances under which a service S can be delivered
by the provider are represented by w and i1, . . . , inA . For example, the description of
a concrete service provided by a European airline could be that a business-class flight
is booked for the male passenger James Joyce on January 5th, 2005 from Dublin to
Innsbruck, and 420 Euros are charged on a MasterCard with number 01233.

If we abstract the description of an abstract service A from the dependency on the
contained concrete services, on the provided inputs i1, . . . , inA , and on the particular
initial states w ∈ dom(A(i1, . . . , inA)), the description will only specify which objects
we can expect from the abstract service as effects eff A and as outputs outA. For ex-
ample, an abstract description of a European airline could state that the airline provides
information about flights within Europe as well as reservations for these flights, but not
what input has to be provided and how this input will determine the results of the service
provision. In general, we expect completeness but not necessarily correctness of the ab-
stract capability: every concrete service provided by an abstract service should be cov-
ered by the abstract capability, but there might be services which are models of the ab-
stract capability but cannot be delivered as part of the abstract serviceA by the provider
(since we abstract from the circumstances under which a service can be provided). More
formally, we assume

⋃
i1,...,inA

⋃
w∈dom(A(i1,...,inA)) eff S(w, i1, . . . , inA) ⊆ eff A

and
⋃

i1,...,inA

⋃
w∈dom(A(i1,...,inA)) outS(w, i1, . . . , inA) ⊆ outA. Abstracting fur-

ther beyond the unions over sets for the single initial states w and input values
i1, . . . , inA might in particular be helpful for a provider to simplify the description of
abstract capabilities further, since it allows to skip some details on specific constraints of
the delivered objects. However, the more abstraction is used beyond these unions (e.g.
the airline only specifies to provide tickets for flights all over the world), the less ac-
curate the descriptions of what the service provider is actually able to provide become.
Goals specify the desire of a client that he wants to have resolved after consuming a ser-
vice. They describe the information the client wants to receive as output of the service
as well as the effects on the state of the world that the client intends to achieve by using
the service. This desire can be represented as sets of elements which are relevant to the
client as the outputs and the effects of a service provision. According to the WSMO
model [13], goals refer to the state which is desired to be reached by service execution.

According to this view, abstract services and goals are both represented as sets of
objects during the service discovery step. The single descriptions of these sets refer to
ontologies that capture general knowledge about the problem domains under consider-
ation. Hence, the objects described in some abstract service description and the objects
used in some goal description can or might be interrelated in some way by ontologies.
Eventually, such interrelation is needed to establish a match between goals and services.

An important observation in our approach is that the description of a set of objects
for representing a goal or an abstract capability can be interpreted in different ways
and, thus, the description by means of a set is not semantically unique: A modeler

Automatic Location of Services 9

might want to express that either all of the elements that are contained in the set are
requested (goal) or can be delivered (abstract capability), or that only some of these
elements are requested (or can be delivered). For this reason, a modeler has to explicitly
specify his intention when describing the set of relevant objects for a goal or abstract
capability. This intention will strongly affect if we consider two descriptions to match.
Therefore, goals as well as abstract capabilities are pairs D = (RD, ID) where RD is
the set of objects which are considered as relevant for the description and ID ∈ {∀,∃}
is the respective (universal or existential) intention. For the sake of simplicity, we will
consider in the following only outputs of a service and do not treat effects explicitly.
The separation of effects and outputs is conceptual and effects can be dealt with in the
very same way. Nonetheless, it is useful to distinguish both since they are conceptually
different and we believe that it is beneficial for users to have the ability to apply different
criteria for matching outputs and effects in a service discovery request. Augmenting the
model discussed here accordingly is a straightforward endeavor.

Semantic Matching. In order to consider a goal G and an abstract service A to match
on a semantic level, the sets RG and RA describing these elements have to be interre-
lated; precisely spoken, we expect that some set-theoretic relationship between RG and
RA exists. The most basic set-theoretic relationships that might be considered are the
following: RG = RA, RG ⊆ RA, RA ⊆ RG , RG ∩RA �= ∅, RG ∩RA = ∅.

These set-theoretic relationships provide the basic means for formalizing our intu-
itive understanding of a match between goals and abstract services. For this reason,
they have been considered to some extent already in the literature, for instance in [14]
or [17], in the context of Description Logics-based service matchmaking.

On the other hand, we have to keep in mind that in our model these sets only capture
part of the semantics of goal and service descriptionsD, namely the relevant objects for
the service requester or service provider. The intentions of these sets in the semantic de-
scriptionsD is not considered but clearly affects whether a certain existing set-theoretic
relationship between RG and RA is considered to actually correspond to (or formalize)
our intuitive understanding of a match in the real-world. Therefore, we have to consider
the intentions of the respective sets as well. Figure 2 gives an overview of the single

Intention of G / A IA = ∀ IA = ∃

IG = ∀

RG = RA Match
RG ⊆ RA Match
RG ⊇ RA ParMatch

RG ∩ RA �= ∅ ParMatch
RG ∩ RA = ∅ Nonmatch

RG = RA PossMatch
RG ⊆ RA PossMatch
RG ⊇ RA ParMatch

RG ∩ RA �= ∅ PossParMatch
RG ∩ RA = ∅ Nonmatch

IG = ∃

RG = RA Match
RG ⊆ RA Match
RG ⊇ RA Match

RG ∩ RA �= ∅ Match
RG ∩ RA = ∅ Nonmatch

RG = RA Match
RG ⊆ RA PossMatch
RG ⊇ RA Match

RG ∩ RA �= ∅ PossMatch
RG ∩ RA = ∅ Nonmatch

Fig. 2. Interaction between set-theoretic criteria, intentions and our intuitive understanding of
matching

10 U. Keller et al.

set-theoretical relations as well as their interpretation3 as matches when considering the
request and provider intentions. In the table we distinguish several forms of matches: A
match (Match) means thatA completely satisfies G, a partial match (ParMatch) means
that A partially satisfies G and additional abstract services would be required to com-
pletely satisfy the request, a possible match (PossMatch) means that there might be
an actual match given a more detailed description (at contracting time) of the abstract
service, a possible partial match (PossParMatch) means that there might be a partial
match given more detailed description (at contracting time) of the abstract service or
a non-match (Nonmatch). Due to space restrictions, we only briefly discuss some en-
tries from the table. A detailed discussion can be found in [10]: (1) IG = ∀, IA = ∀,
RG ⊆ RA: The requester wants to get all the objects specified in in RG (IG = ∀),
whereas the provider claims that he is able to deliver all the objects specified in RA
(IA = ∀). In this case, the requester needs are fully covered by the A since all the
requested objects RG can be delivered by the abstract service according to its abstract
capability. (2) IG = ∀, IA = ∀, RG∩RA �= ∅: The requester wants to get all the objects
in RG , whereas the provider claims that A is able to deliver all the objects specified in
RA. In this case, the requester needs cannot be fully satisfied by A. At best, the A can
contribute to resolve the desire of the client. Thus, we consider this case as a partial
match. (3) IG = ∀, IA = ∃, RG ⊆ RA: The requester wants to get all the objects in
RG , whereas the provider claims he is only able to deliver some of the objects in RA. In
this case, we cannot determine from the given descriptions whether there is a match or
not. However, it might turn out when examining a more detailed description there is a
match. Such detailed description is available during service contracting (see Section 4).
Hence, we consider this as a possible match.

Discussion. The proposed modelling approach is based on set theory and ontologies for
capturing domain knowledge. By abstracting from dynamic aspects of abstract services,
we provide static and general abstract capability descriptions. All the information nec-
essary for checking a match is already available when abstract service descriptions are
published, and no interaction with any of the involved parties (requester and provider)
is needed for this discovery step. On the other hand, the accuracy we can achieve when
is limited. Hence, this discovery step based on such simple descriptions allows an effi-
cient identification of candidate abstract services, but does not guarantee that a matched
abstract service will deliver a concrete service fulfilling the requester goal. Abstraction
can be used as a means to simplify the description of abstract services by the provider.
The overall model is simple, comprehensive and can be implemented in a logical frame-
work [10]. However, the model itself is not based on a specific logical language. The
concept of intentions in set-based capability and goal descriptions has not been con-
sidered in the literature so far and gives the modeler additional freedom in modelling.
Eventually, the use of a set-based model for abstract capabilities can enable the use of
Description Logics for classifying and efficiently discovering abstract services to be
considered for service contracting. This idea is further elaborated in [12].

3 Please note, that when assigning the intuitive notions we assume that the listed set-theoretic
properties between RG and RA are the strongest ones that actually hold between RG and RA.

Automatic Location of Services 11

4 Service Contracting

In this section we present service contracting, the last step in the conceptual model pre-
sented in Section 3. For service contracting, only the services discovered as discussed
in the previous section will be considered. As mentioned above, service contracting will
exploit the contracting capability of such services, interpreted as a family of relations
A(i1, . . . , inA) ⊆ U ×U where i1, . . . , inA is the input information that has to be made
available by the requester.

A contracting capability will describe what input information is required for provid-
ing a concrete service and what conditions it must fulfill (i.e. service preconditions, de-
noted by Apre(i1 . . . inA)), and what conditions the objects delivered fulfill depending
on the input given (i.e. service postconditions, denoted by Apost(i1 . . . inA , x) where x
denotes objects that are delivered by a service execution with given input values. We
formalize a contracting capability of an abstract service as as follows:

A : ∀x, i1 . . . inA .(as(x, i1 . . . inA) ↔ Apre(i1 . . . inA) ∧Apost(i1 . . . inA , x)) (1)

where as(x, i1 . . . inA) represents what objects x the service will deliver for a given
input set i1 . . . inA . Therefore, the dependency of the service results on the input given
is explicitly described. Please note that according to (1) the service is not considered
to deliver anything meaningful if the precondition can not be fulfilled by the input pro-
vided by the requester. As the dependency on the initial state (e.g. availability of rooms
at request time) is dynamic over time, the evaluation of as(x, i1 . . . inA) will require
interaction with the provider. A goal G is modelled in terms of a predicate g(x) that
describes the relevant objects for the requester.

Single or Multiple Concrete Services. We can enrich the set of matching notions pre-
sented in the previous section with an orthogonal dimension: we can express that we
can satisfy a particular matching notion wrt. a single concrete service as well as wrt.
an arbitrary number of concrete services. This results in additional matching notions
that capture additional semantics in a given requester goal. Let us take a requester goal
given by the following informal text: ”I want to know all flights from Innsbruck to
Madrid between 12/10/2004 and 14/10/2004” and an abstract service with the follow-
ing (informal) capability: ”The service provides information about all flights from any
place in Austria to any place in Spain on any specific date. Therefore, a single concrete
service cannot fulfill the requester goal, but a set of successive concrete services (of the
same abstract service) can together fulfill the requester goal: one for each day in the
requested period of time. These concrete services correspond to different input infor-
mation provided by the requester. This can be seen as a simple form of composition,
but it can still be captured in our contracting framework and in the definition of the for-
mal proof obligations that have to be checked to determine whether concrete services
fulfilling the goal can be contracted.

Extending the Set-Based Modelling. The intuitive notions of match that can be con-
sidered at contracting time will be the same as in Figure 2, except for the possible
match and possible partial match notions; as contracting will precisely determine what

12 U. Keller et al.

concrete services can be provided, we can fully determine whether a service fulfills
the requester goal. However, as we introduce the dependency on the input information
in the contracting capability, we cannot model our notions of match in terms of set-
theoretic relations. Therefore, we replace the set-theoretic relations by the following
logical relations, where O is the set of ontologies that give the terminology used by
both descriptions:

1. RG = RA for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) ↔ as(x, i1 . . . inA))) (2)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) ↔ as(x, i1 . . . inA))) (3)

2. RG ⊆ RA for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) → as(x, i1 . . . inA))) (4)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) → as(x, i1 . . . inA))) (5)

3. RA ⊆ RG for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∀x.(g(x) ← as(x, i1 . . . inA))) (6)

For multiple concrete services:

A,G,O |= ∀x.(∃i1, . . . , inA .(g(x) ← as(x, i1 . . . inA))) (7)

4. RG ∩RA �= ∅ for a single concrete service:

A,G,O |= ∃i1, . . . , inA .(∃x.(g(x) ∧ as(x, i1 . . . inA))) (8)

For multiple concrete services the proof obligation for this matching criterion is
logically equivalent to the one used for a single concrete service.

If none of the above holds, then the service cannot provide any of the required
results, which is similar to the set-theoretic relation RG ∩RA = ∅.

These relations (together with the respective intentions IA = ∀, IA = ∃, IG = ∀,
and IG = ∃) can be used for precisely determining if the service fulfills the goal given.

Notice that the input involved in the relations above has to be made available by
the requester. This does not impose that the requester has to list for every goal all the
information he has available, but he can for example offer a service that provides his
available information on demand. In addition, some input information can automatically
be extracted from the goal description e.g. if the requester wants to fly from Innsbruck
to Madrid we already know that he can provide Innsbruck as the departure location and
Madrid as the arrival location. However, how this information is made available to the

Automatic Location of Services 13

contracting process is beyond the scope of the paper, and it is assumed that it will be
available in some way during the contracting phase.

In the logical relations above we do not put any restriction on the logical expres-
sivity allowed, as our intention is to formalize the intuition behind service contracting.
Similar relations have been formalized using Transaction Logic and implemented using
FLORA-2 in [11] and [12].

Contracting based on the above formalizations will in general involve communica-
tion with the provider and will be expensive. For example, we can determine whether
a given flight can be booked by communicating with the provider, as such availabil-
ity is dynamic over time and, furthermore, it is not realistic to expect an airline to
include its complete flights database as part of the contracting capability description.
However, such contracting will be only attempted for abstract services that have been
efficiently filtered at discovery time and that are already known as relevant for the goal
at hand.

5 Related Work

Software Component Retrieval. The problem of semi-automatically retrieving soft-
ware components is very similar to the automatic location of services. Specification
matching has been proposed in several works e.g. [8, 9, 19, 23] to evaluate how soft-
ware components relate to a given query i.e. user’s need. Specification matching relies
on the axiomatization of software components and user queries. A formal (logical) re-
lation is then defined and whether a given query and component satisfy this relation is
checked. Such a relation must capture the notion of reusability i.e. if the relation holds
for formally specified components and queries, it means that the component can be
reused to solve the problem captured by the query.

The work on software component retrieval has not defined a conceptual model for
the location of relevant components, but only different notions of match for a given
query and a given component have been studied [12]. While such notions of match
focus on locating a software component that can be used in the place where the soft-
ware component represented by the query could, in service discovery we focus on what
results can be delivered by the service. Therefore, the notions of match studied for
software component retrieval have to be adapted to the Web services domain. Service
contracting is not directly considered, as it is outside the application area of software
component retrieval. A more detailed account of the work on software component re-
trieval and its relation to service discovery is given in [12].

Automatic Web Service Discovery. A number of proposals for using Description Log-
ics [15] and OWL-S [4], or similar descriptions for the automatic discovery of services
are available [17, 14, 2, 6]. However, none of them provides a conceptual model and
they regard discovery as a one step process. In addition, these approaches are not suit-
able for contracting as they do not employ rules for describing the relation between the
results of the service and the input given.

METEOR-S discovery [21] is very similar to the approaches mentioned above, but
it uses request templates similar to our pre-defined goals. It also annotates service reg-

14 U. Keller et al.

istries, specializing them on a given domain and exploiting such annotations during
discovery. However, it does not define a conceptual model and it is not suitable for
contracting.

LARKS [20] deals with the description of agent capabilities and requests4 and the
matchmaking of those. The discovery model used in LARKS defines different filters of
different complexity and accuracy, allowing the user to select the trade-off between the
efficiency and accuracy he needs. However, this model does not address the problem of
the different levels of abstraction that are expected in service descriptions, and does not
discuss how the requests will be defined by users. Furthermore, it does not consider the
contracting of services.

For service discovery, none of the afore-mentioned proposals has discussed the in-
tuitive notions of match a requester or a provider have in mind when requesting or
advertising a service i.e. the intentions. The work in [7] discusses variance in ser-
vice discovery, a complementary aspect to the intentions we have discussed in this
paper.

Our previous work on service discovery and contracting [11] already offered a dis-
tinction between these two steps. We have built on top of it and examined the conceptual
model described in [18] to elaborate a comprehensive conceptual model including both
aspects and to discuss the notions of match involved.

6 Conclusions and Future Work

In this paper we presented a model for the automatic location of services that con-
siders the static and dynamic aspects of service descriptions and identifies what no-
tions of match and techniques are useful for the matching of both. Our model presents
three important features: ease of use for the requester, efficient pre-filtering of rele-
vant services, and accurate contracting of services that fulfill a given requester goal.
We further elaborated previous work and results on Web service discovery by ana-
lyzing what steps and what kind of descriptions are necessary for an efficient and
usable automatic service location. Furthermore, we analyzed the intuitive and formal
notions of match that are of interest for locating services that fulfill a given goal. Al-
though having a formal underpinning, the proposed model does not impose any re-
strictions on how to implement it for specific applications, but proposes some useful
formalisms for providing such implementation. Recently we started with the prototyp-
ical implementation of the proposed framework. As soon as the implementation of the
prototype will be completed, we will start with the evaluation of our model based on
concrete use cases. Further refinement of the model and the respective implementa-
tion based on the empirical results obtained from our experiments is part of our future
work.

Acknowledgements. We would like to thank all members of the WSMO and WSML
Working Groups for fruitful discussions. In particular, Michael Kifer contributed signif-

4 Although LARKS is a language for describing agent capabilities, it can equally be applied to
Web services.

Automatic Location of Services 15

icantly in discussions of proposed service description and discovery model. This work
has been supported by the SFI (Science Funds Ireland) under the DERI-Lion project,
the European Commission under the projects DIP, Knowledge Web, SEKT, and SWWS
and by FIT-IT under the project RW2.

References

1. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI Version 3.0, July
2002.

2. B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Request rewriting-based Web Service
Discovery. In The Semantic Web - ISWC 2003, pages 242–257, October 2003.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

4. The OWL Services Coalition. OWL-S 1.1 Beta Release. July 2004.
5. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic Com-

merce Research and Applications, 1(2), 2002.
6. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of

services. In KI-2001 Workshop on Applications of Description Logics, September 2001.
7. S. Grimm, B. Motik, and C. Preist. Variance in e-Business Service Discovery. Semantic Web

Services Workshop at ISWC 2004, November 2004.
8. J.J Jeng and B.H.C. Cheng. Using Automated Reasoning Techniques to Determine Software

Reuse. Intl. Journal of Soft. and Know. Engineering, 2(4), Dec. 1992.
9. J.J Jeng and B.H.C. Cheng. Specification Matching for Software Reuse: A Foundation. In

SSR’95. ACM SIGSOFT. ACM Press, 1995.
10. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Technical report,

DERI, November 2004.
11. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Logi-

cal Framework for Web Service Discovery. In Semantic Web Services Worshop at ISWC,
2004.

12. R. Lara, W. Binder, I. Constantinescu, D. Fensel, U. Keller, J. Pan, M. Pistore, A. Polleres,
I. Toma, P. Traverso, and M. Zaremba. Semantics for Web Service Discovery and Composi-
tion. Technical report, Knowledge Web, December 2004.

13. H. Lausen, D. Roman, and U. Keller (editors). Web Service Modeling Ontology (WSMO).
Working draft, DERI, March 2004. http://www.wsmo.org/2004/d2/v0.2/.

14. Lei Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. In WWW’03, Budapest, Hungary, May 2003.

15. D. Nardi, F. Baader, D. Calvanese, D. L. McGuinness, and P. F. Patel-Schneider (edts.). The
Description Logic Handbook. Cambridge, January 2003.

16. D. Olmedilla, R. lara, A. Polleres, and H. Lausen. Trust Negotiation for Semantic Web
Services. In SWSWPC Workshop at ICWS 2004, July 2004.

17. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service
Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.

18. Chris Preist. A Conceptual Architecture for Semantic Web Services. In Proceedings of the
International Semantic Web Conference 2004 (ISWC 2004), November 2004.

19. E.J. Rollings and J.M. Wing. Specifications as Search Keys for Software Libraries. In
Proceedings of the Eighth International Conference on Logic Programming, June 1991.

16 U. Keller et al.

20. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems,
pages 173–203, 2002.

21. K. Verma, K. Sivashanmugam, A. Sheth, and A. Patil. METEOR-S WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services.
Journal of Information Technology and Management, 2004.

22. W3C. SOAP Version 1.2 Part 0: Primer, June 2003.
23. A.M. Zaremski and J.M. Wing. Specification Matching of Software Components. ACM

Transactions on Software Engineering and Methodology (TOSEM), 6:333–369, 1997.

Feta: A Light-Weight Architecture for User
Oriented Semantic Service Discovery

Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble

School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

p.lord@cs.man.ac.uk

Abstract. Semantic Web Services offer the possibility of highly flexi-
ble web service architectures, where new services can be quickly discov-
ered, orchestrated and composed into workflows. Most existing work has,
however, focused on complex service descriptions for automated compo-
sition. In this paper, we describe the requirements from the bioinfor-
matics domain which demand technically simpler descriptions, involving
the user community at all levels. We describe our data model and light-
weight semantic discovery architecture. We explain how this fits in the
larger architecture of the myGrid project, which overall enables inter-
operability and composition across, disparate, autonomous, third-party
services. Our contention is that such light-weight service discovery pro-
vides a good fit for user requirements of bioinformatics and possibly other
domains.

1 Introduction

Web Services and Service Orientated Architectures offer the possibility of the
composition and orchestration of distributed resources. The myGrid project has
been seeking to apply these technologies to the bioinformatics domain. To this
end, it has contributed to the generation of a rich service layer, has built a
workflow engine and workflow development environment [15].

However, there is a difficulty. Even with a good environment, producing com-
plex workflows is difficult, time-consuming and expensive. One of the reasons for
this is the shear number of services which are available for the biologist to use.
Commonly, to promote reusability, each bioinformatics service provides a small
unit of functionality. A useful task is achieved by combining these services into
a workflow. Scientists using myGrid currently have access to over 1000 bioin-
formatics services. In a research domain where many workflows are developed
in-house, experimented with, then either thrown away or extensively modified,
speed of development is a rate limiting step [16].

There has been a large amount of interest in “Semantic Web Services”. In
board outline, this augments standard Service Oriented Architecture with se-
mantic descriptions of the services. These descriptions help agents (whether hu-
man or machine) interact with the service during its life cycle including discovery,

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 17–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 P. Lord et al.

composition, execution and monitoring. Considerable work on technologies such
as OWL-S [8] and, more recently, WSMO [1], have focused largely on descriptions
to enable automated composition of services. The requirement for full automa-
tion, and transparency of composition from the user perspective, has resulted in
the application of extremely rich service descriptions, using description logics, or
F-logic, based formalisms. In keeping with these approaches, the myGrid project
has built a domain ontology for describing bioinformatics services, described ser-
vices semantically using that ontology, and used description logic reasoning to
support service discovery [19]. However, we found this approach bought consid-
erable complexity to the architecture, without addressing the requirements of
our target users (biologists and bioinformaticians). This complexity arose from
at least three areas:

1) Service Descriptions. There are many aspects to a service which can be
described at varying levels of detail, depending on the intended audience
and use of the description[18]. The description needed to discover a service
is different from that needed to configure a service, which may be different
from that to invoke a service. Descriptions for unattended agents need to be
more formal and explicit than if there is human user involvement. OWL-S
recognizes some of this variety by providing a profile for discovery, a process
model for orchestration, and a binding for invocation [8]. However, we have
found it is not realistic for service providers to provide comprehensive ser-
vice descriptions as suggested by OWL-S. Sections 2 and 3 examine how the
requirements from the bioinformatics discipline allow us to simplify the prob-
lem – narrowing the use of description to discovery, and assuming a human
is always responsible for final selection.

2) Variety of Services. The services available for building workflows are het-
erogenous. Only a small proportion could be classed as plain web services (i.e.
Web Services described using a Web Services Description Language (WSDL)
document with no additional conventions). More information on this hetero-
geneity is given in section 4. We have found that providing detailed formal
descriptions of how each type of service varies in its behaviour is unreal-
istic. Section 5 illustrates how we simplify the problem by describing only
an abstraction of a service that captures its functionality (as recognized by
the workflow builder) whilst omitting its more technical behaviour. Section 4
explains how other components (particularly the workflow enactor Freefluo)
bridge the gap, and loosely bind the abstract description to concrete imple-
mentation.

3) Reasoning. The use of formal semantics within service descriptions allows
the use of reasoning. For example, discovery of a service can be supported
by description logic (DL) reasoning that matches a requirement for a service
against a set of available services. It does so by recasting it as a classification
task and testing for those services that are subsumed by the requirements.
Our experience in implementing such a DL based system is that sophisti-
cated reasoning is computationally expensive, a cost that is not justified
by the benefits it provides to users searching for services. The complexity

Feta: A Light-Weight Architecture 19

of deploying reasoning services within the myGrid middleware also proved
costly. Section 6 describes our discovery component Feta, which allows users
to search over simple semantic descriptions of services using simpler reasoning
components.

This paper describes our solution for managing (in our experience) the pro-
hibitive complexity of deploying a fully featured semantic web services archi-
tecture. By adopting semantic web technologies such as RDF and OWL yet
drastically cutting back on the features used, we are able to deploy a manage-
able middleware system. As both the technology and the tools progress, we leave
the door open for adding complexity back into the system, but only as required
by users.

2 The Application of Service Orientated Architectures

Bioinformatics involves the application of computational tools to the problems of
biology. It is largely reflective of its history, originating in a large number of small
molecular biology laboratories. Each lab generally investigates a small area of
biology, with only a few labs world-wide working on a particular area. The data
and tools generated by these labs has been made available for the community
by web publication. More recently, large quantities of data and many tools have
been developed and released by relatively few genome centres.

The use of the web as a primary means of data publication has obvious
difficulties: HTML enables presentation to humans, not formal data modelling;
services are hard to find; interoperability is poor. The primary mechanism for
overcoming these problems has been the expert biologist; cutting and pasting
between web delivered forms has been the norm [14]. Automated tools for the
service composition have largely been built over the top of these web delivered
services, often using Perl, and screen-scraping techniques. While this works, it
tends to be fragile to changes in the website.

It is against this background that the myGrid project has operated. Along
with other projects [7], myGrid has developed more formal, programmatically ac-
cessible middleware, to enable transfer of information and composition of data
and tool services into large workflows, addressing the real needs to the lab bi-
ologist [15]. This environment comprises of a number of different components
including: 1) Soaplab–A toolkit for the presentation of legacy command line ap-
plications, which covers the majority of bioinformatics tools, as Web Services.
2) Taverna–A workflow construction environment which enables the composi-
tion of Soaplab and other services into, often large and complex, workflows.
3) FreeFluo–A workflow enactment environment which enact Taverna workflows,
invoking services, gathering information and returning it to the user.

The myGrid environment has simplified the task of accessing the data sets
that are available; however, it has been a victim of its own success. At the current
time, there are over a 1000 services which can be used by myGrid. This leaves the
end user with a substantial problem in terms of selecting appropriate services

20 P. Lord et al.

for use. This is made worse as the user, in this case, is the biologist who may
not be highly skilled or knowledgeable about these services [16].

myGrid assumes the contributions of third parties. Initially most of the tools
available for use came from within the project, deployed via Soaplab. Currently,
the larger part of the services in use come from external, autonomous service
providers. This means there is no unified myGrid type system determining the
structuring of the data passed between services. As a result, while myGrid has
reduced some of the previous fragility, it has not solve the difficulties of interop-
erability.

On the face of it, therefore, the problems of myGrid seem to be closely aligned
to those addressed by the Semantic Web and SW Services. We have a set of
services which we wish to compose in ways unanticipated by the providers or
those responsible for the middleware.

3 Semantic Web Services in Bioinformatics

While the problems of bioinformatics appear to be closely aligned to those ad-
dressed by current SWS efforts, a consideration of the particular nature of the
domain suggests to us that this is not the case, due to a set of constraints placed
upon us by the domain. In this section, we consider these constraints.

User Transparency: Existing frameworks have focused on the requirement
for transparent composition of web services in order to achieve the high
level goals given by users (e.g. Make my travel arrangements for the next
WWW conference). While this level of automation may be appropriate in
B2C applications, it is less desired within bioinformatics, where the user base
wish to be involved in service selection. There are two main reasons for this.
Firstly, bioinformatics is a scientific endeavour and much depends on the
correct selection of services, something that the users may later be forced to
justify under peer review. Secondly, they suspect that they will make better
decisions than a software agent. In this they are probably correct. Service
selection requires significant areas of knowledge, including the technology of
bioinformatics, the biological questions being examined and the level of trust
the user has in different data sources. Any model of bioinformatics is likely
to be wrong, at least in the first instance, particularly if the model is built by
the middleware providers rather than those with the biological knowledge.

Messaging Opacity: One of the key difficulties with integration in bioinfor-
matics has been the lack of formal and explicit structuring for its key
datatypes. This is true for even relatively simple datatypes, such as DNA
sequence which is a simple two-bit code; there are at least 20 different flat file
formats for representing this data. The standards that do exist have often
come about as a result of many years of collaborative work, so both service
providers and consumers have a large investment in these (in)formalisms.
Changing these data formats is not an attractive option. The practical up-
shot of this is that most web services provided for use within bioinformatics
do not formally describe their messaging formats with a WSDL document as

Feta: A Light-Weight Architecture 21

the messages are not structured with XML. Within myGrid, we have chosen
to deal with this by assuming that the information passed around by myGrid
middleware will be largely opaque to it.

While these two features may appear to be problematic, in practice they
simplify the task and scope of the form of semantic service discovery required.
As the user is fully involved in the process of service selection, we only require
descriptions which reduce the problem space from selection from 1000 services to
approximately 10 from which the user can then choose. Other authors have previ-
ously noted that this semi-automatic approach simplifies the task of service com-
position [13], although they see this as a step toward further automation, rather
than a strong user requirement. The opacity of the messaging structures means
that descriptions do not have to relate to the internal structuring of the data; the
best that we can do is describe the existence of a particular datatype1. However,
the absence of formal structuring means that tools such as WSDL2OWLS [12]
are of little use; there is little information in the WSDL file which can be mined
from it.

4 Coping with Web Service Styles

Of the 1000+ available external bioinformatics services available to myGrid users,
less than 5% would be considered plain web services. Other services consist of
approximately:

25% Soaplab services. Soaplab uses web services, but exposes a stateful
CORBA-like interface described later in this section.

30% Bio-Moby services. The Bio-Moby project provides a registry and
messaging format2 for bioinformatics services [17]. This is not described
further, but again, imposes additional semantics over normal web service
invocation.

30% Web based REST services. The Seqhound [10] sequence retrieval sys-
tem delivers its services through a Representational State Transfer (REST)
style interface, where all the information that is required for the service
invocation is encoded in a single HTTP GET or POST request.

10% workflows. myGrid allows the incorporation of workflows into larger
workflows.

In addition, although not strictly services, local Java applications and Java
scripts3 can also be distributed for use within workflows and so need to be
discovered and integrated.

1 Our analogy here is with MIME types. text/html tells you little about the datatype,
but is useful none the less.

2 As described early, messaging formats are opaque in bioinformatics, because most of
the data is informally structured. Like myGrid, Bio-Moby’s messaging format reflects
this, consisting of a thin enveloped which simply describes the existence of a given
datatype.

3 implemented using the BeanShell (http://www.beanshell.org).

22 P. Lord et al.

Table 1. Two different service interfaces to BLAST, a widely used bioinformatics tool.

BLAST operates over a biological sequence, has a number of parameters and returns

a single complex BLAST report. The “Document Style” interface has a single method

taking a complex set of parameters, while the “Object Style” interface uses object

identifiers to provide an ad hoc object orientation

Document Style BlastReport performBlast(Sequence, gap, etc. . .);

Object Style ObjectIdentifier getInstance();
void setSequence(ObjectIdentifier, Sequence);
void setGap(ObjectIdentifier, Gap);
. . .
BlastReport invoke(ObjectIdentifier);

To illustrate further the additional semantics typically found, in Table 1, we
give an example of two different presentations of the same service, in this case
a BLAST search. This is one of the most widely used tools within bioinfor-
matics. It uses a DNA or protein sequence to search for similar sequences from
a database. As such, it takes a sequence as its main input, along with some
of a large set of other parameters which modify the search functionality. One
standard presentation of this service, which we describe as a “Document Style”
approach, has a single operation which takes a sequence as an input parameter
and returns a complex BLAST report which is the standard output of this tool.
The second provides a much more “Object Style” interface which requires mul-
tiple interactions with the service to perform a single BLAST search. This style
of interaction is typified by Soaplab.

To describe the object style of service using, for example, OWL-S would re-
quire the use of preconditions (getInstance must be called before setSequence)
and effects (getInstance uses resources on the server).

Within myGrid, however, we have taken an alternative approach. While there
are different web service styles, they are only a limited number. Instead of trying
to cope with these service styles through the application of semantic descrip-
tions, we have, instead, used an extensible workflow enactment environment,
called FreeFluo [11]. The interaction with the web service is handled through a
Java interface or processor. While this framework is not fully generic, it appears
to answer our requirements; support for a new style of service can be added
rapidly–in minutes or hours depending on their service complexity. Moreover,
the use of widely adopted language such as Java makes this process considerably
cheaper than the use of OWL. In effect, we bury the invocation problem by
taking advantage of limited families of service patterns with idiomatic patterns
of invocation.

The FreeFluo engine then presents a common abstraction over the individual
service styles which is used by both the semantic service discovery component,
Feta, and the workflow building environment, Taverna. It is this abstraction
which we seek to describe as it is this that the users wish to discover.

Feta: A Light-Weight Architecture 23

5 myGrid’s Data Model of Services

In this section we describe the core data model which we use to describe services.
Given the constraints that bioinformatics presents and the support that other
parts of the myGrid architecture provide for the invocation of services, the key
differences between this model and that present within OWL-S are those of
omission; we have nothing in this model equivalent to either the grounding or
process models and only a subset of the service profile. They are also a few
additional features which model the ideas users have about services, but which
do not map to the underlying middleware layer.

The majority of the information in the data model was captured in the myGrid
service ontology described previously [19]. This ontology contains substantial
information describing the bioinformatics domain, which acts as an annota-
tion vocabulary including: descriptions of the core bioinformatics data types
(e.g. DNA sequence), a characterization of the tasks commonly performed (e.g.
Protein Analysis) and a description of the biological entities being investi-
gated (e.g. homologue). The core data model is shown as a Conceptual UML
class diagram in Figure 1.

Fig. 1. Feta’s Data Model of Services: Those attributes filled with terms from the
myGrid ontology are marked italicized

Within this data model we distinguish between the core unit of function-
ality, i.e. the operation, and the unit of publication, i.e. the service. Our
initial analysis of the bioinformatics web services suggested that, in most cases,
a Service presented a set of operations providing related but independent func-
tionality. For this reason, the service entity encapsulates information only re-
lating to publication; this includes information such as the provider organization

24 P. Lord et al.

name, the author of the service description, and a free text description of the
functionality.

In general, a service may provide one or more service operations. Conven-
tional web services with no state are good examples of this. These operations do
not map directly to operations at the WSDL layer. For “object style” services,
described in the previous section, the multiple WSDL operations all provide a
single unit of functionality from the users perspective. Soaplab services, there-
fore, are all modelled as a service with a single operation. For other service
styles, such as myGrid workflows, or Seqhound services, there is no underlying
WSDL representation to map to. Again, FreeFluo removes the difficulty of link-
ing between the abstracted service descriptions and these different invocation
layers.

The capabilities of operations, within Feta, are characterized by the inputs,
outputs and several domain specific attributes. All of these attributes use, as
fillers, concepts from the myGrid domain ontology. These attributes are:

– The overall task being performed by the operation. While this attribute has
no semantics in the invocation layer, it is an useful description for users who
understand the biological in silico experiment being performed.

– The underlying method being used. Many key bioinformatics tasks can be
achieved using more than one algorithm; biologists differ in their level of trust
for these different methods, so describing these provides a useful criterion
for service selection.

– The application to which the service belongs. For example, many service
implementations are provided by the EMBOSS project. Again, biologists
different in their trust for these different implementations.

– The resource that the service uses. Many tools can operate over different
data sets. Services providing access to these tools are likely to provide simi-
lar or identical invocation interfaces. This attribute enables the biologist to
distinguish between these services.

The inputs and outputs of an operation are modelled through the Parameter
entity. In addition to its name and textual description, a parameter is described
with the following attributes:

– The semantic type describes the domain specific data type in question, such
as DNA sequence.

– The format describes the representation of the data. Many data types can
be represented using multiple different formats; some services are agnostic
to these formats while some are highly specific.

– The collectionType and collectionFormat attributes are useful where services
return a set of results rather than a single item.

– The configurationParameter describes whether the parameter is the “main”
input or not. This distinction is common in bioinformatics and can best be

Feta: A Light-Weight Architecture 25

described by analogy to a unix command line4: each command has standard
input and a set of switches. In general, such parameters have “sensible”
default values and can be ignored during service discovery. For this reason,
its representation in service descriptions is essential.

6 The Feta System Architecture

In this section, we give an architectural overview of the Feta discovery system,
as shown in Figure 2. The key characteristic of this architecture is its rela-
tive simplicity: the core components communicate through web services; service
descriptions are developed using XML and by applying generic XML tooling;
querying is performed with Jena using only RDF(S) entailment rather than DL
reasoning. Feta is meant as a light-weight semantic search engine rather than a
full service registry, so this functionality is deferred to the standard web services
registry, namely UDDI [3]. The core components can be grouped as semantic
service publishing components (dark grey in Figure 2), service querying compo-
nents (light grey) and the myGrid service ontology (unshaded) used by both.

Fig. 2. Architectural Overview of Feta

6.1 Semantic Service Publication

The requirement for Feta to discover multiple styles of service and to reflect
the workflow building scientist’s perspective demands manual annotation of the
service descriptions. Given that a service’s capability is not reflected by its invo-
cation interface provided at the primary publishing stage, it becomes essential for

4 Biologists normally use the term parameter specifically to refer to what we call
configuration parameters

26 P. Lord et al.

a secondary publishing stage to take place. It is during publication that the map-
ping from low-level descriptions of services to the more abstract, user-oriented
descriptions takes place.

The absence of formal structuring for most bioinformatics data types (see
Section 3), mean that the information which can be obtained from the services
themselves is limited to: 1) The Service Name 2) The names and number of ser-
vice operations. 3) The names and number of operation parameters. For plain
web services this information is imported from their WSDL files via an XML
transformation process. As with the FreeFluo engine, we support an extensi-
bility layer to enable the import of other service styles. In the case of Soaplab
services this is achieved by introspective invocation of the service. Other ser-
vice styles provide information in their own manner and require their own im-
port functionality. In each case, the end product is an XML document con-
forming to the data model describing in Figure 1, recast as an XML schema.
As these documents contain the basic structure for the semantic service de-
scriptions, but little of the information required, we describe them as
skeletons.

6.2 Service Annotation

Following the generation of skeleton documents, manual annotation of these doc-
uments is required to provide full descriptions. This annotation process can take
considerable time. In the first instance most descriptions have been developed
by expert bioinformaticians from within the myGrid project. In our experience,
the key difficulty has been poor documentation of the services, requiring exper-
imental invocation of the service with test data. More recent experience with
service publishing frameworks such as Soaplab, provide documentation directly
associated with services which eases this process considerably.

It is clear that tool support is required for this process to encourage either
external service providers, or service consumers to generate their own seman-
tic service descriptions. To this end, we use the PeDRo application [6]. This
provides a GUI based interface which allows users to generate XML instance
documents conformant to a given XML schema. The tool is also ontology aware
and can provide easy access to the vocabulary at the point of use. Annotation
is limited to named classes rather than fuller class expressions. In Figure 3, we
show this application in the process of annotating a plain web service. The tool
is not restrictive in the data that is required for the annotator; it is possible to
generate descriptions with minimal information to be augmented at a later date
as required.

The use of XML, at this point, provides two key advantages: 1) The use of
XML schema validation ensures that Feta documents are internally consistent
relieving the need for further error checking at later states of the discovery
process. 2) Some service providers will already have access to metadata which
can be mapped into the Feta schema and used for service discovery. The use of
familiar technology should ease the process should service providers choose to
bypass the manual annotation step.

Feta: A Light-Weight Architecture 27

Fig. 3. A screen shot of the XML Data Entry Tool PeDRo

The XML document produced is conformant to the data model, described
in Figure 1, containing concepts (represented using URL’s) to the ontology de-
scribed in Section 6.3. Currently, the complexity and time-consuming nature of
the annotation phase is one of the key reasons why we do not use complex, OWL-
based, service descriptions. Annotation providers are generally not conversant
with the use of such technology and are unlikely to make use of the expressive
power of OWL. Our experience suggest that even the application of a vocabulary
is a demanding process.

6.3 The myGrid Domain Ontology

It is clear that the domain ontology is a critical component in ensuring the utility
of any semantic service discovery architecture. We have discussed previously the
approaches of different projects from within bioinformatics for the development
of such an ontology [7]. myGrid’s approach has been to develop a seed ontology
which will both provide enough utility for initial users of the system. In turn,
this should encourage those in the domain to contribute new terms. This process
has previously been used highly successfully in bioinformatics [2].

Due to the complexity of the domain, we choose to develop a complex prop-
erty based ontology using OWL (initially DAML+OIL), which enabled us to
take advantage of the reasoning at development time [19]. For use within Feta,
we have reasoned over the ontology and then exported it as an RDF(S) hierarchy.

6.4 Querying Feta Descriptions

Following the annotation phase, Feta descriptions are published, making use
of a UDDI registry. The Feta Engine engine then imports these descriptions,

28 P. Lord et al.

along with the RDF(S) version of the domain ontology, from where they can
be queried. The decision to avoid the use of OWL and reasoning technologies
at query time enables considerable architectural simplicity at this point. The
Feta Engine is essentially a set of canned RDQL queries accessible via a web
services interface. We currently use Jena [5] as our implementation backend as
its query engine provides support for RDF(S) entailment. The canned queries
that we currently support include:

– An operation that accepts input of a given semantic type or something more
general.

– An operation that produces output of given semantic type or something
more specific.

– An operation that performs a given task (or uses method or uses resource
or is part of Application) or something more specific.

– An operation that is of type “WSDL based Web Service Operation”, “Soaplab
Service”, “Scufl Workflow” etc.

– An operation whose name/description contains a given phrase.

6.5 The Feta GUI Query Tool

The focus of semantic discovery in this paper has been to provide support the
workflow building. It is clear, therefore, that the discovery architecture needs to
be accessed from within Taverna, our workflow building environment. For this
purpose, we provide a plug-in which is shown in Figure 4. The query interface
enables the user to build a composite search query using the supported canned
queries.

Results of the search are then returned to the user in a results panel shown
in Figure 5. Any additional information available about the service is also dis-
played enabling the user to make the final selection of the most appropriate
service. These services can then be added to the workflow by means of drag and
drop. Currently returned results are not ranked as most queries narrow the total
number of services from which the user can then select manually.

Fig. 4. GUI Panel for Building Search Requests

Feta: A Light-Weight Architecture 29

Fig. 5. GUI Panel for Displaying Search Results

We currently consider the query interfaces to be preliminary. Although more
expert bioinformaticians are comfortable with this kind of boolean query in-
terface, many biologists are not. We would like to pursue further integration
within Taverna to alleviate this need. In particular, we pursue the use of work-
flow context to filter services. Hiding the explicit use of semantic service discov-
ery should enable it to become a more natural part of the process of workflow
building.

7 Discussion

In this paper, we have described our application of Semantic Web technologies
to service discovery within bioinformatics. On the whole, the distinctive features
of our system are: 1) Its light-weight semantic support 2) Its semi-automatic
approach to discovery 3) Its user-oriented capability-based model that enables
discovery.

Within Feta we have adopted light-weight semantics, using an RDF(S) clas-
sification and entailment, as this appears to be sufficient in this domain. There
is an increasing urgent demand for a publicly available registry and associated
search facilities. Our choice of an RDF(S) backend has enabled development and
deployment of a system with low complexity, without precluding migration to
a richer semantic framework based on OWL when required. Currently, we have
found that reasoning technologies are useful during construction of a domain on-
tology [19]. However our assessment is that there is a limited role for reasoning
technologies in enabling user oriented service discovery. The level of expressivity
that the system can cope with is limited not by the complexity of the reasoning
task but by the requirements of the biologist end users who develop both the

30 P. Lord et al.

service advertisements and discovery queries, and the capabilities of the user
interfaces that are used in their generation.

It is possible that satisfiability checking would prove useful during the gener-
ation of service descriptions, as the ontology could be used to express constraints
on the use of the vocabulary over and above those already provided by the Pe-
DRo user interface. For example, services descriptions with DNA Sequence inputs
and outputs, but performing a Protein Analysis task are likely to be erroneous.
However, this sort of constraint checking would require a substantial extension
to the ontology. It would also require significant ontological engineering knowl-
edge from the curators; this is likely to discourage the community involvement
vital to the development of an accurate representation of the domain [2].

Although we have concentrated on providing appropriate user interfaces and
tool support for the process of semantic service description and discovery, there
are still some areas of weakness. The myGrid ontology, in particular, is a key
component of the architecture; without an appropriate model of the bioinfor-
matics, we will not be able to provide appropriate service discovery. There is
currently no way for service providers and consumers to provide feedback on
this model at the point of use. The Bio-Moby project [17] has a more open and
collaborative approach to ontology building, but lacks the quality control that
myGrid’s curatorial approach provides. Better tooling should enable us to take
advantage of the best features of both these approaches.

The Semantic Web has always been envisaged to have levels of expressivity–
as typified by the Semantic Web Layer Cake [4]. Much of the work on semantic
web services has focused on the upper levels of the expressivity. In common with
other authors [9], we have found that “being light-weight and flexible trumps
other features”. We believe that our XML and RDF(S) based architecture ful-
fils most of the requirements of the bioinformatics domain while retaining the
simplicity, which enables us to adapt service discovery to the specific nature of
bioinformatics. We suspect that the use of such light-weight architectures with
appropriate data models are likely to be very useful in many other domains.

References

1. S. Arroyo, M. Stollberg, and Y. Ding. WSMO Primer. DERI Working Draft v01,
2004.

2. M. Bada, R. Stevens, C. Goble, Y. Gil, M. Ashburner, J. A. Blake, J. M. Cherry,
M. Harris, and S. Lewis. A Short Study on the Success of the Gene Ontology.
Accepted for publication in the Journal of Web Semantics, 2004.

3. T. Bellwood. UDDI Version 2.04 API Specification. UDDI Committee Specifica-
tion, OASIS, July 2002.

4. T. Berners-Lee. Semantic web. XML2000, 2000. http://www.w3.org/2000/Talks/
1206-xml2k-tbl/slide10-0.html.

5. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: Implementing the Semantic Web Recommendations. Technical report, HP
Labs, December 24th 2003.

6. K. L. Garwood, C. F. Taylor, K. J. Runte, A. Brass, S. G. Oliver, and N. W. Paton.
Pedro: a configurable data entry tool for XML. Bioinformatics, page bth251, 2004.

Feta: A Light-Weight Architecture 31

7. P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble,
and L. Stein. Applying semantic web services to bioinformatics: Experiences
gained, lessons learnt. In International Semantic Web Conference, pages 350–364,
2004.

8. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara.
Bringing Semantics to Web Services: The OWL-S Approach. In First International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), Lecture Notes in Computer Science. Springer, July 2004.

9. R. Masuoka, B. Parsia, and Y. Labrou. Task computing - the semantic web meets
pervasive computing -. In Proceedings of 2nd International Semantic Web Confer-
ence (ISWC2003), Sanibel Island, Florida, October 2003.

10. K. Michalickova, G. D. Bader, M. Dumontier, H. Lien, D. B. R. Isserlin, and C. W.
Hogue. SeqHound: biological sequence and structure database as a platform for
bioinformatics research. BMC Bioinformatics, 3(32), 2002.

11. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

12. M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. Towards a Semantic
Choreography of Web Services: from WSDL to DAML-S. In In Proceedings of the
International Conference on Web Services (ICWS 2003), pages 22–26, 2003.

13. E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services
using semantic descriptions. In Web Services: Modeling, Architecture and Infras-
tructure workshop in ICEIS 2003, Angers, France, April 2003.

14. R. Stevens, C. Goble, P. Baker, and A. Brass. A Classification of Tasks in Bioin-
formatics. Bioinformatics, 17(2):180–188, 2001.

15. R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble, A. Brass,
and M. Tassabehji. Exploring Williams Beuren Syndrome Using myGrid. In Bioin-
formatics, volume 20, pages i303–310, 2004. Intelligent Systems for Molecular
Biology (ISMB) 2004.

16. D. Tran, C. Dubay, P. Gorman, and W. Hersh. Applying task analysis to describe
and facilitate bioinformatics tasks. Medinfo, 2004:818–22, 2004.

17. M. D. Wilkinson, D. Gessler, A. Farmer, and L. Stein. The BioMOBY Project Ex-
plores Open-Source, Simple, Extensible Protocols for Enabling Biological Database
Interoperability. Proc Virt Conf Genom and Bioinf, 3:16–26, 2003.

18. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating experiments using semantic data on a bioinformatics grid.
IEEE Intelligent Systems, 19(1):48–55, 2004.

19. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. The
International Journal of Cooperative Information Systems, 12(2):597–624, 2003.

Optimally Distributing Interactions Between
Composed Semantic Web Services

Ion Constantinescu, Walter Binder, and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Artificial Intelligence Laboratory,
CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. When information services are organized to provide some
composed functionality, their interactions can be formally represented as
workflows. Traditionally, workflows are executed by centralized engines
that invoke the necessary services and collect results. If services are clus-
tered (e.g., based on geographic criteria), locally routing intermediary
results between services in the same cluster can be more efficient.

This paper has several contributions: First, it presents a framework
allowing the execution of workflow parts to be mediated by special
execution sites. Second, we describe a trigger-based mechanism allowing
partial results to be routed between execution sites. Finally, we present
an approach for optimally computing the distribution of workflow parts
to execution sites accordingly to an integrated cost model for workflow
execution. The model is created by merging cost-models provided
by individual execution sites trough a Contract Net task brokering
protocol. The models consider cost measures for service activation,
parameter transfer, and service execution.1

Keywords: Service composition, service execution, distributed comput-
ing, invocation triggers, workflows.

1 Introduction

A considerable amount of recent research work has focused on the automated
composition of agent and web services based on a semantic description of user
requirements and service capabilities [7, 3, 4, 9, 2].

Interactions between individual services can be organized according to con-
straints (e.g., data dependencies) so that they provide some required functional-
ity that none of the individual services could offer alone. The resulting interac-
tions can be represented as a workflow which specifies in which order the indi-
vidual services have to be invoked and how data has to be passed between these

1 The work presented in this paper was partly carried out in the framework of the
EPFL Center for Global Computing and supported by the Swiss National Funding
Agency OFES as part of the European projects KnowledgeWeb (FP6-507482) and
DIP (FP6-507483).

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 32–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimally Distributing Interactions 33

START

Book
Flight

NY-Paris Book
Hotel
Paris

Book
Taxi NY

Book
Flight

Paris-Barcelona

Book
Hotel

Barcelona

END

Fig. 1. Travel planning workflow

services. Some workflow specifications may include conditionals [2] or loops [3].
In this paper we consider workflows that do not have conditionals or loops. Also
we do not consider transactions and semantic compensation of the effects of
service invocations.

Usually, a workflow is executed in a centralized way, either by the client who
needs the service or by a server that acts as workflow execution engine. While this
approach gives complete control over the workflow execution to a single entity
(which may monitor the progress), it may lead to inefficient communication,
as all intermediary results are transmitted to the central workflow execution
site.

When services are clustered together, transmission of the intermediary results
to the client may significantly degrade the performance of the overall workflow
execution. Consider the following travel scenario: On behalf of its user living in
New York, a Personal Agent (PA) has to book travel arrangements for a trip to
Paris and to Barcelona. For this purpose, a workflow as in Fig. 1 has been created
(possibly by a semantic web services composition algorithm as in [2]) that books
a plane ticket from NY to Paris, arranges a Taxi drive from the home of the
user to the airport in NY, books a hotel in Paris, books a plane to Barcelona,
and finally reserves a hotel in Barcelona. If we consider that the geographical
distribution of the services to be invoked is reflected by the computational cost
of the execution of the workflow (e.g., remote interactions between NY and Paris
and Barcelona might be slow) the classical solution of centrally executing the
workflow might not be the best.

In this paper we propose an alternate solution adapted to this kind of scenar-
ios (clustered services). In our approach, the invocation of services listed in the
workflow is not direct but rather mediated by an extra layer of execution sites
situated closely to the services to be invoked. These sites are able to provide cost
measures regarding the invocation of services and the transfer of partial results
between execution sites. For managing the routing of partial results, execution
sites use the concept of service invocation triggers, short triggers [1]. Each in-
vocation of a service has an associated trigger configured on a given execution
site. A trigger is able to collect the required input data before it invokes the
service, i.e., triggers are also data buffers. Partial results can be sent to one or
more triggers on the same execution site or on other execution sites, meaning
that triggers also support multicast. According to the cost measures proposed by
the execution sites, a workflow is optimally decomposed in several parts. Each

34 I. Constantinescu, W. Binder, and B. Faltings

part is assigned to an execution site and triggers are configured for handling the
required data-transfers.

Once the trigger for the first services in the workflow have received all input
data, the associated services are invoked and the outputs are forwarded to the
triggers of subsequent services. Consequently, the workflow is executed in a fully
distributed way, the actual service invocations are done with small overhead due
to the “closeness” of execution sites, and the data is transmitted directly from
the producer sites to all consumer sites.

In the next section we present the formalism that we use for specifying dif-
ferent kinds of workflows and we list some of the assumptions that we use for
the rest of the paper. Then in Section 3 we explain our approach to mediated
and distributed workflow execution and we introduce the concept of service in-
vocation triggers. In Section 4 we present an overview of the operation of our
system, giving the main steps required for computing the optimal distribution of
an workflow. Section 5 presents more details regarding how the integrated cost
model is computed and in Section 6 we show how the optimal assignment for the
workflow distribution is generated from the integrated cost-model. In section 7
we present more details regarding the API for creating and manipulating trig-
gers on execution sites. In section 8 we consider the handling of failures during
the execution of a composed service. In section 9 we compare our approach with
some related work. Finally, the last section concludes this paper.

2 Formalism and Assumptions

We model our system using a formalism similar to OWL-S (http://
www.swsi.org) or WSMO (http://www.wsmo.org) that describes services and
service workflows. We differentiate between services and workflow descriptions
that include only functional aspects, grounded service and workflow descriptions
that specify also pragmatic aspects relevant to the usage of the service, and cost-
annotated workflows that specify also cost measures for different operations in
the life-cycle of a web service.

Services are described functionally by a set of input (required) and a set
of output (provided) parameters. Each input (resp. output) parameter has an
associated name that is unique within the set of input (resp. output) parameters.
In this paper we do not consider the type of parameters, as we assume that
whenever a service receives an input for a particular parameter, the actual type
of the passed value corresponds to the formal type of that service parameter.
We assume that services are invoked by some sort of remote procedure call
(RPC), such as SOAP RPC [8]. The input values for the service parameters
are provided in a request message, the output values are returned in a response
message. Asynchronous (one-way) calls can be easily mapped to RPC, which is
actually the case for SOAP over HTTP.

A workflow is defined by a set of service invocation steps and a set of data
dependencies between required parameters and available parameters. The work-
flow itself can be seen as a composed service with a number of input and output

Optimally Distributing Interactions 35

parameters. We assume that workflows are consistent regarding any semantic
and syntactic constraints that appear in the functional service descriptions. This
could be straightforward when the workflows are generated by automatic proce-
dures like the type-compatible service composition algorithm described in [2].

A service grounding makes reference to a functional service description and
specifies in addition the pragmatic aspects needed for the actual usage of the
service, like transport endpoint details.

A grounded workflow makes reference to a non-grounded workflow and to
the respective set of service invocation steps and set of data dependencies. In
addition, a grounded workflow specifies a set of groundings and a set of bindings
which associates a grounding from the set of groundings to each step in the
service invocation set.

A cost-annotated workflow extends a normal workflow by introducing a set
of groundings and defining execution cost-measures as functions between the
groundings and the workflow steps and data-dependencies. A cost-annotated-
grounded workflow specifies also the binding of different groundings to different
steps, thus allowing for an exact value for the cost of the workflow execution to
be computed.

Formally we define a workflow W as a directed acyclic graph W =< S, T >,
where S, the set of nodes, contains steps that refer to functional service profiles
and T , the set of edges, contains data dependencies specified as tuples of the
form < s1, s2 > where s1, s2 ∈ S. Any workflow graph contains two special
nodes sstart and send to model the parameters provided as input to the workflow,
respectively required as output results. sstart has no data-dependencies and there
are no services having data-dependencies on send.

We defined a grounded workflow GW as a tuple containing the same sets S
and T as the workflow W above but extended with a set of service groundings G
and a set of bindings B: GW =< S, T,G,B >. The set G contains groundings for
the functional services referred from steps in S. The set of bindings B contains
tuples of the form < s, g > where s ∈ S and g ∈ G.

We define a cost-annotated workflow CW as a tuple containing all the sets
as the grounded workflow GW excepting the set of bindings B but including
three cost functions CG, CS and CT : CW =< S, T,G,CG, CS , CT >. The three
functions correspond to operation costs for each of the three main stages in the
life-cycle of a service:

– Service activation CG(g) : G → R. Any service in the frame of a workflow
must be activated once, prior to its first invocation. This is independent on
how many times a service is used in the workflow. This could correspond to
the installation of some infrastructure-required components like local client
stubs or third-party applications. The CG function defines the cost of activat-
ing the service specified by the grounding g as a real value. The configuration
costs of the triggers presented below can be included in cost returned by the
function.

– Parameter transfer CT (t, g1, g2) : T ×G×G → R. In order to be able to exe-
cute a service, its parameters must be transferred from the execution site cor-

36 I. Constantinescu, W. Binder, and B. Faltings

responding to the service prior in the workflow graph (possibly sstart). The
CT function defines the cost of transferring the parameters specified in the
data-dependency t between the execution sites specified in the groundings g1

and g2 corresponding to the two services involved in the data-dependency.
– Service execution CS(s, g) : S×G → R. After the service has been activated

and its input parameters have been transferred to the current execution site,
the service can be executed. The CS function defines the execution cost of the
workflow step s when the service in the step uses the grounding g. Please note
that this cost could include the cost for transfering the parameters between
the execution site specified in the grounding g and the actual service.

We define a cost-annotated-grounded workflow as a combination be-
tween the grounded and cost-annotated workflows above as the tuple:
CGW =< S, T,G,B,CG, CS , CT >. The cost of this kind of workflow can be
uniquely computed as the sum of activation costs for components included in
at least one binding plus the sum of the data-transfer costs and execution costs
taking into the consideration service groundings as specified by the bindings in
B. This can be expressed formally by the formula:

cost(CGW) =
∑

g∈G, ∃<s,g>∈B CG(g)+
∑

<s1,s2>∈T, ∃<s1,g1>∈B, ∃<s2,g2>∈B CT (< s1, s2 >, g1, g2)+
∑

s∈S, ∃<s,g>∈B CS(s, g).

3 Service Invocation Triggers

In this section we give an overview of service invocation triggers, a concept that
we use to model the management of execution sites. A service invocation trig-
ger, in short trigger, is configured on an execution site and corresponds to one
invocation of a service. Basically, the trigger together with the underlying exe-
cution site can be considered a specialized proxy for a single service invocation.
A trigger plays four different roles:

1. It collects the input values for a service invocation.
2. It acts as a message buffer, as each input value may be transmitted by a

distinct sender at a different time.
3. It triggers the service invocation when all required input values are available

(synchronization).
4. It defines the routing of service output values. Each output value may be

routed to multiple different triggers. That is, a trigger is capable of multi-
casting.

With the aid of triggers it is possible to distribute the knowledge concerning
the data dependencies of the services within a workflow. The main difference

Optimally Distributing Interactions 37

between the workflow itself and the corresponding triggers is not in the infor-
mation which is more or less the same, but in the fact that the triggers are
distributed on different execution sites. Each trigger defines the service that it
will have to invoke. The trigger waits until all required input values are available
before it fires (i.e., triggers the service invocation). Moreover, each trigger encap-
sulates workflow-specific knowledge where the results of the service invocation
are needed. As the trigger (enacted by the underlying execution site) behaves
as a proxy for the service, it handles the results of the service invocation and
forwards them to other triggers or services according to its routing information.

In order to illustrate the advantages of using triggers let’s compare how the
workflow presented in the introduction would be executed, first in the classic case
of a centralized workflow engine and secondly in an environment where triggers
and execution sites are used.

In the first case (Fig. 2 (a)) the centralized execution of the workflow would
require a number of direct request-reply interactions with the services involved:
booking a flight and a taxi in NY, booking a hotel in Paris and a flight to
Barcelona, booking a hotel in Barcelona. This will result in 5 request-reply in-
teractions amounting to 10 messages, all possibly carried over slow data-links.

In the second case (Fig. 2 (b)) the results for booking the flight in NY could
be directly fed to the hotel booking service in Paris; this service could send its
time constraints directly to the service booking the hotel in Barcelona which
could locally forward the booking result for booking the Paris-Barcelona flight;
in turn the flight booking in Paris could directly send the arrival time to the hotel
booking service in Barcelona. Finally all booking results could be returned as an

Flight
NY-Paris Taxi NY

Hotel
Paris

Flight
Paris

Barcelona

Hotel
Barcelona

NY execution
site

Paris
execution site

Barcelona
execution site

Flight
NY-Paris Taxi NY

Hotel
Paris

Flight
Paris

Barcelona

Hotel
Barcelona

(a) Centralized Execution (b) Distributed Execution

service
client service

execution
site trigger "close" interactions

Fig. 2. Centralized and distributed execution of workflows using triggers and execution

sites

38 I. Constantinescu, W. Binder, and B. Faltings

acknowledgment to the service client. In the right-hand side of the diagram we
have figured with a thinner dashed line the interactions between the execution
sites and services. We assume that execution sites are very “close” to the services
that they have to invoke and thus this invocation costs are much lower than the
cost of the long-haul messages exchanged between the service client and the
execution sites. In this case only 4 long-haul messages (thick lines) are needed,
much less than the 10 required in the previous case.

Using triggers, many different schemes of workflow execution can be imple-
mented. The case that all triggers are to be hosted by the same execution site
corresponds to a classic centralized workflow execution model. If each trigger
is installed to an execution site “close” to the service that it will invoke, the
workflow is executed in a fully distributed way, delivering intermediary results
only to those places where they are needed. Our framework does not dictate
any of these two extreme settings, allowing for any combination of triggers and
execution sites.

Still different distributions of triggers to execution sites might result in work-
flows that will execute with different performance metrics. In the next section
we will present the main contribution of this paper, a generic approach for com-
puting the distribution of triggers over a set of execution sites such that the total
workflow execution cost is minimized.

4 Computing Workflow Distributions for Optimal
Execution

The system presented here addresses the issue of optimally invoking services in
a workflow through a mediation layer, according to some cost measures which
reflect the clustering of these services according to some criteria (e.g., geographic
distribution). This corresponds to the following problem: Given a workflow, we
have to establish how to distribute the triggers corresponding to the invocations
of the services in the workflow on a set of available execution sites. The process
for achieving that (Fig. 3) comprises the following steps:

1. Send an initial workflow W =< S, T > to all relevant execution sites as a
Call For Proposals (CFP) (http://www.fipa.org/specs/fipa00029). The
list of recipients is explicit – each recipient will know all other recipients.
Please note that in the case of large numbers of available execution sites
some filtering might be used when deciding which execution sites might be
“relevant” but we do not address this issue in the current paper.

2. Each execution site returns a cost-annotated workflow CW that presents the
execution site’s perspective on how the services in the initial workflow could
be grounded. The returned CW will also include the costs of activation, data-
transfer and execution, again from the perspective of the current execution
site.

3. The groundings and cost functions from cost-annotated workflows received
as response to the CFP are merged together.

Optimally Distributing Interactions 39

CFP - W

BarcelonaParisNY

NY Paris Barcelona

Propose - CW Propose - CW Propose - CW

1

2

Merge CWs
3

2 2

COP
solver

create and
solve COP

Bound CGW

T

Integrated CW

4

CGW - configure triggers

BarcelonaParisNY

5

Integrated CW

Fig. 3. Computing workflow distributions

4. From the new merged cost-annotated workflow, a Constraint Optimization
Problem (COP) is created and solved. The solution of the COP represents a
cost-annotated-grounded workflow CGW and specifies the optimal binding
for the services such that the workflow cost is minimized. From the CGW
we can determine what triggers have to be created on what execution site
and how the results should be routed between execution sites.

5. Finally, the triggers are configured on the concerning execution sites accord-
ingly to the CGW obtained as a solution to the COP and the distributed
execution of the initial workflow can be started.

5 Generating Cost Measures for Workflow Execution

The first three steps in the process listed above correspond to the generation
of a cost model regarding the possible invocation of the services listed in the
workflow from any of the possible execution sites.

For this purpose, we use an approach based on a modified version of the
FIPA Contract Net Protocol (http://www.fipa.org/specs/fipa00029). In the
original version agents bid for solving a given task. Our case is slightly different
in that the call includes several tasks and the agents/services have to know each
other (in order to report peer-wise data-transfer costs). Hence, one shortcoming
of our system is that it assumes cooperative services. We consider the case of
competitive services as future work.

After receiving the Call For Proposal (CFP) with the initial workflow W ,
each execution site creates a cost-annotated workflow CW that specifies pos-
sible groundings for the services referred in the steps of the original workflow,
groundings either locally available or exposed by other execution sites. Also the

40 I. Constantinescu, W. Binder, and B. Faltings

service specifies the three cost functions CG, CT and CS for service activation,
data-transfer and service execution, costs relative to the current execution site.
The service activation and execution function report costs only when the exe-
cution site referred in the grounding parameter of the functions is the current
execution site. Please note that the execution cost could include the cost of
transfering parameter data between an execution site and a “local” service. The
data-transfer cost function reports costs only when one of the two execution
sites involved in the link is the current site and the other site involved in the
link is a remote site. The meaning of the data-transfer cost-function CT (t, g1, g2)
is relative to the current execution site: when g1 is the current execution site
and g2 is a remote execution site, the function result represents the cost of send-
ing the parameter data from the current site remotely; conversely when g1 is
a remote execution site and g2 is the current execution site the function result
represents the cost for the current execution site to receive the parameters data.
We consider two different costs for sending and receiving data between execu-
tion sites, since communication links are frequently asymmetric both in what
concerns the technical parameters and regarding multi-provider business agree-
ments. The data-transfer cost function should reflect some measure of locality
(e.g., for an execution site in Paris, the cost for invoking a service in Paris should
be lower than the cost for invoking a service in Barcelona).

Finally each execution site returns a cost-annotated workflow CW in the
form of a Propose message. As the initial CFP might specify also a deadline or
timeout, execution sites not providing responses in the given time frame will be
discarded from the computations done in the next steps. The process continues
if at least one response is received; otherwise a failure is returned.

6 Computing an Optimal Trigger Assignment

For computing the optimal assignment of triggers, we first merge the ground-
ing and cost information in the cost-annotated workflows received as responses
to the CFP. Then from the initial set of steps and data-dependencies and the
merged sets of groundings and merged cost-functions we create an integrated
cost-annotated workflow CW . Finally from the integrated workflow we create
and solve a Constraint Optimization Problem (COP), a particular case of Con-
straint Satisfaction Problem (CSP).

Merging the sets of groundings is straightforward – a new set is created as the
union of the grounding sets in the received CGs, where the duplicates are dis-
carded. Merging service activations and execution costs is also straightforward
– the new cost functions will just aggregate the costs of activation and execu-
tion functions in the received CGs. For data-transfer functions CT (t, g1, g2) the
merged cost function returns the sum of the costs of transferring data between
execution sites as reported by the two sites specified by the groundings of the
link binding. I.e., the total cost of data-transfer will be computed as the sum of
the cost reported by the site in g1 for sending the parameter data to g2, plus the
cost reported by the site in g2 for receiving the parameters from the site in g1.

Optimally Distributing Interactions 41

Formally, we define a constraint optimization problem (COP) as the tuple <
X,D,C,R > where:

– X = {x1, x2, ..., xn} is a set of n variables.
– D = {d1, d2, ..., dn} is the set of domains of the n variables in X, each given

as a finite set of possible values.
– C = {c1, ..., cm} is a set of m constraints, where a constraint ci is given as

the list (xi1, ..., xik) of variables it involves.
– R = {r1, r2, ..., rm} is a set of relations, one for each of the m constraints,

where a relation ri is a function di1×...×dik → R+ giving the cost of choosing
each combination of values. Combinations that are not allowed have a very
high cost (∞).

A solution is a combination of values v1 ∈ d1, ..., vn ∈ dn such that the sum of
the cost of the relations is minimal and different from ∞. Otherwise we consider
that the COP has no solution.

We create a COP from the annotated workflows received as responses of the
CFP as follows:

– X contains a variable for each step of the initial workflow (each execution of
a service), for each data-dependency of the initial workflow (each parameter
that needs to be transferred between services), and for each grounding in
the new set of merged service groundings (each service that might need to
be activated).

– The domains of the variables corresponding to executions of services con-
tain as values the possible groundings for the respective service from the
merged service grounding set. The domains of variables corresponding to
data-dependencies between services contain as values tuples corresponding
to all combinations of groundings for the two steps in the data-dependency,
corresponding to all reported combinations of senders and receivers. For k ex-
ecution sites, we have maximum k(k−1) possible values. For example, in the
case of three execution sites ESNY , ESParis, ESBarcelona, we have six pos-
sible values: ESNY −ESParis, ESNY −ESBarcelona, ESParis−ESNY , etc.,
corresponding to a data transfer between execution sites in NY and Paris,
NY and Barcelona, Paris and NY, etc. The domains of service-activation
variables corresponding to groundings in the set of merged groundings have
two boolean values representing the fact that the service has to be activated
or not in the current COP solution.

– In C and R we have two kinds of constraints and costs: activation and data
transfer. These constraints link execution variables to activation and data-
transfer variables, making sure that once a grounding is chosen for executing
a service the grounding is going to be activated (the corresponding grounding
activation variable is going to be true) and the required input parameters will
be available (the values of the variables corresponding to the data-transfer
links ending at the current step will have to have the target grounding as
the grounding chosen for the execution step). For example, a variable cor-
responding to a node in the workflow is assigned the value ESParis. Then

42 I. Constantinescu, W. Binder, and B. Faltings

the generated constraints ensure that the respective grounding has been acti-
vated and that all the data-dependencies (edges entering the respective node)
are fulfilled by being assigned values of the form ∗−ESParis (incoming data
transfers).

Finally we solve the formulated COP using a state of the art commercial
Java solver for constraint optimization problems. Still since there might not be
enough responses received from the execution sites by the deadline of the CFP
the COP might not have a solution in which case a failure is returned.

7 Defining Triggers

In this section we present more details regarding the installation of triggers.
In our description we use the following abbreviations for identifying services,
respectively triggers:

[SID:] Service ID. Globally unique identifier of a service to be executed. It
consists of host, port, protocol, and local service identifier (e.g., service name
and version number, depending on the protocol). SIDs are computed from
concrete service descriptions (including grounding information).

[PID:] Parameter ID. Locally unique identifier for a service input or output
parameter.

[TID:] Trigger ID. Globally unique trigger identifier. It consists of details
regarding the underling execution site like host and port. It also contains
a local trigger identifier (e.g., an integer number referring to an invocation
trigger).

Below we present a simple API to deal with triggers in an abstract way:

[CreateTrigger:] Creates and installs a trigger.

Arguments:
– Destination of the trigger (host and port). CreateTrigger will ask the

destination execution site to set up the desired trigger.
– SID. The service to be invoked by the trigger.
– Service input parameters to wait for. Each parameter is identified by its

PID. A parameter may be required or optional. The trigger will fire as
soon as all required parameters are available. As for a given parameter
multiple values may arrive before the trigger fires (while still some of the
required parameters are missing), the client has to define which values to
preserve: preserveLast or preserveFirst. If values for optional input
parameters arrive before the trigger fires, they will be passed to the
service. After the trigger has fired, arriving inputs are discarded.

– Optional: Input data. For each input parameter a default value may be
provided. This value could be transmitted with SendData (see below),
but including it in CreateTrigger may be more efficient and help to
reduce network traffic.

Optimally Distributing Interactions 43

– Output routing. For each output value (identified by a PIDO) generated
by the service SID, the output routing defines a possibly empty list of
pairs (TIDi, PIDi) to forward the output. That is, whenever the service
SID returns an output value for the parameter PIDO, the trigger will
forward it to all TIDi with the name PIDi, implementing a multicast.
If there is a communication problem with a trigger TIDi, the trigger will
retry to forward the data several times in order to overcome temporary
network problems.

– Desired timeouts:
1. Timeout to wait for inputs, starting with the installation of the trig-

ger. If not all required input data arrives before this timeout, the
trigger will be discarded.

2. Timeout to wait for service completion, starting with the service
invocation.

3. Timeout to wait for completed forwarding of service outputs, starting
when the trigger receives the results of the service invocation.

– Optional: Destination for failure notification message (host, port,
protocol). In the case of a failure (i.e., service returning a failure
message or expiration of one of the timeouts mentioned before), a failure
notification is sent before the trigger is discarded, including information
concerning the current state of the trigger. The level of detail of this
notification can be configured. The message may simply indicate the
reason of the failure, or it may include service inputs resp. outputs the
trigger has received so far. This information may help the client to
recover from the failure.

Results:
– TID of the installed trigger (if the trigger was accepted).
– Granted timeouts. Each granted timeout may be the desired timeout or

shorter.

[RemoveTrigger:] Explicitly removes a trigger. Normally, a trigger is removed
automatically if either a timeout occurs or if the output routing task is
completed, i.e., all outputs have been forwarded according to the trigger’s
routing information.

Arguments:
– TID. The trigger to remove.

[SendData:] Sends input data to a trigger. Normally, triggers receive results
either by initialization (see the input data of CreateTrigger) or through
other triggers (forwarded results from another service). However, a client
may want to install a trigger and provide input data later on.

Arguments:
– TID. The trigger to send data to.
– Input data. For each input parameter a value may be provided.

44 I. Constantinescu, W. Binder, and B. Faltings

[Status:] Returns information concerning the status of a trigger. I.e., whether
the trigger is still waiting for required input, which input arguments have
been received so far, whether it has already triggered the service, whether
it is waiting for the service outputs, etc.

Arguments:
– TID. The trigger to ask for its status.

Results:
– Status information.

Three different protocols are involved in the communication with triggers and
services:

– The trigger communicates with the service using remote procedure calls (e.g.,
SOAP RPC [8]). That is, the trigger is transparent to the service, it behaves
as any other client.

– The communication between triggers is unidirectional. A trigger forwards
results to another trigger. The messages sent from trigger TA to trigger TB

contains at least one value for an input parameter TB is waiting for. Even
though the communication protocol between triggers need not necessarily
comply with standards, SOAP messages are well suited for trigger commu-
nication. If the triggered service returns a fault message, the trigger does
not forward the message on the normal output routing path, but it may
generate a failure notification message (if specified in CreateTrigger). Sub-
sequent triggers will notice the failure by a timeout.

– A dedicated, simple protocol supports the API primitives described before.
For instance, CreateTrigger will try to deploy a trigger on the specified
destination platform.

8 Failure Handling

In our approach composed services are executed in a completely distributed
way. Therefore, it is not easily possible to monitor the progress of each service
invocation. As the client will only receive the final results of the composed service,
in general it will notice a failure only after a timeout. In this case, the client may
restart the execution of the workflow.

If the used services are not reliable, this approach may result in bad over-
all performance, since intermediary values may have to be computed multiple
times. Hence, the client should make use of the failure notification mechanism
in order to collect partial results that had been computed before the failure has
happened. Based on the failure notification mechanism, the client could exploit
redundant execution plans in order to replace a failed service. As an alternative
(but inefficient) solution, if the distributed execution of a composed service fails,
the client could simply re-execute the workflow in a centralized fashion (fallback
solution).

Optimally Distributing Interactions 45

The client may also use the Status primitive of triggers in order to monitor
the progress of the execution. Note that Status will fail if the trigger has already
been removed (i.e., after a timeout or after completing its task). However, Status
creates additional network traffic, therefore an excessive use of this primitive is
not consistent with the principal idea of our approach to minimize the network
traffic involving the client.

9 Related Work

The Internet indirection infrastructure i3 (http://i3.cs.berkeley.edu/) uses
triggers to decouple sender and receiver [6]. In contrast to our triggers, i3 triggers
work on the level of individual packets and do not support waiting conditions
(synchronization) to aggregate multiple inputs from various locations before for-
warding the data. i3 supports only a very limited form of service composition,
where individual packets can be directed through a sequence of services. While
our triggers are rather transient (used only for a single service invocation) and
their placement is explicitly controlled by the client, i3 triggers are more per-
sistent (they act as a longer-term contact point for a service) and are mapped
to the Chord peer-to-peer infrastructure, which allows only a limited form of
optimizing the routing (by selecting a trigger identifier that will map close to a
desired location). Summing up, even though there are some ideas in common,
i3 has different goals (indirection, supporting mobility, multicast, anycast) and
works at a much lower level than our approach. Our focus is on the efficient
routing of intermediary results during the execution of composed services.

Another relevant approach is the SELF-SERV system[5]. The system archi-
tecture identifies three kinds of service: elementary, composite, and community.
The execution of composite services is managed by coordinators. The concepts
are similar to our definition of compositions as workflows and to our infras-
tructure of execution sites and triggers. The infrastructure presented in [5] is
rather complex but no clear details are presented regarding the instrumentation
for managing the coordination services or the way of choosing the appropriate
coordination service. In this paper we present a simple and clear approach for
instrumenting the management of execution mediators. Still the main contribu-
tion of this paper is the generic approach for choosing services and execution
sites. The distributed execution of the resulting workflow is optimal regarding
the costs of service activation, parameter transfer, and service execution.

10 Conclusion

When composed services represented as workflows are executed in a centralized
way, partial results might not be efficiently handled. In this paper we describe
a multilayered architecture where service invocation is mediated by execution
sites equipped with triggers – the equivalent of a service proxy. This approach
is advantageous regarding both the number of messages that have to be sent for

46 I. Constantinescu, W. Binder, and B. Faltings

executing the workflow and the possibility of having faster interactions between
services that are “closely” located.

The main contribution of this paper is an approach for computing the distri-
bution of triggers over a set of execution sites such that for a given cost-model
taking into account service activation, parameter transfer, and service execution,
the execution cost of the given workflow is minimized.

References

1. W. Binder, I. Constantinescu, and B. Faltings. Efficiently distributing interactions
between composed information agents. In Second European Workshop on Multi-
Agent Systems (EUMAS-2004), Barcelona, Spain, December 2004.

2. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service
composition. In IEEE International Conference on Web Services (ICWS-2004), San
Diego, CA, USA, July 2004.

3. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web
services. In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors,
Proceedings of the 8th International Conference on Principles and Knowledge Rep-
resentation and Reasoning (KR-02), pages 482–496, San Francisco, CA, Apr. 22–25
2002. Morgan Kaufmann Publishers.

4. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composi-
tion. In 11th World Wide Web Conference (Web Engineering Track), 2002.

5. Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak. Self-serv: A platform for
rapid composition of web services in a peer-to-peer environment. In VLDB, pages
1051–1054, 2002.

6. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection
infrastructure. IEEE/ACM Transactions on Networking, 12(2):205–218, Apr. 2004.

7. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing
web services from on-line sources. In Proceeding of the AAAI-2002 Workshop on
Intelligent Service Integration, pages 1–7, Edmonton, Alberta, Canada, July 2002.

8. W3C. Simple object access protocol (SOAP), http://www.w3.org/tr/soap/.
9. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web

services composition using SHOP2. In Proceedings of 2nd International Semantic
Web Conference (ISWC2003), 2003.

A POP-Based Replanning Agent
for Automatic Web Service Composition

Joachim Peer

MCM Institute, University of St. Gallen, Switzerland
joachim.peer@unisg.ch

Abstract. This paper illustrates how a modified version of a modern
Partial Order Planner (POP) can be combined with a replanning algo-
rithm to solve planning problems in Web service domains. The contri-
butions of the work are (i) a method of using feedback gained from plan
execution for improving plan search and (ii) a novel approach of dealing
with nondeterministic Web service operations.

1 Introduction

Web services are distributed software components that can be exposed and in-
voked over the internet. Commonly, interface description languages such as the
Web Service Description Language WSDL [1] are used to describe the syntactical
interface of a Web service and the message streams it uses to communicate with
its clients. In addition to that, semantic annotations can be created in order to
provide software agents with information to reason about the capabilities and
consequences of service operations.

In an environment of semantically annotated services, a user who needs to
achieve certain goals can be assisted by software agents which automatically
identify, invoke, compose and monitor services in order to accomplish the user’s
goals, which may be either explicitly stated or derived from the user’s current
situation.

Recently, several papers have investigated the potentials and boundaries of
applying AI planning techniques to derive Web service processes that achieve the
desired goals. It has been pointed out that automatic Web service composition
(WSC) differs from classical planning domains in several aspects [2, 3].

First, there is the problem of incomplete information: Many planning prob-
lems in the Web service domain require the querying of information-providing
services, for instance to check the availability of some product at an online re-
tailer. Therefore, the classical planning assumption of a complete initial state
description can not be maintained in the WSC domain. Further, there is the
problem of nondeterministic behavior of services: Web service operations may
fail during execution time or yield unexpected results, for instance when a re-
tailer suddenly runs out of stock of some product.

To be practically useful, agents have to be able to handle these contingen-
cies. In this paper, we describe how a modified Partial Order Planning (POP)

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 47–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 J. Peer

algorithm embedded in an execution monitoring agent can deal with the issues
mentioned above.

The remainder of this paper is structured as follows: In Section 2, we will
briefly describe the conceptual representation schema for Web services our work
is based on and in Section 3, we describe the semantics of service executions.
In Section 4, we present the structure of the planning problems our system
can handle. Then, in Section 5, we lay out our proposed solution and present
our contributions to the problem solving algorithms involved. In Section 6, we
present examples to illustrate the system and we present our preliminary empir-
ical tests. In Section 7, related work is discussed, followed by a summary of the
contributions of the paper in Section 8.

2 Representing Web Service Semantics

Currently, there exist several proposals for markup formats for semantic Web ser-
vices. Among them are OWL-S [4], WSMO/WSML [5] and the recent SESMA [6]
markup format. For the present work we chose SESMA, because it is easy to use
and provides convenient support to mark up nondeterministic service operations.

1

*

Operation Result

Effect

Success-
condition

0..1
1

Service

1 *

Precondition
0..1 1

Knowledge-
effect

I/O Variable

1

*

Fig. 1. Service representation in the SESMA model [6]

The syntax and semantics of the SESMA constructs are described in de-
tail in [6]; here we give a brief overview: In the SESMA model, each service
consists of a set of operations. Each operation can be written as a quadruple
op = 〈URI, Prec,Res, V ar〉. URI(op) denotes the unique identifier of the op-
eration. Prec(op) denotes the optional precondition formula of the operation,
which describes conditions that need to be satisfied when the operation is in-
voked. Res(op) denotes the set of possible results of the operation, which can be
effects and knowledge-effects ; both describe conditions that will hold after ser-
vice execution, but while the world state as a whole may be changed to achieve
an effect, the world state remains unchanged to achieve knowledge-effects ; only

A POP-Based Replanning Agent for Automatic Web Service Composition 49

<op-def name="getItemList" wsdl:portType="ShopA">
 <output>
 <var name="?item"
 wsdl:part="getItemListReturn"
 wsdl:path="Item/ean"/>
 <var name="?title"
 wsdl:part="getItemListReturn"
 wsdl:path="Item/title" />
 <var name="?desc"
 wsdl:part="getItemListReturn"
 wsdl:path="Item/description"/>
 </output>
 <knowledge-effect>
 <forall>
 <var name="?item" />
 <and>
 <s:in-catalog vendor="shopA.com"
 item="?item" />
 <s:has-title item="?item" title="?title" />
 <s:has-description item="?item"
 description="?desc" />
 </and>
 </forall>
 </knowledge-effect>
</op-def>

<op-def name="buyItem" wsdl:portType="ShopA">
<input>

 <var name="?item" wsdl:part="ean"/>
 <var name="?cc" wsdl:part="ccNr" />
 <var name="?ccexp" wsdl:part="ccExpDate" />
 </input>
 <precondition>
 <and>
 <s:have-creditcard owner="$client"
 nr="?cc" expires="?ccexp"/>
 <s:in-catalog vendor="shopA.com" item="?item"/>
 </and>
 </precondition>
 <output>
 <var name="?result" wsdl:part="buyItemReturn"/>
 </output>
 <effect>
 <!-- to be checked after invocation -->
 <success-condition lang="java">
 !("no".equals(output.get("?result")))
 </success-condition>
 <!-- the desired effect -->
 <s:possess owner="$client" item="?item"/>
 </effect>
 </op-def>

Fig. 2. SESMA markup for two operations

the world view of the agent may be affected by knowledge-effects. Since services
often behave nondeterministically, each result r ∈ Res(op) may have a suc-
cess condition SC(r), which can be used after service invocation to determine
whether or not the invocation did achieve the desired effects.

Further, the set Var(op) defines the variables used in the formulas, whereby
input variables are distinguished from output variables. The variable definitions
tell the agent how the values represented by the variables are syntactically en-
coded in the input and output streams sent to/received from the service.

To illustrate the constructs sketched above, we depict the SESMA descrip-
tions of two operations of a Web service ShopA.com in Fig. 2:

The operation on the left, buyItem, has a <precondition> that requires that
the client has a credit-card ?cc and that the item ?item to be purchased is in
the catalog of the shop. The operation has a single <effect>, which is that the
client will possess the specified product, if the effect’s <success-condition>,
which may be written as a Java(TM) snippet, evaluates to true after service
execution. The second operation, getItemList, has no precondition, but it has
a single <knowledge-effect> formula. The knowledge effect specifies that, for
all ?item-objects received from the service, there is an ?item in the catalog with
a title ?title and a description ?desc.

The <input> and <output> sections of the operations specify the WSDL
message parts and XML paths that identify the location of the variable values
in the input and output messages.

3 Semantics of Service Executions

3.1 Representing the World and Its Dynamics

We assume that the world is represented in terms of a state description. Formally,
we define a state s as a conjunction of positive atomic formulas (atoms) L1 ∧

50 J. Peer

sA

s

s'
A

s'

Eff(op)op
<URI, Pre, Res, Var>

Pre(op)

(a) World prior to
execution of op

(b) World after the
execution of op

P
P

Fig. 3. The world and its dynamics are represented by states and state transitions

... ∧ Ln. Consequently, for each Li ∈ s holds s |= Li and for each Li /∈ s holds
s � Li.

As illustrated by Fig. 3, we distinguish between the global state s of a world
and the state knowledge sA of an agent A who reasons about this world. We
assume that sA ⊆ s. This means that an agent may have incomplete knowledge,
but we do not assume that it has wrong knowledge.

The dynamics of the world are formalized as a state transition system, which
can be thought of as a labeled directed graph: The vertices of the graph are
the states, and the edges of the graph are the transitions that may take place,
labeled by the operations which cause the state transition. Fig. 3 illustrates a
transition from state s to a state s′, triggered by an operation op. As shown in
the illustration, the precondition Pre(op) is satisfied by s (and sA), which allows
the agent to invoke the operation. The operation has an effect Eff(op) which is
added to s′A. The operation also has a knowledge-effect; the consequence of the
knowledge effect is that the fact P , which the agent was unaware of in its state
sA is added to s′A, i.e. the agent becomes aware of P after the service execution.

3.2 Conversation Data Sets

Conversation data sets capture the data tokens that are exchanged between
clients and services at runtime. Conversation data sets are an important prereq-
uisite for evaluating SESMA formulas.

A conversation data set is a set of substitutions {θ1, ...θn}. We denote a
substitution as a finite set of the form θ = {x1/t1, ..., xn/tn}, where each xi is a
distinct variable and each ti is a constant, such that xi �= ti, for all 1 ≤ i ≤ n.
Note that the variables of an operation are defined in the set V ar(op) (cf. Sect. 2).
A substituted formula Fθ is a variant of formula F where all variables x in F
are replaced by a constant c if there is an element {x/c} ∈ θ.

Let us consider the role of conversation data sets and substitutions in service
execution:

– Substituting input variables: When invoking an operation op, the agent spec-
ifies the values certain input variables should have. This specification is rep-
resented by a conversation data set I and each substitution in I contains at
most one term ti for every variable xi of the input variables defined for the
operation.

A POP-Based Replanning Agent for Automatic Web Service Composition 51

– Substituting output variables: Analogously, the values returned by the ser-
vice are captured by a conversation data set O, which contains an arbitrary
number of substitutions ϑ, where each substitution contains at most one term
to for every variable xo of the output variables defined for the operation.

Let us illustrate this using the example markup of Fig. 2: For a particu-
lar invocation of the operation getPrice, the user might define the input data
set I = {{?item/44300}}, and the service might return an output data set
O = {{?price/79.00}}. The operation getItemList may return an output data
set O = { {?item/44300, ?title/CAM300, ?desc/WebCam}, {?item/44340,
?title/HS340, ?desc/HeadSet} }, which contains multiple substitutions, rep-
resenting catalog data of an online retailer service.

Next, we define how conversation data sets can be combined. We need com-
bined conversation data sets to materialize effects (cf. Sect. 3.5). We start by
defining the combination of substitutions: Given two substitutions θ = {x1/t1,
..., xk/tk} and ϑ = {xm/tm, ..., xn/tn}, we define the joint substitution θ + ϑ =
{x1/t1, ..., xk/tk, xm/tm, ..., xn/tn}. Given an input data set I and an output
data set O, we define the combined conversation data set C = I ⊗O as follows:
For each θ ∈ I and each ϑ ∈ O, C contains an element {θ + ϑ}.

3.3 Evaluating Preconditions

The precondition is evaluated against the state s, whereby the values in the
conversation data set I provide the substitutions for the variables in the precon-
dition. A precondition P is satisfied iff s |= Pθ holds, for every substitution θ in
the input data set I.

Since the agent is only aware of the subset sA of s it must test the precondition
against sA. As long as the agent can calculate the truth value of the precondition
using the literals in sA, it can conclude that the precondition is satisfied by s
as well. However, if the agent has to resort to closed world assumption, i.e. if it
assumes sA � L+ for some positive literal L+ /∈ sA, then there is the possibility
that the evaluation against sA differs from the evaluation against s.

3.4 Evaluating Success Conditions

As mentioned in Section 2, SESMA supports the markup of nondeterministic
service results. For instance, a payment Web service may send a note either
confirming the transaction or reporting a failure. When dealing with such non-
deterministic operations, the agent should only assert the effect of the operation
after it has executed it and after it received a confirmation of success. For in-
stance, the markup of the operation buyItem listed in Fig. 2 defines a success
condition which depends on the value of the output variable ?result.

SESMA success-conditions, which can be written either as declarative SESMA
formulas or as boolean Java(TM) expressions, contain the information needed
to determine the success or failure of an operation’s result(s). We formalize the
evaluation as a function eval(SC(r), sA, I, O) �→ {true, false}. The inputs to

52 J. Peer

this function are the success condition SC of the result r whose success is to
be determined, the known pre-execution state sA , the input data set I and the
output data set O. The output of the evaluation function is a Boolean value,
reflecting whether or not the result r did indeed occur and if the effect formula
can be materialized. If a result has no success condition, then eval will return
true as a default. Note that it is permitted that one effect of an operation occurs
while another effect of the same operation does not.

3.5 Materializing Effects

If an operation is executed without errors, then the successor state can be cal-
culated. All results of the operation, whose success conditions evaluate to true
or which lack a success condition, are considered; those results whose success
conditions evaluate to false are ignored.

A result formula E is materialized in a successor state s′ iff s′ |= Eϑ holds
for every substitution ϑ in the combined data set I ⊗O.

To formally describe the truth value of an atom A in a given state we intro-
duce the function val, which defines for each atom and for each state whether or
not the atom is true in that state. Given a state transition from state s to s′ by
invocation of an operation op, the function is defined as follows:

val(s′, A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if s |= Pre(op)θ for every θ ∈ I
and if there is a result r ∈ Res(op)
where eval(SC(r), sA, I, O) = true
and ∃ϑ ∈ (I ⊗O) such that rϑ |= A

false, if s |= Pre(op)θ for every θ ∈ I
and if there is a result r ∈ Res(op)
where eval(SC(r), sA, I, O) = true
and ∃ϑ ∈ (I ⊗O) such that rϑ |= ¬A

val(s,A), elsewhere.

The first case states that A is true in the new state s′ if (i) the precondi-
tion formula (whose variables are substituted by the input values) is satisfied
by the pre-execution state and if (ii) A is a consequence of a result formula r
(whose variables are substituted by the input and output values) and if (iii) the
function eval returns true for the result. Analogously, the second case describes
that A is not true in the new state, if ¬P is a consequence of a result of the
operation. The third case describes the situation where A is not affected by the
execution of the operation, which addresses the frame problem of logical action
descriptions.

From the agent’s perspective, a knowledge effect is treated (and materi-
alized) just like an effect. Nevertheless, there is a difference, which is worth
some consideration: A knowledge effect KE of an operation describes an effect
without side effects, i.e. it does not contribute to any changes occurring be-
tween s and s′, but it may alter the world view sA of the agent: the statement
[(s′ |= KEϑ) ⇒ (s′A |= KEϑ)] ∧ [(s′ � KEϑ) ⇒ (s′A � KEϑ)] holds, for every
ϑ ∈ (I ⊗O).

A POP-Based Replanning Agent for Automatic Web Service Composition 53

4 Planning Goals

Having set out the world the semantic Web service agents act in, we characterize
the structure and nature of the goals they are supposed to achieve: We view goal
descriptions as logical statements about the desired world state. We allow the
specification of goals in the form of literals (positive or negative atomic formulas)
and conjunctions and disjunctions of literals, whereby variables are treated with
existential quantification. For instance, the following SESMA construct is a valid
goal; it is a conjunction of non-ground literals and can be fulfilled by purchasing
an ?item that has a product id (EAN number) “1234”:

<and>

<possess who="client" what="?item" />

<has-ean item="?item" ean-nr="1234"/>

</and>

Further, we support the distinction between goal formulas that describe
achievement goals and goal formulas that describe information gathering goals.
Achievement and information gathering goals may be combined to form more
complex goal descriptions.

To distinguish information gathering goals from achievement goals, we intro-
duce the goal annotation find-out. A plan satisfying a goal formula G that is
annotated by find-out may not contain an operation that has an effect G′, if G
and G′ unify. Instead, plans that achieve the goal using knowledge-effects are
sought in this case. This concept is derived from the idea of maintenance goals
discussed in [7].

As an example, a goal <find-out> <n:color item=’?itm’ value=’?c’/>
</find-out> may only use operations that do not actively affect the color of
item ?itm; we would not want the agent to call an operation that sets the color
to some new value and then reports that newly assigned color. Instead, the value
should be gathered through a knowledge effect of an operation.

Goal expressions that are not annotated are interpreted as achievement goals,
with the usual semantics, i.e. the agent can do whatever is needed to make the an-
notated formula true in s′. For instance, the goal <n:possess item=’someID’/>
means that the agent can change the world state as necessary to achieve the goal.

5 The Proposed Replanning Agent

In the following we will describe the architecture and algorithms we propose to
solve problems in the world formalized as discussed in the last sections.

To deal with the nondeterministic nature of the domain and the arising con-
tingencies, we chose an execution monitoring architecture, where a classical plan-
ner – an extension of VHPOP [8] (Versatile Heuristic Partial Order Planner) –
is embedded in an execution monitoring engine. In Sect. 5.1 we briefly sketch
VHPOP and the extension we added to it to fit into the replanning architecture;
in Sect. 5.2 we then describe the replanning algorithm itself.

54 J. Peer

5.1 The POP-Based Kernel

VHPOP uses Partial Order Planning (POP), a well known planning technique
where the reasoner searches a space of plans. A partially ordered plan is repre-
sented as a quadruple 〈S,O,B,L〉, which consists of the following components:
S is a set of plan steps, i.e. instances of operations. O is a set of ordering con-
straints. Each ordering constraint is of the form si ≺ sj , which means that
the step si must be executed before step sj . If the set S of some plan π has
at least two steps sa and sb where O neither contains sa ≺ sb nor sb ≺ sa,
then π is a partially ordered plan. B is a set of variable binding constraints
on the parameters of action instances: Each variable constraint is of the form
var = x or var �= x, where var is a variable of some plan step and x is either
a constant value or a reference to a variable of some other plan step. If only
ground plan steps are used, then B = ∅. Finally, L is the set of causal links.
Causal links are used to keep track why a step was introduced to a plan and
to prevent other steps from interfering with that purpose. If a step si achieves
a proposition p to satisfy a precondition of step sj , the causal link si

p→ sj is
added to L.

Further, the following two derived sets are considered in partial order plan-
ning: (1) OC is the set of open conditions of a plan. An open condition

p→ s
emerges when p is a literal that is part of the precondition Prec(s) and when
there is no causal link sx

p→ s in L. In other words, open conditions are pre-
conditions of plan steps which have not yet been addressed by the current plan.
(2) UL is the set of unsafe links. A causal link si

p→ sj is called unsafe if there
exists a step sk ∈ S such that (i) ¬p ∈Eff(sk) and (ii) O is consistent with
{si ≺ sk ≺ sj}. In such a case, sk is said to threaten the causal link si

p→ sj .
The union of a plan’s open conditions and unsafe links is called the set F of
flaws of π, i.e. F(π) = OC(π) ∪ UL(π). A plan π that has no flaws is called
complete.

An open condition
p→ s can be resolved by introducing or reusing a plan

step that has an effect achieving p. On the other hand, a threat of a causal link
si

p→ sj by a step sk can be possibly resolved either by demotion, i.e. by adding
an ordering constraint sk ≺ si to O or by promotion, i.e. by adding sj ≺ sk to O.
If the planner uses lifted actions, i.e. if it allows action instances with variables
in their parameter lists, a threat can also possibly be resolved by separation,
that is by adding binding constraints such that p and ¬p can not be unified.

The way a planner navigates through plan space, i.e. the strategy it employs
to chose the plans to refine and the flaws to remove, determines the efficiency
of the planner. VHPOP utilizes a planning graph and several search heuristics
to steer the planning process into a fruitful direction; a discussion of these tech-
niques can be found in [8].

We have extended VHPOP by introducing a setAL (which stands for “Avoid-
Links”), which is provided as an additional argument to the main procedure
Make-Plan and is subsequently handed over to Refinements and its various
sub-routines, which are described in [8].

A POP-Based Replanning Agent for Automatic Web Service Composition 55

AL is a set of causal link patterns that must be avoided by the planner. This
means that none of the partial plans π ∈ P devised by the planner may contain
a causal link that matches a causal link pattern in AL.

A causal link pattern is a triple 〈x, p, y〉 where p is a literal, x is either an
operation op which has p in one of its results Res(op) or x is a wildcard (asterisk,
∗), and where y is either an operation op whose precondition is (partially) fulfilled
by x (i.e. p ∈ Prec(op)), or a wildcard (∗). A causal link si

p→ sj matches a causal
link pattern x

q→ y iff

1. p unifies with q, and
2. x = opr(si) or x = ∗, and
3. y = opr(sj) or y = ∗,

whereby opr(s) denotes the Web service operation represented by the plan step
s. The reasons for maintaining the set AL of causal link restrictions are (i) to
avoid plan structures that already failed in prior executions and (ii) to avoid
plan structures that violate the restrictions imposed by find-out goals. We will
discuss both issues in greater detail below.

5.2 The Replanning Algorithm

In the following we illustrate how to solve planning problems as described in
Section 4 by breaking them down into a series of simpler planning problems to
be tackled by the modified VHPOP algorithm described in the last section.

The main routine of the replanning agent is Solve-Problem (cf. Fig. 4);
its arguments are the goal G, the initial situation I, a set anno of SESMA-
annotations of the available Web services, and the number threshold of planning-
and-execution cycles to be performed before giving up.

First, the Web service domain and the WSC problem given have to be trans-
lated into a PDDL based planning domain description D to be passed to the
VHPOP algorithm (which uses PDDL as input format). This is done by calling
the operation Build-Domain (cf. line 4). The transformation is straightforward:
(i) For each annotated Web service operation a PDDL planning operator is cre-
ated, whereby the SESMA precondition is transformed into a precondition of
the operator. The effect of each planning operator is formed by a conjunction
of all results of the corresponding operation, whereby the success conditions
are ignored. This encoding is optimistic, i.e. it assumes that all results will be
achieved. As an example, consider the translation of the SESMA markups from
Fig. 2:

(:action op_buyItem (:action op_getItemList

:parameters (?item ?cc ?ccexp ?result) :parameters (?title ?desc)

:precondition (and :effect (forall(?item)

(have-creditcard_ ?cc ?ccexp) (and (in-catalog_ shop2 ?item)

(in-catalog_ shop2 ?item)) (has-title_ ?item ?title)

:effect (possess_ client ?item)) (has-description_ ?item ?desc))))

(ii) The WSC planning goal is translated into the precondition of a reserved
operator whose effect is the planning goal; this allows us to use variables in goal

56 J. Peer

/* returns a boolean signaling success or failure. */
01 function Solve-Problem(G, I, threshold, anno) {
02 solved ⇐ ⊥
03 attempts ⇐ 0
04 D ⇐ Build-Domain(anno)
05 AL ⇐ Extract-From(G)
06
07 label replan:
08 while(¬solved ∧ attempts < threshold) {
09 Plan π ⇐ Make-Plan(D, I,G,AL) /* invoke VHPOP */
10 if(π = null) return ⊥
11 for each step s ∈ S(π) ordered by O(π) {
12 if(¬Causal-Link-Violations(s, π, AL)) {
13 Execute(opr(s)) /* invoke service operation */
14 } else {
15 attempts++
16 continue replan
17 }
18 }
19 }
20 return (attempts < threshold)
21 }

Fig. 4. Main cycle of the replanning algorithm

descriptions. (iii) The fact base sA of the planning agent is transformed into a
set of ground atoms, the description of the initial state.

The next preparation step is to initialize the set AL with causal link patterns
in order to avoid violations of the find-out constraints of the goal. This is done
by calling the operation Extract-From in line 5: For each literal lg in the
goal description G (which is represented in disjunctive clausal normal form) that
has a find-out-annotation, all operations in the domain whose effects contain
a literal lop that unifies with lg, a causal link pattern 〈op, lg, ∗〉 is created and
added to AL. This way, the planner will avoid using steps that violate the find-
out-constraints of the goal.

As described in Fig. 4, the algorithm then enters the main loop (line 8)
and first calls the VHPOP routine Make-Plan (line 9). If successful, VHPOP
delivers a plan π which (i) is complete, (ii) may be partially ordered, and (iii)
does not contain any causal links that match a causal link pattern in AL. If the
POP routine fails to come up with such a plan, then the process is terminated
and reports failure (line 10).

The complete plan π devised by VHPOP has the potential to solve the given
problem, but due to the nondeterministic nature of the domain, success is not
guaranteed. Therefore, the agent is forced to expose the plan to the environ-
ment to learn whether or not a potential solution indeed achieves the desired
goal. Therefore, the agent chooses a linearization L of S(π) which it aims to
execute in a controlled manner (lines 11-18): For each plan step s, the func-

A POP-Based Replanning Agent for Automatic Web Service Composition 57

/* returns a boolean signaling causal link violations */
01 function Causal-Link-Violations(Step s, Plan π, Set AL) {
02 boolean foundViolation ⇐ ⊥
03 for each causalLink cl = 〈si, p, sj〉 ∈ L(π) {
04 if (cl is relevant) ∧ ¬(si achieves p) {
05 AL ⇐ AL ∪ cl
06 foundViolation ⇐ �
07 }
08 }
09 return foundViolation
10 }

Fig. 5. Causal Link Violation Check

tion Causal-Link-Violations(s, π, AL) is called to test whether those pre-
conditions of the remaining steps that should be already achieved are indeed
fulfilled (cf. Fig. 5). It does so by testing whether the relevant causal links
of the plan are fulfilled. A causal link si

p→ sj is relevant upon execution
of step s if si was already performed and sj is not performed yet, i.e. when
si ≺ s � sj in L.

If all relevant causal links for s (and the steps beyond s) are fulfilled, then
the agent will execute the operation represented by step s (cf. line 13 in Fig.
4). To execute an operation, the planner first creates the proper input message,
where all variables are replaced by the intended values. The message is then
sent to the Web service and its response is retrieved and parsed. For each re-
sult r in Res(op), the success condition is tested, if one exists. If no success
condition violation is detected, the result (i.e. effect or knowledge effect) gets
materialized (cf. Sect. 3.5) and the agent’s fact-base is updated. Note that the
conversation data sets are used to substitute variables of effect formulas by con-
stants.

After the execution of the current step of the plan is finished, the next step
is chosen (cf. line 11 in Fig. 4), and the check for causal link violations is carried
out again. If at some point in the plan execution a causal link violation is de-
tected, then the plan execution is aborted (lines 15, 16). The causal links whose
violations were detected by Causal-Link-Violations remain in AL and will
be used in the next planning-cycle.

As long as the threshold value is not reached (line 8), the replanning al-
gorithm continues by generating another plan. Since the set AL contains in-
formation about causal link relationships that have turned out not to yield
the desired results, the POP algorithm will avoid to rely on causal links that
match any link in AL. It will try to determine an alternative plan that avoids
the mistakes of the previous attempt(s). If such an alternative plan is found,
then the execution and monitoring of causal link violations starts again (lines
11-18).

Once the method Solve-Problem manages to execute a plan without run-
ning into causal link violations, then the problem is solved.

58 J. Peer

6 Examples and Empirical Tests

For a brief empirical evaluation of the concepts presented in this article, consider
a simple “web-shopping” domain, which consists of two online retailers A and
B who offer several operations to browse their catalogs and to purchase items.
The services and their WSDL & SESMA descriptions are available online at1.

Shop A offers the following operations: buyItem purchases an item; the in-
ternational EAN number of the item and user’s credit card information must be
given. Operation getPrice delivers the price of an item, and getItemList returns
the list of items that are in the shop’s catalog and can be purchased; each catalog
item is described by title, EAN number and description. The operations buyItem
and getItemList are depicted in Fig. 2.

Shop B has a different interface: it offers the method getList to retrieve a
list of available items, described by EAN-number, title, price and description.
Further, it uses a shopping cart metaphor for purchases: every item to be pur-
chased needs to be put into a shopping cart first, by invocation of a method
addToCart, which takes the EAN number of the item as input parameter. To
remove an item from the cart, the method removeFromCart can be used, and to
purchase the items in the cart the method checkout can be used, which requires
credit card information as an input. Only registered users that are logged in
and possess a valid session-ID for Shop B are permitted to use the addToCart,
removeFromCart and checkout operations; to register at Shop B, the operation
register needs to be called with information about the user, and to log in and
retrieve a session token, the operation login needs to be called with the user
credentials received from register.

Let us consider a scenario in which the goal <possess item=“123456” />
should be fulfilled, whereby the predicate possess belongs to the vocabulary used
in the markup of the two shopping services. We implemented a prototype of the
architecture and algorithms presented in this paper and ran it against 4 different
test cases, which are listed in Tab. 1: The cases are different instantiations of
the scenario described above; they differ regarding the availability of the product
with EAN-number 123456. In case nr. 1, the item is available at both shops, in
case nr. 2, it is only available at Shop A, in case nr. 3 it is only available at
Shop B and in case nr. 4, none of the shops have the item in their article
catalog.

As the column 4 of the table shows, the Solve-Problem algorithm termi-
nates in all four example cases; even in the unsolvable case it does not take more
than three planning attempts for the agent to come to the correct conclusion.
Column 5 shows the total time the agent had to spend to solve the problem and
col. 6 shows the amount of time used solely for the planning (which excludes
the time spent for interaction with the Web services). Column 7 shows the final
results of the experiments, i.e. whether or not the agent was able to purchase
the desired product.

1 http://wsplan.sf.net

A POP-Based Replanning Agent for Automatic Web Service Composition 59

Table 1. Example cases computed on Intel Pentium IV, 1.6 GHz, running Linux 2.4

Case Shop A Shop B Terminates Time (s) Time (s) Result
Nr. Total Planning

1 Item available Item available Yes, after 1 1.65 0.11 Item purchased

2 Item available Item not avail. Yes, after 1 1.65 0.11 Item purchased

3 Item not avail. Item available Yes, after 2 1.98 0.17 Item purchased

4 Item not avail. Item not avail. Yes, after 3 1.73 0.24 Item not purchased

As an example, we will briefly describe case 3 of our test series, because it
illustrates how the replanning algorithm reacts to adverse conditions: At first, an
initial plan is created: [ShopA.getItemList, ShopA.buyItem]. The agent executes
the first operation and retrieves the list of items available at Shop A, which does
not contain the wanted product. Before it executes the next operation, it checks
the causal links and detects that getItemList did not manage to achieve the pre-
condition for buyItem, which is that the item is in the catalog. Therefore, the
planner aborts the plan execution, adds the newly detected causal link violation
to AL and then requests a new plan from the adapted VHPOP planner. The
entry in AL makes it impossible for the planner to find a new plan based on Shop
A. It is therefore forced to backtrack and to chose a different planning branch,
i.e. to consider shop B. Therefore, in the second attempt, a plan [ShopB.register,
ShopB.login, ShopB.addToCart, ShopB.checkout] is devised. In case 3, this at-
tempt indeed achieves the goal because Shop B has the product in stock. We can
see from the example, that with each planning- and execution-cycle the planner
gains feedback about the plan structures that lead to dead ends, which gradually
improves its ability to find potent plans that achieve the given goal.

7 Related Work

In recent time, several approaches to applying AI techniques to the WSC problem
have been published. A relevant aspect that helps differentiating the various
approaches is the way they represent domain knowledge. On the one hand, it
is accepted that the proper encoding of domain knowledge is a key requirement
for efficient planning. On the other hand, manually encoded domain knowledge
may hamper practical adoption, because of the efforts and skills required.

Existing work like [9] and [10] use manually encoded domain knowledge,
in the form of HTN method descriptions and GOLOG programs, respectively.
Our solution does not use manually encoded domain knowledge, instead it uses
knowledge generated by dynamic interaction with the domain. In this sense, we
follow the tradition of replanning agents, where feedback data is gained to better
inform the heuristics of the agent (cf. e.g. [11]). It must be admitted, however,
that the domain knowledge gained from feedback of plan executions does not
keep up to the richness of manually encoded knowledge. Probably a combination
of both approaches would suite the WSC problem best.

60 J. Peer

Another central issue is the representation of goals. In this context, our work
draws from SADL [12] which introduced goal annotations similar to the ones we
use. However, our algorithmic strategy to deal with those goals differs from the
existing work: we encode find-out goals into a set AL of forbidden causal link
patterns and resort to replanning techniques, while the previous SADL-based ap-
proaches like PUCCINI [12] chose to deal with the problem by extending POP’s
plan-, domain- and problem representation schemes, including the introduction
of new link- and threat-types. Our current use cases and experiments justify our
strategy, but a systematic comparison of the advantages and disadvantages of
each approach has yet to be conducted.

Another novel approach to service composition was presented in [13], which
applies the planning as model checking (MC) paradigm. In this approach, the
goal specifies the conditions that must hold after plan execution which can in-
clude conditions about the plan itself. The ability to pose such conditions (e.g.
safety and liveness properties) on the plan is an advantage of the planning as
MC approach. While our set AL of links to avoid also offers a tool to specify
safety conditions, our approach does not allow for liveness properties. However,
this solution comes with a certain computational overhead [13] which may lead
to long planning times; more work is required to find out which approach serves
which problem domains best.

8 Summary

In this paper we described how a modified version of a state-of-the-art partial
order planner, embedded in an execution monitoring engine, can be used to
automatically solve problems in Web service domains. We have illustrated how
the agent can use feedback gained from failed plan executions to avoid doomed
plans in the next planning attempts.

We found that the POP model of plans, especially the explicit representation
of a plan’s causal links provides several benefits: Firstly, it allows for execution
monitoring that can detect plan failures even before they become immanent.
Secondly, it allows for precise learning. For instance, in the example discussed
in Sect. 6, the planner does not blindly avoid all links between ShopA.buy and
ShopA.getItemList ; it only avoids links between the two operations where the
literal to be achieved unifies with the literal of the failed link. In practical terms,
this means that some action is avoided to buy a product A because of a former
failure, but an attempt to purchase a product B can still be made.

Another contribution of this work is the support for nondeterministic actions
using success-conditions. These are extra-logical conditions that can be attached
to effect descriptions and are evaluated after an operation has been carried out.
This way, agents can execute nondeterministic actions and easily determine the
state they are in afterwards.

In future work we aim to clarify the issues raised in Sect. 7. Further, we
plan to study extensions of the current avoid-links concept and to investigate
compensation actions that may be required after failed attempts.

A POP-Based Replanning Agent for Automatic Web Service Composition 61

Acknowledgements

The author would like to thank Biplav Srivastava and Jana Koehler for their
valuable feedback on earlier versions of the paper, H̊akan Younes for the permis-
sion to extend VHPOP and the anonymous reviewers for their helpful comments.

References

1. W3C: Web Services Description Language (WSDL) Version 1.2 (2002)
2. Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and

Open Problems. In: Proceedings of the ICAPS’03 Workshop on Planning for Web
Services (2003)

3. Carman, M., Serafini, L., Traverso, P.: Web Service Composition as Planning. In:
Proceedings of the ICAPS’03 Workshop on Planning for Web Services (2003)

4. OWL-S Coalition: OWL Web Services 1.1, http://www.daml.org/services (2004)
5. WSML Working Group: Web Service Modeling Language (WSML),

http://www.wsmo.org/wsml (2004)
6. Peer, J.: Semantic Service Markup with SESMA. Language Specification, version

0.8, http://elektra.mcm.unisg.ch/pbwsc/docs/sesma 0.8.pdf (2004)
7. Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., Williamson, M.: An Ap-

proach to Planning with Incomplete Information. Proceedings of the 3rd Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(1992)

8. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile Heuristic Partial Order plan-
ner. Journal of Artificial Intelligence Research (2003)

9. Hendler, J., Wu, D., Sirin, E., Nau, D., Parsia, B.: Automatic Web Services Com-
position Using SHOP2. In: Proceedings of The Second International Semantic Web
Conference(ISWC) (2003)

10. McIlraith, S., Tran, C.S., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems (2001)

11. Haigh, K.Z.: Situation Dependent Learning for Interleaved Planning and Robot
Execution (1998)

12. Golden, K.: Planning and Knowledge Representation for Softbots (1997)
13. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into

Executable Processes. In: Third International Semantic Web Conference ISWC’04.
(2004)

Process-Level Composition of Executable Web Services:
“On-the-fly” Versus “Once-for-all” Composition�

Marco Pistore, Pierluigi Roberti, and Paolo Traverso

University of Trento and ITC-IRST
pistore@dit.unitn.it, {roberti, traverso}@itc.it

Abstract. Most of the work on automated composition of web services has fo-
cused so far on the problem of composition at the functional level, i.e., composi-
tion of atomic services that can be executed in a single request-response step. In
this paper, we address the problem of automated composition at the process level,
i.e., a composition that takes into account that executing a web service requires
interactions that may involve different sequential, conditional, and iterative steps.
We define two kinds of process-level composition problems: on-the-fly compo-
sitions that satisfy one-shot user requests specified as composition goals, and a
more general form, called once-for-all compositions, whose goal is to build a
general composed web service that is able to interact directly with the users, re-
ceive requests from them, and propose suitable answers. We propose a solution
to these two kinds of process-level compositions, and apply the solution to the
case of web services described in OWL-S. As a result, we automatically generate
process-level compositions as executable OWL-S process models. We show that,
while executable on-the-fly compositions can be described as standard OWL-S
process models, once-for-all compositions need OWL-S process models to be
extended with receive and reply constructs.

1 Introduction

The automated composition of web services is one of the most promising ideas and —
at the same time — one of the main challenges for the taking off of service oriented
applications: services that are composed automatically can perform new functionalities
by interacting with existing services that are published on the web, thus significantly
reducing the time and effort needed to develop new web based and service oriented ap-
plications. It has been widely recognized that one of the key elements for the automated
composition of web services is semantics: unambiguous descriptions of web services
capabilities and web service processes, e.g., in standard languages like OWL-S [3] or
WSMO [6], can provide the ability to reason about web services, and to automate web
services tasks, like web service discovery and composition, see, e.g., [9].

Most of the work on the composition of semantic web services has focused so far
on the problem of composition at the functional level, i.e., composition of services

� This work is partially funded by the MIUR-FIRB project RBNE0195K5, “Knowledge Level
Automated Software Engineering”, and by the MIUR-PRIN 2004 project “Advanced Artificial
Intelligence Systems for Web Services”.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 62–77, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Process-Level Composition of Executable Web Services 63

which are considered “atomic” components described in terms of their inputs, outputs,
preconditions, and effects, and which can be executed in a simple request-response
step (see, e.g. [12, 4]). One of the key open problems for semantic web services is
composition at the process level, i.e., the problem of generating automatically composed
web services that can be directly executed to interact with the component services and
achieve the composition goal. The problem of process-level composition is far from
trivial. We need to take into account the fact that, in real cases, component services
cannot in general be executed in a single request-response step. Component services are
instead stateful processes, and they require to follow an interaction protocol which may
involve different sequential, conditional, and iterative steps. For instance, we cannot in
general interact with an “hotel booking” web service in an atomic step. The service
may require a sequence of different operations including authentication, submission of
a specific request for a room, possibly a negotiation of an offer, acceptance (or refusal)
of the offer, and finally payment. These different steps may have conditional, or non-
nominal outcomes, e.g., authentication can fail, or there may be no rooms available,
and so on. Conditional outputs affect the flow of the interaction, e.g., no request can be
submitted if the authentication fails, or, in the case no room is available, no request can
be submitted. It may also be the case that the same operation can be repeated iteratively,
e.g., in order to refine a request or to negotiate the conditions of the offer.

While the details on the exact protocol required to interact with an existing ser-
vice are not important in functional-level composition, they become essential when we
aim at generating composed web services that are executable. For instance, suppose
we compose an “hotel booking” service and a “flight booking” service to obtain an
composite service implementing a “virtual travel agency”. The composite service has
to guarantee properties such as the fact that, if no available hotel is found, then we do
not want to book the flights, or that the nights spent in the hotel are compatible with
the arrival and departure dates of the flights. All these properties can be guaranteed
only by “interleaving” in a suitable way the interaction protocols of “flight booking”
and “hotel booking” (e.g., by booking the flights first, so that the arrival and departure
dates are known, but by completing the interaction with “flight booking” and confirm-
ing the flight only after a suitable hotel room has been found). This example shows
that process-level composition needs to deal with descriptions of web services in terms
of complex, composite processes, that consist of arbitrary (conditional and iterative)
combinations of atomic interactions, in the style, e.g., of OWL-S process models [3] or
WSMO interfaces [6].

In this paper, we address the problem of process-level composition of OWL-S pro-
cess models. Given a set of services that are available on the web and that are described
with OWL-S process models, and given a composition goal that describes a set of de-
sired requirements over the behavior of the composed web service to be generated, we
generate automatically an executable composed web service, also described with an
OWL-S process model. The composed web service, when executed, interacts with the
available services in order to satisfy the goal.

More precisely, we address two different forms of process-level composition. In the
first form, called on-the-fly composition, the composition is created in order to satisfy a
specific request of the customer (e.g., a trip to a specific location in a specific period of

64 M. Pistore, P. Roberti, and P. Traverso

time). In this first form of composition, every time the “virtual travel agency” receives
a customer’s request, it generates a new composition and executes it, thus obtaining
an offer that can be given back to the customer. Moreover, the interactions with the
customer of the “virtual travel agency” are forced to follow a simple request/response
pattern: after the customer has sent a request, the agency interacts in a suitable way with
the hotel and flight services and sends an offer back to the customer.

In the second form, called once-for-all composition, the objective of the composition
task is to construct a general web service that is able to answer to different requests
from customers. For instance, rather than composing the hotel booking and the flight
booking services from a request for a specific location and period, the goal is to generate
a service that accepts different travel requests, interacts with the customer to propose a
suitable travel offer, and finalizes the offer if accepted by the customer. While in on-the-
fly compositions the interactions with the customer are restricted to a request/response
pattern, in once-for-all composition these interactions can be general. For instance, it
is possible to generate a composition that, after receiving a request from the customer,
asks the flight and hotel services for possible offers to be combined and sent back to
the customer; the customer can now inspect the offers and decide whether to accept or
refuse them; the virtual travel agency can confirm or cancel the hotel and flight offers
after it receives the feedback from the customer. This way, not only the interactions with
the component services (the hotel and flight services) are complex protocols, but also
the interactions with the customer become complex, possibly conditional and iterative
protocols. Technically speaking, the customer becomes one of the existing component
services in input to the composition task.

In this paper we propose a solution to the problem of process-level composition,
both in the case of on-the-fly and of once-for-all composition. We define a theoretical
framework for automated process-level composition that can be used for both kinds
of composition. We compare the on-the-fly composition and once-for-all composition
problems, and show that the former is actually a simpler case of the latter. We apply
the framework to the case of web services described in OWL-S. In the case of on-the-
fly composition, we generate OWL-S process models that can be executed in standard
execution engines for OWL-S, e.g., the Mindswap engine [10]. In the case of once-
for-all composition, we show that standard OWL-S process models are not adequate
to represent executable composed web services. We propose an extension to OWL-S
that allows for the execution of web services generated by the automated once-for-all
composition task.

2 Motivating Example

In our reference example we have two separate, independent, and existing component
services: a “hotel booking” and a “flight booking” service. We aim at composing them
into a “virtual travel agency” service that, according to a user travel request, books both
hotels and flights.

The HotelBooking service accepts requests for booking a room for a given period
of time and location, and if at least one hotel is available, it proposes an offer for a given
hotel at a certain cost. This offer can be accepted or refused by the external service that

Process-Level Composition of Executable Web Services 65

<process:CompositeProcess rdf:ID="HotelBooking">
<process:Sequence>
<process:AtomicProcess rdf:about="#HotelRequest">
<process:Input rdf:ID="Period"><process:parameterType rdf:resource="#Period"/></process:Input>
<process:Input rdf:ID="Location"><process:parameterType rdf:resource="#Location"/></process:Input>
<process:ConditionalOutput rdf:ID="Cost">

<process:coCondition rdf:resource="#HotelBookingPossible"/>
<process:parameterType rdf:resource="#Cost"/>

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID="Hotel">

<process:coCondition rdf:resource="#HotelBookingPossible"/>
<process:parameterType rdf:resource="#Hotel"/>

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID="NA">

<process:coCondition rdf:resource="#NotHotelBookingPossible"/>
<process:parameterType rdf:resource="#NotAvailable"/>

</process:ConditionalOutput>
</process:AtomicProcess>
<process:CompositeProcess>
<process:IfThenElse>

<process:ifCondition rdf:resource="#HotelBookingPossible"/>
<process:then>
<process:CompositeProcess>
<process:Choice>
<process:AtomicProcess rdf:ID="#AcceptHotelOffer"/>
<process:AtomicProcess rdf:ID="#RefuseHotelOffer"/>

</process:Choice>
</process:CompositeProcess>

</process:then>
</process:IfThenElse>

</process:CompositeProcess>
</process:Sequence>

</process:CompositeProcess>

<process:condition rdf:ID="HotelBookingPossible">
<expr:expressionBody>
#AvailableHotel(#HotelRequest.Period,#HotelRequest.Location) != UNDEF

</expr:expressionBody>
</process:condition>
...
<process:sameValues rdf:parseType="Collection">
<process:ValueOf>
<process:theParameter rdf:resource="#Hotel"/>
<process:atProcess rdf:resource="#HotelRequest"/></process:ValueOf>

<process:valueData>
<expr:expressionBody>
#AvailableHotel(#HotelRequest.Period,#HotelRequest.Location)

</expr:expressionBody>
</process:ValueData>

</process:sameValues>
...

Fig. 1. OWL-S Process model for the hotel booking service

has invoked the hotel service. The OWL-S process model for the hotel service is show
in Figure 1. It is a composite service consisting of the atomic process HotelRequest,
AcceptHotelOffer, and RefuseHotelOffer. HotelRequest receives in in-
put a request for a given Period and Location. The conditional outputs models the
fact the service returns an offer including the price (Cost) and the name of the ho-
tel (Hotel) only if there exists a hotel with available rooms; a “not available” (NA)
message is returned otherwise. The decision whether there exists a hotel with available
rooms is taken according to condition HotelBookingPossible, which is defined
in term of function AvailableHotel(p, l): this function returns a hotel name if the
booking is possible for a period p and location l, and UNDEF otherwise (see defini-
tion of condition HotelBookingPossible). Function AvailableHotel(p, l) is
used also to decide the value of output parameter Hotel of service HotelRequest
(see the process:sameValues declaration). Similarly, output parameter Cost
is defined in terms of function CostOfRoom(p, h), returning the cost of a room
for period p in hotel h (this declaration has been omitted in Figure 1). If the
booking is possible (see the control construct IfThenElse and the condition
HotelBookingPossible), the hotel service waits for a nondeterministic external

66 M. Pistore, P. Roberti, and P. Traverso

decision (control construct Choice) that either accepts (AcceptHotelOffer) or
refuses (RefuseHotelOffer) the booking offer.

The FlightBooking service is conceptually similar to the hotel booking one: it ac-
cepts requests for booking a flight for a given period and location, and if the flight is
available, returns an offer with a cost and a flight. This offer can be accepted or refused
by the external service that has invoked the flight booking service. Its OWL-S process
model has a similar structure too. It is a composition of the following atomic processes:
FlightRequest, AcceptFlightOffer and RefuseFlightOffer. For lack
of space we omit the OWL-S description.

Let us now consider an example of on-the-fly composition. Our goal is to construct
a composed service (say H&F) that, given in input a specific location and time period,
interacts with the hotel and the flight service, and books both a flight and an hotel room
whenever possible. A possible OWL-S process model for the H&F service is described
in Figure 2. The OWL-S specification starts with a declaration of the input (Period
and Location) and output (Cost, Hotel, and Flight, or NA) parameters of the
composition. Then the body of the composition is defined as a suitable interleaving
of the atomic services of the HotelBooking and FlightBooking services. In this ex-
ample, we choose a H&F service that interacts first with the hotel and then with the
flight, therefore, the atomic process HotelRequest is called first.1 If the booking is
possible, the condition HotelBookingPossible holds and the H&F process starts
interacting with the flight service (FlightRequest). If a flight is available (con-
dition FlightBookingPossible) the H&F process accepts both the offer of the
hotel booking service (AcceptHotelOffer) and the one of the flight booking ser-
vice (AcceptFlightOffer). If the flight is not available, H&F needs to refuse just
the hotel offer (RefuseHotelOffer) previously received. We remark that condition
HotelBookingPossible is defined in terms of the contents of the answer received
from atomic service HotelRequest. Indeed, the hotel booking is possible if and only
if the NA does not appear in the answer.

Let us consider now an example of once-for-all composition. This time our goal
is to construct a composed service (say H&Fservice) that interacts with the customer
and with the component services as follows. H&Fservice gets from the user a travel
request for a given location and period. It then interacts with the hotel and flight services
to discover whether a hotel and a flight are available; if this is the case, H&Fservice
interacts again with the user by offering the available hotel and flight at a certain price.
At this point, if the user accepts the offer, H&Fservice books both the hotel and the
flight. If the offer is refused, we assume that the H&Fservice service simply cancels
both the hotel and the flight requests.

The main conceptual difference of “once-for-all” composition w.r.t. “on-the-fly”
composition is the fact that the composed service H&Fservice has to interact in a

1 We can notice that the Period parameter passed to the HotelRequest pro-
cess coincides with the Period input parameter of the composed process (see the
process:sameValues declaration at the end of the figure). Similar correspondences,
omitted in Figure 2, are also defined for the input and output parameters of the other atomic
processes that appear in the composition.

Process-Level Composition of Executable Web Services 67

<process:CompositeProcess rdf:ID="H&F">
<process:hasInput rdf:resource="#Period"/>
<process:hasInput rdf:resource="#Location"/>
<process:hasResult rdf:resource="#Cost"/>
<process:hasResult rdf:resource="#Hotel"/>
<process:hasResult rdf:resource="#Flight"/>
<process:hasResult rdf:resource="#NA"/

<process:Sequence>
<process:AtomicProcess rdf:about="#HotelRequest"/>
<process:CompositeProcess>
<process:IfThenElse>

<process:ifCondition rdf:resource="#HotelBookingPossible"/>
<process:then>
<process:CompositeProcess>
<process:Sequence>
<process:AtomicProcess rdf:about="#FlightRequest"/>
<process:CompositeProcess>
<process:IfThenElse>
<process:ifCondition rdf:resource="#FlightBookingPossible"/>
<process:then>

<process:CompositeProcess>
<process:Sequence>
<process:AtomicProcess rdf:about="#AcceptHotelOffer"/>
<process:AtomicProcess rdf:about="#AcceptFlightOffer"/>

</process:Sequence>
</process:CompositeProcess>

</process:then>
<process:else>

<process:AtomicProcess rdf:about="#RefuseHotelOffer"/>
</process:else>

</process:IfThenElse>
</process:CompositeProcess>

</process:Sequence>
</process:CompositeProcess>

</process:then>
</process:IfThenElse>

</process:CompositeProcess>
</process:Sequence>

</process:CompositeProcess>

<process:condition rdf:ID="HotelBookingPossible">
<expr:expressionBody>

#HotelRequest.NA = UNDEF
</expr:expressionBody>

</process:condition>
...
<process:sameValues rdf:parseType="Collection">
<process:ValueOf>
<process:theParameter rdf:resource="#Period"/>
<process:atProcess rdf:resource="#HotelAndFlight"/>

</process:ValueOf>
<process:ValueOf>
<process:theParameter rdf:resource="#Period"/>
<process:atProcess rdf:resource="#HotelRequest"/>

</process:ValueOf>
</process:sameValues>?
...

Fig. 2. OWL-S Process model for on-the-fly composition: the H&F service

complex way also with the user. More precisely, we can assume that the interactions
between the user and the virtual travel agency are modeled as a composite OWL-S pro-
cess model. According to this process model, the user has to call first a H&FRequest
atomic web service, passing period and location as parameters; if the requested book-
ing is possible, an answer including hotel name, flight number and cost is returned,
otherwise a “not available” answer is returned. In case of positive answer, the user can
decide whether to confirm the offer (calling service AcceptH&FOffer) or to cancel
it (calling service RefuseH&FOffer).

The OWL-S process model for the H&Fservice service is described in Figure 3.
It is defined as a suitable combination of the atomic web services corresponding to
HotelBooking, FlightBooking, and to the process defining the virtual travel agency
service (H&FRequest, AcceptH&FOffer, and RefuseH&FOffer).

68 M. Pistore, P. Roberti, and P. Traverso

<process:CompositeProcess rdf:ID="HotelAndFlightGeneration">
<process:Sequence>
<process:Receive rdf:about="#H&FRequest">
<process:AtomicProcess rdf:about="#HotelRequest"/>
<process:CompositeProcess>
<process:IfThenElse>

<process:ifCondition rdf:resource="#HotelBookingPossible"/>
<process:then>
<process:Sequence>
<process:AtomicProcess rdf:about="#FlightRequest"/>
<process:CompositeProcess>
<process:IfThenElse>
<process:ifCondition rdf:resource="#FlightBookingPossible"/>
<process:then>
<process:CompositeProcess>

<process:Sequence>
<process:Reply rdf:about="#H&FRequest">
<process:Choice>
<process:CompositeProcess>
<process:Sequence>
<process:Receive rdf:about="#AcceptH&FOffer"/>
<process:AtomicProcess rdf:about="#AcceptHotelOffer"/>
<process:AtomicProcess rdf:about="#AcceptFlightOffer"/>
<process:Reply rdf:about="#AcceptH&FOffer"/>

</process:Sequence>
</process:CompositeProcess>
<process:CompositeProcess>
<process:Sequence>
<process:Receive rdf:about="#RefuseH&FOffer"/>
<process:AtomicProcess rdf:about="#RefuseHotelOffer"/>
<process:AtomicProcess rdf:about="#RefuseFlightOffer"/>
<process:Reply rdf:about="#RefuseH&FOffer"/>

</process:Sequence>
</process:CompositeProcess>

</process:Choice>
</process:Sequence>

</process:CompositeProcess>
</process:then>
<process:else>
<process:CompositeProcess>

<process:Sequence>
<process:Reply rdf:about="#H&FRequest"/>
<process:AtomicProcess rdf:about="#RefuseHotelOffer"/>

</process:Sequence>
</process:CompositeProcess>

</process:else>
<process:IfThenElse>

</process:CompositeProcess>
</process:Sequence>

</process:then>
<process:else>

<process:Reply rdf:about="#H&FRequest"/>
</process:else>

</process:IfThenElse>
</process:CompositeProcess>

</process:Sequence>
</process:CompositeProcess>

Fig. 3. OWL-S Process model for once-for-all composition: the H&Fservice service

Notice that the H&Fservice process needs to get the location and period from the
user, and then to invoke the hotel and flight service. Similarly, the H&Fservice process
needs to propose to the user an offer, and then to either cancel or confirm the book-
ings of the hotel and flight. These kinds of interactions cannot be modeled with usual
OWL-S atomic processes. While OWL-S process models allow for defining a suitable
combination of invocations of atomic operations provided by the component services,
they do not allow for intermixing these invocations with interactions with the user,
since OWL-S process models do not allow to model a process that is both “invoked
by” and “invoker of” external services. In order to solve this problem, we introduce
new constructs that allow the process to Receive messages and Reply to messages
corresponding to atomic services that the composition should provide to the user.

Indeed, the first step of the H&Fservice process is to wait for a user request
(process:Receive rdf:about="#H&FRequest"). The rest of the process

Process-Level Composition of Executable Web Services 69

is the same as the one of the H&F service, but the last steps in the sequence: if
the hotel and flight booking is possible, the process replies to the booking request
of the user with an offer (Process:Reply rdf:about="#H&FRequest"). At
this point the H&Fservice waits for a nondeterministic external decision (control
construct Choice) that either accepts or refuses the offer. If the offer is accepted
by the user, the atomic process AcceptH&FOffer is activated and then the ho-
tel and flight booking are confirmed. The Reply statement communicates to the
user that the booking is completed. If the offer is not accepted, the atomic process
RefuseH&FOffer is activated, and the hotel and flight bookings are refused as well.
In this case the Reply statement communicates to the user that the booking has been
cancelled.

3 Theoretical Framework

Our goal is to automatically generate a new service W (called the composed service)
that interacts with a set of published web services W1, . . . , Wn (called the component
services) and satisfies a given composition goal. More specifically, we start from n
process-level descriptions of web services W1, . . . , Wn, e.g., their process models in
OWL-S, and we automatically translate each of them into a state transition system
(STS form now on): ΣW1 , . . . , ΣWn

. Intuitively, each ΣWi
is a compact representation

of all the possible behaviors, evolutions of the component service Wi. We then con-
struct a parallel STS Σ‖ that combines ΣW1 , . . . , ΣWn

and represents all the possible
evolutions of these component services, without any control by and interaction with the
composed service that will be generated. We also formalize the requirements for the
composed service as a composition goal, say ρ. Intuitively, ρ describes the functional-
ity that the composed service should have. Given Σ‖ and ρ, we automatically generate
a STS Σc that encodes the new service W that has to be generated. Σc represents a
service that dynamically receives and sends messages from/to the component services
W1, . . . , Wn and behaves depending on the responses received from W1, . . . , Wn. Σc

is such that Σc � Σ‖ satisfies the composition goal ρ, where Σc � Σ‖ represents all the
evolutions of the component services Σ‖ as they are controlled by the composed service
Σc. The STS Σc is then automatically translated into an executable web service, e.g.,
described as an (extension of a) OWL-S process model.

The formal definition of the process-level composition problem is based on the no-
tion of state transition system (STS). STSs are general models for defining dynamic
systems that can be in different states (some of which are marked as initial states) and
can evolve to new states as a result of performing some actions. Actions are distin-
guished in input actions, which represent the reception of messages, output actions,
which represent messages sent to external services, and a special action τ , called inter-
nal action. The action τ is used to represent internal evolutions that are not visible to
external services, i.e., the fact that the state of the system can evolve without producing
any output, and independently from the reception of inputs. A transition relation de-
scribes how the state can evolve on the basis of inputs, outputs, or of the internal action
τ . Finally, a labeling function associates to each state the set of properties Prop that
hold in the state. These properties will be used to define the composition goal ρ.

70 M. Pistore, P. Roberti, and P. Traverso

PROCESS HotelBooking;
TYPE Period; Location; Hotel; Cost; NA;
STATE pc: { start, receiveHotelBooking, checkHotelBookingPossible, isHotelBookingPossible,

isNotHotelBookingPossible, replyHotelBookingPossible, replyHotelBookingNotPossible,
choiceAcceptHotelOfferRefuseHotelOffer, replyAcceptHotelOffer, replyRefuseHotelOffer,
endHotelBookingNotPossible, endRefuseHotelOffer, endAcceptHotelOffer};

period: Period ∪ { UNDEF };
loc: Location ∪ { UNDEF };
hotel: Hotel ∪ { UNDEF };
cost: Cost ∪ { UNDEF };
na: NA ∪ { UNDEF };
AvailableHotel[Period,Location]: Hotel ∪ { UNDEF };
CostOfRoom[Period,Hotel]: Cost;

INIT pc = start;
req period = UNDEF;
req loc = UNDEF;
offer hotel = UNDEF;
offer cost = UNDEF;

INPUT HotelBooking(Period, Location);
AcceptHotelOffer();
RefuseHotelOffer();

OUTPUT HotelBookingAnswer(Hotel ∪ {UNDEF}, Cost ∪ {UNDEF}, NA ∪ {UNDEF});
AcceptHotelOfferAnswer();
RefuseHotelOfferAnswer();

TRANS pc = isHotelBookingPossible −[TAU]−> pc = replyHotelBookingPossible,
pc = start −[TAU]−> pc = receiveHotelBooking;
pc = receiveHotelBooking −[INPUT HotelBooking(period,location)]−> pc = checkHotelBookingPossible;
pc = checkHotelBookingPossible ∧ AvailableHotel[period,location] �= UNDEF

−[TAU]−> pc = isHotelBookingPossible;
pc = checkHotelBookingPossible ∧ AvailableHotel[period,location] = UNDEF

−[TAU]−> pc = isNotHotelBookingPossible;
pc = isHotelBookingPossible −[TAU]−> pc = replyHotelBookingPossible,

hotel = AvailableHotel[period,location],
cost = CostOfRoom[period,hotel];

pc = replyHotelBookingPossible −[OUTPUT HotelBookingAnswer(hotel,cost,na)]−>
pc = choiceAcceptHotelOfferRefuseHotelOffer;

pc = choiceAcceptHotelOfferRefuseHotelOffer −[INPUT AcceptHotelOffer]−> pc = replyAcceptHotelOffer;
pc = replyAcceptHotelOffer −[OUTPUT AcceptHotelOfferAnswer]−> pc = endAcceptHotelOffer;
pc = choiceAcceptHotelOfferRefuseHotelOffer −[INPUT RefuseHotelOffer]−> pc = replyRefuseHotelOffer;
pc = replyRefuseHotelOffer −[OUTPUT RefuseHotelOfferAnswer]−> pc = endRefuseHotelOffer;
pc = isNotHotelBookingPossible −[TAU]−> pc = replyHotelBookingNotPossible, na ∈ NA;
pc = replyHotelBookingNotPossible −[OUTPUT HotelBookingAnswer(hotel,cost,na)]−>

pc = endHotelBookingNotPossible;

Fig. 4. The STS for the HotelBooking process

Definition 1 (State transition system (STS)). A state transition system Σ is a tuple
〈S,S0, I,O,R,L〉 where S is the set of states, S0 ⊆ S is the set of initial states, I is
the set of input actions, O is the set of output actions, R ⊆ S × (I ∪ O ∪ {τ})× S is
the transition relation, and L : S → 2Prop is the labeling function.

We assume that infinite loops of τ -transitions cannot appear in the system (i.e., the
service has to interacting with the environment after a finite number of steps). We also
assume that there is no state which originates both input and output transitions.

Figure 4 shows a description of the STS corresponding to the HotelBooking web
service (see Figure 1). The set of states S models the steps of the evolution of the
process and the values of its variables. The special variable pc implements a “pro-
gram counter” that holds the current execution step of the service (e.g., pc has value
receiveHotelBooking when the process is waiting to receive a booking request,
and value checkHotelBookingPossible when it is ready to check whether the
booking is possible). Other variables like location or cost correspond to those
used in message exchanges. Finally, arrays like AvailableHotel or CostOfRoom
describe predicates and functions expressing properties of the web service (e.g., the
fact that there is an hotel available for a given period and in a given location, or the
cost of a room in a given hotel for a given period). In the initial states S0 the pc is set
to START, while all the other basic variables are undefined. The initial values of the

Process-Level Composition of Executable Web Services 71

arrays AvailableHotel and CostOfRoom are unspecified, since they can assume
any value in the domain.

The evolution of the process is modeled through a set of possible transitions. Each
transition defines its applicability conditions on the source state, its firing action, and
the destination state. For instance,

pc = checkHotelBookingPossible &

AvailableHotel[period,location] �= UNDEF −[TAU]−>

pc = isHotelBookingPossible

(1)

asserts that an action τ can be executed in state checkHotelBookingPossible,
leading to the state isHotelBookingPossible, if there is some hotel with avail-
able rooms for the specified period and location. We remark that each TRANS clause of
Figure 4 corresponds to different elements in the transition relation R: e.g., clause (1)
generates different elements of R, depending on the values of variables period and
location.

According to the formal model, we distinguish among three different kinds of ac-
tions. The input actions I model all the incoming requests to the process and the in-
formation they bring (i.e., HotelBooking is used for the receiving of the booking
request). The output actionsO represent the outgoing messages (in our case, the replies
to the input requests). The action τ is used to model internal evolutions of the process,
as for instance assignments and decision making.

Finally, the set of properties Prop of the STS are expressions of the form
<variable> = <value> or <array>[idx 1,...,idx n] = <value>, and
the labeling function is the obvious one.

A remark is in order. The definition of STS provided in Figure 4 is parametric w.r.t.
the types Period, Location, Hotel, Cost, and NA used in the messages. In order
to obtain a concrete STS and to apply the automated composition techniques described
in Section 4, specific ranges have to be assigned to these types. Different approaches
are possible for defining these ranges. The simpler approach is to associate finite (and
possibly small) ranges to each type. This approach, makes the definition of the STS easy
(and allows for an efficient automated composition), however, it has the disadvantage
of imposing unrealistic assumptions on the data types handled by the web services. A
more realistic (but more complex) approach consists of using abstract models for the
data types, avoiding an enumeration of all concrete values that these types can assume,
and representing explicitly only those aspects of the data type that are relevant for the
task at hand. This second approach will be addressed in future work (see Section 5).

We now formally define the parallel product Σ1 ‖ Σ2 of the two STSs Σ1 and Σ2. It
models the fact that the systems may evolve independently (i.e., without direct commu-
nications), and is used to generate Σ‖ from the component web services W1, . . . , Wn:
formally, Σ‖ = ΣW1 ‖ . . . ‖ ΣWn

.

Definition 2 (parallel product). Let Σ1 = 〈S1,S0
1 , I1,O1,R1,L1〉 and Σ2 =

〈S2,S0
2 , I2,O2,R2,L2〉 be two STSs with (I1 ∪ O1) ∩ (I2 ∪ O2) = ∅. The paral-

lel product Σ1 ‖ Σ2 of Σ1 and Σ2 is defined as:

Σ1‖Σ2 = 〈S1×S2,S0
1×S0

2 , I1∪I2,O1∪O2,R1‖R2,L1‖L2〉

72 M. Pistore, P. Roberti, and P. Traverso

where:

– 〈(s1, s2), a, (s′1, s2)〉 ∈ (R1‖R2) if 〈s1, a, s′1〉 ∈ R1;
– 〈(s1, s2), a, (s1, s

′
2)〉 ∈ (R1‖R2) if 〈s2, a, s′2〉 ∈ R2;

and (L1‖L2)(s1, s2) = L1(s1) ∪ L2(s2).

The automated composition problem consists in generating a STS Σc that controls
Σ‖ by satisfying the composition requirement ρ. We now define formally the STS de-
scribing the behaviors of a STS Σ when controlled by Σc.

Definition 3 (controlled system). Let Σ = 〈S,S0, I,O,R,L〉 and Σc =
〈Sc,S0

c ,O, I,Rc,L∅〉 be two state transition systems, where L∅(sc) = ∅ for all
sc ∈ Sc. The STS Σc � Σ, describing the behaviors of system Σ when controlled by
Σc, is defined as:

Σc � Σ = 〈Sc × S,S0
c × S0, I,O,Rc �R,L〉

where:

– 〈(sc, s), τ, (s′c, s
′)〉 ∈ (Rc �R) if 〈sc, τ, s

′
c〉 ∈ Rc;

– 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc �R) if 〈s, τ, s′〉 ∈ R;

– 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc �R), with a �= τ , if 〈sc, a, s′c〉 ∈ Rc and 〈s, a, s′〉 ∈ R.

Notice that we require that the inputs of Σc coincide with the outputs of Σ and vice-
versa. Notice also that, although the systems are connected so that the output of one
is associated to the input of the other, the resulting transitions in Rc � R are labelled
by input/output actions. This allows us to distinguish the transitions that correspond to
τ actions of Σc or Σ from those deriving from communications between Σc and Σ.
Finally, notice that we assume that Σc has no labels associated to the states.

A STS Σc may not be adequate to control a system Σ. Indeed, we need to guarantee
that, whenever Σc performs an output transition, then Σ is able to accept it, and vice-
versa. We define the condition under which a state s of Σ is able to accept a message.
We assume that s can accept a message a if there is some successor s′ of s in Σ,
reachable from s through a chain of τ transitions, such that s can perform an input
transition labelled with a. Vice-versa, if state s has no such successor s′, and message
a is sent to Σ, then a deadlock situation is reached. In the following definition, and in
the rest of the paper, we denote by τ -closure(s) the set of the states reachable from
s through a sequence of τ transitions, and by τ -closure(S) with S ⊆ S the union of
τ -closure(s) on all s ∈ S.

Definition 4 (deadlock-free controller). Let Σ = 〈S,S0, I,O,R,L〉 be a STS and
Σc = 〈Sc,S0

c ,O, I,Rc,L∅〉 be a controller for Σ. Σc is said to be deadlock free for Σ
if all states (sc, s) ∈ Sc × S that are reachable from the initial states of Σc � Σ satisfy
the following conditions:

– if 〈s, a, s′〉 ∈ R with a ∈ I then there is some s′c ∈ τ -closure(sc) such that
〈s′c, a, s′′c 〉 ∈ R for some s′′c ∈ Sc; and

– if 〈sc, a, s′c〉 ∈ Rc with a ∈ O then there is some s′ ∈ τ -closure(s) such that
〈s′, a, s′′〉 ∈ R for some s′′ ∈ S.

Process-Level Composition of Executable Web Services 73

The automated composition task needs to generate a deadlock-free Σc that guaran-
tees the satisfaction of a composition goal ρ. This is formalized by requiring that the
controlled system Σc � Σ‖ must satisfy ρ, written Σc � Σ‖ |= ρ. The definition of this
requirement is technical: it depends on the definition of the executions of Σc � Σ‖, and
these have to be defined taking into account the special role of τ actions, which describe
internal, “unobservable” evolutions of the system. For lack of space, we omit the formal
definition of Σc � Σ‖ |= ρ: the interested reader can find it in [14].

Definition 5 (composition problem). Let Σ1, . . . , Σn be a set of state transition
systems, and let ρ be a composition goal. The composition problem for Σ1, . . . , Σn

and ρ is the problem of finding a controller Σc that is deadlock-free and such that
Σc � (Σ1 ‖ . . . ‖ Σn) |= ρ.

4 Automated Process-Level Composition

The automated process-level composition of web services is obtained in four steps:

1. From Web Services to State Transition Systems. The process-level descriptions
of the available component web services are translated into STSs.

2. Expressing Composition Goals. This step consists in the formalization of the goal
ρ that defines the functionality that the composed web service should provide.

3. Synthesis of the Composition. During this step, the STS implementing the com-
posed web services is automatically generated starting from the STSs constructed
in step 1 and from the goal specified in step 2.

4. Deployment and Execution of the Composed Service. In this step, the STS gen-
erated in step 3 is translated into an executable web service.

In this paper we consider web services described in OWL-S. The translation from
OWL-S process models to STS (step 1) is performed along the lines described in
Section 3 (see also [16]). More precisely, the STS of Figure 4 is obtained from the
OWL-S process model in Figure 1 (the STS has been slightly edited for improving
readability).

The definition of the composition goal (step 2) depends on the kind of process-
level composition we are interested in. In the case of on-the-fly composition, we have
to generate a service that satisfies a specific customer’s request. For instance, in the
example of the hotel and flight services, the customer’s request specifies a given lo-
cation l to be visited in a given period of time p. In order to satisfy this request, the
composed service has to find a flight and a hotel room compatible with the request of
the customer. The composition goal could be the something like “if a travel offer is
available, then sell a travel offer to the customer”. In our example, the offer is pos-
sible if it is possible to book a flight and a hotel for the period and for the location
specified by the customer. The fact that the offer is sold is described by requiring that
the HotelBooking and the FlightBooking processes reach the end state correspond-
ing to an accepted booking offer. The goal condition can hence be specified by the
formula:

74 M. Pistore, P. Roberti, and P. Traverso

HotelBooking.AvailableHotel[p,l] �= UNDEF ∧
FlightBooking.AvailableFlight[p,l] �= UNDEF

→ HotelBooking.pc = endAcceptHotelBooking ∧
FlightBooking.pc = endAcceptFlightBooking ∧
h = HotelBooking.AvailableHotel[p,l] ∧
f = FlightBooking.AvailableFlight[p,l] ∧
c = HotelBooking.CostOfRoom[p,h] +

FlightBooking.CostOfFlight[f]

where c, f, and h describe, respectively, the cost of the offer, and the specific flight and
hotel information. This goal has to be interpreted as a condition that must hold at the
end of the execution of the composed service.

The case of once-for-all composition is more complex. In our reference example, we
want to automatically generate a composed service whose requirement is to “sell a travel
offer to the customer” that satisfies a generic customer request. This means we want the
composed service to reach the situation where an offer has been made to the customer,
the customer has confirmed this offer, and the service has confirmed the corresponding
(sub-)offers to the HotelBooking and FlightBooking services. However, the hotel may
have no available rooms, the flight may not be possible, the user may not accept the
offer due to its cost. . . We cannot avoid these situations, and we cannot therefore ask
the composed service to guarantee this requirement. Nevertheless, we would like the
composed service to try (do whatever is possible) to satisfy the request. If it is not
possible to satisfy the main requirement, i.e., to sell the offer, our requirement for the
composed service is to book neither a room nor a flight. Indeed we do not want the
service to book and pay for rooms when flights are not available, or to book flights when
rooms are not available, or to pay for rooms and flights that will not be accepted by the
customer. Our composition goal is therefore a combination of the main requirement
(“sell a travel offer to the customer”) and of a secondary requirement (“book neither a
room nor a flight”), i.e., something like: “try to sell a travel offer to the customer; upon
failure, do book neither a room nor a flight”. Notice that the secondary requirement
(“book neither a room nor a flight”) has a different strength w.r.t. the primary one (“sell
a travel offer to the customer”). We write “do” satisfy, rather than “try” to satisfy.
Indeed, in the case the primary requirement is not satisfied, we want the secondary
requirement to be guaranteed.

We need a formal language that can express requirements of this kind, including
conditions of different strengths (like “try” and “do”), preferences among different (e.g.,
primary and secondary) requirements, and failure recovery conditions. For this reason,
we cannot simply use a state formula as we did for the case of on-the-fly composition.
We use instead the EAGLE language, which has been designed with the purpose to
satisfy such expressiveness. A detailed definition and a formal semantics for the EA-
GLE language can be found in [5]. Here we just explain how EAGLE can express the
composition requirement of the running example. The EAGLE formalization of the re-
quirement is the following:

TryReach
HotelBooking.pc = endAcceptHotelBooking ∧
FlightBooking.pc = endAcceptFlightBooking ∧
Customer.pc = endAcceptHandFBooking ∧
Customer.h = HotelBooking.AvailableHotel[Customer.p,Customer.l] ∧
Customer.f = FlightBooking.AvailableFlight[Customer.p,Customer.l] ∧
Customer.c = HotelBooking.CostOfRoom[Customer.p,Customer.h] +

FlightBooking.CostOfFlight[Customer.f]

Process-Level Composition of Executable Web Services 75

Fail DoReach
HotelBooking.pc �= endAcceptHotelBooking ∧
FlightBooking.pc �= endAcceptHotelBooking ∧
Customer.pc �= endAcceptHandFBooking

The goal is of the form “TryReach c Fail DoReach d”. TryReach c requires a service
that tries to reach condition c, in our case the condition “sell a travel offer to the cus-
tomer”. During the execution of the service, a state may be reached from which it is not
possible to reach c, e.g., since the flight is not available. When such a state is reached,
the requirement TryReach c fails and the recovery condition DoReach d, in our case
“book neither a room nor a flight” is considered.

The core part of the automated composition task is step 3. A formal definition of
the problem solved by this task is given in Definition 5. Starting from a set of STSs
modeling the existing web services and from a composition goal, a new STS is gen-
erated which implements the composed service. We see the process level composition
problem as a planning problem, where the parallel STS Σ‖ is the planning domain, ρ is
the planning goal, and Σc is the generated plan that achieves the goal ρ. Notice that the
planning problem is far trivial and cannot be reduced to a classical planning problem.
We need planning techniques able to deal with planning under uncertainty, and more
precisely with planning in nondeterministic domains and under partial observability.
Indeed, it is clear from Section 3 that the planning domain is nondeterministic, i.e.,
actions executed in the same state can have different outcomes, and partially observ-
able, i.e., only part of the domain information is available at run time, and, at planning
time, the planner must therefore deal with the problem that the domain might be in
a set of possible states. Moreover, the generated plan Σc is not simply a sequence of
actions, must represent conditional and iterative courses of actions. Finally, in the case
of once-for-all composition, we need to deal with extended goals, i.e., with goals that
are not simply sets of desired states, but can express complex temporal and preference
conditions, as discussed for Step 2. For all these reasons, we generate the STS Σc by
using the “planning as model checking” technique [2, 5, 1], which has been shown to
provide a practical solution to the problem of planning under uncertainty, and has been
shown experimentally to scale up to large state spaces. A detailed description of how
“planning as model checking” can be applied to solve the composition problem can be
found in [14].

In step 4, the automatically generated STS Σc is translated into an executable web
service. In the case of on-the-fly composition, the code is immediately executed. In the
case of once-for-all composition, the code is deployed, and is ready to answer to users’
requests. In this paper, we translate the STS into an OWL-S process model. Examples
of (excerpts from) the generated OWL-S process models are given in Figures 2 and 3
for the cases of on-the-fly and once-for-all compositions, respectively.

5 Conclusions and Related Work

There is a large amount of literature addressing the problem of automated composition
of web services. However, most of the approaches address composition at the func-
tional level (see, e.g. [12, 4]), and much less emphasis has been devoted to the problem
of process-level composition. Different planning approaches have been proposed to ad-

76 M. Pistore, P. Roberti, and P. Traverso

dress the problem of on-the-fly composition, from HTNs [17] to regression planning
based on extensions of PDDL, to STRIPS-like planning for composing services de-
scribed in DAML-S [15]. However, none of these techniques addresses the problem
of composing web services with conditional outputs, non-nominal outcomes, and with
process models describing interaction protocols that include conditional and iterative
steps. In [8, 11, 7], the authors propose an approach to the automated composition of
web services based on a translation of DAML-S to situation calculus and Petri Nets.
Also in these papers, however, the automated composition is limited to sequential com-
position of atomic services, and composition requirements are limited to reachability
conditions.

As far as we know, the only approach that deals with process-level composition of
semantic web services is described in our previous work [16]. In that paper, we pro-
posed a technique for automated composition where the component web services were
described as OWL-S composite processes and the generated composed services were
emitted as a BPEL4WS programs. In this paper, we provide a substantial contribution
with respect to [16], namely composed services are generated as OWL-S process mod-
els. In this way, we support the automated composition fully within a semantic web
framework, we generate web services enriched with semantic annotations, and we al-
low the re-use of the generated services as input to the automated composition task.
This opens the way to the incremental development of more and more complex web
services, within a service oriented development process, where new executable web
services are composed and then re-used to compose further services.

As a witness of the increasing interest in executable semantic web services, recent
efforts within the semantic web community are addressing the problem of providing
execution engines for semantic web services. For instance, the “Mindswap” OWL-S
execution engine developed at the University of Maryland [10] can execute (a subset
of) OWL-S process models, while there is significant on going work in providing an
execution engine, called WSMX, for the WSMO language [6].

In the future, we will address the problem of associating finite ranges to the data
types in the generation of the state transition systems from the process-level descrip-
tions of web services. In particular, we intend to investigate techniques for deciding
the right size of these ranges, so that the generated web service implements a gen-
eral solution that can be adopted independently of the actual ranges. We also intend
to investigate the so called “knowledge-level” techniques [13] for the composition of
web services: these techniques prevent the necessity of fixing a finite range and per-
mit the generation of a general solution. Our future plans also include the integration
of the automated composition task with reasoning techniques for discovery and selec-
tion of web services, and the extension of the techniques within the WSMO frame-
work [6]. A further important extension of the framework will address how to auto-
matically generate semantic annotations for the generated web services. A possibil-
ity for OWL-S will be to exploit logical frameworks, e.g., based on description and
dynamic logic, which will be able to derive preconditions and effects of composed
services.

Process-Level Composition of Executable Web Services 77

References

1. P. Bertoli, A. Cimatti, M. Pistore, and P. Traverso. A Framework for Planning with Extended
Goals under Partial Observability. In Proc. ICAPS’03, 2003.

2. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Planning
via Symbolic Model Checking. Artificial Intelligence, 147(1-2):35–84, 2003.

3. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. In Technical
White paper (OWL-S version 1.0), 2003.

4. I. Constantinescu, B. Faltings, and W. Binder. Typed Based Service Composition. In Proc.
WWW’04, 2004.

5. U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for Extended Goals. In
Proc. AAAI’02, 2002.

6. The Web Service Modeling Framework. SDK WSMO working group -
http://www.wsmo.org/.

7. S. McIlraith and R. Fadel. Planning with Complex Actions. In Proc. NMR’02, 2002.
8. S. McIlraith and S. Son. Adapting Golog for composition of semantic web Services. In Proc.

KR’02, 2002.
9. S. McIlraith, S. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,

16(2):46–53, 2001.
10. Mindswap. Maryland Information and Network Dynamics lab Semantic Web Agents

Projects - http://www.mindswap.org/.
11. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of

Web Services. In Proc. WWW’02, 2002.
12. M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web Services. In Proc.

WWW’03, 2002.
13. R. Petrick and F. Bacchus. A Knowledge-Based Approach to Planning with Incomplete

Information and Sensing. In Proc. AIPS’02, 2002.
14. M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services by planning

in asyncronous domains. In Proc. ICAPS’05, 2005.
15. M. Sheshagiri, M. desJardins, and T. Finin. A Planner for Composing Services Described in

DAML-S. In Proc. AAMAS’03, 2003.
16. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Exe-

cutable Processes. In Proc. ISWC’04, 2004.
17. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services

Composition using SHOP2. In Proc. ISWC’03, 2003.

The OWL-S Editor – A Development Tool for
Semantic Web Services

Daniel Elenius, Grit Denker, David Martin,
Fred Gilham, John Khouri, Shahin Sadaati,

and Rukman Senanayake�

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. The power of Web Service (WS) technology lies in the fact
that it establishes a common, vendor-neutral platform for integrating
distributed computing applications, in intranets as well as the Internet
at large. Semantic Web Services (SWSs) promise to provide solutions to
the challenges associated with automated discovery, dynamic composi-
tion, enactment, and other tasks associated with managing and using
service-based systems. One of the barriers to a wider adoption of SWS
technology is the lack of tools for creating SWS specifications. OWL-S
is one of the major SWS description languages. This paper presents an
OWL-S Editor, whose objective is to allow easy, intuitive OWL-S ser-
vice development and to provide a variety of special-purpose capabilities
to facilitate SWS design. The editor is implemented as a plugin to the
Protégé OWL ontology editor, and is being developed as open-source
software.

1 Introduction

Web Services (WS) were invented to bring a new level of integration to the
computing industry and its networked communities. Ideally, service-based appli-
cations should be able to interoperate despite being developed in different pro-
gramming languages, at different times, by different people, with designs based
on different assumptions. Standard protocols for service interface descriptions
(WSDL1) and service invocation (SOAP2), coupled with a global data format
(XML3), were introduced to turn this vision of the Service-Oriented Architecture
[1] into reality.

� Supported by the Defense Advanced Research Projects Agency through the Air
Force Research Laboratory under Contract F30602-00-C-0168 to SRI, and in part
by Vinnova (grant no. 2002-00907) and The Swedish Research Council (grant no.
621-2003-2991).

1 Web Service Definition Language, http://www.w3.org/TR/wdsl
2 Simple Object Access Protocol, http://www.w3.org/TR/soap12-part0/
3 Extensible Markup Language, http://www.w3.org/XML

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 78–92, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The OWL-S Editor – A Development Tool for Semantic Web Services 79

Web Services have met with very strong initial success, mostly in the area
of integration within, and (to a lesser extent) between, businesses. An increas-
ing number of organizations are endorsing WS technology as a standardized
infrastructure for interoperation of disparate software components within the
organization, fulfillment of transactions between organizations, and sharing of
corporate resources with customers and partners. However, this integration has
been achieved only through costly efforts in manually programming and design-
ing these WSs. Developers spend time searching for the right services and adding
adapter components between incompatible services, and the resulting applica-
tions cannot adapt dynamically to changes in their environment.

Although second-generation WS specifications are under development, such
as WS-CDL4 and BPEL4WS5, to enhance the usability, scope, and expressive-
ness of WSs, there is an increasing realization that technologies from the Se-
mantic Web (SW) [2] can also make crucial contributions to WS frameworks.
Semantic Web Services (SWSs) [3] take up on this idea, introducing ontologies to
describe, on the one hand, the concepts in the services’ domains (e.g., flights and
hotels, tourism, e-business), and on the other hand, characteristics of the services
themselves (e.g., control flow, data flow) and their relationships to the domain
ontologies (via inputs and outputs, preconditions and effects, and so on). These
semantically rich descriptions enable automated machine reasoning over service
and domain descriptions, thus supporting automation of service discovery, com-
position, and execution, and reducing manual configuration and programming
efforts. The three most prominent SWS specification approaches currently under
development are OWL-S [4], WSMO6, and SWSL7.

The field of SWSs is still in an early stage, and adoption has been slow.
A limiting factor has been the lack of tool support. The objective has been to
enable machines to manipulate services, yet so far arduous human work has been
necessary to create the semantic service descriptions. While tools to create and
edit SW ontologies in general do exist [5], modeling SWSs requires additional
functionality and developer support in order to be practically feasible.

Tools that make the SWS technology accessible to a broad audience with
diverse needs are a crucial factor in the success of SWS technology. Tools are
needed to facilitate tasks such as service definition and annotation, execution
and monitoring, and service registration and discovery. The OWL-S Editor is
aimed at providing a flexible, yet powerful editor for OWL-S service definitions.
This paper describes the design and current functionality of the OWL-S Editor
as well as its future directions.

The remainder of the paper is organized as follows. A brief introduction to
OWL-S is presented in Section 2. Section 3 forms the main part of this paper,

4 Web Services Choreography Description Language, http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041012

5 http://www-128.ibm.com/developerworks/library/ws-bpel/
6 http://www.wsmo.org
7 http://www.daml.org/services/swsl/

80 D. Elenius et al.

and outlines the main features of the tool. An overview of related work is given
in Section 4. Future work in this area is discussed in Section 5, and Section 6
concludes with a brief summary.

2 OWL-S Overview

OWL-S is an ontology of service concepts. OWL-S organizes a service description
into four conceptual areas: the process model, the profile, the grounding, and the
service.

A process model describes how a service performs its tasks. It includes infor-
mation about inputs, outputs (including a specification of the conditions under
which various outputs will occur), preconditions (circumstances that must hold
before a service can be used), and results (changes brought about by a service).
The process model differentiates between composite, atomic, and simple pro-
cesses. For a composite process, the process model shows how it breaks down
into simpler component processes, and the flow of control and data between
them (see Sections 3.3 and 3.4). Atomic processes are essentially “black boxes”
of functionality, and simple processes are abstract process descriptions that can
relate to other composite or atomic processes.

A profile provides a general description of a WS, intended to be published
and shared to facilitate service discovery. Profiles can include both functional
properties (inputs, outputs, preconditions, and results) and nonfunctional prop-
erties (service name, text description, contact information, service category, and
additional service parameters). The functional properties are derived from the
process model, but it is not necessary to include all the functional properties
from the process model in a profile. A simplified view can be provided for ser-
vice discovery, on the assumption that the service consumer would eventually
look at the process model to achieve a full understanding of how the service
works.

A grounding specifies how a service is invoked, by detailing how the atomic
processes in a service’s process model map onto a concrete messaging proto-
col. OWL-S allows for different types of groundings to be used, but the only
type developed to date is the WSDL grounding (see Section 3.5), which al-
lows any WS with a WSDL definition to be marked up as a SWS using
OWL-S.

A service simply binds the other parts together into a unit that can be pub-
lished and invoked. It is important to understand that the different parts of a
service can be reused and connected in various ways. For example, a service
provider may connect its process model with several profiles in order to provide
customized advertisements to different communities of service consumers. A dif-
ferent service provider, providing a similar service, may reuse the same process
model, possibly as part of a larger composite process, and connect it to a differ-
ent grounding. The relationships between service components are modeled using
properties such as presents (Service-to-Profile), describedBy (Service-to-Process
Model), and supports (Service-to-Grounding).

The OWL-S Editor – A Development Tool for Semantic Web Services 81

3 OWL-S Editor: Design and Features

There are two main tasks in the development of OWL-S services. The first task
is to define the service’s domain ontologies in terms of OWL classes, properties,
and instances. The second task is to create an OWL-S description of the service,
relating this description to the domain ontologies. An OWL-S service description
consists of instances of OWL-S classes such as Service, Process, Input, and
Output. In some cases, the OWL-S ontology is also extended to handle specific
modelling situations.

In order to best facilitate these tasks, we built the OWL-S Editor on top of the
Protégé OWL Ontology Editor [5]. Protégé allows editing of domain ontologies
out-of-the-box. However, efficient development of services requires additional
features. Our strategy has been to leverage the existing functionality of Protégé
and to utilize Protégé’s pluggable architecture to extend it where we judged
it would be helpful for the SWS developer. The result is a SWS development
environment where the domain ontologies are well integrated with the service
descriptions.

The main user interface to the OWL-S Editor is a so-called tab widget. Figure
1 shows the OWL-S Editor tab, which provides service-specific design capabilities
as described in the following sections.

Our design also makes it easy to extend the OWL-S ontologies. A common
scenario is to create subclasses of the OWL-S Profile class, creating a profile
hierarchy with profiles specific for different domains. Figure 2 shows an example
of a custom profile in such a hierarchy.

In addition, building our tool on top of Protégé means that users can take
advantage of the many other existing Protégé plugins, e.g. for querying and
visualizing the Knowledge Base (KB), and to export the KB to different for-
mats. These different plugins coexist gracefully, all working on the same KB (see
Figure 1).

The icons in the toolbar on the top left of the OWL-S Editor tab provide pa-
rameter management, generating an OWL-S service from a WSDL specification,
graphical overview, and additional options. In the following sections we discuss
these and other features in more detail.

3.1 Managing the Top-Level Ontology

As explained in Section 2, a number of properties connect the different com-
ponents of OWL-S services. It is very important to be able to get a good
overview of these relationships when developing an OWL-S service. The OWL-S
Editor tab widget provides a customized view for managing instances of the
OWL-S subontologies. Along the left side of the OWL-S tab are four instance
panes (see Figure 1), one each for services, profiles, processes, and groundings.
Each pane lists all instances of the corresponding type. For the process in-
stance pane we also use small icons next to the process names to distinguish
the different types of processes (e.g., “a” for atomic and “c” for composite). An
ontology containing multiple service descriptions would have several instances

82 D. Elenius et al.

Fig. 1. The OWL-S Editor, a tab-widget plugin for Protégé is shown here next to the

standard Protégé-OWL tabs to the left, and, to the right, other tab-widget plugins for

ontology management, queries, and XML management

in each pane. To provide the user with an overview of how different service
components fit together and which instances are related to one another (via
presents, describedBy, and so on), the user can select an instance in one of
the instance panes, and all instances that are directly related to the selected
instance are emphasized in boldface in the other panes. In Figure 1 the service
ba service:BravoAir ReservationAgent was highlighted in the service instance
pane. As a result, its profile ba profile:Profile BravoAir ReservationAgent, its
top-level process ba process:BravoAir Process, and its grounding
ba grounding:Grounding BravoAir ReservationAgent are boldfaced in the other
instance panes.

We have also implemented a graphical overview functionality. By selecting
an instance and clicking a button in the toolbar, the user gets a graph view of
the same information (see Figure 3).

The OWL-S Editor – A Development Tool for Semantic Web Services 83

Fig. 2. A profile hierarchy for e-commerce that defines additional properties such as

delivery mode and merchandise

When the user clicks an instance in one of the instance panes, the space
to the right of the four panes changes to show a detailed editing pane for the
selected instance. For example, if the user selects a profile instance, then the
right window will show all properties of the profile. For some instances, such
as processes, we have designed a layout on the right that provides a pictorial
visualization of subprocesses, control constructs, and data flow (see Sections 3.3
and 3.4).

Fig. 3. Graphical Overview of the Bravo Air service

84 D. Elenius et al.

3.2 Managing Parameters

Inputs, outputs, preconditions, and results (IOPRs) are important parts of ser-
vices. Both profiles and processes have a set of properties to relate them to
their IOPRs: hasInput, hasOutput, hasPrecondition, and hasResult. As men-
tioned above, a profile usually includes a subset of the IOPRs of the process
to which it is related. For this reason, it is often convenient to compare a profile
side-by-side with the related process, and have them both in view when making
decisions about the values of the IOPR properties. In addition, we sometimes
want to relate the IOPRs of two profiles or processes (e.g., a composite process
and an associated simple process, or two processes of different services).

Fig. 4. IOPR Manager

To support efficient management of these IOPRs, we designed the IOPR
Manager, which visualizes IOPR relationships in a very compact way (see Figure
4). Clicking a toolbar button brings up the IOPR Manager window, which is
somewhat similar to the main tab widget of the OWL-S Editor. Like the tab
widget, it provides four instance panes to the left, and an editing pane to the
right (not shown here). The instance panes of the IOPR Manager show all the
IOPRs in the KB, and allow the user to create and delete IOPRs. The user can
also edit IOPR properties in the editing pane. In addition, two combo boxes at
the top of the window allow users to select two processes and/or profiles that
are to be compared with regard to their IOPRs. Associated with each combo
box is a column of checkboxes, one for each IOPR. The user can simply check or
uncheck these boxes to add or remove instances of the corresponding properties
(hasInput, hasOutput, and so on).

As an example, if we select ba process:BravoAir Process and its profile
ba profile:Profile BravoAir ReservationAgent in the combo boxes, then the

The OWL-S Editor – A Development Tool for Semantic Web Services 85

checkboxes show that they both have the input ba process:ArrivalAirport. In
addition, the editing pane shows us that that the parameterType of this input
is the Airport class (which is imported from a domain ontology of flight-related
concepts).

Groundings also refer to inputs and outputs. However, groundings do not
refer to preconditions or effects, and the relationship with inputs and outputs
is somewhat different from that of profiles and processes. For these reasons, we
chose not to include the groundings in the IOPR Manager. Instead, we imple-
mented separate support for editing groundings (see Section 3.5).

3.3 Control Flow

A powerful feature of OWL-S is the ability to model composite processes. A com-
posite process is constructed from subprocesses that can in turn be composite,
atomic, or simple. The control flow of a composite process is defined using control
constructs, such as If-Then-Else, Sequence, and Repeat-Until. These constructs
can be nested to an arbitrary depth.

These control flows are particularly difficult to generate by hand or in a
plain ontology editor not designed for this task. The OWL-S editor visualizes
these control flows graphically, in a style similar to UML Activity Diagrams,
using boxes for subprocess invocation (called Performs in OWL-S), diamonds
for conditional nodes (e.g., for If-Then-Else constructs), and arrows showing the
flow of execution. Being able to view these “work flow” graphs was a high priority
for us. OWL-S control flows have more structure than arbitrary flow charts or
UML activity diagrams, however. Therefore, we do not allow users to directly
“draw” the work flow. Instead, we take advantage of the fact that all OWL-S
control flows are trees in the graph-theoretical sense. We let the user model the
control flow in a GUI tree component, with full drag-and-drop support, whereas
the corresponding work flow graph is updated to reflect any changes to this tree
(see Figure 5).

The view in Figure 5 is the editing pane for composite processes. If a user
selects a composite process in the process instance pane, the editing pane to the
right has the shown layout. If the user does a right-click on the process graph
view of a composite process, a menu will pop up, offering zooming, printing, and
SVG exporting capabilities.

As a further note, the process modeling that forms a part of the service
semantics has reaped interest outside of the area of SWSs (e.g. in [6]). The
process modeling part of our tool can be used to create process descriptions not
necessarily related to WSs. However, this is not the primary goal of the OWL-S
Editor.

3.4 Data Flow

In addition to control flow, composite processes can specify their data flow. For
example, we can state that a certain input of Process B should be taken from a
certain output of Process A. The goal in OWL-S (and our tool) is to also be able

86 D. Elenius et al.

Fig. 5. A composite process, its tree structure shown to the left, and its graph repre-

sentation to the right

to define more complex things, such as the input of Process B being the sum of
the outputs of Processes A and C. The details of this remain to be worked out,
but the simple one-to-one mappings should be sufficient for many applications.

Data flow is another area that is complicated to do by hand, but that can take
great advantage of a graphical representation and specialized editing support.
Both are supplied by the OWL-S Editor (see Figure 6).

Data flow definitions relate two parameters of different processes with each
other. Either one associates a parameter of the parent process with a parameter
of one of its component processes, or one relates two parameters of two compo-
nent processes (atomic or complex) in the same parent process. If the user clicks
on one of the Perform boxes in the process graph, a popup window (shown in
the lower part of Figure 6) appears. This popup window shows the properties of
that Perform, including any incoming data flow. Here, the user selects an input
of the process (left part in the figure), and a source from which to take the value
(right part). For the source, the user needs to first select the process (“From
Perform”) and then a parameter in that process (“From Parameter”) to create
a data flow declaration.

3.5 Grounding and WSDL Import

We have already mentioned that OWL-S descriptions can relate to WSDL files
through groundings. OWL-S processes can relate to WSDL files in several ways

The OWL-S Editor – A Development Tool for Semantic Web Services 87

Fig. 6. Example of data flow between processes, and the popup window for editing

data flow declarations

(see Figure 7), making it somewhat complicated to model this. In the simplest
case, there is a one-to-one correspondence between an OWL-S input parameter
and a message part of a WSDL input message as well as a one-to-one corre-
spondence between a WSDL operation output message part and an OWL-S out-
put parameter. These correspondences are defined in the grounding of a service
through so-called WsdlMessageMaps. In either of the two one-to-one correspon-
dences, the WSDL service accepts serialized OWL, or the ontology operates on
XSD[7] data types. Often, however, a transformation has to take place, in or-
der to map between concepts in the ontology and complex XSD types on the
WSDL side. We have added rudimentary support for this task in the OWL-S
Editor , but complex mappings still have to be written manually. It is our goal
to make it straightforward and easy to declare these mappings in the OWL-S
Editor.

In many cases, it will be desirable to create a “skeletal” OWL-S description
based on a preexisting WSDL file. Parts of the OWL-S description can be gen-
erated automatically based on the inputs and outputs defined in the WSDL file.
To this end, we have integrated the WSDL2OWLS code, part of the OWL-S API

88 D. Elenius et al.

Fig. 7. Grounding: WSDL Message Maps

from Mindswap8, to the OWL-S Editor. This allows users to perform this type
of OWL-S generation from a WSDL file by clicking one of the toolbar buttons
(see Figure 1).

3.6 Execution

An exciting feature of the OWL-S Editor is the ability to actually execute services
inside the editing environment. Selecting a Service instance and clicking the
’play’ button (see Figure 1) will execute that service, provided that it has a
WSDL grounding which is hooked up to a real web service. The user is presented
with a window (see Figure 8) where he/she gets to choose the values of the input
parameters (or create new instances for them) based on the parameter types
defined in the service’s process model. This functionality is work in progress,
but we aim to support composite as well as atomic processes, and users will be
able to take the results returned from services and add them into the Protégé
knowledge base.

8 http://www.mindswap.org/2004/owl-s/api/

The OWL-S Editor – A Development Tool for Semantic Web Services 89

Fig. 8. Execution of a Semantic Web Service

4 Related Work

The OWL-S IDE project9 is also concerned with the development of OWL-S
services. The OWL-S IDE is a plugin for Eclipse10, which attempts to integrate
the semantic markup with the programming environment. Developers can write
their Java code in Eclipse, and run a Java2OWLS tool to generate an OWL-S
“skeleton” directly from the Java sources.

The idea of integrating SWSs more closely with the programming environ-
ment used to develop the service implementations is a good one. However, Eclipse
does not support ontology editing, and there is no KB from which to choose the
domain concepts to which the OWL-S files should relate. Furthermore, it will
often be more useful to generate the semantic markup before the Java (or other)
code, as the semantic descriptions can be seen as a higher level of abstraction
of the programming modules. The OWL-S IDE does not provide any graphical
visualization of services or processes.

There are plans to integrate Protege with Eclipse in the future, so perhaps
we will have the best of both worlds—tight integration with the programming
environment, as well as ontology editing and KB integration, all in the same
IDE.

Another OWL-S Editor [8] has been developed at the University of Malta. It
is a stand-alone program, providing WSDL import as well as a graphical editor
and visualization for control flow and data flow. Not being integrated with an
ontology editor, it shares some of the drawbacks of the OWL-S IDE, without
gaining the advantage of programming-language integration.

ODE SWS is a tool for editing SWSs “at the knowledge level”[9], describ-
ing services following a Problem-Solving Methods (PSMs)[10] approach. OWL-S

9 http://projects.semwebcentral.org/projects/owl-s-ide/, formerly known as
CODE

10 http://www.eclipse.org

90 D. Elenius et al.

plays a subordinate role in this environment, whereas the OWL-S descriptions
are the main focus of our work.

IRS-3 [11] also follows the PSM approach, but lacks the graphical tools of
ODE SWS or the OWL-S Editor, and does not support OWL-S, favoring WSMO
instead.

To the best of our knowledge, none of the projects above have released their
source code, whereas the source code for the OWL-S Editor has been available
from the beginning, at http://owlseditor.semwebcentral.org.

5 Future Work

This tool represents early work in SWS design and development. In the following,
we present some areas that we plan to work on in the future.

A limitation in Protégé is that it is not designed for concurrently working with
multiple ontologies. However, it is often useful to be able to do so when working
with SWSs. One often wants to edit service components spread across different
subontologies, and the domain ontologies are normally separated from the service
descriptions. Fortunately, the Protégé developers at working to implementing
this functionality.

One aspect of OWL-S services not covered in this paper is the editing of
preconditions and effects of processes, and conditions associated with control
constructs such as If-Then-Else. In OWL-S, these are normally described in the
SWRL language11. Currently, we simply provide a text box where users can
enter these SWRL expressions. However, we plan to provide more user-friendly
editing capabilities. Protégé has recently been enhanced with native support for
SWRL, including a SWRL expression-builder, which will serve as the basis of
this work.

A feature not yet implemented is online search for services. A central idea in
OWL-S is reusability. The separation of service descriptions into process models,
profiles, and groundings, means that these components can be re-used in other
services. An online search capability for service components inside the OWL-S
Editor would greatly facilitate such reuse. Such a search facility could also be
used to find entire services, to be included as parts of a composite process that
the user is working on in the OWL-S Editor. Ideally, the user should be able to
give detailed search criteria, and find a service that matches her current needs
(e.g. to find a service with inputs matching the outputs of previous processes
in a composite process model). Various approaches to online searching could
be implemented, ranging from brute-force Google12 search for .owl files, via
semantic search engines such as Swoogle13, to service-specific systems such as
semantically enhanced UDDI registries[12].

11 http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
12 www.google.com
13 www.swoogle.org

The OWL-S Editor – A Development Tool for Semantic Web Services 91

We are also working on improvements to the graph overview presented in
Section 3.1 to (1) show the entire “forest” of OWL-S instances simultaneously,
and (2) allow users to change the relationships between the service components,
i.e. add or remove instances of the properties presents, describedBy, etc.

We are also interested in the generation of OWL-S descriptions from BPEL4WS
files. We are closely following work in this area14 for possible inclusions in our
tool.

6 Concluding Remarks

We have argued in this paper that Semantic Web Services (SWSs) could enable
radically improved integration of businesses and networked communities, by au-
tomating service discovery, composition, and execution. SWSs thus promise great
potential gains, but uptake has so far been slow. Lack of tool support has been
a limiting factor for adoption of SWS technology.

OWL-S represents an emerging standard for SWSs, providing the concepts
necessary to create detailed service descriptions. This paper has introduced the
OWL-S Editor, a development tool for OWL-S services. This tool allows engi-
neering of all aspects of SWSs, providing specialized views and design features
wherever deemed necessary. The tool is well integrated with the Protégé OWL
ontology editing framework. This integration means that developers can load,
edit, and create domain ontologies, and subsequently relate their services to
domain concepts in an easy and intuitive way.

Among the main features are graphical editing and visualization of control
flow and data flow; the ability to easily maintain a large number of services;
functionality to manage the relationships between service components and pa-
rameters; and generation of “skeletal” OWL-S descriptions from WSDL files.

A number of desirable extensions to the OWL-S Editor, such as online search-
ing capabilities, and an integrated execution environment for services, have been
discussed. In addition, we also plan to investigate the SWS software development
process as a whole. This could involve such things as best practices for developing
SWSs, “design patterns”[13] for SWSs, and the relationships between OWL-S
and other representations and methodologies such as UML[14], Model-Driven
Architectures[15], and PSL[16].

In providing this tool to the community, our aim is to make it easier to
understand the concepts of SWSs, and to create semantic descriptions of services.
We believe that this can bring a fruitful cross-pollination between practice and
theory. As more people start developing SWSs, important feedback on using the
service ontologies in various projects, and on design and implementation aspects
of SWSs, could benefit the knowledge in this field.

The OWL-S Editor is available for download in both binary and source for-
mats on http://owlseditor.semwebcentral.org. We welcome all feedback on
our mailings list.

14 http://www.it.swin.edu.au/centres/cicec/bpel2owls.htm

92 D. Elenius et al.

References

1. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Prentice Hall, Upper Saddle River, NJ, USA (2004)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

3. McIlraith, S., Song, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems,
Special Issue on the Semantic Web 16 (2001) 46–53

4. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,
D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing semantics to Web Services: The OWL-S approach. In: Proc. First Intern.
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), July 6-9, 2004, San Diego, California, USA. (2004) http://www.daml.org/

services/owl-s.
5. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An

open developoment environment for semantic web applications. In McIlraith, S.,
Plexousakis, D., van Harmelen, F., eds.: Proc. 3rd Intern. Semantic Web Confer-
ence (ISWC 2004), Hiroshima, Japan, November 2004, Springer (2004) 229–243
LNCS 3298.

6. Schlenoff, C., Barbera, T., Washington, R.: Experiences in developing an in-
telligent ground vehicle (IGV) ontology in protégé. In: Proceedings of the
7th International Protégé Conference. (2004) http://protege.stanford.edu/

conference/2004/abstracts/Schlenoff.pdf.
7. Fallside, D.C., (eds.), P.W.: XML Schema part 0: Primer second edition (2004)

http://www.w3.org/TR/xmlschema-0/.
8. Scicluna, J., Abela, C., Montebello, M.: Visual modelling of OWL-S services.

In: Proceedings of the IADIS International Conference WWW/Internet,
Madrid, Spain, October 2004. (2004) http://www.daml.org/services/

owl-s/pub-archive/Visual-Modeling-of-OWL-S\%-Services.pdf.
9. Goméz-Pérez, A., González-Cabero, R., Lama, M.: Development of semantic

web services at the knowledge level. In: European Cnference on Web Services
(ECOWS), Erfurt, Germany. (2004)

10. Fensel, D.: Problem Solving Methods. Springer-Verlag Telos (2000)
11. Domingue, J., Cabral, L., Hakimpour, F., Sell, D., Motta, E.: IRS-III: A platform

and infrastructure for creating wsmo-based semantic web services. In: Proceedings
of the Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany,
September 29-30, 2004. (2004) CEUR Workshop Proceedings, ISSN 1613-0073.

12. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Proceedings of the 1st International Semantic Web Con-
ference (ISWC2002). (2002)

13. Gamma, E.: Design Patterns. Addison-Wesley, Boston, MA, USA (1995)
14. Brooch, G.: Object-Oriented Analysis with Design and Applications (2nd ed).

Addison-Wesley, Boston, MA, USA (1993)
15. Raistrick, C., Francis, P., Wright, J.: Model Driven Architecture with Executable

UML. Cambridge University Press. Cambridge, UK (2004)
16. Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J.: The Process

Specification Language (PSL): Overview and version 1.0 specification. NISTIR
6459, National Institute of Standards and Technology, Gaithersburg, MD. (2000)

Temporal RDF

Claudio Gutierrez1, Carlos Hurtado1, and Alejandro Vaisman2

1 Department of Computer Science,
Universidad de Chile

{cgutierr, churtado}@dcc.uchile.cl
2 Department of Computer Science,

Universidad de Buenos Aires,
avaisman@dc.uba.ar

Abstract. The Resource Description Framework (RDF) is a metadata
model and language recommended by the W3C. This paper presents a
framework to incorporate temporal reasoning into RDF, yielding tem-
poral RDF graphs. We present a semantics for temporal RDF graphs, a
syntax to incorporate temporality into standard RDF graphs, an infer-
ence system for temporal RDF graphs, complexity bounds showing that
entailment in temporal RDF graphs does not yield extra asymptotic
complexity with respect to standard RDF graphs and sketch a temporal
query language for RDF.

1 Introduction

The Resource Description Framework (RDF) [14] is a metadata model and lan-
guage recommended by the W3C for building an infrastructure of machine-
readable semantics for the data on the Web, a long-term vision known as Se-
mantic Web. In the RDF model, the universe to be modeled is a set of resources,
essentially anything that can have a universal resource identifier, URI. The lan-
guage to describe them is a set of properties, technically binary predicates. De-
scriptions are statements very much in the subject-predicate-object structure.
Both subject and object can be anonymous objects, known as blank nodes. In
addition, the RDF specification includes a built-in vocabulary with a norma-
tive semantics (RDFS) [4]. This vocabulary deals with inheritance of classes and
properties, as well as typing, among other features allowing the descriptions of
concepts and relationships that can exist for a community of people and software
agents, enabling knowledge sharing and reuse.

Although some studies exist about addressing changes in an ontology [15], or
the need for temporal annotations on Web documents [22], little attention has
deserved the problem of representing, updating and querying temporal informa-
tion in RDF. Time is present in almost any Web application. Indeed, as pointed
out by Abiteboul [1] the modeling of time is one of the key primitives needed in
a query language for Web and semistructured data. Thus, there is a clear need
of applying temporal database concepts to RDF to allow metadata navigation
across time.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 93–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 C. Gutierrez, C. Hurtado, and A. Vaisman

SC SCSC

SCSC Type

JohnProf. Diploma

Technical

Master

Student

Graduate Undergraduate

SC SCSC

SCSC

JohnProf. Diploma

Technical

Master

Student

Graduate Undergraduate

Type

Ph.D.

Fig. 1. Initial RDF graph (left) and after some changes (right)

Consider an RDF graph describing information about a university, as of its
creation time, Figure 1 (left). Students were classified as technical, graduate
or undergraduate, and the only graduate programs offered were at the level of
‘Master’ studies, like MBA or MSc; ‘Professional Diploma’ was the only program
offered at the technical level. As the university evolved, a Ph.D program was
created. Figure 1 (right) illustrates the new situation. Notice the dynamics of this
example: students (e.g., John) can enroll in one program (e.g., Undergraduate),
then shift to another one (e.g., Master), and so on. The figures show that the
impact of disregarding the time dimension is twofold: on the one hand, when
a change occurs, a new metadata document must be created (and the current
document dropped). On the other hand, queries asking for past states of the
metadata cannot be supported. For instance, we cannot ask for the programs
offered at the time when the university was created.

1.1 Problem Statement: Introducing Time into RDF

Generally speaking, a temporal database is a repository of temporal information.
Although temporal databases were initially studied for adding the time dimen-
sion to relational databases, as new data models emerged, temporal extensions
to these models were also proposed (see Section 1.2). We next discuss the main
issues that arise when extending RDF with temporal information.

Versioning Versus Time Labeling. There are two mechanisms for adding the time
dimension to non-temporal RDF graphs: labeling and versioning (following the
timestamp and snapshot models, respectively). The former consists in labeling
the elements subject to changes (i.e. triples). The latter is based on maintaining
a snapshot of each state of the graph. For instance, each time a triple changes, a
new version of the RDF graph is created, and the past state is stored somewhere.
Although both models are equivalent, versioning appears to be not suitable for
queries of the form: “all time instants where Φ holds in the database”.

There are at least two temporal dimensions to consider when dealing with
temporal databases: valid and transaction times. Valid time is the time when
data is valid is the modeled world; transaction time is the time when data is
actually stored in the database. The versioning approach captures transaction
time, while labeling is mostly used when representing valid time. The approach
we present in this paper supports both time dimensions.

Temporal RDF 95

Fig. 2. A temporal RDF graph accounting for the evolution of the university ontology

In summary, we believe that for RDF data, labeling is better than versioning,
because (a) it preserves the spirit of the distributed and extensible nature of
RDF, and (b) in scenarios where changes are frequent and only affecting a few
elements of the document, creating a new physical version of the graph each
time an update occurs may lead to large overheads when processing temporal
queries that span multiple versions.

Time Points Versus Time Intervals. We will work with the point-based temporal
domain for defining our data model and query language, but we will encode time-
points in intervals when possible, for the sake of clarity. We will consider time as
a discrete, linearly ordered domain, as usual in virtually all temporal database
applications. An ordered pair [a, b] of time points, with a ≤ b, denotes the closed
interval from a to b. Figure 2 shows a temporal RDF graph for the university
example above. The arcs in the graph are labeled with their interval of validity.1

For example, the interval [0,Now] says that the triple (technical,sc,student) is
valid from the document’s creation time to the current time. Also, note that the
figure shows that John was an Undergraduate student in the interval [0,10], and
now he is a PhD student.

Vocabulary for Temporal Labeling. Temporal labeling can be implemented within
the RDF specification, making use of a simple additional vocabulary, as Figure 3
shows. As we adopted the point-based, discrete and linearly ordered temporal
domain, the left and right hand sides of Figure 3 are equivalent. We will use both
representations indistinctly. Moreover, we define constructs that allow moving
between intervals and time instants as follows: the instants depicted in Figure 3
(left) can be encoded in an interval as shown in Figure 3 (right). Both alternatives
will be used in the query language.

1 Note that the standard graph(ical) representation of an RDF graph is not the most
faithful to convey the idea of statements (triples) being labeled by a temporal ele-

ment. Technically, temporal labels should be attached to a whole subgraph u
p→ v,

and not only to an arc.

96 C. Gutierrez, C. Hurtado, and A. Vaisman

b

a

c

1

2

3

temporal

temporal

temporal

instant

instant

instant

b

a

c

1

3

temporal

Initial

Final

Fig. 3. Point-based labeling (left) and Interval-based labeling (right)

Temporal Entailment. An RDF graph can be regarded as a knowledge base
from which new knowledge, i.e., other graphs, may be entailed. Entailment in a
temporal setting is a slightly more involved in the RDF case than in the standard
database case. In principle, one may be tempted to define the semantics as in
temporal relational databases, i.e., defining the temporal database as the union
of all of its snapshots. (A snapshot at time t of a temporal RDF graph G is the
corresponding subgraph formed by triples labeled by and instant t.) Blank nodes
impose some constraints to this naive approach. For example, each of the three
snapshots of Figure 4 (right) entails the corresponding snapshots of Figure 4
(left). However, the whole graph of Figure 4 (left) cannot be entailed by the
graph of Figure 4 (right). Indeed, the graph of Figure 4 (left) states that there
is an anonymous object X in the triple (a, b,X) at times 3 and 4, which is not
the case for the other graph.

Temporal Query Language. Regarding query languages in temporal databases,
basically two choices for defining the temporal domains exist: the point-based
and the interval based temporal domains, yielding different query languages
[20, 3]. In the point-based approach, temporal variables in query languages refer
to individual time instants, while in the interval-based domain, variables in the
queries range over intervals, making queries more complicated and unnatural.
Anyway, one can move easily between these two domains.

1.2 Related Work

The RDF model was introduced five years ago as a W3C recommendation [14].
Formal work in RDF includes the study of formal aspects of RDF data and
query languages [10, 21], considering RDF features like the entailment, presence

temporal

temporal

instant

instant

3
4 X

a Y

b

b

temporal

temporal

instant

instant

3
4 X

a Y

b

b

Fig. 4. Temporal entailment: for each t the corresponding snapshots at t are equivalent,

but the graph on the left is not entailed by the graph on the right

Temporal RDF 97

of blank nodes, reification, premises in queries, and the RDFS vocabulary with
predefined semantics. Several languages for querying RDF data have been pro-
posed and implemented. Some of them in the lines of traditional database query
languages (e.g. SQL, OQL), others based on logic and rule languages. Good sur-
veys are [13, 16]. To the best of our knowledge, there is still no formal study of
temporality issues in RDF graphs and RDF query languages.

Temporal database management has been extensively studied, including data
models, mostly based on the relational model and query languages [19], leading
to the TSQL2 language [18]. Beyond the relational model, managing historical
semistructured data was first proposed by Chawathe et al [6], who extended the
Object Exchange Model (OEM) with the ability to represent updates and to
keep track of them by means of “deltas.” Later, Dyreson et al [7] allowed anno-
tations on the edges of the database graph. In the XML world, Amagasa et al [2]
introduced a temporal data model based on XPath for the first time. Dyreson [8]
proposed an extension of XPath with support for transaction time by means of
the addition of several temporal axes for specifying temporal directions, focus-
ing on document versioning over the web in the absence of explicit time stamps.
Chien et al [5] proposed update and versioning schemes for XML through an
edit-based schema in which the most current version of the document is main-
tained, and reverse edit scripts allow moving backward in time. Gao et al [9]
introduced τXQuery, an extension to XQuery supporting valid time while main-
taining the data model unchanged. Mendelzon et al [17] proposed a temporal
model for XML, a temporal extension to XPath, and a novel indexing strategy
for temporal XML documents. Like in our approach, they use labeling, and a
point-based temporal domain and query language. Finally, Visser et al [22] pro-
posed a temporal reasoning framework for the Semantic Web, which has been
applied in BUSTER, an ontology-based prototype developed at the University
of Bremen, supporting the so-called concept@location in time type of query.

1.3 Contributions

In this paper we present a framework to incorporate temporal reasoning into
RDF, yielding temporal RDF graphs. In particular, we present the following con-
tributions: (a) a semantics for temporal RDF graphs in terms of the semantics
of non-temporal RDF and RDFS graphs; (b)a study of properties of temporal
RDF graphs and the interplay between timestamp and snapshot semantics in
temporal RDF graphs; (c) a syntax to incorporate this framework into standard
RDF graphs, which includes a vocabulary and rules. The syntax uses the stan-
dard RDF vocabulary plus temporal labels; (d) a sound and complete inference
system for temporal RDF graphs; (e) complexity bounds which show that entail-
ment in temporal RDF graphs does not yield extra asymptotic time complexity
with respect to standard RDF graphs; (f) a sketch for a temporal query language
for RDF. For the sake of space, we do not include proofs in this version of the
paper.

98 C. Gutierrez, C. Hurtado, and A. Vaisman

2 RDF Preliminaries

In this section we present a streamlined formalization of the RDF model following
the W3C documents [14, 12, 4], along the lines of [10].

2.1 RDF Graphs

Assume there is an infinite set U (RDF URI references); an infinite set B =
{Nj : j ∈ N} (Blank nodes); and an infinite set L (RDF literals). A triple
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L) is called an RDF triple. In such a triple,
v1 is called the subject, v2 the predicate and v3 the object. We often denote by
UBL the union of the sets U , B and L.

An RDF graph (just graph from now on) is a set of RDF triples. A subgraph is
a subset of a graph. The universe of a graph G, universe(G), is the set of elements
of UBL that occur in the triples of G. The vocabulary of G is the set universe(G)∩
(U ∪ L). We will use letters N,X, Y, . . . to denote blank nodes, and a, b, c, . . .
for URIs and literals. A graph is ground if it has no blank nodes. Graphically we
represent RDF graphs as follows: each triple (a, b, c) is represented by the labeled
graph a

b→ c. Note that the set of arc labels can have non-empty intersection
with the set of node labels.

A map is a function μ : UBL → UBL preserving URIs and literals, i.e.,
μ(u) = u and μ(l) = l for all u ∈ U and l ∈ L. Given a graph G, we define
μ(G) as the set of all (μ(s), μ(p), μ(o)) such that (s, p, o) ∈ G. A map μ is
consistent with G if μ(G) is an RDF graph, i.e. , if s is the subject of a triple,
then μ(s) ∈ UB, and if p is the predicate of a triple, then μ(p) ∈ U . In this case,
we say that the graph μ(G) is an instance of the graph G. An instance of G is
proper if μ(G) has fewer blank nodes than G. This means that either μ sends a
blank node to an URI or a literal, or identifies two blank nodes of G. We will
overload the meaning of map and speak of a map μ : G1 → G2 if there is a map
μ such that μ(G1) is a subgraph of G2.

Two graphs G1, G2 are isomorphic, denoted G1
∼= G2, if there are maps μ1, μ2

such that μ1(G1) = G2 and μ2(G2) = G1.
We define two operations on graphs. The union of G1, G2, denoted G1 ∪G2,

is the set theoretical union of their sets of triples. The merge of G1, G2, denoted
G1 + G2, is the union G1 ∪G′

2, where G′
2 is an isomorphic copy of G2 whose set

of blank nodes is disjoint with that of G1. Note that G1 + G2 is unique up to
isomorphism.

2.2 RDFS Vocabulary

There is a set of reserved words defined in the RDF vocabulary description
language, RDF Schema [4], –just rdfs-vocabulary for us– that may be used to de-
scribe properties like attributes of resources (traditional attribute-value pairs),
and also to represent relationships between resources. It defines classes and prop-
erties that may be used for describing groups of related resources and relation-

Temporal RDF 99

ships between resources.2 Classes are sets of resources. Elements of a class are
known as instances of that class. To state that a resource is an instance of a class,
the property rdf:type may be used. The following are the most important classes
(in brackets the name we will use in this paper) rdfs:Resource [res], rdfs:Class
[class], rdfs:Literal [literal], rdfs:Datatype [datatype], rdf:XMLLiteral
[xmlLit], rdf:Property [property]. Properties are binary relations between sub-
ject resources and object resources. The built-in properties are: rdfs:range [range],
rdfs:domain [dom], rdf:type [type], rdfs:subClassOf [sc], rdfs:subPropertyOf [sp].

3 Temporal RDF Graphs

In this paper we extend RDF graphs by allowing temporal elements to label
triples. A temporal label is a temporal element t labeling a triple (a, b, c). For
simplicity, without loss of generality, we will work with single intervals instead
of temporal elements. In an RDF graph, given a triple (a, b, c), the temporal
element t represents the time period when the triple was valid, i.e. the valid
time of the triple. At this time we do not deal with transaction time, which can
be addressed in an analogous way.

3.1 Basic Definitions

In this section we define the notion of temporal RDF at a conceptual level.

Definition 1 (Temporal graph).

1. A temporal triple is an RDF triple with a temporal label (a natural number).
We will use the notation (a, b, c) : [t]. The expression (a, b, c) : [t1, t2] is a
notation for {(a, b, c) : [t] | t1 ≤ t ≤ t2}.

2. A temporal graph is a set of temporal triples. A subgraph is a subset of the
graph.

For a temporal graph G, define the snapshot at time t as the RDF graph

G(t) = {(a, b, c) | (a, b, c) : [t] ∈ G}

The underlying RDF graph of a temporal RDF graph G, denoted u(G), is
⋃

t G(t),
the union of the graphs G(t).

For an RDF graph, define Gt as the temporalization of all its triples by a
temporal mark t, that is, Gt = {(a, b, c) : [t] | (a, b, c) ∈ G}.

The above definitions give the following elementary consequences about the
relationship between RDF graphs and temporal RDF graphs.

2 We omit in this paper vocabulary intended to describe lists, collections, some varia-
tions on these, as well as vocabulary to help document and describe other function-
alities for which there is no normative semantics. The complete vocabulary can be
consulted in [4].

100 C. Gutierrez, C. Hurtado, and A. Vaisman

Lemma 1. Let G be an RDF graph, and G′ be a temporal RDF graph. Then:
(1) Gt(t) = G; (2) (G′(t))t ⊆ G′, and (3) G′ =

⋃
t(G

′(t))t.

Several issues on the definition of temporal RDF graph are in order:

– Recall we use a temporal model where an interval [a, b] is of the form [a, a+
1, . . . , b] for a given unit of time that we will assume to be universal in this
paper. The natural way to approach this issue is to specify, together with
the temporal mark, the unit of time it represents. All the results given here
extend without difficulties to this setting.

– Temporal triples do not belong to the RDF syntax. In the next section
we introduce an RDF-complying syntax for temporal triples, using a small
temporal vocabulary.

– Source of a temporal statement: Due to the extensible nature of the RDF
model, it is possible to include the source of a temporal statement (i.e. who
is the author of the temporal statement), and other properties that apply.
Although our model (see next section) allows this, we will not study the
semantic consequences of this extra information in this paper, but rather
stay in the classic setting of temporal models.

3.2 Semantics

In what follows, we present the semantics for the notion of entailment for tem-
poral graphs based on the corresponding notion for RDF graphs.

Definition 2 (Temporal Entailment). Let G1, G2 be RDF temporal graphs.
Define

– For ground temporal RDF graphs G1, G2 define G1 |=t G2 as G1(t) |= G2(t)
for each t;

– For general graphs, G1 |=t G2 iff there exist ground instances μ1(G1) and
μ2(G2) such that (μ1(G1))(t) |= (μ2(G2))(t) for each t.

Note that the definition for ground graphs resembles classical temporal defi-
nitions:

Proposition 1. Let G1, G2 be temporal graphs. Then, G1 |=t G2 implies G1(t) |=
G2(t) for all t, and the converse is true for ground graphs.

In fact, the problems for general graphs are introduced by blank nodes and
the notion of entailment. For example, G1(t) |= G2(t) for all t does not imply
G1 |=t G2 (see Figure 4). We have the following issues:

– A blank node represents the same (unnamed) resource throughout the time
range, rather than a sequence of different resources. This makes the behavior
of temporal marks in Temporal RDF different from the classical setting.
Temporal marks here –contrary to temporal XML for example– are not only
a relation among fixed objects, but also among time-varying objects, the blank
nodes. See example in Figure 4.

Temporal RDF 101

– The notion of entailment for temporal RDF needs a basic arithmetic of inter-
vals in order to combine the notion of temporality and deductive properties.
For example if we have (a, sc, c) : [2, 3], (c, sc, d) : [2], then we should be able
to derive (a, sc, d) : [2], but not (a, sc, d) : [3].

In the rest of this section, we show that the notions of closure, lean graph, core
–fundamental to define notions of normalization of this data– can be extended
without difficulty to the temporal setting. (Compare discussion in [10]).

The closure of a temporal graph G, denoted tcl(G), is a maximal set of
temporal triples G′ over universe(G) plus the RDF vocabulary such that G′

contains G and is equivalent to it.

Proposition 2 (Entailment for Temporal graphs).
Let G,G1, G2 be temporal RDF graphs. Then

1. tcl(G) =
⋃

t(cl(G(t)))t;
2. G1 |=t G2 if and only if tcl(G1) |=t G2.

A temporal graph G is lean if and only if there is no proper temporal subgraph
G′ of G such that G |=t G′. The core of G, core(G) is a lean subgraph of G
equivalent to it. With these notions, for a temporal RDF graph G we can define
–as in the case of RDF graphs– a notion of normal form, denoted by nft(G), as
follows: nft(G) = coret(G′) for a temporal closure G′ of G.

The computational complexities of computing the core and testing whether
a graph is lean, are asymptotically the same as the case of standard RDF
graphs [10].

Proposition 3. Let G,G′ be graphs.
1. The problem of deciding if G′ is the closure of G is DP-complete.
2. The problem of deciding if G′ is the normal form of G is DP-complete.

4 Syntax and Deductive System for Temporal Graphs

We present a deductive system for temporal RDF. It is based on a sound and
complete set of rules given in [12], plus three rules capturing temporal issues.

4.1 RDF Syntax of Temporal Triples

Definition 3 (Temporal vocabulary). The temporal vocabulary is the follow-
ing: temporal (abbreviated as tpl), instant,interval, initial and final, all
of type property, and now of type plain literal. The range of instant, initial
and final is the set of natural numbers.

We will use the following notation shortcuts: reif(a, b, c,X): the set of triples
(X,tsubj, a),(X,tpred, b),(X,tobj, c)(a kind of “temporal reification”of (a, b, c)).3

3 We could have used here the standard reification vocabulary of RDF. We chose not
to in order to stress the fact that the notions presented in this paper are independent
of any view one may have about the concept of reification in RDF.

102 C. Gutierrez, C. Hurtado, and A. Vaisman

Definition 4 (Temporal triples and graphs). Temporal triples are the fol-
lowing graphs using the temporal vocabulary.

– (a, b, c), reif(a, b, c,X), (X, tpl, Y), (Y, instant, n) where n is a natural num-
ber; we will summarize this as (a, b, c) : [X,Y, n];

– (a, b, c), reif(a, b, c,X), (X, tpl, Y), (Y, interval, Z), (Z, initial, I),
(Z, final, F); where I, F are natural number; we will summarize this as
(a, b, c) : [X,Y, I, F];

A temporal graph will be defined as a merge of a set of temporal triples.

Because RDF is extensible, nothing prevents the use of the blank nodes in-
cluded in the definition as target or source of other properties beyond the tempo-
ral vocabulary. We want to have a definition of temporal triple independent of the
blank nodes occurring in the proposed syntactic definition of temporal triples,
e.g., we want that (a, b, c) : [X,Y, n] be essentially equivalent to (a, b, c) : [n].
Both previous issues are overcame in our syntax by adding certain rules, which
regulate the temporal vocabulary.

4.2 Rules

The set of rules is arranged in four groups. Groups A, B, C, and D are intended
to describe the classical RDFS semantics, and we follow the approach in [10].
We omit another group of rules that has to do with internal relationships of the
RDF model itself and that we do not consider in this paper.

The novelty here is Group T (temporal rules), whose main objective is to be
able to standardize the interval version and the instant version as well as help
defining “absolute” temporal marks.

GROUP A (Existential) For a map μ : G′ → G, G
G′

GROUP B (Subproperty)

(a, type, property)

(a, sp, a)
,

(a, sp, b) (b, sp, c)

(a, sp, c)
,

(a, sp, b) (x, a, y)

(x, b, y)

GROUP C (Subclass)

(a, type, class)

(a, sc, a)
,

(a, sc, b) (b, sc, c)

(a, sc, c)
,

(a, sc, b) (x, type, a)

(x, type, b)

GROUP D (Typing)

(a, dom, c) (x, a, y)

(x, type, c)

(a, range, d) (x, a, y)

(y, type, d)

GROUP T (Temporal)

(i2t)
{(X, tpl, Y), (Y, instant, n) : n ∈ [t1, t2]}

(X, tpl, Y), (Y, int, Z), (Z, initial, t1), (Z, final, t2)

(t2i)
(X, tpl, Y), (Y, int, Z), (Z, initial, t1), (Z, final, t2)

{(X, tpl, Y), (Y, instant, n)
, n ∈ [t1, t2]

Temporal RDF 103

(abs)
(a, b, c) : [X1, Y1, n1], (a, b, c) : [X2, Y2, n2]

(a, b, c) : [U, V, n1], (a, b, c) : [U, V, n2]
, U, V fresh

Rules (i2t) (interval to instants) and (t2i) are needed to standardize the
interval version and the instant version, by making them equivalent. Rule (abs)
essentially says that marks (instants) can be collected in a single node. This
permits to concentrate on temporal marks independent of other contexts in
which the variables involving temporal vocabulary are immersed.

The definition behaves well in the sense of the following lemma.

Lemma 2. 1. There exist blanks X,Y such that G |=t (a, b, c) : [X,Y, t1, t2]
if and only if there exist blanks U, V such that ∀j with t1 ≤ j ≤ t2 G |=t

(a, b, c) : [U, V, tj]
2. There exist blanks X1, Y1, X2, Y2 such that G |=t (a, b, c) : [X1, Y1, t1] and

G |=t (a, b, c) : [X2, Y2, t2] if and only if there exist blanks U, V such that
G |=t (a, b, c) : [U, V, t1] and G |=t (a, b, c) : [U, V, t2].

For a temporal RDF graph G, define G∗ as the RDF graph {(a, b, c) :
[Xt, Yt, t] | (a, b, c) : [t] ∈ G}, where Xt, Yt are free blank variables, different for
each t. Conversely, for each RDF graph G with temporal vocabulary, define G∗
as the temporal graph defined as {(a, b, c) : [t] | ∃X∃Y (a, b, c) : [X,Y, t] ∈ G}.

Theorem 1. 1. Let G1, G2 be temporal RDF graphs. Then G1 |=t G2 implies
G∗

1 |= G∗
2.

2. Let G1, G2 be RDF graphs with temporal vocabulary. Then G1 |= G2 implies
(G1)∗ |=t (G2)∗.

3. Let G be a temporal RDF graph, and G′ an RDF graph with temporal vocab-
ulary. Then (G∗)∗ = G and G′ |= (G′

∗)
∗.

Now we can show that the syntax introduced captures the semantics of tem-
poral RDF. The following deductive system based on the rules presented, is
sound and complete for entailment of RDF graphs with rdfs vocabulary.

Definition 5. Let G be a graph. For each rule r : A
B above, define G �r G∪μ(B)

iff there is a map μ : A → G. Also define G �s G′ if and only if G′ is a subgraph
of G.

Define G � G′ if there is a finite sequence of graphs G1, . . . , Gn such that (1)
G = G1; (2) G′ = Gn; and (3) for each i, either, Gi �r Gi+1 for some r, or
Gi �s Gi+1.

The following theorem shows that one can give a syntactic characterization
over RDF graphs with temporal vocabulary for entailment of temporal RDF
graphs:

Theorem 2. For any pair of temporal RDF graphs G1, G2:
G1 |=t G2 if and only if G∗

1 � G∗
2.

104 C. Gutierrez, C. Hurtado, and A. Vaisman

Note that that we cannot establish the theorem in its complete generality,
namely, to prove that for RDF graphs G1, G2 with temporal vocabulary, G1 � G2

if and only if (G1)∗ |=t (G2)∗. (Both graphs in Figure 4 have identical ()∗-images
but are not �-equivalent.)

The previous theorem permits to concentrate for the following sections in
temporal RDF (instead of diving into syntactic issues).

5 Query Language

In this section we present query language for temporal RDF graphs, along with
its semantics. We also present a brief study of the complexity of query processing.

5.1 The Query Language by Example

We will give the flavor of the query language using our running example, the
database of Figure 2. Let us begin with a simple query: “Find students who have
taken a Master course between year 2000 and now and return them qualified by
21-century-student”. This query can be expressed as:

(?X, type, 21-century-student) ←
(?X, takes, ?C) : [?T], (?C, type,Master) : [?T], 2000 ≤?T, ?T ≤ Now.

This example query illustrates the need of a built-in arithmetic language in
order to reason about time and intervals. Another important observation is that
temporal queries may output non-temporal RDF graph, as the previous query
does.

For the query asking for a snapshot of the graph at t1, we have:

(?X, ?Y, ?Z) ← (?X, ?Y, ?Y) : [t1].

Now consider the query “Students taking Ph.D courses together, and the time
instants when this occurred.” For simplicity we expressed this as a point-based
query. The translation of the result into intervals is straightforward.

(?X, together, ?Y)[?T] ← (?X, type, Ph.D) : [?T], (?Y, type, Ph.D) : [?T].

Next, we give examples of queries that use temporal triples with intervals.
The query “Time intervals when the IT Master was offered” can be expressed
as follows:

(X, interval, Y), (Y, initial, Ti), (Y, final, Tf) ←
(IT Master, sc,Prof.Master) : [Ti, Tf].

Observe that the previous query returns a set of intervals. In order to retrieve
maximal intervals we need a more subtle query, since their computation do not

Temporal RDF 105

follow from the temporal rules. For the query “Compute the maximal interval
when the triple (a, b, c) holds”, we need aggregate operators MAX and MIN.

(a, b, c) : [?T1, ?T2] ← (a, b, c) : [?Ti, ?Tf], ?T1 = MIN(?Ti), ?T2 = MAX(?Tf)

For a query asking for “Students applying for jobs at time t after finishing
their Ph.D. program in no more than 4 years”, we have:

(?X, apply, job) ← (X, type,Ph.D) : ‖ti, tf‖ , tf − ti < 4, tf < t.

Here, the notation ‖ti, tf‖ stands that ti and tf match with the maximal
interval for the corresponding triple computed with the query given above.

5.2 Semantics and Complexity

Let V be a set of variables (disjoint from UBLT). Individual variables will be
denoted ?X, ?Y , ?Z, etc. There is also a set of temporal variables Vt ⊂ V .

The query language we define is analogous to the one presented by Gutierrez
et al. [11]. A query is a temporal tableau, which is a pair (H,B ∪ A), where
H and B are temporal RDF graphs with some elements of UBL replaced by
variables in V , and with some elements of T replaced with variables in Vt, B has
no blank nodes and all the variables in H occur also in B. The set A has the
usual arithmetic built-in predicates such as <,>,=,. over elements in Vt and T .

We adopt the usual notion of safe rule from Datalog to prevent operations
on infinite predicates. A rule is safe if all its variables are limited. A variable
is limited if one of the following hold: a variable appears as an argument in a
non-built-in predicate of the body; the variable X appears in a subgoal X = t
(or t = X), where t is a constant in T ; or the variable X appears in a subgoal
X = Y (or Y = X), where Y is limited.

The semantics is the usual in these cases. Given a temporal tableau (H,B∪A)
and a temporal RDF graph G, for each matching of the graph pattern B in G,
pick up the values of the variables and check whether they satisfy the built-in
predicates in A. If this is the case, construct a pre-answer, which is the graph
resulting by substituting the values of the variables in the head. Finally, the
answer of the query is the union of all pre-answers.

We end this section by showing that the additional time dimension in our
model does not play any relevant role in the complexity of query answering, that
is, the query language preserves the tractability of answers. In order to do this,
we consider the simpler problem of testing emptiness of the query answer set in
the following forms: (1) Query complexity version: For a fixed database D, given
a query q, is q(D) non-empty? (2) Data complexity version: For a fixed query q,
given a database D, is q(D) non-empty?

Theorem 3. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the data complexity version.

The previous result shows that the temporal labeling over the triples does
not introduce any complexity overhead. This is consistent with previous works

106 C. Gutierrez, C. Hurtado, and A. Vaisman

in temporal databases. As Toman [20] showed, a point-based temporal query
language has the same properties than a first order query language, in spite of
the temporal variable.

6 Conclusions

We have proposed an RDF vocabulary to assert the times when triples are
valid in RDF graphs. This allows an explicit treatment of time inside RDF. We
have also offered a complete and sound inference procedure for temporal RDF
graphs, and a query language for them. Our framework allows to browse, query,
and reason across different versions of RDF graphs.

There are several aspects left for future work. Among the most important
are the definition of a built-in arithmetic, aggregate functions, and a unified
semantic for the two classes of RDF answers –temporal and plain– which would
allow closeness and full query composition in a temporal query language for
RDF. Probably one of the challenging issues open is the handling of anonymous
times. For example, one may want to say that a triple holds in a particular time
inside an interval, but do not know the exact valid time of the triple. Anonymous
times may help in the specification of triples without temporal labels, which is
a form to specify incomplete temporal information.

Acknowledgments. This research was supported by Millennium Nucleus, Cen-
ter for Web Research (P01-029-F), Mideplan, Chile. C. Gutierrez and C. Hurtado
were supported by FONDECYT 1030810.

References

1. S. Abiteboul. Querying Semi-Structured Data. Proceedings of the 6th International
Conference on Database Theory (ICDT’97). Delphi, Greece, 1997.

2. T. Amagasa, M. Yoshikawa, S. Uemura, A Temporal Data Model for XML Docu-
ments, Proceedings of DEXA Conference, 2000, 334-344.

3. M. Bölen98, R. Busatto, C.S. JensenPoint- Versus Interval-based Temporal Data
Models, Proceedings of IEEE/ICDE, 1998.

4. Dan Brickley, R.V. Guha Eds., RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Working Draft 23 January 2003.

5. S. Chien, V. Tsotras, C. Zaniolo, Efficient Management of Multiversion Documents
by Object Referencing, Proceedings of the 27th International Conference on Very
Large Data Bases,2002,Rome, Italy, 291-300.

6. S. Chawathe, S. Abiteboul, J. Widom, Managing Historical Semistructured
Data,Theory and Practice of Object Systems, Vol 5(3), 1999,143-162.

7. C.E. Dyreson, M.H. Bolen, C.S. Jensen, Capturing and Querying Multiple Aspects
of Semistructured Data, Proceedings of the 25th VLDB Conference, 1999, 290-301.

8. C.E. Dyreson, Observing Transaction-time Semantics with TTXPath, Proceedings
of WISE 2001, 2001,193-202.

9. C. Gao, R.Snodgrass,Temporal Slicing in the Evaluation of XML Queries, Proc.
29th Int. Conference on Very Large Data Bases, 2003, 632-643, Berlin, Germany.

Temporal RDF 107

10. C. Gutierrez, C. Hurtado, A.O. Mendelzon, Formal aspects of querying RDF
databases, Proc. SWDB 2003, 293-307.

11. C. Gutierrez, C. Hurtado, A.O. Mendelzon,Foundations of Semantic Web
Databases, 23rd. Symp. on Principles of Database Systems, PODS 2004, 95-106.

12. Patrick Hayes Ed., RDF Semantics, W3C Working Draft, 1 October 2003
13. P. Haase HAASE, J. Broekstra, A. Eberhart, R. Volz. A comparison of RDF Query

Languages. International Semantic Web Conference, 2004.
14. O. Lassila, R. Swick Eds., Resource description framework (RDF) model and syntax

specification, Working draft, W3C, 1998.
15. A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. VolzEstablishing the semantic

web 11: An infrastructure for searching, reusing, and evolving distributed ontolo-
gies, Proc. of the 12th. Int. Conference on World Wide Web,2003, 439-448.

16. A. Magkanaraki et al. Ontology Storage and Querying, Technical Report No. 308,
April 2002, Foundation for Research and Technology Hellas, Institute of Computer
Science, Information System Laboratory.

17. A.O. Mendelzon, F. Rizzolo, A. Vaisman, Indexing Temporal XML, Proc. 30th Int.
Conference on Very Large Data Bases, Toronto, Canada, 2004, 216-227.

18. R. Snodgrass,The TSQL2 Temporal Query Language, Kluwer Academic Publishers,
1995.

19. A. Tansel, J. Clifford, S. Gadia Eds.,Temporal Databases: Theory, Design and Im-
plementation, Benjamin/Cummings, 1993.

20. D. Toman, Point vs. Interval-based Query Languages for Temporal Databases, 15
th. Symposium on Principles of Database Systems, PODS 1996, 58-67.

21. G. Yang, M. Kifer, On the Semantics of Anonymous Identity and Reification Proc.
First International Conference on Ontologies, Databases and Applications of Se-
mantics (ODBASE), 2002, 1047-1066.

22. Ubbo Visser, Intelligent Information Integration for the Semantic Web, Lecture
Notes in Artificial Intelligence Volume 3159, Springer-Verlag, 2004.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 108–122, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multilingual RDF and OWL

Jeremy J. Carroll1 and Addison Phillips2

1 HP Labs, Bristol, UK
jjc@hpl.hp.com

2 Quest Software, Irvine, CA, US
addison.phillips@quest.com

(formerly with webMethods)

Abstract. RDF uses the RFC3066 standard for language tags for literals in
natural languages. The revision RFC3066bis includes productive use of
language, country and script codes. These form an implicit ontology of natural
languages for marking-up texts. Relating each language tag with classes of
appropriately tagged literals allows this implicit ontology to be made explicit as
an ontology in OWL in which every class in the ontology is a datarange. The
treatment extends to XML Literals, which may have multiple embedded
language tags. Further features of RFC3066bis such as the relationship with
deprecated codes, language ranges and language tag fallback can be expressed
in OWL. A small change to the RDF model theory is suggested to permit access
to the language tag in the formal semantics, giving this ontology a precise
formal meaning. Illustrative use cases refer to use of English, Japanese, Chinese
and Klingon texts.

1 Introduction

RDF [1], the foundation of the Semantic Web standards, has some provision for the
use of natural language text from multiple languages, distinguished by use of
language tags. This is a minimal requirement, made explicit in [2], for a knowledge
representation language which is intended for interoperable use on a World Wide
scale. This provision depends on XML, which in turn depends on “RFC 1766 or its
successors”: the IETF is in the process of updating that track with RFC 3066bis [3],
[4]. Limitations with the support for multiple languages in the Semantic Web are
discussed in [5].

RFC 3066bis contains the significant advance of a generative ontology of language
identification, and this paper explores the natural step of expressing that ontology
using the Web Ontology Language (OWL). In addition, RFC 3066bis (and the earlier
versions) connect various registries etc. Correct use depends on some detailed expert
knowledge. We show how that expert knowledge can be expressed within OWL,
making it easier for non-experts to correctly formulate OWL expressions for text with
specific linguistic properties.

We use three example use cases throughout the paper, and demonstrate how the
advances we propose help construct better Semantic Web applications, in which
linguistic knowledge is captured in OWL, rather than application code.

 Multilingual RDF and OWL 109

This paper introduces a few properties and a large number of classes, using a
variety of namespaces. We use the following namespace prefixes: rdflg: rdfl-
dflt: core-lang: xmllit-all-lang: xmllit-some-lang:
xmllit-main-lang: presentable-lang: lang-range:, but omit their
binding to mutually distinct URIs. Such a binding is assumed.

2 Three Use Cases

2.1 Appropriate Display of Labels

This use case is described in the OWL Requirements [2]: a Semantic Web application
has data to be displayed to an end user. Many of the resources in the knowledge base
are to be displayed using one of the values of rdfs:label, selected to make a good
match between the linguistic capabilities of the end-user and the language tag
associated with that particular text string. A simplified example of such labels taken
from the OWL Test Cases [8] is:

 <owl:Class rdf:ID="ShakespearePlay">
 <rdfs:label xml:lang="it">Opere di Shakespeare</rdfs:label>
 <rdfs:label rdf:parseType="Literal"><span
 xml:lang="ja"> <ruby>
 <rbc><rb> </rb><rb> </rb></rbc>
 <rtc><rt> </rt><rt> </rt></rtc>
 </ruby></rdfs:label>
 </owl:Class>

We consider a specific end user: Brian who is a mother tongue English speaker,
with a good knowledge of Japanese, can read Kanji, and hence can make some sense
of any language written in traditional Chinese characters; he still remembers some of
his schoolboy French.

2.2 Finding all Klingon Text in a Knowledge Base

A Star trek fan wishes to search an RDF knowledge base for all the Klingon text in it,
and then to explore the knowledge base from these resources.

2.3 Multilingual Knowledge Base Construction

An open source Semantic Web knowledge base is developed. The project started in
the US, and all the natural language text strings in it have been tagged as “en-US”
(following RDF Concepts [1] and RFC3066bis [3]). Other plain literals, with text that
is not intended as natural language are marked up with the empty language tag.
Gradually groups of Chinese developers (some from the mainland and other groups
from Taiwan) become involved. Their typical interest is in using some subset of the
knowledge base, possibly with some additional axioms. Moreover, each group has a

110 J.J. Carroll and A. Phillips

specific application in mind, involving specific queries which return literal values for
end-user presentation. Also, depending on the intended users of the application, the
presented text must be available in English or traditional Chinese or simplified
Chinese or some combination. Clearly, some of the developers will need to add
traditional Chinese literals corresponding to the original US English literals; others
will need to add simplified Chinese; but precisely when it is necessary to translate
which literals can only really be determined by asking an OWL reasoner the relevant
queries and comparing the results for the various natural languages.

3 Language and Text in the Semantic Web Recommendations

RDF and OWL use literal nodes for natural language text. Literal nodes are either
plain literals or typed literals.

3.1 Plain Literals in RDF

A plain literal is a Unicode string paired with an optional language tag [1]. For natural
language text, the tag should be used in accordance with RFC 3066 (or its
successors). A plain literal without a tag is simply a string and, like data of type
xsd:string, it is not appropriate for natural language text, which may mean
different things in different languages. There is no support within RDF or OWL
semantics for language tags, other than the ability to distinguish literals that differ in
language tag (case insensitively).

3.2 XML Literals in RDF

For some natural language text it is beneficial to use additional markup, for example
for indicating bi-directional text or Ruby [9] markup (seen in the earlier Japanese
example). These are typed literals and hence do not have an explicit language tag,
however language information may be embedded within the literal using xml:lang.
However, there may be more than one such xml:lang, each of which will have
different parts of the XML literal in its scope; or even if there is exactly one
xml:lang, there may be some text that is outside its scope.

3.3 OWL DataRanges

OWL does provide support for describing classes consisting entirely of literals. These
are classes with type owl:DataRange . A significant difference from RDF
datatypes in that plain literals as well as typed literals may belong to a datarange.

There is only explicit support for finite sets of literals, and no encouragement to
use class expressions. In OWL Full, however, it is possible to construct class
expressions from dataranges using owl:unionOf, owl:intersectionOf and
owl:complementOf and dataranges can be infinite and can be named. We will
make extensive use of these capabilities.

 Multilingual RDF and OWL 111

4 Language Tags and Their Generative Capacity

RFC 3066bis [3] is (currently) an Internet-Draft that expands and redefines the
language tags used by xml:lang and other applications. The basic goal of a
language tag is to identify the natural language of content in a machine accessible
manner and the design of RFC 3066bis improves this capability.

The structure of all RFC 1766 and successor language tags is a series of subtags
with an assigned meaning for each type of subtag. The combination of subtags forms
a very rough ontology that approximates the historical, geographical, and linguistic
distinction of various natural languages and their dialects.

Prior to RFC 3066bis, all language tags fell into two categories: 1) generative tags
made up of a language subtag and optional country code; 2) registered tags that must
be considered as a singular unit.

RFC 3066bis changes the structure of the registry so that the generative mechanism
is always applicable and greatly restricts the ability to register tags. The highly
generative structure makes language tags into a much more robust ontological
structure on which to base applications (such as the ones described here).

Tags under the new scheme are comprised of five subtag types, plus user-defined
extensions. Each subtag must appear in a specific position in a tag and has unique
length and content restrictions. Thus it is always possible to identify each subtag and
assign it meaning (even without access to the underlying standards). The four subtag
types are: 1) language subtags defined by ISO 639-1 or ISO 639-2; 2) extended
language subtags which are reserved for possible use with ISO 639-3 in the future; 3)
script subtags defined by ISO 15924; 4) region subtags defined by either ISO 3166 or
by the UN M.49 region codes; and 5) variant subtags which are defined either by
registration with IANA or by private use subtags for specific expert use.

Thus an example RFC 3066bis tag looks something like:

en-Latn-US-boont-x-anExtension
zh-s-min-s-nan-Hant-CN

The structure of a tag is described by this BNF notation:
Lang*[-s-extlang][-script][-region][-variant][-x*[-extension]]

5 The Use Cases with Current Technology

To motivate the rest of the paper, we show the limitations of the current
recommendations when faced with these simple tests.

5.1 Appropriate Display of Labels

Brian has clear, but complex linguistic preferences: 1) English, from whatever
geographical region, with a preference for British English. 2) Japanese, in whatever
script. 3) Any language in traditional Chinese script 4) French.

Each of these corresponds to a number of possible language tags; the process of
matching language tags is covered by the Internet Draft [4] which is published along

112 J.J. Carroll and A. Phillips

with RFC 3066bis. All but the third of Brian’s preferences can be described using
language ranges, which are also present in the current RFC 3066. The third is an
extended language range in the terms of [4]. However, there is no support for
language ranges in RDF or OWL. So, despite the ontological capabilities of both RFC
3066bis and OWL, someone, (either Brian or the application developer) needs to turn
each of these preferences into either a list of explicit alternatives, or a wildcard
matching; and then the application developer needs to write custom code in the
display routine that selects all the known labels of a resource and find the best match.

This best match needs to be able to cope with both plain literals, in which the
language tag is an explicit component, and XML Literals, in which language mark-up
is embedded within the literal value (see the Japanese in the example). It is unlikely
that Brian will be able to reuse his expression of preference for one Semantic Web
application in a second application.

5.2 Finding all Klingon Text in a Knowledge Base

Searching for Klingon text has an additional complexity: there are two possible tags
for Klingon, the preferred primary tag of “tli” a recent addition to the ISO 639-2
registry, or the older IANA tag of “i-klingon”, grandfathered in RFC 3066bis.

Even if the Semantic Web knowledge base provides support for searching by
language tag, or better by language range, and even if that support covers both plain
literals and XML Literals, the Star Trek fan still needs to know that there are two tags,
and has to perform two searches in place of one.

5.3 Multilingual Knowledge Base Construction

One approach is for each group to check every literal in the subset of the knowledge
base that they are using and ensuring that an appropriate translation is available. This
involves unnecessary translation work in that some of the literals may never be
relevant to the queries being asked, and others may already have a translation
available, but only through the application of an OWL reasoner. A second approach
would be to ask each relevant query of the knowledge base, and then have custom
code to examine the language tags in the literals returned, and to have further custom
code to determine whether one such literal meets the linguistic requirements of the
application. This custom code should be able to look inside XML Literals for
embedded language information. It may also need to support the concepts of language
range and language tag fallback from [4].

6 The Formal Machinery

OWL provides a language for describing ontologies: much of this paper shows how
OWL can be used to describe the ontology of RFC 3066bis. In this case, it is
attractive to integrate this description of an ontology in with the lower level
machinery of RDF, and RDF’s use of language tags. This section defines a few
properties and classes that, with suitable extensions to RDF semantics, serve to

 Multilingual RDF and OWL 113

expose the language information in RDF literals in a way that can then be integrated
with OWL’s class definition mechanisms.

6.1 Properties

The minimal requirement to use OWL’s ontological capabilities to capture the
relationships between language tags and literals using these tags, is that it should be
possible to identify within RDF and OWL the tag of a literal. The current
recommendations provide no relationship between the language tag of a literal and
any other feature of the language. The approach we take is to define a new property
rdflg:lang (where rdflg: is a new namespace used in this paper).

This property is such that the triple (x rdflg:lang y) is true if and only if
one of the following:

1. x is a plain literal with language tag z (normalized to lowercase), and y is
z^^xsd:language

2. x is an XML literal containing non-white character data (a text node or attribute
value) in-scope of an xml:lang= ‘z’ (z normalized to lowercase), and y is
z^^xsd:language

To express this formally as a semantic extension, the above can be read as a
definition of the property extension Iext(I(rdflg:lang)) using the notation of
RDF Semantics [6]. This property contravenes the purely syntactic constraint that
literals cannot be subjects, but that presents no intrinsic difficulties1 (other than that a
few of the examples in this paper are written with a non-standard notation).

The second part of the definition treats all languages actually used within an XML
literal equally. For some applications it may be more appropriate to, when possible,
identify the principle language of an XML literal. For example, consider

 This is ad hoc.

The text is essentially English, even though it contains a Latin phrase. This can be
identified by noting that the outermost language tag for all the text is “en”. Thus we
define a further property rdflg:mainLang which relates a XML literal to its
outermost language tag (if unique). This similarly constitutes a semantic extension to
RDF.

6.2 Classes

An omission from the RDF Vocabulary [10] is that there is no class of plain literals,
we rectify that with rdflg:PlainLiteral.

A further consideration is that the typical use case involves presenting text to an
end-user. An arbitrary piece of XML does not include any presentational guidelines,
hence it is useful to sometimes restrict consideration only to XML using the XHTML,

1 This is not breaking new ground, for example: “foo” owl:differentFrom “bar” .

114 J.J. Carroll and A. Phillips

Ruby, SVG, MathML namespaces. Thus we also define a class 2
rdflg:XHTMLLiteral, which is a subclass of the datatype
rdf:XMLLiteral.

Neither of these classes can be defined using the built-in formal machinery of RDF
or OWL semantics, and so, as for the properties, they are suggested as a semantic extension.

6.3 Internationalized Interpretations

To follow the language of RDF Semantics [6], we define an internationalized
interpretation I, as an RDFS Interpretation (as defined in [6]), such that:

• for each plain literal with language tag lg in the vocabulary V of I, the typed literal
lg^^xsd:language is in V.

• for each XMLLiteral x in V and every language tag lg occurring in x as the value of
an xml:lang attribute, lg^^xsd:language is in V

• the property extensions of rdflg:lang and rdflg:main-lang are as above
• the class extension of rdflg:PlainLiteral and rdflg:XHTMLLiteral

are as above

7 Defaults in RFC 3066bis

RFC 3066bis has specific advice suggesting defaults for script codes and geographical
codes, viz:

Use as precise a tag as possible, but no more specific than is justified. For
example, 'de' might suffice for tagging an email written in German, while 'de-
CH-1996' is probably unnecessarily precise for such a task.
Avoid using subtags that add no distinguishing information about the content.
For example, the script subtag in 'en-Latn-US' is generally unnecessary, since
nearly all English texts are written in the Latin script.

Unfortunately, defaults are known to be problematic in the Semantic Web, for
example OWL contains no provision for them, despite them being an objective of the
OWL requirements [2].

There are two possible implications of the language in RFC 3066bis. One is that
there are defaults implied by various combinations of subtags, such as the "default" of
Latin script for a language tag "en-US".

The other possible implication is that an omitted subtag is an implied range,
suggesting that a user will accept any value in that position. Thus the tag "en-US"
really implies a language tag of "en-*-US-*".

We will address these implications in this paper by assuming the former for tags
marking up data and further, that the rules for these defaults are shared public
knowledge. Ideally these rules should be maintained by the IETF and kept at IANA.
We return to implied ranges, for use when querying data, in section 9.2.

2 This suffers from being non-extensible, different application environments may be able to

support only XHTML and SVG, or XHTML and MathML etc.

 Multilingual RDF and OWL 115

The rules only address script codes and geographical codes, and each rule is a pair.
The first item in the pair is a language tag missing either or both of a script subtag or a
geographical subtag, the second item include the default values (if any) for the
missing items. Some sample rules are as follows:

en en-latn
fr fr-latn-FR
zh-TW zh-hant-TW

The first rule says that English text defaults to the Latin script, and applies
uniformly to any geographical (or private variant) of English, without some other
explicit script code. The second rule says that French defaults to being in Latin script
and from the geography France. These two defaults apply independently so that
lacking a geographical code fr-arab defaults to fr-arab-FR (the French of
France written in Arabic) rather than fr-arab-015 (North African French written
in Arabic)3.

With these rules we note that it becomes impossible to mark up some texts in a
very general way. For example, while it is possible to use a language code of zh for
Chinese in a variety of scripts, it is not possible to use en for English in a variety of
scripts. This is not an additional constraint on top of RFC 3066bis, but merely an
articulation of a limitation that is already implicit within it.

Content authors should use a shorter form of any language tag, if available
(following RFC 3066bis). We then apply the default rules by introducing two new
properties rdfl-dflt:lang and rdfl-dflt:mainLang that are defined by
axioms derived from the default rules, such as (in the OWL abstract syntax4 [7]):

EquivalentClass(
 restriction(rdfl-dflt:lang value(“en-latn”))
 unionOf(restriction(rdflg:lang value(“en-latn”))
 restriction(rdflg:lang value(“en”))))

EquivalentClass(
 restriction(rdfl-dflt:lang value(“en-latn-us”))
 unionOf(restriction(rdflg:lang value(“en-latn-us”)
)
 restriction(rdflg:lang value(“en-us”))))

The first axiom says that for any resource the property rdfl-dflt:lang has the
value en-latn if and only if the property rdflg:lang has the value en or en-latn.

Note that the second axiom is implicit in the first rule, when combined with the IS0
3166 country code US. Since there are many such codes there are very many of these
axioms generated. In fact, when we consider private extensions such as en-US-x-
newyorkcity, there are infinitely many axioms. We return to this issue in section

3 If this was thought inappropriate a more specific rule for fr-arab could be included in the

table of rules.
4 In all the examples we omit the datatype ^^xsd:language inside the value construct.

E.g. value(“en-latn”) abbreviates value(“en-latn” ^^xsd:language).

116 J.J. Carroll and A. Phillips

11. The axioms above, like all the axioms with sample language tags in this paper,
should be seen as prototypical, invoking an infinite pattern.

For any language tag that is not (explicitly or implicitly) in the defaults table, we
equate the rdflg:lang and rdflg:mainLang properties, e.g.:

EquivalentClass(
 restriction(rdfl-dflt:lang value(“en-arabic”))
 restriction(rdflg:lang value(“en-arabic”)))

We generate an equivalent infinite set of axioms defining rdfl-
dflt:mainLang in terms of rdflg:mainLang.

In combination these axioms apply the defaults table to an RDF or OWL
knowledge base, and from hereon we use the properties rdfl-dflt:lang and
rdfl-dflt:mainLang in preference to rdflg:lang and rdflg:mainLang.

8 The Core DataRanges

In the previous section, we introduced two properties rdfl-dflt:lang and
rdfl-dflt:mainLang, bound into an extended RDF model theory. OWL’s
ontological modeling capability is class focused, so we move from this simple
property view into a class view. Since all these classes are classes of literals, they are
dataranges. We use the namespace prefix “core-lang:” for these dataranges, with
corresponding definitions5 such as:

DataRange(core-lang:en-latn-us
 intersectionOf(rdflg:PlainLiteral
 restriction(rdfl-dflt:lang, value(“en-latn-us”))))

i.e. the datarange core-lang:en-latn-us is those plain literals which have a
value for rdfl-dflt:lang of “en-latn-us”. We have an infinite number of
these definitions, one for each possible language tag (including private extension
tags). Note that the class name is the language tag normalized to lower case. These
classes are pairwise disjoint so that:

“hello world”@en-US rdf:type core-lang:en-latn-us .

But none of the following are true:

“hello world”@en-US rdf:type core-lang:en-latn .
“hello world”@en rdf:type core-lang:en-latn-us .
“hello world” rdf:type core-lang:en-latn .

The operation of the defaulting rules for the script code is apparent in these facts.
Further, we see that core-lang:en-us is empty, since any literal explicitly tagged
as en-US is subject to the default rule, and treated as en-latn-US.

In addition we define core-lang:None as the datarange of plain literals
without a language tag.

5 We extend the abstract syntax with Datarange axioms modeled on the class axiom of OWL

DL. These are mapped to triples similarly to the class axiom.

 Multilingual RDF and OWL 117

DataRange(core-lang:None
 intersectionOf(rdflg:PlainLiteral
 restriction(rdflg:lang, cardinality=0)))

8.1 XML Literals

XML Literals provide additionally complexity in that they may have more than one
language tag. We model this complexity with three dataranges for each language tag.
Using the prefix xmllit-all-lang: we create dataranges for XML Literals all of
whose non-white character data content is tagged with the appropriate language tag;
using the prefix xmllit-some-lang: we create dataranges for XML Literals
some of whose non-white character data content is appropriately tagged; using the
prefix xmllit-main-lang: we create dataranges for XML Literals all of whose
non-white character data content is contained within ancestor XML elements with the
appropriate xml:lang tag even if overridden on a closer ancestor element.

The class of XMLLiterals wholly in language “it”
DataRange(xmllit-all-lang:it
 intersectionOf(rdf:XMLLiteral
 restriction(rdfl-dflt:lang, cardinality = 1)
 restriction(rdfl-dflt:lang, value(“it”))))
The class of XMLLiterals partially in language “it”
DataRange(xmllit-some-lang:it
 intersectionOf(rdf:XMLLiteral
 restriction(rdfl-dflt:lang, value(“it”))))
The class of XMLLiterals partially in language “it”
DataRange(xmllit-main-lang:it
 intersectionOf(rdf:XMLLiteral
 restriction(rdfl-dflt:mainLang, value(“it”))))

9 Approximate Matching

The core dataranges of the previous section do not provide any additional utility for
our use cases. While they map the language tag into some base classes, the key issue
in the use cases was the additional linguistic knowledge needed to make the best use
of the language tags. In this section, we should how the ontology implicit in RFC
3066bis can be made explicit with further OWL datarange definitions.

9.1 Presentable Literals

For most use cases, the application wishes to display some natural language text.
In practice this text will be in the RDF graph either as a plain literal or an XML

Literal which is XHTML. Other XML Literals are, in general, not useful, since they
lack presentational information. Thus for each language tag we define a further
datarange, using the namespace presentable-lang: defined in terms of the
earlier definitions:

118 J.J. Carroll and A. Phillips

Literals with tag “zh-hant”, (traditional Chinese)
suitable for display or other presentation.
DataRange(presentable-lang:zh-hant
 unionOf(core-lang:zh-hant
 intersectionOf(rdflg:XHTMLLiteral
 restriction(rdflg:mainLang, value(“zh-hant”)
))))

9.2 Language Ranges

A language range is a way of matching a specific language tag and all extensions of it.
Thus for every tag we can create a further datarange (with namespace prefix lang-
range:) corresponding to the concept of language range, and the presentable-
lang: datarange of all extension tags are subclasses:

Language ranges corresponding of “zh-hant-CN”,
(traditional Chinese in mainland China)
SubClass(presentable-lang:zh-hant-cn lang-range:zh-hant-cn)
SubClass(presentable-lang:zh-hant-cn lang-range:zh-hant)
SubClass(presentable-lang:zh-hant-cn lang-range:zh)

In [4], an extended notion of language range including wildcards * is introduced.
For example, zh-*-cn, indicates Chinese from mainland China in whatever script.
Since the position of the * in this extended language range can be deduced from the
subtag lengths, it is optional, and so we write it as zh-cn. This gives an additional
axiom:

 SubClass(presentable-lang:zh-hant-cn lang-range:zh-cn)

The language tag zh-CN is usually understood as being in simplified Chinese
(script code hans), however that is using the default rules. For the classes we are
defining on top of rdfl-dflt:lang, it is necessary to use the fully expanded form
zh-hans-cn of the language tag (e.g. lang-range:zh-hans-cn) if that is
what is desired. lang-range:zh-cn is understood as with a genuinely unknown
script code, i.e. an implied range (cf. section 7).

It would be more accurate to define a language range, and extended language
ranges ending in *, as an infinite union formed with all extension tags. We return to
this in section 011.

A further extension to the concept of language range is to allow language ranges
that contain only a script code, and omit the primary language tag. For example
lang-range:latn is for all literals in Latin script; lang-range:hant- for all
literals in traditional Chinese script. A sample axiom defining such ranges is:

SubClass(presentable-lang:zh-hant-cn lang-range:hant-)

9.3 Language Tag Fallback

In [4], a process of language tag fallback is suggested to exploit “a [putative] semantic
relationship between two tags that share common prefixes”. This relationship is
weaker than that exhibited with language ranges. This process excludes private use

 Multilingual RDF and OWL 119

extensions, which are explicitly ignored. We support this in the ontology with the use
of three annotation properties on language ranges. lang-range:fallback1 gives
an alternative datarange that ignores extension tags, lang-range:fallback2 also
ignores the geographical code (if any), lang-range:fallback3 also ignores the
script code. Since we have expanded the default script information, it is generally
unhelpful to use lang-range:fallback3 except in specific cases where scripts
have some degree of mutual intelligibility (e.g. simplified Chinese and traditional
Chinese). An example axiom:

 DataRange(lang-range:zh-s-min-s-nan-hant-cn
 annotation(lang-range:fallback1 lang-range:zh-hant-cn)
 annotation(lang-range:fallback2 lang-range:zh-hant)
 annotation(lang-range:fallback3 lang-range:zh))

9.4 Grandfathered Tags

When languages that have registered tags or subtags in the IANA registry are added
to the ISO 639 registry, the old IANA entry is updated to show that it has been
deprecated in favour of the ISO 639 entry. An example is Klingon, where the IANA
tag i-klingon has been grandfathered in favour of tli. This can be expressed
using owl:DeprecatedClass by expressing the identify between the
corresponding language ranges:

DataRange(lang-range:i-klingon Deprecated lang-range:tli)

10 The Use Cases Revisited

10.1 Appropriate Display of Labels

Brian (or a tool he is using) can construct a sequence of dataranges from those given
in this paper expressing his linguistic preferences. He needs to understand about
language tag fallback, and when it is appropriate to use it. He needs to use fully
specified language tags, expanded from their default form (e.g. en-latn-GB rather
than en-GB), to form the language range expressions of interest.

10.2 Finding all Klingon Text in a Knowledge Base

lang-range:tli includes plain and XML Literals with both the tli and i-
klingon language tags. Using this an OWL reasoner can be used to find all
instances of these literals in a knowledge base.

10.3 Multilingual Knowledge Base Construction

Each group can use the language ranges defined above to construct datarange
expressions corresponding to the linguistic requirements of their subproject. These
expressions can be combined with the queries over the knowledge base, as further

120 J.J. Carroll and A. Phillips

OWL expressions, which can then be passed to an OWL reasoner which can simply
identify the work that needs to be done, taking into account all knowledge already
implicit in the axioms.

11 Finiteness of Necessary Knowledge

This paper has presented an infinite ontology representing both the (large and finite)
generativity of RFC 3066bis through the registered ISO and IANA registered codes
and tags, and the infinite potential extensibility of RFC 3066bis through private
extension tags. This raises the question of how a semantic web application can load
all this knowledge, or does it require special purpose code to implement?

However, we saw in section 06 that we only added two properties and two classes
to the core of the theoretical model. Since the actual vocabulary in any knowledge
base is finite, only a finite subset of the infinite axioms presented here are relevant to
any specific piece of reasoning. This subset can be determined from the language tags
used in the vocabulary of the knowledge base. Moreover, the infinite unions
mentioned at the end of section 09.2 can be replaced with finite unions determined by
the vocabulary actually used. The formal machinery of section 6.3 is expressed only
in term of such a finite vocabulary. Thus we structure the ontology described in this
paper in such a way that a Semantic Web knowledge base should import a
subontology generated by the language tags that occurs in the knowledge base. Since
the KB is finite, this is a finite number of tags. The amount of knowledge for each tag
is fairly small, and moreover, in a typical knowledge base the number of language
tags is small, hence this is only a small overhead.

An appropriate implementation might be with a servlet that accepts a set of
language tags in an HTTP POST action, or as a query on a URI, and returns the
relevant subontology generated from the prototypes in this paper together with the
tags in the request.

12 Additional Expert Knowledge

The ontology presented could be augmented with additional expert knowledge. In
particular, there are relationships amongst the script codes, for example “Hrkt”
(Hiragana + Katakana) is a plausible fall back for “Hira” (Hiragana) but not for
“Brai” (Braille). There are also relationships amongst the geographical codes,
particularly with the new addition in RFC 3066bis of the numerical UN geographical
codes, for example the geography US is part of the geography 021 (northern America)
but not of 419 (Latin America and the Caribbean). This results in plausible
corresponding subclass relationships between lang-range:es-latn-US (US
Spanish) and lang-range:es-latn-021, (north American Spanish) but not
with lang-range:es-latn-419 (Latin American Spanish). Fleshing this idea
out is left as future work.

 Multilingual RDF and OWL 121

13 Suggestions for the Recommendations

We believe that appropriate support for multilingual applications is vital to the
Semantic Web. The work presented here provides some significant forward steps. In
this section we suggest changes that could be incorporated in future revisions of the
three standards we have considered.

13.1 RDF

The model theoretic changes to support the two new properties and two new classes
defined in section 06 should be added to the core RDF Recommendations.

13.2 OWL DL

With the changes to RDF, OWL Full would already support all the functionality we
have described, using the class expressions we have shown. However, OWL DL
excludes the possibility of infinite DataRanges, does not permit named DataRanges,
nor does it permit class expressions in the definition of DataRanges. All of these
could be added without compromising the design integrity of OWL DL datatyping,
which depends on the separation of a datatype oracle as in [11] from the tableau
reasoner. The core dataranges of section 8 can be treated as primitive datatypes, and
the additional expressivity of forming (finite) unions and intersections of datatypes
does not compromise the functioning of the datatype oracle. I.e. the datatype oracle
can be extended to include the ability to handle the dataranges we have used.

13.3 RFC 3066bis

The generative capabilities of RFC 3066bis fit fairly naturally into OWL, and are
distinctly easier to use than the somewhat ad hoc list of tags maintained by IANA
under RFC 3066. The systematic inclusion of script codes into RFC 3066bis enables
new functionality that recognizes that script is sometimes more important than
language when trying to (partially) understand some natural language.

However, the continuation of the defaulting rules from RFC 1766 through to RFC
3066bis creates difficulties for true interoperability. These could be addressed by
making the default rules more explicit as described in section 7.

The language range concept we have used is more powerful than the simple
mechanism used in RFC 3066bis (for example, taking into account grandfathered
codes). It may be appropriate for further revisions of that standard to incorporate
some of the ideas.

14 Conclusions

We have shown that relatively small changes to RDF and OWL make it significantly
easier to build and use multilingual knowledge bases. The generative capacity of RFC

122 J.J. Carroll and A. Phillips

3066bis can be modeled and exploited in OWL; while this results in an infinite
ontology, this is usable in practice, because for any knowledge base a finite subset
suffices.

References

[1] Klyne, G., Carroll, J. J. (eds.): RDF Concepts and Abstract Syntax. W3C Rec. 2004
[2] Heflin, J. (ed) OWL Use Cases and Requirements W3C Rec. 2004.
[3] Phillips, A., Davis, M.: Tags for Identifying Languages. draft-ietf-ltru-registry-00, 2005

(also known as RFC 3066bis).
[4] Phillips, A., Davis, M.: Matching Language Identifiers. draft-ietf-ltru-matching-00, 2005.
[5] Carroll, J.J. “An Introduction to the Semantic Web: Considerations for building

multilingual Semantic Web sites and applications”, Multilingual Computing #68, Volume
15 Issue 7 pp 19-24, 2004.

[6] Hayes, P. (ed.): RDF Semantics. W3C Rec 2004
[7] Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL Semantics and Abstract

Syntax. W3C Rec. 2004.
[8] Carroll, J.J., de Roo, J. (eds.): OWL Test Cases, W3C Rec. 2004.
[9] Sawicki, M., Suignard, M., Ishikawa, M., Dürst, M.,Texin, T., (eds) Ruby Annotation,

W3C Rec. 2001.
[10] Brickley, D. Guha, R.V. (eds) RDF Vocabulary, W3C Rec 2004.
[11] Pan, J. and Horrocks, I. Extending Datatype Support in Web Ontology Reasoning,

CoopIS/DOA/ODBASE 2002 pp 1067-1081 2002

RDFSculpt: Managing RDF Schemas Under
Set-Like Semantics

Zoi Kaoudi1,2, Theodore Dalamagas2, and Timos Sellis2

1 Dept. of Electronic and Computer Engineering,
Technical University of Crete, Greece

zoi@intelligence.tuc.gr
2 School of Electr. and Comp. Engineering,

National Technical University of Athens, Greece
{zkaoudi, dalamag, timos}@dblab.ece.ntua.gr

Abstract. The Semantic Web is an extension of the current Web in
which information is given well-defined meaning to support effective data
discovery and integration. The RDF framework is a key issue for the Se-
mantic Web. It can be used in resource discovery to provide better search
engine capabilities, in cataloging for describing the content of thematic
hierarchies in thematic catalogs and digital libraries, in knowledge shar-
ing and exchange of Web agents, etc. Up to now, RDF schemas have been
treated rather as sets of individual elements (i.e. model primitives like
classes, properties, etc.). Under that view, queries like “find the part of a
portal catalog which is not present in another catalog” can be answered
only in a procedural way, specifying which nodes to select and how to
get them. For this reason, we argue that answering such queries requires
treating schemas as a whole rather than as sets of individual elements.
We introduce a set of operators with set-like semantics to manage RDF
schemas. The operators can be included in any RDF query language to
support manipulation of RDF schemas as full-fledged objects. We also
present RDFSculpt, a prototype system that implements our framework.

1 Introduction

The Semantic Web [1] is an extension of the current Web in which information
is given well-defined meaning to support effective data discovery and integra-
tion. The Semantic Web will provide the necessary infrastructure for Web pages,
database systems, services, scripts, sensors,etc., to consume and produce data
on the Web. For the Semantic Web to function, the information on the Web
should become more machine-understandable. For this reason, new languages
and models have been proposed to semantically enrich data on the Web. The
RDF framework1 is a foundation for processing metadata, that is data for the
meaning of data. In an RDF document, one can make statements about par-
ticular Web resources, that is Web pages, page authors, scripts, etc. The RDF

1 http://www.w3c.org/RDF

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 123–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 Z. Kaoudi, T. Dalamagas, and T. Sellis

schema [14] provides mechanisms for describing groups of related resources and
the relationships between these resources, acting as a semantic extension of RDF.
The RDF schema description language is based on classes and properties, and
is similar to the type system of object-oriented programming languages.

The RDF framework is a key issue for the Semantic Web. It can be used in
resource discovery to provide better search engine capabilities, in cataloging for
describing the content of thematic hierarchies in thematic catalogs and digital
libraries, in knowledge sharing and exchange of Web agents, etc. In [6] bench-
marks are presented to provide structural and statistical analysis for volumes of
RDF data collected from the Web.

Up to now, RDF schemas have been treated rather as sets of individual ele-
ments (i.e. model primitives like classes, properties, etc.). However, in the Web
environment, where searching in a knowledge domain requires information pro-
cessing in many sources related to that domain, new query requirements arise for
manipulating RDF schemas as a whole, like for example (Q1) find the part
of Movie Catalog 1 which is not present in Movie Catalog 2 (see Fig-
ure 1(a) with examples of Movie Catalogs). Such a query has a ‘difference’ flavor

MoviePerson Movie

Actor

participates

produces

Producer

Musical Fantasy

Horror Science

Fantasy

Horror

Movie Catalog 1 Movie Catalog 2

(a)

(b)

Company

generates

Company
generates

Science

MoviePerson Movie

Actor

participates

Producer

Musical Comedy

Fig. 1. (a) Parts of Movie Catalog 1 and 2. (b) The part of Movie Catalog 1 which is

not present in Movie Catalog 2

and its answer should include schema information present in Movie Catalog 1
but not in Movie Catalog 2. Figure 1(b) shows the result of Q1. The resulting
catalog has Company, Fantasy, Horror and Science, a categorization found only
in Movie Catalog 1. Other example queries follow:

– (Q2) find the integrated catalog provided by Movie Catalog 1 and
Movie Catalog 2 (with a ‘union’ flavor),

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 125

– (Q3) find the common part of Movie Catalog 1 and Movie Catalog 2
(with an ‘intersection’ flavor),

– (Q4) find the integrated catalog using the common part of Movie
Catalog 1 and Movie Catalog 2, and another third Movie Catalog
(a sequence of ‘intersection’ and ‘union’ subqueries).

Viewing the RDF schemas as a set of individual elements requires the usage
of RDF query languages like RQL [5] in a procedural way. The user should
specify which RDF nodes to select and how to get them to answer queries like
Q1, Q2, Q3, Q4. For this reason, we argue that answering such queries requires
treating schemas as full-fledge objects rather than as sets of individual elements,
and introducing a set of operators applied on RDF schemas as a whole.

Queries like the above produce integrated RDF schemas. Integration of sche-
mas, in general, is considered as the task which produces a global schema to cover
all involved schemas and is a widely studied research topic [10]. Our work, on
the other hand, supports the integration of RDF schemas based on union, inter-
section and difference semantics provided by a set of operators. The integrated
schema is the output of such operators applied on the involved schemas.

We classify such kind of query requirements as part of the generic model
management framework presented in [2, 8]. According to this framework, models
are manipulated as abstractions rather than sets of individual elements, using
model-at-a-time and mapping-at-a-time operators.

Contribution. This paper introduces operators to manipulate RDF schemas. The
operators are applied on RDF schema graphs and produce new, integrated RDF
schema graphs. The key feature of our framework is that such integration is based
on set-like semantics. We define three binary operators (union, intersection, dif-
ference) that can be applied on RDF schema graphs as a whole, and produce new
ones. We also define a unary operator that can be applied on one RDF schema
graph and return a part (subset) of it. The operators can be included in any
RDF query language to support manipulation of RDF schemas as full-fledged
objects. We have implemented the operators in RDFSculpt, a prototype system
for managing RDF schemas.

Related Work. Recently, there have been suggested quite a few RDF query lan-
guages. RQL [5] is a typed functional language (in the form of OQL) to uniformly
query both RDF data descriptions and schemas. In [7], RVL is presented as an
extension of RQL that supports views on RDF. RDQL [12] is an SQL-like RDF
query language, manipulating RDF data as triple patterns. Sesame [3] is an RDF
management system. SeRQL (the native language of Sesame) is used to query
both RDF data descriptions and schemas. Views on RDF data are provided using
CONSTRUCT queries. Triple [13] is a layered and modular rule language based
on Horn-logic which is syntactically extended to support features for querying
and transforming RDF models. Most of the above languages support algebraic
operations on RDF statements (i.e. data) and not on RDF schemas. A survey of
RDF query languages is presented in [4]. The operators suggested in this paper

126 Z. Kaoudi, T. Dalamagas, and T. Sellis

can be included in any query language to answer queries that require operations
on RDF schemas as full-fledge objects rather than as sets of individual elements.

Operators for ontology composition have been studied in [15, 9]. These oper-
ators are based on articulation rules, that is rules to establish correspondence
between concepts in different ontologies. Our work differs since we emphasize on
the semantics of RDF schema graphs. Also, we compose RDF schemas which
are related to a global RDF schema through the subset relation that we define,
and not by using articulation rules.

Outline. The rest of this paper is structured as follows. In Section 2, we discuss
modelling issues for RDF schemas and we introduce RDF schema subsets and
projections. Section 3 defines three RDF schema operators: union, intersection
and difference. In Section 4, we describe the RDFSculpt prototype system that
implements the suggested operators. Finally, Section 5 concludes this paper and
discusses further work.

2 Modelling Issues

RDF schemas provide a type system for RDF. The primitives of RDF schemas
are classes and properties. Classes describe general concepts and entities. Prop-
erties describe the characteristics of classes. They also represent the relationships
that exist between classes. Classes and properties are primitives similar to those
of the type system of object-oriented programming languages. The difference is
that properties in RDF schemas are considered as first-class citizens and are
defined independently from classes.

Classes are described using the RDF schema resources rdf:Class and rdfs:-
subClassOf, while properties are described using the RDF class rdf:Property
and the property rdfs:subPropertyOf. The rdfs:domain property is used to
indicate that a particular property applies to a designated class. The rdfs:range
property is used to indicate that the values of a particular property are instances
of a designated class. RDF schemas can be modelled as directed labelled graphs.
For example, consider the graph shown in Figure 2. The oval labelled nodes
represent classes. The rectangular labelled nodes denote literals, like string, in-
teger, etc. The plain labelled edges represent properties. The thick edges define
an isA hierarchy (class/subclass) of classes, while the thick, dashed edges de-

MoviePerson Movie

Actor

participates

plays
string

Title

Fig. 2. An example of an RDF schema

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 127

fine an isA hierarchy (property/subproperty) of properties. For example, the
class Actor is a subclass of MoviePerson, while the property plays is a sub-
property of participates. The class MoviePerson is the domain of the property
participates, while the class Movie is the range of participates. Formally, an
RDF schema is defined as follows:

Definition 1. An RDF schema (RDFS) is a 5-tuple (C,L, P, SC, SP) repre-
senting a graph, where:

1. C is a set of labelled nodes. Each node in C represents an RDF class.
2. L is a set of nodes labelled with data types defined in XML schema [11], e.g.

integer, string etc. Each node in L represents a literal.
3. P is a set of directed labelled edges (c1, c2, p) from node c1 to node c2 with

label p, where c1 ∈ C and c2 ∈ C ∪ L. Each edge in P represents an RDF
property p with domain c1 and range c2.

4. SC is a set of directed edges (c1, c2) from node c1 to node c2, where c1, c2 ∈ C.
Each edge in SC represents an isA relationship between classes c1 and c2

(i.e. c1 is a subclass of c2).
5. SP is a set of directed edges ((c1, c2, p1), (c3, c4, p2)) from edge (c1, c2, p1) to

edge (c3, c4, p2), where (c1, c2, p1), (c3, c4, p2) ∈ P . Each edge in SP repre-
sents an isA relationship between property (c1, c2, p1) and property (c3, c4, p2)
(i.e. that is (c1, c2, p1) is a subproperty of (c3, c4, p2)).

Let �C be a relation on C: c1 �C c2 holds if c1 is a subclass of c2. With �+
C

we denote the transitive closure of �C . We consider c1 to be an ancestor of c2

(or c2 to be a descendant of c1) if c2 �+
C c1. Similarly, let �P be a relation on

P : (c1, c2, p1) �P (c3, c4, p2) holds if (c1, c2, p1) is a subproperty of (c3, c4, p2).
With �+

P we denote the transitive closure of �P . We consider (c1, c2, p1) to be
an ancestor of (c3, c4, p2) (or (c3, c4, p2) to be a descendant of (c1, c2, p1)) if
(c3, c4, p2) �+

P (c1, c2, p1).

2.1 RDF Schema Subsets

We next introduce the concept of the subset relation for RDF schemas. Intu-
itively, an RDF schema R1 is a subset of an RDF schema R2 when R1 contains
some of the elements (i.e. classes, properties, etc.) of R2, and it does not violate
the isA hierarchy of classes and properties maintained in R2.

Definition 2. Let Ri = (Ci, Li, Pi, SCi, SPi) and Rj = (Cj , Lj , Pj , SCj , SPj)
be two RDF schemas. Ri is a subset of Rj, denoted by Ri ⊆ Rj, if:

1. Ci ⊆ Cj.
2. Li ⊆ Lj.
3. for each edge (c1, c2, p1) ∈ Pi there is an edge (c3, c4, p2) ∈ Pj with

(c1 ≡ c3 or c1 �+
Cj

c3) and (c2 ≡ c4 or c2 �+
Cj

c4) and p1 = p2.
4. for each pair of nodes c1, c2 ∈ Ci,

if c1 �Ci
c2 then c1 �+

Cj
c2 and

if c1 �+
Cj

c2 then c1 �+
Ci

c2.

128 Z. Kaoudi, T. Dalamagas, and T. Sellis

A B

C

A

E

F

G

p0

p1

B

C D

E

G

p0

p1

1R R

A B

D

A

E

F

p0 B

C D

E

G

p0

p1

2R R

(a)

(b)

Fig. 3. Examples of RDF schema subsets

5. for each pair of edges (c1, c2, p1), (c3, c4, p2) ∈ Pi,
if (c1, c2, p1) �+

Pi
(c3, c4, p2) then (c1, c2, p1) �+

Pj
(c3, c4, p2) and

if (c1, c2, p1) �+
Pj

(c3, c4, p2) then (c1, c2, p1) �+
Pi

(c3, c4, p2).

Figure 3(a) shows the RDF schema R1 which is a subset of R, since it satisfies
all conditions of the definition. For example, having C1 = {A,B,C,E,G} and
C = {A,B,C,D,E, F,G}, C1 ⊆ C. Also, for each pair of nodes in C1 the fourth
condition of the above definition holds (e.g. A �C1 E and A �+

C E hold, and
A �+

C E and A �+
C1

E hold as well for nodes A,E in C1). On the other hand,
the RDF schema R2 is not a subset of R in Figure 3(b). The fourth condition of
the definition is violated; although D �+

C E holds, D �+
C2

E does not hold.
In this work we manipulate RDF schemas which are subsets of a given RDF

schema, called global RDF schema.

Definition 3. Let S = {R1, R2, . . . Rn} be a set of RDF schemas. A global RDF
schema for S is an RDF schema R such that Ri ⊆ R, 1 ≤ i ≤ n.

2.2 Projecting RDF Schemas

This section defines the operator of projection on RDF schemas. Projecting RDF
schemas is based on a given set of RDF classes and involves the extraction of a
part of an RDF schema that includes at least those classes. Before we present
the projection operator in detail, we give some definitions which are useful to the

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 129

discussion that will follow. All subsequent definitions refer to an RDF schema
R = (C,L, P, SC, SP).

Definition 4. The extended domain of a property (c, s, p) ∈ P , denoted by
D+((c, s, p)), is the set of classes {c, c1, . . . cn}, where {c1, . . . cn} are all descen-
dants of c.

Using the extended domain of a property we refer to all classes which can be
applied to a property as a set. For example, in the RDF schema of Figure 2 we
have D+(MoviePerson, Movie, participates) = {Movieperson,Actor}. Simi-
larly, we define the extended range of a property to refer to all the classes from
which a property can take values as a set.

Definition 5. The extended range of a property (e, c, p) ∈ P , denoted by R+((e,
c, p)), is the set of classes {c, c1, . . . cn}, where {c1, . . . cn} are all descendants
of c.

Below we define the nearest common ancestor of a set of classes. Intuitively, it
is the class which is the lower-level ancestor of all classes in the set. For example,
nca{G,H,F} = B in RG of Figure 5.

Definition 6. The nearest common ancestor of a set of classes Cs ⊆ C, where
Cs consists of more than two classes, denoted by nca(Cs), is the class z such that
for all x ∈ Cs x �+

C z holds and there is no class y ∈ C such that x �+
C y �+

C z.
The nearest common ancestor of one class is the class itself.

We now define the projection operator for RDF schemas. Intuitively, a pro-
jection on an RDF schema R, given a set of classes Cs, results in a subset of R
that has all classes from Cs, their involved properties and some other classes,
the role of which will be clarified shortly.

Consider the RDF schema R in Figure 4. Projecting R with Cs = {C,D,B}
results in an RDF schema which includes classes C,D,B and the involved prop-
erty (D,B, p2). Class A (and its involved property (A,B, p1)) is also part of the
result although A /∈ Cs. In general, classes like A (which are actually nearest
common ancestors for classes that are included in Cs) are used to resolve the
issue of having more than one classes as domain (or range) for a property. An-
other example of projection is presented in Figure 5. The formal definition for
the projection operator follows.

Definition 7. Let R = (C,L, P, SC, SP) be an RDF schema and Cs ⊆ C a set
of classes. The projection Π on R, given Cs, denoted as ΠCs

(R), is the RDF
schema R′ = (C ′, L′, P ′, SC ′, SP ′), where:

1. (c′1, c
′
2, p

′) ∈ P ′ if ∃(c1, c2, p) ∈ P , with Cs ∩ D+((c1, c2, p)) �= ∅ and Cs ∩
R+((c1, c2, p)) �= ∅, where
(a) c′1 is the nca(Cs ∩ D+((c1, c2, p))),
(b) c′2 is the nca(Cs ∩R+((c1, c2, p))), and
(c) p′ = p.

130 Z. Kaoudi, T. Dalamagas, and T. Sellis

p1

p2

A B

C D E F

R

p1

p2

A B

C D

)(R
sC

Fig. 4. Projecting R with Cs = {C, D, B}

p1

p2

A B

C

D

E
F

GR

p1

p2

A B

C

D

G HI
p3

G F

)(GC R
s

Fig. 5. Projecting RG with Cs = {C, D, G, F}

2. (c′1, c
′
2) ∈ SC ′ if c′1 �+

C c′2.
3. ((c′1, c

′
2, p

′
1), (c

′
3, c

′
4, p

′
2)) ∈ SP ′ if (c′1, c

′
2, p

′
1) �+

P (c′3, c
′
4, p

′
2).

4. C ′ = Cs ∪ Ca, where Ca = (∪ic
′
i) ∪ (∪is

′
i), for all (c′i, s

′
i, p

′
i) ∈ P ′.

5. L′ = {l ∈ L| ∃c ∈ Cs and (c, l, p) ∈ P}.

3 Set-Like RDF Schema Operators

We define three binary operators applied on RDF schema graphs. The operators
can be included in any RDF query language and support manipulation of RDF
schemas as full-fledged objects, under union, intersection and difference seman-
tics. In all presented examples, the RDF schemas are subsets of RG illustrated
in Figure 5.

3.1 Union

The union operator merges two RDF schemas and results in a new RDF schema
that contains all elements from both schemas, without violating the isA hierar-
chies for the involved classes and properties. The union operator for two RDF
schemas R1 and R2 is defined as a projection on the global schema RG, given
the (set) union of class sets of R1 and R2, respectively. The final RDF schema
R is a subset of RG (R ⊆ RG).

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 131

p1

p2

A B

C

D

p1

p2

A B

C

D
FG

I p3

1R

p1A B

C G F

I
p3

2R

 R

Fig. 6. An example of union operation: R = R1 ∪ R2

Definition 8. Let R1 = (C1, L1, P1, SC1, SP1) and R2 = (C2, L2, P2, SC2, SC2)
be two RDF schemas with R1, R2 ⊆ RG and C = C1 ∪C2. The union of R1 and
R2, denoted by R1 ∪R2, is the RDF schema R = ΠC(RG).

Figure 6 shows an example of union operation.

3.2 Intersection

The intersection operator results in a new RDF schema that contains only com-
mon elements from both schemas, keeping the isA hierarchies for the involved
classes and properties. The intersection operator for two RDF schemas R1 and
R2 is defined as a projection on the global schema RG, given the (set) intersec-
tion of class sets of R1 and R2, respectively. The final RDF schema R is a subset
of RG (R ⊆ RG).

Definition 9. Let R1 = (C1, L1, P1, SC1, SP1) and R2 = (C2, L2, P2, SC2, SC2)
be two RDF schemas with R1, R2 ⊆ RG and C = C1 ∪ C2. The intersection of
R1 and R2, denoted by R1 ∩R2, is the RDF schema R = ΠC(RG).

Figure 7 shows an example of intersection operation.

3.3 Difference

The difference operator results in a new RDF schema that contains elements of
one schema which are not present in another one, keeping the isA hierarchies for
the involved classes and properties. The difference operator for two RDF schemas

132 Z. Kaoudi, T. Dalamagas, and T. Sellis

p1

p2

A B

C

D

1R

p1A B

C G F

I
p3

2R

E F

p1A B

C F

G

G

 R

Fig. 7. An example of intersection operation: R = R1 ∩ R2

R1 and R2 is defined as a projection on the global schema RG, given the (set)
difference of class sets of R1 and R2, respectively. The final RDF schema R is a
subset of RG (R ⊆ RG).

Definition 10. Let R1 = (C1, L1, P1, SC1, SP1) and R2 = (C2, L2, P2, SC2, SC2)
be two RDF schemas with R1, R2 ⊆ RG and C = C1−C2. The difference of the
two RDF schemas, denoted by R1 −R2, is the RDF schema R = ΠC(RG).

Figure 8 shows an example of difference operation.

1R

p1A B

D G FI
p3

2R

p1

p2

A B

C

D

E F

G H

C E

H

p1

 R

Fig. 8. An example of difference operation: R = R1 − R2

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 133

4 The RDFSculpt Prototype

The RDFSculpt is a prototype system for RDF schema management and imple-
ments the operators suggested in this paper. As shown in Figure 9, the system

GUI

PostgreSQL
(RDF schemas)

RDF
schema1

RDF
schema2

Management tools

Query translatorRQL queries Projection, Union

Intersection, Difference

RSSDB
(RDF storage module)

RDFSculptFORTH/RDF Suite

Query-by-example

Result
Visualization

Query translator

SQL queries

Fig. 9. The architecture of RDFSculpt

is built on top of the ICS-FORTH RDFSuite2. To this extend, it exploits all
RDF management and query APIs offered by RDFSuite. Users can issue queries
on RDF schemas and produce new, integrated ones, using projection, union, in-
tersection and difference operators. The RDFSculpt assists the user in queries
formulation, offering her query-by-example capabilities. Results are visualized
using RDFSViz3. Figure 10 shows some screen shots of the system.

Fig. 10. Screen shots of the RDFSculpt prototype system

2 http://www.ics.forth.gr/isl/RDF/index.html
3 http://www.dfki.uni-kl.de/frodo/RDFSViz/

134 Z. Kaoudi, T. Dalamagas, and T. Sellis

4.1 Query Processing in RDFSculpt

We next describe in detail how RDFSculpt executes a projection operator on an
RDF schema.

Algorithm projection(Cs)
/∗ D, D+, R, R+ denote property domain, extended domain,
range and extended range, respectively ∗/
1 for each class c in Cs do
2 P =properties that have class c in their D+;
3 for each property p in P do
4 R = classes that are in the R+ of p;
5 R = R ∩ C;
6 endfor
7 for each p in P do
8 /∗ Working in the domain of p ∗/
9 if there is only one class in D+ of p, then have this class as D of p
10 else
11 let R′ be the classes in D+ of p;
12 if all classes in R′ are in the same path of the isA hierarchy
13 then have the higher-level one as the domain of p
14 else
15 find the nearest common ancestor of R′, have it as D of p,
16 and add it in Cs;
17 endif
18 endif
19 /∗ Working in the range of p ∗/
20 if there is only one class in R+ of p, then have this class as R of p
21 else
22 let R′ be the classes in R+ of p;
23 if all classes in R′ are in the same path of the isA hierarchy
24 then have the higher-level one as the range of p
25 else
26 find the nearest common ancestor of R′, have it as R of p,
27 and add it in Cs;
28 endif
29 endif
30 endfor
31 endfor

For example, consider the projection shown in Figure 4, where Cs = {B,C,D}.
For class c = D (line 1) we get P = {p1, p2} (line 2). For property p1 (line 3) we
get R = {B,E, F} (line 4), and after the intersection with Cs we get R = {B}
(line 5). Working in the domain of p1, we have D+ = {C,D}. Therefore, there
is more than one classes in D+ (line 10) and those classes ({C,D}) are not in
the same path (line 14). Consequently, we find the nearest common ancestor of
C and D (line 15), which is class A, and add it in Cs (line 16).

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 135

Projection is implemented by posing a set of appropriate RQL queries to the
RDF storage module. Below we show some examples of RQL queries used to
implement projection (given the set of classes Cs = {B,C,D}) for some steps of
the previous algorithm. Details about the RQL language can be found in [5]. For
convenience, we note here that the prefix $ denotes a class variable, the prefix
@ a property variable and the expression {;B} denotes a filtering condition of
schema classes, taking into account the rdfs:subClassOf links. For instance, the
path expression {;D}@P denotes that the domain of @P is denoted to be class
D or any of its superclasses. Furthermore, nca(B,C) is a function of RQL which
finds the nearest common ancestor of two nodes.

– In line 2, in order to find the properties of a specific domain, let it be B, we
use the RQL query:
select @P from {;B}@P{$C}

– In line 4, in order to find the classes in R+ of a specific property, let it be p,
we use the RQL query:
select $C from p{$C}

– In line 12, in order to check if classes in D+ are in the same path, we make
use of the RQL queries:
domain(p)
superClassOf(B)

– In line 15, in order to find the nearest common ancestor of R′, we make use
of the RQL query:
nca(B,C)

– In line 23, in order to check if classes in R+ are in the same path, we make
use of the RQL queries:
range(p)
superClassOf(B)

– In line 26, in order to find the nearest common ancestor of R′, we make use
of the RQL query:
nca(B,C)

The union, intersection and difference operators are implemented as projec-
tions, with Cs being the (set) union, (set) intersection and (set) difference of
class sets in the involved RDF schemas, respectively.

We should note here that the existence of blank nodes in an RDF schema
does not affect our approach. A blank node does not have a URI. However, it
should have a unique identifier to distinguish itself from other blank nodes in the
RDF schema. In that case, blank nodes can be treated as classes and included
in the set of classes Cs (see Definition 7).

5 Conclusion

This paper introduced a set of operators to manage RDF schemas. They are ap-
plied on RDF schema graphs and produce new, integrated RDF schema graphs.

136 Z. Kaoudi, T. Dalamagas, and T. Sellis

Such integration is based on set-like semantics. Specifically, we formalized the
notion of RDF schema subsets, and we defined a unary operator (projection) to
extract parts (subsets) of RDF schemas. Based on projection, we defined three
binary operators: union, intersection and difference. The operators can be in-
cluded in any RDF query language to support manipulation of RDF schemas
as full-fledged objects. Finally, we described RDFSculpt, a prototype system for
managing RDF schemas that implements our framework.

We are currently working towards the following directions. We are first study-
ing the algebraic properties of the presented operators to show formally that they
obey all known laws of set theory. The other research direction involves extending
our framework to manage RDF schemas under the assumption that the global
RDF schema is not given, but it should be constructed from the available RDF
schemas. Furthermore, we are planning to layer our operations to deal with other
RDF vocabularies and not only RDF schema graphs.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

2. Philip A. Bernstein. Applying Model Management to Classical Meta Data Prob-
lems. In Proceedings of the Conference on Innovative Data Systems Research
(CIDR 2003), Asilomar, CA, USA, 2003.

3. Jeen Broedstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An Archi-
tecture for Storing and Querying RDF and RDF Schema. In Proceedings of the 1st
International Semantic Web Conference (ISWC’02), Chia, Sardinia, Italy, 2002.

4. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A Comparison
of RDF Query Languages. In Proceedings of the 3rd International Semantic Web
Conference (ISWC’04), Hiroshima, Japan, 2004.

5. Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plex-
ousakis, and Michel Scholl. RQL: A Declarative Query Language for RDF. In
Proceedings of the 11th International World Wide Web Conference (WWW’02),
Honolulu, Hawaii, USA, 2002.

6. Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides, and Dimitris Plex-
ousakis. Benchmarking RDF Schemas for the Semantic Web. In Proceedings of
the 1st International Semantic Web Conference (ISWC’02), Chia, Sardinia, Italy,
2002.

7. Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plex-
ousakis. Viewing the Semantic Web through RVL Lenses. Journal of Web Se-
mantics, 1:4, 2004.

8. Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: A Programming
Platform for Generic Model Management. In Proceedings of the Special Interest
Group on Management of Data (SIGMOD) Conference (ACM SIGMOD 2003),
2003.

9. Prasenjit Mitra and Gio Wiederhold. An Algebra for Semantic Interoperability of
Information Sources. In Proceedings of the IEEE Symposium on BioInformatics
and Bioengineering (BIBE’01), Bethesda, MD, Nov. 2001.

10. Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4):334–350, 2001.

RDFSculpt: Managing RDF Schemas Under Set-Like Semantics 137

11. W3C Recommendation. XML Schema Part 2: Datatypes Second Edition, 2004.
http://www.w3.org/TR/xmlschema-2/.

12. Andy Seaborne. RDQL - A Query Language for RDF. W3C member submission,
January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

13. Michael Sintek and Stefan Decker. TRIPLE - A Query, Inference, and Transfor-
mation Language for the Semantic Web. In Proceedings of the Deductive Databases
and Knowledge Management Workshop (DDLP 2001), Tokyo, Japan, 2001.

14. W3C. Resource Description Framework (RDF) Schema Specification 1.0, 2001.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

15. Gio Wiederhold. An Algebra for Ontology Composition. In Proceedings of the
Monterey Workshop on Formal Methods, U.S. Naval Postgraduate School, Mon-
terey CA, 1994.

REDD: An Algorithm for Redundancy
Detection in RDF Models

Floriana Esposito, Luigi Iannone, Ignazio Palmisano,
Domenico Redavid, and Giovanni Semeraro

Dipartimento di Informatica,
Università degli Studi di Bari,

Campus, Via Orabona 4, 70125 Bari, Italy
{esposito, iannone, palmisano, d.redavid, semeraro}@di.uniba.it

Abstract. The base of Semantic Web specifications is Resource De-
scription Framework (RDF) as a standard for expressing metadata. RDF
has a simple object model, allowing for easy design of knowledge bases.
This implies that the size of knowledge bases can dramatically increase;
therefore, it is necessary to take into account both scalability and space
consumption when storing such bases. Some theoretical results related to
blank node semantics can be exploited in order to design techniques that
optimize, among others, space requirements in storing RDF descriptions.
We present an algorithm, called REDD, that exploits these theoretical
results and optimizes the space used by a RDF description.

1 Motivation

The realization of the Semantic Web (SW) vision [1] needs ontologies for generat-
ing or interpreting (semantic) metadata for resources. It is fundamental to have
ontology creation and integration steps in order to share structural knowledge
between ontology designers and users. Ontologies are to be expressed in RDF
according to SW specifications, using languages such as RDFS1 and OWL.2 It
is important to note that both RDFS and OWL ontologies can be expressed as
RDF graphs, so that ontologies can be treated exactly as other RDF models. In
RDF design, the least power principle was applied: data structures are to be kept
as simple as possible. This imposes to have very simple basic components, that
are URIs3, blank nodes and statements (or triples). These design decisions have
the drawback that RDF descriptions tend to grow fast as the complexity of the
knowledge they represent increases. This observation encourages SW research to
investigate toward the most effective storage solutions for RDF knowledge bases,
in order to minimize required space. Intuitively, the lesser the number of triples
a software (say, a query engine) has to examine, the faster it will process them.

1 http://www.w3c.org/TR/rdf-schema
2 http://www.w3c.org/2004/OWL
3 http://www.w3.org/Addressing/

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 138–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

REDD: An Algorithm for Redundancy Detection in RDF Models 139

This issue has already been deeply investigated, as reported in the section 2.2;
recently, some theoretical results were issued by both W3C in [6] and by Gutier-
rez et al. in [4]. Actually, these results apply also to RDFS, but in this paper
we will refer only to blank node semantics. Relying on these results, we devel-
oped an algorithm to detect redundancies introduced by blank nodes in a RDF
Description. Such redundancies can be removed by mapping blank nodes into
concrete URIs or into different blank nodes, without changing or diminishing
the RDF graph semantics. In other words, some descriptions can be expressed
with lesser triples with no semantic loss.

Moreover, redundancy detection can turn out to be useful in higher level
tasks, such as ontology design and alignment. Let us suppose to have designed
some classes (say in OWL) and let one of them be a cardinality restriction. If
somewhere in the ontology it has a name (an URI), as depicted in Figure 1
(i.e.: ns:Test), and somewhere else we created the same restriction without using
a name (so using an anonymous restriction class), we would have defined this
class twice unnecessarily, so intuitively we introduced redundancy. This kind of
repetitions can be detected thanks to blank node semantics and removed, thus
simplifying the design of the ontology. The same situation occurs, obviously, if
both the restrictions are represented by blank nodes.

Another situation in which the algorithm can be useful is in ontology import-
ing, i.e. the use of the owl:imports directive. In this case, let A and B be two
ontologies, and A owl:imports B ; referring to the restriction example, if there is
an anonymous restriction in B, and A needs the same restriction, the designer of
A needs to define its own restriction (since a blank node cannot be identified from
outside the model in which it is defined). From the OWL point of view, however,
A contains every statement in B, so the complete model (i.e. the model contain-
ing A plus the import closure) is redundant. The problem can become serious
if there are multiple owl:imports. Suppose an ontology is imported more than
once, e.g. A owl:imports B, C and B, C owl:imports D ; in this latter case, D is

Fig. 1. Example of redundant Restrictions

140 F. Esposito et al.

imported twice, and this means that, unless the code used to resolve owl:imports
handles the case of multiple imports, every blank node in D is duplicated in the
resulting ontology. We will see an example of this situation in Section 5.

In order to accomplish this, we will show a correct algorithm (in the sense that
it produces descriptions equivalent to the starting ones) without claiming for its
completeness (it is not guaranteed to find the minimal equivalent description)
called REDD (REDundancy Detection). This algorithm has been integrated in
our RDF management system, named RDFCore [2].

The remainder of this paper is organized as follows: Section 2 presents some
necessary notions on RDF semantics, together with a brief survey of related
work on RDF storage. In Section 3, the REDD algorithm is illustrated in detail;
Section 4 describes RDFCore, the system in which we implemented the REDD
algorithm. Some experimental results are presented in Section 5.

2 Preliminaries

2.1 Basic Notions

We collect here some definitions and theorems that will be useful in the rest of
the paper. Most of them have been taken from [6] and [4] and recalled here to
make this paper as self-contained as possible. However, we assume the reader
familiar with RDF Concepts and Syntax:4

Definition 1 (RDF-Graph). A RDF-Graph is a set of RDF statements. Its
nodes are URIs, literals or blank nodes (identifiable nodes with no intrinsic
names5) representing subjects and objects of the statements. Its edges are la-
beled by URIs and represent the predicates of the triples.

A small example can be found in Figure 2.

Fig. 2. A small example from http://www.w3.org/TR/rdf-syntax-grammar/

4 http://www.w3.org/TR/rdf-concepts/
5 http://www.w3.org/TR/rdf-concepts/#section-URI-Vocabulary

REDD: An Algorithm for Redundancy Detection in RDF Models 141

Definition 2 (Mapping). Let N be a set of URIs, blank node names and liter-
als. A mapping is a function μ : N → N that changes a node name into another
one.

Definition 3 (Instance). Let μ be a mapping from a set of blank nodes to some
set of literals, blank nodes and URIs and G a graph, then any graph obtained
from G by replacing some or all of the blank nodes N in G by μ(N) is an instance
of G.

Definition 4 (Lean Graph). A RDF graph is lean if it has no instance which
is a proper subgraph of the graph.

The following results are proved in [6]:

Lemma 1 (Subgraph Lemma). A graph entails all its subgraphs.

Lemma 2 (Instance Lemma). A graph is entailed by any of its instances.

This means that every non-lean graph is equivalent to its unique lean sub-
graph [4]. Relying on these notions, in Section 3 we will present an algorithm
that reduces non-lean graphs under certain conditions.

2.2 Related Work

Effective storage of RDF has always been bound to another key issue: Querying
models. This was because no recommendation, at the time of writing, has been
completed by W3C for RDF description querying (SPARQL6 is at the Working
Draft stage of its evolution); thus, different solutions were developed, each one
with its own query language and related optimizations. Some members of RDF
Data Access Group issued a report7 in which six query engines were examined
aiming to compare different expressive power of the underlying query languages.
Actually, many different triple storage strategies are available. Among the sys-
tems implementing them, we remark the toolkit from HP Semantic Web Lab,
called Jena [8, 9]. At the time of writing, Jena supports RDQL as query language,
with support for SPARQL in a separate project, ARQ.8

Other interesting approaches to RDF data model optimization relies on prop-
erties of the RDF graph. One of them is described in [5], where the authors
present an approach based on an intermediate layer between application data
structures and the abstract triple syntax that uses hypergraphs. In this approach,
theoretical results on graph theory can be used to minimize graphs and to cast
application requests to well known graph problems, thus allowing to optimize
different usage scenarios for RDF graphs.

6 http://www.w3.org/2001/sw/DataAccess/rq23/
7 http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf
8 http://cvs.sourceforge.net/viewcvs.py/jena/ARQ/

142 F. Esposito et al.

3 Redundancy Detection

3.1 REDD Algorithm

Our redundancy detection algorithm is based on the notion of lean subgraph
of a RDF graph. The lean subgraph is a subset of the RDF graph, and, as a
consequence, is a subset of the set of statements of the original graph, having
the property of being the smallest subgraph that is instance of the original
graph. A pseudo code version of it can be found in Figure 3. The output of this
algorithm has as a requirement the characteristic of expressing the same content
of the original RDF graph (though in a more compact way). The output can be
obtained from the original graph leaving untouched the ground part of the graph

ConnGraph{Set blanks, Model submodel, Map bToVarNames}

Set FindRedundancies(Model m){
Set redundancies
Set connGraphs =

CreateConnGraphs(m)
FOR EACH graph in connGraphs{

Query q = CreateQuery(graph)
Set redundancy = ExecuteQuery(m,q)
ADD redundancy to redundancies

}
RETURN redundancies

}

Query CreateQuery(ConnGraph g){
Query q
FOR EACH s in g.statements{

IF (s.subj is blank) AND
(s.subj is not in g.bToVarNames){

create a variable name vn
PUT(g.bToVarNames, s.subj, vn)
ADD vn to q

}ELSE{ vn = s.subj }
IF (s.obj is blank) AND

(s.obj is not in g.bToVarNames){
create a variable name o
PUT(g.bToVarNames, s.obj, o)
ADD o to q

}ELSE{ o = s.obj }
ADD (s, s.pred, o) condition to q

}
RETURN q

}

Set CreateConnGraphs(Model m){
Set cg
Map blanksTocg
FOR EACH s in m{

IF s.subj is blank{
IF exists g in blanksTocg

mapped by s.subj{
add s to g

}ELSE{
create g for s.subj
add s to g
put g in cg
PUT(blanksTocg, s.subj, g)

}
IF s.obj is blank{

add o to g.blanks
PUT(blanksTocg, o, g)

}
}

}
RETURN cg

}

Set ExecuteQuery(Model m, Query q){
Bindings b = QUERYON(m, q)
Set redundancy
FOR EACH binding in b{

PUT binding.values in redundancy
}
RETURN redundancy

}

Fig. 3. Pseudo-code description of the REDD algorithm

REDD: An Algorithm for Redundancy Detection in RDF Models 143

(i.e. every node that is not blank and any edge connecting non-blank nodes), and
mapping from blank nodes to nodes already existing in the graph (blank nodes
or URIs). The result is bound to be a subset of the original graph, apart from
the identifiers of blank nodes.

Our algorithm searches for redundant blank nodes by looking at the graph
and trying to find blank nodes that do not contain any additional information
w.r.t. other nodes in the graph. Therefore, a blank node b is redundant if there
is a node n that is involved in a set of statements that would be equal to the set
of statements involving b if we replaced the occurrences of b with occurrences
of n.

This is a special case of a more general view: taking as reference a subgraph
built up of statements with blank nodes as subject and object, it is possible to
search for a different subgraph of the model, isomorphic to the given subgraph
(i.e. with the same properties between the nodes). On these two graphs, the
algorithm can be applied considering the set of edges minus the edges already
considered in the graph.

Our approach consists in finding a mapping from the original blank nodes of
the graph to URI in the graph or to different blank nodes already in the graph
(i.e. we do not introduce any new blank node). As an example, let us consider a
simple graph containing two statements, say:

:X ns:aGenericProperty ns:b
ns:a ns:aGenericProperty ns:b

we can determine that the graph is not lean by considering the mapping

: X → ns : a

The result is a graph with a single statement

ns:a ns:aGenericProperty ns:b

which is lean by definition (being a graph with no blank nodes).
More formally, called:

– ORIGIN the original graph
– RESULT the new graph we are going to build
– X the anonymous node we want to map

we define:

Definition 5 (SUBMODEL). All the statements in ORIGIN in which X is
the subject.

Definition 6 (SUPERMODEL). All the statements in ORIGIN in which X
is the object.

We then can check every possible mapping from X to an URI or to a blank node
identifier already occurring in ORIGIN for applicability to obtain an instance of
ORIGIN which is both an instance and a proper subgraph (an approximation

144 F. Esposito et al.

Fig. 4. Chained redundant blank nodes

of the lean subgraph) simply by checking that SUBMODEL of X is contained
in SUBMODEL of the candidate node and SUPERMODEL of X is contained in
SUPERMODEL of the candidate node. In fact, it can be easily proved that such a
mapping does not produce any statement not contained in ORIGIN ; RESULT
then is a graph containing the same ground statements and a subset of the
statements containing blank nodes. The missing statements are those containing
the X node we just mapped. From the logical point of view, the information
expressed by the graph is unchanged, since the mapping is equivalent to changing
from:

∃X.p(X, b) and ∃a.p(a, b)
to

∃a.p(a, b)

which are equivalent, not being stated that X is different from a. This mapping
can be built for every redundant blank node in ORIGIN, but in some situations
it is not guaranteed to find all redundancies. In fact, as in Figure 4, it is possible
to have a chain of redundant blank nodes which cannot be spotted with a one-
level visit of the RDF graph. In fact, in Figure 4, the two blank nodes represent
the same structure as the two nodes labeled b and c. To find this redundancy,
it is necessary to switch from a single node view to a multi node view.

For ease of reference, let us use an N-TRIPLE-like notation for the example
in Figure 4:

ns:a ns:p :X
ns:a ns:p ns:b
ns:b ns:p ns:c
ns:c ns:p ns:d

:X ns:p :Y
:Y ns:p ns:d

considering the subgraph
:X ns:p :Y

named BLANKS for future reference, its structure can be described with a query
like (using RDQL as query language, for the example)

SELECT ?a, ?b WHERE (?a, ns:p, ?b)

REDD: An Algorithm for Redundancy Detection in RDF Models 145

This query offers two results when executed against the model in the example:
the first result is the mapping ?a → : X and ?b → : Y , while the second is
?a → ns : b and ?b → ns : c. Actually, the results are two graphs; checking every
incoming edge and outgoing edge of the two graphs, we can determine if the
graphs are equivalent, in analogy with the previous particular case in which the
graph degenerates to a single blank node. This can be done adding conditions
to the original query:

SELECT ?a, ?b WHERE (?a, ns:p, ?b)(ns:a ns:p ?a)(?b ns:p ns:d)

This can be done in a general way starting from the subgraph built consid-
ering every triple involving the BLANKS subgraph, and then generating the
query with a condition for every triple and a variable for each blank node, keep-
ing track of the blank node → variable name association. The resulting query,
executed on the model, will surely produce one resulting graph (the subgraph
used to generate it); any other result is a graph that respects the constraints we
imposed on the single node case: on any node, the set of incoming edges includes
the set of incoming edges of the corresponding node in the BLANKS graph
(the corresponding node is the node that grounds the same variable), excluding
the edges already included in the graph (i.e. where both subject and object are
variables in the query).

For ease of future reference, we give the following definition:

Definition 7 (CONNECTED SUBGRAPH). A connected subgraph of a
graph G is a subgraph of G containing at least one blank node (as subject or
object); if more than a blank node is contained in the graph, then the blank nodes
make up a chain (i.e. it is possible to navigate from a blank node to another
following the predicates). The connected subgraph is made up of all the triples in
G that involve at least one of these blank nodes.

As an example, in Figure 4 there is one chain of blank nodes; the correspond-
ing connected graph is:

ns:a ns:p :X
:X ns:p :Y
:Y ns:p ns:d

This algorithm has been implemented in two steps: first, the special case
in which we consider only single blank nodes (i.e. no chain redundancies are
detected) has been implemented both as a Java class (built on top of the Jena
API) and directly in the storage layer of RDFCore with stored procedures in
the Oracle DB. The second step, i.e. the implementation of both single nodes
and chains detection, has been completed as a Java class (again using the Jena
API), and at the time of writing we are implementing it in the storage layer.

3.2 REDD Computational Complexity

In this subsection we will shortly carry out an a priori evaluation of computa-
tional cost required by REDD algorithm. We will keep as reference the pseudo

146 F. Esposito et al.

code version of REDD in Figure 3. Obviously, the actual implementations work-
ing both in memory and natively on the storage layers (see Section 4) underwent
some optimizations, not shown in the pseudo code for sake of brevity; hence
calculations in this section represent only an upper theoretical limit for the
computational cost of REDD. In section 5, the reader can find some empirical
evaluations.

We start defining some metrics on RDF descriptions on which, as shown
below, REDD complexity depends.

Definition 8 (RDF Description metrics). Be G a RDF description and n
a generic node in G then

– NG
T stands for the number of RDF triples within G

– NG
TB

stands for the number of RDF triples within G containing at least a
blank node

– NG
TNB

stands for the number of RDF triples within G with no blank nodes
(it is equal to NG

T −NG
TB

)
– #G

CG stands for the number of connected subgraphs with blank nodes within
G

Referring to Figure 3, complexity of FindRedundancies CFR is:

CFR = CCCG + #G
CG ∗ CCQ + #G

CG ∗ CEQ (1)

where

– CCCG is the complexity of the CreateConnGraphs operation, which is O(NG
T)

(linear in the size of the model); more in detail, the main cycle of Create-
ConnGraphs depends on NG

T , while each operation executed in the cycle
does not depend on NG

T (depending on the implementation, map and set
operations can vary their complexity; assuming an hash implementation for
both of them, every operation can be considered O(1)). On the other hand,
the number of mappings in the blanksTocg map depends on the degree of
connectedness in the graph: at worse, there will be no more than NG

T map-
pings (because the number of mappings cannot exceed the number of triples
in the graph), in the case that every statement has at least a blank node as
subject or object;

– CCQ is the complexity of the CreateQuery operation, which depends on the
number of triples in the connected subgraph it is operated onto; since the
connected subgraphs are disjoint set (if two connected subgraphs overlap,
i.e. they have some common blank node and in consequence some common
triple, they are actually one connected subgraph by definition, and they are
built in this way), the whole group #G

CG ∗ CCQ has complexity O(NG
TB

);
– CEQ is the complexity of the ExecuteQuery operation, which depends on the

QUERYON operator and on the number of results the query finds in the
model. In the worst case (very unlikely to happen), the number of results
can be equal to the number of resources in the model, which is at worst

REDD: An Algorithm for Redundancy Detection in RDF Models 147

3 ∗ NG
T (again, very unlikely to happen - in particular, since in the query

the predicate URI is never a variable, if the second situation is the case
then the number of results will be exactly one, and no redundancies will be
possible). Hence, this portion is O(NG

T). The QUERYON operator complex-
ity depends on the query facility, that in the actual implementation relies
on Jena RDQL support. An upper limit for the complexity of this operation
can be calculated considering each condition in the query and verifying them
one by one against the model. There is a condition for each statement in the
connected graph, and each one of them requires (in an implementation with
no optimizations) at most NG

T checks on the model; under these assumptions
(which are surely an underestimation of the real performances), the whole
group #G

CG ∗ CEQ has complexity O(#G
CG ∗NG

T + NG2
T)

As a result, CFR has complexity O(NG2
T); in particular, the quadratic complexity

depends on the query phase of the algorithm, since the other two main sections
are O(NG

T), and it comes from a deliberate overestimation of the query perfor-
mances. As an example, in an hypothetical implementation a simple indexing
on statement predicates P reduces the complexity of the search from O(NG

T) to
O(#P). In real models, it can reasonably be assumed that #P << NG

T .
In the next sections we will briefly present the RDFCore system, where

REDD has been implemented, and, in section 5, we will show some empirical
results for the algorithm.

4 The RDFCore Component

The RDFCore component, presented in [2, 7], is based on two classes, Descrip-
tionManager and TripleManager, and an interface, RDFEngineInterface.

RDFEngineInterface is an interface that enables the managers to abstract
from the physical persistence details. Thanks to this design, based on the well
known Strategy pattern [3], the system can use one or more persistence imple-
mentations (with different performance or scalability tradeoffs) whenever needed,
on the basis of the needs of the external applications, without the programmer
having to bother about different APIs. Currently, there are four implementa-
tions of RDFEngineInterface, two based on the well-known Jena Semantic Web
Toolkit, one with MySQL RDBMS 9 and another with SQL Server10 as per-
sistent storage; a third implementation is based on RDF/XML files. The last
implementation, called RDFEngineREDD, is the one in which we embedded the
REDD algorithm natively in the storage level. It uses Oracle11 as RDBMS. The
database has been chosen because of the availability of stored procedures and

9 http://dev.mysql.com/doc/mysql/en/index.html
10 http://www.microsoft.com/sql/
11 Oracle 9.2.0.1.0 (Oracle 9i Release 2) http://otn.oracle.com/documentation/

oracle9i.html

148 F. Esposito et al.

the ability to execute Java code directly on the database, avoiding the overhead
of data transfer that would have arisen using different solutions.

Currently RDFCore is a central component within the core infrastructure
of the software architecture that will result out of the 6th Framework Project
VIKEF (Virtual Information and Knowledge Framework Priority 2.3.1.7. Se-
mantic Based Knowledge Systems Contract no.: 507173).

5 Experimental Results

To evaluate the scalability of our implementation of the REDD algorithm in
the RDFEngineREDD implementation of RDFEngineInterface, we built a set
of Models to check some situations inspired by real models; the results are in
Table 3. The models come from different sources: the first two, lean and nolean,
are from [6], where they are presented as basic examples of lean and non-lean
graphs. nolean2B is a slight variation of nolean, with two redundant blank nodes.
cycleTest is used to check the behavior of the algorithm when dealing with com-
plex cyclic situations in graphs, while blankChain contains a chain of redundant
blank nodes like in the Figure 4. restriction contains a redundant restriction
class definition (as in Figure 1) together with a redundant union class definition
(in OWL); the last Model, daml, contains a sketch of a DAML ontology, with
some class definitions including both Restriction, Union and Intersection types.
For each model, we recorded the number of statements, the number of blank
nodes present in the graph, the elapsed time to insert the models in our per-
sistence (in milliseconds), the elapsed time to execute REDD (in milliseconds)
and the number of removable blanks in the graph. Since the size of these models
is way too small to evaluate scalability on model size and complexity, we kept
these test cases as correctness checks while developing the algorithm, and then
created a parametric method to generate bigger models with known structure,
in order to scale the size and complexity without having to check the correctness
of the results (which can be a time consuming task for models with more than
some tens of nodes). The parameters we used are: the number of blank nodes in
a graph, the number of incoming/outgoing edges for each node, and the number
of redundancies for each blank node (i.e. a blank node can be found redundant
with one or more nodes in the graph). The test models were built scaling on the
three parameters independently (showed in Table 1); in the last section, both the
number of blank nodes and the number of redundancies per node is augmented.

These tests were performed on the database implementation, that, as said
earlier in the paper, still does not handle the blank node chains.

In order to give a preliminary evaluation of the complete algorithm, we used
some models built from a real ontology, as said in Section 1. The ontology is the
BM Ontology12, that aims to describe the domain of business process description.
In this ontology, we tried to artificially increase the number of blank nodes and
of blank nodes chain.

12 http://www.bpiresearch.com

REDD: An Algorithm for Redundancy Detection in RDF Models 149

Table 1. Fake models scaling on ingoing / outgoing edges, blank node number and

redundancy number

Model id Triple #
Blank

node #
Storing

time (ms)
REDD (ms) Redundancies #

Removable
blanks #

Ingoing/
outgoing

edges
0 120 1 1469 62 5 1 10
1 240 1 2469 94 5 1 20
2 360 1 3438 141 5 1 30
3 480 1 4515 188 5 1 40
4 600 1 5266 234 5 1 50
5 720 1 6328 297 5 1 60
6 840 1 7109 360 5 1 70
7 960 1 8172 437 5 1 80
8 1080 1 9203 594 5 1 90
9 1200 1 11016 625 5 1 100

10 200 5 1953 78 1 5 10
11 400 10 3766 125 1 10 10
12 600 15 5406 250 1 15 10
13 800 20 7203 219 1 20 10
14 1000 25 10000 281 1 25 10
15 1200 30 10860 375 1 30 10
16 1400 35 12828 407 1 35 10
17 1600 40 14844 469 1 40 10
18 1800 45 15969 563 1 45 10
19 2000 50 18047 750 1 50 10
20 120 1 2235 453 5 5 10
21 220 1 2235 93 10 10 10
22 320 1 3188 156 15 15 10
23 420 1 3828 188 20 20 10
24 520 1 4485 234 25 25 10
25 620 1 5047 266 30 30 10
26 720 1 5813 297 35 35 10
27 820 1 6907 546 40 40 10
28 920 1 7360 406 45 45 10
29 1020 1 8188 437 50 50 10
30 600 5 4906 234 5 5 10
31 2200 10 18328 922 10 10 10
32 4800 15 39141 2187 15 15 10
33 8400 20 69578 4203 20 20 10
34 13000 25 118031 6078 25 25 10
35 18600 30 171563 10031 30 30 10

Our use of the BM Ontology was as follows: we loaded the ontology in a
Jena OntModel, with no reasoning in order to use only the original triples,
and then wrote out the complete model, obtaining a RDF model containing
the BM Ontology and the import closure. Then, we reloaded this new model
(that we will call BMO1) in an OntModel. The resolution of owl:imports di-
rective in this admittedly pathological model produces a new inferred model in
which every blank node and blank node chain is duplicated, and this produces
redundancies that REDD can discover (model BMO2). We repeated the pro-
cedure and obtained the models BMO3 and BMO4. The results are shown in
Table 2.

As can be seen in Table 1, the insertion of new descriptions in RDFCore
roughly scales linearly with the size of the descriptions. The performance over-
head due to index updating, however, increases when the number of triples in
a description increase, so the total complexity is more than linear. The heavy
indexing, on the other side, enables us to obtain very good results when running

150 F. Esposito et al.

Table 2. Models with blank node chains

Model id Triple # Blank node # Redundant triples # REDD (ms) Chain #

BMO1 12267 1416 16 3294 804
BMO2 16487 2832 8440 5258 1608
BMO3 20707 4248 12660 18146 2412
BMO4 24927 5664 16880 102648 3216

Table 3. Some real-world models tests

Model id Triple # Blank node # Storing time (ms) REDD (ms) Removable
blanks #

lean 2 1 140 32 0
nolean 2 1 62 31 1
nolean2B 3 2 46 47 2
blankChain 7 2 94 31 0
cycleTest 15 2 204 31 1
restriction 35 17 500 93 7
daml 38 33 718 282 16

the REDD algorithm on the data. About the real size reduction of the model
after the removal of the blank nodes (which means the removal of every triple
referring to these nodes), it is not possible to draw general conclusions since the
number of triples strongly depends on the graph; the only reasonable lower limit
is two triples per blank node, since it is quite unusual to have a dangling blank
node or a graph rooted in a blank node, and in these cases it is unlikely that the
nodes are redundant (e.g. ns:a ns:aProperty :X means that ns:a has a filler
for the role ns:aProperty, but nothing else is known about this filler; adding an-
other statement, ns:a ns:aProperty :Y, would assert the same thing; unless
stating that :X is different from :Y, REDD signals the nodes as redundant).

About the implementation running in memory, the test data shows an inter-
esting behavior: while BMO1 only contains 16 redundant triples, BMO2 contains
8440 redundant triples. What happens here is that the BMO1 model contains
4 redundant restrictions (that are anonymous cardinality restrictions similar to
the one represented in Figure 1), each built up of 4 triples; the other 1412 blank
nodes are arranged in 800 chains (with different chain length), usually RDF lists,
that are not redundant with any structure in BMO1. In BMO2, however, the
duplication of these structures produces 1608 blank node chains, and each one of
them is redundant with at least one structure. Same explanation for the further
increase in BMO3 and BMO4.

From this information, it is possible to infer what would be the results of
querying a reduced model: in fact, BMO1 is only 12 triples bigger than the
smallest model that REDD can produce. Since every blank node chain produces
a RDQL query to be executed on the model, from the data it is possible to deduce
that the time required for a query on BMO4 is bigger than the time required for a
query in BMO1 (from about 4 ms in BMO1 to more than 26 ms in BMO4). This
huge difference between query performance can be partially attributed to lack of
optimization in the current algorithm implementation (e.g., two redundant blank

REDD: An Algorithm for Redundancy Detection in RDF Models 151

node chains produce two queries, but the queries are equal; this is recognized
only in some cases by our implementation), but it is an empirical confirmation of
our initial intuitive claim that queries on a smaller model are faster than queries
on a larger model.

Our aim in the ongoing work (i.e. pushing down into the persistence layer the
chain redundancy detection) is to match the performances of the first version of
the algorithm. Moreover, we plan extensions to the algorithm applications, e.g.
recognition of Alt and Bag structures in order to be able to detect duplications.
Another extension (based on OWL semantics) is the recognition of the use of
Lists in the declaration of union and intersection classes; while differently ordered
lists are different at the RDF level, they express the same meaning at the OWL
level, and this should be detected as redundancy. Also, it is necessary to establish
ordering criteria when choosing the blank nodes to be removed from the graph: in
fact, detecting a redundancy corresponds to finding of set inclusion relationships
between SUPERGRAPHS and SUBGRAPHS ; the choice can be made freely
only when SUPERGRAPHS and SUBGRAPHS are equal, while in other cases
an ordering criterion must be used.

6 Conclusions

In this paper we started from the consideration that SW is based on a particu-
lar language for metadata description, RDF, whose semantics has been recently
thoroughly investigated by W3C and other researchers. This initial effort pro-
duced some valuable results in terms of theoretical foundations for entailment
in RDF. We examined, in particular, results concerning blank node semantics
and their effects on the problem of compacting RDF graphs. We presented a
correct algorithm for spotting out redundant blank nodes in RDF graphs and
we provided a pseudo code implementation. We discussed its complexity prov-
ing it is tractable (polynomial). Afterward we presented its actual prototypical
implementation within our RDF management system (RDFCore). From em-
pirical evaluation we found out that these initial results are encouraging (being
it a prototype). Furthermore, redundancies can be also referred to a vocabulary.
In fact this work did not take into account RDFS (and its derivatives) semantics
that can be deeply exploited for compacting descriptions.

Acknowledgments

This research was partially funded by the European Commission under the 6th

Framework Programme IST Integrated Project VIKEF - Virtual Information
and Knowledge Environment Framework (Contract no. 507173, Priority 2.3.1.7
Semantic-based Knowledge Systems; more information at http://
www.vikef.net), and under the DELOS 2 Network of Excellence on Digital
Libraries started on January 1, 2004 Priority IST-2002-2.3.1.12 Technology-
enhanced Learning and Access to Cultural Heritage - Contract no.: G038-507618
(http://www.delos.info/).

152 F. Esposito et al.

References

1. Berners-Lee, T.: Semantic Web Road map (1998) http://www.w3.org/

DesignIssues/Semantic.html.
2. Esposito, F., Iannone, L., Palmisano, I., Semeraro, G.: RDF Core: a Component

for Effective Management of RDF Models. In Cruz, I.F., Kashyap, V., Decker, S.,
Eckstein, R., eds.: Proceedings of SWDB’03, The First International Workshop on
Semantic Web and Databases, Co-located with VLDB 2003, Humboldt-Universität,
Berlin, Germany, September 7-8, 2003. (2003)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. 1st edn. Addison-
Wesley (1995)

4. Gutiérrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web
Databases. In: Proceedings of ACM Symposium on Principles of Database Sys-
tems (PODS) Paris, France, June 2004. (2004)

5. Hayes, J., Gutiérrez, C.: Bipartite graphs as intermediate model for rdf. In: Inter-
national Semantic Web Conference. (2004) 47–61

6. Hayes, P.: RDF semantics (2004) W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-mt/.

7. Iannone, L., Palmisano, I., Redavid, D.: Optimizing RDF storage removing re-
dundancies: an algorithm. In Ali, M., Esposito, F., eds.: Proceedings of the 18th
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Bari, Italy, June 22-25 2005. Lecture Notes in
Artificial Intelligence, Springer (2005) (to appear).

8. McBride, B.: JENA: A Semantic Web toolkit. IEEE Internet Computing 6 (2002)
55–59

9. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and
retrieval in jena2. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R., eds.: Pro-
ceedings of SWDB’03, The first International Workshop on Semantic Web and
Databases, Co-located with VLDB 2003, Humboldt-Universität, Berlin, Germany,
September 7-8, 2003. (2003) 131–150

OWL-Eu: Adding Customised Datatypes into OWL

Jeff Z. Pan and Ian Horrocks

School of Computer Science, University of Manchester, UK
{pan, horrocks}@cs.man.ac.uk

Abstract. Although OWL is rather expressive, it has a very serious limitation
on datatypes; i.e., it does not support customised datatypes. It has been pointed
out that many potential users will not adopt OWL unless this limitation is over-
come. Accordingly, the Semantic Web Best Practices and Development Working
Group sets up a task force to address this issue. This paper makes the following
two contributions: (i) it provides a brief summary of OWL-related datatype for-
malisms, and (ii) it provides a decidable extension of OWL DL, called OWL-Eu,
that supports customised datatypes.

1 Introduction

The OWL Web Ontology Language [3] is a W3C recommendation for expressing on-
tologies in the Semantic Web. Datatype support [16, 17] is one of the most useful fea-
tures OWL is expected to provide, and has brought extensive discussions in the RDF-
Logic mailing list [18] and Semantic Web Best Practices mailing list [20]. Although
OWL adds considerable expressive power to the Semantic Web, the OWL datatype for-
malism (or simply OWL datatyping) is much too weak for many applications; in partic-
ular, OWL datatyping does not provide a general framework for customised datatypes,1

such as XML Schema derived datatypes.
It has been pointed out that many potential users will not adopt OWL unless this

limitation is overcome [19], as it is often necessary to enable users to define their own
datatypes and datatype predicates for their ontologies and applications. For instance,
when using a computer sales ontology, a user may need to describe a PC with mem-
ory size greater than or equal to 512Mb, unit price less than 700 pounds and delivery
date earlier than 15/03/2004. In this context, ‘greater than or equal to 512’, ‘less than
700’ and ‘earlier than 15/12/2004’ can be seen as customised datatypes, with the base
datatypes being integer, integer and date, respectively.

After reviewing the design of OWL, and the needs of various applications and (po-
tential) users, the following requirements for an extension to OWL DL have been iden-
tified:

1. It should provide customised datatypes; therefore, it should be based on a datatype
formalism which is compatible with OWL datatyping, provides facilities to con-

1 A widely discussed example would be the ‘BigWheel’ example discussed in,
e.g., http://lists.w3.org/Archives/Public/public-swbp-wg/2004Apr/
0061.html.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 153–166, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

154 J.Z. Pan and I. Horrocks

struct customised datatypes and, most importantly, guarantees the computerability
of the kinds of customised datatypes it supports.

2. It should overcome other important limitations of OWL datatyping, such as the ab-
sence of negated datatypes and the un-intuitive semantics for unsupported datatypes
(which will be further explained in Section 4).

3. It should satisfy the small extension requirement, which is two folded: on the one
hand, the extension should be a substantial and necessary extension that overcomes
the above mentioned limitations of OWL datatyping; on the other hand, following
W3C’s ‘one small step at a time’ strategy, it should only be as large as is necessary
in order to satisfy the requirements.

4. It should be a decidable extension of OWL DL.

This paper makes two main contributions. Firstly, it provides an overview of relevant
(to OWL) datatype formalisms, namely those of XML, RDF and OWL itself. Secondly,
and most importantly, it presents an extension of OWL DL,2 called OWL-Eu (OWL
with unary datatype Expressions), which satisfies the above requirements.

The rest of the paper is organised as follows. Section 2 briefly introduces the OWL
Web Ontology Language. Section 3 describes OWL-related datatype formalisms. Sec-
tion 4 summarises the limitations of OWL datatyping. Section 5 presents the OWL-Eu
language, showing how it satisfies the above four requirements. Section 6 describes
some related works, and Section 7 concludes the paper and suggests some future
works.

2 An Overview of OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the Seman-
tic Web. The OWL language facilitates greater machine understandability of Web re-
sources than that supported by RDFS by providing additional constructors for building
class and property descriptions (vocabulary) and new axioms (constraints), along with
a formal semantics. The OWL recommendation actually consists of three languages of
increasing expressive power: OWL Lite, OWL DL and OWL Full. OWL Lite and OWL
DL are, like DAML+OIL, basically very expressive Description Logics (DLs); they are
almost3 equivalent to the SHIF(D+) and SHOIN (D+) DLs. OWL Full provides the
same set of constructors as OWL DL, but allows them to be used in an unconstrained
way (in the style of RDF). It is easy to show that OWL Full is undecidable, because it
does not impose restrictions on the use of transitive properties [10]; therefore, when we
mention OWL in this paper, we usually mean OWL DL.

Let C, RI, RD and I be the sets of URIrefs that can be used to denote classes,
individual-valued properties, data-valued properties and individuals respectively. An
OWL DL interpretation is a tuple I = (ΔI ,ΔD, ·I , ·D) where the individual domain
ΔI is a nonempty set of individuals, the datatype domain ΔD is a nonempty set of data
values, ·I is an individual interpretation function that maps

2 cf. Section 2 for the differences of three sub-languages of OWL.
3 They also provide annotation properties, which Description Logics don’t.

OWL-Eu: Adding Customised Datatypes into OWL 155

Table 1. OWL individual-valued property descriptions

Abstract Syntax DL Syntax Semantics
ObjectProperty(R) R RI ⊆ ΔI × ΔI

ObjectProperty(S inverseOf(R)) R− (R−)I ⊆ ΔI × ΔI

Table 2. OWL class descriptions

Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆ ΔI

Class(owl:Thing) � �I =ΔI

Class(owl:Nothing) ⊥ ⊥I = ∅
intersectionOf(C1, C2, . . .) C1
 C2 (C1
 C2)

I = CI
1 ∩ CI

2

unionOf(C1, C2, . . .) C1 � C2 (C1 � C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ΔI \ CI

oneOf(o1, o2, . . .) {o1}� {o2} ({o1}� {o2})I = {o1I , o2
I}

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) � mR (� mR)I = {x | �{y.〈x, y〉 ∈ RI} ≤ m}
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ TI ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ TI → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x, wD〉 ∈ TI}
restriction(T minCardinality(m)) � mT (� mT)I = {x | �{t | 〈x, t〉 ∈ TI} ≥ m}
restriction(T maxCardinality(m)) � mT (� mT)I = {x | �{t | 〈x, t〉 ∈ TI} ≤ m}

– each individual name a ∈ I to an element aI ∈ ΔI ,
– each concept name CN ∈ C to a subset CNI ⊆ ΔI ,
– each individual-valued property name RN ∈ RI to a binary relation RNI ⊆

ΔI ×ΔI and
– each data-valued property name TN ∈ RD to a binary relation TNI ⊆ ΔI×ΔD,

and ·D is a datatype interpretation function. More details of ΔD and ·D will be pre-
sented in Section 3.3.

The individual interpretation function can be extended to give semantics to class
and individual-valued property descriptions shown in Tables 1 and 2, where A ∈ C is
a concept URIref, C,C1, . . . , Cn are concept descriptions, R ∈ RI is an individual-
valued property URIref, R1, . . . , Rn are individual-valued property descriptions and
o, o1, o2 ∈ I are individual URIrefs, u is a data range (cf. Definition 8), T ∈ RD is a
data-valued property and � denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [11], which consists
of a set of axioms, including class axioms, property axioms and individual axioms.4

Table 3 presents the abstract syntax, DL syntax and semantics of OWL axioms.

4 Individual axioms are also called facts.

156 J.Z. Pan and I. Horrocks

Table 3. OWL axioms

Abstract Syntax DL Syntax Semantics
Class(A partial C1 . . . Cn) A � C1 . . . Cn AI ⊆ CI

1 ∩ . . . ∩ CI
n

Class(A complete C1 . . . Cn) A ≡ C1 . . . Cn AI = CI
1 ∩ . . . ∩ CI

n

EnumeratedClass(A o1 . . . on) A ≡ {o1} � . . .� {on} AI = {o1I , . . . , oIn}
SubClassOf(C1, C2) C1 � C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ Cn CI
1 = . . . = CI

n

DisjointClasses(C1 . . . Cn) Ci � ¬Cj , CI
1 ∩ CI

n = ∅,
(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)

SubPropertyOf(R1, R2) R1 � R2 RI
1 ⊆ RI

2
EquivalentProperties(R1 . . . Rn) R1 ≡ . . . ≡ Rn RI

1 = . . . = RI
n

ObjectProperty(R super(R1) ... super(Rn) R � Ri RI ⊆ RI
i

domain(C1) ... domain(Ck) � 1R � Ci RI ⊆ CI
i × ΔI

range(C1) ... range(Ch) � � ∀R.Ci RI ⊆ ΔI × CI
i

[Symmetric] R ≡ R− RI = (R−)I

[Functional] Func(R) {〈x, y〉 | �{y.〈x, y〉 ∈ RI} ≤ 1}
[InverseFunctional] Func(R−) {〈x, y〉 | �{y.〈x, y〉 ∈ (R−)I} ≤ 1}
[Transitive]) Trans(R) RI = (RI)+

AnnotationProperty(R)
Individual(o type(C1) . . . type(Cn) o : Ci, 1 ≤ i ≤ n oI ∈ CI

i , 1 ≤ i ≤ n

value(R1, o1) . . . value(Rn, on) 〈o, oi〉 : Ri,1 ≤ i ≤ n 〈oI , oIi 〉 ∈ RI
i , 1 ≤ i ≤ n

SameIndividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi �= oj , 1 ≤ i < j ≤ n oIi �= oIj , 1 ≤ i < j ≤ n

3 Datatype Formalisms

In this section we will provide a brief overview of the XML, RDF and OWL datatype
formalisms.

3.1 XML Schema Datatypes

W3C XML Schema Part 2 [4] defines facilities for defining simple types to be used in
XML Schema as well as other XML specifications.

Definition 1. An XML Schema simple type d is characterised by a value space, V (d),
which is a non-empty set, a lexical space, L(d), which is a non-empty set of Unicode [6]
strings, and a set of facets, F (d), each of which characterizes a value space along
independent axes or dimensions. �

XML Schema simple types are divided into disjoint built-in simple types and de-
rived simple types. Derived datatypes can be defined by derivation from primitive or
existing derived datatypes by the following three means:

– Derivation by restriction, i.e., by using facets on an existing type, so as to limit the
number of possible values of the derived type.

– Derivation by union, i.e., to allow values from a list of simple types.
– Derivation by list, i.e., to define the list type of an existing simple type.

Example 1. The following is the definition of a derived simple type (of the base
datatype xsd:integer) which restricts values to integers greater than or equal to 0 and
less than 150, using the facets minInclusive and maxExclusive.

OWL-Eu: Adding Customised Datatypes into OWL 157

<simpleType name = “humanAge”>
<restriction base = “xsd:integer”>

<minInclusive value = “0”/>
<maxExclusive value = “150”/>

</restriction>
</simpleType> ♦

3.2 Datatypes in RDF

According to [8], RDF allows the use of datatypes defined by any external type systems,
e.g., the XML Schema type system, which conform to the following specification.

Definition 2. A datatype d is characterised by a lexical space, L(d), which is an non-
empty set of Unicode strings; a value space, V (d), which is an non-empty set, and a
total mapping L2V (d) from the lexical space to the value space. �

This specification allows the use of non-list XML Schema built-in simple types
as datatypes in RDF, although some built-in XML Schema datatypes are problematic
because they do not fit the RDF datatype model.5 Furthermore, comparisons between
Definition 1 and 2 show that RDF does not take XML Schema facets into account,
which are essential to define derived simple types.

In RDF, data values are represented by literals.

Definition 3. All literals have a lexical form being a Unicode string. Typed literals are
of the form “s”ˆˆu, where s is a Unicode string, called the lexical form of the typed lit-
eral, and u is a datatype URI reference. Plain literals have a lexical form and optionally
a language tag as defined by [1], normalised to lowercase. �

Example 2. Boolean is a datatype with value space {true, false}, lexical space
{“true”, “false”,“1”,“0”} and lexical-to-value mapping {“true”�→ true, “false”�→
false, “1”�→ true, “0”�→ false}. “true”ˆˆxsd:boolean is a typed literal, while “true”
is a plain literal. ♦

The associations between datatype URI references (e.g., xsd:boolean) and
datatypes (e.g., boolean) can be provided by datatype maps defined as follows.

Definition 4. A datatype map Md is a partial mapping from datatype URI references
to datatypes. �

Note that XML Schema derived simple types are not RDF datatypes because XML
Schema provides no mechanism for using URI references to refer to derived simple
types.

The semantics of RDF datatypes are defined in terms of Md-interpretations, which
extend RDF-interpretations and RDFS-interpretations (cf. RDF Semantics [8]) with ex-
tra conditions for datatypes.

5 Readers are referred to [8] for more details.

158 J.Z. Pan and I. Horrocks

Definition 5. Given a datatype map Md, an RDFS Md-interpretation I of a vocabu-
lary V (a set of URIrefs and plain literals) is any RDFS-interpretation of V ∪ {u |
∃ d.〈u, d〉 ∈Md} which introduces

– a non-empty set IR of resources, called the domain (or universe) of I,
– a set IP (the RDF-interpretation requires IP to be a sub-set of IR) called the set

of properties in I,
– a set IC (the RDFS-interpretation requires IC to be a sub-set of IR) called the set

of classes in I, and
– a distinguished subset LV of IR, called the set of literal values, which contains all

the plain literals in V,
– a mapping IS from URIrefs in V to IR,
– a mapping IEXT , called the extension function, from IP to the powerset of IR×

IR,
– a mapping ICEXT , called the class extension function, from IC to the set of

subsets of IR,
– a mapping IL from typed literals in V into IR,

and satisfies the following extra conditions:

1. LV = ICEXT (IS(rdfs:Literal)),
2. for each plain literal pl, IL(pl) = pl,
3. for each pair 〈u, d〉 ∈ Md,

(a) ICEXT (d) = V (d) ⊆ LV,
(b) there exist d ∈ IR s.t. IS(u) = d,
(c) IS(u) ∈ ICEXT (IS(rdfs:Datatype)),
(d) for “s”ˆˆu′ ∈ V,IS(u′) = d, if s ∈ L(d), then IL(“s”ˆˆu′) = L2S(d)(s),

otherwise, IL(“s”ˆˆu′) ∈ IR \ LV,
4. if d ∈ ICEXT (IS(rdfs:Datatype)), then 〈d, IS(rdfs:Literal)〉 ∈ IEXT (rdfs:

subClassOf). �

According to Definition 5, LV is a subset of IR, i.e., literal values are resources. Con-
dition 1 ensures that the class extension of rdfs:Literal is LV. Condition 2 ensures
that the plain literals are interpreted as themselves. Condition 3a asserts that RDF(S)
datatypes are classes (because datatypes are interpreted using the class extension func-
tion ICEXT), condition 3b ensures that there is a resource d for datatype d in Md, and
condition 3c ensures that the class rdfs:Datatype contains the datatypes used in any
satisfying Md-interpretation. Condition 3d explains why the range of IL is IR rather
than LV (because, for “s”ˆˆu, if s �∈ L(IS(u)), then IL(“s”ˆˆu) �∈ LV); note that this
is different from OWL datatypes (cf. Definition 9). Condition 4 requires that RDF(S)
datatypes are sub-classes of rdfs:Literal.

3.3 Datatypes in OWL

OWL datatyping adopts the RDF specification of datatypes and data values. It extends
RDF datatyping by (i) allowing different OWL reasoners to provide different supported
datatypes, and (ii) introducing the use of so called enumerated datatypes.

OWL-Eu: Adding Customised Datatypes into OWL 159

Definition 6. Given a datatype map Md, a datatype URI reference u is called a sup-
ported datatype URI reference w.r.t. Md if there exists a datatype d s.t. Md(u) = d
(in this case, d is called a supported datatype w.r.t. Md); otherwise, u is called an
unsupported datatype URI reference w.r.t. Md . �

Definition 7. Let y1, . . . , yn be typed literals. An enumerated datatype is of the form
oneOf(y1 . . . yn). �

Definition 8. An OWL data range has one of the forms: (i) a datatype URI reference,
(ii) an enumerated datatype, or (iii) rdf:Literal. �

The semantics of OWL DL datatypes are defined in terms of OWL datatype inter-
pretations.

Definition 9. An OWL datatype interpretation w.r.t. to a datatype map
Md is a pair (ΔD, ·D), where the datatype domain ΔD = PL ∪⋃

for each supported datatype URIref u w.r.t. Mp
V (Mp(u)) (PL is the value

space for plain literals, i.e., the union of the set of Unicode strings and the set of pairs
of Unicode strings and language tags) and ·D is a datatype interpretation function,
which has to satisfy the following conditions:

1. rdfs:LiteralD = ΔD;
2. for each plain literal l, lD = l ∈ PL;
3. for each supported datatype URIref u (let d = Md(u)):

(a) uD = V (d) ⊆ ΔD,
(b) if s ∈ L(d), then (“s”ˆˆu)D = L2V (d)(s),
(c) if s �∈ L(d), then (“s”ˆˆu)D is not defined;

4. for each unsupported datatype URIref u, uD ⊆ ΔD, and (“s”ˆˆu)D ∈ uD.
5. each enumerated datatype oneOf(y1 . . . yn) is interpreted as yD

1 ∪ . . . ∪ yD
n . �

The above definition shows that OWL datatyping is similar to RDF datatyping, except
that (i) RDF datatypes are classes, while OWL DL datatypes are not classes,6 and (ii)
in RDF ill-defined typed literals are interpreted as resources in IR\LV, while in OWL
DL the interpretation of ill-defined typed literals are undefined.

4 Limitations of OWL Datatyping

OWL datatyping has the following serious limitations, which discourage potential users
from adopting OWL DL in their SW and ontology applications [15, 19].

1. OWL does not support customised datatypes (except enumerated datatypes).
Firstly, XML Schema derived simple types are not OWL DL datatypes, because
of the problem of datatype URI references for XML Schema derived simple types.
Secondly, OWL does not provide a mechanism to tell which (customised) datatypes
can be used together so that the language is still decidable.

6 In fact, classes and datatypes in OWL DL use different interpretation functions; cf. Section 2.

160 J.Z. Pan and I. Horrocks

2. OWL does not support negated datatypes. For example, ‘all integers but 0’, which
is the relativised negation of the enumerated datatype oneOf(“0”ˆˆxsd:integer), is
not expressible in OWL. Moreover, negated datatypes are necessary in the negated
normal form (NNF)7 of datatype-related class descriptions in, e.g., DL tableaux
algorithms.

3. An OWL DL datatype domain seriously restricts the interpretations of typed literals
with unsupported datatype URIrefs. For example, given the datatype map Md1 =
{xsd:integer �→ integer, xsd:string �→ string}, “1.278e-3”ˆˆxsd:float has to
be interpreted as either an integer, a string or a string with a language tag, which is
counter-intuitive.

5 OWL-Eu

This section presents OWL-Eu and elaborates how OWL-Eu satisfies the four require-
ments (listed in Section 1) in the following four sub-sections.

5.1 Supporting Customised Datatypes

OWL-Eu supports customised datatypes through unary datatype expressions based on
unary datatype groups. Intuitively, an unary datatype group extends the OWL datatyping
with a hierarchy of supported datatypes.8

Definition 10. A unary datatype group G is a tuple (Md,B,dom), where Md is the
datatype map of G, B is the set of primitive base datatype URI references in G and
dom is the declared domain function. We call S the set of supported datatype URI
references of G, i.e., for each u ∈ S, Md(u) is defined; we require B ⊆ S. We assume
that there exists a unary datatype URI reference owlx:DatatypeBottom �∈ S. The
declared domain function dom has the following properties: for each u ∈ S, if u ∈
B, dom(u) = u; otherwise, dom(u) = v, where v ∈ B. �

Definition 10 ensures that all the primitive base datatype URIrefs of G are supported
(B ⊆ S) and that each supported datatype URIref relates to a primitive base datatype
URIref through the declared domain function dom.

Example 3. G1 = (Md1,B1, dom1) is a unary datatype group, where

– Md1 = {xsd:integer �→ integer, xsd:string �→ string, xsd:nonNegativeInteger
�→≥0, xsdx:integerLessThanN �→<N},

– B1 = {xsd:string, xsd:integer}, and

7 A concept is in negation normal form iff negation is applied only to atomic concept names,
nominals or datatypes.

8 Note that in [15] datatype groups allow arbitrary datatype predicates, while here we consider
only datatypes, which can be regarded as unary datatype predicates.

OWL-Eu: Adding Customised Datatypes into OWL 161

– dom1 = {xsd:integer �→ xsd:integer, xsd:string �→ xsd:string, xsd:nonNega-
tiveInteger �→ xsd:integer, xsdx:integerLessThanN �→ xsd:integer}.

According to Md1, we have S1 = {xsd:integer, xsd:string, xsd:nonNega- tiveIn-
teger, xsdx:integerLessThanN}, hence B1 ⊆ S1. Note that the value space of <N is

V (<N) = {i ∈ V (integer) | i < L2S(integer)(N)},

and by <N we mean there exists a supported datatype <N for each integer
L2S(integer)(N). ♦

Based on a unary datatype group, OWL-Eu provides a formalism (called datatype
expressions) for constructing customised datatypes using supported datatypes.

Definition 11. Let G be a unary datatype group. The set of G-unary datatype expres-
sions in abstract syntax (corresponding DL syntax can be found in Table 4 on page 162),
abbreviated Dexp(G), is inductively defined as follows:

1. atomic expressions: if u is a datatype URIref, then u ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, then not(u) ∈

Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, then oneOf(l1, . . . , ln) ∈

Dexp(G);
4. conjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), then and(E1, ..., En) ∈

Dexp(G);
5. disjunctive expressions: if {E1, ..., En} ⊆ Dexp(G), then or(E1, ..., En) ∈

Dexp(G). �

Example 4. G-unary datatype expressions can be used to represent XML Schema non-
list simple types. Given the unary datatype group G1 presented in Example 3 (page 160),

– built-in XML Schema simple types integer, string, nonNegativeInteger are
supported datatypes in G1;

– the XML Schema derived simple type (using only one facet)

<simpleType name = “lessThan5”>
<restriction base = “xsd:integer”>

<maxExclusive value = “5”/>
</restriction>

</simpleType>,

i.e. <5, is a supported datatype in G1;
– the XML Schema derived simple type (using more than one facet) “humanAge”

presented in Example 1 (page 156) can be represented by the following conjunctive
expression

and(xsd:nonNegativeInteger, xsdx:integerLessThan150);

162 J.Z. Pan and I. Horrocks

Table 4. Syntax and semantics of datatype expressions (OWL-Eu data ranges)

Abstract Syntax DL Syntax Semantics
a datatype URIref u u uD

oneOf(l1, . . . , ln) {l1, . . . , ln} {lD1 } ∪ . . . ∪ {lDn }
not(u) u (Md(u))D \ uD if u ∈ S \ B

ΔD \ uD otherwise
and(E1, . . . , En) E1 ∧ . . . ∧ En ED

1 ∩ . . . ∩ ED
n

or(P, Q) E1 ∨ . . . ∨ En ED
1 ∪ . . . ∪ ED

n

– the following XML Schema derived union simple type

<simpleType name = “cameraPrice”>
<union>

<simpleType>
<restriction base = “xsd:nonNegativeInteger”>

<maxExclusive value = “100000”/>
</restriction>

</simpleType>
<simpleType>

<restriction base = “xsd:string”>
<enumeration value = “low”/>
<enumeration value = “medium”/>
<enumeration value = “expensive”/>

</restriction>
</simpleType>

</union>
<simpleType>

can be represented by the following disjunctive expression

or(
and(xsd:nonNegativeInteger, xsdx:integerLessThan100000)
oneOf(“low”ˆˆxsd:string,“medium”ˆˆxsd:string, “expensive”ˆˆxsd:string)

). ♦

Definition 12. A datatype interpretation ID of a unary datatype group G =
(Md,B, dom) is a pair (ΔD, ·D), where ΔD (the datatype domain) is a non-empty set
and ·D is a datatype interpretation function, which has to satisfy the following conditions:

1. (rdfs:Literal)D = ΔD and (owlx:DatatypeBottom)D = ∅;
2. for each plain literal l, lD = l ∈ PL and PL ⊆ ΔD;9

3. for any two primitive base datatype URIrefs u1, u2 ∈ B: uD
1 ∩ uD

2 = ∅;
4. for each supported datatype URIref u ∈ S (let d = Md(u)):

(a) uD = V (d) ⊆ ΔD, L(u) ⊆ L(dom(u)) and L2S(u) ⊆ L2S(dom(u));
(b) if s ∈ L(d), then (“s”ˆˆu)D = L2V (d)(s); otherwise, (“s”ˆˆu)D is not de-

fined;
5. ∀u �∈ S, uD ⊆ ΔD, and “v”ˆˆu ∈ uD.

9 PL is the value space for plain literals; cf. Definition 9 on page 159.

OWL-Eu: Adding Customised Datatypes into OWL 163

Moreover, we extend ·D to G unary datatype expression as shown in Table 4
(page 162). Let E be a G unary datatype expression, the negation of E is of the form
¬E, which is interpreted as ΔD \ ED. �

In Definition 12, Condition 3 ensures that the value spaces of all primitive base
datatypes are disjoint with each other. Condition 4a ensures that each supported
datatype is a derived datatype of its primitive base datatype. Please note the difference
between a relativised negated expression and the negation of a unary datatype expres-
sion: the former one is a kind of unary datatype expression, while the latter one is the
form of negation of all kinds of unary datatype expressions.

Now we introduce the kind of basic reasoning mechanisms required for a unary
datatype group.

Definition 13. Let V be a set of variables, G = (Md,B, dom) a unary datatype group.
A datatype conjunctions of G of the form

C =

k∧
j=1

uj(vj) ∧
l∧

i=1

�=i (v
(i)
1 , v

(i)
2), (1)

where the vj are variables from V, v
(i)
1 , v

(i)
2 are variables appear in

∧k
j=1 uj(vj), uj

are datatype URI references from S and �=i are the inequality predicates for primitive
base datatypes Md(dom(ui)) where ui appear in

∧k
j=1 uj(vj).

A predicate conjunction C is called satisfiable iff there exist an interpretation
(ΔD, ·D) of G and a function δ mapping the variables in C to data values in ΔD

s.t. δ(vj) ∈ uD
j (for all 1 ≤ j ≤ k) and {δ(v(i)

1), δ(v(i)
2)} ⊆ uD

i and δ(v(i)
1) �= δ(v(i)

2)
(for all 1 ≤ i ≤ l). Such a function δ is called a solution for C w.r.t. (ΔD, ·D). �

We end this section by elaborating the conditions that computable unary datatype
groups require.

Definition 14. A unary datatype group G is conforming iff

1. for any u ∈ S \B: there exist u′ ∈ S \B such that u′D = uD, and
2. the satisfiability problems for finite datatype conjunctions of the form (1) is decid-

able. �

5.2 Small Extension: From OWL DL to OWL-Eu

In this section, we present a small extension of OWL DL, i.e., OWL-Eu. The underpin-
ning DL of OWL-Eu is SHOIN (G1), i.e., the SHOIN DL combined with a unary
datatype group G (1 for unary). Specifically, OWL-Eu (only) extends OWL data range
(cf. Definition 8) to OWL-Eu data ranges defined as follows.

Definition 15. An OWL-Eu data range is a G unary datatype expression. Abstract (as
well as DL) syntax and model-theoretic semantics of OWL-Eu data ranges are presented
in Table 4 (page 162). �

164 J.Z. Pan and I. Horrocks

The consequence of the extension is that customised datatypes, represented by
OWL-Eu data ranges, can be used in datatype exists restrictions (∃T.u) and datatype
value restrictions (∀T.u), where T is a datatype property and u is an OWL-Eu data
range (cf. Table 2 on page 155). Hence, this extension of OWL DL is as large as is
necessary to support customised datatypes.

Example 5. PCs with memory size greater than or equal to 512 Mb and with price
cheaper than 700 pounds can be represented in the following OWL-Eu concept descrip-
tion in DL syntax (cf. Table 4 on page 162):

PC ∃memorySizeInMb.<512 ∃priceInPound. <700,

where <512 is a relativised negated expression and <700 is a supported datatype
in G1. ♦

5.3 Decidability of OWL-Eu

Theorem 5.19 of [15] indicates that we can combine any decidable DL that provides the
conjunction () and bottom (⊥) constructors with a conforming unary datatype group
and the combined DL is still decidable. Therefore, OWL-Eu is decidable.

Theorem 1. (Theorem 6.2 of [15]) The knowledge base satisfiability problem of OWL-
Eu is decidable if the combined unary datatype group is conforming.

5.4 Overcoming the Limitations of OWL Datatyping

This section summarises how OWL-Eu overcomes the limitations of OWL datatyp-
ing presented in Section 4. Firstly, OWL-Eu is a decidable extension (Theorem 1) of
OWL DL that supports customised datatypes with unary datatype expressions (cf. Ex-
ample 4). Secondly, Definition 12 defines the negations of datatype expressions and
OWL-Eu provides relativised negated datatype expression (Definition 11). Thirdly, ac-
cording to Definition 12, the datatype domain in an interpretation of a datatype group
is a superset of (instead of equivalent to) the value spaces of primitive base datatypes
and plain literals; hence, typed literals with unsupported predicates are interpreted more
intuitively.

6 Related Work

The concrete domain approach [2, 14] provides a rigorous treatment of datatype pred-
icates, rather than datatypes.10 In the type system approach [12], datatypes are consid-
ered to be sufficiently structured by type systems; however, it does not specify how the
derivation mechanism of a type system affects the set of datatypes D. [5] suggests some
solutions to the problem of referring to an XML Schema user defined simple type with
a URI reference; however, it does not address the computability issue of combining the
SHOIN DL with customised datatypes.

10 The reader is referred to Section 5.1.3 of [15] for detailed discussions on concrete domains.

OWL-Eu: Adding Customised Datatypes into OWL 165

7 Discussion

Although OWL is rather expressive, it has a very serious limitation on datatypes; i.e.,
it does not support customised datatypes. It has been pointed out that many potential
users will not adopt OWL unless this limitation is overcome. Accordingly, the Semantic
Web Best Practices and Development Working Group sets up a task force to address this
issue. As discussed above, a solution for the problem should cover much more than just
a standard way of referring to an XML Schema user defined simple type with a URI
reference.

In this paper, we propose OWL-Eu, an extension of OWL DL that supports cus-
tomised datatypes. The underpinning of OWL-Eu is the SHOIN (G1) DL, a combi-
nation of SHOIN and a unary datatype group. OWL-Eu is decidable if the combined
unary datatype group is conforming; the conformability of a unary datatype group pre-
cisely specifies the conditions on the set of supported datatypes. OWL-Eu provides a
general framework for integrating OWL DL with customised datatypes, such as XML
Schema non-list simple types.

We have implemented a prototype extension of the FaCT [9] DL system to support
TBox reasoning of the SHIQ(G1) DL, a sub-language of OWL-Eu. As for future work,
we are planing to extend the DIG1.1 interface [7] to support OWL-Eu and to implement
a Protégé [13] plug-in to support XML Schema non-list simple types, i.e. users should
be able to define and/or import customised XML Schema non-list simple types based
on a set of supported datatypes, and to exploit our prototype through the extended DIG
interface.

References

[1] H. Alvestrand. Rfc 3066 - tags for the identification of languages. Technical report, IETF,
Jan 2001. http://www.isi.edu/in-notes/rfc3066.txt.

[2] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete Domains into Con-
cept Languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pages 452–457, 1991.

[3] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds. OWL Web Ontology Language
Reference. http://www.w3.org/TR/owl-ref/, Feb 2004.

[4] Paul V. Biron and Ashok Malhotra. Extensible Markup Language (XML) Schema Part
2: Datatypes – W3C Recommendation 02 May 2001. Technical report, World Wide Web
Consortium, 2001. http://www.w3.org/TR/xmlschema-2/.

[5] Jeremy J. Carroll and Jeff Z. Pan. XML Schema Datatypes in RDF and OWL. Technical
report, W3C Semantic Web Best Practices and Development Group, Nov 2004. Editors’
Draft, http://www.w3.org/2001/sw/BestPractices/XSCH/xsch-sw/.

[6] Unicode Consortium. The Unicode Standard. Addison-Wesley, 2000. ISBN 0-201-61633-
5. version 3.

[7] DIG. SourceForge DIG Interface Project. http://sourceforge.net/projects/dig/, 2004.
[8] Patrick Hayes. RDF Semantics. Technical report, W3C, Feb 2004. W3C recommendation,

http://www.w3.org/TR/rdf-mt/.
[9] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of KR’98,

pages 636–647, 1998.

166 J.Z. Pan and I. Horrocks

[10] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description Log-
ics. In Proc. of Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in LNAI, pages 161–180, 1999.

[11] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26,
2003.

[12] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 199–204,
2001.

[13] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen. The
Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications.
In International Semantic Web Conference, pages 229–243, 2004.

[14] Carsten Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, Teaching
and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

[15] Jeff Z. Pan. Description Logics: Reasoning Support for the Semantic Web. PhD thesis,
School of Computer Science, The University of Manchester, Oxford Rd, Manchester M13
9PL, UK, 2004.

[16] Jeff Z. Pan and Ian Horrocks. Extending Datatype Support in Web Ontology Reasoning. In
Proc. of the 2002 Int. Conference on Ontologies, Databases and Applications of SEmantics
(ODBASE 2002), Oct 2002.

[17] Jeff Z. Pan and Ian Horrocks. Web Ontology Reasoning with Datatype Groups. In Proc. of
the 2003 International Semantic Web Conference (ISWC2003), pages 47–63, 2003.

[18] RDF-Logic Mailing List. http://lists.w3.org/archives/public/www-rdf-logic/. W3C Mailing
List, starts from 2001.

[19] A. Rector. Re: [UNITS, OEP] FAQ : Constraints on data values range. Discussion in [20],
Apr. 2004. http://lists.w3.org/Archives/Public/public-swbp-wg/2004Apr/0216.html.

[20] Semantic Web Best Practice and Development Working Group Mailing List.
http://lists.w3.org/archives/public/public-swbp-wg/. W3C Mailing List, starts from 2004.

Towards a Fuzzy Description Logic
for the Semantic Web
(Preliminary Report)

U. Straccia

ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
straccia@isti.cnr.it

Abstract. In this paper we present a fuzzy version of SHOIN (D), the corre-
sponding Description Logic of the ontology description language OWL DL. We
show that the representation and reasoning capabilities of fuzzy SHOIN (D)
go clearly beyond classical SHOIN (D). We present its syntax and semantics.
Interesting features are that concrete domains are fuzzy and entailment and sub-
sumption relationships may hold to some degree in the unit interval [0, 1].

1 Introduction

In the last decade a substantial amount of work has been carried out in the context of
Description Logics (DLs) [2]. DLs are a logical reconstruction of the so-called frame-
based knowledge representation languages, with the aim of providing a simple well-
established Tarski-style declarative semantics to capture the meaning of the most pop-
ular features of structured representation of knowledge.

Nowadays, DLs have gained even more popularity due to their application in the
context of the Semantic Web [4, 15]. Semantic Web has recently attracted much attention
both from academia and industry, and is widely regarded as the next step in the evolution
of the World Wide Web. It aims at enhancing content on the World Wide Web with
meta-data, enabling agents (machines or human users) to process, share and interpret
Web content.

Ontologies [10] play a key role in the Semantic Web and major effort has been put
by the Semantic Web community into this issue. Informally, an ontology consists of a
hierarchical description of important concepts in a particular domain, along with the de-
scription of the properties (of the instances) of each concept. DLs play a particular role
in this context as they are essentially the theoretical counterpart of the Web Ontology
Language OWL DL, the state of the art language to specify ontologies. Web content is
then annotated by relying on the concepts defined in a specific domain ontology.

However, OWL DL becomes less suitable in all those domains in which the concepts
to be represent have not a precise definition. If we take into account that we have to deal
with Web content, then it is easily verified that this scenario is, unfortunately, likely the
rule rather than an exception. For instance, just consider the case we would like to
build an ontology about flowers. Then we may encounter the problem of representing

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 167–181, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

168 U. Straccia

concepts like1 “Candia is a creamy white rose with dark pink edges to the petals”,
“Jacaranda is a hot pink rose”, “Calla is a very large, long white flower on thick stalks”.
As it becomes apparent such concepts hardly can be encoded into OWL DL, as they
involve so-called fuzzy or vague concepts, like “creamy”, “dark”, “hot”, “large” and
“thick”, for which a clear and precise definition is not possible.2

The problem to deal with imprecise concepts has been addressed several decades
ago by Zadeh [31], which gave bird in the meanwhile to the so-called fuzzy set and
fuzzy logic theory and a huge number of real life applications exists. Unfortunately,
despite the popularity of fuzzy set theory, relative little work has been carried out in
extending DLs towards the representation of imprecise concepts, notwithstanding DLs
can be considered as a quite natural candidate for such an extension [5, 6, 13, 23, 25, 26,
27, 29, 30] (see also [9], Chapter 6).

In this paper we consider a fuzzy extension of SHOIN (D), the corresponding DL
of the ontology description language OWL DL, and present its syntax and semantics.
The main feature of fuzzy SHOIN (D) is that it allows us to represent and reason
about vague concepts. None of the approaches to fuzzy DLs deal with the expressive
power of the fuzzy extension of SHOIN (D) we present here. Our purpose is also to
integrate most of these contributions within an unique setting and, thus, hope to define
a reference language for fuzzy SHOIN (D). A main feature of fuzzy SHOIN (D) is
that the subsumption relation between classes and the entailment relation is no more a
crisp yes/no problem, but it becomes now fuzzy, i.e. is established to some degree.

We will proceed as follows. In the following section we recall the description logic
SHOIN (D). In Section 3 we extend SHOIN (D) to the fuzzy case and discuss some
properties of it. Section 4 concludes and presents some topics for further research.

2 Preliminaries

The ontology language OWL DL is a syntactic variant of SHOIN (D) [15]. Although
several XML and RDF syntaxes for OWL-DL exist, in this paper we use the tradi-
tional description logic notation. For explicating the relationship between OWL DL
and DLs syntax, see e.g. [15, 16]. The purpose of this section is to make the paper self-
contained. More importantly it helps in understanding the differences between classical
SHOIN (D) and fuzzy SHOIN (D). The reader confident with the SHOIN (D) ter-
minology may skip directly to Section 3.

Syntax. SHOIN (D) allows to reason with concrete data types, such as strings and
integers using so-called concrete domains [1, 18, 20, 21]. A concrete domain D is a pair
〈ΔD, ΦD〉, where ΔD is an interpretation domain and ΦD is the set of concrete domain
predicates d with a predefined arity n and an interpretation dD ⊆ Δn

D . For instance,
over the integers ≥20 may be an unary predicate denoting the set of integers greater or

1 Taken from a text book on flowers.
2 Another issue relates to the representation of terms like “very”, which are called fuzzy concepts

modifiers, as we will see later on.

Towards a Fuzzy Description Logic for the Semantic Web 169

equal to 20. For instance, Person ∃age. ≥20 denotes a person whose age is greater
or equal to 20. So, let C, Ra, Rc, Ia and Ic be non-empty finite and pair-wise disjoint
sets of concepts names, abstract roles names, concrete roles names, abstract individual
names and concrete individual names. An abstract role is an abstract role name or the
inverse S− of an abstract role name S (concrete role names do not have inverses). An
RBox R consists of a finite set of transitivity axioms trans(R), and role inclusion
axioms of the form R " S and T " U , where R and S are abstract roles, and T and U
are concrete roles. The reflexive-transitive closure of the role inclusion relationship is
denoted with "∗. A role not having transitive sub-roles is called simple role. The set of
SHOIN (D) concepts is defined by the following syntactic rules, where A is an atomic
concept, R is an abstract role, S is an abstract simple role, Ti are concrete roles, d is a
concrete domain predicate, ai and ci are abstract and concrete individuals, respectively,
and n ∈ N:

C −→ # | ⊥ | A | C1 C2 | C1 $ C2 | ¬C | ∀R.C | ∃R.C | ≥ n S | ≤ n S |
{a1, . . . , an} | ≥ n T | ≤ n T | ∀T1, . . . , Tn.D | ∃T1, . . . , Tn.D

D −→ d | {c1, ..., cn}

For instance, we may write the concept Flower (∃hasPetalWidth.(≥20mm ≤40mm

)) ∃hasColour.Red) to informally denote the set of flowers having petal’s dimension
within 20mm and 40mm, whose colour is red. Here ≥20mm (and ≤40mm) is a concrete do-
main predicate. We use (= 1 S) as an abbreviation for (≥ 1 S) (≤ 1 S). A TBox T
consists of a finite set of concept inclusion axioms C " D, where C and D are concepts.
For ease, we use C = D ∈ T in place of C " D,D " C ∈ T . An ABox A consists
of a finite set of concept and role assertion axioms and individual (in)equality axioms
a:C, (a, b):R, (a, c):T , a ≈ b and a �≈ b, respectively. A SHOIN (D) knowledge base
K = 〈T ,R,A〉 consists of a TBox T , a RBox R, and an ABox A.

Semantics. An interpretation I with respect to a concrete domain D is a pair I =
(ΔI , ·I) consisting of a non empty set ΔI (called the domain), disjoint from ΔD, and
of an interpretation function ·I that assigns to each C ∈ C a subset of ΔI , to each
R ∈ Ra a subset of ΔI × ΔI , to each a ∈ Ia an element in ΔI , to each c ∈ Ic

an element in ΔD, to each T ∈ Rc a subset of ΔI × ΔD and to each n-ary concrete
predicate d the interpretation dD ⊆ Δn

D . The mapping ·I is extended to concepts and
roles as usual: #I = ΔI , ⊥I = ∅,

(C1 C2)
I = C1

I ∩ C2
I

(C1 $ C2)
I = C1

I ∪ C2
I

(¬C)I = ΔI \ CI

(S−)I = {〈y, x〉: 〈x, y〉 ∈ SI}
(∀R.C)I = {x ∈ ΔI : RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ΔI : RI(x) ∩ CI �= ∅}
(≥ n S)I = {x ∈ ΔI : |SI(x)| ≥ n}
(≤ n S)I = {x ∈ ΔI : |SI(x)| ≤ n}

{a1, . . . , an}I = {a1
I , . . . , an

I}

170 U. Straccia

and similarly for the other constructs, where RI(x) = {y: 〈x, y〉 ∈ RI} and |X| de-
notes the cardinality of the set X . In particular,

(∃T1, . . . , Tn.d)I = {x ∈ ΔI : [T1
I(x)× . . .× Tn

I(x)] ∩ dD �= ∅} .

The satisfiability of an axiom E in an interpretation I = (ΔI , ·I), denoted I |= E, is
defined as follows: I |= C " D iff CI ⊆ DI , I |= R " S iff RI ⊆ SI , I |= T " U
iff T I ⊆ UI , I |= trans(R) iff RI is transitive, I |= a:C iff aI ∈ CI , I |= (a, b):R
iff 〈aI , bI〉 ∈ RI , I |= (a, c):T iff 〈aI , cI〉 ∈ T I , I |= a ≈ b iff aI = bI , I |= a �≈ b
iff aI �= bI . An abstract simple role S is called functional if the interpretation of role
S is always functional. A functional role S can always be obtained from an abstract
role by means of the axiom # " (≤ 1 S). Therefore, whenever we say that a role is
functional, we assume that # " (≤ 1 S) is in the ABox. For a set of axioms E , we say
that I satisfies E iff I satisfies each element in E . If I |= E (resp. I |= E) we say that I
is a model of E (resp. E). I satisfies (is a model of) a knowledge base K = 〈T ,R,A〉,
denoted I |= K, iff I is a model of each component T ,R andA, respectively. An axiom
E is a logical consequence of a knowledge base K, denoted K |= E iff every model
of K satisfies E. According to [16], the entailment and subsumption problem can be
reduced to knowledge base satisfiability problem, for which decision procedures and
reasoning tools exists (e.g. RACER [11] and FACT [14]).

Example 1. Let us consider the following excerpt of a simple ontology (TBox T) about
cars, with empty RBox (R = ∅):

Car " (= 1 maker) (= 1 passanger) (= 1 speed)

(= 1 maker) " Car # " ∀maker.Maker
(= 1 passanger) " Car # " ∀passanger.N
(= 1 speed) " Car # " ∀speed.Km/h

Roadster " Cabriolet ∃passenger.{2}
Cabriolet " Car ∃topType.SoftTop
SportsCar = Car ∃speed.≥245km/h

In T , the value for speed ranges over the concrete domain of kilometers per hour,
Km/h, while the value for passengers ranges over the concrete domain of natural num-
bers, N. The concrete predicate ≥245km/h is true if the value is greater or equal than to
245km/h. The ABox A contains the following assertions:

mgb:Roadster (∃maker.{mg}) (∃speed.{170km/h})
enzo:Car (∃maker.{ferrari}) (∃speed.>350km/h)
tt:Car (∃maker.{audi}) (∃speed.{243km/h})

Consider the knowledge base K = 〈T ,R,A〉. It is then easily verified that, e.g.

K |= Roadster " Car K |= mg:Maker
K |= enzo:SportsCar K |= tt:¬SportsCar .

Towards a Fuzzy Description Logic for the Semantic Web 171

The above example illustrates an evident difficulty in defining the class of sport cars.
Indeed, it is highly questionable why a car whose speed is 243km/h is not a sport car
any more. The point is that essentially, the higher the speed the more likely a car is
a sports car, which makes the concept of sports car rather a fuzzy concept, i.e. vague
concept, rather than a crisp one. In the next section we will see how to represent such
concepts more appropriately.

3 Fuzzy OWL DL

Fuzzy sets have been introduced by Zadeh [31] as a way to deal with vague concepts
like low pressure, high speed and the like. Formally, a fuzzy set A with respect to a
universe X is characterized by a membership function μA : X → [0, 1], assigning an
A-membership degree, μA(x), to each element x in X . μA(x) gives us an estimation of
the belonging of x to A. Typically, if μA(x) = 1 then x definitely belongs to A, while
μA(x) = 0.8 means that x is “close” to be an element of A.

When we switch to fuzzy logics, the notion of degree of membership μA(x) of an
element x ∈ X w.r.t. the fuzzy set A over X is regarded as the degree of truth in [0, 1]
of the statement “x is A”. Accordingly, in our fuzzy DL, (i) a concept C, rather than
being interpreted as a classical set, will be interpreted as a fuzzy set and, thus, concepts
become imprecise; and, consequently, (ii) the statement “a is C”, i.e. a:C, will have
a truth-value in [0, 1] given by the degree of membership of being the individual a a
member of the fuzzy set C.

In the following, we present first some preliminaries on fuzzy set theory (for a
more complete and comprehensive presentation see e.g. [7]) and then define fuzzy
SHOIN (D).

3.1 Preliminaries on Fuzzy Set Theory

Let X be a countable crisp set and let A be a fuzzy subset of X , with membership
function μA(x), or simply A(x) ∈ [0, 1], x ∈ X . The support of A, supp(A), is the
crisp set supp(A) = {x ∈ X:A(x) �= 0}. The scalar cardinality of A, |A|, is defined
as |A| =

∑
x∈X A(x). The fuzzy powerset of X , F(X), is the set of all the fuzzy sets

over X . Let A,B ∈ F(X). We say that A and B are equal iff A(x) = B(x),∀x ∈ X .
A is a subset of B iff A(x) ≤ B(x),∀x ∈ X . We will see later on a different notion
of subset, in which A is a subset of B to some degree in [0, 1]. We next give the basic
definitions on fuzzy set operations (complement, intersection and union).

The complement of A, ¬A, is given by membership function (¬A)(x) = n(A(x)),
for any x ∈ X . The function n: [0, 1] → [0, 1], called negation, has to satisfy the
following conditions and extends boolean negation:

– n(0) = 1 and n(1) = 0;
– ∀a, b ∈ [0, 1], a ≤ b implies n(b) ≤ n(a);
– ∀a ∈ [0, 1], n(n(a)) = a.

172 U. Straccia

Several negation functions have been given in the literature, e.g. Lukasiewicz negation
nL(a) = 1 − a (syntax, ¬L) and Gödel negation nG(0) = 1 and n(a) = 0 if a > 0
(syntax, ¬G).

The intersection of two fuzzy sets A and B is given (A ∧ B)(x) = t(A(x), B(x)),
where t is a triangular norm, or simply t-norm. A t-norm is a function t: [0, 1]×[0, 1] →
[0, 1] that has to satisfy the following conditions:

– ∀a ∈ [0, 1], t(a, 1) = a;
– ∀a, b, c ∈ [0, 1], b ≤ c implies t(a, b) ≤ t(a, c);
– ∀a, b ∈ [0, 1], t(a, b) = t(b, a);
– ∀a, b, c ∈ [0, 1], t(a, t(b, c)) = t(t(a, b), c).

Examples of t-norms are: tL(a, b) = max(a + b − 1, 0) (Lukasiewicz t-norm, syntax
∧L), tG(a, b) = min(a, b) (Gödel t-norm, syntax ∧G), and tP (a, b) = a · b (product
t-norm, syntax ∧P). Note that ∀a ∈ [0, 1], t(a, 0) = 0.

The union of two fuzzy sets A and B is given (A∨B)(x) = s(A(x), B(x)), where
s is a triangular co-norm, or simply s-norm. A s-norm is a function s: [0, 1]× [0, 1] →
[0, 1] that has to satisfy the following conditions:

– ∀a ∈ [0, 1], s(a, 0) = a;
– ∀a, b, c ∈ [0, 1], b ≤ c implies s(a, b) ≤ s(a, c);
– ∀a, b ∈ [0, 1], s(a, b) = s(b, a);
– ∀a, b, c ∈ [0, 1], s(a, s(b, c)) = s(s(a, b), c).

Examples of s-norms are: sL(a, b) = min(a + b, 1) (Lukasiewicz s-norm, syntax ∨L),
sG(a, b) = max(a, b) (Gödel s-norm, syntax ∨G), and sP (a, b) = a+ b−a · b (product
s-norm, syntax ∨P). Note that if we consider Lukasiewicz negation, then Lukasiewicz,
Gödel and product s-norm are related to their respective t-norm according to the De
Morgan law: ∀a, b ∈ [0, 1], s(a, b) = n(t(n(a), n(b))).

Another important operator is implication, denoted →, that gives a truth-value to
the formula A → B, when the truth of A and B are known. A fuzzy implication is a
function i: [0, 1]× [0, 1] → [0, 1] that has to satisfy the following conditions:

– ∀a, b, c ∈ [0, 1], a ≤ b implies i(a, c) ≥ i(b, c);
– ∀a, b, c ∈ [0, 1], b ≤ c implies i(a, b) ≤ i(a, c);
– ∀a ∈ [0, 1], i(0, b) = 1;
– ∀a ∈ [0, 1], i(a, 1) = 1;
– i(1, 0) = 0.

In classical logic, a → b is a shorthand for ¬a ∨ b. A generalization to fuzzy logic
is, thus, ∀a, b ∈ [0, 1], i(a, b) = s(n(a), b). For instance, ∀a, b ∈ [0, 1], iKD(a, b,) =
max(1− a, b) is the so-called Kleene-Dienes implication (syntax, →KD). Another ap-
proach to fuzzy implication is based on the so-called residuum. His formulation starts
from the fact that in classical logic ¬a∨ b can be re-written as max{c ∈ {0, 1}: a∧ c ≤
b}. Therefore, another generalization of implication to fuzzy logic is

∀a, b ∈ [0, 1], i(a, b) = sup{c ∈ [0, 1]: t(a, c) ≤ b} .

Towards a Fuzzy Description Logic for the Semantic Web 173

For residuum based implication, i(a, b) = 1 if a ≤ b. If a > b then, according to the
chosen t-norm, we have that e.g. iL(a, b) = 1 − a + b for Lukasiewicz implication
(syntax, →L), iG(a, b) = b for Gödel implication (syntax, →G)) and iP (a, b) = a/b
for product implication (syntax, →P). Note that, for Lukasiewcz implication, s-norm
and negation, we have iL(a, b) = sL(nL(a), b). The same holds using Kleene-Dienes
implication, Lukasiewicz negation and Gödel s-norm. On the other hand iP (a, b) �=
sP (nG(a), b) (for instance, for 0 < a ≤ b < 1, iP (a, b) = 1, while sP (nG(a), b) =
b < 1).

Another interesting question is when ∀a, b ∈ [0, 1], i(a, b) = n(t(a, n(b)) holds,
which in formulae is formulated as a → b ≡ ¬(a∧¬b). It turns out that e.g., in Zadeh’s
logic [31] (i.e. using →KD,∧G,¬L) this relation holds. It holds as well in the so-called
Lukasiewcz logic (i.e. using →L,∧L,¬L), while it does neither hold for Gödel logic
(i.e. using →G,∧G,¬G) nor for the product logic (i.e. using →P ,∧P ,¬G). For them,
just consider the case 1 > a > b > 0 to verify the inequality. We will see later on that
whenever i(a, b) �= n(t(a, n(b)) then under the fuzzy semantics, ∀R.C is not equivalent
to ¬∃R.¬C.

Fuzzy implication can also be used to determine the degree of subset relationship be-
tween two fuzzy subsets A and B over X . Indeed, we define the degree of subsumption
between A and B, denoted A → B, as infx∈X i(A(x), B(x)), where i is an implication
function. Note that if ∀x ∈ [0, 1], A(x) ≤ B(x) holds then A → B evaluates to 1. Of
course, it may be that A → B evaluates to a value 0 < v < 1 as well.

We conclude the discussion on fuzzy implication by noting that we have the follow-
ing inferences: assume a ≥ n and i(a, b) ≥ m. Then

– under Kleene-Dienes implication we infer that if n > 1 −m then b ≥ m. Indeed,
from i(a, b) = max(1 − a, b) ≥ m, either 1 − a ≥ m or b ≥ m. But a ≥ n, so
1 − a ≥ m implies 1 −m ≥ a ≥ n > 1 −m, a contradiction. Therefore, b ≥ m
must hold.

– under residuum based implication w.r.t. a t-norm t, we infer that b ≥ t(n,m).
Indeed, from i(a, b) = sup{c: t(a, c) ≤ b} ≥ m and a ≥ n we have t(n,m) ≤
t(n, c) ≤ t(a, c) ≤ b.

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function R:X×
Y → [0, 1]. The inverse of R is the function R−1:Y × X → [0, 1] with membership
function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The composition of
two fuzzy relations R1:X × Y → [0, 1] and R2:Y × Z → [0, 1] is defined as (R1 ◦
R2)(x, z) = supy∈Y t(R1(x, y), R2(y, z)), where t is a t-norm. A fuzzy relation R is
said to be transitive iff R(x, z) = (R ◦R)(x, z).

We conclude this part with fuzzy modifiers. Fuzzy modifiers applies to fuzzy sets
to change their membership function. Well known examples are modifiers like very,
more or less, slightly, etc. These allow us to define fuzzy sets like very(High)
and slightly(Mature). Formally, a modifier, m, is a function m: [0, 1] → [0, 1]. For
instance, we may define very(x) = x2, while define slightly(x) =

√
x.

In the following, we use ∧,∨,¬ and → in infix notation, in place of a t-norm t,
s-norm s, negation n and implication operator i.

174 U. Straccia

3.2 Fuzzy SHOIN (D)

In this section we give syntax and semantics of fuzzy SHOIN (D), using the fuzzy op-
erators defined in the previous section. We generalize the semantics given in
[13, 26, 29].

Syntax. We have seen that SHOIN (D) allows to reason with concrete data types, such
as strings and integers using so-called concrete domains. In our fuzzy approach, con-
crete domains may be based on fuzzy sets as well. A concrete fuzzy domain is a pair
〈ΔD, ΦD〉, where ΔD is an interpretation domain and ΦD is the set of concrete fuzzy
domain predicates d with a predefined arity n and an interpretation dD:Δn

D → [0, 1],
which is a n-ary fuzzy relation over ΔD. For instance, as for SHOIN (D), the predi-
cate ≤18 may be an unary crisp predicate over the natural numbers denoting the set of
integers smaller or equal to 18, i.e. ≤18: Natural → [0, 1] and ≤18(x) = 1 if x ≤ 18,
≤18(x) = 0 otherwise. So,

Minor = Person ∃age. ≤18 (1)

defines a person, whose age is less or equal 18, i.e. it defines a minor. On the other hand,
Young: Natural → [0, 1] may be a fuzzy concrete predicate over the natural numbers
denoting the degree of youngness of a person’s age. The concrete fuzzy predicate Young
may be defined as Young(x) = max(0, 1− 0.00075x2). So,

YoungPerson = Person ∃age.Young (2)

will denote a young person. Furthermore, by referring to Example 1, we may define the
concept of sports car as the concept

SportsCar = Car ∃speed.very(High) , (3)

where very is a concept modifier and High is a fuzzy concrete predicate over the do-
main of speed expressed in kilometers per hour and may be defined as High(x) =
min(1, 0.004x).

Similarly, we may represent “Calla is a very large, long white flower on thick stalks”
as

Calla = Flower (∃hasSize.very(Large)) (∃hasPetalWidth.Long)
 (∃hasColour.White) (∃hasStalks.Thick) ,

where Large, Long and Thick are fuzzy concrete predicates.
The interesting point is that according to our semantics, e.g. a minor is likely a young

person. Indeed, a minor will be a young person with degree at least (1 − 0.00075 ·
182) ≈ 0.76. Informally, this value corresponds of the computation of the degree of
subsumption between the two defined concepts, i.e. the degree of ∀x.Minor(x) →
YoungPerson(x), which is determined by infx∈Natural i(≤18(x), Young(x)), where i
is an implication function. The fact that, as expected, a minor is a young person (to some
degree) is obtained without explicitly mentioning it. This inference cannot be achieved
in classical SHOIN (D).

Towards a Fuzzy Description Logic for the Semantic Web 175

Similarly, by referring to Example 1, we will have that the car tt will be a sports
car to a certain degree given by (0.004 ·243)2 ≈ 0.94. Therefore, unlike Example 1, tt
is now likely a sport car, as it should be.

Concerning concepts and roles, the syntax is as for SHOIN (D), except that we
allow modifiers in concept expressions. That is, if M is a new alphabet for modifier
symbols, m ∈ M is a modifier and C is a SHOIN (D) concept, then m(C) is fuzzy
SHOIN (D) concept as well. For instance, the definition of SportsCar above involves
a modifier. Modifiers are allowed in fuzzy description logics such as [13, 29].

Concerning the axioms, similarly to [26], we introduce fuzzy axioms. For n ∈ (0, 1],

– a fuzzy RBox R is a finite set of SHOIN (D) transitivity axioms trans(R) and
fuzzy role inclusion axioms of the form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉 and 〈α > n〉,
where α is a SHOIN (D) role inclusion axiom;

– a fuzzy TBox T consists of a finite set of fuzzy concept inclusion axioms of the
form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉 and 〈α < n〉 where α is a SHOIN (D) concept
inclusion axiom (C " D);

– a fuzzy ABox A consists of a finite set of fuzzy concept and fuzzy role asser-
tion axioms of the form 〈α ≥ n〉, 〈α ≤ n〉, 〈α > n〉, or 〈α < n〉, where α is a
SHOIN (D) concept or role assertion. As for the crisp case, A may also contain a
finite set of individual (in)equality axioms a ≈ b and a �≈ b, respectively.

For instance, 〈a:C ≥ 0.1〉, 〈(a, b):R ≤ 0.3〉, 〈R " S ≥ 0.4〉, or 〈C " D ≤ 0.6〉 are
fuzzy axioms. Informally, from a semantics point of view, a fuzzy axiom 〈α ≤ n〉 con-
strains the membership degree of α to be less or equal to n (similarly for ≥, >,<). For
instance, 〈jim:YoungPerson ≥ 0.2〉, i.e. 〈jim:Person ∃age.Young ≥ 0.2〉, dictates
that jim is a YoungPerson with degree at least 0.2. On the other hand, a fuzzy con-
cept inclusion axiom of the form 〈C " D ≥ n〉 dictates that the subsumption degree
between C and D is at least n. A SHOIN (D) fuzzy knowledge base K = 〈T ,R,A〉
consists of a fuzzy TBox T , a fuzzy RBox R, and a fuzzy ABox A.

Semantics. The semantics extends [26]. The main idea is that concepts and roles are
interpreted as fuzzy subsets of an interpretation’s domain. Therefore, SHOIN (D) ax-
ioms, rather being satisfied (true) or unsatisfied (false) in an interpretation, become a
degree of truth in [0, 1].

A fuzzy interpretation I with respect to a concrete domain D is a pair I = (ΔI , ·I)
consisting of a non empty set ΔI (called the domain), disjoint from ΔD, and of a fuzzy
interpretation function ·I that assigns

– to each abstract concept C ∈ C a function CI :ΔI → [0, 1];
– to each abstract role R ∈ Ra a function RI :ΔI ×ΔI → [0, 1];
– to each abstract individual a ∈ Ia an element in ΔI ;
– to each concrete individual c ∈ Ic an element in ΔD;
– to each concrete role T ∈ Rc a function RI :ΔI ×ΔD → [0, 1];
– to each modifier m ∈ M a fixed function m: [0, 1] → [0, 1];
– to each n-ary concrete predicate d the fuzzy relation dD:Δn

D → [0, 1].

176 U. Straccia

The mapping ·I is extended to concepts and roles as specified in the following table
(where x, y ∈ ΔI , v ∈ ΔD):

#I(x) = 1
⊥I(x) = 0

(C1 C2)
I(x) = C1

I(x) ∧ C2
I(x)

(C1 $ C2)
I(x) = C1

I(x) ∨ C2
I(x)

(¬C)I(x) = ¬CI(x))
(m(C))I(x) = m(CI(x))
(∀R.C)I(x) = infy∈ΔI RI(x, y) → CI(y)
(∃R.C)I(x) = supy∈ΔI RI(x, y) ∧ CI(y)
(≥ n S)I(x) = supy1,...yn∈ΔI

∧n
i=1 SI(x, yi)

(≤ n S)I(x) = ¬(≥ n + 1 S)I(x)
{a1, . . . , an}I(x) =

∨n
i=1 ai

I = x
d(v) = dD(v)

{c1, . . . , cn}I(v) =
∨n

i=1 ci
I = v

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈ΔD
I (

∧n
i=1 Ti

I(x, yi)) → DI(y1, . . . , yn)
(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈ΔD

I (
∧n

i=1 Ti
I(x, yi)) ∧DI(y1, . . . , yn)

(S−)I(x, y) = SI(y, x) .

We comment briefly some points. The semantics of ∃R.C

(∃R.C)I(d) = supy∈ΔI RI(x, y) ∧ CI(y)

is the result of viewing ∃R.C as the open first order formula ∃y.FR(x, y) ∧ FC(y)
(where F is the obvious translation of roles and concepts into First-Order Logic -FOL)
and the existential quantifier ∃ is viewed as a disjunction over the elements of the do-
main. Similarly,

(∀R.C)I(x) = infy∈ΔI RI(x, y) → CI(y)

is related to the open first order formula ∀y.FR(x, y) → FC(y), where the universal
quantifier ∀ is viewed as a conjunction over the elements of the domain. However, as
we already pointed out in Section 3.1, unlike the classical case, in general we do not
have that (∀R.C)I = (¬∃R.¬C)I . If the t-norm and negation are chosen such that
∀a, b ∈ [0, 1], i(a, b) = n(t(a, n(b)) holds, i.e. in formulae a → b ≡ ¬(a ∧ ¬b), then
(∀R.C)I = (¬∃R.¬C)I holds.

Another point concerns the semantics of number restrictions. The semantics of the
concept (≥ n S)

(≥ n S)I(x) = supy1,...yn∈ΔI
∧n

i=1 SI(x, yi)

is the result of viewing (≥ n S) as the open first order formula

∃y1, . . . , yn.
n∧

i=1

FS(x, yi) ∧
∧

1≤i<j≤n

yi �= yj .

Towards a Fuzzy Description Logic for the Semantic Web 177

That is, there are at least n distinct elements that satisfy to some degree FR(x, yi). This
guarantees us that ∃S.# ≡ (≥ 1 S). The semantics of (≤ n S) is defined in such a way
to guarantee the classical relationship (≤ n S) ≡ ¬(≥ n + 1 S).

An alternative definition for the (≥ n S) and the (≤ n S) constructs may rely on the
scalar cardinality of a fuzzy set. However, we prefer to stick on the formulation, which
derives directly from its FOL translation.

Finally, the mapping ·I is extended to non-fuzzy axioms as specified in the following
table (where a, b ∈ Ia):

(R " S)I = infx,y∈ΔI RI(x, y) → SI(x, y)
(T " U)I = infx,y∈ΔI T I(x, y) → UI(x, y)
(C " D)I = infx∈ΔI CI(x) → DI(x)

(a:C)I = CI(aI)
((a, b):R)I = RI(aI , bI) .

Note here that e.g. the semantics of a concept inclusion axiom C " D is derived directly
from its FOL translation, which is of the form ∀x.FC(x) → FD(x). This definition
is novel and is clearly different from the approaches in which C " D is viewed as
∀x.C(x) ≤ D(x). This latter approach has the effect that the subsumption relationship
is a classical {0, 1} relationship, while the former has the advantage that subsumption
is determined up to a certain degree in [0, 1].

The notion of satisfiability of a fuzzy axiom E by a fuzzy interpretation I, de-
noted I |= E, is defined as follows: I |= trans(R), iff ∀x, y ∈ ΔI .RI(x, y) ≥
supz∈ΔI RI(x, z)∧RI(z, y). I |= 〈α ≥ n〉, where α is a role inclusion or concept in-
clusion axiom, iff αI ≥ n. Similarly, for the other relations ≤, < and >. I |= 〈α ≥ n〉,
where α is a concept or a role assertion axiom, iff αI ≥ n. Similarly, for the other
relations ≤, <,>. Finally, I |= a ≈ b iff aI = bI and I |= a �≈ b iff aI �= bI .

For a set of fuzzy axioms E , we say that I satisfies E iff I satisfies each element in
E . If I |= E (resp. I |= E) we say that I is a model of E (resp. E). I satisfies (is a model
of) a fuzzy knowledge base K = 〈T ,R,A〉, denoted I |= K, iff I is a model of each
component T ,R and A, respectively. A fuzzy axiom E is a logical consequence of a
knowledge base K, denoted K |= E iff every model of K satisfies E.

Example 2. Let us consider Example 1, where all axioms of the TBox and ABox are as-
serted with degree 1, i.e. are of the form 〈α ≥ 1〉. We replace the definition of
SportsCar with Definition (3) and replace the assertion involving mgb with

〈mgb:Roadster (∃maker.{mg}) (∃speed.≤170km/h) ≥ 1〉 .

Then we have that

K |= 〈SportsCar " Car ≥ 1〉 K |= 〈mgb:SportsCar ≤ 0.46〉
K |= 〈enzo:SportsCar ≥ 1〉 K |= 〈tt:SportsCar ≥ 0.94〉 .

Note how the maximal speed limit of the mgb car (≤170km/h) induces an upper limit,
0.46, of the membership degree. Neither this inference is possible in classical
SHOIN (D), nor the one involving tt.

178 U. Straccia

Example 3. Consider the knowledge baseK with Definitions (1) and (2). Then we have
that

K |= 〈Minor " YoungPerson ≥ 0.76〉 ,

which is a relationship not captured with classical SHOIN (D).

Finally, given K and an axiom α, where α is neither a transitivity axiom, nor an indi-
vidual (in) equality axiom, it is of interest to compute α’s best lower and upper degree
value bounds. The greatest lower bound of α w.r.t. K (denoted glb(K, α)) is

glb(K, α) = sup{n:K |= 〈α ≥ n〉} ,

while the least upper bound of α with respect to K (denoted lub(K, α) is

lub(K, α) = inf{n:K |= 〈α ≤ n〉} ,

where sup ∅ = 0 and inf ∅ = 1. Determining the lub and the glb is called the Best
Degree Bound (BDB) problem. For instance, the entailments in Examples 2 and 3 are
the best possible degree bounds. Furthermore, note that,

lub(Σ, a:C) = ¬glb(Σ, a:¬C) , (4)

i.e. the lub can be determined through the glb (and vice-versa). Similarly,
lub(Σ, (a, b):R) = ¬glb(Σ, a:¬∃R.{b}) holds. Also, note that, Σ |= 〈α ≥ n〉 iff
glb(Σ,α) ≥ n, and similarly Σ |= 〈α ≤ n〉 iff lub(Σ,α) ≤ n hold.

Concerning the entailment problem, it is quite easily verified that, as for the crisp
case, the entailment problem can be reduced to the unsatisfiability problem:

〈T ,R,A〉 |= 〈α ≥ n〉 iff 〈T ,R,A ∪ {〈α < n〉}〉 is not satisfiable

〈T ,R,A〉 |= 〈α ≤ n〉 iff 〈T ,R,A ∪ {〈α > n〉}〉 is not satisfiable .

Unfortunately, from a computational point of view, no calculus exists yet checking sat-
isfiability of fuzzy SHOIN (D) knowledge bases. [13, 29] report a calculus for the case
of ALC [24] (with concept constructors #,⊥,¬, ,$,∀,∃) with modifiers and simple
TBox, with min,max and →KD connectives. No indication for the BDB problem is
given. [25, 26] reports a calculus for ALC and simple TBox, with min,max and →KD

connectives and addresses the BDB problem and, [27] shows how the satisfiability prob-
lem and the BDB problem can be reduced to classical ALC and, thus, can be resolved
by means of a tools like FACT and RACER. However, despite these negative results, re-
cently [28] reports a calculus for ALC(D) whenever the connectives, the modifiers and
the concrete fuzzy predicates are representable as a bounded Mixed Integer Program.
For instance, Lukasiewicz logic satisfies these conditions as well as the membership
functions for concrete fuzzy predicates we have presented in this paper. Additionally,
modifiers should be a combination of linear functions. In that case the calculus con-
sists of a set of constraint propagation rules and an invocation to an oracle for bounded
Mixed Integer Programming. But, indeed, the computational aspect is definitely a point
that has to be addressed in forthcoming works.

Towards a Fuzzy Description Logic for the Semantic Web 179

4 Conclusions and Outlook

We have presented a fuzzy extension of SHOIN (D) showing that its representation
and reasoning capabilities go clearly beyond classical SHOIN (D). Interestingly, we
allow modifiers, fuzzy concrete domain predicates and fuzzy axioms to appear in a
SHOIN (D) knowledge base and the entailment and the subsumption relationship hold
to a certain degree. To the best of our knowledge, no other work has yet extended the
semantics to SHOIN (D) in such a way. The argument supporting the necessity of such
an extension relies on the fact that vague concepts are abundant in human knowledge
and, thus, appear likely in Web content.

The main direction for future work involves the computational aspect. Currently,
we are addressing the fundamental issue to develop a calculus for reasoning within
ALC(D), i.e. ALC with concrete domains and arbitrary t-norm, co-norm, negation and
residuum as implication. We are investigating the possibility to use the methods devel-
oped in the context of Many-Valued Logics [12], which seem to particularly well-suited
to our context. These procedures have then to be combined with a procedure to deal
with fuzzy concrete domains, for which we plan to rely on [18].

Another direction is in extending fuzzy SHOIN (D) with fuzzy quantifiers, where
the ∀ and ∃ quantifiers are replaced with fuzzy quantifiers like most, some, usually
and the like (see [23] for a preliminary work in this direction). This allows to define
concepts like

TopCustomer = Customer (Usually)buys.ExpensiveItem
ExpensiveItem = Item ∃price.High .

Here, the fuzzy quantifier Usually replaces the classical quantifier ∀ and High is a
fuzzy concrete predicate.

Fuzzy quantifiers can be applied to inclusion axioms as well, allowing to express,
for instance:

(Most)Bird " FlyingObject .

Here the fuzzy quantifier Most replaces the classical universal quantifier ∀ assumed in
the inclusion axioms. The above axiom allows to state that most birds fly.

Ultimately, we believe that the fuzzy extension of SHOIN (D) is of great interest to
the Semantic Web community, as it allows to express naturally a wide range of concepts
of actual domains, for which a classical SHOIN (D) representation is unsatisfactory.

References

1. Franz Baader and Philipp Hanschke. A schema for integrating concrete domains into concept
languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages
452–457, Sydney, 1991.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

3. Fahiem Bacchus. Representing and Reasoning with Probabilistic Knowledge. The MIT
Press, 1990.

180 U. Straccia

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. The Scientific American,
284(5):34–43, 2001.

5. P. Bonatti and A. Tettamanzi. Some complexity results on fuzzy description logics. In
A. Petrosino V. Di Gesù, F. Masulli, editor, WILF 2003 Int. Workshop on Fuzzy Logic and
Applications, LNCS 2955, Berlin, 2004. Springer Verlag.

6. Rita Maria da Silva, Antonio Eduardo C. Pereira, and Marcio Andrade Netto. A system
of knowledge representation based on formulae of predicate calculus whose variables are
annotated by expressions of a fuzzy terminological logic. In Proc. of the 5th Int. Conf.
on Information Processing and Managment of Uncertainty in Knowledge-Based Systems,
(IPMU-94), LNCS 945. Springer-Verlag, 1994.

7. Didier Dubois and Henri Prade. Fuzzy Sets and Systems. Academic Press, New York, NJ,
1980.

8. Didier Dubois and Henri Prade. Approximate and commonsense reasoning: From theory to
practice. In Zbigniew W. Ras and Michalewicz Maciek, editors, Proc. of the 9th Int. Sym.
on Methodologies for Intelligent Systems (ISMIS-96), LNAI 1079, pages 19–33. Springer-
Verlag, 1996.

9. Pan et al. Specification of coordination of rule and ontology languages. Technical report,
Knowledgeweb Network of Excellence, EU-IST-2004-507482, 2004. Deliverable D2.5.1.

10. N. Guarino and R. Poli. Formal ontology in conceptual analysis and knowledge representa-
tion. Int. Journal of Human and Computer Studies, 43(5/6):625–640, 1995.

11. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of Int. Joint Conf. on
Automated Reasoning (IJCAR-01), LNAI 2083, pages 701–705, 2001. Springer.

12. Reiner Hänle and Gonzalo Escalada-Imaz. Deduction in many-valued logics: a survey. Math-
ware and Soft Computing, IV(2):69–97, 1997.

13. Steffen Hölldobler, Hans-Peter Störr, and Tran Dinh Khang. A fuzzy description logic with
hedges and concept modifiers. In Proc. of the 10th Int. Conf. on Information Processing and
Managment of Uncertainty in Knowledge-Based Systems, (IPMU-04), 2004.

14. Ian Horrocks. Using an expressive description logic: Fact or fiction? In Proc. of the 8th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR-98), 1998.

15. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

16. Ian Horrocks, Peter F. Patel-Schneider. Reducing OWL entailment to description logic sat-
isfiability. Journal of Web Semantics, 2004.

17. R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty and Vagueness in Knowledge Based
Systems. Springer-Verlag, Berlin, Germany, 1991.

18. C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logics
Volume 4. King’s College Publications, 2003.

19. C. Lutz, F. Wolter, and M. Zakharyaschev. A tableau algorithm for reasoning about concepts
and similarity. In Proc. of the 12th Int. Conf. on Automated Reasoning with Analytic Tableaux
and Related Methods TABLEAUX 2003, number 2796 in LNAI, Rome,Italy, 2003. Springer.

20. Carsten Lutz. Reasoning with concrete domains. In Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence, pages 90–95. Morgan Kaufmann Publishers Inc., 1999.

21. Carsten Lutz. Nexp time-complete description logics with concrete domains. ACM Trans.
Comput. Logic, 5(4):669–705, 2004.

22. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, Los Altos, 1988.

23. D Sánchez and G.B. Tettamanzi. Generalizing quantification in fuzzy description logics. In
Proc. of the 8th Fuzzy Days in Dortmund, 2004.

24. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1–26, 1991.

Towards a Fuzzy Description Logic for the Semantic Web 181

25. Umberto Straccia. A fuzzy description logic. In Proc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI-98), pages 594–599, Madison, USA, 1998.

26. Umberto Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelli-
gence Research, 14:137–166, 2001.

27. Umberto Straccia. Transforming fuzzy description logics into classical description logics. In
Proc. of the 9th European Conf. on Logics in Artificial Intelligence (JELIA-04), LNCS 3229,
pages 385–399, 2004. Springer Verlag.

28. Umberto Straccia. Fuzzy description logics with concrete domains. Technical Report
2005-TR-03, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle
Ricerche, Pisa, Italy, 2005.

29. C. Tresp and R. Molitor. A description logic for vague knowledge. In Proc. of the 13th
European Conf. on Artificial Intelligence (ECAI-98), Brighton (England), August 1998.

30. John Yen. Generalizing term subsumption languages to fuzzy logic. In Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages 472–477, 1991.

31. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

Consistent Evolution of OWL Ontologies

Peter Haase1 and Ljiljana Stojanovic2

1 Institute AIFB, University of Karlsruhe, Germany
2 FZI at the University of Karlsruhe, Germany

pha@aifb.uni-karlsruhe.de, stojanovic@fzi.de

Abstract. Support for ontology evolution is extremely important in ontology en-
gineering and application of ontologies in dynamic environments. A core aspect
in the evolution process is the to guarantee consistency of the ontology when
changes occur. In this paper we discuss the consistent evolution of OWL ontolo-
gies. We present a model for the semantics of change for OWL ontologies, con-
sidering structural, logical, and user-defined consistency. We introduce resolution
strategies to ensure that consistency is maintained as the ontology evolves.

1 Introduction

Most of the work conducted so far in the field of ontologies has focused on ontology
construction issues, which assumes that domain knowledge encapsulated in an ontology
does not change over time. However, in a more open and dynamic environment, the
domain knowledge evolves continually [5]. These changes include accounting for the
modification in the application domain, incorporating additional functionality according
to changes in the users’ needs, organizing information in a better way, etc.

Ontology evolution can be defined as the timely adaptation of an ontology to the
arisen changes and the consistent management of these changes. It is not a trivial pro-
cess, due to the variety of sources and consequences of changes, it thus cannot be per-
formed manually by the ontology engineer. Therefore, this process needs to be sup-
ported by the ontology management system. An important aspect in the evolution pro-
cess is to guarantee the consistency of the ontology when changes occur, considering the
semantics of the ontology change. A formalization of the semantic of change requires
a definition of the ontology model together with its change operations, the consistency
conditions and rules to enforce these conditions.

There exists a number of languages for ontologies, both proprietary and standards-
based. They differ not only in their syntax, but more importantly in their semantics.
The OWL ontology language is a standard for representing ontologies on the Web [8].
However, the semantics of change operations for OWL has not been considered so far.
In this paper, we focus on the evolution of OWL ontologies. More precisely, we consider
the OWL DL language, including sublanguages such as OWL Lite.

The approach presented in this paper builds partly on our previous work in ontol-
ogy evolution [18], which we adapt towards handling OWL ontologies. The differences
are mostly reflected in the ontology consistency definition. As we will show, it does
not suffice to define a fixed set of consistency conditions, due to the characteristics of

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 182–197, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Consistent Evolution of OWL Ontologies 183

the various sublanguages and the varying usage contexts. Instead, we define the consis-
tency of OWL ontologies at three different levels: structural, logical, and user-defined
consistency.

We further define methods for detecting and resolving inconsistencies in an OWL
ontology after the application of a change. Finally, as for some changes there may be
several different consistent states of the ontology, we define resolution strategies allow-
ing the user to control the evolution. We exemplarily present resolution strategies for
various consistency conditions.

This paper is organized as follows: The ontology evolution process is described in
Section 2. In Section 3 we define the notions of ontology, ontology change operations,
and the semantics of change. In Sections 4, 5, and 6 we discuss how to detect and
resolve structural inconsistency, logical inconsistency and user-defined inconsistency,
respectively. Before we conclude, we present an overview of related work.

2 Evolution Process

Ontology evolution can be defined as the timely adaptation of an ontology and consis-
tent management of changes. The complexity of ontology evolution increases as on-
tologies grow in size, so a structured ontology evolution process is required. We follow
the process described in [18]. The process starts with capturing changes either from ex-
plicit requirements or from the result of change discovery methods. Next, in the change
representation phase, changes are represented formally and explicitly. The semantics of
change phase prevents inconsistencies by computing additional changes that guarantee
the transition of the ontology into a consistent state. In the change propagation phase all
dependent artifacts (ontology instances on the Web, dependent ontologies and applica-
tion programs using the changed ontology) are updated. During the change implemen-
tation phase required and induced changes are applied to the ontology in a transactional
manner. In the change validation phase the user evaluates the results and restarts the
cycle if necessary.

In this paper we focus on the semantics of change phase. Its role is to enable the res-
olution of a given ontology change in a systematic manner by ensuring the consistency
of the whole ontology. It is realized through two tasks:

– Inconsistency Detection: It is responsible for checking the consistency of an on-
tology with the respect to the ontology consistency definition. Its goal is to find
”parts” in the ontology that do not meet consistency conditions;

– Change Generation: It is responsible for ensuring the consistency of the ontology
by generating additional changes that resolve detected inconsistencies.

The semantics of change phase of the ontology evolution process is shown in Figure
1. Changes are applied to an ontology in a consistent state (c.f. Change Application in
Figure 1), and after all the changes are performed, the ontology must remain consis-
tent (c.f. Change Resolution in Figure 1). This is done by finding inconsistencies in the
ontology and completing required changes with additional changes, which guarantee
the consistency. Indeed, the updated ontology is not defined directly by applying a re-

184 P. Haase and L. Stojanovic

Inconsistency

Detection

Change

Generation

Semantics of Change Phase

of the Ontology Evolution Process

Change

Application

Change Resolution

Fig. 1. Semantics of Change Phase

quested change. Instead, it is indirectly characterized as an ontology that satisfies the
user’s requirement for a change and it is at the same time a consistent ontology.

In this paper we specifically consider the semantics of change phase for OWL DL
ontologies. Ontology consistency in general is defined as a set of conditions that must
hold for every ontology [18]. Here, we have to distinguish various notions of consis-
tency:

– Structural Consistency: First, we have to consider the structural consistency, which
ensures that the ontology obeys the constraints of the ontology language with re-
spect to how the constructs of the ontology language are used.

– Logical Consistency: Then, we need to consider the formal semantics of the ontol-
ogy: Viewing the ontology as a logical theory, we consider an ontology as logically
consistent if it is satisfiable, meaning that it does not contain contradicting infor-
mation.

– User-defined Consistency: Finally, there may be definitions of consistency that are
not captured by the underlying ontology language itself, but rather given by some
application or usage context. The conditions are explicitly defined by the user and
they must be met in order for the ontology to be considered consistent.

We note that most of the existing evolution systems (including the schema evolu-
tion systems as well) consider only the structural consistency. The role of an ontology
evolution system is not only to find inconsistencies in an ontology and to alert an ontol-
ogy engineer about them. Helping ontology engineers notice the inconsistencies only
partially addresses the issue. Ideally, an ontology evolution system should be able to
support ontology engineers in resolving problems at least by making suggestions how
to do that.

Moreover, an inconsistency may be resolved in many ways. In order to help to user
to control and customize this process, we have introduced the so-called resolution strate-
gies. Resolution strategies are developed as a method of “finding” a consistent ontology
that meets the needs of the ontology engineer. An resolution strategy is the policy for
evolution with respect to the his/her requirements. It unambiguously defines the way in
which a change will be resolved, i.e. which additional changes will be generated.

In the rest of this paper we formally define different types of consistency and elab-
orate on how corresponding inconsistencies can be detected and resolved.

Consistent Evolution of OWL Ontologies 185

3 Ontology Model and Ontology Change Operations

The goal of ontology evolution is to guarantee the correct semantics of ontology changes,
i.e. ensuring that they produce an ontology conforming to a set of consistency condi-
tions. The set of ontology change operations – and thus the consistency conditions –
depends heavily on the underlying ontology model. Most existing work on ontology
evolution builds on frame-like or object models, centered around classes, properties,
etc. However, as in this work we focus on the evolution of OWL DL ontologies, we
follow the axiom-centered ontology model, heavily influenced by Description Logics.
In this section, we will first review the ontology model, define change operations for
this model, and describe the semantics of change.

3.1 Ontology Model

OWL DL is a syntactic variant of the SHOIN (D) description logic [7]. Hence, al-
though several XML and RDF syntaxes exist, for convenience we will adhere to the
more compact, traditional SHOIN (D) syntax. For the correspondence between this
notation and various OWL DL syntaxes see [7].

We use a datatype theory D, a set of concept names NC , sets of abstract and concrete
individuals NIa

and NIc
, respectively, and sets of abstract and concrete role names NRa

and NRc
, respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are
concrete roles, d is a concrete domain predicate, ai and ci are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 C2 | C1 $ C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A SHOIN (D) ontology O is a finite set of axioms of the form1: concept inclusion
axioms C " D, transitivity axioms Trans(R), role inclusion axioms R " S and T "
U , concept assertions C(a), role assertions R(a, b), individual (in)equalities a ≈ b, and
a �≈ b, respectively. The common distinction between RBox, TBox and ABox is not
relevant for this work. We denote the set of all possible ontologies with O.

Example 1. As a running example, we will consider a simple ontology modelling a
small research domain, consisting of the following axioms:
Researcher " Person, Student " Person (students and researchers are persons),
Article " Publication (articles are publications), # " ∀author−.Publication,
" ∀author.Person, (the domain and range of author are publications, persons,
resp.), Article(anArticle) (anArticle is an article), Researcher(peter), Researcher
(ljiljana) (peter and ljiljana are researchers), author(anArticle, peter), author
(anArticle, ljiljana) (peter and ljiljana are authors of anArticle).

1 For the direct model-theoretic semantics of SHOIN (D) we refer the reader to [9].

186 P. Haase and L. Stojanovic

3.2 Ontology Change Operation

Based on the ontology model, we can now define ontology change operations.

Definition 1 (Ontology Change Operations). An ontology change operation oco ∈
OCO is a function oco : O → O. Here OCO denotes the set of all change operations.

For the above defined ontology model of SHOIN (D), we allow the atomic change
operations of adding and removing axioms, which we denote with α+ and α−, re-
spectively. Obviously, representing changes at the level of axioms is very fine-grained.
However, based on this minimal set of atomic change operations, it is possible to de-
fine more complex, higher-level descriptions of ontology changes. Composite ontology
change operations can be expressed as a sequence of atomic ontology change opera-
tions. The semantics of the sequence is the chaining of the corresponding functions:
For some atomic change operations oco1, ..., ocon we can define ococomposite(x) =
ocon ◦ ... ◦ oco1(x) := ocon(...(oco1))(x).

3.3 Semantics of Change

The semantics of change refers to the effect of the ontology change operations and the
consistent management of these changes. The consistency of an ontology is defined in
terms of consistency conditions, or invariants that must be satisfied by the ontology. We
then define rules for maintaining these consistency conditions by generating additional
changes.

Definition 2 (Consistency of an Ontology). We call an ontology O consistent with
respect to a set of consistency conditions K iff for all κ ∈ K, O satisfies the consistency
condition κ(O).

At this point, we do not make any restriction with respect to the representation of the
consistency conditions. They may be expressed for example as logical formulas or func-
tions. In the following, we will further distinguish between structural, logical and user-
defined consistency conditions:KS ,KL, andKU , respectively. We will call an ontology
structurally consistent, logically consistent and user-defined consistent, if the respective
consistency conditions are satisfied for the ontology.

Change Generation. If we have discovered that an ontology is inconsistent, i.e. some
consistency condition is not satisfied, we need to resolve these inconsistencies by gen-
erating additional changes that lead to a consistent state. These changes are generated
by resolution functions:

Definition 3 (Resolution Function). A resolution function � ∈ P is a function � : O×
OCO → OCO, which returns for a given ontology and an ontology change operation
an additional change operation (which may be composite).

A trivial resolution function would be a function which for a given ontology and change
operation simply returns the inverse operation, which effectively means a rejection of
the change. Obviously, for a consistent input ontology, applying a change followed by
the inverse change will result in a consistent ontology.

Consistent Evolution of OWL Ontologies 187

In general, there may be many different ways to resolve a particular inconsistency,
i.e. different resolution functions may exist. We can imagine a resolution function that
initially generates a set of alternative potential change operations, which may be pre-
sented to the user who decides for one of the alternatives. Such a resolution function
that depends on some external input is compatible with our definition of a resolution
function.

We can now define the notion of a resolution strategy:

Definition 4 (Resolution Strategy). A resolution strategy RS is a total function RS :
K → P that maps each consistency condition to a resolution function. Further we
require that for all possible ontologies O ∈ O and for all oco ∈ OCO and all κ ∈ K, the
assigned resolution function � = RS(κ) generates changes oco′ = �(O, oco), which
– applied to the ontology oco′(O) – result in an ontology that satisfies the consistency
condition κ.

The resolution strategy is applied for each ontology change operation in straight-
forward manner: As long as there are inconsistencies with respect to a consistency
condition, we apply the corresponding resolution function.

Please note that a resolution function may generate changes that violate other con-
sistency conditions (resulting in further changes that in turn may violate the previous
consistency condition). When defining a resolution strategy, one therefore has to make
sure that the application of the resolution strategy terminates, either by prohibiting that
a resolution function introduces inconsistencies with respect to any defined consistency
condition, or by other means, such as cycle detection.

In the following chapters we will introduce various evolution strategies to maintain
the structural, logical and user-defined consistency of an ontology.

4 Structural Consistency

Structural consistency considers constraints that are defined for the ontology model
with respect to the constructs that are allowed to form the elements of the ontology
(in our case the axioms). However, in the context of OWL ontologies, there exist vari-
ous sublanguages (sometimes also called species), such as OWL DL, OWL Lite, OWL
DLP [19]. These sublanguages differ with respect to the constructs that are allowed
and can be defined in terms of constraints on the available constructs. The role of these
sublanguages is to be able to define ontologies that are “easier to handle”, either on
a syntactic level to for example allow easier parsing, or on a semantic level to trade
some of the expressivity for decreased reasoning complexity. It is thus important that
the ontology evolution process provides support for dealing with defined sublanguages:
When an ontology evolves, we need to make sure that an ontology does “not leave its
sublanguage”.

Because of the variety of the sublanguages, it is not possible to operate with a pre-
defined and fixed set of structural consistency conditions. Instead, we allow to define
sublanguages in terms of arbitrary structural consistency conditions along with the cor-
responding resolution functions that ensure that an ontology change operation does not
lead out of the defined sublanguage. Please note that because of the definition of the

188 P. Haase and L. Stojanovic

ontology model, we do not allow to construct ontologies outside of the OWL DL lan-
guage.

4.1 Structural Consistency Conditions

We will in the following define what it means for an ontology to be structurally con-
sistent with respect to a certain ontology sublanguage. A sublanguage is defined by a
set of constraints on the axioms. Typically, these constraints disallow the use of certain
constructs or the way these constructs are used.

Some constraints can be defined on a “per-axiom-basis”, i.e. they can be validated
for the axioms individually. Other constraints restrict the way that axioms are used in
combination. In the following we will show how such consistency conditions can be
defined for a particular sublanguage.

Consistency Condition for the OWL Lite sublanguage. OWL Lite is a sublanguage of
OWL DL that supports only a subset of the OWL language constructs [2]. We will now
show how it can be defined in terms of a set of structural consistency conditions KS

2:

– κS,1 disallows the use of disjunction C $D,
– κS,2 disallows the use of negation ¬C,
– κS,3 restricts the use of the concept C D such that C and D be concept names or

restrictions,
– κS,4 restricts the use of the restriction constructors ∃R.C, ∀R.C such that C must

be a concept name,
– κS,5 limits the values of stated cardinalities to 0 or 1, i.e. n ∈ {0, 1} for all restric-

tions ≥ nR, ≤ nR,
– κS,6 disallows the usage of the oneOf constructor {a1, . . . , an}.

4.2 Resolving Structural Inconsistencies

Once we have discovered inconsistencies with respect to the defined sublanguage, we
have to resolve them. An extreme solution would be to simply remove the axioms that
violate the constraints of the sublanguage. This would certainly not meet the expected
requirements. A more advanced option is to try to express the invalid axiom(s) in a way
that is compatible with the defined sublanguage. In some cases, it may be possible to
retain the semantics of the original axioms.

Resolution Strategies for OWL Lite. In the following we will present a possible resolu-
tion strategy for the OWL Lite sublanguage by defining one resolution function for each
of the above consistency conditions in KS . Although OWL Lite poses many syntactic
constraints on the syntax of OWL DL, it is still possible to express complex descrip-
tions using syntactic workarounds, e.g. introducing new concept names and exploiting
the implicit negation introduced by disjointness axioms. In fact, using these techniques,

2 Please note that the constraints for the OWL DL language are already directly incorporated
into the ontology model itself.

Consistent Evolution of OWL Ontologies 189

OWL Lite can fully capture OWL DL descriptions, except for those containing individ-
ual names and cardinality restrictions greater than 1 [8].

– �s,1 replaces all references to a concept C $ D with references to a new concept
name CorD, and adds the following axiom: CorD ≡ ¬(¬C ¬D),

– �s,2 replaces all references to a concept ¬C in an added axiom with references to
a new concept name NotC, and adds the following two axioms: C ≡ ∃R.# and
NotC ≡ ∀R.⊥, where R is a newly introduced role name,

– �s,3 replaces all references to a concept C (or D), where C (or D) is not a concept
name or restriction, in concepts C D with references to a new concept name aC
(or aD), and adds the following axiom: aC ≡ C (or aD ≡ D),

– �s,4 replaces all references to a concept C (where C is not a concept name) in
restrictions ∃R.C or ∀R.C with references to a new concept name aC, and adds
the following axiom: aC ≡ C.

While these first four resolution functions simply apply syntactic tricks while preserving
the semantics, there exist no semantics-preserving resolution functions for the consis-
tency conditions κS,5 and κS,6.

However, we can either try to approximate the axioms, or in the worst case, simply
remove them to ensure structural consistency. We can thus define:

– �s,5 replaces all cardinality restrictions ≥ nR with restrictions ≥ 1R and removes
all axioms containing cardinality restrictions ≤ nR,

– �s,6 replaces all occurrences of the concept {a1, . . . , an} with a new concept D
and adds assertions D(a1), ...,D(an).

Example 2. Suppose we wanted to add to the ontology from Example 1 the axiom
Publication " ∃author.¬Student, i.e. stating that all publications must have an au-
thor who is not a student. As this axiom violates consistency condition κS,2, resolution
function �s,2 would generate a composite change that adds the following semantically
equivalent axioms instead: Publication " ∃author.NotStudent, Student ≡ ∃R.#,
NotStudent ≡ ∀R.⊥, resulting in a structurally consistent ontology.

5 Logical Consistency

While the structural consistency is only concerned about whether the ontology con-
forms to certain structural constraints, the logical consistency addresses the question
whether the ontology is “semantically correct”, i.e. does not contain contradicting in-
formation.

5.1 Definition of Logical Consistency

The semantics of the SHOIN (D) description logic is defined via a model-theoretic se-
mantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = ()I , ·I) consists of a domain set)I , disjoint

190 P. Haase and L. Stojanovic

from the datatype domain)I
D, and an interpretation function ·I , which maps from in-

dividuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively3. An interpretation I satisfies an ontol-
ogy O, if it satisfies each axiom in O. Axioms thus result in semantic conditions
on the interpretations. Consequently, contradicting axioms will allow no possible
interpretations.

We can thus define a consistency condition for logical consistency κL that is satis-
fied for an ontology O if O is satisfiable, i.e. if O has a model. Please note, that because
of the monotonicity of the logic, an ontology can only become inconsistent by adding
axioms: If a set of axioms is satisfiable, it will still be satisfiable when any axiom is
deleted. Therefore, we only need to check the consistency for ontology change opera-
tions that add axioms to the ontology.

Example 3. Suppose, we start out with the ontology from our Example 4.2, i.e. the
initial example extended with the axiom Student " ¬Researcher (Students and Re-
searchers are disjoint). This ontology is logically consistent.

Suppose we now wanted to add the axiom Student(peter), stating that the indi-
vidual peter is a student. Obviously, this ontology change operation would result in an
inconsistent ontology, as we have stated that students and researchers are disjoint on the
one hand, and that peter is a student and a researcher on the other hand.

Now, there may be many ways how to resolve this inconsistency. One possibility
would be to reject the change Student(peter). Alternatively, we could also remove
the assertion Researcher(peter). However, if both of these assertions are correct, the
user may not be happy with either decision. The most intuitive one may be to retract
the axiom Student " ¬Researcher, but also this may not satisfy the user. A further,
more complex change, would be to introduce a new concept PhdStudent, which need
not be disjoint with researchers.

5.2 Resolving Logical Inconsistencies

In the following, we will present resolution functions that will allow us to define resolu-
tion strategies to ensure logical consistency. The goal of these resolution functions is to
determine a set of axioms to remove to obtain a logically consistent ontology with “min-
imal impact” on the existing ontology. Obviously, the definition of minimal impact may
be depend on the particular user requirements. A very simple definition could be that
the number of axioms to be removed should be minimized. More advanced definitions
could include a notion of confidence or relevance of the axioms. Based on this notion
of “minimal impact” we can define an algorithm that generates a minimal number of
changes that result in a maximal consistent subontology.

However, in many cases it will not be feasible to resolve logical inconsistencies
in a fully automated manner. We therefore also present a second, alternative approach
for resolving inconsistencies that allows the interaction of the user to determine which
changes should be generated. Unlike the first approach, this approach tries to localize
the inconsistencies by determining a minimal inconsistent subontology.

3 For a complete definition of the interpretation, we refer the reader to [7].

Consistent Evolution of OWL Ontologies 191

Alternative 1: Finding a Consistent Subontology. In our model we assume that the
ontology change operations should lead from one consistent ontology to another con-
sistent ontology. If an ontology change operation (adding an axiom, α+) would lead to
an inconsistent ontology, we need to resolve the inconsistency by finding an appropriate
subontology O′ ⊂ O (with α ∈ O′) that is consistent. We do this by finding a maximal
consistent subontology:

Definition 5 (Maximal consistent subontology). An ontology O′ is a maximal con-
sistent subontology of O, if O′ ⊆ O and O′ is logically consistent and every O′′ with
O′ ⊂ O′′ ⊆ O is logically inconsistent.

Intuitively, this definition states that no axiom from O can be added to O′ without losing
consistency. In general, there may be many maximal consistent subontologies O′. It is
up to the resolution strategy and the user to determine the appropriate subontology to
be chosen.

The main idea is that we start out with the inconsistent ontology O ∪ {α} and iter-
atively remove axioms until we obtain a consistent ontology. Here, it is important how
we determine which axioms should be removed. This can be realized using a selection
function. The quality of the selection function is critical for two reasons: First, as we
potentially have to search all possible subsets of axioms in O for the maximal consistent
ontology, we need to prune the search space by trying to find the relevant axioms that
cause the inconsistency. Second, we need to make sure that we remove the dispensible
axioms. (Please note that a more advanced strategy could consider to only remove parts
of the axiom.)

The first problem of finding the axioms that cause the inconsistency can be ad-
dressed e.g. using a notion of syntactic relevance by analyzing how the axioms are
structurally connected:

We can realize a selection function based on structural connectedness:

Definition 6 (Connectedness). Given a set of axioms O, two axioms α and β are di-
rectly structurally connected – denoted with connected(α, β) –, if there exists an ontol-
ogy entity e ∈ NC ∪NIa

∪NIc
∪NRa

∪NRc
that occurs in both α and β.

The second problem of only removing dispensable axioms requires more semantic
selection functions. These semantic selection functions can for example exploit infor-
mation about the confidence in the axioms that allows us to remove less probable ax-
ioms. Such information is for example available in probabilistic ontology models, such
as [4], but will not be considered in this paper.

In the following, we present an algorithm (c.f. Algorithm 1) for finding (at least)
one maximal consistent subontology using the definition of structural connectedness
(c.f. Definition 6): We maintain a set of possible candidate subontologies Ω, which
initially contains only O ∪ {α} (c.f. line 1), i.e. the consistent ontology O before the
change and the added axiom α. In every iteration, we generate a new set of candidate
ontologies (line 3) by removing one axiom β1 from each candidate ontology (line 7)
that is structurally connected with α or an already removed axiom (in O \ O′, line 6),
until at least one of the candidate ontologies is a consistent subontology (line 12). The
termination is guaranteed based on the fact that once we have removed all axioms from
O ∪ {α} that are transitively connected with α, the ontology again must be consistent

192 P. Haase and L. Stojanovic

Algorithm 1 Determine consistent subontology for adding axiom α to ontology O

1: Ω := {O ∪ {α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O′ \ {α} do
6: if there is a β2 ∈ ({α} ∪ (O \ O′)) such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ \ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is consistent

(provided that α itself is consistent and O was consistent before adding α). As we
remove exactly one axiom from each candidate ontology in one iteration, the resulting
ontology will not only be maximal with respect to the above definition, but also maximal
with respect to cardinality, i.e. the number of axioms in the ontology.

The corresponding resolution function �L,1 thus generates changes that remove the
minimal set of axioms to ensure consistency: O\O′, where O′ is the maximal consistent
ontology.

Alternative 2: Localizing the Inconsistency. In the second alternative, we do not try
to find a consistent subontology, instead we try to find a minimal inconsistent ontology,
i.e. a minimal set of contradicting axiom. We call this process Localizing the inconsis-
tency. Once we have localized this minimal set, we present it to the user. Typically, this
set is considerably smaller than the entire ontology, such that it will be easier for the
user to decide how to resolve the inconsistency.

Definition 7 (Minimal inconsistent subontology). An ontology O′ is a minimal in-
consistent subontology of O, if O′ ⊆ O and O′ is inconsistent and for all O′′ with
O′′ ⊂ O′ ⊆ O, O′′ is consistent.

Intuitively, this definition states that the removal of any axiom from O′ will result in a
consistent ontology.

Again using the definition of connectedness, we can realize an algorithm (c.f. Al-
gorithm 2) that is guaranteed to find a minimal inconsistent ontology: We maintain a
set Ω with candidate ontologies, which initially only consists of the added axiom {α}
(c.f. line 1). As long as we have not found an inconsistent subontology, we add one
structurally connected axiom (line 6) to each candidate ontology (line 7).

Because of the minimality of the obtained inconsistent ontology, it is sufficient to re-
move any of the axioms to resolve the inconsistency. The minimal inconsistent ontology
can be presented to the user, who can select the appropriate axiom to remove.

It may be possible that one added axiom introduced multiple inconsistencies. For
this case, the above algorithm has to be applied iteratively.

Consistent Evolution of OWL Ontologies 193

Algorithm 2 Localize inconsistency introduced by adding axiom α to ontology O

1: Ω := {{α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O \ O′ do
6: if there is a β2 ∈ O′ such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ ∪ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is inconsistent

Example 4. We will now show how Algorithm 2 can be used to localize the incon-
sistency in our running example, which has been introduced by adding the axiom α
Student(peter). Applying the algorithm, we start out with the candidate ontology
Ω := {{Student(peter)}}. Adding the structurally connected axioms, we obtain:
Ω := {{Student(peter), Researcher(peter)}, {Student(peter), Student "
Person},{Student(peter), Student " ¬Researcher}, {Student(peter),
Student(ljiljana)},{Student(peter), author(anArticle, peter)}}. All of these can-
didate ontologies are still consistent. In the next iteration, adding the structurally con-
nected axiom Student " ¬Researcher to the candidate ontology {Student(peter),
Researcher(peter)} will result in the minimal inconsistent subontology
{Student(peter), Researcher(peter), Student " ¬Researcher}.

The removal of any of these axioms (which one is to be decided by the user), will
lead to a consistent ontology.

6 User-Defined Consistency

The user-defined consistency takes into account particular user requirements that need
to be expressed “outside” of the ontology language itself. While an ontology may be
structurally consistent (e.g. be a syntactically correct ontology according to a particular
OWL sublanguage) and may be logically consistent, it may still violate some user re-
quirements. We can identify two types of user-defined consistency conditions: generic
and domain dependent.

Generic consistency conditions are applicable across domains and represent e.g.
best design practice or modeling quality criteria. For example, OntoClean [20] formal-
izes a set of meta-properties representing the philosophical notions of rigidity, identity,
unity, and dependence. These meta-properties are assigned to properties (corresponding
to concepts in DL terminology) of the ontology. Constraints on the taxonomic relation-
ships define the consistency of the ontology, e.g. a non-rigid property cannot subsume
a rigid property.

194 P. Haase and L. Stojanovic

Domain dependent consistency conditions take into account the semantics of a par-
ticluar formalism of the domain. An example are consistency conditions for the OWL-S
process model [17] to verify web service descriptions.

In the following we exemplarily show how user-defined consistency conditions and
corresponding resolutions function can be described to ensure modeling quality condi-
tions. Such modeling quality conditions cover redundancy, misplaced properties, miss-
ing properties, etc. We refer the reader to [18] for a complete reference.

One example of redundancy is concept hierarchy redundancy. If a direct super-
concept of a concept can be reached through a non-direct path, then the direct link is
redundant. We can thus define a consistency condition that disallows concept hierrachy
redundancy: κU,1 is satisfied if for all axioms C1 " Cn in O there exist no axioms in
O with C1 " C2, ..., Cn−1 " Cn. We can further define a corresponding resolution
function �U,1 that ensures this consistency condition by generating a change operation
that removes the redundant axiom C1 " Cn.

Example 5. Suppose, we start out with the ontology from our Example 4.2, i.e. the ini-
tial example extended with the axiom Professor " Person (a professor is a person).
This ontology is consistent with respect to the consistency definition κU,1.

Suppose we now want to add the axiom Professor " Researcher, stating that
the a professor is a researcher. Obviously, this ontology change operation would result
in an ontology that is inconsistent with respect to κU,1 since there is an alternative
path (through the concept Researcher) between the concept Professor and its direct
super-concept Person. The resolution function �U,1 would generate a change operation
that removes the axiom Professor " Person.

7 Related Work

In the last decade there has been very active research in the area of ontology engineer-
ing. The majority of research studies in this area are focused on construction issues.
However, coping with the changes and providing maintenance facilities require a dif-
ferent approach. There are a very few approaches investigating the problems of inducing
changes in ontologies.

[18] defines an ontology evolution process which we have adapted for our work.
However, the semantics of change in [18] focuses on the KAON ontology model, which
is fundamentally different from the OWL ontology model, as described earlier. A tax-
onomy of ontology changes for the OWL ontologies can be found in [10]. However, in
[10] the the ontology model follows a more object-oriented view, whereas we follow
the axiomatic ontology model of [14].

While there exist significant differences between schema evolution and ontology
evolution, as elaborated in [13], particular aspects of schema evolution in databases are
relevant for our work. [16] provides an excellent survey of the main issues concerned.
A sound and complete axiomatic model for dynamic schema evolution in object-based
systems is described in [15]. This is the first effort in developing a formal basis for the
schema evolution research. The authors define consistency of a schema with a fixed set
of invariants or consistency conditions that are tailored to the data model.

Consistent Evolution of OWL Ontologies 195

However, in the context of OWL ontologies, the notion of consistency is much more
mulitfaceted. First, the existing work only considers structural consistency. Not only is
the set of structural constraints different due to the difference in the underlying models.
We further support the evolution of various fragments (sublanguages) of OWL that are
defined using different structural constraints. Furthermore, we consider the notions of
logical and user-defined consistency.

Regarding the notion of logical conistency, the research done in belief revision is
of interest: Here, the revision problem is concerned about resolving contradictions by
minimal mutilation of a set of beliefs. The combination of classical approaches with
description logics is subject of ongoing research [6].

Finally, there are several tools that support species validation (corresponding to
our structural consistency) or localizing inconsistencies in ontologies. For example,
the OWL Protege Plugin [11] provides species validation including explanations where
certain problems occurred. The OWL Protege Plugin also provides explanations on on-
tology changes, i.e. new subsumptions that have been inferred, logical inconsistencies
that have been introduced (based on RACER reasoning services). [1] presents a “symp-
tom” ontology describing inconsistencies and errors in ontologies. It provides various
levels of severity provides a classification of inconsistencies. However, there is no sup-
port for preserving consistency in the case that consistency conditions are violated in
the presence of ontology changes.

8 Conclusion and Outlook for Future Work

In this paper we have presented an approach to formalize the semantics of change for
the OWL ontology language (for OWL DL and sublanguages in particular), embed-
ded in a generic process for ontology evolution. Our formalization of the semantics of
change allows to define arbitrary consistency condititions – grouped in structural, logi-
cal, and user-defined consistency – and to define resolution strategies that assign reso-
lution functions to that ensure these consistency conditions are satisfied as the ontology
evolves. We have shown examplarily, how such resolution strategies can be realized for
various purposes.

The methods described in the previous sections have been implemented on top of
KAON24, an ontology management system and inference engine that supports a large
subset of OWL DL. The implementation includes evolution strategies for various frag-
ments of ontology languages, including OWL DL, OWL Lite, as well evolution strate-
gies for logical consistency. Additionally it allows to plug-in further evolution strategies
for structural consistency (to support additional sublanguages), logical consistency, and
user-defined consistency. The approach will be evaluated in the context of various on-
going research projects, including SEKT and OntoGov.

In the future we plan to describe on ontology definition meta-model (ODM) in
the style of [3] on top of our axiomatic ontology model and to define the semantics
of change for the ODM to support users and applications that prefer a more object-
oriented-like ontology model.

4 http://kaon2.semanticweb.org/

196 P. Haase and L. Stojanovic

Acknowledgments

Research reported in this paper has been partially financed by the EU in the IST project
SEKT (IST-2003-506826) (http://www.sekt-project.com/) and IST project
OntoGov (IST-2002-507237) (http://www.ontogov.com/). We would like to
thank our colleagues for fruitful discussions.

References

1. Kenneth Baclawski, Christopher J. Matheus, Mieczyslaw M. Kokar, Jerzy Letkowski, and
Paul A. Kogut. Towards a symptom ontology for semantic web applications. In McIlraith
et al. [12], pages 650–667.

2. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah McGuinness,
Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl web ontology language reference.
http://www.w3.org/TR/owl-ref/.

3. Sara Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler. Visual modeling of owl
dl ontologies using uml. In McIlraith et al. [12], pages 198–213.

4. Zhongli Ding and Yun Peng. A Probabilistic Extension to Ontology Language OWL. In
Proceedings of the 37th Hawaii International Conference On System Sciences (HICSS-37).,
Big Island, Hawaii, January 2004.

5. D. Fensel. Ontologies: dynamics networks of meaning. In Proceedings of the 1st Semantic
web working symposium, Stanford, CA, USA, 2001.

6. Giorgos Flouris. Belief change in arbitrary logics. In HDMS, 2004.
7. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic

Satisfiability. Journal of Web Semantics, 1(4), 2004.
8. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The

Making of a Web Ontology Language . Journal of Web Semantics, 1(1), 2003.
9. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description

Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.
10. Michel Klein. Change Management for Distributed Ontologies. PhD thesis, Free University

of Amsterdam, 2004.
11. Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen. The

protégé owl plugin: An open development environment for semantic web applications. In
McIlraith et al. [12], pages 229–243.

12. Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors. The Semantic
Web - ISWC 2004: Third International Semantic Web Conference,Hiroshima, Japan, Novem-
ber 7-11, 2004. Proceedings, volume 3298 of Lecture Notes in Computer Science. Springer,
2004.

13. N. F. Noy and M. Klein. Ontology evolution: not the same as schema evolution. In SMI
technical report SMI-2002-0926, 2002.

14. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontology lan-
guage semantics and abstract syntax. http://www.w3.org/TR/2004/REC-owl-
semantics-20040210/.

15. Randel J. Peters and M. Tamer Özsu. An axiomatic model of dynamic schema evolution in
objectbase systems. ACM Trans. Database Syst., 22(1):75–114, 1997.

16. John F. Roddick. A survey of schema versioning issues for database systems. Information
and Software Technology, 37(7):383–393, 1995.

Consistent Evolution of OWL Ontologies 197

17. L. Stojanovic, A. Abecker, N. Stojanovic, and R. Studer. On managing changes in the
ontology-based e-government. In Proceedings of the 3rd International Conference on On-
tologies, Databases and Application of Semantics (ODBASE 2004), number 3291 in Lec-
ture Notes in Computer Science, pages 1080–1097, Agia Napa, Cyprus, November 2004.
Springer Verlag.

18. Ljiljana Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of
Karlsruhe, 2004.

19. Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, University of
Karlsruhe, 2004.

20. Christopher A. Welty and Nicola Guarino. Supporting ontological analysis of taxonomic
relationships. Data Knowledge Engineering, 39(1):51–74, 2001.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 198–210, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Extending HCONE-Merge by Approximating the
Intended Meaning of Ontology Concepts Iteratively

George A. Vouros and Konstantinos Kotis

Department of Information & Communications Systems Engineering,
University of the Aegean, Karlovassi, Samos,

83200, Greece
{georgev, kkot}@aegean.gr

Abstract. A central aspect of HCONE-merge is the mapping of ontology
concepts to a hidden intermediate ontology by uncovering the intended meaning
of concepts. Such a mapping is realized by a semantic morphism from ontology
concepts to WordNet senses. Extending methods that have already been
proposed, this paper proposes an iterative algorithm for approximating the
intended meanings of ontology concepts in a fully automated way. Results from
numerous experiments are thoroughly described and conclusions are drawn.

1 Introduction

Ontologies have been realized as the key technology to shaping and exploiting
information for the effective management of knowledge and for the evolution of the
Semantic Web and its applications. Ontologies establish a common vocabulary for
community members to interlink, combine, and communicate knowledge shaped
through practice and interaction, binding the knowledge processes of creating,
importing, capturing, retrieving, and using knowledge. However, it seems that there
will always be more than one ontology even for the same domain [1]. In distributed
settings, where different conceptualizations of the same domain exist, information
services must effectively answer queries bridging the gaps between
conceptualizations of the same domain. Towards this target, networks of semantically
related information must be created at-request. Therefore, coordination (i.e. mapping,
alignment, merging) of ontologies is a major challenge for bridging the gaps between
agents (software and human) with different conceptualizations.

There are many works towards the mapping/merging of ontologies (e.g. [2] [3] [4]
[5] [6]). These works exploit linguistic, structural, domain knowledge and matching
heuristics. Recent approaches aim to exploit all types of knowledge and further
capture the intended meanings of terms by means of heuristic rules [2]. The HCONE-
merge approach to the merging of ontologies [7] [8] exploits linguistic, structural and
semantic knowledge and gives much emphasis on “uncovering” the intended informal
interpretations of concepts specified in an ontology. Linguistic and structural
knowledge about ontologies is exploited by the Latent Semantics Indexing method
(LSI) [9] for associating concepts to their informal, human-oriented intended

 Extending HCONE-Merge 199

interpretations realized by WordNet senses. Using concepts’ intended interpretations,
the proposed mapping/merging method translates formal concept definitions to a
common vocabulary and merges the translated definitions by means of description
logics’ reasoning services.

The HCONE-merge approach, as it was originally proposed, requires humans to
validate the interpretations suggested by LSI for every term in the ontology. Since
this process is quite frustrating and error-prone, even for small ontologies, we
contact research towards minimizing the required human involvement for mapping
concepts to their intended interpretations. The ultimate achievement would be to
fully automate the mapping of concepts to their intended interpretations, and
consequently to fully automate merging. Towards this goal, we have developed
techniques and heuristics for ontology mapping and merging that require varying
degrees of human involvement [8]. Although we managed to achieve a high degree
of precision, this has been gained with the cost of considerable human involvement
in the process.

Based on the HCONE method, the present paper proposes an iterative and
automatic method for computing the mapping of concepts to their intended informal
interpretations. This method requires no human involvement and, as experiments
show, it converges to a set of mappings with high precision.

Section 2 of the paper provides definitions of notions used throughout the paper.
Section 3 gives an overview of the HCONE-merge method and of research towards
automating the computation of the mapping of ontology concepts to their intended
meaning. Section 4 describes the iterative approximation of intended interpretations
and section 5 provides results of experiments contacted. Section 6 concludes the
paper.

2 Background Definitions

An ontology is considered to be a pair O=(S, A), where S is the ontological signature
describing the vocabulary (i.e. the terms that lexicalize concepts and relations
between concepts) and A is a set of ontological axioms, restricting the intended
interpretations of the terms included in the signature. In other words, A includes the
formal definitions of concepts and relations that are lexicalized by natural language
terms in S.

Ontology mapping from ontology O1 = (S1, A1) to O2 = (S2, A2) is considered to be

a morphism f:S1 S2 of ontological signatures such that A2 f(A1), i.e. all
interpretations that satisfy O2’s axioms also satisfy O1’s translated axioms [3] [12].
Consider for instance the ontologies depicted in Fig. 1: Given the morphism f such
that f(Infrastructure)=Facility and f(Transportation)=Transportation System, it is

true that A2 {f(Transportation) f(Infrastructure)}, therefore f is a mapping. Given
the morphism f’, such that f’ (Infrastructure) =Transportation System and f’

(Transportation) = Transportation Means, it is not true that A2 {f’ (Transportation)
 f’(Infrastructure)}, therefore f’ is not a mapping.

200 G.A. Vouros and K. Kotis

Fig. 1. Example Ontologies

However, instead of a function, we may articulate a set of binary relations between

the ontological signatures. Such relations can be the inclusion () and the equivalence
() relations. For instance, given the ontologies in Fig. 1, we can say that

Transportation Transportation System, Installation Facility and Infrastructure
Facility. Then we have indicated an alignment of the two ontologies and we can
merge them. Based on the alignment, the merged ontology will be ontology O3 in Fig.

1. It holds that A3 A2 and A3 A1.
Looking at Fig. 1 in an other way, we can consider O3 to be part of a larger

intermediary ontology and define the alignment of ontologies O1 and O2 by means of
morphisms f1: S1 S3 and f2: S2 S3. Then, the merging of the two ontologies is the
minimal union of ontological vocabularies and axioms with respect to the
intermediate ontology where ontologies have been mapped.

In the example of Fig.1, concepts Transportation-O1 and Transportation System-O2
will be found to have the same intended meaning, and therefore will be considered
equivalent. The merging of their formal definitions will eventually result to:

Transportation System-O2 Infrastructure-O1 Facility-O2

However, the description logics classification mechanism will consider the axiom

Transportation System-O2 Facility-O2 to be redundant (see Fig. 1). Therefore O3

will eventually contain only the axiom Transportation System Infrastructure. Doing
so, the merged ontology contains only the minimal set of axioms resulting from
source ontologies mapping.

The ontologies merging problem (OMP) can be stated as follows: Given two
ontologies find an alignment between these two ontologies, and then, get the minimal
union of their (translated) vocabularies and axioms with respect to their alignment.

Means

Facili

Transportation Means

Transportation

Facility

Infrastructure

System

Transportation (System)

Transportation Means

System

Infrastructure

Transportation

Installation
O1 O2

O3
Facility-O2

 Extending HCONE-Merge 201

3 HCONE-Merge

The HCONE-merge method finds a morphism between each of the two original
ontologies and the so-called “hidden intermediate” ontology. As it is shown in Fig. 2,
where the overall method is depicted, WordNet plays the role of an “intermediate”.
We consider that each sense in a WordNet synset describes a concept. WordNet
senses are related among themselves via the inclusion (hyponym – hyperonym)
relation. Terms that lexicalize the same concept (sense) are considered to be
equivalent through the synonym relation.

Ontology concepts are being mapped to WordNet senses. This mapping indicates
the informal intended interpretations of concepts and it is specified by the semantic
morphism (s-morphism, symbolized by fs). Using this mapping, HCONE-merge
constructs the intermediate ontology that includes (a) a vocabulary with the
lexicalizations of the specific senses of WordNet synsets corresponding to the
ontologies’ concepts, and (b) axioms that are the translated axioms of the original
ontologies. Having specified the mappings to the hidden intermediate ontology, the
translated ontologies are merged following merging actions such as rename, merge,
and classify.

Fig. 2.The HCONE approach towards the OMP

It must be noticed that we do not consider WordNet to include any intermediate
ontology, as this would be very restrictive for the specification of the original
ontologies (i.e. the method would work only for those ontologies that preserve the
inclusion relations among WordNet senses).

The computation of the semantic morphism is based on the lexical semantic
indexing (LSI) method.

LSI O1

Find
S-morphism

Translate

Merge

O1

O1

O3 WordNet

LSI O2

O2

O2

202 G.A. Vouros and K. Kotis

LSI [9] is a vector space technique for information retrieval and indexing. It
assumes that there is an underlying latent semantic structure that it estimates using a
matrix of term-document association data by means of statistical techniques. In our
case the n×m space comprises the n more frequently occurred terms of the m WordNet
senses the algorithm focuses on. Lexical Semantic Analysis (LSA) allows the
arrangement of the semantic space to reflect the major associative patterns in the data.
As a result, terms that did not actually appear in a sense may still end up close to the
sense, if this is consistent with the major patterns of association in the data. Position
in the space then serves as the new kind of semantic indexing.

Given a query (which in our case corresponds to an ontology concept), retrieval
aims to locate a point in space that is close to the sense that expresses the intended
meaning of this concept. The query to the retrieval mechanism is constructed by the
concept names and the associated senses of all concepts in the vicinity of the given
concept. The steps of the algorithm for finding the semantic morphism are shown in
Fig. 3.

1. Choose a concept from the ontology. Let C be the concept name.
2. Get all WordNet senses S1, S2, …Sm, lexicalized by C’, where C’ is a linguistic

variation of C. These senses provide the focus of the algorithm for C.
3. Get the hyperonyms and hyponyms of all C’ senses.
4. Build the “semantic space”: An nXm matrix that comprises the n more

frequently occurred terms in the vicinity of the m WordNet senses found in
step 2.

5. Build a query string using the terms in the vicinity of C. The query string is a
sequence of digits, each digit taking value 0 if a term in the vicinity of C does
not exist in the set of n, and 1 if a query term exists in the set of n.

6. Find the ranked associations between C and C’ senses by running the Latent
Semantics Analysis (LSA) function and consider the association with the
highest grade. LSA uses the query terms for constructing the query string and
computes a point in the semantic space constructed in step (4).

Fig. 3. The algorithm for computing the s-morphism

The semantic space is constructed by terms in the vicinity of the senses S1, S2,…Sm
that are in focus of the algorithm for a concept C. Therefore, we have to decide what
constitutes the vicinity of a sense for the calculation of the semantic space. In an
analogous way we have to decide what constitutes the vicinity of an ontology concept
for the calculation of the query string.

Information that can be included in the semantic space includes:

• The term C’ that corresponds to C. C’ is a lexical entry in WordNet
• Terms that appear in C’ WordNet senses
• Terms that constitute hyperonyms / hyponyms of each C’ sense.
• Terms that appear in hyper(hyp)onyms of C’ senses

 Extending HCONE-Merge 203

Information that can be included in the query for a concept C includes:

• Concept’s C primitive super-concepts.
• Concepts that are immediate super-concepts of C
• Concepts that are immediate sub-concepts of C
• Concepts that are related to C via domain specific relations
• The most frequent terms in WordNet senses that have been associated with

the concepts directly related to C via inclusion and equivalence relations.

Formally, given an ontology concept C, the vicinity VC of this concept includes a
set of tuples (C’,S’), where C’ is the lexicalization of a concept directly related to C
and S’ is the WordNet sense that has been associated with this concept, or “null” in
case there is no associated sense.Therefore, given a concept C and its vicinity VC, the
semantic morphism fs computes SC, which is the highest-ranked WordNet sense
associated to C i.e. fs(C,Vc)=SC where VC={(Ci,Si)|Ci is in the vicinity of C,} and
fs(Ci,Vi)=Si where Vi is the vicinity of Ci. SC is assumed to express the intended
interpretation of the concept specification.

 Using the algorithm in Fig. 3 for the concepts in an ontology, each ontology
concept is associated with a set of graded WordNet senses. For instance, the concept
“facility” is associated with the five senses that WordNet assigns to the term
“facility”. These senses range from “something created to provide a service” to “a
room equipped with washing and toilet facilities”. The highest graded sense Sfacility
expresses the intended interpretation of the concept “facility” in the context of the
given ontology.

 It must be emphasized that although LSI exploits structural information of
ontologies and WordNet, it ends up with semantic associations between terms. The
algorithm is based on assumptions that influence the associations produced [7].

Using the intended meanings of the formal concepts, HCONE-merge constructs an
ontology On=(Sn, An), n=1,2, where, Sn includes the lexicalizations of the senses
associated to the concepts of the ontology On=(Sn, An), n=1,2, and An contain the
translated inclusion and equivalence relations between the corresponding concepts.
The ontology On is considered to be part of the hidden intermediate ontology. The
construction of the intermediate ontology (by mapping the concepts of both original
ontologies to WordNet senses) together with the minimal set of translated axioms
results in ontologies’ merging [7].

Table 1. Comparison of the mapping methods for the HCONE-merge

 Fully-
Automated

User-
validated

Semi-
Automated

Percentage of concepts
validated by the user
(in the best case)

0% 100% >0%

“Correct” mappings
produced
(in the best case)

80% 90% 90%

204 G.A. Vouros and K. Kotis

 System

Infrastructure

Transportation

 Installation

Given two ontologies O1 and O2 to be merged, and due to the crucial role of
uncovering the intended meaning of concepts to the HCONE-merge method, we aim
at automating the mapping of O1 and O2 to WordNet senses.

The goal is to achieve high precision in mapping concepts to their intended
meaning with minimum human intervention.

Based on the algorithm for computing the s-morphism, we have shaped methods to
ontology mapping, where human inspection and validation has been reduced down to
the number of algorithm runs needed to correct the concept pairs whose associations
produce inconsistencies with respect to the WordNet inclusion relations [8].

Table 1 compares the proposed methods [8] according to the amount of the
automation they achieve and the “correct” mappings produced. The fully automated
method requires the minimum number of user actions, but at the same time it achieves
the lowest percentage of correct mappings. This is an iterative method that in each
iteration re-computes concept mappings given the WordNet senses associated to the
concepts during the last iteration. This approach is “unstable”, given that correct
mappings computed during an iteration may result to non-correct mappings when re-
computed in the next iteration and so on. Therefore, this method does not guarantee to
converge to a set of concept mappings.

On the other hand, the user-based method achieves higher percentage of correct
mappings, but the actions that are required by the user imply considerable effort, since
the user has to validate the mapping of each ontology concept. It must be pointed that
this case requires also a considerable number of additional algorithm runs, equal to
the percentage of wrong mappings. The semi-automated method however, in addition
to the high percentage of correct mappings can significantly reduce the number of
concepts that need validation by the user. However, in the worst case, where each
concept is involved in at least one inconsistency, validation of all concepts is required.

4 Approximating the Intended Interpretations Iteratively

The semantic morphism can be considered as a similarity function between ontology
concepts and WordNet senses. For the computation of this similarity, as already
explained, the s-morphism takes into account the vicinity VC of each ontology concept
C. The vicinity includes the concepts directly related to C, together with their
intended meaning,

For instance, to compute the intended interpretation of the concept “Infrastructure”
of the ontology depicted in Fig. 4, the algorithm has to take into account the intended

Fig. 4. Example ontology

 Extending HCONE-Merge 205

meanings of the concepts “Installation”, “System” and “Transportation”. However, to
compute the intended meaning of “Installation”, the algorithm has to take into
account the intended meaning of the concept “Infrastructure”. As it is pointed in [10],
this recursive dependency requires non-standard computation means. This problem
has been approached by Bisson [11] and Euzenat [10] as an equation system where
the similarity values are the solutions.

Given the ontology O1 in Fig. 4, the following system of equations has to be
solved:

1. fs(system,{(infrastructure, Sinfrastructure)})=Ssystem

2. fs(installation,{(infrastructure, Sinfrastructure)})=Sinstallation

3. fs(infrastructure,{(system,Ssystem),(installation,Sinstallation),
 (transportation,Stransportation)}=Sinfrastructure

4. fs(transportation,{(infrastructure, Sinfrastructure)})=Stransportation

As it has been proposed in [10], given the recursive nature of these computations,
we can still find the intended meaning of each concept through an iterative process
that finds the most nearest reachable fixed point of a vector function. The iteration
produces a sequence of vectors of tuples ((C1,S1)… (Cn,Sn)), where each vector is an
even more precise approximation of each concept’s intended meaning.

Given the above formalization, the algorithm proposed in [10] works as follows:
The initial approximation is based on the lexicalization of each concept (i.e. on 0-
level contributors). The approximations at step (n+1) are computed using the
vicinities computed in step n.

Using a variation of the above algorithm, the intended meanings of concepts are
computed iteratively as shown in Table 2:

Table 2. The computation of the approximation

Repeat the following process until there is no change in the intended meaning of any
concept in the ontology.

1. For each ontology concept C do the following:
 1.1. For each concept in the vicinity V of C

In case there is no meaning associated to this concept
compute the initial approximation based on its lexicalization

1.2. Repeat the following until there is no change in the approximation
computed for the concept C
1.2.1 Compute the mapping of C

using the approximations of concepts in V
1.2.2 Re-compute the approximations of concepts in V

 changing only the approximation of C

The computation of the approximation of each concept’s meaning (i.e. the internal
loop in 1.2. that computes the approximated meaning of a concept C based on the
concepts in its vicinity) converges after two or three iterations. According to our
experiments, independently of the size of the ontology, the algorithm finds a fixed
point for the set of concepts in the ontology in the second iteration, improving the
precision of the resulted mappings.

206 G.A. Vouros and K. Kotis

5 Results

We have run experiments, using the proposed algorithm, with the ontologies shown in
Fig. 5, Fig. 6, and Fig. 7.

For instance, running the algorithm for the version of the Transportation ontology
O1 in Fig. 5, we have observed the following results for the concept “car”: In the first
approximation for this concept, given the initial approximations of all concepts in its
vicinity, the algorithm computed the semantic morphism:

fs(Car,{(MotorVehicle, SMotorVehicle), (Ambulance, SAmbulance), (Bus, Sbus)}

The computation of this morphism returned the sense:

Scar = car, auto, automobile, machine, motorcar -- 4-wheeled motor vehicle,

In the second run for this concept, the algorithm found the same result, and
therefore, this has been assumed to be concept’s “car” intended meaning, given the
meanings of the concepts in its vicinity. Traversing the ontology for a second time
and re-computing the semantic morphism for the concept “car”, given the new
approximations of the concepts in its vicinity, the following results were returned for
each iteration:

S’car = cable car, car -- a conveyance for passengers or freight on a cable railway;
S’car = car, auto, automobile, machine, motorcar -- 4-wheeled motor vehicle;

1

Transportation
19 concepts

73% precision

2

Transportation
14 concepts

78% precision

Fig. 5. Ontologies O1, O2

Facility
Vessel
Truck
Transporter
Lorry

 Facility
 Vessel
 Truck

 Extending HCONE-Merge 207

The precision for “uncovering” concepts’ intended interpretation (in comparison to
the meaning given by the engineer that devised these ontologies) is shown under each
ontology snapshot. Concepts with incorrect mappings are shown within callouts
drawings, attached to each snapshot.

3

Academia
48 concepts

75% precision

4

Academia
5 concepts

60% precision

5

Academia
7 concepts

57% precision

Fig. 6. Ontologies O3, O4, O5

Person
Worker
Chair (2)
Administrative Staff
Director
Clerical Staff
Systems Staff
Organization
School
Department
College

 Organization
School

College

 Organization
School

208 G.A. Vouros and K. Kotis

Fig. 7. Ontologies O6, O7, O8

The computation for this concept converged in the third run. So, even if the first
sense S’car was different (and it is not the intended one) from the one found in the first
iteration for the ontology, the algorithm converges again after two iterations to the
intended concept meaning.

 For the same ontology, similar results are given for the concepts “means”,
“infrastructure”, and “craft”. The rest of the concepts do not change in the second
iteration for the ontology. Therefore, the algorithm converges to a fixed point solution
for the set of concepts in the second iteration for the ontology.

 From the first experiments with ontologies O1, O2, and O3, an average precision of
74% was concluded. However, we have been experimented with variations of these
ontologies in order to investigate the behaviour of the algorithm in a controlled
manner.

6

Academia
27 concepts

96% precision

7

Academia
28 concepts

92% precision

8

Academia
29 concepts

93% precision

Person
Person
School

 Extending HCONE-Merge 209

The ontologies O4 and O5 include a small set of concepts for which the iterative
algorithm did not converge to their intended meaning. For the ontology O4 these are
the concepts “organization” and “school” and for the ontology O5 the same concepts
in addition to the concept “college”. The rest 3 ontologies O6, O7 and O8 are
variations of the ontology O3, and include a small percentage of concepts for which
the algorithm did not compute their intended meaning (Fig. 7).

 In more detail, the low precision achieved for the ontologies O4 and O5 is due to
the failure of the algorithm to compute the correct mappings for the concepts
“organization”, “school” and “college”. These concepts have not been mapped to
their correct senses for O3 as well. To explore the case that some concept mappings to
WordNet cannot be “uncovered”, we have experimented with different variations of
the O3 ontology. For instance, we have run experiments with variations of O3 that
include concepts from ontologies O3, O4, and O5, which have been correctly mapped
to WordNet, together with concepts whose computed intended meanings are not
correct. Such a variation is the ontology O6. This includes the concept “person” of O3,
whose mapping was not correct. The precision of mapping the ontology O6 to
WordNet is 96%, due to the wrong mapping of the concept “person”.

 The addition of the concept “school” – chosen from the set of concepts of O3 with
wrong mappings - to ontology O6, results to the ontology O7. The precision of the
algorithm for this ontology is 92% due to the wrong mappings of the concepts
“person” and “school”.

 Given that the sense SGraduate school computed for the concept “graduate school” in
O3 is the correct one, we may add this concept in ontology O7 as a sub-concept of
“school”. This has happened in ontology O8 where the vicinity of the concept
“school” has been increased with the concept “graduate school”. Although the
algorithm computes the correct mapping for the concept “graduate school” in this
new ontology, the algorithm computes a non-intended meaning for the concept
“school”.

 The above experiments show that the performance of the algorithm can not be
improved, even if the concepts in the vicinity of the ontology concepts with wrong
mappings increase. The same happens even when the “distant” concepts (not
included in the vicinity) change.

6 Conclusions

Towards automating the HCONE-merge method for merging ontologies, this paper
proposes a method for aligning the original ontologies with a hidden intermediate
ontology in a fully automated way. Actually, the alignment is done by mapping
ontology concepts to WordNet senses. These senses are supposed to express the
human oriented informal intended meanings of ontology concepts.

 The algorithm proposed is based on previous efforts to approximate similarities
between concepts in an iterative way and, as it has been shown, produces mappings
that are quite precise. Furthermore, the algorithm converges fast; in two or three
iterations requiring no extensive computational time.

210 G.A. Vouros and K. Kotis

 The results provided from our case studies show that the algorithm behaves
according to our intuitions and is stable: The computations it produces do not change
in case the vicinity of a concept does not change radically and do not change even if
the ontology, but not the vicinity of the concept, changes. Therefore, the computation
for an ontology is not drastically affected by “distant” concepts. This result agrees
with the requirement on dependencies between concepts’ similarities within
ontologies: The matching of a pair of concepts must depend on their local context and
not to the entire ontology. However, concepts in the vicinity of a concept C must
gather information from their own vicinity and further contribute such information to
the computation of C’s intended meaning.

 Problems arise from the stability of the algorithm even for these concepts whose
mapping is not correct. Experiments so far have not shown the exact reason for this to
happen. However, future work concerns the combination of different information
sources, except WordNet, for computing the intended meaning of such concepts.

References

1. Uschold M. and Gruninger M.: Creating Semantically Integrated Communities on the World
Wide Web. Invited Talk, Semantic Web Workshop, WWW 2002 Conference, May, (2002)

2. Giunchiglia F. and Shvaiko P., Yatskevich M.: S–Match: An Algorithm and
Implementation of Semantic Matching. The Semantic Web: Research and Applications,
Lecture Notes in Computer Science, Vol. 3053, Springer-Verlag, (2004) 61-75

3. Kalfoglou Y. and Schorlemmer M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1):1-31 (2003)

4. Madhavan J., Bernstein P. A., and Rahm E.: Generic schema matching with Cupid. VLDB
Journal (2001) 49-58

5. Doan A., Madhavan J., Domingos P., and Halvey A.: Learning to map between ontologies
on the semantic web. In Proc. Of WWW-02, 11th InternationalWWW Conf., Hawaii
(2002)

6. Noy N. and Musen M.: A. M.: PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of 7th National Conference on AI, Austin (2000)

7. Kotis K. and Vouros G. A.. HCONE-Merge approach to ontology merging. The Semantic
Web: Research and Applications, Lecture Notes in Computer Science, Vol. 3053,
Springer-Verlag (2004) 137-151

8. Kotis K., Vouros G. A., Stergiou K.. Capturing Semantics towards Automatic
Coordination of Domain Ontologies. To appear at the 11th International conference of
Artificial Intelligence: Methodology, Systems, Architectures - Semantic Web Challenges -
AIMSA 2004, Varna, (2004)

9. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman. Indexing by
Latent Semantic Analysis. Journal of the American Society of Information Science (1990)

10. Jérôme Euzenat, Petko Valtchev, Similarity-based ontology alignment in OWL-Lite,
Ramon López de Mantaras, Lorenza Saitta (eds), Proc. 16th european conference on
artificial intelligence (ECAI), Valencia (ES), pp333-337, 2004

11. Gilles Bisson. Learning in FOLwith similarity measure. In Proc. 10th American AAAI
conference, San-jose (CA US), 1992

12. Ghidini C., Giunchiglia F. A semantics for abstraction. In Proceedings of the 16th
European conference on Artificial Intelligence (ECAI-04) Valencia, 22-27 August 2004

Soundness of Schema Matching Methods

M. Benerecetti1, P. Bouquet2, and S. Zanobini2

1 Department of Physical Science – University of Naples – Federico II
Via Cintia, Complesso Monte S. Angelo, I-80126 Napoli (Italy)

bene@na.infn.it
2 Department of Information and Communication Technology – University of Trento

Via Sommarive, 10 – 38050 Trento (Italy)
{bouquet, zanobini}@dit.unitn.it

Abstract. One of the key challenges in the development of open semantic-based
systems is enabling the exchange of meaningful information across applications
which may use autonomously developed schemata. One of the typical solutions
for that problem is the definition of a mapping between pairs of schemas, namely
a set of point–to–point relations between the elements of different schemas. A lot
of (semi-)automatic methods for generating such mappings have been proposed.
In this paper we provide a preliminary investigation on the notion of correctness
for schema matching methods. In particular we define different notions of sound-
ness, strictly depending on what dimension (syntactic, semantic, pragmatic) of
the language the mappings are defined on. Finally, we discuss some preliminary
conditions under which a two different notions of soundness (semantic and prag-
matic) can be related.

1 Introduction

One of the key challenges in the development of open semantic-based systems is en-
abling the exchange of meaningful information across applications which may use
autonomously developed schemata (database schemata, classifications, even directory
trees on file systems in peer-to-peer applications) for organizing locally available data.
The typical solution for that problem is the definition of a mapping between pairs of
schemas, namely a set of point–to–point relations between the elements of different
schemas. As in open system a beforehand agreement on the meaning of schemata seems
impossible in practice, a large number of methods and systems have been proposed in
order to (semi-)automatically compute on fly such mappings1. The resulting mappings
are then used as the basis for a runtime semantic-based coordination of such a network
of autonomous applications.

Methods may differ along many dimensions: the type of structures to which they
can be applied (e.g., trees, directed acyclic graphs, graphs); the type of result they re-
turn (e.g., similarity measures, model-theoretic relations, fuzzy relations); the resources
they use to compute such a relation (e.g. external lexical resources, ontologies, string

1 A very partial list includes [15, 14, 12, 11, 4, 6, 10, 2, 5, 9, 3]. A detailed description of these
methods is out of the scope of this paper.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 211–225, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

212 M. Benerecetti, P. Bouquet, and S. Zanobini

manipulators, graph matching techniques, instance-based techniques). In this paper, for
reasons that will be explained in detail, we are mostly concerned with a class of meth-
ods that we call semantic methods. The general intuition underlying semantic methods
is that they aim at discovering relations between (pairs of) entities belonging to different
schemata based on the meaning of the two entities. However, beyond this point, there
is a significant disagreement on what characterizes a semantic method from a non se-
mantic method. For example, recent papers by Giunchiglia and Schvaiko [7, 8] propose
to include among semantic methods only those methods that directly return a seman-
tic relation (e.g., material implication or logical equivalence), namely a relation with a
well-defined model-theoretic interpretation. This analysis is far from being shared in the
community, as other people feel that a method is semantic if it uses semantic informa-
tion to return its results, or if there is a principled way to assign an indirect semantics to
its results (e.g., mapping numerical values on semantic relations through the definition
of suitable thresholds).

In such a situation, it is not surprising that we still lack a clear definition of the
conditions under which a semantic method can be said to work “correctly”. Suppose,
for example, that we have a method α that takes in input two nodes nA and nB from
two schemata SA and SB respectively and returns True if the two nodes represent
equivalent concepts, False otherwise. Now, imagine that α is fed with the categories
/IMAGES/TUSCANY/FLORENCE and /PHOTOS/ITALY/FLORENCE2 belonging to two clas-
sification schemata, and that it returns True. Is the result “correct”? Why? And what if
the result were False? Under what conditions would we accept this result as “correct”?

This paper aims at answering this kind of questions. First, we propose a simple the-
oretical model which allows us to classify methods for schema matching in three broad
categories (syntactic methods, semantic methods, and pragmatic methods). Then we
turn our attention to semantic methods, and propose a characterization of these meth-
ods and a notion of (semantic) soundness. Semantic methods have the advantage that
are computationally quite good, but we’ll argue that in general they do not guarantee to
capture the intuitive notion of a “good” schema matching method. We then introduce
a notion of pragmatic methods (and the corresponding notion of soundness), and argue
that they more closely corresponds to what is intuitively expected by a schema match-
ing method. However, we also show that in general they can’t be effectively computed.
Therefore, in the last part of the paper we try to identify some very general conditions
under which a semantically sound method can guarantee pragmatic soundness as well,
which is – in our opinion – the best we can get from a semantic method for schema
matching.

2 The Problem of Schema Matching

Schema is a broad term, that applies to different kinds of structures. In [3], it was ar-
gued that it makes no much sense to speak about schema matching in general, and

2 Throughout the paper we will use the notation X/ . . . /Y to refer to a path in schema in analogy
with the notation for paths in a file system. If the schema is a tree, then / represent the root
node and X/ . . . /Y the unique path from X to Y.

Soundness of Schema Matching Methods 213

that the analysis should be done case by case along the dimension of the intended
use of a schema. Accordingly, in this paper we restrict our attention to a special kind
of schemata, hierarchical classifications, whose explicit purpose is to classify objects
(e.g., documents). This restriction does not affect the generality of our investigation, as
the method of analysis can be applied to study the problem of matching other types of
schema, such as database schemata, service descriptions, datatypes.

We start with a few definitions that characterize the kind of schemata we deal with,
namely topic hierarchies used as classification schemata.

Definition 1 (Topic hierarchy). Let Λ be a set of labels (e.g., words in natural lan-
guage). A topic hierarchy S = 〈K,E, l〉 is a triple where K is a finite set of nodes, E
is a set of arcs on K, such that 〈K,E〉 is a rooted tree, and l is a function from K to Λ.

Two simple examples of topic hierarchies are depicted in Figure 1.

MOUNTAINBEACH MOUNTAIN BEACH

ITALY

IMAGES

TUSCANY

IMAGES

ITALY

LUCCA FLORENCELUCCA FLORENCE

TUSCANY

IMAGES IMAGES

equivalentless than

Fig. 1. Two simple topic hierarchies

A possible use for topic hierarchies is to classify documents. To express this for-
mally, we introduce the notion of classification function.

Definition 2 (Classification function). Let D be a set of documents and S a topic
hierarchy 〈K,E, l〉. A classification function over S is a function τ : D → K from
documents to nodes of S.

A classification function places a document under a node in a topic hierarchy. We asso-
ciate to each classification function a retrieval function, which is a function from nodes
to the sets of documents attached to them in a topic hierarchy. It essentially plays the
inverse rôle of the classification function.

Definition 3 (Retrieval function). Let D be a set of documents, S = 〈K,E, l〉 a topic
hierarchy, and τ a classification function over S. The retrieval function of τ over S is a
function μτ : K → 2D satisfying the following condition:

for every d ∈ D, d ∈ μτ (τ(d))

Finally, we can define a hierarchical classification (hereafter HC) simply as a topic
hierarchy with an associated classification function τ . Formally:

Definition 4 (Hierarchical classification). Given a set of documents D, a hierarchical
classification H = 〈S, τ〉 is a pair where S is a topic hierarchy and τ is a classification
function over S.

214 M. Benerecetti, P. Bouquet, and S. Zanobini

Schema matching can be defined as the problem of computing relations between
pairs of nodes belonging to different HCs. Let * be a set of relations that may hold
between two nodes belonging to two distinct schemata SA and SB . Then a mapping is
defined as follows:

Definition 5 (Mapping). A mapping MA→B between two HCs HA = 〈SA, τA〉 and
HB = 〈SB , τB〉 is a set of triples 〈nA, nB , r〉, where:

– nA and nB are two nodes belonging to SA and SB , respectively;
– r ∈ * is a relation between nA and nB .

Each triple 〈nA, nB , r〉 belonging to a mapping is called a mapping element.
Finally, as our goal is to discuss properties of schema matching methods, we for-

mally define a method as a function which returns true when a given relation holds
between two elements of different schemata, false otherwise:

Definition 6 (Schema Matching Method). Let MA→B be a mapping between two
HCs HA and HB . A schema matching method α : MA→B → {T, F} is a function
from mapping elements to boolean values.

Of course, it is more natural to view a method as a function which takes two nodes
as input and returns a relation as output. Here we adopt this more abstract (but after all
equivalent) characterization as it is more appropriate for our analysis.

3 A Three-Layer Model of Schema Matching

Before we proceed with our discussion of soundness for schema matching methods,
we discuss a simple model which can help us in clarifying what the task of schema
matching is from a theoretical point of view.

In a schema matching task, there are three levels that can be taken into account (see
Figure 2):

Language level: the language level is the level of expressions (an alphabet and a gram-
mar to build more complex expressions) that can be used to label a schema. Such a
language is used to “publish” information about a schema, and possibly to exchange
information about the schema with other applications. Therefore, by definition, this
level must be publicly accessible. If we do not make any assumption on such a
language, then labels should be regarded as mere syntax, with no special meaning.
Therefore, if we restrict our analysis to this level, the only kind of mapping that can
be found is purely syntactic, and the only information that can be used to compute
such a mapping has to do with the syntactic properties of the strings that are used to
label nodes, and their arrangement in the schema. However, as we will argue, there
are good reasons to assume that labels are meaningful expressions (typically natu-
ral language terms), and this has important consequences on how they are treated
in schema matching methods.

Soundness of Schema Matching Methods 215

Syntactic
mapping

Semantic

mapping

Pragmatic

mapping
set of

objects
set of

objects

PRIVATE

PUBLIC

PUBLIC

S S

conceptual
representation

of schema

conceptual
representation

of schema

World

Subjects

Schemas

Fig. 2. Three level of schema matching

Concept level: at the concept level, we find a collection of concepts that correspond
to the intended meaning of nodes in a schema. Intuitively, this level corresponds to
what the creator (or the users) of a schema “had in mind” when the schema was
created (or when the schema is used). The main difference between the language
level and the concept level is that concepts are not directly accessible, and therefore
cannot be used to publish a schema or to convey information about a schema. As
a consequence, a schema matching method can compute a mapping between con-
cepts only indirectly , e.g. by making conjectures about the most plausible interpre-
tation of labels. However, this is clearly the level at which most schema matching
methods aim, as we are typically interested in the relation between “meanings” and
not between syntactic structures.

Object level: at the object level, we find the objects themselves, namely the objects that
the schema is supposed to organize. For HCs, the relevant objects are documents,
namely the entities that are associated to nodes in a classification schema, and a
mapping may be a set-theoretic relation between pairs of sets of documents. Objects
are by definition publicly available. However, as we will argue, the fact that the set
of documents associated to a node in a schema is, for example, a subset of the set of
documents associated to a node in another schema does not tell us much about the
concepts associated to the two sets. In particular, it can’t even tell us that, whatever
the relevant concepts are, one subsumes the other, as it may well be that the two
sets are not sufficiently representative.

Given these three levels, we can imagine three broad classes of methods: (i) syntac-
tic methods, namely methods that use only information at the language level to compute
mappings across schemata; (ii) semantic methods, namely methods that use only infor-
mation at the conceptual level; and pragmatic methods, namely methods that use only
information at the object level. In practice, very few methods can be said to belong
to a single category, and for good reasons. For example, as we said, most syntactic
methods are (often implicitly) based on the assumptions that labels are meaningful (or
even natural language expressions), and this justifies for example the use of thesauri
that would not be allowed otherwise (if two nodes PICTURES and PHOTOS were mere
abstract labels, what would be the justification for exploiting the idea of synonymy to

216 M. Benerecetti, P. Bouquet, and S. Zanobini

match them?). However, and even more important, semantic methods – as we will ar-
gue in detail – must start from the language level, as concepts cannot be represented
directly; and thus moving from the language level to the concept level is a crucial step
for any real world semantic method.

In the rest of the paper, we will disregard purely syntactic methods, as they are of
little use in most applications of schema matching3. We will focus on semantic and
pragmatic methods. For each of them, we will provide a precise characterization and a
notion of soundness.

4 Soundness of Semantic Methods

Semantic methods are methods which return mappings across concepts associated to
nodes in two (or more) schemata. As we argued in the previous section, semantic meth-
ods are intrinsically based on two macro steps:

Semantic elicitation: this step takes as input a linguistic description of a node in a
schema and returns a representation of its meaning in terms of conceptual represen-
tation. As the idea is to design computer-based matching methods, such a meaning
must be expressed by some formal object of a logical type, corresponding to the
logical type of the node’s intended meaning. Notationally, if n is a node in a HC,
then T (n) denotes the formal representation of its meaning;

3 A simple example will illustrate this claim. Consider the two simple abstract schemata below:

A

B

C D

F

C D

?

A

and compare the problem of discovering mappings between nodes of the two abstract schemata
with the problem of discovering mappings across schemata with meaningful labels like those
in 1. Nodes in abstract schemata do not have an implicit meaning, and therefore, whatever
technique we use to map them, we will find that there is some relation between the two nodes
labeled D in the two schemata, which depends only on the abstract shape of the two schemata.
The situation is completely different for schemata with meaningful labels, as we can make
explicit a lot of information that we have about the terms which appear in the graph, and their
relations (e.g., that Tuscany is part of Italy, that Florence is in Tuscany, and so on). It is this
kind information which allows us to understand why the semantic relation between the two
nodes labeled MOUNTAIN and the two nodes labeled FLORENCE is different, despite the fact
that the two pairs of schemata are structurally equivalent, and both are structurally isomorphic
with the pair of abstract schemata. Indeed, for the first pair of nodes, the set of documents we
would classify under the node MOUNTAIN on the left hand side is a subset of the documents we
would classify under the node MOUNTAIN on the right; whereas the set of documents which we
would classify under the node FLORENCE in the left schema is exactly the same as the set of
documents we would classify under the node FLORENCE on the right hand side.

Soundness of Schema Matching Methods 217

Semantic comparison: given two nodes n and m belonging to different HCs, a se-
mantic method must return a relation which connects the concepts expressing the
meanings of the schema elements under comparison. Such a relation must in turn
have an interpretation defined with respect to the meaning of the compared ele-
ments.

So, according to the first step, a semantic method should explicitly interpret the ele-
ments of a HC as concepts, and provide a corresponding formal representation of type
concept (e.g., using some Description Logic language [1]). For example, the meaning
of the nodes FLORENCE of right and left hand side of schemas of Figure 1 approximately
corresponds to the two concepts “Images of Florence in Tuscany” and “Images of Flo-
rence in Italy”. Notice that a schema describing how a web service works (basically,
a finite state automaton) should be interpreted in a completely different way, as nodes
would represent states that can be reached through actions associated to arcs.

In the second step, a semantic method is supposed to return a relation between con-
cepts (e.g., subsumption, equivalence, and so on). Notice that here we will privilege
classical model-theoretic relations, though it is possible to work with fuzzy-theoretic
relations between concepts. Going back to the example of Figure 1, the relation be-
tween the two nodes FLORENCE (interpreted as concepts) is that they are equivalent. We
note that, in this case, determining the relation between the two concepts intuitively re-
quires to use further knowledge w.r.t. the one extracted from the two schemata – namely
that Tuscany is in Italy. In the following, we will refer to this (possibly external) further
knowledge as the ontology associated to a method. In analogy to what we said above,
a relation between elements of two service description schemata would be completely
different.

We are now ready to provide a formal notion of soundness for semantic methods.
Given the two semantic steps discussed above, a semantic method α is defined by: (i) a
language L suitable to explicitly represent the meaning of each schema element, (ii) a
procedure for extracting the meaning of each element n (T (n)), (iii) a (possibly empty)
ontology O expressing knowledge about the domain , and (iv) a set of relations * to
be computed between pairs of nodes. The 4-tuple 〈L,O, T (),*〉 is what we call the
semantic frame of the method.

We now propose a notion of semantic soundness and completeness of a semantic
schema mathcing method with rtespect to a semantic frame F . The intuition is the fol-
lowing: a method is semantically sound w.r.t. F if, whenever it computes a relation
between two elements of distinct schemata, the relation follows from what the method
knows about the meaning associated to the two elements; and is semantically complete
if, whenever one of the relations in * between the meaning of two nodes follows from
what the method knows, then the method effectively returns that relation. More for-
mally:

Definition 7 (Semantic Soundness). Let F = 〈L,O, T (),*〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically sound w.r.t. F if
and only if for any mapping element 〈nA, nB , r〉 the following holds:

if α(〈nA, nB , r〉) = T, then O |=L T (nA) r T (nB)

218 M. Benerecetti, P. Bouquet, and S. Zanobini

Definition 8 (Semantic Completeness). Let F = 〈L,O, T (),*〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically complete w.r.t. F
if and only if for any two nodes nA and nb the following holds:

if O |=L T (nA) r T (nB), then α(〈nA, nB , r〉) = T

Though these notions of semantic soundness and completeness seem reasonable, it
should be quite evident that they do not seem to capture what we have in mind when we
say that a method is correct. Indeed, what we would like to say is that a method is sound
when it computes the “right” relation between two elements, namely the relation that
follows from the “correct” interpretation of the schemata and from the use of the “right”
background knowledge. Instead, what the definitions above says is only that, given an
ontology and a formal representation of the meaning of two nodes, then a semantic
method is sound if and only if it derives only relations that logically follows from the
background knowledge provided by its ontology. But this is tantamount as saying that
a semantic method is sound if and only if the reasoner used to compute the relation
between meanings is sound and complete, which would be a very trivial result. Indeed,
imagine a dummy method that associate the same concept k to all the elements of two
HCs, and always returns the equivalence relation for any pair of nodes (for all k ∈ S
and k′ ∈ S ′, α(k, k′,≡) = T). Since any concept is always equivalent to itself, then
this method is semantically sound. But is this method of any interest?

Intuitively, the problem is that semantic soundness as we defined it (and a similar ar-
gument can be done for completeness) does not say anything about the appropriateness
of the meaning elicitation performed by the method and on the relation between the
meaning of nodes and the available ontology. In short, semantic soundness is a neces-
sary but not sufficient condition to capture the intuitions we have about the correctness
of a method. What we need as a sufficient condition is a way for excluding dummy
methods like the one described above, namely methods that build arbitrary interpreta-
tions and use non pertinent knowledge about the meaning of schema elements.

However, this is an extremely tough problem not only in schema matching, but
in general for any semantic theory based on formal logic. Indeed, as we know from
classical results (see e.g. the model-theoretic argument discussed by the philosopher
H. Putnam in [13]), there’s nothing we can do to prevent unintended interpretations of
a formal language. The form in which Putnam discusses this problem is the following:
even if two agents agree on the truth value of all the sentences of a language L (includ-
ing modal propositions on the necessity of propositions), this is not sufficient to fix the
interpretations of the terms they use, which means that they may still be talking about
different things. From Putnam’s argument, we can derive an even stronger condition:
even if subjects shared the function connecting the conceptual level to the linguistic
level (and therefore they agreed on the conceptual representation of any statement at
the language level), nothing assures us that the function connecting the semantic level
to the pragmatic level is also shared. This means that two agents may agree at the con-
ceptual level, but not at the pragmatic level.

Applying this considerations to schema matching methods means that even if we
can guarantee that a method is semantically sound and complete, there is nothing that
guarantees that (i) the two elements were correctly interpreted, and (ii) even if they were
correctly interpreted, that the relation between the two nodes is the one we expect.

Soundness of Schema Matching Methods 219

To sum up, assuming the existence of sound reasoners (SAT, DL reasoners, and so
on), it seems relatively to come up with a semantically sound method. But this notion
of soundness seems to be of little use if we cannot guarantee some form of pragmatic
soundness. Let us turn now to this notion.

5 Soundness of Pragmatic Methods

A pragmatic method is a method which returns mappings across schema elements
which depend on some relation between the sets of objects associated to the schema
elements themselves. If we restrict our analysis to HCs, a pragmatic method is a method
which computes relations between HC nodes through the analysis of set-theoretic re-
lation between the sets of documents actually classified under the two nodes. The in-
tuition underlying pragmatic methods is the following. Suppose we have a collection
D of documents, and that a user is required to classify them into two different HCs.
Then, if two nodes in two HCs have the “same” meaning, then we may expect that the
user will classify the same set of documents under the two nodes; and if the meaning of
a node is subsumed by the meaning of another node, then the user will classify under
the first node a subset of the documents classified under the second node; and so on.
Following this intuition, a pragmatic method may work backward and try to infer the
relation between the meaning of two nodes from the relation between the collections of
documents associated to the nodes themselves.

In the following, we shall try to make this intuition more precise. Let us first in-
troduce a notation to refer to the set of documents classified under (all the nodes in)
a subtree of a topic hierarchy, instead of a single node. The reason is the following.
Consider the the right hand side pair of HCs in Figure 1. If we want to compare the
nodes labeled TUSCANY and ITALY in the two HCs, it will not be in general suffi-
cient to consider only the documents specifically classified under those two nodes. We
should take into account the whole set of documents classified under all nodes belong-
ing to the subtrees rooted in those two nodes. Indeed, any document classified under
node FLORENCE is also implicitly classified under node TUSCANY (resp., node ITALY).
What one expects in this case is that the set of documents classified in the subtree
rooted in TUSCANY be a subset of the set of documents classified in the subtree rooted
in ITALY. To capture this intiotion, we introduce the notation μτ (n ↓) to denote the
set of documents classified under a subtree rooted at the node n. More formally, let
n↓= {k ∈ K | k is a descendant of n} denote the set of nodes in the subtree rooted at
n, then μτ (n↓) =

⋃
m∈n↓ μτ (m).

Let D be a set of documents and * a set of relations between sets of documents
(for example, * = {=,⊆,⊇,⊥}, where ⊥ means disjoint). Furthermore, imagine that
a classifier classifies all documents of D in two different HCs (HA and HB). Then a
first tentative definition of pragmatic soundness could be the following:

Definition 9 (Strong Pragmatic Soundness). Let HA and HB be two HCs and α a
semantic method. Then α is strongly pragmatically sound if for any mapping element
〈nA, nB , r〉 (with r ∈ *) the following holds:

if α(〈nA, nB , r〉) = T then μτ (nA↓) r μτ (nB↓)

220 M. Benerecetti, P. Bouquet, and S. Zanobini

Intuitively, this means that if a semantic method α discovers a relation r between two
nodes nA and nB , then the corresponding set-theoretic relation r also holds between the
sets of documents classified by the function τ in the subtree rooted at the nodes nA and
nB

4. Notice, however, that this definition presupposes two very strong assumptions:

1. the set D must be the set of all possible documents. Indeed, it may well happen that
the set of documents actually classified is not sufficient to discriminate between
some set-theoretical relations, such as ⊂ and =. In other words, it be may the case
that the set of documents considered is not enough to tell two nodes apart, while
they will be if we had had more documents available;

2. each document can be classified in a unique way. This is not the case in gen-
eral, as documents are typically rich objects, and can be classified under different
categories, depending on what aspects of the document are taken as the relevant
ones for a given classification task. For example, this paper could be classified
under different categories (e.g. SEMANTIC INTEROPERABILITY, ONTOLOGY
INTEGRATION, SCHEMA MATCHING, FORMAL MODELS), and each of these
categories would reflect a legitimate point of view on the paper. Therefore, even if
two categories in two different HCs – populated by the same classifier – are seman-
tically related, we can’t guarantee that the sets of documents classified under those
two categories will be in the same relation.

To overcome the second assumption, we provide a weaker notion of pragmatic
soundness, which can take into account the possibility that a classifier (human or au-
tomatic) can legitimately classify the same document under different categories. To
capture this intuition, we first introduce the following finer notion of classifier:

Definition 10 (Classifier). A classifier C is a set of classification functions {τi}.

Associating a set of classification functions to a classifier allows us to capture the
fact that it can classify the same set of document in different ways. Therefore, when
populating a topic hierarchy, we allow classifiers to employ any of their classification
functions. Intuitively, the set {τi} can be seen as a set of “acceptable” classification
functions, in the sense that the classifier will be prepared to accept classifying a doc-
ument under a given node if there is a classification function belonging to {τi} which
would classify that document under the same node.

Based on the definitions above, we can now attempt a second definition of prag-
matic soundness which, we believe, is the best we can expect from a schema matching
method. Intuitively, we say that a schema matching method is pragmatically sound if
whenever it derives a relation r between two nodes nA and nB , a classifier would con-
sider this result as “acceptable” according to the possible ways he could classify a set
of documents. By “acceptable” here we mean that whatever set of documents C has
actually placed under nA and nB (using one of his classification functions), C could

4 With an abuse of notation, we use the symbol r to refer both to the (semantic) relation com-
puted by a semantic method and the relation which holds between sets of documents. We rely
on the intuitive mapping between semantic relations (say, subsumption between concepts) and
set-theoretic relations between their interpretation (for subsumption, it would be set inclusion).

Soundness of Schema Matching Methods 221

have placed under nA, using a possibly different admissible classification function, a
set of documents in the same relation r with the set of documents actually placed under
nB . This intuition is captured by the following definition:

Definition 11 (Pragmatic Soundness). Let C be a classifier, and HA and HB be
two HCs. A method α is pragmatically sound w.r.t. C if, for any mapping element
〈nA, nB , r〉, the following holds: if α(〈nA, nB , r〉) = T , then for any classification
τ2 of C there is a classification τ1 of C such that, for any r ∈ *, μτ1(nA↓) r μτ2(nB↓).

Notice that while this definition allows us to relax the second assumption, the first
assumption is still needed to allow for a sensible notion of soundness, and seems to be
much harder relax.

Summarizing, differently to semantic methods, pragmatic methods seem to provide
meaningful answers, at least in principle. On the other hand, due to the need to satisfy
assumption 1, sound pragmatic methods do not seem to be possible in practice.

6 Can Semantic Methods be Pragmatically Sound?

The point we reached can be described as follows. On the one hand, it seems relatively
easy to design and implement semantically sound methods, but the answer they provide
can be of little use, as we can’t guarantee its pragmatic adequacy. On the other hand,
pragmatic methods can provide a provably adequate answer, but they can’t be computed
in real cases, due to the strong requirements they presuppose. The solution seems to be
either trivial or impossible.

A possible way out of this situation would be to take the advantages of the two
methods, while avoiding their drawbacks. This essentially amounts at (i) defining a
schema matching method which is semantically sound (as it is ‘easy’ to design), and
(ii) to create the conditions under what such method is, at the same time, pragmatically
sound (as it provides ‘meaningful’ results). In this section we provide some preliminary
conditions under which such a result would be possible.

In definition 10 we define a classifier as a set of classification functions. In real
cases, we expect that there is a rationale behind the classification tasks of any ‘rea-
sonable’ classifier. In other words, we expect that classifiers perform their task based
on their knowledge about the documents to be classified and about the available cate-
gories. As an example, we expect that a classifier τ classifies a document d (say, a photo
of Florence) under a node PHOTO/FLORENCE, or under a node PHOTO/TUSCANY (if the
classifier knows that Florence is in Tuscany), and not, say, under a node BOOK/ANIMAL.
In other words, a classifier classifies a documents with respect to the meaning it as-
sociates to the documents. Furthermore, we expect that in presence of both the nodes
PHOTO/FLORENCE and PHOTO/TUSCANY, the classifier classifies the document d under
the node PHOTO/FLORENCE and not under the node PHOTO/TUSCANY. Essentially, we
expect the classifier classifies the documents in the more specific node. When a classi-
fier respect such constraints, is said to be pragmatically competent. Such competence
intuitively represents a sort of bridge between the semantic and pragmatic spheres: it
says that a document is classified w.r.t. the intended meaning the classifier associates
to documents itself.

222 M. Benerecetti, P. Bouquet, and S. Zanobini

Formally, let D = {d1, d2, . . .} be the set of all the documents. Furthermore, let
M = {φ1, φ2, . . .} be the set of all the intended meanings that can be associated to
documents in D. As an example, we could say that the document dk ∈ D is the present
paper, and that dk can be associated with the intended meaning ‘semantic web’ (e.g.,
the topic of the paper), or with the intended meaning ‘paper of 2004’ (e.g., the year
when the paper has been written), or the intended meaning ‘submitted paper’ and so on.
We assume all these meanings are contained in M . Notationally, we write φτj ,dk ∈ M
for indicating the intended meaning in M used by the classification function τj for
classifying the document dk.

Definition 12 (Pragmatic competence). Let C = {τi} be a classifier, and FC =〈
LC ,OC , T C(),*C

〉
be a semantic frame. C is pragmatically competent w.r.t FC if,

for any structure H, for any document dk ∈ D, for any node n ∈ H and for any
classification function τj ∈ C, the following holds:

if d ∈ μj(n) then:

a) OC |=LC
T C(n) - φτj ,dk

b) for no other node m ∈ H, OC |=LC
T C(m) - φτj ,dk and T C(n) - T C(m)

The definition above simply requires that a competent classifier classifies documents
w.r.t. the intended meaning (requirement a) and under the most specific nodes (require-
ment b). In particular, a document is classified under a node n if the meaning associated
to the document entails the meaning of that node, and if no more specific node m exists
into the structure. As an example, imagine our document dk is a photo of some church in
a city of Tuscany (Italy), say Lucca. Imagine that the classifier τj associates the intended
meaning ‘photo of Lucca’ to the document dk, say φτj ,dk . Furthermore, imagine that
the meaning of the node TUSCANY of right hand schema of Figure 1 (T C(TUSCANY)) is
‘images of Tuscany’. Then, the classification function τj is competent if it classifies the
document dk in the node TUSCANY, as a ‘photo of Lucca’ is also an ‘image of Tuscany’
(requirement a) and it doesn’t exist any other more specific node where to classify the
document5 (requirement b).

A important consequence of Definition 12 is the following:

Proposition 1. Let C = {τi} be a pragmatic competent classifier w.r.t. a semantic
frame FC =

〈
LC ,OC , T C(),*C

〉
. Then, given any two nodes nA in HA and nB in

HB , for any r ∈ *C the following holds: if OC |= T C(nA) r T C(nB) then for any
classification function τ1 ∈ C, there is another τ2 ∈ C such that μτ1(nA↓) r μτ2(nB↓).

Proposition 1 simply states that if a classifier C associate a set of documents to some
node nA, and nA is in a certain relation r with a second node nB w.r.t. the semantic
frame FC , then C must be prepared, possibly by employing some other acceptable
classification function of his (namely, a compatible classification function), to classify
under the nA a set of documents holding the same relation r with the set of documents
attached to nB . Notice that Proposition 1 is an immediate consequence of Definition 12.

5 The other node where is possible to classify the node, according to the requirement a, is the
node IMAGES. But this is less specific than the node TUSCANY.

Soundness of Schema Matching Methods 223

Assume now we have a semantically sound matching method α which can answer
whether a semantic relation between two nodes holds or not. In this section we try to
answer the question of what condition can guarantee that a sound semantic method α is
also pragmatically sound6. We can state the following proposition:

Proposition 2. Let F = 〈L,O, T (),*〉 be a semantic frame, α a method semantically
sound w.r.t. F , and C = {τi} a pragmatically competent classifier with respect to a
semantic frame FC =

〈
LC ,OC , T C(),*

〉
. If O " OC and T C(.) = T (.), then α is

pragmatically sound. Moreover, if |C| = 1, then α is strongly pragmatically sound.

The proposition states that if (i) α is semantically sound, (ii) the ontology used by
α is subsumed by a pragmatically competent classifier knowledge (i.e., it is a sound
but not necessarily complete representation of the classifier knowledge), and (iii) the
meaning assigned to the nodes by T C(.) and T (.) is the same (namely, for any node
m of any schema S, |= T C(m) ≡ T (m)), then α is also pragmatically sound. If, in
addition, (iv) the classifier always uses the same classification function, then clearly α
is also strongly pragmatically sound.

The first part of the proposition immediately follows from Proposition 1 and Defi-
nitions 7 and 11. The second part descends from Proposition 1 and Definitions 7, and
9. A sketch of proof follows. Since any relation between concepts that can be deduced
from a less specific ontology (O) can also be deduced by a more specific one (OC),
Condition (i) toghether with Condition (ii) ensure that any relation discovered by the
method α would also be inferred by any classifier. Moreover, if C is a pragmatically
competent classifier, whatever classification function τ he has used to place documents
under node nA and nB , by Proposition 1 there must be another acceptable classification
function τ ′ of C using which C would have placed under nA a set of documents holding
the relation r with those placed by τ under nB . Hence pragmatice soundness follows.
Adding the additional constraint that the classifier only allows for a single classification
function, immediately leads to strong pragmatic soundness.

Let us now briefly comment on the conditions we needed to guarantee pragmatic
soundness of a semantic matching method. Condition (i) is quite easy to ensure, as
we already pointed out in Section 4. A logic framework powerful enough to express
the desired semantic relations between the concepts of interest, for which decidability
is guaranteed will suffice. Condition (ii) seems to be a relatively weak requirement.
This is an important observation, since providing a method with complete knowledge
with respect to a classifier is likely to be a very hard task, let alone the problem of
providing complete knowldge with respect to any classifier. Even though the first two
conditions seem to be reasonably easy to satisfy, Condition (iii) turns out to be quite
strong, as it states that we must determine the ‘right’ meaning (with the respect to
the one assigned by the classifier) of each schema element. Notice that weakening the
condition on the semantic elicitation functions is problematic. Indeed, a condition as
|= T (m) " T C(m) (which states that the meaning associated to each schema element
by the matching method is consistent with the meaning associated to the same element

6 The problem of pragmatic completeness is significantly harder and out of the scope of this
paper. We will not discuss it here.

224 M. Benerecetti, P. Bouquet, and S. Zanobini

by the classifier) preserves the soundness only with respect to the disjointness (⊥).
Unfortunately, it doesn’t hold with respect to none of the other relations we have been
considering in the paper (",-,≡).

7 Conclusions

The consequence of Proposition 2 is that semantic methods can be guaranteed to obtain
pragmatically correct results under conditions (i)–(iii) (also (iv) if we want strong prag-
matic soundness). As condition (i) is quite trivial, we can conclude that the roadmap to
correct semantic methods is quite clear: (a) we need to build ontology which reflect the
classifier’s (or the user’s) point of view on the world (OC " O) and (b) we need to de-
sign tools that interpret a schema element as the user interprets it. These two problems
are not trivial, but they can be addressed with well-known methods belonging to disci-
plines like ontology engineering and knowledge representation. Ontology engineering
can help us to design better ontologies, e.g. ontologies that appropriately represent what
am individual or a community knows on a given domain; knowledge representation
gives us methods for representing the meaning of different types of schemata, beyond
classifications.

To conclude, we see our work as a small step towards a much more general goal,
namely the construction of a theory which explains how semantically autonomous en-
tities (agents) can communicate without presupposing a beforehand agreement on how
things should be represented. In other words, a theory of the role of meaning coordi-
nation in a theory of (inter)action. A lot remains to be done, but this goes beyond the
scope of this paper.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook. Theory, Implementation and Appli-
cations. Cambridge University Press, January 2003.

2. Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Record, 28(1):54–59, 1999.

3. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach and an
application. In K. Sycara, editor, Second International Semantic Web Conference (ISWC-
03), Lecture Notes in Computer Science (LNCS), Sanibel Island (Florida, USA), October
2003.

4. Jeremy Carroll and Hewlett-Packard. Matching rdf graphs. In Proc. in the first International
Semantic Web Conference - ISWC 2002, pages 5–15, 2002.

5. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of WWW-2002, 11th International WWW Conference,
Hawaii, 2002.

6. J. Euzenat and P. Valtchev. An integrativive proximity measure for ontology alignment.
Proceedings of the workshop on Semantic Integration, October 2003.

7. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering Review
Journal, 18(3):265–280, 2003.

Soundness of Schema Matching Methods 225

8. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an implementation
of semantic matching. In Proceedings of ESWS, pages 61–75, 2004.

9. Ryutaro Ichisem, Hiedeaki Takeda, and Shinichi Honiden. Integrating multiple internet di-
rectories by instance–base learning. In AI AND DATA INTEGRATION, pages 22–28, 2003.

10. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with
cupid. In The VLDB Journal, pages 49–58, 2001.

11. Tova Milo and Sagit Zohar. Using schema matching to simplify heterogeneous data transla-
tion. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 122–133, 24–27 1998.

12. Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker. Matching hierarchical structures
using association graphs. Lecture Notes in Computer Science, 1407:3–??, 1998.

13. H. Putnam. Reason, Truth, and History. CUP, 1981.
14. Jason Tsong-Li Wang, Kaizhong Zhang, Karpjoo Jeong, and Dennis Shasha. A system for

approximate tree matching. Knowledge and Data Engineering, 6(4):559–571, 1994.
15. K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undirected acyclic

graphs and related problems. In Z. Galil and E. Ukkonen, editors, Proceedings of the 6th
Annual Symposium on Combinatorial Pattern Matching, volume 937, pages 395–407, Espoo,
Finland, 1995. Springer-Verlag, Berlin.

Debugging and Semantic Clarification by
Pinpointing

Stefan Schlobach

Department of Computer Science,
Vrije Universiteit Amsterdam, The Netherlands

schlobac@few.vu.nl

Abstract. Ontologies are the backbone of the Semantic Web as they al-
low one to share vocabulary in a semantically sound way. For ontologies,
specified in OWL or a related web ontology language, Description Logic
reasoner can often detect logical contradictions. Unfortunately, there are
two drawbacks: they lack in support for debugging incoherence in ontolo-
gies, and they can only be applied to reasonably expressive ontologies
(containing at least some sort of negation).

In this paper, we attempt to close these gaps using a technique called
pinpointing. In pinpointing we identify minimal sets of axioms which need
to be removed or ignored to turn an ontology coherent. We then show how
pinpointing can be used for debugging of web ontologies in two typical
cases. More unusual is the application of pinpointing in the semantic
clarification of underspecified web ontologies which we experimentally
evaluate on a number of well-known web-ontologies. Our findings are
encouraging: even though semantic ambiguity remains an issue, we show
that pinpointing can be useful for debugging, and that it can significantly
improve the quality of our semantic enrichment in a fully automatic way.

1 Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they allow “intel-
ligent agents” to share information in a semantically unambiguous way, and to
reuse domain knowledge (possibly created by external sources). However, this
makes SW technology highly dependent of the quality, and, in particular, of the
correctness of the applied ontology. Two general strategies for quality assurance
are predominant, one based on developing more and more sophisticated ontol-
ogy modeling tools, the second one based on logical reasoning. In this paper we
will focus on the latter. With the advent of expressive ontology languages such
as OWL and its close relation to Description Logics (DL), non-trivial implicit
information, such as the is-a hierarchy of classes, can often be made explicit by
logical reasoners. More crucially, however, state-of-the art DL reasoners can effi-
ciently detect incoherences even in very large ontologies. The practical problem
remains what to do in case an ontology has been detected to be incoherent.

Suppose, for example, that an academic researcher wants to make information
about his work available in OWL on the Internet. In the spirit of the Semantic

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 226–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Debugging and Semantic Clarification by Pinpointing 227

Web, he refers to an existing external ontology about research environments us-
ing the ontology cerif at [5]. Studying it with an available ontology browser,
he finds that the available classes are very useful and that the hierarchy corre-
sponds to his intentions. Unfortunately, the connected logical reasoner tells him
that both the concepts Faculty and Institute are unsatisfiable. What is he sup-
posed to do? Things are even more difficult when our researcher tries to use two
or more different ontologies with multiple ownership. As an example, assume
that you want to use both the SUMO and the CYC upper ontologies in a single
document. Unfortunately, this attempt leads to over 1000 unsatisfiable concepts.

A second obstacle is that ontologies are often specified in a very limited way.
Even though the OWL representation language offers high expressiveness most
state-of-the-art online ontologies use fragments of minimal expressiveness.1 The
most prominent example is when the modeling ignores disjointness information of
atomic classes, as this renders most logical method for quality assurance useless.2

This means that, in order to re-introduce logical methods for quality control, we
need to semantically enrich the ontology first.

To summarize, to ensure the quality of web-ontologies, there are two major
problems to be solved: We call semantic clarification the process of automat-
ically enriching ontologies by appropriate disjointness statements which rein-
troduces the logical functionality in the process of ontological quality control.
Secondly, even though incoherences in ontologies might be detected easily, there
is usually little support for the identification and elimination of the modeling
errors, a problem we call debugging. Debugging is a non-trivial process as it is
not unusual to deal with over 700 unsatisfiable classes in real applications.

This paper intends to give a qualitative analysis over the potential of non-
standard reasoning techniques for debugging and semantic clarification. For this
purpose, we propose a method called pinpointing. Pinpointing is a pragmatic
and rather simple technique based on debugging methods we introduced in [16]
and boils down to ignoring those ontological axiom which are most likely to be
responsible for the incoherence. Before plunging into a more theoretical study of
this simple type of reasoning with inconsistency we decided to empirically study
the practical effect of pinpointing in the Semantic Web. For this purpose we dis-
cuss two applications of pinpointing for debugging of ontologies, as introduced
in the two previously described scenarios. First, there is the most obvious case of
published ontologies which are originally incoherent, and secondly, we consider
incoherence as a result of the merging of two or more ontologies. To assess the
application of pinpointing for semantic clarification we undertook a number of
experiments. We automatically create disjointness statements for “underspeci-
fied” ontologies by assuming that all the direct siblings in a well-defined is-a

1 Consider that not even 10% of the ontologies in [5] contain negation.
2 Inconsistencies in an ontology can be caused by erroneous use of a variety of different

language constructs, such as cardinality or role restrictions. The most common reason
is disjointness of concepts, though, and we will focus on this class of problem in this
paper. None of the described techniques, however, depends on, or is restricted to
this particular kind of inconsistencies.

228 S. Schlobach

hierarchy should be disjoint. In practice, this assumption is often too strong,
and introducing these disjointness statements usually results in a hugely inco-
herent ontology. We show that, by applying our pinpointing strategy, we can
often reduce the number of erroneous disjointness statements significantly.

The main contribution of this paper is threefold: we combine previously
known debugging techniques into a framework called pinpointing, which we
present and evaluate in the Semantic Web context. Moreover, we show that
the application of pinpointing can significantly improve the quality of semantic
clarification, a process which in itself is useful for quality assurance of ontologies.

The remainder of this paper is organized as follows: after a brief overview of
related work, we give the formal notion of pinpointing in Section 3. In Section 4
we describe three typical cases of pinpointing for debugging of web ontologies.
Finally, Section 5 describes our experiments on Semantic Clarification.

2 Related Work

The building of ontologies has been discussed extensively in the literature, and
many links can be found on the W3C website [18] about modeling methodology
and ontology languages. For Description Logics the handbook [1] is an excellent
reference. Explanation has been an issue in the DL community for several years,
but most papers, such as [3], deal with subsumption. The number of papers
dealing with theoretical studies of reasoning with inconsistency is enormous (just
to mention [9, 15]). Our approach in this paper, however, is more humble, as we
only investigate the effect of a simple reasoning strategy in an empirical way.

From a more practical point of view, closest to our work are the Chimaera and
PROMPT tools ([10] and [12]), which provide support for the merging, analysis
and diagnosis of a knowledge base but not, to our knowledge, for debugging.
The techniques, that we use to calculate our minimal incoherence preserving
sub-TBoxes (MIPSs), however, are similar to those introduced in [2], where the
authors use Boolean minimization to calculate minimal inconsistent ABoxes to
construct an implicit minimal model for defaults. Finally, our work on semantic
clarification is based on the ideas of [4].

3 Pinpointing in Web Ontologies

This paper is about debugging incoherent ontologies in the Semantic Web, i.e.,
about detection and elimination of logical contradictions in machine-readable
formalisations of the shared vocabulary of a particular application domain. We
first explain our use of the term ontology and formally define what we mean by
incoherence, before introducing our debugging methodology.

3.1 Ontologies in the Semantic Web

In recent years, several semantic web languages have been developed to support
the integration of ontologies, and OWL has now been accepted as the recommen-

Debugging and Semantic Clarification by Pinpointing 229

dation of the W3C as the standard web ontology language [18]. It builds on the
XML surface syntax, XML Schema datatypes, the RDF datamodel and RDFS se-
mantics for hierarchies of classes and properties, and it adds more vocabulary to
build complex classes and properties. Among others it provides relations between
classes, cardinality, enumeration of individuals and Boolean operators. An OWL
ontology consists mainly of axioms and facts, where the latter describe proper-
ties of individuals and where the former associate classes and properties with
possibly complex information. Examples for OWL axioms in the abstract syntax
are Class(Mollusk partial Invertebrate) and disjointWith(Mollusk Worm Arthro-
pod) which states that mollusks are invertebrates but not worms or arthropods.
In this paper, we will focus on axioms, and other language constructs available
in OWL. OWL has a number of predecessor languages, such as DAML, OIL and
DAML-OIL, and many ontologies currently available are simply defined in RDF
or RDFS [8]. For the purpose of this paper, we make no distinction between the
different types of ontologies and refer to any online collection of axioms in one of
the above formalisms as a web ontology. On top of RDF, OWL is also rooted in
other frameworks such as frames and Description Logics (DL). The connection
to DL is useful, as it provides model-theoretic semantics with formally defined
reasoning, for which there are several highly optimized and efficient reasoners.

Description Logic Reasoning for Ontologies. We shall not give a formal
introduction to Description Logics here, but point to Chapter 2 of [1]. Briefly,
DLs are set description languages with concepts, interpreted as subsets of a do-
main, and roles, interpreted as binary relations. In this paper, we will also use
the terms concepts (roles) and classes (properties). In a terminological compo-
nent T (called TBox), the interpretation of concepts can be restricted to the
models of T by defining axioms of the form C"̇D, where C and D are con-
cepts.3 Based on this formal model-theoretic semantics, a TBox can be checked
for incoherence, i.e., whether there are unsatisfiable concepts; concepts which
are necessarily interpreted as the empty set in all models of the TBox. Other
reasoning services include subsumption of two concepts (a subset relation w.r.t.
all models of T). Subsumption and incoherence are standard reasoning services
available in all DL reasoners, such as FaCT [7] and RACER [6]. Although a
DL reasoner can classify an ontology and check for the existence of unsatisfiable
concepts efficiently, they offer little support for the detection and elimination of
errors, i.e., for debugging.

In [16], we proposed a first step to close this gap by introducing a method
to explain the incoherence using the notions MUPS, MIPS and cores, which we

3 Although the definitions and methods in this paper are quite general, the algorithms
we implemented and applied in the experiments are restricted to unfoldable ALC
TBoxes. ALC is a simple yet relatively expressive DL with conjunction (C
D), dis-
junction (C �D), negation (¬C) and universal (∀r.C) and existential quantification
(∃r.C). A TBox is called unfoldable if the left-hand sides of the axioms are atomic,
and if the right-hand sides contain no direct or indirect reference to the defined
concept [11]. Overall, we will not consider assertional components in this paper.

230 S. Schlobach

will recall in the following section. But this is not sufficient for debugging, as we
will have to repair an incoherent ontology before being able to use it. In Section
3.3 we propose a strategy for fixing the incoherence by pinpointing.

3.2 Explaining Logical Incoherences

In this section, we study ways of explaining incoherences in DL terminologies.
The idea is to simplify a terminology T in order to reduce the available informa-
tion until only the cause of the incoherence remains. More concretely, we exclude
axioms that are irrelevant to the incoherence.

To debug an incoherent terminology, we have to identify and eliminate
debugging-relevant axioms, where an axiom is relevant if a contradictory TBox
becomes coherent once the axiom is removed or, at least, a particular, previ-
ously unsatisfiable concept becomes satisfiable. Consider the following (incoher-
ent) TBox T1, where A,B and C are primitive and A1, . . . , A7 defined concept
names:

ax1 : A1 �̇ ¬A
 A2
 A3 ax2 : A2 �̇ A
 A4

ax3 : A3 �̇ A4
 A5 ax4 : A4 �̇ ∀s.B
 C

ax5 : A5 �̇ ∃s.¬B ax6 : A6 �̇ A1�
ax7 : A7 �̇ A4
 ∃s.¬B ∃r.(A3
 ¬C
 A4)

The set of unsatisfiable concept names as returned by a complete DL reasoner
is {A1, A3, A6, A7}. Although this is still of manageable size, it hides crucial
information, e.g., that unsatisfiability of A1 depends on unsatisfiability of A3,
which is incoherent because of the contradiction between A4 and A5. We will
use this example to explain our explanation methods.

Unsatisfiability-preserving sub-TBoxes of a TBox T and an unsatisfiable con-
cept A are subsets of T in which A is unsatisfiable. In general, there are several
of these sub-TBoxes: and we select the minimal ones, i.e., those containing only
axioms that are necessary to preserve unsatisfiability.

Formally, let A be a concept which is unsatisfiable in a TBox T . A set T ′ ⊆ T
is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T if A is unsatisfi-
able in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′. We will abbreviate
the set of MUPS of T and A by mups(T , A). MUPS for our example TBox T1

and its unsatisfiable concepts are:

mups(T1, A1)= {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T1, A3)= {{ax3, ax4, ax5}}
mups(T1, A6)= {{ax1, ax2, ax4, ax6},

{ax1, ax3, ax4, ax5, ax6}}
mups(T1, A7)= {{ax4, ax7}}

MUPS are useful for relating unsatisfiability to sets of axioms but are also the
basic ingredients for the calculation of Minimal Incoherence Preserving Sub-
terminologies, which are the smallest subsets of an original TBox preserving
unsatisfiability of at least one atomic concept.

Debugging and Semantic Clarification by Pinpointing 231

Formally, let T be an incoherent TBox. A TBox T ′ ⊆ T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every
sub-TBox T ′′ ⊂ T ′ is coherent. We will abbreviate the set of MIPSs of T
by mips(T). For our example terminology T1 we get three MIPSs mips(T1) =
{{ax1, ax2},{ax3, ax4, ax5}, {ax4, ax7}}. It can easily be checked that each of
the three incoherent TBoxes in mips(T1) is indeed a MIPS since taking away a
single axiom renders each of the three coherent. The first one signifies, for ex-
ample, that the first two axioms are already contradictory without reference to
any other axiom, which suggests a modeling error already in these two axioms.

Minimal incoherence-preserving sub-TBoxes identify the smallest sets of TBox
axioms that cause the original TBox to be incoherent. In terminologies such as
DICE, which are created through migration from other representation formalisms,
there are several such sub-TBoxes, each corresponding to a particular contra-
dictory terminology. Cores are now sets of axioms occurring in several of these
incoherent TBoxes. The more MIPSs such a core belongs to, the more likely it
is that axioms are the cause of contradictions.

Formally, a non-empty intersection of n different MIPSs in mips(T) (with
n ≥ 1) is called a MIPS-core of arity n (or n-ary core) for T . Every set containing
precisely one MIPS is, at least, a 1-ary core. The most interesting cores of a
TBox, T , are those with axioms that are present in as many MIPSs of T as
possible, i.e., having maximal arity. On the other hand, the size of a core is also
significant, as a larger core indicates that clusters of axioms cause contradictions
in combination only. In our example, axiom ax4 occurs both in {ax3, ax4, ax5}
and {ax4, ax7}, which makes {ax4} a core of arity 2 and size 1 for T1, which is
the core of maximal arity in this example.

There is no unique way of deciding which axioms in the MIPS are the most
relevant for the incoherence. Our approach is pragmatic: we assume that an
axiom is more likely to be erroneous the more often it occurs in the set of MIPS.
Therefore, we look for cores with maximal arity.

The general definitions of MUPS, MIPS and cores do not depend on a par-
ticular ontology language and can easily be extended to include facts about
individuals. However, the algorithms we implemented are restricted to unfold-
able ALC terminologies. It was shown in [16] that the problem of calculating
MIPS for an ALC terminology is in PSPACE. Nevertheless, in our experience
calculating all the MIPS was practically feasible in all but a few cases.4 This is
due to the relatively simple structure of the ontologies we considered. For more
complex cases, approximative methods need to be investigated. Similarly, check-
ing elements of mips(T) for cores of maximal arity requires exponentially many
checks in the size of mips(T). For efficiency reasons, we therefore currently only
check for cores of size 1.

4 The overall run-times for the experiments described in Section 4 and 5 were minutes
rather than hours even for the most complex ontologies.

232 S. Schlobach

3.3 A Strategy for Fixing Incoherences

MIPSs, MUPS and cores do not offer an immediate recipe for fixing an inco-
herent web ontology. For web ontologies we propose a strategy which iteratively
calculates the cores (of size 1) of maximal arity, repeating the process on the
remaining MIPSs. Moreover, the algorithms for MIPS and MUPS have been im-
plemented for terminological debugging of ALC terminologies. To apply them to
web ontologies we need some preprocessing. Given a web ontology O we apply
the following steps:

1. Remove the ABox, as well as property statements and axioms where the
left-hand side is non-atomic.

2. Replace equivalence statements by implications
3. Collect all implications C " D1,. . . , C " Dn in a single conjunction C "

D1 · · · Dn.
4. Call the resulting terminology T (not necessarily unfoldable)

The strategy for automatically fixing the incoherences by pinpointing is then as
follows; calculate:

1. the set Unsat(T) of unsatisfiable concept-names in T using RACER;
2. the MUPS mups(T , CN) for all concept-names CN ∈ Unsat(T);
3. the MIPSs mips(T) for T from the MUPS;
4. let M := mips(T), P (O) = ∅. Now calculate while M �= ∅:

(a) the core {ax} of M of size 1 with maximal arity, and add it to P (O);
(b) remove from M the mips containing ax.

5. P (O) will be called the pinpoint of O.
6. Finally, remove P (O) from T .

The pinpoint of the ontology O is a set of axioms in the preprocessed version.
Every axiom corresponds precisely to a concept-name (because of step 3) or is
a disjointness statement. By the pinpoint of an ontology, we will therefore refer
both to sets of axioms as well as to sets of concept and disjointness statements.
Note that for debugging and semantic clarification, we often focus on these
pinpoints. This is because there is usually only a handful of those as compared
to hundreds of MIPSs, which can be quite complicated. However, in practice,
MIPSs will always have to be consulted if one wants to understand the underlying
reasons for incoherence of an ontology.

Fixing an ontology by pinpointing offers a simple solution to the incoher-
ence problem since by adjusting or removing the information about the pin-
points we can guarantee to the restoration of logical coherence with (almost)
minimal intrusion in the ontology. Pinpoints correspond to hitting-sets [14] for
the MIPS, but they are not necessarily minimal. Take, as example, a set M =
{{ax1, ax2}, {ax3, ax4}, {ax5, ax1}, {ax5, ax3}} of MIPS, with {ax5, ax1, ax3} as
possible pinpoint, even though {ax1, ax3} is a miminal covering set for M . On
the other hand, it has to be remarked that calculating minimal hitting-sets from
the set of MIPS is NP-complete, as compared to linear time to calculate pin-
points from the MIPS.

Debugging and Semantic Clarification by Pinpointing 233

We evaluated our strategy of debugging of web ontologies by pinpointing on a
number of applications. The goal of our experiments was twofold, first to assess
some case studies on more typical applications of debugging, but also to put
forward a more unconventional approach to resolving semantic ambiguity that
we claim can be supported by our proposed methods.

4 Debugging Web-Ontologies by Pinpointing

Pinpointing was initially developed for debugging of the medical terminology
DICE. To evaluate whether the method use useful for and scales to web ontologies
we looked at two case studies: first, importing an unsatisfiable ontology, and,
secondly, merging several ontologies.

4.1 Import an Institute and Ignore the Faculty:

Remember our introductory example from the academic, who plans to use the
cerif ontology, which defines two concepts in unsatisfiable ways. This exam-
ple demonstrates the simplest application of debugging by pinpointing, namely
when a user wants to import an incoherent ontology. Our suggested strategy
for debugging is as follows: whenever we detect an incoherence in an ontology
we trace down the most likely source of the logical contradiction by calculating
the pinpoint for it. For the cerif ontology there are two MIPSs with a single
concept Faculty occurring in both, i.e., the pinpoint contains only Faculty. This
tells us that the source of the logical incorrectness of the definition of Institute
is probably the incorrect definition of Faculty. At least theoretically, this would
allow the user to “rescue” the Institute class, by overwriting or simply ignoring
the Faculty concept.

Although the cerif is a real-world example, incoherent ontologies are rarely
published on-line. In contrast, debugging at creation or migration time is quite
typical. Let us describe how pinpointing was used when the DICE terminology
was migrated from frames to a Description Logics representation.

4.2 Is a Physical Quantity Temporal or Mathematical?

The previous example illustrated the use of debugging by pinpointing of a single
ontologies. Most people, however, will use several ontologies and in this case,
might be even more likely to encounter incoherence. In the Introduction we
mentioned the example of using both the SUMO and CYC upper ontologies. As they
are topic-related, and as CYC provides disjointness statements, there is indeed
a high number of unsatisfiable concepts. Let us define our observation in more
detail, starting with a description of the ontologies.

– SUMO: the Suggested Upper Merged Ontology is an upper level ontology sug-
gested by the IEEE Suggested Upper Ontology Working group. It was cre-
ated by the Teknowledge Corporation and was made publicly available at
http://ontology.teknowledge.com [17].

234 S. Schlobach

– CYC: OpenCyc is the open source version of the Cyc technology, “the world’s
largest and most complete general knowledge base.” CYC includes about 6,000
concepts – an upper ontology for all of human consensus reality – and 60,000
assertions about the 6,000 concepts, interrelating them, constraining them,
in effect (partially) defining them. http://www.opencyc.org. [13]

In our experiments we removed the unique name-spaces from both SUMO and
CYC and syntactically merged the two ontologies. We then used RACER to check
for coherence, which resulted in an un-ordered list of 1093 unsatisfiable concepts.
Initially this seems to be a discouraging result. However, the pinpoint of the joint
ontology contains only 4 concept names Event, Product, Entity and Tuple. This
is surprising as it means that we can ensure coherence of the merged ontology
by ignoring (or fixing) the axioms defining Event, Product, Entity and Tuple.

Let us try to get a better intuition for the problem. Each of the four concepts
defined by the axioms in the pinpoints occur in contradictions in a variety of
different combinations of other concepts. Let us look at one of the MIPSs, here in
form of the derivation of one of the contradictions, namely of the concept Physi-
calquantity. Here, the upward derivation stems from the SUMO hierarchy and the
downward derivation from CYC, as a Physicalquantity is defined as a quantity
in SUMO and a Scalarinterval in CYC. A contradiction occurs as the class Math-
ematicalOrComputationalThing is defined to be disjoint from Temporalthing in
CYC. Interestingly enough it is definition of the concept Entity as a Temporalth-
ing that is to be ignored by our strategy, which is what constitutes one of the
“philosophical” difference between the SUMO and CYC ontologies.

Temporalthing
Somethingexisting

Entity

Abstract
Quantity

Physicalquantity

Scalarinterval
NTupleinterval

Tuple
MathematicalObject

Mathematicalthing
MathematicalOrComputationalThing

For the naive user of the two ontologies, the practical benefit of pinpointing
is immediate. Discarding the axioms defining the four elements of the pinpoint
will directly render the ontology coherent and all the remaining 1089 previously
unsatisfiable concepts satisfiable, and therefore usable again. This restores most5

of the useful reasoning facilities which users have learned to expect from their
ontology development tools.

5 Removing the axioms obviously has side effects. In the case of the concept Entity
this implies that none of the descendants of Entity can be classified as a TEMPO-
RALTHING any more. In this sense a certain CYC view of the world predominates.

Debugging and Semantic Clarification by Pinpointing 235

5 Semantic Clarification by Pinpointing

To improve the quality of the DICE terminology, the developers migrated a frame-
based to a DL-based representation. For this purpose, they made a number of
very strong assumptions, as they had to decide on the semantic interpretations of
operators such as slot-fillers or super-classes. One of the main issues was to make
disjointness between classes explicit. In the frame-based version of DICE, it is
impossible, for example, to state that nothing can be both a Liver and a Kidney,
i.e., that the classes are disjoint. However, a controlled medical terminology
should prohibit the definition of a particular organ as a subclass of Liver Kidney.
In [4] Cornet and Abu-Hannah discuss a number of assumptions they base their
migration on. The most interesting for this paper is the:

Strong Disjointness Assumption (SDA): In a well-modeled termi-
nology the direct siblings, i.e. children of a common parent in the sub-
sumption hierarchy should be disjoint.

In a Semantic Web application, we face a similar dilemma as in the migra-
tion of DICE. Many publicly available ontologies have been created by migration
from frame-based representations, but usually, relatively weak a priori assump-
tions were made in the migration process (such as not including any disjointness
statements). In this paper, we propose a more rigid migration strategy that
should help the user end up with a version of his/her ontology where at least
some basic disjointness relation between atomic concepts has been established.
This is achieved by applying the Strong Disjointness Assumption and using a
mechanism to deal with exceptions. In our case, this mechanism is based on
pinpointing. Let us describe the general strategy.

5.1 The Strategy for Semantic Clarification

Given a semantically weakly specified ontology O (without disjointness state-
ments) we, first, add all possible disjointness statements according to the SDA
to O before debugging the ensuing incoherences by pinpointing. More formally
this consists of the following steps:

1. Use RACER to classify O.
2. Let D = {{C1

1 , . . . , C1
n1
}, . . . , {Cm

1 , . . . , Cm
nm
}} be the set of all sets of concept

names which have at least one common parent in the subsumption hierarchy.
3. The set sug disj(O)= {disjoint(C1

1 , . . . , C1
n1

), . . . ,
disjoint(Cm

1 , . . . , Cm
nm

)} contains all the disjointness statements suggested
given the SDA.

4. Add sug disj(O) to O to create the possibly incoherent O∗ = O∪sug disj(O).
5. Calculate the pinpoint P (O∗) for O∗ = O∪sug disj(O)
6. Remove the disjointness statements D ∈ P (O∗) from O∗ to make it coherent.

236 S. Schlobach

5.2 Experiments

To evaluate clarification by pinpointing we applied our strategy on ontologies,
first, to assess the quality of the added disjointness statements given our strong
disjointness assumption, and secondly, to study how much pinpointing can im-
prove on these results. We do this in three steps, first, we evaluate the relation
of the size of an ontology with the damage inflicted on the ontology by adding
disjointness statements. Secondly, we look at the quality of the disjointness state-
ments themselves. Finally, we check whether more information improves the se-
mantic clarification. First, however, we discuss the data used for the experiments.

The Data (Web Ontologies): The problem with an evaluation such as ours
is that it requires domain knowledge to evaluate the quality of the disjointness
statements. Therefore, we focused on general knowledge ontologies and on on-
tologies describing domains where we have some expertise (such as soccer). We
used the following ontologies:

– MGED: provides standard terms for the annotation of microarray experiments
in order to enable structured queries on those experiments;

– UNSPSC: a translated version of the Universal Standard Products and Ser-
vices Classification Code which provides an open, global multi-sector stan-
dard for efficient, accurate classification of products and services;

– soccer: “concepts that are specific to soccer: players, rules, field, supporters,
actions, etc. Used to annotate videos.” [5]

– SUMO: (as described above);
– MILO: a midlevel ontology that acts as a bridge between the high-level ab-

stractions of the SUMO and the low-level detail of the domain ontologies;
– Eco: an ontology describing properties specific to the economy;
– Trans: an ontology of terms about transportation-related information;
– Gov: an ontology of government concepts;
– Geo: an ontology of geography.

The last 6 ontologies were all made available by the Teknowledge Corporation
and more details can be found at [17]. Most information for the last 4 ontologies
is taken from the CIA World Fact Book (2002), but many other sources are used.

Question 1: Is the Size of an Ontology Relevant for Semantic Clar-
ification? In the first set of experiments, we wanted to study what role the
structure and size of an ontology plays when adding disjointness statements for
clarification. For this purpose, we added disjointness statements to the ontolo-
gies described above and calculated the set of unsatisfiable concepts and the
MIPSs. We take a high number of unsatisfiable concepts and many MIPSs as an
indicator that the Strong Disjointness Assumption is inadequate for the given
ontology. Table 1 gives an overview of the number of implications (the only ax-
ioms we consider), the number of disjointness statements created, the number of
unsatisfiable concepts in the ontology with the disjointness statements, and the
number of MIPSs.

Debugging and Semantic Clarification by Pinpointing 237

Table 1. Adding disjunctions to web ontologies

O = MGED UNSPSC soccer SUMO MILO Eco Trans Gov Geo

#axioms 370 9795 194 669 1764 409 455 50 417
#disj 34 1463 40 169 342 60 89 12 82
#Unsat(O∗) 72 0 0 175 46 213 145 0 11
#mips(O∗) 42 0 0 149 59 154 189 0 22

Note that we have small ontologies which become incoherent and that the
big ontology UNSPSC remains coherent even after adding over 1000 disjoint-
ness statements. It shows that the size of an ontology is not the main fac-
tor in semantic clarification. There is not even a unique pattern for the 4
specialized ontologies provided by Teknowledge: whereas the geography ontol-
ogy Geo has only very few (11) unsatisfiable concepts, there are now 89 un-
satisfiable concepts in the transportation ontology Trans which is of similar
size, although one would expect comparable modeling. It is clear that a more
careful analysis is needed, taking a closer look at the created disjointness
statements.

Question 2: How Useful are Disjointness Statements? In the next step
of the experiments, each of the created disjointness statements was evaluated
by a human assessor as true or false. In some cases, the evaluators did not have
enough domain knowledge so the numbers do not always add up. Unfortunately,
we could not further experiment with UNSPSC and MILO because of their size
and we did not consider MGED because of our lack of expert knowledge. Table 2
summarizes the results for the evaluation of the quality of the created disjointness
statements and our pinpointing based debugging method.

Remember that the soccer ontology soccer and both Gov and GEO were
coherent when adding the disjointness statements so that, obviously, no MIPS
could be found. Astonishingly, there is again a big discrepancy between the
Trans and the Geo ontology, which does not even disappear after removing the
pinpointed disjointness statements. It is difficult to see the reasons for this odd
behavior of two ontologies that are, in principle, of a very similar structure,
size and pedigree, but we suppose that it is due to differences in modeling. We
look now at some examples to get a better understanding of what might go
wrong.

Error Analysis: The soccer ontology adds a level of structure to the class of
players by separating goalkeepers, other players and substitutes. This, however,
is strange modeling practice, as goalkeepers can be substitutes. The disjointness
statement (disjoint Goalkeeper OtherPlayer Substitute) which would be added
by our clarification strategy would therefore be erroneous. As we do not have
more information about goalkeepers and substitutes, this error cannot be found
using our pinpointing strategy.

In the Geo ontology volcanoes and upland areas are both classified as land-
forms, which suggests the addition of (disjoint . . . UplandArea Volcano) (we will

238 S. Schlobach

Table 2. Evaluating the Quality of the Disjointness Statements

O = soccer SUMO Eco Trans Gov Geo

#disj 40 169 60 89 14 82
#false disj 5 63 14 49 7 19
#unknown 0 8 0 17 0 8
#correct disj 35 98 46 23 7 55
#correct in % 87% 60% 76% 31% 50% 74%
#improved by removing P (O) 0 25 5 15 0 5
#correct after improving in % 87% 76% 85% 52% 50% 81%

refer to this statement as DISS) according to our clarification strategy. Here, pin-
pointing can help, as we now have an unsatisfiable concept VolcanicMountain
with two MIPSs {Mountain, Volcano, VolcanicMountain, DISS} {UplandArea,
Mountain, VolcanicMountain, DISS}, and a subsequent pinpoint DISS.6 What
this suggests is the following: pinpoints can be useful when there is enough spe-
cialized knowledge to make the exceptions to the disjointness statements explicit.
In the above case, this is the knowledge about a volcanic mountain, which is both
an Upland and a Volcano, helps us find the error.

The observation that more specialized knowledge helps to improve the qual-
ity of the pinpointing leads us to a final round of experiments on the SUMO
ontology.

Question 3: Does More Knowledge Help Debugging? To assess the claim
that additional information can make pinpointing more successful, we com-
bined SUMO with the more specialized ontologies MILO, Eco, Trans, Gov and
Geo from the Teknowledge family. Remember that with pinpointing, we were
able to improve the quality of the added disjointness statements by 16% in
our previous experiment, but 38 statements remained erroneous. For the last
experiment, we added to SUMO the 169 disjointness statements following from
the Strong Disjointness Assumption and removed from it the 25 occurring in
the pinpoint. The resulting ontology is coherent. Adding MILO to this ontol-
ogy, however, creates new incoherences, and we find a further 15 erroneous
disjointness statements. Adding the 4 specialized ontologies Trans,Eco, Geo
and Gov also helps detecting 2 more false disjunctions, which leaves the new
SUMO (with pinpoints removed) with 86% correct disjointness statements (up
from 60%).

Erroneous Disjointness Statements? Even after pinpointing we are left with
14% incorrect disjointness statements in the above experiment. This sounds
dangerous, but has to be put in the perspective of the application. Remem-

6 If an incoherent terminology is the result of a semantic clarification process, it is part
of the assumption that some of the new, artificially created, statements are likely to
be incorrect. Therefore, whenever we have a choice, (as in this example) we include
the disjointness statement into the pinpoint.

Debugging and Semantic Clarification by Pinpointing 239

ber, that disjointness statements are only interesting for reasoning to estab-
lish coherence, and that they do not influence the subsumption hierarchy, given
that the ontology is indeed coherent. What remains is the danger that logi-
cal contradictions occur when creating new objects referring to semantically
enriched class. But then, again, pinpointing offers a simple solution: if it is in-
deed the disjointness axiom that causes the contradiction it alone will consti-
tute the pinpoint, and will automatically be removed to render the new object
satisfiable.

6 Conclusion and Further Work

With the arrival of more expressive ontology languages in the Semantic Web
community, incoherences increasingly become a problem that can seriously ham-
per the construction and application of web ontologies. In this paper we pre-
sented a strategy for automatically identifying and fixing incoherences that
is based on first explaining their causes and, secondly, choosing (and elim-
inating) axioms that most frequently participate in the underlying logical
contradictions.

We discussed our pinpointing strategy with respect to standard debugging
of incoherences. Then, we showed how pinpointing can help the semantic clar-
ification of underspecified ontologies. For the first case-studies, we checked a
number of web ontologies for coherence and explored what happens when the
two upper-level ontologies CYC and SUMO are merged. The most interesting find-
ing was that, although there was a very high number of unsatisfiable con-
cepts, the pinpoint only consisted of 4 elements. We suggest that studying
these concepts in more detail can help in clarifying the alternative modeling
approaches.

The second case-study was an attempt to clarify the semantics of web ontolo-
gies for which no disjointness (or negation) of classes is specified. In this case,
incoherence is impossible, but we can automatically add disjointness statements
if we assume that direct siblings in a hierarchy should be disjoint. We evaluated
this assumption on a number of web ontologies by first including these dis-
jointness statements and, subsequently, applying our pinpointing strategy. The
empirical and qualitative results showed that too many disjointness statements
remained because not all exceptions to our assumption were covered. However,
we already outlined a way out of this dilemma, which is to extend general ontolo-
gies with more specific ontologies to better identify exceptions and therefore to
exclude the erroneous disjointness statements. Conceptually, it should be a sim-
ple extension to add facts, but the additional computational complexity might
render the approach infeasible in practice.

Finally, it remains to study our pinpointing approach to reasoning with in-
coherent ontologies from a theoretical perspective. Surely enough ignoring the
ontological axiom from the cores renders the ontology coherent, but nothing can
be said so far about the quality (such as maximality or meaningfulness) of the
resulting ontology.

240 S. Schlobach

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

2. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms. Technical Report RR-93-20, Deutsches Forschungszen-
trum für Künstliche Intelligenz GmbH, 1993.

3. A. Borgida, E. Franconi, and I. Horrocks. Explaining ALC subsumption. In Proc.
of the 14th Eur. Conf. on Artificial Intelligence, pages 209–213, 2000.

4. R. Cornet and A. Abu-Hanna. Evaluation of a frame-based ontology. A
formalization-oriented approach. In Proceedings of MIE2002, Studies in Health
Technology & Information, volume 90, pages 488–93, 2002.

5. DAML ontology library. URL. http://www.daml.org/ontologies/.
6. V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch,

and T. Nipkow, editors, IJCAR 2001, number 2083 in LNAI, 2001.
7. I. Horrocks. The FaCT system. In H. de Swart, editor, Tableaux’98, number 1397

in LNAI, pages 307–312, 1998.
8. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–
26, 2003.

9. Pierre Marquis Jrme Lang. Removing inconsistencies in assumption-based theories
through knowledge-gathering actions. Studia Logica, 67(2):179–214, 2001.

10. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera Ontology Envi-
ronment. In The Seventeenth National Conference on Artificial Intelligence, 2000.

11. B. Nebel. Terminological reasoning is inherently intractable. AI, 43:235–249, 1990.
12. N. Noy and M. Musen. Prompt: Algorithm and tool for automated ontology merg-

ing and alignment. In Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, pages 450–455. AAAI Press / The MIT Press, 2000.

13. http://www.opencyc.org/.
14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–

95, 1987.
15. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artif. Intell.,

74(2):249–310, 1995.
16. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging

of description logic terminologies. In Proceedings of the eighteenth International
Joint Conference on Artificial Intelligence, IJCAI’03. Morgan Kaufmann, 2003.

17. Sumo (Suggested Upper Merged Ontology). URL, as visited on April 16, 2004.
http://ontology.teknowledge.com/.

18. Web-ontology (WebOnt) working group of the W3C. URL, as of April 16, 2004.
http://www.w3.org/2001/sw/WebOnt/.

An Argumentation Ontology for DIstributed,
Loosely-controlled and evolvInG Engineering processes

of oNTologies (DILIGENT)

Christoph Tempich2, H. Sofia Pinto1, York Sure2, and Steffen Staab3

1 Dep. de Engenharia Informática, Instituto Superior Técnico, Lisboa, Portugal
sofia.pinto@dei.ist.utl.pt
http://www.dei.ist.utl.pt/

2 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
{sure, tempich}@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS/

3 ISWeb, University of Koblenz Landau, 56016 Koblenz, Germany
staab@uni-koblenz.de

http://www.uni-koblenz.de/FB4/

Abstract. A prerequisite to the success of the Semantic Web are shared ontolo-
gies which enable the seamless exchange of information between different par-
ties. Engineering a shared ontology is a social process. Since its participants have
slightly different views on the world, a harmonization effort requires discussing
the resulting ontology. During the discussion, participants exchange arguments
which may support or object to certain ontology engineering decisions. Experi-
ence from software engineering shows that tracking exchanged arguments can
help users at a later stage to better understand the assumptions underlying the
design decisions. Furthermore, as the constructed ontology becomes larger, on-
tology engineers might argue in a contradictory way without knowing so. In this
paper we present an ontology which formalizes the main concepts which are used
in an DILIGENT ontology engineering discussion and thus enables tracking ar-
guments and allows for inconsistency detection. We provide an example which
is drawn from experiments in an ontology engineering process to construct an
ontology for knowledge management in our institute. Having constructed the on-
tology we also show how automated ontology learning algorithms could be taken
as participants in the OE discussion. Hence, we enable the integration of manual,
semi-automatic and automatic ontology creation approaches.

1 Introduction and Motivation

A prerequisite to the success of the Semantic Web are shared ontologies which enable
the seamless exchange of information between different parties. The engineering of a
shared ontology is a social process which (1) involves many participants – knowledge
engineers, domain experts and users –, (2) may take place at many locations, (3) and
is not a once-only process. However, currently available methodologies to support (cf.
[1]) ontology engineering (OE) for the Semantic Web focus their attention mostly on
the centralized development of static ontologies by knowledge engineers and a small

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 241–256, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

242 C. Tempich et al.

number of domain experts. In [2, 3] we propose the DILIGENT OE process which
will eventually result in a well tested methodology, to support DIstributed, Loosely-
controlled and evolvInG Engineering of oNTologies. We believe that this process model
is better suited for the requirements on OE in the Semantic Web.

The application of the DILIGENT process model has shown in several case studies
that exchange of arguments constitutes a major part in collaborative ontology building.
In the SEKT project1, for example, it was decided that a core upper ontology (PROTON)
will be used by all participants. The ontology will be the basis for application develop-
ment and information sharing. For practical reasons one participant initially provided
an initial version, more than eight partners are now discussing the further evolution
of the ontology. The initial version does not yet meet the requirements of all partners.
Since the participants are distributed in Europe the discussion takes place informally
via email. Although the discussion started only recently, it is already difficult for new-
comers to enter it since (1) tracing the exchanged arguments is virtually impossible, due
to the amount of mails already exchanged, and (2) only some participants know which
parts have already been discussed. These problems will be even harder to cope with in
a complete distributed environment like the Semantic Web.
This observation from our case study is inline with the experiences made in software
and requirements engineering. There, extensions of the IBIS methodology[4] are used
to capture design deliberations, thus make them traceable, and formal models have been
developed to allow for structured queries on the arguments[5]. They have shown that
formal argumentation models enhance traceability of design decision, help in conflict
resolution, enhance reusability and facilitates the integration of new participants in the
design process. Although, these models are very general, we have identified several
requirements – further elaborated in section 5 – for argumentation support and its for-
malization which are unique for OE processes:

1. General argumentation models allow for all types of arguments and are very flex-
ible. However, we have shown that a restricted set of arguments can facilitate OE
processes [2], thus a formal model for OE should take this into account.

2. Within general argumentation models, inconsistencies in the discussion can not
be easily detected, since arguers do not formalize their arguments. Ontologies are
themselves formal models, thus inconsistencies should be considered during the
discussion.

3. Ontology Engineering is often augmented with input from Ontology Learning[6].
No methodology provides an integrated view on manual and automatically created
ontologies. An ontology learning algorithm can be seen as an agent providing argu-
ments for design decisions. This should be regarded an integral part in a formalized
argumentation model for OE.

In this paper we present an ontology formalized in OWL DL2 based on the IBIS
argumentation model. With this ontology one can formalize the argumentation taking
place in OE processes (cf. req. 1), by instantiating the ontology. Note, that the ontology

1 http://www.sekt-project.com
2 http://www.w3.org/TR/owl-ref/

An Argumentation Ontology for DILIGENT 243

does not aim at formalizing the exchanged arguments logically. With an appropriate
reasoner, inconsistencies in the argumentation can be detected (cf. req. 2). Our formal
model can be adapted to different types of argumentation, namely arguments from al-
gorithms can easily be integrated (cf. req.3).

In the following, we start by providing an extensive review of the state of the art in
ontology engineering, argumentation visualization and argumentation structures (sec-
tion 2). We then present the DILIGENT process template (section 3). Before we go into
detail in the argumentation ontology (section 6), we analyze some use cases (section
4) for it and analyze the corresponding requirements (section 5). Finally we give an
example drawn from an ontology engineering experiment and conclude.

2 Related Work

The ideas just briefly introduced above and further elaborated in section 4, require
research from different areas. In particular we looked into ontology engineering,
argumentation visualization, argumentation types and formal arguments.

2.1 Ontology Engineering

Established methodologies for ontology engineering summarized in [1], focus on the
centralized development of static ontologies. METHONTOLOGY [1] and the OTK
methodology [7] are good examples for this approach. They offer guidance for building
ontologies either from scratch, reusing other ontologies as they are, or re-engineering
them. They divide OE processes into several sub steps which produce an evaluated
ontology for a specific domain.

Holsapple et al.[8] focus their methodology on the collaborative aspects of ontol-
ogy engineering but still aim at a static ontology. A knowledge engineer defines an
initial ontology which is extended and changed based on the feedback from a panel of
domain experts. However, no support for argumentation is provided.

In [3] we show how OntoEdit was adopted to support DILIGENT OE processes
(cf. section 3). Discussions are an important part of these kind of processes. However,
no support for argument analysis is given.

A methodology which integrates argumentation and ontology engineering in a dis-
tributed setting is HCOME [9]. It supports the development of ontologies in a decen-
tralized setting and allows for Ontology evolution. It introduces three different spaces
in which ontologies can be stored: In the Personal Space users can create and merge on-
tologies, control ontology versions, map terms and word senses to concepts and consult
the top ontology. The evolving personal ontologies can be shared in the Shared Space.
The Shared Space can be accessed by all participants. In the shared space users can
discuss ontological decisions based on the IBIS [10] model. After some discussion and
agreement, the ontology is moved into the Agreed space. However, they do not present
any experiences or adaptations to the IBIS model for OE.

This is the focus of the work described in [11]. A three-phased knowledge mediation
procedure is proposed and evaluated. This approach is especially conceived to integrate
different perspectives and information needs into one consensual ontology. They iden-
tify useful questions which can guide actors in an ontological discussion. However, they

244 C. Tempich et al.

do not analyze the dominant types of arguments which are used in these discussions.
The main finding is that a moderator greatly enhances the efficiency and effectivity of
the discussion.

In [4], a case study in building an ontology combining three existing ones is de-
scribed. In this case study the Compendium tool was used to guide the discussion in a
synchronous meeting. The results show that structured argumentation is beneficial for
ontology engineering. The traceability of the decisions was enhanced. However, the au-
thors were more concerned with the evaluation of their tool than with the specific issues
arising in a discussion about an ontology. The authors do not examine which kinds of
arguments are exchanged and how the discussion could be made more efficient.

2.2 Argumentation Visualization

As structured argumentation support was identified as beneficial for OE we here sum-
marize the development of this field briefly. The most accepted model of argumentation
is the IBIS methodology [10]. IBIS was developed to provide a simple yet formal struc-
ture for the discussion and exploration of “wicked” problems. Wicked problems cannot
be solved in the traditional sense, because one runs out of resources (time, money, en-
ergy, people, etc.) before a perfect solution can be implemented.

gIBIS [12] focuses on capturing collaborative deliberations during design activities
in the form of graphs containing text at their nodes. It was the first graphical interface
for the IBIS methodology. IBIS allows to capture different design deliberations. Appro-
priate tools can later on help to retrieve them in a sophisticated way. For example the
requirements engineering community has long identified the need to capture the argu-
ments exchanged during the design process to enhance traceability. [5] presents an early
formalization of the IBIS model. However, the IBIS methodology was criticized due to
its resilience to change and for being too abstract. In [13] it is argued that IBIS should
be enhanced with domain specific knowledge. The work reported in [14] further en-
hances the IBIS methodology by introducing an acceptance and rejection mechanism.
They emphasize the restriction to record only important considerations.

Compendium[15] builds on the gIBIS system. It is a semantic hypertext tool to
capture arguments and visualize them. It offers a conceptual framework for argumen-
tation, it promotes the use of a meeting facilitator and it includes tools to present the
exchanged arguments customized for audiences. Compendium tools include Question
based templates to ease the flow of the arguments. Hence, the discussion can be lead by
pre-formulated questions which structure the discussion. A discussion is visualized by
different maps, interlinking and connecting the exchanged arguments. Any idea can be
expressed in Compendium since its notation is very flexible.

2.3 Types of Arguments

Argumentation models provide a conceptual model for the interaction of issues, ideas
and arguments. However, they do not differentiate the different kinds of arguments aris-
ing in a discussion. In [2] we analyzed OE discussions with the help of Rhetorical

An Argumentation Ontology for DILIGENT 245

Structure Theory (RST) [16].3 In our experiments the actors in the OE discussions had
the task to agree on a shared ontology to represent the research topics of our institute.
We conducted two experiments. In the first the actors were free to discuss the ontology
with little guidance, whereas in the second we restricted the types of arguments allowed
in the discussion to the ones more relevant and effective to reach consensus identified in
the first experiment. The result was that restricting the argument types to Elaboration,
Evaluation, Justification, Contrast, Alternative, Example and Counter Example
enhances the productivity of OE discussions. Furthermore, the actors kept better track
of the discussion, the agreement process was facilitated, and agreement was reached
faster.

2.4 Formal Arguments

Formalization of arguments is an important topic in the AI community. Although OWL
provides us a formalism that allows to formally state arguments, we do not believe
that ontological decisions can be discussed in a completely formal way, at least if the
ontology is to be used by humans. Several results show the advantages of using for-
mal models. For example [17] proposes a formal model of argumentation, using the
IBIS argumentation model. Based on the formal arguments a preferable solution can be
derived. Another interesting application is argument selection based on user needs. For
example [18] presents how formal argumentation trees can be pruned to best correspond
to users wishes. However, this is not the focus of our work.

2.5 Summary

Review of existing OE methodologies reveals that there is no completely elaborated
methodology integrating collaborative, distributed and evolutionary aspects. Moreover,
none currently supports the combination of manual and semi-automatic OE approaches.
The use of argumentation methodologies for OE was recently recognized but is not yet
concisely integrated into the OE process. A formal argumentation model to assist OE is
completely missing.

3 DILIGENT Process

In order to provide enough background knowledge about the DILIGENT argumentation
ontology, which we present in this paper, we here sketch the overall framework, in
which it is embedded, i.e. the overall DILIGENT process (cf. [3]).

Scenario. In distributed development there are several experts, with different and com-
plementary skills, involved in collaboratively building the same ontology. For instance,
in Virtual Organizations, Open Source and Standardization efforts, experts belong to
different competing organizations and are geographically dispersed. In these cases,

3 RST originally offers an explanation of the coherence of texts. It is assumed that for every part
of a coherent text there is some function, thus has a particular argument type. Thirty different
arguments types have already been identified and loosely defined.

246 C. Tempich et al.

Domain
Expert

Knowledge
Engineer

Ontology
Engineer

Ontology
User 1

Ontology
User n

Control Board
Editors

Control Board
Editors

O IO I

O 1

O n

1

5

3 4

2

Ontology
User

Fig. 1. Roles and functions in distributed ontology engineering

builders typically are also users and, although some users are not directly involved in
changing the ontology, they take part in the process by using the ontology.

Process. We will now describe the general process, roles and functions in the DILI-
GENT process. It comprises five main activities: (1) build, (2) local adaptation, (3)
analysis, (4) revision, (5) local update (cf. figure 1). The process starts by having
domain experts, users, knowledge engineers and ontology engineers building an initial
ontology. This can be supported by using ontology learning tools. In contrast to known
ontology engineering methodologies available in the literature [1, 19, 20] our focus is
distributed ontology development involving different stakeholders, who have different
purposes and needs and who usually are not at the same location. Therefore, they re-
quire online ontology engineering support. The team involved in building the initial
ontology should be relatively small, in order to more easily find a small and consensual
first version of the shared ontology. Moreover, we do not require completeness of the
initial shared ontology with respect to the domain.

Once the product is made available, users can start using it and locally adapting
it for their own purposes. Typically, due to new business requirements, or user and
organization changes, their local ontologies evolve in a similar way as folder hierar-
chies in a file system. In their local environment they are free to change the reused
shared ontology. However, they are not allowed to directly change the ontology shared
by all users. Furthermore, the control board collects change requests to the shared
ontology.

The board analyzes the local ontologies and the requests and tries to identify sim-
ilarities in users’ ontologies. Since not all of the changes introduced or requested by
the users will be introduced,4 a crucial activity of the board is deciding which changes
are going to be introduced in the next version of the shared ontology. The input from
users provides the necessary arguments to underline change requests. A balanced deci-
sion that takes into account the different needs of the users and meets user’s evolving

4 The idea in this kind of development is not to merge all user ontologies.

An Argumentation Ontology for DILIGENT 247

requirements5 has to be found. The board should regularly revise the shared ontology,
so that local ontologies do not diverge too far from the shared ontology. Therefore,
the board should have a well-balanced and representative participation of the different
kinds of participants involved in the process.

Once a new version of the shared ontology is released, users can update their own
local ontologies to better use the knowledge represented in the new version. Even if the
differences are small, users may rather reuse e.g. the new concepts instead of using their
previously locally defined concepts that correspond to the new concepts represented in
the new version.

We have applied this process model to the case of folder sharing via a Peer-to-Peer
setting with centralized core folder structures and individual specific folder structures.
Our experiences there have substantiated the validity of DILIGENT (cf. [3]).

Threads of Arguments. A central issue in the DILIGENT process is keeping track of
threads of exchanged arguments. We can identify several stages in which arguments
play an essential part:

– Ontology is defined as “a shared specification of a conceptualization” [21]. Al-
though “shared” is an essential feature, it is often neglected. In DILIGENT experts
exchange arguments while building the initial shared ontology in order to reach
consensus;

– When users make comments and suggestions to the control board, based on their
local adaptations, they are requested to provide the arguments supporting them;

– while the control board analyzes the changes introduced and requested by users,
and balances the different possibilities, arguments are exchanged and balanced to
decide how the shared ontology should change.

4 Use Case

As mentioned in the introduction the SEKT-project partners are currently building a
common upper ontology (PROTON6). PROTON will be used in the applications devel-
oped in SEKT as background knowledge. Hence, PROTON will be used in case studies
tackling knowledge management in a telecom company and a question answering sys-
tem for legal education. Furthermore, PROTON serves as background knowledge for
natural language processing and machine learning methods. Naturally, the applications
have different requirements on the ontology. However, to maximize interchangeability
of methods developed in SEKT, it was agreed to build a common ontology. From a
DILIGENT process point of view, we are currently in the revision phase. Some of the
partners have already used a previous version of PROTON and adapted it according to
their needs7. Others have just recently joined the process. The discussion takes place on
a mailing list. In the following we first summarize the experiences made sofar and than
introduce some additional features needed for the DILIGENT Argumentation Ontology.

5 This is actually one of the trends in modern software engineering methodologies (see Rational
Unified Process).

6 http://proton.semanticweb.org/
7 The name was agreed only recently.

248 C. Tempich et al.

4.1 Traceability

As new partners get involved into the ontology building process, modelling decision
are discussed more than once, since the modelling reasons of the existing version are
not documented. Although, the actors in the current OE discussion present reasons for
design modification, the number of e-mails makes it infeasible to retrieve them at a
later stage. The ability to present the reasons and arguments for a modelling decision
to the new entrants could speed up the design process. A similar problem arises, when
the ontology is revised and the ontology engineers need to recall the reasons for the
previous design. The users of the ontology can as well profit from a well documented
ontology for a better understanding. Currently, they rely on the sparse explicit docu-
mentation, since documentation is a time consuming, often neglected task. A structured
integration of the ongoing discussions can ease it.

Another issue is size. The current version of PROTON has more than two hundred
concepts. Therefore, it is difficult to track which parts of the ontology are agreed and
which are not. In an OE discussion actors often agree only implicitly with a certain
modelling decision. For example a participant proposes B as subconcept of A without
explicitly agreeing with A.

Besides the current experiences, first versions of PROTON had to be build from
scratch. Although there are a number of ontologies available on the Semantic Web, this
is not sufficient for an ontology to be reused. Only if the design rationales behind the
model are available to others, can ontologies easily be included into applications.

4.2 Inconsistency Detection

During the argumentation process different participants exchange their opinions about
the issue under discussion. A requirement on an efficient discussion is, that the argu-
ments one participant brings forward are consistent with his previous arguments. A
participant may change his opinion, but then he should discard earlier contradicting ar-
guments. A model to conceptualize arguments should be able to detect at least some
inconsistencies and point the arguer to the contradicting arguments 1.

Table 1. List of possible inconsistencies

Inconsistency Description

Idea inconsistency Arguer introduces Idea1 and Idea2 which are inconsistent
Argumentation inconsistency Arguer argues first in favor and then against an issue. The lines

of reasoning followed by the arguer lead to inconsistent ideas
Position inconsistency Assuming Issue/Argument 1 and 2 are contradicting. An Ac-

tor produces a position inconsistency when he votes in favor of
Issue/Argument 1 and then introduces Issue/Argument 2

An Argumentation Ontology for DILIGENT 249

4.3 Argument Selection

In the applications for the SEKT case studies the user of PROTON may wonder why
some concepts, etc. were introduced in the ontology or he may ask why certain mod-
elling decisions were made. However, even when we trace the underlying arguments,
some of them may be very detailed and not understandable to normal users. Hence, if
a user asks for the arguments underlying the ontology modelling decisions it would be
beneficial to provide an answer which best fits the users needs. In this case we can as-
sume that the best answer to such a query would be one which convinces the requester
most. The selection of the appropriate arguments is only possible if not only the ar-
gumentation but also the arguments are formalized. Then we can build on models as
presented in [18] that show how formal argumentation trees can be pruned to best cor-
respond to the users wishes. On the other hand in tangled discussion it is not always
obvious which proposal receives the strongest support. [17] presents a formal model to
establish the winner of a discussion.

5 Requirements

We have identified several requirements for our Argumentation Ontology from the the
SEKT PROTON case study and others where we have been involved such as IEEE SUO.
Before we describe the ontology in the next section we now develop its requirements
for it.

1. Use common vocabulary Research in argumentation and its visualization has a
long history and is a mature field (cf. 2). To enhance acceptability for the ontology
usage of the established vocabulary is essential.

2. Focus on relevant arguments As observed in [2] the restriction of available ar-
gument types can focus and speed up OE discussions. Hence the ontology should
not model all possible kinds of arguments of a discussion, but focus on the relevant
ones. This view is supported by [22] who have developed an ontology for a differ-
ent domain but for a similar purpose and found that a smaller ontology enhances
usability.

3. Ontology focus Following the results of [13], that IBIS should be enhanced with
domain specific knowledge, the developed ontology should be particularly well
suited for ontology design.

4. Adaptivity The Argumentation Ontology should allow for capturing the structure
of argumentation. Hence, the design must take into account that e.g. humans discuss
on a free text basis while ontology learning algorithms use formal, structured and
detailed reasons for different proposals.

5. Support entire argumentation The Argumentation Ontology should support the
full argumentation cycle. This includes issue raising, conflict mediation, bargain-
ing, clarification and agreement. Participants should be aware of which issues are
currently under discussion, postponed, agreed and discarded.

6. Conceptual as well as formalization level People might agree on the need for a
certain conceptual model but not on its actual implementation. The model should
support argumentation on both conceptual and formal models.

250 C. Tempich et al.

7. Modularization Although the ontology should support the ontology engineering
process we do not aim to support every part of it. As described in [7] the ontology
engineering process involves the definition of requirements, owners and other meta
attributes like Dublin core meta data. These should not be modelled here.

8. Formalism independence The Argumentation Ontology should be independent of
the formalism used to model the final ontology. Each formalism allows different
sets of modelling decisions and all can be subject to discussion. However, the for-
mal model of the finally agreed ontology should be a result of the instantiation of
the Argumentation Ontology.

9. Process awareness The Argumentation Ontology is embedded into the DILIGENT
process presented in section 3. Essential properties of this process are its collabora-
tive aspects, its distributiveness and the asynchronous way participants can provide
arguments.

10. Argumentation formalization Although we do not currently plan to provide the
arguments themselves in a formal way, the Argumentation Ontology should allow
us to do so. As our last use case has illustrated ontology engineering and ontology
usage could gain from such a formalization.

6 An Argumentation Ontology for DILIGENT Processes

The DILIGENT Argumentation Ontology is visualized in figure 28. The main concepts
in our ontology are issues, ideas and arguments, which are represented as classes.
These are in line with the terminology proposed by the IBIS methodology (req. 1).
Issues introduce new topics in the discussion from a conceptual point of view. They
are used to discuss what should be in the conceptual model of the ontology without
taking into account how these items should actually be formalized and implemented
in the ontology (req. 8). Ideas refer to how these concepts should be formally repre-
sented in the ontology, for instance as a class, an instance, etc. They relate to concrete
ontology change operations9. Ideas are related to issues in the sense that they respond
to them. Ideas refer to how issues should actually be implemented in the ontology. In
this way discussions can take place in both the conceptual level and the formalization
level (req. 6). Arguments are arguments on either one particular idea or one particular
issue. Typically, our domain experts will start by proposing new issues to be intro-
duced in the ontology. Arguments will be exchanged over them. Then, they discuss
how these issues should be formalized through concrete ideas. Domain experts can also
provide elaborations. These are issues that refine an issue under discussion, elabo-
rates on.

Since concepts to be represented in an ontology should be consensual, this requires
some consensus building discussions. In DILIGENT processes, concepts are only added
to the ontology if they can be agreed upon, that is after some arguments have been ex-
changed, positions by different actors have been issued on them and some decisions

8 The corresponding OWL ontology will be available online in case of acceptance.
9 For example [23] presents a formal model for ontology change operations.

An Argumentation Ontology for DILIGENT 251

Fig. 2. The major concepts of the argumentation ontology and their relations

have been made. Arguments for (pro) an idea or issue are called justifications. Ar-
guments against (con) an idea or issue are called challenges. In what regards argu-
ments in favor, particularly useful OE processes, we identified examples and evalu-
ation&justification. Two classes in challenges are also particularly used in OE discus-
sions: counter examples and alternative&contrast. These arguments focus the IBIS
argumentation methodology for Ontology Engineering (req 3).

Those involved in discussions can state positions. They clarify the position on one
issue, one idea, or an argument under discussion. Either one agrees or disagrees.
Once enough arguments have been provided and positions have been stated on them
decisions can be made. In general, positions lead to decisions. Decisions are taken
on issues. A decision has a status that can vary from under-discussion, postponed,
discarded and agreed (req 5). A decision records not only the issue on which it was
taken, but also both the positions issued when final with-votes (several positions) were
cast and the line of reasoning (a sequence of arguments) underlying the decision on that
issue. A decision can also state the idea on-idea underlying its issue. This allows one to
focus on the relevant arguments (req 2).

252 C. Tempich et al.

Arguments are given by actors (req 9). We can have different kinds of Actors: ei-
ther Humans or Machines. Different kinds of actors provide different argumentations
(req. 4). In what regards argumentation humans (HumanArgumentation) tend to ar-
gue by providing strings of text stating (provides text) their reasons while machines
tend to use other kinds of argumentation measures like Frequency and TFIDF [6]. For
each algorithm used, new subclasses of argumentation need to be introduced to model
the different kinds of measures.

7 Example: An Argumentation Ontology for DILIGENT
Processes

The following discussion transcript was a part of an experiment performed at our insti-
tute (cf. [2], section 2.3). The participants were asked to build an ontology for modelling
the research interests of our group. The experiment lasted for 90 min. and involved
eleven actors. The participants provided their arguments in free text without formal re-
strictions. Hence, in the following example we model the discussion ex post. Moreover,
we do not aim to model the entire discussion, but pick out an excerpt to exemplify our
model.

. . .
cs: We have done quite a bit of research in distributed knowledge management
(DKM) lately. So I suggest DKM as a topic plus a subtopic “peer to peer” (P2P)

The actor suggests on the one hand to introduce “DKM” and “P2P” in the ontology
(Issues), and proposes on the other hand to model them as “topics” (Ideas).

Formalization
Individual(issue1 type(Issue) value(states “I suggest DKM”))
Individual(issue1 type(Issue) value(given-by actorCS))
Individual(justi1 type(Justification) value(hasArgumentation argumentation1))
Individual(justi1 type(Justification) value(arguments-on issue1))
Individual(argumentation1 type(HumanArgumentation) value(providesText “We have
. . . lately”))
Individual(idea1 type(Idea) value(respondsTo issue1))
Individual(idea1 type(Idea) value(ontoChange add(DKM:Topic)))
Individual(elaboration2 type(Elaboration) value(states “P2P subtopic DKM”))
Individual(idea2 type(Idea) value(respondsTo elaboration2))
Individual(idea2 type(Idea) value(ontoChange add(DKM supertopic P2P)))

ah: I suggest knowledge management (KM) as super concept of DKM because
every DKM is a kind of KM

The second actor agrees implicitly with the suggestion to introduce “DKM” in the on-
tology. In contrast to the first one he proposes to model it as a “concept”.
Formalization
. . .
Individual(idea3 type(Idea) value(ontoChange add(KM:Concept)))
. . .

An Argumentation Ontology for DILIGENT 253

jt: Well I am now wondering whether P2P is DKM, because File exchange is
not always KM is it?

A third actor agrees also implicitly, that “P2P” and “DKM” are important for the do-
main, but challenges that they should be modelled in the proposed way.

Formalization
Individual(counter1 type(CounterExample) value(hasArgumentation argumentation3))
Individual(counter1 type(CounterExample) value(arguments-on elaboration2))
Individual(argumentation2 type(HumanArgumentation) value(providesText “File ex-
change . . . KM”))

ph: I suggest Distributed Comp. (DC) with P2P and Grid as subtopics; DKM
as subtopic of DC and KM

The fourth actor presents a new issues which could resolve the conflict.

Formalization
. . .
Individual(issue2 type(Issue) value(states “I suggest DC”))
Individual(elaboration3 type(Elaboration) value(.))
. . .

do: PRO ph : because his approach separates KM and distributiveness

The actor “do” agrees with the suggestion and provides additional reasons for the de-
sign. Implicitly he also agrees that “KM” should be part of the ontology.

Formalization
Individual(position1 type(Agree) value(position-on elaboration3))
. . .

cs: I’d like to agree to ph and do suggestion.
. . .

The first actor agrees with the new solution and discards his original proposal.
This example demonstrates that OE discussion can be modelled with the DILIGENT

Argumentation Ontology. The applicability of the ontology will depend on the available
tool support. We do not intent to automatically annotate a free discussion. We rather
envision a template based approach. Currently we use a WIKI to support the argu-
mentation process. However, integration with reasoners and inclusion into existing OE
environments is desirable, but remains to be done.

8 Conclusion

It is now widely agreed that ontologies are a core enabler for the Semantic Web vi-
sion. The development of ontologies in centralized settings is well studied and there are
established methodologies. However, current experiences from projects suggest, that

254 C. Tempich et al.

ontology engineering should be subject to continuous improvement rather than a one-
time effort and that ontologies promise the most benefits in decentralized rather than
centralized systems.

In such settings, arguments play a major role in the process of consensus building
between the involved participants. Based on the current state of the art in Ontology En-
gineering, Argumentation visualization and Argumentation structures, we propose an
integrated formal argumentation model to be used in OE discussions, in particular in
DILIGENT OE processes. This ontology supports the process in several ways. In dis-
cussions, it focuses the participants and helps to structure their arguments. In the usage
and analysis phases, the exchanged arguments can be consulted to better understand the
current version of the model. Moreover, since it is formal it allows for inconsistency
detection in argumentations. Since the ontology covers all aspects of the discussion
activity, namely issue raising, formalization of the issues and decision making, the par-
ticipants are always informed about the current status of the discussion and the ontology
they are building.

We demonstrate the applicability of our model by formalizing an OE discussion
drawn from an experiment in our institute. The DILIGENT Argumentation Ontology
will also be the basis for ontology discussions in the SEKT project. To support the dis-
cussion with appropriate tools we are currently investigating a combination of WIKI
like argumentation support with ontology formalization in the KAON tool suit10. Argu-
ment selection based on formal arguments remains future work. In the further future we
imagine that ontology learning methods can profit from the formalized discussion and
learn from human ontology design decisions.

Therefore, the main contribution of this paper is the first formal argumentation
model for Ontology Engineering, in particular for DILIGENT OE processes. This model
is an adaptation of the IBIS argumentation model specifically for Ontology Engineer-
ing. It clearly distinguishes between phases: discussions should be about the conceptual
model, about Issues, and about the formal model, about Ideas. Moreover, from our pre-
vious experiences in DILIGENT OE processes this model clearly states the arguments
that have been identified as speeding and easing the consensus building process needed
to build shared ontologies. Finally, this is the first model that attempts to integrate argu-
ments from (semi-)automatic ontology building based on learning.

Acknowledgements. Research reported in this paper has been financed by EU in the the
IST project SEKT (IST-2003-506826).

References

1. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Advanced
Information and Knowlege Processing. Springer (2003)

2. Pinto, H.S., Tempich, C., Staab, S., Sure, Y.: Diligent: Towards a fine-grained methodology
for distributed, loosely-controlled and evolving engingeering of ontologies. In de Mántaras,
R.L., Saitta, L., eds.: Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI 2004), August 22nd - 27th, Valencia, Spain, IOS Press (2004) 393–397

10 http://kaon2.semanticweb.org

An Argumentation Ontology for DILIGENT 255

3. Pinto, H.S., Staab, S., Sure, Y., Tempich, C.: OntoEdit Empowering SWAP: a Case
Study in Supporting DIstributed, Loosely-Controlled and evolvInG Engineering of oN-
Tologies (DILIGENT). In Bussler, C., et al., eds.: Proceedings of the 1st ESWS 2004.
(2004)

4. Buckingham Shum, S., Motta, E., Domingue, J.: Augmenting design delibera-
tion with compendium: The case of collaborative ontology design. In: HypA-
CoM 2002: Facilitating Hypertext-Augmented Collaborative Modeling. ACM Hy-
pertext’02 Workshop, University Maryland, MD (2002) Retrieved November 24,
2004 from http://kmi.open.ac.uk/projects/compendium/SBS-HT02-
Compendium.html.

5. Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations during
requirements engineering. IEEE Trans. Softw. Eng. 18 (1992) 498–510

6. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems
16 (2001)

7. Sure, Y., Studer, R.: On-To-Knowledge methodology. In Davies, J., et al., eds.: On-To-
Knowledge: Semantic Web enabled Knowledge Management. J. Wiley and Sons (2002)

8. Holsapple, C.W., Joshi, K.D.: A collaborative approach to ontology design. Commun. ACM
45 (2002) 42–47

9. Kotis, K., Vouros, G.A., Alonso, J.P.: HCOME: tool-supported methodology for collabo-
ratively devising living ontologies. In: SWDB’04: Second International Workshop on Se-
mantic Web and Databases 29-30 August 2004 Co-located with VLDB, Springer-Verlag
(2004)

10. Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. Working Paper 131,
Institute of Urban and Regional Development, University of California (1970)

11. Aschoff, F.R., Schmalhofer, F., van Elst, L.: Knowledge mediation: A procedure for the
cooperative construction of domain ontologies. In Abecker, A., van Elst, L., Dignum,
V., eds.: Proceedings of Workshop on Agent-Mediated Knowledge Management at the
16th European Conference on Artificial Intelligence (ECAI’2004), Valencia, Spain (2004)
20–28

12. Conklin, J., Begeman, M.L.: gibis: a hypertext tool for exploratory policy discussion. In:
Proc. of the 1988 ACM conference on Computer-supported cooperative work. (1988)

13. Potts, C., Bruns, G.: Recording the reasons for design decisions. In: Proceedings of the 10th
international conference on Software engineering, IEEE Computer Society Press (1988)

14. Gotel, O., Finkelstein, A.: Extended requirements traceability: Results of an industrial case
study. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineer-
ing (RE’97), IEEE Computer Society (1997) 169

15. Selvin, A., Buckingham Shum, S., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C.,
Drath, W., Horth, D., Domingue, J., Motta, E., Li, G.: Compendium: Making meetings into
knowledge events. In: Knowledge Technologies, Austin, TX (2001)

16. Mann, W.C., Thompson, S.A.: Rhetorical structure theory: A theory of text organization.
In Polanyi, L., ed.: The Structure of Discourse. Ablex Publishing Corp., Norwood, N.J.
(1987)

17. Gordon, T.F., Karacapilidis, N.: The zeno argumentation framework. In: Proceedings of
the sixth international conference on Artificial intelligence and law, ACM Press (1997)
10–18

18. Hunter, A.: Towards higher impact argumentation. In McGuinness, D.L., Ferguson, G., eds.:
AAAI2004, AAAI Press / The MIT Press (2004) 275–280

19. Pinto, H.S., Martins, J.: A Methodology for Ontology Integration. In: Proc. of the
First Int. Conf. on Knowledge Capture (K-CAP2001), New York, ACM Press (2001)
131–138

256 C. Tempich et al.

20. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Proc. of IJCAI95
WS, Montreal, Canada (1995)

21. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing.
In Guarino, N., Poli, R., eds.: Formal Ontol. in Conc. Analysis and Knowl. Rep., Kluwer
Acad. Pub. (1993)

22. Buckingham Shum, S., Gangmin Li, V.U., Domingue, J., Motta, E.: Visualizing internet-
worked argumentation. In Kirschner, P.A., et al., eds.: Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making. Springer (2003) 185–204

23. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evolution
management. In: Proceedings of the 13th European Conference on Knowledge Engineering
and Knowledge Management EKAW, Madrid, Spain (2002)

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 257–271, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Ontology-Based Distributed
Architecture for Paid Content*

Wernher Behrendt1, Aldo Gangemi2, Wolfgang Maass3,
and Rupert Westenthaler1

1 Salzburg Research GmbH, Jakob-Haringer Strasse 5/II,
5020 Salzburg, Austria

{Wernher.Behrendt, Rupert.Westenthaler}@salzburgresearch.at
2 Institute of Cognitive Sciences and Technology (CNR),

Via Nomentana 56, 00161, Roma, Italy
a.gangemi@istc.cnr.it
http://www.mcm.unisg.ch

3 =mcminstitute, University of St. Gallen, Blumenbergplatz 9,
9000 St. Gallen, Switzerland

wolfgang.maass@unisg.ch
http://www.mcm.unisg.ch

Abstract. Business models on the basis of digital content require sophisticated
descriptions of that content, as well as service-oriented carrier architectures that
allow to negotiate and enforce contract and license schemes in heterogeneous
digital application environments. We describe Knowledge Content Objects
(KCO), that provide expressive semantic descriptions of digital content, based
on an ontology of Information Objects, built under the DOLCE, DnS and Plan
Ontologies (DDPO). In particular, we discuss how this structure supports
business requirements within the context of paid content. Interactions between
agents are embedded into digital infrastructures that are implemented on an
advanced knowledge content carrier architecture (KCCA) that communicates
via a dedicated protocol (KCTP). We show how this architecture allows to
integrate existing digital repositories so that the content can be made available
to a semantically rich digital environment.

1 Introduction

The WWW can be perceived as a huge information market where supply and demand
meet. If content obtains high value to certain demand sides, it will generate market
prices. This kind of content is generally termed "paid content" as a special form of
information goods and is viewed as a digital product ([4, 16]). [12] define the term
information good very broadly. Based on the definition of [16] anything one can send

* This work is part-funded by the European Union (6th Framework Programme under the
strategic objective IST-2002-2.3.1.7. - Semantic-based Knowledge and Content Systems) and
the Swiss Federal Government.

258 W. Behrendt et al.

and receive over the Internet has the potential to be a digital product. The term paid
content is in this article used as the non-free sales and distribution of information-
based content products.

A hurdle for effective markets for paid content is the non-existence of appropriate
transaction mechanisms that support search, usage and control of paid content so that
suppliers can implement sustainable business models and users can efficiently obtain
information about content properties and can efficiently use purchased content. Paid
content needs to support two kinds of situations: trading situations and usage
situations [11]. During a trading situation a consumer and a vendor negotiate the
terms under which a consumer gains rights that can be executed on a particular
content. To gain advantages of search products in a trading situation, consumers
must be supported by product information on the (1) utility of content in respect to
intended application situations, (2) resource restrictions and (3) application
requirements that are given by the intended application environment. Resource
restrictions encompass organisational, temporal, spatial, presentational and financial
dimensions that are relevant during the trading act. The latter category describes in
which application environments a particular instance of a paid content is intended to
be used in principle. This encompasses its (1) situational requirements, i.e. when it
can be used by whom, (2) business requirements, i.e. which contractual obligations,
pricing and license schemes apply, (3) constraints on the technical environment in
which it can be used, (4) how it presents itself and (5) which requirements are to be
met while using it.

Any mismatch of these three categories decreases the utility of a particular content
and influences the consumer's buying decisions negatively.

Throughout this article we will explore the potential of semantic annotations of
paid content that provide on one hand an opportunity for interoperable markets for
paid content and on the other hand a means for product self-descriptions which has
strong influence on consumer buying decisions. First, we will briefly discuss
application situations from which we will derive requirements for the intended
semantically annotated content structure and the underlying technical content carrier
architecture. In subsequent sections, we will introduce a semantically enriched
content carrier structure (KCO) that is used as a flexible and expressive container for
digital content. KCOs are exchanged over a transmission infrastructure that is based
on a generic content carrier architecture (KCCA), which enables the interoperation of
heterogeneous content repositories. Finally, we will summarize the status of our
current work and give an outlook on our future work.

2 Semantic Modeling of Content Objects

An analysis of several hundred existing paid content business models ([13]) resulted
in a classification of five central elements to which digital content has to respond
during different phases of its life cycle.

1. Content descriptions: provides the propositional content that is announced by a
digital content on an abstract level.

 Towards an Ontology-Based Distributed Architecture for Paid Content 259

2. Community descriptions: information about the organisational structure (roles,
rights and obligations) by which a content product can be used and information
that influences trust such as certificates and brand name information.

3. Business descriptions: describes the business and legal requirements during
information and negotiation phases. After a purchase, contracts will be enforced
according to mutually agreed rights and obligations.

4. Presentation descriptions: describes the presentation modes to which the
information of a content product can be adapted to by rendering and other
application-specific means.

5. Trust and Security descriptions: content must be associated with some measure of
trust for the end user, and for the content provider, there must be some security
features which guarantee that the content will not be illegally copied or otherwise
misappropriated.

As these results show, digital content needs to be semantically annotated so that it
can respond to these five elements. We will now incrementally introduce the concept
of a Knowledge Content Object (KCO) that is intended to provide this structure on a
computational level because it is intended to be implemented in digital infrastructures.
From the foundational ontological viewpoint given by DOLCE and its extensions (a
modular library called DDPO), a KCO is to be distinguished from the abstract
concept of an information object that carries meaning on cognitive and abstract level,
independent on any technical realisation. Because we want to leverage the advantages
of foundational ontologies for the exchange and translation of meanings on technical
but also non-technical level, KCOs are embedded into DDPO.

2.1 An Ontology of Information Objects

We lay down here a semantic foundation for KCOs, based on an ontology of
information objects.

Our ontology for information objects is an extension of DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering), DnS (Ontology of Descriptions
and Situations), and Plans Ontologies. Parts of the reused ontologies have been
originally developed within the WonderWeb [8] and Metokis EU [6] projects. We
will refer here to this extended ontology as DDPO [6].

The main distinctions in the reused ontologies, which are imported here, include:

− the topmost class is called particular (any entity)
− objects (e.g. a dog) and events (e.g. a barking) belong to disjoint classes
− physical (e.g. a brick) and social (e.g. a contract) objects belong to disjoint classes
− attributes of particulars (e.g. a color, or a spatio-temporal location) are represented

as regions within quality spaces, with a possible associated metrics
− social objects include descriptions (the public, communicable counterpart of

agents’ conceptualizations, including also plans), which can define concepts (the
customer role), encode (or be expressed by) information objects (a sentence, or a
music chart), provide unification criteria for collections (a group of people), etc.

− concepts can be either roles played by objects, tasks executed during actions (e.g. a
door opening task), etc.

260 W. Behrendt et al.

− concepts from descriptions provide constraints for other particulars: if a
configuration of particulars satisfy those constraints, a situation emerges that
satisfies the concepts’ description (typical applications of constraint unification
include regulations, plans, social relationships, etc.).

The previous distinctions are supported by a large axiomatization that cannot be
reported here.1 We’d rather concentrate on their application as a foundation for KCO
implementation and deployment.

For example, a usage context of a content object may require to talk about the
digital reproduction of a painting that is owned by an institution, and such
institution is willing to commercialize the reproduction at certain conditions that
include differentiation for users, pricing, regulations to be followed, inclusion of
content metadata, explanations, interpretations, ways of rendering it, etc. This
context is complex, and require a subtle understanding of the different entity types
involved in it.

According to DDPO, a content (information) transferred in any modality is a kind
of social object called Information Object (IO). Information objects are spatio-
temporal reifications of pure (abstract) information as described e.g. in Shannon’s
communication theory, hence they are assumed to be in time, and realized
(materialized) by some entity.

Information objects are the core notion of a semiotic ontology design pattern,
which employs typical semiotic relations, as explained here. The complete IO
ontology is quite complex, and is presented elsewhere [6][8].

We present the axiomatization of KCOs in OWL abstract syntax. We firstly
present the definition of DnS:information-object, which encodes the basic
axioms of an ontology of semiotics extending the basic DDPO ontology:

Class(DnS:information-object complete
 intersectionOf(
 DOLCE:social-object
 restriction(DnS:about allValuesFrom(DOLCE:particular))
 restriction(DnS:realized-by

someValuesFrom(DOLCE:information-realization))
 restriction(DnS:interpreted-by

allValuesFrom(Actions:agent))
 restriction(DnS:expresses allValuesFrom(DnS:description))
 restriction(DnS:ordered-by someValuesFrom(DnS:information-

encoding-system))))

The definition says that information objects:

− are necessarily encoded by some information encoding system
− must be realized by some particular
− can express a description, and, if that description is satisfied by a situation
− can be about that situation, or some entity in its setting
− can be interpreted by agents that can conceive the description expressed by said

IOs.

1 The full OWL axiomatization of DOLCE, DnS, DDPO, IO, etc. can be downloaded from:
http://dolce.semanticweb.org.

 Towards an Ontology-Based Distributed Architecture for Paid Content 261

For example, Dante’s Divine Comedy is an IO, it is ordered by Middle Age
Italian language (the information encoding system), is realized by e.g. a paper copy
of the 1861 edition with Doré’s illustrations, expresses a certain plot and its related
meanings (literal or metaphorical), as interpreted by an agent with an average
knowledge of MA Italian and literary studies, and it is about certain entities and
facts.

Fig. 1. The IO pattern: an information object is a social object, ordered by a code, and realized
by some concrete entity. It expresses a description conceived by some agent, about some entity.
Situations exist for the setting of realization (“communication”), as well as for aboutness
(“reference”); agents refer to entities that IOs are about while interpreting them

The relations realizes, expresses, about, and interprets must be taken as temporally
indexed, but such indexing cannot be expressed directly in the OWL property
definition; for example, the definition of DnS:realizes:

ObjectProperty(DnS:realizes
 inverseOf(DnS:realized-by)
 domain(DOLCE:information-realization)
 range(DOLCE:information-object))

needs to be complemented by an OWL axiom stating that something that realizes an
IO must be present at least in some time interval at which that IO is also present:2

2 The axiom does not completely catch the semantics of a real ternary relation: realizes(x,y,t),
where t is a time interval, but it is a useful approximation anyway. Further refinements could
be made by using SWRL [7].

262 W. Behrendt et al.

SubClassOf(
 restriction(DnS:realizes someValuesFrom(DnS:information-

object))
 restriction(DOLCE:present-at someValuesFrom(intersectionOf(
 DOLCE:time-interval
 restriction(DOLCE:time-of-presence

someValuesFrom(DnS:information-object))))))

These semiotic relations constitute a typical ontology design pattern, so that any
composition of relations can be built starting from any node in the pattern or in an
application of the pattern.

The pattern has also some additional axioms, for example, the property interprets
implies that an expressed description is conceived by the agent (i.e., when an agent
interprets an IO, it conceives the description expressed by the IO; of course two
agents can conceive different descriptions, then resulting in different interpretations).

Once introduced the concept of an information object, we will now describe
informally, the intuition and resulting general structure of a Knowledge Content
Object (KCO). This work is based on results from predecessor projects: in the
CULTOS project (www.cultos.org) we introduced the notion of an enhanced (by
explicitly stated domain knowledge) multimedia meta object (EMMO). The logic
description of KCOs is based on these ideas, firstly formulated in [9] and intially
formalized without ontological grounding by [10]. The business related aspects of
KCOs are based on lessons learned in the INKASS project ([1]).

3 Semantic Modeling of Knowledge Content Objects (KCO)

The notion of knowledge content objects is based on business requirements (see
section 1), and builds upon previous approaches to multimedia and hypermedia
document models. Related work includes [3, 14, 17]. The strength of KCOs lies in the
combination of business- and domain-specific semantics that are tied into DDPO.
We have come to distinguish four abstraction levels of a KCO:

1. Generic KCO (physical) schema: a physical data structure (subClassOf
“computational object” in DDPO) that realizes an abstract data structure
(subClassOf “information object” in DDPO).

2. Tradeable domain KCO (physical) schema: a a physical data structure that
specializes of a generic KCO schema, including an ontology of a domain (e.g. a
CD ontology), and an ontology for the related business semantics. By default, we
assume that this abstraction layer also features the description of a particular
business semantics (see next section). There can be several levels of domain
schema specialization.

3. Instantiated KCO Prototype (Master Copy): a physical data structure implementing
the same facets (and business semantics) from a tradable domain KCO schema, but
that also contains, at a certain point in time, a particular digital content including all
semantic annotations required by the corresponding tradable domain KCO schema.

4. KCO Instance (Copy): the clone of an instantiated KCO prototype. It is
distinguished here for business reasons; for example, when a user is granted access
to a content object, and depending on the contract semantics, this copy could

 Towards an Ontology-Based Distributed Architecture for Paid Content 263

change over time, through alterations made by the owner. For example, somebody
may buy a backing track for a pop song, in order to add her own voice to the
recording.

Fig. 2. Levels of KCO abstraction and KCO facets. All levels include physical data structures

Derived from the analysis of business models and paid content products, we have
developed a KCO structure consisting of eight facets. Several of these facets are
subdivided into further KCO sub-facets. At the "atomic" level, it is intended that each
of the leaf elements is associated with well-defined operational semantics, in order to
enable organisations to quickly deploy KCOs as part of their information
infrastructure.

While KCOs are also rooted in semantic web technology - using an extension of
DDPO for their definition - our application interest is more strongly geared towards
the following question: “what information and knowledge exchange processes can be
actively (i.e. operationally) supported by semantic web technology”. In particular, we
are interested in how traditional digital content can be enhanced in order to qualify as
“knowledge” content.

The first facet is what we call the content description. The KCO carries a list of
media references which are intended to point to real media files. So the collection of
these referenced media files is actually, the full intended content of the KCO. In order
to make this content accessible for machines, we provide a simple referential
mechanism to associate arbitrary logic descriptions to the media files. For this, the
propositional content facet is linked to a domain ontology which represents the
universe of discourse for all content descriptions of this KCO. When an instantiation

264 W. Behrendt et al.

of a KCO is created, then arbitrary selections of the multimedia assets can be
associated with statements that are valid according to the ontology. The semantic
annotation is very flexible as it can relate to segments of a media asset (e.g. a scene in
a video or a region in an image) or even to a relationship that holds between some
media assets. (For example, it holds for the novel "Don Quixote", that it is a parody of
the chivalrous romantic epic of "Orlando Furioso". This relationship holds between
the "prototypes" of the two novels, and between all derivatives of the two. So by
stating it once, we assert this knowledge to all instantiations (i.e. copies) of the
novels. The details of creating media semantic networks have been described
elsewhere [e.g. 14].

The second facet is the specification of time-based spatial presentation of complex
content. Given some media tokens, we specify on one or more temporal “tracks”
which describe when the associated media data will be rendered, and where they will
be rendered (in terms of spatial arrangements). In an operational environment, this
component may use elements of the SMIL multimedia synchronisation language for
its implementation.

Table 1. KCO facets

Elements Facets Sub-Facets
Media references Content

Description (CD)
(1) Propositional Content

Logic descriptions
(2) Spatio-temporal rendition
(3) Interaction-based rendition

Media properties

Presentation
Description (PR)

(4) Multimedia characterisation
Content classification
User task
User community

Community
Description (CO)

(5) Usage context

Usage history

Negotiation protocol
Pricing scheme

Business
Description (BS)

(6) Business and legal semantics

Contract
Trust & Security (TS) (7) Semantics and pragmatics of

confidence in virtual goods
Self-description (SD) (8) The description of the KCO’s

semantic structure (schema)

The third facet deals with interaction and dialogue. Here, the semantic annotation
specifies whether the presentation is entirely pre-programmed, whether it is entirely
open (e.g. web based navigation) or whether it follows some dialogue pattern where
humans and system take conversational turns in order to navigate the
knowledge/information structure. This description defines one or more discourse
structures that can be associated with the content for its rendering.

The fourth facet contains interfaces to existing metadata standards, notably those
in the cataloguing and media management areas. Its purpose is to enable the migration

 Towards an Ontology-Based Distributed Architecture for Paid Content 265

of media and their associated meta data into the KCO structure. We envisage this to
be the place where meta data harmonisation can be done.

The fifth facet, community description, describes the context in which a content
can be used. This covers three sub-facets: user tasks, which are formally described by
reference to an ontology of plans and tasks; user community, which describes the
situations with corresponding roles (rights and obligations) that users would take in
order to manipulate or consume the content; and usage history, keeping traces of
previous use in order to support workflow systems as well as collaborative filtering
systems. The latter can be achieved by keeping track of user data when the KCO is
being "touched" by that user. Depending on legal and contractual aspects of this
facet, the filtering may be more or less anonymous.

The sixth facet, business description, contains a specification of the business
semantics associated with the KCO. This comprises the sub-facet negotiation protocol
which describes the business scripts by which a contract is being negotiated. A
negotiation protocol is described as a DDPO plan that can be represented and
processed in OWL-DL format [6]. The pricing scheme is used for restricting the price
policies that can be applied during the negotiation. It is grounded in DDPO as the
regulation concept. In the simple case of a fixed-price scheme, the negotiation is
reduced to a simple over-the-counter (OTC) purchase. The pricing scheme is required
for price differentiation strategies that are defined by the seller on the basis of a
differentiating factor such as age, quantity discount or date of content origin (see [13,
15]). The resulting contract is also a plan in the DDPO ontology that describes the
situation in which agentive roles can be taken by agents and act by using described
tasks. We distinguish between pre-existing content and prospective content. Pre-
existing content is already available at contracting time while prospective content is
produced during execution time of the contract.

The seventh facet, trust and security, is currently deemed out of the scope of our
project although we acknowledge the need for inclusion of the issue, in the overall
framework of METOKIS.

The framework is rounded off with the eighth facet, self-description, which exports
the basic structure and formal semantics of the KCO to external systems that may
want to make use of the KCO structure and its supported semantics.

In the following section, we will translate the KCO model into an OWL ontology,
which specializes the IO branching of DDPO foundational ontology.

3.1 KCO Formalization

The IO design pattern can be used and extended in order to characterize Content
Objects (CO) and Knowledge Content Objects (KCO). As introduced, IOs can be
realized by any sort of entities. The realization relation provides us the expressivity to
talk about KCOs: a KCO is described here as a physical data structure, a subClassOf
computational object, which is a subClassOf information realization (that can be any
entity, ultimately relying on some physical object, substance, event, etc.). A physical
data structure realizes a (abstract) data structure, which is a kind of IO.

266 W. Behrendt et al.

KCOs are distinguished from digitalized COs (content objects), which are another
kind of computational obiect. A KCO provides an implemented data structure (a
frame) to COs. The relation between a KCO and a CO is provided by the property:
KCO:realizes-frame-for:

ObjectProperty(KCO:realizes-frame-for
 domain(KCO:physical-data-structure)
 range(KCO:content-object))

Such a property is complemented by an appropriate axiom that states that the KCO
realizes a data structure that is a frame for a content object.

These assumptions allow us to give a foundation to the operationalized KCO
model in the KCCA architecture: each facet in that model is formalized here as an
OWL property, linked to the DDPO ontology.

Some basic distinctions are made firstly to catch the different states of the
implemented data structures: in the KCO ontology, the implementation of the most
generic data structure (the facets without any values) is called KCO:generic-KCO.
The class of domain-oriented data structures (the facets with specified “types” for the
value of the facets), and a given business semantics, is called KCO:domain-KCO. The
class of KCOs themselves (the implemented physical data structure with at least one
value filling a facet type) is called: KCO:KCO. Two properties of KCOs are conceived:
KCO:master-of, used to characterizes the first implementations of each KCO (this is
specially relevant with reference to the masters of content objects that are framed by
the KCO data structure), and KCO:copy-of, which is used to characterize the copies
of the master. Different modification rights, contracts, and pricing schemes apply to
the masters.

Once introduced the intended meaning of KCO, and its reference to abstract data
structures and content objects, we lay down our characterization of facets in terms of
OWL properties.

Firstly, we summarize the properties as from the OWL definition of KCO:

Class(KCO:KCO complete
 KCO:physical-data-structure
 restriction(DnS:realizes someValuesFrom(intersectionOf(
 KCO:data-structure
 restriction(KCO:instantiates someValuesFrom(intersectionOf(
 KCO:data-structure
 restriction(DnS:realized-by someValuesFrom(KCO:domain-

KCO))))))))
 restriction(KCO:realizes-frame-for

someValuesFrom(KCO:content-object))
 restriction(KCO:content someValuesFrom(DOLCE:particular))
 restriction(KCO:time-based-rendition

someValuesFrom(KCO:script))
 restriction(KCO:interaction-based-rendition

someValuesFrom(KCO:script))
 restriction(KCO:usage-context someValuesFrom(DnS:plan))
 restriction(KCO:user-task someValuesFrom(DnS:task))
 restriction(KCO:content-user someValuesFrom(unionOf(
 DnS:organization Collectives:collective DnS:agent-driven-

role)))
 restriction(KCO:contract-semantics

 Towards an Ontology-Based Distributed Architecture for Paid Content 267

 someValuesFrom(CoreLegal:contract))
 restriction(KCO:negotiation-semantics

someValuesFrom(negotiation-protocol))
 restriction(KCO:pricing-semantics

someValuesFrom(KCO:pricing-scheme))
 restriction(KCO:trust-value someValuesFrom(KCO:trust-

region))
 restriction(KCO:mappable-to

allValuesFrom(KCO:ForeignClass)))

We mean that:

− KCO is a subclass of the class physical data structure. All the facets of a KCO data
structure are modelled in OWL as “restrictions”:

− a KCO realizes a data structure that instantiates the data structure provided by a
domain KCO (this represents the “self-description” facet)

− a KCO realizes a frame for one or more content objects (even past or future)
− a KCO propositionally represents (in this case, through OWL) the content of the

content objects which it realizes a frame for
− a KCO provides scripts for the time-based, and interaction-based renditions of the

content objects
− a KCO provides (eventually propositional) representations of the usage context

(the plan) in which the content objects are supposed to be involved. Plans are
axiomatized in the plan ontology, another extension of DOLCE and DnS [1][7]

− a KCO has at least one user task. Tasks are also defined in the plan ontology
− a KCO has at least one content user, that can be either organizations, roles played

by agents (e.g. author), or collectives of any kind
− a KCO implements at least one (eventually propositional) contract semantics for

the content objects: such semantics is representable within a contract, which is a
kind of DnS:description

− a KCO implements at least one (eventually propositional) negotiation semantics for
the content objects: such semantics is representable within a negotiation protocol,
which is a kind of DnS:description

− a KCO implements at least one (eventually propositional) pricing semantics for the
content objects: such semantics is representable within a pricing scheme, which is
a kind of DnS:description

− a KCO provides a trust value for the content objects, here represented with
reference to a trust region (an attribute), but in principle, it is possible to provide
explicit (propositional) descriptions of trustworthiness, on which basis the trust
regions can be parametrized

− a KCO can be mappable to one or more instances represented according to foreign
classification schemes or ontologies. For example, given the CIDOC-CRM
classification scheme [8], a KCO framing a digital edition of Dante’s Comedy can
be mapped to an individual that has rdf:type:CIDOC:E73.Information_
Object. Also parts of the content object, or its interpretations, references, etc. can
be mapped using the same style.

All the properties that have been introduced have complementary axioms that
allow to formally explicate their intended meaning on the basis of DDPO, and the IO
extension. For example, the property KCO:content has the following complementary

268 W. Behrendt et al.

axioms, which state that anything the information of a content object is about, or
expressed by it, is a content for the KCO:

SubClassOf(
 restriction(KCO:realizes-frame-for someValuesFrom(
 restriction(DnS:realizes someValuesFrom(
 restriction(DnS:about someValuesFrom(DOLCE:particular)))))
 restriction(KCO:content someValuesFrom(DOLCE:particular)))

SubClassOf(
 restriction(KCO:realizes-frame-for someValuesFrom(
 restriction(DnS:realizes someValuesFrom(
 restriction(DnS:expresses

someValuesFrom(DOLCE:particular)))))
 restriction(KCO:content someValuesFrom(DOLCE:particular)))

Another example of axiomatic complementation of properties is given by the
property user task, which is formalized as equivalent to having as usage context a
plan that defines (that) task:

EquivalentClasses(
 restriction(KCO:user-task someValuesFrom(DnS:task))
 restriction(KCO:usage-context someValuesFrom(intersectionOf(
 DnS:Plan
 restriction(DnS:defines someValuesFrom(DnS:task)))))

The formalization detail of KCOs is justified by the intricate relationships holding
between content, information, users, tasks, contexts, regulations, business
requirements, etc. Being precise about these relationships helps the implementation of
KCOs, the eventual interoperability with other knowledge management and content
metadata systems, as well as paving the way towards ontology-driven management of
content objects.

4 Architecture for a Distributed Content Infrastructure

In order to make use of the semantic richness that can be expressed with KCOs we
need an infrastructure whose components support the functionality afforded by the
KCO. The Knowledge Content Carrier Architecture (KCCA) does this in the shape of
services which are logically clustered in the KCCA's components. Assuming a three-
layer conceptual architecture with presentation / interaction, business logic and back-
end data storage the KCCA specifies the middleware of the business layer. This gives
rise to the following structural core components:

KCO Service API - offering the functions described by the facets in table 1
KCCA Registry and Manager - managing a federation of KCO-aware nodes
KCTP Service - a protocol to exchange service requests across KCCA nodes
KCCA Profiles - Services for the wrapping and integration of data sources

One of the assumptions of our work is that eventually, most information systems
will make use of two further components: firstly, reasoning services based on
ontologies and secondly, a task execution environment that will support the definition
and execution of flexible workflows. KCOs are designed to support such an

 Towards an Ontology-Based Distributed Architecture for Paid Content 269

architecture through their content description (this is where reasoning services can
access the KCO) and through their community description (describing the tasks for
which this KCO is useful and the roles of actors that would do the tasks). We
envisage future publishing environments to use an integrated framework consisting of
the components described. This will leave the application builder to focus on
application and domain specific adaptations, and on the tailoring of the presentation
/interaction layer to the needs of the cutomer.

The following architectural overview shows the full picture combining KCCA
components, reasoning and task execution environment, as well as domain specific
adaptations and the application layer.

Fig. 3. Knowledge Content Carrier Architecture (KCCA)

The KCO services offer access to the operational semantics of the KCO facets. To
achieve this, the structures that are defined in the generic KCO are mapped to an
according O-O Model which is used for the implementation of the services. For
domain KCOs, both the O-O model and its attendant services can be extended to
cater for the application-specific functionality and semantics. It is assumed that the
assignment of instance data (provided by KCO prototypes/instances) to types

270 W. Behrendt et al.

(defined at the generic or domain level of the KCO) is done outside this building
block (e.g. by reasoning based on the semantics defined at generic KCO and domain
KCO Level).

The KCCA Registry and Manager component keeps track of how a federation of
KCO aware information systems is set up. The KCCA environment keeps information
about information sources, wrappers and maintains state in user sessions that may
span requests and transactions across the federation.

The KCTP Services define a stateful protocol that allows communication between
KCCA nodes by exchanging serialised RDF graphs. One specific service is the
serialisation and de-serialisation (marshalling/unmarshalling) of KCOs in messages.
The protocol is FIPA-based and can be implemented on top of SOAP or http.

The KCCA Integration Services give assistance in binding non-KCCA resources to
a KCO aware system. This is done by a two-stage mapping process. The external
information source is first mapped into an equivalent RDF schema which we call
"context profile". This can be a "naive" mapping to RDF. Next, a view is defined over
the context profile and this view is made KCO compliant. We call this the "view
profile". The provider of an external information source needs to write a wrapper
which provides the context profile for the resource. The KCCA integrator uses the
context profile to create the view profile.

5 Summary and Open Issues

KCO are a flexible container structure for paid content that is enriched by dedicated
semantic annotations grounded in foundational ontologies. They provide a solid basis
for interoperable applications.

The foundational approach is used on one hand as a guideline for an efficient
design of domain ontologies for content annotation, and provides on the other hand a
minimal but shareable model for content interoperation between heterogeneous
applications. The latter property will be leveraged by semantic search queries across
KCCA infrastructures, i.e. such queries can be formulated on web objects classifiable
as KCO level 2 (domain-specific KCOs) or KCO level 3 (instantiated KCOs). On
level 2, partial instantiations can be added to a domain-specific KCO and used as
requests.

The formal foundation of KCOs also secures that accessible KCO-compliant
content repositories will deliver valid responses only. Because of the rich semantic
structure of a KCO, requests can be defined on all content object aspects, i.e.
descriptive content, reference community, business elements, and presentation
issues.

The development of corresponding query languages and infrastructures that
provide operational semantics is part of our current research within the EU project
METOKIS (e.g. for KCO matching and composition, and interoperability with
Semantic Web Services infrastructures). This will be used to integrate commercial
content repositories in operational settings for three different domains: educational
content production, clinical trial design and distributed news publishing.

 Towards an Ontology-Based Distributed Architecture for Paid Content 271

References

1. Abecker, A., Apostolou, D., Maass, W., Mentzas, G., Reuschling, C. and Tabor, S.,
Towards an Information Ontology for Knowledge Asset Trading. in ICE 2003 - 9th
International Conference of Concurrent Enterprising, (Espoo, Finland, 2003).

2. Bloom, P. A Decision Model for Prioritizing and Addressing Consumer Information
Problems. Journal of Public Policy & Marketing, 8 (1). 161-180.

3. Boll, S. and Klas, W. ZYX - A Multimedia Document Model for Reuse and Adaptation.
IEEE Transactions on Knowledge and Data Engineering, DS-8 Special Issue, 4.

4. Clarke, R. Electronic Commerce Definitions, 2000.
5. Franke, G., Huhmann, B. and Mothersbaugh, D. Information Content and Consumer

Readership of Print Ads: A Comparison of Search and Experience Products. Journal of the
Academy of Marketing Science, 32 (1). 20-31.

6. Gangemi, A., Borgo, S., Catenacci, C. and Lehmann, J. Task Taxonomies for Knowledge
Content, METOKIS Deliverable, D07, 2004.

7. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B.N. and Dean, M. SWRL:
A Semantic Web Rule Language Combining OWL and RuleML
http://www.w3.org/Submissions/SWRL/, 2004.

8. Masolo, C., Borgo, S., A., G., Guarino, N. and Oltramari, A. The WonderWeb Library of
Foundational Ontologies, 2003.

9. Reich, S., Behrendt, W., Eichinger, C. and M., M.S., Document Models for Navigating
Digital Libraries. in International Conference on Digital Libraries, (Kyoto, 2000), 277-
284.

10. Schellner, K., Westermann, U., Zillner, S. and W., K., CULTOS: Towards a World-Wide
Digital Collection of Exchangeable Units of Multimedia Content for Intertex-tual Studies.
in Conference on Distributed Multimedia Systems (DMS 2003), (Miami, Florida, 2003).

11. Schmid, B.F. and Lindemann, A., Elements of a Reference Model for Electronic Markets.
in HICSS, (Kohala Coast, Hawaii, 1998), IEEE Computer Society, 193-201.

12. Shapiro, C. and Varian, H.R. Information rules - A Strategic Guide to the Network
Economy. Harvard Business School Press, 1999.

13. Stahl, F., F., S. and Maass, W. Paid Content - Paid Services: Analysis of the German
Market and Success Factors of 280 Business Models, =mcminstitute, University of St.
Gallen, St. Gallen, 2004, 163.

14. van Ossenbruggen, J., Geurts, J., Cornelissen, F., Rutledge, L. and Hardman, L., Towards
Second and Third Generation Web-Based Multimedia. in The Tenth International World
Wide Web Conference, (Hong Kong, 2001), 479-488.

15. Varian, H.R., Markets for Information Goods. in Monetary Policy in a World of
Knowledge-Based Growth, Quality Change, and Uncertain Measurement, (2000).

16. Whinston, A.B., Stahl, D.O. and Choi, S.Y. The Economics of Electronic Commerce.
Macmillan Technical Publishing, Indianapolis, 1997.

17. Zillner, S., Westermann, U. and Winiwarter, W. EMMA - A Query Algebra for Enhanced
Multimedia Meta Objects. CoopIS/DOA/ODBASE, 2. 1030-1049.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 272–289, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Semantic Matching

Fausto Giunchiglia1, Mikalai Yatskevich1, and Enrico Giunchiglia2

1 Dept. of Information and Communication Technology,
University of Trento,

38050 Povo, Trento, Italy
{fausto, yatskevi}@dit.unitn.it

2 DIST – Universita di Genova,
Viale Causa 13, 16165, Genova, Italy
enrico@dist.unige.it

Abstract. We think of Match as an operator which takes two graph-like
structures and produces a mapping between semantically related nodes. We
concentrate on classifications with tree structures. In semantic matching,
correspondences are discovered by translating the natural language labels of
nodes into propositional formulas, and by codifying matching into a
propositional unsatisfiability problem. We distinguish between problems with
conjunctive formulas and problems with disjunctive formulas, and present
various optimizations. For instance, we propose a linear time algorithm which
solves the first class of problems. According to the tests we have done so far,
the optimizations substantially improve the time performance of the system.

1 Introduction

We think of matching as the task of finding semantic correspondences between
elements of two graph-like structures (e.g., conceptual hierarchies, classifications,
database schemas or ontologies). Matching has been successfully applied in many
well-known application domains, such as schema/ontology integration, data
warehouses, and XML message mapping. In this paper we concentrate on
classifications with tree structures.

Semantic matching, as introduced in [1, 5], is based on the key intuition that labels
at nodes, which are written in natural language, are translated into propositional
formulas which codify the intended meaning of the labels themselves. This allows us
to codify the matching problem into a propositional unsatisfiability problem, which
can then be efficiently implemented using state of the art propositional satisfiability
(SAT) solvers [8, 9]. We call concept of a label the propositional formula which
stands for the set of documents that one would classify under a label it encodes. We
call concept at a node the propositional formula which represents the set of
documents which one would classify under a node, given that it has a certain label
and that it is in a certain position in a tree [5]. As from [5], all previous approaches,
though implicitly or explicitly exploiting the semantic information codified in graphs,
differ substantially from our approach in that they compute a syntactic “similarity”
coefficients between labels in the [0,1] range (see for instance [3, 10]).

 Efficient Semantic Matching 273

The system we have developed, called S-Match [6], takes two classifications and
computes the strongest semantic relation holding between any pair of nodes. The
matching problem is articulated into two macro steps, namely element and structure
level matching. Element level matchers consider only the information on the atomic
level [7] (the labels of nodes), while structure level matchers consider also the
structure of the trees. Our goal in this paper is to describe the structure level matching
algorithm, as it has been implemented within S-Match, and present a set of
optimizations. In particular, we distinguish between two main classes of problems. In
the first class all the concepts at nodes are atomic or conjunctive formulas. In the
second class the concepts at nodes may also contain disjunctive formulas. In the case
of conjunctive concepts at nodes we present a modification of the original algorithm
which solves the node matching problem in linear time. With disjunctive concepts we
present various techniques, which, among the other things, allow us to avoid the
exponential space explosion which arises when converting disjunctive formulas into
Conjunctive Normal Form (CNF). This modification is required since all state of the
art SAT deciders take CNF formulas in input.

We have evaluated the time performance of the optimized algorithm against its
basic version and several state of the art matching systems. The optimizations seem to
improve substantially the time performance of S-Match. In all cases S-Match
performs better or much better than the unoptimized version and always competes
well with the other matching systems. In particular, it outperforms them on trees with
hundreds or thousands of nodes.

The rest of the paper is organized as follows. Section 2 provides an overview of the
S-Match tree matching algorithm. Section 3 discusses the basic node matching
algorithm. The next two sections are dedicated to the two classes of node matching
problems we have identified. Node matching problems with conjunctive concepts at
nodes (and their optimizations) are discussed in Section 4, while the node matching
problems with disjunctive concepts at nodes (and their optimizations) are described in
Section 5. We discuss the evaluation results in Section 6. Section 7 concludes the
paper.

2 The Tree Matching Algorithm

As from [6], the S-Match algorithm is organized according the following four macro
steps:

− Step 1: for all labels in the two trees, compute concepts of labels;
− Step 2: for all nodes in the two trees, compute concepts at nodes;
− Step 3: for all pairs of labels in the two trees, compute the semantic relations

between concepts of labels;
− Step 4: for all pairs of nodes in the two trees, compute the semantic relations

between concepts at nodes.

The first two steps represent the pre-processing phase, while the third and the
fourth steps correspond to the element-level and structure-level matching
respectively. The semantic relations we consider are: equivalence (=); more general

274 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

(⊇); less general (⊆); disjointness (⊥); overlapping (∩). When none of the relations
holds, the special Idk (I don’t know or (?)) relation is returned.

The version of the algorithm defined in this paper assumes that:

− There are no negated atomic concepts of labels (one example of negated concept of
label is Cexcept apple=¬Capple)

− The information we use, namely the labels of nodes and the knowledge residing in
WordNet (see below) is all globally consistent. Under this assumption the only
reason why we get an unsatisfiable formula is because we have found a match
between two nodes

In order to understand how the algorithm works, consider for instance the two trees
depicted in Figure 1a.

Fig. 1. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix
of relations between the concepts at nodes (matching result)

During Step 1 we first tokenize labels. For instance “Wine and Cheese” becomes
<Wine, and, Cheese>. Then we lemmatize tokens. Thus for instance “Images”
becomes “image”. Then, an Oracle (at the moment we use WordNet 2.0) is queried in
order to obtain the senses of the lemmatized tokens. Afterwards, these senses are
attached to atomic concepts. Finally, complex concepts are built suitably composing
atomic concepts. Thus, the concept of the label Wine and Cheese is computed as CWine

and Cheese=<wine, {sensesWN#4}>∨<cheese, {sensesWN#4}>, where <cheese,
{senesesWN4}> is taken to be the union of the four WordNet senses, and similarly for
wine. Notice that natural language and is converted into logical disjunction rather than
conjunction.

Step 2 takes into account the structural schema properties. The logical formula for
a concept at a node is constructed most often as the conjunction of the concept of a
label formulas in the concept path to the root [5]. For example, the concept C2 for the
node Pictures in Figure 1a is computed as C2=CEurope ∧ CPictures.

Element level semantic matchers are applied during Step 3. They determine the
semantic relations holding between pairs of atomic concepts of labels. For example,
from WordNet we can derive that image and picture are synonyms, and therefore,
CImages = CPictures. Notice that Image and Picture have 8 and 11 senses in WordNet,
respectively. In order to determine the senses which are relevant in the current
context, sense filtering techniques are applied (see [11] for more details). The
relations between the atomic concepts of labels for the trees depicted in Figure 1a are
reported in Figure 1b.

 Efficient Semantic Matching 275

Element level semantic matchers provide the input to the structure level matcher,
which is applied in Step 4. This matcher produces the set of semantic relations
between concepts at nodes (see Figure 1c for example). On this step the tree matching
problem is reformulated into the set of node matching problems, one for each pair of
nodes. Further, each node matching problem is reduced to a propositional validity
problem.

The pseudo code of the Steps 3 and 4 of the semantic matching algorithm is
reported in Figure 2. treeMatch takes 2 trees of Nodes (source, target) and
returns the matrix of semantic relations between concepts at nodes in both trees
(cNodesMatrix). First, fillCLabMatrix exploit element level semantic
matchers library in order to fill the matrix of relations between concepts of labels in
both trees (cLabsMatrix) (line 11). This action corresponds to the third step of the
tree matching algorithm. Afterwards, two loops over all nodes of source and
target trees are executed (lines 12-20 and 15-20). Within these loops, the
propositional formulas corresponding to the concepts at nodes (contextA,
contextB) are computed by getCnodeFormula (lines 14, 17).

1. Node: struct of
2. int nodeId;
3. String label;
4. String cLabel;
5. String cNode;

6.String[][] treeMatch(Tree of Nodes source, target)
7. Node sourceNode,targetNode;
8. String[][] cLabsMatrix, cNodesMatrix, relMatrix;
9. String axioms, context

A
, context

B
;

10.int i,j;
11.cLabsMatrix=fillCLabMatrix(source,target);
12.For each sourceNode in source
13. i=getNodeId(sourceNode);
14. context

A
=getCnodeFormula (sourceNode);

15. For each targetNode in target
16. j=getNodeId(targetNode);
17. context

B
=getCnodeFormula (targetNode);

18. relMatrix=extractRelMatrix(cLabsMatrix,
 sourceNode, targetNode);
19. axioms=mkAxioms(relMatrix);
20. cNodesMatrix[i][j]=nodeMatch(axioms,context

A
,

 context
B
);

21. return cNodesMatrix;

Fig. 2. The pseudo code of the tree matching algorithm

relMatrix is calculated in the inner loop by extractRelMatrix (line 18). It
contains the part of the cLabsMatrix relevant to the particular node matching
problem. axioms (line 19) contains the conjunction of the propositional formulas in
relMatrix. For example, the semantic relations in Figure 1b, which are considered

276 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

when we match Europe and Pictures are EuropeA= EuropeB, ImagesA= PicturesB. In
this case axioms is (EuropeA ↔ EuropeB)∧ (ImagesA ↔ PicturesB). Notice that,
subscripts designate the context (either A or B) to which a propositional variable (or
concept) belongs. The detailed description of nodeMatch is provided in the next
section.

3 The Node Matching Algorithm

nodeMatch input formulas are combined to obtain the following formula:

(axioms) → rel(contextA , contextB), (1)

where axioms, contextA, contextB are as defined in treeMatch (Figure 2), while
rel(contextA , contextB) is the formula corresponding to the semantic relation being
checked, (namely equivalence, less or more generality, or disjointness). As from [5],
two nodes match if and only if Eq. 1 is valid, namely if it is true for all possible truth
assignments to its propositional variables. Given that most of the available
propositional solvers are satisfiability checkers, the negation of the matching formula
is checked for unsatisfiability. This yields the following formula

axioms ∧¬ rel(contextA , contextB) (2)

Table 1 reports the resulting matching formulas as a function of the semantic
relation being tested. Notice that the check for equality is omitted. In fact A = B holds
iff A⊆B and A⊇B hold.

Table 1. The relationship between semantic relations and propositional formulas

rel(a ,b) Translation of rel(a , b)
in propositional logic

CNF translation of Eq. 2

a=b a↔b N/A
a⊆b a→b axioms∧contextA∧ ¬contextB
a⊇b b→a axioms∧contextB∧ ¬contextA
a⊥b ¬(a∧b) axioms∧contextA∧ contextB

Consider the pseudo code of the node matching algorithm, as described in Figure 3.
nodeMatch constructs the formulas needed for testing less generality (line 120)

and more generality (line 150), it converts them to CNF (lines 130, 160) and checks
for unsatisfiability (lines 140, 170). If both relations hold, then the equivalence
relation is returned (line 190). Afterwards, the same procedure is repeated for
disjointness test. If all the tests fail “Idk” is returned (line 290).

Prior to the discussion of optimizations to our basic solution, let us classify the
concepts of labels and concepts at nodes. We distinguish between four categories of
concepts of labels:

 Efficient Semantic Matching 277

110.String nodeMatch(String axioms, context

A
, context

B
)

120. String formula=And(axioms,context
A
,Not(context

B
));

130. String formulaInCNF=convertToCNF(formula);
140. boolean isLG=isUnsatisfiable(formulaInCNF)
150. formula=And(axioms, Not(context

A
), context

B
);

160. formulaInCNF=convertToCNF(formula);
170. boolean isMG= isUnsatisfiable(formulaInCNF);
180. if (isMG && isLG)
190. return “=”;
200. if (isLG)
210. return “⊆”;
220. if (isMG)
230 return “⊇”;
240. formula= And(axioms, context

A
, context

B
);

250. formulaInCNF=convertToCNF(formula);
260. boolean isOpposite= isUnsatisfiable(formulaInCNF);
270. if (isOpposite)
280. return “⊥”;
290. return “Idk”;

Fig. 3. The pseudo code of the node matching algorithm

− Atomic: the concept of a label is an atomic proposition. For example, the concept
of the label Europe is CEurope = <Europe, {sensesWN#1}>, where WN#1 stands
for a WordNet sense.

− Conjunctive: the concept of a label is a conjunction. For example, the concept of
the label transmission gearbox is Ctransmission gearbox = Ctransmission ∧Cgearbox.

− Disjunctive: the concept of a label is a disjunction. For example, the concept of the
label jet and trains and cars is Cjet and trains and cars=Cjet ∨ Ctrain ∨ Ccar.

− Full proposition at logic: the concept of a label contains both conjunctions and
disjunctions. For example the concept of the label computers and electrical
equipment is Ccomputers and electrical equipment=Ccomputer∨ (Celectrical∧Cequipment)

This classification allows us to further distinguish between two classes of concepts
at nodes, which are at the basis of our optimizations:

− Conjunctive concepts at nodes: the concept at a node is a conjunction.
− Disjunctive concepts at nodes: the concept at a node contains both conjunctions

and disjunctions in any order.

4 Conjunctive Concepts at Nodes

4.1 Node Matching Problems

Consider the two trees depicted in Figure 4a. Notice that they have only atomic
concepts of labels. Let us consider the matching of gearbox and clutch.

.

senses

278 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

Fig. 4. (a): Two trees. (b): The matrix of relations between concepts of labels. (c): The matrix
of relations between concepts at nodes (matching result)

The relevant semantic relations between concepts of labels are depicted in Figure
4b. As from Table 1, axioms is:

(bigA↔hugeB)∧(carA↔autoB) ∧ (transmissionA↔ transmissionB)∧
(gearboxA→transmissionB) ∧(clutchB→transmissionA)∧ ¬(clutchB∧gearboxA)

(3)

which, translated in CNF, becomes:

(¬bigA∨hugeB)∧(bigA∨¬hugeB)∧(¬carA∨autoB)∧(carA∨¬autoB) ∧
(¬transmissionA∨ transmissionB) ∧ (transmissionA∨¬ transmissionB) ∧

(¬gearboxA∨transmissionB)∧(¬clutchB∨transmissionA)∧(¬clutchB∨¬gearboxA)
(4)

As from Step 2 in Section 2, contextA and contextB are constructed by taking the
conjunction of the concepts of labels in the path to root. Therefore, contextA and
contextB are:

bigA∧carA∧transmissionA∧gearboxA (5)

hugeB∧autoB∧transmissionB∧clutchB (6)

while their negations are:

¬bigA∨¬carA∨¬transmissionA∨¬gearboxA (7)

¬hugeB∨¬autoB∨¬transmissionB∨¬clutchB (8)

Let us consider the formula to be checked for unsatisfiability, as from Table 1. The
first observation is that axioms remains the same for all the tests, and it contains only
clauses with two variables, where a clause is a finite disjunction of literals. In the
worst case it contains 2*nA*nB clauses, where nA and nB are the number of atomic
concepts of labels in the paths to the root (in our example nA and nB are equal to 4).
The second observation is that the formulas for less and more generality are very
similar and differ only in the context formula which is negated. Thus, for instance, in
the less generality test contextB is negated. This means that Eq. 1 contains one clause
with nB variables (Eq. 8) in addition to nA clauses with one variable derived from
contextA (Eq. 5). Finally, again from Table 1, in the case of disjointness test contextA

 Efficient Semantic Matching 279

and contextB are not negated. Therefore, Eq. 1 contains nA+nB clauses with one
variable (Eq. 5 and Eq. 6).

So far we have concentrated on atomic concepts of labels. The propositional
formulas remain the same if we move to conjunctive concepts at labels. Consider the
trees depicted in Figure 5a. Let us consider the matching between transmission
gearbox and transmission clutch.

Fig. 5. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c):
The matrix of relations between concepts at nodes (matching result)

Compare the matrices on the Figure 5b and Figure 4b. They are the same. The
matrix of the relations between concepts of labels unambiguously determines axioms
(see Eq. 3 and 4). Furthermore, as from Step 2 in Section 2, the propositional
formulas for contextA and contextB are the same for atomic and for conjunctive
concepts of labels as long as they “globally” contain the same formulas. In fact,
concepts at nodes are constructed by taking the conjunction of concepts at labels.
Splitting a concept of a label with two conjuncts into two atomic concepts has no
effect on the resulting matching formula.

4.2 Optimizations

Let us consider first more and less generality and then disjointness.

4.2.1 Less and More Generality Tests
As from Section 4.1, formula (Eq. 1) in this case is as follows:

(9)

where n is the number of variables in contextA, m is the number of variables in
contextB. Ai’s belong to contextA, and Bj’s belong to contextB. s, k, p are in the [0..n]
range, while t, l, r are in the [0..m] range. Axioms can be empty. Eq. 9 is composed of
clauses with 1 or 2 variables plus one clause with possibly more variables (the clause

280 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

corresponding to the negated context). The key observation is that the formula in Eq.
9 is Horn: each clause contains at most one positive literal. Therefore, the satisfiability
problem can be decided in linear time by the unit resolution rule [2]. Notice, that
DPLL-based SAT solvers require quadratic time in this case [15].

In order to understand how the linear time algorithm works, let us prove the
unsatisfiability of Eq. 9 in the case of gearbox and clutch. In this case, Eq. 9
becomes

((¬ bigA∨hugeB)∧(bigA∨¬ hugeB)∧(¬ carA∨autoB)∧(carA∨¬ autoB)∧
(¬ transmissionB∨ transmissionA) ∧ (transmissionB ∨ ¬ transmissionA) ∧

(¬ gearboxA∨ transmissionB) ∧ (¬ clutchB ∨ transmissionA) ∧
(¬ clutchB ∨ ¬ gearboxA)) ∧ bigA ∧ carA ∧ transmissionA ∧ gearboxA ∧

(¬ hugeB ∨¬ autoB ∨ ¬ transmissionB ∨¬ clutchB)

(10)

where the variables from contextA are written in bold.
First, we assign true to all unit clauses occurring in Eq 10 positively. Notice

that these are all and only the clauses in contextA. This allows us to discard the
clauses where contextA variables occur positively (in this case: bigA∨¬hugeB,
carA∨¬autoB, ¬gearboxA∨transmissionB and ¬clutchB∨transmissionA). The resulting
formula is

hugeB ∧ autoB ∧ transmissionB ∧¬ clutchB∧
(¬ hugeB ∨ ¬ autoB ∨ ¬ transmissionB∨ ¬ clutchB) (11)

Notice that this formula does not contain any variable derived from contextA.
Notice also that, by assigning true to hugeB, autoB and transmissionB and false to
clutchB we do not derive a contradiction. Therefore, (Eq. 10) is satisfiable. In fact, a
(Horn) formula is unsatisfiable if and only if the empty clause is derived (and
satisfiable otherwise).

Consider again Eq. 11. For this formula to be unsatisfiable all the variables
occurring in the negation of contextB (¬hugeB∨¬autoB∨¬transmissionB∨¬clutchB in
our example) should occur positively in the unit clauses obtained after resolving
Axioms with the unit clauses in contextA (hugeB, autoB and transmissionB in our
example). But for this to happen, for any Bj in contextB there must be a clause of
form ¬Ai∨Bj in axioms, where Ai is a formula of contextA. But formulas of the form
¬Ai∨Bj occur in Eq. 9 if and only if we have the axioms of the form A =Bj and
Ai⊆Bj. These considerations suggest the following algorithm for testing
satisfiability:

− Step 1. Create an array of size m. Each entry in the array stands for one Bj in
Eq. 9.

− Step 2. For each axiom of type Ai=Bj and Ai⊆Bj mark the corresponding Bj.
− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

nodeMatch can be modified as in Figure 6 (the numbers on the left indicate where
the new code must be positioned):

 Efficient Semantic Matching 281

111. if (contextA and contextB are conjunctive)
112. isLG=fastHornUnsatCheck (contextA, axioms,“⊆”);
113. isMG=fastHornUnsatCheck (contextB, axioms,“⊇”);
114. else

301.boolean fastHornUnsatCheck(String context, axioms,
 rel);

302. int m=getNumOfVar(String context);
303. boolean array[m];
304. for each axiom in axioms
305. if((getAType(axiom)=”=”)||(getAType(axiom)=rel))
306. int j=getNumberOfSecondVariable(axiom);
307. array[j]=true;
308. for (i=0; i<m; i++)
309. if (!array[i])
310. return false;
311. return true;

Fig. 6. Less and more generality tests optimization pseudo code

fastHornUnsatCheck implements the three steps above. Step 1 is performed in
lines (302-303). Then, a loop on axioms (lines 304-307) implements Step 2. The
final loop (lines 308-310) implements Step 3.

4.2.2 Disjointness Test
Using the same notation as in Section 4.2.1, formula (Eq. 1) is as follows:

(12)

For example, the formula for testing disjointness between gearbox and clutch is

(¬ bigA ∨ hugeB) ∧ (bigA ∨ ¬ hugeB) ∧ (¬ carA ∨ autoB) ∧ (carA ∨ ¬ autoB)∧
 (¬ transmissionB ∨ transmissionA) ∧ (transmissionB∨¬ transmissionA) ∧

(¬ gearboxA ∨ transmissionB) ∧ (¬ clutchB ∨ transmissionA)∧
(¬ clutchB ∨ ¬ gearboxA) ∧ bigA ∧ carA ∧ transmissionA ∧ gearboxA ∧

 hugeB ∧ autoB ∧ transmissionB ∧ clutchB

(13)

Here again, the formula in Eq. 12 is Horn and thus, similarly to Section 4.2.1, the
satisfiability of the formula can be decided by unit propagation. After assigning true
to all the variables in contextA and propagating the results we obtain the following
formula:

hugeB∧autoB∧ transmissionB ∧¬clutchB∧hugeB∧autoB∧transmissionB ∧clutchB (14)

282 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

If we further unit propagate hugeB, autoB and transmissionB (this means that we assign
true to them), then get the contradiction clutchB∧ ¬clutchB. Therefore, the formula is
unsatisfiable. This contradiction arises because (¬clutchB∨¬gearboxA) occurs in Eq.
13, which, in turn, is derived (as from Table 1) from the disjointness axiom
(clutchB⊥gearboxA). In fact, all the clauses in Eq. 12 contain one positive literal
except for the clauses in axioms corresponding to disjointness relations. Thus, the key
intuition here is that if there are no disjointness axioms, then Eq. 12 is satisfiable. On
the other hand, if there is a disjointness axiom, atoms occurring there are also ensured
to be either in contextA or in contextB and thus Eq. 12 is unsatisfiable. Therefore, the
optimization consists of just checking the presence/absence of disjointness axioms in
axioms.

The pseudo code of nodeMath can therefore be modified as follows:

231. If (contextA and contextB are conjunctive)
232. If (there is disjointness axiom in the axioms)
233. isOpposite=true;
234. else
235. isOpposite=false;
236. else

Fig. 7. Disjointness test optimization pseudo code

5 Disjunctive Concepts at Nodes

5.1 The Node Matching Problem

Consider the trees depicted in Figure 8a. Notice that the concepts at nodes contain
disjunctive concepts of labels. Let us consider matching fifties or sixties or seventies
with twenties or thirties or forties.

Fig. 8. (a): Two trees. (b): The matrix of relations between concepts of labels in the trees. (c):
The matrix of relations between concepts at nodes (matching result)

The relations between atomic concepts of labels in both trees are depicted in Figure
8b. As from the second column of Table 1 axioms is:

 Efficient Semantic Matching 283

(carsB ↔autoA) ∧ (jetA↔jetB) (15)

which can be rewritten as:

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) (16)

As from Step 2 in Section 2 contextA and contextB are:

(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) (17)

(jetB∨ trainB∨carsB) ∧(twentiesB ∨thirtiesB∨ fortiesB) (18)

The negations of contextA and contextB are:

(¬jetA∧¬cargoA∧¬autoA) ∨ (¬fiftiesA∧¬sixtiesA∧¬seventiesA) (19)

 (¬jetB∧¬trainB∧¬carsB) ∨ (¬twentiesB∧¬thirtiesB∧ ¬fortiesB) (20)

Let us consider the formula to be tested for unsatisfiability, as from Table 1. Again,
axioms is the same for all the tests. As from Section 4.1, it consists up to 2*nA*nB

clauses with two variables, where nA and nB are the number of atomic concepts of
labels in the paths to root. In our example nA and nB are both equal to 6. The key
observation here is that contextA and contextB may contain any number of disjunctions.
Some exist because derived from the labels, while others may be obtained by negating
contextA or contextB (as from the above example, in the case of less and more
generality tests). Thus, for instance, as from Table 1 in case of less generality test we
obtain the formula.

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧

((¬jetB ∧¬trainB∧¬carsB) ∨ (¬twentiesB∧¬thirtiesB∧ ¬fortiesB))

(21)

5.2 Optimizations

With disjunctive concepts at nodes, Eq. 1 is a full propositional formula and no
hypothesis can be made on its structure. As a consequence its satisfiability must be
tested using a standard DPLL SAT solver. Thus for instance CNF conversion of Eq.
21 is

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧

((¬jetB∨¬twentiesB)∧ (¬jetB∨¬thirtiesB)∧ (¬jetB∨¬fortiesB)∧
(¬trainB∨¬twentiesB)∧ (¬trainB∨¬thirtiesB)∧ (¬trainB∨¬fortiesB)∧
(¬carsB∨¬twentiesB)∧ (¬carsB∨¬thirtiesB)∧ (¬carsB∨¬fortiesB))

(22)

In order to avoid the space explosion, which may arise when converting a formula
to CNF (see for instance Eq. 22), we apply a set of structure preserving
transformations [14, 4]. The main idea is to replace disjunctions occurring in the
original formula with newly introduced variables and explicitly state that these
variables imply the subformulas they substitute. Consider for instance Eq. 21. We
obtain:

284 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

(¬carsB ∨ autoA) ∧ (carsB∨ ¬autoA) ∧ (¬jetA∨ jetB) ∧ (jetA∨ ¬jetB) ∧
(jetA∨cargoA∨autoA)∧(fiftiesA∨sixtiesA ∨seventiesA) ∧ (new1∨new2)∧

(¬new1∨ ¬jetB∨¬trainB∨¬carB) ∧(¬new2∨¬twentiesB∨¬thirtiesB∨ ¬fortiesB)
(23)

Notice that the size of the propositional formula in CNF grows linearly with
respect to number of disjunctions in original formula.

To account for this optimization in nodeMatch all calls to convertToCNF are
replaced with calls to optimizedConvertToCNF, (see Figure 9):

130. formulaInCNF=optimizedConvertToCNF(formula);
...
160. formulaInCNF=optimizedConvertToCNF(formula);
...
250. formulaInCNF=optimizedConvertToCNF(formula);

Fig. 9. The CNF conversion optimization pseudo code

6 Evaluation Results

We have implemented the optimizations described above and evaluated the resulting
system S-Match against the original system and two state of the art matching systems,
namely COMA [3] and Similarity Flooding (SF) [12] as implemented in Rondo
system [13]. Let us call S-MatchB the original version without optimizations. Notice
that S-Match, COMA, and SF exploit different matching techniques and differ
substantially in the quality of matching results. See [6] for a detailed comparison

Table 2. The structural properties of the trees in the matching problems

Trees
max.
depth

of nodes
per tree

of labels
per tree

Average #
of labels per

node

Concepts at
nodes

Cornell-Washington
with atomic concepts

of labels
10/8 253/220 253/220 1/1 Conjunctive

Handmade trees with
disjunctive concepts

of labels
10/10 10/10 30/30 3/3 Disjunctive

Looksmart-Yahoo 10/8 140/74 222/101 1,58/1,36
Conjunctive
Disjunctive

Yahoo-Standard 3/3 333/115 965/242 2,9/2,1
Conjunctive
Disjunctive

Google-Yahoo 11/11 561/665 722/945 1,28/1,42
Conjunctive
Disjunctive

Google-Looksmart 11/16 706/1081 1048/1715 1,48/1,63
Conjunctive
Disjunctive

 Efficient Semantic Matching 285

among these systems. In this evaluation we have concentrated only on the time
performance of the systems. The tests have been performed on a P4 computer with
512 MB of RAM installed. The systems were limited to allocate no more than 512
MB of memory.

The systems have been tested on the six matching problems which can be found at
http://dit.unitn.it/~accord/. Table 3 reports the properties of these problems.

6.1 Conjunctive Concepts at Nodes

On this problem S-MatchB works two times faster than COMA. In fact, in this case the
DPLL SAT solver of S-Match runs in polynomial time. S-Match instead works more
than 5 times faster than COMA. However it still runs about 17% slower than SF. This
can be explained by noticing that in SF the similarities between the labels of nodes
obtained by a simple and fast string matcher, and propagated through a graph
structure using a fix point algorithm. This algorithm is very fast and, on these
examples, it converges after a few iterations. The drawback of SF, as the last test
below shows, is that it requires a much larger amount of memory.

Fig. 10. Execution time of the matching systems

6.2 Disjunctive Concepts at Nodes

Let us consider the test with handmade trees. As from Figure 10b, S-Match works
about 4 orders of magnitude faster than S-MatchB, about 4 times faster than COMA,
and as fast as SF. The significant improvement of the optimized algorithm can be
explained by considering that S-MatchB does not control the exponential space
explosion on such trees. In fact, the biggest formula in this case consists of about
118000 clauses. The optimization introduced in the Section 5.2 reduces this number
to about 20-30 clauses.

We have then considered 4 matching problems involving real world
classifications. Three of them, Looksmart-Yahoo, Google-Yahoo, and Google-
Looksmart, involve web directories. The forth involves parts of the Yahoo and the
Standard catalogues which describe business activities. The results obtained for the
Looksmart-Yahoo matching problem are depicted in Figure 11a. In this case the
trees contain about 100 nodes each. S-Match works about 18% faster than S-MatchB
and about 2 % slower than COMA. SF works about 3 times faster. The relatively
poor improvement (18%) can be explained by the fact that our optimizations are

286 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

implemented in a straightforward way. The higher implementational constants on
small trees (like Looksmart-Yahoo) can overcome the order of growth the
complexity function.

Figure 11b reports the results obtained for the Yahoo-Standard matching problem.
S-Match works about 40% faster than S-MatchB. It performs 1% faster than COMA
and about 5 times slower than SF. The relatively small improvement in this case can
be explained by noticing that the maximum depth in both trees is 3 and that the
average number of labels at node is about 2. The optimizations can not significantly
influence on the system performance.

Fig. 11. Execution time of the matching systems

Fig. 12. Execution time of the matching systems

The next two matching problems are much bigger than the previous ones. They
contain hundreds and thousands of nodes. On these trees SF went out of memory.
Therefore, we provide the results only for the other systems. The results are reported
in Figure 12a. S-Match is more than 6 times faster than S-MatchB. COMA performs
about 5 times slower than the optimized version. These results suggest that the
optimizations described in this paper are better suited for big schemas. The results of
the biggest matching problem, involving Google-Looksmart, are presented in Figure
12b. In this case S-Match performs about 9 times faster than COMA, and about 7
times faster than S-MatchB.

8 Conclusion

We have presented a structure level semantic matching algorithm and proposed
several optimizations to its original version. In particular we have distinguished

 Efficient Semantic Matching 287

between two main classes of problems, namely the problems with conjunctive and
with disjunctive concepts at nodes. For the first class of problems we have presented a
modification to the original algorithm which solves the node matching problem in
linear time. With disjunctive concepts we have presented various techniques, which
allow us to avoid the exponential space explosion which arises when converting
disjunctive formulas into CNF. We have evaluated S-Match against several state of
the art matching systems and against the original unoptimized version, S-MatchB. The
results thorough preliminary are promising. S-Match always performs better than S-
MatchB. Furthermore, in most cases S-Match competes well, in terms of time
performance, with various state of the art matching systems. Optimizations are most
effective on big trees with hundreds and thousands of nodes.

Acknowledgements. This work has been partially supported by the European
Knowledge Web network of excellence (IST-2004-507482) and by the research grant
COFIN 2003 Giunchiglia 40100657.

References

[1] P. Bouquet, L. Serafini, S. Zanobini. Semantic Coordination: A new approach and an
application. In Proceedings of ISWC 2003.

[2] M. Davis and H. Putnam. A computing procedure for quantification theory. In
, number 7, pages 201–215, 1960.

[3] H. Do, E. Rahm. COMA - A system for Flexible Combination of Schema Matching
Approaches, In Proceedings of VLDB 2002

[4] E. Giunchiglia, R. Sebastiani. Applying the Davis-Putnam procedure to non-clausal
formulas . In AIIA'99.

[5] F. Giunchiglia, P. Shvaiko. Semantic Matching. In The Knowledge Engineering Review
Journal, 18(3) 2003.

[6] F. Giunchiglia, P. Shvaiko, M. Yatskevich. S-Match: An algorithm and an
implementation of semantic matching. In Proceedings of ESWS'04.

[7] F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings of
Meaning Coordination and Negotiation workshop at ISWC, 2004.

[8] D. Le Berre JSAT: The java satisfiability library. http://cafe.newcastle.edu.au/daniel/
JSAT/.ï

[9] D. Le Berre SAT4J: A satisfiability library for Java. http://www.sat4j.org/.
[10] J. Madhavan, P. Bernstein, E. Rahm. Generic Schema Matching with Cupid. VLDB 2001
[11] B. Magnini, M. Speranza, C. Girardi. A Semantic-based Approach to Interoperability of

classification Hierarchies: Evaluation of Linguistic Techniques. In: Proceedings of
COLING-2004, Geneva, Switzerland, August 23-27, 2004.ï

[12] S. Melnik,, H. Garcia-Molina, E. Rahm: Similarity Flooding: A Versatile Graph
Matching Algorithm. Proceedings of ICDE, (2002) 117-128.

[13] S. Melnik, E. Rahm, P. Bernstein: Rondo: A programming platform for generic model
management. Proceedings of SIGMOD’03, (2003) 193-204.ï

[14] D. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. Journal
of Symbolic Computation, 2:293-304, 1986

[15] G. Tsetin. On the complexity proofs in propositional logics. Seminars in Mathematics, 8,
1970

288 F. Giunchiglia, M. Yatskevich, and E. Giunchiglia

Appendix A. The Pseudo Code of the Optimized S-Match
Algorithm

1. Node: struct of
2. int nodeId;
3. String label;
4. String cLabel;
5. String cNode;

6.String[][] treeMatch(Tree of Nodes source, target)
7. Node sourceNode,targetNode;
8. String[][] cLabsMatrix, cNodesMatrix, relMatrix;
9. String axioms, contextA, contextB;
10.int i,j;
11.cLabsMatrix=fillCLabMatrix(source,target);
12.For each sourceNode in source
13. i=getNodeId(sourceNode);
14. contextA=getCnodeFormula (sourceNode);
15. For each targetNode in target
16. j=getNodeId(targetNode);
17. contextB=getCnodeFormula (targetNode);
18. relMatrix=extractRelMatrix(cLabMatrix,
 sourceNode, targetNode);
19. axioms=mkAxioms(relMatrix);
20. cNodesMatrix[i][j]=nodeMatch(axioms,
 contextA, contextB);
21. return cNodesMatrix;

110.String nodeMatch(String axioms, contextA, contextB)
111. if (contextA and contextB are conjunctive)
112. isLG= fastHornUnsatCheck (contextA, axioms, “⊆”)
113. isMG= fastHornUnsatCheck (contextB, axioms,“⊇”)
114. else
120. String formula=And(axioms,contextA,Not(contextB))
130. String formulaInCNF=optimizedConvertToCNF(formula)
140. boolean isLG=isUnsatisfiable(formula)
150. formula=And(axioms, Not(contextA), contextB);
160. formulaInCNF= optimizedConvertToCNF (formula);
170. boolean isMG= isUnsatisfiable(formula);
180. if (isMG && isLG)
190. return “=”;
200.if (isLG)
210. return “⊆”;
220.if (isMG)
230 return “⊇”;
231. If (contextA and contextB are conjunctive)
232. If (there is disjointness axiom in the axioms)
233. isOpposite=true;
234. else

 Efficient Semantic Matching 289

235. isOpposite=false;
236. else
240. formula= And(axioms, contextA, contextB);
250. formulaInCNF= optimizedConvertToCNF (formula);
260. boolean isOpposite= isUnsatisfiable(formula);
270.if (isOpposite)
280. return “⊥”;
290.return “Idk”;

301.boolean fastHornUnsatCheck(String context, axioms,
rel)

302. int m=getNumOfVar(String context);
303. boolean array[m];
304. for each axiom in axioms
305. if((getAType(axiom)=”=”)||(getAType(axiom)= rel))
306. int j=getNumberOfSecondVariable(axiom);
307. array[j]=true;
308. for (i=0; i<m; i++)
309. if (!array[i])
310. return false;
311. return true;

Ontology-Based Policy Specification and Management

Wolfgang Nejdl1, Daniel Olmedilla1,
Marianne Winslett2, and Charles C. Zhang2

1 L3S Research Center and University of Hannover, Germany
{nejdl, olmedilla}@l3s.de

2 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{winslett, cczhang}@cs.uiuc.edu

Abstract. The World Wide Web makes it easy to share information and re-
sources, but offers few ways to limit the manner in which these resources are
shared. The specification and automated enforcement of security-related poli-
cies offer promise as a way of providing controlled sharing, but few tools are
available to assist in policy specification and management, especially in an open
system such as the Web, where resource providers and users are often strangers
to one another and exact and correct specification of policies will be crucial.
In this paper, we propose the use of ontologies to simplify the tasks of policy
specification and administration, discuss how to represent policy inheritance and
composition based on credential ontologies, formalize these representations and
the according constraints in Frame-Logic, and present POLICYTAB, a prototype
implementation of our proposed scheme as a Protégé plug-in to support policy
specification.

1 Introduction

Open distributed environments like the World Wide Web offer easy sharing of infor-
mation, but provide few options for the protection of sensitive information and other
sensitive resources, such as Web Services. Proposed approaches to controlling access to
Web resources include XACML [4], SAML [5], WS-Trust [3] and Liberty-Alliance[1].
All of these approaches to trust management rely on the use of vocabularies that are
shared among all the parties involved, and declarative policies that describe who is al-
lowed to do what. Some of these approaches also recognize that trust on the Web and
in any other system where resources are shared across organizational boundaries must
be bilateral.

Specifically, the Semantic Web provides an environment where parties may make
connections and interact without being previously known to each other. In many cases,
before any meaningful interaction starts, a certain level of trust must be established from
scratch. Generally, trust is established through exchange of information between the two
parties. Since neither party is known to the other, this trust establishment process should
be bi-directional: both parties may have sensitive information that they are reluctant to
disclose until the other party has proved to be trustworthy at a certain level. As there are
more service providers emerging on the Web every day, and people are performing more

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 290–302, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Ontology-Based Policy Specification and Management 291

sensitive transactions (e.g., financial and health services) via the Internet, this need for
building mutual trust will become more common.

To make controlled sharing of resources easy in such an environment, parties will
need software that automates the process of iteratively establishing bilateral trust based
on the parties’ access control policies, i.e., trust negotiation software. Trust negotiation
differs from traditional identity-based access control and information release systems
mainly in the following aspects:

1. Trust between two strangers is established based on parties’ properties, which are
proved through disclosure of digital credentials.

2. Every party can define access control and release policies (policies, for short) to
control outsiders’ access to their sensitive resources. These resources can include
services accessible over the Internet, documents and other data, roles in role-based
access control systems, credentials, policies, and capabilities in capability-based
systems. The policies describe what properties a party must demonstrate (e.g., own-
ership of a driver’s license issued by the State of Illinois) in order to gain access to
a resource.

3. Two parties establish trust directly without involving trusted third parties, other than
credential issuers. Since both parties have policies, trust negotiation is appropriate
for deployment in a peer-to-peer architecture such as the Semantic Web, where a
client and server are treated equally. Instead of a one-shot authorization and authen-
tication, trust is established incrementally through a sequence of bilateral credential
disclosures.

A trust negotiation process is triggered when one party requests to access a resource
owned by another party. The goal of a trust negotiation is to find a sequence of creden-
tials (C1, . . . , Ck, R), where R is the resource to which access was originally requested,
such that when credential Ci is disclosed, its policy has been satisfied by credentials
disclosed earlier in the sequence or to determine that no such credential disclosure se-
quence exists.

The use of declarative policies and the automation of the process of satisfying them
in the context of such a trust negotiation process seem to be the most promising ap-
proach to providing controlled access to resources on the Web. However, this approach
opens up a new and pressing question: what confidence can we have that our poli-
cies are correct? Because the policies will be enforced automatically, errors in their
specification or implementation will allow outsiders to gain inappropriate access to our
resources, possibly inflicting huge and costly damages. Unfortunately, real-world poli-
cies [10] tend to be as complex as any piece of software when written down in detail;
getting a policy right is as hard as getting a piece of software correct, and maintaining
a large number of them is only harder.

In this paper, we take an ontology-based approach to address this problem. Sec-
tion 2 discusses the use of ontologies for providing abstraction and structuring for pol-
icy specification, and further formalizes these concepts and constraints in Frame-Logic /
F-Logic [17]. Section 3 describes our proof-of-concept implementation, POLICYTAB, a
Protégé [2] plug-in to support policy specification. We discuss related work in section 4
and give future research directions and conclusions in section 5.

292 W. Nejdl et al.

2 Using Ontologies to Ease Policy Specification and Management

Ontology-based structuring and abstraction help maintain complex software, and so do
they with complex sets of policies. In the context of the Semantic Web, ontologies pro-
vide formal specification of concepts and their interrelationships, and play an essential
role in complex web service environments [7], semantics-based search engines [13] and
digital libraries [21].

One important purpose of these formal specifications is sharing of knowledge be-
tween independent entities. In the context of trust negotiation, we want to share informa-
tion about credentials and their attributes, which is needed for establishing trust between
negotiating parties. Figure 1 shows a simple example ontology for credential IDs.

Each credential class can contain its own attributes; e.g., a Cisco Employee ID creden-
tial has three attributes: name, rank and department. Trust negotiation is attributed-
based and builds on the assumption that each of these attributes can be protected and
disclosed separately. While in some approaches (e.g. with X.509 certificates) creden-
tials and their attributes are signed together as a whole by the credential issuer, in this
paper we will rely on cryptographic techniques such as [19] which allow us to disclose
credentials with different granularities, hiding attributes not relevant to a given policy.

In trust negotiation, a party’s security policies consist of constraints that the other
party has to satisfy; e.g. it has to produce a proof that it owns a certain credential,
and that one of the credential attributes has to be within a certain range. Assuming a
casino requires any customer’s age to be over 21 and requires a state ID to testify that,
the policy for its admits service can be represented as the following logic program,
which uses a simplified version of the PEERTRUST [18, 15] policy language:

Casino:
allowedInCasino(Requester) ←

type(CredentialIdentifier, “State Id”) @ Issuer @ Requester,
issuedFor(CredentialIdentifier, Requester) @ Issuer @ Requester,
age(CredentialIdentifier, Age) @ Issuer @ Requester,
Age > 21.

Fig. 1. Simple ID Credential Ontology

Ontology-Based Policy Specification and Management 293

In this example, the first two statements in the body of the rule require the requester
to prove that he owns a credential of type State Id issued by Issuer1. If the re-
quester proves that he has it (notice that information about attributes has not been dis-
closed so far, except for the issuedFor attribute), the casino asks for the value of the
attribute age in the presented credential. Then it verifies whether the requester’s age is
over 21 and, if successful, admits the requester into the casino.

2.1 Sharing Policies for Common Attributes

Often, credentials share common attributes, and these attributes might share the same
policies. Figure 1 shows an example of a simple credential hierarchy, where the con-
crete credential classes used are depicted in the leaves of the hierarchy. The upper part
of the hierarchy represents the different abstract classes: the root represents any ID,
which is partitioned into different subclasses according to the issuer of the credential,
distinguished between Government Issued and Enterprise Issued IDs. The
leaf nodes represent concrete classes which contain the attributes such as name, age,
and rank.

This somewhat degenerated hierarchy however does not yet allow for policy re-use.
For this we have to exploit attribute inheritance. In our example, all leaf nodes share the
Name attribute, which therefore can be moved up to the root class Id. We are now able
to specify common policies for the Name attribute at the Id level. Similarly, we will
move Rank up so that it becomes an attribute of Enterprise Issued Id, and Age
an attribute of Government Issued Id. A subclass automatically inherits its super-
class’s attributes, which might be local or inherited from the superclass’s superclass. In
the following, we will use Frame-Logic / F-Logic [17] to represent these constraints.
So, in the context of F-Logic, we use type inheritance (also structural
inheritance) to represent this constraint, which is defined as

If I |= p[mthd@q1, . . . , qk ≈>s] and I |= r :: p then I |= r[mthd@q1, . . . , qk ≈>s]

where the symbol ≈> denotes either => or=>> , I is any F-structure and r :: p
represents the fact that “r is subclass of p” .

This leads to the refined ontology as described in figure 2, where each leaf node
has the same set of attributes as in figure 1, but inherits them from higher levels. This
makes it possible to specify shared policies for these shared attributes, similar to method
inheritance in object oriented programming languages.

2.2 Composing and Overriding Policies

Now, given such credential ontologies, we can specify security policies at different
levels. Being able to inherit and compose these security policies simplifies policy main-
tenance, though of course we have to distinguish between the case where we compose

1 As an extra hint, in the PEERTRUST language, for a statement such that “liti @ Authority”,
Authority specifies the peer who is responsible for evaluating liti or has the authority to evalu-
ate liti. In addition, Authority can be a nested term containing a sequence of authorities, which
are then evaluated starting at the outermost layer.

294 W. Nejdl et al.

Fig. 2. Refined ID Credential Ontology

inherited and local policies and the case where the local policy specified for an attribute
of a specific class overrides the policy inherited from a superclass. In this paper we will
describe mandatory policies and default polices.

To model a policy in F-Logic, we have the following signature declaration for the
class policy

policy [
name => string,
value => string,
type => string

]

where name is the unique name of the policy, value is the text that describes the
policy (expressed in a suitable policy language)) and type describes if the policy is
default or mandatory. To express the constraint that type can only contain the strings
“Default” or “Mandatory” and only one of them at the same time, we define the follow-
ing integrity constraint

false ← C : policy, C[type->V], not V = “Default”, not V = “Mandatory”

Moreover, we want to assure that any class in our knowledge base has the possibility
to define policies. Therefore we need to declare a meta class called metaClass from
which all the classes will be an instance.

metaClass [
policySlot =>> policy,
overallPolicy =>> policy

]

This meta class contains a property policySlot whose value is a set of policies
(possibly empty) attached to the class and a property overallPolicy whose value

Ontology-Based Policy Specification and Management 295

is the set of policies (possibly empty) of all the policies, directly attached to the class
and inherited from superclasses, that apply to this class. The derivation rule

C2[overallPolicy ->>P] ← C2 :: C1, C1[policySlot->>P] (1)

assures that any policy in a direct superclass is inherited to the subclass. We further
have

C[overallPoliy ->>P] ← C[policySlot->>P] (2)

to add the policies attached to the the current class (C :: C is not true in F-Logic2).
Finally, in order to assure that any class in the knowledge base (except the policy

class defined above) will be an instance of metaClass we need the following deriva-
tion rule

C : metaClass ← not C = policy, not C : policy (3)

Figure 4 depicts the hierarchy of classes and instances in our driver license example.

Mandatory Policies. Mandatory policies are used when we want to mandate that poli-
cies of a higher level are always enforced at lower levels. Assume the ontology depicted
in figure 3 and that we want to hire an experienced driver to accomplish a certain highly
classified and challenging task. Before we show the details of the task to an interested
candidate, we want the candidate to present a driver’s license, which can be proved to
satisfy the following mandatory policies as specified at the different levels:

Fig. 3. Driver License Ontology

At the Driver License level, we enforce generic requirements for driver li-
censes; e.g., a driver license has to be signed by a federally authorized certificate au-
thority and must not have expired.

At the Civilian DL level, we require that the driver license is non-commercial,
assuming commercial drivers may have a conflict of interests in the intended task.

At the Illinois DL level, we require that the category of the driver license is
not F , assuming F licenses are for farm vehicles only. At the Military DL level, we

2 In the F-Logic notation, the operator C1 :: C2 represents “C1 is subclass of C2” while
C1 : C2 means “C1 is an instance of C2”

296 W. Nejdl et al.

Fig. 4. Driver License Knowledge Base

can specify policies such as “the driver license must be for land passenger vehicles” as
opposed to fighter planes or submarines.

So for an Illinois driver, the overall policy is: must hold a valid driver license, as
qualified by the policy at the Driver License level; must hold a non-commercial driver
license, as required by the Civilian DL policy; and the driver license must not be for
farm vehicles only. The advantage of using mandatory policies here is twofold: first,
shared policies such as the generic driver license requirements are only specified once
at a higher level, which means a more compact set of policies; second, it gives a cleaner
and more intuitive logical structure to policies, which makes the policies easier to spec-
ify and manage.

Default Policies. Let us now assume that all driver licenses include the specification of
driving experience, expressed in years of driving. Suppose that a specific task requires
the following policy: in most cases, 4 years’ driving experience is required; however,
if the driver comes from Texas, he/she needs only 3 years’ experience (assuming it is
harder to get a driver’s license in Texas).

To simplify the specification of this policy, we can use the default policy construct.
A superclass’s default policy is inherited and enforced by a subclass if and only if the
child does not have a corresponding (overriding) policy. In our example, we can specify
at the Driver License level that the driving age has to be at least 4 years; then at
the Texas DL level, specify an overriding policy that the driving age has to be at least
3 years.

It is of interest to note that the same result can be achieved here without using de-
fault policies: we can move the shared 4-year mandatory policy down to every concrete
driver license class except Texas DL, where we require 3 years. However, the power
of policy sharing is lost.

Ontology-Based Policy Specification and Management 297

To summarize, on one hand, mandatory policies must be enforced at lower levels
in the hierarchy, that is, they can not be overridden. On the other hand, default policies
are inheritable, but they can be overridden at lower levels. In order to formalize this, we
assume that if two policies have the same value in the property name, the most specific
one overrides the other one. Taking that into account, we need to refine equation (1) in
a way that overridden policies are not included in the overall policy. The derivation rule
would be

C2[overallPolicy ->>P] ←C2 :: C1, C1[policySlot->>P, (4)

not(C2[policySlot->>P2, P2[name->N], P [name->N])

Finally, only default policies can be overridden and therefore we need the following
integrity constraint to avoid that mandatory policies are overridden

false ←C2 : C1, C1[policySlot->>P1], C2[policySlot->>P2], (5)

P1[name->N, type-> “Mandatory”], P2[name->N]

3 POLICYTAB: Making Protégé a Policy Management Tool

To support policy specification as discussed in the previous sections, we have imple-
mented POLICYTAB (available at http://www.l3s.de/peertrust/, a plug-in
for the ontology editor Protégé. We chose Protégé because it is widely used and is exten-
sible by means of plug-ins. The POLICYTAB plug-in adds a new tab to the main window
of Protégé (see figure 5 for an example), which consists of the following elements:

Fig. 5. Screenshot of the POLICYTAB plug-in

298 W. Nejdl et al.

– The Class Relationship Pane. This panel on the upper left corner of the window
displays the existing classes in the knowledge base as a tree.

– The Superclass Pane. This panel on the lower left corner shows the superclasses of
the class currently selected in the Class Relationship Pane.

– The PolicyView Form. This form occupying the upper right part of the window
contains the information of the class currently selected in the Class Relationship
Pane.

– The Associated Policies Pane. This pane at the lower right part of the window dis-
plays the policies attached to the current selected class or to the current selected
slot.

We describe the PolicyView Form and the Associated Policies Pane in more detail
in the following sections.

3.1 The PolicyView Form

The PolicyView Form contains the information related to the currently selected class
(see figure 5). Each class has the usual properties available in Protégé

– Name: the name of the class
– Documentation: extra comments and explanations
– Role: describes if the class is concrete or abstract
– Constraints: specify constraints to the class
– Template Slots: show the different properties of the class

In Protégé, a class’s properties are called slots. To add a slot to the current class,
click the + icon for the Template Slots table, a slot creation dialog will pop up
(see figure 6), where you can specify the new slot’s name, type, etc. POLICYTAB auto-
matically checks name conflicts, and does not permit the specification of a slot with the
same name as in one of its superclasses.

3.2 The Associated Policies Pane

The Associated Policies Pane displays the policies that apply to the currently selected
class, i.e. the overall set of policies that should be satisfied by a requester in order
to get access to the resource represented by the class. A policy’s type can be either
mandatory or default. Overriding of policies is done by explicitly selecting which
class to be overridden (the combobox Overridden Policy shows only overridable
policies or Nothing as valid values)3. POLICYTAB’s automatic overridability check-
ing prevents the user from unintentionally overriding a mandatory policy and hence
reduces policy specification errors.

This pane contains two different tabs: Class Policies and Slot Policies
(see figure 7). Class policies are specified to protect the whole class and correspond

3 As to our knowledge there not exists yet an F-Logic inference engine integrated in Protégé, our
current implementation “hard-codes” in the plug-in the inference rules presented in the paper.

Ontology-Based Policy Specification and Management 299

Fig. 6. New Slot Creation

Fig. 7. View of overall policy applicable to a class

to the concepts described in section 2. The slot policies are protectors for each spe-
cific property, and have a finer-grained protection. A requester has to satisfy the rel-
evant slot policies in addition to the class polices in order to access a certain prop-
erty of the class. This is crucial in Trust negotiation as the process relies on disclosure
of party’s properties, not necessarily whole credentials. The tab Slot Policies
displays the policies that apply to the slot currently selected in the PolicyView form.
Both class policies and slot policies are inherited by the subclasses in the
hierarchy.

Once a class is selected in the Class Relationship Pane, the Associated Policies Pane
shows this class’s inheritance hierarchy as well as its class level policies. For each sin-
gle policy it displays the name, the type (mandatory or default), the string with
the policy description, the class where that policy is defined and the class whose cor-
responding policy is overridden (or Nothing if there isn’t any). Automatic resolution
of overriding and inheritance gives the user a clear view of the current class’s effective
policies, and showing the original defining class of the inherited policies in addition to
the policy tree helps the user understand the policy composition hierarchy and capture
the intuitions and implications behind it.

300 W. Nejdl et al.

4 Related Work

Recent work in the context of the Semantic Web has focused on how to describe se-
curity requirements. KAoS and Rei policy languages [16, 22] investigate the use of
ontologies for modeling speech acts, objects, and access types necessary for specifying
security policies on the Semantic Web. Hierarchies of annotations to describe capabili-
ties and requirements of providers and requesting agents in the context of Web Services
are introduced in [11]. Those annotations are used during the matchmaking process to
decide if requester and provider share similar security characteristics and if they are
compatible.

Ontologies have also been discussed in the context of digital libraries for concepts
and credentials [6]. An approach called “most specific authorization” is used for con-
flict resolution. It states that policies specified on specific elements prevail over policies
specified on more general ones. In this paper we explore complementary uses of ontolo-
gies for trust negotiation, through which we target iterative trust establishment between
strangers and the dynamic exchange of credentials during an iterative trust negotiation
process that can be declaratively expressed and implemented. Work done in [9] defines
abstractions of credentials and services. Those abstractions allow a service provider to
request for example a credit card without specifically asking for each kind of credit card
that it accepts. We add to this work in the context of policy specification the concept of
mandatory and default policies.

Ontology-based policy composition and conflict resolving have also been been dis-
cussed in previous work. Policy inheritance is done by implication in [12], but it does
not provide any fine-grained overriding mechanism based on class levels. Default prop-
erties are discussed in [14], short of generalizing the idea to policies. The approaches
closest to our default and mandatory policy constructs are the weak and strong autho-
rizations in [8], where a strong rule always overrides a weak rule, and SPL in [20],
which forces the security administrator to combine policies into a structure that pre-
cludes conflicts. Compared to these approaches, we find ours particularly simple and
intuitive, while its expressiveness well serves general trust negotiation needs.

5 Conclusions and Future Research Directions

Ontologies can provide important supplemental information to trust negotiation agents
both at compile time to simplify policy management and composition. This paper has
explored some important benefits of using ontologies.

For compile time usage, ontologies with their possibility of sharing policies for
common attributes provide an important way for structuring available policies. In this
context we propose two useful strategies to compose and override these policies, build-
ing upon the notions of mandatory and default policies, and formalize the constraints
corresponding to these kinds of policies using F-Logic. We also present a prototype im-
plementation, POLICYTAB, which shows that the proposed policy specification mecha-
nism is implementable and effective.

Future work will investigate multiple inheritance and resolution of conflicting poli-
cies in ontology hierarchies, and whether we need disjunction for composing these poli-

Ontology-Based Policy Specification and Management 301

cies. We are also working on a closer integration into our PEERTRUST system, with suit-
able import/export facilities to and from POLICYTAB. Finally, an interesting research
area to consider in the future is policy validation, i.e. whether the final ontologies plus
policy rules are consistent and correct with respect to a set of background constraints.

Acknowledgments

The authors thank Rubén Lara for useful discussions and help in the modeling with
F-Logic and the anonymous reviewers for their useful comments. The research of
Nejdl and Olmedilla was partially supported by the projects ELENA (http://
www.elena-project.org, IST-2001-37264) and REWERSE (http://
rewerse.net, IST-506779). The research of Winslett was supported by DARPA
(N66001-01-1-8908), the National Science Foundation (CCR-0325951,IIS-0331707)
and The Regents of the University of California.

References

1. Liberty Alliance Project. http://www.projectliberty.org/about/whitepapers.php.
2. The Protégé Ontology Editor and Knowledge Acquisition System. http://

protege.stanford.edu/.
3. Web Services Trust Language (WS-Trust) Specification. http://www-106.ibm.com/

developerworks/library/specification/ws-trust/.
4. Xacml 1.0 specification http://xml.coverpages.org/ni2003-02-11-a.html.
5. Assertions and protocol for the oasis security assertion markup language (saml); committee

specification 01, 2002.
6. N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A content-based authorization model for

digital libraries. IEEE Transactions on Knowledge and Data Engineering, 14(2):296–315,
2002.

7. A. Ankolekar. Daml-s: Semantic markup for web services.
8. E. Bertino, S. Jojodia, and P. Samarati. Supporting multiple access control policies in

database systems. In IEEE Symposium on Security and Privacy, pages 94–109, Oakland,
CA, 1996. IEEE Computer Society Press.

9. P. Bonatti and P. Samarati. Regulating Service Access and Information Release on the Web.
In Conference on Computer and Communications Security, Athens, Nov. 2000.

10. Cassandra policy for national ehr in england.
http://www.cl.cam.ac.uk/users/mywyb2/publications/ehrpolicy.pdf.

11. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web services:
Annotation and matchmaking. In Proceedings of the 2nd International Semantic Web Con-
ference, Sanibel Island, Florida, USA, Oct. 2003.

12. W. Emayr, F. Kastner, G. Pernul, S. Preishuber, and A. Tjoa. Authorization and access
control in iro-db.

13. M. Erdmann and R. Studer. How to structure and access xml documents with ontologies.
Data and Knowledge Engineering, 36(3), 2001.

14. R. Fikes, D. McGuinness, J. Rice, G. Frank, Y. Sun, and Z. Qing. Distributed repositories of
highly expressive reusable knowledge, 1999.

15. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. In 1st First European Semantic Web Symposium, Heraklion, Greece, May 2004.

302 W. Nejdl et al.

16. L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the semantic web.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.

17. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. J. ACM, 42(4):741–843, 1995.

18. W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: automated trust negotiation for peers
on the semantic web. In Workshop on Secure Data Management in a Connected World
(SDM’04), Toronto, Aug. 2004.

19. P. Persiano and I. Visconti. User privacy issues regarding certificates and the tls protocol. In
Conference on Computer and Communications Security, Athens, Nov. 2000.

20. C. Ribeiro and P. Guedes. Spl: An access control language for security policies with complex
constraints, 1999.

21. S. B. Shum, E. Motta, and J. Domingue. Scholonto: an ontology-based digital library server
for research documents and discourse. Int. J. on Digital Libraries, 3(3):237–248, 2000.

22. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for policy representation and reasoning: A comparison of KAoS, Rei and Ponder.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.

Web Explanations for
Semantic Heterogeneity Discovery

Pavel Shvaiko1, Fausto Giunchiglia1,
Paulo Pinheiro da Silva2, and Deborah L. McGuinness2

1 University of Trento, Povo, Trento, Italy
{pavel, fausto}@dit.unitn.it

2 Stanford University, Stanford, USA
{dlm, pp}@ksl.stanford.edu

Abstract. Managing semantic heterogeneity is a complex task. One so-
lution involves matching like terms to each other. We view Match as an
operator that takes two graph-like structures (e.g., concept hierarchies
or ontologies) and returns a mapping between the nodes of the graphs
that correspond semantically to each other. While some state of the art
matching systems may produce effective mappings, these mappings may
not be intuitively obvious to human users. In order for users to trust
the mappings, and thus, use them, they need information about them
(e.g., they need access to the sources that were used to determine se-
mantic correspondences between terms). In this paper we describe how a
matching system can explain its answers using the Inference Web (IW)
infrastructure thus making the matching process transparent. The pro-
posed solution is based on the assumption that mappings are computed
by logical reasoning. There, S-Match, a semantic matching system, pro-
duces proofs and explanations for mappings it has discovered.

1 Introduction

The progress of information and communication technologies, and in particular
of the Web, has made available a huge amount of disparate information. The
number of different information resources is growing significantly, and therefore,
the problem of managing semantic heterogeneity is increasing, see, for instance,
[34]. Many solutions to this problem include identifying terms in one information
source that match terms in another information source. The applications can
be viewed to refer to graph-like structures containing terms and their inter-
relationships. These might be database schemas, concept hierarchies, ontologies.

We view Match as one of the key operators for enabling semantic applica-
tions since it takes two graph-like structures and produces a mapping between
the nodes of the graphs that correspond semantically to each other. Matching,
however, requires explanations because mappings between terms are not always
intuitively obvious to human users. In fact, if Semantic Web users are going to
trust the fact that two terms may have the same meaning, then they need to un-
derstand the reasons leading a matching system to produce such a result. Expla-

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 303–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 P. Shvaiko et al.

nations are also useful, when matching applications with hundreds or thousands
of nodes, since in these cases automatic matching solutions will find a num-
ber of plausible mappings, thus some human effort (e.g., database/knowledge
base administrators who need to perform some rationalization of the mapping
suggestions) is inevitable.

We focus on semantic matching as proposed in [11], and implemented within
the S-Match [12] system. This matching solution is based on the assumption that
mappings are computed by logical reasoning. We have extended S-Match to use
the Inference Web infrastructure [22] and its Proof Markup Language (PML)[5].
Thus, with the help of IW tools and exploiting PML properties, meaningful
fragments of the S-Match proofs can be loaded on demand. Users can browse
an entire proof or they can restrict their view and refer only to specific, relevant
parts of proofs. They can ask for provenance information related to proof ele-
ments (e.g., the origin of the terms in the proofs, the authors of the ontologies).
Therefore, they can make informed decisions about the mappings.

The rest of this paper proceeds as follows. In Section 2, via an example,
we discuss semantic matching approach as implemented within the S-Match
system. In Section 3 we describe the Inference Web infrastructure. Using the
example introduced in Section 2, in Section 4, we present how the Inference
Web explanations increase user understanding of the S-Match answers. Section
5 presents an experimental study that addresses the scaling of the explanation
techniques. Section 6 discusses the related work and Section 7 summarizes the
contributions of the paper.

2 Semantic Matching

The semantic matching approach is based on two ideas. The first idea is that we
calculate mappings between schema/ontology elements by computing semantic
relations (e.g., equivalence, more general), instead of computing coefficient rating
match quality in the [0,1] range, as is the case in other approaches, see, for
example, [9, 17, 19]. The second idea is that we determine semantic relations by
analyzing the meaning (concepts, not labels) which is codified in the elements
and the structures of schemas/ontologies. In particular, labels at nodes, written
in natural language, are translated into propositional formulas which explicitly
codify the label’s intended meaning. This allows us to translate the matching
problem into a propositional unsatisfiability problem.

We call the concept of a label the propositional formula which stands for
the set of documents that one would classify under a label it encodes. We call
the concept at a node the propositional formula which represents the set of
documents which one would classify under a node, given that it has a certain
label and that it is in a certain position in a tree.

Possible semantic relations that S-Match can discover between the concepts
of nodes of the two schemas/ontologies are: equivalence (=); more general (�);
less general (�); disjointness (⊥). When none of the relations holds, the special
idk (I dont know) relation is returned. The relations are ordered according to

Web Explanations for Semantic Heterogeneity Discovery 305

Images

2 3

4 5

Europe Computers and
Internet

ItalyGreece

1

2 3

4

Europe

Pictures Cyberspace and
Virtual Reality

Italy

A1 A2
1

Fig. 1. Simple catalog matching problem

decreasing binding strength, i.e., from the strongest (=) to the weakest (idk),
with more general and less general relations having equal binding power. The
semantics of the above relations are the obvious set-theoretic semantics.

A mapping element is a 4-tuple 〈IDij , n1i, n2j , R〉, i=1,...,N1; j=1,...,N2;
where IDij is a unique identifier of the given mapping element; n1i is the i-th
node of the first graph, N1 is the number of nodes in the first graph; n2j is
the j-th node of the second graph, N2 is the number of nodes in the second
graph; and R specifies a semantic relation which may hold between the concepts
of nodes n1i and n2j . Semantic matching can then be defined as the following
problem: given two graphs G1, G2 compute the N1 × N2 mapping elements
〈IDij , n1i, n2j , R′〉, with n1i ∈ G1, i=1,...,N1, n2j ∈ G2, j=1,...,N2 and R′

the strongest semantic relation holding between the concepts of nodes n1i, n2j .
The strongest semantic relation always exists since, when holding together, more
general and less general are equivalent to equivalence. S-Match is schema-based,
and therefore, it considers only intentional information, not instance data. In
the current version it is limited to the tree-like structures, e.g., taxonomies, or
simple XML schemas with attributes.

We concentrate on class matching and motivate the problem by the simple
catalog matching example shown in Figure 1. Suppose an agent wants to ex-
change/search for documents with another agent. The documents of both agents
are stored in catalogs according to class hierarchies A1 and A2 respectively. S-
Match takes as input these hierarchies and computes as output a set of mapping
elements in four macro steps. The first two steps represent the pre-processing
phase, while the third and the fourth steps correspond to element level and
structure level matching respectively.

Step 1. For all labels L in the two trees, compute concepts of la-
bels. We think of labels at nodes as concise descriptions of the data that is
stored under the nodes. We compute the meaning of a label at a node by tak-
ing as input a label, by analyzing its (real world) semantics, and by returning
as output a concept of the label, CL. For example, when we write CPictures

we mean the concept describing all the documents which are (about) pictures.
Notice, that by writing CPictures we move from the natural language ambigu-
ous label Pictures to the concept CPictures, which the given label denotes.

306 P. Shvaiko et al.

Technically, concepts at labels are encoded as propositional logical formulas,
where atomic formulas are WordNet [25] senses (possible meanings) of sin-
gle words, and complex formulas are obtained by combining atomic concepts
using the connectives of set theory and set-theoretic semantics. For example,
CPictures = 〈picture, sensesWN#11〉, where sensesWN#11 is taken to be dis-
junction of the eleven senses that WordNet attaches to pictures. The process of
extraction of logical formulas from natural language labels is described in detail
in [20].

Step 2. For all nodes N in the two trees, compute concepts of nodes.
In this step we analyze the meaning of the positions that the labels at nodes have
in a tree. By doing this we extend concepts of labels to concepts of nodes, CN .
This is required to capture the knowledge residing in the structure of a graph,
namely the context in which the given concept at label occurs. For example,
in A2, when we write C2 we mean the concept describing all the documents
which are (about) pictures and which are also about Europe. Thus, in Figure 1,
following the classification link semantics, which is an access criterion [16], the
logical formula for a concept at node is defined as a conjunction of concepts of
labels located above the given node, including the node itself, for example, in
A2, C2 = CEurope
 CPictures.

Step 3. For all pairs of labels in the two trees, compute relations
among concepts of labels . Relations between concepts of labels are computed
with the help of a library of element level semantic matchers [13]. These matchers
take as input two concepts of labels and produce as output a semantic relation
between them. For example, in Figure 1, CImages can be found equivalent to
CPictures. In fact, according to WordNet, images and pictures are synonyms.
Notice that in WordNet pictures has 11 senses and images has 8 senses. We
use some sense filtering techniques to discard the irrelevant senses for the given
context, see [20] for details.

Step 4. For all pairs of nodes in the two trees, compute relations
among concepts of nodes . S-Match decomposes the tree matching problem
into the set of node matching problems. Then, each node matching problem,
namely pairs of nodes with possible relations between them, is translated into a
propositional formula. The semantic relations are translated into propositional
connectives as follows: equivalence into equivalence, more general and less general
into implication, and disjointness into negation of the conjunction. As from [11],
we have to prove that the following formula:

Axioms −→ rel(C1i,C2j) (1)

is valid, namely that it is true for all the truth assignments of all the propositional
variables occurring in it. In (1), Axioms is the conjunction of all the relations
between concepts of labels computed in step 3. C1i is the propositional formula
encoding concept at node i in tree 1, C2j is the propositional formula encoding
concept at node j in tree 2, rel is the semantic relation that we want to prove
holding between C1i and C2j .

Web Explanations for Semantic Heterogeneity Discovery 307

From the example in Figure 1, trying to prove that Europe in A1 is equivalent
to Pictures in A2, requires constructing formula (2).

((C1Images ↔ C2Pictures) ∧ (C1Europe ↔ C2Europe))︸ ︷︷ ︸
Axioms

→

((C1Images ∧ C1Europe)︸ ︷︷ ︸
C12

↔ (C2Europe ∧ C2Pictures)︸ ︷︷ ︸
C22

)
(2)

The algorithm checks for the validity of formula (2) by proving that its nega-
tion is unsatisfiable. For this purpose, our implementation uses a propositional
satisfiability (SAT) engine, in particular JSAT [2]. In this example, the negated
formula is unsatisfiable, thus the equivalence relation holds between the nodes
under consideration. Since this is the strongest relation, no additional checks
need to be made and the S-Match algorithm terminates and concludes that doc-
uments stored under Pictures in A2 are an appropriate match for documents
stored under Europe in A1, i.e., 〈ID22, C12, C22, = 〉.

3 Inference Web

Inference Web enables applications to generate portable and distributed expla-
nations for any of their answers. In order to explain mappings produced by
S-Match and thereby increase the trust level of its users, we need to provide
information about background theories (for instance, WordNet), and the JSAT
manipulations of propositional formulas.

Figure 2 presents an abstract and partial view of the IW framework as used
by the S-Match system. In order to use IW to provide explanations, question
answering systems need to have their reasoners produce proofs of their answers
in PML, publish those proofs on the web, and provide IW with a pointer to the
last step in the proof. IW also has a registry [23] of meta-information about proof
elements, such as sources (e.g., publications, ontologies), inference engines and
their rules. In the case of S-Match, the IW repository contains meta information
about WordNet and JSAT.

browser

S-Match
inference engine

(SAT)

registrar

explainer

registry

proofs and explanations

Caption

Document
maintenance

Document
usage/
reference

Agent

Web
document

(Engines are registered
on the IW)

Fig. 2. Inference Web framework overview

308 P. Shvaiko et al.

In the Inference Web, proof and explanation documents are formatted in PML
and are composed of PML node sets. Each node set represents a step in a proof
whose conclusion is justified by any of a set of inference steps associated with a
node set. Also, node sets are subclasses of the W3C’s OWL Class [33] and they
are the building blocks of OWL documents describing proofs and explanations
for application answers published on the Web.

The IW Browser is used to present proofs and explanations. Exploiting PML
properties, meaningful fragments of the S-Match proofs can be loaded on de-
mand. Users can browse an entire proof or they can limit their view and refer
only to specific, relevant parts of proofs since each node set has its own URI that
can be used as an entry point for proofs and proof fragments.

4 Producing Explanations

A default explanation of mappings the S-Match system produces is a short, nat-
ural language, high-level explanation without any technical details. It is designed
to be intuitive and understandable by ordinary users.

Let us recall the catalog matching example. Suppose that agent A2 is in-
terested in knowing why S-Match suggested a set of documents stored under
the node with label Europe in A1 as the result to the query - ”find european
pictures”. A default explanation is presented in Figure 3.

From the explanation in Figure 3, users may learn that Images in A1 and
Pictures in A2 are equivalent words, i.e., they can be interchanged, in the con-
text of the query. Also, users may learn that Europe in A1 denotes the same
concept as Europe (European) in A2. Therefore, they can conclude that Images
of Europe means the same thing as European Pictures. Future work includes
optional pruning of statements containing information that two concepts are
identical.

However, users may not be satisfied with this level of explanation. Let us
therefore discuss how they can investigate the details of the matching process
by exploiting more verbose explanations. We have implemented two kinds of
verbose explanations: background knowledge explanations and logical reasoning
explanations. Let us consider them in turn.

Fig. 3. An explanation in English

Web Explanations for Semantic Heterogeneity Discovery 309

4.1 Explaining Background Knowledge

Suppose that the agent wants to see the sources of background knowledge used in
order to determine the mapping. For example, which applications, publications,
other sources, have been used to determine that Images is equivalent to Pictures.
Figure 4 presents the source metadata for the default explanation of Figure 3.

Fig. 4. Source metadata information

In this case, both (all) the ground sentences used in the S-Match proof came
from WordNet. Using WorldNet, S-Match learned that the first sense of the
word pictures is a synonym to the second sense of the word images. Therefore,
S-Match can conclude that these two words are equivalent words in the context
of the answer. The meta information about WordNet from the IW Registry is
also presented in Figure 4 as sources of the ground axioms. Further examples of
explanations include: providing meta information about the S-Match library of
element-level matchers [13], i.e., those which are based not only on WordNet,
the order in which the matchers are used, and so on.

4.2 Explaining Logical Reasoning

A more complex explanation may be required if users are not familiar with or do
not trust inference engine(s) embedded in a matching system. As the Web starts
to rely more on information manipulations (instead of simply information re-
trieval), explanations of embedded manipulation/inference engines become more
important. In the current version of S-Match, a propositional satisfiability en-
gine is used, more precisely, the Davis-Putnam-Longemann-Loveland (DPLL)
procedure [6, 7] as implemented in JSAT [2].

The task of a SAT engine is to find an assignment μ ∈ {�,⊥} to atoms of a
propositional formula ϕ such that ϕ evaluates to true. ϕ is satisfiable iff μ |= ϕ

310 P. Shvaiko et al.

for some μ. If μ does not exist, ϕ is unsatisfiable. A literal is a propositional
atom, or its negation. A clause is a disjunction of one or more literals. ϕ is said
to be in conjunctive normal form (CNF) iff it is a conjunction of disjunctions of
literals. The basic DPLL procedure recursively implements the three rules: unit
resolution, pure literal and split [6, 7].

Let l be a literal and ϕ a propositional formula in CNF. A clause is called a
unit clause iff it has exactly one unassigned literal. Unit resolution is an appli-
cation of resolution to a unit clause.

unit resolution :
ϕ ∧ {l}
ϕ[l | �]

l is called a pure literal in ϕ iff it occurs in ϕ only positively or negatively.
Pure literal removes all clauses in which pure literals occur.

pure literal :
ϕ

ϕ[l | �]

Split rule performs branching first on truth values of literals then on their
false values, iff the above two rules (deterministic choices) cannot be applied.

split :
ϕ

ϕ[l | �] ϕ[l | ⊥]

Usually performance of SAT engines is not a concern for producing proofs.
Thus, we have modified the JSAT DPLL procedure and enabled it to generate
proofs. Next, we discuss the IW proofs and explanations of the unit resolution
rule in detail. In the current version, the pure literal and split rules are explained
in the same manner as the unit resolution rule.

Unit Resolution Rule. Let us consider the propositional formula standing for
the problem of testing if the concept at node 2 in A1 is less general than the
concept at node 2 in A2. In the following, to simplify the presentation we use
a label as a placeholder of a concept the given label denotes. The propositional
formula encoding the above stated matching problem is as follows:

((Images ↔ Pictures) ∧ (Europe ↔ Europe)) ∧ ¬
((Europe ∧ Images) → (Pictures ∧ Europe))

(3)

An intuitive reading of (3) is ”is there any situation such that the concept
Images of Europe is less general than the concept European Pictures assuming
that Images and Pictures denote the same concept?”. The IW proof of the fact
that this is not the case is shown in Figure 5. Notice that, since the DPLL
procedure of JSAT handles only CNF formulas, in Figure 5, we show the CNF
equivalent of formula (3).

From the explanation in Figure 5, users may learn that the IW proof of the
fact that the concept at node 2 in A1 is less general than the concept at node 2
in A2 requires 4 steps and at each proof step (excepting the first one, which is
a problem statement) the unit resolution rule is applied. Also, users may learn

Web Explanations for Semantic Heterogeneity Discovery 311

Fig. 5. A graphical explanation of the unit clause rule

the assumptions that are made by JSAT. For example, at the second step the
DPLL procedure of JSAT assigns the truth value to (all instances of) the atom
Europe, therefore making an assumption that there is a model, where what an
agent says about Europe is always true. According to the unit resolution rule,
then the atom Europe should be stroked out from the input sentence (and, hence
it does not appear in the sentence of the step 2).

The explanation of Figure 5 represents some technical details (only the less
generality test) of the default explanation in Figure 3. This type of explanations is
the most verbose. It assumes (even if the graphical representation of a decision tree
is quite intuitive) that the matching system users have some background knowl-
edge in logics and SAT. However, if they do not have it, they have a possibility to
learn it by following the publications mentioned in the source metadata informa-
tion of the DPLL unit resolution rule and JSAT (by clicking the DPLL unit clause
elimination and the JSAT-The Java SATisfiability Library buttons respectively).

Two further notes are to be made with respect to the split rule. The first is
that, it is applied when we need to reason by case distinction, for example, when
matching C13 and C23. The second note is that, in the case of a satisfiable
result, only a path of a decision tree standing for a successful assignment is
represented. In the case of an unsatisfiable result a full decision tree is reported.

5 Experimental Study

The main goal of the experiments being conducted is to obtain a vision of how
the S-Match explanations potentially scale to the requirements of the Semantic
Web, providing meaningful and adjustable answers in real time.

312 P. Shvaiko et al.

The semantic (node) matching problem is a CO-NP complete problem, since
it is reduced to the validity problem (a formula is valid iff its negation is unsat-
isfiable) for the propositional calculus. Resolving this class of problems requires
exponential time and exponentially long proof logs. However, in all the examples
we have done so far proofs are not too long and seem of length polynomial in the
length of the input clause. As a matter of fact, [14] shows, that when we have
conjunctive concepts at nodes (e.g., Images∧Europe), these matching tasks can
be resolved by the basic DPLL procedure in polynomial time; while when we
have full proposition concepts at nodes (e.g., Images∧(Computers∨Internet)),
the length of the original formula can be exponentially reduced by structure pre-
serving transformations.

In our experiments we have used three test cases: the simple catalog matching
problem, presented in the paper, one example from academic and one example
from business domains. The business example describes two company profiles: a
standard one (mini) and Yahoo Finance (mini). The academic example describes
courses taught at Cornell University (mini) and at the University of Washington
(mini). Table 1 provides some indicators of the complexity of the test cases1.

Table 1. Some indicators of the complexity of the test cases

Images vs. Yahoo(mini) vs. Cornell(mini) vs.
Europe Standard(mini) Washington(mini)

#nodes 4/5 10/16 34/39

max depth 2/2 2/2 3/3

#leaf nodes 2/2 7/13 28/31

We focus on indicators characterizing explanations of mappings. The analysis
of the quality of mappings is beyond scope of this paper2. In the experimental
study we have used the following indicators:

– Number of mapping elements determined by S-Match for a pair of schemas/
ontologies. As follows from the definition of semantic matching, this num-
ber should be N1 × N2, where N1 is the number of nodes in the first
schema/ontology, N2 is the number of nodes in the second schema/ontology.

– Number of steps in a proof of a single mapping element. This indicator
represents the number of PML node sets are to be created in the proof.

– Time needed to produce a proof of a single mapping element. This indicator
estimates how fast the modified JSAT in producing IW proofs for a particular
task.

– Time needed to produce a proof of all mappings determined by S-Match for
a pair of schemas/ontologies.

1 Source files and description of the test cases can be found at http://www.dit.unitn.it/
∼accord/, experiments section.

2 Analysis of the quality of mappings produced by S-Match and a comparative eval-
uation against state of the art systems, such as COMA [17], Cupid [19], and Rondo
[24] can be found in [12].

Web Explanations for Semantic Heterogeneity Discovery 313

Fig. 6. Experimental Results

In order to conduct tests in a real environment, we used the IW web service
of KSL at Stanford University (on a P4-2.8GHz, 1.5Gb of RAM, Linux, Tomcat
web server) to generate proofs in PML, while the modified JSAT version was
run at the University of Trento (on a P4-1.7GHz, 256 MB of RAM, Windows
XP). All the tests were performed without any optimizations: for each single task
submitted to JSAT, the IW web service was invoked, no compression methods
were used while transferring files, etc.

Figure 6 reports on the results of the experimental study. In particular, for
each mapping element of the three test cases, it represents the number of proof
steps required and the time needed to generate proofs in PML. Notice, that
the proof time indicator in Figure 6 takes into account the time needed by the
modified version of JSAT to produce proof information, connection time to the
IW web service, time for producing and posting PML documents.

An observation of the spikes starting from the mapping #700 in the time line
of the Cornell vs. Washington test case is an example of how Internet connection
increases the proof time. The average proof length and proof time for a single
mapping element in the test cases of Figure 6 constitute 16 steps and 14 seconds.
Time needed to produce proofs of all mapping elements in each test case is
2.7min. - 20 mappings; 27.7min. - 160 mappings; and 546.2min. - 1326 mappings
respectively. Notice that the modified JSAT version produces proof information
on a single mapping element requiring, in the average, less than 1 millisecond,
therefore producing proof information for all mappings, for instance, in the case
of 1326 mappings, would require less than 1 minute. Moreover, it is hard to
imagine that (ordinary) users will be willing to browse explanations of thousands
and even hundreds of mappings. However, one dozen seems to be a reasonable
number of mappings to be looked through for a short period of time. Also, as

314 P. Shvaiko et al.

[12] indicates, S-Match mappings quality indicators (e.g., precision, recall), on
average are above 80%, therefore, may be that users will not need explanations
for a large number of mappings.

Results of the experimental study look promising, however there are proof
time issues to be addressed. For example, if a user needs explanations aimed at
proof generation and manipulation need to be added. Future work also includes
further experiments with more complex test cases. However, the experimental
study we have conducted gives a preliminary vision that the explanation tech-
niques proposed potentially scale to requirements of the Semantic Web, providing
meaningful and adjustable answers in real time.

6 Discussion

A line of semi-automated schema/ontology matching systems exists, see for in-
stance [4, 9, 10, 17, 19, 24, 27]. Good surveys are provided in [30–32]. To the best
of our knowledge, only the iMap system [8] generates explanations of its matching
process. However, it substantially differs from S-Match, in the type of the result
it returns and in the matching approach. In particular, iMap returns an affinity
coefficient in the [0,1] range, it does analyze term meaning, and it does not exploit
any inference engines. It is based on a combination of constraint/instance-based
matching techniques, called searchers. Explanations of mappings in the iMap
system are based on the idea of a dependency graph, which traces the searchers
(memorizing relevant slices of the graph) used to determine a particular map-
ping. Finally, exploiting the dependency graph, explanations are presented to
the user in the English format. Although, the meaning of the affinity coefficient
returned remains obscure. Additionally, it becomes more obscure as more oper-
ations (e.g., use of particular thresholds or weights) are made on these affinity
measures.

The DPLL procedure discussed in the paper constitutes a basic (without
heuristics and optimizations) propositional satisfiability search procedure of the
state of the art SAT engines, such as Chaff [26], etc. Thus, our approach for
producing explanations remains valid also for efficient semantic matching.

Recently there has been some work on verifying SAT solvers, in particular
on checking the correctness of unsatisfiability proofs by representing the proof
as a chronologically ordered set of conflict clauses [15] and using independent
resolution-based checking procedures [36]. The major drawback from the IW
perspective is that the above mentioned approaches do not provide proofs as in-
dependent (portable) objects, which can be checked by a trusted theorem prover.
Another problem is that typical traces of DPLL processing are not logical proofs
(e.g., they cannot be translated into natural deduction proofs). One approach
describes ”equivalent” inferences [3, 21] for use in explaining answers as a correct
although potentially alternative deductive path. A direct solution to the above
problem is provided in [1].

Also, an emergent and challenging research direction in the SAT community
concerns unsatisfiability cores, which is a task of extracting a (optionally mini-

Web Explanations for Semantic Heterogeneity Discovery 315

mal) subset of clauses of the original formula such that the conjunction of these
clauses is still unsatisfiable, see, for example [28, 35]. Typically this subset of
clauses is much smaller than the original formula. Although, extracting unsatis-
fiable cores requires producing another trace file representing a decision tree of an
unsatisfiable proof. This direction seems promising with respect to the work on
explanations of answers from S-Match, since by using unsatisfiability cores, proof
logs can be significantly reduced. Moreover, minimal unsatisfiability subformulas
should allow for localizing a minimal number of axioms implying a particular
semantic relation between the nodes under consideration. This approach focuses
a user’s attention precisely on a reason why this type of a relation holds.

As the use of matching systems for managing semantic heterogeneity grows,
it becomes very important to produce explanations of them in order to make
the Semantic Web transparent and trustable. Some technical details of our solu-
tion are:

– We use the Proof Mark-up Language for representing S-Match proofs, thus
facilitating interoperability;

– We use meaningful terms rather than numbers in the DIMACS format, thus
facilitating understandability;

– We use the IW tools, thus facilitating customizable, interactive proof and
explanation presentation and abstraction;

– Our solution is potentially scalable to the Semantic Web requirements.

7 Conclusions

In this paper, by extending S-Match to use the Inference Web infrastructure, we
have demonstrated our approach for explaining answers from matching systems
exploiting background ontological information and reasoning engines. The ex-
planations can be presented in different styles allowing users to understand the
mappings and consequently to make informed decisions about them. The paper
also demonstrates that S-Match users can leverage the Inference Web tools, for
example, for sharing, combining, browsing proofs, and supporting proof meta-
information including background knowledge. We also have presented DPLL-
based IW explanations of the SAT engine used in the context of S-Match tasks.
We have tested our approach of explaining S-Match answers. The results look
promising and demonstrate their potential to scale to the requirements of Se-
mantic Web.

Future work proceeds in at least two directions. Using explanations, a match-
ing system can provide users with meaningful prompts and suggestions on further
steps towards the production of a sound and complete result. Having understood
the mappings returned by a matching system, users can deliberately edit them
manually, therefore providing the feedback to the system. Thus, the first direc-
tion includes developing an environment, which efficiently exploits the IW proofs
and explanations presented in the paper, in order to make the S-Match match-
ing process (fully-fledged) interactive and iterative, involving user in the critical
points where his/her input is maximally useful.

316 P. Shvaiko et al.

The second direction includes (i) improving the S-Match proofs and expla-
nations by using abstraction techniques more extensively; (ii) conducting a user
satisfaction study of the explanations; and (iii) extending explanations to other
SAT engines as well as to other non-SAT DPLL-based inference engines, e.g.,
DLP, FaCT [18], and Pellet [29].

Acknowledgements This work has been partly supported by the European
Knowledge Web network of excellence (IST-2004-507482), by the research grant
COFIN 2003 Giunchiglia 40100657, and by research grants from DARPA’s DAML
and PAL programs.

References

1. C. Barrett and S. Berezin. A proof-producing boolean search engine. In Proceedings
of PDPAR, 2003.

2. D. Le Berre. JSAT: The java satisfiability library. http://cafe.newcastle.edu.au/
daniel/JSAT/, 2001.

3. A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. Patel-Schneider.
Explaining ALC subsumption. In Proceedings of Description Logics workshop,
1999.

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach
and an application. In Proceedings of ISWC, pages 130–145, 2003.

5. P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes. A proof markup language
for semantic web services. Technical report, KSL, Stanford University, 2004.

6. M. Davis, G. Longemann, and D. Loveland. A machine program for theorem
proving. Journal of the ACM, (5(7)), 1962.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, (7):201–215, 1960.

8. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
complex semantic matches between database schemas. In Proceedings of SIGMOD,
pages 383 – 394, 2004.

9. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of ISWC,
pages 683–697, 2004.

10. J. Euzenat and P.Valtchev. Similarity-based ontology alignment in OWL-lite. In
Proceedings of ECAI, pages 333–337, 2004.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. KER Journal, (18(3)):265–280,
2003.

12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an
implementation of semantic matching. In Proceedings of ESWS, pages 61–75, 2004.

13. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings
of Meaning Coordination and Negotiation workshop at ISWC, 2004.

14. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.
In Proceedings of ESWC, 2005.

15. E. Goldberg and Y. Novikov. Verication of proofs of unsatisability for CNF for-
mulas. In Proceedings of DATE, 2003.

16. N. Guarino. The role of ontologies for the Semantic Web (and beyond). Techni-
cal report, Laboratory for Applied Ontology, Institute for Cognitive Sciences and
Technology (ISTC-CNR), 2004.

.

Web Explanations for Semantic Heterogeneity Discovery 317

17. H.H.Do and E. Rahm. COMA - a system for flexible combination of schema
matching approaches. In Proceedings of VLDB, pages 610–621, 2001.

18. I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Automated Reasoning
with Analytic Tableaux and Related Methods: Tableaux, pages 27–30, 1998.

19. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of VLDB, pages 49–58, 2001.

20. B. Magnini, L. Serafini, and M. Speranza. Making explicit the semantics hidden
in schema models. In Proceedings of workshop on Human Language Technology for
the Semantic Web and Web Services at ISWC, 2003.

21. D. L. McGuinness and A. Borgida. Explaining subsumption in description logics.
In Proceedings of IJCAI, pages 816–821, 1995.

22. D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations.
In Proceedings of ISWC, pages 113–129, 2003.

23. D. L. McGuinness and Pinheiro da Silva P. Registry-based support for information
integration. In Proceedings of IJCAI Workshop on Information Integration on the
Web, 2003.

24. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proceedings of SIGMOD, pages 193–204, 2003.

25. A.G. Miller. WordNet: A lexical database for english. Communications of the
ACM, (38(11)):39–41, 1995.

26. M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of DAC, 2001.

27. N. Noy and M. A. Musen. Anchor-prompt: Using non-local context for seman-
tic matching. In Procedings of IJCAI workshop on Ontologies and Information
Sharing, pages 63–70, 2001.

28. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. AMUSE:
A minimally-unsatisfiable subformula extractor. In Proceedings of DAC, pages 518–
523, 2004.

29. B. Parsia, E. Sirin, M. Grove, and R. Alford. Pellet OWL reasoner.
http://www.mindswap.org/2003/pellet/index.shtml.

30. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, (10(4)):334–350, 2001.

31. P. Shvaiko. A classification of schema-based matching approaches. In Proceedings
of Meaning Coordination and Negotiation workshop at ISWC, 2004.

32. P. Shvaiko and J. Euzenat. A survey of schema-based macthing approaches. Tech-
nical report, DIT-04-087, University of Trento, 2004.

33. M.K. Smith, C. Welty, and D.L. McGuinness. OWL web ontology lan-
guage guide. Technical report, World Wide Web Consortium (W3C),
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, February 10 2004.

34. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Huebner. Ontology-based integration of information - a survey of existing
approaches. In Proceedings of IJCAI workshop on Ontologies and Information
Sharing, pages 108–117, 2001.

35. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formulas. In Proceedings of SAT, 2003.

36. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Proceedings
of DATE, 2003.

Approximating Description Logic Classification for
Semantic Web Reasoning

Perry Groot1, Heiner Stuckenschmidt2, and Holger Wache2

1 Radboud University Nijmegen, Toernooiveld 1,
6500GL Nijmegen, The Netherlands
Perry.Groot@science.ru.nl

2 Vrije Universiteit Amsterdam, de Boelelaan 1081a,
1081HV Amsterdam, The Netherlands
{holger, heiner}@cs.vu.nl

Abstract. In many application scenarios, the use of the Web ontology language
OWL is hampered by the complexity of the underlying logic that makes reason-
ing in OWL intractable in the worst case. In this paper, we address the question
whether approximation techniques known from the knowledge representation lit-
erature can help to simplify OWL reasoning. In particular, we carry out experi-
ments with approximate deduction techniques on the problem of classifying new
concept expressions into an existing OWL ontology using existing Ontologies on
the web. Our experiments show that a direct application of approximate deduc-
tion techniques as proposed in the literature in most cases does not lead to an
improvement and that these methods also suffer from some fundamental prob-
lems.

1 Introduction and Motivation

A strength of the current proposals for the foundational languages of the Semantic Web
is that they are all based on formal logic. This makes it possible to formally reason
about information and derive implicit knowledge. However, this reliance on logics is not
only a strength but also a weakness. Traditionally, logic has always aimed at modelling
idealised forms of reasoning under idealised circumstances. Clearly, this is not what is
required under the practical circumstances of the Semantic Web. Instead, the following
are all needed:

– reasoning under time-pressure
– reasoning with other limited resources besides time
– reasoning that is not ‘perfect’ but instead ‘good enough’ for given tasks under given

circumstances

It is tempting to conclude that symbolic, formal logic fails on all these counts, and
to abandon that paradigm. Our aim is to keep the advantages of formal logic in terms of
definitional rigour and reasoning possibilities, but at the same time address the needs of
the Semantic Web.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 318–332, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Approximating Description Logic Classification for Semantic Web Reasoning 319

Research in the past few years has developed methods with the above properties
while staying within the framework of symbolic, formal logic. However, many of those
previously developed methods have never been considered in the context of the Seman-
tic Web. Some of them have only been considered for some very simple underlying de-
scription languages [1]. As the languages proposed for modelling Ontologies in the Se-
mantic Web are becoming more and more complex, it is an open question whether those
approximation methods are able to meet the practical demands of the Semantic Web. In
this article, we look at approximation methods for Description Logics (DLs), which are
closely related to some of the currently proposed Semantic Web languages, e.g., OWL.

The remainder of the article is structured as follows. Section 2 gives an overview of
various approximation approaches and techniques useful in the context of the Semantic
Web. Thereafter, the article focuses on the investigation of a particular approximation
technique in the context of a particular reasoning task. Section 3 describes the approx-
imation approach used. Section 4 describes the reasoning task focused on. Section 5
gives experimental results of the approximation method applied to the classification of
concepts in a number of Ontologies. Section 6 gives conclusions, discusses the results
and the applicability of the analysed approximation approach to the Semantic Web.

2 Approximation Approaches

KB
Weakening
Language

Compilation
Knowledge

Deduction
Approximate

Language
Description

ABox

TBox

Reasoning

Fig. 1. Architecture of a KR system based on
Description Logic together with possible ap-
proximation approaches

A typical architecture for a KR system
based on DLs can be sketched as in Fig-
ure 1 [2], which contains three compo-
nents that can be approximated to obtain a
simplified system that is more robust and
more scalable. These components are: (1)
the underlying description language, (2)
the knowledge base, and (3) the reasoner.
The knowledge base itself comprises two
components (TBox and ABox), which
can also be approximated as a whole or
separately. Some general approximation
techniques that can be applied to one or
more of these components are the following:

Language Weakening: The idea of language weakening is based on the well-known
trade-off between the expressiveness and the reasoning complexity of a logical lan-
guage. By weakening the logical language in which a theory is encoded, we are able
to trade the completeness of reasoning against run-time. For example, [3] shows how
hierarchical knowledge bases can be used to reason approximately with disjunctive in-
formation. The logic that underlies OWL Full for example is known to be intractable,
reasoners can use a slightly weaker logic (e.g., OWL Lite) that still allows the com-
putation of certain consequences. This idea can be further extended by starting with
a very simple language and iterating over logics of increasing strength supplementing
previously derived facts.

320 P. Groot, H. Stuckenschmidt, and H. Wache

Knowledge Compilation: In order to avoid complexity at run-time, knowledge compi-
lation aims at pre-processing the ontology off-line such that on-line reasoning becomes
faster. For example, this can be achieved by explicating hidden knowledge. Derived
facts are added to the original theory as axioms, avoiding the need to deduce them
again. In the case of ontological reasoning, implicit subsumption and membership rela-
tions are good candidates for compilation. For example, implicit subsumption relations
in an OWL ontology could be identified using a DL reasoner, the resulting more com-
plete hierarchy could be encoded e.g., in RDF schema and used by systems that do
not have the ability to perform complex reasoning. This example can be considered to
be a transformation of the DL language. When one transforms an ontology into a less
expressive DL language [4, 5], this often results in an approximation of the original
ontology.
Approximate Deduction: Instead of modifying the logical language, approximations
can also be achieved by weakening the notion of logical consequence [1, 6]. The ap-
proximated consequences are usually characterised as sound but incomplete, or com-
plete but unsound. Only [1] has made some effort in the context of DLs.

The approximation method focused on in this article belongs to the last category,
however there is not always a clear classification of one method to the three categories
defined above. In the following section we discuss in more detail what is meant by
approximating DLs in the remainder of this paper.

3 Approximating Description Logics

The elements of a DL are concept expressions and determining their satisfiability is the
most basic task. Other reasoning services (e.g., subsumption, classification, instance re-
trieval) can often be restated in terms of satisfiability checking [2]. With approximation
in DLs, we mean determining the satisfiability of a concept expression through some
other means than computing the satisfiability of the concept expression itself. This use
of approximation differs with other work on approximating DLs [4, 5] in which a con-
cept expression is translated to another concept expression, defined in a second typically
less expressive DL.

In our approach (originally proposed in [1]), in a DL only other, somehow ‘related’,
concept expressions can be used that are in some way ‘simpler’ when determining their
satisfiability. For example, a concept expression can be related to another concept ex-
pression through its subsumption relation, and a concept expression can be made sim-
pler by either forgetting some of its subconcepts or by replacing some of its subconcepts
with simpler concepts. In particular, there are two ways that a concept expression C can
be approximated by a related simpler concept expression D. Either the concept expres-
sion C is approximated by a weaker concept expression D (i.e., less specific, C � D)
or by a stronger concept expression D (i.e., more specific, D � C). When C � D, un-
satisfiability of D implies unsatisfiability of C. When D �C, satisfiability of D implies
satisfiability of C. Note that this is similar to set theory. For two sets C,D, when C ⊆ D
holds, emptiness of D implies emptiness of C, and when D ⊆ C holds, non-emptiness
of D implies non-emptiness of C.

Approximating Description Logic Classification for Semantic Web Reasoning 321

In [1] Cadoli and Schaerf propose a syntactic manipulation of concept expressions
that simplifies the task of checking their satisfiability. The method generates two se-
quences of approximations, one sequence containing weaker concepts and one sequence
containing stronger concepts. The sequences of approximations are obtained by substi-
tuting a substring D in a concept expression C by a simpler concept.

More precisely, for every substring D they define the depth of D to be ‘the number
of universal quantifiers occurring in C and having D in its scope’ [1]. The scope of
∀R.φ is φ which can be any concept term containing D. Using the definition of depth a
sequence of weaker approximated concepts can be defined, denoted by C�

i , by replacing
every existentially quantified subconcept, i.e., ∃R.φ where φ is any concept term, of
depth greater or equal than i by �. Analogously, a sequence of stronger approximated
concepts can be defined, denoted by C⊥

i , by replacing every existentially quantified
subconcept of depth greater or equal than i by ⊥. The concept expressions are assumed
to be in negated normal form (NNF) before approximating them. These definitions lead
to the following result:

Theorem 1. For each i, if C�
i is unsatisfiable then C�

j is unsatisfiable for all j ≥ i,

hence C is unsatisfiable. For each i, if C⊥
i is satisfiable then C⊥

j is satisfiable for all
j ≥ i, hence C is satisfiable.

These definitions are illustrated by the following concept expression in NNF taken
from the Wine ontology1

Merlot≡ Wine
 ≤1madeFromGrape.�
 ∃madeFromGrape.{MerlotGrape},

which states that a Merlot wine is a wine that is made from the Merlot grape and no
other grape. This concept expression contains no ∀-quantifiers. Therefore the depth of
the only existentially quantified subconcept ‘∃madeFromGrape.{MerlotGrape}’ is 0.
Substituting either � or ⊥ leads to the following approximations for level 0:

Merlot�0 ≡ Wine
 (≤1madeFromGrape.�)
 �,

Merlot⊥0 ≡ Wine
 (≤1madeFromGrape.�)
 ⊥.

No subconcepts of level 1 appear in the concept expression for Merlot. Therefore,
Merlot�1 and Merlot⊥1 are equivalent to Merlot. The nesting of existential and
universal quantifiers is an important measure of the complexity of satisfiability check-
ing when considered from a worst case complexity perspective [8]. This is a motivation
for Cadoli and Schaef to make their specific substitution choices. Furthermore, they are
able to show a relation between C�

i - and C⊥
i -approximation and their multi-valued logic

based on S-1- and S-3-interpretations [1]. Therefore, properties obtained for S-1- and
S-3-approximation also hold for C�

i - and C⊥
i -approximation. These properties include

the following: (1) Semantically well founded, i.e., there is a relation with a logic that
can be used to give meaning to approximate answers; (2) Computationally attractive,
i.e., approximate answers are cheaper to compute than the original problem; (3) Dual-
ity, i.e., both sound but incomplete and complete but unsound approximations can be

1 A wine and food ontology which forms part of the OWL test suite [7].

322 P. Groot, H. Stuckenschmidt, and H. Wache

constructed; (4) Improvable, i.e., approximate answers can be improved while reusing
previous computations; (5) Flexible, i.e., the method can be applied to various problem
domains. These properties were identified by Cadoli and Schaerf to be necessary for
any approximation method.

Although the proposed method by Cadoli and Schaerf [1] satisfies the needs of the
Semantic Web identified in Section 1 in theory, little is known about the applicability
of their method to practical problem solving. Few results have been obtained for S-1-
and S-3-approximation when applied to propositional logic [9, 10, 11], but no results are
currently known to the authors when their proposed method is applied to DLs. Current
work focuses on empirical validation of their proposed method. Furthermore, DLs have
changed considerably in the last decade. Cadoli and Schaerf proposed their method for
approximating the language ALE (they also give an extension for ALC), but ALE has
a much weaker expressivity then the languages that are currently proposed for ontology
modeling on the Semantic Web such as OWL. The applicability of their method to a
more expressive language like OWL is an open question. Current work takes the method
of Cadoli and Schaerf as a basis and focuses on extending it to more expressive DLs.

4 Approximating Classification

The problem of classification is to arrange a complex concept expression into the sub-
sumption hierarchy of a given TBox. We choose this task for two reasons. First, the
worst-case complexity of a classification algorithm for expressive representation lan-
guages like OWL-DL is known to be intractable. Efficient alternatives have only been
proposed for subsets of DLs [12].

Second, classification is a very important part of many other reasoning services and
applications. For example, classification is used to generate the subsumption hierarchy
of the concept descriptions in an ontology. Furthermore, classification is used in the task
of retrieving instances. From a theoretical point of view, checking whether an instance
i is member of a concept Q can be done by proving the unsatisfiability of ¬Q(i). Doing
this for all existing instances, however, is intractable. Therefore, most DL systems use
a process that reduces the number of instance checks. It is assumed that the ontology
is classified and all instances are assigned to the most specific concept they belong to.
Instance retrieval is then done by first classifying the query concept Q in the subsump-
tion hierarchy and then selecting the instances of all successors of Q and of all direct
predecessors of Q that pass the membership test in Q. We conclude that there is a lot of
potential for approximating the classification task.

In the following, we first describe the process of classification in DL systems. Af-
terwards we explain how the approximation technique introduced in Section 3 can be
used to approximate (part of) this problem.

For classifying a concept expression Q into the concept hierarchy (Algorithm 1) a
number of subsumption tests are required for comparing the query concept with other
concepts Ci in the hierarchy. As the classification hierarchy is assumed to be known,
the number of subsumption tests can be reduced by starting at the highest level of the
hierarchy and to move down to the children of a concept only if the subsumption test is
positive. The most specific concepts w.r.t. the subsumption hierarchy which passed the

Approximating Description Logic Classification for Semantic Web Reasoning 323

Algorithm 1 classification
Require: A classified concept hierarchy with root Root
Require: A query concept Q

VISITED := ∅

RESULT := ∅

GOALS := {�}
while Goals �= ∅ do

C ∈ Goals where {direct parents of C} ⊆ Visited
GOALS := Goals \ {C}
VISITED := Visited ∪ {C}
if subsumed-by(Q,C) then

GOALS := Goals ∪ {direct children of C}
RESULT := (Result ∪ {C}) \ {all ancestors of C}

end if
end while
if |Result| = 1 ∧ subsumed-by(C,Q) then

EQUAL := ‘yes’
else

EQUAL := ‘no’
end if
return Equal, Result

subsumption test are collected for the results. At the end of the algorithm, we check if
the result is subsumed by Q as this implies that both are equal.

Algorithm 1 contains more than one step that can be approximated. For example,
the subsumption tests, represented by subsumed-by(X,Y) in the algorithm, can be
approximated using the method of Cadoli and Schaerf.

The subsumption test Q � C can be reformulated into the unsatisfiability test of
Q
¬C (Algorithm 2). The idea is to replace standard subsumption checks by a series
of approximate checks of increasing exactness. In particular, we use weaker approxima-
tions C�

i in the C�-subsumption algorithm (Algorithm 3) and stronger approxima-
tions C⊥

i in the C⊥-subsumption algorithm (Algorithm 4). (Note the difference be-
tween Algorithm 2 and Algorithms 3 and 4.) The approximations are easily constructed
in a linear way. When the approximation at a certain level I does not lead to a conclusion
(based on Theorem 1) the level I is increased by one. This is repeated until the original
concept expression is obtained, i.e., the exact subsumption test has to be performed. Al-
gorithm 5 integrates both approximations in one procedure. The approximate versions,

Algorithm 2 subsumption
Require: A complex concept expression C
Require: A Query Q

CURRENT := Q
¬C
RESULT := unsatisfiable(Current)
return Result

324 P. Groot, H. Stuckenschmidt, and H. Wache

Algorithm 3 C�-subsumption
Require: A complex concept expression C
Require: A Query Q

I := 0
repeat

CURRENT := (Q
¬C)�I
RESULT := unsatisfiable(Current)
if Result = ‘true’ then

break
end if
I := I+1

until Current = Q
¬C
return Result

Algorithm 4 C⊥-subsumption
Require: A complex concept expression C
Require: A Query Q

I := 0
repeat

CURRENT := (Q
¬C)⊥I
RESULT := unsatisfiable(Current)
if Result = ‘false’ then

break
end if
I := I+1

until Current = Q
¬C
return Result

Algorithm 5 C⊥
I -C�

I -subsumption
Require: A complex concept expression C
Require: A Query Q

I := 0
repeat

CURRENT := (Q
¬C)⊥I
RESULT := unsatisfiable(Current)
if Result = ‘false’ then

break
end if
CURRENT := (Q
¬C)�I
RESULT := unsatisfiable(Current)
if Result = ‘true’ then

break
end if
I := I+1

until Current = Q
¬C
return Result

Approximating Description Logic Classification for Semantic Web Reasoning 325

i.e., C�-subsumption, C⊥-subsumption, and C⊥
I -C�

I -subsumption will re-
place the method subsumed-by in Algorithm 1 in the forthcoming experiments.

Fact

Subsumes/Satisfy

DIG Interface

Query

Racer

Taxonomy

Classify

Approximate

Fig. 2. Architecture of experimental setup

While these approximate versions can
in principle be applied to all occurrences
of subsumption tests, we restricted the use
of approximations to the first part of the
algorithm where the query concept is clas-
sified into the hierarchy.

Each DL reasoner (e.g., Fact [13],
Racer [14, 15]) implements the classifi-
cation functionality internally. In order
to obtain comparable statements about
approximate classification, independently
from the implementation of a particular
DL reasoner, which may use highly opti-
mised heuristics, we implement our own
and independent classification method.
The classification procedure was built on
top of an arbitrary DL reasoner accord-
ing to Algorithm 1, which can call the
various approximation forms stated in Al-
gorithms 3, 4, and 5 The satisfiability
tests are propagated to the DL reasoner
through the DIG interface [16] as depicted
in Figure 2.

5 Experiments

The main question focused on in the experiments is which form of approximation, i.e.,
C�

i , C⊥
i , or their combination, can be used to reduce the complexity of the classification

task. The focus of the experiments will not be on the overall computation time, but
on the number of operations needed. The goal of approximation is to replace costly
reasoning operations by a (small) number of cheaper approximate reasoning operations.
The suitability of the method of Cadoli and Schaerf therefore depends on the number
of classical reasoning operations that can be replaced by their approximate counterparts
without changing the result of the computation.

In the experiments queries are generated automatically. The system randomly selects
a number of concept descriptions from the loaded ontology. These definitions are used
as queries and are reclassified into the subsumption hierarchy. Note that the queries
are first randomly selected, then they are used in the experiments with all forms of
approximation.

The first experiments were made with the TAMBIS ontology in which we
(re)classified 16 unfoldable concept definitions.2 Only the approximation method

2 A biochemistry ontology developed in the TAMBIS project [17].

326 P. Groot, H. Stuckenschmidt, and H. Wache

Table 1. Subsumption tests for the reclassification of 16 concepts in TAMBIS

normal C⊥
i C�

i C⊥
i &C�

i

true false true false true false true false
C⊥

0 157 32 C�
0 8 181 C⊥

0 157 32
Tambis (16) C⊥

1 0 0 C�
1 0 0 C�

0 8 149
N 24 279 N 24 247 N 16 279 N 16 247

originally suggested by Cadoli and Schaerf [1] for ALE (described in Section 3) was
used.

The results of the first experiments are shown in Table 1, which is divided into four
columns. Each column reports the number of subsumption tests when using a certain
form of approximation. The first column reports results for the experiment with normal
classification (i.e., without approximation), the second column for C⊥

i -approximation,
the third column for C�

i -approximation, and the fourth column for a combination of
C⊥

i - and C�
i -approximation.

Each column of Table 1 is divided into a number of smaller rows and columns. The
rows represent the level of the approximation used, where N denotes normal subsump-
tion testing, i.e., without approximation. The columns represent whether the subsump-
tion test resulted in true or false.3 This distinction is important, because Theorem 1 tells
us that only one of those two results will immediately lead to a reduction in complexity,
while for the other result approximation has to continue at the next level. This continues
until no more approximation steps can be done.

The first column shows that for the reclassification of 16 concepts in the TAMBIS
ontology, 24 true subsumption tests and 279 false subsumption tests were needed.

The second column shows that C⊥
i -approximation leads to a change in normal sub-

sumption tests. Compared to the normal case, the number of false subsumption tests are
reduced from 279 to 247. However, the 24 true subsumption tests are not reduced. Note
that 32 (279 - 247) false subsumption tests are replaced by 157 true C⊥

0 -subsumption
tests and 32 false C⊥

0 -subsumption tests.4

The third column shows that C�
i -approximation also leads to a change in normal

subsumption tests, but quite different when compared to C⊥
i -approximation. With C�

i -
approximation we reduce the true subsumption tests from 24 to 16. However, the 279
false subsumption tests are not reduced. Note that 8 (24 - 16) true subsumption tests are
replaced by 8 true C�

0 -subsumption tests and 181 false C�
0 -subsumption tests. Analo-

gously to C⊥
i -approximation, no C�

i -approximation was used when this would not lead
to a change in the subsumption expression.

The fourth column shows the combination of C⊥
i - and C�

i -approximation by using
the approximation sequence C⊥

0 ,C�
0 ,C⊥

1 ,C�
1 , ...,C⊥

n−1,C
�
n−1,normal. This combination

3 We will use the shorthand ‘true subsumption test’ and ‘false subsumption test’ to indicate these
two distinct results.

4 Note that the numbers do not add up. The reason for this is that approximation is not used when
there is no change in the subsumption expression after approximation, i.e., when C⊥

i = C the
DL reasoner is not called and no subsumption check for C⊥

i is performed.

Approximating Description Logic Classification for Semantic Web Reasoning 327

leads to a reduction of normal subsumption tests, which is the combination of the re-
ductions found when using C⊥

i - or C�
i -approximation by itself. The true subsumption

tests are reduced from 24 to 16 and the false subsumption tests are reduced from 279
to 247. Note that the reduction of 8 (24 - 16) true subsumption tests and 32 (279 - 247)
are now replaced by 157 true C⊥

0 -subsumption tests, 32 false C⊥
0 -subsumption tests, 8

true C�
0 -subsumption tests, and 149 false C�

0 -subsumption tests.

5.1 Analysis of C⊥
i -/C�

i -Approximation

The approximation of concept classification in the TAMBIS ontology using the method
of Cadoli and Schaerf reveals at least four points of interest. First, Table 1 shows that
using C⊥

i -approximation can only lead to a reduction of the false subsumption tests and
C�

i -approximation can only lead to a reduction of the true subsumption tests. These
results could be expected as they follow from Theorem 1 and are reflected by Algo-
rithm 3, 4, and 5. Using Theorem 1 we have the following reasoning steps for C⊥

i -
approximation:

Query �� Concept⇔ (Query
¬Concept) is satisfiable

⇐ (Query
¬Concept)⊥i is satisfiable.

Hence, when (Query
¬Concept)⊥i is not satisfiable, nothing can be concluded and
approximation can not lead to any gain.

Using Theorem 1 we have the following reasoning steps for C�
i -approximation:

Query� Concept⇔ (Query
¬Concept) is not satisfiable

⇐ (Query
¬Concept)�i is not satisfiable.

Hence, when (Query
¬Concept)�i is satisfiable, nothing can be concluded and
approximation can not lead to any gain.

Second, no approximations are used on a level higher than zero. This is a direct
consequence of the TAMBIS ontology containing no nested concept definitions. Further
on, we show this to be the case for most ontologies found in practice.

Third, both C⊥
i - and C�

i -approximation are not applied in all subsumption tests
that are theoretically possible. With normal classification 303 (24 + 279) subsump-
tion tests are needed. However, with C⊥

i -approximation in only 189 (157 + 32) cases
approximation was actually used. In the remaining 114 (303 - 189) cases approxima-
tion had no effect on the concept definitions, i.e., C⊥

i = C, and no test was therefore
performed. Hence, in 38% of the subsumption tests, approximation was not used. Sim-
ilar observations hold for C�

i -approximation. This observation indicates that C⊥
i -/C�

i -
approximation is not very useful (at least for the TAMBIS ontology) for approximating
classification in an ontology.

Fourth, apart from the successful reduction of normal subsumption tests, we must
also consider the cost for obtaining the reduction. For example, with C⊥

i -approximation
we obtained a reduction in 32 false subsumption tests, i.e., 32 normal false subsump-
tion tests could be replaced by 32 cheaper false C⊥

0 -subsumption tests, however it also

328 P. Groot, H. Stuckenschmidt, and H. Wache

cost an extra 157 true C⊥
0 -subsumption tests that did not lead to any reduction. As noth-

ing can be deduced from these 157 true C⊥
0 -subsumption tests, these computations are

wasted and reduce the gain obtained with the 32 reduced false subsumption tests consid-
erably. Obviously, these unnecessary true C⊥

0 -subsumption tests should be minimised.
No final verdict can be made however, because it all depends on the computation time
needed to compute the normal subsumption tests and C⊥

0 -subsumption tests, but 157
seems rather high. Similar observations hold for C�

i -approximation.
Analysing the high amount of unnecessary subsumption tests, we discovered a

phenomenon, which we call term collapsing. We illustrate term collapsing through
an example taken from the Wine ontology. Suppose that during a classification the
subsumption test Query � WhiteNonSweetWine is generated. The definition for
WhiteNonSweetWine is:

Wine
 ∃hasColor.{White}
 ∀hasSugar.{OffDry,Dry}.

The subsumption query is first transformed into a satisfiability test, i.e., Query �
WhiteNonSweetWine⇔ Query
¬WhiteNonSweetWine is unsatisfiable, be-
cause C⊥

i -/C�
i -approximation is defined in terms of satisfiability checking.

The definition of ¬WhiteNonSweetWine is

≡ ¬(Wine
 ∃hasColor.{White}
 ∀hasSugar.{OffDry,Dry})
≡ ¬Wine � ∀hasColor.¬{White} � ∃hasSugar.¬{OffDry,Dry}.

and therefore the approximation (¬WhiteNonSweetWine)�0 is

≡ (¬Wine � ∀hasColor.¬{White} � ∃hasSugar.¬{OffDry,Dry})�0
≡ (¬Wine)�0 � (∀hasColor.¬{White})�0 � (∃hasSugar.¬{OffDry,Dry})�0
≡ ¬Wine � ∀hasColor.¬{White} � �
≡ �.

Therefore, approximating the expression Query
¬WhiteNonSweetWine results
in checking unsatisfiability of Query�0 , i.e., (Query
¬WhiteNonSweetWine)�0
⇔ Query�0
� ⇔ Query�0 is unsatisfiable. This test most likely fails, because in
a consistent ontology Query will be satisfiable and as Query is more specific than
Query�0 , i.e., Query� Query�0 , the latter will be satisfiable.

Analogously, applying C⊥
i -approximation may result in a collapse of the Query to

⊥. This occurs whenever Query contains a conjunction with at least one ∃-quantifier.
In this case, the entire subsumption test is collapsed into checking the satisfiability of
⊥. As ⊥ can never be satisfied, this results in an unnecessary subsumption test.

For the TAMBIS ontology we counted the numbers of occurrences of term collaps-
ing in approximated concept expressions. With C�

i -approximation 65 terms out of 181
collapsed. In other words, 35.9% of the approximated false subsumption tests are obvi-
ously not needed and should be avoided. With C⊥

i -approximation it is even more severe
drastic: 157 terms out of 157 collapsed. With C⊥

i - and C�
i -approximation 190 terms out

of 306 collapsed. In other words 62.1% of the approximated subsumption tests are not
needed.

Approximating Description Logic Classification for Semantic Web Reasoning 329

An additional linear time test could be added to the approximation algorithm to
detect term collapsing. However, an optimised DL reasoner with lazy evaluation would
perform this simple test in a similar way. Experiments indeed show that the DL reasoner
quickly detects term collapsing.

Summarising, using the proposed approximation method by Cadoli and Schaerf [1]
on query classification in the TAMBIS ontology leads to many collapsing terms. Fur-
thermore, in only a few cases expensive subsumption tests are replaced by cheaper ap-
proximated subsumption tests. These results indicate that their approximation method
does not fit practical situations well. A different approximation method may provide
better approximation.

5.2 Further Experiments

Although practical results of C⊥
i -/C�

i -approximation are somewhat disappointing for
the TAMBIS ontology, similar experiments were made with other ontologies. Table 2
summarises the results of C⊥

i -/C�
i -approximation applied to the reclassification of 10

unfoldable concepts in five other Ontologies.

Table 2. Number of subsumption tests for reclassification in five ontologies

normal C⊥
i C�

i C⊥
i &C�

i

true false true false true false true false
C⊥

0 - - 0 0 - - 0 0
Dolce (10) C�

0 - - - - 0 0 0 0
normal 10 113 10 113 10 113 10 113

C⊥
0 - - 0 0 - - 0 0

Galen (10) C�
0 - - - - 0 0 0 0

normal 10 12190 10 12190 10 12190 10 12190

C⊥
0 - - 0 0 - - 0 0

Monet (10) C�
0 - - - - 0 0 0 0

normal 20 656 20 656 20 656 20 656

C⊥
0 - - 145 0 - - 145 0

MadCow (10) C�
0 - - - - 5 140 5 140

normal 66 152 66 152 61 152 61 152

C⊥
0 - - 228 1 - - 228 1

Wine (10) C�
0 - - - - 6 223 6 222

normal 33 252 33 251 27 252 27 251

For the first three Ontologies in Table 2, the DOLCE5, Galen6, and Monet on-
tology7, C⊥

i - or C�
i -approximation has no effect. In these three Ontologies, C⊥

i -/C�
i -

approximation does not change any concept expression and therefore no reduction in

5 An ontology for linguistic and cognitive engineering [18].
6 A medical terminology developed in the Galen project [19].
7 An ontology for mathematical web services [20].

330 P. Groot, H. Stuckenschmidt, and H. Wache

normal subsumption tests can be obtained. An analysis of these three Ontologies shows
that the Ontologies use some roles and/or attributes, but the ∃- and/or ∀-quantifiers are
very rarely used. For example, the Monet ontology contains 2037 concepts, 34 roles,
and 10 attributes. The ∃-constructor is only used in 13 definitions (0.64% of all concept
definitions). The ∀-constructor is only used in 11 cases (0.54% of all concept defini-
tions). Therefore no quantifiers were present in the ten randomly selected queries. As
quantifiers are so rare, C⊥

i -/C�
i -approximation seems to be useless for those Ontologies.

The next two Ontologies in Table 2, MadCow8 and Wine, are somewhat artificial
because they are developed for demonstrating the expressive power of DLs. C⊥

i -/C�
i -

approximation was applied to classification in both Ontologies, but this leads to almost
no reduction of normal subsumption tests. In the Madcow ontology only 5 true sub-
sumption tests are reduced and in the Wine ontology only 7 subsumption tests are re-
duced (6 true subsumption tests + 1 false subsumption test). Many more subsumption
tests are not reduced. In many cases approximating subsumption tests leads to term
collapsing and useless subsumption tests.

6 Conclusions

We argued that the idea of approximate logical reasoning matches the requirements of
the Semantic Web in terms of robustness against errors and the ability to cope with
limited resources better than conventional reasoning methods. At the same time, ap-
proximate logical inference avoids the problems of many numerical approaches for
approximate reasoning like the proper interpretation of the numeric values assigned to
statements and the problem of acquiring these numbers. We tested a concrete method
for approximate logical reasoning in DLs against these claims by applying it to the
classification problem on a number of Ontologies. In particular, subsumptions were
approximated by sequences of weaker and stronger subsumptions. We showed that in
principle both approximations can contribute to the efficiency of query classification.

The main result, however, is that the use of the approximation method for DLs
proposed by Cadoli and Schaerf is problematic for two reasons:

– A problematic side effect of using the approximation method is the collapsing of
concept expressions leading to many unnecessary approximation steps. This hap-
pens either when terms of a disjunction are replaced by � or terms of a conjunction
are replaced by ⊥. The former case happens when C�

i is used on a concept that
contains a universal quantifier at the top level of the definition. The latter happens
when C⊥

i is used on a concept with an existential quantifier at the top level of the
definition. This feature of the approach is quite problematic as it excludes an impor-
tant class of query concepts from the method, namely translations of conjunctive
queries which are mostly translated using nested existential quantifications [22].

– The experiments show that only in some cases the method is able to successfully
replace subsumption tests by cheaper approximations. In many cases like DOLCE,
Galen, and Monet no test could successfully be approximated. This observation

8 Ontology about mad cows, part of the OWL Reasoning Examples [21].

Approximating Description Logic Classification for Semantic Web Reasoning 331

can be explained by the fact that the approximation method only works on nested
expressions that are existentially quantified. Many existing Ontologies, however,
do not contain concept expressions with nested expressions. The average ontology
on the Semantic Web uses quite simple concept expressions that, if at all, are of
depth one. The approximation method by Cadoli and Schaerf was designed based
on theoretical considerations to reduce worst case complexity of the subsumption
problem, but it does not take practical considerations like the nature of definitions
that are likely to be found in Ontologies into account.

We conclude that the use of this specific method of approximating subsumption
is often not suited for Semantic Web reasoning. Nevertheless, we believe in the gen-
eral idea of approximate logical reasoning. The goal is to find an approximation strat-
egy that takes the specifics of Ontologies into account. A particular problem with the
current approach is the reliance on alternations of ∀- and ∃-quantifiers. A straight-
forward way to modify this approach is to find alternative strategies for selecting
subexpressions that are to be replaced by �, ⊥, or other simpler subconcepts. A
good candidate, that will be explored in future work, can use domain knowledge to
determine the subset of the vocabulary to be replaced. We could for example first
exclude very specific terms and then gradually add more specific ones. This and
other options for approximating Semantic Web reasoning will be studied in future re-
search.

References

1. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74
(1995) 249–310

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Descrip-
tion Logic Handbook - Theory, Implementation and Applications. Cambridge University
Press (2003)

3. Borgida, A., Etherington, D.W.: Hierarchical knowledge bases and efficient disjunctive rea-
soning. In Brachman, R.J., Levesque, H.J., Reiter, R., eds.: KR’89: Principles of Knowl-
edge Representation and Reasoning. Morgan Kaufmann, San Mateo, California (1989)
33–43

4. Baader, F., Küsters, R., Molitor, R.: Rewriting concepts using terminologies. In Cohn, A.G.,
Giunchiglia, F., Selman, B., eds.: Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning (KR2000), San Francisco, Morgan
Kaufman (2000) 297–308

5. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description log-
ics. In Fensel, D., Giunchiglia, F., McGuiness, D., Williams, M.A., eds.: Proceedings of the
Eighth International Conference on Principles of Knowledge Representation and Reasoning
(KR2002), San Francisco, CA, Morgan Kaufman (2002) 203–214

6. McAllester, D.: Truth maintenance. In: Proceedings of AAAI’90, Morgan Kaufmann (1990)
1109–1116

7. OWL test suite. http://www.w3.org/TR/owl-test/.
8. Donini, F., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt, W.: The com-

plexity of existential quantification in concept languages. Artificial Intelligence 53 (1992)
309–327

332 P. Groot, H. Stuckenschmidt, and H. Wache

9. Groot, P., ten Teije, A., van Harmelen, F.: Towards a Structured Analysis of Approximate
Problem Solving: a Case Study in Classification. In Dubois, D., Welty, C., Williams, M.,
eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth In-
ternational Conference (KR 2004), Whistler, BC, Canada, AAAI Press (2004) 399–406

10. ten Teije, A., van Harmelen, F.: Exploiting domain knowledge for approximate diagnosis.
In Pollack, M., ed.: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97). Volume 1., Nagoya, Japan, Morgan Kaufmann (1997) 454–459

11. ten Teije, A., van Harmelen, F.: Computing approximate diagnoses by using approximate
entailment. In Aiello, G., Doyle, J., eds.: Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR-96), Boston, Massachusetts,
Morgan Kaufman (1996)

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logic. In: Proc. of the Twelfth International World Wide
Web Conference (WWW 2003), ACM (2003) 48–57

13. Horrocks, I.: The FaCT system. In: Proceedings of the second International Conference
on Analytic Tableaux and Related Methods. Volume 1397 of Lecture Notes in Artificial
Intelligence., Springer (1998) 307–312

14. Haarslev, V., Möller, R.: Race system description. In: Proceedings of the 1999 Description
Logic Workshop (DL’99). CEUR Electronic Workshop Proceedings (1999) 130–132

15. Haarslev, V., Möller, R.: Racer system description. In: Proceedings of the International
Joint Conference on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture Notes in
Artificial Intelligence., Springer (2001) 701–705

16. Bechhofer, S., Möller, R., Crowther, P.: The dig description logic interface. In: Proceedings
of DL2003 International Workshop on Description Logics, Rome (2003)

17. Baker, P., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R.: TAMBIS: Transparent
Access to Multiple Bioinformatics Information Sources. An Overview. In: Proceedings of
the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB’98),
Menlow Park, California, AAAI Press (1998) 25–34

18. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library. Wonder-
Web Deliverable D18. Laboratory For Applied Ontology - ISTC-CNR. (20003)

19. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the galen
project. In: Proceedings of the Seventeenth Annual Symposium on Computer Applications
in Medical Care (SCAMC-93), Washington DC, USA (1993) 414–418

20. Caprotti, O., Dewar, M., Turi, D.: Mathematical service matching using description logic
and owl. In: To appear in Proceedings 3rd Int’l Conference on Mathematical Knowledge
Management (MKM’04). Volume 3119 of Lecture Notes in Computer Science., Springer-
Verlag (2004)

21. Bechhofer, S.: OWL Reasoning Examples. University of Manchester (2003)
http://owl.man.ac.uk/2003/why/latest/.

22. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic aboxes. In:
National conference on artificial intelligence (AAAI 2000). (2000) 399–404

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 333 – 345, 2005.
© Springer-Verlag Berlin Heidelberg 2005

AIS and Semantic Query

Rana Kashif Ali and Steve Cayzer

1 The University of Birmingham, Birmingham B15 2TT, UK

2 HP Laboratories, Bristol, UK

Abstract. The semantic web has created various exciting opportunities to
explore. Here we present a nature inspired solution to one such opportunity; that
of semantic queries for information retrieval. We take our inspiration from the
human immune system and develop an analogy between antibodies and queries.
Successful antibodies are those that are activated by an infection. These
antibodies are stimulated to clone, but imperfectly, giving rise to a multitude of
similar antibodies that are better suited to tackle the infection. Analogously,
queries producing relevant results can be cloned to give rise to various similar
queries, each of which may be an improvement on the original query. The
semantic web, being concept based, has a set of rules for creating expressive yet
standardised queries with clear semantics guiding their modification. This paper
discusses the implementation and evaluation of such an immune based
information retrieval technique for the semantic web. Two query mutation
operators; RandomMutationOperator and ConstrainedMutationOperator are
proposed and compared in terms of their precision, recall and convergence. We
have found the presented approach to be viable, and we discuss the potential for
further improvements.

1 Introduction

The presented work combines disparate areas of research namely, semantic web,
Artificial Immune Systems (AIS), Query Expansion (QE) and Information Retrieval
(IR). In this section, we introduce these concepts before outlining the structure of the
remaining paper.

The Semantic Web is an extension of the current World Wide Web (WWW) in
which resources are connected semantically rather than through hyperlinks. This
semantic connectivity is achieved by making metadata about resources available for
machine processing. Metadata is typically written in Resource Description Format
(RDF: [4]) to conform to a model, or ontology. Both the metadata and ontologies are
available to all. Different frameworks exist to manipulate the RDF metadata, for
example Jena [3], which supports the Resource Description Query Language (RDQL;
[5]) for querying metadata.

Computational models and problem solving approaches inspired from the
Biological Immune System (BIS) are called AIS [7]. The presented work focuses on
the clone-and-refine paradigm of the BIS, according to which, a body exposed to
antigen produces various antibodies, some of which (those showing a higher affinity

334 R.K. Ali and S. Cayzer

to the antigen) are more suitable to overcome the infection. These antibodies undergo
affinity-related cloning and mutation to produce novel, but similar, antibodies, some
of which might be an improvement over the original antibody and can better tackle
the infection. However, some antibodies may be self-reactive and hence must be
destroyed or they will cause an autoimmune reaction. We bring this idea into the
realm of query expansion by establishing an analogy between antibodies and queries,
refining the search process with clonal expansion, mutation and screening of self-
reactive queries.

The next section gives an overview of the related work, followed by the details of
the AIS and query expansion. In section 4 we describe the experimental plan and the
obtained results. In the final section we discuss future directions and present our
conclusions.

2 Related Work

AIS is a relatively new area of research with a diversity of applications such as data
mining, computer security and robotics. A full survey can be found in Jon Timmis'
and Leandro de Castro's book [7], but here we describe work relevant to our
application.

The notion of AIS for semantic queries was first proposed by Lee et al [1]. They
show, using the Gene Ontology (GO) as an example, how data can be retrieved based
on the principles of immunity by expanding queries. Their work does not involve a
concrete implementation but does provide a useful conceptual framing for our work.
We have applied the idea to a new domain, filled in some details and provided a real
application that we evaluate.

Efthimiadis's work [2] provides a sound foundation of traditional query expansion,
drawing a distinction between manual, automated and interactive approaches.
However the methods he describe are predominantly keyword based - that is, not
semantic. Thus, we aim to demonstrate the feasibility of using semantic queries
within a principled query expansion framework.

Our work is grounded using real semantic web data. The Semantic Web
Environmental Directory, SWED [6], provides a decentralised, RDF-backed portal for
storing the details of environmental organisations in the UK. SWED provides a novel
'facet browse' mechanism that enables users to navigate to the organisations of interest
using conjunctive combinations of metadata attributes (for example, "Not for Profit
organisations based in Bristol that are concerned with animal welfare"). Our semantic
query mechanism facilitates a different approach, akin to a semantic "More Like
This" utility.

3 AIS for Semantic Query Expansion

A web based semantic search utility was developed with the AIS infrastructure
embedded in it. A high level view of the utility is shown in Figure 1. It is also
important at this stage to establish the mapping between the AIS and BIS. In our AIS

 AIS and Semantic Query 335

we regard the irrelevant results as self and relevant results as non-self. Antibodies are
semantic queries and antigens are a collection of the non-self (relevant results).
Finally, mutation is equivalent to query expansion. Thus, mutation of a query may
result in queries that are better suited to answer a particular search criterion. On the
other hand, mutation may result in queries that return irrelevant results; these are
deemed self-reactive and hence are destroyed.

Fig. 1. AIS infrastructure and flow of information

3.1 User Interface

The interface to the search process is designed so as to let the user know how the
query expansion is being done. Initially, the user chooses a particular organisation of
interest, the details of which appear as shown in figure 2. This is a single record
drawn from the SWED dataset that will seed the semantic queries. The only feedback
at this stage involves the user clicking on the ‘FIND SIMILAR’ link. Upon the
feedback the AIS initialises, fetches relevant organisations and presents them grouped
by queries (figure 3). This new interface lets the user build sets of self and non-self by
specifying results as either relevant (non-self) or irrelevant (self). These sets act as an
evaluation mechanism for query refinement, guiding the semantic query population
towards novel relevant results. The interface also bears links at the top that allow
users to view/edit sets of self and non-self. There is also an option to view the state of
the query pool that gives a good insight into the expansion process. This feature may
however be removed from a commercial application to avoid complexity.

3.2 AIS Algorithm

The algorithm for the AIS is given below followed by explanation of its
constituents.

336 R.K. Ali and S. Cayzer

begin

 take initial user feedback

 initialise Q, query population based on feedback

 while (halting criteria not met)

 display the results of queries in Q and take user feedback

 add relevant results to non-self and irrelevant to self

 evaluate fitness of queries in Q

 select queries with highest fitness (Q_s) using fitness
proportionate selection

 perform clonal expansion on the selected queries to form Q_c

 apply mutation operator to transform Q_c to Q_m

 replace the previously selected queries Q_s with Q_m

 end while

end

Fig. 2. User interface for semantic query invocation

Initial User Feedback
This involves a user specifying one organisation of interest and saying that s/he wants
to find similar organisations.

Initialisation of AIS
When the user click the 'FIND SIMILAR' link the AIS is initialised with the query
population equal to the input parameter INIT_POP_SIZE (5 in our case). This
initial query population is generated randomly using two ontologies used in the
SWED data, namely organisation_type and topic. The pseudo code for the
initialisation of the AIS is given below

 AIS and Semantic Query 337

Fig. 3. User interface for semantic query expansion

set generatedQueries = 0

while(INIT_POP_SIZE > generatedQueries) {

 randomly select a organisation_type and assign it to the new
query

 generate a random number, count, between 0 and
MAX_TOPICS_IN_QUERY

 select count number of topics randomly from the ontology

 combine the organisation_type and topics to make a query

 if(query produces some results) {

338 R.K. Ali and S. Cayzer

 generatedQueries++;

 add query to the AIS

 }

}

Once the AIS is initialised, the antibodies/queries within it are extracted and
displayed along with their results. As mentioned, the user may give feedback by
specifying whether a particular result is irrelevant or relevant.

Fitness Evaluation
Once the user has given feedback, the antibodies/queries need to be evaluated. The
fitness of an antibody in our case is the measure of how well it binds to the non-self
while avoiding self. This is equivalent to a search for queries returning many relevant
and few irrelevant results. The following formula was used to evaluate the antibodies

resultsofnumbertotal

wNewwSelfwNonSelf
affinity neutralnegpos

×+×+×
= (1)

Queries can return results that are relevant (NonSelf), irrelevant (Self) or have
unknown relevance (New). The numbers of each result set are weighted and combined
into a fitness function, whose weights are: wpos = 1, wneg = 0 and wneutral= 0.4. The
choice of the values for different weights was empirical.

Selection
In a pure AIS individuals are selected so as to maximise the collective affinity against
the antigen called affinity maturation. Affinity maturation is fitness proportionate and
thus can be modelled as roulette wheel selection.

Clonal Expansion
This is a two step process the first step involves generation of the clones based on
fitness and the second step involves mutation of the clones using mutation operators.
Any cloned antibody/query should fulfil the following constraint.

{ } { } ∅≠− NonSelfSelfresultsall _ (2)

In other words a query should return some previously unseen results.

Mutation Operators
The two query mutation operators that we used for evaluation of the AIS are as
follows:

ConstrainedMutationOperator
This operator appends, deletes or changes various characteristics of the individual,
retaining all others 'as is'.

 generate a random number between 0 and 1, random

 if(random < TYP_CHG_PROB) {

 replace existing organisation_type with a one randomly chosen
from the ontology

 AIS and Semantic Query 339

 }

 else {

 retain the old organisation_type

 }

 define three variable, append, delete and change

 initialise the variables with random numbers between 0 and 1

 for each topic in the query {

 if(append >= MUTATION_RATE) {

 append a random topic to the query

 }

 if(delete >= MUTATION_RATE) {

 delete the topic from the query

 }

 if(change >= MUTATION_RATE) {

 replace the topic with a randomly selected topic

 }

 }

RandomMutationOperator
This is a more exploratory operator, which allows a considerable degree of novelty in
the generated query.

 generate a random number between 0 and 1, random

 if(random < TYP_CHG_PROB) {

 replace existing organisation_type with a one randomly chosen
from the ontology

 }

 else {

 retain the old organisation_type

 }

 generate a random number between 1 and MAX_TOPICS_IN_QUERY, count

 while(count != 0) {

 generate a random number between 0 and 1, rate

 if(rate <= MUTATION_RATE) {

 choose a topic randomly from the old query and add to the new
one

 }

 else {

 choose a topic randomly from the topic ontology

 add the topic to the new query

 }

 decrement count

 }

340 R.K. Ali and S. Cayzer

Replacement Strategy and Halting Criteria
All individuals that are selected during the selection phase are replaced with the
offspring. The unselected individuals however, remain in the AIS to maintain
diversity in the population. There are two possible halts to the search process. Firstly,
when all the desired results have been found. Secondly, if further query expansion is
not possible.

4 Experimental Setup and Results

We compared the proposed mutation operators in terms of precision, recall and
convergence. In the first set of experiments the performance of the two operators was

Fig. 4. Precision comparison on different input data sets averaged over 30 runs. Bars show
standard deviation

 AIS and Semantic Query 341

observed on three different input data sets. The second set of experiments was aimed
towards finding the change in performance with changing mutation rate on only one
input data set. We implemented an automated test script to simulate a user interacting
with the system. The script was controlled by various parameters for example the
maximum number of iterations and results to be marked as relevant or irrelevant in
every iteration. For the first set of experiments, three input data sets were selected by
a real user of the system, each containing around 10 relevant and 90 irrelevant items.
The task of the AIS was to find organisations in a particular input data set in
minimum number of iterations. The starting point for the AIS was one randomly
chosen organisation from the set. Figure 4 shows the precision for both operators on
three different input data sets. The precision was measured cumulatively:

Fig. 5. Recall comparison on different input data sets, averaged over 30 runs. Bars show
standard deviation

342 R.K. Ali and S. Cayzer

farsoresultsall

farsoresultsrelevant
precision

___= (3)

This cumulative precision decayed asymptotically, as it becomes progressively harder
to find the remaining relevant items. In the early stages, the constrained operator was
significantly superior (e.g. iteration 4, dataset 1: p-value < 0.05, Student's t-test).

Figure 5 shows the recall comparison. Again, recall was calculated cumulatively,
so it increases asymptotically to a theoretical maximum of 1.0.

resultsrelevantall

farsoresultsrelevant
recall

__
___= (4)

The ConstrainedMutationOperator clearly performs better since it reaches a higher
value of recall more quickly (iteration 10, all datasets: p-value < 0.0001).

Fig. 6. Convergence comparison on input data set 1, averaged over 30 runs

Figures 6, 7 and 8 compare the convergence between the two operators.
RandomMutationOperator exhibits delayed convergence and finds fewer relevant and
irrelevant results. The ConstrainedMutationOperator on the other hand is aggressive
in nature and converges quickly.

For the second set of experiments we selected the input data set 2 and changed the
mutation rate from 0 to 1. We found no significant different between the operators in
terms of precision which remained under 0.2. However, in case of recall we
found that the two operators behave in an opposite way (figure 9). The exploratory

 AIS and Semantic Query 343

Fig. 7. Convergence comparison on input data set 2, averaged over 30 runs}

Fig. 8. Convergence comparison on input data set 3, averaged over 30 runs}

344 R.K. Ali and S. Cayzer

Fig. 9. Recall comparison with changing mutation rate

Fig. 10. Minimum iterations for maximum recall vs. mutation rate, averaged over 30 runs

 AIS and Semantic Query 345

RandomMutationOperator benefits from a low mutation rate, whereas the more
aggressive ConstrainedMutationOperator requires some mutation in order to avoid
premature convergence. These results are underlined by our experiments investigating
the effect of mutation rate on speed of convergence (figure 10).

5 Conclusion and Future Directions

We have shown in this paper that AIS are a useful metaphor for query expansion on
the semantic web. Our initial mutation operators demonstrate ways of exploring and
exploiting the query space. An obvious next step would be to try the operators on a
larger dataset (more than 100 organisations) with more sophisticated semantic markup
(more than two ontologies). Another fruitful direction would be a study to explore
suitable metaphors for the user interface. Finally it would be possible to integrate this
work into the SWED portal and to provide value to a real semantic web community.

References

1. Lee, D., Kim, J., Jeong, M., Won, Y., Park, H., Lee, K.: Immune-Based Framework for
Exploratory Bio -Information Retrieval from the Semantic Web. Artificial Immune Systems:
Second International Conference, ICARIS 2003, Edinburgh, UK, September 1-3, 2003,
Proceedings 2787 (2003) 128--135 Lecture Notes In Computer Science, Springer.

2. Efthimiadis N.E.: Annual Review of Information Systems and Technology (ARIST) Query
Expansion 31 1996 121--187 Information Today Inc Medford, NJ

3. Jena Semantic Web Framework http://jena.sourceforge.net/
4. Resource Description Framework (RDF) http://www.w3.org/RDF/
5. RDQL - A Query Language for RDF W3C Member Submission 9 January 2004
6. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
7. SWED - The Semantic Web Environmental Directory
8. http://www.swed.org.uk/swed/index.html
9. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Approach

Sept 2002 Springer-Verlag London. UK.

Querying RDF Data from a Graph Database
Perspective

Renzo Angles and Claudio Gutierrez

Department of Computer Science, Universidad de Chile
{rangles, cgutierr}@dcc.uchile.cl

Abstract. This paper studies the RDF model from a database perspec-
tive. From this point of view it is compared with other database models,
particularly with graph database models, which are very close in motiva-
tions and use cases to RDF. We concentrate on query languages, analyze
current RDF trends, and propose the incorporation to RDF query lan-
guages of primitives which are not present today, based on the experience
and techniques of graph database research.

1 Introduction

The Resource Description Framework (RDF) can be viewed from at least two
perspectives: (1) From a logical perspective, as a minimal fragment of logic that
includes all relevant features needed as representation language for metadata, or
as the W3C recommendation [1] says: RDF is an assertional language intended to
be used to express propositions using precise formal vocabularies; and (2) From
a database perspective, as an extension of data models used in the database
community, in particular graph database models. The former point of view has
been an active area of research. This does not come as surprise knowing that
RDF emerged as a language to represent metadata on the Web, distilling the
experience of the community of knowledge representation and Web researchers
and developers [2]. The latter point of view has received less attention and will
be the focus of this paper. We will consider RDF as a data model in the database
tradition.

The term data model has been used in the database community with different
meanings and in diverse contexts. In this paper we will use it in two senses.
In a broad or abstract sense, a data model is a collection of conceptual tools
for describing the real-world entities to be modeled in the database and the
relationships among these entities [3]. In a strict or concrete sense, a data model,
as defined by Codd [4], is as a combination of three components: (a) a collection
of data structure types; (b) a collection of transformation operators and query
language and, (c) a collection of general integrity rules.

In the broad sense, RDF can be considered a data model: a collection of
conceptual tools for describing real-world entities, namely metadata on the Web.
But also in the strict sense of the term, RDF qualifies as well: Point (a) has been
more or less addressed at a basic level. One of the documents of the RDF suite [5]

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 346–360, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Querying RDF Data from a Graph Database Perspective 347

speaks of graph data model meaning by this concept the data structure implicitly
defined by sets of triples. Although one can discuss the precise meaning of this
concept [6], the graph-like nature of RDF data is clear. Point (c), namely the
integrity constraints, is an open issue for RDF, especially when considering the
duality of RDF as an open world specification of distributed resources on the
Web versus RDF as data model for large single-source repositories with all the
issues of a standard database system. The topic of constraints is outside the
scope of this paper.

This paper concentrates on point (b), namely query languages. This is an
active area from a development and implementation point of view, and there is
a W3C Working Group addressing the issue of RDF data access, which has a
proposal of RDF query language directed mainly to access data on distributed
sources [7]. There are also works addressing foundational issues, e.g. [8, 9, 10].
Nevertheless, the discussion about RDF as a full fledged strict database model
and the design and primitives of a query language for such a model is a topic less
developed, and probably one of the most needed if we want to take advantage
of all the potentialities of the RDF data model (e.g. query optimization, query
rewriting, views, update).

The consideration of RDF as database model puts forward the issue of devel-
oping coherently all its database features. In particular its query language should
address the kind of queries and problems of the application domains the abstract
data model is intended to represent. One of the motivations of this paper are
those application domains where interconnection at large scale and navigation
of a network is the main modeling theme. Examples of this are biology [11],
police-like applications [12], navigation in bibliographic databases, etc. To give
a flavor of the type of problems, consider queries like: “are suspects A and B re-
lated?”, submitted to a police database, or “what is the Erdős number of author
X”, submitted to (an RDF version of) DBLP. The first asks for “relevant” paths
connecting these resources in the (RDF) police database, and the second asks
simply for the length of the shortest path between the nodes representing Erdős
and X. Current proposals of RDF query languages [13, 14, 7] do not support1

queries like these. To address these type of problems, the notions and techniques
of graph databases can be very valuable. Graph databases are systems designed
to support storing and querying information in the form of graphs. They were
important, together with object-oriented databases, in the database research of
the nineties, and lost part of their appeal after the irruption of semi-structured
data models and XML. We claim that graph database models can be a sound
support for the design of an RDF database model, particularly for RDF query
languages.

Contributions. In this paper we study the RDF model from a database per-
spective, compare it with other abstract database models, focusing on query
languages and graph databases. We restrict in this paper to the logical level,

1 A language is said to support a feature if it provides facilities that make it convenient
(reasonable easy, safe and efficient) to use that feature [15].

348 R. Angles and C. Gutierrez

i.e., avoid –when is possible– physical, implementation and indexing considera-
tions. In particular we:
- Compare the RDF model with classical abstract database models putting par-
ticular emphasis in graph database models.
- Study current RDF query languages with respect to their capabilities to support
graph-like queries and conclude that they give little or no support for them.
- Survey the notions, techniques and systems developed in the area of graph
database query languages, and its applicability to the RDF model.
- Propose primitives for RDF query languages based on the graph database ex-
perience.

Outline of the paper. Section 2 compares the RDF model with other database
models. Section 3 surveys graph database models and their query languages.
Section 4 presents a brief review of current RDF query languages and investi-
gates the support they give for querying graph-like data. Finally, in Section 5 we
propose a set of primitives to be incorporated into RDF query languages. Each
of them is carefully reviewed against experience of query language development
in graph databases.

2 Comparison of RDF with Other Abstract Database
Models

Beginning in the seventies numerous data models have been proposed, each of
them with their own concepts and terminology. Surveys and taxonomies of data
models are as manifold as data models themselves (see e.g. [3, 16, 17], [18]). Sev-
eral of these data models have features relevant for the RDF model. In this
section we compare the RDF model with the most important of them. A sum-
mary is presented in Table 1.

Physical Models. They were the first ones to offer the possibility to organize large
collections of data. Among the most important ones are the hierarchical [19] and
network [20] models. These models lack good abstraction level and are very close
to physical implementations. The data-structuring is not flexible and not apt to
model non-traditional applications. For our discussion they do not much have
relevance.

Relational Data Model. was introduced by Codd [21] to highlight the concept
of level of abstraction by introducing a clean separation between physical and
logical levels. Due to its simplicity of modeling it gained wide popularity among
developers and business applications. It is based on the simple mathematical no-
tion of relation, which together with its associated algebra and logic, made the
relational model a primary model for database research. In particular, its stan-
dard query and transformation language, SQL, became a paradigmatic language
for querying.

Although an RDF specification can be logically viewed as a set of binary
relations, the differences with the relational model are manifold. Among the

Querying RDF Data from a Graph Database Perspective 349

Table 1. Summary of comparison among different database models. The parameters

are: abstraction level, complexity of the data items modeled, degree of connectivity

among the data and support to get this information, and finally, flexibility to store

different types of data

MODEL LEVEL DATA COMPLEX. CONNECTIVITY TYPE of DATA

Network physical simple high homogeneous

Relational logical simple low homogeneous

Semantic user simple/medium high homogeneous

Object-O logical/physical complex medium heterogeneous

XML logical medium medium heterogeneous

RDF logical medium high heterogeneous

most relevant ones are: the relational model was directed to simple record-type
data with a structure known in advance (airline reservations, accounting, etc.).
The schema is fixed and extensibility is a difficult task. Integration of different
schemas is not easy nor automatizable. The query language does not support
paths, neighborhoods and queries that address connectivity (an exception is
transitivity). There are no objects identifiers, but values.

Semantic Models. ([22]) have their origin in the necessity to provide more ex-
pressiveness and incorporate a richer set of semantics into the database from the
user point of view. They allow database designers to represent objects and their
relations in a natural and clear manner (similar to the way the user view an
application) by using high-level abstraction concepts such as aggregation, clas-
sification and instantiation, sub- and super-classing, attribute inheritance and
hierarchies [16]. A well-known example is the entity-relationship model [23]. It
has become a basis for the early stages of database design, but due to lack of
preciseness cannot replace models like relational or O-O.

For RDF database research, semantic models are relevant because they are
based on a graph-like structure which highlights the relations between the entities
to be modeled.

Object Oriented Data Models. ([24]) are based on the object-oriented program-
ming paradigm. Their objective is representing data as a collection of objects
that are organized in classes and have complex values and methods associated
with them. They are intended to model non-conventional database applications
consisting of complex objects systems with many semantically interrelated com-
ponents as in CAD/CAM, computer graphics or information retrieval.

Object-oriented database models have been related to Graph database ones
because the explicit or implicit graph structure in their definitions [25], [26], [27].
Nevertheless, there remain important differences rooted in the form that each of
them models the world. O-O models view the world as a set of objects having
certain state (data) and interacting among them by methods. On the contrary,
graph database models, and RDF in particular, model the world as a network

350 R. Angles and C. Gutierrez

of relations. The emphasis in RDF is on the interconnection of the data, the
network of relations among the data and the properties of these relations. The
emphasis of O-O is on the objects, their values and methods. However, there are
proposals to apply O-O concepts to RDF [28].

Semistructured Data Models. ([29, 30, 31]) are oriented to model semi-structured
data. Of all the most visible models in the literature, the semi-structured data
model is one of the closest in several points to RDF. Semi-structured models deal
with data whose structure is irregular, implicit and partial, and whose schema
is usually very large, contained within the data itself, and rapidly evolving [31].
One of the best representative is OEM [32]. It is a model based on objects, which
have unique identifiers, and values that can be simple types or object references.
There is a natural graph representation: objects are nodes, and values are labeled
arcs. The main differences with RDF are: the lightweight inferencing available,
the existence of blank nodes, the stronger typing system and the fact that labels
are also nodes in RDF.

Another representative is the XML model [33]. There are substantial differ-
ences between XML and RDF. First, RDF has a higher abstraction level; in fact
RDF is an application of XML to represent metadata. Structurally XML has a
ordered-tree-like structure against the graph structure of RDF. At the seman-
tic level, in XML the information about the data is part of the data (in other
words XML is self-describing); in contrast, RDF expresses explicitly the infor-
mation about the data using relations between entities. An important advantage
of RDF is its extensibility in both schema and instance level. See [34, 35] for a
major comparison of these models.

3 Graph Database Models and Their Query Languages

3.1 Graph Database Models

Graph database models appeared with the objective of modeling information
whose logical structure is a graph. In this sense, they are the closest to the
RDF model by the data type used. Among the first ones, we have the the Log-
ical Data Model [36, 37] and the Functional Data Model [38], which define an
implicit structure of labeled graphs. The Logical data model introduces basic,
composition, and collection nodes, all of which can be modeled in RDF. On the
other hand, in many semantic and object oriented data models the conceptual
representation of data is transparently graph-based. For example O2 [39] defines
basic, tuple-structured, and set-structured types (the first type is similar to an
RDF blank node and the remainder two can be modeled as relations in RDF);
GOOD [27] is oriented primarily to graphical user interfaces; OEM [32] addresses
the information exchange problem, and is oriented to express resources and re-
lations in a standard way (in agreement to the RDF philosophy); GDM [40]
defines instances and schema graphs with features similar to RDF (e.g. domain
and range of relations, typeOf properties). Models like G-BASE [41], Gram [42],

Querying RDF Data from a Graph Database Perspective 351

GraphDB [43] and GRAS [44] propose explicit graph data models.2. Besides
these models based on graphs, there are other approaches which use as for-
malization generalizations of the notion of graph, such as hypergraphs (e.g. see
GROOVI [25], the hypernode model [45, 46]) and hygraphs (e.g. see Hy+ [47]).
Note that strictly speaking, RDF graphs are ordered hypergraphs [6].

3.2 Graph Query Languages

There are several proposals of query languages for models that represent infor-
mation with a explicit or implicit graph structure. In this context, from now on
we assume that a graph database has n nodes and e edges.

Cruz et al. [48] propose the graphical query language G for querying data
represented as a labeled graph. It introduces the concept of graphical query,
which is based on a pattern graph that use regular expressions to represent
recursive queries. G evolved into a more powerful language called G+ [49] where
a query graph is the basic building block. Query graph nodes may be labeled
with variables and edges labeled with regular expressions. A simple query has
two elements, a query graph that specifies the class of patterns to search and a
summary graph that represent how to restructure the answer obtained by the
query graph.

GraphLog [50] is a query language for hypertext. It presents a extension of
G+ by adding negation and unifying the concept of a query graph. A query is now
only one graph pattern containing one distinguished edge (which corresponds to
the restructured edge of the summary graph in G+). The effect of the query is
to find all instances of the pattern that occur in the database graph and for each
one of them define a virtual link represented by the distinguished edge.

Gram [42] presents a query algebra where regular expressions over data types
are used to select walks (paths) in a graph. It uses a data model where walks are
the basic objects. A walk expression is a regular expression without union, whose
language contains only alternating sequences of node and edge types, starting
and ending with a node type. The query language is based on a hyperwalk
algebra with operations closed under the set of hyperwalks.

Gemis and Paredaens [51] present PaMal, a graphical model for describing
schemes and instances of object-databases and a graphical data manipulation
language based on pattern matching.

Güting [43] proposed an object-oriented data model and query language for
graph databases called GraphDB. A database in GraphDB is a collection of ob-
ject classes divided in: simple classes (simple objects that represent nodes), link
classes (links between nodes that represent edges) and path classes (represent-
ing several paths in the database). A query consists of several steps. Each step
computes operations that specify argument subgraphs in the form of regular ex-

2 Note that a direct applicability of a graph model to RDF is not possible due to the
particular RDF graph property where resources possibly can occur as edge labels as
as well as node labels. To solve this problem an intermediate model (e.g bipartite
graphs [6]) can be defined.

352 R. Angles and C. Gutierrez

pressions over link class names that extend or restrict dynamically the database
graph.

Lorel [30] is a query language for semistructured data designed for the Object
Exchange Model (OEM) [32]. Lorel is a extension of OQL [52], extending its
characteristics to handling semistructured data.

Oriented to search the Web, Flesca and Grego [53] show to how use partially
ordered languages to define path queries to search databases and present results
on their computational complexity. In addition, a query language based on the
previous ideas was proposed in [54].

4 Current RDF Query Languages and Their Graph
Support

4.1 Brief Overview of RDF Query Languages

Several languages for querying RDF data have been proposed and implemented,
some in the lines of traditional database query languages (e.g. SQL, OQL), oth-
ers based on logic and rule languages. Some of them are: RQL [9] is a typed
language for querying RDF repositories; SquishQL3 is a SQL-style query lan-
guage that permits simple graph navigation in RDF sources; RDQL [55] is an
implementation of SquishQL; RDFQL4 is a statement-based query language with
a SQL-style to perform queries, inference operations, and construction of views
on RDF structured data; TRIPLE [56] is a language that allow rule definition,
inference and transformation of RDF models; Notation 3 (N3) [57] provides a
text-based syntax for RDF; Versa5 is a graph-based language with some sup-
port for rules; SeRQL combinescharacteristics of languages like RQL, RDQL,
N-Triple, N3 plus some new features; RXPath6 is a query language based on
XPath; Good surveys are [13, 14].

W3C members that conform the RDF DAWG presented a Working Draft in
October 2004, which specifies a set of use cases, requirements, and objectives
for an RDF query language and data access protocol [58]. SPARQL [7] is an
RDF query language designed to meet such requirements and design objectives
mentioned previously. It defines a query language with a SQL-like style, where a
simple query is based on query patterns, and query processing consists of binding
of variables to generate pattern solutions (graph pattern matching). SPARQL is
still a work in progress.

4.2 Graph Properties in Current RDF Query Languages

To illustrate the problems of current RDF query languages in querying graph-
like properties, we chose seven query languages and seven graph properties one

3 http://ilrt.org/discovery/2001/02/squish/
4 http://www.intellidimension.com/
5 http://4suite.org/
6 http://rx4rdf.liminalzone.org/

Querying RDF Data from a Graph Database Perspective 353

Table 2. Support of some current RDF query languages for some example graph

properties (“±” indicates partial support and “×” no support)

PROPERTY RQL SeRQL RDQL Triple N3 Versa RxPath

Adjacent nodes ± ± ± ± ± ± ×
Adjacent edges ± ± ± ± × × ×
Degree of a node ± × × × × × ×
Path × × × × × × ±
Fixed-length Path ± ± ± ± ± × ±
Distance between two nodes × × × × × × ×
Diameter × × × × × × ×

would like to retrieve (see [59]). The summary of the results, presented in Table 2,
are as follows. An RDF graph can be considered a directed graph. This direc-
tion produces problems in languages that do not have a union operator when
retrieving neighborhoods, e.g. “all statements involving a given resource”. Some
query results violate the query language property of closure [14] by returning
results which are not in RDF format. There are two main problems concerning
paths: (a) most languages support only querying for patterns of paths which
are limited in length and form (the issue of edge direction blows up the size
of the query exponentially); (b) RxPath is able to retrieve only paths starting
from a fixed node and with some other restrictions. Aggregated functions like
COUNT, MIN, MAX applied to paths could be used to answer queries as for
the degree of a node, the distance between nodes, and the diameter of a graph.
None of these functions is systematically supported, even though, for example,
the original version of RQL has a COUNT function on the number of triples.

5 Graph Primitives for RDF Query Languages

In this section we present desirable graph primitives of a query language for
the RDF data model, based on the experience of the graph database query
languages discussed in previous sections. We stress the graph-like features that
in our opinion are missing in today’s RDF query languages.

Before discussing the primitives in detail, let us enumerate desirables features
for an RDF query language. They are very much inspired by a similar wish-list
stated by Abiteboul [31] for semi-structured data. They are: Standard database-
style query primitives; Navigation in the style of semi-structured data or Web-
style browsing; Searching for patterns in an information-retrieval style; Temporal
queries, including versioning; Querying both the data and the schema in the same
query; Incorporating transparently the lightweight inferencing of RDF Schema
and relevant polynomial-time extensions; Sound theoretical foundation;

The following groups of primitives comprise features of graph query languages
(see Sec. 3), graph properties presented in section 4.2 and those found in the
DAWG Draft. We think they constitute a starting point of graph properties

354 R. Angles and C. Gutierrez

Table 3. Support of some graph database query languages for the example graph

properties of Table 2 (“
√

” indicates support, “±” partial support, “×” no support,

and “?” indicates there is no information available)

PROPERTY G G+ GraphLog Gram GraphDB Lorel F-G

Adjacent nodes ± √ √ √ ± √ ±
Adjacent edges ± √ √ √ ± √ ±
Degree of a node × √ √ × ? × ×
Path

√ √ √ √ √ √ √
Fixed-length Path

√ √ √ √ √ √ √
Distance between two nodes × √ √ × ? × ×
Diameter × √ √ × ? × ×

that should be supported by an RDF query language. In each case we survey
the support that graph database languages gives them. As motivation, Table 3
shows the support graph query languages give to the properties in Table 2.

Paths and Connectedness. One of the most fundamental graph problems is to
compute reachability information (use case 2.5 in DAWG Draft [58]). In fact,
many of the recursive queries that arise in relational databases and, more gen-
erally in data with graph structure, are in practice graph traversals character-
ized by path problems. The importance of such queries is studied in several
works [60, 61, 62, 63]. One of the challenges to incorporate such notion into a
query language is its computational complexity. Finding simple paths with de-
sired properties in direct graphs is very difficult, and essentially every nontrivial
property gives rise to an NP-complete problem [64]. Yannakakis [65] surveyed a
set of paths problems relevant to the database area including computing transi-
tive closures, recursive queries and the complexity of path searching. Extension
of query languages for solve graph traversal problems are surveyed in [66].

In what follows, we describe the support that the query languages of the
database models described in Section 3.1 give to path problems.

A initial implementation of G translate the graphical queries into C-Prolog
programs. Simple paths are traversed using certain non-Horn clause constructs
available in Prolog. Although, it does not support cycles or finding the shortest
path, it was a good approximation to a graph query language.

The evaluation of path queries in G+ is a two-stage process consisting of
a depth-first search of the graph database and use of a nondeterministic finite
state automaton to control the search. In addition path queries are a subset of
the class of linear chain queries and hence can be evaluated rapidly in parallel.
The evaluation algorithm can be shown to compute the identity query in O(e)
time and the transitive closure in O(ne) time. G+ was implemented in the
HyperG system providing primitive operators like depth-first search, shortest
path, transitive closure and connected components.

Motivated by the implementation of G+, Mendelzon and Wood [67] studied
the problem of finding all pair of nodes connected by a simple path such that

Querying RDF Data from a Graph Database Perspective 355

the concatenation of the labels along the path satisfies a regular expression.
Although the regular simple path problem is in general NP-complete, the paper
presents an algorithm that runs in polynomial time in the size of the graph when
some conditions fulfilled: the graph is acyclic, the regular expression is restricted
(according to the definition in the paper), or the graph complies with a cycle
constraint compatible with the regular expression. The evaluation algorithm uses
a deterministic finite automaton to traverse paths in the graph. They also prove
the intractability of certain types of simple paths in a particular class of direct
graphs and characterize a class of queries about regular simple paths which can
be evaluated in polynomial time. The analysis and implementation in this paper,
assume that the graph can be entirely stored in main memory.

The expressive power of GraphLog is characterized by establishing the equiv-
alence between GraphLog, stratified linear Datalog (a language of function-free
Horn clauses), non deterministic logarithmic space, and transitive closure. The
queries expressible in the language are exactly those that can be computed in
space logarithm in the size of the database.

To implement graph operations in GraphDB, efficient graph algorithms are
used. Shortest path and cycle both were implemented using the A* algorithm.
Moreover, nodes, paths and subgraphs are indexed using path classes and index
structures like B-Tree and LSD-Tree.

Lorel presents a SQL-style query language that support two types of path
expressions, simple path expressions, which allow to obtain the set of objects
reachable by following a sequence of labels starting from a named object in the
OEM graph and a more powerful syntax for path expressions, called general path
expressions based on wildcards and regular expressions. To outperform query
execution, the Lore DBMS [68] implements the query language Lore and uses
two kinds of indexes, a link (edge) index called Lindex, and a value index called
Vindex. A Lindex takes an object identifier and a label, and returns the object
identifiers of all parents via the specified label. A Vindex takes a label, operator,
and a value, and returns all atomic objects having an incoming edge with the
specific label and a value satisfying the specific operator and value. Vindexes
and Lindexes are implemented using B+ trees and linear hashing respectively.

In graph databases where the number of nodes is very large (e.g. the Web)
it is useful to subdivide the domain of evaluation by selecting subsets of the
domain on the base of some criteria. With this objective, Flesca and Greco [53]
introduce partially ordered regular languages based on some order on the nodes.
Such languages are an extension of regular languages where strings are partially
ordered, for example, two strings s1 and s2, such that s1 > s2, denote two paths
in the graph with the constraint that the path s1 should be preferred to the path
s2. In later work [54], they present an algebra for partially ordered relations, an
algorithm for the computation of path queries and show that computing an in-
stance of a graph query can be done in polynomial time. Also, they present a
SQL-like language that consider general paths and extended regular expressions,
and show how extended regular expressions can be used to search the Web. With
similar motivations, and in the context of RDF, Anyanwu and Sheth [69] intro-

356 R. Angles and C. Gutierrez

duced a path operator ρ to address relevant relationships between entities called
semantic associations. Semantic associations are represented in a RDF graph as
sequences (i.e. edges, paths) between entities or more complex structures of se-
quences, and a notion of similarity between them is defined. The implementation
of the ρ-operator is evaluated on two strategies, first implementing a processing
layer in existing RDF data storage technologies and, second the use of a memory
resident graph representation of the RDF model along with the use of efficient
graph traversal algorithms (e.g. transitive closure and isomorphism of paths).

Pattern Matching. consists in determining if there exists a mapping (or iso-
morphism) between a graph pattern and a subgraph of a database graph (use
cases 2.1, 2.12 and 2.13 in DAWG Draft [58]). Pattern matching deal with two
problems, the graph isomorphism problem that has a unknown computational
complexity, and the subgraph isomorphism problem which is NP-complete. Pat-
tern matching has attracted a great deal of attention specially on data mining
(see [70] for a survey), update [51, 71], querying [48, 72, 50] and visualization [26].
Sasha et al. [64] present a survey of pattern-matching based algorithms for fast
searching in trees and graphs.

PaMal use graph patterns to describes the part of the database instance that
are affected by a operation (addition and deletion of nodes and edges). In the
case of GraphDB, the subgraph problem is solved moving the conditions into
subsequent graph operations or other database access.

Aggregate Functions. are operations non related to the data model that permit
to summarize or operate on the query results (use cases 2.3, 2.4, 2.6, 2.8, 2.10,
2.11, 2.14 and 2.15 in DAWG Draft [58]). Such functions are oriented to deal
directly with the structure of the underlying graph, such as the degree of a node,
the diameter of the graph (or a set of nodes), the distance between nodes, etc.

With the purpose of performing computations on retrieved subgraphs product
of a query operation, G+ defines two types of summary operators: path operators
which summarize on the values of the attributes along paths and set operators
which summarize on the values of the attributes on a set of paths. The set of
such operators include sum, products, maximum and count.

GraphLog becomes more expressive that relational algebra and calculus with
aggregates, adding aggregate operators (e.g. MAX, SUM, etc.) and path sum-
marization. The implementation of GraphLog use algorithms discussed in [67].

Gram, consistent with its SQL-like syntax, defines two types of algebraic op-
erations: unary (projection, selection, renaming) and binary (join, concatenation,
set operations) which are closed under the set of hyperwalks. PaMal provides
a reduce-operation to work with a special group of instances called reduced in-
stances and programming constructs (loop, procedure and program). Finally,
GraphDB query language support further operations, e.g. for sorting, grouping,
and aggregate functions (e.g. Sum).

Neighborhoods. The notion of neighborhood is relevant for information having
a graph-like nature (use case 2.7 in DAWG Draft [58]). In these models, in-

Querying RDF Data from a Graph Database Perspective 357

formation (represented by nodes) closed (in the graph) is usually semantically
related . The primary notion is adjacency. Both node and edge adjacency in
RDF are important in various contexts. A more advanced notion of adjacency,
like the k-neighborhood of a node, is necessary in several contexts. The need of
1-neighborhood retrieval in an RDF Graph is argued in [73] and [74]. In the RDF
context, inference of new triples is relevant in Vertex and Edge adjacency queries.
To the best of our knowledge, the notion of neighborhood as primitive for query
languages has not been studied systematically in the database literature.

6 Conclusions

We considered RDF from the perspective of graph database modeling. We com-
pared it with other database models. We surveyed graph database models and
query languages in order to argue the convenience that the RDF community
incorporate database experience and technologies into further development of
the RDF model and query language design. In concrete, we propose that RDF
query language should incorporate graph database query language primitives.
Further work includes developing use cases, formalizing requirements and build-
ing benchmarks for queries using the graph-like structure of the model.

Acknowledgments. This research was supported by Millenium Nucleus, Cen-
ter for Web Research (P01-029-F), Chile. R. Angles was supported by Mecesup
project No. UCH0109. C. Gutierrez was partially supported by FONDECYT
No. 1030810.

References

1. Hayes, P.: RDF Semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
(2004)

2. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and
Syntax Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
(1999)

3. Silberschatz, A., Korth, H.F., Sudarshan, S.: Data models. ACM Computing Sur-
veys 28 (1996) 105-108

4. Codd, E.F.: Data Models in Database Management. In: Proc. of the workshop on
Data abstraction, databases and conceptual modeling, ACM Press (1980) 112-114

5. Klyne, G., Carroll, J.: Resource Description Framework (RDF) Concepts and Ab-
stract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2004)

6. Hayes, J., Gutierrez, C.: Bipartite Graphs as Intermediate Model for RDF. In:
Proc. of the 3th ISWC Conference. Number 3298 in LNCS, Springer-Verlag (2004)
47-61

7. Prudhommeaux, E., Seaborne, A.: SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/ (2005)

8. Horrocks, I., Tessaris, S.: Querying the Semantic Web: A Formal Approach. In:
Proc. of the 13th ISWC. Number 2342 in LNCS, Springer-Verlag (2002) 177-191

358 R. Angles and C. Gutierrez

9. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proc. of the 11th WWW con-
ference, ACM Press (2002) 592–603

10. Gutierrez, C., Hurtado, C., Mendelzon, O.: Foundations of Semantic Web
Databases. In: Proc. of the 23th ACM PODS. (2004)

11. Olken, F.: Tutorial on Graph Data Management for Biology. IEEE Computer So-
ciety Bioinformatics Conference (CSB) (2003)

12. Sheth, A., Aleman-Meza, B., Arpinar, I.B., Halaschek-Wiener, C., Ramakrishnan,
C., Bertram, C., Warke, Y., Avant, D., Arpinar, F.S., Anyanwu, K., Kochut, K.:
Semantic Association Identification and Knowledge Discovery for National Security
Applications. Journal of Database Management 16 (2005) 33–53

13. Magkanaraki, A., Karvounarakis, G., Anh, T.T., Christophides, V., Plexousakis,
D.: Ontology Storage and Querying. Tech. Report 308, ICS-FORTH - Hellas (2002)

14. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query
Languages. In: Proc. of the 3th ISWC conference. Number 3298 in LNCS, Springer-
Verlag (2004) 502

15. Stroustrup, B.: What Is Object-Oriented Programming? IEEE Softw. 5 (1988)
10–20

16. Navathe, S.B.: Evolution of data modeling for databases. Communications of the
ACM 35 (1992) 112–123

17. Beeri, C.: Data Models and Languages for Databases. In: Proc. of the 2nd ICDT.
Volume 326 of LNCS., Springer-Verlag (1988) 19–40

18. Kerschberg, L., Klug, A.C., Tsichritzis, D.: A Taxonomy of Data Models. In: Sys-
tems for Large Data Bases, North Holland and IFIP (1976) 43–64

19. Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical Data-Base Management: A Survey.
ACM Comput. Surv. 8 (1976) 105–123

20. Taylor, R.W., Frank, R.L.: CODASYL Data-Base Management Systems. ACM
Comput. Surv. 8 (1976) 67–103

21. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM 26 (1983) 64–69

22. Peckham, J., Maryanski, F.J.: Semantic Data Models. ACM Computing Surveys
20 (1988) 153–189

23. Chen, P.P.: The Entity-relationship Model-toward a Unified View of Data. ACM
TODS 1 (1976) 9–36

24. Kim, W.: Object-Oriented Databases: Definition and Research Directions. IEEE
TKDE 2 (1990) 327–341

25. Levene, M., Poulovanssilis, A.: An Object-oriented Data Model Formalised through
Hypergraphs. DKE 6 (1991) 205–224

26. Andries, M., Gemis, M., Paredaens, J., Thyssens, I., Bussche, J.: Concepts for
Graph-Oriented Object Manipulation. In: 3rd EDBT Conference. Volume 580 of
LNCS., Springer-Verlag (1992) 21–38

27. Gyssens, M., Paredaens, J., Bussche, J., Gucht, D.: A Graph-Oriented Object
Database Model. IEEE TKDE 6 (1994) 572–586

28. Bassiliades, N., Vlahavas, I.P.: R-DEVICE: A Deductive RDF Rule Language. In:
Proc. of the 3th RuleML. (2004) 65–80

29. Buneman, P.: Semistructured Data. In: Proc. of the 16th PODS, ACM Press (1997)
117–121

30. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.: The Lorel Query
Language for Semistructured Data. Int. Journal on Digital Libraries 1 (1997)
68–88

Querying RDF Data from a Graph Database Perspective 359

31. Abiteboul, S.: Querying Semi-Structured Data. In: Proc. of the 6th Int. Conference
on Database Theory. Volume 1186 of LNCS., Springer-Verlag (1997) 1–18

32. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange across Het-
erogeneous Information Source. In: Proc. of the 11th ICDE, Taipei, Taiwan, IEEE
(1995) 251–260

33. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0, W3C Recommendation 10 February 1998. (http://www.w3.org/TR/1998/
REC-xml-19980210)

34. Gil, Y., Ratnakar, V.: A Comparison of (Semantic) Markup Languages. In: Proc.
of the 15th FLAIRS Conference. (2002)

35. Arroyo, S., Ding, Y., Lara, R., Stollberg, M., Fensel, D.: Semantic Web Lan-
guages. Strengths and Weakness. In: International Conference in Applied com-
puting. (2004)

36. Kuper, G.M., Vardi, M.Y.: A New Approach to Database Logic. In: Proc. of the
3th ACM PODS, ACM Press (1984) 86–96

37. Kuper, G.M., Vardi, M.Y.: The Logical Data Model. ACM TODS 18 (1993)
379–413

38. Shipman, D.W.: The Functional Data Model and the Data Language DAPLEX.
ACM TODS 6 (1981) 140–173

39. Lécluse, C., Richard, P., Vélez, F.: O2, an Object-Oriented Data Model. In: Proc.
of the 1988 ACM SIGMOD Intl. Conference on Management of Data, ACM Press
(1988) 424–433

40. Hidders, J.: Typing Graph-Manipulation Operations. In: Proc. of the 9th ICDT,
Springer-Verlag (2002) 394–409

41. Kunii, H.S.: DBMS with Graph Data Model for Knowledge Handling. In: Proc.
of the 1987 Fall Joint Computer Conference on Exploring technology: today and
tomorrow, IEEE (1987) 138–142

42. Amann, B., Scholl, M.: Gram: A Graph Data Model and Query Language. In:
European Conference on Hypertext Technology, ACM Press (1992) 201–211

43. Güting, R.H.: GraphDB: Modeling and Querying Graphs in Databases. In: Proc.
of 20th VLDB Conference, Morgan Kaufmann (1994) 297–308

44. Kiesel, N., Schurr, A., Westfechtel, B.: GRAS: A Graph-Oriented Software Engi-
neering Database System. In: IPSEN Book. (1996) 397–425

45. Levene, M., Poulovassilis, A.: The Hypernode Model and its Associated Query
Language. In: Proc. of the 5th Jerusalem IT Conference, IEEE (1990) 520–530

46. Poulovassilis, A., Levene, M.: A Nested-graph Model for the Representation and
Manipulation of Complex Objects. ACM Transactions on Information Systems 12
(1994) 35–68

47. Consens, M., Mendelzon, A.: Hy+: A Hygraph-based Query and Visualization
System. SIGMOD Rec. 22 (1993) 511–516

48. Cruz, I.F., Mendelzon, A.O.,Wood, P.T.: A Graphical Query Language Supporting
Recursion. SIGMOD Rec. 16 (1987) 323–330

49. Balmin, A., Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D., Wang,
T.: A System for Keyword Proximity Search on XML Databases. In: Proc. of 29th
VLDB Conference. (2003) 1069–1072

50. Consens, M.P., Mendelzon, A.O.: Expressing Structural Hypertext Queries in
Graphlog. In: Proc. of the 2th ACM Conf. on Hypertext, ACM Press (1989)
269–292

51. Gemis, M., Paredaens, J.: An Object-Oriented Pattern Matching Language. In:
Proc. 1th ISOTAS, Springer-Verlag (1993) 339–355

360 R. Angles and C. Gutierrez

52. Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: A Query Language for Manipulat-
ing Object-oriented Databases. In: Proc. of the 15th VLDB Conference, Morgan
Kaufmann (1989) 433–442

53. Flesca, S., Greco, S.: Partially Ordered Regular Languages for Graph Queries. In:
Proceedings of the 26th ICALP. Volume 1644 of LNCS., Springer-Verlag (1999)

54. Flesca, S., Greco, S.: Querying Graph Databases. In: Proceedings of the 7th EDBT
Conference. Volume 1777 of LNCS., Springer-Verlag (2000) 510–524

55. Seaborne, A.: RDQL - A Query Language for RDF, W3C Member Submission 9
January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

56. Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Lan-
guage for the Semantic Web. Proc. of the 1th ISWC (2002)

57. Berners-Lee, T.: Notation 3 - An RDF Language for the Semantic Web.
http://www.w3.org/DesignIssues/Notation3 (2001)

58. Clark, K.G.: RDF Data Access Use Cases and Requirements, W3C Working Draft.
http://www.w3.org/TR/rdf-dawg-uc/ (2004)

59. Angles, R., Gutierrez, C., Hayes, J.: RDF Query Languages Need Support for
Graph Properties. Technical Report TR/DCC-2004-3, Department of Computer
Science, University of Chile (2004)

60. Agrawal, R., Jagadish, H.V.: Algorithms for Searching Massive Graphs. IEEE
TKDE 6 (1994) 225–238

61. Agrawal, R., Jagadish, H.V.: Materialization and Incremental Update of Path In-
formation. In: Proc. of the 5th ICDE, IEEE Computer Society (1989) 374–383

62. Agrawal, R., Jagadish, H.V.: Efficient Search in Very Large Databases. In: Proc.
of the 14th VLDB Conference. (1988) 407–418

63. Guha, R.V., Lassila, O., Miller, E., Brickley, D.: Enabling Inferencing. The Query
Languages Workshop (1998)

64. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and Applications of Tree and
Graph Searching. In: Proc. of the 21th ACM PODS, ACM Press (2002) 39–52

65. Yannakakis, M.: Graph-theoretic Methods in Database Theory. In: Proc. of the
9th ACM PODS, ACM Press (1990) 230–242

66. Mannino, M.V., Shapiro, L.D.: Extensions to Query Languages for Graph Traversal
Problems. IEEE TKDE 2 (1990) 353–363

67. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
In: Proc. of the 15th VDLB Conference, Morgan Kaufmann (1989) 185–193

68. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record 26 (1997) 54–66

69. Anyanwu, K., Sheth, A.: The ρ-operator: Enabling Querying for Semantic Associ-
ations on the Semantic Web. In: The 12th WWW Conference. (2003)

70. Washio, T., Motoda, H.: State of the Art of Graph-based Data Mining. SIGKDD
Explor. Newsl. 5 (2003) 59–68

71. Hidders, J., Paredaens, J.: GOAL, A Graph-Based Object and Association Lan-
guage. CISM - Advances in Database Systems 1993 (1993) 247–265

72. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: G+: Recursive Queries without Recur-
sion. In: Proc. of the 2th International Conference on Expert Database Systems,
Addison-Wesley (1989) 645–666

73. Sayers, C.: Node-centric RDF Graph Visualization. Technical Report HPL-2004-
60, HP Laboratories (2004)

74. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proc. of the 12th WWW
conference, ACM Press (2003) 700–709

DRAGO: Distributed Reasoning Architecture
for the Semantic Web�

Luciano Serafini1 and Andrei Tamilin2

1 ITC-IRST, Trento 38050, Italy
luciano.serafini@itc.it

2 DIT, University of Trento, Trento 38050, Italy
andrei.tamilin@dit.unitn.it

Abstract. The paper addresses the problem of reasoning with multi-
ple ontologies interconnected by semantic mappings. This problem is
becoming more and more relevant due to the necessity of building the
interoperable Semantic Web. In contrast to the so called global reason-
ing approach, in this paper we propose a distributed reasoning technique
that accomplishes reasoning through a combination of local reasoning
chunks, internally executed in each separate ontology. Using Distributed
Description Logics as a formal framework for representation of multi-
ple semantically connected ontologies, we define a sound and complete
distributed tableau-based reasoning procedure which is built as an exten-
sion to standard Description Logic tableau. Finally, the paper describes
the design and implementation principles of a distributed reasoning sys-
tem, called DRAGO (Distributed Reasoning Architecture for a Galaxy
of Ontologies), that implements such distributed decision procedure.

1 Introduction

The number of ontologies appearing on the Web is growing steadily. Each on-
tology describes a domain of interest from a subjective perspective and level
of granularity. This fact inevitably leads to a heterogeneity between ontologies
describing even the very same domain. As a consequence, making multiple het-
erogeneous ontologies interoperate, is becoming a significant problem on the Se-
mantic Web.

The common approach for supporting ontology interoperability is based on
the definition of semantic relations between entities belonging to different on-
tologies, called a semantic mapping. A simple example of semantic mapping is
the one stating that the concept Student in one ontology is more specific than
the concept Person of another ontology.

� We thank Alexander Borgida for very inspiring discussions on the DDL framework.
We also grateful to Fausto Giunchiglia, Maxym Mykhalchuk and Yuting Zhao for
discussions about C-OWL.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 361–376, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

362 L. Serafini and A. Tamilin

Several proposals of languages for expressing semantic mappings have been
done so far. Some of them have a well-defined formal semantics, for example C-
OWL [3], E-connected OWL [9]. Examples of less formally grounded proposals
are RDF Transformation [18] and MAFRA Semantic Bridge Ontology [16].

However, semantic mappings are not enough to guarantee ontology interop-
erability. One has also to provide the capability of reasoning within a system
comprised of multiple ontologies interconnected by semantic mappings. So far,
the reasoning approach dominating on the current Semantic Web rephrases the
problem of reasoning with multiple interconnected ontologies into a problem of
reasoning in a global ontology that encodes both ontologies and mappings into
a unique blob. This approach, however, brings a number of drawbacks, such
as (i) non-scalability, (ii) loosing language and reasoning specificity of distinct
ontologies, (iii) losing privacy and autonomy of ontological knowledge.

In this paper, we suggest an alternative approach which is based on the con-
textual reasoning paradigm. Namely, the reasoning with multiple ontologies is
proposed to be accomplished through a suitable combination, via semantic map-
pings, of local reasoning chunks, internally executed in each distinct ontology.
In a nutshell, we propose a distributed tableau algorithm, which is capable of
checking concept satisfiability in a set of interconnected ontologies by combining
local (standard) tableaux procedures that check satisfiability inside of each sin-
gle ontology. This first proposal focuses on ontologies which can be expressed in
the SHIQ fragment of Description Logic [14]. The suggested decision procedure
is sound and complete w.r.t. Distributed Description Logics [2], the framework
used to represent multiple semantically connected ontologies.

In comparison to the global approach, the proposed distributed reasoning
technique is more scalable, since the reasoning process is performed in a par-
titioned search space and propagates through semantic mappings, which are
used to guide the search. It respects privacy and supports information hiding
by requiring access to local reasoning services rather than the direct access to
ontologies. Finally, it supports languages specificity, since it combines different
local reasoning procedures, each of which can be tailored on the local ontol-
ogy language.

The distributed tableaux proposed in this paper has been implemented in
a system called DRAGO (Distributed Reasoning Architecture for a Galaxy of
Ontologies). DRAGO represents a peer-to-peer like architecture in which every
peer registers a set of ontologies and provides reasoning services for them. The
key issue of DRAGO is that it supports the assignment of semantic mappings
to the registered ontologies and performs reasoning with such ontologies coupled
with semantic mappings in a distributed manner, i.e. using local reasoner for
ontology and by coordinating with other reasoners, via mappings, when local
ontology is semantically connected with other ontologies.

The paper is structured as follows. In the first part we recall the Distributed
Description Logics framework and enunciate the main properties. In Section 3 we
describe the abstract distributed tableau algorithm that computes subsumption
in DDL. In Section 4 we describe the ongoing work on DRAGO system and then

DRAGO: Distributed Reasoning Architecture for the Semantic Web 363

in Section 5 compare DRAGO with other approaches and systems relevant to
reasoning with multiple distributed ontologies.

2 Distributed Description Logics

Description Logic (DL) has been advocated as the suitable formal tool to rep-
resent and reason about ontologies. Distributed Description Logics (DDL) [2]
is a natural generalization of the DL framework designed to formalize multiple
ontologies interconnected by semantic mappings. In this section we briefly recall
the definitions of DDL.

As defined by Borgida and Serafini in [2], Distributed Description Logics
provides a syntactical and semantical framework for formalization of multiple
ontologies pairwise linked by semantic mappings. In DDL, ontologies correspond
to description logic theories (T-boxes), while semantic mappings correspond to
collections of bridge rules (B).

Given a non empty set I of indexes, used to identify ontologies, let {DLi}i∈I

be a collection of description logics1. For each i ∈ I let us denote a T-box of
DLi as Ti. In this paper, we assume that each DLi is description logic weaker
or at most equivalent to SHIQ. Thus a T-box will contain all the information
necessary to define the terminology of a domain, including not just concept
and role definitions, but also general axioms relating descriptions, as well as
declarations such as the transitivity of certain roles.

We call T = {Ti}i∈I a family of T-Boxes indexed by I. Intuitively, Ti is the
description logic formalization of the i-th ontology. To make every description
distinct, we will prefix it with the index of ontology it belongs to. For instance,
the concept C that occurs in the i-th ontology is denoted as i : C. Similarly,
i : C � D denotes the fact that the axiom C � D is being considered in the i-th
ontology.

Semantic mappings between different ontologies are expressed via collections
of bridge rules.

Definition 1 (Bridge rules). A bridge rule from i to j is an expression of the
following two forms:

1. i : A
�−→ j : G, onto-bridge rule

2. i : B
�−→ j : H, into-bridge rule

where A,B and G,H are concepts of DLi and DLj respectively2.

Bridge rules do not represent semantic relations stated from an external ob-
jective point of view. Indeed, there is no such global view on the Web. Instead,

1 We assume familiarity with Description Logic and related reasoning systems, de-
scribed in [4].

2 This is a restricted case of bridge rules w.r.t. definition in [2].

364 L. Serafini and A. Tamilin

bridge rules from i to j express relations between i and j viewed from the sub-
jective point of view of the j-th ontology.

Intuitively, the into-bridge rule i : B
�−→ j : H states that, from the j-th point

of view the concept B in i is less general than its local concept H. Similarly,
the onto-bridge rule i : A

�−→ j : G expresses the fact that, according to j, A
in i is more general than G in j. Therefore, bridge rules from i to j provide
the possibility of translating into j’s ontology (under some approximation) the
concepts of a foreign i’s ontology. Note, that since bridge rules reflect a subjective
point of view, bridge rules from j to i are not necessarily the inverse of the rules
from i to j, and in fact there may be no rules in one or both the directions.

Example 1. From on-line DAML ontology library we have selected two small
and largely overlapping ontologies. First, the Semantic Web research community
ontology (SWRC)3 that models the research community, its researches, topics,
publications, etc. Second, a DAML version of SHOE ontology for describing
universities and the activities that occur at them4. Figure 1 shows extracts of the

Fig. 1. Extracts of the class hierarchies of SWRC and SHOE

3 http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml
4 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml

DRAGO: Distributed Reasoning Architecture for the Semantic Web 365

class hierarchies of these two ontologies. Note, that for the sake of demonstrating
the value of mappings, we considered oversimplified SHOE ontology without
imports.

The following are examples of bridge rules from SWRC to SHOE.

SWRC : Article
�−→ SHOE : ConferencePapers (1)

SWRC : Article
�−→ SHOE : Article (2)

SWRC : Article
�−→ SHOE : Article (3)

SWRC : PhDStudent
�−→ SHOE : GraduateStudent (4)

You can see a richer set of possible bridge rules between OWL encodings of
SWRC and SHOE ontologies5. We have defined these bridge rules manually, but
in many cases bridge rules can be produced by a (semi-)automatic process.

Definition 2 (Distributed T-box). A distributed T-box (DTBox)
T = 〈{Ti}i∈I ,B〉 consists of a collection of T-boxes {Ti}i∈I , and a collection of
bridge rules B = {Bij}i�=j∈I between them.

The semantics of DDL is the customization of Local Models Semantics for
Multi Context Systems [5, 20]. The basic idea is that each ontology Ti is locally
interpreted on a local domain. The first component of the semantics of a DTBox
is therefore a family of interpretations {Ii}i∈I , one for each T-box Ti. Each Ii

is called a local interpretation and consists of possibly empty domain ΔIi and a
valuation function ·Ii , which maps every concept to a subset of ΔIi , every role
to a subset of ΔIi × ΔIi . The interpretation on the empty domain is denoted
with the apex ε.

Notice that, in DL, interpretations are defined always on a non empty do-
main. Therefore Iε is not an interpretation in DL. In DDL however we need to
provide a semantics for partially inconsistent distributed T-boxes, i.e. DTBoxes
in which some of the local T-boxes are inconsistent. Iε provides an “impossible
interpretation” which can be associated to inconsistent T-boxes. Indeed, Iε sat-
isfies every axiom X � Y (also � � ⊥) since XIε

= ∅ for every concept and
role X.

The second component of the DDL semantics is the family of domain rela-
tions.

Definition 3 (Domain relation). A domain relation rij from ΔIi to ΔIj is
a subset of ΔIi ×ΔIj . We use rij(d) to denote {d′ ∈ ΔIj | 〈d, d′〉 ∈ rij}; for any
subset D of ΔIi , we use rij(D) to denote

⋃
d∈D rij(d); for any R ⊆ ΔIi × ΔIi

we use rij(R) to denote
⋃

〈d,d′〉∈R rij(d) × rij(d′).

Domain relation rij does not represent a semantic mapping seen from an
external objective point of view. Rather, it represents a possible way of mapping

5 http://trinity.dit.unitn.it/drago/examples/eswc05/swrc-shoe.cowl

366 L. Serafini and A. Tamilin

the elements of ΔIi into its domain ΔIj , seen from j’s perspective. For instance,
if ΔI1 and ΔI2 are the representation of time as Rationals and as Naturals, rij

could be the round off function, or some other approximation relation.

Definition 4 (Distributed interpretation). A distributed interpretation
I = 〈{Ii}i∈I , {rij}i�=j∈I〉 of a DTBox T consists of local interpretations Ii for
each Ti on local domains ΔIi , and a family of domain relations rij between these
local domains.

Definition 5. A distributed interpretation I satisfies the elements of a DTBox
T according to the following clauses: for every i, j ∈ I

1. I � i : A � B, if Ii � A � B
2. I � Ti, if I � i : A � B for all A � B in Ti

3. I � i : x
�−→ j : y, if rij(xIi) ⊆ yIj

4. I � i : x
�−→ j : y, if rij(xIi) ⊇ yIj

5. I � Bij, if I satisfies all bridge rules in Bij

6. I � T, if for every i, j ∈ I, I � Ti and I � Bij

Definition 6 (Distributed Entailment and Satisfiability). T � i : C � D
(read as “T entails i : C � D”) if for every I, I � T implies I �d i : C � D.

T is satisfiable if there exists a I such that I � T. Concept i : C is satisfiable
with respect to T if there is a I such that I � T and CIi �= ∅.

Some important properties of DDL are listed below:

Monotonicity. Bridge rules do not obstruct local subsumptions. Formally:

Ti � A � B =⇒ T |= i : A � B (5)

Directionality. T-box without incoming bridge rules is not affected by other
T-boxes. Formally, if Bki = ∅ for any k �= i ∈ I, then:

T |= i : A � B =⇒ Ti � A � B (6)

Simple subsumption propagation. A combination of onto- and into-bridge
rules allows the propagation of the subsumptions across ontologies. For ex-
ample, if Bij contains i : A

�−→ j : G and i : B
�−→ j : H, then:

T |=d i : A � B =⇒ T |= j : G � H (7)

Generalized subsumption propagation. If Bij contains i : A
�−→ j : G and

i : Bk
�−→ j : Hk for 1 ≤ k ≤ n and n ≥ 0, then:

T |= i : A �
n⊔

k=1

Bk =⇒ T |= j : G �
n⊔

k=1

Hk (8)

(Notationally,
⊔0

k=1 Dk denotes ⊥.)

DRAGO: Distributed Reasoning Architecture for the Semantic Web 367

Fig. 2. Initial and enriched via bridge rules hierarchy of SHOE

We would like to stress the importance of subsumption propagation property
since it constitutes a main reasoning pattern in DDL. For the full set of DDL
properties and formal proofs we refer reader to a technical report [19].

Example 2. Taking the bridge rules from Example 1 and applying the sub-
sumption propagation property we can infer in the hierarchy SHOE that
ConferencePaper is a subclass of Article, i.e. that SHOE : ConferencePaper �
Article.

Figure 2 shows how the initial SHOE hierarchy can be enriched (without its
modification) via the whole set of possible bridge rules mentioned in Example 1.

3 Distributed Tableau for Reasoning in DDL

Although both in DL and DDL the fundamental reasoning task lays in a ver-
ification of concepts subsumption, in DDL besides the ontology itself the sub-
sumption depends also on other ontologies that affect it through the semantic
mappings. In this section we investigate a decision procedure that computes
DDL subsumption and propose a distributed tableau reasoning algorithm for
determining whether T |= i : A � B.

368 L. Serafini and A. Tamilin

In order to get the intuition of the algorithm, let us first present an example
with some simplifying assumptions. Later on, we relax these assumptions and
extend our results to a more general case.

Example 3. Consider a distributed T-box T12 = 〈T1, T2,B12〉 with only two T-
boxes and unidirectional bridge rules between them. Suppose that T1 contains
axioms Student � Person and Pianist � Musician, T2 does not contain any axiom
and B12 contains the following bridge rules:

1 : Person
�−→ 2 : Agent 1 : Musician

�−→ 2 : Artist (9)

1 : Student
�−→ 2 : Graduate 1 : Pianist

�−→ 2 : JazzPianist (10)

Let us show that T12 |= 2 : Graduate
 JazzPianist � Agent
 Artist, i.e. that
for any distributed interpretation I = 〈I1, I2, r12〉, (Graduate
 JazzPianist)I2 ⊆
(Agent
 Artist)I2 .

1. Suppose that by contradiction there is an x ∈ Δ2 such that x ∈ (Graduate

JazzPianist)I2 and x �∈ (Agent
 Artist)I2 .

2. Then x ∈ GraduateI2 , x ∈ JazzPianistI2 , and either x �∈ AgentI2 or x �∈ ArtistI2 .
3. Let us consider the case where x �∈ AgentI2 . From the fact that x ∈

GraduateI2 , by the bridge rule (10), there is y ∈ ΔI1 with 〈y, x〉 ∈ r12,
such that y ∈ StudentI1 .

4. From the fact that x �∈ AgentI1 , by bridge rule (9), we can infer that for all
y ∈ ΔI1 if 〈y, x〉 ∈ r12 then y �∈ PersonI1 .

5. But, since Student � Person ∈ T1, then y ∈ PersonI1 , and this is a contradic-
tion.

6. The case where x �∈ ArtistI2 is analogous.

The above reasoning steps can be seen as a combination of a tableau Tab2

in T2 with a tableau Tab1 in T1 as it is illustrated in Figure 3.

Let us formalize the above example.

Definition 7 (Bridge operator). Given a set of bridge rules B12 from DL1

to DL2, the operator B12(·), taking as input a T-box in DL1 and producing a
T-box in DL2, is defined as follows:

B12(T1) =

⎧⎪⎪⎨
⎪⎪⎩

G �
n⊔

k=1

Hk

∣∣∣∣∣∣∣∣

T1 |= A �
⊔n

k=1 Bk,

1 : A
�−→ 2 : G ∈ B12,

1 : Bk
�−→ 2 : Hk ∈ B12,

for 1 ≤ k ≤ n, n ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

(Again notationally, we stipulate that
⊔0

k=1 Dk denotes ⊥.)

Theorem 1 (Soundness and completeness). Let T12 = 〈T1, T2,B12〉 be a
distributed T-box, then:

DRAGO: Distributed Reasoning Architecture for the Semantic Web 369

Tab2((Graduate JazzPianist) (¬Agent � ¬Artist))

2 : x (Graduate JazzPianist) (¬Agent � ¬Artist)

2 : x (Graduate JazzPianist), (¬Agent � ¬Artist)

2 : x Graduate, JazzPianist, (¬Agent � ¬Artist)

2 : x Graduate, JazzPianist,¬Agent

Determine the CLASH by apply-
ing bridge rules (9) and (10) and
computing the tableau
Tab1(¬Person Student)

2 : x Graduate, JazzPianist,¬Artist

Determine the CLASH by apply-
ing bridge rules (9) and (10) and
computing the tableau
Tab1(¬Musician Pianist)

Tab1(¬Person Student)

1 : y (¬Person � Student), (¬Student � Person)

1 : y Student, ¬Person, (¬Student � Person)

1 : y Student, ¬Person, ¬Student

CLASH

1 : y Student, ¬Person, Person

CLASH

Tab1(¬Musician Pianist)

1 : y (¬Musician � Pianist), (¬Pianist � Musician)

1 : y Pianist, ¬Musician, (¬Pianist � Musician)

1 : y Pianist, ¬Musician, ¬Pianist

CLASH

1 : y Pianist, ¬Musician, Musician

CLASH

Fig. 3. Illustration of reasoning combination for the DDL subsumption

T12 |= 2 : X � Y ⇐⇒ T2 ∪ B12(T1) |= X � Y (11)

For the formal proof of Theorem 1 we refer reader to a technical report [19].
The main message of Theorem 1 is that in DDL the decision whether

T12 |= 2 : X � Y can be correctly and completely rephrased into a standard
DL subsumption in T2 extended by application of the bridge operator B12(·).
Due to that, the main computational task of DDL subsumption algorithm is to
calculate the application of the bridge operator.

Theorem 1 can be generalized to the case of an acyclic distributed T-box, i.e.
any T in which the set of indexes I is a partial order 〈I,<〉 such that i < j
if and only if Bij �= ∅. Generalized version of the DDL subsumption algorithm
represents a backward-chaining method that checks standard subsumption in a
T-box Ti extended by applying bridge operators to the T-boxes which affect Ti

via bridge rules.

370 L. Serafini and A. Tamilin

3.1 Description of the Algorithm

Similarly to description logics reduction of subsumption to unsatisfiability, we
rephrase the problem of deciding whether T |= i : A � B into the problem of
not finding a distributed interpretation I of T, such that (A
 ¬B)Ii �= ∅.

Given an acyclic distributed T-box T = 〈{Ti}i∈I , {Bij}i�=j∈I〉, we suppose to
have a set of procedures Tabj , one for each j ∈ I. Each Tabj is composed of a
set of standard SHIQ-expansion rules6.

On top of each procedure Tabj we define a distributed tableau procedure
DTabj , one for each j ∈ I. The function DTabj takes as an input a concept D
and tries to build a representation of Ij with DIj �= ∅ (called a completion tree),
using the expansion rules of Tabj , plus an additional “bridge” expansion rule:

Bij-rule
if 1. G ∈ L(x),

i : A
�−→ j : G ∈ Bij ,

i : Bk
�−→ j : Hk ∈ Bij for 1 ≤ k ≤ n, n ≥ 0, and

2. DTabi(A
 ¬
⊔

B) = Unsatisfiable for some H �⊆ L(x),
then L(x) −→ L(x) ∪ {

⊔
H}

The idea behind the DTab procedures is inspired by the bridge operator given
in Definition 7. To verify whether the concept D is satisfiable in a T-box Tj of
acyclic distributed T-box T, we invoke the corresponding distributed procedure
DTabj . First, it applies local tableaux rules of Tabj in order to build a local
completion tree. Each node x introduced during creation of the completion tree is
labeled with a function L(x) containing concepts that x must satisfy. Whenever
DTabj encounters a node x in the completion tree such that it contains a label
G, which is a consequence of an onto-bridge rule, then if G � �H is entailed
by the bridge rules, the label

⊔
H is added to x. To determine if G � �H is

entailed by bridge rules Bij , DTabj invokes DTabi on the satisfiability of the
concept A
 ¬(�B). In its turn, DTabi will build independently from DTabj

an interpretation Ii.
The proposed algorithm has several limitations. It admits acyclic distributed

T-boxes without individuals and only allows bridge rules connecting atomic con-
cepts. Despite these restrictions, we see the main advantage of the algorithm in
the simplicity of its implementation.

4 DRAGO Reasoning System

In this section we will describe a design and implementation principles that
lay in the base of DRAGO (Distributed Reasoning Architecture for a Galaxy
of Ontologies), the system for reasoning with multiple ontologies connected by
pairwise semantic mappings.

6 See [14] for more details about SHIQ-tableau.

DRAGO: Distributed Reasoning Architecture for the Semantic Web 371

Reasoning
Peer

Reasoning
Peer

Reasoning
Peer

- ontology - semantic mapping

Fig. 4. DRAGO vision

4.1 Vision

As depicted in Figure 5, DRAGO envisages a Web of ontologies being distributed
amongst a peer-to-peer network of DRAGO Reasoning Peers (DRP).

The role of a DRP is to provide reasoning services for ontologies registered to
it, as well as to request reasoning services of other DRPs when this is required
for fulfillment of distributed reasoning algorithm. The key issue of the DRP is
that it provides possibility to register not just a stand alone ontology, but an
ontology coupled with a set of semantic mappings.

In order to register an ontology to a DRP, the users specify a logical identi-
fier for it, a Unified Resource Identificator (URI), and give a physical location
of ontology on the Web, a Unified Resource Locator (URL). Besides that, it is
possible to assign to an ontology a set of semantic mappings, providing in the
same manner their location on the Web. As we discussed in the previous sections,
attaching mappings to ontology enriches its knowledge due to the subsumption
propagation mechanism. To prevent the possibility of attaching malicious map-
pings that can obstruct or falsify reasoning services, only the user that registered
the ontology is allowed to add mappings to it.

When users or applications want to perform reasoning with a one of registered
ontologies, they refer to the corresponding DRP and invoke its reasoning services
giving the URI of the desired ontology.

4.2 Architecture

A DRP constitutes the basic element of DRAGO. The major components of a
DRP are depicted in Figure 5.

372 L. Serafini and A. Tamilin

DRAGO Reasoning Peer
(DRP)

Reasoning Propagator

R
ea

so
ni

ng
S

er
vi

ce
s

R
eg

is
tra

tio
n

S
er

vi
ce

Reasoning
Manager

Registration
Storage

Registration
Manager

Distributed reasoner

DL Tableau Algorithm

Bridge Expansion Rule

Control flow

User/
Application

User/
Application/

DRP

Service calls

Parser

Ontology Parser

Mapping Parser
DRP

DRP

DRP

DRP

Fig. 5. DRAGO architecture

A DRP has two interfaces which can be invoked by users or applications:

– A Registration Service interface is meant for creating/modifying/deleting of
registrations of ontologies and mappings assigned to them.

– A Reasoning Services interface enables the calls of reasoning services for
registered ontologies. Among the reasoning services can be a possibility to
check ontology consistency, build classification, verify concepts satisfiability
and check entailment.

All accessibility information about registered ontologies and mappings is
stored by a DRP in its local Registration Storage.

In order to register an ontology with a collection of semantic mappings at-
tached to it (both available on the Web) a user or application invokes the Regis-
tration Service of a DRP and sends to it the following registration information:

– URI to which the ontology will be bound.
– URLs of ontology and semantic mappings attached to it, if any.
– If the semantic mappings connect this ontology with ontologies registered

to external DRPs then additionally the URLs of these DRPs should be
specified. This requirement is explained by the necessity to know who is
responsible for reasoning with these ontologies.

The Registration Service interface is implemented by the Registration Manager.
When the Manager receives a registration request, it (i) consults the Registra-
tion Storage and verifies if the URI has not occupied yet, (ii) if not it accesses
ontologies and assigned mappings from their URLs, (iii) asks Parser component
to process them, (iv) initializes the Distributed Reasoner with the parsed data,
and (v) finally adds a new record to the Registration Storage.

DRAGO: Distributed Reasoning Architecture for the Semantic Web 373

The Parser component translates ontologies and mappings source files to
the internal format used by the Distributed Reasoner. For doing so, the Parser
consist from two sub components: the ontology parser, tailored on ontology lan-
guage formats (for example, OWL [13]), and the mapping parser, tailored on
mapping formats (for example, C-OWL [3]).

The Reasoning Manager component implements the Reasoning Services in-
terface. When users, applications or other DRPs invoke this interface sending
the URI of requested ontology, the Manager verifies with the Registration Stor-
age whether the URI is registered to the DRP and, if yes, asks the Distributed
Reasoner to execute corresponding reasoning task for that ontology.

The Distributed Reasoner represents a brain of a DRP. It realizes the dis-
tributed algorithm proposed in the Section 3 and reasons on ontologies with
attached mappings that are registered to the DRP. The Distributed Reasoner is
built on top of standard tableau reasoner whose algorithm was extended with
the additional Bridge Expansion Rule in accordance with the distributed tableau
algorithm. When the Bridge Expansion Rule is applied it analyses semantic map-
pings and possibly generates reasoning sub tasks that are required to be executed
in the ontologies participating in mappings.

To dispatch the reasoning tasks generated by a Distributed Reasoner to the
responsible reasoners, the Reasoning Propagator component refers to the Rea-
soning Manager and either dispatches reasoning to the local Distributed Rea-
soner or sends out a request of reasoning service to the corresponding external
DRP.

4.3 Implementation

The described DRAGO architecture was implemented by us for the case of OWL
[1] ontology space. For expressing semantic mappings between OWL ontologies
we use a C-OWL [3]. According to C-OWL, mapping consists of references to
the source and target ontologies and a series of bridge rules relating classes be-
tween these ontologies. Due to the limitations of introduced distributed tableau
algorithm (see Section 3) among the possible C-OWL bridge rule types DRAGO
supports the use of ≡,�,� rules connecting atomic concepts.

A Distributed Reasoner was implemented as an extension to an open source
OWL reasoner Pellet7. Originally, Pellet parses OWL ontology to a Knowledge
Base (T-box/A-box). To satisfy the needs of DRAGO we extended a Pellet’s
Knowledge Base with a M-box containing parsed C-OWL mappings. Another
extension of Pellet was done by adding a Bridge Expansion Rule to the core
tableau algorithm in order to transform it to the distributed tableau. This rule
is called for every node created by the core tableau algorithm and consist in find-
ing such bridge rules in M-box that are capable of importing new subsumptions
from mapping-related ontologies. The distributed tableau algorithm was imple-
mented in a straightforward way without advanced optimization techniques as,
for example, caching.

7 http://www.mindswap.org/2003/pellet

374 L. Serafini and A. Tamilin

DRAGO is implemented to operate over HTTP and to access ontologies and
mappings published on the Web. A DRP represents several java servlets that
should be deployed to a java-enabled Web-server, for example Tomcat8.

5 Related Work

From a theoretical perspective, presented work is an extension of the results
introduced in [2, 21].

DDL inherited a lot of ideas from the other logics for distributed systems,
among them Multi Context Systems (MCS) [7], the general framework for con-
textual reasoning, propositional MCS [8, 5, 20] and Distributed First Order Log-
ics (DFOL) [6].

In [15], it has been shown that DDL can be represented in a much richer
theoretical framework for integrating different logics, called E-connections. E-
connections allow to state relations between a set of logical frameworks using
n-ary link relations. Bridge rules can be seen as a special case of binary link
relations. In this case, the satisfiability problem for DDL can be reduced to the
satisfiability problem for basic E-connections.

The combined tableau algorithm for the restricted case of E-connections
has been proposed recently in [9]. In contrast to the distributed tableau al-
gorithm proposed in this paper, described combined tableau for E-connections
is rather a selective global approach organized in a single reasoner, whereas in
distributed tableau we combine different reasoning procedures for mapped on-
tologies.

The idea of having the system providing reasoning services for ontologies
on the Semantic Web is not new. There are a number of reasoning servers
based on the state of the art reasoners like RACER [10] or FaCT [12]. What
makes DRAGO different from them is the capability of reasoning with ontolo-
gies coupled with semantic mappings using a distributed algorithm. While these
reasoning servers are tightly connected with ontology repositories for achieving
a higher level of optimization, DRAGO is a lightweight implementation which
directly uses ontologies and mappings published on the Web.

Also from the practical point of view, DRAGO architecture can be related to
a variety of systems for mediation and integration of distributed heterogeneous
sources like Piazza [11], OBSERVER [17] and others.

6 Conclusions and Future Work

In this paper, we have introduced DRAGO, a system which provides reasoning
services for multiple OWL ontologies interconnected via C-OWL mappings9.

8 http://jakarta.apache.org/tomcat
9 Demonstration version of DRAGO is available for download after the registration

on the project home page http://trinity.dit.unitn.it/drago

DRAGO: Distributed Reasoning Architecture for the Semantic Web 375

The theoretical support of DRAGO is provided by the Distributed Descrip-
tion Logics framework. In this paper, we have described a sound and complete
distributed tableau reasoning technique for DDL. According to it, a reasoning
in DDL can be fulfilled by a suitable combination of existing local tableaux
for Description Logics. Although the suggested reasoning algorithm has been
considered for the limited case of DDL with acyclic distributed T-box without
individuals and bridge rules connecting atomic concepts, we see a main benefit
of the algorithm in its simplicity and easy implementation on top of existing
tableau-based reasoning systems.

As promising paths for further research we plan to explore the caching tech-
niques for improving the distributed algorithm, investigate the use of more ex-
pressive mappings connecting complex concepts, and extend our results for gen-
eral distributed T-boxes.

References

1. G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In Handbook
on Ontologies in Information Systems, pages 67–92, 2003.

2. A. Borgida and L. Serafini. Distributed Description Logics: Assimilating Informa-
tion from Peer Sources. Journal of Data Semantics, pages 153–184, 2003.

3. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing Ontologies. In Proc. of the 2d International Semantic
Web Conference (ISWC2003), pages 164–179, 2003.

4. F.Baader, D.Calvanese, D.McGuinness, D.Nardi, and P.F.Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

5. C. Ghidini and F. Giunchiglia. Local Model Semantics, or Contextual Reasoning
= Locality + Compatibility. Artificial Intelligence, 127(2):221–259, 2001.

6. C. Ghidini and L. Serafini. Distributed First Order Logics. In Proc. of the Frontiers
of Combining Systems, pages 121–139, 2000.

7. F. Giunchiglia. Contextual Reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine, XVI:345–364, 1993.

8. F. Giunchiglia and L. Serafini. Multilanguage Hierarchical Logics (or: How we can
do without modal logics). Artificial Intelligence, 65(1):29–70, 1994.

9. B. C. Grau, B. Parsia, and E. Sirin. Working with Multiple Ontologies on
the Semantic Web. In Proc. of the 3d International Semantic Web Conference
(ISWC2004), 2004.

10. V. Haarslev and R. Moller. RACER System Description. In Proc. of the Inter-
national Joint Conference on Automated Reasoning (IJCAR2001), pages 701–706,
2001.

11. A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management Infras-
tructure for Semantic Web Applications. In Proc. of the 12th International World
Wide Web Conference (WWW 2003), 2003.

12. I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. of the Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’98), pages
27–30, 1998.

13. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

376 L. Serafini and A. Tamilin

14. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for very Expressive
Description Logics. Logic Journal of IGPL, 8(3):239–263, 2000.

15. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of Abstract
Description Systems. Artificial Intelligence, 156(1):1–73, 2004.

16. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - a Mapping Framework
for Distributed Ontologies. In Proc. of Knowledge Engineering and Knowledge
Management (EKAW-02), volume 2473 of Lecture Notes in Computer Science.
Springer, 2002.

17. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An Ap-
proach for Query Processing in Global Information Systems based on Interop-
eration across Pre-existing Ontologies. International Journal on Distributed and
Parallel Databases (DAPD), ISSN 0926-8782, 8(2):223–272, April 2000.

18. B. Omelayenko. RDFT: A Mapping Meta-Ontology for Business Integration. In
Proc. of the Workshop on Knowledge Transformation for the Semantic Web at the
15th European Conference on Artificial Intelligence (KTSW2002), pages 77–84,
2002.

19. L. Serafini, A. Borgida, and A. Tamilin. Distributed Reasoning in SHIQ Ontology
Space. Technical Report T05-02-03, ITC-IRST, 2005.

20. L. Serafini and F. Giunchiglia. ML Systems: A Proof Theory for Contexts. Journal
of Logic, Language and Information, 11(4):471–518, 2002.

21. L. Serafini and A. Tamilin. Local Tableaux for Reasoning in Distributed Descrip-
tion Logics. In Proc. of the 2004 International Workshop on Description Logics
(DL’04), CEUR-WS, 2004.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 377–391, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dually Structured Concepts in the Semantic Web:
Answer Set Programming Approach

Patryk Burek and Rafał Grabo ∗

Department of Computer Science, University of Leipzig, Germany
{Burek, grabos}@informatik.uni-leipzig.de

Abstract. There is an ongoing discussion whether reasoning in the Semantic
Web should be monotonic or not. However, it seems that the problem concerns
not only reasoning over knowledge but knowledge itself, where apart from
nondefeasible knowledge the defeasible knowledge can be distinguished. In the
current paper we rely on the Dual Theory of Concepts, according to which con-
cepts are dually structured into defeasible and nondefeasible parts. We develop
a metaontology for representing both types of a concept’s structure and apply it
for annotating OWL axioms. The translation of annotated OWL axioms into a
logic program under answer set semantics is provided. Hence the answer set
solver Smodels may be used as reasoner for annotated ontologies, handling
properly the distinction between monotonic and nonmonotonic reasoning.

Keywords: Ontology, Knowledge Representation, Reasoning in the Semantic
Web, Semantic Web Inference Schemes

1 Introduction

Current standards and techniques used in the ontology and Semantic Web communi-
ties, like the Web Ontology Language (OWL) [25] and its underlying description lo-
gics (DL) with their reasoners, are basically monotonic. On the other hand there is an
ongoing discussion whether reasoning in the Semantic Web should be monotonic or
not. It seems however that the problem concerns not only the reasoning over the
knowledge but the knowledge itself. The knowledge may be defeasible and as such
may require nonmonotonic inferences on it. The main question then is what the
knowledge is like and whether it is defeasible.

Since Wittgenstein [30] and Rosch [28] there is a debate in cognitive science con-
cerning the prototypical structure of concepts. Both Wittgenstein and Rosch pointed
out that concepts do not have to be specified by a set of necessary (and sufficient)
conditions. They argued that often not all of a concept’s referents share all of the
properties assigned to the concept. Prototypically structured concepts then lack neces-
sary characteristics but have only typical and therefore defeasible characteristics. On
the other hand a prototypical concept structure raises several problems. For example it

∗ This paper was written fully collaboratively; the order of the authors' names is arbitrary.

378 P. Burek and R. Grabo

is clear that not all concepts are fuzzy and prototypically structured but there are some
that have at least necessary characteristics.

In the current paper we propose a framework for specifying concepts within on-
tologies based on the cognitive Dual Theory, according to which concepts are dually
structured involving defeasible and nondefeasible parts.

To represent the structure of concepts and to delimit a defeasible part of a con-
cept’s definition from a nondefeasible one, we develop a simple metaonotology and
use it for annotating OWL axioms. The translation of annotated OWL axioms into a
logic program under answer set semantics is provided. Hence the answer set solver
Smodels [22] may be used as reasoner for annotated ontologies, handling the distinc-
tion between monotonic and nonmonotonic reasoning properly.

For simplicity of reading, we do not represent annotated OWL axioms in OWL ab-
stract syntax [25]. Instead we use description logic syntax extended by the provided
meta-tags. This is justified since there is a correspondence between the syntaxes of
OWL and description logics, such that each element of OWL can be represented by
elements of the corresponding description logic1. However, one should note that the
description logic syntax is used here for readability purpose only.

The paper is structured as follows. In the next section we introduce a running ex-
ample. In the following two sections advantages and drawbacks of nonmonotonic so-
lutions to the Semantic Web are presented. In the fifth section we present the founda-
tions of our approach based on the cognitive Dual Theory. Moreover, in the fifth
section the metaonology and the mechanism of annotating OWL axioms are pre-
sented. In the sixth section the translation algorithm of annotated OWL axioms into
logic programming rules is introduced and illustrated by our running example. In the
last two sections related work and conclusions are presented.

2 Example

Let us consider a hypothetical definition of desert. Desert could be defined as an area
with little precipitation (the average amount of precipitation is less than 25 centime-
ters a year), partly covered by sand or gravel, having scanty vegetation or sometimes
almost none, and capable of supporting only a limited and specially adapted animal
population. The definition could be formally written in DL using the following form:

Desert m Area * ∃coveredby.(oneof{Sand, Gravel}) * ∀precipi-
tation.Low * ∀vegetation.Scanty * ∀populatedby.AdaptedAnimal

The typical criticism raised by representatives of Prototype Theory here could be
such, that there are deserts that do not fulfill all the conditions of the above definition
but which nevertheless are treated as good representatives of deserts. Consider for ex-
ample cold deserts covered rather with ice than sand. Moreover, in many deserts there
are regions where the vegetation is not sparse at all.

If we would like to include exceptions like those above to a knowledge base con-
taining our definition of desert, clearly we will end up with inconsistencies. Hence we

1 For instance description logics SHIF(D) and SHOIN(D) underlie OWL Lite and OWL

DL respectively.

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 379

see that there is a need to adopt less restrictive forms of knowledge representation that
include prototypes and permit nonmonotonic reasoning.

3 Nonmonotonic Reasoning

Long since it has been recognized in AI that classical logic is not sufficiently robust to
adequately reason as humans do. The main feature of classical logic (as well as DLs)
is monotonicity, in the sense that one cannot reject conclusions by adding new prem-
ises. However, people tend to retract previous conclusions, when new evidences ap-
pear. This is called nonmonotonic reasoning, which’s subject matter is developing
reasoning systems, that model the way in which commonsense is used by humans.

Formally, a consequence relation is nonmonotonic if there is a formula and a
set of formulas such that holds, then , may hold when new information
 appears (where is a formula). Brewka pointed out in [8] that nonmonotonic rea-

soning, in its broadest sense, is reasoning to conclusions on the basis of incomplete
information. In this sense default conclusions are accepted until new information
arises.

Nonmonotonicity may be seen as a property of knowledge and property of reason-
ing over knowledge. We accent here the former view and suggest that first of all the
knowledge is defeasible or not defeasible. Knowledge is defeasible, if it may be in-
validated in the light of certain additional information, called defeaters.

Reasoning in the Semantic Web is usually monotonic. The formal semantics of
Semantic Web languages like OWL DL is given by corresponding Description Logics
[3], which are mainly monotonic. This means that there is no way for retracting any
conclusions in the light of new information. This may cause knowledge on the Web to
get inconsistent as new knowledge is added. In addition, it has been recognized in AI
that a knowledge system should allow a construction of elaboration tolerant knowl-
edge bases, i.e. bases in which small modification of the informal body of knowledge
corresponds to small modifications of the formal base representing this knowledge
[13]. Nonmonotonicity helps to satisfy this requirement.

In the current paper we propose answer set semantics to be added to the Semantic
Web language OWL and useage of answer set solvers (such as Smodels[22]) as rea-
soners. To the best of our knowledge, only the work of Bertino [5] considers a similar
idea, namely encoding the Semantic Web representation of knowledge by a logic pro-
gram under answer set semantics2 and thus allowing default reasoning. The mentioned
approach consists in providing a new default semantics to RDF type inheritance
primitives, in particular to DAML+OIL properties daml:Class and daml:subClassOf.
Then DAML+OIL sentences have translations into a logic program. Answer set se-
mantics to basic DAML+OIL constructor relations is provided and a direct translation
of RDF statements into logic facts is done. At the same time the answer sets of the
program are logically equivalent to the RDF statements inferred from the given KB.
The main advantage of such a method is that ASP semantics permits any conclusion
thrown by default to be dropped if contrary explicit knowledge is found. Since it

2 Some authors propose a translation from DLs to logic programming under answer set seman-

tics. An overview is given in a section 7 concerning the related work.

380 P. Burek and R. Grabo

makes the conclusions defeasible, nonmonotonicity has been successfully adopted to
DAML+OIL. However, we show in the next section that the above solution some-
times leads to unintuitive results.

4 Against Absolute Nonmonotonicity

Nonomonotonic solutions and prototype theory in general do not remain without
problems. In [6], [7] problems are reported, which arise by the adoption of defaults to
frame systems. For example, the cancellation and overriding of a concept’s features
results in mishmash of subsumption trees and disturbs the classification algorithm. If
all properties of the concept can be canceled then the concept may be subsumed by
anything, which gives rise to absurd cases like the one reported by Brachman: “a rock
is an elephant except it has no trunk, it isn’t alive, it has no legs… ”[7].

Although some, or even most of our knowledge permits exceptions, there is also
knowledge that does not. In other words not all concepts have prototypical structure,
but there are some that per se exclude any form of cancellation of their properties.
Consider for instance mathematical concepts. They are not prototypically structured,
but instead they have provided at least necessary conditions and therefore no excep-
tions are permissible. Each triangle must have exactly three sides and therefore no
atypical, not three sided triangles are allowed. Reasoning about such not prototypi-
cally structured concepts should remain monotonic.

Thus, for at least two above reasons the solutions like the one of Bertino [5], inter-
preting all of our knowledge as defeasible, seem to be problematic. Not in all cases
daml:Class and daml:subClassOf require nonmonotonic interpretation. In the next
section we present a different approach that tries to overcome the above problems but
still permits defaults.

5 Dual Theory Approach

In [23] Osherson and Smith proposed the Dual Theory, which is a hybrid approach to
the prototype problem. They found that the application of the Zadeh’s fuzzy set theory
[32] for representing prototypes leads to several problems while representing conjunc-
tive concepts as well as logically empty and logically universal concepts. These prob-
lems of fuzzy-set theory, and ubiquitous prototypical categories forced Osherson and
Smith to compose prototypes with definitions of necessary (and sufficient) conditions.

According to the Dual Theory, concepts have a binary structure and are composed
of two types of information [20], [21]. One of these has a prototypical character and
another that does not. The prototypes are considered to be used in an identification
procedure of a concept’s membership and are responsible for rapid decisions about
concept’s membership. Properties that form the prototype of a concept we will call
here typical since they are those, which typically are considered to identify a con-
cept’s instances. But since not all of a concept’s instances share such typical features,
we treat typical features as being defeasible, in the sense that they ought to be as-
sumed in the absence of any contrary information [26].

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 381

The second type of information constituting concepts consists of, as called here,
core properties. Core properties are not defeasible and they provide the truth condi-
tions to hold for concept membership. They are used for combinations of concepts
and are responsible for our most considered categorization judgments [23]. Typical
properties then may not fully determine the concept instances, but this may be done
by the concept’s core. Secondly not all concepts must have a prototypical part (for ex-
ample mathematical concepts). The identification procedure in those cases is fully
held by the core of the concept.

Considering our desert example in the context of the Dual Theory we see that the
properties of being covered with sand and having scanty vegetation are the typical
properties of a desert. Usually when meeting a region satisfying these conditions we
recognize it as being a desert. Those features form the prototype of a desert but they
do not fully determine the concept’s instances. As mentioned above, there are deserts
that do not fulfill those conditions. In such cases we need to refer to more subtle con-
ditions to decide about concept’s membership. In this case it could be the feature of
having a low average amount of precipitation. That feature is not defeasible and it
constitutes the core of the concept of desert.

Typical features are defeasible while core features are not. If in a knowledge base
inconsistency concerning typical features appears, it should be treated differently
from inconsistencies concerning core features. In the first case typical feature should
be canceled so that the inconsistency is avoided, but in the second case the cancella-
tion should not take place. As an example, let us consider a stony desert. Although as-
suming that a stony desert is not covered by sand it is still considered to be a desert. A
classification of a stony desert under the concept desert would result in inconsistency
of the knowledge base. However, since being covered by sand is not a core property
but only a typical one, it may be canceled and this enables us to place stony deserts in
the hierarchy under the concept of desert without falling into inconsistency. The same
does not hold for the property of having low precipitation which is considered to be a
core property. A region not having a low precipitation, even if covered by sand and
having scanty vegetation should not be classified as desert without leading to incon-
sistency.

The typical features are considered in the Dual Theory to be identification features
of a concept. This means that from the features an individual has, one can infer under
what concept the individual falls. To enable the inference in this direction, the impli-
cation from features to a concept is needed. Features should then not be necessary but
sufficient conditions for concept membership, which does not hold in our example,
however. In our case we can infer from a concept to its features, which means that
features are considered as necessary conditions for concept membership.

5.1 Annotation of Statements

To make it explicit which part of the concept definition is core and which is only
typical we use a simple metaontology consisting of two disjoint classes typical and
core. Corresponding tags [core] and [typical] are used to annotate OWL axi-
oms. These tags are assigned neither to OWL classes or properties directly nor to
whole OWL axioms. The class or property is not core or typical in general but only in
the context of some axiom. For example a property of being covered by sand is typi-

382 P. Burek and R. Grabo

cal in case of a desert but may be core for a sandy beach. On the other hand not the
entire axiom must be typical or core but only its parts, here called characteristics. The
tags are assigned to the rdfs:subClassOf construct3, thus to RDF statements, where the
resource rdfs:subClassOf is a predicate. We treat each such reified RDF statement as
an instance of one of the two classes – core and typical. A reified statement is an in-
stance of the class core iff the statement must always be satisfied for the given con-
cept. A reified statement is typical iff it is satisfied for the concept, unless there is in-
formation to the contrary.

To illustrate this we can assign the tags to each statement of the exemplar defini-
tion of desert. We represent it in semi-description logics notation in the following
way:

Desert m [core]Area *

 [typical]∃coveredby.(oneof{Sand, Gravel}) *

 [core]∀precipitation.Low *

 [typical]∀vegetation.Scanty *

 [typical]∀populatedby.AdaptedAnimal

From the above we can read that the characteristics saying that desert is an area
having low precipitation are core, whereas all others are only typical. The above defi-
nition now says that it may happen that there is a desert not covered by sand or gravel
but it may not happen that a desert is not a subclass of area.

To assign metatags to OWL ontologies we use reified RDF statements and treat
them as instances of one of the given metaclasses. For example in OWL abstract syn-
tax the first tagged statement of the above definition looks as follows:

Individual(desertStatement1

 type(rdf:statement)

 type(metaontology:core)

 value(rdf:object Area)

 value(rdf:predicate rdfs:subClassOf)

 value(rdf:subject Desert))

 Metaontology refers to the metaontology, where the classes: core and typical are
defined.

6 Answer Set Programming for the Semantic Web

In this section the translation of annotated OWL axioms into a logic program under
answer set semantics is provided and the answer set solver Smodels [22] is used to
find a model for the given KB. For simplicity of reading we use a semi-description
logic notation instead of the OWL abstract syntax.

3 In the current paper we consider only partial definitions, but the approach can be extended to

complete definitions as well. In that case also owl:equivalentClass should be tagged.

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 383

6.1 Answer Set Programming

Answer set programming (ASP) is a new logic programming paradigm for knowledge
representation and problem solving in artificial intelligence [19]. Representation of a
problem is purely declarative, suitable for many aspects of commonsense reasoning
(diagnosis, configuration, planning etc.). Instead of a query technique (Prolog), it
bases upon a notion of possible solution, called answer set.

Consider a propositional language L, with atomic symbols called atoms. A literal is
an atom or a negated atom (by classical negation ¬). The symbol not is called epis-
temic negation and the expression not a is true, if there is no reason to believe that a is
the case. Epistemic negation makes ASP a nonmonotonic system. Default rules,
whose conclusions are defeasible in the light of certain knowledge, are represented
using epistemic negation. Knowledge which is not defeasible is represented by means
of the rules without negation not. The symbol ∨ is called epistemic disjunction and it
is interpreted as follows: at least one literal is believed to be true. Formally, a rule r is
an expression of the form:

c1 ∨ … ∨ ck ← a1, …,am , not bm+1 , … , not bn (1)

where k ≥ 0, n ≥ m ≥ 0, ci, al, bk are ground literals r, Body (r) = {bm+1 , …, bn},
Body+(r) ={a1, …,am} and the disjunction {c1 ∨ … ∨ ck} is Head(r) of the rule r. A
rule with an empty Head (i.e. a rule of the form: ← Body) is usually referred to as in-
tegrity constraint. A logic program is a finite set of the rules.

Intuitively the above rule r means that if Body+(r) of that rule is believed to be true
and it is not the case that Body (r) is believed to be true, then at least one literal of
Head(r) must be believed to be true.

The semantics for ASP is defined by means of minimal set of literals satisfying all
rules of the program P. Let us now assume now, that LitP is the set of all literals being
present in the extended logic program P and I is an interpretation of P, I ⊆ LitP. We
say that a set of literals I satisfies a rule of the form (1), if {a1, …,am} ⊆ S and {bm+1 ,
…, bn}∩ S = ∅ imply that {c1, …,ck} ∩ S ≠ ∅.

 The Gelfond-Lifschitz (GL) transformation of P with respect to I is a positive
logic program P′ which is obtained in two steps [19]:

− deletion of all rules r of P, for which Body (r) ∩ I ≠ ∅
− deletion of the negative bodies (Body (r)) from the remaining rules of P

Then, I is an answer set of the logic program P, if I is a minimal model (no proper
subset of I is a model of P′) of the positive (without not) logic program P′; i.e. I is a
minimal set of literals satisfying every rule in P' or if I contains a pair of complemen-
tary literals l and ¬l, then I = LitP.

Example. Consider the program P1 = {b ← not a; a ← not b; f ← a}, Lit = (a, b, f),
and let I = {a, f}. The GL reduction of the program P1 w. r. t. I is the program P1′ =
{a←; f ← a}. According to the definition, I is an answer set for the program P, since I
is a minimal set of literals satisfying all rules in P1′. The second answer set of the pro-
gram P is {b} and these are the only answer sets for this program.

In general, programs under answer set semantics describe a family of intended
models. Therefore they encode possible solutions to a problem, being a constraint sat-

384 P. Burek and R. Grabo

isfaction problem, and described by the program, where each rule is interpreted as a
constraint.

Although answer set programs are basically propositional, it is possible to use a
rule schemata containing variables. These schemata are representations of their
ground instances, and answer set solvers [11], [22] use intelligent ground instantiation
techniques before the actual answer set computation takes place4. In this case logic
programs with variables may be used to represent more complex problems. We will
use such a technique as a convenient representation of our running example.

6.2 Translation OWL to ASP

We translate the ontology represented in annotated OWL to a logic program under an-
swer set semantics and use the answer set solver as reasoning tool. To handle defeasi-
bility of typical knowledge, we use ASP rules with epistemic negation in the body for
encoding default information. In the light of certain information being defeaters, the
conclusions assumed to be defeasible may be retracted. Knowledge, which is not de-
feasible, i.e. the core properties in our case, is represented in a form of positive rules
not allowing exceptions.

Any inconsistency w.r.t. the nondefeasible knowledge leads to the inconsistency of
the whole KB indicating the fact that such conclusions may not be retracted. By that
means nonmonotonic reasoning is enabled, but on the other hand the deletion of all
conclusions, in opposite to [5], is avoided.

In general, we base on the work of Baral [1] who successfully translates DL
ALCQI into declarative logic programming under answer set semantics. Our algo-
rithm provides a translation of annotated RDF statements into suitable logical rules.
Since, in case of the core properties of concepts the standard DL semantics is appro-
priate, the translation given in [1], except for step 6 can be used. Therefore the infer-
ence over the core knowledge is strictly monotonic. We are mainly interested in han-
dling the default part of knowledge; therefore we show how statements annotated by
the tag [typical] can be represented in ASP.

Below the general schema of the translation of default knowledge into correspond-
ing logic program rules is given. In detail, we encode one type of formulae, namely
default subsumption between an atomic concept and a formula. Instead of the stan-
dard OWL semantics, default ASP semantics is provided to such subsumption. The
formula encoded in the semi DL notation: C1 m [typical] C2 has the following intuitive
meaning: concept C1 by default subsumes C2 where C2 may be more a complex for-
mulae. In order to determine the defeaters (knowledge capable to cancel the default
conclusions), for the typical subsumption, we use for each default rule a predicate abk
where k is a unique index. The precise algorithm is provided in the current section.

For all steps, C1 denotes an atomic concept, while C2 corresponds to an arbitrary
complex formula. The Herbrand universe (HU), which is a set of ground terms con-
structed from the constants and functions in the program, is divided into disjoint sets
of sub-domains. This way the search space for a solver is restricted significantly,

4 The answer set semantics of ground programs can be extended straightforwardly to programs

with variables by employing the notion of Herbrand models.

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 385

since smaller the Herbrand base (HB, being the set of atomic ground formulae built
form the HU and the predicate symbols of the program) is considered.

Since the translation of atomic concepts, roles and individuals is provided in [1]
(Steps 1-5), we skip it in the algorithm presented below and demonstrate it only in the
context of our running example.

Steps 1-5 remain unchanged as given in [1] with the exception that we divide HU
(hence as well HB) into domains, containing disjoint elements.

Step 6.
C2 is an atomic concept
C1 m [typical]C2:
← c1(X), not c2(X), not ab1(X).
ab1(X) ← c1(X), ¬c2(X).

Step 7.
a) C2 is of the form: ¬C3:
c2(X) ← domain(X), not c3(X).
C1 m [typical]C2:
 ← c1(X), not c2(X), not ab2(X).
ab2(X) ← c1(X), ¬c2(X).
b) C2 is of the form C3* C4:
C1 m [typical]C3
C1 m [typical]C4
and step 6
c) C2 is of the form: C3 + C4:
c2(X) ← domain(X), c3(X).
c2(X) ← domain(X), c4(X).
C1 m [typical]C2:
← c1(X), not c2(X), not ab3(X).
ab3(X) ← c1(X), ¬c3(X), ¬c4(X).
d) C2 is of the form: ∀R.C3:
not_c2(X) ← domain(X), domain(Y), r(X,Y), not c3(Y).
c2(X) ← domain(X), domain(Y), not not_c2(Y), r(X,Y).
C1 m [typical] C2:
← c1(X), not c2(X), not ab4(X).
ab4(X) ← c1(X), r(X, Y), ¬c3(Y).
e) C2 is of the form: ∃R.C3:
c2(X) ← r(X,Y), c3(Y).
C1 m [typical]C2:
← c1(X), not c2(X), not ab4(X).
ab4(X) ← c1(X), r(X,Y), ¬c3(Y).
f) C2 is of the form: ∃R≥n.C3:
c2(X) ← r(X,Y1),…, r(X,Yn), c3(Y1),…,c3(Yn), Y1 ≠ Y2 ≠...≠Yn.
C1 m [typical]C2:
← c1(X), not c2(X), not ab5(X).
ab5(X) ← not c2(X), c1(X).

386 P. Burek and R. Grabo

g) C2 is of the form: ∃R≤n.C3:
not_c2(X) ← r(X,Y1),…, r(X,Yn+1), c3(Y1),…,c3(Yn+1), Y1 ≠ Y2 ≠...≠Yn+1.
c2(X) ← not not_c2(X), domain(X).
C1 m [typical]C2:
← c1(X), not c2(X), not ab6(X).
ab6(X) ← not_c2(X), c1(X).
h) C2 is of the form: oneOf {a1,…, an}
c2(X) ← domain(X), X=a1.
…
c2(X) ← domain(X), X=an.
C1 m [typical]C2:
← c1(X), not c2(X), not ab7(X).
ab7(X) ← not c2(X), c1(X).

In order to explain the above algorithm, we consider our running example and
show how it can be translated into a logic program under answer set semantics. Then
the answer set solver Smodels [22] is used to compute answer sets of the logic pro-
gram such that models of the program correspond to the conclusions of the given KB.
Note that we consider the Herbrand universe only, thus models are restricted to Her-
brand models only (subsets of the Herbrand base). Since our approach is non-
monotonic, multiple models of a program may exist. We distinguish between brave
and cautious reasoning as follows:

• Brave reasoning: given a logic program P and a ground literal l, decide whether l
is true in some answer set of P (denoted P b l)

• Cautious reasoning: given a logic program P and a ground literal l, decide
whether l is true in all answer sets of P (denoted P c l)

 Note that to decide whether l is true in answer set S means to check whether l be-
longs to answer set S. Thus, literals belonging to all answer sets may be called the
cautious conclusions of the given KB (under HB), while literals belonging to some
answer sets are called brave default conclusions of the given KB (under HB). There-
fore, the cautious conclusions of a logic program P are consequences of the KB repre-
sented by P under the Herbrand base, while the brave conclusions of P are possible
consequences of the KB represented by P, obtained under incomplete knowledge.
 It is clear that two features of desert are core properties: area and precipitation.
low. Since they are not defeasible knowledge, we represent them in a form of not de-
feasible logic program rules, as showed in [1]. The remaining properties can be seen
as the typical properties of desert, thus they are encoded as default rules by means of
the method given above. Each atomic concept, role and fact assertion as well as ele-
ments of HU are encoded as logical rules and domain predicates respectively. Let us
assume that HU = {sturt, stone, gravel, sand, few_cactus, twenty_cm, camel}. We use
here Smodel’s syntax to encode the above example.

Step 1. Elements of HU are encoded as facts belonging to the domains:
d_cover(gravel;sand;stone). d_desert(sturt). d_animal(camel).
d_vegetation(few_cactus). d_prec_level(twenty_cm).

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 387

Step 2. Atomic concepts are represented by the following rules:
area(X) :- d_desert(X), not not_area(X).
not_area(X) :- d_desert(X), not area(X).
low(X) :- d_prec_level(X), not high(X).
high(X) :- d_prec_level(X), not low(X).
scanty(X) :- d_vegetation(X), not not_scanty(X).
not_scanty(X) :-d_vegetation(X), not scanty(X).
adopted_animal(X) :- d_animal(X), not not_adopted_animal(X).
not_adopted_animal(X) :- d_animal(X), not adopted_animal(X).

Step 3. Atomic roles are represented by the following rules:
coveredby(X,Y) :- d_desert(X), d_cover(Y), not not_coveredby(X,Y).
not_coveredby(X,Y) :- d_desert(X), d_cover(Y), not coveredby(X,Y).
precipitation(X,Y) :- d_desert(X),d_prec_level(Y), not
not_precipitation(X,Y).
not_precipitation(X,Y) :- d_desert(X),d_prec_level(Y), not precipi-
tation(X,Y).
vegetation (X,Y) :- d_desert(X), d_vegetation(Y), not
not_vegetation(X,Y).
not_vegetation (X,Y) :- d_desert(X), d_vegetation(Y), not
vegetation(X,Y).
populatedby (X,Y) :- d_desert(X), d_animal(Y), not
not_populatedby(X,Y).
not_populatedby (X,Y) :- d_desert(X), d_animal(Y), not
populatedby(X,Y).

Step 4. Fact assertions are encoded as logic programming facts:
desert(sturt). low(twenty_cm).

Step 5. Each role assertion is translated to the facts:
coveredby(sturt,stone).

Step 7. A subsumption, where a super concept is a complex concept in form of a con-
junction, is split first into the conjunction of subsumptions (step 7 (b) of our proce-
dure):

(I) desert m [core] area
(II) desert m [typical] ∃coveredby.(oneof{Sand, Gravel})
(III) desert m [core] ∀precipitation.Low
(IV) desert m [typical] ∀vegetation.Scanty
(V) desert m [typical] ∀populatedby.AdoptedAnimal
Since a core subsumption corresponds to the semantics of standard DL subsump-

tion, we translate it according to the method given in [1]. Then:

(I) triggers translation of the core subsumption:
:- desert(X), not area(X).

(II) appeals first step 7 (e):
ok_coveredby(X) :- coveredby(X,Y), oneOf(Y), d_desert(X).

which triggers step 7 (h):
oneOf(X) :- d_cover(X), X=sand.
oneOf(X) :- d_cover(X), X=gravel.

and step 7 (e) for default subsumption:
:- desert(X), not ok_coveredby(X), not ab_2(X).
ab_2(X) :- desert(X), coveredby(X,Y), not oneOf(Y), d_cover(Y).

(III) is translated according to step 7 (d):
not_precipitation_ok (X) :- precipitation(X, Y), not low(Y),
d_desert(X), d_prec_level(Y).
precipitation_ok (X) :- not not_precipitation_ok (X), precipita-
tion(X,Y), d_desert(X), d_prec_level(Y).
:- desert(X), not precipitation_ok(X).

388 P. Burek and R. Grabo

(IV) is represented due to step 7 (d) as:
not_vegetation_ok (X) :- vegetation(X, Y), not scanty (Y),
d_desert(X),d_vegetation(Y).
vegetation_ok (X) :- not not_vegetation_ok (X), vegetation(X,Y),
d_desert(X),d_vegetation(Y).

and step 7 (d) for default subsumption:
:- desert(X), not vegetation_ok(X), not ab_3 (X).
ab_3(X) :- desert(X), vegetation(X, Y), -scanty(Y).

(V) is encoded similar to the previous formulae by means of step 7 (d) :
not_populatedby_ok (X) :- populatedby(X, Y), not adopted_animal(Y),
d_desert(X),d_animal(Y).
populatedby_ok (X) :- not not_populatedby_ok (X), populatedby(X,Y),
d_desert(X),d_animal(Y).

and step 7 (d) for default subsumption:
:- desert(X), not populatedby_ok(X), not ab_5 (X).
ab_5(X) :- desert(X), populatedby(X, Y), -adopted_animal(Y).

Smodels computes 4 answer sets, where each contains the following:

desert(sturt),area(sturt), ab_2(sturt), populatedby(sturt,camel),
scanty(few_cactus), vegetation(sturt,few_cactus), precipita-
tion(sturt,twenty_cm).

We can see that Sturt is an abnormal desert w.r.t. the covering (ab_2) since it is not
covered by sand or gravel but only by stones. The condition of being covered by sand
or by gravel is not fulfilled in the case of Sturt desert, nevertheless Sturt is considered
being a desert, as intended. It would not be the case if the core property of having low
precipitation is not satisfied. Then we would obtain no model which corresponds to
the intuition that there is no desert without low precipitation.

7 Related Work

Related work can be organized into two groups. The first group contains approaches
that explicitly distinguish between defeasible and nondefeasible parts of a concept’s
structure. In MultiNet [15], which is a knowledge representation paradigm along the
line of Semantic Networks, three types of concept descriptions are distinguished:
categorical, prototypical and situational. Categorical and prototypical knowledge cor-
responds to our core and typical characteristics, respectively.

The idea of partial nonmonotonicity for the Semantic Web is introduced in [4]. The
system called DR-DEVICE is capable of reasoning about RDF metadata over multi-
ple Web sources using defeasible logic rules. The implementation is declarative be-
cause it interprets the not operator using well-founded semantics. Compared to our
one, this approach uses well-founded semantics instead of answer set semantics. In
fact, the second is more robust and general in the sense that every well-founded model
is an answer set but not conversely.

On the other hand many authors investigate the problem of integrating DLs with
other defeasible logics. Baader in [2] considers the problem of integrating Reiter’s de-
fault logic into a terminological representation system. In [24] a general framework
for Preferential Default Description Logics (PDDL) is developed. Recently Heymans
in [16] extended the description logic SHOQ(D) by a preference order on the axi-
oms and thus effectively introduced nonmonotonicity into SHOQ(D).

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 389

As we are interested in adding defeasibility to Semantic Web languages directly by
means of answer set semantics, only the work of Bertino [5] and colleagues devel-
oped a similar idea. However, instead of giving a non-standard interpretation to the
properties of DAML+OIL, we divide knowledge into defeasible and not defeasible
parts, thus avoiding all conclusions to be canceled.

A second group of related work forms proposals for translating DLs to various
logic programming languages. In [14] Grosof investigates many possible interactions
among DLs and Datalog logic programs (def-LPs). Similar approaches are presented
in [10] and [18] where plain Datalog is combined with certain DL paradigms and hy-
brid languages are proposed. Finally, Rosati in [27] combines disjunctive Datalog
with ALC based on a generalized answer set semantics.

On the other hand some authors discuss approaches combining DLs with a more
expressive logic programming paradigm, namely Answer Set Programming. In [17]
the DL SHIF is simulated by free disjunctive logic programs (DLP). Alsac and Baral
in [1] show a translation, used as the foundation of presented framework, of DL
ALCQI into declarative logic programming under answer set semantics. Swift [29]
reduces inference in the description logic ALCQI to query answering from answer
sets of logic programs. In the paper [12] the integration of rules and ontologies in the
Semantic Web in a form of combining logic programming under the answer set se-
mantics with description logics is presented. The paper is focused on SHIF(D) and
SHOIN(D).

Mainly, the intention of the papers mentioned above is either to combine the se-
mantic and computational strengths of the two systems or to use powerful logic pro-
gramming technology for inference in description logics, as noticed in [12]. The idea
behind our work is similar to the former view, since the answer set solver is used as
reasoner. On the other hand, we are close to the spirit of [2], [16] and [4], where con-
clusions are divided explicitly into defeasible and not defeasible ones.

8 Conclusions and Future Work

In the current paper we have presented a framework that permits to delimit the defea-
sible part of a concept here called typical from the nondefeasible one - core. It is a
balanced way between purely monotonic approaches to representing ontologies in the
Semantic Web on the one hand and purely nonmonotonic on the other. Both types of
knowledge, defeasible and not defeasible, can be coherently represented by means of
the developed framework.

We developed a system of metatags for annotating characteristics of concepts. The
tags are defined in form of a metaontology. The tags [core] and [typical] as-
signed to each of a concept’s characteristic provide the information whether the char-
acteristic has a defeasible or nondefeasible nature.

A translation of annotated OWL axioms into a logic program under answer set se-
mantics is given. ASP provides an intuitive semantics to the Semantic Web languages
and extends them by nonmonotonicity. On the other hand a powerful logic program-
ming technology is used for inference purposes. We use the answer set solver Smod-
els as reasoner for annotated ontologies, thus handling properly the distinction be-
tween monotonic and nonmonotonic reasoning.

390 P. Burek and R. Grabo

The framework is grounded on the cognitive theory of a concept’s dual structure.
Adoption of the Dual Theory provides a cognitive foundation for concept specifica-
tions in ontologies. The concepts in ontologies may then be cognitively more ade-
quate, which means that when formalized they still preserve the structure of their
originals. It seems, that cognitive adequacy of concepts reduces the deformation of
knowledge which often takes place in the process of knowledge modeling and formal-
ization [31].

Moreover, the approach permits handling inconsistency in the knowledge base,
which, as presented, should be treated differently in the context of defeasible or non-
defeaisble knowledge. The inconsistency of the core, i.e. of nondefeasible knowledge
is not allowed but when concerning only a defeasible part of a concept’s specification,
it may be reduced to abnormality. As far as inconsistency among default conclusions
is concerned, it is handled in answer set semantics by means of multiple models, rep-
resenting possible solutions. In case of incomplete information, we admit default con-
clusions as long as no defeating information arises.

In future work the presented annotations can be extended so that not only the dis-
tinction of defeasible and not defeasible knowledge is possible, but also levels of
defeasibility may be introduced. This may be done by adopting one among many ap-
proaches, extending answer set programming by priorities. One of the major propos-
als is Logic Programming with Ordered Disjunction, proposed by Brewka in [9]. In
this framework, priorities among literals may be expressed such that degrees of defea-
sibility among abnormalities may be formulated. Moreover, the translation should be
extended so the OWL datatypes are handled.

Acknowledgements. We are indebted to Hesham Khalil, Sören Auer, Frank Loebe
and Sebastian Dietzold for fruitful discussions and to the anonymous reviewers for
feedback on earlier versions of this paper.

References

1. Alsac, G., Baral, Ch.: Reasoning in description logics using declarative logic programming.
Abstract, ASU Technical Report (2001-2002)

2. Baader, F., Hollunder, B.: Embedding Defaults into Terminological Representation Sys-
tems. Automated Reasoning 14 (1995) 149–180

3. Baader F. et.al.: The Description Logic Handbook. Cambridge University Press, 2003
4. Bassiliades, N. et. al.: A Defeasible Logic Reasoner for the Semantic Web. RuleML (2004)

49-64
5. Bertino E. et. al.: Local Closed-World Assumptions for reasoning about Semantic Web-

data. Proc. of AGP’03 APPIA-GULP-PRODE 2003
6. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation

system. Cognitive Science 9(2) (1985) 171-216
7. Brachman, R.J.: 'I Lied about the Trees' or, Defaults and Definifons in Knowledge Repre-

sentation. AI Magazine 6(3) (1985) 80-93
8. Brewka G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense Cambridge:

Cambridge University Press, 1991
9. Brewka, G.: Logic Programming with Ordered Disjunction. Proc. of AAAI’02, Canada

(2002) 100-105

Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach 391

10. Dionini, F.M. et. al.: AL-log: integrating datalog and description logics. Journal of Intelli-
gent and Cooperative Information Systems 10 (1998) 227-252

11. Eiter, T. et.al.: The DLV system for knowledge representation and reasoning: Infsys Re-
search Report, Austria (2002)

12. Eiter, T., et.al.: Combining Answer Set Programming with Description Logics for the Se-
mantic Web. Proc. of KR’04, Canada (2004) 141-151

13. Gelfond M. and N. Leone: Logic Programming and Knowledge Representation - A-Prolog
perspective , AI 138 (2002) 3-38

14. Grofof, B.N. et. al.: Description Logic Programs: Combining Logic Programs with De-
scription Logic. Porc. of WWW’03 Hungary (2003) 48-57

15. Helbig, H., Gnörlich, C.: Multilayered Extended Semantic Networks as a Language for
Meaning Representation in NLP Systems. In: Gelbukh, A. F. (eds.): Computational Lin-
guistics and Intelligent Text Processing Proceedings of the Third International Conference,
CICLING’02, Mexico (2002) 17-23

16. Heymans, S., Vermeir, D.: A Defeasible Ontology Language. Proc. of ODBASE’02, USA
(2002) 1033-1046

17. Heymans, S., Vermir, D.: Integrating ontology languages and answer set programming,
Proc. of DEXA’03, Czech Republic (2003) 584

18. Levy, A., Rousset, M.: CARIN: A representation language combining Horn rules and de-
scription logics. Proc. of ECAI’96, Hungary (1996) 323-327

19. Lifschitz, V.: Answer set programming and plan generation. AI 138 (2002) 39-54
20. Margolis E., Laurence S.: Concepts and Cognitive Science. In E. Margolis E., Laurence S.

(eds.): Concepts: Core Readings. Cambridge, MA.: Bradford Books/MIT Press, 1999.
21. Margolis E., Laurence S.: Concepts. In Warfield T., Stich S. (eds): The Blackwell Guide to

the Philosophy of Mind. Blackwell. 2003
22. Niemelä, I., Simons, P.: Smodels-an implementation of the stable model and well-founded

semantics for normal logic programs. Proc. Of LPNMR’97, Germany (1997) 420-429
23. Osherson D.N., Smith E.E.: On the adequacy of prototype theory as a theory of concepts.

Cognition 9(1) (1981) 35-58
24. Quantz, J.J., Ryan, M.: Preferential Default Description Logics. KIT-Report 110. Tech-

nische Universitat Berlin (1993)
25. Patel-Schneider, P.F. et. al.: Web ontology language (owl) abstract syntax and semantics.

W3C Recommendation (2004)
26. Reiter, R.: On reasoning by default. Proc. of Theoretical Issues in Natural Language Proc-

essing USA (1978) 210 - 218
27. Rosati, R.: Towards expressive KR systems integrating datalog and description logics: Pre-

liminary report. Proc. of DL’99, Sweden (1999) 160–164
28. Rosch, E., Mervis, C.: Family Resemblances: Studies in the Internal Structure of Catego-

ries. Cognitive Psychology 7 (1975) 573-603
29. Swift, T.: Deduction in ontologies via ASP. Proc. of LPNMR’04, USA (2004) 275-288
30. Wittgenstein, L.: Philosophical Investigations. Blackwell. Oxford. 1953
31. Zhang, J.: Representation of Health Concepts: Cognitive Perspective. Journal of Biomedi-

cal Informatics 35 (2002) 17-24
32. Zadeh, L.: Fuzzy Sets. Inform.control 8 (1965) 338-353

Nonmonotonic Ontological and Rule-Based Reasoning
with Extended Conceptual Logic Programs

Stijn Heymans, Davy Van Nieuwenborgh�, and Dirk Vermeir��

Dept. of Computer Science,
Vrije Universiteit Brussel, VUB,

Pleinlaan 2, B1050 Brussels, Belgium
{sheymans, dvnieuwe, dvermeir}@vub.ac.be

Abstract. We present extended conceptual logic programs (ECLPs), for which
reasoning is decidable and, moreover, can be reduced to finite answer set pro-
gramming. ECLPs are useful to reason with both ontological and rule-based
knowledge, which is illustrated by simulating reasoning in an expressive descrip-
tion logic (DL) equipped with DL-safe rules. Furthermore, ECLPs are more ex-
pressive in the sense that they enable nonmonotonic reasoning, a desirable feature
in locally closed subareas of the Semantic Web.

1 Introduction

Reasoning with both ontological knowledge, in the form of a description logic (DL)[3]
knowledge base, and rule-based knowledge has recently gained in interest in the Se-
mantic Web community. The purpose of adding rules to ontological knowledge is to
have additional expressiveness. E.g., [23] extends a DL knowledge base with DL-safe
rules, i.e. Horn clauses where variables must appear in non-DL-atoms in the body of
rules. DL-safe rules can, e.g., express triangular knowledge not expressible with DLs
alone: uncle(a, c) ← brother(a, b), parent(b, c).

DL-safe rules do not include the negation as failure (naf) operator, and as a con-
sequence, do not cope well with incomplete or dynamically changing knowledge: like
reasoning with DL, reasoning with DL knowledge bases and DL-safe rules is mono-
tonic. However, nonmonotonic reasoning may be useful in applications that involve
well-defined closed subareas of the Semantic Web, as illustrated in the following ex-
ample. Assume a business is setting up its website for processing customer feedback. It
decides to commit to an ontology O which defines that if there are no complaints for a
product, it is a good product.

good product(X) ← not complaint(X)

The business has its own particular business rules, e.g. i : invest(tps, 10K) ←
not good product(tps) saying that if its particular top selling product tps cannot be

� Supported by the FWO.
�� This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 392–407, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Nonmonotonic Ontological and Rule-Based Reasoning 393

shown to be a good product, then the business has to invest 10K in tps . Finally, the
business maintains a repository of dynamically changing knowledge, originating from
user feedback collected on the site, e.g. at a certain time the repository contains R1 =
{complaint(tps) ← } with a complaint for tps .

If the business wants to know whether to invest more in tps it needs to check
O ∪ {i} ∪ R1 |= invest(tps, 10K), i.e. whether the ontology, combined with its own
business rules, and the information repository, demand for an investment or not.

One can use extended conceptual logic programming (ECLP) to express the above
knowledge. Intuitively, any model of O ∪ {i} ∪ R1, must verify complaint(tps), and
thus good product(X) ← not complaint(X) will not trigger and good product(tps)
will be false, which in turn, with rule i, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repository R2 = {complaint(tps) ← ,
good product(tps) ← } containing a survey result saying that tps is a good product,
no matter what complaints of individual users there may be, leads to O ∪ {i} ∪ R2 �|=
invest(tps, 10K), such that no further investments are necessary. Adding knowledge
thus invalidates previous conclusions making reasoning nonmonotonic; similar scenar-
ios can easily be imagined in any environment with dynamically changing knowledge.

In this paper, we formally introduce ECLP programs which consist of two (possi-
bly empty) parts: a conceptual logic program (CLP) capable of expressing conceptual
knowledge, as in e.g. DL knowledge bases, and an arbitrary finite grounded program
which allows to relate constants/individuals in arbitrary ways, enabling e.g. the expres-
sion of triangular knowledge. More specifically, ECLPs can simulate reasoning in the
DL ALCHOQ(�,
) equipped with DL-safe rules. Besides the advantage of uniform
syntax and semantics that ECLPs have over DLs equipped with DL-safe rules1, ECLPs
are capable, as indicated above, of nonmonotonic reasoning as well.

Furthermore, we will show that reasoning with ECLPs can be reduced to finite an-
swer set programming by virtue of the forest-model property and the bounded finite
model property. The reduction to finite ASP makes reasoning with ECLPs amenable
for existing answer set solvers such as DLV[21] or SMODELS[25].

The remainder of the paper is organized as follows. After recalling the open an-
swer set semantics in Section 2, ECLPs are formally introduced in Section 3. Sec-
tion 4 describes the simulation of an expressive class of DLs equipped with DL-safe
rules. Section 5 highlights some related work while Section 6 contains conclusions and
directions for further research. Due to space restrictions all proofs have been omit-
ted; they can be found at http://tinf2.vub.ac.be/∼sheymans/tech/
oasp-sw.ps.gz.

2 Answer Set Programming with Open Domains

Answer set programming (ASP)[5] is a logic programming paradigm where knowl-
edge is represented by programs and answer sets provide for the intended seman-

1 SWRL[20] also combines ontologies and rules in one uniform syntax and semantics; reasoning
with it is, however, undecidable.

394 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

tics of that knowledge. However, in certain cases ASP fails to capture the intention
of the program. Take the program consisting of the rules bad(X) ← not good(X)
and good(heather) ← , where one is bad if not good and Heather is a good per-
son. In ASP a program is grounded with the constants in the program, resulting in
bad(heather) ← not good(heather) and good(heather) ← , after which the unique
answer set {good(heather} can be calculated. One would thus wrongfully conclude
that there can never be bad individuals. In [17], this was solved by considering open
domains, i.e. the program may be grounded with any superset of the present constants:
grounding with a universe {x , heather} yields bad(heather) ← not good(heather);
bad(x) ← not good(x) and good(heather) ← , which has an answer set
{bad(x), good(heather)}, correctly capturing the intended meaning of the program.

We briefly recall the open answer set semantics from [17]. We call individual names
constants and write them as lowercase letters, variables will be denoted with uppercase
letters. Variables and constants are terms. Atoms are of the form a(t) or f(t1, t2), with
a a unary predicate, f a binary predicate, and t, t1 and t2 terms. A literal is an atom or
an atom preceded by ¬. An extended literal is a literal l or a naf-literal not l where l is a
literal. We will often denote a set of unary extended literals {a1(s), . . . , an(s)}, ranging
over a common term s, as α(s) with α = {a1, . . . , an}. A set of binary extended literals
can be similarly denoted as α(s, t). The positive part of a set of extended literals β is
β+ = {l | l ∈ β, l literal}, the negative part is β− = {l | not l ∈ β}. Furthermore, we
assume the existence of a binary predicate �=, with the usual interpretation.

A disjunctive logic program (DLP) is a finite set of rules r : α ← β where α and β
are finite sets of extended literals and |α+| ≤ 1. If α = ∅, the rule is called a constraint.
The set α is the head of the rule r, denoted head(r), while β is called the body, denoted
body(r). As usual, atoms, (extended) literals, rules, and programs that do not contain
variables are ground. For a set X of literals, ¬X = {¬l |l ∈ X}, where, by definition,
¬¬a ≡ a. A set of ground literals X is consistent if X ∩ ¬X = ∅.

For a DLP P , let HP be the constants in P and vars(P) its variables. A (possibly
infinite) non-empty set of constants H such that HP ⊆ H, is called a universe for P .
We call PH the grounded program obtained from P by substituting every variable in
P by every possible constant in H. Let LP be the set of literals that can be formed
from a grounded program P , preds(P) are the predicates2 in P , and upreds(P) and
bpreds(P) the unary and binary predicates respectively.

An interpretation I of a grounded P is any consistent subset of LP . For a ground
literal l, we write I |= l, if l ∈ I , which extends to I |= not l if I �|= l, and, for a set of
ground extended literals X , I |= X if I |= x for every x ∈ X . A ground rule r : α ← β
is satisfied w.r.t. I , denoted I |= r, if I |= l for some l ∈ α whenever I |= β, i.e. r
is applied whenever it is applicable. A ground constraint ← β is satisfied w.r.t. I if
I �|= β. For a simple grounded program P (i.e. a program without not), I is a model of
P if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal model
of P . For grounded programs P containing not, the GL-reduct[13] w.r.t. I is defined as
P I , where P I contains α+ ← β+ for α ← β in P , β− ∩ I = ∅ and α− ⊆ I . I is an
answer set of a grounded P if I is an answer set of P I . An open interpretation of P

2 When speaking of predicates, also the (classically) negated predicates are assumed.

Nonmonotonic Ontological and Rule-Based Reasoning 395

is a pair (H, I) where H is a universe for P and I is an interpretation of PH . An open
answer set of P is then an open interpretation (H,M) with M an answer set of PH . In
the following, we will usually omit the “open” qualifier. We express the motivation of a
literal in an answer set formally by means of the operator T that computes the closure
of a set of literals w.r.t. a GL-reduct. For a DLP P and an interpretation (H,M) of
P , TP M

H
: LP M

H
→ LP M

H
is defined as3 T (B) = B ∪ {a|a ← β ∈ PM

H ∧ β ⊆ B}.

Additionally, we have T 0(B) = B, and Tn+1(B) = T (Tn(B)). More detail than the
T -operator is provided by the support of a literal a in an answer set (H,M), which
explicitly indicates the literals that support the presence of a in the answer set. For the
least n such that a ∈ Tn, we inductively define the support Sk(a) on a certain level
1 ≤ k ≤ n as Sn(a) = {a} and Sk(a) = {β | b ← β ∈ PM

H , β ⊆ T k, b ∈ Sk+1(a)},
1 ≤ k < n. A support for a is then S (a) = ∪n

k=1Sk(a).
Take, for example, the program P with a rule p(X) ∨ not p(X) ← . Grounding

w.r.t. to a universe {x, y} yields the program P{x,y} consisting of p(x) ∨ not p(x) ←
and p(y) ∨ not p(y) ← . We have that {p(x)} is an answer set of P{x,y}, since
the GL-reduct is p(x) ← which has only one minimal model: {p(x)} itself. Thus
({x, y}, {p(x)}) is an answer set of P . Actually, a rule such as in P allows one to
freely introduce p-literals (provided no other rules constrain this). We call a predicate
p free if p(X , Y) ∨ not p(X , Y) ← or p(X) ∨ not p(X) ← is in the program,
for a binary or unary p respectively. Similarly, a ground literal l is free if we have
l ∨ not l ← .

A program P is consistent if it has an answer set. For a unary predicate p, appearing
in P , p is satisfiable w.r.t. P if there exists an answer set (H,M) of P such that p(a) ∈
M for some a ∈ H. For a ground literal α, we have P |= α if for all answer sets
(H,M) of P , α ∈ M . Checking whether P |= α is called query answering. We can
reduce query answering to consistency checking, i.e. P |= α iff P ∪ {not α ← }
is not consistent. Consistency checking can be reduced to satisfiability checking, by
introducing some new free predicate p.

Finally, note that satisfiability checking for DLPs under the open answer set se-
mantics is undecidable since the undecidable domino problem[4] can be reduced to
it[17].

3 Adding Grounded Rules to Conceptual Logic Programs

In [17], the syntax of DLPs was restricted in order to regain decidability of reasoning
and to enable a reduction of reasoning to normal answer set programming, resulting in
conceptual logic programs (CLPs). We recall the intuition and definition of CLPs.

Consider a program P1 defining when one cheats one’s spouse, i.e. if one is married
to someone that is different than the person one is dating. We have a specialized rule
saying when one is cheating one’s spouse with the spouse’s friend Jane. Furthermore,
some justice is introduced by a constraint ensuring that cheaters will in turn be cheated.

3 We omit the subscript if it is clear from the context and, furthermore, we will usually write T
instead of T (∅).

396 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

marr

x

x1

{cheats, cheats with jane}

{cheats}

{cheats}

{cheats}

jane1

marr

marr

dates

dates

jane

jane2

jane21 jane22

dates

friend

Fig. 1. Forest-Model

cheats(X) ← marr(X , Y1), dates(X , Y2), Y1 �= Y2

cheats with jane(X) ← marr(X , Y), friend(Y , jane), dates(X , jane), Y �= jane
← cheats(X), dates(X , Y), not marr(X , Y), not cheats(Y)

with marr , friend and dates free predicates. An (infinite) answer set of this program
that satisfies cheats with jane is depicted in Figure 1, where e.g. cheats in the label
of x indicates that cheats(x) is in the answer set. One sees that x cheats his spouse
with Jane since x dates Jane but is married to x1. Furthermore, by the constraint, we
must have that Jane is also a cheater, and thus, by minimality of answer sets, we must
have that Jane is married to some jane1 and dates jane2, who in turn must be cheating,
resulting in an infinite answer set4. Formally, a CLP is a DLP consisting of the following
types of rules[17]:

– free rules l ∨ not l ← for a literal l,
– unary rules a(s) ← β(s),∪mγm(s, tm),∪mδm(tm),∪i �=j ti �= tj , such that, if

γm �= ∅ then γ+
m �= ∅, and, in case tm is a variable: if δm �= ∅ then γm �= ∅,

– binary rules f (s, t) ← β(s), γ(s, t), δ(t) with γ+ �= ∅ if t is a variable,
– constraints ← a(s).

where i and j are within the range of m. Note that the example program P1 is not
directly a CLP due to the presence of the literals marr(X , Y), friend(Y , jane) in
the second rule where jane is not directly connected to X , as is required for unary
rules. However, we can easily rewrite it as a CLP rule by replacing friend(Y , jane) by
some a(Y) and adding the unary rule a(Y) ← friend(Y , jane). In general, programs
where the rules have a tree-like body can be easily rewritten as CLPs. Although CLPs
allow only constraints of the very simple form ← a(s) we can easily reduce more
complicated constraints ← β to a CLP rule by introducing the unary rule a(s) ← β
and ← a(s).

CLPs were designed to ensure the forest-model property (and to a lesser extent the
bounded finite model property, cfr. infra). This forest-model property ensures that if a
CLP has an answer set where a certain unary predicate is satisfied, then there must be an

4 We represent the n successors of a node x, as x1, . . . , xn.

Nonmonotonic Ontological and Rule-Based Reasoning 397

answer set that has the form of a forest such that the predicate is true at the root of a tree
in such a forest. E.g., the answer set in Figure 1 consists of a tree with an anonymous5

element x as root and the constant jane as the root of another tree. It appears that
the clean forest structure (i.e. disjoint trees) is perturbed by the connections between
x, x1 and jane . However, it is easy to see that we can encode e.g. dates(x , jane) as
datesa(x) and thus keep datesa in the label of x. Since there are only a finite number of
constants in a program, the labels of the trees are also finite. In effect, a forest-model is
a set of trees, with arbitrary connections from elements to constants. As a consequence,
the connections between constants, i.e. the roots of the trees, may form an arbitrary
graph.

A particular forest-model constructed from an answer set of a program with n con-
stants contains n + 1 trees, i.e. one for each constant (which is the root of that tree) and
an additional one for some anonymous element that contains the predicate of which
satisfiability is being checked.

The rules in a CLP make sure that the forest-model property is valid for CLPs[17].
E.g. one cannot have p(X) ← not f (X , Y), since an answer set ({x, y}, {p(x)}) can-
not be transformed into a tree: we have nothing to connect x with y. Similarly, we
cannot have f (X , Y) ← p(X) since, for p(x), this would introduce arbitrary connec-
tions between x and all other domain elements y, and thus would clearly violate the
tree structure. However, it is allowed to have p(X) ← q(a) for a constant a, since,
intuitively, a is a root of its own tree.

As the tree-like rules impose a rather strict format upon the representation of knowl-
edge, we now extend CLPs by allowing for arbitrary ground DLP rules.

Definition 1. An extended conceptual logic program (ECLP) P is a program Q ∪ R,
where Q is a CLP and R is a finite ground DLP. We denote Q with clp(P) and R with
e(P).

For example, in addition to P1, we may have a rule representing that if Leo is mar-
ried to Jane, Jane dates Felix, and Leo himself is not cheating, then Leo dislikes Fe-
lix: dislikes(leo, felix) ← marr(leo, jane), dates(jane, felix), not cheats(leo). This
ground rule does not have a tree structure, it relates the three constants in an arbitrary
graph-like manner. Note that the ground rules can be full-fledged DLP, i.e. with nega-
tion as failure. Moreover, predicates in e(P) may be defined in the CLP clp(P), as is
the case for marr , dates and cheats . Vice versa, we may have predicates appearing in
the CLP part that are defined in the ground rule part, e.g. dislikes could appear in the
CLP part as a dislikes(X , Y) literal.

ECLPs still have the forest-model property, since, intuitively, graph-like connections
between constants are allowed in a forest, which is all the ground part e(P) of an ECLP
P can ever introduce.

Theorem 1. Extended conceptual logic programs have the forest-model property.

A forest-model of the example ECLP would be the forest-model of Figure 1 with ad-
ditionally {dislikes(leo, felix), marr(leo, jane), dates(jane, felix)}. As for CLPs in

5 I.e. a domain element not appearing as a constant in the program.

398 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

A

CC

A A

B D

B

B

a1

a

a11

x2x1

x B

Fig. 2. Cutting a Forest-Model

[17], we would like to establish a bounded finite model property for ECLPs. This prop-
erty enables the transformation of an (infinite) answer set into a finite one, and, more
specifically, it establishes a bound on the number of domain elements that are needed for
such a construction. Moreover, this bound depends solely on the program at hand, such
that, by introducing a sufficient number of domain elements, we can simulate reasoning
with ECLPs by normal finite answer set programming.

We sketch the cutting technique from [17] to transform an infinite forest-model into
a finite answer set. For every path in a tree in such a forest-model, and every first pair
of nodes with equal labels on such a path from the root, we cut away the tree below the
second node in the pair and duplicate the outgoing edges of the first node in the second
node in the pair. Intuitively, once we encounter on a path a label (a “state”) we already
encountered, we act as if in the first occurrence of the label instead of going down the
tree thereby ignoring the infinite part. For example, Figure 2 shows the cutting of the
forest-model on the left, resulting in the finite answer set on the right. Since x1 and x2
have the same label A as x we replace all outgoing edges from x1 and x2 with the out-
going edges from x: we have connections from x to x1, from x to x2, and from x to the
constant a. Thus we introduce for xi, i ∈ {1, 2} connections from xi to x1, from xi to
x2, and from xi to a. The tree with constant root is cut in a similar way, but note that one
only starts considering duplicate pairs from below the root and thus (a1, a11) is the first
pair with duplicate labels to consider. This because it might be that a rule t(a) ← intro-
duces t in the label of a, however, such a rule cannot be used to motivate the presence
of t lower in the tree. Below the root, we would not have this problem as t there would
be motivated by a rule with head t(X), which can be matched against any lower node.

Taking into account that forest-models have a finite bounded branching, and that on
every path we must always encounter duplicate labels after a bounded depth, together
with the fact that there are n + 1 trees, for n constants, leads to a finite bound k of
needed domain elements, which can be read from the program: the branching can be
determined from the branching of the unary rules, and the number of possible labels de-
pends on the number of unary predicates in the program. The number of different labels
is exponential in the size of the program such that, taking into account the branching of
the program, k is in general double exponential.

However, one has to be cautious with this cutting, e.g. the program with rules
a(X) ← f (X , Y), a(Y), and a(X) ← b(X) with b and f free, has a tree-model6

6 A tree-model is a forest-model containing only one tree.

Nonmonotonic Ontological and Rule-Based Reasoning 399

{a(x), f(x, x1), a(x1), f(x1, x11), a(x11), b(x11)}. If one cuts at the first occurrence
of a duplicate label, which would be at x1 in this case, then a(x) would no longer have
a valid support - b(x11) has been cut away - and thus the resulting model would not
be minimal. Note that cutting is somewhat similar in spirit to blocking in description
logics[3], however, the minimality of answer sets demands some extra precautions, as
indicated above.

This problem was solved in [17] for CLPs by enforcing the local model property:
forest-models of a CLP should be locally supported, i.e. for every literal q(x) (f(x, y))
the forest-model can only be motivated by x, one of x’s successors, and/or constants.
This way, when we cut the trees we never remove the support of any higher nodes
in the tree. An extra condition for local supportedness was that a g(xi, a), although it
involves only a successor of x and a constant, cannot be in the support of q(x) (f(x, y))
since upon cutting at xi, g(xi, a) could be removed while it provides support for q(x)
(f(x, y)). In the cheating example we have that the forest-model depicted in Figure 1 is
not locally supported since friend(x1 , jane) is in the support of cheats with jane(x)
- to derive cheats with jane(x) we need friend(x1 , jane).

In the ECLP case, however, where we have an arbitrary ground part, the local model
property of [17] is not sufficient. Take, for example, a rule doesnt care(felix) ←
marr(leo, jane), dates(jane, felix), cheats(leo), where Felix does not care about dat-
ing the married Jane if her husband Leo is cheating as well. Together with the cheats
rule from the cheating example, one has that doesnt care(felix) is in an answer set if
marr(leo, jane), dates(jane, felix),cheats(leo), marr(leo, leo1), and dates(leo, leo2)
for successors leo1 and leo2 of leo are in the answer set. Thus, although the cheats rule
in itself does not violate the local model property, adding a ground rule does so, since
supports may involve also successors of constants which is not allowed according to the
local model property definition for CLPs in [17].

However, cutting of forest-models never removes any successors of constants and,
moreover, a successor of a constant is never considered as a candidate for the second
node in a duplicate pair since, by definition, the root in a constant tree is not taken into
account as a candidate for the first node in a duplicate pair. Thus, we can safely relax
the local model property definition from [17] for ECLPs by also allowing successors
of constants in the support. In the definition below, we use HS(l) to denote the domain
elements in S (l), the support of l.

Definition 2. A forest-model (H,M) of an ECLP P is locally supported if
∀l = q(x) ∈ M ∨ l = f(x, y) ∈ M ·
(HS(l) ⊆ {x, xi | xi successor of x} ∪ {a, ai | a ∈ HP , ai successor of a})∧
(∀f(z, a) ∈ S (l), a ∈ HP · z �= xi), p ∈ upreds(P) is locally satisfiable w.r.t. P if
there is a locally supported forest-model, a local model for short, (H,M) such that
p(ε) ∈ M for a root ε in H. An ECLP P has the local model property if the following
holds: if p ∈ upreds(P) is satisfiable w.r.t. P then it is locally satisfiable.

Thus, a forest-model is locally supported if the support for every q(x) or f(x, y)
involves only x itself, successors of x, constants and/or successors of constants. ECLPs
with the local model property then have the desired bounded finite model property, i.e.
if a (unary) predicate p is satisfiable w.r.t. an ECLP P then it is satisfiable by a finite
answer set (H,M) with |H| < k where k is solely determined by the program P .

400 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Theorem 2. Let P be an ECLP with the local model property. Then, P has the bounded
finite model property.

Thanks to this property we can reduce reasoning with ECLPs to normal answer set
programming by introducing a sufficiently large bound.

Theorem 3. Let P be an ECLP with the local model property. p ∈ upreds(P) is sat-
isfiable w.r.t. P iff there is an answer set M of ψ(P) containing a p(xi), 1 ≤ i ≤ k,
where k is as derived above and ψ(P) = P ∪ {cte(xi) ← | 1 ≤ i ≤ k}.

The local model property characterizes those ECLPs for which reasoning can be re-
duced to normal finite answer set programming. However, it is a semantical characteri-
zation, which makes it non-trivial to recognize ECLPs satisfying this property. We now
identify a class of ECLPs, based on their syntactic structure, that have the local model
property.

Local CLPs are CLPs where each unary a(s) ← α(s), γm(s, tm), βm(tm), ti �= tj
and each binary f (s, t) ← α(s), γ(s, t), β(t) is such that every b ∈ β+

(m) is either a
free predicate, or if t(m) is a constant, b(t(m)) is a free literal, or for every r : b(u) ←
body(r), body(r)+ = ∅. Intuitively, to prove an a(s) (f(s, t)) one needs to descend at
most one level in the tree, where one can locally prove a(s) (f(s, t)), i.e. without the
need to go further down the tree. Of course, in the level below s one may need to check
more literals which could amount going further down the tree, but whilst doing this one
does not need to remember which literals need to be proven above in the tree - in a way
a local CLP is memoryless. In [17] local CLPs were shown to have the local model
property.

We then define local ECLPs as the union of a local CLP and an arbitrary ground
DLP.

Definition 3. A local ECLP P is an ECLP where clp(P) is local.

By the extension of the local model property of CLPs to accommodate for ECLPs,
where also successors of constants are allowed in the local support, local ECLPs have
the local model property, i.e. the arbitrary ground rules have no influence on the locality.

Theorem 4. Local ECLPs have the local model property.

Furthermore, adding a finite number of ground rules to a CLP does not augment the
complexity of reasoning.

Theorem 5. Let P be an ECLP with the local model property. Satisfiability checking
w.r.t. P is in 3-NEXPTIME.

Indeed, we have that the bound k of needed domain elements to simulate reasoning
w.r.t. an ECLP P with finite answer set programming is double exponential in the size
of P , and thus the size of the translated program ψ(P) (as in Theorem 3) is double
exponential in the size of P . Since satisfiability checking w.r.t. ψ(P) is in NEXPTIME

w.r.t. the size of the program[9, 5], we have a 3-NEXPTIME bound w.r.t. the size of the
original ECLP.

Nonmonotonic Ontological and Rule-Based Reasoning 401

4 Nonmonotonic Ontological and Rule-Based Reasoning with
Extended Conceptual Logic Programs

We consider the DL ALCHOQ(�,
) which is the basic DL ALC with support for
role hierarchies (H), nominals/individuals (O), qualified number restrictions (Q), and
conjunction (
) and disjunction (�) of roles. ALCHOQ(�,
) is a DL related to the
ontology language OWL DL[7], extending it in certain aspects and restricting it in oth-
ers: OWL DL is a notational variant of the DL SHOIN (D)[18], which adds transitive
roles (turning ALC into S), inverse roles (I), and data types (D) to ALCHOQ(�,
)
while removing support for role constructors and qualified number restrictions from it,
and allowing only unqualified number restrictions (N).

Formally, the syntax of ALCHOQ(�,
) concept and role expressions can be de-
fined as in Table 1 for concept expressions D, E, concept names A, role expressions
R, S, role names Q, and nominals o. The semantics is given by a tuple I = (ΔI , ·I)
where ΔI is a non-empty set, representing the set of available domain elements, and
·I is an interpretation function such that AI ⊆ ΔI and QI ⊆ ΔI × ΔI for concept
names A and role names Q, and every nominal o is mapped to some oI ∈ ΔI . For com-
plex concept expressions, ·I is defined as in Table 1, where we additionally assume the

Table 1. Syntax and Semantics ALCHOQ(�,
)

concept names AI ⊆ ΔI

role names QI ⊆ ΔI × ΔI

individuals {o}I = {oI}
conjunction of concepts (D
 E)I = DI ∩ EI

disjunction of concepts (D � E)I = DI ∪ EI

conjunction of roles (R
 S)I = RI ∩ SI

disjunction of roles (R � S)I = RI ∪ SI

existential restriction (∃R.D)I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI}
universal restriction (∀R.D)I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI}

qualified number restriction (≤ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≤ n}
(≥ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≥ n}

unique name assumption for nominals, i.e. if o1 �= o2, then oI1 �= oI2 . Note that OWL
does not have the unique name assumption[26], and thus different individuals can point
to the same resource. However, the open answer set semantics gives an Herbrand inter-
pretation to constants, i.e. constants are interpreted as themselves, and for consistency
we assume that also DL nominals are interpreted this way. Thus, from a Semantic Web
point of view, we assume all individuals are URI’s that point to a unique resource.

A DL knowledge base consists of terminological axioms C1 � C2 and role axioms
R1 � R2 for concept expressions C1 and C2, and role expressions R1 and R2. Axioms
express a subset relation: an interpretation I satisfies an axiom C1 � C2 (R1 � R2) if
CI

1 ⊆ CI
2 (RI

1 ⊆ RI
2). An interpretation is a model of a knowledge base Σ if it satisfies

every axiom in Σ. A concept C is satisfiable w.r.t. Σ if there is a model I of Σ such
that CI �= ∅.

402 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

The ontology layer for the Semantic Web is becoming a reality with languages such
as OWL DL. Consequently, the rule layer, which provides additional inferencing ca-
pabilities on top of DL reasoning, is gaining interest in the Semantic Web community.
For example, in [23], integrated reasoning of DLs with DL-safe rules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication between the
DL knowledge base and the rules is restricted; they enable one to express knowledge
inexpressible with DLs alone, e.g. triangular knowledge such as[23]

BadChild(X) ← Grandchild(X), parent(X , Y), parent(Z , Y), hates(X , Z)

saying that a grandchild that hates its sibling is a bad child.
We introduce DL-safe rules as in [23]. For a DL knowledge base Σ let NC and NR

be the concept and role names in Σ and NP is a set of predicate symbols such that
NC ∪ NR ⊆ NP . A DL-atom is an atom of the form A(s) or R(s, t) for A ∈ NC and
R ∈ NR. A DL-safe rule is a rule of the form a ← b1 , . . . , bn where a, bi are atoms
and every variable in the rule appears in a non-DL-atom in the rule body. A DL-safe
program is a finite set of DL-safe rules. Let cts(Σ,P) be the set of nominals in Σ and
constants in P .

The semantics of the combined (Σ,P) for a knowledge base Σ and a DL-safe
program P is given by interpreting Σ as a first-order theory π(Σ), see e.g. [8], every
DL-safe rule a ← b1 , . . . , bn as the clause a∨¬b1∨ . . .∨¬bn, and then considering the
first-order interpretation of π(Σ) ∪ P . The main reasoning procedure in [23] is query
answering, i.e. checking whether a ground atom α is true in every first-order model of
π(Σ) ∪ P , denoted as (Σ,P) |= α.

We provide an alternative semantics based on DL interpretations as in [19] rather
than on first-order interpretations. However, both semantics are compatible as indicated
in [23]. For (Σ,P) and an interpretation I = (ΔI , ·I) of Σ we extend ·I for NP

and HP such that for unary predicates p ∈ NP , pI ⊆ ΔI , for binary predicates f ∈
NP , fI ⊆ ΔI × ΔI , and oI ∈ ΔI for o ∈ HP ; such an extended interpretation is,
by definition, an interpretation of (Σ,P). Furthermore, we impose the unique name
assumption such that if o1 �= o2, then oI1 �= oI2 , for elements o ∈ cts(Σ,P). A binding
for an interpretation I of (Σ,P) is a function σ : vars(P) ∪ cts(Σ,P) → ΔI with
σ(o) = oI for o ∈ cts(Σ,P); it maps constants/nominals and variables to domain
elements. A unary atom a(s) is then true w.r.t. σ and I if σ(s) ∈ aI , and a binary
atom f(s, t) is true w.r.t. σ and I if (σ(s), σ(t)) ∈ fI . A rule r is satisfied by I iff for
every binding σ w.r.t. I that makes the atoms in the body true, the head is also true. An
interpretation of (Σ,P) is a model if it is a model of Σ and it satisfies every rule in P .
Query answering (Σ,P) |= α amounts then to checking whether for every (DL) model
I of (Σ,P), the ground atom α is true in I.

In [17], ALCHOQ(�,
) satisfiability checking is reduced to CLP satisfiability
checking. Here we reduce query answering w.r.t. ALCHOQ(�,
) extended with DL-
safe rules to query answering w.r.t. ECLPs. We first provide some intuition with an
example. Take a knowledge base Σ = {∃manuf in.Co
 ∃has price � Product},
expressing that if something is manufactured in some country and it has a price then
it is a product. We have some facts in a DL-safe program P about the world we are
considering:

Nonmonotonic Ontological and Rule-Based Reasoning 403

is product of (p, c1) ← manuf in(p, japan) ←
is product of (p, c2) ← Co(japan) ←

saying that p is a product of company c1 and company c2, that p is manufactured
in Japan and that Japan is a country. Those facts are vacuously DL-safe since they
do not contain variables. Additionally, we have a DL-safe rule in P saying that if
a product is a product of 2 companies then those companies are competitors7, r1 :
competitors(C1 , C2) ← Product(P), is product of (P , C1), is product of (P , C2).
Note that this is indeed a DL-safe rule since every variable occurs in a is product of
atom, which is a non-DL-atom in the body of the rule. The only DL-atom in the rule is
Product(P). A possible model I of (Σ,P) would be I = ({japan, c1 , c2 , p, x}, ·I)8

with ·I : CoI = {japan}, ProductI = {p}, manuf inI = {(p, japan)}, has priceI

= {(p, x)}, is product of I = {(p, c1), (p, c2)} and competitorsI = {(c1 , c2)}.
We translate (Σ,P) now to an ECLP: the DL axiom is translated to the constraint

← (∃manuf in.Co
 ∃has price)(X), not Product(X), where we introduce predi-
cates corresponding to the concept expressions. Furthermore, we define these predicates
by the rules

(∃manuf in.Co
 ∃has price)(X) ← (∃manuf in.Co)(X), (∃has price)(X)
(∃manuf in.Co)(X) ← manuf in(X , Y), Co(Y)

(∃has price)(X) ← has price(X , Y)

such that if an answer set contains (∃manuf in.Co
 ∃has price)(x), then, by mini-
mality of answer sets and the first rule, (∃manuf in.Co)(x) and (∃has price)(x) are
in the answer set, and, by the second and third rule, there must be a y1 and a y2 such
that manuf in(x , y1), Co(y1), and has price(x , y2) are in the answer set. The op-
posite direction is also valid, i.e. if manuf in(x , y1), Co(y1), and has price(x , y2)
are in the answer set then (∃manuf in.Co
 ∃has price)(x) is in the answer set since
rules need to be satisfied. This kind of behavior exactly mimics the DL semantics of
the corresponding constructs. Furthermore, we introduce the concept and role names
by means of free rules, indicating that a domain element (or a pair of domain elements)
is of a certain type or not.

Product(X) ∨ not Product(X) ←
Co(X) ∨ not Co(X) ←

manuf in(X , Y) ∨ not manuf in(X , Y) ←
has price(X , Y) ∨ not has price(X , Y) ←

This concludes the CLP part of the translation of (Σ,P). The ground DLP part consists
of the same facts as in the DL-safe part; it also contains the grounding of the rule r1 in
P with constants {japan, p, c1 , c2}, e.g. the rule

r2 : competitors(c1 , c2) ← Product(p), is product of (p, c1), is product of (p, c2)

7 Actually, to correspond entirely with the desired semantics, we would need to indicate that C1

and C2 are different companies. This seems to be not possible with the DL-safe rules in [23],
however, it is with ECLPs using �=.

8 We take oI = o, o ∈ cts(Σ, P), for ease of notation.

404 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

Since DL-safe rules have a first-order interpretation one may have that (c1, c2) ∈
competitorsI for a model I of (Σ,P) without any justification in I, i.e. the body
of r1 in P does not need to be satisfied in order to have (c1, c2) ∈ competitorsI .
The answer set semantics however only deduces competitors(c1 , c2) in an answer
set if e.g. the body of r2 is satisfied in that answer set, since otherwise the answer
set would not be minimal (one could omit competitors(c1 , c2) and still have an an-
swer set).

To solve this, we introduce for each head a of a rule in the ground DLP part, a free
rule a ∨ not a ← , e.g. competitor(c1 , c2) ∨ not competitor(c1 , c2) ← such that
one has always a motivation for competitor(c1 , c2), mimicking the first-order seman-
tics.

We refer to [17] for the definition of the closure clos(Σ) of a ALCHOQ(�,
)
knowledge base Σ, but basically, for a concept expression D in Σ it includes the
subconcepts of D. Formally, we define the CLP Φ1(Σ,P) for a ALCHOQ(�,
)
knowledge base Σ and a DL-safe program P as the program containing for every con-
cept expression D ∈ clos(Σ) the rules in Table 2. Furthermore, for every concept

Table 2. CLP Translation Φ1(Σ, P)

¬D(X) ← not D(X) D
 E(X) ← D(X), E(X)
D � E(X) ← D(X) D � E(X) ← E(X)
∃R.D(X) ← R(X, Y), D(Y) ∀R.D(X) ← not ∃R.¬D(X)

R � S(X, Y) ← R(X, Y) R
 S(X, Y) ← R(X, Y), S(X, Y)
R � S(X, Y) ← S(X, Y) (≤ n R.D)(X) ← not (≥ n + 1 R.D)(X)

(≥ n R.D)(X) ← R(X, Y1), . . . , R(X, Yn), D(Y1), . . . , D(Yn), Y1 �= Y2, . . .

name A and role name Q in Σ, we add the free rules A(X) ∨ not A(X) ← and
R(X , Y) ∨ not R(X , Y) ← . Nominals o in Σ are handled by introducing predicates
{o} with facts {o}(o) ← in Φ1(Σ,P), such that we can only have that {o}(x) is in an
answer set if x = o. Φ1(Σ,P) is not a local ECLP, but due to the fact that the body of a
rule becomes structurally smaller one can transform it to a local ECLP while preserving
satisfiability[17].

We define Φ2(Σ,P) as the ground DLP Pcts(Σ,P), i.e. P grounded with all con-
stants and nominals in Σ and P , together with free rules head(r) ∨ not head(r) ← for
each r ∈ Pcts(Σ,P).

Theorem 6. For an ALCHOQ(�,
) knowledge base Σ and a DL-safe program P ,
we have (Σ,P) |= α iff Φ1(Σ,P) ∪ Φ2(Σ,P) |= α.

In [23] the SHOIN (D) DL is considered instead of ALCHOQ(�,
), which extends
and at the same time restricts the type of allowed constructors. DL-safe rules allow for
variables, however, this does not make them more expressive than ground DLP pro-
grams: [23] proves that (Σ,P) |= α iff (Σ,P g) |= α where P g is the grounding of P
w.r.t. constants and nominals in (Σ,P). Moreover, using ECLPs instead of a DL knowl-
edge base with DL-safe rules on top has the further advantage of nonmonotonicity by

Nonmonotonic Ontological and Rule-Based Reasoning 405

means of negation as failure in both the CLP part and the grounded DLP part, whereas
both DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and thus do
not allow for negation as failure).

5 Related Work

We highlight some of the current research trends on the application of nonmonotonicity
to the Semantic Web and refer the reader for further related work on the combination of
(not necessarily nonmonotonic) rules and ontologies to [17].

In [2], one builds a nonmonotonic rule system on top of the ontology language
DAML+OIL[6], a predecessor of OWL. More specifically, they use defeasible logic[24]
to express rule-based knowledge and argue its use for E-commerce applications on the
Semantic Web. Another approach combining DAML+OIL with rules can be found in
[15], where situated courteous logic programs in the rule markup language RuleML[1]
provide for the nonmonotonic rule system.

[10] combines the expressive SHOIN (D), i.e. OWL DL, with ASP reasoning by
considering the DL knowledge base as a black box that can be queried from the rules.
Moreover, inferences made by rules can serve as input to the DL knowledge base as
well, leading to a bidirectional flow of information. A disadvantage of this approach, as
was remarked in [23], is that, since one considers only consequences of the DL knowl-
edge base, i.e. atoms that are true in all models, some more fine-grained inferences will
not be made by the rules. Since reasoning with CLPs can be reduced to finite ASP, it
can be trivially reduced to the approach in [10] with an empty DL knowledge base. In
[11] the approach of [10] was adapted for the well-founded semantics instead of the
answer set semantics.

[14] explains how reasoning with SWRL[20], i.e. OWL extended with Datalog
in RuleML, can be done by iteratively calling the DL reasoner RACER[16] and the
rule-based reasoner Jess[12], each feeding the other with the inferences it made. Since
SWRL is undecidable, and such an iterative procedure is thus incomplete, it shows that
intractable worst-case complexity (or even undecidability) should not hold one back to
device practical and useful combined reasoners. A similar iterative angle is taken in
[22] where SWRL is extended with negation as failure and equipped with an answer set
semantics, resulting in a nonmonotonic but undecidable system.

6 Conclusions and Directions for Further Research

We extended CLPs with a finite set of arbitrary ground DLP rules, and showed that
reasoning with the resulting ECLPs can be reduced to finite answer set programming.
We established an upper complexity bound and simulated reasoning in a DL equipped
with DL-safe rules.

The upper 3-NEXPTIME bound for reasoning with ECLPs is rather bad, however,
encouraged by practical algorithms for highly intractable DL algorithms, we believe
that, using heuristics, one can also implement practical reasoners for ECLPs. This is
subject for further research.

406 S. Heymans, D. Van Nieuwenborgh, and D. Vermeir

References

1. The Rule Markup Initiative. http://www.ruleml.org.
2. G. Antoniou. A Nonmonotonic Rule System using Ontologies. CEUR Proceedings,

2002.
3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description

Logic Handbook. Cambridge University Press, 2003.
4. F. Baader and U. Sattler. Number Restrictions on Complex Roles in Description logics. In

Proc. of KR-96, pages 328–339, 1996.
5. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge Press, 2003.
6. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not Enough. In Proc. of the First

Semantic Web Working Symposium (SWWS’01), pages 151–159. CEUR, 2001.
7. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.

Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2004.

8. A. Borgida. On the Relative Expressiveness of Description Logics and Predicate Logics.
Artificial Intelligence, 82(1-2):353–367, 1996.

9. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of
Logic Programming. ACM Comput. Surv., 33(3):374–425, 2001.

10. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with DLs for the Semantic Web. In Proc. of KR 2004, pages 141–151, 2004.

11. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. In Proc. of RuleML 2004, number 3323 in
LNCS, pages 81–97. Springer, 2004.

12. E.J. Friendman-Hill. Jess homepage. http://herzberg.ca.sandia.gov/jess/.
13. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.

of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.
14. C. Golbreich. Combining Rule and Ontology Reasoners for the Semantic Web. In Proc. of

RuleML 2004, number 3323 in LNCS, pages 6–22. Springer, 2004.
15. B. N. Grosof and T. C. Poon. SweetDeal: Representing Agent Contracts with Exceptions

using XML Rules, Ontologies, and Process Descriptions. In Proc. of WWW 2003, pages
340–349. ACM Press, 2003.

16. V. Haarslev and R. Moller. Description of the RACER System and its Applications. In Proc.
of Description Logics 2001, 2001.

17. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web Reasoning with Con-
ceptual Logic Programs. In Proc. of RuleML 2004, number 3323 in LNCS, pages 113–127.
Springer, 2004.

18. I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfi-
ability. J. of Web Semantics, 2004. To Appear.

19. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In Proc. of
WWW 2004. ACM, 2004.

20. I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

21. N. Leone, W. Faber, and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/
proj/dlv/.

22. J. Mei, S. Liu, A. Yue, and Z. Lin. An Extension to OWL with General Rules. In Proc. of
RuleML 2004, number 3323 in LNCS, pages 6–22. Springer, 2004.

Nonmonotonic Ontological and Rule-Based Reasoning 407

23. Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with Rules. In
Proc. of ISWC 2004, number 3298 in LNCS, pages 549–563. Springer, 2004.

24. D. Nute. Defeasible Logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 3), pages 353–
395. Clarendon Press, 1994.

25. P. Simons. Smodels homepage. http://www.tcs.hut.fi/Software/smodels/.
26. M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide.

http://www.w3.org/TR/owl-guide/, 2004.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 408–422, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Product Information Meta-search Framework for
Electronic Commerce Through Ontology Mapping

Wooju Kim1, Dae Woo Choi2, and Sangun Park3

1, 2Department of Information Industrial Engineering, Yonsei University,
134 Shin-Chon Dong, Seoul 120-749, Korea

wkim@yonsei.ac.kr, qorwkr@nate.com
3Department of Management Engineering, KAIST,

207-43 Cheongryang, Seoul 130-012, Korea
mascon@kgsm.kaist.ac.kr

Abstract. The Semantic Web and Web services provide many opportunities in
various applications such as product search and comparison in electronic com-
merce. We implemented an intelligent meta-search and comparison system for
products through consideration of multiple attributes by using ontology map-
ping and Web services. Under the assumption that each shopping mall offers
product ontology and a product search service with Web services, we proposed
a meta-search framework to configure a customer’s purpose, make and dispatch
proper queries to each shopping mall, evaluate search results from malls, and
show the customer the product list with a ranking. Ontology mapping is used
for generating proper queries for malls that have different taxonomies of prod-
uct categories. Also we implemented an inference based search engine using
ontology and Web services for each mall.

1 Introduction

The Semantic Web and Web services provide many opportunities in various applica-
tions using the Internet. We expect that product search and comparison in electronic
commerce will be one of the killer applications of such technologies. So far most
product comparison systems over multiple shopping malls depend on a keyword-
based search or manual collection of comparison information [13]. The meta-search
engine [6, 10, 16] is one of those systems. However, shopping malls are offering their
own search and directory service for their products in their Web pages, so the key-
word-based meta-search for those malls may become redundant. Moreover, it brings
inaccurate results because of difficulties of natural language processing [9].

Another problem of the keyword-based search is that it is very hard to configure a
customer’s exact preference for the product. For example, keywords are not enough to
describe a customer’s priorities and criteria for a product attribute such as ‘a televi-
sion whose monitor size is larger than 15 inches’. Therefore, it is difficult to provide
an exact matching product to the customer because of incomplete representations of a
customer’s preference.

One more problem is that we can hardly evaluate and compare products with a
keyword-based search from the customer’s perspective. There have been increasing

 Product Information Meta-search Framework for Electronic Commerce 409

efforts [1, 2, 4] in industrial and academic areas to overcome the above problems, but
they still have limitations. For example, Mysimon.com categorizes and sorts products
by various attributes in order to help customers easily understand product informa-
tion. But it is difficult for a customer to sort and compare products based on multiple
attributes at the same time.

We want to note that Web services can provide a new framework of the meta-
search engine. Amazon.com is offering Web services that allow a variety of functions
from retrieving information about products to adding an item to a shopping cart. As
more shopping malls are expected to offer Web services, the meta-search engine will
be able to use Web services to collect structured product information. Especially
when the customer wants to compare products based on various attributes rather than
simple price, Web services will be the most appropriate alternative for the meta-
search infrastructure.

However, there are still some problems in making and sending a proper query that
represents customer preference of a product for each shopping mall, integrating and
comparing the results from various malls with Web services. These problems results
from different taxonomies of shopping malls for product category names and product
attributes. To overcome the problem of different taxonomy, the meta-search system
needs to support semantic interoperability among malls. While the standardization
and integration of ontology are still progressing, it seems impossible that a single
taxonomy will be used in every mall. Therefore, we employed ontology mapping
techniques [3, 5, 8] to assure semantic interoperability among malls. Ontology map-
ping is the process in which we start with two source ontologies and generate a new
ontology that includes and reconciles all the information from the two source ontolo-
gies according to those semantic relations [12].

In this paper, we will suggest a meta-search and comparison framework under
which we can consider multiple attributes of a customer’s decision making when
buying. This framework uses Web services of shopping malls to acquire structured
product information, and compare products based on multiple attributes. Also we use
ontology mapping to handle different taxonomies. We named the meta-search and
comparison system Intelligent Product Information Search (in short, IPIS).

Section 2 briefly describes the architecture of IPIS. Section 3 explains the intelli-
gent product search and comparison procedure using IPIS. Section 4 shows the proto-
type and search results. The last section provides conclusions.

2 Overview of the IPIS System

The objective of our research is to develop a meta-search framework capable of con-
figuring a customer’s preference and capable of finding and evaluating products based
on the customer’s preference from various shopping malls. To achieve this goal, the
IPIS system should guarantee not only syntactic interoperability but also semantic
interoperability between IPIS and shopping malls. The structure is as follows:

2.1 Syntactic Interoperability with Web Services

A keyword-based search cannot thoroughly interpret the contents of Web pages due
to the limitation of natural language processing. Therefore it is quite hard to get

410 W. Kim, D.W. Choi, and S. Park

structured product information by a keyword-based search. But Web services can
provide a method to gather structured information represented with XML from vari-
ous malls. Syntactic interoperability in our approach means that we can get struc-
tured product information by sending a structured query to each shopping mall. Also
we can easily construct a meta-search engine by using Web services because it is
easy to send queries to and receive responses from multiple shopping malls with
Web services. But, syntactic interoperability does not deal with matters of semantic
interpretation [18]. Therefore even if we get structured product information, it does
not guarantee that we can interpret the content when shopping malls use different
taxonomies. With this regard, semantic interoperability is required to interpret the
product information.

2.2 Semantic Interoperability with Ontology Mapping

Semantic interoperability is “the ability of information systems to exchange informa-
tion on the basis of shared, pre-established and negotiated meanings of terms and
expressions” [18]. Ontology mapping is one of the techniques for semantic interop-
erability. The difference of taxonomies among shopping malls brings about the fol-
lowing problems.

The first problem is the difference of product category names. For example, in the
case of ‘television’, it is represented as ‘television’ in Open Directory Project taxon-
omy [14], while represented as ‘TV & HDTV’ in Amazon.com. The second problem
is the difference of product attribute names. In addition to product names, product
attributes are different in each shopping mall. The third one is the difference of data
types and units of product attributes. For the same product attribute, each shopping
mall may use different data types or units.

The purpose of using ontology mapping in our approach is to interpret different
product category names, attribute names, data types and units of attributes. Also we
are going to compare products based on that interpretation. Therefore, ontology map-
ping is separated into product category name mapping and attribute name mapping in
the IPIS system.

2.3 Architecture of the IPIS System

IPIS System architecture (see Figure 1) consists of four key components. First, the
Interface represents a customer’s search purpose in a structured format. The customer
can input the desired product, attributes, and priorities of attributes in the Interface.
The Query Generator transforms the customer’s configuration into queries for each
shopping mall by using ontology mapping because shopping malls have different
taxonomies. Shopping malls process the queries to search for proper products satisfy-
ing the customer’s input and return detailed information of the products to the Prod-
uct Evaluation Agent through Web services. The Product Evaluation Agent evaluates
and compares the results from shopping malls and shows the customer the list of
products with a resulted ranking and attributes. Detailed functions of each module
will be described in section 3.

 Product Information Meta-search Framework for Electronic Commerce 411

Product
Configuration

Category
Ontology Base

Product Attribute
Ontology Base

Ontology based
Query Generator

Query Conversion

Product MappingProduct Evaluation Agent

Product List

Interface

Mapping
Ontology Base

Word
Ontology Base

Intelligent Shopping Mall

Query

Similarity calculation
on attributes

Results from
Shopping malls

Attribute Mapping

Intelligent Shopping Mall Intelligent Shopping Mall

Web ServicesWeb Services Web Services

Fig. 1. Architecture of the IPIS System

2.3.1 Interface
The Interface is used for the precise configuration of a customer’s preference for a
product. In order to represent a customer’s configuration, we used the Open Directory
Project as the category ontology base and product attribute ontology base. The Open
Directory Project (in short, ODP) is the largest, most comprehensive human-edited
directory of the Web. It is constructed and maintained by the vast, global community
of volunteer editors [14]. Figure 2 shows an example of product categories and
attributes related to ‘Consumer Electronics’ in ODP. The customer can select the
desired product in a given product category hierarchy. The customer can also input
product attributes, constraints, and priorities by using the Interface.

Product

Home
theater

Video

Audio

Home
Automation

Consumer
Information

Television

url
price
model_name
manufacturer
item_width
item_length
item_height
weight

moniter_size
flat_monitor
tv_type

Consumer
Electronics

Fig. 2. Product Category and Attribute Example of the Open Directory Project

2.3.2 Query Generator
The Query Generator is the most important module in the IPIS system because an
appropriate query for each shopping mall can give an appropriate answer. To make an
appropriate query, the IPIS system transforms an original query generated from the
customer’s configuration into individual queries for each mall because they are using
different taxonomies for a product category. Figure 3 shows an example of original
query and modified queries for each mall which are represented with RDQL [15].

The mapping ontology base is a mapping table constructed with matching product
category names and product attribute names of shopping malls for the words of the
ODP ontology. The purpose of the mapping ontology base is to enhance ontology
mapping speed. The word ontology base is used to extend product category names

412 W. Kim, D.W. Choi, and S. Park

and attributes in ontology mapping. We constructed word ontology with the WordNet
[11] ontology.

Ontology based
Query Generator

Modified Query1 Modified Query2 Modified Query3

Original Query

SELECT ?x
WHERE (?x, rdf:type, dmoz:television)

(?x, dmoz:manufacturer, “samsung”)
(?x, dmoz:monitor_size, ?size)
(?x, dmoz:price, ?price)
(?x, dmoz:tv_type, “LCD)

AND ?size > 15 && ?price<600
USING dmoz FOR<http://www.dmoz.org#>

SELECT ?x
WHERE (?x, rdf:type, aaa1:tv)

(?x, aaa1:manufacturer, “samsung”)
(?x, aaa1:price, ?price)

AND ?price<600
USING aaa1 FOR<http://www.amazon.com#>

SELECT ?x
WHERE (?x, rdf:type, bbb:television)

(?x, bbb:manufacturer, “samsung”)
(?x, bbb:size, ?size)
(?x, bbb:price, ?price)

AND ?size >15 && ?price<600
USING bbb FOR<http://www.buy.com#>

SELECT ?x
WHERE (?x, rdf:type, cc:tv)

(?x, cc:manufacturer, “samsung”)
(?x, cc:size, ?size)
(?x, cc:price, ?price)

AND ?size > 15 && ?price<600
USING cc FOR<http://www.ebay.com#>

Ontology based
Query Generator

Modified Query1 Modified Query2 Modified Query3

Original Query

SELECT ?x
WHERE (?x, rdf:type, dmoz:television)

(?x, dmoz:manufacturer, “samsung”)
(?x, dmoz:monitor_size, ?size)
(?x, dmoz:price, ?price)
(?x, dmoz:tv_type, “LCD)

AND ?size > 15 && ?price<600
USING dmoz FOR<http://www.dmoz.org#>

SELECT ?x
WHERE (?x, rdf:type, aaa1:tv)

(?x, aaa1:manufacturer, “samsung”)
(?x, aaa1:price, ?price)

AND ?price<600
USING aaa1 FOR<http://www.amazon.com#>

SELECT ?x
WHERE (?x, rdf:type, bbb:television)

(?x, bbb:manufacturer, “samsung”)
(?x, bbb:size, ?size)
(?x, bbb:price, ?price)

AND ?size >15 && ?price<600
USING bbb FOR<http://www.buy.com#>

SELECT ?x
WHERE (?x, rdf:type, cc:tv)

(?x, cc:manufacturer, “samsung”)
(?x, cc:size, ?size)
(?x, cc:price, ?price)

AND ?size > 15 && ?price<600
USING cc FOR<http://www.ebay.com#>

Fig. 3. An Example of Interpreted Queries for Various Malls

2.3.3 Product Evaluation Agent
The Product Evaluation Agent analyzes the product list from shopping malls,
evaluates the products based on the customer’s configuration, and makes the sorted
product list for the customer. The Product Evaluation Agent consists of two modules.
The first module extracts the values of product attributes from the product list, and the
second module evaluates the products by calculating similarities of extracted
attributes based on the customer’s configuration.

2.3.4 Intelligent Shopping Mall
The Intelligent Shopping Mall receives queries from the Query Generator and returns
the search results to the Product Evaluation Agent after query execution. The search
system of the Intelligent Shopping Mall exploits an inference based search engine as
one of the Semantic Web search engines that can perform various searches on product
properties like a database query.

Figure 4 shows the architecture of an intelligent shopping mall using Web services.
The inference based search engine executes the query received from the IPIS system.
The category ontology base and the product ontology base store product category
ontology and product attribute ontology respectively. Rules for inference which de-
scribe the relation between categories and attributes are stored in the rule base which
consists of Jena rules for OWL axioms for reasoning [7, 17]. The product data base
stores detailed product information of the shopping mall.

Web Services

Product Search Agents

Inference Based Search Engine

Category
Ontology Base

Product
Data Base

Product List

Product Attribute
Ontology Base Rule Base

Fig. 4. Architecture of an Intelligent Shopping Mall using Web Services

 Product Information Meta-search Framework for Electronic Commerce 413

3 Intelligent Product Information Search Procedure with
Examples

This section describes the product search procedure of the IPIS system. The IPIS
procedure consists of four steps: configuration of a customer’s purpose, query genera-
tion, query execution, and product evaluation.

For a better understanding of the procedure, let us demonstrate the whole process
with a consistent example of product search. In our example, the customer’s search
purpose is to find a television whose price is less than $600, monitor size is larger
than 15 inches, TV type is ‘LCD’ and manufacturer is ‘Samsung’.

3.1 The Configuration of a Customer’s Search Purpose

Let us describe the configuration process. First, a customer selects the desired product
from the category ontology base, and then inputs attributes and his own priorities of
attributes. For example, a customer selects ‘television’ from category ontology and
selects ‘monitor size’, ‘manufacturer’, ‘tv type’, and ‘price’ as concerned attributes
for decision-making. Then, the customer inputs the criteria of attributes such as ‘> 15
inches’ for ‘monitor size’ and ‘< $600’ for ‘price’. Finally, the customer assigns his
personal priority to attributes with numbers between 1 and 10 such as 8 for ‘price’ and
10 for ‘monitor size’ which means that ‘monitor size’ is more important to him than
‘price’. We employ a semantic tree structure to represent the customer’s configuration
including product category, names, attributes, criteria, and priorities of attributes in
structured form. Figure 5 shows an example of the customer’s configuration with a
semantic tree structure.

10

8

6

samsungmanufacture samsungmanufacture

dollar600Price dollar600Price

Inch15monitor_ size Inch15monitor_ size

Consumer
Electronics

Home
Theater

Television

Product
category

Priority Attributes Criteria

8
LCDtv_type LCDtv_type

Fig. 5. An Example of a Semantic Tree for Customer Configuration

3.2 Query Generation using Ontology Mapping

An RDQL query can be generated from the semantic tree that represents the configu-
ration of a customer’s search purpose as follows.

SELECT ?x
WHERE (?x, rdf:type, dmoz:television)

(?x, dmoz:manufacturer, “samsung”)
(?x, dmoz:monitor_size, ?size)
(?x, dmoz:price, ?price)
(?x, dmoz:tv_type, “LCD”)

AND ?size > 15 && ?price<600
USING dmoz FOR <http://www.dmoz.org#>

414 W. Kim, D.W. Choi, and S. Park

The purpose of the query is to ask shopping malls about product information with
the customer’s configuration. But each shopping mall may not give an appropriate
answer to the above query because it uses a different taxonomy from ODP. Therefore,
it is necessary to interpret the current query into the form that each shopping mall can
understand.

To solve the above problems, the query generation procedure consists of three mod-
ules: Product Mapping, Attribute Mapping, and Query Conversion as shown in the
flow chart of Figure 6. Let us describe the detailed procedure of Query Generation.

Product Category
Mapping

Find Mapping Class
in Mapping Ontology Base

Mapping
Ontology Base

Mapping Class
Exist

Product Attribute
Mapping

Find Mapping Attribute
in Mapping Ontology Base

Mapping Attribute
Exist

Query Conversion

End

Mapping
Ontology Base

For each
attribute of
the product

Queries

Start

No

Yes

No

Yes

Product
Mapping

Attribute
Mapping

Query
Conversion

Fig. 6. A Flow Chart for the Query Generation Procedure

3.2.1 Product Mapping
The first step of Product Mapping searches for the matching product category name
of each shopping mall in the mapping ontology base. If a matching product exists in
the mapping ontology base, the time and cost of product mapping can be saved. In our
example, there was no exact matching name for ‘television’ in the mapping ontology
base. If there is no exact match like in the example, the module looks up the matching
product category name from each shopping mall’s ontology in real time.

 The procedure of searching for a similar product category name cannot be com-
pleted with simple string matching because each shopping mall has a different taxon-
omy from that of ODP. For example, the product represented as ‘television’ in ODP is
represented in Amazon.com as ‘TV & HDTV’. In this case, we can solve the problem
by using synonyms. But unconditional use of synonyms and similar words can cause
a risk of selecting unexpected products because a word may have different meanings.
For example, there are three different meanings of ‘television’ in WordNet. The ex-
tension of the product category name uses synonyms and coordinate terms in Word-
Net. But synonyms and coordinate terms can also be changed as the meaning of the
product category name is changed. Therefore we need to determine the exact meaning
of the product category name in the configuration and extend the product category
name with appropriate synonyms and coordinate terms.

 Product Information Meta-search Framework for Electronic Commerce 415

Product Mapping consists of detailed steps like analysis, extension, searching, and
choosing. Let us describe these detailed steps.

(1) Analysis and extension of the selected product category name: We used hy-
pernyms of the product category from WordNet to analyze the exact meaning of the
product category name. In the example of ‘television’, to find out which one is right
for the customer’s configuration among three meanings, we compared a serial cate-
gory hierarchy that starts from the product category to the root category in ODP to the
hypernym hierarchies of three different senses of the product category name in Word-
Net. Figure 7 shows the category hierarchy of ‘television’ in ODP and three category
hierarchies of different meanings for ‘television’ in WordNet.

In Figure 7, WordNet hierarchy 2 has the same word ‘electronic’ in the middle
level ‘electronic equipment’ with ‘Consumer electronics’ in the ODP hierarchy. In
this manner, the analysis algorithm chooses WordNet hierarchy 2 as the exact mean-
ing of ‘television’.

entity

instrumentality

telecommunication

broadcasting

television

entity

instrumentality

electronic equipment

receiver

television

entity

instrumentality

communication
system

telecomunication
system

television

Consumer
Electronics

Home Theater

Television

WordNet
Hierarchy 1

WordNet
Hierarchy 2

WordNet
Hierarchy 3

ODP

…… …… ……

entity

instrumentality

telecommunication

broadcasting

television

entity

instrumentality

electronic equipment

receiver

television

entity

instrumentality

communication
system

telecomunication
system

television

Consumer
Electronics

Home Theater

Television

WordNet
Hierarchy 1

WordNet
Hierarchy 2

WordNet
Hierarchy 3

ODP

…… …… ……

Fig. 7. Comparison between Category Hierarchies of WordNet and ODP

Once the exact sense of the product category name is determined, it extracts the
coordinate terms of the selected meaning as an extension set of the product category
name from WordNet. For example, the module brings {television receiver, television,
television set, tv, tv set, idiot box, boob tube, telly, goggle box} from the WordNet
ontology as an extension set of ‘television’.

(2) A Search for Matching Product Category Name: A search starts on each mall’s
ontology with an extension set of ‘television’ that was generated in the previous step.
We got ‘TV & HDTV’, ‘Internet TV’, and ‘All TVs’ from Amazon.com ontology.
After the completion of search for category names, we need to delete redundant cate-
gory names for the product. To do this, the algorithm generates serial hierarchies for
category names by extracting all upper categories starting from the obtained category
to the root category. We generated three hierarchies in our example as follows:

/Product/Electronics/Gadgets/Internet Appliances/Internet TV
/Product/Electronics/Audio & Video/TV & HDTV
/Product/Electronics/Audio & Video/TV & HDTV/All TVs

416 W. Kim, D.W. Choi, and S. Park

From the above result, we can identify that ‘All TVs’ is a subcategory of ‘TV &
HDTV’. In this case, we delete the subcategory from the list to avoid a redundant
search.

(3) Choice of Matching Product Category Name: After the completion of the search
for matching product category names, we should decide which product category
names are appropriate for the original product name. We compared the hierarchy of
‘television’ in ODP with the hierarchies of product category names in Amazon.com as
in Figure 8 to choose proper names.

Products Gadgets Internet
Appliances

TelevisionConsumer
Electronics

Home
Theater

Products Electronics Audio &
Video TV & HDTV

Electronics Internet TV

ODP

Amazon.com

Fig. 8. A Comparison between Hierarchies of Product Category Names and ODP

With the direct comparison of words in the upper categories, we may not decide
which one is more appropriate because both hierarchies have ‘electronics’. To find a
more appropriate name, we extended upper category names by using synonyms and
coordinate terms in WordNet ontology. From the result of upper category name ex-
tension, we found that ‘Audio & Video’ in the Amazon.com ontology is similar to
‘Home Theater’ in ODP. So, we selected ‘Home Theater’ as the final matching prod-
uct category name. We constructed two measures - co-occurrence and order consis-
tency - to estimate the similarity of the product category name to the product name in
ODP. Co-occurrence is the calculation of all the similarities of product names by
using the similarity of each category name in each category hierarchy. Order consis-
tency is the calculation of the similarity based on comparison between a category
order of the ODP hierarchy and category orders of the two hierarchies in Ama-
zon.com. Even if two hierarchies have the same categories, they may have a different
similarity along their category order.

Once Product Mapping is completed, the matching product category name is
stored in the mapping ontology base to enhance next search and avoid the repetition
of the same procedure for the same product category name.

3.2.2 Attribute Mapping
After the completion of Product Mapping, the Attribute Mapping module searches for
matching attribute names in a similar manner.

The Attribute Mapping procedure is almost the same as the Product Mapping pro-
cedure except Attribute Mapping does not consider the hierarchy of attribute names
because there is no attribute hierarchy in the shopping mall ontology. Therefore the
similarity is calculated based on only the attribute name. First of all, the attribute
mapping module tries to find a matching attribute name from the mapping ontology
base. If it fails, the module starts the main attribute mapping procedure by finding
matching attribute names in each shopping mall’s ontology. If it also fails, then it
extends the attribute name by using the WordNet ontology like Product Mapping as

 Product Information Meta-search Framework for Electronic Commerce 417

shown in section 3.2.1, and searches for similar attribute names in each shopping
mall’s ontology with synonyms and coordinate terms of the original attribute name in
the WordNet ontology. If an appropriate attribute name was found, it stores the name
in the mapping ontology base for the next search. For example, some attributes like
‘price’ and ‘manufacturer’ can be directly found in the Amazon.com ontology. But
the attribute ‘monitor_size’ of ODP can be matched to ‘screen_size’ of the Ama-
zon.com ontology by using attribute name extension with synonyms and coordinate
terms.

If the Attribute Mapping module cannot find a matching attribute name from a
shopping mall’s ontology, then it deletes the parts of the query concerning the attrib-
ute name from RDQL query. In our example, the attribute ‘tv_type’ was deleted be-
cause there was no matching attribute in Amazon.com.

There are additional steps of Attribute Mapping in order to solve the difference of
data types and units. In the data type transformation step, we classified data type into
two types - string type and numeric type. Next we converted each type to the opposite
type if it is needed. For example, if the attribute ‘screen_size’ is the string type in
Amazon.com and the corresponding part of the query in the customer’s configuration
is ‘monitor_size’, then we convert the type screen_size to numeric type and make a
new query for Amazon.com.

When the unit of an attribute is different, we applied pre-built unit changing rules
to change the unit of the attribute. For example, one shopping mall may use ‘lbs’ as
the unit of weight though a customer uses ‘kg’. In this case, the unit can be trans-
formed to the other unit by using pre-built unit changing rules.

3.2.3 Query Conversion
As the last step of query generation, the Query Generator generates queries for each
shopping mall after the completion of all mappings. Figure 9 shows the original query
from the customer’s configuration and the interpreted query for Amazon.com after the
completion of Product Mapping and Attribute Mapping. The product name was
converted to ‘TV & HDTV’ from ‘television’ and the attribute ‘monitor_size’ was
changed to ‘screen_size’. The attribute ‘tv_type’ and its value ‘LCD’ are deleted from
the query because there was no matching attribute name to ‘tv_type’ in the
Amazon.com ontology.

SELECT ?x
WHERE (?x, rdf:type, amazon:TV&HDTA)

(?x, amazon:manufacturer, “samsung”)
(?x, amazon:screen_size, ?screen_size)
(?x, amazon:price, ?price)

AND ?screen_size > 15 && ?price<600
USING amazon FOR<http://www.amazon.com#>

SELECT ?x
WHERE (?x, rdf:type, dmoz:television)

(?x, dmoz:manufacturer, “samsung”)
(?x, dmoz:monitor_size, ?size)
(?x, dmoz:price, ?price)
(?x, dmoz:tv_type, “LCD”)

AND ?size > 15 && ?price<600
USING dmoz FOR <http://www.dmoz.org#>

Fig. 9. An Example of Query Conversion

After generating queries for each shopping mall, the Query Generator sends modi-
fied queries to corresponding malls.

418 W. Kim, D.W. Choi, and S. Park

3.3 Query Execution in Shopping Malls

Query Execution is performed in Web services based shopping malls that receive
queries from the Query Generator. The search procedure of Query Execution depends
on each shopping mall’s policy and system. For example, some shopping malls may
use a keyword-based search to answer the query, and other shopping malls may con-
vert the RDQL query to a database query and get the answer from a database. As one
of the alternatives for search engines, we constructed an inference-based product
search engine that performs a search by using the product category and attribute on-
tology, a rule base, and product data base. We used Jena API [7] to implement the
inference based product search engine.

The objective of the inference-based product search engine is to perform a query
execution based on various attributes like a data base query execution. To achieve this
objective, we translated the content of the product data base into an RDF file and
executed an RDQL query on the translated RDF file. But we cannot perform accurate
query execution based on attributes with direct translation of the data base. For exam-
ple, if required information is separately stored in two tables instead of one table, we
should integrate the information of two tables by joining them. In order to join the
two tables, we need rules about the relation between the two tables like the foreign
key constraint in DBMS. The rule base stores such rules that are required to generate
an RDF file on which an RDQL query is executable. Those rules define the relation-
ship between product categories and attributes. Figure 10 shows the architecture of
the inference based product search engine. The Rule Reasoner translates the contents
of the product data base into an RDF file by using the ontology base, rule base, and
the product data base. The Query Reasoner performs the given RDQL query on the
RDF document and other ontology bases, and completes the search on various attrib-
utes. The search result is returned to the IPIS system through Web services.

Rule
Reasoner

Query
Reasoner

Hybrid Chain
Reasoner

Query
Executor

Query

Inference base Search Engine

Product
Data Base

Rule
Base

Ontology
Loader

Rule
Loader

Product List

Category
Ontology

Base

Product
Attribute

Ontology Base

Fig. 10. Architecture of Inference Based Product Search Engine

3.4 Evaluation of Products

The Products Evaluation procedure consists of a product information analysis and
similarity calculation. In the product information analysis step, the module receives
the product information through Web services from shopping malls. Then it analyzes

 Product Information Meta-search Framework for Electronic Commerce 419

the product information and extracts attribute names and values of each product. The
module uses automatically generated RDQL queries to extract product information
because the messages through Web services are represented with OWL. As the last
step of the product information analysis, we calculated the distances of every attribute
between the customer’s configuration and the tracked product. The distance of each
attribute is calculated in consideration of the attribute name, value, and criteria. The
algorithm calculates the distance for attribute name and value by using the difference
of strings and numbers. For criteria, the distance is 0 if the value satisfies a criterion
of the attribute, 1 if not. When a unit is different, the module changes the unit with
translation rules to calculate the distance. The distance of each attribute becomes
normalized between 0 and 1.

In the next step, the similarity calculation module integrates every distance of the
attributes to calculate the similarity of each product. We used a general similarity
calculation method to evaluate products. The customer’s priorities for each attribute
are changed to attribute weights. We calculated the weighted sum of distances with
the distances and weights of every attribute. Finally, we ranked products by their
similarities to the customer’s configuration. After the completion of Product Evalua-
tion, it prints an ordered product list for the customer, as illustrated in Figure 11.

4 Implementation and Results

We developed an IPIS prototype which consists of an Interface, Query Generator,
and Product Evaluation Agent. We also constructed two prototypes of intelligent
shopping malls using Web services by implementing an inference based search engine
and ontology with the information from Amazon.com and Buy.com. Therefore, users
can search for and compare products of Amazon.com and Buy.com by using our pro-
totype.

4.1 Implementation

Figure 11 shows the example of product search results and the functions of each small
window in the IPIS system which is implemented using Java. In Figure 11, part num-
ber 1 is the window where a customer can choose a product category from a tree
formed hierarchy. The hierarchy for the selected category appears in part number 2.
The customer can input product attribute names, values, priorities, types and units in
part number 3. The attributes that the customer can select are determined by the se-
lected product category. For example, if a customer selects ‘television’ as product
category, the attributes that the customer can select for ‘television’ are ‘manufac-
turer’, ‘price’, ‘monitor_size’, etc. Part number 4 shows a product list with the rank
that is found with the configuration in part 3 from Amazon.com and Buy.com.

If a customer wants to add new criteria on the attribute ‘moniter_size’ to the con-
figuration, the customer can pop up an edit window by clicking the ‘Edit’ button in
part 3. Figure 12 shows the edit window to set an attribute’s name, value, type and
priority that represent the criterion ‘monitor_size >= 15 (inch)’. The customer can
assign priority with a number between 1 and 9.

420 W. Kim, D.W. Choi, and S. Park

1

2 3

4

Fig. 11. Product Search Results in the IPIS System

Fig. 12. An Edit Window for Attribute Input

4.2 An Example Comparing the IPIS System and the Keyword-Based Search

Table 1 shows an example that compares search results from the IPIS system and
keyword-based search results from Amazon.com. The target product of the search is
‘television’ whose ‘manufacturer’ is ‘Samsung’, ‘tv_type’ is ‘LCD’, price is less
than $600, and ‘monitor_size’ is larger than 15 inches. From the experiment, we
were able to find five products satisfying all criteria from Amazon.com with the
IPIS system.

In the keyword-based search of Amazon.com, we made keywords as ‘television
Samsung LCD 600 15’ to represent the target product. However there was no re-
trieved product when we included the desired price in the keywords as noted in the
second and third row of Table 1. Therefore we excluded the price value and the moni-
tor type value from the keywords, and we could get 19 products. In order to examine
the accuracy of the keyword-based search, we manually checked each product to see
if the product satisfied the customer’s configuration. We found 4 satisfactory products
among them. When we added monitor size shown as the fifth row of Table 1, we got

 Product Information Meta-search Framework for Electronic Commerce 421

3 satisfactory products among 4 products in total. In this example, the IPIS system
was more accurate than the keyword-based search. Therefore we expect that custom-
ers using the IPIS system can save the time required for various keyword-based
search trials to acquire accurate results.

Table 1. Product Search Results in the IPIS system and Amazon.com

Keyword Based Search Results of Amazon.comResult of
IPIS

5

of
products

34television samsung LCD 15

00television samsung LCD 600

419television samsung LCD

television samsung LCD 600 15

Keywords

0

of
products

0

of products
satisfying criteria

Keyword Based Search Results of Amazon.comResult of
IPIS

5

of
products

34television samsung LCD 15

00television samsung LCD 600

419television samsung LCD

television samsung LCD 600 15

Keywords

0

of
products

0

of products
satisfying criteria

4.3 Discussion

One of limitations in our system is that we assumed every shopping mall uses Web
services. In a commercialized system, the IPIS system should support traditional
shopping malls which are based on HTTP. Also, most shopping malls do not provide
their own ontologies for product category names and attribute names. Actually we
constructed each shopping mall’s ontology by collecting required product information
from their Web pages.

In addition, we did not prove that our IPIS system was more accurate and efficient
than the traditional keyword-based meta-search engine because the experiment was
limited. We just tried to show an example of a better case. We are planning to conduct
a more precise experiment to prove the advantages of the IPIS system.

5 Conclusion

We have designed and implemented an intelligent product information search frame-
work using ontology mapping and Web services which has a taxonomy free architec-
ture for meta-search and comparison. Although shopping malls of our systems have
the same inference system, our architecture can be easily extended to heterogeneous
systems by using the Semantic Web and Web services. We expect that our system
will show the opportunities and challenges of the Semantic Web and Web services in
electronic commerce.

Web services can be actively utilized in the area where information should be ex-
changed repeatedly and periodically such as in B2B exchange. However the differ-
ence in ontologies can be an obstacle of information exchanges. Ontology mapping is
one of the techniques that solve the semantic difference. We expect that the integra-
tion of Web services and ontology mapping will be a powerful solution for automatic
information exchanges between software programs and agents.

Acknowledgements. This work has been funded by the University Fundamental
Research Program of the Ministry of Information & Communication in Korea

422 W. Kim, D.W. Choi, and S. Park

References

1. Ackerman, M., Billsus, D., Gaffney, S., Hettich, S., Khoo, G., Kim, D.J.: Learning Prob-
abilistic User Profiles. AI Magazine, Vol. 18. No. 2 (1997) 47-56.

2. Aridor, Y., Carmel, D., Lempel, R., Soffer, A., Maarek, Y. S.: Knowledge Agents on the
Web. Lecture Notes in Computer Science, No. 1860 (2000) 15-26.

3. Benetti, H., Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: An Information In-
tegration Framework for E-Commerce. IEEE Intelligent Systems, Vol. 17. No. 1 (2002)
18-25.

4. Chen, Z., Meng, X., Zhu, B., Fowler, R.H.: WebSail: From On-line Learning to Web
Search. Knowledge and Information Systems, Vol. 4. No. 2 (2002) 219-227.

5. Ehrig, M., Sure, Y.: Ontology Mapping - An Integrated Approach. Lecture Notes in Com-
puter Science, No. 3053 (2004) 76-91.

6. Howe, A. E., Dreilinger, D.: Savvy Search: A Metasearch Engine that Learns which
Search Engines to Query. AI Magazine, vol. 18. no. 2 (1997) 19-25.

7. Jena 2 Inference Support. <http://jena.sourceforge.net/inference/index.html>.
8. Kalfoglou, Y., Schorelmmer, M.: Ontology mapping: the state of the art. The Knowledge

engineering review, Vol.18. No.1 (2003) 1-32.
9. Lawrence, S., Giles, C.L.: Accessibility of Information on the Web. Nature, Vol. 400

(1999)107-109.
10. Lawrence, S., Giles, C.L.: Context and Page Analysis for Improved Web Search. IEEE

Internet Computing, Vol. 2. No. 4 (1998) 38-46.
11. Miller, G. A., “WordNet a Lexical Database for English,” Communications of the ACM,

vol. 38, no. 11, 1995, pp. 39-41.
12. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology Merging

and Mapping. International Journal of Human-Computer Studies, Vol. 59. No. 6 (2003)
983-1024.

13. O'Keefe, R. M., McEachern, T.: Web Based Customer Decision Support Systems. Com-
munications of the ACM, Vol. 41. (1998) 71-78.

14. Open Directory Project. <http://www.dmoz.com>.
15. Seaborne, A.: RDQL - A Query Language for RDF, W3C Member Submission.

(http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/) (2004).
16. Selberg, E., Etzioni, O.: The MetaCrawler Architecture for Resource Aggregation on the

Web. IEEE Expert, Vol. 12. No. 1 (1997) 11-14.
17. Smith, M.K., Welty, C., McGuinness, D.: OWL Web Ontology Language Guide, W3C

Recommendation. < http://www.w3.org/TR/owl-guide/> (2004).
18. Veltman, K. H.: Syntactic and Semantic Interoperability: New Approaches to Knowledge

and the Semantic Web. New Review of Information Networking, Vol. 7 (2001) 159-184.

Multiple Vehicles for a Semantic Navigation
Across Hyper-environments

Irene Celino and Emanuele Della Valle

CEFRIEL – Politecnico of Milano,
Via Fucini 2, 20133 Milano, Italy

celino@cefriel.it, dellavalle@cefriel.it

Abstract. The Web, but also for example a large extra-net such as a
digital library, has an intricate topology that makes navigation through
resources a tricky task. The mere introduction of Semantic Web technolo-
gies won’t automatically solve this task, because the Semantic Web only
promotes machine understandability of Web resources by explicitly pro-
viding a thick bunch of annotations, thus leaving their interpretation and
use to the application. In this paper, we refer to such difficult-to-navigate
open information systems as hyper-environments and we compare the
interaction with a hyper-environment to a journey in which users are
travelers and the aim of the journey is to find useful information.

We therefore propose a Semantic Navigation Engine that aims at
helping Web travelers in traversing hyper-environments by giving them
proper tools (called vehicles in the travel metaphor) that can help them
in getting oriented and fulfilling their aims.

1 Introduction

The existing Web, the so-called syntactic Web, is a boundless environment in
which Web users navigate, searching for useful information to achieve their goals.

Navigating in the syntactic Web, following links to move from a Web resource
to another, has been compared (see [1], [2]) to the concept of travel in the physical
world: a Web user acts like a traveler who tries to get oriented in an unfamiliar
environment and often has to re-start and take different paths before finding the
right way to the desired destination.

Adding a bit of semantics to the syntactic Web provides machines with a
bunch of annotations, but we believe that this does not automatically imply
that navigating the Semantic Web is any simpler.

In this paper, we name hyper-environment, in accordance with the travel
metaphor, any open information system in which resources are described in a
machine processable way and we introduce the concept of vehicle as the necessary
tool to navigate effortlessly across a hyper-environment and to follow the most
opportune path to reach the needed information.

We therefore propose a Semantic Navigation Engine which, building upon
semantic annotations attached to resources, is able to provide users with proper

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 423–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

424 I. Celino and E. Della Valle

vehicles, which support each part of their journey and suggest them the most
suitable path to fulfil their specific tasks. In a few words, our Semantic Navigation
Engine aims at providing end-users with multiple vehicles for traveling across
hyper-environments.

In particular, for demonstrative purposes, we focus our attention on the med-
ical general practice: if we apply the travel metaphor to this field, travelers are
General Practitioners, the hyper-environment in which they move is a result set
of a search on distributed and heterogeneous healthcare repositories, and their
aim is to deepen their personal medical education in order to better manage
their patient visits. In this paper we show how our Semantic Navigation Engine
is able to provide General Practitioners with a customized vehicle that makes
their travel across resources easier and more effective.

This paper is structured as follows: in section 2 we present the navigation
problem and in section 3 the state-of-the-art approaches to solve it, both in the
syntactic and in the Semantic Web fields; the concept of multiple vehicles to
travel across hyper-environments is introduced in section 4, while the implemen-
tation of our Semantic Navigation Engine and our test-beds are described in
sections 5 and 6 respectively.

2 Getting Lost in Hyper-environments

The fact that traveling across hyper-environments is possible does not mean
that navigation is also easy or obvious to be undertaken. Below, we present the
problem setting together with a possible usage scenario in the medical general
practice.

2.1 The Problem

In the early days of the Web the lack of navigation plainness was considered as
the navigation problem: users can get lost in a hyperspace and this means that,
when users follow a sequence of links, they tend to become disoriented in terms
of the goal of their original query and in terms of the relevance to their query
of the information they are currently browsing [3]. The navigation problem has
been long investigated in the hypermedia community and in particular some
proposals tried to use the physical world as a model (e.g. Dillon in [2], Darken
in [1]).

Following the physical world’s metaphor, we notice that getting lost in a
hypertext can be compared to getting lost in an unstructured space like a wood.
In a structured space, for example when you get lost in a city, you can get oriented
because streets have names and you just need to figure out your position on the
two-dimensional structure of the city’s map. On the contrary, when you get lost
in a wood, you don’t know where you are, how to reach your destination, and,
often, you don’t even know how to return to your original place. In a hypertext,
like in a wood, you have to remember many trails and the way in which they are
interconnected because most of them look just the same. As Nielsen writes in

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 425

his famous book “Designing Web Usability: The Practice of Simplicity”[3], the
navigation problem is still the unresolved problem in Web site usability.

The current effort to add semantics to the Web suggests augmenting user-
intended resources with machine-readable information, by means of metadata
defined by ontologies. Considering also that all this additional information is
provided with re-use in mind (thus authors are invited to put as much informa-
tion as possible), the topology of the resulting hyper-text is much more complex
than the already intricate topology of the Web. This is the reason why we name
it a hyper-environment.

We believe that addressing the navigation problem in a hyper-environment is
challenging but feasible, because semantic annotations provide machines with the
ability to access what readers normally consider shared contextual information
together with the information which is hidden in the resource.

2.2 A Usage Scenario in the Medical General Practice

General Practitioners are end-users that cannot afford to get lost. They are the
category of physicians which is more exposed to medical errors. If they were
well-informed about each novelty concerning diagnostics or treatments in the
healthcare sector, they could considerably reduce their patients’ risks. But be-
ing up-to-date is often a hard task, and probably it’s impossible for General
Practitioners to be informed about every single human pathology, so they gen-
erally prefer to prescribe an additional examination or to refer the patient to
a specialist for a visit. They would spend time to deepen their medical knowl-
edge only if they could be sure to reach easily and effortlessly the most suitable
information, for example if they could come directly to the appropriate clinical
guideline for a given pathology and access information regarding the available
medical services, technologies and medications, their efficiency and side effects,
possibly even relevant case studies or some specialist advice.

The following usage scenario describes the interaction between the end user
(i.e. the General Practitioner) and the Semantic-based Healthcare Information
Portal (named SHIP) we are conceiving in the COCOON project1, which pro-
vides a uniform, single point of access to heterogeneous and highly distributed
medical information sources. This information may include articles from medical
journals, scientific publications from specialized search engines and university li-
braries, electronically available clinical guidelines, as well as free text documents
provided by each regional public health authority to local General Practitioners:

1. Geena, a General Practitioner, has come across an article in the British Med-
ical Journal mentioning new breast cancer symptoms apparently discovered
in the population of female smokers over the age of 40. Intrigued by the
article, and having relevant population among her patients, Geena decides
to use SHIP, in order to collect additional information regarding this topic
which may be useful in her future practice.

1 http://www.cocoon-health.com

426 I. Celino and E. Della Valle

2. Geena submits a query on early detection of breast cancer and an over-
whelming amount of documents, together with their semantic annotations,
is retrieved, but SHIP hides them behind a multifaceted display of the search
results that includes a ranked search results list, relevant ontology concepts
and documents associated with them. For each document SHIP provides the
title, the publication date, the relevant keywords and a short excerpt.

3. Geena inspects the search results. She finds a document that she considers
useful for her practice and follows the hyperlink to the original document
text. SHIP offers her not only the document, but also hyperlinks to other
documents thematically related to the selected one and the keywords used
to semantically describe the document.

4. Geena follows the link to a keyword and a small bunch of related terminology
is presented. She finds in this terminology a more specific term she did
not think of when submitting the query, so she follows its hyperlink. SHIP
provides her again with a small bunch of the terms and with links to the
documents in the result set that are labeled with such keywords. This time
Geena does not have to look for other documents, because she finds what
she was looking for.

3 State of the Art and Trends

Over the last few years, many different research trends have tried to solve the
navigation problem. We briefly summarize some of the most relevant ones, in
order to frame the background of our solution.

3.1 Syntactic Web Approaches

Among the approaches which try to solve the navigation problem in the syntactic
Web, an important position is occupied by trail engines. A trail engine2 is a sort
of search engine, but it differs from a standard one because, in reply to a query
expressed as a conjunction of keywords, a search engine returns a ranked list
of pages (possibly containing all the keywords), whereas a trail engine returns
a graph of pages connected by links, normally named trail (so that the user is
adviced to follow a trail across a set of interconnected pages that represents a
path via hyperlinks among the requested keywords).

The idea behind many trail engines is to model the Web as a network of nodes
labeled with keywords. The Best-Trail Algorithm [4] models the Web via a finite
automaton called Hypertext Finite Automaton (HFA). The states of a HFA
represent Web pages, while transitions represent links. In this way, in a HFA, a
valid trail leads the user to follow existing links from one node to the others in
the trail. A slightly more complex way to model the Web was proposed in [5]. It
consists in extending HFA by attaching probabilities to state transitions. These

2 see e.g. http://trails.navigationzone.com/

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 427

probabilities can denote either the result of frequent user behavior patterns or
the result of some calculation (e.g. average) over the relevancies of the pages in
the trail.

In short, trail engines provide an affordable way to search for a trail in a set
of already interconnected Web resources. In a way they try to cope with the
lack of explicit semantics in the Web using models of the user behaviors that
are supposed to partially capture what each page is about. Unfortunately, the
known approaches don’t seem to scale up.

3.2 WWW Conceptual Model Approaches

An alternative category of solutions to trail engines is provided by World Wide
Web Conceptual Modeling approaches, or shortly the WWWCM approaches.
They are characterized by the common goal of modeling a Web application at
the conceptual level, in order to automatically implement it. Some successful
attempts, such as WebML [6], W2000 [7], OOHDM [8], belong to this category.
They show that a data-intensive Web application can be easily developed by
separately modeling the domain information space, the navigation, the access
and, in recent attempts, also the operations.

In the attempt to sketch out the least common denominator among the cited
WWWCM approaches, we formulate the following definitions we will refer to in
the rest of the paper:

– The domain information model describes the organization of the information
managed by the Web application, in terms of the pieces of content that con-
stitute its information base and of their semantic relationships. The schema
of this model provides a shared understanding of the Web content that does
not change or only changes very slowly over the time.

– The navigation models concern the facilities for moving across the applica-
tion content; they represent the heterogeneous inter and intra-object naviga-
tion facilities the users can employ in traversing the information space of the
Web application. These models are not necessarily shared among all users,
but they are jointly employed by homogeneous categories of users.

– The access models concern the facilities for accessing information, i.e. the
available access paths to objects in the information space. Access models
specify the way in which the information described by the domain model
is accessed: multiple access-models can be attached to the same domain in-
formation model, in order to specify different access semantics for different
purposes. Each access model consists of collections of not strictly homoge-
neous objects.

Summing up, the WWWCM approaches are typically top-down, therefore
they provide excellent solutions to manage the life cycle of a complex Web ap-
plication, but this is mainly done on the strong assumption that all the informa-
tion is under the control of the organization responsible for developing the Web
application and that such application can be built from scratch. So, we might

428 I. Celino and E. Della Valle

make to the WWWCM approaches the criticism that they address, and proba-
bly solve, the navigation problem in a closed context, but they do not address
the navigation problem on the open Web. In a way, they break the principle
according to which the Web is to be a universal, hence open, system.

3.3 Semantic Web Approaches

The lack of explicit semantics in the Web was perceived as an addressable prob-
lem by the knowledge representation community in the late ’90s. SHOE [9] and
OntoBroker [10] are successful attempts to show that such added semantics could
prove to be very useful in solving the navigation problem. The idea is to define
the terminology top-down (through ontologies) and use it bottom-up to annotate
and wrap Web documents.

We believe that, nowadays, the major trend in solving the navigation prob-
lem is represented by the approaches based on the Semantic Web, whose com-
mon principle can be named ontology-supported and ontology-driven conceptual
navigation. According to this principle, resources and links should be considered
separately. Resources are self-contained items whose content can even be difficult
to process automatically. Links are machine-processable descriptions (known as
metadata) of the resources. These descriptions are provided by the authors in
accordance with the terms described in one or more ontologies. In this way, ev-
ery resource lies in a context made of semantic descriptions of terms and other
resources that a machine can access and process. So the common situation expe-
rienced in the Web, whereby a reader can get lost if the author’s intention does
not match with the reader’s intention, might be less common in the Semantic
Web, because authors provide reusable descriptions while machines, being able
to manage these descriptions, can adapt the interface to meet the readers’ inten-
tions. Therefore, complex role-based and integrated navigation structures can
be built bottom-up on the fly, as long as each resource is described by the terms
defined by shared ontologies, provided top-down.

Below, we provide a short description of some of the leading efforts in the
Semantic Web approach:

– COHSE - a Conceptual Open Hypermedia Service [11] is an ontological
reasoning service and Web-based open hypermedia link service integrated to
form a conceptual hypermedia system, to enable documents to be linked via
metadata describing their contents;

– SEAL (SEmantic portAL) and SEAL-II [12] show how ontologies can power
information retrieval, greatly contributing to the combined goals of low-effort
information integration and user-friendly information presentation;

– OntoWebber [13] supports the creation of reusable specifications of Web
sites, by explicitly modeling the Web site via ontologies and employing semi-
structured data technology for data integration;

– ODESeW [14] is a rapid development tool for building ontology-based Web
portals, which allows to configure the visualization of ontology-based infor-
mation for different kinds of users;

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 429

– SOIP-F [15] describes a framework for developing Organization Information
Portals that deal with a small-scaled organizational Semantic Web, where
resources are augmented with semantic annotations.

– OntoViews [16] is a Semantic Web portal tool for publishing RDF content
on the Web; it combines the multi-facet search paradigm, developed within
the information retrieval research community, with Semantic Web RDFS
ontologies and extends the search service with a Semantic browsing facility
based on ontological reasoning.

4 Our Concept: Multiple Vehicles for Traveling Across
Hyper-environments

In this section we introduce our approach to the navigation problem, using a
vivid metaphor to explain how users move across hyper-environments and how
we can support and facilitate their navigation.

4.1 The Travel Metaphor

We believe that the physical world metaphor eases the problem of conceiving
an open solution to the navigation problem, because users in traversing the
hyperspace need the sort of information which is normally required to traverse
the physical space. According to [17], users require the following information:

– Orientation information, necessary to find one’s place within a body of in-
terlinked resources. In designing a hypertext, one should therefore give an
appropriate answer to the question “What can be done to orient users and
help them to navigate efficiently and pleasantly?”

– Navigation information, necessary to make one’s way through resources. In
designing a hypertext, one should therefore give an appropriate answer to the
question “While accessing a particular resource, how can users be informed
about where the links related to that resource lead?”

– Exit or departure information, necessary to inform the users that they are
leaving a given context. In designing a hypertext, one should therefore give
an appropriate answer to the question “How can users retrace their steps in
their going-on path?”

– Arrival or entrance information, necessary to inform the users that they are
entering a given context. In designing a hypertext, one should therefore give
an appropriate answer to the question “While accessing a new resource, how
can users be assisted to feel “at home” in the new context?”

Goble et al. in [18] have moved further in the direction of introducing the
notion of travel and mobility on the Web, to improve the accessibility of using
the physical world as a model. They define travel as the confident navigation and
orientation with purpose, ease and accuracy within an environment. This means
that they extend navigation to include orientation, environment, mobility and
purpose of the journey:

430 I. Celino and E. Della Valle

– Orientation is the knowledge of the basic relationships between objects
within the environment, and between the objects and the traveler.

– Environment is the context which the traveler traverses and includes the
way in which the landscape is rendered and perceived.

– Mobility is the ease and confidence at which travel can be accomplished.
– The purpose of the journey is the reason why the traveler has chosen to

undertake the journey.

Following this trend, Yesilada, Stevens and Goble introduce in [19] the concept
of travel objects in order to describe how the hypertext environment is rendered
and perceived by the travelers. In fact, travelers use or may need to use such en-
vironmental features or elements in order to make a successful journey, meaning
that, when following a trail of information, they need to keep a sense of direction
and they need a high mobility in terms of the goal of their original query and of
the relevance to the query of the information they are currently browsing.

4.2 The Vehicle Metaphor

When we browse the Web, we are already accustomed to following links to move
from one page to another. But, simply carrying out the action of clicking on a
hyperlink, not only do we go ahead in our travel across Web resources, but we
also make a decision about the direction of our trail in order to reach the most
relevant information we are looking for. Furthermore, in different navigations,
we follow different paths, either because we are looking for different information
or because our task is more specific or more generic, so the granularity of the
information we require is narrower or broader.

Following the travel metaphor, in this paper we introduce the idea that Web
users need different vehicles to travel across resources on different occasions. A
vehicle must support user navigation, suggesting the most relevant trail among
all the possible paths a user can undertake, according to the purpose of the jour-
ney itself. A vehicle must provide valuable information about the environment,
enabling orientation and supporting mobility in order to reach easily and effort-
lessly the travel destination. Moreover, in order to make his/her journey useful,
a user needs the most appropriate vehicle to travel across the environment to
achieve the specific purpose of his/her journey. Thus, he/she will request dif-
ferent vehicles that satisfy different needs not only during different travels, but
also within the same journey: for example, when a Web traveler enters a hyper-
environment for the first time, he needs at the beginning a vehicle that helps him
to get oriented and understand the spatial relationships among the resources;
afterwards, when he/she feels familiar within the new environment, the same
traveler needs another vehicle to move on in his/her journey, to deepen his/her
knowledge about a particular section of that hyperspace, looking for more de-
tailed information.

What users need in their navigation is the most appropriate view on resources,
meaning that, in every step of their travel, they don’t need all the available
information, but only a part of it, the part related to the information they are
looking for.

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 431

Thus, when conceiving the vehicle metaphor, we asked ourselves what kind of
view on resources a vehicle must provide the user with. To answer this question
in the most precise and effective way, we noticed that in our everyday experience
of navigation through the Web, we can look at the term view under, at least,
two different aspects; we can therefore give two different meanings to a view on
a particular resource:

1. View as presentation of a subset of all the available information regarding
the resource; if we divide all the knowledge about a particular item in travel
objects, i.e. atomic bunches of information, we can build a view by composing
together these elementary “bricks”; in this meaning, two views on the same
resource differ in the set of travel objects employed in giving information
about a resource (a generic description instead of a detailed presentation, a
certain set of aspects or features instead of another, and so on).

2. View as navigation from that resource to another one following hyperlinks;
the view can suggest different paths to cross information, which can be re-
lated to the particular phase of the travel; in this meaning, two views on the
same resource differ in the possible directions they suggest the user for the
continuation of his/her journey.

5 Our Implementation

Our work tries to solve the navigation problem building vehicles to support
the users’ journey across resources and building upon semantics attached to
resources in order to make traveling significant and effective to attain the users’
tasks.

Starting from an early prototype we already described in [15], we refine the
browsing-time support of SOIP-F, a framework that supports the building of
Semantic Organizational Information Portals, introducing the Semantic Naviga-
tion Engine by adding a presentation model, including a way to handle travel
objects and a simple way to describe a model in term of navigation, access and
presentation models. As a result we obtain the more powerful version of SOIP-F
we describe below.

5.1 A Technical Overview of SOIP-F

At first glance, SOIP-F might appear as a radical new departure in Web portal
design, but it is not. SOIP-F is implemented bringing together existing and well
understood technologies:

– it uses a Web Framework that implements the well-known Model-View-
Controller (MVC) design pattern,

– it follows the WWW Conceptual Model approach in separately modeling
domain information space, navigation, access and presentation,

– it requires portal administrators to specify conceptual models using ontolo-
gies written in OWL-DL,

432 I. Celino and E. Della Valle

– it manages and stores RDF encoded metadata that describe the resources in
a machine processable way.

An important requirement taken in consideration during the design of SOIP-F
is the strong decoupling between the portal and the information sources, because
the aim of an organization portal is to provide a single and user-tailored point
of access to all organizational content sources.

SOIP-F, in fact, takes from the WWWCM the idea of separately modeling
domain information space, navigation, access and presentation. Following such
an approach in modeling portals independently of the domain, SOIP-F proposes
a portal ontology that includes portal-dependent terminology: structural terms
such as entity or component, navigation terms such as contains or related to,
access terms such as next or down and presentation terms like title, text-box
or image.

This strong requirement for decoupling between the portal and the informa-
tion sources expects a portal built using SOIP-F to be just one of the many
applications accessing content sources; for this reason, SOIP-F doesn’t require
the information to be structured in any particular way. So, differently from
most WWWCM approaches, SOIP-F proposes to model navigation, access and
presentation by mapping the domain terminology into the portal terminology,
creating, in a bottom-up approach, a relation between domain-dependent terms
and portal-dependent terminology.

In particular, as we anticipated, modeling a vehicle for our Semantic Navi-
gation Engine in order to travel across a portal built using SOIP-F implies the
operation of mapping, through the composition of navigation, access and pre-
sentation models. We explain the meaning of these models in SOIP-F as follows:

– The navigation model takes into account the possible paths across homo-
geneous resources (for example, it states which relationships must be un-
derlined and emphasized); it can be shared among many users with similar
aims.

– The access model takes into account the possible paths across heterogeneous
resources which share some meaning (for example an access model can sug-
gest an ordered list of resources to be navigated serially or a set of “most
visited” or “recently added” pages); it is specific of the aim but it can be
built by querying the domain information model.

– The presentation model takes into account the composition of different parts
of information on the page, the order and the layout of the presentation
(for example, a presentation model states number, type and position of the
“boxes” that set up a page); it can include both shared travel objects (that
are provided for general purposes) and user specific travel objects (that are
provided to support the user in a specific part of his/her travel).

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 433

5.2 A Structural Overview of SOIP-F

Our Semantic Navigation Engine builds upon the fact that SOIP-F is an extend-
able J2EE application framework that can be configured using a set of OWL
ontologies.

The framework itself is not a portal, because it needs at least a domain
ontology and a set of “content sources” to be crawled. Once this information
is provided, the content sources become browsable using a low-level vehicle we
name “metadata-vehicle”. Starting from a resource, this vehicle shows in a table
all the RDF triples that involve the selected resource. Each subject, property
and object is provided as a link that the end-user can follow in order to select
another resource.

In the same way, other vehicle descriptions can be provided. Each vehicle
description includes a navigation model, an access model and a presentation
model. In particular, the presentation model describes which travel objects are
displayed for each type of resource. Each travel object is either responsible for
presenting the information carried by some metadata or for providing a link the
user can follow to move to other parts of the hyper-environment.

Each travel object is made up of two parts: a decorator and a template. A
decorator is a Java class that is responsible for querying the reasoner and for
extracting the information that the travel object will show, whereas a template
describes the visual appearance of the information provided by the decorator.

Fig. 1. SOIP-F structural overview

SOIP-F (see figure 1) is composed of five logical components:

– the reasoner, which manages both the terminologies and the assertions (ex-
cept for literals). If no configuration information is provided, it only contains
the portal ontology. It also offers query facilities for the other components.
It is based on RACER3 and extends JRacer APIs;

3 http://www.sts.tu-harburg.de/∼r.f.moeller/racer/

434 I. Celino and E. Della Valle

– the RDF repository, which stores the metadata describing the resources;
it offers the reasoner query facilities for selecting literals and it offers the
crawler query facilities for inserting, deleting and updating metadata. It is
based on Jena framework4 and can use either the file system or a database
as permanent storage facility.

– the multi-vehicle manager, which enables end-users to select a vehicle and/or
to change it during the navigation. It uses the facilities provided by the
reasoner in order to mount the most appropriate navigation, access and
presentation model.

– the travel object handler, which uses, according to the current vehicle se-
lected, the appropriate decorators to query the reasoner and the right tem-
plates to produce a HTML-based presentation of each travel object.

– the front-end, which is made up of several Java Servlets that share a Velocity
template engine5. Together they implement a MVC design pattern in a J2EE
environment.

These components can be extended with another one: during the building
of a portal with SOIP-F, a crawler can be developed to extract data, properly
annotated with metadata described by one or more domain-specific ontologies,
from content sources and to make them available to be presented and navigated
within the portal.

6 Our Test-Beds

To prove our approach we built some test-portals on the top of our SOIP frame-
work (see http://seip.cefriel.it). We briefly propose the most significant
one, which (tries to) solve the navigation problem in the healthcare domain, and
then we present other test-implementations demonstrating our approach.

6.1 Aiding General Practitioners in Navigating a Healthcare
Hyper-environment

As introduced in §2.2, in the COCOON project we have to satisfy the require-
ments of a General Practitioner who would like to be informed and up-to-date
about every medical information that could be useful to better manage his/her
visits, in order to provide the most suitable treatment or to prescribe the most
useful examination to his/her patients.

A Semantic-based Healhcare Information Portal (SHIP, as abbreviated be-
fore) could be very useful during the general practitioner’s search for information,
supporting his/her queries, returning the most interesting results and suggesting
different significant paths to navigate across the result set.

We built a prototype of SHIP on the top of our SOIP-framework, design-
ing a portal to help general practitioners to travel, easily and effortlessly, in a

4 http://jena.sourceforge.net/
5 http://jakarta.apache.org/velocity/

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 435

healthcare hyper-environment. We based our search facilities on the Web ser-
vices provided by Entrez PubMed6, called e-utilities, that allow to search in
PubMed, MeSH and other medical databases. We developed an ad-hoc compo-
nent, an invoker that, querying Entrez e-utilities through pre-formatted queries
(called search strategies), is able to retrieve information about medical articles;
Entrez services return results in XML-format that our component translates,
through an XSL transformation, to RDF-format described by a simple OWL
ontology.

The result set is therefore made up of a set of resources described with meta-
data: each article presents a bunch of information about the document itself
(such as authors, title, medical journal, abstract, the link to the actual docu-
ment, etc.) together with cues about its semantics, i.e. the medical keywords
that describe the meaning of the article. This terminology comes from MeSH7

(Medical Subject Headings), a thesaurus of medical terms that are semanti-
cally interconnected (for example, a term is linked to a broader or narrower
one, or a term about a pathology is linked to the term of the affected body-
part); these terms can be exploited to put in relation articles sharing the same
semantics.

Once the result set is available to be crawled and accessed via the portal,
our Semantic Navigation engine presents the results to the final user, giving
him/her a vehicle to travel across them. This vehicle is able to suggest more
than one path to navigate through resources: besides the path that offers ac-
cess to the results as in a ranked ordered list and that lets the user navigate
from an article to the subsequent one just following a “next article” link, SHIP
offers the possibility of navigating through resources following the shared key-
words. While in the first case the General Practitioner just follows a list (even
if the order of the retrieved documents can be altered to take into account
the user’s preferences and interests), in the latter case the final user can nav-
igate through keywords as well as through documents and can exploit this in-
formation to better understand the retrieved results and, if necessary, to refine
his/her search strategy using the most appropriate keywords to re-query Entrez
databases.

Readers wishing to try SHIP can do so on http://seip.cefriel.it/ship.

6.2 Other Demonstrative Portals

Some other test portals that we built to demonstrate our approach are available
on line. These demonstrative portals illustrate the possibilities and potentialities
of our Semantic navigation Engine in SOIP-framework and we introduce them
briefly.

Virtual Museum of Contemporary Art portal – it aggregates data (in Italian)
about artworks and artists from different real museums, letting virtual visitors

6 http://www.ncbi.nlm.nih.gov/Entrez/index.html
7 MeSH is a thesaurus developed by US National Library of Medicine since 1954; fur-

ther information can be obtained in http://www.nlm.nih.gov/mesh/meshhome.html

436 I. Celino and E. Della Valle

travel across resources with different vehicles: the portal offers a thematic trail
vehicle (a guided tour across artworks of a particular artistic movement or pe-
riod), but also a detailed trail vehicle (that allows to investigate the work of a
particular artist).

Semantic Web Virtual Lesson – it’s a portal built as a unifying view on dif-
ferent material taken from some presentations about fundamentals, technologies
and applications of Semantic Web; it allows end-users to move from a presenta-
tion to another just following links to semantically related slides, as if it was a
single lesson.

CEFRIEL organization portal – CEFRIEL’s information about units, peo-
ple, projects, research fields is enriched with semantic annotations that allow
the Semantic Navigation Engine to present resources to different users in differ-
ent ways: there are various views centered on units, on ongoing projects or on
research fields.

7 Conclusions

Our proposal for a Semantic Navigation engine is a joint attempt to solve the
navigation problem bringing together Semantic Web technologies, the WWWCM
approach and various studies on users’ habits and needs in browsing the Web.
We identify the core problem in navigating through a hyper-environment with
the difficulty of moving across different resources, maintaining a good sense of
orientation and reaching the desired destination while covering a path that makes
the user/traveler enrich his/her knowledge and attain his/her aim.

We believe that the key innovations introduced by our proposal for a Semantic
Navigation engine are the following:

– loose coupling between domain information model (captured by the organiza-
tional ontology) and the various navigation, access and presentation models;

– bringing in the Semantic Web community the efforts of the WWWCM ap-
proach in defining a (top-down) terminology for navigation, access and pre-
sentation;

– building navigation, access and presentation models in an indirect way, by
mapping domain information terminology to navigation, access and presen-
tation terminology (as in a bottom-up approach).

To achieve this goal, our Semantic Navigation Engine builds upon the defini-
tion of vehicle as a composition of navigation, access and presentation models;
for each Semantic Navigation Engine, we can define a set of vehicles. In fact,
different vehicles might be useful in different parts of the hyper-environment,
in the same way as real vehicles (bicycles, cars, trains, planes) are used to take
different kinds of journeys in the real world. In this way, we make a step for-
ward in the direction of uncoupling domain knowledge from the way to ac-
cess it.

Multiple Vehicles for a Semantic Navigation Across Hyper-environments 437

Acknowledgments

The research has been partially supported by the COCOON Integrated Project
(IST FP6-507126) while the implementation of SOIP-F has been partially funded
by Engineering as part of the activities of the XVI Master in Information Tech-
nology of CEFRIEL – Politecnico of Milano. We thank Maurizio Brioschi, Ste-
fano Ceri and Nahum Korda for their precious contributions.

References

1. R.P. Darken, J.L. Sibert: Wayfinding Strategies and Behaviors in Large Virtual
Worlds. In: Proc ACM CHI’96. (1996) 142–149

2. A. Dillon, M.W. Vaughan: “It’s the Journey & the Destination”: shape and the
emergent property of genre in evaluating digital documents. The New Review of
Hypermedia and Multimedia 3 (1997) 91–106

3. J. Nielsen: Designing Web Usability: The Practice of Simplicity. New Riders
Publishing, Thousand Oaks, CA, USA (2000)

4. R. Wheeldon, M. Levene: The Best Trail Algorithm for Assisted Navigation of
Web Sites. In: WWW2003, Budapest, Hungary. (2003)

5. M. Levene, G. Loizou: A Probabilistic Approach to Navigation in Hypertext.
Information Sciences 114 (1999) 165–186

6. S. Ceri, P. Fraternali, A. Bongio: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks (Amsterdam, Netherlands:
1999) 33 (2000) 137–157

7. L. Baresi, F. Garzotto, P. Paolini, S. Valenti: HDM2000: The HDM Hypertext
Design Model Revisited. Tech. report, Politecnico di Milano (Jan. 2000)

8. D. Schwabe, G. Rossi, S.D.J. Barbosa: Systematic hypermedia application design
with OOHDM. In ACM, ed.: Hypertext ’96, Washington, DC, March 16–20, 1996:
the Seventh ACM Conference on Hypertext: Proceedings, New York, NY, USA,
ACM Press (1996) 116–128

9. J. Heflin, J. Hendler, S. Luke: SHOE: A Blueprint for the Semantic Web. In:
Spinning the Semantic Web. MIT Press, Cambridge, MA (2003)

10. D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer,
A. Witt: On2broker: Semantic-based access to information sources at the WWW.
In: WebNet (1). (1999) 366–371

11. L. Carr, W. Hall, S. Bechhofer, C.A. Goble: Conceptual linking: ontology-based
open hypermedia. In: World Wide Web. (2001) 334–342

12. A. Hotho, A. Maedche, S. Staab, R. Studer: SEAL-II - The Soft Spot between
Richly Structured Unstructured Knowledge. Journal of Universal Computer Sci-
ence 7 (2001) 566–590

13. Y. Jin, S. Xu, S. Decker, G. Wiederhold: Managing Web Sites with OntoWebber.
Lecture Notes in Computer Science 2287 (2002) 766

14. O. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, M. Suarez-Figueroa:
ODESeW. Automatic Generation of Knowledge Portals for Intranets and Ex-
tranets. In D. Fensel, ed.: The Semantic Web, ISWC 2003, LNCS 2870. (2003)
802–817

15. E. Della Valle, M. Brioschi: Toward a framework for Semantic Organizational
Information Portal. In proceedings of first European Semantic Web Symposium,
ESWS2004 (2004)

438 I. Celino and E. Della Valle

16. E. Makelä, E. Hyvönen, S. Saarela, K. Viljanen: OntoView – A Tool for Creating
Semantic Web Portals. In: Proceedings of the 3rd International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan (2004)

17. G.P. Landow: Hypertext 2.0: The Convergence of Contemporary Critical Theory
and Technology. Johns Hopkins University Press (1997)

18. C.A. Goble, S. Harper, R. Stevens: The travails of visually impaired web travellers.
In: UK Conference on Hypertext. (2000) 1–10

19. Y. Yesilada, R. Stevens, C. Goble: A Foundation for Tool Based Mobility Support
for Visually Impaired Web Users. In: Proceedings of the Twelfth International
World Wide Web Conference. (2003)

Activity Based Metadata for Semantic Desktop Search

Paul Alexandru Chirita, Rita Gavriloaie, Stefania Ghita,
Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover,
Deutscher Pavillon, Expo Plaza 1, 30539 Hanover, Germany

{chirita, gavriloaie, ghita, nejdl, paiu}@l3s.de

Abstract. With increasing storage capacities on current PCs, searching the World
Wide Web has ironically become more efficient than searching one’s own per-
sonal computer. The recently introduced desktop search engines are a first step
towards coping with this problem, but not yet a satisfying solution. The reason
for that is that desktop search is actually quite different from its web counter-
part. Documents on the desktop are not linked to each other in a way compara-
ble to the web, which means that result ranking is poor or even inexistent, be-
cause algorithms like PageRank cannot be used for desktop search. On the other
hand, desktop search could potentially profit from a lot of implicit and explicit
semantic information available in emails, folder hierarchies, browser cache con-
texts and others. This paper investigates how to extract and store these activity
based context information explicitly as RDF metadata and how to use them, as
well as additional background information and ontologies, to enhance desktop
search.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past decade,
and so has the number of files we usually store on our computer. It is no wonder that
sometimes we cannot find a document any more, even when we know we saved it
somewhere. Ironically, in quite a few of these cases nowadays, the document we are
looking for can be found faster on the World Wide Web than on our personal com-
puter.

Web search has become more efficient than PC search due to the boom of web search
engines and due to powerful ranking algorithms like the PageRank algorithm introduced
by Google [16]. The recent arrival of desktop search applications, which index all data
on a PC, promises to increase search efficiency on the desktop. Still, these search ap-
plications are weaker than their web counterparts as they cannot rely on PageRank-like
ranking mechanisms which have revolutionized web search. Unfortunately, they also
fall short of utilizing desktop specific characteristics, especially context information.
Some of these missed opportunities include:

– Email context is not utilized by the existing search algorithms, even though this
clearly drops useful information. For example, one email might contain a question
describing the object one is looking for, and another email in the same thread might
include the answer to that question in the form of an attached document.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 439–454, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

440 P.A. Chirita et al.

– Email attachments lose all contextual information as soon as they are stored on
the PC, even though emails usually include additional information about their at-
tachments, such as sender, subject, comments. We might discuss a paper with a
colleague during a brainstorming session, and then afterwards send her the elec-
tronic version via email, together with a few helpful comments. After a while, our
colleague might not remember details about the paper itself, but rather recall with
whom she discussed it or which question was raised in the discussion and included
as comment in the email. It would be helpful to find the stored paper not only based
on its content, but also associatively based on that context1.

– Folder hierarchies are barely utilized by the search algorithms, even though we
might have spent considerable time to build sophisticated classification hierarchies
for the documents we store. For example, pictures taken in Hanover are prob-
ably stored in a directory entitled ”Germany”, “Lower Saxony” or ”Hanover”,
and it would be nice if we could utilize this information when we search for the
pictures.

– Browser caches include all information about user’s browsing behaviour, which
are useful both for finding relevant results (for example, if we remember how to
find the project’s home page, but not the corresponding API specification), and for
providing additional context for results. It would also be very useful if our search
application not only returns one specific scientific paper we downloaded from the
CiteSeer repository, but all the referenced and referring papers which we down-
loaded on that occasion as well.

As studies have shown that people tend to associate things to certain contexts [9],
all this information should be utilized during search. So far, however, neither has this
information been collected, nor have there been attempts to use it.

In this paper we discuss how to enhance and contextualize desktop search based on
semantic metadata collected from different contexts available and activities performed
on a personal computer. We explore three important contexts: electronic mail, folder
hierarchies, and web cache. Analogously, other contexts might be exploited as well. We
describe the semantics of these different contexts by appropriate ontologies and show
how to extract and represent the corresponding context information as RDF metadata
which can be used by a search application together with a full text index of our docu-
ments.

The next section gives an overview over existing approaches which try to exploit
metadata in search algorithms, and classifies them according to how they use metadata
to enhance search. Section 3 then shows how to describe contexts and their correspond-
ing metadata by means of appropriate ontologies and association rules, and how to use
these metadata in four different search scenarios where a simple full text index em-
ployed by current desktop search engines fails to find the information we are looking
for. Finally, section 4 describes the architecture of our semantic desktop search envi-
ronment, as well as our prototype.

1 Desktop Search is in fact ”a search into our past”, and it should therefore exploit the associative
functionality of the human memory.

Activity Based Metadata for Semantic Desktop Search 441

2 Using Semantic Metadata in Search: A Classification

2.1 Using Metadata to Enrich Search Results

One of the most interesting semantic search efforts is probably being performed in the
TAP project [8]. TAP builds upon the TAPache module, which provides a platform for
publishing and consuming data from the Semantic Web. Its knowledge base is updated
with the aid of the onTAP system, which includes 207 HTML page templates, being
able to read and extract knowledge from 38 different high quality web sites. The key
idea in TAP is that for specific searches, a lot of information is available in catalogs and
backend databases, but not necessarily on Web pages crawled exhaustively by Google.
The semantic search based results are independent of the results obtained via traditional
information retrieval technologies and aim to augment them.

While searching for musicians and other well-known entities like cities, countries
and others can draw upon the fact that a lot of information about them is available
in backend databases, whose data sets can be joined based on the ID of that entity,
the situation is different in the educational context, where topic classification is the
most important characteristics of a page. This latter approach is used in our personal
reader system [3], which finds additional pages related to the pages contained in a
course, and again provides these as additional information to the core information pre-
sented.

2.2 Using Metadata to Connect and Visualize Information

In ”The Social Semantic Desktop” [2], the authors envision that the next step towards
communication is a desktop application based on the Semantic Web, which could draw
connections between all the types of data people interchange. For example, an entry in
an agenda would be correlated with the author of an article or to the context associated
to an email. Altogether, the entire information existing in a social network would be
connected to each desktop. Such a structure would then help people organize and find
information, due to the enhancement brought by metadata into the system.

The Fenfire project [5] proposes a solution to interlink any kind of information on
one’s desktop. That might be the birthday with the person’s name and the articles she
wrote, or any other kind of information. The idea is to make the translation from the
current file structure to a structure that allows people to organize their data closer to
the reality and to their needs, in which making comments and annotations would be
possible for any file.

Haystack [17] pursues similar goals as Fenfire. One important focus is on working
with the information itself, not with the programs it is usually associated with. For
example, only one application should be enough to see both a document, and the email
address of the person who wrote it. Therefore, a user could build her own links to
Semantic Web objects (practically any data), which could then be viewed as thumbnails,
web pages, taxonomies, etc.

A third project building an information management environment for the desktop
is Gnowsis [19]. The main idea behind applications in this environment is the use of
a central information server which allows users to administer and directly access all
the information on their computer (for example the author of a file, her email address,

442 P.A. Chirita et al.

etc.). Gnowsis envisions appropriate ontologies at four levels. The first one is used
on the server, as it needs custom formats for the internal operation data and for its
configuration files. The second one is for each application and the data stored by it. For
example, in Outlook Express the types of data that can be found are emails, contacts
and appointments. On the third level we have public ontologies, created by others to
describe people, projects or documents (e.g. Dublin Core or FOAF). On the uppermost
level, the user can create user-specific ontologies to fit her needs. For each level, only
general architectural information is given, but no specific details or examples about the
proposed ontologies, though.

In the context of another interesting prototype, the interface proposed by [21] im-
proves image search by providing and using faceted metadata. Users can add flat or
hierarchical categories of information to images, and then use them for filtering search
results. Again, the idea is to provide an enhanced access to information, based on the
different kinds of collected metadata.

2.3 Using Context Metadata to Find Information

[15] describes a very interesting approach for exploiting additional metadata for re-
trieving pictures. Their main idea is to rely on mostly automatically generated metadata
(location, time and other digital photo metadata) and some manual annotations (events
etc.) and to enhance these metadata automatically to provide information about actual
light status (night, day, dawn, dusk), weather status and temperature, and additional
aspects on the events, and then use these metadata to find stored images.

Another semantic search algorithm is proposed by [18]. It debuts with a classical
text-based search on the metadata, whose output is then extended using the RDF net-
work induced by the relations between semantic concepts, and finally reordered with
techniques adapted from information retrieval.

[20] presents a new approach to content-based image retrieval. To improve the re-
trieval performance, the authors use a self-adjustable meta-database, which records the
optimized relevance feedback information, representing the results obtained from pre-
vious queries from users that give a feedback on the relevance of the retrieved pictures.
This kind of information partitions the images into classes denoting relevant images for
future queries. The features taken into account by the algorithm are only low-level ones,
though, such as HSV color-histograms or directional histograms.

3 Integrating Context Metadata Within Desktop Search

3.1 How Do Users Search?

Now how can we enhance desktop search with additional metadata? Clearly, if we know
how users search, we can support their queries in an appropriate way. Recent studies of
user web search behavior [4] have shown that the user goals can be classified into three
main categories:

Activity Based Metadata for Semantic Desktop Search 443

– Navigational: the user is searching for a specific web site, whose URL she forgot.
– Informational: the user is looking for information about a topic she is interested in.
– Resource Seeking: the user wants to find a specific resource (e.g. lyrics of a song, a

program to download, a map service, etc.).

On our computer we are mainly interested in navigational queries, i.e. the user
knows she stored a resource somewhere on the PC and now wants to find it again.
Other less frequent, but possible, search goals are resource seeking (for example when
searching for a previously installed application which plays MPEG-4 movies) and the
close-directed subclass of informational queries [4] (searching for a resource annotated
with a given description, such as ”introduction to logic programming”). The other types
of informational queries are almost inexistent on the desktop, as one generally has at
least a vague picture of what is stored, and thus knows whether resources on a specific
topic do exist on the PC or not2.

Now clearly, when searching for something on our desktop we want to be able
to exploit as much additional context as possible. In the following sections, we will
discuss which context information is available for desktop search, how we can describe
this context information using appropriate ontologies and how we can represent this
information by explicit or inferred RDF metadata.3

After a brief presentation of current conventional approaches to desktop search (Sec-
tion 3.2), we will analyze three important contexts which can be exploited to enhance
desktop search: emails in Section 3.3, directory structures in 3.4, and the web cache in
3.5 and 3.6. For each context, we describe ontologies representing the available context
information, and discuss both explicitly available metadata, as well as metadata that can
be inferred and materialized using appropriate association rules.

3.2 Current Approaches to Desktop Search

The difficulty of accessing information on our computers has prompted several first
releases of desktop search applications during the last months. The most prominent ex-
amples include Google desktop search [7] (proprietary, for Windows) and the Beagle
open source project for Linux [6]. Yet they include no metadata whatsoever in their sys-
tem, but just a regular text-based index. Nor does their competitor MSN Desktop Search
[14]. Finally, Apple Inc. promises to integrate an advanced desktop search application
(named Spotlight Search [1]) into their upcoming operating system, Mac OS Tiger.
Even though they also intend to add semantics into their tool, only explicit information
is used, such as file size, creator, last modification date, or metadata embedded into
specific files (images taken with digital cameras for example include many additional
characteristics, such as exposure information or whether a flash was used). While this is
indeed an improvement over regular search, it still misses contextual information often

2 If she knows that ”something” is there, then the search becomes “navigational” or ”resource
seeking”. If she knows there is nothing stored on the given topic, she would not search for it
on her desktop.

3 Note, that even inferred metadata have to be materialized in order to enable efficient search.

444 P.A. Chirita et al.

resulting or inferable from explicit user actions or additional background knowledge,
as discussed in the next sections.

In the following we will introduce four important search contexts, each with a small
scenario, where ordinary full-text search fails, but additional context metadata provide
the necessary information for finding the document we search for. For each context we
will describe RDFS ontologies defining the metadata relevant for that context, as well
as association rules and possible background knowledge which infer and materialize
additional metadata.

3.3 Exploiting E-Mail Context

Scenario. Alice is interested in distributed page ranking, as her advisor asked her to
write a report to summarize the state of the art in this research area. She remembers that
during the last month she has discussed with a colleague about a distributed PageR-
ank algorithm, and also that the colleague sent her the article via email. Though the
article does not mention distributed PageRank, but instead talks about distributed trust
networks, it is basically equivalent to distributed PageRank as her colleague remarked
in this email. Obviously she should be able to find the article based on this additional
information.

Context and Metadata. There are several aspects relevant to our email context. Sender
and receiver fields of the email are clearly relevant pieces of information. Further in-
formation can be captured if we analyze the date of the email or the ”reply to” field,
which gives thread information and is useful to determine social network information
in general, for example which people discussed which topic etc.

Metadata should be generated automatically while the user works. For example,
when an email is received, the system automatically generates email RDF metadata,
instantiating e.g. ”To”, ”From” and ”Comment” metadata from the email fields, and
associating them to the document(s) attached to this email.

Fig. 1. Email prototype

Activity Based Metadata for Semantic Desktop Search 445

Useful RDFS Ontologies. Basic properties for this context are properties referring to
the date when an email was sent or the date it was accessed, the subject of the email and
the email body. The status of an email can be described as seen/unseen or read/unread.
We also have a property of the type reply to which represents thread information. The
has attachment property describes a 1:n relation because a mail can have one or more
attachments. The to and from properties connect to Class MailAddress which con-
nects to Class Person. A Person is usually associated to more than one MailAddress
instances. For attachments we keep the connection to the email it was saved from, be-
cause when we search for an attachment we want to use all attributes originally con-
nected to the email it was attached to. The stored as attribute is the inverse relation of
the File:stored from property we will see later.

Corresponding Association Rules. Association rules infer and materialize additional
metadata information. For example, when creating the annotations, for each stored file
we also associate a subject, derived from the subject of the email the file was attached
to. The corresponding association rule, written in Datalog style, looks as follows:

subject(File, Subject) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment),
subject(Mail, Subject).

Similarly, we also associate date and body text to the attached documents:

accessed(File, Date) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment), accessed(Mail, Date).

body(File, Body) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment), body(Mail, Body).

as well as the name of the sender of the original email:

from(File,Name) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment),
from(Mail, MailAddress),
belongs to(MailAddress, Person), name(Person,Name)

In email threads connected through the reply to relationship, we also inherit email
subjects and bodies in addition to the original email subject / body:

subject(Mail, Subject).
subject(Mail, Subject) ← reply to(Mail, Mail1), subject(Mail1, Subject).
body(Mail, Body).
body(Mail, Body) ← reply to(Mail, Mail1), body(Mail1, Body).

Note that these association rules generate and materialize the appropriate metadata
before the query is evaluated, and thus materialized metadata can be used directly dur-
ing search, similar to the full text of the file / document. In our example, we can retrieve
the correct document by using body text and sender information associated to this doc-
ument, inherited from the original email.

446 P.A. Chirita et al.

3.4 Exploiting File Hierarchy Context

Scenario. In our second scenario, Alex spent his holiday in Hanover, Germany, taking
a lot of digital pictures. He usually saves his pictures from a trip into a folder named
after the city or the region he visits. However, he has no time to rename each image, and
thus their file names are the ones used by his camera (for example ”DSC00728.JPG”).
When he forgets the directory name, no ordinary search can retrieve his pictures, as
the only word he remembers, ”Germany”, does neither appear in the file names, nor in
the directory structure. It would certainly be useful if an enhanced desktop search with
“pictures germany” would retrieve his Hanover pictures.

Context and Metadata. In this example we need to consider file type and directory
name information, and we need to be able to go beyond simple keyword search, tak-
ing part-of relationships and synonyms into account. To enrich the context metadata
provided by file and directory names, we use WordNet [13], a lexical reference system
which contains English nouns, verbs, adjectives and adverbs organized into synonym
sets, each representing one underlying lexical concept. Different relations link the syn-
onym sets. In our case, we use the following additional relationships:

– Hypernym: Designates a class of specific instances. X is a hypernym of Y if Y is a
(kind of) X.

– Holonym: Designates the superset of an object. A is a holonym of B if B is a part
of A.

– Synonyms: A set of words that are interchangeable in some context. X is a synonym
of Y if Y can substitute X in a certain context without altering the meaning.

Useful RDFS Ontologies. Obviously, our context metadata for files include the basic
file properties like date of access and creation, as well as the file owner. File types can

Fig. 2. File prototype

Activity Based Metadata for Semantic Desktop Search 447

be inferred automatically, and provide useful information as well (in our case, the file is
of type “JPEG image data”). Additionally, a file might be a visited web page which we
stored on our computer or an attachment saved from an email. This stored from property
is of great importance because this represents information that current file systems miss,
the provenance of information. We also keep track of the whole file path, including the
directory structure. Finally, we extend the strings used in name and type metadata using
WordNet information: synonyms, hypernyms, and holonyms. For each term we add the
information provided by WordNet in order to enrich the context of the stored file.

Corresponding Association Rules. The use of WordNet induces the following associ-
ation rules:

name(File, String1) ← name(File, String2), synonym to(String2, String1).
name(File, String1) ← name(File, String2), holonym to(String2, String1).
name(File, String1) ← name(File, String2), hypernym to(String2, String1).

Furthermore, we associate directory names as additional names to the contained
files as well. The rules allow us to add explicit part-of information (“Hanover is part of
Germany”), as well as synonym information (“picture” is a synonym to “image”), and
enable us to successfully solve the search problem discussed in our scenario.

3.5 Exploiting the Web Cache Context for Visualization

Scenario. Even though Web search engines are providing surprisingly good results,
they still need to be improved to take user context and user actions into account. Con-
sider for example Paul, who is looking for the Microsoft internships web page, which
he has previously visited, coming from the Microsoft main home page. If he does not
remember the right set of keywords to directly jump to this page, it certainly would be
nice if enhanced desktop search, based on his previous surfing behavior, would support
him by returning the Microsoft home page, as well as providing the list of links from
this page he clicked on during his last visit.

Context and Metadata. The context we have to use here can be extracted from Paul’s
web cache, so we want to annotate each cached web page with additional informa-
tion both for its basic properties (URL, access date, etc.), as well as more complex
ones such as the used in-going and out-going links to other neighboring pages, reflect-
ing Paul’s surfing behavior. This way, when browsing a certain cached page, enhanced
desktop search can also provide information about the context in which that document
has been useful for the user, i.e. how it was reached or which links were followed from
there.

Useful RDFS Ontologies. Correspondingly, the central class in this scenario’s ontology
is the class VisitedWebPage. Upon visiting a web page, the user is more interested in the
links she has used on that page, rather than every possible link which can be followed
from there. Thus, the metadata contains only the hyperlinks accessed for each stored
web page:

448 P.A. Chirita et al.

Fig. 3. WebPage prototype

– departed to is a relation of the type one to many (as the user could have accessed
many pages from a web page) which shows the hyperlinks the user clicked on the
current web page;

– arrived from is a relation representing the page(s) the user came from.

Also here, we have added properties related to the time of access and place of storage
in the hard disk cache. For specific scenarios we can define subclasses of this base class,
which include scenario specific attributes, for example recording the browsing behavior
in CiteSeer, which we will discuss in the next section.

Corresponding Association Rules. There are no specific association rules materializ-
ing inferred metadata we need for our scenario. Instead we use our metadata for enrich-
ing search results. Displaying context information for enhanced browsing under this
scenario uses a similar layout as the TAP search screen, with the web pages or docu-
ments from the cache provided in the main window, and an additional frame to display
the context information using the departed to and arrived from relations.

3.6 Exploiting the Web Cache Context to Enrich Search Results

Scenario. If we have more information about the web pages visited, we can provide
even better context information. Suppose that Alice browses through CiteSeer for pa-
pers on a specific topic, following reference links to and from appropriate papers, and
downloads the most important documents onto her computer. Now as soon as they are
stored in one of her directories, her carefully selected documents are just another bunch
of files without any relationships. They have completely lost all information present in
CiteSeer, in this case which paper references specific other papers or is referenced by
another paper, and which papers Alice deemed important enough not only to look at but
also to download. It is the task of a semantic desktop search environment to preserve
that information and make it available as explicit metadata.

Context and Metadata. As discussed, stored files on today’s computers do not tell us
whether they were saved from a web page or from an email, not to mention the URL of
the web page, out-going or in-going visited links and more specific information infer-
able from this information and a model of the web page context browsed, as discussed
in our scenario. All this information should be covered by our metadata to connect the
stored files to their original contexts, and thus allow the user to exploit all the previous
knowledge and context she gathered around them.

Activity Based Metadata for Semantic Desktop Search 449

Fig. 4. Publication prototype

Useful RDFS Ontologies. In our scenario we make use of additional knowledge about
how CiteSeer pages are connected. We therefore create a subclass of VisitedWebPage
called Publication, and add suitable properties as described in figure 4. The Publica-
tion class represents a CiteSeer document web page. It records the CiteSeer traversed
links from that page using the references property and the CiteSeer documents which
the user visited before using the referenced by property. It is easy to notice that these
pages represent a subset of the metadata captured by the departed to and arrived from
relations. PDF file and PS file are subclasses of File, and are connected to Publication
with subproperties of “stored as”, namely “stored as pdf ” and “stored as ps”.

Corresponding Association Rules. In our semantic desktop search environment we
use these metadata to enrich the search results by displaying the context of the document
found in the form of downloaded papers referencing that document, or downloaded
papers referenced by the document. This can be expressed for example by an association
rule such as the following one:

downloaded references(Document, F ile) ←
stored as(Publication1, Document),
references(Publication1, Publication2),
stored as(Publication2, F ile).

4 Desktop Search Architecture and Prototype

4.1 Generating Input Metadata

Event Triggered Metadata Generation. The main characteristic of our desktop search
architecture is metadata generation and indexing on-the-fly, triggered by modification
events generated upon occurrence of file system changes. This relies on notification
functionalities provided for example by the kernel. Events are generated whenever a
new file is copied to hard disk or stored by the web browser, when a file is deleted or

450 P.A. Chirita et al.

modified, when a new email is read, etc. Much of this basic notification functionality
is provided on Linux by an inotify-enabled Linux kernel, which we use in our proto-
type.

Metadata Generator Applications. Depending on the type and context of the file /
event, metadata generation is then performed by appropriate metadata generator appli-
cations, as described in the next paragraphs. These applications build upon an appropri-
ate RDFS ontology as described in the previous sections describing the RDF metadata
to be used for that specific context. Generated metadata are either extracted directly
(e.g. email sender, subject, body) or are generated using the appropriate association
rules plus possibly some additional background knowledge (e.g. the WordNet ontology
in our prototype). All of these metadata are exported in RDF format, and added to a
metadata index, which is used by the search application together with the usual full-text
index.

The architecture of our prototype environment is depicted in Figure 5. It includes
three prototype metadata generator applications, based on the scenarios described in the
previous section 3. We will shortly describe them in the following paragraphs.

Email Metadata Generator. Our current email prototype is built on top of the Java-
Mail API [10]. It processes the incoming emails into a separate class, derived from
the Message class defined in JavaMail. The associated metadata is easily generated
according to figure 1, as the Message class already provided helpful methods in this di-
rection (e.g. ”getTo”, ”getRecipients”, ”getSubject” and ”getSentDate”). Further meta-
data are generated when attachments are stored in the file system. Metadata are stored
as RDF using the Jena toolkit [11]. Jena is a Java framework for building Seman-
tic Web applications. It provides a programmatic environment for RDF and RDFS,
including a rule-based inference engine which we use to implement our association
rules.

File Metadata Generator. Upon creation of a new file, its path is decomposed into a
sequence of tokens, one for each level of the directory tree existing on the hard disk.
Each of these tokens is added as metadata description to the file, together with the usual
file attributes, as described in section 3.4. We use WordNet to add additional metadata
(WordNet senses) both to the file name and to each token of the path, thus capturing
all meaningful information implicitly available through the file and folder names. Our
file prototype is again implemented in Java, and uses the JWNL API [12] to access the
WordNet relational dictionary. As in the previous module, we also use the Jena API to
generate the RDF file that contains the annotation corresponding to the file structure, in
which each indexed file is a resource.

As future work, we intend to extract additional specific information stored in several
widely used file types. For example, many image formats provide specific additional
metadata, such as exposure information. Another possible improvement for this gener-
ator is to use additional background knowledge about seasons etc., as well as to let the
user manually add more annotations to files or directories. We could then search for the
pictures we took during the last winter in Germany, or during a special event in our life,
like a birthday.

Activity Based Metadata for Semantic Desktop Search 451

Fig. 5. Prototype Application Architecture

Web Cache Metadata Generator. In the web cache prototype, the annotation of the
cached web pages is triggered by browsing web pages which were not previously stored
in the local cache. Generation starts with the basic annotations for each web page (e.g.
access date) and then proceeds with the annotations representing the connections be-
tween web pages (for example from which page did the user arrive at the current one,
or which hyperlinks of the current page are traversed). Again, we use the Jena API to
export the annotations in RDF format.

For specific sites, the metadata generator uses additional ontologies. In our proto-
type this is done when using the CiteSeer repository. These ontologies then trigger ad-
ditional metadata generation, which can be used during search, as well as for enriching
search results.

452 P.A. Chirita et al.

4.2 Displaying and Enriching Search Results

Enhanced semantic desktop search provides a search service similar to its web sibling.
However, rather than searching only one through the full-text index, it also searches the
additional metadata index, with each metadata item linked to the resource it has been
derived from.

The regular search interface is as simple as the one provided by Google, i.e. an
input text box for the searched terms and a search button. This type of search looks for
the keywords in both indexes automatically. Results are then presented as in TAP [8]:
the left side of the output window displays the hits matched from the text index, and
the right side contains additional information provided through the metadata associated
with the chosen result document.

The items displayed on the right hand side obviously depend on the type of the result
document. For the web cache scenario this allows us to show not only the previously
browsed pages, but also the entire context in which they have been used and accessed
(for example where did the user go from each page, or which referenced papers the user
downloaded related to a found document). This helps a lot, as the user now has all the
orienteering steps [9] right in front of her.

An additional advanced search interface allows the user to restrict her search to one
of the two indexes. Moreover, she can define filters, by choosing where to search (only
in the emails, files or the web cache), each category also allowing other additional filters
according to its ontology (e.g. To, From, Reply To, Subject, Attachment, etc. in the email
scenario).

5 Conclusions and Further Work

Advanced desktop search needs semantics and metadata. Applying search engine tech-
nology on the desktop is useful, but not sufficient, because sophisticated heuristics and
algorithms like PageRank, which are very successful on the web, do not work on the
desktop. On the other hand, our personal desktop environment provides a lot of context
not available on the web, which can be used to implement sophisticated semantic search
functionalities on our desktop surpassing those possible on the web.

This paper presents concept, architecture and prototype for a semantic desktop
search environment, which promises to exploit the information present in these con-
texts, accumulated by user activities and additional background knowledge. Our search
environment relies on ontologies describing appropriate metadata for different contexts
relevant on the desktop and uses these semantic annotations to both extend search func-
tionalities and enrich search results.

The semantic desktop search environment contains two distinct modules. The first
one is the index, which consists of a metadata repository including all metadata associ-
ated to each resource on the desktop, as specified in the appropriate context ontologies,
and a regular search engine full-text index of these resources. The second module is the
search module, which combines keyword search on the full-text index with semantic
search on the metadata repository to provide both improved functionalities for finding
information on our PC, as well as enriching the search results and visualizing existing
contexts using the additional knowledge stored in the metadata repository.

Activity Based Metadata for Semantic Desktop Search 453

Comparing the possibilities for a semantic desktop search environment to semantic
search on the web, we believe that semantic web technologies might ultimately be more
important on the desktop than on the web. This is because, first, our desktop environ-
ment is “limited” in the sense that we will be able to describe most relevant contexts
rather easily, and thus will be able to provide more complete ontologies / metadata spec-
ifications for the desktop environment than for the web in general. Second, even with
200GB hard disks in our computers, the amount of data and metadata itself is limited
compared to the information available on the web, so more sophisticated algorithms for
using semantic annotations are feasible on the desktop than on the web.

We are currently working on integrating our metadata repository and tools into one
of the existing approaches to desktop search, Gnome Beagle [6], where we can re-use
their conventional infrastructure for full-text search on the desktop. Additionally, we
are extending our available context ontologies and metadata generation functionalities
beyond the current status as described in this paper, in conjunction with several user
surveys meant to capture both the requirements of a larger set of users, as well as to
measure the improvements provided by adding semantic annotations to desktop search.

References

1. Apple spotlight search. http://developer.apple.com/macosx/tiger/spotlight.html.
2. Stefan Decker and Martin Frank. The social semantic desktop. In DERI Technical Report

2004-05-02, 2004.
3. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. Personalization in distributed elearning envi-

ronments. In Proceedings of the 13th World Wide Web Conference, 2004.
4. Rose D. E. and Levinson D. Understanding user goals in web search. In Proc. of WWW

2004, May 17-22, 2004, New York, USA, 2004.
5. Benja Fallenstein. Fentwine: A navigational rdf browser and editor. In Proceedings of 1st

Workshop on Friend of a Friend, Social Networking and the Semantic Web, 2004.
6. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.
7. Google desktop search application. http://desktop.google.com/.
8. R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the twelfth

international conference on World Wide Web, pages 700–709. ACM Press, 2003.
9. Teevan J., Alvarado C., Ackerman M. S., and Karger D. R. The perfect search engine is not

enough: A study of orienteering behavior in directed search. In In Proc. of CHI, 2004.
10. Javamail api. http://java.sun.com/products/javamail/.
11. Jena api. http://jena.sourceforge.net/.
12. Jwnl api. http://sourceforge.net/projects/jwordnet.
13. G.A. Millet. Wordnet: An electronic lexical database. Communications of the ACM,

38(11):39–41, 1995.
14. Msn desktop search application. http://beta.toolbar.msn.com/.
15. Mor Naaman, Susumu Harada, Qian Ying Wang, Hector Garcia-Molina, and Andreas

Paepcke. Context data in geo-referenced digital photo collections. In Proceedings of the
12th annual ACM International Conference on Multimedia, 2004.

16. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford University, 1998.

17. Dennis Quan and David Karger. How to make a semantic web browser. In Proceedings of
the 13th International WWW Conference, 2004.

454 P.A. Chirita et al.

18. Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragao. A hybrid approach for
searching in the semantic web. In Proceedings of the 13th International World Wide Web
Conference, 2004.

19. Leopold Sauermann. Using semantic web technologies to build a semantic desktop. Master’s
thesis, TU Vienna, 2003.

20. Yimin Wu and Aidong Zhang. Category-based search using metadatabase in image retrieval.
In IEEE International Conference on Multimedia and Expo, 2002.

21. Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted metadata for image
search and browsing. In Proceedings of the conference on Human factors in computing
systems, 2003.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 455–470, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Ontology-Based Information Retrieval Model

David Vallet, Miriam Fernández, and Pablo Castells

Universidad Autónoma de Madrid
Campus de Cantoblanco, c/ Tomás y Valiente 11, 28049 Madrid

{david.vallet, miriam.fernandez, pablo.castells}@uam.es

Abstract. Semantic search has been one of the motivations of the Semantic
Web since it was envisioned. We propose a model for the exploitation of ontol-
ogy-based KBs to improve search over large document repositories. Our ap-
proach includes an ontology-based scheme for the semi-automatic annotation of
documents, and a retrieval system. The retrieval model is based on an adapta-
tion of the classic vector-space model, including an annotation weighting algo-
rithm, and a ranking algorithm. Semantic search is combined with keyword-
based search to achieve tolerance to KB incompleteness. Our proposal is illus-
trated with sample experiments showing improvements with respect to key-
word-based search, and providing ground for further research and discussion.

1 Introduction

The use of ontologies to overcome the limitations of keyword-based search has been
put forward as one of the motivations of the Semantic Web since its emergence in the
late 90’s. While there have been contributions in this direction in the last few years,
most achievements so far either make partial use of the full expressive power of an
ontology-based knowledge representation, or are based on boolean retrieval models,
and therefore lack an appropriate ranking model needed for scaling up to massive
information sources.

In the former case, ontologies provide a shallow representation of the information
space, equivalent in essence to the taxonomies and thesauri used before the Semantic
Web was envisioned [3,6,7,15]. Rather than an instrument for building knowledge
bases, these light-weight ontologies provide controlled vocabularies for the classifica-
tion of content, and rarely surpass several KBs in size. This approach has brought
improvements over classic keyword-based search through e.g. query expansion based
on class hierarchies and rules on relationships, or multifaceted searching and brows-
ing. It is not clear though that these techniques alone really take advantage of the full
potential of an ontological language, beyond those that could be reduced to conven-
tional classification schemes.

Other semantic search techniques have been developed that do exploit large knowl-
edge bases in the order of GBs or TBs consisting of thousands of ontology instances,
classes and relations of arbitrary complexity [1,2,4,12]. These techniques typically
use boolean search models, based on an ideal view of the information space as

456 D. Vallet, M. Fernández, and P. Castells

 consisting of non-ambiguous, non-redundant, formal pieces of ontological knowl-
edge. In this view, the information retrieval problem is reduced to a data retrieval
task. A knowledge item is either a correct or an incorrect answer to a given informa-
tion request, thus search results are assumed to be always 100% precise, and there is
no notion of approximate answer to an information need. This model makes sense
when the whole information corpus can be fully represented as an ontology-driven
knowledge base, so that search results consist of ontology entities.

However, there are limits to the extent to which knowledge can or should be for-
malized in this way. First, because of the huge amount of information currently avail-
able to information systems worldwide in the form of unstructured text and media
documents, converting this volume of information into formal ontological knowledge
at an affordable cost is currently an unsolved problem in general.

Second, documents hold a value of their own, and are not equivalent to the sum of
their pieces, no matter how well formalized and interlinked. The replacement of a
document by a bag of information atoms inevitably implies a loss of information
value: the thread of thought behind the order of the sentences in free text, the choice
of the words, etc., are a valuable, relevant, and necessary part of the conveyed mes-
sage. Therefore, although it is useful to break documents down into smaller informa-
tion units that can be reused and reassembled to serve different purposes, it is yet
often appropriate to keep the original documents in the system.

Third, wherever ontology values carry free text, boolean semantic search systems
do a full-text search within the string values. In fact, if the string values hold long
pieces of free text, a form of keyword-based search is taking place in practice beneath
the ontology-based query model since, in a way, unstructured documents are hidden
within ontology values, whereby the “perfect match” assumption starts to become
arguable, and search results may start to grow in size. While this may be manageable
and sufficient for small knowledge bases, the boolean model does not scale properly
for massive document repositories where searches typically return hundreds or thou-
sands results. Boolean search does not provide clear ranking criteria, without which
the search system may become useless if the search space is too big.

In this paper we propose an ontology-based retrieval model meant for the exploita-
tion of full-fledged domain ontologies and knowledge bases, to support semantic
search in document repositories. In contrast to boolean semantic search systems, in
our perspective full documents, rather than specific ontology values from a KB, are
returned in response to user information needs. The search system takes advantage of
both detailed instance-level knowledge available in the KB, and topic taxonomies for
classification. To cope with large-scale information sources, we propose an adaptation
of the classic vector-space model [16], suitable for an ontology-based representation,
upon which a ranking algorithm is defined.

The performance of our proposed model is in direct relation with the amount and
quality of information within the KB it runs upon. The latest advances in automating
ontology population and text annotation are promising [5,9,11,14]. While, if ever,
ontologies and metadata (and the Semantic Web itself) become a worldwide commod-
ity, the lack or incompleteness of available ontologies and KBs is a limitation we shall
likely have to live with in the mid term. In consequence, tolerance to incomplete KBs

 An Ontology-Based Information Retrieval Model 457

has been set as an important requirement in our proposal. This means that the recall
and precision of keyword-based search shall be retained when ontology information is
not available or incomplete.

We have implemented our model and done some low-scale experimentation with
real documents and data from a digital news archive from a local Spanish newspaper.
The experiments build upon previous work in the Neptuno project [1], where an on-
tology and a knowledge base were built for the description of archive news.

The rest of the paper is organised as follows. An overview of related work is given
in Section 2. After this, our scheme for semantic annotation is described. Section 4
explains the retrieval and ranking algorithms. Some initial experiments with our tech-
niques are reported in Section 5.The strengths, weaknesses, and significance of our
approach are summarized in Section 6, after which some conclusions are given.

2 State of the Art

Our view of the semantic retrieval problem is very close to the latest proposals in
KIM [11,14]. While KIM focuses on automatic population and annotation of docu-
ments, our work focuses on the ranking algorithms for semantic search. Along with
TAP [8], KIM is one of the most complete proposals reported to date, to our knowl-
edge, for building high-quality KBs, and automatically annotating document collec-
tions at a large scale. In their latest account of progress [11] a ranking model for re-
trieval is hinted at but has not been developed in detail and evaluated. In fact, KIM
relies on a keyword-based IR engine for this purpose (indexing, retrieval and rank-
ing). Our work complements KIM with a ranking algorithm specifically designed for
an ontology-based retrieval model, using a semantic indexing scheme based on anno-
tation weighting techniques.

TAP [8] presents a view of the Semantic Web where documents and concepts are
nodes alike in a semantic network, whereby the separation of contents and metadata is
not as explicit as we propose here. The two main problems addressed by TAP are a)
the development of a distributed query infrastructure for ontology data in the Seman-
tic Web, and b) the presentation of query execution results, augmenting query an-
swers with data from surrounding nodes. These issues are complementary to the ones
addressed in this paper. However the expressive power of the TAP query language is
fairly limited compared to ontology query languages such as RDQL, RQL, etc. The
supported search capability is limited to keyword search within the “title properties”
of instances, and no ranking is provided.

Mayfield and Finin [13] combine ontology-based techniques and text-based re-
trieval in sequence and in a cyclic way, in a blind relevance feedback iteration. Infer-
ence over class hierarchies and rules is used for query expansion, and extension of
semantic annotations of documents. Documents are annotated with RDF triples, and
ontology-based queries are reduced to boolean string search, based on matching RDF
statements with wildcards, at the cost of losing expressive power for queries. We share
with Mayfield et al the idea that semantic search should be a complement of keyword-
based search as long as not enough ontologies and metadata are available. Also, we

458 D. Vallet, M. Fernández, and P. Castells

believe that inferencing is a useful tool to fill knowledge gaps and missing information
(e.g. transitivity of the locatedIn relationship over geographical locations).

Semantic Portals [1,2,4,12] typically provide simple search functionalities that
may be better characterised as semantic data retrieval, rather than semantic informa-
tion retrieval. Searches return ontology instances rather than documents, and no
ranking method is provided. In some systems, links to documents that reference the
instances are added in the user interface, next to each returned instance in the query
answer [4], but neither the instances, nor the documents are ranked. Maedche et al do
provide a criterion for query result ranking in the SEAL Portal [12], but the princi-
ples on which the method is based – a similarity measure between query results and
the original KB without axioms, is not clearly justified, and no testing of the method
is reported.

The ranking problem has been taken up again in [19], and more recently [15]. Ro-
cha et al propose the expansion of query results through arbitrary ontology relations
starting from the initial query answer, where the distance to the initial results is used
to compute a similarity measure for ranking [15]. This method has the advantage of
allowing the user to express information needs with simpler, keyword-based queries
but, from our perspective, it introduces an unnecessary loss of precision, since a
more accurate result expansion can be achieved by including ontology relations ex-
plicitly in a structured query. From our point of view, Rocha’s techniques would be
appropriate in a more browsing-oriented information seeking context. Stojanovic et
al propose a sentence ranking scheme based on the number of times an instance
appears as a term in a relation type, and the derivation tree by which a sentence is
inferred [19]. Whereas these works are concerned with ranking query answers (i.e.
ontology instances), we are concerned with ranking the documents annotated with
these answers. Since our respective techniques are applied in consecutive phases of
the retrieval process, it would be interesting to experiment the integration of the
query result relevance function proposed by Stojanovic et al into our document rele-
vance measures.

3 Knowledge Base and Document Base

In our view of semantic information retrieval, we assume a knowledge base has been
built and associated to the information sources (the document base), by using one or
several domain ontologies that describe concepts appearing in the document text. The
concepts and instances in the KB are linked to the documents by means of explicit,
non-embedded annotations to the documents.

While we do not address here the problem of knowledge extraction from text
[4,5,9,10,11,14], we provide a vocabulary and some simple mechanisms to aid in the
semi-automatic annotation of documents, once ontology instances have been created
(manually or automatically). These are described in Subsection 3.2. Our system can
work with any arbitrary domain ontology with essentially no restrictions, except for
some minimal requirements that are explained next.

 An Ontology-Based Information Retrieval Model 459

3.1 Root Ontology Classes

Our system requires that the knowledge base be constructed from three main base
classes: DomainConcept, Taxonomy, and Document. DomainConcept should be the
root of all domain classes that can be used (directly or after subclassing) to create
instances that describe specific entities referred to in the documents. For example, in
the Arts domain, classes like Artist, Sculptor, ArtWork, Painting, and Museum should
be defined as (probably indirect) subclasses of DomainConcept. A small set of upper-
level open-domain classes like Person, Building, Event, Location, etc., is included in
the base concept ontology, to be extended for specific domains.

Document is used to create instances that act as proxies of documents from the in-
formation source to be searched upon. Two subclasses, TextDocument and MediaC-
ontent, are provided, which can be further subclassed, if appropriate for a particular
application domain, to provide for different types of documents, such as Report,
News, PurchaseOrder, Invoice, Message, etc., with different fields (e.g. title, date,
subject, price, sender). The class MediaContent is provided in anticipation of future
extensions for multimedia retrieval, which we have not developed yet. Document has
a location property that holds a dereferenceable physical address (in our current im-
plementation, a URL) from which the actual document contents can be retrieved.

Taxonomy is the root for class hierarchies that are merely used as classification
schemes, and are never instantiated. These taxonomies are expected to be used as a
terminology to annotate documents and concept classes, using them as values of dedi-
cated properties. For instance, in a KB for news, classes like Culture, Politics, Econ-
omy, Sports, etc. (after the IPTC Subject Reference System standard1), could be used
as values of a (probably multivalued) topic property of the News class. Furthermore,
concept classes like Athlete and Tournament could also have the topic property, in
this case with the value Sports, i.e. concepts can also be classified under the same
scheme as documents. Several separate taxonomies can be used simultaneously on the
same documents, thus providing for multifaceted classification.

The distinction between the three root classes DomainConcept, Taxonomy, and
Document, arises from our own experience in previous Semantic Web projects [1,2],
and many other observed information systems where this (or a similar distinction)
seems to be natural, useful and recurrent (see e.g. [17]). In our system, we exploit
taxonomies for multifaceted search, and to solve word ambiguities, as will be de-
scribed later.

3.2 Document Annotation

The predefined base ontology classes described above are complemented with an
annotation ontology that provides the basis for the semantic indexing of documents
with non-embedded annotations. In many respects, our scheme for semi-automatic
annotation is similar to the one recently reported in [11].

Documents are annotated with concept instances from the KB by creating instances
of the Annotation class, provided for this purpose. Annotation has two relational

1 http://www.iptc.org/NewsCodes

460 D. Vallet, M. Fernández, and P. Castells

properties, instance and document, by which concepts and documents are related
together. Reciprocally, DomainConcept and Document have a multivalued annotation
property.

Annotations can be created manually by a domain expert, or semi-automatically.
The subclasses ManualAnnotation and AutomaticAnnotation are used respectively, to
differentiate each case. We have found this distinction useful for the system at least
because a) manual annotations are more reliable than automatic ones, and when avail-
able should prevail, and b) while automatic annotations can be deleted for recalcula-
tion, manual annotations should be preserved.

Our system provides a simple facility for semi-automatic annotation, which works
as follows. DomainConcept instances use a label property to store the most usual text
form of the concept class or instance. This property is multivalued, since instances
may have several textual lexical variants. Close equivalents of our label property are
used in systems like KIM [11] and TAP [8]. In our current experiments, the value of
this property is set by hand by the ontology designer, but it could be set by automatic
means, if an external instance generation system was plugged to our system. Similarly
to KIM, instance labels are used by the automatic annotator to find potential occur-
rences of instances in text documents. Whenever the label of an instance is found, an
annotation is created between the instance and the document. In our system, docu-
ments can be annotated with classes as well, by assigning labels to concept classes.

This basic mechanism is complemented with heuristics to cope with polysemia, i.e.
label coincidence between different instances or classes. First the system always tries
to find the longest label, e.g. “Real Madrid” is preferred to “Madrid”. Second, classi-
fication taxonomies are used as a source of semantic scope for disambiguation: a
similarity measure is defined to compare the respective classification of the document
and candidate synonym instances for annotation, so that the instance that has the clos-
est classification to the document is chosen. For example, the word “Irises” in a
document classified under Arts would be linked to an instance of Painting that repre-
sents Van Gogh’s famous work, rather than a subclass of Flower, provided that the
painting instance exists in the knowledge base and has been correctly classified under
Arts, or a taxonomic subclass thereof, and assuming that Flower is classified under a
different taxonomic branch such as Botany or the like. Of course, if the Painting in-
stance does not exist, our system fails because it would incorrectly annotate the
document with the botanic sense.

Our semi-automatic annotation mechanisms can be further improved, but this is out
of the extent of our undergoing research. More sophisticated annotation techniques, as
have been reported in the literature [5,9,11,14], would be complementary and benefi-
cial to our system.

3.3 Weighting Annotations

The annotations are used by the retrieval and ranking module, as will be explained in
Section 4. The ranking algorithm is based on an adaptation of the classic vector-space
model [16]. In the classic vector-space model, keywords appearing in a document are
assigned weights reflecting that some words are better at discriminating between

 An Ontology-Based Information Retrieval Model 461

documents than others. Similarly, in our system, annotations are assigned a weight
that reflects how relevant the instance is considered to be for the document meaning.
Weights are computed automatically by an adaptation of the TF-IDF algorithm [16],
based on the frequency of occurrence of the instances in each document. More spe-
cifically, the weight wi,j of instance Ii for document Dj is computed as:

,

,

,

 log
max

i j

i j

k k j i

freq N
w

freq n
= ×

Where freqi,j is the number of occurrences of Ii in Dj, maxk freqk,j is the frequency
of the most repeated instance in Dj, ni is the number of documents annotated with Ii,
and N is the total number of documents in the search space.

The number of occurrences of an instance in a document is primarily defined as the
number of times the label of the instance appears in the document text, if the docu-
ment is annotated with the instance, and zero otherwise. We realised in our first ex-
periments that quite a number of occurrences were missed in practice with this ap-
proach, since pronouns, periphrasis, metonymy, and other deixis abound in regular
written speech. Finding all the references to an individual in free text is a very com-
plex natural language processing problem far beyond the scope of our current re-
search. Nonetheless we have achieved significant improvements by extending our
labeling scheme and exploiting class hierarchies, as follows.

First, further instance occurrences are found by adding more labels to instances.
However, the proliferation of labels tends to introduce further polysemic ambiguities
that lead to incorrect annotations. To avoid this negative effect, our system provides a
separate keyword property to be used, in addition to label, for instance frequency
computation, but not for automatic annotation. As a general rule, label should be
reserved to clearly instance-specific text forms, leaving more ambiguous ones as
keywords. Since instance occurrences are only computed in the presence of an annota-
tion, very few or no ambiguities are caused in practice.

Also, synecdoche is a frequent rhetoric figure used to avoid repetition, where an
individual is referred to by its class (e.g. “the painter”), after the individual (e.g. “Pi-
casso”) has already appeared in the text. To cope with this, the list of textual forms
(labels and keywords) of an instance is automatically expanded (just for the computa-
tion of occurrences) with the textual forms of its direct and indirect classes. This in-
troduces a slight occurrence counting imprecision when more than one instance of the
same class are annotating the same document, because the same class references are
counted once for each instance. However, in our experiments the improvements ob-
tained with this technique outweight the effect of the imprecision.

4 Processing Queries

Our approach to ontology-based information retrieval can be seen as an evolution of
classic keyword-based retrieval techniques, where the keyword-based index is re-
placed by a semantic knowledge base. The overall retrieval process is illustrated in
Fig. 1. Our system takes as input a formal RDQL query. This query could be gener-

462 D. Vallet, M. Fernández, and P. Castells

ated from a keyword query, as in e.g. [8,15,18], a natural language query [4], a form-
based interface where the user can explicitly select ontology classes and enter prop-
erty values [1,11,12], or more sophisticated search interfaces [7]. A number of re-
search works have undertaken the construction of easy to use user interfaces for on-
tology query languages, and we do not address this problem here. The RDQL query is
executed against the knowledge base, which returns a list of instance tuples that sat-
isfy the query. Finally, the documents that are annotated with these instances are re-
trieved, ranked, and presented to the user.

RDQL
Query

Query UI

Query
Engine

Document
Retriever

Ranking

Weighted

annotation links

RDF KB

List of instances

Document

Base

Unordered

Documents

Ranked
Documents

RDQL
Query

Query UI

Query
Engine

Document
Retriever

Ranking

Weighted

annotation links

RDF KB

List of instances

Document

Base

Unordered

Documents

Ranked
Documents

Fig. 1. Our view of ontology-based information retrieval

4.1 Query Encoding and Document Retrieval

The RDQL query can express conditions involving domain ontology instances, docu-
ment properties (such as author, date, publisher, etc.), or classification values. E.g.
“cultural articles published by the Le Monde newspaper about European movies with
Canadian actors in the cast.”

In classic keyword-based vector-space models for information retrieval, the query
keywords are assigned a weight that represents the importance of the concept in the
information need expressed by the query. Analogously, in our model, the variables in
the SELECT clause of the RDQL query can be weighted to indicate the relative inter-
est of the user for each of the variables to be explicitly mentioned in the documents.
For instance, in the previous example, the user might be interested that both the mov-
ies and the Canadian actors are mentioned in the articles, or have a higher priority for
either the movies or the actors. The weights can be set explicitly by the user, or be
automatically derived by the system, e.g. based on frequency analysis, personalisation
techniques, or other strategies [6].

Our system uses inferencing mechanisms for implicit query expansion based on
class hierarchies (e.g. organic pigments can satisfy a query for colorants), and rules
such as one by which the winner of a sports match might be inferred from the scoring.

 An Ontology-Based Information Retrieval Model 463

In fact, in our current implementation, it is the KB which is expanded by adding in-
ferred statements beforehand.

The query execution returns a set of tuples that satisfy the query. It is the document
retriever’s task to obtain all the documents that correspond to the instance tuples. If
the tuples are only made up of instances of domain concepts, the retriever follows all
outgoing annotation links from the instances, and collects all the documents in the
repository that are annotated with the instances. If the tuples contain instances of
document classes (because the query included direct conditions on the documents),
the same procedure is followed, but restricted to the documents in the result set, in-
stead of the whole repository.

4.2 Ranking Algorithm

Once the list of documents is formed, the search engine computes a semantic similar-
ity value between the query and each document, as follows. Let { } 1

M

i i
O I

=
= be the set

of all instances in the ontology, and { } 1

N

i i
D

=
 be the set of all documents in the search

space. Let ()1,..., kv v be the weights of the variables in the SELECT clause of the
RDQL query Q, and let T = { } 1

n

i i
T

=
 be the list of tuples in the query result set, where

{ }, 1

k

i i j j
T T

=
= , with ,i jT O∈ .

We define the document vector of Di as id = (di,1, …, di,M), where di,j is the weight

of the annotation of document Di with Ij, if such annotation exists, and zero otherwise.
We define the extended query vector as ()1,..., Mq q q= , where

,| l i j

l j
i I T

q v
∃ =

= , i.e. the

query vector element corresponding to Il is added the variable weight vj if Il is a value
of the variable j in some tuple Ti that satisfies the query Q. Note that the sum rarely
has more than one term, since this would mean that the same instance appears more
than once in the same result set tuple. If Il does not appear in any tuple, ql = 0.

Now the similarity measure of Di for the query Q is computed as:

(,)
| | | |

i
i

i

d q
sim D Q

d q
=

×

Because of the way q is constructed, | q | is usually quite large, and as a conse-

quence the values of the similarity function are too low. For example, if the user que-
ries for special offers for summer holidays in the Aegean Islands, a document that
shows one such offer will get a similarity value in the order of 1/n, where n is the total
number of registered offers in the knowledge base that match the query. Only a docu-
ment that displays nearly all offers could get close to similarity 1. To compensate for
this, in practice we use the following normalization factor instead of | q |:

()2

1

max #
k

l
j l j

j

v T
=

× , where { },| annotates , l
j l i jT I O I D i I T= ∈ ∧ ∃ = .

If the knowledge in the KB is incomplete (e.g. there are documents about travel of-
fers in the knowledge source, but the corresponding instances are missing in the KB),
the semantic ranking algorithm performs very poorly: RDQL queries will return less

464 D. Vallet, M. Fernández, and P. Castells

results than expected, and the relevant documents will not be retrieved, or will get a
much lower similarity value than they should. As limited as might be, keyword-based
search could perform better in these cases. To cope with this, our ranking model com-
bines the semantic similarity measure with the similarity measure of a keyword-based
algorithm. The final value for ranking is computed as t × sim (Di,Q) + (t – 1) × ksim
(Di,Q), where ksim is computed by a keyword-based algorithm. We have taken t =
0.5, which seems to perform well in our experiments. As a further adjustment, if ksim
returns 0, we take t = 1, and if sim returns 0, we take t = 0.2. For further testing, we
have implemented a user interface where this parameter can be freely set by the user
with a slider after the search has been executed, so that the user can see dynamically
how the results are reranked as the value of t is moved.

The keywords for the ksim algorithm could be extracted directly from the user
query, if a keyword-based or even natural language interface was used. In our current
implementation we extract the keywords from the RDQL query, which is suitable for
testing, and would be appropriate for a form-based interface as well. More specifi-
cally, the value of the label property of a) the class of all query variables for which a
rdf:type clause is included in the query, and b) any instances explicitly appearing
within the RDQL query, are taken as query keywords. In practice, since the label
property can be multivalued, a separate property is used, which stores one of the label
values, designated as a unique most common lexical form. For example, the query:

SELECT ?player ?team
WHERE (?player rdf:type sports:Player)
 (?player sports:sport sports:Basketball)
 (?player general:nationality geog:USA)
 (?player sports:playsIn ?team)
 (?team rdf:type sports:SportsTeam)
 (?team geog:locatedIn geog:Catalonya)

would yield the query keywords “player”, “basketball” , “USA”, “team”, “Catalonia”.
In sum, our method improves keyword-based search (actually outperforms it, as is

shown in the next section) when the relevant information is available in the KB, and
relies on keyword-based search otherwise.

5 Early Experiments

We have tested our system with a document base taken from an online newspaper
archive [2]. For this application, the document class hierarchy includes News (sub-
class of TextDocument), Photograph and CustomGraphic (subclasses of MediaDocu-
ment). Only one classification taxonomy is used, based on the IPTC Subject Refer-
ence System, with which all documents and domain classes are classified, as ex-
plained in Section 3.1. Our current implementation is compatible with both RDF and
OWL.

Building appropriate domain ontologies and a complete KB for a newspaper ar-
chive is an enormous undertaking, or would need very advanced semi-automatic
knowledge extraction techniques not yet available in current state of the art. However,

 An Ontology-Based Information Retrieval Model 465

as stated in previous sections, our system tolerates incomplete ontologies and KBs.
We have built three reduced domain ontologies for testing purposes, corresponding to
the Culture, Economy, and Sports domains, with classes such as Artist, Painter,
Monument, Company, Bank, Sportsman, SportsTeam, Stadium, etc., and a few in-
stances of each class. These ontologies were built by reading 200 news articles, and
defining classes and instances by hand for concepts found in the documents. In total,
143 domain classes and 1,144 instances were created. We have also manually set
labels and keywords for concept classes and instances. Then we have run the auto-
matic annotation and weighting algorithm over a subset of the archive comprising
2,039 news articles, generating 3,471 annotations, of which 349 were manually

 created.
Once the KB was built, we tested the retrieval algorithm with some examples, and

compared it to a keyword-only search, using the Jakarta Lucene library.2 We report
next the observed results in four examples, showing different levels of performance of
our method in different cases. The metrics are based on a manual ranking of all docu-
ments for each query, on a scale from 0 to 5. In the experiments, all the query
variables were given a weight of 1. The measurments are subjective and limited, yet
indicative of the degree of improvement that can be expected, and in what cases, with
respect to a keyword-based engine. The retrieval times are too low to draw any sig-
nificant observation regarding efficiency. The results are shown in Fig.2.

 a b c d

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

P
re

ci
si

o
n

Keyword search
Semantic search

0 20 40 60 80 100 120
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

P
re

ci
si

o
n

Keyword search
Semantic search

0 100 200 300
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

P
re

ci
si

o
n

Keyword search
Semantic search

0 20 40 60 80 100 120 140
Documents Retrieved

2,0

3,0

4,0

5,0

R
el

ev
an

ce
E

 [
0-

5]

Keyword search
Semantic search

0,00 0,20 0,40 0,60 0,80 1,00
Recall

0,00

0,20

0,40

0,60

0,80

1,00

P
re

ci
si

o
n

Keyword search
Semantic search

0 10 20 30 40
Documents Retrieved

1,0

2,0

3,0

4,0

5,0

R
el

ev
an

ce
 [0

-5
]

Keyword search
Semantic search

Fig. 2. Evaluation of ontology-based search (combined with keyword-based) against keyword-
based only. The performance of both algorithms are shown for four different queries a, b, c, and
d. The graphics on top show the precision vs. recall figures (as defined in e.g. [16]), and the
graphics below show the average relevance at different document cutoff values, for each query

Query a. “News about players from USA playing in basketball teams of Catalonia.”
In this example the semantic retrieval algorithm outperforms keyword-based search

2 http://lucene.apache.org

466 D. Vallet, M. Fernández, and P. Castells

because the KB contains many instances of basketball players and teams, some of
which match the query. Keyword-based search only recognizes a document as rele-
vant if it contains words like “player”, “USA”, “Catalonia”, whereas the semantic
search retrieves news about players and teams as soon as the name of the player or the
team are mentioned in the document.

These are typical results when a search query involves a region of the ontology
with some degree of completeness in terms of instances and annotations. These cases
yield a high precision up to almost maximum recall. On the other hand, the relevance
graph shows that here the semantic search gives high ranks to the relevant documents.
For instance, the top 20 retrieved documents have a mean relevance value of 4.2 upon
5, versus 2.7 in the keyword search.

However, the KB does not contain all teams and players, which explains the col-
lapse of the precision at 100% recall. If more instances were created, precision values
would stand at high levels for all the recall values.

Query b. “News about sports team presidents.”
In this example, the ontology KB has only a few instances of sports team presidents,
so not all documents relevant to the query are annotated. This causes precision to drop
to lower values when recall increases. Although the total recall of semantic search is
low, it still has a good precision for the top-ranked documents, which are the few ones
annotated with instances in the KB. A few more documents where semantic search
alone fails are still given a high ranking thanks to the combination with keyword-
search, which shows here a comparable behavior to example a.

Query c. “News about basketball players.”
In this case the performance of the two algorithms is similar. For this example, we
have intentionally removed most instances of players from the KB, leaving a rela-
tively low number. Moreover, we have removed all lexical variants in the label and
keyword properties of player instances, except the player’s surname. As a conse-
quence, many annotations are missing. Under these conditions, the semantic model
alone performs much worse than keyword-based search. However, the combined
search yields a similar final behavior to keyword-based search.

Query d. “News about the European Union.”
This example shows a case where our method fails. The KB contains an instance for
the European Union, with all the possible syntactic variants (in Spanish “UE”, “U.E.”,
etc.). The problem is that many Catalan sports teams have the word “UE” (acronym
for “Sports Union” in Catalan) in their names. If the KB contained these teams, the
disambiguation algorithm would solve the problem by favoring the sports interpreta-
tion, whenever appropriate, because “UE” is part of a longer matching string (the
team name). In other examples where the labels could be totally coincident, the sys-
tem would use the classification of news and instances as context information for
disambiguation. But because many such teams are missing in the KB, the automatic
annotator incorrectly annotates the sports news with the European Union concept, and
the retriever returns them. So far, the keyword-based search behaves similarly. But

 An Ontology-Based Information Retrieval Model 467

the semantic ranking places these wrong documents in a top position, whereas the
keyword-based model does not rank them particularly higher than the correct docu-
ments.

It can be seen that it is the automatic annotator, and not the retrieval system, which
is failing here in the absence of the appropriate instances needed to solve ambiguities.
One way to reduce the negative impact of incorrect annotations would be to introduce
a factor in the automatic weighting algorithm that accounts for the proximity of the
respective classifications of the documents and the instances. In this example, al-
though it is difficult to avoid annotating with the European Union concept the news
about Catalan teams whose name contains “UE” (in fact, some sports news could
properly mention the EU), at least the weight of the annotation would be reduced
because the classifications (Geography and Politics vs. Sports) do not match. Testing
this and other possible improvements to the automatic annotation strategies are one of
our planned tasks for the immediate future.

6 Discussion

The added value of semantic information retrieval with respect to traditional key-
word-based retrieval, as envisioned in our approach, relies on the additional explicit
information – type, structure, relations, classification, and rules, about the concepts
referenced in the documents, represented in an ontology-based KB, as opposed to
classic flat keyword-based indices. Semantic search introduces an additional step with
respect to classic information retrieval models: instead of a simple keyword index
lookup, the semantic search system processes a semantic query against the KB, which
returns a set of instances. This can be seen as a form of query expansion, where the
set of instances represent a new set of query terms, leading to higher recall values.
Further implicit query expansion is achieved by inference rules, and exploiting class
hierarchies. The rich concept descriptions in the KB provide useful information for
disambiguating the meaning of documents.

In summary, our proposal achieves the following improvements with respect to
keyword-based search:

 Better recall when querying for class instances. For example, querying for
“presidents of the Spanish government” would return documents that mention
José Luis Rodríguez Zapatero and other former presidents, even if the words
“president”, “Spanish” and “government” are not present in the documents.

 Better precision by using structured semantic queries. Structured queries allow
expressing more precise information needs, leading to more accurate answers.
For instance, in a keyword-based system, it is not possible to distinguish a query
for USA players in Catalan basket teams vs. Catalan players in USA teams,
which is possible with a semantic query.

 Better precision by using query weights. Variables with low weights are only
used to impose conditions on the variables which really matter. For example, the
user can search for news about USA players in Catalan teams, regardless of
whether the news mention the team at all, or the nationality of the player.

468 D. Vallet, M. Fernández, and P. Castells

 Better recall by using class hierarchies and rules. For example, a query for Wa-
terSports in Spain would return results in ScubaDiving, Windsurf, and other
subclasses, in Cádiz, Málaga, Almería, and other Spanish locations (by transi-
tivity of locatedIn).

 Better precision by reducing polysemic ambiguities using instance labels and
classifications of concepts and documents.

As explained and shown along this paper, the degree of improvement of our se-
mantic retrieval model depends on the completeness and quality of the ontology, the
KB, and the concept labels. For the sake of robustness, the system resorts to keyword-
based search when the KB returns poor results.

The combination of keyword ranking and semantic ranking is tricky. We have ob-
served that occasionally a good semantic ranking score is spoiled by a low keyword-
based value. A simple solution would be to set a minimum threshold for the keyword-
based score to be counted. Anyhow, these cases, albeit infrequent, suggest that more
sophisticated methods than the linear combination of both values should be re-
searched to improve our initial results.

7 Conclusion

The research presented here started as a continuation of our previous work on the
construction, exploitation, and maintenance of domain-specific KBs using Semantic
Web technologies [1,2]. While some basic semantic search facilities were included in
these prior proposals, room for improvement was acknowledged, because the level of
semantic detail was insufficient, since it was essentially based on types of documents
and taxonomic classifications. The aim of our current work is to provide better search
capabilities which yield a qualitative improvement over keyword-based full-text
search, by introducing and exploiting finer-grained domain ontologies.

Our approach can be seen as an evolution of the classic vector-space model, where
keyword-based indices are replaced by an ontology-based KB, and a semi-automatic
document annotation and weighting procedure is the equivalent of the keyword ex-
traction and indexing process. We show that it is possible to develop a consistent
ranking algorithm on this basis, yielding measurable improvements with respect to
keyword-based search, subject to the quality and critical mass of metadata. Our pro-
posal is an adaptation of the vector-based ranking model that takes advantage of an
ontology-based knowledge representation.

Our proposal inherits all the well-known problems of building and sharing well-
defined ontologies, populating knowledge bases, and mapping keywords to concepts.
Recent research on these areas is yielding promising results [5,11]. It is our aim to
provide a consistent model by which any advancement on these problems is played to
the benefit of semantic search improvements.

Further experimentation, larger KBs, and larger document sets are needed to test
and improve our model. For instance, our annotation weighting scheme is not taking
advantage yet of the different relevance of structured document fields (e.g. title is
more important than body). Annotating documents with statements, besides instances,

 An Ontology-Based Information Retrieval Model 469

is another interesting possibility to experiment with. Also, we are currently extending
our model with a profile of user interests for personalised search [6].

Acknowledgements

This research was supported by the European Commission under contract FP6-
001765 aceMedia. The expressed content is the view of the authors but not necessar-
ily the view of the aceMedia project as a whole. The authors would like to thank the
reviewers for their detailed, accurate and helpful coments.

References

1. Castells, P., Foncillas, B., Lara, R., Rico, M., Alonso, J. L.: Semantic Web Technologies
for Economic and Financial Information Management. In: Davies, J., Fensel, D., Bussler,
C., Studer, R. (eds.): The Semantic Web: Research and Applications – 1st European Se-
mantic Web Symposium (ESWS 2004). LNCS, Vol. 3053. Springer Verlag, Berlin Hei-
delberg New York (2004) 473-487

2. Castells, P., Perdrix, F., Pulido, E., Rico, M., Benjamins, V. R., Contreras, J., Lorés, J.:
Neptuno: Semantic Web Technologies for a Digital Newspaper Archive. In: Davies, J. et
al (eds.): The Semantic Web: Research and Applications – 1st European Semantic Web
Symposium (ESWS 2004). LNCS, Vol. 3053. Springer Verlag, Berlin Heidelberg New
York (2004) 445-458

3. Christophides, V. et al: Optimizing taxonomic semantic web queries using labeling
schemes. Journal of Web Sematics 1, Issue 2, Elsevier (2003) 207-228

4. Contreras, J., Benjamins, V. R., Blázquez, M., Losada, S., et al: A Semantic Portal for the
International Affairs Sector. In: Motta, E., Shadbolt, N., Stutt, A., Gibbins, N. (eds.): En-
gineering Knowledge in the Age of the Semantic Web – 14th Intl. Conference on Knowl-
edge Engineering and Knowledge Management (EKAW 2004). Lecture Notes in Com-
puter Science, Vol. 3257. Springer Verlag, Berlin Heidelberg New York (2004) 203-215

5. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R. et al: A Case for Automated Large
Scale Semantic Annotation. Journal of Web Sematics 1, Issue 1, Elsevier (2003) 115-132

6. Gauch, S., Chaffee, J., and Pretschner, A.: Ontology-based personalized search and brows-
ing. Web Intelligence and Agent System 1, Issue 3-4 (2003) 219-234

7. Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based Access to the Web. IEEE
Intelligent Systems 14, Issue 3 (1999) 70-80

8. Guha, R. V., McCool, R., Miller, E.: Semantic search. In Proc. of the 12th Intl. World
Wide Web Conference (WWW 2003), Budapest, Hungary, (2003) 700-709

9. Handschuh, S., Staab, S., and Ciravegna, F.: S-cream – Semi-automatic Creation of Meta-
data. In: A. Gómez-Pérez , V. Richard Benjamins (eds.): 13th Intl. Conf. on Knowledge
Engineering and Knowledge Management – Ontologies and the Semantic Web
(EKAW’02). LNCS, Vol. 2473. Springer Verlag, Berlin Heidelberg New York (2002)
358-372

10. Järvelin, K., Kekäläinen, J., and Niemi, T.: ExpansionTool: Concept-based query expan-
sion and construction. Information Retrieval 4, Issue 3-4 (2001) 231-255

11. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, In-
dexing, and Retrieval. Journal of Web Sematics 2, Issue 1, Elsevier (2004) 47-49

470 D. Vallet, M. Fernández, and P. Castells

12. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: SEmantic portAL: The SEAL
Approach. In: Fensel, D., Hendler, J. A., Lieberman, H., Wahlster, W. (eds.): Spinning the
Semantic Web. MIT Press, Cambridge London (2003) 317-359

13. Mayfield, J., and Finin, T.: Information retrieval on the Semantic Web: Integrating infer-
ence and retrieval. In: Workshop on the Semantic Web at the 26th Intl. ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Toronto, Canada (2003)

14. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM – A Semantic Plat-
form for Information Extaction and Retrieval. Journal of Natural Language Engineering
10, Issue 3-4, Cambridge University Press (2004) 375-392

15. Rocha, C., Schwabe, D., de Aragão, M. P.: A Hybrid Approach for Searching in the Se-
mantic Web. In Proc. of Intl. World Wide Web Conf. (WWW 2004), NY (2004) 374-383

16. Salton, G. and McGill, M. Introduction to Modern Information Retrieval. McGraw-Hill,
New York (1983)

17. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., and Warke, Y.: Managing
Semantic Content for the Web. IEEE Internet Computing 6, Issue 4 (2002) 80-87

18. Stojanovic, N.: On Analysing Query Ambiguity for Query Refinement: The Librarian
Agent Approach. In: Song, I.-Y.; Liddle, S.W.; Ling, T.W.; Scheuermann, P. (eds.): Con-
ceptual Modeling – ER 2003, 22nd Intl. Conf. on Conceptual Modeling. LNCS, Vol. 2813.
Springer Verlag, Berlin Heidelberg New York (2003) 490-505

19. Stojanovic, N., Studer, R., and Stojanovic, L.: An Approach for the Ranking of Query Re-
sults in the Semantic Web. In: Fensel, D., Sycara, K. P., Mylopoulos, J. (eds.): The Se-
mantic Web – ISWC 2003, 2nd Intl. Semantic Web Conf. Lecture Notes in Computer Sci-
ence, Vol. 2870. Springer Verlag, Berlin Heidelberg New York (2003) 500-516

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 471 – 485, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Knowledge Sharing by Information Retrieval
in the Semantic Web

Neyir Sevilmis1, André Stork1,†, Tim Smithers3, Jorge Posada3,
Massimiliano Pianciamore2, Rui Castro4, Ivan Jimenez3, Gorka Marcos3,
Marco Mauri2, Paolo Selvini2, Bruno Thelen5, and Vincenzo Zecchino6

1 Fraunhofer Institut für Graphische Datenverarbeitung, Darmstadt
2 CEFRIEL, Milan

3 VICOMTech, Donostia / San Sebastián
4 Centro de Computação Gráfica, Guimarães

5 Schenck Pegasus GmbH, Darmstadt
6 Italdesign – Giugiaro SpA, Moncalieri (Torino)

ist-wide@igd.fhg.de

Abstract. Effective and efficient information retrieval, knowledge sharing and
combining has become an essential part of more and more professional tasks
and work flows in different kinds of projects. Our aim is to investigate the use
of emerging Semantic Web technologies, tools, and standards in the support of
effective information retrieval in real multi-disciplinary activities, such as inno-
vative product design. This paper presents an approach to knowledge sharing
and information support that has been developed and adopted, the information
system architecture that is being developed to test both this approach, and the
Semantic Web techniques that are used in its implementation, some early re-
sults, and a discussion of related work in information systems and Semantic
Web techniques and tools.

1 Introduction

Unquestionable, the internet is developing towards the Semantic Web. Semantic Web
technology promises to improve on one of the main usages of the internet: knowledge
exchange via information retrieval. But how shall a Semantic Web-based system look
like to best support different users in retrieving information and knowledge generated
by others in the Semantic Web? This was the deriving question, motivating us to
design, implement, and test an approach that explores Semantic Web technologies for
improving on today’s limited search and retrieval possibilities on the internet. The
developments have been done in the context of the product development process
within the car industry. The domain knowledge, use and test cases have been devel-
oped with real data and real users from two companies, namely ItalDesign Giugiaro
SpA and Schenck Pegasus GmbH.

† Corresponding Author.

†

472 N. Sevilmis et al.

The main requirements imposed by the scenario - typical for the Semantic Web -
have been to support different kinds of users accessing various heterogeneous infor-
mation sources in a semantic way. These requirements entailed a number of secon-
dary questions: How to support users in developing complex queries in a terminology
that each type of user is familiar with? How to process these queries so they can be
‘understood’ by different information sources? How to deal with complex queries?
What to do with the results from heterogeneous sources? How to present the results in
a meaningful way? And from the technological point of view: What kinds of Seman-
tic Web technologies are best suited to answer those questions? How to they perform
with real world ontologies and data? Are the current tools appropriate for end-users to
model their domain?

This paper tries to answer to those questions by introducing an architecture and de-
scribing its implementation based on the experience we gathered in two rounds of
user testing. Although there have been comparable attempts to approach the informa-
tion management issue in heterogeneous environments [15, 16], to our knowledge
none of them comprises both: the full scope of the approach that we introduce here
and the use of latest Semantic Web technology and tools, e.g. OWL and OWL rea-
soners such as RACER.

The paper is structured as follows: first the basic concepts are described. Secondly,
the role of the components of the architecture is overviewed. The main part of the
paper is dedicated to the semantic information retrieval process, made up by seven
steps: the graphical interactive user query development, semantic query processing
using a domain ontology, planning distributed query execution on heterogeneous
information sources, the retrieval from Semantic Information Sources, the result col-
lection and adaptation, the result preparation process of semantically enriched results,
and finally the domain knowledge enhanced result presentation.

Afterwards, based on our experience we point out further research needs from a
holistic point of view, here we see another contribution of the current paper to the
Semantic Web community.

2 Concepts

In this section, we introduce the basic concepts and items/entities involved in our
approach. Some of them are related with the architecture, others with the way we are
modelling the domain and how we distinguish amongst the role of the components of
the system whereas other are definitions useful in describing the various kinds of
information and information structures involved.

2.1 3-Layered Architecture

The basic assumption that drove the conception of the architecture is that the near
future of the Semantic Web will be determined by a mixture of information sources
with various levels of semantic richness in the internet and intranet. Those informa-
tion sources basically form the lowest level of the architecture – the Content Level
(see Figure 1).

 Knowledge Sharing by Information Retrieval in the Semantic Web 473

Fig. 1. 3-layered architecture

The second assumption is that domain knowledge and process knowledge shall re-
side in central components doing the semantic processing of queries and results – the
Meta Level.

And thirdly, users of different disciplines along the domain - in our case stylists,
designers, engineers involved in the product design process of cars – shall access
information and share knowledge via different instances of a User Interface that com-
municates with the Meta Level and presents retrieved results.

These assumptions immediately entail that the modelling of information sources
and the modelling of the domain ontology is performed independently, giving rise to
the need of terminology mapping and query adaptation.

2.2 Semantic Information Sources

As already mentioned, we believe that for the near future the developing Semantic
Web will provide information sources with different levels of semantic richness.

But, how an ideal Semantic Information Source shall look like? And what kind of
functionality shall it contain or provide? Plus what kind of information shall a Seman-
tic Information Source return to enable semantic reasoning?

From a data-centric view, for us a Semantic Information Source contains the fol-
lowing layers: Schema, Annotation and Content.

On the top-most layer a conceptual data schema describes the content that is stored
by abstract entities and their relations. This schema appears as a low-level ontology:
the provider ontology of the Semantic Information Source. In the middle layer the
abstract entities are instantiated in interlinked metadata annotation objects which, in
turn, refer to the actual content items on the bottom layer. The content can be of many
kinds, e.g. multi-media documents such as pictures, text, 3d models. These content
items (instances) are what the user is interested in to retrieve. All the metadata on the
schema and annotation level are being used to semantically describe the content and
allow for precise and accurate retrieval. The metadata objects in the middle layer

474 N. Sevilmis et al.

appear as instances of classes while the content items appear as references to URL-
accessible stores or lower-level database access components.

Note that a Semantic Information Source does not contain a full domain ontology
nor does it represent a knowledge base from our point of view. Instead, the Semantic
Information Source models the ‘aboutness’ of documents/information contained in the
lowest level. The schema only contains what is needed to appropriately describe the
kinds of documents/information contained in the lowest level and about which real
world concepts they are talking about.

From a functional point of view a Semantic Information Source should be able to
process a query posed in a standard format – we are using RQL [3] in the current
implementation. In this context processing comprises, mapping it in a syntactic and
semantic way.

Furthermore, it shall provide the results in a standard form, preferably enriched by
semantic information/context for further semantic processing, e.g. reasoning on the
results for filtering and ranking them before showing them to the user. We are using
the W3C suggestion for RDF result representation returning not only the results but
also structured context information (for details see below) [12].

2.3 User Queries and System Queries

We aim at allowing the user to formulate his query in an as natural as possible way
(ease-of-use) but also as precise as possible (quality of results).

To face the users with standard query languages such as RQL, SQL, etc. is cer-
tainly not the best approach in terms of usability. Thus we decided to distinguish
between User Queries (UQ) and System Queries (SQ). User Queries are input by the
user whereas System Queries are derived from User Queries using domain knowledge
by the Meta Level.

3 System Architecture

We designed and implemented a distributed system architecture which is divided in to
four basic blocks: the User Interface, the Meta Level, the Agency and the Content
Level. Each of these is implemented as independent subsystems, the Agency - a multi
agent system - is used to “glue” them together, as shown in Figure 2.

3.1 Role of the User Interface

The User Interface (UI) provides a graphic front end to the user and supports the in-
cremental development of user queries in an alphanumeric or graphic way. By easy to
use drag and drop operations the user can successively build up his query. This inter-
active and incremental query development process is supported by the Meta Level
and the domain knowledge contained in the Meta Level. Furthermore, the UI presents
the returned results and their relationships (semantics) in a graph-based structure. This
graph structure can be navigated by the user in order to explore the returned results
and their metadata. Based on the returned graph structure and the corresponding meta-
data the current user query can be refined or a new one can be developed.

 Knowledge Sharing by Information Retrieval in the Semantic Web 475

Fig. 2. Distributed system architecture

3.2 Role of the ML

The main purpose of the ML is the semantic processing of user queries into system
queries and the semantic processing of the returned results. To do this, the ML uses a
domain ontology (for car design), together with a Task Type ontology (knowledge
about the different tasks carried out in the domain), User Type ontology (knowledge
about the profile of the different users in the domain), and dictionaries of description
terms and User Type terms. All these different kinds of knowledge are used to pro-
duce the system queries that are then passed to the Agency. The returned results un-
dergo a similar semantic processing as the user queries. They are semantically proc-
essed in order to associate them with the appropriate concepts in the domain ontology
and finally display them in a meaningful graph structure by the UI.

3.3 Role of the Agency

The Agency subsystem glues the other components together by allowing their inter-
operation. It further identifies and locates information sources in the Content Level to
which the system queries can be sent to produce effective returns, by addressing and
managing issues like distribution and heterogeneity in them. The Agency also pro-
vides the system’s gateway to the Web, which is also considered part of the Content
Level. Essentially, Web sites and Web search engines are treated as weakly structured
information sources. Besides the planning and execution of queries, the Agency’s
responsibilities are also to collect and to transform the results of the heterogeneous
information sources into a common result format on which the ML is performing
semantic processing and reasoning.

3.4 Role of the CL

The Content Level (CL) consists of different information sources (RDF sources [5, 6],
ASAM/ODS [4], relational databases and the web) that vary in their semantic rich-
ness. Since those information sources might have a different structure than the ML
domain ontology, one of the tasks of the CL is to adapt the system queries to the

476 N. Sevilmis et al.

query language understood by the information sources (syntactically, terminologi-
cally, and structurally). The main purpose of the CL is to answer precisely the system
queries in a quick way.

4 The Process of Information Retrieval

We understand the information retrieval process as a kind of design task by firstly
recognizing the difference between user stating needs and forming well specified
requirements, and secondly properly supporting the incremental development of a
complete and consistent requirements specification (search specification, in this case),
and the re-use of the knowledge generated in this (sub)process to effectively support
the subsequent steps in the process that concludes in a useful set of search results.
According to the system architecture presented in Figure 2, the process of information
retrieval is composed of seven steps that are presented in Figure 3.

Fig. 3. Seven steps of the information retrieval process

Based on the experienced gathered when developing the system, we are convinced
that these are – at least – the steps needed for improved information retrieval on the
Semantic Web. According to this, each step of the information retrieval process will
be explained in the following sections.

4.1 User Query Development

The UI provides text-based and graphic-based support to specify queries. The graphi-
cal version uses domain knowledge (from the ML, suitably selected and presented
using the User Type and Task Type specifications) to offer the user a “drag and drop”
way of building correct queries. Users can use a combination of both text input and
graphical selection to form a query as shown in Figure 4. This is then checked against
a BNF grammar [2], for correctness, and passed to the ML. The ML then processes
the user query, using its domain ontology, User Type Dictionary, and personal user
dictionary, to discover what other concepts it has that are related to the concepts
in the UQ.

 Knowledge Sharing by Information Retrieval in the Semantic Web 477

Fig. 4. Graphical interactive user query development

These further domain ontology concepts, and the ways they are related to the user
query concepts, are then returned to the UI as an ontology fragment that represents the
user query and its immediate conceptual context, where it is graphically presented to
the user. This ontology fragment, or query structure, as it is called, supports further
navigation of the concepts and properties present, allowing the user to further extend
the fragment by including further concepts along selected relations. In this way, a user
is able to see how the system understands his or her query, and is supported in further
exploring around it, to see how it might be changed, adapted, or extended, to form a
more effective query: more precise and/or more complete.

4.2 Semantic Query Processing

When the ML receives the user query from the UI via the Agency, this query is well
formed input since it has been successfully parsed by the UI. Thus, this is the starting
point of the semantic query processing.

The first task that must be done is to check again the stylized input, but at this oc-
casion from the semantic point of view. The ML uses its knowledge about the do-
main, but also its knowledge of the User Type and the task context the query is being
expressed on, to find out more information about the query.

First of all, the ML uses the dictionaries together with the user profile in order to
translate the query into the internal terminology. Next, it tries to find out which of the
words that have been classified by the BNF parser as “terms” are known in the do-
main and which not.

Once the ML has translated the user query into internal terminology, the parser
generates an AST (Abstract Syntax Tree) which includes useful information that al-
lows the ML to know the terms within the context of the BNF grammar. For instance,

478 N. Sevilmis et al.

the ML automatically knows that “OF” is a connector and that “OR” is a logical bi-
nary operator that links two items. Thus, the ML is able to classify the relevance of
each term depending on its BNF grammar nature. Once the ML acquired this knowl-
edge, it can go through this tree and focusing on the known terms in order to try to
find out the existing relationships among them. This is possible due to an inference
process of the ML domain ontology. For instance, this process allows the ML to relate
two concepts basing on subsumption or indirect relationships.

Once this process has been carried out, the ML has a graph view of the user input,
which has been enriched with intermediate concepts and/or inter-concept relation-
ships.

After this first query has been built, the ML, basing on the task context the query is
related to, tries to create complementary queries by the expansion of some concepts.
For instance, if the user is looking for emission standards in Europe, and the task
context is wide enough in order to cover also the test cycles, the system will generate
another system query that will retrieve test cycles in Europe.

Once the ML has inferred the sub-domain related to the task context and has cre-
ated several queries, these queries are formatted in RQL, and then passed to the
Agency.

For example, a concept designer might start by asking for

user query 1: Photographs of Maserati cars

In response, the UI (with support from the ML) would show that it understands
photograph to be a kind of picture, where drawing, image, and sketch are other kinds
of picture concepts. As a result, the user might then change the query to

user query 2: Pictures of Maserati cars

to be more inclusive of other possible kinds of pictures. This is then transformed by
the ML in to the following internal form

user query 3: PICTURE ABOUT MASERATI CAR

where picture is a known document type, about is the term used to connect the docu-
ment type to the concept, and Maserati and car are understood as two terms forming
an attribute value qualifying phrase. The ML then expands this user query, based
upon its knowledge that Maserati is the name of an individual of the concept brand,
and that brand is defined as the range of a has_property, whose domain is car. The
resulting expanded system query thus expressed as an RQL query then looks like:

SELECT pt, mc
FROM {pt:$pt} @p {mc:$mc},{rc1} @w_a1{c1:$c1},

{rc2} @w_v1 {v1:Literal}
WHERE @p = “has_info_about”AND

($p1 = “PICTURE”) AND
$mc = “CAR” AND
mc = rc1 AND
@w_a1 = “with_attr” AND
$c1 = “BRAND” AND
c1 = rc2 AND
@w_v1 = “with_value” AND
v1 = “MASERATI”

 Knowledge Sharing by Information Retrieval in the Semantic Web 479

The RQL system query says: select all the pictures and all the cars where picture is
a presentation type that has info about the cars and the cars have an attribute named
brand, whose value is Maserati.

4.3 Planning Distributed Query Execution

As soon as the Agency subsystem receives the system queries produced by the ML, it
sends them to the various information sources, in order to proceed with the search
process. The decision about how to distribute the various queries over the available
sources is referred to as query execution planning and can be carried out by analyzing
the structure of each query. Concerning the structure of a system query expressed in
the RQL language, it can easily be seen that the FROM clause can be interpreted as
the navigation path inside a proper ontology of concepts bound to one another by
means of suitable relationships. As such, it appears evident that one single source
might not be able to address the whole system query in its entirety and therefore it is
forced to focus on a sub part of it. When this happens, the system query being proc-
essed is called a complex query, since it can be both logically and physically split up
in as many sub-queries as there are sub parts entirely addressable by a single source.
We call these latter ones simple queries. Using an internal representation in which
system queries are made up of conjunctive predicates (reflecting the RDF triples em-
bedded in the RQL queries) the Agency broadcasts the complete sequence of predi-
cates for each query to all the information sources available. The management of the
interdependencies between the simple queries is left to the information sources them-
selves, which may or may not be enabled to do that. If not, they simply consider each
complex query as a simple query and try to execute it entirely, possibly returning an
empty result in case they cannot understand it or have no data for it. Otherwise, each
source decides which simple queries it can address, by looking at the set of mapping
rules it has, in order to bridge the semantic and structure gaps between the conceptu-
alization implied in the queries and their own (see below). If no rules exist that have a
match with a simple query, then that query is not considered for local execution and
the source waits for its results to come from other sources. This is done by means of
mobile software agents carrying queries and results back and forth between the core
system and the remote sources. Mobile agents are particularly well suited for repeti-
tive tasks like information retrieval, as they realize an asynchronous computing model
that adapts well to varying network conditions. In particular, mobile agents improve
the fault-tolerance with respect to network communication problems by providing a
disconnected operation model: interactions and communication occur at well defined
instants, which also generate a more efficient, burst-like, kind of network traffic.

In order to contact the remote sites where to apply the various queries, agents may
choose two options: either they move there or they spawn children agents, which are
sent on their behalf. Which option to choose depends on factors like the current net-
work traffic, the dimension of the search job in terms of how big is the query and how
many information sources must be contacted. Currently, agents choose the first option
(move) when there is only one information source to be contacted, otherwise they
parallelize the process by choosing the second alternative.

480 N. Sevilmis et al.

Once all the results are produced, they are assembled and sent back to the system,
for final processing and visualization. Result assembling is realized either by pure
concatenation of the return fragments obtained, in case the source is not enabled to
manage the complex queries. Otherwise results undergo an interdependency-solving
process by which join conditions specified in the complex query and binding its con-
stituent simple queries are taken into account.

Query execution at the various information sources requires that all the heterogene-
ity issues be dealt with, at the syntactic, structural and semantic levels: information
pieces, in fact, are likely to be distributed and partially replicated on different reposi-
tories, often built using different technologies and modeling techniques. To overcome
the syntactic differences a proper algorithm was devised, making use of thesauri on
both (on the system and at each source) sides to find matchings and rewrite terms. As
for structural differences, they are dealt with by identifying recurrent structural pat-
terns in queries that can be easily rewritten into others. Semantic heterogeneity, on the
other hand, has to do with the interpretation given to the stored data along with any
relationship binding them. For a machine to be able to communicate and understand
what a single piece of information is about, a model describing the semantics of the
information has to be provided. Such model is represented by the Provider Ontolo-
gies, that are either already available, for semantically rich sources, or can otherwise
be created. Semantic mapping, in this respect, has to do with the rewriting of queries,
by employing rules associating whole fragments in the modeling of the domain ontol-
ogy to fragments suitable for the various provider ontologies.

The information sources that we addressed belong to one out of three kinds: an ob-
ject-relational one served by an ASAM/ODS server, the Google search engine (as an
example of an unstructured source), which is accessed by using its Web Services
interface and a set of plain relational databases, each one provided with an RDF(S)
(provider) ontology that describes its contents and that has a mapping to the (central)
domain ontology. To manage each query, execute it and apply the necessary trans-
formations, a provider agent was created, whose tasks are to:

• receive and manage the software agents
• transform the incoming RQL query and adapt it to the internal language of
the source
• manage the results by formatting them in a suitable and common format to
be sent back to the system.

In particular, the latter two points depend from the specific details of the underly-
ing source, even though the interface provided to the outside world should remain
unchanged.

4.4 Retrieval from Semantic Information Sources

Our Semantic Information Sources, as described in section 2.2, provide a
RQL/RDF(S) interface. The input to such an information source is a RQL query
which - from the schema layer point of view - asks for instances of concepts on which
there are imposed conditions (in the WHERE clause of RQL queries). The result that
is being produced for a system query is a RDF graph fragment which contains RDF

 Knowledge Sharing by Information Retrieval in the Semantic Web 481

instances required answering the RQL query together with their attributes and direct
references to other RDF instances. Within our Semantic Information Source the Ses-
ame RQL engine [9] is used to access the RDF(S) store.

Each RQL query undergoes a 2-step query process. In the first step only the RDF
resources are returned that form the core answer to the system query. In the second
step, the returned RDF resources are semantically enriched by their metadata to be
presented and visualized by the UI. Concerning the metadata, we distinguish between
properties and context information of a returned RDF instance. The properties are
describing the returned RDF instance itself and shall provide the user additional in-
formation. For example, an instance of the concept car has the properties brand and
segment. It is possible that in the results several concepts (context information) are
present that are not strictly related to what originally contained in the system query
coming from the ML. The context information is being described by the neighbouring
concepts, because we think that they provide meaningful information to reason on the
results by the ML. The neighbouring concepts are the direct sub-classes, direct super-
classes and further direct related concepts.

Taking into account the neighbouring concepts the ML can easily find out in which
context instances of a concept are returned. All this information are encoded in the
RDF result fragments in order to provide both the user additional information that
he/she can use to refine the current query in a subsequent search process (see section
4.7) and the ML in order to allow reasoning on the returned results. Thus, the RDF
result fragment is produced in combination of RQL resource querying and navigation
on the RDF(S) store.

The answering of RQL queries takes the RDF model theory [13] into account,
which includes some basic inference over inheritance hierarchies as well as domain
and range constraints. In addition, we extended the inference rule engine built in
Sesame [9] that works as a production system generating inferred RDF triple facts
from explicitly stated ones according to rules and axioms expressed in a proprietary
XML format. In particular the transitivity of user defined properties is realized in
this way.

4.5 Result Collection and Adaptation

Presenting the retrieved results in an efficient way for the users to access them is one
of the basis of any good searching activities. The returns produces are assembled into
a document with well-known structure, which follows a proposal discussed at the
W3C consortium as a standard for query result formatting [12]. This format is made
up of very simple yet efficient structure binding variables with their values.

Along with raw data, each result also contains some special meta-information,
helpful to better organize, filter and sort the information before presentation to the
user, in a process that also encompasses some rewriting steps much like what happens
for the queries as explained above. The additional information is the following:

• the source, which each return comes from
• the context of each return (i.e., similar or related concepts)

482 N. Sevilmis et al.

• an additional ontology fragment, in case the provider ontology is richer than the
domain one and a direct mapping cannot be established.

• the relationship with what was originally asked for in the system query (as het-
erogeneity could cause this reference to be lost)

The formatting process, besides endowing every result with the same structure,
also allows for a much simpler filtering procedure, whose purpose is to drop duplicate
answers and evident useless information, evaluated on the basis of a syntactic analysis
over the results. The final step in the search process is the logical opposite of the
query adaptation and negotiation described above. At this stage all the results are
expressed by a common structure and format, but the terms used refer to the related
provider ontologies. Hence a final mapping of the results to comply with the system
ontology must take place. This mapping can be seen as the counterpart of the one
already described above. During this activity, each variable of the result is also tagged
using a special prefix to emphasize whether or not that term is known to the system
ontology, in order for the Meta Level to take that into account for the subsequent
phase.

4.6 Semantic Result Processing

Once the Meta Level has sent a set of system queries to the Agency, it assumes that
the search process has been launched. At that moment, the main role of the Meta
Level is to retrieve the returns of each one of the queries, evaluate and rank them and
prepare the graph of the results that will be presented to the user. The Agency sends
the results for each of the system queries produced immediately back to the ML,
without waiting to have completed them all to it. As it gets them, the ML is responsi-
ble for the following actions: grouping the returns, ranking the returns, and construct-
ing the graphical visualization.

The ML, independently from the information sources the returns come from,
groups them depending on the system query they belong to. This is an important
process since the visualization of the results will be different depending on the seman-
tics of each system query.

The ML evaluates the returns using the information contained in the results, the
terms included in the system query the return belongs to, the concepts involved in the
task context the query is related to and the concepts appearing in the user query. The
idea is to measure the distance not only to the original query but also to the task con-
text where the query is located. If the returned results contain instances of concepts
that are

(a) not specified in the system query and

(b) unknown in the ML ontology,

the results are considered as unclassified, and are graphically shown in a different
node of the graph.

Using as a start point the graphs that represent each one of the system queries that
the returns belong to, the ML builds a result visualization graph where the final results

 Knowledge Sharing by Information Retrieval in the Semantic Web 483

will be attached. This graph shows not only the concepts involved in the results, but
also the relationships among them.

4.7 Domain Knowledge Enhanced Result Presentation

After the semantic processing of the results the ML attaches each set of results to one
of the concepts of the graph. Beside this, the ML provides each bunch of results of
each system query with a semantic path, which shows the set of concepts each result
is related to. Thus, although each result appears under a concrete concept, the user is
able to see the semantic contextualization of the result. This is done using the graph
information of the system query to which the result belongs.

The query refinement is the subsequent browsing of the results presentation that
supports further exploration of how the search specification might be useful further
developed to better meet his or her information needs. In this way, from the user per-
spective, the query refinement effectively merges with the query development (see
Figure 4) one to form what can be understood as a kind of design process.

5 Technology Used and Problems Encountered

In our approach we have done experiments and investigations with many Semantic
Web tools and technologies. In the current implementation we use:

• Protégé [8] for modelling the domain ontology and provider ontology
• RACER [10] for doing reasoning on the domain ontology
• Sesame [9] for querying and navigating the Semantic Information Sources
• RDF(S) [5, 6] for describing content in the Semantic Information Sources
• RQL [3] for the System Queries (SQ)
• OWL [7] for describing the domain ontology
• W3C result format [12] for transforming the results coming from the hetero-

geneous information sources into a common result format

Based upon the work done so far, the good experience with respect to the use of
these can be summarized as: OWL better supports the knowledge representation work
involved in building the domain ontology, and other ML ontologies. RQL offers an
effective low level query language. Protégé, with the OWL plug-in, provides a good
ontology editor and development environment.

The following problems encountered when using these technologies: Sesame, like
other general purpose ontology stores, is currently too slow for the query process and
to support the kind of ontology-based inference needed by the ML. In order to in-
crease the performance concerning the query process we implemented a logic-based
query optimizer for RQL queries. RACER can provide useful support to ontology
development, but becomes too slow for ontologies like the ML domain ontology (with
approximately 790 concepts and individuals, and 150 relations). None of the pub-
lished ontology development methods [11], either do not have a validation step, or are
strong enough to support effective validation of realistic sizes of ontologies. The
rather toy examples typically used to present these methods also don’t help much in

484 N. Sevilmis et al.

understanding how to apply them to real ontology developments. Furthermore, we
explored that the expressiveness of the ontology description language RDF(S) used in
the CL are restricted according to our needs. Currently, it is not possible to relate
instances and concepts with user defined RDF(S) properties. If this would be possible,
query languages need to be extended in order to allow querying those modelling ap-
proaches. The user testing sessions showed that the user interface of the ontology
editing tool Protégé is not for everybody. It is still too complex for users who are not
familiar with it.

6 Future Needs

To support interoperability between heterogeneous semantic web applications, the
need comes up to standardize ontologies. Furthermore, high-performance OWL tools
that can handle large size ontologies are still missing.

Acknowledgements

This work was funded in part by the European Commission Grant #IST-2001-34417,
Semantic Web-based Information Management and Knowledge Sharing for Innova-
tive Product Design and Engineering (WIDE project).

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific American, pp
34–43, May 2001.

[2] Backus-Naur form (BNF), WIKIPEDIA, <http://en.wikipedia.org/wiki/Backus-Naur
Form>.

[3] The RDF Query Langauge (RQL), FORTH Institute of Computer Science, <http://
athena.ics.forth.gr:9090/RDF/RQL/>.

[4] Association for Standarisation of Automation and Measuring Syetems (ASAM)Open
Data Service (ODS), <http://www.asam.net/01 asam-ev 01.php>.

[5] Resource Description Framework (RDF), W3C Semantic Web Activity, Technology and
Society Domain, <http://www.w3.org/RDF/>.

[6] RDF Vocabulary Description Langauge 1.0: RDF Scheme, W3C Technical Reports and
Publications, <http://www.w3.org/TR/rdf-schema/>.

[7] OWL Web Ontology Language Overview, W3C Technical Reports and Publications,
<http://www.w3.org/TR/owl-features/>.

[8] The Protégé Ontology Editor, Stanford Medical Informatics, Stanford University School
of Medicine, <http://protege.stanford.edu/>.

[9] J. Broekstra and A. Kampman and F. van Harmelen, ”Sesame: A generic architecture for
storing and querying RDF and RDF Schema, International Semantic Web Conference
(ISWC), pp 54-68, 2002.

[10] RACER: Semantic Middleware for Industrial Projects based on RDF/OWL, <http://
www.cs.concordia.ca/˜haarslev/racer/>.

 Knowledge Sharing by Information Retrieval in the Semantic Web 485

[11] A. Gomez-Perez, M. Fernandez-Lopez and O. Corcho, “Ontological Engineering,” Lon-
don:Springer-Verlag, 2004.

[12] A. Seaborne, Recording Query Results, W3C Discussion document http://www.w3.org/
2003/03/rdfqr-tests/recording-query-results.html

[13] RDF semantics W3C Recommendation 10 February 2004 http://www.w3.org/TR/rdf-mt/
[14] S. Staab, M. Erdmann, and A. Maedche. An Extensible Approach for Modeling Ontolo-

gies in RDF(S). In First ECDL’2000 SemanticWebWorkshop, Lisbon, Portugal, 2000.
[15] H. Stuckenschmidt et al. Exploring Large Document Repositories with RDF Technology:

The DOPE Project Published by the IEEE Computer Society http://www.cs.vu.nl/
~frankh/postscript/IEEE-IS04.pdf

[16] N. Shadbolt, N. Gibbins, H. Glaser, S. Harris, and m.c.schraefel, University of Southamp-
ton; CS AKTive Space, or How We Learned to Stop Worrying and Love the Semantic
Web; Published by the IEEE Computer Science;

Collaborative and Usage-Driven
Evolution of Personal Ontologies

Peter Haase1, Andreas Hotho2, Lars Schmidt-Thieme3, and York Sure1

1 Institute AIFB, U of Karlsruhe, Germany
{haase,sure}@aifb.uni-karlsruhe.de

2 Knowledge Discovery Engineering Group, U of Kassel, Germany
hotho@cs.uni-kassel.de

3 Computer-based New Media Group,
Institute for Computer Science, U of Freiburg, Germany

lst@informatik.uni-freiburg.de

Abstract. Large information repositories as digital libraries, online shops, etc.
rely on a taxonomy of the objects under consideration to structure the vast con-
tents and facilitate browsing and searching (e.g., ACM topic classification for
computer science literature, Amazon product taxonomy, etc.). As in heteroge-
nous communities users typically will use different parts of such an ontology
with varying intensity, customization and personalization of the ontologies is de-
sirable. Of particular interest for supporting users during the personalization are
collaborative filtering systems which can produce personal recommendations by
computing the similarity between own preferences and the one of other people. In
this paper we adapt a collaborative filtering recommender system to assist users in
the management and evolution of their personal ontology by providing detailed
suggestions of ontology changes. Such a system has been implemented in the
context of Bibster, a peer-to-peer based personal bibliography management tool.
Finally, we report on an experiment with the Bibster community that shows the
performance improvements over non-personalized recommendations.

1 Introduction

Large information repositories as digital libraries, online shops, etc. rely on a taxonomy
of the objects under consideration to structure the vast contents and facilitate brows-
ing and searching (e.g., ACM Topic Hierarchy for computer science literature, Amazon
product taxonomy, etc.). As in heterogenous communities users typically will use differ-
ent parts of such an ontology with varying intensity, customization and personalization
of the ontologies is desirable.

Such personal ontologies reflect the interests of users at certain times. Interests
might change as well as the available data, therefore the personalization requires quite
naturally support for the evolution of personal ontologies. The sheer size of e.g. the
ACM Topic Hierarchy makes it quite difficult for users to easily locate topics which
are relevant for them. Often one can benefit from having a community of users which
allows for recommending relevant topics according to similar interests. Of particular

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 486–499, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Collaborative and Usage-Driven Evolution of Personal Ontologies 487

interest are therefore collaborative filtering systems which can produce personal rec-
ommendations by computing the similarity between own preferences and the one of
other people.

We performed our evaluation within the Bibster community. Bibster is a semantics-
based Peer-to-Peer application aiming at researchers who want to benefit from sharing
bibliographic metadata. It enables the management of bibliographic metadata in a Peer-
to-Peer fashion: it allows to import bibliographic metadata, e.g. from BIBTEX files, into
a local knowledge repository, to share and search the knowledge in the Peer-to-Peer
system, as well as to edit and export the bibliographic metadata.

As our main contribution in this paper we adapt a collaborative filtering recom-
mender system to assist users in the management and evolution of their personal on-
tology by providing detailed suggestions of ontology changes. The approach is imple-
mented as an extension of the Bibster application and has been thoroughly evaluated
with very promising results.

The paper is structured as follows. In the next Section 2 we present related work in
the areas of work in recommender systems, work in using taxonomies in recommender
systems, and work in learning taxonomies and ontology evolution in general. In Sec-
tion 3 we describe our underlying ontology model which is based on OWL, the change
operations used during the evolution of ontologies, and the ontology rating annotations
allowing each user to express more fine-grained the importance of certain ontology
parts. The recommender method itself and its functionality is illustrated in Section 4.
We will introduce the Bibster applications and its extensions with the recommender
functionality in Section 5 followed by evaluation results in Section 6. The evaluation
was performed as an experiment within the Bibster community and shows the perfor-
mance improvements over non-personalized recommendations. Finally, we conclude in
Section 7.

2 Related Work

Related work exists in three different aspects: work in recommender systems, especially
collaborative filtering in general, work in using taxonomies in recommender systems,
and work in learning taxonomies and ontology evolution in general.

Recommender systems have their roots in relevance feedback in information re-
trieval [15], i.e., adding terms to (query expansion) or re-weighting terms of (term re-
weighting) a query to a document repository based on terms in documents in the result
set of the original query that have been marked relevant or non-relevant by the user, as
well as adaptive hypertext and hypermedia [20], i.e., the automatic adaptation of the
link structure of a document repository based on previous link usage by users.

Recommender systems broaden the domain from documents and link structure to
arbitrary domains (e.g., movies, products), do not necessarily rely on attributes of the
objects under consideration (i.e., terms in the case of documents and called items in
the context of recommender systems), and typically combine knowledge about differ-
ent users. They first have been formulated as filtering techniques generally grouped in
three different types: (1) collaborative filtering is basically a nearest-neighbor model
based on user–item correlations; if correlations are computed between users, it is called

488 P. Haase et al.

user-based, if between items, it is called item-based. (2) content-based or feature-based
recommender systems use similarities between rated items of a single user and items
in the repository. User- and item-based collaborative filtering and content-based rec-
ommender systems have been introduced in [5, 14], [16] and [1], respectively, and are
exemplified by the three systems presented there, MovieLens, Ringo, and fab. (3) Hy-
brid recommender systems try to combine both approaches [1, 2]. Although most rec-
ommender systems research meanwhile focuses on more complex models treating the
task as a learning or classification problem, collaborative filtering models still are under
active investigation [8, 3] due to their simplicity and comparable fair quality.

Taxonomies are used in recommender systems to improve recommendation quality
for items, e.g., in [13] and [21]. But to our knowledge there is no former approach for
the inverse task, to use recommender systems for the personalization of the taxonomy
or more generally of an ontology.

Ontology evolution is a central task in ontology management that has been ad-
dressed for example in [12] and [17]. In [17] the authors identify a possible six-phase
evolution process: (1) change capturing, (2) change representation, (3) semantics of
change, (4) change implementation, (5) change propagation, and (6) change validation.
Our work addresses the phase of change capturing, more specifically the process of
capturing implicit requirements for ontology changes from usage information about the
ontology. One approach for usage-driven change discovery in ontology management
systems has been explored in [19], where the user’s behavior during the knowledge
providing and searching phase is analyzed. [18] describes a tool for guiding ontology
managers through the modification of an ontology based on the analysis of end-users’
interactions with ontology-based applications, which are tracked in a usage-log. How-
ever, the existing work only addressed the evolution of a single ontology in a central-
ized scenario. In our work we are extending the idea of applying usage-information to a
multi-ontology model by using collaborative filtering to recommend ontology changes
based on the usage of the personal ontologies.

3 Ontology Model and Ontology Change Operations

3.1 Ontology Model

As the OWL ontology language has been standardized by the W3C consortium, we will
adhere to the underlying OWL ontology model. Because of their computational charac-
teristics, the sublanguages OWL-DL and OWL-Lite are of particular importance. These
languages are syntactic variants of the SHOIN (D) and SHIF(D) description logics,
respectively [9]. In the following we will therefore use the more compact, traditional
SHOIN (D) description logic syntax, which we review in the following:

We use a datatype theory D, a set of concept names NC , sets of abstract and con-
crete individual names NIa

and NIc
, respectively, and sets of abstract and concrete role

names NRa
and NRc

, respectively.
The set of SHOIN (D) concepts is defined by the following syntactic rules, where

A is an atomic concept, R is an abstract role, S is an abstract simple role (a role not
having transitive subroles), T(i) are concrete roles, d is a concrete domain predicate,

Collaborative and Usage-Driven Evolution of Personal Ontologies 489

ai and ci are abstract and concrete individuals, respectively, and n is a non-negative
integer:

C → A | ¬C | C1
 C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ n T | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

An ontology is a finite set of axioms of the form1:

– concept inclusion axioms C � D, stating that the concept C is a subconcept of the
concept D,

– transitivity axioms Trans(R), stating that the abstract role R is transitive,
– role inclusion axioms R � S (T � U) stating that the abstract role R (or concrete

role T) is a subrole of the abstract role S (or concrete role U).
– concept assertions C(a) stating that the abstract individual a is in the extension of

the concept C,
– abstract role assertions R(a, b) and T (a, c)) stating that the abstract individuals a,

b (or a, c) are in the extension of the role R (T),
– concrete role assertions T (a, c)) stating that the abstract individual a and the con-

crete individual c are in the extension of the concrete role T ,
– individual (in)equalities a ≈ b, and a �≈ b, respectively, stating that a and b denote

the same (different) individuals.

In the following, we denote the set of all possible ontologies with O.

3.2 Ontology Change Operations

Definition 1. An ontology change operation oco ∈ OCO is a function oco : O → O.
Here OCO denotes the set of all possible ontology change operations.

For the above defined ontology model, we allow the atomic change operations of adding
and removing axioms, which we denote with α+ and α−, respectively. Complex on-
tology change operations can be expressed as a sequence of atomic ontology change
operations. The semantics of the sequence is the chaining of the corresponding func-
tions: For some atomic change operations oco1, ..., ocon we can define ococomplex =
ocon ◦ ... ◦ oco1 = ocon(...oco1)).

3.3 Ontology Rating Annotations

Our ontology model so far describes the actual state of an ontology for a user. Once we
enter the more dynamic scenario of ontology evolution, it makes sense that a user (i)
can express more in a more fine-grained way how important a certain symbol (name) or
axiom is for him and (ii) can express explicitly negative ratings for symbols (names) or
axioms not part of his ontology. In the context of software configuration management,
the latter is known as specifying a ”taboo”.

We model this importance information by a rating annotation.

1 For the direct model-theoretic semantics of SHOIN (D) we refer the reader to [10].

490 P. Haase et al.

Definition 2. Let N := NC ∪ NIa
∪ NIc

∪ NRa
∪ NRc

denote the set of all possible
names (symbols) and A the set of all possible axioms, then an ontology rating annota-
tion is a partial function r : N ∪ A → R.

The definition states that we allow ratings on both the axioms of the ontologies as
well as the names over which the axioms are defined. High values denote the relative
importance of a symbol or axiom, negative values that it is unwanted by the user.

In particular, we define the following two ontology rating annotations:

1. We use an explicit rating, called the membership-rating rm with taboos, for which
(i) all symbols and axioms actually part of the ontology have rating +1, (ii) all
symbols and axioms not actually part of the ontology can be explicitly marked
taboo by the user and then get a rating -1.

2. We use an implicit, usage-based rating called ru, which indicates the relevance of
the elements based on how it has been used, e.g. counts the percentage of queries is-
sued by the user and instances in his knowledge base that reference a given symbol
name.

We will consider rating annotations as an additional ontology component in the follow-
ing.

3.4 Ontology Aligmnent

An additional problem that we have to face is: If two ontologies talk about a name s,
does this name refer to the same entity? Generally, this will not be the case and we will
have to establish mappings between the symbol names of each pair of ontologies. This
problem is known as ontology alignment or ontology mapping in the literature.

As in most applications, individuals eventually may have global IDs – e.g., URIs
for web pages, ISBNs for books, etc. – concepts and relations typically have not. But
although we think that the ontology alignment task is a crucial requirement for recom-
mending ontology changes, for the sake of simplicity we will not pursue this problem
here any further and rather refer the reader to e.g. [11]. In the following we assume that
all symbols are global identifiers.

4 Recommending Ontology Changes

A recommender system for ontology changes tries to suggest ontology changes to the
user based on some information about him and potential other users. Formally, an on-
tology recommender is a map

� : X → P(OCO) (1)

where X contains suitable descriptions of the target ontology and user.
For example, let recommendations depend only on the actual state of a user’s ontol-

ogy, i.e., X = O. where O denotes the set of possible ontologies. A simple ontology
evolution recommender can be built by just evaluating some heuristics on the actual
state of the ontology, e.g., if the number of instances of a concept exceeds a given

Collaborative and Usage-Driven Evolution of Personal Ontologies 491

threshold, it recommends to add subconcepts to this concept. But without any additional
information, this is hardly very useful, as we would not be able to give any semantics to
these subconcepts: we could recommend to further subdivde the concept, but not how,
i.e., neither be able to suggest a suitable label for these subconcepts nor assertions of
instances to them. We will call such an approach content-based to distinguish it from
more complex ones.

Recommendation quality eventually can be improved by taking into account other
users’ ontologies and thereby establishing some kind of collaborative ontology evolu-
tion scenario, where each user keeps his personal ontology but still profits from anno-
tations of other users. The basic idea is as follows: assume that for a target ontology
we know similar ontologies called neighbors for short, then we would like to spot pat-
terns in similar ontologies that are absent in our target ontology and recommend them
to the target ontology. Another wording of the same idea is that we would like to extract
ontology change operations that applied to the target ontology increases the similarity
with its neighbors.

Let
sim : O ×O → R (2)

be such a similarity measure where sim(O, P) is large for similar ontologies O and
P and small for dissimilar ontologies. Typically, these measures are symmetric and
maximal for two same arguments. For further properties and examples of similarity
functions for ontologies, we refer the reader to [4].

Recall that ontologies in our context may have additional rating annotations that are
valueable information to consider in similarity measures suitable for recommendation
tasks.

We can choose a simple unnormalized correlation measure (vector similarity) to
compute similarities between ontologies of two users based on their ratings of the ele-
ments (i.e. symbol names and axioms) in the ontology:

simr(O, P) :=
∑

s∈N∪A rO(s) rP (s)√∑
s∈N∪A rO(s)2

√∑
s∈N∪A rP (s)2

(3)

Similarities for the two different rating annotations rm and ru are computed separately
and then linearly combined with equal weights:

sim(O, P) :=
1
2

simrm(O, P) +
1
2

simru(O,P) (4)

Finally, as in standard user-based collaborative filtering, ratings of all neighbors
Ω are aggregated using the similarity-weighted sum of their membership ratings rm,
allowing for a personalized recommender function:

rpersonalized(O, Ω, c) :=
∑

P∈Ω sim(O, P) rm
P (c)∑

P∈Ω | sim(O,P)| (5)

The recommendations are obtained directly from the rating: Elements with a pos-
itive rating are recommended to be added to the ontology, elements with a negative
rating are recommended to be removed. Disregarding the similarity measure between

492 P. Haase et al.

the users’ ontologies, we can build a naive recommender that does not provide person-
alized recommendations, but instead simply recommends “most popular” operations
based on an unweighted average of the membership ratings:

rbaseline(O, Ω, c) =
∑

P∈Ω rm
P (c)

|Ω| (6)

5 Case Study: Bibster

In this section we will first introduce the Bibster system [7] and the role of personal-
ized ontologies in its application scenario. We will then describe how the recommender
functionality is applied in the system to support the users in evolving their personalized
ontologies.

5.1 Application Scenario: Sharing Bibliographic Metadata with Bibster

Bibster2 is an award-winning semantics-based Peer-to-Peer application aiming at re-
searchers who want to benefit from sharing bibliographic metadata. Many researchers
in computer science keep lists of bibliographic metadata, preferably in BIBTEX format,
that they must laboriously maintain manually. At the same time, many researchers are
willing to share these resources, assuming they do not have to invest work in doing so.

Bibster enables the management of bibliographic metadata in a Peer-to-Peer fash-
ion: it allows to import bibliographic metadata, e.g. from BIBTEX files, into a local
knowledge repository, to share and search the knowledge in the Peer-to-Peer system, as
well as to edit and export the bibliographic metadata.

Two ontologies are used to describe properties of bibliographic entries in Bibster,
an application ontology and a domain ontology [6]. Bibster makes a rather strong com-
mitment to the application ontology, but the domain ontology can be easily substituted
to allow for the adaption to different domains.

Bibster uses the SWRC3 ontology as application ontology, that describes different
generic aspects of bibliographic metadata. The SWRC ontology has been used already
in various projects, e.g. also in the semantic portal of the Institute AIFB4.

In our scenario we use the ACM Topic Hierarchy5 as the domain ontology. This
topic hierarchy describes specific categories of literature for the Computer Science do-
main. It covers large areas of computer science, containing over 1287 topics ordered
using taxonomic relations, e.g.:
SubTopic(Artificial Intelligence, Knowledge Representation Formalisms).
The SubTopic relation is transitive, i.e. Trans(SubTopic).

The domain ontology is being used for classification of metadata entries, e.g.
isAbout(someArticle, Artificial Intelligence), therefore enabling advanced query-

2 http://bibster.semanticweb.org/
3 http://ontoware.org/projects/swrc/
4 http://www.aifb.uni-karlsruhe.de/about.html
5 http://www.acm.org/class/1998/

Collaborative and Usage-Driven Evolution of Personal Ontologies 493

ing and browsing. The classification can be done automatically by the application or
manually (by drag and drop).

5.2 Extensions for Evolution and Recommendations

In Bibster we initially assumed both ontologies to be globally shared and static. This
basically holds for the application ontology, but users want to adapt the domain on-
tology continuously to their needs. This is largely motivated by the sheer size of the
ACM Topic Hierarchy which makes browsing, and therefore also querying and manual
classification, difficult for users.

As part of this work we implemented extensions as described in the previous Sec-
tion 4 to Bibster which support the evolution – i.e. the continuous adaptation – of
the domain ontology by the users. A basic assumption here is that all users agree in
general on the ACM Topic Hierarchy as domain ontology, but each user is only in-
terested in seeing those parts of it which are relevant for him at a certain point of
time.

In the application, we have separated the interaction with the ontology in two modes:
a usage mode and an evolution mode. The usage mode is active for the management
of the bibliographic metadata itself, i.e. creating and searching for the bibliographic
metadata. This mode only shows the current view on the ontology consisting of the
topics that the user has explicitly included in his ontology. The evolution mode allows
for the adaptation of the ontology. In this mode also the possible extensions along with
the corresponding recommendations are shown.

Ontology Change Operations. To keep things simple and trying to separate effects from
eventually different sources as much as possible, we allow as change operations the
addition and removal of topics from the personal ontology. More specifically, this addi-
tion/removal corresponds to the addition/removal of the individual assertion axiom (e.g.
Topic(Knowledge Representation Formalisms) and the role assertion axiom that
fixes the position in the topic hierarchy (e.g. SubTopic(Artificial Intelligence,
Knowledge Representation Formalisms)). The addition of topics is restricted to
those topics that are predefined in the ACM Topic Hierarchy. Also, the position of the
topics is fixed globally by the background ontology.

Ontology Ratings. To elicit as much information as possible from users’ work with the
application, we gather various ontology rating annotations in the different modes.

Recommendation
Rating Remove Neutral Add

Taboo-ed X topicname X topicname + topicname
Unrated - topicname ? topicname + topicname

Accepted - topicname √ topicname √ topicname

Fig. 1. Visualization of topics in evolution mode

494 P. Haase et al.

Fig. 2. Screenshot

We obtain the membership-rating rm in the evolution mode from the explicit user
actions (c.f. Figure 2): The user can either add a topic in the taxonomy, which will as-
signing a rating +1 for the topic, or he can exclude (taboo) the topic from the taxonomy,
which will assign -1 for the explicitly taboo-ed topic.

We obtain the usage-based rating ru in the usage mode by counting the percent-
age of queries issued by the user and instances in his knowledge base that reference a
given topic. (For this, references to all topics are retained, especially also to topics not
contained in the ontology of the user.)

The ontology ratings of the individual users are propagated together with peer pro-
file descriptions as advertisements in the Peer-to-Peer network, such that every peers is
informed about the usage of the ontology in the network. For the details of this process,
we refer the reader to [7].

Recommending Ontology Changes. For the recommendations of topics we rely on the
rating function rpersonalized presented in the previous section. From the ratings of the top-
ics, we can directly obtain the recommendations: Topics with a positive rating are rec-
ommended to be added to the ontology, topics with a negative rating are recommended
to be removed. (Please note that adding a topic actually means adding the corresponding
axioms, as described above.)

Topics in the topic hierarchy are visualized depending on the current rating rm of
the topic and on the recommendation for the topic using a the coding scheme shown in
Figure 1. Figure 2 shows a screenshot of the ontology in the evolution mode.

Collaborative and Usage-Driven Evolution of Personal Ontologies 495

6 Evaluation

For our evaluation, we wanted to study two questions: (i) do users accept recommenda-
tions for ontology changes at all? (ii) is a personalized recommender better suited for
the task than a naive, non-personalized recommender?

To answer these questions, we have performed a user experiment in an in-situ setting
using the Bibster system, in which we compared the baseline (non-personalized) and the
personalized recommender, as defined in the previous section. In the following we will
describe the setup of the experiment, evaluation measures, and the results.

6.1 Design of the Experiment

The experiment was performed within three Computer Science departments at differ-
ent locations. For a pre-arranged period of one hour, 23 users were actively using the
system. The recommender strategy (baseline or personalized) was chosen randomly for
each user at the first start of the Bibster application. The users were not aware of the
existence of the different recommendation strategies.

During the experiment, the users performed the following activities (in no particular
order), which are typical for the everyday use of the system:

– Import data: The users need to load their personal bibliography as initial dataset.
This data should also reflect their research interest. As described before, the clas-
sification information of the bibliographic instances is part of the ontology rating
and thus used to compute the similarity between the peers.

– Perform queries: The users were asked to search for bibliographic entries of their
interest by performing queries in the Peer-to-Peer system. These queries may refer
to specific topics in the ontology, and are thus again used as ontology ratings.

– Adapt ontology: Finally the users were asked to adapt their ontology to their per-
sonal needs and interests by adding or removing topics. This process was guided
by the recommendations of the respective recommender function. The recommen-
dations were updated (recalculated) after every ontology change operation.

The user actions were logged at every peer for later analysis. The logged informa-
tion included: The type of the action (e.g. user query, ontology change operations), the
provided recommendations, and a timestamp.

6.2 Evaluation Measures

We base our evaluation on the collected usage information in form of events consisting
of the actual user action e ∈ OCO, i.e., the specific ontology change operation per-
formed, and the set Ê ⊆ OCO of recommendations at that point in time, represented
by a set E ⊆ OCO × P(OCO).

We observe a successful recommendation or a hit, when e ∈ Ê. For non-hits, we
distinguish two situations: (i) If the actual recommendation was exactly the opposite
action, e.g., we recommended to add a topic but the user taboo-ed it, then we call this
an error. (ii) If there was no recommendation for this action neither for its opposite, we

496 P. Haase et al.

call this restraint. Based on these counts, we can compute the following performance
measures.

recall(E) := |{(e,Ê)∈E | e∈Ê}|
|E| (7)

error(E) := |{(e,Ê)∈E | opp(e)∈Ê}|
|E| (8)

restraint(E) := |{(e,Ê)∈E | opp(e)/∈Ê∧e/∈Ê}|
|E| (9)

where opp denotes the respective opposite operation, e.g., opp(e+) := e− and opp(e−)
:= e+. Higher recall and lower error and restraint are better.

For a higher level of detail, we do so not only for all user actions, but also for
some classes OCOC ⊆ OCO of user actions, such as all add- and all remove/taboo-
operations.

As each of the measures alone can be optimized by a trivial strategy, we also com-
puted the profit of the recommenders w.r.t. the profit matrix in Table 1:

profit(E) :=

∑
(e,Ê)∈E

∑
ê∈Ê profit(e, ê)

|E| = recall(E) − error(E) (10)

Table 1. Evaluation Profit Matrix

Recommendation
User Action Remove None Add

Remove 1 0 -1
None 0 0 0
Add -1 0 1

An intuitive reading of the profit is: The higher the profit, the better the performance
of the recommender. In the best case (profit = 1), all user actions were correctly
recommended by the system, in the worst case (profit = −1), all user actions were
opposite of the recommendation.

6.3 Evaluation Results

For the 23 participating users in the experiment, the baseline recommender was active
for 10 users, the personalized recommender was active for the other 13 users. The par-
ticipants performed a total of 669 user actions (452 add topic and 217 remove topic),
335 of these action were performed by users with the baseline strategy, 334 by users
with the personalized recommender. Table 2 shows the number of add-topic-actions for
the most popular topics. Figure 3 shows the cumulative results of the performance mea-
sures defined above for the baseline and the personalized recommender. The diagrams
show the results for Add and Remove operations separately, as well as combined for all
change operations.

As we can see in Figure 3 (upper right), overall the personalized recommender cor-
rectly recommended more than 55% of the user actions, while the baseline achieved less

Collaborative and Usage-Driven Evolution of Personal Ontologies 497

Table 2. Most Popular Topics

ACM Topic # Add Actions
Information Systems 23
Computing Methodologies 15
Data 14
Computing Methodologies/Artificial Intelligence 12
Information Systems/Database Management 12
Software 11
Mathematics Of Computing 10
Computer Systems Organization 10
Computer Systems Organization/Computer Communication Networks 10
Computing Methodologies/Artificial Intelligence/ 10

Knowledge Representation Formalisms And Methods

than 30%. The error rate of the baseline algorithm is considerably higher: We observed
an error = 17% and 9% for the baseline and the personalized approach, respectively.
Further we observed a very large amount of restraint operations with restraint = 67%
for users with the baseline strategy. Probably this is the result of a large number of rec-
ommendations irrelevant to the user given by the system with the baseline strategy. In
such a case the user would not like to follow the system and constructs the ontology

Add Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Collaborative

Remove Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Collaborative

Add and Remove Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline Collaborative

No recommendations (Restraint)

False recommendations (Error)

Correct recommendations (Recall)

Fig. 3. Performance measures of the recommender

498 P. Haase et al.

mainly by themselves. Only from time to time he takes some of the recommendations
into account.

By comparing add and remove operations we observe a higher amount of error
recommendations for remove operations in comparison to the a really small amount of
it for the add recommendations while the correct recommendations are comparable for
both operations (cf. Figure 3, left side). We think that this observation is based on the
fact that a user is more likely to follow an add operation without a “substantiated” reason
or explanation than a remove operation. While adding something to his “collection” and
following the idea of having more the remove operation forces the feeling of “loosing”
something, so typically users are more reluctant to remove topics.

Calculating the overall profit of the two recommender functions, we obtain profit(E) =
0.11 for the baseline recommender. For the collaborative recommender, we obtain a
significantly better value of profit(E) = 0.47. Concluding we can state that the person-
alized recommender function provides substantially more useful recommendations.

7 Conclusion and Future Work

We have presented an approach to recommend ontology change operations to a per-
sonalized ontology based on the usage information of the individual ontologies in a
user community. In this approach we have adapted a collaborative filtering algorithm
to determine the relevance of ontology change operations based on the similarity of the
users’ ontologies.

In our experimental evaluation with the Peer-to-Peer system Bibster we have seen
that the users actually accept recommendations of the system for the evolution of their
personal ontologies. The results further show the benefit of exploiting the similarity
between the users’ ontologies in a personalized recommender compared with a simple,
non-personalized baseline recommender.

In our experiment we have made various simplifying assumptions. Their relaxation
will open fruitful directions for future work: We assumed a fixed background ontology
which limits the space of change operations. Relaxing this assumption will introduce
challenges related to aligning heterogeneous ontologies. Further, the recommendation
of adding or removing concepts in a given concept hierarchy can only be a first step.
Next steps will therefore also include recommendations of richer change operations.

Acknowledgments

Research reported in this paper has been partially financed by the EU in the IST project
SEKT (IST-2003-506826) (http://www.sekt-project.com). We would like to
thank our colleagues for fruitful discussions.

References

1. M. Balabanović and Y. Shoham. Fab - content-based, collaborative recommendation. CACM,
40(3):66–72, 1997.

2. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User
Adapted Interaction, 12/4:331–370, 2002.

Collaborative and Usage-Driven Evolution of Personal Ontologies 499

3. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans.
Inf. Sys., 22(1):143–177, 2004.

4. M. Ehrig, P. Haase, and N. Stojanovic. Similarity for ontologies - a comprehensive frame-
work. In Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability, at
PAKM 2004, DEC 2004.

5. D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative filtering to weave an
information tapestry. CACM, 35(12):61–70, 1992.

6. N. Guarino. Formal ontology and information systems. In N. Guarino, editor, Proc. 1st Int.
Conf. on Formal Ont. in Inf. Sys. (FOIS), volume 46 of Frontiers in AI and App., Trento,
Italy, 1998. IOS-Press.

7. P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Plechawski, P. Pyszlak, B. Schni-
zler, R. Siebes, S. Staab, and C. Tempich. Bibster - a semantics-based bibliographic peer-
to-peer system. In Proceedings of the Third International Semantic Web Conference, Hi-
roshima, Japan, 2004, NOV 2004.

8. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recom-
mender systems. ACM Trans. Inf. Sys., 22(1):5–53, 2004.

9. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic
Satisfiability. Journal of Web Semantics, 1(4), 2004.

10. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

11. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. Knowl. Eng.
Rev., 18(1):1–31, 2003.

12. M. Klein and N. Noy. A component-based framework for ontology evolution. In Proc. of
the WS on Ont. and Distr. Sys., IJCAI ’03, Acapulco, Mexico, Aug.9, 2003.

13. S. Middleton, N. Shadbolt, and D. D. Roure. Ontological user profiling in recommender
systems. ACM Trans. on Inf. Systems, 22:54–88, 2004.

14. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open architec-
ture for collaborative filtering of netnews. In Proc. of the Conf. on Comp. Sup. Coop. Work
(CSCW’94), pages 175–186, Chapel Hill NC, 1994. Addison-Wesley.

15. G. Salton. Relevance feedback and the optimization of retrieval effectiveness. In G. Salton,
editor, The SMART system — experiments in automatic document processing, pages 324–
336. Prentice-Hall Inc., Englewood Cliffs, NJ, 1971.

16. U. Shardanand and P. Maes. Social information filtering: algorithms for automating ”‘word
of mouth”’. In Proc. of the SIGCHI conf. on Human factors in computing systems, pages
210–217. ACM Press/Addison-Wesley Publishing Co., 1995.

17. L. Stojanovic, A. Mädche, B. Motik, and N. Stojanovic. User-driven ontology evolution
management. In European Conf. Knowledge Eng. and Management (EKAW 2002), pages
285–300. Springer-Verlag, 2002.

18. N. Stojanovic, J. Hartmann, and J. Gonzalez. Ontomanager - a system for usage-based
ontology management. In In Proc. of FGML Workshop. SIG of German Information Society
(FGML - Fachgruppe Maschinelles Lernen GI e.V.), 2003.

19. N. Stojanovic and L. Stojanovic. Usage-oriented evolution of ontology-based knowledge
management systems. In Int. Conf. on Ontologies, Databases and Applications of Semantics,
(ODBASE 2002), Irvine, CA, LNCS, pages 230–242, 2002.

20. P. D. Stotts and R. Furuta. Dynamic adaptation of hypertext structure. In Hypertext’91 Proc.,
San Antonio, TX, USA, pages 219–231. ACM, 1991.

21. C. Ziegler, L. Schmidt-Thieme, and G. Lausen. Exploiting semantic product descriptions
for recommender systems. In Proc. 2nd ACM SIGIR Sem. Web and IR WS (SWIR ’04), July
25-29, 2004, Sheff., UK, 2004.

Towards Semantically-Interlinked Online
Communities

John G. Breslin, Andreas Harth, Uldis Bojars, and Stefan Decker

Digital Enterprise Research Institute (DERI), Galway, Ireland
firstname.lastname@deri.org

Abstract. Online community sites have replaced the traditional means
of keeping a community informed via libraries and publishing. At present,
online communities are islands that are not interlinked. We describe dif-
ferent types of online communities and tools that are currently used to
build and support such communities. Ontologies and Semantic Web tech-
nologies offer an upgrade path to providing more complex services. Fus-
ing information and inferring links between the various applications and
types of information provides relevant insights that make the available
information on the Internet more valuable. We present the SIOC ontol-
ogy which combines terms from vocabularies that already exist with new
terms needed to describe the relationships between concepts in the realm
of online community sites.

1 Introduction

At the moment, most online communities are islands that are not linked. Sites are
hosted on stand-alone systems that cannot be interconnected due to application
and interface differences. Parallel discussions on interrelated topics may exist on
a number of sites, but their users are unaware of that. There is a huge amount
of related information that could be harnessed across such online communities,
from similar member profile details to common-topic discussion forums.

The goal of SIOC1 (Semantically-Interlinked Online Communities) is to in-
terconnect these online communities. Community sites can include many dis-
cussion primitives, such as bulletin boards, weblogs and mailing lists, which we
have grouped under the concept of forum.

SIOC will facilitate the location of related and relevant information; by
searching on one forum, the ontology and interface will allow users to find infor-
mation on forums from other sites that use a SIOC-based system architecture.
Other uses include cross-site querying, topic-related searches, and the importing
of SIOC data into other systems, for example, using an email program to browse
data imported from a SIOC-enabled site. Therefore, SIOC tries to overcome the
serious limitations of current sites in making information accessible to their users
in an efficient manner [6].

1 http://rdfs.org/sioc/

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 500–514, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Semantically-Interlinked Online Communities 501

A part of the task of linking on-line communities is to suggest additional
information related to any given forum and forum entry. One approach would
be to perform a search on, for example, post title, author, date, keywords or
the full post text in community sites. Existing Internet search engines locate
the information by performing a keyword search on a full-text index of Internet
resources. Some search engines try to improve the quality of search results by
analysing the link structure of web resources. But even with these improvements,
search engines lack an understanding of the information being searched for and
return a high number of irrelevant results. In this paper, we try to solve this
problem by narrowing the scope of a search to a set of interlinked community
sites and by describing the information in a machine-readable form using the
SIOC ontology.

In a typical usage scenario, a user is searching for information on, for example,
installing broadband on a Linux-based PC in their house in Galway. There is
a post A discussing local ISPs on site 1, a bulletin board dedicated to Galway,
that references (on the HTML level) both a Usenet post B comparing broadband
modems and a mailing list post C detailing how to install broadband on Linux.
Previously the user would have had to traverse three sites to find the relevant
information. However, by making use of the SIOC ontology and remote RDF
querying, a search for broadband on the Galway bulletin board will also yield
the relevant text from the interlinked Usenet and mailing list posts B and C.

There are some challenges for SIOC. The grand challenge is adoption by
community sites, i.e. how can the users be enticed to make use of the SIOC
ontology. By using concepts that can be easily understood by site administrators,
and by providing properties that are automatically created by an end-user, the
SIOC ontology can be adopted in a useful way. A second challenge is how best to
use SIOC with existing ontologies. This can be partially solved by mappings and
interfaces to commonly-used ontologies such as Dublin Core2, FOAF3 and RSS
1.04. Another challenge is how SIOC will scale. If there are more sites to query,
then there are more potential relevant results, but also longer response times
and higher loads on the participating community sites. We will keep the scaling
challenge in mind when creating a future architecture for an interconnected
system of community sites.

The main contributions of this paper are the development of the SIOC ontol-
ogy and mappings to other RDF vocabularies, and a prototype to produce SIOC
metadata from a community weblog. These contributions will be detailed as fol-
lows. In section 2, we describe the SIOC ontology for linking information both
within and between community sites using RDF data, and demonstrate how
to map to other existing vocabularies (e.g., FOAF, RSS) and formats (email,
XHTML, etc.). In section 3, we will discuss the exchange of SIOC instances by
exporting and importing to web-based and legacy discussion systems as well as

2 http://purl.org/dc/elements/1.1/
3 http://xmlns.com/foaf/0.1/
4 http://purl.org/rss/1.0/

502 J.G. Breslin et al.

RDF stores. Section 4 will describe some usages of the created instances, and
related work will be discussed in section 5. Section 6 concludes the paper.

2 Ontology

In this section we present the SIOC ontology. The ontology consists of two major
parts: first, it contains classes and properties that describe discussion forums
and posts in online community sites. The ontology is available online5. Second,
it includes mappings that relate SIOC to existing vocabularies such as FOAF
and RSS.

We have identifed the main concepts in online communities as Site, Forum,
Post, Event, Group and User. These are shown in Figure 1. While similar parent
concepts are found in other ontologies, it is the relationships, sub-classes and
properties of these concepts in the arena of online discussion methods that make
SIOC unique and provide use cases that were not previously possible.

2.1 Main Classes

We list the major classes that are used in the SIOC ontology, and describe their
usage in more detail.

Site. is the location of an online community or set of communities, with users
in groups creating posts on a set of forums. While an individual forum or
group of forums are usually hosted on a centralised site, in the future the
concept of a “site” may be extended (for example, a topic thread could be
formed by posts in a distributed forum on a peer-to-peer environment).

Forum. can be thought of as a channel or discussion area on which posts are
made. A forum can be linked to the site that hosts it. Forums will usually
discuss a certain topic or set of related topics, or they may contain discussions
entirely devoted to a certain community group or organisation. A forum will
have a moderator who can veto or edit posts before or after they appear in
the forum. Forums may have a set of subscribed users who are notified when
new posts are made. The hierarchy of forums can be defined in terms of
parents and children, allowing the creation of structures conforming to topic
categories as defined by the site administrator. Examples of forums include
mailing lists, online bulletin boards, Usenet newsgroups and weblogs.

Post. is an article or message posted by a user to a forum. A series of posts may
be threaded if they share a common subject and are connected by parent
and child relationships. Posts will have content and may also have attached
files, which can be edited or deleted by the moderator of the forum that
contains the post.

Event. is a virtual or real-world event with a single or multiple participants.
Examples include meet-ups associated with a particular user or set of users,

5 http://rdfs.org/sioc/ns#

Towards Semantically-Interlinked Online Communities 503

Fig. 1. Overview of classes and properties used in SIOC

a meeting for subscribers of a certain community forum, or private task
reminders to a single user.

Group. is a set of members or users of a community site who have a common
role, purpose or interest. While a group of users may be a single community
that is linked to a certain forum, they may also be a set of users who perform
a certain role, for example, moderators or administrators.

User. is a person who is a member of an online community. They are connected
to posts that they create or edit, to forums that they are subscribed to
or moderate, to sites that they administer, to other users that they know,

504 J.G. Breslin et al.

and to events that they organise or participate in. Users can be grouped for
purposes of allowing access to certain forums or enhanced community site
features (weblogs, webmail, etc.).

2.2 Important Properties

In the next paragraphs, we describe properties of SIOC concepts that are impor-
tant for extracting meaning from and for interlinking online community sites.

topic. A topic definition applies to most of the concepts defined above, and
topic metadata can be a useful way to match documents and people to each
other.
While it may be more difficult to require a user to assign a topic to a post
at creation time, it is more likely that a forum will have an associated topic
or set of topics that can be propagated to the posts it contains. Similarly,
users or groups can define topics of interest when their profiles are created
or modified.
In order to enable the location of related information between the commu-
nity sites, a common categorisation system has to be used. On large scale,
general interest community sites, topics may be quite broad and a general
categorisation such as the DMOZ6 category hierarchy may be used.
On specialised sites, which may have a very specific category hierarchy,
generic categorisation systems are not suitable because they are too broad
and may not have the necessary level of detail. For these sites, we propose
to define a category hierarchy in the SKOS framework [7] and to create
mappings between these concepts and a common category system. In future
work, SKOS may be used to describe all category schemes and mappings
between them, but the lack of generic taxonomies expressed in SKOS (since
it is in an early adoption phase) makes its current use difficult.
A proper use of topics can lead to many interesting scenarios in community
sites. For example, a user has defined certain topics of interest on registering
an account, after which forums matching those topics are suggested to the
user.

views. The views property represents the number of times a particular post or
user profile has been viewed. This is an example of where content is auto-
matically created by an end-user, and can increase the content’s importance
in terms of searching. For example, a user creates a query across a set of
SIOC-enabled sites, and is returned a list of subjects and extracts from cer-
tain posts, sorted by the popularity of the post, as indicated by the views
property.

has sibling. A recent development in online discussion methods is an article
or post that appears in multiple blogs, or has been copied from one forum
to another relevant forum. In SIOC, we can treat these copies of posts as
siblings of each other if we think of the posts as non-identical twins that share

6 http://dmoz.org/

Towards Semantically-Interlinked Online Communities 505

most characteristics but differ in some manner. We can avoid duplication of
common data in the creation of siblings by linking to the new sibling, the
instance of which only contains the changed properties (in the example,
has container and topic would change). A sibling might also be a version of
a post in another language.

closed. The closed property applies to posts in a threaded topic, but can also
be used for forums. It specifies the date and time that the post or forum was
closed. A closed property for posts is a useful for two reasons. Firstly, it is
used to specify that a particular post can have no more children. Secondly,
it gives us details of when the closure occurred, and can therefore be used
to determine how relevant in time a discussion or set of discussions may be.

has creator. The has creator property links a post to the user profile of its
author. Thus, we can follow the link from the post to the creator and locate
the other posts by the same person. The community can be seen as a net-
work of posts with users linked to each post, and there is also a network of
other posts created by a given user stemming from there. We can use the
information in community sites to locate more contributions by the given
author.

knows. The knows property is a basic property to show the structure of social
networks inside community sites. Who knows whom is the basic property
used for describing social network sites and provides information about the
links between community users. One of the options to locate relevant infor-
mation on a given topic is to search for information, not in the full scope of
the knowledge base, but in a subset of posts accessed by a person or friends
of that person. There are three possible types of knows links: linking to a user
inside the same community, to a user of other SIOC-enabled communities,
or to other resources outside SIOC.

2.3 Mappings

One of the main functions of SIOC is to provide a means for exchanging commu-
nity instance data. Since there are already a considerable number of classes and
properties defined in RDF on the Web, we provide mappings in RDFS and OWL
to allow the import and export of SIOC instance data in different vocabularies.
Therefore, we can leverage the instance data that is already available.

We provide different kinds of mappings in RDFS for import and export us-
ing rdfs:subClassOf and rdfs:subPropertyOf, and also mappings in OWL using
owl:equivalentProperty and owl:equivalentClass together with other OWL con-
structs. The mappings to various other RDF vocabularies are online7. In Table 1,
we show how classes in FOAF, RSS, and various email vocabularies correspond
to SIOC classes. Mappings of properties are described in a similar manner.

Carrying out the mappings requires a reasoning engine. Because of the various
open issues with regard to OWL reasoning, we split our mappings into two parts.
One part defines mappings in RDFS, which is somewhat limited in expressiveness

7 http://rdfs.org/sioc/mappings

506 J.G. Breslin et al.

Table 1. Selected SIOC mappings

SIOC FOAF RSS Email Atom

Site – – – –

Forum – channel – feed

Post Document item body entry

User Person – (from, to, cc) (author, name)

but there exist scalable reasoning engines that allow for reasoning of class and
property hierarchies and classification. A second part is encoded in OWL and
describes more complex mapping constructs. At the current stage, we assume
that the mappings are carried out on community sites that export or import
data, but in theory the mappings can be completely decoupled.

Since mappings in SIOC are not only restricted to ontologies, we provide
means to extract information from simple data structures. For example, we
might want to map from XML documents into the SIOC ontology using XSL
stylesheets8. For that purpose, we provide an XSL stylesheet to extract data
from XHTML documents to create a SIOC Document instance. In the generic
stylesheet, titles, images, and hyperlinks are extracted from Web pages, some-
what similar to how GRDDL9 is used to extract information from XHTML
documents.

Similarly, an XSL stylesheet can be used that maps from the XML-based
RSS formats (0.9x and 2.0) to RSS 1.0, and from there we have RDF mappings
to SIOC. Also, we have created a stylesheet that maps Atom10 to SIOC, and this
is used for importing Atom files into SIOC. A mapping from SIOC to Atom for
data export requires a combination of queries against RDF data with an Atom
template where the appropriate values can be filled in.

3 Exchanging Instances

The core use of SIOC will be in the exchange of instance data between sites. In
the following, we elaborate on how the exchange, both importing and export-
ing data, can be carried out. We show how wrappers can help to achieve export
functionality, either based on exporting documents containing the information or
by rewriting queries. Another solution for incorporating the “document-based”
wrapping into a more sophisticated query infrastructure is to mirror the ex-
ported and converted RDF documents in an RDF data store and thus allow for
performing queries. We present a third solution, possibly for newly-developed ap-
plications, which uses a native RDF repository to store and retrieve statements,
making import and export straightforward.

8 http://www.w3.org/TR/xslt
9 http://www.w3.org/2004/01/rdxh/spec

10 http://www.atomenabled.org/

Towards Semantically-Interlinked Online Communities 507

3.1 Wrappers to Existing Tools

Wrappers will allow us to export instances of community site concepts such
as forums or posts in RDF format. They can also allow us to import SIOC
instances to other non-SIOC systems. While there are many possible kinds of
community sites for which wrappers could be developed, we will limit discussion
to some of them, divided into two categories - legacy systems that do not use
HTTP as a transport protocol, and web-based systems that can be accessed via
HTTP.

Legacy Systems. A large number of systems preceding the current Web are
still deployed and widely used on the Internet. Email is used for exchanging
messages and files in an asynchronous way, Internet Relay Chat (IRC) is widely
used for synchronous communication, and Usenet is still used to exchange mes-
sages. Therefore, to really capture a large amount of data currently exchanged
in online communities on the Internet, these legacy systems and protocols need
to be considered for SIOC.

In contrast to web-based systems, where we just need to translate the data,
we need to employ protocol wrappers for legacy protocols to HTTP. For example,
for email we need to translate the data representation format from RFC82211

to SIOC, and provide a wrapper to the access protocol for email stores (usually
POP312 or IMAP413). Wrappers can be either quite simple (just a dump of
the entire data set) or have some “intelligence” that allows for rewriting queries
posed over HTTP into the original data format and access protocol. If we also
provide importing facilities, for example into a mailing list, then we are building
a gateway between a SIOC site and the mailing list.

The email export wrapper accepts a conjunctive query over HTTP GET and
returns the results in SIOC. Parameters such as which posts to retrieve, the
time duration for results to be returned, etc. are encoded into the query. Certain
predicates can be used to restrict the set of posts to retrieve (such as modified at
> 2004-02-10). In a next step, the query is parsed and translated into IMAP4 to
send to the original data source. The original data source then returns the results
in RFC822 format, which is then translated back into RDF and returned to the
original caller via HTTP. We have implemented the wrapper and the mapping
using the Java programming language.

For imports, the email wrapper can receive sioc:Posts via HTTP PUT. Pa-
rameters needed for executing the mail sending process are also submitted via
a conjunctive query to have the same interface for both GET and PUT. The
posts are then translated into the RFC822 format that is suitable for sending
via SMTP. The wrapper can then return a status code indicating that the addi-
tion of data was completed correctly. The import part of the wrapper still has
to be implemented.

11 http://www.ietf.org/rfc/rfc822.txt
12 http://www.ietf.org/rfc/rfc1939.txt
13 http://www.ietf.org/rfc/rfc1730.txt

508 J.G. Breslin et al.

Interfacing with IRC requires a different approach than wrapping email since
the “data representation language” in IRC channel is just free-form text. In
IRC, so-called “bots” are responsible for the exchange of data. A very simple
bot just logs all utterings in an IRC channel and stores them persistently. More
complex bots can understand a defined syntax and perform actions based on
the commands issued. Also, some bots understand either a simple query syntax
or conjunctive queries that are posed inside the IRC channel. One bot we are
providing is logging the channel and recording URIs similar to the chump bot14.
The content that is accumulated is made available in RDF via query over HTTP.

In addition to data that can be auto-generated from the existing sources, a
wrapper has to provide additional information which has to be manually added,
such as descriptions about mailing lists in sioc:Forum or general information in
sioc:Site.

Web-Based Systems. Providing mappings from web-based systems is some-
what easier than mapping from legacy systems since protocol translation is not
needed here.

We will discuss three kind of community sites using web-based systems - bul-
letin boards, weblogs and social networking sites. All these systems are based on
content management systems with different complexity levels. Therefore export-
ing and importing information from and to such systems can be accomplished
by adding wrapper interfaces to the existing content management systems.

For bulletin boards, some export functionality is already available (e.g. FOAF
from vB 15 and phpBB 16, RSS from phpBB 17). Most bulletin board systems use
a LAMP (Linux, Apache, MySQL, PHP/Perl) architecture, and a wrapper to
export data from these systems will use existing Perl and PHP libraries such as
XML FOAF, Magpie RSS, etc. However, most existing wrappers don’t export
their data in SIOC, and only provide a document-based export functionality
rather than a query interface.

Weblogs usually are small scale systems consisting of one or more contributors
and a community of readers. Most weblog engines already have RSS export
functionality and there are some experimental implementations of export of other
metadata, such as the Wordpress FOAF plugin 18. Since the majority of these
engines are open source software, it is straightforward to modify existing export
functions to generate SIOC metadata. Import interfaces can be created in a
similar way, allowing weblogs to import SIOC data. One of the use cases for
SIOC import is replicating post entries among weblogs and community sites.

Social networking sites are based around the concept of persons and the rela-
tions between them. At the same time, many social networking sites are imple-

14 http://usefulinc.com/chump/
15 http://www.vbulletin.org/forum/showthread.php?t=66434
16 http://www.phpbb.com/phpBB/viewtopic.php?p=1088960
17 http://www.phpbb.com/phpBB/viewtopic.php?t=144548
18 http://www.wasab.dk/morten/blog/archives/2004/07/05/wordpress-plugin-foaf-

output

Towards Semantically-Interlinked Online Communities 509

menting other functionality, such as bulletin boards or forums. There are existing
implementations of FOAF metadata exports of user profiles on ecademy.com and
Tribe.net. Similarly for bulletin boards, wrappers to export SIOC metadata on
posts and forums can be created using existing Perl and PHP libraries. How-
ever, many social networking sites are members-only and are not viewable to
the outside world, which raises a question of privacy and trust regarding the
information exported from these sites. The issue of privacy can be partially ad-
dressed by exchanging sensitive information only among a closed network of
trusted community sites.

The main challenge for using SIOC with web-based systems are not in the tech-
nical implementation of SIOC wrappers, but rather in the wide adoption of the
SIOC ontology to gain incentives for people to provide data and tools for SIOC.

Fig. 2. SIOC metadata export from WordPress

510 J.G. Breslin et al.

By making SIOC data available through exports, we are encouraging the
adoption of SIOC concepts. To this end, we have created a SIOC metadata export
facility19 for the WordPress weblog engine. This makes use of existing WordPress
PHP functions to access the information about posts, users and forums (weblog
channels) from the underlying relational database. SIOC metadata in RDF is
generated for each concept instance. The export process is illustrated by example
in Figure 2. Other export facilities are being written for the bulletin board
systems phpBB and vBulletin, and the content management system Drupal.

3.2 Mirror Data in RDF Store

Most of the web-based wrappers just provide simple document-based export
facilities. Replacing the simple wrappers with full-featured wrappers that are
capable of query rewriting takes time. Since our goal is to make SIOC data
available for query and to entice people to use SIOC now, we need a method to
allow querying of the information that sites publish in flat files.

A solution to provide query facilities for sites that have only simple data
export facilities is to replicate the information in a data store that can process
queries. Queries are then answered from the replica. The replica is updated
either by a scutter - an RDF crawler that traverses rdfs:seeAlso links - that
periodically crawls the data, or by the original site that pushes updates and
changes automatically into the mirror store once the data changes. If the data
is exported in a format other than SIOC, then the system also needs to include
a component that carries out the mappings from the vocabulary that is used to
export data into SIOC.

Replicating the contents of the entire site from the relational database to
an RDF store may work initially and create an easy upgrade path. However, in
the longer term, storing and integrating data in a native RDF repository is the
desirable solution.

3.3 Native RDF Store

The previous two subsections discussed tasks that concerned querying existing
sites and their content. We will now describe how newly architectured sites can
make use of a native RDF repository to store their data.

Exporting data is quite simple because RDF does not restrict you in the
way data can be expressed. On the flip side, the flexibility of RDF creates a
problem when importing data into systems with a fixed schema. Issues arise
here, for example, when an application is importing data using a given schema,
and certain mandatory data is missing.

Since community sites provide access to complex structures of information
with different types, it is natural to store that information in RDF directly.
Repositories such as Jena2 [10], Sesame [3], Redland [1], or YARS [5] can be
used to store and retrieve the data. With an RDF store as the data repository,

19 http://rdfs.org/sioc/wordpress/

Towards Semantically-Interlinked Online Communities 511

importing and exporting information is straightforward, and also data integra-
tion tasks can be facilitated. An API similar to the RDF NetAPI [9] can be used
as well. The route we chose for SIOC is to use a restful interface that uses HTTP
methods such as PUT and DELETE for adding and removing data.

We can use an RDF repository as the data store and build the application
functionality on top of the repository in a way that is flexible in regards to the
schema. The user interface should also function when pieces of data are missing,
since we cannot control which data (added or removed from the underlying RDF
store) is agnostic to any schema definition.

4 Using SIOC Data

Given the ontology, the mappings, and the wrappers, we are now able to pose
queries and add data to individual SIOC sites.

4.1 Browsing

Once we have made the data available using a common query infrastructure, we
can use various user interfaces to navigate SIOC data. The simplest solution is to
use a mapping from SIOC to a data format where client programs already exist.
For example, SIOC data can be mapped to email and then read in any email
program. Also, a mapping from SIOC to RSS allows us to navigate a subset of
SIOC information inside a regular RSS news reader. Since SIOC has a richer
data model than RSS, some information will be lost during the conversion.

Another approach is to use existing RDF browsers such as BrownSauce 20

to view arbitrary RDF data. Leveraging the full potential of SIOC requires
the provision of custom programs and user interfaces specially tailored towards
SIOC.

However, since most programs are already providing browsing facilities for
their underlying data structures, implementing import facilities for those pro-
grams allows the seamless integration of data without the need for new user
interfaces.

4.2 Query

Representing data in SIOC enables users to pose structural queries against the
collected data rather than just having keyword search. An implication of struc-
tural queries is that you get precise answers as a result, and not just pieces of
documents that match the keyword.

Until now, we have only considered querying one community site in isolation.
However, since sites are linked together, we might want to perform queries across
similar community sites that all share some connections.

20 http://brownsauce.sourceforge.net/

512 J.G. Breslin et al.

One central problem in P2P networks is how to route queries [8]. We plan
to exploit the link structure that connects forums or sites to route queries. The
forum and site linkage inside SIOC makes it easier to do routing than in general-
purpose peer-to-peer networks, since we have some (human-created) links that
can be exploited. We expect a scale-free behaviour of these links once SIOC is
widely used in practice.

By building the infrastructure for distributing queries into the different site
management software or wrappers, we can perform queries without any central
components. As a result, querying inside an intranet will be simple and already
integrated into the tools used to manage the different community sites inside an
organisation, such as mailing lists or forums.

4.3 Locating Related Information

Querying the community sites for information on demand is not the only model
of end-user interaction. Another way to enhance the end-user experience is to
prepare the data in advance, at creation time of a post.

Once a new post is created in a community site and the SIOC information is
available, this site then queries the network of community sites to find related
posts. A query is performed based on the post metadata, such as other posts by
this person or other posts in the set of the post’s topics.

After the information about related resources is received, the community
site stores this information using a related to property. Information about the
resources the article links to is also extracted from the post body and stored in
a links to property. These properties can then be reused by other users of SIOC
data and by SIOC and RDF browsers to browse forum entries and navigate
through the web of interlinked posts, independent of the underlying site structure
that the forums and posts are hosted on.

The results of this information retrieval model are the enhanced function-
ality added to community sites, and better scalability since the information is
prepared in advance.

5 Related Work

Harvest is an early system [2] that can be used to gather information from diverse
repositories to build, search, and replicate indexes, and to cache objects as they
are retrieved across the Internet. Harvest uses the Summary Object Interchange
Format (SOIF) to exchange metadata about resources. In contrast, SIOC uses
RDF as the exchange format and allows for mappings between different vocab-
ularies, which is not envisioned in SOIF. The various Harvest subsystems are
arranged in a hierarchical fashion, similar to the Domain Name System. We do
not have any specified way of accessing resources in SIOC, but intend to apply
database techniques for query processing and integration.

Various approaches for data integration on the Web, such as data repre-
sentation languages, structural information retrieval, and query processing, are

Towards Semantically-Interlinked Online Communities 513

surveyed in [4]. The survey also describes the warehousing approach to data in-
tegration that aggregates all information at one central site. However, advanced
database techniques have failed so far to surface on the Web. SIOC is a first step
in providing a common vocabulary for data representation across online com-
munities. In further work, we plan to apply usable techniques from the database
community to web data integration problems.

At the moment, RDF Site Summary (RSS 1.0) is widely used in weblog
systems and news sites. RSS 1.0 defines a lightweight vocabulary for syndicating
news items, but is used for all sorts of data exchange. Although RSS works
well in practice, there are several issues: firstly, only the last “n” news items are
typically exported in RSS. There is no standardised way of accessing older posts.
Secondly, there is an issue with regard to updates. Different vocabularies have
different update semantics: where RSS usually provides a stream of news items
that should be accumulated over time, changes in FOAF files mean that the
previous version should be replaced by the current. Because vocabularies can be
mixed in the same file, determining what update semantics to apply for a certain
file is difficult. Thirdly, although there exists a large number of extensions, none
of the advanced functionality of RSS is widely deployed, since tools lack support
for creating and using the extensions. RSS is widely adopted in certain areas,
such as weblogs, but is not used in a wider context such as bulletin boards,
mailing lists, Usenet, wikis, etc.

Also, TrackBack21 is a system implemented by many blogging tools that al-
lows a weblog article to be linked to the followup articles. This is achieved by
sending a summary and metadata of the new article to the weblog containing
the original article, and adding this information to the original article. Link-
ing together cross-site conversations is a step in the direction of semantically-
interlinked online communities; however there are limitations to TrackBack.
Firstly, it is being used in a very limited number of weblog entries and in most
implementations the author has to manually enter the TrackBack address. Sec-
ondly, it only connects two individual instances of posts, not reflecting the links
to the community and, in the case of archived post entries, the readers may
even be unaware of the existence of this new link. Thirdly, TrackBack does not
have a machine readable representation that would allow one to export its link
semantics in RDF, to aggregate the resulting information and reuse it to identify
related post entries.

6 Conclusion

We have presented the SIOC ontology and various mappings to and from other
vocabularies that are already deployed on the Web. We have described how
instance data in SIOC can be exchanged among online community sites. Our
initial SIOC ontology can also be used to enable more complex use cases, for

21 http://www.movabletype.org/docs/mttrackback.html

514 J.G. Breslin et al.

example cross-site structural queries, and integration based on the warehousing
approach.

To tackle the challenge of adoption, we have provided an upgrade path that
allows a gradual migration from existing systems to semantically-enabled sites.
For combination with other ontologies, we have presented mappings to and from
SIOC that allow the export and import of SIOC data using existing systems
and tools. We have developed a prototype SIOC exporter for a weblog engine,
and several more are in development. In the future, we intend to exploit the
characteristics of intra- and inter-site links to guide query routing in a P2P-like
environment.

References

1. D. Beckett. The Design and Implementation of the Redland RDF Application
Framework. Computer Networks, 39(5):577–588, 2002.

2. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1–2):119–125, 1995.

3. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In International Semantic Web
Conference, pages 54–68, 2002.

4. D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database Techniques for the
World-Wide Web: A Survey. SIGMOD Record, 27(3):59–74, 1998.

5. A. Harth and S. Decker. Yet Another RDF Store: Complete Index Structures for
Storing Semantic Web Data With Contexts. DERI Technical Report, 2004.

6. R. Lara, S.-K. Han, H. Lausen, M. Stollberg, Y. Ding, and D. Fensel. An Evaluation
of Semantic Web Portals. In IADIS Applied Computing International Conference
2004, Lisbon, Portugal, March 23-26, 2004.

7. A. J. Miles, N. Rogers, and D. Beckett. SKOS Core RDF Vocabulary. 2004.
http://www.w3.org/2004/02/skos/core/.

8. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In
WWW, pages 604–615, 2002.

9. A. Seaborne. An RDF NetAPI. In International Semantic Web Conference, pages
399–403, 2002.

10. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena2. In Proceedings of SWDB’03, The first International Workshop
on Semantic Web and Databases, Co-located with VLDB 2003, pages 131–150,
2003.

The Personal Publication Reader: Illustrating
Web Data Extraction, Personalization and

Reasoning for the Semantic Web

Robert Baumgartner1, Nicola Henze2, and Marcus Herzog1

1 DBAI, Institute of Information Systems,
Vienna University of Technology,

Favoritenstrasse 9-11, 1040 Vienna, Austria
{baumgart, herzog}@dbai.tuwien.ac.at

2 ISI - Semantic Web Group, University of Hannover,
Appelstr. 4, D-30167 Hannover, Germany

henze@kbs.uni-hannover.de

Abstract. This paper shows how Semantic Web technologies enable
the design and implementation of advanced, personalized information
systems. We demonstrate by means of an example application how per-
sonalized content syndication can be realized in the Semantic Web. Our
approach consists of two main parts: The web data extraction part, pro-
viding the information system with real-time, dynamic data, and the
personalization part, which deduces - with the aid of ontological domain
knowledge - personalized views on the data. The prototype of the system
has been realized using the Personal Reader Framework for designing,
implementing, and maintaining Web content Readers1.

eywords: semantic web, personalization, reasoning on the semantic
web, web data extraction.

1 Motivation

The realization of the Semantic Web idea to be “an extension of the current
web in which information is given a well-defined meaning, better enabling com-
puters and people to work in cooperation” [5] has in only a few years pushed
researchers and computer specialists to explore machine-readable semantics, ap-
propriate markup and description languages, and sharable knowledge represen-
tation techniques. While these before mentioned techniques exist (at the writing
time of this paper) as W3C recommendations, is the design of the so-called up-
per layers of the Semantic Web tower[4], e.g. the rule and reasoning layer, or the
layers of proof and trust, still to explore.

1 This research has been partially supported by REWERSE - Reasoning on the Web
(rewerse.net), Network of Excellence, 6th European Framework Program.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 515–530, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

K

516 R. Baumgartner, N. Henze, and M. Herzog

In this paper, we investigate how advanced information systems for the Se-
mantic Web can be realized. We claim that a huge class of Semantic Web-enabled
information systems should be able to extract relevant information from the web,
and to process and combine pieces of distributed information in such a way that
the content selection and presentation fits to the current and individual needs
of the user. From this viewpoint, such systems need to focus especially on the
information extraction process, and the personalized content syndication process.
The actual authoring process of information, and the information management
processes, are important aspects, too, if we consider portal-like applications.
However, there is a sustainable need of systems which can detect and process
already existing Web information. To demonstrate our ideas for personalized
content syndication, we consider the following scenario:

Peter is working as a researcher at a university. He publishes his research
findings in journals and conferences, and also puts his publication online
onto his institute’s homepage. Peter is also enrolled in a research project.
From time to time, he is requested to notify the project coordination of-
fice about his new publications.
The project coordination office maintains a member page where infor-
mation about the members, their involvement in the project, research
experience, research publications, etc. is maintained.

When we analyze the scenario, we see that

1. data about the publications is duplicated - it is stored at the university where
Peter is working, but also on the Web pages of the project,

2. information about the project (people, research goals, achievements, etc.) is
available online, but not related to the publications (unless somebody relates
this information by hand).

The questions at hand from the scenario are:

– Can we organize this process in a way that Peter needs to publish his pub-
lications only once, e.g. at his institute’s Web page? Thus that we avoid
duplication of information, together with all negative side-effects like main-
tenance and update problems?

– Can we make use of the available contextual information on the project?
– Can we extract (relevant) information from Web pages?
– Can we combine the data in an intelligent way in order to provide a user a

personally optimized access to the information? From the scenario, we may
conclude that information about the role of researchers in the project like
“Bob is participating mainly in working group X, and working group X
is about topics Y and Z. strongly cooperating with working groups Y and
Z” might be available. If we succeed in making this information available to
machines to reason about, we can derive new information like: “This research
paper of Bob is related to working group X, other papers of working group
X on similar research questions are A,B, and C, etc.”

The Personal Publication Reader 517

This paper answers the above stated questions and demonstrates their realization
within the Personal Reader framework[8, 9]. We have implemented a Personal
Reader instance, the so-called Personal Publication Reader (PPR) which makes
use of web data extraction techniques, reasoning about ontological knowledge
and metadata description of informations, and provides a personal semantic view
on publication data. The Personal Publication Reader has been designed and
developed in the context of the Network of Excellence “REWERSE - Reasoning
on the Web” and syndicates and personalizes information about the project
structure, people and objectives of the REWERSE project, etc., and information
about research papers in the context of the project.

The paper is organized as follows: In Section 2 we briefly outline our idea of
establishing personalization services for the Semantic Web, and describe the ar-
chitecture of the Personal Reader framework. The following Section 3 discusses
approaches for Web Data extraction, and introduces the Lixto Suite. Section
4 then describes the realization of the Personal Publication Reader (PPR) in
detail: We describe what kind of data is available via the Web (Section 4.1), and
how we extract (Section 4.2), and transform it (Section 4.3) for the PPR. The
domain ontology of the PPR, describing the REWERSE project, its members
and research objectives, is topic of Section 4.4. Section 4.5 shows how vari-
ous personalization rules derive new facts as well as personalized views on the
data on top of extracted data, ontological knowledge, and user profile informa-
tion. Concluding remarks and an outlook on ongoing and future work end this
paper.

2 Personal Web Content Readers

Flexible information systems which need to be capable of adjusting to different
application domains require a different architecture: not a monolithic approach,
but several, independent components, each one serving a specific purpose. The
recent Web service-technology focuses on such-like requirements: A Web service
encapsulates a specific functionality, and communicates with other services or
software components via interface components (e.g. [20, 15]).

We consider each (personalized) information provision task as the result of
a particular service (which itself might be composed of several services, too).
The aim of this approach is to construct a Plug & Play - like environment, in
which the user can select and combine the kinds of information delivery services
he or she prefers. With the Personal Reader Framework, we have developed an
environment for designing, implementing and maintaining personal Web con-
tent Readers [8, 9]. These personal Web content Readers allow a user to browse
information (the Reader part), and to access personal recommendations and
contextual information on the currently regarded Web resource (the Personal
part). The next section outlines briefly the architecture of the Personal Reader
framework.

518 R. Baumgartner, N. Henze, and M. Herzog

2.1 The Personal Reader Framework: Designing and Maintaining
Personal Web Content Readers

The architecture of the Personal Reader framework is a rigorous approach for
applying Semantic Web technologies. A modular framework of Web services
– for constructing the user interface, for mediating between user requests and
currently available personalization services, for user modeling, and for offering
personalization functionality – forms the basis of each Personal Reader Instance
(see Figure 1).

Fig. 1. Architecture of the Personal Reader framework, showing the different compo-

nents of the Personal Reader: visualization, personalization, and the Personal Reader

backbone (consisting of the connector service which organizes the communication and

matching between the various visualization and personalization services)

The aim of the Personal Reader framework is to realize Web content Read-
ers which give the user the possibility to select services, which provide different
or extended functionality, e.g. different visualization or personalization services,
and combine them into a personal Web content Reader instance. The frame-
work features a distributed open architecture designed to be easily extensible.
It utilizes standards such as XML[21], RDF[17], etc., and technologies like Java
Server Pages (JSP)[11] and XML-based-RPC[22]. The communications between
all components / services is syntactically based on RDF descriptions. This pro-
vides the required flexibility for combining various personalization and visual-
ization services in one application, and thus supports the realization of our Plug
& Play idea for personalization functionality on the Semantic Web.

2.2 Related Work on Personalized Information Systems

To the best of our knowledge, we are not aware of personalized information sys-
tems on the Semantic Web which realize the personalization-as-service idea in a

The Personal Publication Reader 519

similar way. Personalized information systems require a sophisticated model of
the actual application domain, thus, traditionally, these systems do not provide
(and do not aim for) extensible architectures and systems. However, in [10], we
have conducted a study on the re-usability aspects of personalization function-
ality, with special focus on the area of adaptive hypermedia systems. This study
led to the conclusion that in fact even highly system-dependent personalization
functionality like those from adaptive hypermedia research, can be encapsulated
and prepared for re-use, an important precondition for the successful realization
of personalization services is given.

3 Web Data Extraction and Integration

3.1 Objectives and Approaches

The unstructured Web of today contains millions of documents which are not
query-able as a database and heavily mix layout and structure. Moreover, they
are not annotated at all. There is a huge gap between Web information and the
qualified, structured data as usually required in corporate information systems or
as envisioned by the Semantic Web. However, until the vision of a Semantic Web
is realized, and also, towards a faster achievement of this goal, it is absolutely
necessary to (semi-)automatically extract relevant data from HTML document
and automatically translate this data into a structured format, e.g., XML. Once
transformed, data can be used by applications, stored into databases or populate
ontologies.

A program that automatically extracts data and transforms it into another
format or markups the content with semantic information is usually referred to as
wrapper. Wrappers bridge the gap between unstructured information on the Web
and structured databases. A number of classification taxonomies for wrapper
development languages and environments have been introduced in various survey
papers [6, 12, 13]. In general, it is distinguished between high-level programming
languages, machine learning approaches and supervised approaches. Due to the
lack of space we refer to the mentioned survey papers for an overview of available
methods and tools.

3.2 Lixto Visual Wrapper

Lixto Visual Wrapper [2] is a methodology and tool for visual and interactive
wrapper generation developed at the University of Technology in Vienna to-
gether with the Lixto Software GmbH. It allows wrapper designers to create
so-called “XML companions” to HTML pages in a supervised way. As internal
language, Lixto relies on Elog. Elog is a datalog-like language especially designed
for wrapper generation. The Elog language operates on Web objects, that are
HTML elements, lists of HTML elements, and strings. Elog rules can be speci-
fied fully visually without knowledge of the Elog language. Web objects can be
identified based on internal, contextual, and range conditions and are extracted
as so-called “pattern instances”.

520 R. Baumgartner, N. Henze, and M. Herzog

In [7], the expressive power of a kernel fragment of Elog has been studied, and
it has been shown that this fragment captures monadic second order logic, hence
is very expressive while at the same time easy to use due to visual specification.

Besides expressiveness of a wrapping language, robustness is one of the most
important criteria. Information on frequently changing Web pages needs to be
correctly discovered, even if e.g. a banner is introduced. Visual Wrapper offers
robust mechanisms of data extraction based on the two paradigms of tree and
string extraction. Moreover, it is possible to navigate to further documents dur-
ing the wrapping process. Validation alerts can be imposed that give warnings
in case user-defined criteria are no longer satisfied on a page.

The usage of Elog is completely invisible to the average wrapper designer
and all operations are carried out by visual means. This is comprised of two
steps: First, the identification phase, where relevant fragments of Web pages
are extracted (see Figure 2). Such extraction rules are semi-automatically and
visually specified by a wrapper designer in an iterative approach. This step is
succeeded by the structuring phase, where the extracted data is mapped to some
destination format, e.g. enriching it with XML tags to subsequently populate an
ontology with instance data.

3.3 Lixto Transformation Server

Heterogeneous environments such as integration and mediation systems require a
conceptual information flow model. The usual setting for the creation of services
based on Web wrappers is that information is obtained from multiple wrapped
sources and has to be integrated; often source sites have to be monitored for
changes, and changed information has to be automatically extracted and pro-
cessed. Thus, push-based information systems architectures in which wrappers
are connected to pipelines of post-processors and integration engines which pro-
cess streams of data are a natural scenario, which is supported by the Lixto
Transformation Server [3]. The overall task of information processing is com-
posed into stages that can be used as building blocks for assembling an informa-
tion processing pipeline. The stages are to

– acquire the required content from the source locations; this component re-
sembles the Lixto Visual Wrapper plus Deep Web Navigation and Form
iteration;

– integrate and transform content from a number of input channels and tasks
such as finding differences,

– interact with external processes, and
– format and deliver results in various formats and channels and connectivity

to other systems.

The actual data flow within the Transformation Server is realized by hand-
ing over XML documents. Each stage within the Transformation Server accepts
XML documents (except for the wrapper component, which accepts HTML),
performs its specific task (most components support visual generation of map-
pings), and produces an XML document as result. This result is put to the

The Personal Publication Reader 521

successor components. Boundary components have the ability to activate them-
selves according to a user-specified strategy and trigger the information pro-
cessing on behalf of the user. From an architectural point of view, the Lixto
Transformation Server may be conceived as a container-like environment of vi-
sually configured information agents. The pipe flow can model very complex
unidirectional information flows (see Figure 3). Information services may be
controlled and customized from outside of the server environment by various
types of communication media such as Web services. The Transformation Server
includes a user management that allows application designers to subscribe and
parameterize components of other application designers.

4 The Personal Publication Reader

To realize the Personal Publication Reader (PPR) within the Personal Reader
framework (see Section 2), we extract the publication information from the var-
ious Web sites of the partners in the REWERSE project: All Web pages con-
taining information about publications of the REWERSE network (see Section
4.1) are periodically crawled and new information is automatically detected, ex-
tracted and indexed in the repository of semantic descriptions of the REWERSE
network (see Sections 4.2, 3.3, 4.3). Information on the project REWERSE, on
people involved in the project, their research interests, and on the project orga-
nization, is modeled in an ontology for REWERSE (see Section 4.4). Extracted
information and ontological knowledge are used to derive a syndicated view on
each publication: who has authored it, which research groups are related to this
kind of research, which publications are published by the research group, which
publications are on the similar research, etc. Information about the current user
of the system (such as specific interests of the user, or his membership to the
project) is used to individualize the view on the data (see Section 4.5).

4.1 Publication Data on the Web

In this scenario we are in particular interested to give a personalized view on
publications of the members of the REWERSE network of excellence. There-
fore, the ontology of the Personal Publication Reader has to be populated with
instance data from publication sources. In most of the cases, the organizations
offer access to their publications through a Web interface. However, each Web
presentation is totally different, some use e.g. automatic conversions of bibtex
or other files, some are manually maintained, some are based on databases.
Such a presentation is well suited for human consumption, but hardly usable for
automatic processing. Nevertheless, the Web is the most valuable information
resource in this scenario. In order to access and understand these heterogeneous
information sources one has to apply web extraction techniques as described in
Section 3.

In Table 1 selected REWERSE members are given and their publication
format is described. The table explains how the publications are structured, and

522 R. Baumgartner, N. Henze, and M. Herzog

Table 1. Publication Web pages of selected REWERSE members

Participant Structure and Presentation

Munich http://www.pms.informatik.uni-muenchen.de/publikationen

all publications on a single page sorted by years (latest on top), auto-
generated format, usage of HTML elements inside publications, even
for individual authors, links and bibtex available

Hannover http://www.kbs.uni-hannover.de/Stamm/Publikationen.html

all publications on a single page sorted by years (newest on top, pub-
lications numbered by years), publications consistent (some formatted
differently), data very complete, usage of HTML elements inside pub-
lications, links available

Heraklion http://www.ics.forth.gr/publications.jsp

publications on multiple pages structured by years; additional structur-
ing with next links, sites and publications consistent, data very com-
plete, usage of HTML elements inside publications, links and abstracts
available

Linköpping http://www.ida.liu.se/ext/dpr/access2/

publications on multiple pages structured by years, sites and publica-
tions not consistent, usage of HTML elements inside publications, links
on selected authors, publications numbered

how the format of a single publication looks like. Moreover, it describes whether
at least some parts of a single publication are rendered via HTML elements
(such as italics for the title). For most member sites it holds that even if HTML
elements are used usually authors are merely separated by commas.

Furthermore, the table indicates whether additional information to author,
title, and year are available and how complete the information is (if e.g. year or
conference is missing). The least common denotator for all member pages are
the availability of author names, title name and publication year, in some cases
additionally abstracts and links are available.

4.2 Gathering Web Data for the Personal Publication Reader

In the following, we describe a step-by-step construction of this example from
the viewpoint of an application designer who creates this application.

A human being tends to assign semantic meaning to parts of a Web page; a
designer does not think of table row as of a set with text values, but rather as a
publication entry. Therefore, the basic building block of a wrapper program is a
so-called pattern, a container for pieces of information with the same meaning.
Patterns are structured in a hierarchical fashion. In the lower half of the Visual
Wrapper’s UI (see Figure 2) an active example Web page is displayed for mark-
ing example instances: For each type of Web page, an own wrapper has to be
created; in the following the wrapper creation for the publications of Munich is
illustrated.

The Personal Publication Reader 523

Fig. 2. Lixto Visual Wrapper: Wrapping Publication Pages

In this case, the designer identifies one of the list items (each resembling a
publication) as a pattern PublicationLine. Once a pattern is created, the designer
continues with visually defining a filter, a crucial part of the pattern which
defines how to extract relevant information from its parent pattern instances.
Internally, filters are represented in Elog, but the language is entirely hidden
from the wrapper designer.

Defining a filter expects the designer to select an example publication with
two mouse clicks on the example Web page. A filter definition continues with
optional fine-tuning of properties for the generated generalization of the chosen
example. It is possible to visually debug the wrapper program, i.e., to test filters.
Typically, operators test filters after adding new components. Based on results,
the designer decides whether to extend (i.e., add a filter) or shrink (i.e., add
condition to an existing filter) the set of matched instances.

In this example, the system displays the complete list of matched publications
for the so-far created filter by highlighting parts of the Web page. In cases
where the system generalization does not detect all instances correctly, additional
conditions can be imposed.

Next a child pattern Title of the just defined pattern is created and then
a filter with the condition that the extracted element is in italics. The pattern
Author on the Munich page can be easily characterized, too, by the fact that a
special hyperlink is present and that the author names precede the title.

On other pages such as e.g. Linköpping the extraction of authors is more ad-
vanced. Some authors are inside hyperlinks, others merely separated by commas.
Moreover, on other sources authors are sometimes incorrectly splitted, names
abbreviated and different separators used. Therefore, we developed an author
concept based on all detected variations.

524 R. Baumgartner, N. Henze, and M. Herzog

On the Munich page the year can be extracted from several places (see Fig-
ure 2). One possibility is from the internal number. The first line of the list item
is extracted, and in a subsequent step the four digit number is taken out. On
some other sources the year has to be extracted from the headline, and in a
subsequent step mapped to each entry.

In a similar fashion the remaining patterns are defined and the wrapper is
stored. The XML Companion of the publication Web page that can be regularly
generated by applying the wrapper is comprised of entries like the one given
below:

<Publication>

<Title>Visual Exploration and Retrieval of XML Document

Collections with the Generic System X2</Title>

<Author>Holger Meuss</Author>

[...more authors...]

<Year>2004</Year>

<Link>http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf</Link>

</Publication>

As next step the XML data of the various sources has to be combined, cleaned,
syndicated into the ontology, and regularly scheduled. These operations are car-
ried out by configuring a visual information flow in the Lixto Transformation
Server as described in Section 4.3.

Fig. 3. Lixto Transformation Server: REWERSE Publication Data Flow

The Personal Publication Reader 525

4.3 Visual Data Aggregation for the Personal Publication Reader

In the Personal Publication Reader scenario, the application designer visually
composes the information flow from Web sources using the Lixto Transformation
Server to an RDF presentation that is handed over to the Personal Publication
Reader once a week.

First, the application designer creates Source components that contain Lixto
wrappers. In the source components (that are reflected as disks in Figure 3) a
schedule is defined how often which Web source is queried and Deep Web navi-
gation sequences containing logins and forms can be stored. Next, the wrapper
designer can combine the XML documents by adding integration components.

In the “XSL” components publication data is harmonized to fit into a com-
mon structure, an attribute “origin” is added containing the institution’s name,
and author names are harmonized by being mapped to a list of names known by
the system. The triangle in Figure 3 represents a data integration unit; here data
from the various institutions is put together and duplicate entries are removed.
IDs are assigned to each publication in the subsequent step. Finally, the XML
data structure is mapped to a defined RDF structure (this happens in the lower
arc symbol in Figure 3) and passed on to the Personal Publication Reader as
described below. A second deliverer component delivers the XML publication
data additionally. One sample RDF output entry is depicted below:

<rdf:Description

rdf:about="http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf">

<dc:publisher>University of Munich</dc:publisher>

<dc:title>Visual Exploration and Retrieval of XML Document

Collections with the Generic System X2</dc:title>

<dc:creator>

<rdf:Seq>

<rdf:li rdf:resource="#Holger Meuss"/>

<rdf:li rdf:resource="#Klaus U. Schulz"/>

<rdf:li rdf:resource="#Felix Weigel"/>

<rdf:li rdf:resource="#Simone Leonardi"/>

<rdf:li rdf:resource="#Francois Bry"/>

</rdf:Seq>

</dc:creator>

<dc:date>2004</dc:date>

<dc:identifier>http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf</dc:identifier>

</rdf:Description>

This application can be easily enhanced by connecting further Web sources.
For instance, abstracts from www.researchindex.com can be queried for each
publication lacking this information and joined to each entry, too. Moreover,
using text categorization tools one can rate and classify the contents of the
abstracts. Another possibility is to extract organization and people data from
the institution’s Web pages to inform the ontology to which class in the taxonomy
an author belongs (such as full professor).

526 R. Baumgartner, N. Henze, and M. Herzog

4.4 Modeling Domain Knowledge: The REWERSE Ontology

In addition to the extracted information on research papers that we obtain as
described in the previous section, we collect the data about the members of the
research project from the member’s corner of the REWERSE project. We have
constructed an ontology for describing researchers and their involvement in scien-
tific projects like REWERSE. This “REWERSE-Ontology” has been built using
the Protégé tool [16]. It extends the Semantic Web Research Community Ontol-
ogy (SWRC) [19]. An excerpt of the REWERSE-Ontology, written in OWL[14]:

<owl:ObjectProperty rdf:ID="hasStaffMember">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="#hasMember"/>

</rdfs:subPropertyOf>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="employedAt"/>

</owl:inverseOf>

<rdfs:label xml:lang="de">Angestellte</rdfs:label>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#University"/>

<owl:Class rdf:about="#Institute"/>

<owl:Class rdf:about="#Project"/>

<owl:Class rdf:about="#Department"/>

<owl:Class rdf:about="#Company"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#Person"/>

<rdfs:label xml:lang="en">Staffmember</rdfs:label>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#employedAt">

<rdfs:label xml:lang="en">employed at</rdfs:label>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Project"/>

<owl:Class rdf:about="#Institute"/>

<owl:Class rdf:about="#University"/>

<owl:Class rdf:about="#Department"/>

<owl:Class rdf:about="#Company"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<rdfs:subPropertyOf rdf:resource="#involvedIn"/>

<rdfs:label xml:lang="de">angestellt bei</rdfs:label>

<rdfs:domain rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#hasStaffMember"/>

</owl:ObjectProperty>

The Personal Publication Reader 527

To match the domain knowledge in the REWERSE Researcher Ontology
to the extracted publication data, we have a resource identification problem.
The author names may vary - for example, F. Bry, Frano̧is Bry, Prof. F.
Bry, etc. . A “helper” ontology, describing the full name of each author, and
a variety of commonly used designators of his or her name, is currently used to
solve this matching task.

4.5 Content Syndication and Personalized Views

As we have described in the previous sections, we have extracted relevant data
from various, non-uniform Web sites, and created an extension of the SWRC
ontology to model the needs of scientific projects such as REWERSE. We will
now see how personalization rules reason about this collected data in order to
syndicated and personalize the view on the data. A discussion on personalization
reasoning for the Semantic Web can be found in [1]. As an example, the following
rule (using the TRIPLE[18] syntax) determines all authors of a publication:

FORALL A, P all_authors(A, P) <-

EXISTS X, R (

P[’http://.../rewerse#’:author -> X]@’http:...#’:publications

AND X[R -> ’http://www.../author’:A]@’http:...#’:publications).

Further rules combine information on these authors from the researcher on-
tology with the author information. E.g. the following rule determines the em-
ployer of a project member, which might be a company, or a university, or, more
generally, some instance of a subclass of an organization:

FORALL A,I works_at(A, I) <-

EXISTS A_id,X (name(A_id,A)

AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher

AND ont:X[rdfs:subClassOf ->

ont:Organization]@rdfschema(’http:...#’:researcher)

AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

For a user with specific interests, for example “interest in personalized infor-
mation systems”, information on respective research groups in the project, on
persons working in this field, on their publications, etc., is syndicated. As an ex-
ample, the following rule derives all persons working in specific working groups
in the project. Personalization is realized by matching the results of this rule
with the individual request, e.g ont:WG[ont:name -> ’WG A3 - Personalized
Information Systems’).

FORALL WG,M working_group_members(WG,M) <-

ont:WG[rdf:type -> ont:WorkingGroup]@’http:..#’:researcher

AND ont:WG[ont:hasMember-> ont:M]@’http://...#’:researcher.

For the PPR, we instantiated a personalization service in the Personal Reader
framework which holds the above mentioned rules, and further personalization
rules of the PPR. An appropriate visualization service for creating the user
interface has been implemented. The screenshot in Figure 4 depicts the output
of the visualization service of the PPR.

528 R. Baumgartner, N. Henze, and M. Herzog

Fig. 4. Screenshot of the Personal Publication Reader, showing the syndicated view

on publications in REWERSE, the context in the project in which this research has

been done, together with the appropriate links, and additional information about the

authors of the publication like homepage, phone number, etc. The Personal Publication

Reader is available via the URL www.personal-reader.de

5 Conclusion

This paper describes an approach for realizing advanced personalized informa-
tion systems in the Semantic Web. We discuss our approach by means of an
example application, a Personal Publication Reader, which provides a person-
alized, syndicated view on distributed, non-uniform web data. The information
provision part for the Personal Publication Reader is solved by using the Lixto
approach. Lixto is an easily accessible technology based on a solid theoretical
framework [2, 3, 7] and a visual approach that allows application designers to de-
fine continuously running information agents fetching data from the Web. Many
functions that will be tangible only in the future “Semantic Web” can be cru-
cially supported by the usage Lixto. Content syndication and personalization is
achieved by reasoning about ontological knowledge and extracted Web data. The
Personal Publication Reader is realized using the Personal Reader Framework
for designing, implementing, and maintaining personalized Web Content Read-
ers. Until know, we have realized such Readers for e-Learning and for publication
browsing, ongoing work focuses on implementing additional personalization ser-
vices, and on on improving the service orchestration functionality in our frame-

The Personal Publication Reader 529

work. In future work we will continue our approach of realizing Personalization
Services for the Semantic Web.

References

1. G. Antoniou, M. Baldoni, C. Baroglio, R. Baumgartner, F. Bry, T. Eiter, N. Henze,
M. Herzog, W. May, V. Patti, S. Schaffert, R. Schindlauer, and H. Tompits. Rea-
soning methods for personalization on the semantic web. Annals of Mathematics,
Computing & Telefinformatics, 2(1):1–24, 2004.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Proc. of VLDB, 2001.

3. R. Baumgartner, M. Herzog, and G. Gottlob. Visual programming of web data
aggregation applications. In Proc. of IIWeb-03, 2003.

4. T. Berners-Lee. The semantic web - mit/lcs seminar, 2002. http://www.w3c.org/
2002/Talks/09-lcs-sweb-tbl/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

6. S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli. Web wrapper in-
duction: a brief survey. AI Communications Vol.17/2, 2004.

7. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for Web Information Extraction. In Proc. of PODS, 2002.

8. N. Henze and M. Herrlich. The Personal Reader: A Framework for Enabling
Personalization Services on the Semantic Web. In Proceedings of the Twelfth GI-
Workshop on Adaptation and User Modeling in Interactive Systems (ABIS 04),
Berlin, Germany, 2004.

9. N. Henze and M. Kriesell. Personalization functionality for the semantic web:
Architectural outline and first sample implementation. In Proccedings of the 1st
International Workshop on Engineering the Adaptive Web (EAW 2004), co-located
with AH 2004, Eindhoven, The Netherlands, 2004.

10. N. Henze and W. Nejdl. A logical characterization of adaptive educational hyper-
media. New Review of Hypermedia, 10(1), 2004.

11. SUN - java Server Pages, 2004. http://java.sun.com/products/jsp/.
12. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. In Net.ObjectDays,

2002.
13. A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief

survey of web data extraction tools. In Sigmod Record 31/2, 2002.
14. OWL, Web Ontology Language, W3C Recommendation, Feb. 2004. http://

www.w3.org/TR/owl-ref/.
15. OWL-S: Web Ontology Language for Services, W3C Submission, Nov. 2004.

http://www.org/Submission/2004/07/.
16. Protege Ontology Editor and Knowledge Acquisition System, 2004. http://

protege.stanford.edu/.
17. RDF Vocabulary Description Language 1.0: RDF S, 2004. http://www.w3.org/

TR/2004/REC-rdf-schema-20040210/.
18. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation

Language. In I. Horrocks and J. Hendler, editors, International Semantic Web
Conference (ISWC), pages 364–378, Sardinia, Italy, 2002. LNCS 2342.

530 R. Baumgartner, N. Henze, and M. Herzog

19. SWRC - Semantic Web Research Community Ontology, 2001. http://
ontobroker.semanticweb.org/ontos/swrc.html.

20. WSDL: Web Services Description Language, version 2.0, Aug. 2004.
http://www.w3.org/TR/2004/WD-wsdl20-20040803/.

21. XML: extensible Markup Language, 2003. http://www.w3.org/XML/.
22. XML-based RPC: Remote procedure calls based on xml, 2004. http://

java.sun.com/xml/jaxrpc/index.jsp.

Generating Tailored Textual
Summaries from Ontologies

Kalina Bontcheva�

Department of Computer Science,
University of Sheffield, Regent Court,
211 Portobello Street, Sheffield, UK

kalina@dcs.shef.ac.uk

Abstract. This paper presents the ONTOSUM system which uses Nat-
ural Language Generation (NLG) techniques to produce textual sum-
maries from Semantic Web ontologies. The main contribution of this
work is in showing how existing NLG tools can be adapted to Semantic
Web ontologies, in a way which minimises the customisation effort while
offering more diverse output than template-based ontology verbalisers.
A novel dimension of this work is the focus on tailoring the summary
formatting and length according to a device profile (e.g., mobile phone,
Web browser). Another innovative idea is the use of ontology mapping
for summary generation from different ontologies.

1 Introduction

The Semantic Web aims to add a machine tractable, re-purposeable1 layer to
compliment the existing web of natural language hypertext. In order to realise
this vision, the creation of semantic annotation, the linking of web pages to on-
tologies, and the creation, evolution and interrelation of ontologies must become
automatic or semi-automatic processes.

Natural Language Generation2 (NLG) takes structured data in a knowledge
base as input and produces natural language text, tailored to the presentational
context and the target reader [8]. NLG techniques use and build models of the
context and the user and use them to select appropriate presentation strategies.
For example, deliver short summaries to the user’s WAP phone or a longer
multimodal text if the user is using their desktop.

In the context of Semantic Web or knowledge management, NLG can be ap-
plied to provide automated documentation of ontologies and knowledge bases.

� This work is partially supported by the EU-funded SEKT (http://
sekt.semanticweb.org) and KnowledgeWeb (http://knowledgeweb.semanticweb.org)
projects.

1 Re-purposeable in this case meaning useful in a number of different applications, i.e.
application-independent.

2 For an in-depth introduction to NLG see [8].

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 531–545, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

532 K. Bontcheva

Unlike human-written texts, an automatic approach will constantly keep the
text up-to-date which is vitally important in the Semantic Web context where
knowledge is dynamic and is updated frequently. The NLG approach also al-
lows generation in multiple languages without the need for human or automatic
translation (see [1]). This is an important problem firstly because textual doc-
umentation is more readable than the corresponding formal notations and thus
helps users who are not knowledge engineers to understand and use ontologies.
Secondly, a number of applications have now started using ontologies to encode
and reason with internally, but this formal knowledge needs to be also expressed
in natural language in order to produce reports, letters, etc. In other words, NLG
can be used to present structured information in a user-friendly way.

There are several advantages to using NLG rather than using fixed templates
where the query results are filled in:

– NLG can use different sentence structures depending on the number of query
results, e.g., conjunction vs itemised list.

– depending on the user’s profile of their interests, NLG can include different
types of information – affiliations, email addresses, publication lists, indica-
tions on collaborations (derived from project information).

– given this variety of what information from the ontology can be included
and how it can be presented, depending on its type and amount, writing
templates will be unfeasible because there will be too many combinations to
be covered.

This variation comes from the fact that it is expected that each user of the
system will have a profile comprising of user supplied (or system derived) per-
sonal information (name, contact details, experience, projects worked on), plus
information derived semi-automatically from the user’s interaction with other
applications. Therefore, there will be a need to tailor the generated presenta-
tions according to user’s profile.

NLG systems that are specifically targeted towards Semantic Web ontologies
have started to emerge only recently. For example, there are some general pur-
pose ontology verbalisers for RDF and DAML+OIL [12] and OWL [11]. They
are based on templates and follow closely the ontology constructs, e.g., “This
is a description of John Smith identified by http://...His given name is John...”
[11]. The advantages of Wilcock’s approach [12, 11] is that it is fully automatic
and does not require a lexicon. A more recent system which generates reports
from RDF and DAML ontologies is MIAKT [3]. In contrast to Wilcock’s ap-
proach, MIAKT [3] requires some manual input (lexicons and domain schemas),
but on the other hand it generates more fluent reports, oriented towards end-
users, not ontology builders. It also uses reasoning and the property hierarchy
to avoid repetitions, enable more generic text schemas, and perform aggrega-
tion.

At the other end of the spectrum are sophisticated NLG systems such as
TAILOR [7], which offer tailored output based on user/patient models. Systems
like Wilcock’s [11] and MIAKT [3] tend to adopt simpler approaches, exploring
generalities in the domain ontology, because their goal is to lower the effort for

Generating Tailored Textual Summaries from Ontologies 533

customising the system to new domains. Sophisticated systems, while offering
more flexibility and expressiveness, are difficult to adapt by non-NLG experts.
For example, experience in MIAKT showed that knowledge management and
Semantic Web ontologies tend to evolve over time, so it is essential to have an
easy-to-maintain NLG approach.

This work extends the MIAKT approach towards making it less domain de-
pendent and easier to configure by non-NLG experts. A novel dimension is the
focus on tailoring the summary formatting and length according to a device
profile (e.g., mobile phone, Web browser). Another innovative idea is the use of
ontology mapping for summary generation from different ontologies.

The paper is structured as follows. Section 2 introduces the ONTOSUM sys-
tem and its architecture. Next Section 3 focuses on portability and customisation,
including an extended example, using an existing Semantic Web ontology. The
formatting and length tailoring algorithms are discussed in Section 4. The paper
concludes with a discussion of future work.

2 System Architecture

Since ONTOSUM is designed to be part of interactive applications, it needs
to (i) respond to user requests in real-time, i.e., avoid generation algorithms
with associated high computational cost; and (ii) be robust, i.e., always produce
a response. Consequently the system uses some efficient and well-established
applied NLG techniques such as text schemas and a phrasal lexicon (see [8]).

The ONTOSUM system is implemented as a set of components in the GATE
infrastructure [2], which provides an easy-to-use graphical development environ-
ment for NLP systems. In particular, we make use of its ontology support, which
provides language-independent access to ontologies. The advantage of this ap-
proach is that our generator can handle RDF, DAML+OIL, and OWL, without
any modifications, as it uses the format-independent GATE API, rather than
format-specific ones.

Similar to other applied NLG systems (see [8]), ONTOSUM is implemented
as pipeline system, i.e., the generation modules are executed sequentially.

Summary generation starts off by being given a set of statements (i.e., triples),
in the form of RDF/OWL. Since there is some repetition, these triples are first
pre-processed to remove already said facts. In addition to triples that have the
same property and arguments, the system also removes triples involving inverse
properties with the same arguments, as those of an already verbalised one. The
information about inverse properties is provided by the ontology (if supported
by the representation formalism).

Next is the summary structuring module, which orders the input statements
in a coherent summary. This is done using discourse patterns, which are applied
recursively and capitalise on the property hierarchy (see Section 3.2). This mod-
ule also performs semantic aggregation, i.e., it joins together statements with the
same property name and domain, so they are expressed within one sentence (see
Section 3.3).

534 K. Bontcheva

Finally, the generator transforms statements from the ontology into concep-
tual graphs [10] which are then verbalised by the HYLITE+ surface realiser [3].
The output is a textual summary (see Figure 3).

A similar approach was first implemented in a domain- and ontology-specific
way in the MIAKT system [3]. In ONTOSUM we extended it towards portability
and personalisation, i.e., lowering the cost of porting the generator from one
ontology to another and generating summaries of a given length and format,
dependent on the user target device. These issues are discussed in detail next.

3 Portability and User-Friendliness

Natural Language Generation (NLG) systems consist of two types of compo-
nents: domain-dependent and domain-independent ones. Typically the text struc-
turing component is domain-dependent, because every domain or application
tends to have different conventions for what constitutes a coherent text. An-
other example domain-dependent module is the lexicon which maps concepts
to their lexical items and grammatical information. Therefore, when an NLG
system is adapted to a new domain or application, these components need to be
modified.

In contrast, the surface realisation module, i.e., the module that generates the
sentences, given their formal syntactic structure, is typically domain-independent
and does not need to be adapted.

Therefore, this section will focus on the lexicalisation and summary struc-
turing modules in ONTOSUM, while the HYLITE+ surface realiser will not be
covered, as it is domain-independent (see [3]).

3.1 Lexicalisations of Concepts and Properties

The lexicalisations of concepts and properties in the ontology can be specified
by the ontology engineer, be taken to be the same as concept names themselves,
or added manually as part of the customisation process. For instance, the AKT
ontology3 provides label statements for some of its concepts and instances,
which are found and imported in the lexicon automatically:

<daml:DatatypeProperty rdf:ID="has-email-address">

<rdfs:label>has email address</rdfs:label>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</daml:DatatypeProperty>

The generator is parameterised at run time by specifying which properties are
to be used for building the lexicon, e.g., label, name (in the SWRC ontology4)
(see the propertyNames parameter in Figure 2).

3 http://www.aktors.org/ontology/
4 http://ontoware.org/projects/swrc/

Generating Tailored Textual Summaries from Ontologies 535

Fig. 1. ONTOSUM’s Architecture

Fig. 2. Example ONTOSUM Configuration Parameters

The lexicon is thus generated automatically from the ontology. By default
concepts are assumed to be lexicalised as nouns and properties as verbs. This
is a rather strong simplification, but given that it is true in many cases, it
does save the user the effort of having to specify these manually for the entire
ontology. Instead, the user only needs to verify that the automatically assigned
part of speech is correct and only change the exceptions. The lexical entries
are in the format <Concept-Name, Lexicalisation, GrammaticalFeatures>. The
grammatical features are a list of attribute-value pairs, e.g., pos – part-of-speech
(noun, verb, adjective, etc.), num – number (singular or plural), massnoun – value
is true if this is a mass noun, i.e., uncountable nouns like water. Some sample
entries are shown below:

536 K. Bontcheva

lex_entry_eng(’System-Administrator’,

’system administrator’,[fs(pos,noun),fs(num,sing)]).

lex_entry_eng(’Generalised-Means-Of-Transport’,

’Generalised-Means-Of-Transport’,[fs(pos,noun),fs(num,sing)]).

In this example, the lexicalisation of the first entry was taken from its label
property, but the second entry did not have such a property, so the concept name
was assigned as a lexicalisation. The user can then edit the name as they edit
the part of speech and other grammatical information.

3.2 Summary Structuring

Discourse/text schemas, as introduced by [5], are script-like structures which
represent discourse patterns. They can be applied recursively to generate co-
herent multisentential text satisfying a given, high-level communicative goal.5

Each schema consists of rhetorical predicates (e.g. comparison, constituency)
which encode communicative goals and structural relations in the text. Rhetor-
ical predicates are also associated with a semantic function which selects appro-
priate statements from the ontology. In this way, by selecting and instantiating
schemas, a text structuring component can produce coherent texts which satisfy
given communicative goals.

In more concrete terms, when given a set of statements about a given con-
cept/instance, discourse schemas are used to impose an order on them, such that
the resulting summary is coherent. For the purposes of our system, a coherent
summary is a summary where similar statements are grouped together.

The top-level schema for describing instances from the ontology is:

Describe-Instance ->

Describe-Attributes,

Describe-Part-Wholes,

Describe-Active-Actions,

Describe-Passive-Actions

where Describe-Attributes, etc. are recursive calls to other schemas. For exam-
ple, the Describe-Attributes schema collects recursively all properties that are
sub-properties of the attribute-property and involve the given instance:

Describe-Attributes ->

[attribute(Instance, Attribute)],

Describe-Attributes *

The schemas are independent of the concrete domain and rely only on a
core set of 4 basic properties – active-action, passive-action, attribute, and
part-whole. When a new ontology is connected to ONTOSUM, properties can
be defined as a sub-property of one of these 4 generic ones and then ONTO-
SUM will be able to verbalise them without any modifications to the discourse

5 For instance, (definition AIRCRAFT CARRIER) – generate text that defines aircraft
as a type of carrier – (example D, [5–p.44]).

Generating Tailored Textual Summaries from Ontologies 537

schemas. However, if more specialised treatment of some properties is required,
it is possible to enhance the schema library with new patterns, that apply only
to a specific property.

Since most ontologies do not have these 4 properties in their property hier-
archy (e.g., AKT ontology6, SWRC ontology7), we implemented a heuristic for
recognising attributive properties as a way of lowering the adaptation effort. If
this heuristic is enabled, the generator considers all properties with names start-
ing with has as attribute properties. All other properties need to be classified
manually according to one of these 4 basic types or a lexicalisation and a new
discourse schema need to be provided.

Once the information from the ontology is structured using the schemas,
aggregation is performed to join similar RDF triples. This process joins adjacent
triples that have the same first argument and have the same property name or
if they are sub-properties of attribute or part-whole properties. For example,
in the summary in Figure 3 we have 4 triples with the same first argument (the
researcher) and all properties are attribute properties. Therefore, they are joined
together as one proposition.

Without this aggregation step, there will be four separate sentences, resulting
in a less coherent text:

Kalina Bontcheva has a Dr appellation. Kalina Bontcheva has email
K.Bontcheva@dcs.shef.ac.uk. Kalina Bontcheva has web page
http://www.dcs.shef.ac.uk/ kalina/. Kalina Bontcheva has telephone number
+4401142221930.

3.3 Extended Example

This section provides a step-by-step example first of how to customise ON-
TOSUM for an ontology, and next – of the generation process itself. The two
processes can be repeated iteratively, i.e., the user can carry out some customisa-
tion, run ONTOSUM, analyse the problems, then go back to editing the lexicon
or the ontology, etc.

The first stage in connecting an ontology to ONTOSUM is to execute the
Ontology2KBLex component (see Figure 2) which generates the domain lexicon,
as discussed in Section 3.1. For example, this would create the following entry,
derived from the full-name property, which is one of the two property names
(see Figure 2) used in the automatic creation of the lexical entries:

lex_entry_eng(’K.Bontcheva.dcs.shef.ac.uk’, ’Kalina Bontcheva’,

[fs(pos,noun)]).

Once the lexicon has been completed, the next (optional) step is to in-
troduce in the ontology property hierarchy the four linguistically-motivated
properties discussed in Section 3.2. If the has heuristic has been enabled in

6 http://www.aktors.org/ontology/
7 http://ontoware.org/projects/swrc/

538 K. Bontcheva

Ontology2KBLex, then some of the properties are classified automatically as
attributive on the basis of their names.

In addition, if the propertiesToFilterOut parameter has been set, an ON-
TOSUM configuration file with this information is created automatically. This
parameter enables the user to specify properties which should be filtered out
from the textual summaries (see below for more detail).

At this stage, ONTOSUM is ready to be run on a given RDF/OWL descrip-
tion of an instance to produce its natural language summary. It is the respon-
sibility of the application which calls ONTOSUM to choose which instance is
to be described, i.e., to provide the RDF/OWL input. In the simplest case, this
could be the user browsing the ontology, clicking on an instance, and asking for
its textual summary.

For the sake of simplicity, throughout this example we will assume that there
are no length restrictions for the summary and it will be generated as plain text.
These issues are addressed in Section 4 next.

In this example we will use the AKT ontology and the RDF description of
the author, part of which appears below:

<rdf:Description rdf:about="http://...#K.Bontcheva.dcs.shef.ac.uk">

<ns0:family-name>Bontcheva</ns0:family-name>

<ns0:full-name>Kalina Bontcheva</ns0:full-name>

<ns0:given-name>Kalina</ns0:given-name>

<ns0:has-appellation>Dr</ns0:has-appellation>

<ns0:has-email-address>K.Bontcheva@dcs.shef.ac.uk</ns0:has-...>

...

<rdf:type rdf:resource="http://...#Researcher-In-Academia"/>

</rdf:Description>

As shown in Figure 1, the first phase is pre-processing. Let us assume that
there were no previous explanations, so no properties of this instance need to
be removed to avoid repetition. During pre-processing ONTOSUM also removes
properties given as values of the propertiesToFilterOut parameter of the On-
tology2KBLex module. The function of this parameter is enable the user to
exclude some information from the summary. For example, properties encoding
the provenance of this instance or providing lexical information (e.g., full-name)
may be excluded in this way.

In our example (see Figure 2), full-name, family-name, and given-name
are specified as properties to be filtered out. Consequently, at the end of the
pre-processing phase the input is transformed into:

<rdf:Description rdf:about="http://...#K.Bontcheva.dcs.shef.ac.uk">

<ns0:has-appellation>Dr</ns0:has-appellation>

<ns0:has-email-address>K.Bontcheva@dcs.shef.ac.uk</ns0:has-...>

...

<rdf:type rdf:resource="http://...#Researcher-In-Academia"/>

</rdf:Description>

Generating Tailored Textual Summaries from Ontologies 539

The next phase is summary structuring. Here we will consider two alter-
natives: one where the has heuristic has been enabled and one where it was
disabled.

When the heuristic is enabled, the system would know which properties of
the given instance are attribute properties, because their names start with has.
Therefore the user would not need to specify their lexicalisations and the existing
ONTOSUM schemas can be applied to order the triples. As we took a simple
example containing only attribute properties, their order will not change, i.e.,
will remain as it was in the original input. However, as they are the same type of
property, they will be aggregated into one semantic relation (ATTR) with several
values – one for each property value. If there were other property types, then
more semantic relations will be created and ordered according to the discourse
schemas described in Section 3.2.

ATTR(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

[Appellation: Dr,

string: K.Bontcheva@dcs.shef.ac.uk,

string: +4401142221930,

string: http://www.dcs.shef.ac.uk/~kalina/

]

The information that Dr is a value of type Appellation and email, telephone,
and URL are strings comes from the range restrictions in the property definitions
in the ontology, e.g., see the has-email-address definition in Section 3.1. Also,
the lexical entry for K.Bontcheva.dcs.shef.ac.uk is used instead of the unique
identifier from the ontology.

Given this input, the HYLITE+ generator will verbalise it as:

Kalina Bontcheva has a Dr appellation, K.Bontcheva@dcs.shef..,
http://www.dcs.shef.ac.uk/ kalina/, and +4401142221930.

The problem with this summary comes from the fact that the ontology
engineer decided to encode some of the information about researchers using
classes (e.g., Appellation), while the rest is encoded as datatype properties with
range string. Since this is not an ontology class, the generator only provides
its value (e.g., +4401142221930), but it lacks the information that this is a
telephone number, as this is only encoded implicitly in the property name –
has-telephone-number.

One solution is to modify the ontology by introducing the required classes
(Email, TelephoneNumber, etc.) and changing the property ranges from string to
these new classes. This would have the benefit of making explicit the semantics
of these properties and their values. However, it may not always be desirable to
modify the ontology.

The second solution is to provide the generator with manually written map-
ping rules which map the ranges of given properties to their lexical classes, e.g.,
lex-mapping(has-email, string, email). Then, using these mappings, ON-
TOSUM will produce instead:

540 K. Bontcheva

ATTR(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

[Appellation: Dr,

email: K.Bontcheva@dcs.shef.ac.uk,

telephone number: +4401142221930,

web page: http://www.dcs.shef.ac.uk/~kalina/

]

The disadvantage of the second approach is that it requires the user to create
manually these mappings for each problematic datatype property. However, the
number of such properties is often quite small and, in our experience, it is feasible
to do that in cases when the ontology itself cannot be modified.

The third approach is to not define these properties as attribute prop-
erties, i.e., to disable the has heuristic. In that case, ONTOSUM would use
instead the lexicalisations of the properties themselves, derived automatically
from their definitions (see Section 3.1). The disadvantage of this approach is
that the structuring module will not be able to aggregate the four statements,
as they will involve four different properties:

has-appellation(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

Appellation: Dr)

has-email-address(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

string: K.Bontcheva@dcs.shef.ac.uk)

has-telephone-number(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

string: +4401142221930)

has-web-address(Researcher-In-Academia: K.Bontcheva.dcs.shef.ac.uk,

string: http://www.dcs.shef.ac.uk/~kalina/)

Consequently, they will be verbalised as four separate sentences:

Kalina Bontcheva has a Dr appellation. Kalina Bontcheva has email
K.Bontcheva@dcs.shef.ac.uk. Kalina Bontcheva has web page
http://www.dcs.shef.ac.uk/ kalina/. Kalina Bontcheva has telephone number
+4401142221930.

In this case the information that K.Bontcheva@dcs.shef.ac.uk is an email
address comes from the lexicalisation of the property has-email-address (see
Section 3.1). The same is true for the other datatype properties.

However, while the problem with the implicit semantics of the datatype prop-
erties has been solved, the resulting summary is no longer so concise. One so-
lution, to be implemented in future work, would be to implement a syntactic
aggregation component which merges two sentences when they have the same
subject and verb.

4 Summary Tailoring

The types of tailoring/personalisation considered here are based on information
from the user’s device profile. Most specifically, we looked into generating sum-
maries within a given length restriction (e.g., 160 characters for mobile phones)

Generating Tailored Textual Summaries from Ontologies 541

and different formats – HTML for browsers and plain texts for emails and mobile
phones.

4.1 Choosing Formatting

Hypertext usability studies [6] have shown that formatting is very important
since it improves readability. Bullet lists and font size in particular facilitate
skimming by making important information more prominent. Therefore our work
focused on generating lists, while font size was made customisable by the user
by using the browser’s chosen size. The use of HTML lists in our system is
determined as a first step of the text generation process, on the basis of the fully
fledged text plan.

The semantic aggregation stage joins all propositions which share the same
focused entity and relation, so the resulting more complex propositions can have
three or more entities that need to be enumerated in the same sentence. For
example, the following complex proposition appears when generating summaries
of researchers’ contact details and activities (shown below as a conceptual graph):

[RESEARCHER :fs(focus, true)] <- (HAS) <- [EMAIL: xxx]
- (HAS) <- [WEB-PAGE: yyy]
- (HAS) <- [TELEPHONE: zzz].

The formatter module in HYLITE+ examines each proposition in the text plan
to determine if the focused entity participates in the same relation with three or
more different concepts. If no formatting is required, then a conjunction will be
generated (see example in the previous section).

In the case of HTML summary, such propositions are annotated for bullet
list formatting if the repeating relations are ISA, PART OF, or HAS). No HTML
markup is generated at this stage. Instead, the formatting choice is stored as
metadata on the proposition:

[RESEARCHER :fs(focus, true)] <- (HAS) <- [EMAIL: xxx]
- (HAS) <- [WEB-PAGE: yyy]
- (HAS) <- [TELEPHONE: zzz]. : fs(format,ul)

This information is used later by the grammar to generate the HTML tags
at the same time as the text itself (see Figure 3). This separation allows the
formatter (or a later module) to change this choice if it is not appropriate, e.g.,
to avoid overusing lists.

4.2 Controlling Summary Length

In general, there are two ways in which size constraints can be taken into account
during summary generation: (i) approximate the length during content planning;
or (ii) given a text plan, decide how to modify or verbalise it to the given size
limit via revision. As shown by [9], approximating the text length during content
planning is possible but suffers from two problems. The first one is that the result
is not exact, so when formatting is added later the text might not fit into the

542 K. Bontcheva

Fig. 3. The HTML summary generated from the RDF input from Section 3.3 with no

length restrictions

page any more. The second, more significant problem with this method is that
it is hard to maintain and update by non-experts.

Another alternative is to implement a text revision mechanism to analyse
the content and structure of the generated summary. However, despite the gains
in fluency and coherence, revision-based approaches tend to suffer from com-
putational problems due to the large number of alternatives that need to be
explored.

The requirements towards our system are computational efficiency and easy
modification by NLG experts. In addition, while the size limit is important, it is
not critical if it were exceeded slightly. Therefore, our system always puts in the
text structure all statements from the RDF/OWL input. Then given such a text
plan, the surface realiser generates the sentences one by one and when a new
sentence is added to the summary, summary length is incremented accordingly.
As soon as the value of this variable plus the length of the next sentence exceed
the limit, the surface realiser is not called further and the last sentence is not
included.

The desired summary length is supplied as an input parameter to ONTO-
SUM. For instance, when the length restriction is set to 160 characters (and
plain text), the generated summary is:

Kalina Bontcheva has a Dr appellation, a web page http://www.dcs.shef.ac.uk/k̃alina/,
a phone number +4401142221930 , and an email address K.Bontcheva@dcs.shef.ac.uk.

In contrast, when there are no length restrictions and the target formatting
is HTML, a longer summary is generated (see Figure 3).

Generating Tailored Textual Summaries from Ontologies 543

5 Using Ontology Mapping to Run ONTOSUM on
Different Ontologies

In the previous sections we discussed how ONTOSUM is adapted to a new
ontology. However, frequently there is more than one ontology describing the
same or similar domains [4]. For example, both the AKT and SWRC ontologies,
discussed above, have concepts describing researchers, their publications, contact
details, etc. Therefore, having customised ONTOSUM to the AKT ontology,
instead of adapting it to SWRC from scratch, one could use ontology mapping
rules [4] to “translate” the SWRC instance desctiptions into AKT ones and then
run ONTOSUM without modifications.

In order to experiment with this approach, we designed manually a set of
mapping rules for concepts and properties in the two ontologies. Some concept
mappings are: swrc:AssistantProfessor is mapped to akt:Lecturer-In-Academia,
swrc:AssociateProfessor – to akt:Senior-Lecturer-In-Academia, etc.

Respectively, some property mappings are: swrc:name – akt: full-name,
swrc:phone – akt:has-telephone -number, swrc:fax – akt:has-fax-number,
swrc:homepage – akt:has-web-address. Some SWRC properties, e.g., photo
do not have a corresponding property in the AKT ontology. Therefore, no map-
ping was provided for them and, consequently, they are not included in the
generated summaries.

Once defined, the mapping rules are applied to transform automatically in-
stance descriptions from the SWRC to the AKT ontology, prior to sending them
to ONTOSUM for generation. For example, the SWRC instance describing York
Sure8 looks as follows:

<rdf:Description rdf:about="http://www.aifb.uni-

karlsruhe.de/Personen/viewPersonOWL#instance?id_db=20">

<rdf:type>

<owl:Class rdf:about="&swrc;AssistantProfessor"/>

</rdf:type>

<swrc:name rdf:datatype="&xsd;string">York Sure</swrc:name>

<swrc:phone rdf:datatype="&xsd;string"> +49 (0) 721 608 6592

</swrc:phone>

<swrc:fax rdf:datatype="&xsd;string"> +49 (0) 721 608 6580

</swrc:fax>

<swrc:homepage rdf:datatype="&xsd;string">

http://www.aifb.uni-karlsruhe.de/WBS/ysu

</swrc:homepage>

</rdf:Description>

After applying the mapping rules and removing properties for which no map-
pings exist, the system obtains:

<rdf:Description rdf:about="http://www.aifb.uni-

8 The author is grateful to York Sure for supplying the SWRC instance data.

544 K. Bontcheva

karlsruhe.de/Personen/viewPersonOWL#instance?id_db=20">

<rdf:type>

<owl:Class rdf:about="http...#Lecturer-In-Academia"/>

</rdf:type>

<akt:full-name rdf:datatype="&xsd;string">York Sure</akt:full-name>

<akt:has-telephone-number rdf:datatype="..."> +49 (0) 721 608 6592

</akt:has-telephone-number>

<akt:has-fax-number rdf:datatype="..."> +49 (0) 721 608 6580

</akt:has-fax-number>

<akt:has-web-address rdf:datatype="&xsd;string">

http://www.aifb.uni-karlsruhe.de/WBS/ysu

</akt:has-web-address>

</rdf:Description>

When this input is passed to ONTOSUM, it generates the following textual
summary, without requiring any customisation:

York Sure has a telephone number +49 (0) 721 608 6592, a fax number +49 (0)
721 608 6580 , and a web page http://www.aifb.uni-karlsruhe.de/WBS/ysu.

The advantages of using ontology mapping to enable ONTOSUM to run on
different ontologies are: (i) no ONTOSUM customisation is required by the user;
(ii) ontology mapping can be performed by ontology engineers and there are even
some tools that automate parts of this process [4].

A future extension of this approach would be to allow for more sophisticated
mapping or even ontology merging, in order to enable ONTOSUM to verbalise
also properties and concepts which do not exist in the original ontology. In
this case, some limited customisation will be required, mainly concerned with
providing new lexical information.

6 Conclusion

This paper presented the ONTOSUM system which uses Natural Language Gen-
eration (NLG) techniques to produce textual summaries from Semantic Web on-
tologies. The main contribution of this work is in showing how existing NLG tools
can be adapted to take Semantic Web ontologies as their input, in a way which
minimises the customisation effort while being more flexible than template-based
ontology verbalisers (e.g., [11]).

A major factor in the quality of the generated summaries is the content of the
ontology itself. For instance, the use of string datatype properties with implicit
semantics (e.g., has-web-address) leads to the generation of summaries with
missing semantic information. Three approaches to overcome this problem were
presented here and users can choose the one that suits their application best.

We also showed how the generated summaries can be tailored for formatting
and length restrictions from a device profile (e.g., mobile phone, Web browser).
Another innovative idea is the use of ontology mapping to enable ONTOSUM
to generate text from different ontologies, without customisation effort.

Generating Tailored Textual Summaries from Ontologies 545

Future work will focus on the creation of a user-friendly tool for specify-
ing new summary structuring schemas, because at present this is done directly
in the generator’s internal structures, which are hard to understand for non-
specialists. Another strand of this work will aim at further investigation of the
use of ontology mapping and merging in NLG systems.

Another major area for future work is system evaluation. NLG systems are
normally evaluated with respect to their usefulness for a particular (set of)
task(s), which is established by measuring user performance on these tasks,
i.e., extrinsic evaluation. This is often also referred to as black-box evaluation,
because it does not focus on any specific module, but evaluates the system’s
performance as a whole. Therefore we plan to carry out empirical studies with
end-users as part of the SEKT digital library case study. The goal is to carry
out a qualitative evaluation of the textual summaries when they appear within
a complete semantically-enabled knowledge management system.

References

1. G. Aguado, A. Bañón, John A. Bateman, S. Bernardos, M. Fernández, A. Gómez-
Pérez, E. Nieto, A. Olalla, R. Plaza, and A. Sánchez. ONTOGENERATION:
Reusing domain and linguistic ontologies for Spanish text generation. In Workshop
on Applications of Ontologies and Problem Solving Methods, ECAI’98, 1998.

2. K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving GATE to
Meet New Challenges in Language Engineering. Natural Language Engineering,
10(3/4):349—373, 2004.

3. K. Bontcheva and Y. Wilks. Automatic Report Generation from Ontologies: the
MIAKT approach. In Nineth International Conference on Applications of Natural
Language to Information Systems (NLDB’2004), 2004.

4. J. de Bruijn, F. Martin-Recuerda, D. Manov, and M. Ehrig. State-of-the-art survey
on Ontology Merging and Aligning v1. Technical report, SEKT project deliverable
D4.2.1, 2004. http://sw.deri.org/ jos/sekt-d4.2.1-mediation-survey-final.pdf.

5. Kathleen R McKeown. Text Generation: Using Discourse Strategies and Focus
Constraints to Generate Natural Language Text. Cambridge University Press, 1985.

6. Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders
Publishing, 2000.

7. Cécile L. Paris. Tailoring object descriptions to the user’s level of expertise. Com-
putational Linguistics, 14 (3):64–78, September 1988. Special Issue on User Mod-
elling.

8. E. Reiter and R. Dale. Building Natural Language Generation Systems. Cambridge
University Press, Cambridge, 2000.

9. Ehud Reiter. Pipelines and size constraints. Computational Linguistics, 26:251–
259, 2000.

10. J.F. Sowa, editor. Principles of Semantic Networks: Explorations in the Represen-
tation of Knowledge. Morgan Kaufmann, California, San Mateo, CA, 1991.

11. G. Wilcock. Talking OWLs: Towards an Ontology Verbalizer. In Human Language
Technology for the Semantic Web and Web Services, ISWC’03, pages 109–112,
Sanibel Island, Florida, 2003.

12. G. Wilcock and K. Jokinen. Generating Responses and Explanations from
RDF/XML and DAML+OIL. In Knowledge and Reasoning in Practical Dialogue
Systems, IJCAI-2003, pages 58–63, Acapulco, 2003.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 546 – 562, 2005.
© Springer-Verlag Berlin Heidelberg 2005

AquaLog: An Ontology-Portable Question Answering
System for the Semantic Web

Vanessa Lopez, Michele Pasin, and Enrico Motta

Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes,
MK7 6AA, United Kingdom

{v.lopez, m.pasin, e.motta}@open.ac.uk

Abstract. As semantic markup becomes ubiquitous, it will become important to
be able to ask queries and obtain answers, using natural language (NL)
expressions, rather than the keyword-based retrieval mechanisms used by the
current search engines. AquaLog is a portable question-answering system
which takes queries expressed in natural language and an ontology as input and
returns answers drawn from the available semantic markup. We say that
AquaLog is portable, because the configuration time required to customize the
system for a particular ontology is negligible. AquaLog combines several
powerful techniques in a novel way to make sense of NL queries and to map
them to semantic markup. Moreover it also includes a learning component,
which ensures that the performance of the system improves over time, in
response to the particular community jargon used by the end users. In this
paper we describe the current version of the system, in particular discussing its
portability, its reasoning capabilities, and its learning mechanism.

1 Introduction

The semantic web vision [1] is one in which rich, ontology-based semantic markup is
widely available, thus opening the way to novel, sophisticated forms of question
answering. However, much work on ontology-driven QA tends to focus on the use of
ontologies to support query expansion in information retrieval [2], rather than on
exploiting the availability of semantic statements to provide precise answers to
complex queries. In particular, a knowledge based QA system can help with
answering questions requiring situation-specific knowledge, where multiple pieces of
information need to be inferred and combined at run time, rather than simply having a
pre-written paragraph of text retrieved [3].

AquaLog is a portable question-answering system which takes queries expressed in
natural language and an ontology as input and returns answers drawn from the
available ontology-compliant semantic markup. We say that AquaLog is portable,
because the configuration time required to customize the system for a particular
ontology is negligible. AquaLog combines several powerful techniques in a novel
way to make sense of NL queries and to map them to semantic markup. Specifically,
it makes use of the GATE NLP platform, string metrics algorithms [4], WordNet

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 547

[5, 6], and novel ontology-based similarity services for relations and classes to make
sense of user queries with respect to the target knowledge base. Also, AquaLog is
coupled with a portable and contextualized learning mechanism, which ensures that
the performance of the system improves over time, in response to the particular
community jargon used by the end users.

AquaLog is implemented in Java as a web application, using a client-server
architecture. Moreover, it provides an API, which allows future integration in other
platforms and independent use of its components. A key feature of AquaLog is the
use of a plug-in mechanism, which allows AquaLog to be configured for different KR
languages.

In this paper we describe the current version of the system, in particular discussing
its portability, its reasoning capabilities, and its learning mechanism.

The paper is organized as follows: section 2 describes the AquaLog architecture.
Section 3 describes the Linguistic Component embedded in AquaLog. Section 4
describes the novel Relation Similarity Service and Learning Mechanism. Section 5
describes a case of integration with Web Services. Section 6 describes the evaluation
scenario, followed by discussion and directions for future work. Section 7 describes
related work. Finally, section 8 re-iterates the main contributions of this work.

2 The Architecture

At a coarse-grained level of abstraction, the AquaLog architecture can be
characterized as a waterfall model, during which a NL query gets translated into a set
of intermediate, triple-based representations, query-triples, and then these are
translated into ontology-compatible triples, as shown in figure 1. There are two main
reasons for adopting a triple-based data model: first of all, it is possible to represent
most queries as triples. Secondly, RDF-based knowledge representation (KR)
formalisms for the semantic web, such as RDF itself [7] or OWL [8] also subscribe to
this binary relational model and express statements as <subject, predicate, object>.
Hence, it makes sense for a query system targeted at the semantic web to adopt this
data model. However AquaLog triples also have additional features in order to
facilitate the reasoning about the answer, such as the voice and tense of the relation
and the category. Depending on the category, the triple tells us how to deal with its
elements, what inference process is required and what kind of answer can be
expected. For instance, different queries may be represented by triples of the same
category, since, in natural language, there can be different ways of asking the same
question, i.e. “who works in akt1?” and “Show me all researchers involved in the akt
project”. The classification of the triple may be modified during its life cycle in
compliance with the target ontology it subscribes to.

In what follows we provide a quick overview of the two main processing modules
in AquaLog: the linguistic component and the relation similarity service. To illustrate

1 AKT is a EPSRC founded project in which the Open University is one of the partners.

http://www.aktors.org/akt/

548 V. Lopez, M. Pasin, and E. Motta

the system we will consider as test case the semantic web site currently under
construction at the knowledge media institute, see http://plainmoor.open.ac.uk:
8080/ksw, which relies on an ontology which characterizes the key aspects of
academic life. Specifically the ontology includes classes and relations to describe
projects, technologies, people, news, events, organizations, publications, and research
areas. The full specification of the ontology can be found at http://plainmoor.
open.ac.uk: 8080/ ksw/ontologies.html. The semantic markup is generated
automatically by mining text resources and representing the information held in
departmental databases, in terms of the ontology.

Fig. 1. The AquaLog Data Model

3 Linguistic Component

The Linguistic Component task is to map the NL input query to the Query-Triple.
AquaLog uses the GATE [9, 10] infrastructure and resources in order to parse the
question as part of the Linguistic Component. Communication between AquaLog and
GATE takes place through the standard GATE API.

After the execution of the GATE controller a set of syntactic annotations
associated with the input query are returned. These annotations include information
about sentences, tokens, nouns and verbs. When developing AquaLog we extended
the set of annotations returned by GATE, by identifying terms, relations, question
indicators (which/who/when, etc.) and patterns or types of questions. This is achieved
through the use of JAPE grammars, which allow us to recognize regular expressions
using previous annotations in documents. In other words, the JAPE grammars’ power
lie in their ability to regard the data stored in the GATE annotation graphs as simple
sequences, which can be matched deterministically by using regular expressions.

Thanks to this architecture it is possible to extend the NL capability of the system
in a relatively easy way (NL scalability). Currently, the Linguistic Component,
through the JAPE grammars, dynamically identifies 23 different linguistic categories
or intermediate representations, including: basic queries requiring an
affirmation/negation or a description as an answer; or the big set of queries
constituted by a wh-question, like “are there any phd students in dotkom?” where the

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 549

relation is implicit or unknown or “which is the job title of john?” where not
information about the type of the expected answer is provided; etc.

In some cases, e.g. When interpreting the query “list all the projects in KMi about
Semantic Web”, the linguistic components cannot resolve the ambiguity associated
with the NL query (it cannot identify the constituent to which each modifier has to be
attached) and therefore it simply passes the ambiguity on to the Relation Similarity
Service (RSS), which can use the ontology or ask the user to solve the ambiguity.

It is important to emphasize that, at this stage the analysis is completely domain
independent and is entirely based on the GATE analysis of the English language. The
Query-Triple is only a formal, simplified way of representing the NL-query, which
we use mainly because at this stage we do not have to worry about getting the
representation right in respect to the specific domain knowledge. The role of the
intermediate representation is simply to provide an easy way to manipulate input for
the RSS. This design choice ensures the easy portability of the system with respect to
both ontologies and natural languages.

4 Relation Similarity Service

This is the backbone of the question-answering system. The RSS component is
invoked after the NL query has been transformed into a term-relation form and
classified into the appropriate category. Essentially the RSS tries to make sense of the
input query by looking at the structure of the ontology and the information available
on the semantic web, as well as using string similarity matching, generic lexical
resources such as WordNet, and a domain-dependent lexicon obtained through the use
of a Learning Mechanism, as explained in a later section.

An important aspect of the RSS is that it is interactive. In other words, when the
RSS is not sure about how to disambiguate between two or more possible terms or
relations in order to interpret a query it will ask the user for disambiguation.

Relations and concepts’ names are identified and mapped within the ontology
through the RSS and the Class Similarity Service (CSS) respectively. The latter is a
sub-module of the RSS, which deals with mapping linguistic terms to classes. Proper
names, instead, are mapped into instances by means of the use of string distance
metrics algorithms [4]. If this mapping fails a partial solution is implemented for
affirmative/negative type of questions, where we make sense of questions in which
only one of two instances is recognized. For instance, in the query “is Enrico working
in ibm?”, “Enrico” could be mapped into “enrico-motta” in the KB but “ibm” is not
found. The answer will output an indirect negative answer, namely the place were
Enrico Motta is working.

In any non-trivial natural language system, it is important to deal with the various
sources of ambiguity and the possible ways of treating them. Some sentences are
syntactically (structurally) ambiguous and although general world knowledge does
not resolve this ambiguity, within a specific domain it may happen that only one of
the interpretations is possible. The key issue here is to determine some constraints
derived from the domain knowledge and to apply them in order to resolve ambiguity

550 V. Lopez, M. Pasin, and E. Motta

[11]. Whether the ambiguity cannot be resolved by domain knowledge the only
reasonable course of action is to get the user to choose between the alternative
readings.

Moreover, since every item on the onto-triple is an entry point in the knowledge
base or ontology, they are also clickable, giving the user the possibility to get more
information about it. The system scans the answers for words denoting instances
which are represented in the knowledge base, and then adds hyperlinks to these
words/phrases, indicating that the user can click on them. In fact, the RSS is designed
to provide justifications for every step of the user interaction. This is crucial to ensure
user acceptance of the system.

A typical situation the RSS has to cope with is one in which the structure of the
intermediate query does not match the way the information is represented in the
ontology.

For instance, the query “who is the secretary in KMi?” is parsed into
<person/organization, secretary, kmi>, following purely linguistic criteria. Then, the
first step for the RSS is to identify, in the target KB that “kmi” is actually a “research-
institute” called “knowledge-media-institute”. Once a successful match is found, the
problem becomes to find a relation which links the class research institute (or its
superclass organization) to class person (or any of its subclasses, such as academic,
student, etc...) or to class organization, by analyzing the taxonomy and relationships
in the target KB. However, in this particular case there is a successful matching in the
KB for secretary, even if secretary is not a relation but a subclass of person. The RSS
reasons about the mismatch, re-classifies the intermediate query and generates the
correct logical query, in compliance which the ontology, which is organized in terms
of <secretary, works-for, kmi>.

Whenever multiple relations are possible candidates for interpreting the query, if
the ontology does not provide ways to further discriminate between them, string
matching is used to determine the most likely candidate, using the relation name, the
learning mechanism, or eventual aliases provided by lexical resources such as
WordNet [12]. If no relations are found by using these methods, then the user is asked
to choose from the current list of candidates.

dynamic

Fig. 2. Scheme for mapping a Query-Triple into an Onto-Triple

Another case is the one in which a query map to a set of triples. In these cases the
ambiguity can also be related to the way the triples are linked. The RSS deals with

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 551

these cases both by analyzing the structure in the ontology and through the use of
heuristics.

For example, let’s consider the query “which news stories have been written by
researchers in akt?”. To handle this case the RSS uses a heuristic which suggest the
modifier “in akt” to be attached to the closest term that is represented by a class or
non-ground term in the ontology, in this case the class “researchers”.

An example of query disambiguation using a combination of linguistic and
semantic information from the ontology can be seen in Figure 3. Here a user has
asked “Who is the researcher in akt who is interested in the Semantic Web?”. This
query is syntactically ambiguous, because the second clause, “who is interested in the
Semantic Web”, could syntactically link to either the researcher or “akt”. Because
AquaLog knows that “who” can only be a person or an organization, it correctly links
it to “researcher”, rather than “akt”. However, there can be other situations where the
disambiguation cannot be resolved by using the use of linguistic and/or heuristics
and/or the context or semantics in the ontology, as for example in the query “which
academic works with peter who has an interest in the semantic web?”. In this case
since “academic” and “peter” are respectively a subclass and an instance of “person”,
the sentence is truly ambiguous. In fact, it can be understood either as a combination
of the resulting lists of the two questions “which academic works with peter” and
“which academic has an interest in the semantic web”, or as the relative query “which
academic works with peter where the peter we are looking for has an interest in the
semantic web”. In such cases, user’s feedback is always required.

Fig. 3. Example of context disambiguation by the RSS

552 V. Lopez, M. Pasin, and E. Motta

4.1 Class Similarity Service

The use of string metrics to map the generic term of the linguistic triple into a term in
the ontology may not be enough. Therefore, an additional combination of methods to
get synonyms (such as WordNet or our own lexicon) may be used in order to obtain
the possible candidates in the ontology. This lexicon can be generated manually or
can be built through a learning mechanism (a similar simplified approach to the
learning mechanism for relations explained in a later section). The only requirement
to execute this learning mechanism for classes is the availability of the ontology
mapping for one of the two terms of the triple. In this way, through the ontology
relationships that are valid for this term, we can identify a set of possible candidate
terms that can complete the triple. User’s feedback is required to select whether one
of the candidate terms is the one we are looking for, so that the system is able to learn
it for future occasions.

4.2 Learning Mechanism

Since the universe of discourse we are working with is determined by and limited to
the particular ontology used, there will normally be a number of discrepancies
between the natural language questions prompted by the user and the set of terms
recognized in the ontology. External resources like WordNet generally help in making
sense of unknown terms, giving a set of synonyms and semantically related words
which could be detected in the knowledge base. However, in quite a few cases, the
RSS fails in the production of a genuine onto-triple because of a user-specific
“jargon” found in the linguistic triple. In such a case, it is necessary to learn the new
terms employed by the user and disambiguate them in order to produce an adequate
mapping of the classes of the ontology. A very common and highly generic example,
in our departmental ontology, is the relation works-for, to which users normally relate
a number of different expressions: is working, works, collaborate, is involved. In all
these cases the user is asked to disambiguate the relation (choosing from the set of
ontology relations consistent with the two question's arguments) and decide if a new
mapping should be learned between his/her natural-language-universe and the
ontology-language-universe.

4.2.1 Architecture
The learning mechanism in AquaLog consists of two different methods, the learning
and the matching (fig. 4). The latter is called whenever the RSS cannot relate a
linguistic triple to the ontology or the knowledge base, while the former is always
called after the user manually disambiguates an unrecognized term (and this
substitution gives a positive result).

When a new item is learned, it is recorded in a database together with the relation it
refers to and a series of constraints that will determine its reuse within similar
contexts. As it will be explained below, the notion of context is crucial in order to
deliver a feasible matching of the recorded words. In the current version the context is
defined by the arguments of the question, the name of the ontology and the user
information. This set of characteristics constitutes a particular representation of the

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 553

context and defines a structured space of hypothesis analogue to that one of a version
space2 [13].

In future work, this context will be further extended to provide more granularity
and semantic expressiveness.

When a question with a similar context is prompted, if the RSS cannot
disambiguate the relation-name, the database is scanned for some matching results.
Subsequently, these results will be context-proved in order to check their consistency
with the stored version spaces. By tightening and loosening the constraints of the
version space, the learning mechanism is thus able to determine when to propose a
substitution and when not to. For example, the user-constraint is a feature that is often
bypassed, because we are inside a generic-user session, or because we might want to
have all the results of all the users from a single database query.

Before the matching method, we are always in a situation where the onto-triple is
incomplete, the relation is unknown or it is a concept. If the new word is found in the
database, the context is checked to see if it is consistent with what has been recorded
previously. If this gives a positive result we can have a valid onto-triple substitution
that triggers the inference engine (this latter basically just scans the knowledge base
for results); instead, if the matching fails, a user disambiguation is needed in order to
complete the onto-triple. In this case, before letting the inference engine work out the
results, the context is drawn from the particular question entered and it is learned
together with the relation and the other information in the version space.

Of course, the matching method's movement in the ontology is opposite to the
learning method's one. The latter, starting from the arguments, tries to go up until it
reaches the highest valid classes possible (GetContext method), while the former
takes the two arguments and checks if they are subclasses of what has been stored in
the database (CheckContext method). It is also important to notice that the Learning
Mechanism does not have a question classification on its own, but it relies on the RSS
classification.

4.2.2 Context Definition
As said above, the notion of context is fundamental in order to deliver a feasible
substitution service. In fact, two people could use the same jargon but meaning
different things.

 For example, let’s consider the question "Who collaborates with the knowledge
media institute?” and assume that the system is not able to solve the linguistic
ambiguity of the word "collaborate". The first time, some help from the user is
needed, who selects "has-affiliation-to-unit" from a list of possible relations in the
ontology. A mapping is therefore created between "collaborate” and "has-affiliation-
to-unit", so that the next time the learning mechanism is called it will be able to
recognize this specific user jargon.

Let's imagine now a professor, who asks the system the same question “Who
collaborates with the knowledge media institute?”, but is referring to other research

2 A version space is an inductive learning technique proposed by Mitchell in order to represent

the consistency of a set of hypothesis with a target concept.

554 V. Lopez, M. Pasin, and E. Motta

Fig. 4. The learning mechanism architecture

labs or academic units involved with the knowledge media institute. In fact, when
asked to choose from the list of possible ontology relations, he/she will possibly enter
“works-in-the-same-project”.

The problem, so, is to maintain the two mappings separated while still providing
some kind of generalization. This is achieved through the definition of the question's
context as determined by its coordinates in the ontology. In fact, since the referring
(and pluggable) ontology is our universe of discourse, the context must be found
within this universe. In particular, since we are dealing with triples, and in the triple
what we learn is usually the relation (that is, the middle item), the context is delimited
by the two arguments of the triple. In the ontology, these are classes or instances,
connected by the relation.

Therefore, in the question "Who collaborates with the knowledge media institute?"
the context of the mapping from " collaborates " to " has-affiliation-to-unit " is given
by the two arguments "person" (in the ontology “who” is always translated into
“person” or “organization”) and " knowledge media institute ". What is stored in the
database, for future reuse, is the new word (which is also the key field in order to
access the lexicon during the matching method), its mapping in the ontology, the two
context-arguments, the name of the ontology and the user details.

4.2.3 Context Generalization
Of course, this kind of recorded context is quite specific and does not let other
questions benefit from the same learned mapping. For example, if afterwards we

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 555

asked "Who collaborates with the Edinburgh department of informatics?" we would
not get an appropriate matching, even if the mapping made sense also in this case.

In order to generalize these results the strategy adopted is to record the most
generic classes in the ontology which corresponds to the two triple's arguments, and,
at the same time, can handle the same relation. Namely, in our case, we would store
the concepts "people" and "organization-unit". This is achieved through a
backtracking algorithm in the Learning Mechanism, that takes the relation, identifies
its type (the type already corresponds to the highest possible class of one argument,
by definition) and goes through all the connected superclasses of the other argument
while checking if they can handle that same relation, with the given type. Thus, since
only the highest classes of an ontology’s branch are kept, all the questions similar to
the ones we have seen will fall within the same set, because their arguments are
subclasses or instances of the same concepts.

If we go back to the first example presented (“Who collaborates with the
knowledge media institute?”), we can see that the difference in meaning between the
two interpretations <collaborate> →<has-affiliation-to-unit> and <collaborate>→
<works-in-the-same-project> is preserved, because the two mappings entail two
different contexts. Namely, in the first case, the context is given by <people> and
<organization-unit>, while in the second case the context will be <organization> and
<organization-unit>. Any other matching could not mistake the two, since what is
learned is abstract but still specific enough to rule out the different cases.

4.2.4 User Communities
Another important feature of the learning mechanism is its support for a community
of users. As said above, the user details are maintained within the version space and
can be considered when interpreting a query. AquaLog allows the user to enter his/her
personal information and thus to log in and start a session where all the actions
performed on the learned lexicon table are also strictly connected to his/her profile.
For example, during a specific user-session it is possible to delete some previous
recorded mappings, action that is normally not permitted to the generic user. This
latter has in fact the roughest access to the learned material: having no constraints on
the user field, the database query will return many more mappings and, quite likely,
also meanings that are not desired.

Current work on the learning mechanism is pretty much concentrated on the
augmentation of the user-profile's details. In fact, through a specific auxiliary
ontology that describes a series of user's profiles, it is possible to infer connections
between the type of mapping and the type of user. Namely, it will be possible to
correlate a particular jargon to a set of users. Moreover, through an intelligent
reasoning service, this correlation will become dynamic, being continually extended
or diminished consistently with the relations between user's choices and user's
information. For example, if the system detects that a large number of registered
users, all characterized by the fact of being PhD students, keep employing the same
jargon, it could extend the same mappings to all the other registered PhD students.

556 V. Lopez, M. Pasin, and E. Motta

5 Integration with Web Services

As we said before, every item in the onto-triple is an entry point to the knowledge
base or to the ontology. Therefore, items are clickable and the user can get more
information about them. Optionally, AquaLog can be configured to use Semantic
Web Services in order to get more information about a particular item (i.e. instance or
concept), when required. Here AquaLog uses the same mechanism used by Magpie
[14], accessing services published against the same ontology and KB.

6 Evaluation Scenario

AquaLog allows a user who has a question in mind and knows something about the
domain to query the semantic markup viewed as a knowledge base. The aim is to
provide a system which does not require users to learn specialized vocabularies, or to
know the structure of the knowledge base. However, as pointed in [11], although they
have to have some idea of the contents of the domain they may have some
misconceptions. Therefore some process of familiarization is normally required.

A full evaluation of AquaLog requires both an evaluation of its query answering
ability as well an evaluation of the overall user experience. Moreover, because one of
our key aims is to make AquaLog an interface for the semantic web, the portability
across ontologies will also have to be evaluated formally.

For the first version of AquaLog [15] we performed an initial study, whose aim
was to assess to what extent the AquaLog application built using AquaLog with the
AKT ontology and the KMi knowledge base satisfied user expectations about the
range of questions the system should be able to answer. A second aim of the
experiment was also to provide information about the nature of the possible
extensions needed to the ontology and the linguistic components – i.e., we not only
wanted to assess the current coverage of the system but also get some data about the
complexity of the possible changes required to generate the next version of the
system.

Thus, we asked 10 members of KMi, none of whom had been involved in the
AquaLog project, to generate questions for the system. Because one of the aims of the
experiment was to measure the linguistic coverage of the system with respect to user
needs, we did not give them much information about the linguistic ability of the
system.

We collected in total 76 different questions, 37 of which were handled correctly by
AquaLog, i.e., 48.68% of the total. This was a pretty good result, considering that no
linguistic restrictions were imposed on the questions.

As pointed in [27] it is very difficult to devise a sublanguage which is sufficiently
expressive, yet avoids ambiguity and seems reasonable natural. Furthermore the
limitations on linguistic coverage will not be obvious for the user and as a result,
independently of whether a particular set of queries is answered or not, the system
becomes unusable. Therefore, the conclusion of this previous study was that it was

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 557

absolutely crucial to improve the linguistic coverage of the system, which accounted
for 69% of the failures.

For the current version of AquaLog, the linguistic coverage (and therefore data
model and similarity services) has been extended considerably. At the same time
AquaLog can now also deal with the ambiguity problems, derived from the use of
more extensive grammars.

However, in this previous study we also identified failures due to a lack of services
defined over ontologies (accounted for 20.5% of the errors). For instance, one query
asked about “the top researchers”, which requires a mechanism for ranking
researchers in the lab - people could be ranked according to citation impact, formal
status in the department, etc. In the context of the semantic web, we believe that these
failures are less to do with shortcomings of the ontology than with the lack of
appropriate services, defined over the ontology.

No work has been done yet in relation to the service failures, which remains a
future line of work for future versions of the system.

In order to evaluate the portability of the system we interfaced AquaLog to the
Wine Ontology [16], an ontology used to illustrate the specification of the OWL W3C
recommendation. The experiment confirmed the thesis that AquaLog is ontology
independent, as we did not notice any hitch in the behaviour of this configuration
compared to the others built previously. However, this ontology highlighted some
AquaLog limitations, which must be addressed in the near future. For instance, a
direct question like “which wines are recommended with cakes” will fail because
there is not a direct relation between wines and desserts, as there is a mediating
concept called “mealcourse”. However, the knowledge is in the ontology, and the
question can be addressed if reformulated as “what wines are recommended for
dessert courses based on cakes?”.

The wine ontology does not have much information instantiated, and as a result no
answer can be found for most of the questions. However, it is a good test case for the
Linguistic and Similarity Components responsible for creating the ontology
compliance triple (from which an answer can be inferred in a relatively easy way).

7 Related Work

7.1 Close-Domain Natural Language nterfaces

This scenario is of course very similar to asking natural language queries to databases
(NLDB), which has long been an area of research in the artificial intelligence and
database communities [17, 18, 19, 20, 21], even if as [22, 23] say “in the past decade
has somewhat gone out of fashion”. The use of natural language to access relational
databases can be traced back from the late sixties and early seventies. In [22] a
detailed overview of the state of the art for these systems can be found. The main
difference between AquaLog and the latest generation of NLDB systems [24] is that
AquaLog uses an intermediate representation throughout the entire process, from the
representation of the user’s query (NL front end) to the representation of an ontology
compliant triple (through the use of similarity services), from which an answer can be

I

558 V. Lopez, M. Pasin, and E. Motta

directly inferred. It takes advantage of the structure of ontologies in a way that makes
the entire process highly portable.

PRECISE [25] maps questions to the corresponding SQL query, by identifying
classes of questions that are easy to understand in a well defined sense: the paper
defines a formal notion of semantically tractable questions. Questions are sets of
attribute/value pairs and a relation token corresponds to either an attribute token or a
value token. In PRECISE the problem of finding a mapping from the tokenization to
the database requires that all tokens must be distinct; questions with unknown words
are not semantically tractable and cannot be handled. In contrast with PRECISE,
AquaLog employs similarity services to interpret the user query by means of the
vocabulary in the ontology. As a consequence, AquaLog is able to reason about the
ontology structure in order to make sense of unknown relations or classes which
appear not to have any match in the KB or ontology.

7.2 Open-Domain QA Systems

Most current work on question answering is somewhat different in nature from
AquaLog as it concerns open-domain systems. However, there are linguistic problems
common in most kinds of natural language understanding systems.

Most text based QA applications typically involve two steps [26]: 1. Identifying
the semantic type of the entity sought by the question (a date, a person and so on); 2.
Determining additional constraints on the answer entity, i.e. identifying key words or
syntactic or semantic relations to be used in matching candidate answers. Various
systems have, therefore built hierarchies of question types based on the types of
answers sought [27, 28, 29, 30].

As pointed by R. Srihari et al. in [28]: (i) IE can provide solid support for QA; (ii)
low-level IE like Named Entity (NE) tagging is often a necessary component (an
analysis showed that over 80% out of 200 questions asked for an NE as a response);
(iii) a robust natural language shallow parser provides a structural basis for handling
questions; (iv) high-level domain independent IE, i.e., extraction of multiple
relationships between entities, is expected to bring about a breakthrough in QA.

AquaLog also subscribes to point (iii), however the main two differences with
open-domain systems are: (1) it is not necessary to build hierarchies or heuristics to
recognize name entities, as all the semantic information needed is in the ontology; (2)
AquaLog has already implemented mechanisms to extract and exploit the
relationships to understand a query. Nevertheless, the goal of the main similarity
service in AquaLog, the RSS, is to map the relationships in the linguistic triple into an
ontology-compliant-triple. As described in [28] NE is necessary but not complete in
answering questions because NE by nature only extracts isolated individual entities
from text, therefore methods like “the nearest NE to the queries key words” are used.

Both AquaLog and open-domain systems attempt to find synonyms plus their
morphological variants to the terms or key words. Also in both cases, at times, the
rules leave ambiguity unresolved and produce non-deterministic output for the focus
of the question or asking point (for instance, who can be related to a person or to an
organization).

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 559

As in open-domain systems, AquaLog also automatically classifies the question
beforehand. The main difference is that AquaLog classifies the question based on the
kind of triple needed, while most of the open-domain QA systems classify questions
according to their answer target [30] (person, location, date, ..). The triple contains
information not only about the answer expected or focus, which is what we call the
generic term of the triple, but also about the relationships between the generic term
and the other terms participating in the question (each relationship is represented in a
different triple). Different queries may belong to the same triple category. An efficient
system should therefore group together equivalent questions types.

The best result of the TREC9 [31] were obtained by the system FALCON
described in Harabaigiu et al. [32]. When the question concept indicating the answer
type is identified, it is mapped into an answer taxonomy. The top categories are
connected to several word classes from WordNet. The example shown in [32]
identifies the expected answer type of the question “what do penguins eat?” to be
food since it is the most widely used concept in the glosses of the subhierarchy of the
noun synset {eating, feeding}. Also, FALCON gives a cached answer if the similar
question has already been asked before; a similarity measure is calculated to see if the
given question is a reformulation of a previous one. A similar approach is adopted by
the learning mechanism in AquaLog, where the similarity is given by the context
stored in the triple.

7.3 Open-Domain QA Systems Using Triple Representation

The START [33] system goal is also to extract answers from text. AquaLog relational
data model (triple-based) is somehow similar to the approach adopted by START,
called “object-property-value”. The difference is that instead of properties we are
looking for relations between terms, or between a term and its value. Using an
example presented in [33]: “What languages are spoken in Guernsey?”, for START
the property is “languages” between the Object “Guernsey” and the value “French”;
for AquaLog it will be translated into a relation “are spoken” between a term
“language” and a location “Guernsey”.

The system described in Litkowski et al. [34], called DIMAP, extracts “semantic
relation triples” from a document. The semantic relation triple described consists of a
discourse entity, a semantic relation that characterizes the entity’s role in the sentence
and a governing word (generally the word in the sentence that the discourse entity
stood in relation to). The semantic relation and the governing words were not
identified for all discourse entities, but a record for each entity was still added to the
database sentence (on average 9.8 triples per sentence). The same analysis is
performed to create a set of records for each question (in average 3.3 triples per
sentence), in which one of the semantic relation triples contained an unbound variable
as a discourse entity, corresponding to the type of question. DIMAP-QA converts the
document into triples and AquaLog uses the ontology, which it may be seen as a
collection of triples. One of the current AquaLog limitations is that the number of

560 V. Lopez, M. Pasin, and E. Motta

triples is fixed for each query category, although, the AquaLog triples change during
its life cycle. However, the performance is still high as most of questions can be
translated into one or two triples.

7.4 Ontologies in Question Answering

We have already mentioned that many systems simply use an ontology as a
mechanism to support query expansion in information retrieval. In contrast with
these systems AquaLog is interested in providing answers derived from semantic
annotations to queries expressed in NL. In the paper by R. Basili [35] the possibility
of building an ontology-based question answering system in the context of the
semantic web is discussed. Open domain QA systems do not rely on specialized
conceptual knowledge as they use a mixture of statistical techniques and shallow
linguistic analysis. Ontological QA systems propose to attack the problem by means
of an internal unambiguous knowledge representation. Their approach is being
investigated in the context of EU project MOSES, with the explicit objective
of developing an ontology-based methodology to search, create, maintain and
adapt semantically structured Web contents according to the vision of semantic
web. The approach and scenario has many similarities with AquaLog. However,
AquaLog is implemented on-line and has a wider linguistic coverage. The query
classification is guided by the equivalent semantic representations or triples. The
mapping process is converting the elements of the triple into entry-points to the
ontology and KB.

8 Conclusion

In this paper we have described the AquaLog ontology-driven query answering
system in the context of the Semantic Web scenario. AquaLog presents an elegant
solution in which different strategies are combined together to make sense of an NL
query with respect to the universe of discourse covered by the ontology. Its ontology
portability capabilities make AquaLog a suitable NL front-end for the Semantic
Web.

Acknowledgements

This work was partially supported by the Advanced Knowledge Technologies
(AKT), which is sponsored by the UK Engineering and Physical Sciences Research
Council and by the Dot.Kom project under grant IST-2001-34038. The authors
would like to thank Yuangui Lei, Anne de Roeck, Davide Guidi, Dnyanesh
Rajpathak, Martin Dzbor, John Domingue, Victoria Uren and Kalina Bontcheva for
useful AquaLog related input and those members of the lab who took part in the
evaluation.

 AquaLog: An Ontology-Portable Question Answering System for the Semantic Web 561

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 284 (5)
(2001) 33-43

2. Mc Guinness, D.: Question Answering on the Semantic Web. IEEE Intelligent Systems,
19 (1) (2004) 82-85

3. Clark, P., Thompson, J., Porter., B.: A Knowledge-Based Approach to Question-
Answering. In the AAAI Fall Symposium on Question-Answering Systems, CA: AAAI.
(1999) 43-51

4. Cohen, W., W., Ravikumar, P., Fienberg, S., E.: A Comparison of String Distance Metrics
for Name-Matching Tasks. In IIWeb Workshop, (2003), http://www-2.cs.cmu.edu/
~wcohen/postscript/ijcai-ws-2003.pdf

5. Pasca, M., Harabagiu, S.: The Informative Role of WordNet in Open-Domain Question
Answering. In 2nd Meeting of the North American Chapter of the Association for
Computational Linguistics (Naacl) (2001)

6. JWNL (Java WordNet library) http://sourceforge.net/projects/jwordnet
7. RDF: http://www.w3.org/RDF/
8. Mc Guinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C

Recommendation 10 (2004) http://www.w3.org/TR/owl-features/
9. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL'02), Philadelphia (2002)

10. Tablan, V., Maynard, D., Bontcheva, K.: GATE - A Concise User Guide. University of
Sheffield, UK. http://gate.ac.uk/

11. Copestake, A., Jones, K., S.: Natural language interfaces to databases. Knowledge
Engineering Review, 5 (4) (1990) 225-249

12. Fellbaum, C. (Ed.), WordNet, An Electronic Lexical Database. Bradford Books, May,
(1998)

13. Mitchell, T. M.: Machine learning. McGraw-Hill, New York (1997)
14. Dzbor, M., Domingue, J., Motta, E.: Magpie – Towards a Semantic Web Browser. In

Proceedings of the 2nd International Semantic Web Conference (ISWC2003), Lecture
Notes in Computer Science, 2870/2003, Springer-Verlag (2003)

15. Lopez, V., Motta, E.: Ontology Driven Question Answering in AquaLog. In Proceedings
of the 9th International Conference on Applications of Natural Language to Information
Systems, Manchester, England (2004)

16. W3C, OWL Web Ontology Language Guide: http://www.w3.org/TR/2003/CR-owl-guide-
0030818/

17. Burger, J., Cardie, C., Chaudhri, V., et al.: Tasks and Program Structures to Roadmap
Research in Question & Answering (Q&A). NIST Technical Report, 2001
http://www.ai.mit.edu/people/jimmylin/%0Apapers/Burger00-Roadmap.pdf

18. Kaplan, J.: Designing a portable natural language database query system. ACM
Transactions on Database Systems, 9 (1) (1984) 1-19

19. Androutsopoulos, I., Ritchie, G.D., and Thanisch, P.: MASQUE/SQL - An Efficient and
Portable Natural Language Query Interface for Relational Databases. In Chung, P.W.
Lovegrove, G. and Ali, M. (Eds.), Proceedings of the 6th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
Edinburgh, U.K., Gordon and Breach Publishers (1993) 327-330

562 V. Lopez, M. Pasin, and E. Motta

20. Chu-Carroll, J., Ferrucci, D., Prager, J., Welty, C.: Hybridization in Question Answering
Systems. In Maybury, M. (Ed.), New Directions in Question Answering, AAAI Press,
(2003)

21. Jung, H., Geunbae Lee, G.: Multilingual Question Answering with High Portability on
Relational Databases. IEICE transactions on information and systems, E86-D (2) (2003)
306-315

22. Androutsopoulos, I., Ritchie, G.D., Thanisch P.: Natural Language Interfaces to Databases
- An Introduction. Natural Language Engineering, 1 (1) (1995) 29-81

23. Hunter, A.: Natural language database interfaces. Knowledge Management, (2000)
24. De Roeck, A., N., Fox, C., J., Lowden, B., G., T., Turner, R., Walls, B.: A Natural

Language System Based on Formal Semantics. In Proceedings of the International
Conference on Current Issues in Computational Linguistics, Pengang, Malaysia, (1991)

25. Popescu, A., M., Etzioni, O., Kautz, H., A.: Towards a theory of natural language
interfaces to databases. In Proceedings of the International Conference on Intelligent User
Interfaces, Miami, FL, USA, Jan. 12-15 (2003) 149-157

26. Hirschman, L., Gaizauskas, R.: Natural Language question answering: the view from here.
Natural Language Engineering, Special Issue on Question Answering, 7 (4) (2001) 275-
300

27. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R., Rus, V.:
LASSO: A Tool for Surfing the Answer Net, in Proceedings of the Text Retrieval
Conference (TREC-8), Nov. (1999)

28. Srihari, K., Li, W., Li, X.: Information Extraction Supported Question- Answering, In T.
Strzalkowski & S. Harabagiu (Eds.), in Advances in Open- Domain Question Answering.
Kluwer Academic Publishers (2004)

29. Hovy, E.H., Gerber, L., Hermjakob, U., Junk, M., Lin, C.-Y.: Question Answering in
Webclopedia. In Proceedings of the TREC-9 Conference. NIST, Gaithersburg, MD (2000)

30. Wu, M., Zheng, X., Duan, M., Liu, T., Strzalkowski, T.: Question Answering by Pattern
Matching, Web-Proofing, Semantic Form Proofing. NIST Special Publication: The Twelfth
Text REtrieval Conference (TREC) (2003) 500-255

31. De Boni, M.: TREC 9 QA track overview.
32. Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Girju,

R., Rus, V., Morarescu, P.: Falcon - Boosting Knowledge for Answer Engines. In
Proceedings of the 9th Text Retrieval Conference (Trec-9), Gaithersburg, Maryland, Nov.
(2000)

33. Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J., Marton, G., McFarland A. J.,
Temelkuran, B.: Omnibase: Uniform Access to Heterogeneous Data for Question
Answering. In Proceedings of the 7th International Workshop on Applications of Natural
Language to Information Systems (NLDB) (2002)

34. Litkowski, K. C. Syntactic Clues and Lexical Resources in Question-Answering. In
Voorhees, E. M. and Harman, D. K. (Eds) Information Technology: The Ninth Text
REtrieval Conferenence (TREC-9), NIST Special Publication 500-249. Gaithersburg, MD:
National Institute of Standards and Technology (2001) 157-66

35. Basili, R., Hansen, D., H., Paggio, P., Pazienza M., T., Zanzotto F., M. Ontological
resources and question answering Workshop on Pragmatics of Question Answering, held
jointly with NAACL 2004 Boston, Massachusetts, May (2004)

Lexically Evaluating Ontology Triples Generated
Automatically from Texts

Peter Spyns1 and Marie-Laure Reinberger2

1 Vrije Universiteit Brussel - STAR Lab,
Pleinlaan 2 Gebouw G-10, B-1050 Brussel - Belgium

tel.: +32-2-629.1237; fax: +32-2-629.3819
Peter.Spyns@vub.ac.be

2 University of Antwerp - CNTS,
Universiteitsplein 1, B-2610 Wilrijk - Belgium

tel.: +32-3- 820.2766; fax: +32-3-820.2762
marielaure.reinberger@ua.ac.be

Abstract. Our purpose is to present a method to lexically evaluate the results of
extracting in an unsupervised way material from text corpora to build ontologies.
We have worked on a legal corpus (EU VAT directive) consisting of 43K words.
The unsupervised text miner has produced a set of triples. These are to be used as
preprocessed material for the construction of ontologies from scratch. A quantita-
tive scoring method (coverage, accuracy, recall and precision metrics resulting in
a 38.68%, 52.1%, 9.84% and 75.81% scores respectively) has been defined and
applied.

1 Introduction and Background

A recent evolution in the areas of artificial intelligence, database semantics and infor-
mation systems is the advent of the Semantic Web [1]. It evokes ”futuristic” visions
of intelligent and autonomous software agents including mobile devices, health-care
monitoring, ubiquitous and wearable computing. E.g., a heartbeat monitoring device
integrated in a person’s shirt could trigger, in case of observed rhythm deviations,
a web agent that schedules an appointment with his/her doctor via the mobile net-
work.

An essential condition to the actual realisation and unlimited use of these smart de-
vices and programs is the possibility for interoperability, which is currently still lacking
to a large extent. Indeed, intelligent agents have to be able to exchange ”meaningful”
messages1 while continuing to function autonomously (interoperability with local au-
tonomy as opposed to integration with central control). Exchange of meaningful mes-
sages is only possible when the intelligent devices or agents share a common conceptual
system representing their ”world”2, as is the case for human communication. Meaning

1 We make abstraction here of the feasibility of physically connecting these devices and services
or agents to a (global) network.

2 See [28] for more details on the semantics of the Semantic Web.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 563–577, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

564 P. Spyns and M.-L. Reinberger

ambiguity should be, by preference, eliminated. Nowadays, a formal representation of
such (partial) intensional definition of a conceptualisation of an application domain is
called an ontology [10].

The development of ontology-driven applications is currently slowed down due to
the knowledge acquisition bottleneck. Indeed, the process of conceptualising an ap-
plication domain and its formalisation need substantial human resources and efforts.
Therefore, techniques applied in computational linguistics and information extraction
(in particular machine learning) are used to create or grow ontologies in a period as
limited as possible with a quality as high as possible. Sources can be of different kinds
including databases and their schemas, semi-structured data (XML, web pages), ontolo-
gies3 and texts. Activities in the latter area are grouped under the label of Knowledge
Discovery in Text (KDT), while the term ”Text Mining” is reserved for the actual pro-
cess of extracting the information [14].

In addition, there is hardly any method available to thoroughly evaluate the re-
sults of (unsupervised) text mining for ontologies. We have looked to the domain of
information science to suggest a quantitative method - see [21, 25] - that will be re-
fined in this paper. Previoulsy, criteria for ontology evaluation have been put forward
by Gruber [9–p.2] and taken over by Ushold and Grüninger [27]: clarity, coherence,
extendibility, minimal encoding bias and minimal ontological commitment. Gómez-
Pérez [8–p.179] has proposed consistency, completeness and conciseness. Neither set
of criteria are well suited to be applied in our case as the triples produced by the un-
supervised miner are merely ”terminological combinations” (i.e., no explicit meaning
for the terms and roles is provided, not to mention any formal definition of the intended
semantics). Recent proposals for evaluation methods have been discussed during the
ECAI2004 workshop on ontology learning and population [4]. The majority of them
proposes to evaluate an ontology mediating improvement measures of an existing ap-
plication or by a comparison with another ontology acting as a gold standard. Typical
of our approach will be that only the corpus (lemmatised but otherwise unmodified)
constitutes the reference point, and not an annotated corpus or some other ontology.
We aim at defining an evaluation method that is extremely easily applicable by lay-
men.

We have been mainly inspired by the criteria proposed by Guarino [11–p.7] and
the classical information extraction measures [29]. In the current ontology engineer-
ing field, it is problematic to objectively evaluate ontologies in an automated way
as in the overwhelming majority of cases (suitable) gold standards are lacking [12].
Below (section 3), we give our definition of these criteria that allow computation,
which are closer to the traditional information extraction definitions of recall and pre-
cision.

The remainder of this paper is organised as follows. The next two sections present
the material (section 2) and methods (section 3). The evaluation results are described in
section 4 and discussed subsequently (section 5). Related work (section 6) is presented.
Indications for future research are given in section 7, and some final remarks (section 8)
conclude this paper.

3 This is called ontology aligning and merging

Lexically Evaluating Ontology Triples Generated Automatically from Texts 565

2 Material

2.1 Unsupervised Text Mining

We have opted for extraction techniques based on unsupervised learning methods since
these do not require specific external domain knowledge such as thesauri and/or tagged
corpora. As a consequence, these techniques are expected to be more easily portable
to new domains. In order to extract this information automatically from our corpus,
we used the memory-based shallow parser for English, which is being developed at
CNTS Antwerp and ILK Tilburg [3]4. This shallow parser takes plain text as input,
performs tokenisation, part of speech (POS) tagging, phrase boundary detection, and fi-
nally finds grammatical relations such as subject-verb and object-verb relations, which
are particularly useful for us. The software was developed to be efficient and robust
enough to allow shallow parsing of large amounts of text from various domains. We ex-
tract from the shallow parser output semantic relations that match predefined syntactic
patterns. Additional statistics using normalised frequencies and probabilities of occur-
rence are calculated to separate noise (i.e. false combinations generated by chance)
from genuine results. More details on the linguistic processing can be found in
[20, 21,22].

2.2 Corpus

The VAT corpus (a single long document) consists of 49,5K words. It constitutes the
sixth EU directive on VAT (77/388/EEC of 27 January 2001 - English Version) that
has to be adopted and transformed into local legislation by every Member State5. We
applied the memory based shallow parser to this corpus. After some format transforma-
tion, the text miner outputs 315 triples subject-verb-object, such as <person pay tax>,
and 500 triples noun phrase-preposition-noun phrase such as <accordance with arti-
cle> resulting in a total of 815 triples. In addition, the Wall Street Journal corpus (a
collection - 1290K words6 - of English newspaper articles) serves a ”neutral” corpus
representing the general language use - see below.

To compute the necessary frequencies and statistics about the corpora, specific Perl
scripts have been used. Further manipulation of the numbers is done by means of other
small scripts implemented in Tawk v.5 [32] in combination with some standard DOS or
Linux commands (mainly ”sort”).

2.3 DOGMA Ontology Engineering Framework

Before presenting the actual experiments, we shortly discuss the framework for which
the results of the experiments are meant to be used, i.e. the VUB STAR Lab DOGMA
(Developing Ontology-Guided Mediation for Agents) ontology engineering approach7.

4 See http://ilk.kub.nl for a demo version.
5 This directive serves as input for the ontology modelling and terminology construction activi-

ties in the EU FP5 IST FF Poirot project (IST-2001-38248).
6 The Linux wc -c command has been used to count the words of the VAT and WSJ corpora.
7 see http://www.starlab.vub.ac.be/research/dogma

566 P. Spyns and M.-L. Reinberger

The results of the unsupervised mining phase are represented as lexons. These are bi-
nary fact types indicating the entities as well as the roles assumed in a semantic relation-
ship [24]. Formally, a lexon is described as <(γ, λ): term1 role co-role term2>. For the
sake of brevity, the context (γ) and language (λ) identifiers will be omitted. Informally
we say that a lexon expresses that the term1 (or head term) may plausibly have term2

(or tail term) occur in an associating role (with co − role as its inverse) with it. The
basic insights of DOGMA originate from database theory and model semantics [17].
With some simplications, one can state that a lexon can be considered as a combination
of two RDF-triples.

2.4 Combining all the Above

As the triples resulting from the unsupervised mining consist of three elements8 (two
terms consisting of one or several words and one role represented by the verb or the
preposition9) extracted from the VAT corpus, it is possible to investigate to what extent
the vocabulary of triples (to be converted afterwards to DOGMA lexons) adequately
represents the notions of a particular application domain. Note that this technique in
principle could be applied not only to DOGMA lexons but also to RDFS and OWL Lite
ontologies.

3 Methods

3.1 Introduction

The starting point in this paper is that triples, representing the basic binary facts ex-
pressed in natural language about a domain, can be extracted from the available textual
sources using the unsupervised text miner described above. The basic research question
is whether or not suitable metrics can be defined to quantitatively evaluate the goodness
of fit between the vocabulary of the triples extracted and the intended domain model
”embodied” in the textual sources.

We have combined the criteria of Guarino [11] with the more classical information
extraction measures [29]. We stress that text mining does not deal with an actual con-
ceptualisation, but rather with its representation or lexicalisation in a text, meaning that
we cannot access directly the conceptualisation (meaning level) but have to stay on the
linguistic level [26]. However, as many ontology engineers seem to overlook this dis-
tinction, the evaluation method proposed here can be applied to existing ontologies as
well.

The four measures are:

– coverage: are the triples retrieved representing the domain ?
– accuracy: are the triples retrieved not too general but reflecting the specialised

terms of the domain ?

8 In fact, the words composing an element have been lemmatised, i.e. reduced to their base form.
E.g., working, works, worked → work. In this paper, the terms ’word’, ’term’, and ’lemma’
are used interchangeably.

9 Co-roles and context are not provided by the CNTS unsupervised miner.

Lexically Evaluating Ontology Triples Generated Automatically from Texts 567

– recall: have all the relevant triples been retrieved
– precision: are the triples retrieved relevant for the domain ?

In the following sections, we shall elaborate on a computable definition of these
criteria and on the ideas that form the basis of the metrics. The exact formulas will be
explained as well. The core of the method relies on decomposing the triples into their
constituting words and performing calculations on the individual words.

3.2 Coverage

A simplistic metric to determine the coverage would be to calculate the intersection
between the vocabulary of the triples and the entire corpus. As many words do not
represent domain concepts (e.g. adverbs, determiners, particles, ..., which are by defi-
nition not retained by the unsupervised text miner) the triples generated automatically
most probably will not attain a high domain coverage rate. In order to differentiate
more important words from less important ones, the frequency of a word can be taken
into account. Naively, one would expect that important domain words are mentioned
more often than others. Therefore, the words are grouped into frequency classes, i.e.
the absolute number of times a word appears in a corpus. E.g., in the VAT corpus, the
word ’the’ appears 3573 times while it is the only element in the frequency class 3573.
Conversely, ’by-product’ and ’chargeability’ each occur only once, but there are 1521
different words in the frequency class 1. For each frequency class the ratio of the vo-
cabulary intersection and the frequency class is calculated, and subsequently averaged
over the number of classes.

coverage(triples,text) =

∑n
i=1

#(words triples freq classi

⋂
words text freq classi)

#words text freq classi
∗ 100

n

The coverage of a text by the vocabulary of triples automatically mined will be
measured by counting for each frequency class the number of words, constituting the
triples, that are identical with words from that frequency class and comparing this num-
ber to the overall word count for the same class . The mean value of these proportions
constitutes the overall coverage percentage.

3.3 Precision and Recall

It is difficult to compute the precision, i.e. determining if the triples retrieved are correct,
whereby correct is to be interpreted as making sense for the application domain. These
decisions require the involvement of human evaluators, and/or an established gold stan-
dard. An earlier experiment on evaluating the precision of unsupervised text mining for
ontologies is reported in [20] using UMLS [13] as gold standard.

In the approach proposed here, we use a metric from quantitative linguistics [6] to
automatically build a gold standard. The standard consists of a set of words that charac-
terise an application domain text resulting from a quantitative comparison with another
text. Regarding technical texts, one can easily assume that the specialised vocabulary

568 P. Spyns and M.-L. Reinberger

constitutes the bulk of the characteristic vocabulary, especially if the other corpus with
which to compare is the Wall Street Journal (= collection of general newspaper articles),
as is the case here.

The following statistical formulas (used to calculate the difference between two
proportions) determine which words are typical of one text compared to another:

f̃ = (
fword text

N
) ∗ 100

with f being the absolute frequency of a word in a text and N being the total number
of words of that text.

z =
f̃1 − f̃2√

(f̃1∗(100−f̃1)
N1

) + (f̃2∗(100−f̃2)
N2

)

with z expressing a significance value for the deviation between the relative frequencies
f̃1 and f̃2. Depending on one’s preference for the threshold, values of z (expressed in
units of σ) below 1,96 (p < 5%) or 2,57 (p < 1%) are statistically not significant.

recall(triples,text) =

(
#(words of triples mined

⋂
statistically relevant words)

#statistically relevant words
) ∗ 100)

The ratio of the vocabulary common to the retrieved triples and statistically signif-
icant (threshold = 1,96) characteristic words and these characteristic words determines
the recall value.

precision(triples,text) =

(
#(words of triples mined

⋂
statistically relevant words)

#words of triples mined
) ∗ 100)

The ratio of the vocabulary common to the triples mined and statistically signif-
icant (threshold = 1,96) characteristic words and the vocabulary of the triples mined
determines the precision value.

As is done for the coverage, one could also compute the average over the frequency
classes of their recall and precision values.

3.4 Accuracy

The purpose of calculating the accuracy is to refine the coverage measure that is based
only on word frequency, by combining it with the precision measure. The source of
inspiration is Zipf’s law [31]. It states that the product of the frequency and the rank
order is approximately constant [29–p.2]. Or said in a simpler way, in each text there is
a small set of words that occur very often and a large set of words that rarely occur. Zipf
has discovered experimentally that the more frequently a word is used, the less meaning
it carries. Hence his observation that the higher frequency classes (i.e. containing the

Lexically Evaluating Ontology Triples Generated Automatically from Texts 569

few words that appear very often) contain mostly ”empty” words (also called function
or stop words).

A corollary from Zipf’s law is that domain or topic specific vocabulary is to be
looked for in the middle to lower frequency classes. Consequently, triples mined from a
corpus should preferably contain terms from these ”relevant” frequency classes. Luhn [15]
has defined intuitively a frequency class upper and lower bound between which the most
significant words are found in the middle of the area of the frequency classes between
these boundaries. He called this the ”resolving power of significant words”.

The metrics from quantitative corpus linguistics mentioned above are re-used to
objectively determine the range of relevant frequency classes. The frequency classes
that contain a high number of typical words will be considered as ”relevant” frequency
classes. Currently, we assume that a frequency class should contain at least 60% of
characteristic words in order to be a relevant class. Additionally, one could apply the
statistical significance threshold (not done for these experiments). Notions represented
by words of the relevant frequency classes should be maximally included in an ontology
for that particular application domain.

accuracy(triples,text) =

∑n
i=1

#(words triples rel freq classi

⋂
words text rel freq classi)

#words text rel freq classi
∗ 100

n

The accuracy of automatically mined triples to lexically represent the important
notions of a text will be measured by averaging the coverage percentage for the relevant
frequency classes. A frequency class is considered to be relevant if it contains more than
60% of typical vocabulary.

3.5 Experiments

In the experiment, various scripts have been used to calculate the absolute and relative
frequencies as well as the coverage, recall, precision and accuracy measures mentioned
above. The input texts have not been filtered or modified except for the lemmatisation.

88,44% of the lemmas (=types) falls into the first 110 FCs, which represents 10,98%
of the total word occurrences (=tokens). There are 66 FCs more above 110. The ten
highest are 752, 790, 1011, 1110, 1157, 1260, 1378, 2011, 2401 and 3573, all consisting
of one word (see 1).

We have also determined a baseline against which the results of our method will
be compared. The core of the baseline algorithm is a random number generator (built-
in TAWK function [32]) that is used to pick out a word from the lemmatised corpus
vocabulary (3210 unique base forms). An equal amount of lemmas is randomly selected
as there are lemmas in the triples list.

4 Results

It should be clear from the on-set that high scores will not be attained. Only terms
in a verb-object and a subject-object grammatical relation are selected by the shallow

570 P. Spyns and M.-L. Reinberger

parser, combined by clustering and submitted subsequently to several selection thresh-
olds , which already constitutes a substantial reduction of the number of lemmas that
constitute the triples.

4.1 Coverage

A coverage rate of 39.68% is obtained (the naive coverage rate being 8.62%). Figures 1
and 3 show that, especially for the first six frequency classes (FC) (i.e. lemmas appear-
ing once up to six times) the coverage rate is below 10%. In figure 1, for reasons of
graphical visibility, a ceiling for the number of lemmas (Y-axis) has been established
on 170. FC 1 contains 1521, FC 2 442 and FC 3 223 lemmas respectively. The high
dispersion of the coverage for FCs starting from class 40 is to be explained by the low
number of lemmas in these classes (rarely higher than 5). From class 82 onwards, a FC
consists of a single lemma (FC 93, 108, 120, 128, 131 and 169 being the exceptions
containing two and 100 three lemmas).

Fig. 1. absolute coverage of frequency classes

The unsupervised miner seemingly misses a lot of low frequency terms that are
considered as typical of the VAT corpus. Even a naive random selection mechanism
scores ”better” for the FC 1 till (and including) 4.

4.2 Recall and Precision

The precision ratio is of 58.78% while the recall is 9.84%. In absolute numbers, it
means that 211 lemmas have been selected as representing domain knowledge by both
the unsupervised miner and the statistical comparison formula. Figure 2 shows the dis-
tribution of the recall ratios per frequency class. The averaged recall is 48,74% and the
averaged precision is 58,27%.

Lexically Evaluating Ontology Triples Generated Automatically from Texts 571

Fig. 2. recall and precision per frequency class

4.3 Accuracy

There are 34 typical frequency classes (i.e. containing at least 60% of words that are
judged to be statistically typical). The classes are 1 - 5, 7, 13 -15, 18, 21, 22, 24 - 27,
29, 30, 34, 36 - 38, 45, 48, 51, 55, 57, 64 - 66, 68, 71, 79, 83, 85, 90, 99, 106, 111, 119,
121, 145, 169, 173, 181, 199, 219, 276, 277, 385, 597, 727, 1011, and 1378. It has to be
noted that, from class 60 onwards the FCs only contain a single word and it is judged
as typical (except for class 72: two words and both typical). The average coverage ratio
(= the accuracy) for these 34 typical frequency classes is 52,1%.

5 Discussion

5.1 The Material

The two corpora exhibit the expected behaviour as expressed by Zipf’s law. The cor-
responding FCs of the two corpora contribute more or less to the same extent to the
overall vocabulary. Therefore, it is rather disappointing that the text miner only attains
low coverage and recall scores on the one hand, and it is surprising on the other that the
lowest FCs are to be considered as relevant - see figure 3.

Table 1 illustrates the effect of applying the accuracy calculation. The first two data
rows show Zipf’s law in practice (the top frequency classes contain empty words), while
the other two data rows display the ten topmost typical frequency classes. Calculating
the accuracy measure apparently does not adequately filter out the empty words or non
relevant words.

A closer examination of the entire corpus revealed an important part of non-words
(numbers of all kinds, section indications, percentages, typos, ...) in both the VAT (655
items or 20,24% of the lemmas) and WSJ corpora (6236 items or 14,71%). This is

572 P. Spyns and M.-L. Reinberger

Fig. 3. relative coverage of frequency classes: by mining triples or lexons, by randomly picking
words versus selecting statistically typical words

Table 1. Ten topmost frequency classes and their members (before and after accuracy calculation)

”raw” data
FC 3573 2401 2011 1378 1260 1157 1110 1011 790 752

word the of ,) to in be (and .
”accurate” data

FC 1378 1011 727 597 385 277 276 219 199 181
word) (or shall - ; : / add refer

particularly annoying for the VAT corpus as almost all (551) of these non-words are
considered to be characteristic (on a total of 1965 characteristic words). As, naturally,
the text miner does not retain these non-words, the coverage and recall scores are bi-
ased in a negative way. These non-words also bias the accuracy score as they influence
the status of a FC (being typical or not). This explains to a large extent why even very
low FCs are considered as relevant FCs, which contradicts Zipf’s and Luhn’s findings.
Therefore, we plan to redo the experiment, but with an adequate definition of what a
”good” formally word consists of. A professional concordancy program (e.g., Word-
Smith) will be used to this aim in a next iteration of the experiments.

Luckily, the precision score is not affected by this problem - see figure 2. A score
of a bit less than 60% is not spectacularly good, but neither particularly bad. If we
look at it from a positive angle, it means that a knowledge engineer disposes, with a
sufficient degree of trust, of two thirds of the important domain words. It would be
interesting to investigate which kind of notions the words represent. We believe that
these words are representative for the ”middle out” ontology engineering approach,

Lexically Evaluating Ontology Triples Generated Automatically from Texts 573

and therefore it is most likely that human domain experts are able to rapidly fill in the
more general domain notions that are missing. More research, involving application
domains of various nature, is needed to investigate how to mine the very specialised,
and therefore, less often used notions. However, it is our intuition that the reduction of
the cognitive load for a knowledge engineer (studying some 815 lexons instead of an
entire text) is already substantial.

5.2 The Unsupervised Text Miner

The text miner clearly behaves in a non-random way: the distribution of the lemmas
randomly picked follows the overall corpus distribution - see figure 1. Because of the
high number of non-words in this experiment, it is almost certain that randomly picking
words will produce a lot of garbage.

What is evident from this evaluation experiment is that the CNTS unsupervised
text miner currently misses too many important notions, but that the results produced
are of an acceptable quality. It is unclear to the authors how they would have reached
this objective conclusion in a fast way without the support of the evaluation method
reported on.

Some mistakes made by the shallow parser have a strong influence on the quality
of the semantic extraction process. This happens if words unknown to the parser are
unproperly tagged, or if syntactic relations are missed or wrongly identified. The struc-
ture of the corpus also plays a role in that respect. The VAT corpus contains a lot of
enumerations that are difficult to analyse for the parser due to the distance between the
main verb and some complements. The fact that the shallow parser has not been trained
on legal material plays a role as well. It is the nature of unsupervised mining that no
tuning to a specific corpus is done. Therefore, the overall results are worse than with
supervised mining. There is a trade-off to be made between resource investment and
quality of the results.

Concerning the extraction of triples, the size of the corpus matters a lot as one com-
mon technique used to judge the appropriateness of a term relies on its frequency in the
corpus. The extraction process of the text miner discards some relevant terms because
they appear only once in the VAT corpus. A new experiment (without the non-words)
including human validation should determine if the statistical thresholds of the unsu-
pervised miner are to be relaxed.

5.3 The Evaluation Method

It is quite evident that the coverage measure is a too ”naive” measure to be useful,
except as an intermediary step to calculate the accuracy. Table 1 shows why. Recall
and precision are considered traditionally as complementary (and are often combined
in the F-measure). Accuracy could be an alternative to recall as it tries to somehow
combine Luhn’s theoretical findings on the resolving power of significant words with
using a gold standard. More practical work should be done in order to validate this
assumption.

Note that the evaluation method proposed does not give any indication on the cor-
rectness of a triples as a whole. It means that, if the words ”fish” and ”exception”

574 P. Spyns and M.-L. Reinberger

are typical of the application domain, the method cannot rate the triple <fish with
exception> as invalid. We did not yet examine these aspects.

As already mentioned, the method stays on the word level. It is to be expected that
grouping synonyms might improve the score, but it is unclear to what extent. Eventually
some way of abstraction (especially for the RDF predicate or lexon role) will have to
be done. Also these aspects require further investigations.

The important point of applying these metrics, how imperfect they currently might
be, is that the scores can be used to monitor changes (preferably improvements) in the
behaviour of the text miner (regression tests). As soon as the scores for a particular (and
commonly agreed) textual source have been scientifically validated, the source and the
scores together can become an evaluation standard in bench-marking tests involving
other text miners, or even to some extent any RDF-based ontology producing tool. A
logical next step would be that ontologies, automatically created by a text miner, are
documented with performance scores on their textual source material as well as with
scores for that particular text miner on the evaluation standard (commonly agreed text
and outcomes).

6 Related Work

Previous reports on our work contain additional details on the unsupervised miner [22],
its application to a bio-medical corpus [21], and a qualitative evaluation [25]. To the best
of our knowledge, so far only one other approach has been presented that addresses
the quantitative and automated evaluation of an ontology by referring to its source
corpus.

Brewster and colleagues have recently presented a probabilistic measure to evalu-
ate the best fit between a corpus and a set of ontologies as a maximised conditional
probability of finding the corpus given an ontology. The specific probabilistic formula
to compute the conditional probability of a concept label given a term occurrence takes
synonyms into account mediating a form of query expansion [2–p.166]. It seems that
some training needs to be done on basis of the annotated corpus, which is something
we explicitly want to avoid with our approach. Unfortunately, no concrete results or test
case are presented.

In addition, Velardi and colleagues have proposed to use the combination of ”do-
main relevance” and ”domain consensus” metrics to prune non domain terms from
a set of candidate terms [30]. They use a set of texts typical of the domain next to
other ones. Domain relevance is in fact the proportion of the relative frequency of a
term in the domain text compared to the maximum relative frequency of that term
over several non domain texts. Domain consensus is defined as the entropy of the
distribution of a term in all the texts of the corpus. In our approach, we have com-
puted the difference between two proportions, more specifically the z-values of the
relative difference between the frequency of a word in a technical text vs. a general
text (WSJ), which enables us to filter out words that are only seemingly typical of
the technical text. In [18], the authors also present a method to semantically inter-
prete novel complex terms with the help of WordNet and to organise them in a hi-
erarchy. An evaluation of these latter aspects is also provided. Remark that both of

Lexically Evaluating Ontology Triples Generated Automatically from Texts 575

the proposed methods clearly (and correctly) differentiate a term or word from a
concept.

Another statistical approach is elaborated by Gillam and Tariq [7] as part of a
method to extract technical complex terms. They as well try to compare a specific text
with a general text and characterise words by their weirdness (z-score for the ratio of
the two relative frequencies of a word). More research is to be done to determine the
exact difference with our approach.

Finally, although the main focus of the reports does not cover exactly the work
presented here, the methods for ontology evaluation presented in [5, 12] can provide
complementary information and inspiration. In particular, we could extend the notion
of ”relevant” as used above to an entire triple and define additional metrics, as has been
done by Sabou [23] for extracted significant pairs. In the same vein, one could consider
additionally the work of Maedche and Staab [16] who include the Levenshtein edit
distance in their approach to measure the similarity between two ontologies. However,
it is our conviction that the Levenshtein measure is too crude and naive to be of any use
for our purposes.

In short, our approach is a first step to evaluate quantitatively and objectively triples
generated by an unsupervised text miner. It does not aim directly at selecting relevant
compounds terms and providing their semantic compositional interpretation. Although
it would be interesting to see whether for our VAT corpus sensible interpretations could
be generated using the structural semantic interconnections algorithm of Velardi and
colleagues [18]. Also, their domain relevance measure, when applied to two texts, is
equivalent to the corpus linguistic statistical formulas presented in section 3.3. could be
an alternative metric to be taken into account for our evaluation purposes.

7 Future Work

There still remain some major points for improvement. An important issue is to ex-
tend the evaluation techniques presented above to multiple documents (i.e. by using the
inverse document frequency (TF/IDF) metric, chi-square or the domain relevance and
consensus metrics instead of simple word frequency for a single document). Although
the unsupervised text miner detects compounds, the evaluation component currently
takes only simple words into account. A compound detection module should thus be
added.

Concerning the text miner itself, alternative statistical measures could be consid-
ered or thresholds could be relaxed to capture more low frequencies words. Additional
syntactical patterns (e.g., subject - verb - prepositional object) should be retained. Ide-
ally, the choice for a specific pattern should be done automatically in function of the
structure and content of the corpus.

A next step would be to compare manually created ontologies with their source texts,
which necessitates the integration of semantic distance measures such as the WordNet
similarity functions [19] to operate on the meaning level instead of the linguistic level.
Brewster et al. add two levels of WordNet hypernyms [2–p.166] for that purpose. That
implies that (novel) compound terms should be assigned a semantic interpretation as is
done by Navigli and Velardi [18].

576 P. Spyns and M.-L. Reinberger

8 Conclusion

We have presented the results of a simple quantitative evaluation method for the out-
comes of an unsupervised mining algorithm applied to a financial corpus. Coverage,
accuracy, recall and precision measures have been defined and calculated accordingly
resulting in a 38.68%, 52.1%, 9.84% and 75.81% score respectively. These results (al-
though biased because of the presence of many non-words in the corpus) have permitted
us to identify a weak spot in the performance of the text miner, which will be improved
in the future. New experiments to further validate the method are scheduled. An outline
of a future research agenda has been given.

Acknowledgments. This research has been carried out during the OntoBasis project
(IWT GBOU 2001 #10069), sponsored by the IWT Vlaanderen (Institution for the Pro-
motion of Innovation by Science and Technology in Flanders). In additon, some parts
have served as a contribution to the joint research activity program [12] of the EU FP6
IST NeO KnowledgeWeb (IST-2004-507482).

References

1. T. Berners-Lee, Weaving the Web, Harper, 1999.
2. Christopher Brewster, Harith Alani, Srinandan Dasmahapatra, and Yorick Wilks. Data

Driven Ontology Evaluation. In, N. Shadbolt and K. O’Hara (eds.), Advanced Knowledge
Technologies: selected papers 2004, pp. 164 – 164, 2004 (reprint from LREC2004).

3. Sabine Buchholz, Jorn Veenstra, and Walter Daelemans, Cascaded grammatical relation
assignment, in Proceedings of EMNLP/VLC-99. PrintPartners Ipskamp, 1999.

4. Paul Buitelaar, Siegfried Handschuh, and Bernardo Magnini (eds.). Proc. of the ECAI04
Workshop on Ontology Learning and Population, 2004.

5. Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini (eds.). Ontology Learning from Text:
Methods, Applications and Evaluation, IOS Press, Amsterdam, 2005 (forthcoming).

6. Josse De Kock. Elementos para una estilı́stica computacional - tomo I. Editorial Coloquio,
Madrid, 1984.

7. Lee Gillam and Mariam Tariq. Ontology via Terminology? In F. Ibekwe-
San Juan and S. LainCruzel (eds.), Proceedings of the Workshop on Ter-
minology, Ontology and Knowledge Representation, 2004. http://www.univ-
lyon3.fr/partagedessavoirs/termino2004/programgb.htm

8. Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological Engi-
neering. Springer Verlag, 2003.

9. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 6 (2):199–221, 1993.

10. N. Guarino and P. Giaretta, ‘Ontologies and knowledge bases: Towards a terminological
clarification’, in Towards Very Large Knowledge Bases: Knowledge Building and Knowledge
Sharing, ed., N. Mars, pp. 25 – 32, IOS Press, Amsterdam, 1995.

11. Nicola Guarino. Towards a Formal Evaluation of ontological Quality. IEEE Intelligent
System, 19 (4):78–80, 2004.

12. Jens Hartmann, Peter Spyns, Diane Maynard, Roberta Cuel, Mari Carmen Suarez de
Figueroa and York Sure. Methods for Ontology Evaluation, KnowledgeWeb Deliverable
#D1.2.3, 2005.

Lexically Evaluating Ontology Triples Generated Automatically from Texts 577

13. B. Humphreys and D. Lindberg. The unified medical language system project: : a distributed
experiment in improving access to biomedical information. In K.C. Lun, (ed.), Proc. of the
7th World Congress on Medical Informatics (MEDINFO92), pp. 1496–1500, 1992.

14. H. Karanikas and B. Theodoulidis, ‘Knowledge discovery in text and text mining software’,
Technical report, UMIST - CRIM, Manchester, 2002.

15. H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of Research and
Development, 2 (2):159 – 195, 1958.

16. Alexander Maedche and Steffen Staab. Measuring Similarity between Ontologies. In,
Proceedings Of the European Conference on Knowledge Acquisition and Management
(EKAW02), pp. 251 – 263, LNAI 2473, Springer Verlag, 2002

17. Robert Meersman. Ontologies and databases: More than a fleeting resemblance. In A. d’Atri
and M. Missikoff (eds.), OES/SEO 2001 Rome Workshop. Luiss Publications, 2001.

18. Roberto Navigli and Paola Velardi. Learning Domain Ontologies from Document Ware-
houses and Dedicated Web Sites. Computational Linguistics, 30 (2):151–179, 2004.

19. T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet::similarity - measuring the related-
ness of concepts. In The Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04), 2004.

20. Marie-Laure Reinberger, Peter Spyns, Walter Daelemans, and Robert Meersman. Mining
for lexons: Applying unsupervised learning methods to create ontology bases. In Robert
Meersman, Zahir Tari, and Douglas Schmidt et al. (eds.), On the Move to Meaningful Internet
Systems 2003: CoopIS, DOA and ODBASE, LNCS 2888, pp. 803 – 819, 2003. Springer.

21. Marie-Laure Reinberger, Peter Spyns, A. Johannes Pretorius, and Walter Daelemans. Auto-
matic initiation of an ontology. In Robert Meersman, Zahir Tari et al. (eds.), On the Move to
Meaningful Internet Systems 2004: CooPIS, DOA and ODBASE (part I), LNCS 3290 , pp.
600 – 617 , 2004. Springer Verlag.

22. Marie-Laure Reinberger and Peter Spyns. Unsupervised Text Mining for the Learning of
DOGMA-inspired Ontologies. In P. Buitelaar, Ph. Cimiano, and B. Magnini, (eds.), Ontology
Learning from Text: Methods, Applications and Evaluation, IOS Press Amsterdam, 2005.

23. Marta Sabou. Extracting Ontologies from Software Documentation: a Semi-automatic
Method and its Evaluation. In P. Buitelaar, Ph. Cimiano, and B. Magnini, (eds.), Ontology
Learning from Text: Methods, Applications and Evaluation, IOS Press Amsterdam, 2005.

24. Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data modelling versus ontology engi-
neering. SIGMOD Record Special Issue, 31 (4):12–17, 2002.

25. Peter Spyns, A. Johannes Pretorius and Marie-Laure Reinberger. Evaluating DOGMA-
lexons generated automatically from a text corpus. In Cimiano P., Ciravegna F., Motta E.
and Uren V. (eds.), Proceedings of the EKAW2004 Workshop on Human Language Technol-
ogy and Knowledge Management, pp. 38 – 44, 2004.

26. Peter Spyns and Jan De Bo. Ontologies: a revamped cross-disciplinary buzzword or a truly
promising interdisciplinary research topic? Linguistica Antverpiensia, new series (3), 2004
(forthcoming).

27. M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
Sharing and Review, 11 (2), June 1996.

28. M. Ushold, ‘Where are the semantics in the semantic web?’, AI Magazine, 24 (3):25 – 36,
2003.

29. C. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.
30. Paola Velardi, Michele Missikoff, and Roberto Basili. Identification of relevant terms to

support the construction of Domain Ontologies. In Maybury M., Bernsen N., and Krauwer
S. (eds.)Proc. of the ACL-EACL Workshop on Human Language Technologies, 2001.

31. George K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley,
Cambridge MA, 1949.

32. Tawk Compiler v.5. Thompson Automation Software, Jefferson OR, US.

Pedro Ontology Services: A Framework for
Rapid Ontology Markup

Kevin Garwood1, Phillip Lord1, Helen Parkinson2,
Norman W. Paton1, and Carole Goble1

1 Department of Computer Science,
University of Manchester, Oxford Road,

Manchester M13 9PL, UK
2 European Bioinformatics Institute,

Cambridge M13 9PL, UK
kevin.garwood@cs.man.ac.uk

http://pedro.man.ac.uk

Abstract. Semantic Web technologies offer the possibility of increased
accuracy and completeness in search and retrieval operations. In recent
years, curators of data resources have begun favouring the use of ontolo-
gies over the use of free text entries. Generally this has been done by
marking up existing database records with “annotations” that contain
ontology term references. Although there are a number of tools available
for developing ontologies, there are few generic resources for enabling
this annotation process. This paper examines the requirements for such
an annotation tool, and describes the design and implementation of the
Pedro Ontology Service Framework, which seeks to fulfill these require-
ments.

1 Introduction

The development of many high-throughput technologies has industrialised the
production of laboratory data. This has led to increased opportunities for per-
forming biological in silico experiments. While some aspects of the data can be
characterised by formal data models, significant amounts of biological informa-
tion are represented as free text or semi-structured data. Experiments are often
annotated with free text that describes important aspects such as the experi-
mental techniques used. This annotation enables biologists both to make sense
of main data sources and to conduct useful searches.

Traditionally, many different formats and formalisms have been used for
database annotation. While it is not a formalism per se, free text has and contin-
ues to be the most common way of annotating databases. Although this has the
advantage of expressivity, it responds to only limited forms of computational
searching or comparison. The simplest solution to this difficulty is the use of
controlled vocabularies. This approach provides limited expressivity unless the
vocabularies are made very large, in which case they cease to be controlled.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 578–591, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pedro Ontology Services: A Framework for Rapid Ontology Markup 579

More recently, there has been great interest in the application of ontological
technologies, particularly since the advent of the Gene Ontology [2], which has
been widely adopted.

One of the difficulties of applying ontology technology in this way has been the
absence of appropriate tools for generating appropriate ontological annotations.
Most of the effort made by the Semantic Web community has focused either on
providing annotation in a single formalism, or on providing tools for generating
ontologies (e.g. [3, 4]). While these are important areas of development, there is
a need for tools which support a variety of data sources that in turn support
different annotation formalisms. In this paper, we describe these requirements
in more detail and the design and implementation of the Pedro tool, which seeks
to fulfill them.

2 The Case Studies

The myGrid project has developed a service-oriented architecture to enable bioin-
formaticians to: gather distributed data; use data and analysis tools presented
as services; compose and enact workflows; and to manage the generated [9] data.
There are now more than a thousand different services available for use, which
creates a substantial difficulty in terms of service selection. Therefore, myGrid
has sought to apply user-oriented semantic service selection to support users in
their decisions [7]. The project has required tool support for generating semantic
descriptions of the services it provides. An ontology of approximately 500 classes
was developed, initially using DAML+OIL and later OWL. It is deployed as an
asserted hierarchy represented as RDF(S) [6]. Currently, the myGrid ontology
and associated descriptions are being managed in a relatively informal manner;
there is no formal commitment to the maintenance the ontology as a standard.

The Microarray Gene Expression Data (MGED) Society
(http://www.mged.org) defines standards for the representation of micro-array
information, which describes levels of gene expression within some defined
sample. Often complex, these data describe the experimental procedures used
to gather the data; information about the source of the sample (e.g. the source
species, the anatomical location, cell type etc.) and the experimental context.
Consequently, MGED has defined the MGED ontology (MO) [10], which
comprises approximately 100 concepts using OWL. Hundreds of thousands of
records are expected to be annotated with terms from this ontology. The MO
has been crafted using a layered approach: while one layer of core information
remains static, other layers of the ontology are allowed to change as knowledge
evolves.

The case studies share many common themes that are directly relevant to
activities of the Semantic Web. In each case, there is an attempt to model many
different kinds of data within the same data set. They try to capture both
knowledge about biological systems and knowledge about the context of the ex-
periments. For the microarray case study, the context can include descriptions of
laboratory equipment and procedures. In myGrid, the context describes aspects

580 K. Garwood et al.

of the in silico experiment. Both projects have attempted to foster reuse of au-
tonomous data sets by carefully crafting model relationships that link the sets.
Most important, the projects share the common goal of enabling high fidelity
retrieval of data.

MGED has the additional aim of supporting data mining activities. It is
apparent that the quantity of micro-array data stored will greatly increase, which
will require that it be managed at different sites. The efficacy of queries applied
across multiple autonomous data sets will critically depend on technologies that
allow the structure and content of the experiment records to be clearly defined.

3 User Roles and Ontology Life Cycle

One of the key features of knowledge engineering in bioinformatics is the need for
community involvement in the development of schemas and ontologies. Probably
the best known and most widely used ontology is the Gene Ontology (GO), a
Directed Acyclic Graph (DAG) of terms describing the function, biological role
and sub-cellular localisation of gene products. This ontology now has approxi-
mately 17,000 terms and several million annotated instances. The key reason for
its success has not been the adoption of a particular formalism, but its social
engagement with its community of users [2]. In this setting, different users play
different roles, such as:

Schema Developer: Responsible for developing a data model to which data
must conform. The schema developers may be working in the context of a
Standards Committee, such as MGED, which seeks to ensure that the model
supports the requirements of a wide user community.

Knowledge Engineer: Responsible for the generation and curation of the on-
tologies that are used within the schema.

Data Provider: Responsible for the generation of data sets according to the
schema and using the ontologies.

Data Consumer: Responsible for making effective and systematic use of the
data sets generated.

Fig. 1. The knowledge enginnering life cycle

Pedro Ontology Services: A Framework for Rapid Ontology Markup 581

Although these roles are different, specific individuals within the community
may fulfil more than one. These different user communities are involved in a
development life cycle depicted in Figure 1. As well as producing data, the data
providers are critical in providing feedback to the standards committee regarding
ease of use and coverage of their standard. Similarly, the data consumers are
heavily involved in the knowledge engineers’ work. Most of them are highly
specialised and provide the knowledge required to model their sub-domain.

4 The Requirements

In this section, we define the key requirements for knowledge acquisition within
the specific case studies described in the last section.
Rapid Modelling: Bioinformatics is a large and complex domain; modelling

even a small part of it has proven to be extremely challenging. Moreover,
within this domain, a council of perfection is a council of despair: any do-
main model will be wrong in the initial stages and will need to be evolved
iteratively before it approaches correctness. Consequently, there is a strong
requirement for a tool that enables collection of data, and which is resilient
to change in the schema by which that data is organised.

Ontological Annotation: Not all of the data we wish to support are rep-
resented ontologically. Some kinds of information, such as probabilistic or
numeric data, cannot be well represented using ontologies. Other kinds of
information are represented using legacy formalisms. It is unlikely these prob-
lems will be fully addressed as the field of bioinformatics evolves. Therefore,
the requirement is not to generate instance data according to some ontology,
but to use terms from standard ontologies to annotate aspects of the data
within some schema.

Distributed and Autonomous Ontologies: Although a Standards Com-
mittee may control the overall schema, they do not necessarily control the
development of the different ontologies in use to populate the fields of the
schema. Any tool must be flexible enough to adapt to independent evolution
of the ontologies used.

Multiple Formalisms: As well as existing legacy data, multiple different for-
malisms for ontological data are required. In the simplest case, an ontology
may be represented as a controlled vocabulary. A more sophisticated form
could be a directed acyclic graph, which is the most common representation
within bioinformatics [2]. Other forms include the RDF(S) representation
used within projects such as myGrid [6] and full property based OWL rep-
resentations such as those used by the MGED ontology.

Multiple Ontology Views: Biologists tend to have strong aversions to filling
in forms1. This has effected the development of expressive ontologies that

1 Our experiences suggest the problem is somewhat wider: biologists dislike most meth-
ods of knowledge acquisition and that this dislike is shared by people other than
biologists!

582 K. Garwood et al.

describe anatomy. While large anatomy ontologies are available to the bioin-
formatics community, work has recently begun on small controlled vocabu-
laries aimed at reducing the complexity of form filling [1], while maintaining
the link back towards the more expressive ontologies. Therefore, it is clear
that as well as supporting multiple underlying ontology formalisms, we need
to support multiple different views of these ontologies (and sometimes of the
same ontology!) to support the needs of the different user bases within the
community.

5 The Architecture

This section describes the architecture of the Pedro software, and in particular
its ontology framework. The application supports data capture using screens of
the form illustrated in Figure 2. The tree view in the left hand panel illustrates
the structure of the model, and the data entry form in the right hand panel
is being used to capture the properties of a specific BIOSAMPLE. The overall
architecture of the Pedro software is illustrated in Figure 3.

The principal components of the architecture are described in the following
subsections.

5.1 Model Manager

The model manager provides access to the data model that is to be viewed or
manipulated. XML Schema is used as the primary mechanism for schema repre-
sentation, although the adaptor interface could in principle be used to provide

Fig. 2. Browsing and manipulating the MAGE-ML microarray data model using the

Pedro Data Capture Tool

Pedro Ontology Services: A Framework for Rapid Ontology Markup 583

Fig. 3. The Pedro architecture

access to schemata described using different data models. XML is becoming
widely used in bioinformatics, and forms the basis of several data standards
activities (e.g. [8, 11]).

The Model Manager reads an XML Schema, along with a configuration file
that indicates where special behaviours are to be associated with parts of the
model (e.g. a configuration file entry could be used to indicate that the values for
a particular element are to be obtained from a specific ontology). The hierarchical
structure of the XML Schema is reflected in the tree view, which is used both to
provide an overview of the structure of the data conforming to the model and
to identify where data are to be added or modified.

5.2 Ontology Service

The ontology service provides access to external resources that support the pop-
ulation of XML elements with values drawn from external ontologies. For each
kind of external resource, it is necessary: (i) that an adaptor interface has been
implemented that provides access to ontologies of the relevant type; and (ii)
that a viewer is available that is appropriate for presenting the values from the
ontology to annotators. Thus, as illustrated in Figure 4, an element within the
model can be associated with both an source location for terms, and an appro-
priate viewer. Both the Ontology Source and the Ontology Viewer are defined as
Java interfaces, enabling full independent implementation of these components.
Through the configuration layer, it is possible to associate one or more ontology
services with a given field. This reflects the reality of bioinformatics: that there
are often overlapping and non-orthogonal ontologies.

Because of the requirement to support multiple, different formalisms, the
Ontology Service interface does not exploit their different levels of expressivity.

584 K. Garwood et al.

Fig. 4. Associating elements with ontology services

Currently, Pedro provides a number of different default Ontology Sources that
can read from local resources. These include:
A simple text list: which provides a straightforward mechanism for the de-

ployment of unstructured controlled vocabularies.
A tab indented list: which provides a mechanism for representing controlled

vocabularies organised as a tree.
Currently, most of our Ontology Sources use local copies of the distributed on-
tologies because this suits requirements for shrink-wrapped software. However,
with the increasing uptake of programmatic interfaces providing access to On-
tological terms [1], we expect that this situation will change, with the majority
of ontologies being served remotely.

5.3 UI Handler

Following the standard Model-View-Controller design pattern, the Model Man-
ager represents the instances defined according to the underlying XML Schema
as Java objects, and the UI Handler is responsible for rendering this model as a
set of Java interface components. While the choice of a model-driven UI fulfills
the requirement of a tool that is resilient to change in the underlying models,
we are aware that such a generic approach may produce an interface that is
less than ideal for specific users or types of data. In this context, the Ontology
Viewer offers a key abstraction, separating the concern of term selection from
that of serving the ontology. This allows different viewers to be selected based
on the user community, or on the size or nature of the ontology.

In many cases, the size of the ontology in use is relatively small, while the
number of annotated records is much larger. For this reason, providing conve-
nient “in place” access to ontology terms is the most common mechanism for
term selection. Figure 5, which uses an example from myGrid, shows the se-
lection of terms describing the functionality of a web service. The rapidity of
these interface is of critical importance for data producers who generate large
numbers of records. In this figure, we also show the use of “anchoring”. The
myGrid ontology’s some 500 classes are too numerous to place in a context menu
when only some of these are appropriate for use within the current form field. It

Pedro Ontology Services: A Framework for Rapid Ontology Markup 585

Fig. 5. Invoking ontology services through a right-click menu

Fig. 6. The use of Ontology Context: This figure shows a right-click menu offering

terms from a controlled vocabulary

is possible to configure Pedro to display only this appropriate subset of classes
from the context menu.

While anchoring can reduce the number of concepts to a manageable size,
it is not always possible to determine the appropriate subset at design time.
For this reason, Pedro supports the notion of “Ontology Contexts”; the values
of local fields can be used to restrict the concepts. In Figure 6, the presence
of a “laboratory” field is used to restrict later fields to only the members of
this laboratory. This Ontology Context functionality is a property of the On-
tology Service; Pedro’s support for multiple formalisms means that the task of
expressing constraints must be devolved to its ontology framework.

When appropriate anchors or contexts cannot be used to restrict the number
of concepts on display, Pedro uses a component that displays as a table or a

586 K. Garwood et al.

Fig. 7. An ontology viewer that visualises terms in a table with term and definition

columns

tree as shown in Figure 7. In our experience, viewing as a table is often the
most appropriate representation. While the structure of an ontology is intrinsic
to its functionality, data providers are often intimately knowledgeable about the
terms available and already know which term they wish to use. The table view
provides a simple mechanism for rapidly selecting such terms.

Pedro also provides “type ahead” incremental search functionality for term
selection which, again, enables rapid use. However, not all data providers have
the level of intimate knowledge required to use such a facility. Moreover, bio-
logical knowledge is often hard to express textually. For this reason, Pedro also
provides a selection of image-based Ontology Viewers. In Figure 8(a), we show
selection of terms based on an image map, different parts of the image corre-
sponding to different sections of the ontology. This is useful for an ontology
that describes concepts which have a spatial relationship to each other. In Fig-
ure 8(b), a set of thumbnail images is presented to the data provider, each one
representing a specific ontology term.

As well as providing convenient access to ontology terms for some users, the
support of images has another advantage: implicit internationalisation. This is
a significant problem in biology, where data providers are often geographically
distributed, and translation of technical terminology used in both concept names
and associated documentation is difficult and expensive. It is also apparent that
the use of images, to represent ontological terms, could have significant advan-
tages for generating queries over data.

Currently, the ontology views within Pedro are limited to the selection of
named concepts, rather than general class expressions. We would like to inves-

Pedro Ontology Services: A Framework for Rapid Ontology Markup 587

(a) (b)

Fig. 8. Selection of terms with images

tigate adding more capabilities to Pedro, as widget sets for the easy generation
of such expressions become available [5]. However, currently the use of reason-
ing technology in the downstream applications of myGrid and MGED is limited.
Therefore, the use of these expressions would require significant changes to the
architecture of these applications.

5.4 IO Manager

The IO Manager supports the reading and writing of part or all of a data set
from or to an external resource. Again, this functionality is pluggable; Pedro
comes with IO managers for XML file formats and for an internal representa-
tion. However, additional IO manager components have been written that, for
example: (i) read data from a relational database into specific elements in a
model; and (ii) use an XML database as the source or destination of data that
is to be updated using Pedro.

6 Meeting the Requirements

Section 4 described various requirements for data annotation tools in bioin-
formatics. This section revisits the requirements, indicating the approach taken
by Pedro to try to satisfy the requirements and the level of support
provided.

588 K. Garwood et al.

Rapid Modelling: Although Pedro was designed to support data capture and
annotation, and not data modelling, in practice several projects have ex-
ploited Pedro as part of an iterative modelling activity. That the Pedro
interface is model-driven means that a data capture interface can be created
directly from a proposed data model. A schema designer can thus develop
a version of a model and validate the model by leading the users through
a data capture task using the latest version of the model. This has proved
an effective way of detecting both errors of omission and commission. Data
models change frequently in bioinformatics, reflecting an evolution both in
experimental practice and in understanding. Therefore, it is important that
bioinformatics tools can be readily evolved to work with new models. Pedro
provides no direct support for the versioning of models or ontologies, but its
model-driven architecture means that minimal coding is likely to be required
to take account of changes to external models. Where software does need to
be changed, these changes are likely to be contained within specific adaptors
(e.g. within the IO Manager, where the storage format of an external data
resource is modified).

Ontological Annotation: Pedro integrates ontological annotation with other
aspects of data capture by associating elements in an XML Schema with
ontology sources and viewers. As such, in Pedro, values for elements can
be obtained: (i) through direct user entry; (ii) by selecting from a list of
enumeration values within the Schema; (iii) by reading values from tab-
delimited files using an interactively tailorable import facility; (iv) by reading
values from a database using an IO Manager adaptor; or (v) by obtaining
a value from an ontology accessed through an Ontology Source adaptor and
presented using visual representations accessed using an Ontology Viewer
adaptor. Therefore, annotation using ontologies is one of several pluggable
components of the Pedro architecture, whereby annotation using ontologies
is seamlessly integrated with other forms of data capture.

Distributed and Autonomous Ontologies: While a Standards Committee
may control an overall schema, the committee is unlikely to exercise cen-
tralised control over the development and use of different ontologies. For
example, different ontologies may be applied to different families of organ-
ism or environmental settings. Pedro supports the use of different ontologies
and ontology languages by using pluggable adaptors to access either bundled
lists of terms or programmatic interfaces to external reasoning services.

Multiple Formalisms: In a community that decides to develop different on-
tologies, individual groups may choose to use different languages. Pedro com-
municates with ontology services via an adaptor interface that reflects what
the user is offered. The interface shields the rest of the software from details
about how offerings are made(e.g. this may be by looking-up an asserted
ontology, or by inferring relationships in a description logic ontology).

Multiple Ontology Views: Considering the diversity in user communities and
the variablility of size and complexity of ontologies, there is no single best
way to present terms to end-users. Therefore, Pedro provides an adaptor

Pedro Ontology Services: A Framework for Rapid Ontology Markup 589

interface for ontology viewers that has been used to support a broad range
of visualisations (Section 5.3). Several of these representations have been
widely used in practice, although no systematic usability evaluations have
yet been conducted.

Pedro’s extensible, model-based architecture can provide some measure of
support for a wide range of requirements. We see the development of tools that
integrate ontologies with other aspects of an application as being important to
their efficient and effective deployment in challenging domains such as bioinfor-
matics.

7 Discussion

Bioinformatics is already a significant adopter of ontological and semantic web
technologies because they allow data sets to be indexed and retrieved using
expressive domain models. However, the community wants to adopt these tech-
nologies in an incremental fashion. Scientists may intially want to add ontological
annotation to existing database records, rather than recasting all of their data
in an ontological formalism.

The Pedro Ontology Service Framework provides a common point of en-
try, from within the Pedro data capture tool, which enables users to generate
potentially rich and contextualised annotations, using multiple distributed and
autonomous ontologies, with multiple different and independent formalisms.

The Pedro Ontology Service Framework allows the Pedro data capture tool
to uniformly access multiple, distributed, autonomous ontologies, each having
its own formalisms. Using the tool’s ontology services, end-users can generate
contextualised annotations.

These capabilities have ensured that it has already found significant use in
independent projects within the bioinformatics domain. We anticipate that its
ontology-based annotation capabilities will also be of significant interest to other
domains.

Most of the efforts of the Semantic Web community have focused on devel-
oping tools that demonstrate the application of a specific formalism. Relatively
little effort has been spent on making end-user tools. We suggest that our ex-
periences designing for these use cases will help spur the development of more
open, adaptable Semantic Web technologies.

In aiming to support a highly iterative style of knowledge capture and en-
gineering, we have also been surprised by some requirements. In most cases,
where Pedro offers the end-users terms from an ontology, schema designers have
generally also allowed them to enter free text noun phrases. While this defeats
the purpose of using controlled vocabularies, it suggests that designers believe
there is a possibility users will not find the terms that they are looking for.
Moreover this capability provides significant feedback to the knowledge engi-
neers, who often wish to incorporate these terms into later versions of their
ontologies.

590 K. Garwood et al.

Significant future work remains for Pedro to fulfill its potential. Currently
its weakest area of development is its treatment of versioning and change man-
agement. Different ontology communities use different methods for representing
updates. This is a severe problem for those performing rolling updates on a daily
basis. This lack of common procedures between different groups reflects the lack
of clear best practices within the community at large. If these experiences are
reflected in the Semantic Web community, it will present a significant barrier to
adoption of these technologies. Currently, the Pedro framework provides a rudi-
mentary abstraction over these different methods, devolving the task of change
management to the various Ontology Service providers; but we are actively seek-
ing ways to improve this abstraction.

Availability: the Pedro software is freely available in open source form from
http://pedro.man.ac.uk/; at the time of writing Pedro has been downloaded
around 1000 times, and is being used in a wide range of application communi-
ties.

Acknowledgements. this work is supported by the UK e-Science Programme
myGrid and North-West Regional e-Science Centre grants, and through a BB-
SRC grant under the Proteomics and Cell Function Initiative.

References

1. Start Aitken, Richard Baldock, Jonathan Bard, Albert Burger, Duncan Davidson,
Terry Hayamizu, Helen Parkinson, Alan Rector, Martin Ringwald, Jeremy Rogers,
Cornelius Rosse, and Chris Stoeckert. The SOFG Anatomy Entry List (SAEL):
an annotation tool for functional genomics data. Comparative and Functional
Genomics, 2005. In Press.

2. Michael Bada, Robert Stevens, Carole Goble, Yolanda Gil, Michael Ashburner,
Judith A. Blake, J. Michael Cherry, Midori Harris, and Suzanna Lewis. A Short
Study on the Success of the Gene Ontology. Accepted for publication in the Journal
of Web Semantics, 2004.

3. S. Bechhofer, R. Möller, and P. Crowther. The dig description logic interface. In
Description Logics. CEUR Workshop Proceedings, 2003.

4. H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A. Musen. The protégé owl
plugin: An open development environment for semantic web applications. In 3rd
International Semantic Web Conference, pages 229–243, 2004.

5. Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description logic
ontologies with the Protégé owl plugin. In International Workshop on Description
Logics, Whistler, BC, Canada, 2004.

6. Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble. Feta: A light-weight
architecture for user oriented semantic service discovery. In European Semantic
Web Conference. Accepted for Publication, 2005.

7. Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz, Damian Gessler,
Duncan Hull, Carole Goble, and Lincoln Stein. Applying semantic web services to
bioinformatics: Experiences gained, lessons learnt. In International Semantic Web
Conference, pages 350–364, 2004.

Pedro Ontology Services: A Framework for Rapid Ontology Markup 591

8. P.T. Spellman et al. Design and implementation of microarray gene expres-
sion markup language (mage-ml). Genome Biology, 3(9):research0046.1–0046.9,
2002.

9. R.D. Stevens, H.J. Tipney, C.J. Wroe, T.M. Oinn, M. Senger, P.W. Lord, C.A.
Goble, A. Brass, and M. Tassabehji. Exploring Williams Beuren Syndrome Using
myGrid. In Bioinformatics, volume 20, pages i303–310, 2004. Intelligent Systems
for Molecular Biology (ISMB) 2004.

10. C.J. Stoeckert and H. Parkinson. The mged ontology: a framework for describing
functional genomics experiments. Comp. Funct. Genom., 4:127–132, 2003.

11. C.F. Taylor et al. A systematic approach to modeling, capturing and disseminating
proteomics experimental data. Nature Biotech., 21(3):247–254, 2003.

Semantic Annotation of Images and Videos for
Multimedia Analysis

Stephan Bloehdorn1, Kosmas Petridis2, Carsten Saathoff3,
Nikos Simou4, Vassilis Tzouvaras4, Yannis Avrithis4,

Siegfried Handschuh1, Yiannis Kompatsiaris2,
Steffen Staab3, and Michael G. Strintzis2

1 University of Karlsruhe,
Institute AIFB, D-76128 Karlsruhe, Germany

2 Informatics and Telematics Institute,
GR-57001 Thermi-Thessaloniki, Greece

3 University of Koblenz-Landau,
Institute for Computer Science, D-56016 Koblenz, Germany

4 National Technical University of Athens,
School of Electrical and Computer Engineering,

GR-15773 Zographou, Athens, Greece

Abstract. Annotations of multimedia documents typically have been pursued in
two different directions. Either previous approaches have focused on low level
descriptors, such as dominant color, or they have focused on the content di-
mension and corresponding annotations, such as person or vehicle. In this pa-
per, we present a software environment to bridge between the two directions.
M-OntoMat-Annotizer allows for linking low level MPEG-7 visual descriptions
to conventional Semantic Web ontologies and annotations. We use M-OntoMat-
Annotizer in order to construct ontologies that include prototypical instances of
high-level domain concepts together with a formal specification of corresponding
visual descriptors. Thus, we formalize the interrelationship of high- and low-level
multimedia concept descriptions allowing for new kinds of multimedia content
analysis and reasoning.

1 Introduction

Representation and semantic annotation of multimedia content have been identified
as important steps towards more efficient manipulation and retrieval of visual media.
Although new multimedia standards, such as MPEG-4 and MPEG-7 [1], provide im-
portant functionalities for the manipulation and transmission of objects and associated
metadata, the extraction of semantic descriptions and annotation of the content with the
corresponding metadata is out of the scope of these standards and is left to the content
manager. This motivates heavy research efforts in the direction of automatic annotation
of multimedia content.

Here, we recognize a broad chasm between current multimedia analysis methods
and tools on the one hand and semantic annotation methods and tools on the other
hand. State-of-the-art multimedia analysis systems are severely limiting themselves by

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 592–607, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Semantic Annotation of Images and Videos for Multimedia Analysis 593

resorting mostly to visual descriptions at a very low level, e.g. the dominant color of a
picture. This may be observed even though the need for semantic descriptions that help
to bridge the so called semantic gap has been acknowledged for a long time [2, 3]. At the
same time, the semantic annotation community has only recently started to work into
the direction of semantic annotation in the multimedia domain and still remains a long
way to go. Work in semantic annotation currently addresses mainly textual resources
[4] or simple annotation of photographs [5, 6].

Acknowledging both the relevance of low-level visual descriptions as well as a for-
mal, uniform machine-processable representation [7], we here try to bridge the chasm
by providing a semantic annotation framework and corresponding tool, M-OntoMat An-
notizer, for elicitating and representing knowledge both about the content domain and
the visual characteristics of multimedia data itself. Specifically, MPEG-7 compliant
low-level multimedia features are associated with semantic concepts thus forming an
a-priori knowledge base.

In the framework we propose, this link between the MPEG-7 visual descriptors and
domain concepts is made explicit by means of a conceptualization based on a prototyp-
ing approach. The core idea of our approach lies in a way to associate concepts with
instances that are deemed to be prototypical by their annotators with regard to their
visual characteristics. To establish this semantic link we have implemented our fram-
work in a user-friendly annotation tool, M-OntoMat-Annotizer, extending our previous
framework for semantic annotations of text [4]. The tool has been built in order to allow
content providers to annotate visual descriptors without prior expertise in semantic web
technologies or multimedia analysis.

The existence of such a knowledge base may be exploited in a variety of ways. In
particular, we envision its exploitation in two modes:

(1) Direct exploitation: In this mode, an application uses the knowledge base directly.
For instance, during the semantic annotation process one may gather information like
the blue cotton cloth 4711 in image 12 has a rippled texture described by values
12346546. Such kind of semantic knowledge may be used later, e.g. for combined re-
trieval by semantics and similarity in an internet shop. Obviously, such kind of knowl-
edge is expensive to be acquired manually, even when resorting to a user friendly tool.
Thus, this kind of knowledge may only be provided for valuable data, such as images
or videos of commercial products or of items from museum archives.

(2) Indirect exploitation: In this mode, the a-priori knowledge base ‘only’ serves as
a data set provided to prepare an automatic multimedia analysis tool. For instance,
consider the provider of a sports portal offering powerful access to his database on
tennis, soccer, etc. He uses semantic annotation of multimedia images or videos in order
to prepare an analysis system. For instance, he uses M-OntoMat-Annotizer in order to
describe the shape and the texture of tennis balls, rackets, nets, or courts and he feeds
these descriptions into an analysis system. The system uses the descriptions in order
to learn how to tag and relate segments of images and video keyframes with domain
ontology concepts. A customer at the portal may then ask the system what it could
derive about the images and the videos, e.g. he could ask for all the scenes in which a
ball touches a line in a tennis court.

594 S. Bloehdorn et al.

Our long term objectives are dedicated to the indirect exploitation of semantic mul-
timedia annotation as presented in the second paragraph, which is an ongoing compre-
hensive and complex endeavor, providing a flexible infrastructure for further multime-
dia content analysis and reasoning, object recognition, metadata generation, indexing
and retrieval. In the context of this paper, we only sketch the main steps of our approach.

During image/video analysis, a set of atom-regions is generated by an initial seg-
mentation of images, video sequences and key frames into areas corresponding to
salient semantic objects. These objects are also tracked over time while MPEG-7 visual
descriptors are extracted for each region. A distance measure between these descriptors
and the ones of the prototype instances included in the domain ontology is estimated us-
ing a neural network approach. A genetic algorithm then decides the initial labelling of
the atom regions with a set of hypotheses, where each hypothesis represents a class from
the domain ontology. Finally, a constraint reasoning engine enables the final merging of
the regions, while at the same time reducing the number of hypotheses. This approach
is generic and applicable to any domain as long as new domain ontologies are designed
and made available.

The remainder of the paper is organized as follows: after briefly studying related
work in section 2, we present in section 3 an analysis of the initial requirements for
the knowledge representation infrastructure both from a knowledge representation and
a multimedia analysis point of view. In section 4 we present the general ontology in-
frastructure design focusing on the multimedia related ontologies and structures. This
presentation is complemented by a description of an annotation process needed for ini-
tializing the knowledge base with prototype instances of domain concepts in question,
including a description of the actual implementation of a user friendly tool to assist this
annotation process. Initial results from the knowledge-assisted analysis process, which
exploits the developed infrastructure and annotation framework are presented in section
5. We conclude with a summary of our work in section 6.

2 Related Work

In the multimedia analysis area, knowledge about multimedia content domains, as for
example reported in [8], is a promising approach by which higher level semantics can
be incorporated into techniques that capture the semantics through automatic parsing of
multimedia content.

Such techniques are turning to knowledge management approaches, including Se-
mantic Web technologies to solve this problem [9]. In [10], semantic entities, in the
context of the MPEG-7 standard, are used for knowledge-assisted video analysis and
object detection, thus allowing for semantic level indexing. In [11] a framework for
learning intermediate level visual descriptions of objects organized in an ontology is
presented that aid the system to detect domain objects.

In [12], a-priori knowledge representation models are used as a knowledge base that
assists semantic-based classification and clustering. MPEG-7 compliant low-level de-
scriptors are automatically mapped to appropriate intermediate-level descriptors form-
ing a simple vocabulary termed object ontology. Additionally, an object ontology is
introduced to facilitate the mapping of low-level to high-level features and allow the

Semantic Annotation of Images and Videos for Multimedia Analysis 595

definition of relationships between pieces of multimedia information. This ontology
paradigm is coupled with a relevance feedback mechanism to allow for precision in
retrieving the desired content.

Work in semantic annotation [13] has so far mainly focused on textual resources
[4] or simple annotation of photographs [5, 6]. A presentation of an earlier version of
M-OntoMat-Annotizer can be found in [14].

3 Requirements

The challenge in building a knowledge infrastructure for multimedia analysis and an-
notation arises from the fact that multimedia data comes in two separate though in-
tertwined layers which need to be appropriately linked. On the one hand, multimedia
layer deals with the semantics of properties and phenomena related to the presentation
of content within the media-data itself, e.g. its spatio-temporal structure or visual fea-
tures for analysis and is typically hard to understand for people who aren’t trained in
multimedia analysis. The content layer, on the other hand, deals with the semantics of
the actual content contained in the media data as it is perceived by the human media
consumer. This section analyzes a number of requirements for an integrated knowledge
infrastructure and annotation environment for multimedia description, analysis and rea-
soning. To illustrate some of the requirements, we first present a simple scenario, with
focus on direct exploitation:

Multimedia content manager Samantha is working on a project on historic ten-
nis matches. She has to prepare both the metadata infrastructure and the multimedia
content. Samantha loads existing general sports ontologies into M-OntoMat-Annotizer
and extends them by adding missing concepts of major interest. Next, she points M-
OntoMat-Annotizer to images from the project, which are loaded and depicted in the
user interface. One after another, Samantha then selects different objects in the images
and drags them to the corresponding concepts in the domain ontology. The system ex-
tracts visual descriptors for these concepts and stores them in the application memory.
Thus, Samantha has used M-OntoMat-Annotizer to describe the tennis domain and to
describe the shape and the texture of tennis balls, rackets, nets, or courts.

Note that this simple scenario has focused on simply providing conceptual informa-
tion and the corresponding visual characteristics to the knowledge base which might be
exploited directly in the context of the first mode described in section 1.

However, at the same time, the generated data would serve as a valuable a-priori
source of information for multimedia analysis tools. These tools would use the descrip-
tions in order to learn how to tag and relate segments of images and video keyframes
with the domain ontology concepts in the next step, i.e. in the second mode sketched in
section 1, initial results of which are presented in section 5.

3.1 Requirements from Multimedia Analysis

In order to support linking between low level visual information and the higher level
content domain, the above example scenario implicitly requires a suitable knowledge
infrastructure tailored to multimedia descriptions:

596 S. Bloehdorn et al.

Low-Level Description Representation. In order to represent the visual characteristics
associated with a concept, one has to employ several different visual properties, depend-
ing on the concept at hand. For instance, in the tennis domain as was described in the
scenario, the tennis ball might be described using its shape (“round”), color (“white”),
or, in some cases of video sequences, motion. Similarly, a tennis racket has a distinctive
and easily recognizable shape.

Support for Multiple Visual Descriptions. Visual Characteristics of domain concepts
can not be described using one single instance of the visual descriptors in question.
For example, while the net of a tennis racket might be described in terms of its texture
only once, its shape heavily depends on the viewing angle and occlusions (e.g. by the
player in front of the net). The required conceptualization thus has to provide means for
multiple prototypical descriptions of a domain concept.

Spatiotemporal Relation Representation. Simple visual properties may be used to
model simple concepts. In some cases, however, decomposition of more complex con-
cepts in terms of simpler object parts is desirable. A tennis player, for instance, is diffi-
cult to describe using a single shape, motion or texture description; it is more efficient to
model and describe the characteristic parts (head, tennis shirt, racket) in terms of their
visual properties first, and then define the human player as a spatial configuration of
these parts. In other domains like beach holidays, it is more appropriate to describe the
entire scene of a picture in terms of its color layout, depicting e.g. the sky at the top, the
sand in the middle and the sea at the bottom. In such cases, modelling of spatiotemporal
and partonomic relations is required apart from simple visual properties.

Multimedia Structure Representation. The result of the annotation (or content analy-
sis in a next step) should be able to express the structure of a multimedia document
itself, depending on the type of document, e.g. image, video, audio, or multimedia
presentation. For instance, an image is usually decomposed into a number of still re-
gions corresponding to some semantic objects of interest, while a video clip may be
decomposed into shots, each of which into associated moving regions. A hierarchical
structure of multimedia segments is thus needed in order to capture all possible types
of spatiotemporal or media decompositions and relations.

Alignment with MPEG-7 Standard. The MPEG-7 multimedia content description
standard already provides tools for representing fragments of the above information.
For instance, the MPEG-7 Visual Part [15] supports color (e.g. dominant colors, color
layout), texture, shape (e.g. region/contour-based), and motion (local or global) descrip-
tors. Similarly, the MPEG-7 Multimedia Description Schemes (MDS) [16] supports
spatial (directional or topological) and temporal multimedia segment relations, as well
as hierarchical structures for multimedia segment decomposition. Given the importance
of MPEG-7 in multimedia community, it is evident that in the design of an associ-
ated ontology, a large part of its structures should be appropriately captured, aligned
and used.

Support for Basic Data Types. Finally, based on the previous requirement, and on the
fact that MPEG-7 is built on XML Schema and supported by English-text semantic de-
scription but no associated data models, the implementation of an MPEG-7 ontology

Semantic Annotation of Images and Videos for Multimedia Analysis 597

using an appropriate formalism like RDF Schema would have to deal with the rep-
resentation of basic data types like numeric types (integer, float etc.), dates, vectors,
arrays and so on. This is a challenging task that is even more important when feature
matching algorithms are employed on such data as part of the reasoning process during
knowledge-assisted analysis.

3.2 Requirements from Semantic Annotation

The described infrastructure requires appropriate authoring of the domain ontologies
with respect to the domain and visual descriptor ontologies.

Associate Visual Features with Concept Descriptions. Visual descriptions are made
on the conceptual level, i.e. certain visual descriptors should describe how a certain
domain concept is expected to look like. The ontology and annotation framework should
model this link in a way that is consistent with current semantic web standards and
should avoid 2nd order statements, while

– preserving the ability to use reasoning on the ontology and the knowledge base
respectively and

– providing a clear distinction between the visual descriptions of a concept and its
instances.

User Friendly Annotation. Domain ontologies are typically edited by trained indexers
with little experience in multimedia analysis using standard ontology editing tools. Ad-
ditionally, maintaining metadata about extracted low level features is cumbersome and
error-prone. An annotation framework thus has to integrate:

– management of reference multimedia content (images and videos)
– extraction of suitable low level features for objects depicted in the reference content
– automatic generation of fact statements describing the correspondence between a

selected concept and the low level features
– while at the same time hiding the details of these mechanisms to the user behind an

easy-to-use user interface.

Modularization. The links between domain ontology concepts and low level feature
descriptions should form separate modules of the overall knowledge infrastructure.
Specifically, updates of these fact statements should be possible without touching the
integrity of the domain ontologies.

Linking into Multimedia. Visual Descriptors contain no information about their lo-
cation in the original content. This becomes a problem if existing visual descriptors
need to be visualized, e.g. to check them for appropriateness or to identify redundant
descriptors. Additionally, in order to be able to exploit spatial relationships between
objects within multimedia content, the objects have to be linked to the respective re-
gions, they are depicted in. This combines to the more general requirement to provide
means to describe regions in terms of their location within the content, i.e. to describe
their spatial features, and to link them with objects representing both concepts from the
domains and visual descriptors.

598 S. Bloehdorn et al.

Ta
bl

e
1.

M
at

ri
x

of
D

es
ig

n
R

at
io

na
le

s

C
om

po
ne

nt
s

K
no

w
le

dg
e

In
fr

as
tr

uc
tu

re
M

-O
nt

oM
at

-A
nn

ot
iz

er
D

es
ig

n
Fe

at
ur

es
V

is
ua

l
M

ul
tim

ed
ia

D
om

ai
n

Fe
at

ur
e

V
D

E
V

is
ua

l
C

or
e

D
es

cr
ip

to
r

St
ru

ct
ur

e
D

om
ai

n
Pr

ot
ot

yp
in

g
C

or
e

A
nn

ot
at

io
n

V
is

ua
l

E
xt

ra
ct

io
n

E
di

to
r&

V
D

E
R

eq
ui

re
m

en
t

O
nt

ol
og

y
O

nt
ol

og
y

O
nt

ol
og

y
O

nt
ol

og
ie

s
A

pp
ro

ac
h

O
nt

oM
at

Se
rv

er
D

at
ab

as
e

To
ol

bo
x

M
ed

ia
V

ie
w

er
Pl

ug
in

O
nt

ol
og

y
E

xt
en

si
on

s
•

•
•

•
•

•
L

ow
-L

ev
el

D
es

cr
ip

tio
n

R
ep

re
se

nt
at

io
n

•
•

•
•

Su
pp

or
tf

or
M

ul
tip

le
D

es
cr

ip
to

rs
•

•
•

•
Sp

at
io

te
m

po
ra

lR
el

at
io

n
R

ep
re

se
nt

at
io

n
•

•
•

•
M

ul
tim

ed
ia

St
ru

ct
ur

e
R

ep
re

se
nt

at
io

n
•

•
•

•
A

lig
nm

en
tw

ith
M

PE
G

-7
St

an
da

rd
s

•
•

•
•

Su
pp

or
tf

or
B

as
ic

D
at

a
Ty

pe
s

•
•

•
A

ss
oc

ia
te

V
is

ua
lF

ea
tu

re
s

•
•

•
•

•
w

ith
C

on
ce

pt
D

es
cr

ip
tio

ns
U

se
rF

ri
en

dl
y

A
nn

ot
at

io
n

•
•

•
•

•
M

od
ul

ar
iz

at
io

n
•

•
•

•
L

in
ki

ng
in

to
M

ul
tim

ed
ia

no
ty

et
de

al
tw

ith

Semantic Annotation of Images and Videos for Multimedia Analysis 599

4 Multimedia Annotation Infrastructure Design

Based on the requirements collected in the preceding section, we propose a comprehen-
sive Multimedia Annotation Infrastructure the components of which will be described
in this section. Table 1 plots the collected requirements against the infrastructure
components.

4.1 Knowledge Infrastructure Design

The requirements presented in the last section point to the challenge that the hybrid na-
ture of multimedia data must be necessarily reflected in the ontology architecture that
represents and links both layers. Fig. 1 summarizes the developed knowledge infras-
tructure1.

DOLCE Core Ontology

Spatio-Temporal Extensions

Multimedia Ontologies:
Multimedia Structure Ontology (MSO)

Visual Descriptor Ontology (VDO)

Domain Ontologies

Visual Descriptors Extraction (VDE)

Fig. 1. Ontology Structure Overview

Knowledge Representation Formalisms. Several knowledge representation languages
have been developed during the last years as ontology languages in the context of the
Semantic Web, each with varying characteristics in terms of their expressiveness, ease
of use and computational complexity.

Our framework uses Resource Description Framework Schema (RDFS) as mod-
elling language. While RDFS offers sufficient primitives for defining domain mod-
els, other parts of the ontology infrastructure either are already encoded in OWL (like
DOLCE and the spatio-temporal extensions) or are likely to be leveraged to an appro-
priate sub-language of OWL at a later stage. This decision also reflects the fact that a
full usage of the increased expressiveness of OWL requires specialized and more ad-
vanced inference engines, especially when dealing with large numbers of instances with
slot fillers, while TBox reasoning is no specific focus of this framework at this point in
time.

Core Ontology. The role of the core ontology in this overall framework is to serve as
a starting point for the construction of new ontologies, to provide a reference point for
comparisons among different ontological approaches and to serve as a bridge between
existing ontologies. In our framework, we have used DOLCE [17] for this purpose.
DOLCE was explicitly designed as a core ontology, is minimal in that it includes only
the most reusable and widely applicable upper-level categories, rigorous in terms of
axiomatization and extensively researched and documented.

1 We intend to make these ontologies publicly within 2005.

600 S. Bloehdorn et al.

In a separate module, we have extended the Region concept branch of DOLCE to
accommodate topological and directional relations between regions of different types,
mainly TimeRegion and 2DRegion. Directional spatial relations describe how vi-
sual segments are placed and relate to each other in 2D or 3D space (e.g., left and
above). Topological spatial relations describe how the spatial boundaries of the seg-
ments relate (e.g., touches and overlaps). In a similar way, temporal segment relations
are used to represent temporal relationships among segments or events.

Visual Descriptor Ontology. The Visual Descriptor Ontology (VDO) contains the rep-
resentations of the MPEG-7 visual descriptors, models Concepts and Properties that
describe visual characteristics of objects. By the term descriptor we mean a specific rep-
resentation of a visual feature (color, shape, texture etc) that defines the syntax and the
semantics of a specific aspect of the feature. For example, the dominant color descrip-
tor specifies among others, the number and value of dominant colors that are present in
a region of interest and the percentage of pixels that each associated color value has.
Although the construction of the VDO is tightly coupled with the specification of the
MPEG-7 Visual Part [18], several modifications were carried out in order to adapt to the
XML Schema provided by MPEG-7 to an ontology and the data type representations
available in RDF Schema.

The VDO:VisualDescriptor concept is the top concept of the Visual Descrip-
tor Ontology and subsumes all modelled visual descriptors. It consists primarily of six
subconcepts, one for each category that the MPEG-7 standard specifies. These are:
color, shape, texture, motion, localization and basic descriptors. Each of these cate-
gories includes a number of relevant descriptors that are correspondingly defined as
concepts in the VDO. The only MPEG-7 descriptor category that was modified and
does not contain all the MPEG-7 descriptors is the VDO:BasicDescriptors.

Multimedia Structure Ontology. The Multimedia Structure Ontology (MSO) models
basic multimedia entities from the MPEG-7 Multimedia Description Scheme [16] and
mutual relations like decomposition. Within MPEG-7, multimedia content is classified
into five types: Image, Video, Audio, Audiovisual and Multimedia. Each of these types
has its own segment subclasses. MPEG-7 provides a number of tools for describing the
structure of multimedia content in time and space. A number of specialized subclasses
are derived from the generic Segment Description Scheme, describing the specific types
of multimedia segments, such as video segments, moving regions, still regions and mo-
saics, which result from spatial, temporal and spatiotemporal segmentation of the dif-
ferent multimedia content types.

Domain Ontologies. In the multimedia annotation framework, the domain ontologies
are meant to model the content layer of multimedia content with respect to specific real-
world domains, such as sports events like tennis. All domain ontologies are explicitly
based on or aligned to the DOLCE core ontology, and thus connected by high-level
concepts, what in turn assures interoperability between different domain ontologies at
a later stage.

In the context of our work, domain ontologies are created and maintained by content
managers or indexers. They are defined in a way to provide a general model of the
domain, with focus on the users´ specific point of view. In general, the domain ontology

Semantic Annotation of Images and Videos for Multimedia Analysis 601

needs to model the domain in a way, that on the one hand the retrieval of pictures
becomes more efficient for a user of a multimedia application and on the other hand
the included concepts can also be automatically extracted from the multimedia layer. In
other words, the concepts have to be recognizable by automatic analysis methods, but
need to remain comprehensible for a human.

Prototype Approach. Describing the characteristics of concepts for exploitation in
multimedia analysis naturally leads to a meta-concept modeling dilemma. This issue
occurs in the sense that using concepts as property values is not directly possible while
avoiding 2nd order modelling, i.e. staying within the scope of established standards like
OWL DL2.

In our framework, we propose to enrich the knowledge base with instances of do-
main concepts that serve as prototypes for these concepts. This status is modelled by
having these instances also instantiate an additional VDO-EXT:Prototype concept
from a separate Visual Annotation Ontology (VDO-EXT). Each of these instances is then
linked to the appropriate visual descriptor instances. The approach we have adopted is
thus pragmatical, easily extensible and conceptually clean.

4.2 Design of M-OntoMat-Annotizer

While using and referencing the described knowledge representation infrastructure, we
have extended the CREAM (CREAting Metadata for the Semantic Web) framework
[4] and its reference implementation, OntoMat-Annotizer3, in order to allow low-level
feature annotation. Figure 2 shows the integrated architecture the modules of which are
explained in the following in more detail.

Ontology & Fact
Browser

M-OntoMat Annotizer Interface

Core OntoMat VDE Plugin

Annotation Server Feature Extraction Toolbox

VDE Visual Editor &
Media Viewer

Multimedia &
Domain

Ontologies

Prototype
Instances

Domain Visual
Database

Fig. 2. M-OntoMat-Annotizer and VDE plug-in design architecture

Core OntoMat-Annotizer. OntoMat-Annotizer supports two core applications: (i) it is
used as an annotation tool for web pages and (ii) it acts as the basis of an ontology en-
gineering environment. Also, by providing a flexible plug-in interface it offers the pos-

2 The issue of representing concepts as property values is under constant discussion in the
Semantic Web Community. As a resource on this topic see Natasha Noy et al.: Representing
Classes As Property Values on the Semantic Web, W3C Working Draft 21 July 2004,
http://www.w3.org/TR/2004/WD-swbp-classes-as-values-20040721/.
Note that our approach best resembles approach 2 in this document.

3 see http://annotation.semanticweb.org/ontomat/

602 S. Bloehdorn et al.

sibility to implement new components and extend the core functionality of OntoMat-
Annotizer.

Annotation Server. The annotation server acts in the background and stores the en-
tities of the knowledge base, maintains their mutual references and is responsible for
maintaining the overall integrity of the stored entities.

Domain Visual Database. As easy content access is crucial for annotation and content
analysis processes, a visual database containing content related to the domain examined
and analyzed is always necessary. In aceMedia4 project, appropriate images and videos
are primarily supplied by commercial partners, who actually serve as content providers.

Feature Extraction Toolbox. The actual extraction of the visual descriptors is per-
formed using a feature extraction toolbox, namely the aceToolbox, a content pre-
processing and feature extraction toolbox developed inside aceMedia project. The ace-
Toolbox saves the extracted MPEG-7 Descriptors in XML format.

VDE Visual Editor and Media Viewer. The VDE Visual Editor and Media Viewer
presents a graphical interface for loading and processing of visual content (images and
videos), visual feature extraction and linking with domain ontology concepts. The inter-
face, as shown in Figure 3, seamlessly integrates with the common OntoMat interfaces.
Usually, the user needs to extract the features (multimedia descriptors) of a specific ob-
ject inside the image/frame. For this reason, the VDE application lets the user draw a
region of interest in the image/frame and apply the multimedia descriptors extraction
procedure only to the specific selected region. By selecting a specific concept in the
OntoMat ontology browser and selecting a region of interest the user can extract and
link concepts with appropriate prototype instances by means of the underlying func-
tionalities of the VDE plugin.

Fig. 3. The VDE plugin into M-OntoMat-Annotizer user interface

4 see http://www.acemedia.org/

Semantic Annotation of Images and Videos for Multimedia Analysis 603

VDE Plug-in. The Visual Descriptor Extraction (VDE) tool is implemented as a plug-
in to OntoMat-Annotizer and is the core component for extending its capabilities and
supporting the initialization of ontologies with low-level multimedia features. The VDE
plugin manages the overall low-level feature extraction and linking process by commu-
nicating with the other components.

4.3 VDE Extraction and Annotation Process

Triggered by the users extraction command, the VDE plugin extracts the requested
MPEG-7 Descriptors through calls to the Feature Extraction Toolbox. The VDE plug-in
supports the transformation of the extracted XML multimedia resources into instances
of the visual descriptors defined in the VDO, by means of an XSL transformation spec-
ification that creates a corresponding descriptor instance for each extraction, which is
handed to the knowledge base on the annotation server:

<!-- Values of "ScalableColorDescriptor" instance "VDE_INST_0001"-->
<vdo:ScalableColorDescriptor

rdf:ID="http://www.acemedia.org/ontologies/VDO#VDE_INST_0001">
<vdo:coefficients> 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 </vdo:coefficients>
<vdo:numberOfBitPlanesDiscarded> 6 </vdo:numberOfBitPlanesDiscarded>
<vdo:numberOfCoefficients> 0 </vdo:numberOfCoefficients>

</vdo:ScalableColorDescriptor>

Then, the VDE automatically links the newly created visual descriptor instance with
the selected domain concept prototype instance on the annotation server:

<!-- A prototype instance "Ball_Prototype_1" definition of tennis
concept "Ball". "Ball_Prototype_1" instance "hasDescriptor"
"VDE_INST_0001", which corresponds to the scalable color descriptor
instance above -->
<vdoext:Prototype

rdf:ID="http://www.acemedia.org/ontologies/VDO-EXT#Ball_Prototype_1">
<rdf:type rdf:resource="http://www.acemedia.org/ontologies/TENNIS#Ball"/>
<vdoext:hasDescriptor
rdf:resource="http://www.acemedia.org/ontologies/VDO#VDE_INST_0001"/>

</vdoext:Prototype>

As seen above, these prototype instances are not only instances of the domain con-
cept in question but are also stated to be instances of a separate Prototype concept. The
created statements are added to the knowledge base and can be retrieved in a flexible
way during analysis. The necessary conceptualizations can be seen as extensions to the
VDO (VDO-EXT ontology) that link to the core ontology and are implemented in RDF:

<!-- Definition of concept "Prototype" as a subclass of Dolce’s
"Physical-Object" -->
<rdfs:Class

rdf:ID="http://www.acemedia.org/ontologies/VDO-EXT#Prototype">
<rdfs:subClassOf rdf:resource=
"http://ontology.ip.rm.cnr.it/ontologies/DOLCE-Lite#Physical-Object"/>

</rdfs:Class>

<!-- Definition of relation "hasDescriptor" having Dolce’s
"Physical-Object" as domain and VDO’s "VisualDescriptor" as range-->
<rdf:Property

rdf:ID="http://www.acemedia.org/ontologies/VDO-EXT#hasDescriptor ">
<rdfs:domain rdf:resource=
"http://ontology.ip.rm.cnr.it/ontologies/DOLCE-Lite#Physical-Object"/>

<rdfs:range
rdf:resource="http://www.acemedia.org/ontologies/VDO#VisualDescriptor"/>

</rdf:Property>

604 S. Bloehdorn et al.

All the prototype instances can be saved in a RDFS file. The VDE tool saves the
domain concept prototype instances together with the corresponding transformed de-
scriptors, separately from the ontology file, thus leaving the original domain ontology
unmodified.

5 Knowledge-Assisted Analysis

The extracted knowledge base presented above, is playing a central role in automatic
semantic multimedia analysis process, through tools currently being developed in ace-
Media that automatically analyze content, generate metadata and annotation, and sup-
port intelligent content search and retrieval services. Currently, three spatial relations
and three low-level descriptors are supported. These include the adjacency (ADJ), be-
low (BEW), and inclusion (INC) relations, and the dominant color (DC), motion
(MOV) and compactness (CPS) descriptors.

During preprocessing, color segmentation and motion segmentation are combined
to generate a set of over-segmented atom-regions. After preprocessing, assuming for a
single image NR atom regions and a domain ontology of NO objects, there are NNO

R

possible scene interpretations. A genetic algorithm is used to overcome the computa-
tional time constraints of testing all possible configurations [19].

The degree of matching between regions, in terms of low-level visual and spatial
features respectively, is defined in an interpretation function used for the genetic algo-
rithm fitness function and is based on a back-propagation neural network. When the
task is to compare two regions based on a single descriptor, several distance functions
can be used; however, there is not a single one to include all descriptors with different
weight on each. This is a problem that is handled by the neural network. Its input con-
sists of the low-level descriptions of both an atom region and an object model, while its

Fig. 4. Tennis domain results

Semantic Annotation of Images and Videos for Multimedia Analysis 605

response is the estimated normalized distance between the atom region and the model.
A training set is constructed using the descriptors of a set of manually labelled atom
regions and the descriptors of the corresponding object models. Figure 4 illustrates ex-
ample results from the sports domain, where the system output is a segmentation mask
outlining the semantic description of the scene.

6 Summary

In this paper, an integrated infrastructure for semantic multimedia content annotation
was presented. This framework comprises ontologies for the description of low-level
audio-visual features and for linking these descriptions to concepts in domain ontolo-
gies based on a prototype approach. This prototype approach avoids the well-known
problems introduced by Meta-Concept Modelling, and thus preserves the ability to use
OWL DL compliant reasoning techniques on the annotation meta-data.

The generation of the visual descriptors and the linking with the domain concepts
is embedded in an user-friendly tool, which hides analysis-specific details from the
user. Thus, the definition of appropriate visual descriptors can be accomplished by do-
main experts, without the need to have a deeper understanding of ontologies or low-
level multimedia representations. In allowing annotation and linking of concept pro-
totype instances with more than one extracted descriptors, the system is flexible with
respect to analysis requirements. In allowing multiple prototypical instantiations of the
a concept, the system is flexible with respect to varying visual characteristics of ob-
jects.

An important issue in the actual annotation procedure, is the selection of appropriate
descriptors for extraction, valuable for the further analysis process. Depending on the
results, the knowledge-assisted analysis process adjusts its needs and guides the extrac-
tion procedure, providing constant feedback on the concepts that have to be populated,
how many prototype instances are necessary for each concept, which descriptors are
helpful for the analysis of a specific concept etc.

Finally, despite the early stage of multimedia analysis experiments, first results
based on the ontologies presented in this work are promising and show that it is possi-
ble to apply the same analysis algorithms to process different kinds of images or video,
by simply employing different domain ontologies. Apart from visual descriptions and
relations, future focus will concentrate on the creation of rules to assist reasoning in
order to detect more complex events. The examination of the interactive process be-
tween ontology evolution and use of ontologies for content analysis will be the target
of our future work, in the direction of handling the semantic gap in multimedia content
interpretation.

Acknowledgements. This research was partially supported by the European Commis-
sion under contract FP6-001765 aceMedia. The expressed content is the view of the
authors but not necessarily the view of the aceMedia project as a whole.

606 S. Bloehdorn et al.

References

1. S.-F. Chang, T. Sikora, and A. Puri. Overview of the MPEG-7 standard. IEEE Trans. on
Circuits and Systems for Video Technology, 11(6):688–695, June 2001.

2. O. Mich R. Brunelli and C.M. Modena. A survey on video indexing. Journal of Visual
Communications and Image Representation, 10:78–112, 1999.

3. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image
retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(12).

4. Siegfried Handschuh and Steffen Staab. Cream - creating metadata for the semantic web.
Computer Networks, 42:579–598, AUG 2003. Elsevier.

5. J. Wielemaker A.Th. Schreiber, B. Dubbeldam and B.J. Wielinga. Ontology-based photo
annotation. IEEE Intelligent Systems, May/June 2001.

6. L. Hollink, A.Th. Schreiber, J. Wielemaker, and B. Wielinga. Semantic annotation of im-
age collections. In Proceedings of the K-CAP 2003 Workshop on Knowledge Markup and
Semantic Annotation, Florida, 2003.

7. P. Wittenburg D. Thierry and H. Cunningham. The Automatic Generation of Formal Anno-
tations in a Multimedia Indexing and Searching Environment. In Proc. ACL/EACL Work-
shop on Human Language Technology and Knowledge Management, Toulouse, France,
2001.

8. J. Hunter, J. Drennan, and S. Little. Realizing the hydrogen economy through semantic
web technologies. IEEE Intelligent Systems Journal - Special Issue on eScience, 19:40–47,
2004.

9. A. Yoshitaka, S. Kishida, M. Hirakawa, and T. Ichikawa. Knowledge-assisted content-based
retrieval for multimedia databases. IEEE Multimedia, 1(4):12–21, Winter 1994.

10. R. Tansley, C. Bird, W. Hall, P. Lewis, and M. Weal. Automating the linking of content and
concept. In Proc. ACM Int. Multimedia Conf. and Exhibition (ACM MM-2000), Oct./Nov.
2000.

11. Nicolas Maillot, Monique Thonnat, and Céline Hudelot. Ontology based object learning and
recognition: Application to image retrieval. In Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), 15-17 November 2004, Boca
Raton, FL, USA, pages 620–625, 2004.

12. I. Kompatsiaris, V. Mezaris, and M. G. Strintzis. Multimedia content indexing and retrieval
using an object ontology. Multimedia Content and Semantic Web - Methods, Standards and
Tools, Editor G.Stamou, Wiley, New York, NY, 2004.

13. Siegfried Handschuh and Steffen Staab, editors. Annotation for the Semantic Web. IOS
Press, 2003.

14. Stephan Bloehdorn, Steffen Staab, Siegfried Handschuh, Yannis Avrithis, Vasilis Tzouvaras,
Nikos Simou, Michael G. Strintzis, Yiannis Kompatsiaris, and Kosmas Petridis. Knowl-
edge representation for semantic multimedia content analysis and reasoning. In Proceedings
of the European Workshop on the Integration of Knowledge, Semantics and Digital Media
Technology (EWIMT), NOV 2004.

15. T. Sikora. The MPEG-7 Visual standard for content description - an overview. IEEE Trans.
on Circuits and Systems for Video Technology, special issue on MPEG-7, 11(6):696–702,
June 2001.

16. ISO/IEC 15938-5 FCD Information Technology - Multimedia Content Description Interface
- Part 5: Multimedia Description Scemes, March 2001, Singapore.

Semantic Annotation of Images and Videos for Multimedia Analysis 607

17. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontolo-
gies with DOLCE. In Knowledge Engineering and Knowledge Management. Ontologies and
the Semantic Web, Proceedings of the 13th International Conference on Knowledge Acquisi-
tion, Modeling and Management, EKAW 2002, volume 2473 of Lecture Notes in Computer
Science, Siguenza, Spain, 2002.

18. ISO/IEC 15938-3 FCD Information Technology - Multimedia Content Description Interface
- Part 3: Visual, March 2001, Singapore.

19. N. Voisine, S. Dasiopoulou, V. Mezaris, E. Spyrou, T. Athanasiadis, I. Kompatsiaris,
Y. Avrithis, and M.G. Strintzis. Knowledge-Assisted Video Analysis Using A Genetic Algo-
rithm. In Proc. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS
2005), April 2005.

RELFIN - Topic Discovery for Ontology
Enhancement and Annotation�

Markus Schaal, Roland M. Müller, Marko Brunzel, and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg
forename.name@iti.cs.uni-magdeburg.de

Abstract. While classic information retrieval methods return whole
documents as a result of a query, many information demands would be
better satisfied by fine-grain access inside the documents. One way to
support this goal is to make the semantics of small document regions
explicit, e.g. as XML labels, so that query engines can exploit them.
To this purpose, the topics of the small document regions must be dis-
covered from the texts; differently from document labelling applications,
fine-grain topics cannot be listed in advance for arbitrary collections.
Text-understanding approaches can derive the topic of a document re-
gion but are less appropriate for the construction of a small set of topics
that can be used in queries.

To address this challenge we propose the coupling of text mining,
prior knowledge explicated in ontologies and human expertise and present
the system RELFIN, which is designed to assis the human expert in
the discovery of topics appropriate for (i) ontology enhancement with
additional concepts or relationships, (ii) semantic characterization and
tagging of document regions. RELFIN performs data mining upon lin-
guistically preprocessed corpora to group document regions on topics
and constructing the topic labels for them, so that the labels are charac-
teristic of the regions and thus helpful in ontology-based search. We show
our first results of applying RELFIN on a case study of text analysis and
retrieval.

Keywords: Topic Discovery, Label Construction, Ontology Enhance-
ment, Text Clustering.

1 Introduction

Ontologies over document corpora and semantic labels inside the documents can
greatly enhance information acquisition: Ontologies describe concepts and the
relationships among them and map them into their textual representations in
the documents. A semantic label reflects the topic of a small part of a document,
e.g. a paragraph or a sentence; if it is implemented as an annotation tag, it can

� Work partially funded under the EU Contract IST-2001-39023 Parmenides.
http://www.crim.co.umist.ac.uk/parmenides

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 608–622, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 609

be exploited by a query engine. The topics corresponding to the semantic labels
may or may not consist of terms from the ontology, so the two instruments
support information acquisition in complementing ways.

In this paper, we present the interactive system RELFIN for the discov-
ery of region-level topics in documents. RELFIN is part of the PARMENIDES
integrated environment, which encompasses tools for linguistic pre-processing,
ontology enhancement through concepts and relations, semantic text annotation
and extraction of entities and events. RELFIN uses data mining techniques to
analyse and group semantically similar document regions and to derive labels as
topics from them. At the same time, RELFIN interacts with the human expert
who provides the context knowledge and assists her by proposing topics for text
annotation or ontology enhancement.

Central to RELFIN is the notion of topic cluster. A topic cluster is a non-
marginal set of similar document regions, where similarity is given by the cosine-
distance between vectors. Each document region is represented by a vector over
a feature space of concepts from an ontology. The weights are computed by the
TF-IDF value of the term count for a feature. A cluster label is constructed as a
concatenation of features with a high support within the cluster - the so-called
frequent features. We term the generation of topic clusters as topic discovery.
Topic discovery can be used both for ontology enhancement and text annotation
but it must be stressed, that these tasks are distinct. We propose the use of
additional corpus specific terms for ontology enhancement and a novel quality
criterium for region annotation.

For ontology enhancement, new terms are proposed as new concepts, while
groups of co-occuring terms (concepts) are indicatory of the need to create links
among them. Thus, the human expert is supported in creating added value by
juxtaposing her background knowledge to corpus content and exploiting both
to enrich the ontology. It should be noted that even the richest ontology may
need this type of enrichment: A corpus focusses on specific aspects of a universe
of discourse, which may or may not be explicit in the ontology. Moreover, the
individual document regions may refer to topics that turn to be a posteriori of
importance for the ontology. However, topics at region level may be too fine-
grain for ontology enhancement but nonetheless appropriate for search inside
the specific corpus. Hence, RELFIN supports text annotation, i.e. the tagging
of document regions with the derived topic labels, as complementary task to
ontology enhancement.

A major challenge for topic clustering is the specification of the label. Ob-
viously, a label consisting of the single term “be” is not informative for most
corpora. A label consisting of 100 terms appearing in some of the cluster mem-
bers is not very useful towards a search engine either. For RELFIN, we propose
a novel criterium for cluster labelling - the Residuum of non-frequent features
within the topic cluster: First, RELFIN clusters document regions on similarity
and derives labels for the clusters. Then, a residuum threshold is set and clusters
not satisfying the threshold are rejected. The retained topic clusters with their
labels are proposed to the domain expert as labelled topic clusters.

610 M. Schaal et al.

In the next section, we discuss related work. In section 3 we introduce the
PARMENIDES framework, in which RELFIN operates and then elaborate on
RELFIN in section 4. Section 5 contains a first set of experiments for interactive
ontology enhancement and text annotation and a discussion of the findings. The
last section concludes the study.

2 Related Work

There is increasing research on the discovery of semantic labels from text data.
Some methods put their emphasis on the formulation of appropriate labels
[MB01, RM99, GSW01, WS01b], while others further consider the establishment
of schemata or other semantic descriptions from those labels [HSS03, KVM00,
MS00a, MS00b, WS01a, WS02]. We elaborate on these two types of methods in
the following. Moore and Berman propose an algorithm that converts textual
pathology reports into XML documents: Natural Language Processing (NLP)
techniques are applied upon the texts; the identified terms and noun groups
are mapped upon concepts of a medical thesaurus; these concepts become XML
tags that annotate the corresponding pieces of text [MB01]. This approach can
achieve an extensive annotation of the corpus at a great level of detail.

Rauber and Merkl derive document labels by a clustering technique [RM99]:
The documents are modelled as vectors of weighted terms and clustered on
similarity. For each cluster thus established, a label is derived by considering the
terms characterizing the cluster. The core methodology is conceptually the same
as in our previous work on the derivement of labels for sentences by similarity-
based clustering of sentence contents [GSW01, WS01b].

Handschuh et. al. [HSV03] presents a system that learns information extrac-
tion rules from manually tagged input. In contrast to our approach they focus
on entities extraction and not on topic discovery and they need pre-labelled
documents that we don’t need.

The subject of deriving an appropriate semantic label for a set of similar
texts is also addressed in [HSS03]: Hotho et al use text clustering to derive text
clusters. However they subsequently use formal concept analysis to construct a
concept lattice and don’t use metrics to check the validity of a cluster for topic
enhancement.

The extraction of a domain-specific ontology from texts with data mining
techniques is discussed in [KVM00, MS00a, MS00b], whereby [KVM00, MS00b]
concentrate on the core mechanism, which relies on the frequency of concepts in
the texts, while the emphasis in [MS00a] is on the discovery of semantic relations
by using association rules. The semantic richness and diversity of corpora does
not lend itself to full automation, so that the involvement of a domain expert
becomes necessary [MS00c].

The ASIUM system [FN99] uses unsupervised concept clustering methods
to learn semi-automatically subcategorization frames of verbs and ontologies.
However they haven’t used text unit clustering and don’t use cluster quality
criteria.

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 611

In this study, we extend our previous work on the “DIAsDEM Workbench” for
the formulation of semantic labels for text fragments [GSW01, WS02]. Similarly
to the original DIAsDEM Workbench, we perform clustering over the document
corpus to establish a set of clusters, for which semantic labels can be derived.
However, we replace the original rudimentary criteria on cluster cardinality and
number of representative features in a cluster with a more sophisticated mea-
sure of cluster quality, the so-called residuum of non-frequent features, thereby
enabling the automatic selection and labelling of high-quality clusters.

3 Parmenides Framework

PARMENIDES is an EU-funded project in the area of knowledge extraction and
management. One of its goals is the realization of an ontology-driven systematic
approach for integrating the entire process of information gathering, processing
and analysis (cf. [SRB+04]).

One task within this goal is the extraction of knowledge from texts. Knowl-
edge extraction is directed towards (a) the establishment of ontologies which
reflect the universe of discourse and (b) the semantic annotation of documents
with the concepts, entities and events depicted in the ontologies.

The RELFIN module is responsible for ontology enhancement with new con-
cepts and with concept groups, as well as the semantic annotation of texts with
such concepts/groups. As explained in the introduction, we use the collective
term “topic” for them. This knowledge extraction process involves at least one
human expert, who aligns knowledge extraction to the business objectives by:

– providing an initial ontology
– enhancing the ontology with concepts and relations found by the “RELFIN

Learner”
– reviewing the topic clusters and proposed labels for the annotation to be

performed by the “RELFIN Annotator”

The software components RELFIN Learner and RELFIN Annotator can be
seamlessly integrated into “PARMENIDES workflows”: A workflow is a series
of component invocations that can be specified graphically and then executed
on the fly as shown in Fig. 1. The components process documents and enrich
them with annotations at different levels of complexity and semantic [RDH+03a],
i.e. by representing linguistic as well as conceptual knowledge. The XML-based
ParDoc format [RDH+03b] is used as reference format. The components interact
with each other via a document queue, depicted in the figure under the label
NormalQueue.

The example workflow of Fig. 1 consists of the following components1 (named
by their labels):

1 Printed with the kind agreement of the responsible PARMENIDES partners

612 M. Schaal et al.

Pre-Processing NLP
RELFIN
Learner

RELFIN
Annotator Storage

RELFIN Components

Pre-Processing NLP
RELFIN
Learner

RELFIN
Annotator Storage

RELFIN Components

Fig. 1. An example PARMENIDES workflow (screenshot + annotation)

FileSystemCollector: This component collects documents from a repository
on a hard disk. For collecting documents from the web, the component Web-
SystemCollector should be used instead.

Converter: This component is responsible for creating ParDoc documents from
other document types, such as HTML, plain text, pdf, word and ppt.

UMISTPipeline: This component is a four-step analysis process that performs
basic NLP and information extraction functionality. Its functionality con-
sists of Tokenization, POS Tagging, Sentence Splitting, Ontology Lookup
operations and ontology-based Information Extraction using the Cafetiere
software 2.

OntologyLearningCorpusComponent: This component is the RELFIN Learner
component for text clustering and interactive expert involvement, as de-
scribed in section 4. It takes as input a whole collection of documents (a
seed collection) and outputs clusterings, expert-approved topic labels and
the documents with annotations.

UMDAnnotationComponent: This component is the RELFIN Annotator compo-
nent. It reads as input a document, as well as the clusterings and the ap-
proved cluster labels output by the RELFIN Learner. It assigns the regions
of the document into clusters and annotates them with the corresponding
topic labels.

RepositoryDumper: This component stores ParDoc documents into a Document
Repository.

4 The RELFIN Learner

In Section 4.1, we give a formal introduction to the concepts used with the
RELFIN Learner including the novel cluster quality criterium Residuum. We

2 For a documentation on the UMIST Pipeline, cf. Vasilakopoulos et al. [VBB04]

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 613

show the procedure of the RELFIN Learner in Section 4.2 and present some
details about the human expert interaction with the RELFIN GUI in Section 4.3.

4.1 Formal Concepts

A text unit is an arbitrary text fragment produced by a linguistic tool, e.g. by a
sentence-splitter. Text units consist of words. A term is a stemmed or lemmatized
word. Thus, text units can be measured according to the frequency of the terms
contained in it. Text units correspond to documents or document regions, e.g.
paragraphs or sentences. A text corpus A = {1, . . . , n} is a set of text units.

A term is a textual representation of a concept. Generally, there is a m-to-n
mapping between terms in a text corpus and a set of concepts that describe a
universe of discourse due to synonyms and homonyms. Terms, concepts and the
mapping between them are part of the ontology of this universe.

A feature space F = (1, . . . , d) is a sequence of features, where each feature
corresponds to a single concept. A vectorization X of the text corpus is obtained
by counting all terms that are mapped to each of the features in the feature space
for all text units of a text corpus. Subsequently, TF-IDF weighting is applied3. X
is a 2-dimensional matrix given by values xij per text unit 1 ≤ i ≤ n and feature
1 ≤ j ≤ d. Thus, each text unit i is represented by its vector xi = (xi1, . . . , xid)
over the feature space.

A cluster C ⊆ X is a set of vectors. A cluster label is a term or term combi-
nation that is given by the frequent features of a cluster. A frequent feature is a
feature whose in-cluster support is above a certain threshold τics.

Definition 1 (In-Cluster Support of a Feature). Let C ⊆ X be a cluster,
where X is the vector space over the text corpus A for the feature space F . Let
k ∈ F denote a feature. The in-cluster support of feature k in C is the count of
vectors x ∈ C that contain feature k (i.e. xk �= 0) divided by the cardinality of C.

ics(k,C) =
| {x ∈ C | xk �= 0} |

| C | (1)

One criteria for clusters having a good label is newly introduced here, the
so-called Residue of the in-cluster support of infrequent labels. Topic Clusters
with a residue lower than a certain residue threshold τres are pure.

Definition 2 (Residue). Let C ⊆ X be a cluster and let τics be the lower
boundary to the in-cluster support of features, thus determining which features
are frequent. Then, the residue of C subject to this threshold is the relative in-
cluster support for infrequent features:

residue(C, τics) =

∑
k∈nonfreq(C,τics) ics(k,C)∑

k∈F ics(k,C)
(2)

where nonfreq(C, τics) = {k ∈ F | ics(k,C) ≤ τics}.

3 For a documentation on Vectorization and TF-IDF weighting, cf. Salton and Buck-
ley [SB88].

614 M. Schaal et al.

4.2 Procedure

The RELFIN procedure is described by a Data Flow Diagram (DFD) in Fig. 2.
Processes are represented by circles, external input is represented by squares and
data stores are represented by open boxes (over- and underlined). The software
proceeds as follows (cf. Fig. 2):

Clustered
Text Units

Feature Space
Building

Ontology

Corpus
specific
termlist

Feature Space

Vectorization Vector Space Clustering

Documents NLP
Processing

NLP
processed

ParDoc

Cluster
Filtering

Quality
Criteria

Labelling
Cluster
Labels

Ontology
Enhancement

Text
Annotation

Fig. 2. Data Flow Diagram of RELFIN Learner

NLP Processing. The RELFIN application relies on a NLP processed docu-
ment collection. These documents are provided in the ParDoc format.

Feature Space Building. The feature space is build from an ontology and/or
a list of corpus specific terms4. When using the ontology5, each class includ-
ing its synonyms and its instances6 (and their synonyms) becomes a feature
of the feature space.

Vectorization. Different text granularities are available from the ParDoc for-
mat for vectorization: (1) documents as a whole, (2) paragraphs or (3) sen-
tences. Here we use sentences as the chosen granularity. Each text unit is
represented by its vector computed from the feature space. Only text units
with two or more non-zero values are used for further processing.

Clustering. The text units are clustered by use of a Bi-Secting k-Means algo-
rithm [SKK00], which partitions the instances in k clusters. The parameter
k is specified by the user. The Bi-Secting k-Means is a variation of the k-
means and showed great success in the text clustering problem[SKK00]. The
algorithm starts with a single cluster which is split into two clusters by a
k-means algorithm with k = 2. Then, the biggest cluster is choosen and it
is again split in two clusters. This is done until the desired cluster number

4 Corpus specific terms are ordered by their rank position ratio with respect to a
general language corpus, here the British National Corpus.

5 The PARMENIDES project incorporates an ontology editor for the maintenance of
ontologies.

6 In the used ontology format, instances are maintained as special concepts to be
subsumed together with their class concepts.

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 615

is reached. Alternatively, the cluster with highest residuum (cf. paragraph
Cluster Filtering below) is chosen instead of the biggest cluster. The cosine
metric is used as the distance function.

Cluster Filtering. After the clustering, the quality measures of the clusters
are calculated. For a cluster to be considered as a labelled topic cluster (and
thus be accepted), we require the cluster

– to be non-marginal, i.e. to have a cardinality above a certain threshold
cmin and

– to be pure, i.e. to have a residuum lower than a given threshold τres
(with respect to frequent feature threshold τics, cf. Section 4.1).

The label of a pure and non-marginal cluster is given by the set of its frequent
features, i.e. features with high in-cluster support, whereas there are only few
instances not covered by the frequent features.

Labelling. For each cluster, the set of frequent features is concatenated and
proposed as the cluster label.

Ontology Enhancement. RELFIN can be used for ontology enhancement, cf.
Section 4.3.

Text Annotation. RELFIN can be used for semi-automatic annotation, cf.
Section 4.3.

4.3 Human Expert Interaction

Figure 3 shows the RELFIN GUI, displaying a table of clusters on the left side
and details of the selected cluster on the right side. The table allows sorting the
clusters on certain attributes, associated with the clusters. The bar chart diagram
shows the percentage of instances which have a certain feature, for the ten most
frequent features of the selected cluster. In the lower right corner examples of
text units in the current cluster are displayed, whereas terms, included in the
feature space are highlighted. These example text units help the user to justify
the appropriateness of a cluster label.

For ontology enhancement, an ontology editor is opened on the desktop next
to the RELFIN-GUI, where the domain expert can edit an existing ontology
of his choice. Good candidates for enhancement are homogeneous7 clusters with
respect to the cosine distance, it is on experts choice whether to include a certain
feature - as a new (1) class (concept) or (2) instance (concept), as a (3) synonym
of an existing concept or as a (4) attribute type/ attribute value.

For annotation, a domain expert is required to browse (at least) the accepted
clusters in order to deny acceptance by deselecting the check mark next to accept
Cluster and to optionally edit the Cluster Label in the cluster information
section of the RELFIN GUI, cf. upper-right corner of Fig. 3.

7 The term homogeneous refers to the cluster criteria average instance to centroid
distance (AICD) and average instance-to-instance distance (AIID), which are based
on the cosine distance used for clustering and also shown in the cluster table.

616 M. Schaal et al.

Fig. 3. Presentation of the clustering results in RELFIN

5 Experiments

For our experiments, we employed a text corpus collected from the internet for
the weight management domain. This text corpus and an initial ontology were
provided by an Unilever domain expert. An objective of the weight management
case study of Unilever is the improvement of information retrieval and decision
support. The corpus contains 1394 documents and has been split into more
than 20.000 sentence-level text units. For the experiments, not all but only text
units with a certain feature support were used, cf. Section 4. We performed two
investigations on the text corpus:

1. Topic Clusters generated by clustering and their frequent features were pre-
sented to a human expert. The expert was asked to report on the benefits
for ontology enhancement.

2. Labelled Topic Clusters were automatically accepted according to their size
and residuum. We compared different clustering parameters with respect to
their coverage of the text corpus.

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 617

The first investigation examined the usability of text clustering for ontology
enhancement, the second investigation examined the ability of text clustering
to find labelled topic clusters. Note, that the underlying corpus does not have a
gold-standard ontology or annotation.

5.1 Ontology Enhancement

For the purpose of human expert ontology enhancement, 80 clusters were gen-
erated. For building the feature space, the features from the ontology were com-
plemented with terms from the corpus-specific term list, so that 500 features
were used altogether. The ic-support threshold for frequent features was set to
τics = 0.2 and all clusters were presented to the human expert. By creating 80
clusters only, we got good topic clusters for ontology enhancement, but the topic
clusters weren’t pure enough for annotation.

In order to evaluate the use of proposed clusters for ontology enhancement,
the Unilever domain expert was asked to evaluate the topic clusters according
to the following criteria:

– Do the given term or term combinations (the frequent features) make sense
and is it of relevance in the use case? Please indicate by Accepting/ Rejecting
each cluster.

– Are some of the delivered terms or term combinations appropriate for ontol-
ogy enhancement? A term or term combination is appropriate if you would
decide to put it in the ontology. A combination can be put into the ontology
as a combined concept or by establishing a link between concepts.

Cluster 27 - Accepted:

Frequent Terms: FAT;ENERGY

Ontology Enhancement:

Link: FAT "is an" ENERGY "source"

Link: FAT is a "component of" a FOOD_PRODUCT

Link: FOOD_PRODUCT "delivers" ENERGY (Joule)

Cluster 29 - Rejected:

Frequent Terms: DIETARY_cs

Cluster 31 - Accepted:

Frequent Terms: CVD_cs;HEALTH_PROBLEM

Ontology Enhancement:

Add: CVD

Link: CVD (acronym of cardiovascular disease) "is a" HEART_DISEASE

Link: HEART_DISEASE "is a" HEALTH_PROBLEM

Fig. 4. Expert Contribution for Ontology Enhancement (for 3 sample clusters)

618 M. Schaal et al.

Note that the review of unlabelled topic clusters is not of use with such a low
ic-support threshold. Moreover, features below the threshold are of no interest.
Therefore, the expert was provided with a report on the frequent labels per
cluster only, without asking him to browse the cluster table.

The whole clustering was evaluated by the Unilever domain expert according
to the above criteria, a sample of the results is shown in Fig. 4. Frequent features
with suffix ” cs” are the ones originating from the corpus specific term list.

Out of 79 clusters, the human expert accepted 30 clusters. Based on the
frequent feature combinations of the accepted clusters, he proposed 21 new con-
cepts, 14 new synonyms and 10 new links between concepts for ontology en-
hancement.

5.2 Labelled Topic Clusters

By our approach of filtering topic clusters for purity by setting a threshold on
the residuum, we have deliberately surrendered a full coverage of all text units.
Here we study the coverage of text units by labelled topic clusters for differ-
ent splitting criteria, residuum thresholds, cluster counts and different feature
spaces.

In a first experiment, only the initial ontology was used for building the fea-
ture space, resulting in 12990 text units to be selected for clustering. Fig. 5 shows
the text units covered by topic clusters over the amount of generated clusters.
Two different splitting criteria for the Bi-Secting k-Means algorithm have been
used, namely Splitting the Cluster with Highest Cardinality (Card-Split) and
Splitting the Cluster with the Highest Residuum (Res-Split). Clusters have been
accepted as topic clusters with residuum threshold τres = 0.5 (threshold=0.5)
and τres = 0.3 (threshold=0.3) respectively. In all cases, the minimum cardinal-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50
15

0
250 350 45

0
550 650 75

0
850 95

0
10

50
115

0
12

50
135

0
145

0
15

50
165

0
175

0
18

50
195

0

Cluster Count

T
o

ta
l T

ex
t U

n
its

 in
 L

ab
el

le
d

 T
o

p
ic

 C
lu

st
er

s

Res-Split, threshold=0.3

Res-Split, threshold=0.5

Card-Split, threshold=0.3

Card-Split, threshold=0.5

Fig. 5. Text Units in Topic Clusters (total 12990)

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 619

ity threshold was cmin = 15 and the ic-support threshold for frequent features
was τics = 0.8.

For the case of Splitting the Cluster with the Highest Residuum (Res-Split),
the maximum is reached quite late, i.e. 8.000 text units at 1.150 clusters (147
topic clusters) for the case of τres = 0.5 and 5.880 text units at 1700 clusters
(133 topic clusters) for the case of τres = 0.3.

For the case of Splitting the Cluster with Highest Cardinality (Card-Split),
the maximum is considerably lower (most likely due to the creation of marginal
clusters), but better residue can be reached with less clusters.

In a second experiment, we compared the use of an initial ontology with the
use of corpus specific terms. Fig. 6 shows the result for using 300 terms of an
ontology (Ontology) juxtaposed against using the first 300 corpus specific and
using both (600 words). All computations have been performed with Res-Split
and residuum threshold τres = 0.5 (threshold=0.5). Note that the total size of
text units for the clustering varies, since different feature spaces are build and
only vectors with two or more non-zero values are accepted.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50
20

0
35

0
500 65

0
80

0
95

0
11

00
12

50
14

00
15

50
17

00
185

0
20

00
21

50
23

00
24

50
26

00
275

0
290

0

Cluster Count

To
ta

l T
ex

t U
ni

ts
 in

 L
ab

el
le

d
T

op
ic

 C
lu

st
er

s

Ontology (12990 total)
Corpus Specific (13340 total)
Onto/Specific (20168 total)

Fig. 6. Text Units in Topic Clusters (Res-Split, threshold=0.5)

For the case of the ontology, the maximum is higher than with the corpus
specific term-list, while the maximum of the combination of both is reached later.
It should be noted, that the usage of 600 words in the combined case allowed for
a total of 20.168 text units to be represented by a vector with two or more non-
zero values. The word-list’s weakness when compared with the ontology (while
actually processing more text units, 13.340 vs. 12.990) might be caused by the
ontology being properly tailored towards the text corpus by the domain expert.

620 M. Schaal et al.

6 Conclusions

We presented the fully-fledged RELFIN application as an integrated component
within the PARMENIDES framework and showed its ability to support semi-
automatic ontology enhancement and a novel approach of filtering for pure topic
clusters.

We applied the RELFIN methodology to a real use case without pre-existing
gold standards for ontologies or text annotation and learned from first experi-
ments:

– The stimulation of the human expert by looking at topic clusters is manifold
and leads to added value by knowledge explication. The use of an ontology
editor in parallel to the RELFIN software is suggested.

– The two-phase approach for discovering labelled topics may reach a good
coverage of the text corpus, at least with a domain-specific ontology that is
tailored towards supporting annotation.

In the future, we intend to further improve the integration of technologies
and expert interaction models for semi-automatic ontology enhancement and
annotation - possibly with focus on semantic web evolution.

Acknowledgments: We would like to thank the Parmenides consortium and
especially the partner Unilever for their contribution to the experiment.

References

[FN99] David Faure and Claire Nédellec. Knowledge acquisition of predicate ar-
gument structures from technical texts using machine learning: the sys-
tem ASIUM. In Dieter Fensel and Rudi Studer, editors, Knowledge Ac-
quisition, Modeling and Management: 11th European Workshop, EKAW
’99, Dagstuhl Castle, Germany, May 1999: Proceedings, volume 1621 of
Lecture Notes in Computer Science, pages 329–334. Springer-Verlag, Hei-
delberg, 1999.

[GSW01] Henner Graubitz, Myra Spiliopoulou, and Karsten Winkler. The DI-
AsDEM framework for converting domain-specific texts into XML doc-
uments with data mining techniques. In Proc. of the 1st IEEE Intl.
Conf. on Data Mining,, pages 171–178, San Jose, CA, Nov. 2001.
IEEE.

[HSS03] Andreas Hotho, Steffen Staab, and Gerd Stumme. Explaining text clus-
tering results using semantic structures. In Proc. of ECML/PKDD
2003, LNAI 2838, pages 217–228, Cavtat-Dubrovnik, Croatia, Sept. 2003.
Springer Verlag.

[HSV03] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep an-
notation. In Proceedings of the Twelfth International Conference on
World Wide Web, pages 431–438, Budapest, Hungary, May 2003. ACM
Press.

RELFIN - Topic Discovery for Ontology Enhancement and Annotation 621

[KVM00] Jörg-Uwe Kietz, Raphael Volz, and Alexander Maedche. Extracting a
domain-specific ontology from a corporate intranet. In Claire Cardie,
Walter Daelemans, Claire Nédellec, and Erik Tjong Kim Sang, editors,
Proc. of 4th Conf. on Computational Natural Language Learning and of
the 2nd Learning Language in Logic Workshop, pages 167–175, Somerset,
New Jersey, 2000. Association for Computational Linguistics.

[MB01] G. William Moore and Jules J. Berman. Medical data mining and knowl-
edge discovery. In Anatomic Pathology Data Mining, volume 60 of Studies
in Fuzziness and Soft Computing, pages 72–117, Heidelberg, New York,
2001. Physica-Verlag.

[MS00a] Alexander Maedche and Steffen Staab. Discovering conceptual relations
from text. In Proc. of ECAI’2000, pages 321–325, 2000.

[MS00b] Alexander Maedche and Steffen Staab. Mining ontologies from text. In
Proc. of Knowledge Engineering and Knowledge Management (EKAW
2000), LNAI 1937. Springer, 2000.

[MS00c] Alexander Maedche and Steffen Staab. Semi-automatic engineering of
ontologies from text. In Proc. of 12th Int. Conf. on Software and Knowl-
edge Engineering, Chicago, IL, 2000.

[RDH+03a] F. Rinaldi, J. Dowdall, M. Hess, J. Ellman, G. P. Zarri, A. Persidis,
L. Bernard, and H. Karanikas. Multilayer annotations in parmenides.
In Proceedings of the K-CAP2003 workshop on ”Knowledge Markup and
Semantic Annotation”, October 2003.

[RDH+03b] Fabi Rinaldi, James Dowdall, Michael Hess, Kaarel Kaljurand, Andreas
Persidis, Babis Theodoulidis, Bill Black, John McNaught, Haralam-
pos Karanikas, Argyris Vasilakopoulos, Kelly Zervanou, Luc Bernard,
Gian Piero Zarri, Hilbert Bruins Slot, Chris van der Touw, Margaret
Daniel-King, Nancy Underwood, Agnes Lisowska, Lonneke van der Plas,
Veronique Sauron, Myra Spiliopoulou, Marko Brunzel, Jeremy Ellman,
Giorgos Orphanos, Thomas Mavroudakis, and Spiros Taraviras. Par-
menides: an opportunity for ISO TC37 SC4? In ACL-2003 workshop on
Linguistic Annotation, Sapporo, Japan, July 2003.

[RM99] Andreas Rauber and Dieter Merkl. Mining text archives: Creating read-
able maps to structure and describe document collections. In Principles
of Data Mining and Knowledge Discovery, pages 524–529, 1999.

[SB88] Gerard Salton and Chris Buckley. Term weighting approaches in auto-
matic text retrieval. Information Processing & Management, 24(5):513–
523, 1988.

[SKK00] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In KDD Workshop on Text Mining, 2000.

[SRB+04] Myra Spiliopoulou, Fabio Rinaldi, William J. Black, Gian Piero Zarri,
Roland M. Mueller, Marko Brunzel, Babis Theodoulidis, Giorgos Or-
phanos, Michael Hess, James Dowdall, John McNaught, Maghi King,
Andreas Persidis, and Luc Bernard. Coupling information extraction
and data mining for ontology learning in parmenides. In RIAO’2004,
April 26th-28th, Avignon, 2004.

[VBB04] A. Vasilakopoulos, M. Bersani, and W.J. Black. A suite of tools for mark-
ing up textual data for temporal text mining scenarios. In Proceedings of
the 4th International Conference on Language Resources and Evaluation
(LREC-2004), Lisbon, 2004.

622 M. Schaal et al.

[WS01a] Karsten Winkler and Myra Spiliopoulou. Extraction of semantic XML
DTDs from texts using data mining techniques. In Proceedings of the K-
CAP 2001 Workshop on Knowledge Markup and Semantic Annotation,
pages 59–68, Victoria, BC, Canada, October 2001.

[WS01b] Karsten Winkler and Myra Spiliopoulou. Semi-automated XML tagging
of public text archives: A case study. In Proceedings of EuroWeb 2001
“The Web in Public Administration”, pages 271–285, Pisa, Italy, Decem-
ber 2001.

[WS02] Karsten Winkler and Myra Spiliopoulou. Structuring domain-specific
text archives by deriving a probabilistic XML DTD. In 6th European
Conf. on Principles and Practice of Knowledge Discovery in Databases,
PKDD’02, pages 461–474, Helsinki, Finland, Aug. 2002. Springer Verlag.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 623–632, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Semantic Web-Based Document:
Editing and Browsing in AktiveDoc

Vitaveska Lanfranchi1, Fabio Ciravegna1, and Daniela Petrelli2

1 Department of Computer Science, University of Sheffield, Regent Court,
211 Portobello Street, S1 4DP, Sheffield, United Kingdom

{vita, fabio}@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/

2 Department of Information Studies, University of Sheffield,
Regent Court, 211 Portobello Street, S1 4DP,

Sheffield, United Kingdom
d.petrelli@shef.ac.uk

http://www.shef.ac.uk/~is/

Abstract. This paper presents a tool for supporting sharing and reuse of
knowledge in document creation (writing) and use (reading). Semantic Web
technologies are used to support the production of ontology based annotations
while the document is written. Free text annotations (comments) can be added
to integrate the knowledge in the document. In addition the tool uses external
services (e.g. a Semantic Web harvester) to propose relevant content to writing
user, enabling easy knowledge reuse. Similar facilities are provided for readers
when their task does not coincide with the author’s one. The tool is specifically
designed for Knowledge Management in organisations. In this paper we present
and discuss how Semantic Web technologies are designed and integrated in the
system.

1 Introduction

In the current form of the Web, content is designed and published for human readers
and it is not typically tractable by machines; the Semantic Web, SW, is expected to
make content processable in an automatic way via the addition of annotations.
However, besides supporting automatic processing, the rich annotations behind the
SW can improve the user’s experience when dealing with documents and knowledge.
Several methods of enriching Semantic Web documents have been proposed. One is
to insert ontology-driven annotations that identify ontological instances in the
document [8]. This type of annotation enables the capturing of document content,
empowering better retrieval and reasoning.

A second method of enriching a document is to attach services: they can be
associated to ontological instances and made available directly from the document in
an automatic way [5]. Annotations and services can create a personalised view of the
document, so that the reader can directly access its content (via ontology based
annotation) and the additional information concerning it (i.e. the ontology and its

624 V. Lanfranchi, F. Ciravegna, and D. Petrelli

knowledge base can connect concepts in the document with external knowledge or
documents -provided by the ontological-based services [7]).

A further way to enrich documents is to incorporate free text annotations in the
form of comments [9]. They have become quite a standard feature1, especially in the
Knowledge Management (KM) world. Comments are used to integrate the text,
adding information and knowledge not explicitly mentioned within the document: this
is called braindump. For example, a lawyer could add explanations about referring to
a specific regulation in a document (e.g. a EU directive), rather than others that could
seem more relevant in the context of the document. In this case, comments are used
for explaining the reasons that led to a specific formulation of the document itself, i.e.
they are used to complement the knowledge in the document with knowledge about
the process that generated it. A fundamental difference between braindump and
ontology-based annotation is related to privacy. Typically, braindump is confined
within an organisation’s boundary as it contains the history, methodologies and
motivations of a document; these are generally considered internal knowledge not to
be shared with the outside world. As an example during the writing of this paper
many comments were introduced by the authors as a way to discuss the paper content;
however the form you are reading does not include it. The reader’s braindump can
comment not just the document itself, but even the author’s annotations and
comments. In this way it adds a further layer to the document knowledge.

All types of annotations, besides their different nature, share the same view of
supporting “knowledge addition” by the different agents involved in the document
lifecycle: e.g., the author(s) and the reader(s). Differences in the agent’s role imply, in
our view, a difference in management. Reader’s tasks are different from the author’s
ones; for example, the ontology used for annotation can differ: inside an organisation
a document may be written by the legal department using a legal ontology and
accessed by the commercial department; the two departments are unlikely to share the
same ontology.

In this paper, we propose to adapt and use SW technologies in order to support
users during the lifecycle of a document, from production (writing), to consumption
(reading) and maintenance (revision). By integrating the modalities of knowledge
sharing offered by Semantic Web technologies, it is possible to create new
opportunities for supporting users that can dramatically change the way document are
written and read.

First and foremost, we claim that annotations (and especially ontological-based
ones) must be generated as part of the document production step (i.e. editing) rather
than during a separated step, as it happens in many of current approaches [8][11][5].
As a matter of fact, if annotations are added while documents are written, it is
possible to use them to retrieve relevant content, moving from a situation in which
they passively mark up the document content for future use (e.g. retrieval and
reasoning), to one in which they contribute to reuse and sharing of knowledge during
writing. This direction of research was preliminary explored by Carr et al [1] in the
WickOffice editor, where knowledge about the domain of academics aided filling a

1 Editorial tools like Microsoft Word and Adobe Acrobat provide tools to add comments.

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 625

pre-defined form (part A of an EPSRC project proposal). In that case, the knowledge
used was static, i.e. its use was specified a priori by the application via the definition
of the domain (knowledge about academics) and the form to be filled. The support
was limited to filling pre-determined fields, while no additional knowledge was
provided for writing the rest of the project proposal, especially its free text parts.

The system and the methodology we discuss here go one step further than that
initial proposal. Conversely from the current technology our approach:

1. Supports all types of enrichment mentioned above (comments, ontologically-
based and associated services, hyperlinking) both for author(s) and reader(s).
Annotations can be added in layers, i.e. on top of other annotations.

2. Is able to automatically suggest ontological-based annotation so that
annotations are immediately available and no separate annotation step is
required.

3. Is able to monitor user actions while editing and to provide automatic
suggestions about relevant content; support is not limited to filling forms and
other pre-determined structures, but it is extended to free text as well; this
enables timely reuse of existing knowledge when available.

The result is, in our view, a system that helps sharing and reusing existing
knowledge. Its intended use is mainly for KM, in order to support sharing and reusing
knowledge within an organisation. The system is called AktiveDoc and is discussed in
the next section.

2 AktiveDoc

AktiveDoc is a system for supporting knowledge management in the process of
document editing and reading. Its main feature is to support users (both readers and
writers) in timely sharing and reusing relevant knowledge. In particular, document
content and existing annotations are considered in the context of the user’s previous
knowledge; then further annotations and content are suggested for insertion. Proposals
are gathered from different sources, i.e., from:

- Information extraction processes applied on the document itself: possible
ontology-based annotations are automatically identified and proposed to the
user. If accepted, they become part of the enriched document. Such annotations
can be used again to connect to the KB and ontology as mentioned below.

- Available structured knowledge: existing annotations enable connections to
knowledge bases and ontologies, so that part of the knowledge stored there
can be proposed for inclusion in the document;

- Querying the Web or other external repositories, including querying both
other documents in a repository and their annotations. Examples of tasks
covered here are using a search engine or a SW harvester (e.g. Armadillo
[2]) or retrieving pictures.

While many current systems modify the original document to add annotations,
AktiveDoc saves them in a separate database. This is in order to allow levels of
security and privacy: as mentioned above, there can be different levels of

626 V. Lanfranchi, F. Ciravegna, and D. Petrelli

confidentiality associated to the document enrichment. Therefore, annotations are
stored in a database and superimposed to the document during the process of rendering
according to a user profile. Annotations can be (1) public, (2) private or (3)
confidential: only the ones for which the user has permission are actually displayed.
An export facility allows producing a version of the document containing the required
level of enrichment. For example, when the document is published (like the document
you are reading now), only the annotations labelled as public are included. Documents
are saved in a KM system that acts as a knowledge base: every document is logically
associated to its annotations.

AktiveDoc’s architecture is composable so that it can accommodate different user
scenarios. Composition is done by integrating different Semantic Web technologies
and functionalities via SW Services. The rest of the section presents the system
architecture and its main functionalities.

Fig. 1. The AktiveDoc interface during editing: the name (Fabio Ciravegna) has been annotated
(in the centre); content suggestions from the system are displayed in the lower frames

2.1 User Interface

The actual appearance of the editor depends on the application it is used for. In
general, the interface is composed by (Figure 1):

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 627

• An editing window (top right) with formatting commands organized in
toolbars;

• The ontology on a side panel (left);
• A set of lower frames that visualise system suggestions, contributions and

proposed annotations (in Figure 1 the results of searching a proper name
with a search engine, and a set of pictures from a database);

• Braindumps presented in a way similar to MS Word (shown in Figure 3).

The actual appearance for a specific application is decided during a setup phase
where the different services are connected (mainly using Semantic Web Services) and
assigned a portion of the editor for outputting results or receiving input. Input is
provided by highlighting portion of text in the main pane and activating a service (e.g.
search with a search engine).

2.2 Ontology-Based Enrichment

Concerning ontology based enrichment, the following kinds of services are provided:
manual and semi-automatic annotation, and association of services. Manual
annotations requires users to associate (portions of) documents to the ontology or KB
in a way similar to what required by tools like Cream. Like in Melita [3], a graphical
interface is provided where colours are associated to entities; a mouse click is needed
to associate the selected text to a concept. The ontology used to annotate the
document is chosen by the user uploading it in RDF format.

Fig. 2. (part of the) the interface for browsing a document showing one suggestion for
additional content. No editing facilities are provided, except for comments and adding
annotations

When working in a semi-automatic approach, the system learns from previous
annotations how to suggest annotations while the document is edited. Again, the

628 V. Lanfranchi, F. Ciravegna, and D. Petrelli

reference model is Melita’s. Users can accept or reject annotations. User reactions to
suggestions are used for further learning. The automatic detection provides efficiency
(i.e. annotation is instantly available) while user corrections provide precision (i.e.
only the truly important information is actually included in the annotation). Learning
is based on a machine learning system connected to the interface. The current
implementation connects to Amilcare [4]. The cycle annotation, correction and retrain
is imported from Melita and the same strategy for avoiding intrusivity is used here
[3]. The difference is that in the original implementation, Melita did not allow editing
of document. This required implementing a specific annotation step. Moreover, it
prevented the implementation of the strategies for content suggestion during editing
mentioned below.

2.3 Inserting Unstructured Annotations (Braindumps)

AktiveDoc accommodates insertion of free text comments into the document. As
mentioned before, braindump can be done at any stage of the document lifecycle, both
while editing and while reading. As in other tools, to insert a comment, the portion of
document is highlighted and a button “Add Comment” is pressed. The comment will
then be shown as a “plus” in the editor window (Figure 3). The comment can be
expanded by clicking on the “plus”.

Fig. 3. The AktiveDoc interface while comments are inserted: a “+” marks a comment (related
to the concept Fabio Ciravegna); in the lower-right frame all the comments are listed

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 629

Comments are organized in layers: a user may add comments to other users’
comments; they can also add annotations to their or other people’s comments. Finally,
they can add System-suggested content (see next subsection) directly into comments.
As for any type of annotation comments are stored in the database with authorship
and level of confidentiality, to guarantee privacy and security.

2.4 Supporting Content Generation

As mentioned, one of the main features of AktiveDoc are active suggestions of
relevant content to authors and readers in order to enable knowledge sharing and
timely reuse. Knowledge is retrieved by external composable Web Services that
exchange knowledge with the editor via the ontology.

When a portion of document is selected, services are made available depending on
the annotations contained in the portion of text (if any) and on the string. For
example, in Figure 3 in the lower-left frame the services associated to the annotated
string “Fabio Ciravegna” are shown. Information about the individual are retrieved
from a KB and other services are made available. Services are associated to types in
the ontology and depend on the specific application.

A similar process was proposed in Magpie [5]. The difference with Magpie is that
in Magpie annotation is not provided while editing but only in displaying the
document. As mentioned, providing services during editing enables retrieving new
content to be added to the document, therefore knowledge sharing and reuse is
possible for the author and not only for the reader. Also, in Magpie annotations are
generated only using a named entity recognizer (eSpotter [12]), therefore they are
quite shallow; moreover, a rule based Named Entity ecognizer is used, and any
addition of coverage to the recognizer requires rule writing by an expert. In
AktiveDoc, annotations are either produced automatically by a system that learns
from examples (Amilcare) or manually by the user. Also annotation is not limited to
generic named entity recognition. In the current implementation connections to
Armadillo (knowledge harvester) [2], Search engines (e.g. Google) and to structured
resources (databases and knowledge bases [6]) are provided as shown in Figure 3 in
the lower-left.

The activation of services is not automatic, but it requires a user action. This is
done in order both to avoid spending CPU time on irrelevant tasks (that is one of the
requirements for non intrusivity for automatic annotation [2]) and to avoid
overwhelming users with (possibly irrelevant) suggestions (another requirement for
automatic annotation).

Suggestions are presented to the user in a frame different from the one used for the
document (and on which the user is working), so to avoid distracting the user
attention when they appear. The interface currently allows both textual content (as in
content retrieved from Google Web Service or Armadillo RDF repository) and
multimedia content to be displayed (e.g. images retrieved by Armadillo see Figure 1).

Visualised suggestions can be inserted either directly into the document or as
comment by dragging them in the wanted position.

R

630 V. Lanfranchi, F. Ciravegna, and D. Petrelli

3 Architecture and Implementation

AktiveDoc is a client-server application integrated in a Web Based KM System. The
system is based on an interface that interacts with user’s actions and timely calls the
appropriate modules for executing the actions. The main system’s components are:
(1) Annotation module and (2) Information module.

The information module (IM) is in charge of connecting to the appropriate
information source and retrieving content to be suggested to the user; when the user
selects a portion of document, the IM extracts the string and the contained annotations
(if any) and sends them to the available services. Then it collects their results and
presents it into the user interface. The annotations module is responsible for saving
the annotations inserted by the user and for retrieving the automatic annotations
provided by the system via Amilcare. Both modules are integrated in the user
interface and are active only when a user's action requests them.

The system contains also an Ontology Module that is in charge of interpreting the
RDF ontology the user loads and of visualizing it using appropriate style sheets. The
editor interface is based on HTMLArea, a free, open source utility developed by
interactivetools.com to convert a <textarea> field into a WYSIWYG editor. In this
way HTML documents can easily be opened and visualized correctly in the system
and new documents can be created using the formatting facilities offered by HTML.
Several frames are inserted in the main interface to allow displaying the ontology, the
available services and the retrieved content. The interface is based on Javascript and
JSP functions. Documents and annotations are saved in a MySQL database. Support
for Semantic Web Services is provided by the Armadillo infrastructure [10].

Fig. 5. An example of AktiveDoc application architecture

4 Discussion and Conclusions

In this paper we have presented a tool for supporting users during the lifecycle of a
document, from production (writing) to consumption (reading and publishing). The
tool integrates Semantic Web technologies to support users in adding knowledge to
the document. In particular, writers can receive suggestions on relevant content
(enabling reuse of knowledge) and can be supported in producing ontology-based
annotations (that will empower the Semantic Web). Also textual comments are

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 631

enabled in order to add further knowledge to documents. Potentially2 the system is
also able to suggest relevant content after the document is published, in order to allow
document maintenance (e.g. newly available content could be communicated to the
author even after the release of the paper).

Readers are able to access the enriched document produced by the authors using
AktiveDoc. Moreover, in case their task differs from the author’s one (e.g. they use a
different ontology), they receive the same kind of support authors receive (relevant
content suggestion, ontology based annotation, etc.); this enables reading in the
context of their knowledge rather than in the author’s one.

AktiveDoc has been designed mainly with Knowledge Management in mind,
specifically in order to help reusing and sharing knowledge. These are fundamental
needs in enterprises: according to some recent statistics, knowledge workers spend
between 15% and 35% of their time in searching for knowledge3. Also, “lack of
efficient publishing capabilities for digital content costs organizations $750 billion
annually due to wasted time spent by knowledge workers seeking and capturing
information necessary for them to do their jobs4”. By providing both ontology-based
annotations and the suggestion of relevant content, we enable knowledge reusing.
Knowledge sharing is empowered by layered comments and also by the searching
capabilities provided by ontology-based annotations.

Annotations and services are stamped with authorship and are not saved in the
document, so to allow confidentiality when needed. Marking authorship has also
two other positive side effects. On the one hand it can contribute to identifying
experts, a well known problem in large organizations. Associating annotations to
documents means having coped with a problem, therefore it is possible to identify
who works on specific problems by inspecting what documents a person has
worked on. In traditional environments only the author can be tracked, not the
readers On the other hand, it allows implementing strategies of company
management that rewards who shares knowledge within the company. The amount
of sharing can be counted starting from the value and quantity of annotations
provided to documents.

Future work on AktiveDoc will include the extension of the base of services
provided and a field user test in a KM environment.

References

1. L. Carr, T. Miles-Board, A. Woukeu, G. Wills and W. Hall. The Case for Explicit Knowl-
edge in Documents. In Proceedings of ACM Symposium on Document Engineering ,
pages pp. 90-98, Milwaukee, Wisconsin.

2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, Yorick Wilks. Learning to Harvest
Informa-tion for the Semantic Web. In Proceedings of the 1st European Semantic Web
Symposium, Heraklion, Greece, May 10-12, 2004

2 This is a potential feature because it has not been implemented yet.
3 KMWorld Volume 13, Issue 3, March 2004.
4 A.T. Kearney, Network Publishing study, April 2001.

632 V. Lanfranchi, F. Ciravegna, and D. Petrelli

3. Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli and Yorick Wilks. User-System
Coopera-tion in Document Annotation based on Information Extraction. In Asuncion
Gomez-Perez, V. Richard Benjamins (eds.): Knowledge Engineering and Knowledge
Management (Ontologies and the Semantic Web), Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management (EKAW02), 1-4
October 2002 - Sigüenza (Spain), Lecture Notes in Artificial Intelligence 2473, Springer
Verlag

4. Fabio Ciravegna and Yorick Wilks: Designing Adaptive Information Extraction for the
Semantic Web in Amilcare, in S. Handschuh and S. Staab (eds), Annotation for the
Seman-tic Web, in the Series Frontiers in Artificial Intelligence and Applications by IOS
Press, Amsterdam, 2003.

5. M. Dzbor, J. Domingue and E. Motta: Magpie: Towards a Semantic Web Browser. In
Proc. of the 2nd Intl. Semantic Web Conf. (ISWC). 2003. Florida, USA.

6. Hugh Glaser, Harith Alani, Les Carr, Sam Chapman, Fabio Ciravegna, Alexiei Dingli,
Nicholas Gibbins, Stephen Harris, M.C. Schraefel, and Nigel Shadbolt CS AKTiveSpace:
Building a Semantic Web Application. In Proceedings of the 1st Euro-pean Semantic Web
Symposium, Heraklion, Greece, May 10-12, 2004

7. C. A.Goble, S. Bechhofer, L. Carr, D. De Roure, W. Hall. Conceptual Open Hypermedia
= The Semantic Web?. In Proc. Of The Second International Workshop on the Semantic
Web, Hong Kong, 2001.

8. S. Handschuh, S. Staab. CREAM - CREAting Metadata for the Semantic Web. Computer
Networks. 42, pp. 579-598, Elsevier 2003

9. J. Kahan, M. Koivunen, E. Prud'Hommeaux, and R. Swick. Annotea: An Open RDF Infra-
structure for Shared Web Annotations. In Proc. of the WWW10 International Conference.
Hong Kong, 2001.

10. Barry Norton, Sam Chapman and Fabio Ciravegna. Developing a Service-Oriented Archi-
tecture to Harvest Information for the Semantic Web. In Proc. Of 1st AKT Workshop on
Semantic Web Services, 2004.

11. Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lanzoni, Arthur Stutt and
Fabio Ciravegna "MnM: Ontology Driven Semi-Automatic and Automatic Support for
Semantic Markup", The 13th International Conference on Knowledge Engineering and
Management (EKAW 2002), ed Gomez-Perez, A., Springer Verlag, 2002.

12. Jianhan Zhu, Victoria Uren, and Enrico Motta. ESpotter: Adaptive Named Entity Recogni-
tion for Web Browsing. To appear in Proc. of Workshop on IT Tools for Knowledge
Management Systems at WM2005 Conference, Kaiserslautern, Germany, April 11-13,
2005.

Semantic-Based Automated Composition of Distributed
Learning Objects for Personalized E-Learning

Simona Colucci1,3, Tommaso Di Noia1, Eugenio Di Sciascio1,
Francesco M. Donini2, and Azzurra Ragone1

1 Politecnico di Bari, Via Re David, 200, I-70125, Bari, Italy
{s.colucci, t.dinoia, disciascio, a.ragone}@poliba.it

2 Università della Tuscia, via San Carlo, 32, I-01100, Viterbo, Italy
donini@unitus.it

3 Knowledge Media Institute, The Open University, MK7 6AA, United Kingdom

Abstract. Recent advances in e-learning techonologies and web services make
realistic the idea that courseware for personalized e-learning can be built by dy-
namic composition of distributed learning objects, available as web-services. To
be assembled in an automated way, learning objects metadata have to be ex-
ploited, associating unambiguous and semantically rich descriptions, to be used
for such an automated composition. To this aim, we present a framework and al-
gorithms for semantic-based learning objects composition, fully compliant with
Semantic Web technologies. In particular our metadata refer to ontologies built
on a subset of OWL-DL, and we show how novel inference services in De-
scription Logics can be used to compose dynamically, in an approximated –but
computationally tractable– way learning resources, given a requested courseware
description.

1 Introduction

Since the beginnings, the World Wide Web has played a key role in changing the way
learning and teaching were delivered. The term e-learning has become common, de-
scribing several concepts, from complete web-based courses to distance learning and
tutoring.

Recently, also thanks to various standardization efforts [2], emphasis has been placed
on the concept of learning object i.e., small and easily reusable educational resources to
be composed to allow personalized instruction and courseware creation [21, 9, 4, 30].

Obviously, discovery and composition –according e.g., to prerequisite material– of
such learning objects in an automated way requires the association of unambiguous and
semantically rich metadata, defined in accordance with shared ontologies. The LOM
(Learning Object Metadata) [1] standard, though limited in the basic annotation items,
allows to freely define annotated metadata describing a learning resource.

The semantic-based annotation of educational resources is hence fully in the stream
of the Semantic Web initiative [29], and it can share with it both techniques and ap-
proaches [26, 8, 17]. In particular, as more and more learning objects become available
on the Web as services with well-defined machine interpretable interfaces as described

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 633–648, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

634 S. Colucci et al.

e.g., in OWL-S [28, 22], personalized learning units can be built by scratch, by re-
trieving learning resources, which are in this scenario semantic-enabled web services
themselves [25, 19, 15]. Automated composition of learning resources, exposed as web
services for example, can then match a personalized learning need.

In this paper we propose a framework and an approach where, given a specification
of courseware described using a subset of OWL-DL [24], we are able to discover and
compose, using semantics of descriptions, learning resources covering as much as as
possible the learning need, and orchestrating resources according to specified prereq-
uisites. Furthermore, thanks to recently introduced inference services, when available
resources are unable to fulfill the needs, our approach provides an explanation of what is
missing to fully cover the request. We show how this is obtained by presenting a greedy
algorithm for Concept Covering in a subset of OWL-DL and exploit it for semantic
service discovery. Our framework also allows to carry out the assembly and integration
of learning objects. The greedy algorithm takes into account approximate solutions and
is computed in polynomial time.

The remaining of the paper is structured as follows: next section describes basics
of Description Logics and the subset of OWL-DL we concentrate on; then we present
our extension of Concept Covering [18] definition and a greedy algorithm, which uses
Concept Abduction [13], to determine a Concept Cover. In Section 3 we exploit the
previously defined Concept Covering algorithm in a general framework to carry out a
semantic learning objects assembly and orchestration. The approach, and behavior of
the related algorithms, are thoroughly explained with the aid of an example in Section
5. Last Section draws the conclusions and outlines future research directions.

2 Basic of Description Logics

We start with a brief guided tour of Description Logics (DLs)and their interaction
with novel languages for the Semantic Web. DLs[5] are a family of logic for-
malisms whose basic syntax elements are concept names, e.g., WebService,
ProceduralLanguage, Java, and role names, such as
allowedTechnologies, hasProgrammingLanguages. Intuitively, con-
cepts stand for sets of objects, and roles link objects in different concepts. Formally,
concepts are interpreted as subsets of a domain of interpretation Δ, and roles as binary
relations (subsets of Δ × Δ). Basic elements can be combined using constructors to
form concept and role expressions, and each DL has its distinguished set of construc-
tors. Every DL allows one to form a conjunction of concepts, usually denoted as
;
some DL include also disjunction � and complement ¬ to close concept expressions
under boolean operations. Roles can be combined with concepts using existential role
quantification, e.g., WYSIWYGtool
 ∃allowedTechnologies.WebService,
which describes a WYSIWYG tool allowing Web services development, and uni-
versal role quantification, e.g., IDE
 ∀hasProgrammingLanguage.Java,
which describes a tool to handle only java code. Other constructs may involve
counting, as number restrictions: Tool
 (≤ 2 hasProgrammingLanguage)

∀hasProgrammingLanguage.OOL expresses a tool allowing at most two dif-
ferent kinds of object oriented languages. Many other constructs can be defined,

Semantic-Based Automated Composition of Distributed Learning Objects 635

increasing the expressive power of the DL, up to n-ary relations [10]. Concept
expressions can be used in inclusion assertions, and definitions, which impose
restrictions on possible interpretations according to the knowledge elicited for a
given domain. For example, we could impose that a IDE is a WYSIWYG tool using
the following inclusion: IDE � ∃develTool
 ∀develTool.WYSIWYGtool.
Definitions are useful to give a meaningful name to particular combinations, as in
OOP ≡ ∀programming.∀language.OOL. Historically, sets of such inclusions are
called TBox (Terminological Box). The basic reasoning problems for concepts in a
DL are satisfiability, which accounts for the internal coherency of the description of a
concept (no contradictory properties are present), and subsumption, which accounts
for the more general/more specific relation among concepts, that forms the basis of
a taxonomy. More formally, a concept C is satisfiable if there exists an interpretation
in which C is mapped into a nonempty set unsatisfiable otherwise. If a TBox T is
present, satisfiability is relative to the models of T , that is, the interpretation assigning
C to a nonempty set must be a model of the inclusions in T . A concept C subsumes
a concept D if every interpretation assigns to C a subset of the set assigned to D.
Also subsumption is usually established relative to a TBox, a relation that we denote
T |= C � D. Also a TBox can be said satisfiable if there exist at least one model (i.e.,
an interpretation fulfilling all its inclusions in a nontrivial way).

It is easy to see that T in DLs represents what is called an ontology in a knowl-
edge representation system. In the rest of the paper we refer to the ALN (Attributive
Language with unqualified Number restrictions) DL, a subset of OWL-DL. Constructs
allowed in an ALN DL are:

– � universal concept. All the objects in the domain.
– ⊥ bottom concept. The empty set.
– A atomic concepts. All the objects belonging to the set represented by A.
– ¬A atomic negation. All the objects not belonging to the set represented by A.
– C
 D intersection. The objects belonging both to C and D.
– ∀R.C universal restriction. All the objects participating to the R relation whose

range are all the objects belonging to C.
– ∃R unqualified existential restriction. There exists at least one object participating

in the relation R.
– (≥ n R)|(≤ n R)|(= n R). Respectively the minimum, the maximum and the

exact number of objects participating in the relation R.

We use a simple−TBox in order to express the relations among objects in the domain.
With a simple−TBox in all the axioms (for both inclusion and definition) the left side
is represented by a concept name.

Ontologies using the above logic can be easily modeled using languages for the
Semantic Web [12, 23, 24]. These languages have been conceived to allow for represen-
tation of machine understandable, unambiguous, description of web content through
the creation of domain ontologies, and aim at increasing openness and interoperability
in the web environment. The strong relations between DLs and the above introduced
languages for the Semantic Web [7] is also evident in the definition of the three OWL
sub-languages. OWL-Lite allows class hierarchy and simple constraints on relation be-
tween classes; OWL-DL is based on Description Logics theoretical studies, it allows a

636 S. Colucci et al.

Table 1. Correspondence between OWL-DL and ALN DL syntax

OWL syntax DL syntax

< owl : Thing/ > �
< owl : Nothing/ > ⊥

< owl : Classrdf : ID = ”C”/ > C

< owl : ObjectPropertyrdf : ID = ”R”/ > R

< rdfs : subClassOf/ > �
< owl : equivalentClass/ > ≡
< owl : disjointWith/ > ¬

< owl : intersectionOf/ >

< owl : allV aluesFrom/ > ∀

< owl : someV aluesFrom/ > ∃
< owl : maxCardinality/ > ≤
< owl : minCardinality/ > ≥

< owl : cardinality/ > =

great expressiveness keeping computational completeness and decidability; OWL-Full:
using such a language, there is a huge syntactic flexibility and expressiveness. This
freedom is paid in terms of no computational guarantee.

The subset of OWL-DL Tags allowing to express an ALN DL is presented in Table
1. In the rest of the paper we will use DL syntax instead of OWL-DL syntax, to make
expressions much more compact.

3 Concept Covering in DLs

Standard inference services in DLs include subsumption and satisfiability. These are
enough when a yes/no answer is needed. However there are scenarios that require ex-
planation. In [13] the Concept Abduction Problem (CAP) was introduced and defined as
a non standard inference problem for DLs to provide an explanation when subsumption
does not hold.

Definition 1. Let C, D, be two concepts in a Description Logic L, and T be a set
of axioms, where both C and D are satisfiable in T . A Concept Abduction Problem
(CAP), denoted as 〈L, C,D, T 〉, is finding a concept H such that T �|= C
 H ≡ ⊥,
and T |= C
 H � D.

We use P as a symbol for a CAP, and we denote with SOL(P) the set of all solutions
to a CAP P .

In [13] also minimality criteria for H and a polynomial algorithm to find solutions
which are irreducible, for an ALN DL, have been proposed.

Given a CAP, if H is a conjunction of concepts and no sub-conjunction of concepts
in H is a solution to the CAP, then H is an irreducible solution. The rankPotential
algorithm [14] allows to numerically compute the *length* of H .

The solution to a CAP can be interpreted as what has to be hypothesized in C, and
in a second step added to, in order to make C more specific than D? In other words

Semantic-Based Automated Composition of Distributed Learning Objects 637

H is what is expressed, explicitly or implicitly, in D and is not present in C, or again
which part of D is not covered by C. On the basis of the latter remark in the following
we will show how to use concept abduction to perform a ”concept covering”.

In [18] the best covering problem in DLs was introduced as ”...a new instance of the
problem of rewriting concepts using terminologies”.

That is, given a concept C and a set of concept definitions in a terminology T , find
concepts defined in T such that their conjunction can be an approximation of C.

In order to define a concept covering two non standard inference services were there
used: the least common subsumer (lcs)[6] and the difference or subtraction operation
[27]. Unfortunately, as the authors admitted, the difference operator makes sense only
for a limited set of DLs, and surely not for the ALN (we do not delve into details, for
a complete description see [27]).

In a more formal way the authors of [18] defined cover as follows.

Definition 2. Let L be a Description Logic with structural subsumption, T be a ter-
minology using operator allowed by L, R be the set of concept definitions in T ,
R = {Si, i ∈ [1..n]}, and D be a concept in L such that T �|= D ≡ ⊥. A cover
of a D using T is finding a set Rc ⊆ R such that
Si), conjunction of all the Si ∈ Rc

is such that D − lcsT (D,
Si) �≡ D.

That is, a cover is finding a set of concepts defined in T such that they contain the
information in D. Notice that a DL with structural subsumption is needed in order to
use concept difference. In [18] also an hypergraphs based methodology is presented to
compute best covers.

We extended the previous definition, in terms of a Concept Covering Problem, both
eliminating limitations on L to be used and rewriting it in terms of Concept Abduction.

Definition 3. Let D be a concept, R = {S1, S2, ..., Sk} be a set of concepts in a De-
scription Logic L, and T be a set of axioms, where D and Si, i = 1..k are satisfiable
in T .

1. A Concept Covering Problem (CCoP), denoted as 〈L,R, D, T 〉, is finding, if it
exists, a set Rc ⊆ R, such that both for each Sj ∈ Rc, T �|=
Sj ≡ ⊥, and
H ∈ SOL(〈L,
Sj , D, T 〉) is such that H �� D.

2. We call 〈Rc,H〉 a solution for the CCoP 〈L,R, D, T 〉.

In the above definition the elements for the solution 〈Rc,H〉 of a CCoP represent re-
spectively:

– Rc. Which concepts in R represent the cover for D w.r.t. T .
– H . What is still in D and is not covered by concepts in R.

We say that Rc covers D and we use the symbol V for CCoP and SOLCCoP (V) for
the set of all the solution to a CCoP V . Actually, there are several solution for a single
CCoP, depending also on the strategy adopted for searching concepts belonging to Rc.
Based on the definition of Concept Covering Problem we now define the best cover and
the exact cover.

638 S. Colucci et al.

Definition 4. Given V , a best cover for V , w.r.t. an order ≺ for L, is a solution
〈Rc,Hb〉 ∈ SOLCCoP (V) such that there is no other 〈R′

c,H
′〉 ∈ SOLCCoP (V)

with H ′ ≺ Hb.

There is no solution 〈R′
c,H

′〉 for V such that H ′, the remaining part of D yet to be
covered, is *smaller* than Hb.

Definition 5. Given V , a full cover for V is a solution ∈ SOLCCoP (V) such that
He ≡ �.

Having a set R of concepts Si, i = 1..k, we want to find a subset Rc of R, if it ex-
ists, such that the conjunction of all the concepts in Rc is more specific than, i.e., it is
subsumed by, D. In other words, we are looking for a set of concepts that completely
cover D.

3.1 An Algorithm to Solve a CCoP

It is well known that the general set-covering problem is NP-Hard. Here we adapt a
tractable greedy set-covering algorithm [11] to compute a CCoP.

Algorithm GREEDY solveCCoP (R, D, T)
input concepts D, Si ∈ R, i = 1..k, where D and
Si are satisfiable in T
output 〈Rc, H〉
begin algorithm

Rc = ∅;
Duncovered = D;
Hmin = D;
do

Smin = �;
/* [♣] Perform a greedy search among Si ∈ R */
for each Si ∈ R

if Rc ∪ {Si} is a cover for Duncovered then
H = solveCAP (〈L, Si, Duncovered, T 〉);
/* [♦] Choose Si based on an order */
if H ≺ Hmin then
Smin = Si;
Hmin = H;

end if
end if

end for each
/* [♠] If a new Si is found then add Si to Rc

and remove it from R */
if Smin �≡ � then
R = R\{Si};
Rc = Rc ∪ {Si};
Duncovered = Hmin;

end if
/* [♥] Continue searching until no Si is found */

while(Smin �≡ �);
return 〈Rc, Duncovered〉;

end algorithm

The algorithm tries to cover D *as much as possible*, using the concepts Si ∈ R.

♥ If no new useful Si ∈ R is found, that is any Si such that it covers D more, then the
algorithm terminates.

♣ A greedy approach is used to choose the *candidates* for Rc.

Semantic-Based Automated Composition of Distributed Learning Objects 639

♦ Choose among the candidates the one such that H , solution for the local CAP, is
minimal w.r.t. an order ≺.

♠ If the greedy search returns a new Si, it is removed from R and added to Rc.

In [11] it is proved that, for a set covering problem, the solution grows logarithmi-
cally in the size of the set to be covered with respect to the minimal one. Hence the
complexity source is in the solution of the CAPs and the comparison in [♦]. For the
ALN DL, in [13] a polynomial algorithm (findIrred) is proposed to find irreducible
solutions for a CAP, and in [14] the tractable rankPotential is presented to rank con-
cepts. Using such algorithms it can be easily proved that also GREEDYsolveCCoP can
be solved in polynomial time. Obviously we are not claiming that we solve a covering
problem polynomially. The algorithm returns *a cover*, not the best one.

4 Semantic Enabled Learning Object Composition

In the following we present how to exploit the DL standard and non-standard inference
services in order to perform an automated composition of Learning Objects to assemble
personalized learning objectives. Here we do not refer to a particular model specifica-
tion but we propose a general framework based on OWL technologies for composition
which can be easily integrated in existing metadata specifications, such as SCORM [3],
LOM [1], IMS [20], Dublin Core [16].

Hereafter we will refer only to a specific portion of the Learning Object (λ) model,
but the approach can be easily extended taking into account all the information in the
model.

In our view, the discovery of Learning Objects to be composed is a sub-problem
of the more generic resource retrieval one. In this perspective, if there is a *learning
request* and a repository of learning objects potentially satisfying the learner specifi-
cations, a solution to a λ-retrieval problem is:

retrieve (a sequence of) some λs from the repository such that their composition
satisfies the request as far as possible.

Notice that we are not necessarily interested in a full satisfaction of the user request;
we want to satisfy it as much as possible.

If the system is not able to extract a set of objects from the repository such that they
completely fulfill the search goal, an approximate solution has to be taken into account,
possibly explaining the approximation.

To introduce and motivate the approach, we start with a model where both the learn-
ing request, denoted as ρ, and the λ information needed for discovery are represented
by an OWL-DL annotation. Then we will enrich the model adding features to compose
the discovered λs.

In the initial model we define both ρ and the description of each learning object λD

simply as DL concept descriptions w.r.t. an ontology T . We assume the existence of a
λs repository, where the all the information related to each λ is stored with respect to a
generic learning object model.

640 S. Colucci et al.

Given a λ request ρ modeled w.r.t. an ontology T , the steps needed in order to obtain
a set of λs satisfying ρ as much as possible are hence the following:

1. query the repository in order to obtain all the λ descriptions, λD, referring to the
same T . That is, they could perform the task required by the user.

2. create the set R collecting all the retrieved λD.
3. compute the solution 〈Rc,H〉 for the CCoP 〈L,R, ρ, T 〉 using the algorithm

GREEDY solveCCoP (R, ρ, T).
4. referring to 〈Rc,H〉 computed in the previous step, return to the user both Rc =

{λi}, representing the set of learning objects in the repository satisfying ρ, and H
as an explanation of what is not specified in any λi ∈ Rc.

Rc and H respectively represent the set of λcorresponding to an approximate solution
to the retrieval problem and the explanation why the solution is not an exact one.

Using the above approach a discovery process is performed for the λs in the repos-
itory, which can be composed in order to satisfy ρ as far as possible. Obviously, the
discovery of all the services in the repository is a trivial solution to the problem, of no
interest.

The composition of the discovered λi ∈ Rc requires further information to be taken
into account. Some λ may require background knowledge from the learner. If the user
does not hold specific knowledge, then she/he is not able to benefit from the use of λ.
The learner can get such information using the previous λ in a composition flow.

In order to benefit from the use of a λ, the user knowledge must satisfy the back-
ground knowledge required from λ.

4.1 Background Knowledge for Automated Lesson Composition

In order to deal with the execution information, we extend the previous model and
define:

Learning Request: ρ = 〈ρD, ρBK〉, where ρD is the description of the requested
lesson and ρBK represents the background knowledge owned by the requester before
looking for the courseware.

Learning Object:1 λ = 〈λD, λBK〉. λD describes the knowledge the user will
acquire after she/he uses λ. Using a language endowed with a well-defined syntax and
semantics, it models the offered knowledge. λBK is a representation of prerequisites in
order to benefit from λ.

ρD, ρBK, λD and λBK are modeled using OWL DL statements referring to an OWL
DL task ontology. Notice that ρBK = � or ρBK = � means, respectively, that the
user has not any knowledge related to the field she/he wants to learn about and that no
background knowledge is needed in order to benefit from the learning object.

For the sake of clarity, from now on we will model OWL DL expressions using their
equivalent DL formulation.

1 Without loss of generality here we consider only the information needed for a semantic dis-
covery and composition.

Semantic-Based Automated Composition of Distributed Learning Objects 641

A simple covering solution, as the one proposed above, cannot deal with the ρBK,
λBK specifications of the background knowledge respectively owned by the user and
required to benefit from λ. To compose Learning Objects dealing with their required
background knowledge, we introduce a definition of composite courseware.
A courseware flow with respect to some initial background knowledge ρBK, denoted as
Λ(ρBK), is a finite sequence of learning objects (λ1, λ2, ..., λi, ..., λn), where for each
learning object λi belonging to to the courseware, all the following conditions hold:

1. the background knowledge owned by the learner before benefiting from the lesson,
ρBK, is at least λ1

BK, that is the background knowledge required by λ1, the first
Learning Object of the sequence. In order to learn from a sequence of learning
objects (LOs), the user must have at least the knowledge required to learn from the
starting LOs.

2. after using λi−1, the user has a background knowledge which is at least λi
BK, i.e.,

the one required by the i-th Learning Object. While benefiting of the composite
LOs, the user acquires new knowledge which becomes part of her/his background.
Such an *updated* background knowledge must satisfy the λi requirements.

Now the question is: ”What is the background knowledge of the user after she/he ben-
efits from the (i-1)-th learning object”?

The background knowledge of the learner before the fruition of λi is the conjunction
of all the knowledge provided by λj

D, with j < i, and the initial background knowledge
ρBK.

Indicating with BKi the background knowledge before using λi, using the DL syn-
tax, the following relation ensues:

BKi = ρBK
 λ1
D
 λ2

D
 ...
 λi−1
D

We can now define formally a courseware flow.

Definition 6. A courseware flow with respect to some initial background knowledge
ρBK is a finite sequence of learning objects Λ(ρBK) = (λ1, λ2, ..., λi, ..., λn) with
i = 1..n, where for each λi ∈ Λ(ρBK) all the following conditions hold:

1. ρBK � λ1
BK.

2. BKi � λi
BK.

– We indicate with DΛ, the set of learning objects descriptions in Λ(ρBK). DΛ =
{λi

D|λi ∈ Λ(ρBK)}.

Based on the previous definition of courseware flow, it possible to define a com-
posite courseware with respect to a request ρ.

Definition 7. Let R = {〈λi
D, λi

BK〉}, with i=1..k, be a set of learning objects λi, and
〈ρD, ρBK〉 be a request for a courseware, such that λi

D, λi
BK, ρD and ρBK are modeled

as concept descriptions in a DL w.r.t. an ontology T .
A composite courseware for ρ = 〈ρD, ρBK〉 with respect to R, denoted Λ(ρ,R),

is a courseware flow such that for each λj in the courseware flow, DΛ = {λj
D|λj ∈

Λ(ρ,R)}, covers ρD.

642 S. Colucci et al.

Within a resource retrieval scenario, a composite courseware is a sequence of learn-
ing objects such that both the following conditions hold: it can be started using some
background knowledge the requester owns (ρBK) and the provided composite course-
ware covers the user request description (ρD).

4.2 Automated Composite Courseware Generation

We adapt now the previously introduced GREEDYsolveCCoP to cope with background
knowledge and present an algorithm to automatically compute a composite courseware.

For such purpose we need to define an usable learning object and an usable set.

Definition 8. Given a courseware flow Λ(ρBK) = (λ1, λ2, ..., λn), we say that a learn-
ing object is a usable learning object λu for Λ(ρBK) if and only if

1. λu �∈ Λ(ρBK).
2. Λ(ρBK) = (λ1, λ2, ..., λn, λu) is a courseware flow.

A usable learning object λu for Λ(ρBK) is a learning object which can be used after
the user benefits from Λ(ρBK), i.e., its required background knowledge is provided by
Λ(ρBK).

Actually, given a courseware flow, several usable learning objects exist.

Definition 9. Given a courseware flow Λ(ρBK) and a set of learning objects R = {λi}
we call usable set for Λ(ρBK), the set of all the λi ∈ R such that λi is a usable learning
object for Λ(ρBK)}. UΛ(ρBK) = {λi

u|λi
u is a usable learning object for Λ(ρBK)}

The usable set is hence the set of all the learning objects that can be used after the user
benefits from a courseware flow.

Algorithm teacher(R, 〈ρD, ρBK〉, T)

input a set of learning objects R = {λi = 〈λi
D, λi

BK〉}, a
request ρ = 〈ρD, ρBK〉, where λi

D , λi
BK, ρD and ρBK are satisfiable in T

output 〈Λ, H〉
begin algorithm

Λ(ρ,R) = ∅;
ρDuncovered

= ρD ;
Hmin = ρD ;
do

compute UΛ(ρ,R);
λDmin

= �;
for each λi ∈ UΛ(ρ,R)

if DΛ(ρ,R) ∪ {λi
D} covers ρDuncovered

then
H = solveCAP (〈L, λi

D, ρDuncovered
, T 〉);

if H ≺ Hmin then
λDmin

= λi
D ;

Hmin = H;
end if

end if
end for each
if λDmin

�≡ � then
R = R\{λi};
Λ(ρ,R) = (Λ(ρ,R), λi);
ρDuncovered

= Hmin;
end if

while(ρDmin
�≡ �);

return 〈Λ(ρ,R), ρDuncovered
〉;

end algorithm

Semantic-Based Automated Composition of Distributed Learning Objects 643

The algorithm returns the composite courseware Λ(ρ,R) and the uncovered
part, ρDuncovered

, of the request description ρD. The main difference between
GREEDY solveCCoP and teacher is that the learning objects to be added to the
lesson flow are searched for only within the current usable learning objects.

5 Example

In this section we show, with the aid of an example, the behavior of teacher with respect
to a scenario related to Computer Science teaching. In the example we will refer to
the toy ontology in Figure 1 in order to model ρD, ρBK, λD and λBK. We refer to a

WYSIWYGtool � Tool
IDE � ∃develTool
 ∀develTool.WYSIWYGtool
OOL � ProgrammingLanguage
ProceduralLanguage � ProgrammingLanguage
OOL � ¬ProceduralLanguage
Java � OOL
C++ � OOL
Java � ¬C++
OOP ≡ ∃language
 ∀language.OOL
WebService � DistributedTechnology
CORBA � DistributedTechnology
WebService � ¬CORBA

Fig. 1. The ontology used as reference in the example

student wishing to learn about Java programming language with the aim of web service
developing on a Unix platform, if specified. She/he has not any knowledge in that field.

ρD = ∃language
 ∀language.Java
 ∃allowedTechnologies

∀allowedTechnologies.WebService
 ∀OS.Unix
ρBK = �

The repository contains six learning objects related to the Computer Science domain.
R = {λa, λb, λc, λd, λe, λf}.

λa relates to Object Oriented Languages. It is addressed to beginners.
λa

D = ∃language
 ∀language.OOL
λa
BK = �

λb relates to Java language programming with the aid of an Integrated Development
Tool. It is addressed to Object Oriented programmers.
λb

D = ∃language
 ∀language.Java
 IDE
λb
BK = OOP

λc relates to C++ Languages programming. It is addressed to Object Oriented pro-
grammers.

644 S. Colucci et al.

λc
D = ∃language
 ∀language.C++

λc
BK = OOP

λd relates to the CORBA technology. It is addressed to Object Oriented programmers.
λd

D = ∃allowedTechnologies
 ∀allowedTechnologies.CORBA
λd
BK = OOP

λe relates to Web Services development with the aid of a WYSIWYG tool. It is
addressed to Java programmers.
λe

D = ∃develTool
 ∀develTool.WYSIWYGtool

∃allowedTechnologies
 ∀allowedTechnologies.WebService
λe
BK = ∃language
 ∀language.Java

λf is an introduction to distributed programming for beginners.
λf

D = ∃allowedTechnologies
 ∀allowedTechnologies.
DistributedTechnology
λf
BK = �

The first step in order to compute Λ(ρ,R) is to identify the initial UΛ(ρ,R) with respect
to an empty courseware flow Λ(ρ,R) = ∅ (U0 for short). As ρBK = � then

U0 = {λa, λf}

At this initial step ρDuncovered
= ρD then:

Hλa = ∃allowedTechnologies
∀allowedTechnologies.WebService

∀language.Java
 ∀OS.Unix

|Hλa | = 5

Hλf = ∃language
 ∀allowedTechnologies.WebService

∀language.Java
 ∀OS.Unix

|Hλf | = 6

Λ(ρ,R), ρDuncovered
and BK1 are now respectively:

– Λ(ρ,R) = (λa)
– ρDuncovered

= ∃allowedTechnologies

∀allowedTechnologies.WebService
 ∀language.Java
 ∀OS.Unix

– BK1 = ∃language
 ∀language.OOL

With respect to BK1, the new usable set U1 is:

U1 = {λb, λc, λd, λf}

With respect to U1 we have the following values:

Hλb = ∃allowedTechnologies
∀allowedTechnologies.WebService

∀OS.Unix

|Hλb | = 4

Semantic-Based Automated Composition of Distributed Learning Objects 645

Hλc =NOT COMPUTED
|Hλc | =NOT COMPUTED

Hλd =NOT COMPUTED
|Hλd | =NOT COMPUTED

Hλf = ∀allowedTechnologies.WebService
 ∀language.Java

∀OS.Unix

|Hλf | = 5

Both Hλc and Hλd are not computed because the information provided by λc and
λd is not compatible with the uncovered one and this situation is not allowed by the
Concept Abduction definition. Respectively, λc offers knowledge on C++ and the user is
looking for Javawhile λd is about CORBAwhile the user is looking for WebService.
The updated Λ(ρ,R), ρDuncovered

and BK2 are

– Λ(ρ,R) = (λa, λb)
– ρDuncovered

= ∃allowedTechnologies

∀allowedTechnologies.WebService
 ∀OS.Unix

– BK2 = ∃language
 ∀language.Java
 IDE

For the next step the new usable set is:

U2 = {λc, λd, λe, λf}

Now, with respect to U2 we have :

Hλc =NOT COMPUTED
|Hλc | =NOT COMPUTED

Hλd =NOT COMPUTED
|Hλd | =NOT COMPUTED

Hλe = ∀OS.Unix
|Hλe | = 1

Hλf = ∀allowedTechnologies.WebService
 ∀OS.Unix
|Hλf | = 2

Again Hλc and Hλd are not computed, but this time the reason is related to the def-
inition of Concept Covering. In fact the description of both λc and λd is not compatible
with the one belonging to the conjunction of λa and λb.

– Λ(ρ,R) = (λa, λb, λe)
– ρDuncovered

= ∀OS.Unix
– BK2 = ∃language
 ∀language.Java
 IDE

∃allowedTechnologies
 ∀allowedTechnologies.WebService

646 S. Colucci et al.

It is easy to show that, at this point teacher(R, 〈ρD, ρBK〉, T) stops and it returns:

〈Λ,H〉 = 〈(λa, λb, λe),∀OS.Unix〉

The proposed courseware, with respect to the available λi in the repository, for the
request ρ is then (λa, λb, λe), but ρ is not completely satisfied by the returned Λ because
nothing is specified about the platform that will be used (∀OS.Unix).

A prototype system integrated in the MAMAS framework
(http://193.204.59.227:8080/MAMAS-devel) has been developed implementing
teacher algorithm and exploiting standard (Semantic) Web technologies. The message
exchanging is performed using SOAP messages. The semantic information in the body
of such messages is formatted using OWL as explained is Section 2.

6 Conclusion and Future Work

In this work we proposed a tractable greedy algorithm to perform an automated course-
ware composition compliant with the standard Semantic Web technologies and exploit-
ing standard and novel non-standard inference services for Description Logics. We pre-
sented motivations and examples for the approach.

We showed how a semantic specification, formatted in OWL-DL, of the learning
objects (LOs) can be used both to retrieve from a repository LOs satisfying a user
request and to compose such discovered LOs in a courseware.

The proposed approach also copes with non-exact solutions to the courseware com-
position. That is, if it is not possible to compose, using available LOs, a courseware
which completely satisfies the user request, approximate solutions are proposed en-
dowed with an explanation for the non-exact match.

Currently we are developing ontologies related to different tasks, in order to perform
further experiments on real scenarios. Under development is also the integration of the
implemented prototype with the SCORM specifications.

References

1. IEEE Standard for Learning Object Metadata, std 1484.12.1-2002 edition, 2002.
2. IEEE standard for learning technology-learning technology systems architecture (LTSA), std

1484.1-2003 edition, 2003.
3. Advanced Distributed Systems (ADL) Lab, Sharable Content Object Reference Model

(SCORM). http://www.adlnet.org/index.cfm?fuseaction=scormabt.
4. K. Ajami. Specifying and implementing interoperable and reusable learning objects: one

step beyond. In Proc. of Intl. Conf. on Information and Communication Technologies: From
Theory to Applications, pages 111–112, 2004.

5. F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2002.

6. Franz Baader. Least common subsumers and most specific concepts in a description logic
with existential restrictions and terminological cycles. In Proc. International Joint Confer-
ence on Artificial Intelligence (IJCAI2003), pages 319–324, 2003.

Semantic-Based Automated Composition of Distributed Learning Objects 647

7. Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology languages for
the semantic web. In Dieter Hutter and Werner Stephan, editors, Festschrift in honor of Jörg
Siekmann, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003.

8. N. Bennacer, Y. Bourda, and B. Doan. Formalizing for querying learning objects using
OWL. In Proc. of Intl. Conf. on Advanced Learning Technologies, pages 321–325. IEEE,
2004.

9. A.S. Cabezuelo and J.M.D Beardo. Towards a model of quality for learning ob-
jects. In Proc. of Intl. Conf. on Advanced Learning Technologies, pages 822–825. IEEE,
2004.

10. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query Contain-
ment under Constraints. In Proceedings of the Seventeenth ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS’98), pages 149–158, 1998.

11. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The Massachusetts Institute of Technology, 1990.

12. DAML+OIL Specifications. www.daml.org/2001/03/daml+oil-index.html, 2001.
13. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive matchmaking us-

ing description logics. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 337–342, Acapulco, Messico, August 9–15 2003.
Morgan Kaufmann, Los Altos.

14. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for principled
Matchmaking in an electronic marketplace. In Proc. International World Wide Web
Conference (WWW ’03), pages 321–330, Budapest, Hungary, May 20–24 2003. ACM,
New York.

15. Peter Dolog, Nicola Henze, Wolfgang Nejdl, and Michael Sintek. Student tracking and per-
sonalization: Personalization in distributed e-learning environments. In Proc. International
World Wide Web Conference (WWW ’04), 2004. Alternate track papers and posters.

16. Dublin Core Metadata Element Set, Version 1.1: Reference Description .
http://dublincore.org/documents/1999/07/02/dces/.

17. D. Gasevic, J. Jovanovic, and V. Devedzic. Enhancing learning object content on the seman-
tic web. In Proc. of Intl. Conf. on Advanced Learning Technologies, pages 714–716. IEEE,
2004.

18. Mohand-Sad Hacid, Alain Leger, Christophe Rey, and Farouk Toumani. Computing Concept
Covers: a Preliminary Report. In Proc. of the 15th Intl. Workshop on Description Logics
(DL’02), volume 53 of CEUR Workshop Proceedings, 2002.

19. Marek Hatala, Griff Richards, Timmy Eap, and Jordan Willms. Sharing educational re-
sources: The interoperability of learning object repositories and services: standards, imple-
mentations and lessons learned. In Proc. International World Wide Web Conference (WWW
’04), 2004. Alternate track papers and posters.

20. IMS, Learning Resource Meta-data Best Practices and Implementation Guide Version 1.1 -
Final Specification . http://www.imsproject.org/metadata/mdbestv1p1.html.

21. A. Ip, A. Young, and I. Morrison. Learning objects - Whose are they? In Proc. of 15 th
Conf. of the National Advisory Committee on Computing Qualifications, pages 315–320,
2002.

22. Sycara Katia, Paolucci Massimo, Ankolekar Anupriya, and Naveen Srinivasan. Automated
Discovery, Interaction and Composition of Semantic Web Services. Journal of Web Seman-
tics, 1, December 2003.

23. D.L. McGuinness, R. Fikes, J. Hendler, and L.A. Stein. DAML+OIL: An Ontology Lan-
guage for the Semantic Web . IEEE Intelligent Systems, 17(5):72–80, 2002.

24. OWL. www.w3.org/TR/owl-features/.

648 S. Colucci et al.

25. C. Pahl and R. Barrett. A web services architecture for learning object discovery and assem-
bly. In Proc. International World Wide Web Conference (WWW ’04), 2004. Alternate track
papers and posters.

26. S. Sanchez and M. Sicilia. On the semantics of aggregation and generalization in learning
object contracts. In Proc. of Intl. Conf. on Advanced Learning Technologies, pages 425–429.
IEEE, 2004.

27. G. Teege. Making the difference: A subtraction operation for description logics. In Proceed-
ings of the Fourth International Conference on the Principles of Knowledge Representation
and Reasoning (KR’94), pages 540–550. MK, 1994.

28. The OWL Services Coalition . www.daml.org/services/owl-s/1.0/owl-s.html, 2004.
29. James Hendler Tim Berners-Lee and Ora Lassila. The semantic web. Scientific American,

248(4), 2001. (34-43).
30. G. Vossen and P. Jaeschke. Learning objects as a uniform foundation for e-learning plat-

forms. In Proc. of Intl. Symp. on Database Engineering and Applications Symposium, pages
278–287, 2003.

Orchestration of Semantic Web Services for
Large-Scale Document Annotation

Barry Norton, Sam Chapman, and Fabio Ciravegna

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK
{B.Norton, S.Chapman, F.Ciravegna}@dcs.shef.ac.uk

Abstract. Armadillo is a tool that provides automatic annotation for
the Semantic Web using unannotated resources like the existing Web for
information harvesting, that is: combining a crawling mechanism with an
extensible architecture for ontology population. The latter is achieved via
largely unsupervised machine learning, boot-strapped from oracles, such
as web-site wrappers. It is backed up by ‘evidential reasoning’, which
allows evidence to be gained from the redundancy in the Web as well
as inaccuracies in information, also characteristic of today’s Web, to be
circumvented. In this paper we sketch how the architecture of Armadillo
has now been reinterpreted as workflow templates that compose semantic
web services and show how the porting of Armadillo to new domains, and
furthermore the application of new tools, has thus been simplified and
benefits from semantic discovery and automatic orchestration.

1 Introduction

The vision of the Semantic Web (SW) is centred around sharing knowledge in
order to acquire and reuse it [1]. Recently, it has become apparent that it is pos-
sible to share more than static knowledge, moving towards sharing operational
and active knowledge, i.e. towards Semantic Web Services (SWSs). In the future
SW it will be possible to compose large distributed systems by composing exist-
ing SW Services. One example of large scale services necessitating service reuse
are automatic annotation systems, helping harvesting knowledge from existing
unannotated documents [6], [11]. Harvesting is guided by an ontology. Ontologies
can be overlapping or evolving from common roots, and thereofore - we claim -
parts of existing harvesters should be reused also when ontologies are reused. As
a simple example, many harvesters will share the need to recognise generic base
types like people and organisations, and appropriate services are very likely to
be existing on the Web. The more ontologies will be reused, the more the need
of reusing harvesters will grow.

We claim also that a SWS-based architecture provides a clear place to sepa-
rate (and apply) domain-dependent functionality as opposed to domain indepen-
dent functionality. Also, such an architecture should provide a means to discover
already existing implementations of functionalities for reuse.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 649–663, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

650 B. Norton, S. Chapman, and F. Ciravegna

Tailoring to a domain should therefore be realised by defining or reusing
independent SWS’s. All of the advantages of a distributed implementation will
therefore hold, i.e.:

– the ability to build a new application, coordinating third-party services,
without the need for major computing infrastructure;

– conversely, the ability to provide such services while keeping the implemen-
tation in-house for management and maintenance;

– the speed-up that can be achieved through parallelism.

This paper focuses on Armadillo [4], a system for the definition of ontology-
specific harvesters for large repositories (e.g. the Web), and its organisation in
terms of SWS’s. Armadillo uses an ontology to define an annotation task. Anno-
tation is defined as extraction and integration of information (harvesting). The
system is based on the Information Food Chain metaphor [9], where information
processing is defined as an ecosystem where basic search tools (herbivores) re-
trieve documents (raw matter), while information processors (carnivores) digest
them to produce progressively more sophisticated information. The ecosystem in
Armadillo is geared towards the production of knowledge and its implementation
is based on integration of SWS. Practically, Armadillo annotates by extracting
information from different sources (documents or repositories such as databases)
and carrying out ‘evidential reasoning’ to validate the classifications of, and re-
lations between, instances. This evidence is then integrated and the knowledge
entered into a repository summarising the integrated knowledge.

The orchestration of SWS’s is realised by providing workflows in BPEL [8],
which allows us to express workflows where ‘partners’, i.e. workflow actors to be
realised by web services, are parametrically typed but unbound to services. We
therefore say that we define the Armadillo architecture as workflow templates
where service parameters must be instantiated, i.e. ‘filled in’, for orchestration
to effect a given task. We allow the process to be understood abstractly in
terms of the OWL [15] concepts they deal with by describing the parts of this
architecture as semantic web services, in OWL-S [7]. This furthermore allows
semantic discovery to be engaged to help with finding the appropriate services
to use to instantiate parameters; again we pragmatically decide to adapt the
existing web services, i.e. UDDI1, tools to semantic purposes in the spirit of
[14]. Furthermore, BPEL allows us to represent graphically, rather than in code,
the workflows and insofar as appropriate services can be found, a developer can
apply Armadillo to a new annotation task with no coding at all. Even where
coding is needed, the subtask needed is abstracted away from the Armadillo
logic by service boundaries and the service produced is automatically described
in OWL-S terms allowing it to be directly made available for future reuse.

In this paper we concentrate on the implementation via SWSs of the extrac-
tion and integration tasks, which are at the heart of the architecture. This paper
is organised as follows: Section 2 describes the abstract harvesting strategy, Sec-
tion 3 gives more details on the architecture and each subtask in detail, finally
we make conclusions and sketch future work in Section 5.

1 http://uddi.org/

Orchestration of Semantic Web Services 651

2 Harvesting Strategy

Armadillo [4] annotates documents by harvesting knowledge from large reposito-
ries, i.e. by extracting information from different sources and finally integrating
the retrieved knowledge into a repository. The repository can be used both to
access the extracted information and to annotate the source(s) where the infor-
mation was identified. Furthermore the information source(s) can be analysed
to verify the correctness and the provenance of the information.

Unsupervised learning begins from seed data provided by a largely ‘infalli-
ble oracle’ (e.g. a list of relevant terms). Seed data are utilised by searching in
the document repository for matching strings. If found, matching strings must
be confirmed using some disambiguation or contextual strategies (e.g. local dis-
ambiguation as in SemTag [6] or multiple evidence for corroboration). Further
annotations are identified by the process sketched in Figure 1, e.g. by adap-
tively learning from the context in which known entities were found. All new
annotations must be confirmed, by the subtask called ‘evidential reasoning’, and
the terms encapsulated by the annotations can be used to seed learning again.
Finally the discovered knowledge is integrated (e.g. some of the new entities /
facts are merged) and stored into a format for future use, typically a database.

Fig. 1. Harvesting Strategy

652 B. Norton, S. Chapman, and F. Ciravegna

3 Architecture

Armadillo employs the following techniques/technologies:

– Crawling to explore the repository in a efficient and exhaustive way.
– Adaptive Information Extraction from texts (IE): used for spotting informa-

tion and to further learning new entities.
– Information Integration (II): used to (1) discover an initial set of annotations

to be used to seed learning for IE and (2) to confirm the newly acquired
(extracted) information, e.g. using multiple evidence from different sources
and (3) to integrate knowledge e.g., by merging entities.

– Semantic Web Services: the architecture is based on the concept of “ser-
vices”. Each service is associated to some part of the ontology (e.g. a set of
concepts and/or relations) and works in an independent way. Each service
can use other services (including external ones) for performing some sub-
tasks. This paper details the organisation of the SWS architecture and their
orchestration.

– RDF Repository : where the extracted information is stored and the link with
the pages is maintained.

The act of porting Armadillo to a new ontology population task begins by
providing a domain-specific ontology. Population is performed by starting focus-
ing on one concept and looking for its occurrences for it or for occurrences of
its instances. These concepts tend to be characterised by unique identifiers such
as proper names or rather unique descriptions2 When key concepts have been
identified, other entities with a minor degree of uniqueness can be identified by
exploiting the context given by relations with already identified entities. For ex-
ample dates tend to be too generic for unique identification in isolation. If “26
October 2004” is looked for as the date of e.g. a seminar, there is no way that
all relevant occurrences of that date can be distinguished by other occurrences
of the same date in other contexts. The context is used by the seminar instances
previously identified to separate the relevant occurrences of the date from the
irrelevant ones. Previously identified entities and their relations with respect to
the looked for entity are used as a context. This means that the plan for ontol-
ogy population is implemented as a directed search on the ontology graph: base
(unique) entities are identified and the relations in the ontology are assigned a
direction. The plan details the order in which the concepts and relations will be
explored and therefore the ontology populated.

For each relation to be followed, we identify a concept A for which we will
already have found instances and a concept B that we wish to populate by
following the relation. We might also identify concepts C which ‘belong’ transi-
tively, i.e. via further relations, to B so that related instances of such may also
provide evidence for the instance of B discovered.

2 Of course names can be ambiguous and descriptions not completely unique; what
we mean here is that the concept looked for must have some degree of simplicity in
identification).

Orchestration of Semantic Web Services 653

University

Academic

Paper

1

*

*

*

employedBy

employs

authoredBy

authored

Person

Fig. 2. Example Ontology

University

Academic

Paper

1

*

*

*

employs

authored

Person

A

B

C

Fig. 3. Example with Ordering

Figures 2 and 3 illustrate the process in terms of a fragment of the example
of populating an ontology for the UK academic domain used in [4] and [10].
We will use that example in the remainder of the paper. We first identify the
‘University’ concept as being one from which we can hope to obtain reliable
instances from an oracle such as a list of universities and departments. Such list
can be obtained for example by wrapping the Yahoo taxonomy or the RAE web
pages3; university names tend to be unique terms.

We then decide that we should like to populate the ‘Academic’ concept,
via the ‘employs/employedBy’ relationship. This concept is less unique than
the university name (e.g. you can have many different people called ”John
Smith”) For this task, then, ‘University’ becomes concept A and we take the
recognisable super-concept to ‘Academic’, ‘Person’ as concept B. We cannot
choose directly the concept Academic because in a university there are many
people that are not academic but that still are working for the university.
We therefore need to discriminate a second time which recognised people are
academics and which are not. Therefore we choose ‘Paper’ as an appropriate
concept able to help discriminating (concept C) and exploit the relation ‘au-
thored/authoredBy’ as a discriminator (in this small example the definition
of academic is a person who writes papers). Papers titles tend to be largely
unique. Figure 3 shows how we have added this information to the ontology
fragment.

In the rest of the section we describe the details of the recognition of con-
cept B using the context of A. As shown in Figure 1 it involves the following
subtasks:

– Crawling;
– Instance Recognition;
– Evidential Reasoning;
– Combination and Storage.

Crawling will systematically retrieve documents associated with an instance of
concept A. Instance Recognition will find candidate instances of B in the con-
text of that original instance. Evidential Reasoning will (1) find support for the

3 http://www.hero.ac.uk/rae/

654 B. Norton, S. Chapman, and F. Ciravegna

classification of the concept as B and (2) confirm the relation between A and B
by looking for evidence, both within the document and outside, of the relation
between the two entities. Finally, if the evidence support the initial hypothesis,
the annotation is stored.

In the organisation of an SWS based architecture, A, B and C are vari-
ables ranging over concepts, as discussed above, as are Doc, DocId to be tied
to the documents to be analysed and Evidence, explained later. Moreover, ad-
ditional service parameters must be similarly bound to create an executable
process (dotted boxes in the figures below); their signatures may involve the
concept variables so it is necessary to decide on this first. Having done so, the
choice of services can be aided by semantic discovery [14]. We shall describe
the choices in the remainder of the paper in terms of the following classes of
service:

– generic services: wholly independent of domain and context;
– context-dependent services: where reuse depends on the context but not the

domain (e.g. the type of documents or repository used);
– domain-tailored services: parameterised to be tailored to a given domain;
– domain-trained services: encapsulate machine-learning which can adapt semi-

automatically to a given domain;
– domain-specific services: encapsulate techniques which are hard-coded for a

given domain (but might still be re-used across applications in that domain).

We now go through each abstract subtask of the population task in the terms
that these were set out in Figure 1.

3.1 Crawling

The general form of the ‘crawling’ task as a workflow template over its core
services4 and service parameters is shown in Figure 4:

Enqueue
Med Prio

Doc
LoaderFinder

Reference

Enqueue
High Prio

Enqueue

[DocId]

3Queue<DocId>

[DocId]

DocId

Doc

Low Prio

Fig. 4. Crawling Task

Enqueue
Med Prio

Enqueue
High Prio

Enqueue

[URL]

3Queue<URL>

[URL]

URL

HTML

Low Prio

Caching Page
Finder
Link

Loader

Fig. 5. Example Crawling Instantiation

4 The containing box 3Queue means that the service, actually an instantiation in
terms of the type of document identifier to be queued, consists of several operations.
We omit the trigger (de-queueing) operation since it is not relevant at this level.

Orchestration of Semantic Web Services 655

To reiterate, there are two levels at which this workflow is parameterised5: the
DocId and Doc labels 6 are type variables that must be instantiated at concrete
types; the DocLoader and ReferenceF inder tasks are service variables to be
instantiated with concrete services.

In these terms then, the crawling task becomes one of queueing up docu-
ment references, in any form by which they can be given persistent identifiers,
which are individually loaded and immediately inspected for references to related
documents and also passed forward to the instance recognition task.

The reason that the original document list is enqueued at a medium priority
level is that we will inspect first documents strongly related to the current one;
as shown in Figure 14 these are fed back at a high priority level. Once a given
document and strongly-related discoveries are exhausted we move on to the
next from the original list. Only once this process has been completed for each
member of the list do we move on to those only weakly related (there being
only tentative reasons to presume those referred to in the document will relate
strongly to the original instance of concept A). Note that the signature of the
‘Reference Finder’ service parameter (in functional terms Doc − > [DocId])
allows the possibility that some prioritisation may take place in the list returned,
allowing for intelligent analysis.

Figure 5 shows how we could achieve a concrete instantiation of this subtask.
First we choose instances for the type variables consistent with Web-oriented
technology, i.e., in this example, Doc = HTML and DocId = URL. We then
choose context-dependent services that meet the resulting signatures, i.e. loading
a page from its URL, with a ‘caching page loader’, and respectively finding list of
URLs from a page with a ‘link finder’, itself an instantiation of a domain-tailored
regular expression matching service but we do not show this decomposition.

3.2 Instance Recognition

As shown in Figure 6, the ‘instance recognition’ task is achieved foremost by the
concurrent execution7 of some number8 of different ‘B-Recogniser ’s, i.e. services
each of which can extract from a document parameter potential occurrences of
the concept B. We assume that the document parameter leading to the ‘split’
operation is broadcast to each service used in the instantiation of this template.
Thereafter each of the lists of candidate instances returned by these services is

5 Actually three since angle brackets, for instance 3Queue〈DocId〉, mean instantiation
of some generic (parameterised) service, so that 3Queue represents some generic
queue service that stores instances of some type notated DocId, at three different
priority levels, and supplies them to the consequent workflow one at a time.

6 We use square brackets to represent lists over the contained type, and so [DocId] is
the type of a list of elements of type DocId, and regular brackets to represent tuples.

7 We represent concurrent execution, and re-synchronisation on completion, by the
solid bars, ‘split’ and ‘join’ respectively, in the diagram in the style of UML Activity
Diagrams [2].

8 We represent multiple instantiation also in UML style with a multiple outline.

656 B. Norton, S. Chapman, and F. Ciravegna

Doc

[B]

B−Recogniser

[B]

Duplicate
Removal /

Consolidation

[B]

Fig. 6. Instance Recognition Task

HTML
Regex

Name
Patterns

PersonRecogniser

LearnApply

HTML

[Person]

Amilcare

[Person]

Cross−match &
3Store

Look−up

[Person]

Fig. 7. Example Recognition Instantiation

concatenated to make the final list. This is then passed to a service parameter
whose instance should be capable of removing internal duplicates, if multiple
recognition strategies are employed, as well as carrying out a ‘pre-integration’
step. This latter step may, and usually will, involve checking in a repository to
see whether the instance is already known. For simplicity we show a signature for
this service that just involves some refinement of the list, [B] −> [B]. In fact we
allow additional triples, based on the instance, to be introduced at this point so
that, for instance where existing coincident repository instances are found that
were introduced from some other source, we may continue to investigate them
(rather than dropping them) but introducing a ‘sameAs’ relationship.

The role of B-Recogniser can be realised by both domain-tailored, and domain-
trained services. This is illustrated in Figure 7 we see that both domain-tailored
regular expression matching and an instance of the domain-trained IE system
Amilcare [5] will be used side-by-side, Amilcare learning from the successfully
validated instances produced by the former. Since the signature of this service
parameter is so general, with the implementation details encapsulated behind the
service boundaries, other Information Extraction tools can easily be employed.

The subsequent consolidation stage is typically domain-specific Information
Integration but reuse can be made; for instance from the ‘similarity metrics’
library, SimMetrics, which we are developing as an open source project for string
metrics and similarity-based integration, and recently released [3].

3.3 Evidential Reasoning

Having identified some consolidated list of candidate instances we then queued
these to be validated both for proper classification and to verify and classify the
implicit relation through which they were discovered. We call this task ‘evidential
reasoning’ and its overall workflow is presented in Figure 8.

The candidate instances from the instance recognition task are first queued
to be examined one by one. For each, some number of concurrent instances
of reasoning tasks will be executed. Each will fit one of two general strategies
described as follow.

Orchestration of Semantic Web Services 657

Contextual
Reasoning

Relational
Reasoning

(Evidence, [((B, _, A), Evidence)])])

B

Queue

Enqueue

[B]

(Evidence, [(C, [((B, _, C), Evidence)])])])

([Evidence],

[(B, _, A), Evidence]

[(C, [(B, _, C), Evidence])])

Fig. 8. Evidential Reasoning Task

Contextual Reasoning. considers each potential B instance in the context of
the A instance via which it was discovered and attempts to be more specific about
the relation between them than the implicit relation that instance recognition
achieves. In the process more evidence for the classification of the instance being
investigated may be found. As seen in Figure 9, two services will be used to find
occurrences of the B instance in general, and co-located with the A instance,
respectively. A third service then produces a list of potential triples relating
these instances, with evidence supporting the relation.

B

A−B Colocated
Reference
Oracle

B Reference
Oracle
[DocId]

[DocId]
Correlation
Reasoner

A

(Evidence, [((B, _, A), Evidence)])

Fig. 9. Contextual Reasoning Task

Person

Search
[URL]

[URL]
Numerical
Correlation

GoogleGoogle
Search

University

[(Academic, employedBy, University), Probability])

(Probability,

Fig. 10. Example Contextual Instantiation

Figure 10 shows a simple instance of this strategy where we ‘promote’ the
candidate instance to being an academic employed by the university based on
co-located references on the web, obtained by a Google wrapper which is domain-
independent, where a simple probability is based on correlation.

Relational Reasoning. provides evidence for the candidate B instance being
correctly classified as such, based on other relations an oracle may find. As such,
for each instantiation within this class, two service parameters must be provided:
as shown in Figure 11, one finds related new potential instances, another encodes
this alongside some kind of evidence.

In this subtask, as shown in Figure 12, we may apply domain-tailored or
domain-specific technologies such as gazetteers — we use the example of a
gazetteer of people’s forenames — and site wrappers — we use the example

658 B. Norton, S. Chapman, and F. Ciravegna

B−C Relation
Oracle
[C]

Relational
Reasoner

(Evidence,
[C, [(B, _, C), Evidence]])

B

Fig. 11. Relational Reasoning Task

[Paper]
Mid−Range

Citeseer
Wrapper

Filter

Person

[Paper, [(Academic, _, Paper),
Probability]])

[Forename]
Gazetteer

Person

[Forename, [(Person, _, Forename),
Probability]])

Forename

String
Comparison

(Probability,(Probability,

Fig. 12. Example Relational Instantiations

of the DBLP portal9 wrapped as a semantic web service and providing candi-
date instances for the ‘Paper’ concept and the ‘authored’ relation. Such results
will be cached and bootstrap a separate workflow on this relation.

As part of the relational reasoning subtask, We may also apply domain-
trained relation extraction, as we are developing in the tool T-Rex. As in the
instance recognition subtask we will bootstrap learning based on oracles, for
instance in this case on the DBLP results.

3.4 Combination and Storage

The essence of the combination task is to remove duplicates from the candidate
instance and its candidate relations and to combine the evidence for these. This
logic is encapsulated and instantiates the ‘Combination Logic’ service parameter
and is domain-specific, but may decompose into some reused generic services; in
particular statistical functions.

[(C, [((B, _, C), Evidence)])])

(Evidence,
[((B, _, A), Evidence)],

([Evidence],
[((B, _, A), Evidence)],
[(C, [((B, _, C), Evidence)])])

Combination
Logic

Decision
Logic

Boolean,

[(C, [((B, _, C), Evidence)])])

(Evidence,
[((B, _, A), Evidence)],()

Fig. 13. Combination Task

On a basic level we must reduce: a list of evidence for the correct identification
of an instance, [Evidence], into a single combined value; all identified (B, ,A)
triples, i.e. relations back to the original contextual instance, and the separate
Evidence values that have been found for each relation, into a non-repeating list;

9 http://dblp.uni-trier.de/

Orchestration of Semantic Web Services 659

all identified (B, ,C) triples, i.e. different relations to different new candidate
instances C, and the separate Evidence values that have been found for each,
into another non-repeating list.

The ‘Decision Logic’ task then decides which of these candidates has suffi-
cient evidence for storage. The diamond style of the final component service in
the combination task implies non-determinism: either an untyped value10 is re-
turned (in case the evidence is insufficient) or the supported classification of the
candidate and its relations are returned. Since the ‘Repository’ service parame-
ter, implementing the storage task as seen in Figure 14, also returns an untyped
value, the two possible threads of control are merged to pass such a value back
to the ‘Trigger’ operation of the ‘B-Queue’ service.

4 Orchestration

The complete workflow template that orchestrates the tasks discussed in the
previous section is shown in detail in Figure 14. As stated above, the orchestra-
tion is currently realised by encoding the workflow in BPEL [8]. As well as the
pragmatic advantages put forward in [12], we state specifically the advantages of
having an editor in the Eclipse environment11 [13], where integration is possible
with other plug-ins and tools described later, and having debugging and process
monitoring tools12.

Deficiencies, however, in the BPEL approach mean that it is not possible to
directly encode the workflow shown in the simple dataflow manner represented
in Figure 14. In particular there are two features that are incompatible with the
‘Flow’ construct: the looping behaviour shown on the far right hand side, and
the non-determinism associated with choices we have illustrated via the diamond
boxes. To explain what this is intended to represent, we pick up explaining the
thread of control as it finished at the end of Section 3.4. Whichever service,
i.e. instantiating ‘Combination’ or ‘Repository’, returns a value to the ‘Trigger’
operation of the ‘Queue〈B〉’ service, there are two possibilities, decided between
only at this point in the execution: if there are remaining candidate B-instances
to be considered then the evidential reasoning task is re-entered; if not another
empty value triggers the document queue until this is exhausted and the flow is
complete.

Since we can neither ‘cross’ the lines of a choice process, and furthermore
are explicitly are disallowed from having loops in a dataflow, we are forced
into implementing subtasks discussed in Section 3 as different services and then
mixing the imperative, explicit looping, and dataflow styles, as is typical of
BPEL. Similarly we are forced into imperative style in order to mediate between
tasks in the workflow, both in the one-to-one fashion normally discussed, and

10 The empty type is represented by () as in languages like Haskell.
11 http://www.eclipse.org
12 Like those provided by the Collaxa tool, now part of Oracle Application Server:

http://www.oracle.com/technology/products/ias/bpel/index.html

660 B. Norton, S. Chapman, and F. Ciravegna

B-

Doc Loader

A

LowPriority
Enqueue

3Queue<DocId>

HighPriority
Enqueue

DocId

B-Recogniser

Doc

Reference
Finder

[DocId]

Correlation
Reasoner

[DocId]

Relational
Reasoner

B Reference
Oracle

A-B
Colocated
Reference

Oracle

[B]

B

(Evidence, [((B, _, A), Evidence)])

([Evidence], [((B, _, A), Evidence)], [(C, [((B, _, C), Evidence)])])

Combination

()

(Evidence, [(C, [((B, _, C), Evidence)])])

[C]

B-C
Relation

Repository

MedPriority
Enqueue

Trigger

Doc

[B]

Duplicate Removal
and Consolidation

Queue
Enqueue Trigger

[B]

[B] ()

()

() ()

[DocId]

[DocId]

(Evidence, [((B, _, A), Evidence)],
 [(C, [((B, _, C), Evidence)])])

Fig. 14. Architecture in Detail

Orchestration of Semantic Web Services 661

the many-to-one fashion associated with the ‘join’ operators that resynchronise
concurrent activities.

We note that OWL-S [7] already allows, in the abstract, the binding of dif-
ferent languages to all these points in the workflows described therein. Further-
more more algebraic mixing of operators is specified as being provided. Since
few implementations are currently available of OWL-S, however, our decision
has been to use the Armadillo architecture as a motivation for, and a test of,
a new OWL-S implementation where the language used at these points will be
more declarative. For example this should allow a polymorphic functional-style
‘list concatenation’ function to be bound to the first join operator and thus not
have to be tailored towards new instantiations for the parameter ‘B’. Further-
more we could allow the user more choice at this stage, for instance allowing
a polymorphic ‘list cons’ function to be bound so that a different consolidation
service, which needs to know which candidates came from which B-Recogniser
could receive [[B]].

5 Conclusions

We have described the way SWS’s are orchestrated to harvest information from
the Web, and other corpora, to provide annotations for the Semantic Web. The
architecture presented is based on workflow and follows an IE-oriented strategy.
Initial approximations to both classification and implicit relation extraction are
followed by evidential reasoning based on both context and further relations.
In this way a wide variety of semantic web services may be accommodated
and porting is eased since, in many cases, users can avoid coding altogether,
merely using the workflow templates to guide semantic discovery and composi-
tion.

The architecture is currently implemented in BPEL in terms of services
grounded in SOAP, but described both syntactically in WSDL and semantically
in OWL-S; the generation of both is bootstrapped by an automatic translation.
Our development process is wholly Eclipse-based with JDT support for Java cod-
ing alongside SWeDE13 support for OWL(-S) editing, Oracle support for BPEL
editing and Ant14-hosted tasks for translation, building and deployment.

In future we would like to integrate more ‘semantic’ forms of discovery to
help the process of constructing a concrete workflow, reusing from tools such
as [14] as these become available. In the longer term we have hopes for the
use of a full OWL-S or WSMX based orchestration solution and our own work
towards the former is being carried out as an open source project15, as well as
the accompanying editor16.

13 http://owl-eclipse.projects.semwebcentral.org/
14 http://ant.apache.org/
15 http://savannah.nongnu.org/projects/CaSheW-s-Engine
16 http://savannah.nongnu.org/projects/CaSheW-s-Editor

662 B. Norton, S. Chapman, and F. Ciravegna

Using a SWS-based architecture for Armadillo provides many benefits asso-
ciated with service-oriented architectures, such as speed-up from concurrency
and distribution, an automatic means for reuse of any code created during an
instantiation, and the ability to provide services remotely to users with little
infrastructure. A number of instantiations of this architecture have already been
carried out and are currently being evaluated, in particular concentrating on
efficiency and scalability compared to the existing Armadillo software.

Acknowledgements

This work was carried out within the AKT project (http://www.aktors.org),
sponsored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project, sponsored by the EU IST asp part
of Framework V (grant IST-2001-34038).

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
o284(5):35–43, 2001.

2. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage user guide. Addison Wesley Longman, 1999.

3. Sam Chapman. SimMetrics. http://sourceforge.net/projects/simmetrics/.

4. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to
harvest information for the semantic web. In ESWS, pages 312–326, 2004.

5. Fabio Ciravegna and Yorick Wilks. Annotation for the Semantic Web. Series Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2003.

6. Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhin-
gran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin,
and Jason Y. Zien. Semtag and seeker: bootstrapping the semantic web via auto-
mated semantic annotation. In WWW ’03: Proceedings of the twelfth international
conference on World Wide Web, pages 178–186. ACM Press, 2003.

7. Anupriya Ankolekar et al. DAML-S: Web service description for the semantic web.
In Proc. 1st International Semantic Web Conference (ISWC), 2002.

8. IBM et al. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel, 2003.

9. Oren Etzioni. Moving up the information food chain: Deploying softbots on the
world wide web. In Proceedings of the Thirteenth National Conference on Artifi-
cial Intelligence and the Eighth Innovative Applications of Artificial Intelligence
Conference, pages 1322–1326, Menlo Park, 4–8 1996. AAAI Press / MIT Press.

10. Hugh Glaser, Harith Alani, Les Carr, Sam Chapman, Fabio Ciravegna, Alexiei
Dingli, Nicholas Gibbins, Stephen Harris, Monica M. C. Schraefel, and Nigel Shad-
bolt. CS AKTiveSpace: Building a semantic web application. In Proc. 1st European
Semantic Web Symposium, pages 417–432, 2004.

11. P. Kogut and W. Holmes. AeroDAML: Applying information extraction to gen-
erate DAML annotations from web pages. In First International Conference on
Knowledge Capture (K-CAP 2001)., 2001.

Orchestration of Semantic Web Services 663

12. David J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic
Web: The bottom-up approach to web service interoperation. In Proc. 2nd Intl.
Semantic Web Conference (ISWC2003), 2003.

13. Barry Norton. Eclipse as a development platform for semantic web services. Eclipse
Technology Exchange (eTX04), 18th European Conference on Object-Oriented
Programming (ECOOP-2004), 2004. http://www.dcs.shef.ac.uk/∼barry/CASheW-
s/Norton04.pdf.

14. Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding OWL-S to UDDI:
implementation and throughput. In Proc. 1st Intl. Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), pages 6–9, 2004.

15. W3C. OWL web ontology language overview. http://www.w3c.org/TR/owlfeatures,
2004.

Monitoring Research Collaborations Using Semantic
Web Technologies

Harith Alani, Nicholas Gibbins, Hugh Glaser, Stephen Harris, and Nigel Shadbolt

Advanced Knowledge Technologies (AKT), School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK
{ha, nmg, hg, swh, nrs}@ecs.soton.ac.uk

Abstract. In the current research environment, funding agencies are increasingly
required to demonstrate that the projects they fund represent value for money.
When funds are disbursed in a speculative manner, in order to stimulate inter-
disciplinary collaboration, the determination of value for money relies on evi-
dence that shows the generation of new collaborations. This paper summarises
the work we carried out on behalf of the Engineering and Physical Sciences Re-
search Council (EPSRC), in which we have implemented a set of applications to
enable the research council to examine the existence and nature of collaborations
between researchers. We have used Semantic Web technologies to construct a
flexible application framework to provide multiple complementary visualisations
of the data, while separating the issues of knowledge acquisition and curation
from the more user-centric interface requirements.

1 Introduction

Organisations have the need and responsibility to review and analyse their activities.
The need arises not only from internal review procedures, but also from external agen-
cies (eg government) that are trying to ensure value for money. Current and forthcoming
requirements from government are imposing increasing obligations in this respect on
the Research Councils (RCs), with a particular focus on research outputs and citations.

For example, one of the questions that arises is the extent to which different groups,
people and programmes collaborate with each other. This is a very complex issue, as
it is not even necessarily clear what it means to collaborate, and certainly no general
agreement of what would be evidence of collaboration. We should expect that good
analysis would not only provide qualitative and quantitative data on collaboration, but
also allow users to think about and explore the nature of collaboration itself. Such anal-
ysis is challenging, in particular when it requires analysis of data from a wide variety
of sources, many of which are outside the direct control of the organisation.

We can roughly define two main stages in this work. The first stage is to integrate the
distributed sources of data and store it in a format suitable for further use and analysis.

Integration of databases raises several well known challenges, such as resolving the
conceptual differences between database schemas, identifying data duplications and in-
consistencies, etc [4]. Ontologies have been widely proposed as a major role player
in information integration [7][14][15]. They provide the mechanisms to establish a

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 664–678, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Monitoring Research Collaborations Using Semantic Web Technologies 665

common understanding of heterogenous data domains and help to bridge multiple data
source schemas. In the case of RCs, the ontology would have concepts such as person,
funding agency, grant value, etc. Data could then be gathered against those classes, and
represented in a suitable form, such as RDF. It can then be kept in a suitable Knowledge-
Base (KB) (3Store in our case, [9]), from which it can be queried in various fashions by
other tools and applications.

The second stage of this work starts once the KB is set and populated with all the
required data. This stage is concerned with building the suite of tools and applications
needed to provide the type of data management and analysis of research collaborations
required by the RCs. This involves the implementation of services for browsing the
collecting data, and visualising research activities in interactive ways.

The following sections discuss the two stages described above. Section 2 describes
the data gathering process. The architecture of the system is explained in section 3.
Section 4 describes all the tools and applications we built for browsing, managing, and
analysing the data. A discussion of the main issues and challenges that we came across
during this work is given in section 5. Finally, section 6 concludes this work, and any
major work to be done in the near future is highlighted in section 7.

2 Data Gathering

In the United Kingdom, there are a number of agencies and stakeholders who contribute
towards the funding of research. The key initial activity in constructing a system which
can provide an overview of this research is the gathering of appropriate data from the
relevant participants. A production system that attempts to provide a full overview of
the sector would need to embrace all required sources, including all RCs, and possibly
publication data, academic staff data, and other funding agencies.

The sources from which data is gathered are heterogeneous, as would be expected
from a group of organisations with distinct requirements and objectives, at least in terms
of their research programmes. The integration of this data in a suitable manner for
common browsers and visualisers requires that the data be mediated and cast into a
common form. We use an ontology as the mediating construct, such that each of the
heterogeneous sources is translated into the ontology.

The first requirement is to define the ontology. For this study we used an existing on-
tology, which was constructed in the AKT Project1, and defined using OWL. The AKT
ontology2 represents general information about the academic research environment.

For the purposes of this study, we took data on projects and grants from RCs in
three domains: engineering and physical sciences (EPSRC)3, biotechnology and bio-
logical sciences (BBSRC)4, and medicine (MRC)5. These RCs were chosen because
their funding activities overlap in an area known as the Life Sciences Interface, which

1 Advanced Knowledge Technologies http://www.aktors.org
2 http://www.aktors.org/ontology/
3 http://www.epsrc.ac.uk/
4 http://www.bbsrc.ac.uk/
5 http://www.mrc.ac.uk/

666 H. Alani et al.

supports interdisciplinary research between engineering and physical sciences, and the
life sciences. In addition to this, we provided a small amount of publication data for
selected individuals who are active within the life sciences interface for demonstration
purposes.

We have adopted a hybrid approach [15] in our use of the AKT ontology, in which
the ontology is used as a shared vocabulary to represent the data from each of the
three RCs, with some local extensions to represent issues of local interest. These issues
involved the representation of research theme. Each RC has its own notions of what
constitute the different discrete areas of research which it funds. Such an approach
allows us to easily integrate additional sources without any modifications to the rest of
the system [15].

It is possible to gather data from institutions without their explicit cooperation, even
when they have no intention to publish it in a machine-processable form. This is usually
done by “screen-scraping” or extracting information from structured or semi-structured
web pages, or even using Optical Character Recognition in extreme cases. In practice,
such methods are far from satisfactory. They suffer from problems such as high error
rates, and high maintenance (especially if web pages change), and are only sensible
for initial experiments or for very valuable data that cannot be harvested any other
way.

Far preferable is if the institution cooperates with the harvesting activity by publish-
ing the data itself, either as web pages or other machine-readable form, against a well-
specified structure. In our case, the EPSRC was able to supply us with the appropriate
data from its own databases. The data was supplied in the form of tables (formatted as
CSV files) which resulted from an agreed database query. We were then able to process
the data to the form required for our activities (RDF, expressed in the AKT ontology)
using simple scripts. EPSRC were also able to provide us with largely similar data from
MRC, which was processed by using equivalent scripts. Some data from BBSRC was
provided in the last minute. It is pleasing to note that the system was such that this data
was incorporated within a few hours.

Resolving duplications is always a major task when integrating data from multiple
sources [6][8]. We applied a set of heuristic techniques [1] for identifying duplicate en-
tities and then consolidating them through the use of owl:sameAs assertions. By keeping
the equality between entities as explicit assertions, rather than by making it implicit by
rewriting gathered information to use canonical URIs for objects, we provide a means
to roll back duplicate resolutions. In addition to that, we have also developed an editor
which allows a user to vet the potential duplicates in a semi-automatic manner. Note that
quality is very important in our context when it comes to resolving duplicates because
any errors in doing so will almost definitely yield incorrect analysis results.

All this data is then stored in a 3Store [9] KB, ready for further action.

2.1 Statistics

In total, the information gathered from the RCs consists of some 3.1 million distinct
statements (99.93% about instances), which when expressed in terms of the ontology
and serialised as RDF/XML take up over 250Mb. The information is heavily weighted
towards EPSRC-funded grants and postgraduate awards (and their associated investi-

Monitoring Research Collaborations Using Semantic Web Technologies 667

gators), which comprise a big part of the total data, the remainder being evenly divided
between MRC and BBSRC. The data, both raw CSV and processed RDF, are available
from triplestore.aktors.org/demo/EPSRC/data/.

3 Conceptual Architecture

Figure 1 gives a general summary of the architecture of our proof-of-concept system.
The data sources (EPSRC, BBSRC and MRC) are gathered by dedicated programs that
take the native data in its raw form from traditional relational databases, and express it
in terms of the common ontology.

Fig. 1. Conceptual architecture

The data describing the areas covered by this system are stored in the 3store KB.
Data access is provided through a web service interface to the RDQL [10] query lan-
guage. Applications can make HTTP requests to the server which returns query results
in an XML format.

In addition to query processing, the triplestore also performs simple inference over
its data, according to the formal semantics for the RDF and RDF Schema languages.

4 Data Presentation and Analysis

We identified a range of styles that would be interesting to explore and present for the
study, and have implemented different points from the spectrum. Firstly, there is simply
the ability to browse the data in its raw RDF format, as well as in a rendered fashion.
Secondly, we provided two visualisation tools. One shows concepts from the system
(people, grants, publications, etc), and the relationships between them, and the other
presents a digest of total activity between funding sources, or activities by year.

It should be noted that, particularly in the case of the visualisations, these are in-
tended to indicate the sort of tools that can be provided to explore the data. They repre-
sent our attempts to deliver interesting utilities as a result of a short study.

668 H. Alani et al.

4.1 Browsers

Rendered Browsing. Figure 2 shows a screenshot of the tool that allows the user to
explore the data, rendered in HTML (tool located at http://triplestore.aktors.org/browse/
epsrc/, browse for “JD Hirst”).

This is the data for Dr Hirst from the University of Nottingham, which we have
chosen as the subject for our examples. This screenshot shows what it is like to browse
the data, which is kept in a triplestore. Although not primarily intended for standard
users, in this case we can identify some important issues.

The first is that this page offers a joint view of the data from the EPSRC, BB-
SRC, MRC, and also from the Research Assessment Exercise (RAE) submissions,
which had already been gathered before this study. Looking at the full name data,
note that the MRC knows this individual as “J D Hirst”, whereas the EPSRC knows
the individual as “JD Hirst”. This is typical of the more simple variations that are
seen.

Moving down the page, the sort of data we would expect for this exercise is then
shown. Some publications are listed. As stated above, in this study we did not gather

Fig. 2. Browser of HTML rendered data

Monitoring Research Collaborations Using Semantic Web Technologies 669

publication data; however, to demonstrate how such data would look, we have found
publications for this individual, as well as manufacturing some synthetic articles.

Beneath this data are the basic details of projects from the RCs. The overlap on
funding is of interest; we have chosen to leave the projects that are listed by more than
one council as separate projects. These projects could have been identified as the same,
but the decision is one to be made in the light of the application requirements.

Raw Browsing. Figure 3 shows a prototype that gives a view that also exposes some
of the more detailed workings of the system. This browsing tool is intended for the
knowledge curator to get a detailed view of the data in its raw format in the triple-
store.

The user has selected “Hirst” on the left, which has caused a column to appear
showing the categories of knowledge the system has on people with that name. Selecting
the “full-name” entry then displays the full names of all the Hirsts in the next column.
Picking “JD Hirst” allows the user to find out that the data has been gathered from two
sources, as the “sameAs” indicates this, and clicking on this shows the raw identifiers
for the sources. The user could carry on clicking to find out details of the sources,
institutions and so on. This style of interface is related to the mSpace user interfaces
described in [12] and used in the application described in [13].

These interfaces are presented as sketches of different styles of low-level browsers,
which gives the RCs a detailed view of their data once combined in one store.

Fig. 3. Browser of raw data in triplestore

670 H. Alani et al.

4.2 Monitoring Collaborations

We built a tool to visualise the interactions between researchers, grants, research pro-
grams, etc. This visualisation tool (named EpsrcTGViz) runs as a Java applet from any
browser. It makes use of a modified version of the TouchGraph6 library, and it connects
to a personalised ONTOCOPI web service.

ONTOCOPI (ONTOlogy-based Community Of Practice Identifier [2]) is a tool that
finds sets of similar instances to a selected instance in a KB. If an ontology (i.e. both
the classification structure and the KB of instantiations) represents the objects and re-
lations in a domain, then connections between the objects can be analysed. The aim of
ONTOCOPI is to extract patterns of relations that might help define a Community Of
Practice (COP). COPs are informal groups of individuals interested in a particular job,
procedure or work domain [16].

In the context of this work, ONTOCOPI is used to retrieve COPs of individuals or
other type of object, and return the results to EpsrcTGViz. For example, the COP of
the Life Science Interface research programme would include a number of individuals
working on such grants, other related projects, institutions active in this research area,
etc.

We can study the evolution of a scientist’s collaborations by retrieving several COP
sets for various dates, and monitor the rate of change of those collaborations. In other
words, we can see when the scientist seises to interact with others, and when new in-
teractions are born. We can also find out if, and how, interactions between scientists
continued once a specific grant or a project has ended.

The idea is that it should be possible to gain a sense of how research and interactions
have changed over time, while keeping an eye on some level of detail. We look here at
Hirst’s interactions, but it would be possible to focus on other things, such as a project
or a programme. Using EpsrcTGViz, we can ask for the COPs of Hirst for the years
from 1998 until 2008. This is achieved by clicking the Multiple Graph button, which
retrieves the data from ONTOCOPI and constructs a set of graphs that represent them,
one graph per selected year. The user can then browse those graphs by selecting the
year of interest, or simply move backwards and forwards through the years to view how
the graphs are evolving with time. Any change in the graph is displayed incrementally,
dynamically, and slowly enough to help the user perceive any transformations.

The graphs show no information for Hirst before 2001, except for a couple of papers
he published with Besley in 1999. It may be tempting to assume certain things, but
it is always important to look at such data in relation to the sources. It may be that
the sources did not go back so far. Also, with respect to publications, if there were
entries for 2001, it might be sensible to represent them in earlier years, on the basis
that collaborative work takes time, and publication can be very slow. As mentioned
earlier, we did not collect any publication information for this system. However, we
have created some publications as illustration.

When we reach the year 2001 (figure 4), significant funding activities start to show.
Hirst is now funded on three projects from three different committees. Two are BBSRC,
and one is EPSRC. Logos of RCs are shown as small icons to the top right corner

6 http://www.touchgraph.com

Monitoring Research Collaborations Using Semantic Web Technologies 671

Fig. 4. Research activities of Hirst in 2001

Fig. 5. Research activities of Hirst in 2002

of the nodes that represent research grants. Each grant node is linked to the nodes of
people who have been identified as investigators in the RC’s data, as well as to the
research programme of the grant, which is displayed with dark background. As with

672 H. Alani et al.

Fig. 6. Projection of Hirst’s research activities in 2007

the previous year, 2002 has full RC data (figure 5), and we can see that Hirst has gained
another EPSRC project, and in fact one of the co-investigators is Beasley.

Simply viewing in this way is very interesting, but clearly a user needs to be able
to explore in more detail when they find things of interest. Figure 5 shows the pop-up
window that appears when the mouse hovers over the project name. Any other de-
tails could be shown, and it is possible to right click any node in the graph and se-
lect to open the relevant page in the rendered browser described in section 4.1 for full
details.

Because project data has fixed durations, in some way it is possible to look into the
future. In 2007, some of the earlier awards begin to end (figure 6). If we have data on
publications, then one would expect to see some paper writing collaborations emerging
between Hirst and the other scientists with whom he shared some grants the years before
(two publications are shown in the graph as illustration).

4.3 Summarised Information

Finally we explore a representation that abstracts away from the details of individuals,
projects and publications. By counting numbers of projects or level of funding or other
data, interactions between groups can be explored. In the next three figures we show
such “Heat Charts”.

Figure 7 looks at collaborations between different parts of the funding system, as it
has changed over time. The brighter the colour, the more activity there is or was.

The metric for determining activity is the number of people who hold projects in
the two areas in question, the value for each (area1, area2) combination may be deter-
mined by the number of unique solutions to this query:

Monitoring Research Collaborations Using Semantic Web Technologies 673

SELECT ?person WHERE (?proj1 akt:has-project-leader ?person)
(?proj1 akt:has-research-interest area1)
(?proj2 akt:has-project-leader ?person)
(?proj2 akt:has-research-interest area2)

The area we have focused on is “E” (Engineering), and as expected we see for ex-
ample that Engineering makes great use of Infrastructure and Environment, and works
closely over the years with Innovative Manufacturing, and sometimes with Materials.

Additionally, it is possible to move to a full view of the intersection of all the pro-
grammes by viewing the data on an area-area chart. Figure 8 shows the activities for
2004. The legends on the right in each figure shows the size of collaborations that each
colour represents.

Fig. 7. Collaboration over time between Engineering and other disciplines

Fig. 8. Collaborations between all disciplines in 2004

674 H. Alani et al.

This tool is intended to give a flavour of what such a knowledge system might
provide, once the data is stored in a triplestore and annotated according to an
ontology.

The RDF characterisation, in terms of an agreed ontology was advantageous to the
development in that it provided a relatively simple common data format for integration
of the data from the disparate research funding councils, and the inferrential capabilities
of the KB were exploited to allow general questions to be asked that would be answered
using specific structures of the underlying data, without requiring the queries to be
rewritten for each data source, or the data to be hand translated into a single common
form.

5 Challenges and Recommendations

This study has shown that an ontology-mediated KB system can be used to gather and
process data from RCs at low cost. In this section, we discuss some of the lessons
learned, and describe the recommendations we made to the RCs based on this study.

5.1 Data Publishing

We realised at the start of this study the importance of requiring as little effort as possi-
ble from the data providers (ie RCs). We believe that this was a major reason why this
effort succeeded. Nevertheless, data providers could publish in a more convenient form
(e.g. RDF), but the model should be that they simply publish the data they wish, and
processors are able to collect the data over the Internet.

Output in RDF. For this study, we received the output of database queries from the RCs
and converted them to RDF with relatively simple scripts. Thus the publishing activity
for the RCs is to take and maintain these small programs, or consider how they might
perform the same function in other ways. The cost of doing this is very low.

Shared Ontology. We used an existing ontology (the AKT ontology) for this study.
Although it is possible that each RC could publish against a different ontology which
we can map to each other, we recommend that some time should be spent considering
an appropriate ontology that uses widely agreed concepts, such as those provided by
the Dublin Core7 metadata initiative.

Open Access. The primary objective of this work was to build a management tool
for RC use, and to provide information to stakeholders such as government. Once the
data is published in a semantic web language, it can be put into many other usages
and scenarios. For example, there is renewed interest in support for an “electronic CV”
for researchers, which may be seen in part as an ontologically-informed view of RC
information. The RCs may consider that the provision and publication of their data is
an important part of their mission. Indeed, EPSRC and the RCs have the chance to lead
the knowledge-enabled society by publishing their own RDF for the Semantic Web.
Doing so will encourage others to build additional tools and facilities.

7 www.dublincore.org

Monitoring Research Collaborations Using Semantic Web Technologies 675

5.2 Data Acquisition

We now move from the RCs publishing data, to how that original data is acquired. Data
is obviously of vita importance to this work. If the RCs are to use our system to draw
any reliable conclusions about research collaborations, then the underlying data must
be highly complete and accurate.

Collecting Data in RDF. The model for the RCs is that they should curate the data
they need, publish it in RDF, along with mappings of their identifiers to those of other
data providers. The same model should apply, in the longer term, to the institutions and
any other organisations they deal with. Thus for example, instead of the RCs asking for
and then curating the data for individuals from each institution, the institution should be
encouraged and even required to provide the data in suitable RDF in public and private
places (according to the confidentiality of the data).

Data on Publications. During this study we found that it is of great importance to
have access to data on publications when tracking research collaborations. RCs do not
currently hold this type of data. Institutions are now setting up publication archives,
and will soon be effectively mandated to do so. It is therefore timely that RCs should
require all references to publications in documents submitted to include the URL of the
document in the institutional archive. This will also provide a strong spur to initiatives
that are currently underway, in particular the Open Archive Initiative (OAI8). Indeed,
the House of Commons Select Committee on Science and Technology says [11]:

“This Report recommends that all UK higher education institutions establish insti-
tutional repositories on which their published output can be stored and from which it
can be read, free of charge, online.”

In the short term, however, it is sensible for RCs to gather publications data by itself,
where there are areas of particular interest. This will also enable the analysis tools to
include publication data at an early stage.

5.3 Referential Integrity

A key issue that we have encountered in the course of this work is that of referential
integrity, which is the problem of identifying that a pair of entities in two databases are
actually referring to the same object.

Multi-Sourced Data. We have taken information on projects and researchers from a
number of disparate sources, as described earlier. In many cases, these sources discuss
the same individuals and projects, but they each coin a different identifier to refer to
these individuals and projects. For example, the subject of our earlier system descrip-
tion, JD Hirst, is identified by the key 74080 by EPSRC, the key 65709 by the MRC,
and 220744 by the Higher Education Statistics Agency (HESA)9 (as used in the RAE
submissions). A substantial part of our work in adapting RC databases for our use was
determining whether an identifier used by one source was coreferent with an identifier
used by another source.

8 www.openarchives.org
9 http://www.hesa.co.uk/

676 H. Alani et al.

Imperfect Techniques. While there are heuristic techniques that can be applied to the
problem of referential integrity (eg [6][5][1]), these are frequently defeasible and often
require a high degree of adaptation to a particular application domain. Moreover, these
techniques require sufficient high-quality data to be able to judge whether individuals
are coreferent; insufficient or inconsistent data (variant name forms, for example) in-
crease the probability of incorrect judgements [3]. When applying these techniques, the
cost of both false positives (incorrectly coalescing information on two distinct individ-
uals) and false negatives (failing to identify two individual as coreferent) must be borne
in mind. In other communities, such as the library and information science community,
referential integrity is managed through social means, by using name authority files,
gazetteers which list the correct form of authors’ names. For a system of the sort we
are developing, trust is of paramount importance, and so every step should be taken to
avoid false positives or negatives of any kind.

Unique Identifier Authority. The current situation in which each RC generates its own
set of identifiers for referring to people, institutions, research programmes, etc., presents
a significant legacy data issue, and the most appropriate way forward must take account
of this. In addition, it is important to make best use of existing sources in order to
minimise the duplication of effort in the alignment of these identifiers.

Our recommendation is that each RC continues to generate their own unique iden-
tifiers, but that they should also publish a mapping from their person and institution
identifiers to those used by HESA, where such exist. HESA has good coverage of re-
search staff and organisations across UK Higher Education (HE), which suggests that it
is well placed to assume the role of identifier authority, but it has minimal coverage of
non-HE entities. However, HESA has a high-quality dataset with properties that make it
attractive for long-term use (HESA people identifiers are persistent, and do not change
when personnel move between institutions). In the event that no coreferent identifier
exists in HESA data, the RCs may publish pairwise mappings between their identifiers
and those used by other councils.

5.4 Maintenance

Another important issue is to do with the “liveness” of the data. For this study, we chose
to use data from a snapshot at a particular time, because the study did not need to keep
it up to date. A production system would need to use the latest data when required. This
can easily be achieved by ensuring that the RDF from the RCs is published at the re-
quired intervals (e.g. nightly), so that processors can ensure they are in synchronisation.

This approach can be practical and effective when using low cost automatic tools to
format the data in RDF and publish it, with minimum or no human intervention. It is
however of vital importance to couple this approach with good quality techniques and
procedures for tackling the referential integrity problem discussed above.

5.5 Privacy

The RCs and others will need to have considerable regard for confidentiality and the
requirements of the various Acts. We consider that the model whereby RCs choose
what to publish in RDF, which will be essentially the same data as provided in systems

Monitoring Research Collaborations Using Semantic Web Technologies 677

such as the EPSRC’s Grants on the Web, gives effective control of this. By publishing
the data through a single point, careful control can be maintained of what is published.

It may be that an individual RC will wish to analyse its activity using data that it
does not make public, possibly using private RDF data from other sources.

6 Conclusions

Laying the proper semantic foundation for the data was the most important phase of
our work. By doing so, we were able to implement a set of tools to help browsing and
analysing this data. Previously, there was no joint access to this data which comes from
multiple sources held in separate research agencies. There was a clear need for bridging
these distributed data sources as a first step towards providing more comprehensive
knowledge management tools.

We provided two tools for simple data browsing, and two other tools for analytical
visualisations. These tools are meant to be simple demonstrators of what type of func-
tionality we can add to this repository. Furthermore, they helped to gather more detailed
user requirements from the RCs, some of which could be the focus of further work.

The criteria for importing data from traditional repositories into 3Store was of low
cost and highly reusable. This can assure quick updates of the data whenever required.
The RCs were quite pleased with the idea of keeping their traditional databases, while
being able to fuse them together externally with minimum effort on their part.

The graph visualiser we developed offered the RCs a quick way to view if, and
how, their grants are generating collaborations between the various scientists. This helps
to make better decisions on when, and to whom, further grants should be awarded.
Similarly, the heat charts provided an easy way to monitor collaborations between entire
disciplines. Such a service is of great importance to RCs as it helps to quickly detect
disconnections between research areas, which may feed into their future grant calls.

We believe this shows that an approach of this sort, on a wider scale, has the poten-
tial to provide EPSRC, other RCs and other stakeholders with the sort of information
systems to deliver what they are now being expected to provide.

We made a set of recommendations to the RCs involved in this work to guide them
through the process of building knowledge management systems. These general rec-
ommendations apply to any organisation with similar aims and requirements, and not
strictly limited to any specific type of data, infrastructure, or application needs.

7 Future Work

The next phase of this study is already underway, focusing on two main objectives. The
first objective is to collect data on publications to enable a finer grained analysis of col-
laborations. The second objective is to produce a set of data charts for the RCs, showing
the rate of change of total collaborations between pairs of research programmes.

In the near future we might extend the system to display charts, similar to those
presented in [2] to track changes in specific COPs over time. This type of chart can
show the change in the level of n-order collaborations between researchers in relation
to the duration of certain research programmes (e.g. Life Sciences Interface).

678 H. Alani et al.

Acknowledgements. This work is supported under the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC), which is sponsored
by the UK Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University. Thanks to Daniel Smith for all his
work. We are also grateful to EPSRC, and specifically to Elizabeth Hylton, Mark Hyl-
ton, and Gavin Salisbury for their time and support.

References

1. Alani H., Dasmahapatra S., Gibbins N., Glaser H., Harris S., Kalfoglou Y., O’Hara K., and
Shadbolt N. Managing Reference: Ensuring Referential Integrity of Ontologies for the Se-
mantic Web. Proc. 13th Int. Conf. on Knowledge Engineering and Knowledge Management,
(EKAW02), Siguenza, Spain, LNAI, 317-334, 2002.

2. Alani H., Dasmahapatra S., O’Hara K., and Shadbolt, N. ONTOCOPI - Using Ontology-
Based Network Analysis to Identify Communities of Practice. IEEE Intelligent Systems,
18(2), 18-25, 2003.

3. Alani H., Kim S., Millard D.E., Weal M.J., Hall W., Lewis P.H., and Shadbolt N. Web based
Knowledge Extraction and Consolidation for Automatic Ontology Instantiation. Knowledge
Capture (K-Cap’03), Workshop on Knowledge Markup and Semantic Annotation, Sanibel
Island, FL, USA, 2003.

4. Batini C., Lenzerini M., and Navathe S.B. A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Computing Surveys, 18(4), 323-364, 1986.

5. Cohen W., Ravikumar P., and Fienberg S. Adaptive Name Matching in Information Integra-
tion. IEEE Intelligent Systems, Sept/Oct, 2-9, 2003.

6. Dey D., Sarkar S., and De P. A Distance-Based Approach to Entity Reconciliation in Hetero-
geneous Databases. IEEE Trans. on Knowledge And Data Eng., 14(3), 567-582, 2002.

7. Gruber T. R. The Role of Common Ontology in Achieving Sharable, Reusabe Knowledge
Bases. Proc. 2nd Int. Conf. on Principles of Knowledge Representation and Reasoning,
Cambridge, MA, Morgan Kaufmann, 1991.

8. Guha R. Object Co-Identification on the Semantic Web Proc. 13th World Wide Web Conf.,
New York, USA, 2004.

9. Harris S. and Gibbins N. 3Store: Efficient bulk RDF storage. Proc. 1st Int. Workshop on
Practical and Scalable Semantic Systems (PSSS’03), Sanibel Island, FL, USA, 1-20, 2003.

10. Hewlett-Packard Labs RDQL - RDF Data Query Language. http://www.hpl.hp.com/
semweb/rdql.htm, 2003.

11. House of Commons Tenth Report, HC 399, July 2004. http://www.publications.parliament.
uk/pa/cm200304/cmselect/cmsctech/399/39902.htm

12. schraefel m. c., Karam M. and Zhao S. mSpace: interaction design for user-determined,
adaptable domain exploration in hypermedia. Proc. of AH 2003: Workshop on Adaptive
Hypermedia and Adaptive Web Based Systems, 217-235, Nottingham, UK, 2003.

13. Shadbolt. N. R., Gibbins. N., Glaser. H., Harris. S., et. al. CSAKTiveSpace or How we
Learned to Stop Worrying and Love the Semantic Web. IEEE Intelligent Systems, 2004.

14. Uschold M. and Gruninger M. Ontologies: orinciples, methods and applications. The
Knowledge Engineering Review, 11(2), 93-136, 1996.

15. Wache H., Vögele T., Visser U., Stuckenschmidt H., et al. Ontology-based Integration of
Information - A Survey of Existing Approaches. Proc. IJCAI-01 Workshop on Ontologies
and Information Sharing, Seattle, WA, pp 108-177, 2001.

16. Wenger E., McDermott R., and Snyder W. Cultivating Communities of Practice. Harvard
Business School Press, Cambridge, Mass, 2002

Enabling Real World Semantic Web Applications
Through a Coordination Middleware

Robert Tolksdorf, Lyndon J.B. Nixon, Elena Paslaru Bontas,
Duc Minh Nguyen, and Franziska Liebsch

Free University of Berlin, Institute for Computer Science,
AG Networked Information Systems, Takustr. 9,

D-14195 Berlin, Germany
{tolk, nixon, paslaru, nguyen}@inf.fu-berlin.de

franziska@adestiny.de

http://nbi.inf.fu-berlin.de

Abstract. In a real world scenario Semantic Web applications must be
capable to cope with the large scale, distributed, heterogeneous, unre-
liable and insecure environment of the World Wide Web if they are to
truly represent added value to Web users. This includes issues of persis-
tent storage, efficient reasoning, data mediation, scalability, distribution
of data, fault tolerance and security. In this paper we present a coordina-
tion middleware for the Semantic Web and demonstrate its relevance to
these vital issues for Semantic Web applications by elaborating a typical
use case from the traffic management domain.

1 Introduction

The Semantic Web research effort is focused on providing suitable knowledge
representation models and techniques for the large scale distributed environ-
ment of the Web. However there is less consideration for the particular require-
ments of applications which will be implemented to work with these models and
techniques in order to provide intelligent Semantic Web-based functionality to
users. Such applications must be equally capable to cope with the large scale, dis-
tributed, heterogeneous, unreliable and insecure environment of the World Wide
Web if they are to truly represent added value to Web users. This includes issues
of persistent storage, efficient reasoning, data mediation, scalability, distribution
of data, fault tolerance and security.

In this paper1 we present a coordination middleware for the Semantic Web
and demonstrate its relevance to these vital issues for Semantic Web applications.
We introduce a typical use case in which an intelligent traffic management system
must support coordinated access to a knowledge base for a large number of

1 This work is partially supported by the EU Network of Excellence KnowledgeWeb
(FP6-507482).

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 679–693, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

680 R. Tolksdorf et al.

agents. Through a requirements analysis and a consideration of the state of the
art we note that current approaches can not adequately support such an use
case and propose a new solution based on the Linda coordination model [8]. Our
design and implementation approach for ”Semantic Web Spaces” is described,
and the operation of ”Semantic Web Spaces” is illustrated through examples
from the intelligent traffic management use case.

2 Overview of the Scenario

The Semantic Web is being evaluated and tested in a number of application fields
in which it is expected that semantic enhancements can lead to added value for
users and implementers. These fields include Web Services [17, 21, 3, 7, 18, 19],
Grid Computing [10, 4, 5] and Multi-Agent Systems [24, 12, 9, 3].

In this paper we introduce a sample use case in the field of Multi-Agent
Systems. We chose a traffic management scenario as it is a typical application
domain for multi-agent systems which requires particular communication capa-
bilities with support for coordination between a large number of agents. A generic
scenario in this field proposes a large number of agents, both mobile (vehicular)
and static (traffic controllers such as traffic lights or message systems), sending
and receiving data to and from a central data store in a coordinated manner.
Typically such a system, built according to the principles of multi-agent systems,
has a high level architecture similar to the one illustrated in Figure 1.

Multiple sensor agents independently collect and send traffic data to the
system which is persistently stored in back-end databases. In combination with
route data, the system is able to interpret the data and send messages to traffic
controlling agents such as traffic lights and message systems at certain locations
in order to control the traffic flow (e.g. relieve congestion by holding back traffic
or divert traffic around a bottleneck). In addition to this, mobile agents (i.e.
vehicles) could access the system to request routing information. The system
would not only calculate the possible routes from A to B on the basis of the back-
end route data, but also take into account available traffic data to determine
the best route at the time of request based on quantitative criteria such as

C

Road Sensor

C

Road Sensor

C

Road Sensor

Traffic Data

Traffic Management System

Route Data

Message
System

Fig. 1. Architecture of common traffic management systems

Enabling Real World Semantic Web Applications 681

estimated journey length and duration. We expect both traffic and route data to
be expressed in very low level terms, e.g. spatial position expressed using GPS
coordinates and traffic conditions expressed using numeric measurements.

The Semantic Web and multi-agent systems have been identified as being
complementary [12, 24]. In particular adding semantics to Web Services is likened
to intelligent agent-based approaches [9, 3]. In this context, the agents are seen as
self-contained applications which exhibit characteristics typical of applications
on the (Semantic) Web: they are many, distributed, dynamic, heterogeneous and
non-persistent. Hence we extend the traditional traffic management use case
with semantics by expressing traffic and route data unambiguously in terms of a
shared, common conceptualization of the domain, i.e. an ontology. This permits
reasoning over the knowledge of the traffic management system to deduce new
information which is of use to agents.

In the extended scenario we add ontology-based knowledge about vehicles,
roadways and points of interest. Mobile agents are identified according to their
location and vehicle type and can request routing information to specific points
of interest. Hence the traditional traffic management system functionality is
extended by the semantics and efficiently supported through Linda-like coordi-
nation. Traffic control can then take into account use cases such as restrictions
on vehicle type (e.g. that a tractor can not travel on a motorway) and support
queries based on reaching some specified type of service (e.g. such as a petrol sta-
tion) in the most efficient means possible (e.g. inferring when and where traffic
conditions are best).

3 Requirements for Semantic Web Technologies

As underlined in the previous section the usage of Semantic Web technologies in
multi-agent systems provides significant advantages especially when these sys-
tems are enhanced with semantically represented domain information which can
be used as shared vocabulary among agents or for inference purposes. However
besides appropriate Web-compatible representation languages Semantic Web
technologies need a powerful middleware for information management and agent
communication, which is able to deal with typical characteristics of Web-based
applications. We identified several requirements for an efficient Sematic Web
middleware: 1). a decentralized and distributed architecture, in order to allow
agents to publish and retrieve information efficiently and effectively; 2). scal-
ability as a central issue because of the dimensions and the dynamics of the
Web-based multi-agent scenario; 3). a high-level of abstraction to cope with
inherent heterogeneity problems; and 4). support for asynchronous interaction
among agents and between agents and the middleware. Interaction should be un-
coupled in space and time in order to allow agents to publish and retrieve traffic
information in a flexible and efficient manner. A second category of require-
ments relates directly to the representation and processing of scenario-relevant
domain knowledge; there is a need for representation languages which are able to
describe ”static” domain knowledge, like types of traffic agents, points of inter-

682 R. Tolksdorf et al.

ests, traffic conditions. Appropriate representation languages should be provided
to formalize ”dynamic” information e.g. recent traffic flow conditions, current
events related to specific points of interest. Reasoning engines able to deal with
the two types of knowledge are indispensable for the realization of intelligent
multi-agent systems.

4 Semantic Web Technologies Today

This section analyzes the state of the art in Semantic Web research w.r.t. the use
scenario requirements from Section 3. The Semantic Web [1] aims to provide au-
tomated information access based on machine-processable semantics of data. The
first steps in this direction have been made through the realization of appropri-
ate representation languages for Web knowledge sources like RDF(S) and OWL
and the increasing dissemination of ontologies, that provide a common basis for
annotation and support automatic inferencing for knowledge generation. A De-
scription Logics-based language like OWL can be used to represent the so-called
”static” domain knowledge required by the traffic management scenario (see
Section 7). However formalizing ”dynamic” knowledge like temporal informa-
tion requires more expressive representation techniques which are not supported
in a standardized manner by the Semantic Web Community. Rule languages for
the Semantic Web have been proposed in several approaches [14, 15], but the in-
teroperation between the (OWL-based) ontology layer and the consecutive rule
layer is still an open issue.

The storage and processing of traffic information should be realized using a
high-level, distributed middleware which permits agents to insert and retrieve
information in an flexible and efficient manner. Such a middleware copes with
the heterogeneity of specific storage systems for Semantic Web data [2, 11, 13]
and offers a simple interface for the agents to get access to the distributed infor-
mation. Currently Semantic Web technologies do not address these aspects in a
satisfactory manner.

Communication and interoperation are crucial characteristics of our scenario.
Currently interaction in Semantic Web applications is based on the classical
client-server model and message exchange requiring strong coupling in terms
of reference and time. The communication needs to be addressed to the com-
municating parties and it is synchronous. As mentioned in Section 3 the traffic
management scenario as well as a much broader area of multi-agent applications
or Web Services [6] require different communication paradigms to realize the
envisioned Semantic Web.

As a conclusion of this section we underline that Semantic Web technologies
do not cover the requirements of real world Web-based multi-agent systems to
a satisfactory extent. We propose ”Semantic Web Spaces” with an underlying
tuplespace paradigm as a possible solution for an open, distributed, scalable
midlleware for the Semantic Web (see Section 6).

Enabling Real World Semantic Web Applications 683

5 Linda and TupleSpaces

Before describing the key concepts of Semantic Web Spaces we introduce the
foundations of our approach, the coordination language Linda and the tuplespace
paradigm, and discuss how they fulfill the requirements mentioned in Section 3.

The coordination language Linda [8] has its origins in parallel computing and
was developed as a means to inject the capability of concurrent programming
into sequential programming languages. It consists of a shared data space (the
tuplespace) which contains data (the tuples) and coordination operations (the
coordination primitives) that are applied in the shared data space.

The tuplespace is a shared data space which acts as an associative memory2

for a group of agents. A tuple is an ordered list of typed fields and retrieval is
governed by matching tuples against a template which is a tuple containing both
literals and typed variables. A match occurs when the template and the tuple
are of the same length and the field types and the value of constant fields are
identical. For example, if a tuplespace contains the tuple (”Bobby Bear”, GBP,
25.18) then it will match a template such as (”Bobby Bear”, GBP, ?amount)
with the value 25.18 being bound to the variable amount3.

The coordination primitives are a small yet elegant set of operations that
permit agents to emit a tuple into the tuplespace (operation out) or associatively
retrieve tuples from the tuplespace either removing those tuples from the space
(operation in) or not (operation rd). Both retrieval operations are blocking, i.e.
they return only when a matching tuple is found. In this way Linda combines
synchronization and communication in an extremely simple model with a high
level of abstraction.

The following features of Linda have been mentioned as attractive for pro-
gramming open distributed applications [20]:

– It uncouples interacting processes both in space and in time. In other words,
the producer of a tuple and the consumer of that tuple do not need to know
one another’s location nor exist concurrently.

– It permits associative addressing, which means that data is accessed in terms
of what kind of data is requested, rather than which specific data is refer-
enced.

– It supports asynchrony and concurrency as an intrinsic part of the tuplespace
abstraction.

– It separates the coordination implementation from characteristics of the host
platform or programming language.

Several Linda implementations as well as extensions of the core concept have
emerged in the last decades. We mention in particular XMLSpaces [22] which

2 Associative retrieval implies that tuples are not addressed by ID or address, but by
their content.

3 But there will be no match with (”Polly Panda”, GBP, ?amount), (”Bobby Bear”,
EUR, ?amount) or (”Bobby Bear”, GBP, ?amount, ”DiscountStock”).

684 R. Tolksdorf et al.

is our extension of the basic Linda model to support the manipulation of XML
documents within tuple fields.

6 Semantic Web Spaces

Semantic Web Spaces is a middleware platform intended to fulfil the require-
ments of reliability, scalability, self-organization, coordination w.r.t. the open
distributed system of the Web and of the emerging Semantic Web.

Semantic Web-based systems make use of access to knowledge stores dis-
tributed on the Web to acquire and infer knowledge required for specific tasks.
These knowledge stores must handle parallel access from multiple, heterogeneous
systems, coordinating responses with other systems (e.g. that resolve ontological
mismatches). Applying tuplespaces to the open global environment of the Web
raises new requirements, some of which have already been mentioned in other
work [6, 16]:

– The naming of spaces, semantics and structure in describing the information
content of the tuples. Otherwise tuples can not be distinguished from one
another in terms of their contents when they have the same number of fields
and field order.

– The nesting of tuples. Web data models such as XML permit the nesting of
elements within a single document. Likewise Web-based information should
be able to explicitly show where one unit is contained within another.

– A reference mechanism. The Web uses URIs as a global mechanism to
uniquely address resources.

– A separation mechanism. Distributed applications which have independent
naming schemes may use the same names for their tuplespaces, semantics or
structure. On the Web, vocabularies can be kept separate – even when using
the same terms – using the namespaces mechanism.

– Richer typing. Tuple values are typed according to the core data types. How-
ever this is not precise enough in a large scale environment with dynamically
changing information. Richer typing can support validation and correct in-
teraction with tuplespaces.

In a Semantic Web Space we represent RDF statements as tuples and the RDF
graph as a tuplespace. Each tuple in the tuplespace has three fields typed
rdfs:Resource, rdf:Property and rdfs:Resource, modelling the RDF triple. All
RDF resources are represented in tuple fields by URIs. In order to support rich
typing, tuple fields are also typed using URIs identifying classes constrained by
an (RDFS/OWL) ontology. In other words, each field value in the tuplespace
is associated to a RDF type. We consider three RDF modelling primitives in
particular in terms of their representation within a Semantic Web Space. (See
also [23]).

Blank nodes are nodes in the RDF graph which do not have any form of URI
identification. However associations tied to the same blank nodes must be both
maintained in the tuplespace as well as represented by clients writing tuples or

Enabling Real World Semantic Web Applications 685

to clients reading tuples. We propose an extended RDF type called BlankNode,
which can be instantiated in a tuple and given an internal unique URI value
for representing that blank node in the local tuplespace, playing the role of
”blank node identifier”. Containers and collections are special RDF objects
which represent sets of resources. We propose that the members of rdfs:Container
typed resources (rdf:Bag, rdf:Alt, rdf:Seq) are represented by a resizable array
datatype, and that the members of a collection (rdf:List) are represented by
a closed array datatype. In the tuplespace the container or collection can be
referenced as a blank node or by an URI, and is related to its members through
a statement with the rdfs:member property. Reification is the means by which a
statement can be made about another statement in RDF. For this, RDF uses its
own vocabulary (rdf:Statement, rdf:subject, rdf:predicate, rdf:object) to identify
a statement with an URI so that it can be used as a subject or object of another
statement. We propose the use of nested tuples to represent reification in the
tuplespace. In this way a statement (as a tuple) can be the value of a field
in another tuple. Nested tuples are considered as instances of the RDF type
rdf:Statement with a global URI as identifier.

An initial prototype of Semantic Web Spaces, called RDFSpaces, was already
implemented. Taking advantage of the XML-oriented syntax of Semantic Web
representation languages, RDFSpaces relies on XMLSpaces, which is a Java and
.NET implementation of the classical Linda model extended to support the man-
agement of XML documents as types of tuples and tuple fields (We refer to [22]
for details about the implementation of XMLSpaces, which are out of the scope
of this paper). However we consider that there are two views on the tuplespace in

announce()
lookup()

ask()
…

apply()

out()
in()
rd()

Linda
<10,“a“,20.5>

XMLSpaces<?xml… <tag>…</tag>

RDFSpaces DataRuleSpaces Data

<S,P,O>
<S,P,O>

<S,P,O>

<?xml… <tag>…</tag>

<“hello“,true>

<premise,conclusion>

RuleSpaces Information

<premise�conclusion>

RDFSpaces Information

Fig. 2. The different views on the different spaces in Semantic Web Spaces

686 R. Tolksdorf et al.

Semantic Web Spaces. The information view interprets the data from the space
according to the semantics of the information it encodes. In this view, Semantic
Web Spaces define additional primitives with their own semantics. The data view
of Semantic Web Spaces defines the operations out, in and rd as they are defined
in Linda. Semantic Web Spaces also provide extended matching relations that
work on RDF typing and are able to take into account defined RDF(S) seman-
tics, for example to match a sub-relation in a tuple for a relation in a template.
Figure 2 shows the structure of a Semantic Web Space. The traditional Linda
primitives operate upon the data view, encompassing simple datatype tuples,
XMLSpaces tuples (containing XML documents) and Semantic Web tuples such
as RDF and Rules. The latter also have an information view, where additional
primitives are defined to operate upon the data according to the semantics of
the information that it contains.

7 Design of the Traffic Management System

The requirements analysis of the traffic management scenario (see Section 2) re-
vealed that Semantic Web technologies do not currently cover some significant as-
pects related to coordination and scalability. For the realization of real world Se-
mantic Web-based systems, one needs powerful middleware technologies to cope
with these typical characteristics of open distributed infrastructures as the Web.
In this section we propose an extension of the Semantic Web enhanced traffic
management scenario into tuplespace computing. The Linda model for coordina-
tion is suited to this scenario, as it provides the basic requirements of the system:
a common data store, support for multiple agents and their interaction, coordina-
tion of that interaction and decoupling from time and space. A new architecture

Semantic Web Space

GPS Route Data

GPS-to-road mapper

Traffic Control SystemTraffic Routing System

Route
Knowledge

Traffic
Knowledge

C

Road SensorC

Road Sensor

Message
System

Vehicle
Ontology

Roadway
Ontology

Points of
Interest

Ontology

Reactive/deductive rules

Fig. 3. Tuplespace-enhanced architecture of a traffic management system

Enabling Real World Semantic Web Applications 687

is proposed (Figure 3) in which the agents interact directly with the data store
using the simple Linda coordination primitives4. The functionality of the sys-
tem is also abstracted into external agents who interact with the data store.
This not only is a basis for modularizing the traffic management system and
hence supporting reusability and updatability but also makes system knowledge
directly available to any interested (and access-enabled) agents. Simple agent
operations (reading some knowledge from the system) are then standardized
(through Linda) and supported from the tuplespace platform without requiring
any specific functionality to be executed from the traffic management system.

To illustrate the use of ontologies and tuple-space functionality we consider
three use cases: (1) A vehicle requests a route not to a specific location but to a
point of interest (2) Routing takes into account the characteristics of the vehicle
(3) Routing takes into account characteristics of the route being proposed.

7.1 Point of Interest Use Case: Getting to the Nearest Esso
Station

In this use case, low level routing data is not sufficient to meet the routing re-
quest. The system needs to be able to understand what the user is asking for
(i.e. what is an Esso petrol station) and have access to the information about it
(i.e. where Esso petrol stations are located). Hence we must extend the system
with an ontology for points of interest and a knowledge base which defines in-
stances of the location types in the ontology and tie them to physical locations
(coordinates).

For example, there might not be an Esso petrol station anywhere nearby.
The user is requesting Esso because he has a loyalty card, but this card is valid
at Total petrol stations too (for the purposes of this scenario we suppose that
they are brands of the same company). So with that knowledge the system could
infer that the user won’t mind being directed to a Total station if it is nearby.
When none of these brands are close, the system should also be able to infer
that the user will then accept being directed to some other station (he loses out
on loyalty points but at least he can still buy petrol).

For example, a small ontology of petrol stations can be formalized in De-
scription Logics as follows:

PetrolStation � ∃belongsTo.Company
Company � ∃hasCustomerProgram.CustomerProgram
Company(Esso)
Company(Total)
CustomerProgram(PayBack)
hasCustomerProgram(Esso, PayBack)
hasCustomerProgram(Total, PayBack)

4 Extensions to this primitive set will be considered later. At this stage we consider
that in and rd operations retrieve all matching tuples without addressing further in
this paper the multiple read problem.

688 R. Tolksdorf et al.

An agent requesting this route sends a message with its location and a state-
ment ”find me the route to an Esso petrol station” like this5:

(1) Out(#agent876[tms:Agent],loc:isAt,
"long=04657459345&lat=47856486475"[geo:GPS])

(2) Out(#agent876[tms:Agent],loc:routeRequest,
(?X[poi:PetrolStation],poi:belongsTo,poi:Esso))

The variable ?X in (2) is constrained not only by its type but also as a subject
in a nested template to the matches made to that template. In other words, ?X
is matched to instances which are of type poi:PetrolStation AND which belong
to the company Esso. As a result a set of tuples are inserted in which the object
of the route request is a Esso petrol station. In other words the nested template
sent by the agent acts as a representation of a set of matching instances.

It would be the role of the system functionality in the Traffic Routing System
to monitor for a tuple with a loc:routeRequest property (i.e. a routing request)
(3) and when a match is returned to query in the tuple space for the GPS location
of the requesting agent (4) and the desired point of interest (5) through these
templates:

(3)Rd(?A[tms:Agent],loc:routeRequest,?P[poi:PointOfInterest])
(4)Rd(?A[tms:Agent],loc:isAt,?START[geo:GPS])
(5)Rd(?P[poi:PointOfInterest],loc:isAt,?END[geo:GPS])

Within the Traffic Routing System the possible routes between the GPS co-
ordinate values tied to the variable ?START and the variable ?END can be
calculated. The selected route (e.g. based on distance) would be inserted into
the tuplespace (6) and read by the agent who is now monitoring for a tuple with
the loc:RouteResponse property and the agent ID as subject. It is proposed that
the route is expressed as a RDF sequence of GPS coordinates, i.e. the agent can
retrieve the reference to the Sequence instance and can then read over time the
coordinates to guide it to the point of interest.

(6) Out(#agent876[tms:Agent],loc:routeResponse,#route876[rdf:Seq])

Through the additional ontological information it is possible to reason over al-
ternative possibilities for the route which still fulfil the user’s request. First, it
could be expressed that in the matching rule that a match on an Esso petrol
station, Total petrol station or an IFP petrol stations should also match on in-
stances belonging to the other two companies. This could be done by stating
that any petrol station whose company has the Payback customer program is to
be matched equally. Second, it is proposed to enable in the matching procedure
an optional support for supersumption, i.e. permit a match on a superset in the

5 A QName represents a class or instance in an ontology, a term in speech marks is
a literal, a value beginning with a hash is an internal ID, a value beginning with a
question mark is a variable and a value in square brackets is the field type.

Enabling Real World Semantic Web Applications 689

event of there being no matches on a subset of the class. In this case, given that
the Esso petrol station is considered a subset of all petrol stations (the property
of belonging to Esso being considered a class restriction) we could support that
in the event of no suitable petrol station being available a route is proposed to
some other petrol station.

7.2 Vehicle Use Case: Routing a Slow-Moving Truck

Again in this use case the low level data is insufficient. The current routing
calculation is based on a simple determination of possible routes from A to B,
and selection based on internal calculation (e.g. the shortest distance). However
road and vehicle metadata is a relevant input to the route deduction process, as
e.g. a slow-moving vehicle should not travel on a motorway or a high load on a
road with a low bridge crossing over it.

In this case, two ontologies are required: one for vehicle types and character-
istics, and another for road types and characteristics. These ontologies then also
are able to define what is logically consistent or inconsistent. A system processing
possible routes with this information can then reject anything which contradicts
its ontological knowledge.

For example, we could model the following ontological knowledge for a vehi-
cle and a road:

Truck � V ehicle
V ehicle

.= ∃hasCharacteristic.V ehicleProperty
SlowMoving � V ehicleProperty
HighLoad � V ehicleProperty
(a) Truck � ∃hasCharacteristic.SlowMoving
Truck � ∃hasCharacteristic.HighLoad
Motorway � Roadway
Roadway

.= ∃hasCharacteristic.RoadProperty
V ehicle � ∃travels.Roadway
LowBridge � RoadProperty
HighSpeed � RoadProperty
(b) Motorway � ∃hasCharacteristic.HighSpeed
(c) ∃hasCharacteristic.SlowMoving
 ∃hasCharacteristic.HighSpeed � ⊥
∃hasCharacteristic.HighLoad
 ∃hasCharacteristic.LowBrodge � ⊥

When generating a route for an agent the Traffic Routing System can check
if the roadways travelled along in the route is consistent with the agent in terms
of their characteristics. Note the requirement here for a GPS-to-road mapping
component which is able to provide the necessary translation between GPS coor-
dinates (which can be interpreted by the traffic management system) and road-
way instances (which are understood by the Semantic Web Space). For a given
route then the agent provides its characteristics (1) and an individual roadway
in the route (2).

690 R. Tolksdorf et al.

(1)Out(#agent876[tms:Agent],owl:sameAs,#truck876[veh:Truck])
(2)Out(#truck876[veh:Truck],loc:travelTo,

"long=04657459367&lat=47856486511"[geo:GPS])

Note that the Traffic Routing System is only able to send tuples with GPS
coordinates (as that is all that it understands). The GPS-to-road mapping is
triggered by the GOS-to-road mapping agent monitoring for tuples stating that
vehicles travel in some GPS coordinates (3), removing this tuple (2) and inserting
into the tuple space a new tuple (4) with a Roadway instance value.

(3)In(?WHO[veh:Vehicle],loc:travelTo,?GEO[geo:GPS])
(4)Out(#truck876[veh:Truck],loc:travelTo,#road378645[road:Motorway])

This statement is now inconsistent, referring to the ontological statements above:
#agent876 is a particular instance of a truck, thus it can be inferred that it is
slow moving (a), and is travelling onto a motorway. Since a slow moving vehicle
can not travel on a motorway (b,c), #agent876 can not travel on a motorway.

The Traffic Routing System is informed that the statement it provided to
the tuplespace (2) is logically false. A possible means to achieve this is that the
Linda coordination primitives are extended to include the idea of checking the
truth of a tuple. Then a rdiftrue or iniftrue can be used to retrieve a tuple if
and only if the statement made in the tuple can be held to be logically true
i.e. ontologically correct. Here the Traffic Routing System has inserted into the
tuple space a set of possible roadways and now ins-if-true those tuples with a
Roadway instance. A logically false tuple like the one above will not be read by
the system, hence that possible route will not be considered any further.

InIfTrue(#truck876[veh:Truck],loc:travelTo,?RD[road:Roadway])

7.3 Route Use Case: Checking the Traffic on the Whole Route

Finally in this use case we integrate the traffic conditions data being fed into the
tuple space from the road sensors. In a traditional traffic management system,
this data is processed by the application at a low level and results communicated
to traffic control agents such as message boards or traffic lights. For example,
where traffic is registered as being at a standstill diversions are placed into effect
or where congestion is identified traffic may be held back.

The important aspect of traffic control data is that it is dynamically changing
in real time. In a routing situation where vehicles are to be routed to their desired
destination while taking into account real time changes in traffic conditions, the
coordination functionality of the tuplespace is necessary. We consider a scenario
where vehicle agents are constantly updating their position, are being routed
to a particular destination, and are seeking to always take the fastest-moving
route.

In this case, the Traffic Routing System carries out a further selection phase
after checking all possible roadways for logically consistency (e.g. that no tractor
is sent onto the motorway). From the set of logically consistent roadways, traffic

Enabling Real World Semantic Web Applications 691

condition data is retrieved and the system selects the roadway with the fastest-
moving traffic. This is done by retrieving the instance of a traffic sensor at the
given roadway and matching on the tuple which states the current traffic speed
reported from that sensor e.g.:

Rd((?R[tr:trafficSensor],loc:isAt,#road0857[road:Street]),
tr:hasTrafficSpeed,?I[xsd:integer])

The agent could then perform the remaining functionality of checking which
street has the fastest moving traffic. Hence the traffic management system can
perform intelligent routing in that:

– 1. The mobile agent updates the tuple space with its current location
– 2. The traffic router updates the tuples containing the potential routes to

the agents desired destination
– 3. Mobile agent and route characteristics are used to identify logical incon-

sistencies in routes, which are ignored by agents by using a ”truth” test
– 4. From the remaining route possibilities, the agent selects the quickest route

using traffic conditions also being expressed in the tuple space.

As all the knowledge for the routing and traffic management is being stored in the
tuple space, agents can act upon the ”overall” view of the data even when some
data is spatially or temporally disjoint (i.e. the originating agent is no longer
available or the inserted tuple was placed into the space at an earlier timepoint).
For example, in the Linda model the rd operation is blocking, meaning the
template only returns when a match is found. This can be used by an agent to
wait for a notification when the entire route is good to take:

Rd((?R[tr:trafficSensor],loc:isAt,(#route876[rdf:Seq],
rdfs:member,?ST[road:Roadway])),tr:hasTrafficCondition,
"GOOD"[tr:trafficCondition])

Note that the agent can access all roadways in a route in that a route is mod-
elled as a RDF sequence and hence all its members can be accessed through
the rdfs:member property. Additionally, the traffic condition with the controlled
vocabulary value ”GOOD” exists to simplify reasoning over the traffic statistics
being generated from the traffic sensors. Statements with these conditions could
be inserted from the Traffic Control System inferred from the traffic statistics
that it reads from the tuple space. A possible extension would be to consider
points of interest in the vicinity of the route and events associated with them
that lead to changes in traffic conditions. Then the inference by the Traffic Con-
trol System could be extended to include predicted conditions based on where
and when the agent will be travelling. For example, the major routes to and
from a football stadium are likely to be busier at times shortly before and after
a football game. Events could be integrated from other sources on the Web like
a football league schedule. A similar case would be to permit the insertion of
traffic announcements from other sources such as accidents (from the emergency

692 R. Tolksdorf et al.

services) or building works (from the public roads department), and to be able
to reason on the consequences for traffic on nearby roadways (e.g. if a given road
is being closed off, traffic on a parallel route will shortly increase) and include
this reasoning in the routing calculations. Importantly this use case raises the
need for extensions with spatial and temporal ontologies and rules as well as
probabilistic logic.

8 Conclusions and Future Work

In this paper we presented the usage of the tuplespace paradigm as Semantic
Web middleware for a traffic management system. Tuplespaces are a good alter-
native to common information management and interaction models on the Web,
since they allow agents to publish and retrieve information in an uncoupled man-
ner in terms of space and time. By extending tuplespaces to represent Semantic
Web knowledge we allow Semantic Web applications to store and exchange infor-
mation in a decentralized and distributed manner, while taking advantage of the
powerful coordination mechanism of Linda. However the realization of Semantic
Web enhanced tuplespaces means not only enabling RDFS(S) and OWL data to
be represented in terms of tuples, but also the revision of the classic Linda model
w.r.t. the meaning of its primitives and w.r.t. scalability issues. The redefinition
of Linda primitives in the context of Semantic Web Spaces with a focus on the
scalability of the system is subject of future work.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, 284(5):34–43, 5 2001.

[2] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architec-
ture for storing and querying RDF and RDF schema. In The Semantic Web -
ISWC2002, 2002.

[3] P. Buhler and J. M. Vidal. Semantic Web Services as Agent Behaviors. In B. Burg,
J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S. Willmott, edi-
tors, Agentcities: Challenges in Open Agent Environments, pages 25–31. Springer-
Verlag, 2003.

[4] M. Cannataro and D. Talia. The Knowledge Grid. CACM, 46(1):89–93, 2003.
[5] D. De Roure and J.A. Hendler. E-Science: the Grid and the Semantic Web. IEEE

Intelligent Systems, 19(1):65–71, 2004.
[6] D. Fensel. Triple-based computing. http://www.wsmo.org/2004/tp-computing/,

June 2004.
[7] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-

tronic Commerce Research and Applications, 1(2), 2002.
[8] D. Gelernter and N. Carriero. Coordination Languages and their Significance.

Communications of the ACM, 35(2):97–107, 1992.
[9] N. Gibbins, S. Harris, and N. Shadbolt. Agent-based Semantic Web Services. In

Proceedings of the twelfth international conference on World Wide Web, pages
710–717. ACM Press, 2003.

Enabling Real World Semantic Web Applications 693

[10] C. Goble and D. De Roure. The Semantic Grid: Myth Busting and Bridge Build-
ing. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI-2004), Valencia, Spain, 2004.

[11] S. Harris and N. Gibbins. 3store:Efficient Bulk RDF Storage. In Proceedings of the
First International Workshop on Practical and Scalable Semantic Systems, 2003.

[12] J. Hendler. Agents and the Semantic Web. ”IEEE Intelligent Systems, 16(2),
2001.

[13] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store: DL reasoning
with large numbers of individuals. In Proceedings of the 2004 Description Logic
Workshop (DL 2004), 2004.

[14] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In
the Thirteenth International World Wide Web Conference (WWW 2004), pages
723–731. ACM, 2004.

[15] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available
at http://www.w3.org/Submission/SWRL/, 2004.

[16] B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces. Journal of Systems and Software, 69(3):243–266, 2004.

[17] R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D. Fensel. Semantic Web Services:
description requirements and current technologies. In International Workshop on
Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the
Fifth International Conference on Electronic Commerce (ICEC 2003), Pittsburgh,
PA, 2003.

[18] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework
and Infrastructure for Semantic Web Services. http://www.cs.unibo.it/ gas-
pari/www/iswc03.pdf, 2003.

[19] OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, November 2003.

[20] D. Rossi, G. Cabri, and E. Denti. Tuple-based Technologies for Coordination.
In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf,
editors, Coordination of Internet Agents: Models, Technologies, and Applications,
chapter 4, pages 83–109. Springer Verlag, 2001. ISBN 3540416137.

[21] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding Semantics to
Web Services Standards. In Proceedings of the International Conference on Web
Services (ICWS’03), 2003, June 2003.

[22] R. Tolksdorf and D. Glaubitz. Coordinating Web-based Systems with Documents
in XMLSpaces. In Proceedings of the Sixth IFCIS International Conference on
Cooperative Information Systems (CoopIS 2001), number LNCS 2172, pages 356–
370. Springer Verlag, 2001.

[23] R. Tolksdorf, L. Nixon, F. Liebsch, N. Duc Minh, and E. Paslaru Bontas. Semantic
Web Spaces (Technical Report TR-B-04-11). Technical report, Free University of
Berlin, 2004.

[24] Y. Zou, T. Finin, L. Ding, H. Chen, and R. Pan. Using Semantic Web technology
in Multi-Agent systems: a case study in the TAGA Trading Agent Environment.
Proceeding of the 5th International Conference on Electronic Commerce, Septem-
ber 2003.

A Semantic Service Environment: A Case Study
in Bioinformatics

Stephen Potter and Stuart Aitken

School of Informatics, The University of Edinburgh, Appleton Tower,
Crichton Street, Edinburgh EH8 9LE, UK

{stephenp, stuart}@inf.ed.ac.uk

Abstract. In recent years, web services have become increasingly important
components of the scientific methodology of certain domains. Currently, how-
ever, the description and use of most these is purely ‘syntactic’; that is, the se-
mantics of the services are left to the human user to infer or acquire by other
means before deciding whether and how to use a service. Consequently, there
are opportunities to bridge this semantic gap through the application of emerging
semantic web and semantic web service technologies in these domains, thereby
enriching and expanding a user’s service interactions. This paper presents its au-
thors’ experiences of the application and use of these emerging technologies in a
displicine in which web services already play a key role: bioinformatics.

1 Introduction

As a discipline, bioinformatics is notable for its diversity of aims and methods, and the
heterogeneous nature of the computing resources applied to achieve them [13]. Bioin-
formaticians are accustomed to creating analysis pipelines [2] [16] [19] for, say, the
assembly of a complete gene sequence from a set of subsequences derived from a lab
experiment or the alignment of potentially homologous gene sequences. The dynamic
nature of the databases accessed in these steps — the rate of data production is such
that databases may be updated daily — creates a demand for automation in the analysis
process, with the explicit representation and storage of the workflow, its invocation, and
potentially, its exchange and reuse. Due to uncertainty of service availability, dynamism
in the selection of an active service must be taken into account. Finally, the bioinfor-
matician may wish to inspect the results as the workflow progresses to obtain feedback
and determine whether the processing parameters are correct.

Web services is one of the paradigms that has been adopted within bioinformat-
ics for exposing computational resources; these offer the advantages of providing an
open architecture using relatively standardised transport and communications layers.
However, these transactions occur at a syntactic level; there is, as yet, little semantic
description of the available services. Consequently, bioinformatics presents an opportu-
nity to apply emerging semantic web services technologies and standards to an existing
set of services, and, in so doing, to learn more about the engineering aspects of such an
enterprise. This paper presents our approach and experiences of an application of this
sort; this should be of interest those who are planning similar applications, or who are
involved in the design of these technologies and standards.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 694–709, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Semantic Service Environment: A Case Study in Bioinformatics 695

Section 2 of this paper provides a discussion of the nature of current bioinformatics
web services, and presents one of a number of scenarios we have used to guide our
approach. Section 3 itemises some of the requirements we identify for a practical se-
mantic layer in this domain. This is followed by a description of how we have gone
about the task of introducing these semantics. Finally, following a brief discussion of
related work (section 5), some of the implications of this work are discussed and some
conclusions drawn in section 6.

2 Bioinformatics Web Services

Before proceeding, it is first necessary to say a little about the nature of extant web
services in bioinformatics. These resources are often provided by large bioinformatics
‘data centres’ such as the European Bioinformatics Institute (EBI)1, the Virginia Bioin-
formatics Institute (VBI)2, and the DNA Data Bank of Japan (DDBJ).3 Many commonly
used bioinformatics computational components are available over the web, through ei-
ther (or both) ‘manual’ web browser interfaces or conventional ‘programmatic’ web
services interfaces. ‘Manual bioinformaticians’ will create an analysis pipeline by cut-
ting and pasting data from one browser interface to another, often accompanied by an
arbitrary amount of editing and reformatting of the data. Here, though, we are primar-
ily concerned with the programmatic interfaces; for our purposes we assume that, in
general, the offered web services share the following characteristics:

– a web service can be considered an ‘information transformer’, converting one par-
ticular input into an output; values of other parameters may qualify this behaviour.

– a service will appear as a ‘black box’ to its user; that is, the transformation it effects
appears as a single atomic process.

– a web service will be ‘idempotent’; that is, no notion of state persists from one call
to the service to the next (exceptions to these last two points include certain EBI
services which have a notion of state that allows clients to query the current status
of a running service).

– a service will be independent, in that its operation does not depend on the existence
or availability of other services.

– the interface to a service will be through a SOAP [9] ‘remote procedure call’ over
HTTP; this interface will be described using a WSDL [4] document.

– the WSDL document will not introduce any complex (XML Schema) typing of
inputs or outputs; instead, it will rely on the use of ‘simple’ types such as “string”.

This last point raises the question of data formats for bioinformaticians. As has been
noted (by, for example, Stein [18]) there are no agreed formats within bioinformatics
for the formats used by services; typically they will return results represented in some
ad hoc format, containing, say, a mixture of search results, hand-crafted natural lan-
guage annotations and references to third-party publications and other data sources. As

1 http://www.ebi.ac.uk/xembl/XEMBL.wsdl
2 http://staff.vbi.vt.edu/pathport/services
3 http://xml.nig.ac.jp

696 S. Potter and S. Aitken

a result, much time is expended by the users of on-line services in writing code for
‘screen-scraping’ (for extracting data from standard web browser pages) or for convert-
ing data from the format produced by one service into the format expected as the input
for the next. (Indeed, the realisation of this latter fact has led to the establishment of
the Open Bioinformatics Foundation4, whose goal of supporting bioinformatics pro-
gramming has involved the creation of code libraries for a number of different pro-
gramming languages for this sort of data manipulation.) This characteristic of services
makes workflows in the domain particularly brittle: if a provider alters a result format,
these translators must be re-engineered.

There are few universal standards for data represention. However, there are efforts
to create standard representations in specific areas, for example, the MIAME (Mini-
mum Information About a Microarray Experiment) initiative [3] aims to standardise
both the recording and the reporting of microarray-based gene expression data. In the
ontology arena, the Gene Ontology consortium has established a flat-file format for sim-
ple ontologies, and is moving to a more flexible format (the OBO format5). Currently,
however, each web service (provider) will generally use its own manner of representing
data, and, in the absence of standards, an alternative approach to automating service
workflows is to make conversion programs — termed shims, following [11] — avail-
able as web services like any other. (In general, a shim service might be thought to
perform a purely syntactical manipulation of its input. However, its effects might be
more subtle; for instance, a shim service which selects a subset of some data might
better be thought of as performing some semantic winnowing of this data.)

2.1 Scenario

To motivate this work, we have considered a number of real scenarios in which bioin-
formaticians achieve their aims by interacting with existing web services. These sce-
narios include: the assembly of a complete gene sequence from a set of subsequences;
the alignment of homologous gene sequences; and the search for tissue homologies by
identifying homologous genes. (These are comparable to the ‘use cases’ that are being
developed under the BioMOBY initiative.6)

By way of a concrete example of the use of bioinformatics web services, we here
present a sequence alignment scenario. This scenario is illustrated in Figure 1 where
part a) represents the three major steps in the workflow from the user’s perspective, and
part b) shows the mapping into web services. The steps are:

1. given the ID of the gene find the protein sequence that corresponds to the gene;
2. find those sequences that are potentially homologous with this sequence, i.e. find

those with a high degree of similarity, and;
3. place those sequences into a relative alignment. The degree of alignment reflects

the closeness of molecular function.

This corresponds to the following sequence of web service invocations:

4 http://www.open-bio.org
5 http://www.geneontology.org/GO.format.html
6 http://www.biomoby.org

A Semantic Service Environment: A Case Study in Bioinformatics 697

Fig. 1. Workflow and web services for the sequence alignment scenario

1. a protein sequence is obtained through a database lookup service using the supplied
gene identifier;

2. a BLAST (Basic Local Alignment Search Tool) search for similar sequences in the
sequence database is performed. (Since this is a search of a database of protein
sequences, specifically it is the “blastp” variant program that is required here.) This
is a pairwise comparison.

3. The most similar sequences are then input to the multiple sequence alignment pro-
gram ClustalW. Multiple sequence alignment considers the entire set of matching
sequences, and identifies regions of common structure.

A significant transformation of the output of the BLAST search was required to cre-
ate the input to ClustalW. There are alternative ways of performing this transformation;
here it was done by writing code to extract the identifiers of matching protein sequences
from the BLAST output report, and then querying the database using these identifiers
to retrieve the actual sequences.

In general, bioinformatics web services can be invoked by any client able to parse
their WSDL descriptions, and handle SOAP messages over HTTP. Hence, using conve-
nient libraries, sequences of service interactions and data transformations such as that
outlined above can be embodied in a conventional computer program. Currently, how-
ever, this can be done only if the locations and data formats of the services are known
to the programmer. Alternatively, a higher level interface and more flexibility is offered
by a number of tools (such as the Taverna Workbench [15], which is aimed specifically
(but not exclusively) at bioinformaticians) that allow their users to construct workflows
and then, by handling the interactions with services, invoke them.

3 Desiderata for a Semantic Service Environment

By considering scenarios such as that above, we can identify the principal steps that the
bioinformatician undertakes when constructing a workflow of services:

1. the identification and expression of the goal of the workflow. This will be deter-
mined by the immediate and long-term goals of the scientist’s research. Ideally,
this externalisation of scientific goals would be made directly at a semantic level;

698 S. Potter and S. Aitken

2. the identification of the major processing tasks, that is, developing (at the semantic
level) a practicable sequence of tasks for arriving at the goal given the data currently
available. This will necessarily involve some awareness of the types of service (and
data) that are available so as to construct a description of this desired sequence;

3. the identification of actual (and currently active) services able to enact this se-
quence, including any necessary shim services. This will involve discovery of ser-
vices, with perhaps a selection from among competing matching services. The dis-
covery will typically involve searching for instances of a specified type of service
and/or which produce some specified output;

4. the invocation of the workflow. At this point, the semantic description must be
bound to the underlying ‘syntactic’ computational description of the services in-
volved (this need not be exposed to the scientist);

5. the storage of the workflow for later reuse. For this purpose, some language rich
enough to capture the semantics of the developed process would be required.

Steps 1–3 are unlikely to be wholly independent and to conform strictly to this or-
dering; identification of the major tasks in step 2, for instance, is likely to be influenced
by and determined to some extent by knowledge of the services that are available. How-
ever, if our aim is to faciliate and enrich workflow construction of this sort, the above
steps allow us to outline the semantic properties we would like in this domain, namely
service description, discovery, selection and invocation, along with the capture of work-
flow process.

Currently, however, the WSDL descriptions of services are primarily syntactic in
nature, inasmuch as they describe the types of the service inputs and outputs but not
the semantics of these parameters or of the task that the service performs. This means
that prospective clients usually need to gain an understanding of the behaviour of and
interface to the service from some other source (for example, by emailing its authors or
reading their web pages) in order to use the service. Furthermore, it restricts the possi-
bilities for dynamic discovery of appropriate services to meet a client’s needs (Taverna,
for example, provides its users with lists of ‘known’ web services from which to choose;
this list can be augmented if the user knows of the URIs of other services, but no auto-
matic discovery is attempted).

Given these requirements, and the desire to apply emerging semantic web technolo-
gies rather than invent new ones for this domain, in the following sections we outline
our approach to introducing semantics to bioinformatics web services.

4 A Semantic Bioinformatics Service Environment

In order to introduce semantics into the current practice of service-based bioinformatics
and satisfy the above desiderata, we have introduced the following:

– The semantic description of services using OWL-S, plus a dedicated domain ontol-
ogy described in OWL (described below in sections 4.1– 4.3);

– An automated discovery service using a description logic reasoner (section 4.4);
– A semantic workflow tool, which acts as a user interface to the discovery service,

and allows the invocation of services (section 4.5).

A Semantic Service Environment: A Case Study in Bioinformatics 699

4.1 Introducing Semantics: OWL and OWL-S

In an attempt to move towards a more ‘semantic’ environment, we have chosen to intro-
duce OWL-S descriptions of the existing services. OWL-S [5] is a generic upper ontol-
ogy for specifying web services; it is intended to allow providers to describe (using an
XML document) their services in such a manner as to allow their discovery, selection,
composition and invocation; and, where appropriate, allow for monitoring, mediation
and failure recovery. OWL-S is specified in OWL, the Web Ontology Language [7],
which provides a language (built on the RDF data model) for specifying Description
Logic (DL) constructs in the syntax of XML. DLs form a subset of first-order logics
that are particularly suited to the description of hierarchical ontologies of entities, and
possess appealing tractability characteristics.

The OWL-S ontology is divided into three principal areas: the Profile, Model and
Grounding. The Profile is used to describe the purpose of the service, and so primar-
ily has a role in the initial discovery of candidate services for a particular task. The
Model describes how the service is performed, and is intended to allow simulation of
and mediation with the service, to enable the execution of the service to be monitored,
etc. Finally, the Grounding specifies in concrete terms how the service is actually in-
voked.

The role of the Profile, then, is to describe the essential capability of the service
by characterizing it in functional terms (in addition, non-functional aspects of the ser-
vice can be specified through ‘service parameters’). This functional characterisation is
expressed by specifying the class of the service and by detailing the inputs it expects,
the outputs it produces, the preconditions that are placed on the service and the effects
that the service has. The description of preconditions and effects presents something
of a problem for OWL-S; their expression requires, in effect, variables and rule-like
constructs, which are outside the expressive capabilities of DLs (and hence, outside the
capabilities of DL reasoners). In this domain, however, as noted in section 2 above,
we assume that web services are essentially stateless; accordingly we do not need to
model preconditions and effects, but this will not be the case for all domains. As well
as characterising services, the Profile has an additional use: to allow potential clients to
specify their desired services (the descriptions of which may be partial or more general
in nature where certain specifics are irrelevant to the client).

Since the OWL-S ontology is essentially domain independent, in order to provide
this sort of ‘semantic typing’ of both services and queries, we need to extend the ontol-
ogy with ontological concepts from, in this case, the domain of bioinformatics.

4.2 A Bioinformatics Ontology Extension

The approach taken is to extend the basic generic description of an OWL-S Profile,
hierarchically subclassing it with the various types of bioinformatics service that can be
identified (figure 2). In addition, we also generated a hierarchy of the various conceptual
data types that describe the inputs and outputs.

Being essentially simple taxonomies of services and data, these ontology extensions
are not as rich as one might expect, due in part to the practicalities of expressing these
concepts in DLs. For instance, when coming to define the class ProteinSearchService,

700 S. Potter and S. Aitken

Fig. 2. A fragment of the bioinformatics ontology showing the hierarchical arrangement of some
types of service. Note that the root of this subtree is the (OWL-S) Profile concept

one might reasonably attempt to express as restrictions on this class the features of its
inputs and outputs that are common to all service instances of the class:

ProteinSearchService ≡ SearchService
∃ hasInput.ProteinSequence
∃ hasOutput.Report

In other words, that instances of ProteinSearchService have some input of class
ProteinSequence and give some output of class Report. Now, one might want use this
definition to define the more specialised service concept BlastP:

BlastP ≡ ProteinSearchService
∃ hasInput.DatabaseName
∃ hasInput.ProgramName

∃ hasOutput.BlastSearchReport

Now, unless we introduce appropriate disjointedness axioms and cardinality con-
straints, from this definition it is impossible to infer how many inputs and how many
outputs a BlastP service should have. Introduction of these appropriate axioms and
constraints can have implications for the tractability of automated reasoning (e.g., the
assertion of cardinalities other than 0 or 1 takes us from the OWL-Lite subset of the
language to OWL-DL). A more practical concern, though, is the engineering implica-
tions of these sort of definitions; for a bioinformatician wishing to describe his service
(who cannot be assumed to be familiar with DLs), complex definitions of this sort are
unwieldly and difficult to use, and can result in inappropriate conceptualisations having
unintended implications. The client who wishes to state her requirements will face sim-
ilar difficulties. To a certain extent, these problems are due to the unsuitability of DLs,
with their lack of arbitrary variables and rule expression, for representing processes.7

As a consequence, the ontology extensions we have created are relatively sparse, being
little more than definitions of taxonomies of concepts. The intention is that the service
provider and client are able to use these ‘naively’ to express the service and data types
they provide or require.

7 Note that the most recent version of OWL-S (version 1.1) includes the concept of a variable,
and suggests ways by which to introduce rule-like expressions; however, it is not entirely clear
how these should be used or reasoned with.

A Semantic Service Environment: A Case Study in Bioinformatics 701

There are now several tools available which enable the user to create and extend
OWL ontologies; here we use the Protégé ontology editor.8 The extensions were cre-
ated by an informatics researcher who also has experience of bioinformatics, and since
we restricted ourselves to modelling only certain — but hopefully representative —
scenarios, these extensions represent partial views of the domain for this purpose. The
creation of the ‘right’ ontologies is an issue of obvious importance, not only here but
throughout the semantic web community and beyond. A good ontology in this case
would both allow service providers an appropriate degree of expression to capture ac-
curately and completely the behaviour of their services and enable clients to express
their needs in as specific or as general a manner as is appropriate. In this sense, as-
sessing the value of an ontology is a pragmatic question. Moreover, the use of domain-
specific ontologies in this manner places certain practical obligations on agents in this
domain: for service discovery to be possible, there must be a certain degree of con-
sensus in the content and use of ontologies by both the service providers and potential
clients.

4.3 Describing Bioinformatics Services

Now we can use the ontology extensions outlined above to describe the Profiles of bioin-
formatics web services in the manner suggested. Each particular service is an instance
of the appropriate subclass of BioinformaticsService, and each of its inputs and outputs
are typed9 with the appropriate data class expressions. We do not, however, make use
of OWL-S service parameters to try to capture the non-functional qualities of these ser-
vices; factors such as trust, efficiency and availability of services will undoubtedly play
a major role in service selection, but remains an area of future research.

Now we need to consider how to express the other constituents of an OWL-S de-
scription, namely the model and the grounding. In each case, this is relatively straight-
forward. Since, as discussed in section 2, these services are generally modelled as ‘black
box’ atomic processes, this naturally leads us to describe their models using the OWL-S
concept of AtomicProcess. However, note that, while appropriate for the existing web
services, this choice means that the services have rather inexpressive models, and as
a result the possibilities for simulation, mediation, monitoring, etc. of services is lim-
ited. As also stated in section 2, the interfaces to these services are usually described
using WSDL documents; hence this becomes the obvious choice for their OWL-S
grounding.

The construction of an OWL-S document describing a particular service is a semi-
automatic process. From its WSDL description, the OWL-S API [6] allows the auto-
matic construction of a basic OWL-S outline document, having a grounding that refers
to its WSDL, an atomic process model, and a profile which has the appropriate number
of inputs and outputs. Using the bioinformatics ontology extension, these inputs and
outputs, along with the class of profile itself must then be manually annotated with the
appropriate semantic terms from the extended ontology.

8 http://protege.stanford.edu/
9 Through the use of the OWL-S parameterType relationship.

702 S. Potter and S. Aitken

Although in this case we have provided the OWL-S descriptions of others’ web
services,10 ideally it would be the service providers who would generate these. This
would require appropriate tools to be available and, since the task is always likely to
have a manual component, the ontological descriptions to be ‘usable’ (a subject touched
upon in the previous section).

4.4 Semantic Discovery

Among the fundamental capabilities of DL reasoning engines are the subsumption of
class terms and the classification of individuals into their appropriate categories or
classes. The use of OWL-S and OWL allows us to exploit their underpinnings in DLs
to construct discovery services for this domain. Here, we have constructed a simple
generic discovery service based on the RACER DL engine [10], which loads and main-
tains the current Profile ontology (including its bioinformatics extensions) in memory.
On receipt from a service provider of a service advertisement in the form of (the URL
of) an OWL-S document, the Profile of the service is used to classify this instance into
its appropriate location in the ontology.

Subsequent queries (also in the form of OWL-S descriptions) can be interpreted
as defining a class of services; the instances of those classes that are equivalent to or
subsumed by this class are considered to satisfy this query. Note that queries can be as
specific or as general as required, and there may be any number of services that meet a
particular query, details of all of which are returned to the client. (Others have proposed
similar reasoning mechanisms for discovering services — for example, see [12].) It is
easy to imagine applying more elaborate reasoning here, perhaps involving aspects of
automated composition to formulate and return sequences of services. In addition, the
discovery service described above will miss potential service solutions that are more
general than (i.e., that subsume) the current query. While this functionality could easily
be provided, it raises a problem with the interpretation of the intended semantics of
services: should the claim of a service to take input of some class I be interpreted as
meaning it can handle every instance of (every subclass of) I, or merely some of these
instances, of which I represents the ‘least general generalisation’? (While the former
interpretation would allow for more definitive reasoning about services and is proba-
bly the more ‘correct’ approach, at a pragmatic level the latter use would appear more
natural.) Another difficulty surrounds queries which stipulate, for example, a relatively
general input class and a relatively specific output class (as would be used when ‘prob-
ing’ the available services for methods that produce a particular desired output). In this
case, any particular service (with, say, more specific input and more general output typ-
ings) is unlikely to either subsume or be subsumed by the query: a more sophisticated
matching algorithm would be required, one which considers these different constituents
of the profile description separately. Problems such as these suggest that service discov-
ery based on the simple subsumption of Profile descriptions is unlikely to be adequate
for many domains (and undermines some of the rationale for expressing OWL-S in a
DL-based language).

10 A task which presented some difficulties, since — of course — these services lacked any
semantic description!

A Semantic Service Environment: A Case Study in Bioinformatics 703

Notwithstanding these shortcomings, we have chosen to construct and deploy the
relatively simple algorithm described above to provide a basic functioning discovery
service for our environment. This discovery service is itself implemented as a web ser-
vice, with a WSDL description specifying the appropriate SOAP messages for publish-
ing services and posting queries (these functions can also be performed through a web
browser form). Hence, a further assumption about this environment is that the location
of this service is known a priori to clients and providers alike.

4.5 Semantic Workflow Tool

The architecture outlined above can be used by clients that are able to parse WSDL and
generate, send, receive and parse SOAP messages over HTTP, and, for the purpose of
semantic discovery and invocation, generate and parse OWL-S descriptions. However,
provision of these abilities currently places quite a burden on any prospective user.
Consequently, we decided that, in order to ease this burden and provide a means to
construct the workflows of services in the manner described in section 3, we would also
provide a client-side interface to this architecture, in the form of a domain-independent
semantic workflow tool.

Through a graphical interface, this tool allows its users to specify, using the ontology
extensions of the domain in question, their (perhaps partial or general) service needs at
a semantic level; these are used to generate the appropriate OWL-S queries, which are
then sent to the discovery service. If matching services are returned, their descriptions
are then used to fill in details (such as additional inputs and their characterisations). By
specifying that the output document of one service is to form the input document of the
next, ‘pipelined’ sequences of services can be constructed dynamically. Finally, values
can be provided for inputs to the systems, and outputs channelled into specified outputs
and the created workflow can be invoked. (This tool is domain-independent; among its
parameters are details of the domain ontology extensions to use.)

Fig. 3. Using the semantic workflow tool to define a BlastP service step

704 S. Potter and S. Aitken

As an example of the use of this tool — and of the use of the semantic environ-
ment — we now describe the construction of a sequence alignment workflow as in
the scenario of section 2.1. For reasons of brevity, however, we restrict this example
to the definition of only the first two service steps in this sequence. The aim of this
workflow, then, is to perform a BLAST search over a protein sequence database. Ac-
cordingly, the user first introduces a generic service node, and then, using the bioin-
formatics ontology extensions, browses the hierarchy to specify the class of desired
service (figure 3). Having done this, the user then places a call to the discovery ser-
vice to find if there are any services available which conform to this (partial) service
definition.

The response indicates that there is a single available instance of a BlastP service
(called “SEARCHSIMPLE”), and the user selects this to instantiate this step. This has
the effect of elaborating the workflow with the three inputs and single output of this
particular service, all named and typed appropriately (figure 4).

The user’s next task is to acquire the desired protein sequence that forms one of
these inputs; the user does not have this data directly, and so would like to search for a
service that will supply it; hence, the user replaces the input with a new generic service
concept, and places a call to the discovery service. This corresponds to a request for
any service that produces an output of type ProteinSequence. This time, the response
indicates that two alternatives are available, namely “GETFASTA SWISSENTRY” and
“GETFASTA PIRENTRY”, look-up services which access the PIR and the SwissProt
protein databases respectively. Since, in this case, the user wishes to use the SwissProt
database, the latter of these is selected, and its input added to the model.11

Now, the user can associate appropriate values with each of these inputs (or else read
the values from files) and invoke the workflow; the results are displayed to the screen
and written to a file (figure 5).

To encourage interoperability and reusability, the workflow is also saved as a file
conforming to the SCUFL XML workflow language used by the Taverna Workbench,
into which it may then be loaded, executed, modified, etc.

4.6 Summary

It will be useful at this point to reiterate the steps that we performed in order to create
this bioinformatics semantic web service-oriented environment from existing computa-
tional resources:

11 Inevitably, the description of services is more complex than is suggested by this example. In
particular, the ‘pipelining’ of services, as in this example, is complicated by the variety of
formats used to describe what are conceptually the same input and output data, and frequently
results in the need to resolve these mismatches using shim services. (In this example, the
pipelined data is — conveniently enough — in the same format.) Ideally, since we are trying to
operate at a ‘semantic’ level, we would like to defer consideration of such ‘syntactic’ questions
until invocation-time. However, since the absence of even a single necessary shim service will
prevent successful execution the entire workflow, such matters cannot be so easily ignored.
Consequently, we currently model them as first-class semantic services, but the appropriate
manner of describing and reasoning with data formats remains an open question.

A Semantic Service Environment: A Case Study in Bioinformatics 705

Fig. 4. A service instantiation of the BlastP step

Fig. 5. Finally, the workflow is invoked and the results can be inspected

1. Analysis of existing web services and of their use by bioinformaticians has allowed
us to define the desirable properties of any such environment to act as drivers for
the engineering effort;

2. An OWL bioinformatics ontology extension to the OWL-S ontology was engi-
neered; this step involves deciding how best to characterise the domain and dif-
ferentiate services, from the perspectives of both service providers and potential
clients.

3. Using this ontology and the WSDL description of an available service, an OWL-S
description of the service is generated (in part manually).

4. Using an existing DL reasoner, a semantic discovery (web) service was constructed.
This uses the ontology to classify available services, whose OWL-S descriptions
can now be published to this service.

5. In this case, we provided a client-side workflow tool interface that would allow its
users to interact with this environment.

706 S. Potter and S. Aitken

By way of an aside, one might expect many of the characteristics noted above to be
found in other domains in which existing computational resources are invoked from the
command-line using UNIX-pipelines. In its embrace of web services, bioinformatics
is a relatively advanced domain; when considering how to ‘servicify’ similar but less
evolved domains, there are a number of issues that arise. These include deciding what
should constitute a service in the domain (a convenient rule of thumb might be to con-
sider what constitutes a ‘minimal unit of reusability’), how best to expose its inputs and
outputs (since command-line programs will often refer to local files and directories)
and how to provide the appropriate computational (HTTP, SOAP, WSDL) wrapping
around the service. (With others we have addressed some of these issues when creating
a semantic environment similar to that described in this paper for the domain of natural
language processing; see [8] for details.)

5 Related Work

In this section we highlight some current work that is closely related to that presented in
this paper. Within the bioinformatics community, the myGrid project12 has investigated
the use of DAML-S (the precursor to OWL-S) for service description, and one thread of
the BioMOBY project mentioned above concerns the semantic description of services,
with, as here, the use of OWL ontologies of service and data types. Rather than using the
kind of service-oriented architecture adopted here, though, this work is experimenting
with an alternative model in the form of the joint development between agents of a
‘negotiated’ service description. This approach is intended to help counter some of the
problems that would occur whenever ontologies or service descriptions alter. However,
since this work is still under development, it is not yet possible to judge the merits of
this approach.

The work presented here has some overlap with the Task Computing project [14],
at least in terms of the underlying semantic web technologies that are adopted, and that
project’s STEER interface is somewhat similar to the workflow tool developed here.
However, there are differences: Task Computing is an ambitous project concerned with
pervasive computing, and adopts an appropriate non-centralised architecture for service
discovery; moreover, it is aimed at a wider range of potential users than the work here,
which is focused on the needs of a particular community.

The WSMO working group13 is directly concerned with providing semantic ser-
vice environments, and in some respects represents an alternative to the OWL-S ap-
proach and the architecture that it suggests; however, its work is still at a relatively
early stage, and does not yet allow a full appraisal of its applicability to this domain. The
METEOR-S/WSDL-S [17] project is an attempt to integrate semantic ‘type’ descrip-
tions (expressed using OWL constructs) more directly into WSDL documents. This sort
of approach might be appropriate in this particular case, since the assumptions we make
about bioinformatics services mean that, in effect, OWL-S is used for little more than
typing of this sort.

12 http://www.mygrid.org.uk
13 http://www.wsmo.org

A Semantic Service Environment: A Case Study in Bioinformatics 707

6 Conclusions

The environment described above supports the interactive construction and execution of
workflows, i.e., their realisation in an orchestrated sequence of web services. From the
user’s perspective, the creation of a workflow can take place at the ‘knowledge level’
of service types, with calls to the discovery service used to try to ground the workflow
in actual computational resources. The choice of a particular candidate service for a
given workflow step also has the effect of introducing any additional input and out-
put parameters associated with it into the model. Data flow is achieved by ‘pipelining’
an output of one service into the input of another. When actual services instantiate all
the steps, the workflow input values can be supplied, either as literals or from files,
and the workflow can be invoked. Hence, the discovery of services plays an important
role in providing access to active services. In comparison with conventional look-up
approaches such as UDDI [1], which rely on generic service taxonomies, our discov-
ery mechanism can perform more detailed matching using subsumption over service
requests and advertisements. This mechanism, the workflow tool and the underlying ar-
chitectural aspects of the environment are essentially domain-independent; the specifics
of the domain are expressed through the ontology extensions and their use in OWL-S
service descriptions.

We conclude with some remarks about the engineering aspects. The need to wrap
services with a SOAP messaging layer, and generate the corresponding WSDL and (in
particular) OWL-S documents remains an obstacle to those trying to ‘re-purpose’ ex-
isting resources as web services.14 The end-user tools for doing this are not yet readily
available, and until such time as they are, take-up of these technologies will necessarily
be limited. At a more general level, the suitability of the OWL-S ontology and OWL
itself, and, more specifically, their underlying grounding in DLs, for the purpose of de-
scribing services remains questionable. As discussed in section 4.2, DLs do not readily
lend themselves to the description of processes. Furthermore, as seen in section 4.4,
service discovery based simply on the subsumption of Profiles is not always going to
be adequate. The workflow tool that we have developed currently has a rather limited
vocabulary for specifying workflows; for instance, iterations over resources cannot be
specified in the language, but must be encapsulated in a composite process. In part, this
is a result of the desire to provide a simple graphical interface, which does not lend it-
self to subtleties of this sort (and, of course, users with more advanced needs could
always revert to a conventional programming language to specify their workflows).
However, another factor is that the contents of an appropriate workflow language(s)
for bioinformatics (and for e-Science more generally) are, as yet, not entirely clear.
Indeed, this — along with other aspects of this environment — is something that one
might expect to evolve as semantic web services are assimilated into scientific research
methodologies.

14 To address part of this problem, the myGrid project has developed Soaplab, to help provide a
SOAP wrapper for programs; see http://industry.ebi.ac.uk/soaplab/.

708 S. Potter and S. Aitken

Acknowledgements

This work is supported by BBSRC grant BBSRC 15/BEP 17046 (XSPAN), and by
the Advanced Knowledge Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and Physical Sciences Research
Council under grant number GR/N15764/01. The AKT IRC comprises the Universities
of Aberdeen, Edinburgh, Sheffield, Southampton and the Open University.

References

1. T. Bellwood et al. UDDI technical white paper. http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm.

2. E. Birney et al. An overview of ensembl. Genome Research, 14:925–928, 2004.
3. A. Brazma et al. Minimum information about a microarray experiment (miame): toward

standards for microarray data. Nature Genetics, 29(4):365–371, 2001.
4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description

language (WSDL). http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.
5. The OWL Services Coalition. OWL-S: Semantic markup for web services (v1.1).

http://www.daml.org/services/owl-s/1.1/.
6. The MINDSWAP Group. OWL-S API. http://www.mindswap.org/2004/owl-s/api/.
7. The Web Ontology Working Group. OWL web ontology language reference.

http://www.w3.org/TR/owl-ref/.
8. C. Grover, H. Halpin, E. Klein, J.L. Leidner, S. Potter, S. Riedel, S. Scrutchin, and R. Tobin.

A framework for text mining services. In Simon J. Cox, editor, Proceedings of the UK
e-Science Programme All Hands Meeting 2004 (AHM 2004), pages 878–885, Nottingham,
UK, 2004. 31st August-3rd September.

9. M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.F. Nielsen. Simple object access
protocol (SOAP). http://www.w3.org/TR/soap12-part1/.

10. V. Haarslev and R. Möller. RACER system description. In Proceedings of the First Interna-
tional Joint Conference on Automated Reasoning, pages 701–706. Springer-Verlag, London
UK, 2001.

11. D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic web syndrome with
ontologies. In First AKT workshop on Semantic Web Services (AKT-SWS04), KMI, The Open
University, Milton Keynes, 2004.

12. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Proc. of the Twelfth International World Wide Web Conference (WWW 2003),
pages 331–339. ACM, 2003.

13. P. Lord, S. Bechhofer, M.D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble, and
L. Stein. Applying semantic web services to bioinformatics: Experiences gained, lessons
learnt. In Proceedings of Third International Semantic Web Conference (ISWC2004), Hi-
roshima, Japan, November 2004, pages 350–364. Springer-Verlag LNCS 3298, 2004.

14. R. Masuoka, Y. Labrou, B. Parsia, and E. Sirin. Ontology-enabled pervasive computing
applications. IEEE Intelligent Systems, 18(5):68–72, 2003.

15. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M.R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics Journal, 20(17):3045–3054, 2004.

16. S.C. Potter et al. The ensembl analysis pipeline. Genome Research, 14:934–941, 2004.

A Semantic Service Environment: A Case Study in Bioinformatics 709

17. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web services
standards. In Proceedings of the 1st International Conference on Web Services (ICWS’03),
Las Vegas, Nevada (June 2003), pages 395–401, 2003.

18. L. Stein. Creating a bioinformatics nation. Nature, 417, 2002.
19. R. Stevens, R. McEntire, C.A. Goble, M. Greenwood, J. Zhao, A. Wipat, and P. Li. myGrid

and the drug discovery process. Drug Discovery Today: BIOSILICO, 2(4):140–148, July
2004.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 710–724, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards B2B Integration in Telecommunications with
Semantic Web Services

Alistair Duke1, Marc Richardson1, Sam Watkins1, and Martin Roberts2

1 BT, Next Generation Web Research, Adastral Park, Martlesham Heath,
Ipswich IP5 3RE, United Kingdom

2 BT Exact, OSS Solution Design, Adastral Park, Martlesham Heath,
 Ipswich IP5 3RE, United Kingdom

{alistair.duke, marc.richardson, sam.watkins,
martin.me.roberts}@bt.com

Abstract. This paper describes BT Wholesale’s B2B Gateway as an approach
to provide Business-to-Business integration within the Telecommunications
sector. Although the Gateway provides increased efficiency over separate
systems, the process to allow business partners to integrate is lengthy and
costly. The application of Semantic Web Services will ease the integration
process. The Web Services Modelling Ontology is described and applied to the
Gateway. The paper presents the initial requirements of the Gateway upon
WSMO and proposes how WSMO could provide further benefit in the future.

1 Introduction

Today’s telecommunications industry is facing many challenges. After many years of
high growth and profit the last few years has seen rapidly falling prices and
increasingly intense competition. Operators (and in particular, the large incumbents)
have realised that they must radically transform the way they do business in order to
reduce costs and remain competitive.

Currently the industry suffers from high manpower costs due to a lack of
automation, poor time-to-market due to inflexible business processes and customer
service which has suffered due to a lack of integrated support systems. On the other
hand, customers are demanding integrated services, tailored to their specific needs.
The market is becoming increasingly federated due both to regulatory pressures and
to companies’ attempts to catch market opportunities with tailored, bundled services.
In this market, the number of Business-to-Business (B2B) relationships between
telecommunications companies and specialist content and service providers has
dramatically increased.

The current recession, changing market and new technology has led many
companies to radically rethink the way they operate. They have realised that the new
environment requires tighter management of processes and the eradication of
bureaucracy and duplication of effort and systems. These requirements can be met by
B2B integration where companies expose interfaces to their processes and systems,
thus allowing their partners to integrate. This process, however, can be time-
consuming and costly and can even result in proposed services being commercially

 Towards B2B Integration in Telecommunications with Semantic Web Services 711

unviable. These problems are partly due to the legal and commercial aspects of
forming a partnership and partly due to a lack of automation from the technical
perspective.

The EU DIP project1 and its technical basis, the Web Services Modelling Ontology
aims to address the integration problem through the adoption of Semantic Web
Services. In this paper we present initial work in applying WSMO to a
telecommunications integration platform as part of a DIP case study.

2 BT Wholesale’s B2B Gateway

Traditionally, vertically integrated telecommunications companies such as BT have
provided end-to-end services to customers using their own retail operations and their
own hardware. Over recent years, these companies have worked hard to improve
customer service and reduce costs through greater process efficiency and
effectiveness. These efforts have been enhanced with the introduction of integrated
Operational Support Systems (OSS). These can provide customers with end-to-end
visibility of service delivery and assurance. The challenge in the new environment is
to maintain these levels of efficiency and customer service even though there are
multiple parties and organisations acting to deliver the service who inevitably have
their own systems that cannot be directly integrated with those of others [1]. BT
Wholesale’s B2B Gateway is provided to Service Providers 2 to allow them to
integrate their Operational Support Systems with those of BT. Without such a system
the service provider would either need to manually coordinate with BT via a BT
contact centre or operate a system separate to its own OSS that communicated with
BT’s – thus requiring information to be duplicated.

The B2B Gateway exposes an interface whose behaviour is a combination of
transport technologies such as SOAP, security protocols such as SSL, messaging
middleware such as ebXML and the process behaviour of back end systems.

Over the last 10 or so years BT Wholesale has been involved in a number of B2B
solutions. Earliest examples were based on Electronic Data Interchange (EDI)
solutions for delivering billing information. The take up of these solutions was very
low and it was not until the need to offer interfaces to other licensed operators for
regulated products that their use increased.

About 5 years ago the use of XML based content was demonstrated. The content
for this demonstration was based on a XML version of an American EDI library.
This was publicly available and utilised an early version of a schema language known
as SOX (Schema for Object-oriented XML). The strength of the library and the
schema language it used was the ability to build simple extensions to support industry
specific solutions.

Over that last four years a number of real solutions have been deployed by BT
Wholesale using XML based on this early work. The most successful has been the
DSL broadband interface that has been used to capture more than 1 million orders.

1 http://dip.semanticweb.org
2 A service provider in this context is the organisation who has the relationship with the end

customer.

712 A. Duke et al.

With the publication of the XML Schema 3 (XSD) standard there have been
attempts to move the current XML interfaces away from SOX to XSD. The move has
not been achieved for any live solution. For new solutions an XSD translation of the
SOX library has been used or new XML schemas created where no library solution
was available. The advantage of moving to the XSD format has been the availability
of tools and the increased possibility of integrating with newer transport standards
such as Web Services.

Currently the process involved in granting access to the Gateway for a new service
provider is lengthy and complex. It commences with a commutation phase where
partners assess their technical suitability, receive documentation and consider the
level of fit with their existing OSS. A development phase follows this during which
support is provided by BT. During the testing phase, the partner is given access to a
test environment provided by BT where they can test the validity of their messages
and their transport and security mechanisms. Firewalls, proxies, etc. must be
configured by both parties to ensure that communication can occur. Once the testing
phase is complete and documented the partner can move to a pilot phase where terms
must first be agreed regarding volumes, frequency and support arrangements before
access is given to the live system. Transactions are monitored during the pilot phase
to ensure validity.

The process can take several months from start to finish. Any approach that can
reduce development time, improve the quality of development through enhanced
understanding and as a result avoid significant problems during the testing and pilot
phases will naturally save BT and its partners significant time and money.

The Gateway currently exposes a number of interfaces concerned with service
fulfilment and assurance. These are generally concerned with regulated services such
as broadband access. The interfaces allow Service Providers to order and cease
broadband lines on behalf of their customers, manage faults (i.e. raise and manage
faults, request, confirm and cancel repair appointments and receive status fault status
notifications) and carry out diagnostics (i.e. request tests and handle the response to
these). In this paper, the application of Semantic Web Services to the Broadband
Diagnostics interface is examined.

2.1 Broadband Diagnostics

As part of its OSS process, a Service Provider may wish to raise a test on the BT
network. This is typically due to a problem that has been reported by one of its
customers. The Service Providers OSS should collect the necessary information from
the customer and assuming that the problem cannot be resolved internally issue a
request via the B2B Gateway.

Interactions are implemented through the exchange of business documents, sent as
messages. These interactions are known as transactions. The Gateway currently uses
ebXML Business Process Specification Schema4 to model the sequencing of these
transactions into a collaboration. The Broadband Diagnostics interface has only two
transactions. These are ‘RequestTest’ and ‘NotifyOfTestCompleted’. ‘RequestTest’

3 http://www.w3.org/XML/Schema
4 http://www.ebxml.eu.org/process.htm

 Towards B2B Integration in Telecommunications with Semantic Web Services 713

is a ‘RequestResponse’ transaction which means that a response to the test request is
expected. This indicates whether the test has been accepted or rejected. It may be
rejected if, for example, the Service Provider is requesting a test on a circuit that does
not belong to them. The ‘NotifyOfTestCompleted’ is a ‘Notification’ transaction. This
is a single message that is sent following the completion of an accepted test. It
describes the results of the test. The sequence diagram for the collaboration in the
case of an accepted test is shown in Figure 1.

Fig. 1. Sequence Diagram for Broadband Diagnostics Collaboration.

2.2 The B2B Gateway Architecture

The B2B Gateway, in common with most B2B interfaces has three separate elements.
The two internal systems of the respective organisations that need to communicate
and the interface that they will use to do this. This usually involves both systems
translating their internal application view of data and process into the interface view
of the problem. Depending upon who produces the interface definition the amount of
translation involved can be either very small or almost impossible to achieve without
development effort.

The Gateway architecture can be represented as shown in Figure 2. The Service
Provider’s OSS is able to generate a call to request a test. In order to pass this on to
the B2B Gateway, it must first be adapted to enable it to be understood. The
adaptation process has two key elements. Firstly the test call must be represented as
a business message that will be understood by the gateway as a valid message given
the current state of the transaction i.e. it must be represented as a TestRequest
message which is the initial interaction of the ‘RequestTest’ transaction. Secondly,
the business message must be wrapped within the protocol envelope i.e. ebXML
Messaging.

A message received by the B2B Gateway must also be adapted before it can be
processed by the BT Wholesale OSS. This adaptation is effectively the reverse of the
previous one. A message handler checks an incoming message for validity according
to the message protocol and assuming it is valid unwraps the business message from

714 A. Duke et al.

the protocol. The business message is then checked for validity according to the
current state of the transaction. Assuming this it valid, the message can be adapted
into a call to the BT Wholesale OSS Test and Diagnostics system.

 BT Wholesale

Test Interface

B2B Gateway

Service Provider

CRM System

SP OSS

SP OSS
Call

Test System

BTW OSS

ebXML

Adapter

ebXML

SP OSS
Call

Fig. 2. B2B Gateway Architecture

The system is asynchronous so ‘Time To Perform’ values are associated with the
transactions. After processing the test request, the Test and Diagnostics system
responds to the Service Provider via the B2B Gateway. The process is the exact
reverse of the original request.

Generating the adapter between OSS calls and valid B2B Gateway messages is one
of the key challenges of the integration process. The Web Services Modelling
Ontology aims to significantly simplify this integration process. The next section
briefly introduces WSMO and describes how the Broadband Diagnostics interface
could be modelled using it.

3 The Web Services Modelling Ontology

The Web Service Modeling Ontology5 along with its related language (WSML) and
execution environment (WSMX) presents a complete framework for Semantic Web
Services, combining Semantic Web and Web Service technologies. WSMO is an
ontology and a conceptual model for the description Semantic Web Services. It is
derived from and based on the Web Service Modeling Framework WSMF [2].
WSMO has a number of features (either defined or under development) that makes it
appropriate (versus related approaches such as OWL-S) for application to the case
study described in this paper. A detailed comparison of WSMO and OWL-S is given
in [3]. WSMO features such as scalable mediation between loosely coupled elements
and support for multiple groundings for processes are not well supported in OWL-S.

5 http://www.wsmo.org

 Towards B2B Integration in Telecommunications with Semantic Web Services 715

Despite WSMO’s advantages, it is the opinion of the authors that, in order not to
inhibit its adoption, a complete departure from the W3C recommendation, OWL,
should be avoided. Although WSMO claims to be able to handle other ontology
languages by providing a meta-level ontology, tool support for import and export has
yet to be provided.

WSMO is based on two fundamental design principles:

• Strong de-coupling of the various components that realize an application
• Strong mediation to enable anybody to speak to everybody

The Web Service Modeling Framework consists of four elements. These are
Ontologies which describe the domain in a machine processable way and provide the
formal semantics to the information used by other WSMO elements; Goals, which are
used to define a certain aim which will be achieved by using a Web Service, or the
specific objectives that a client may have when consulting a Web Service; Web
Services, which provide the functionality to process data or changing states in the
physical world and Mediators, which are used to map between WSMO elements if
they are based on different technologies, e.g. input and output data structures,
business logics, message exchange protocols, etc.

The explicit relationship between services and ontologies is the key element for
Semantic Web Services and WSMO. It is envisaged that this will enable:

• Improved service discovery
Semantic Web search technology allows users to search on ontological concepts
rather than by keyword. This would allow users (and indeed computers) to find the
most appropriate services more quickly and then narrow down their search via more
expressive queries if required.

• Re-use of service interfaces in different products / settings
Services that are described semantically can more easily be discovered, understood
and applied thus reducing the need to create new services that serve the same purpose.
This could also be used in a strategy to reduce complexity i.e. remove services /
interfaces that exactly repeat the function of other services but are described slightly
differently.

• Simpler change management
Changes to models and services are inevitable over time. The key thing is to reduce
the knock-on effect of change or at least manage it. A Semantic approach will
significantly reduce the overhead and simplify the process. For example, when a
proposed change is made to a data element, those services or interfaces that employ
that data in some way can be dynamically discovered and appropriate action taken
e.g. to contact the owner of the service with details of the proposed change.

• A browseable, searchable knowledge base for developers (and others)
In tandem with the example given above for simpler change management,
semantically described services and ontologies would enable a knowledge base to be
constructed. This would allow developers and solution providers to perform queries
relating to the data and processes they were concerned with, for example to determine
the origin piece of data or its destination.

716 A. Duke et al.

• Semi-automatic service composition
Given a high level goal which we wish a service or set of services to achieve,
expressed in terms of an ontology, it should be possible to carry out decomposition
into components parts and then match these components with appropriate services.
The level of automation possible is a matter for ongoing research. Initial practical
results are likely to provide users with a set of candidate services that might satisfy
their needs. They are then left to decide between these services and oversee the
composition required in order to satisfy the goal.

• Mediation between the data and process requirements of component services
Often there is need for two or more services to interact even though their
communication requirements are semantically the same but syntactically different
(they may require different message exchange patterns or different data formats). In
this case it should be possible to automatically construct a translation between
message data elements that allows the services to communicate. This process is
known as mediation. It relies upon the mappings of messages and data elements to an
ontology allowing semantic equivalence to be inferred.

• Enterprise Information Integration
As the name suggests, the Semantic Web is based upon web technology. This can
afford universal (or at least enterprise wide) access to semantic descriptions of
services (or information). One advantage of this is the ability to answer complex
queries without having to consider how to access the various systems where the data
required for the answer is held. For example, suppose there is a requirement to
determine the number of customers within a particular postcode who spend more than
£100 per quarter. If that information is held within one database and the person asking
has access to it and knows how to query it then an answer could readily be obtained.
Of course the situation is more complex if multiple databases hold the answer and
access and a query interface have to be determined. The humans involved have some
work to do in locating the data and processing it in the required way. A semantic
approach, however, allows a single query to be made via a unifying ontology. [4]

3.1 Describing The Diagnostics Interface Using WSMO

This section describes a WSMO service description for the testRequest message.
WSMO service descriptions are separated into two parts – a functional part,

describing what the service can actually achieve (service capability) and a non-
functional part, providing additional information about the service (non-functional
and quality of service properties).

Non-functional Properties
The non-functional properties for testRequest use the Dublin Core elements. These
can be extended to include, for example, quality of service information. The property
of most interest here is dc:subject, which allows the service to be attributed to a
class. Here we use an existing telecoms industry-wide process framework: eTOM
(enhanced Telecoms Operations Map)[5] to provide a domain ontology. The value of
the property is: eTOM:EvaluateAndQualifyProblem. This allows a direct link
to be made between the service and a specific class in the eTOM ontology. The
eTOM prefix is an XML namespace which is shorthand for the location where the

 Towards B2B Integration in Telecommunications with Semantic Web Services 717

eTOM ontology is defined. ‘Evaluate & Qualify Problem’ is an eTOM category in the
‘Service Problem Management’ process grouping. If appropriate, several eTOM
categories can be attributed to a service using the subject property.

nonFunctionalProperties
 dc:title hasValue "Test Request"
 dc:subject hasValue "
 eTOM:EvaluateAndQualifyProblem"
 dc:description hasValue "Initiate a request for a
 Test"
 dc:contributor hasValue {
 <"http://www.btwholesale.com "> }
 dc:date hasValue "2004-12-10"
 dc:type hasValue
 <"http://www.wsmo.org/2004/d2/v1.0/#services">
 dc:format hasValue "text/plain"
 dc:language hasValue "en-US"
endNonFunctionalProperties

Functional Properties
The testRequest service could be described as having the capability that it initiates
requests for diagnostic tests to be carried out over BT’s network. In WSMO,
modelling preconditions and postconditions provide the conditions over the
information space that must hold before and after the execution of the service.
Capability assumptions and effects also define conditions but describe the state of the
world instead. As part of the modelling of WSMO services it is therefore necessary to
identify what are the expectations and the influences of this service on the information
space and the state of the world.

The inputs to testRequest are detailed in Table 1.

Table 1. Inputs to TestResquest transaction

Input Description
partyID The identifier for the Service

Provider who is placing the Request
for a diagnostic test

refNumber The reference that identifies a
particular test for the Service
Provider

testRequestDateTime The date and time the test request
was sent.

testCategory The type of test requested

Preconditions of this service would be is that the partyID, refNumber and
testCategory are all valid. In WSMO this is modelled with Axioms:

718 A. Duke et al.

?refNum memberOf refNumber and validRef(?refNum).

?testCat memberOf testCategory and
validTestCat(?testCat).

?parID memberOf partyID and validpartyID(?parID)

where refNumber, testCategory and partyID are predefined concepts and validRef(),
validTestCat() and validPartyID are predefined axioms in the same ontology.
refNum, testCat and parID are variables representing the input to the testRequest
service.

The output of the service will be the results of the test, so the postcondition would

be a valid test result:

?testRes memberOf testResult and validTestRes(testRes)

where testResult is a pre-defined concept and validTestRes() is a pre-defined axiom in
the same ontology. testRes is a variable representing the output of the testRequest
service.

To enable definition of assumptions and effects of the testRequest service the state
of the world should be modelled. In this scenario a testRequest could have one of four
states:

Ready – The test request is ready for submission
Awaiting – The test request has been accepted but the test has not been completed

yet.
Completed – The test has been completed
Failed – The test request was not accepted and no test was carried out.

The states are modelled through variables, and the values of these indicate the state

of the world at a given time. The state of the world in which testRequest can operate
(assumption) is one where the variable TRstate has value “Ready”. The execution of
testRequest changes the world state (effect) so that TRState value changes to
“Completed”. The WSMO axiom defining this assumption can be defined with the
following expression:

? WState memberOf WorldState and

? WState [TRState hasValue “Ready”]

where WorldState is a predefined concept having TRState as an attribute. The effect is
similarly defined:

? WState memberOf WorldState and

? WState [TRState hasValue “Completed”].

Thus WSMO can be used to describe a rich set of properties that the service has
including its capability, its data requirements for input and output and its effect of the
information space and state of the world.

 Towards B2B Integration in Telecommunications with Semantic Web Services 719

3.2 A WSMO-Based B2B Architecture

Describing the Broadband Diagnostics interface using WSMO allows the B2B
architecture picture to be redrawn as shown in Figure 3.

 BT Wholesale

Test Interface

B2B Gateway

Service Provider

CRM System

SP OSS

SP OSS
Call

Test System

BTW OSS

ebXML ebXML

SP OSS
Call

WSMO WSMO

Fig. 3. A WSMO based B2B Architecture

Initially it may appear that the WSMO architecture is more complex since one
extra adapter has been added to each party’s side of the architecture. OSS calls are
mapped to WSMO before being mapped to ebXML messages. However, from the
Service Provider’s perspective, the WSMO representation of the Gateway already
exists – BT Wholesale has provided it. The Service Provider is required to map its
calls to WSMO and then transform this representation into the WSMO representation
of the Diagnostics interface. This still sounds like two major adaptation steps,
however, the point is that the first of these could be automated and the second is at the
ontological level and should be easier much easier to perform than the equivalent
‘syntactic’ transformation that is required with the current B2B gateway. The reasons
behind this and approaches for automation will be identified in section 4.

From BT Wholesale’s perspective, initially, more work is required than with the
current Gateway. Firstly, it must represent its interface using WSMO. This requires
developing ontologies (either from scratch or by building upon any industry ontology
work such as that in the TeleManagement Forum [5]. The ontologies must represent
the complete data requirements of the interface as well as the process of collaboration.
However, following this effort it is to be expected that ongoing effort will be reduced
since Service Providers will require less support and should be able to integrate more
quickly with fewer errors.

Whether the WSMO adaptation within BT Wholesale’s part of the architecture is
required is an interesting point. Initially, this seems unnecessary since BT should fully
understand how to integrate here and should only need to do it once. However, in
practice both of these statements are rarely true: often the people responsible for

720 A. Duke et al.

internal systems are different from those for external integration. Also, there is no
reason why the internal systems should be static. Updates are always required to
existing systems and software vendors may change resulting in complete platform
changes. In this environment a semantically described internal interface makes more
sense.

4 Mapping Messages

Designing interface content appears at first glance to be very simple. Simply gather
up the dataset that you know your internal systems require and package them into
suitable format using straightforward and unambiguous field names. XML brings
only one significant advantage over the original fixed length records – any examples
produced during design will look exactly like the final solution. This means that early
examples can be ‘war gamed’ to verify a solution before any code is written.
However, beyond this XML still requires about the same amount of explanation and
documentation as the earlier cryptic file formats. The reason for this is purely one of
semantics. XML is only an ‘improved syntax’. When humans read XML they bring
their own semantic understanding to bear and this process initially makes it appear
that XML is an improvement as it is supposed to be ‘self-describing’.

This apparent self-describing quality of XML has given rise to a huge number of
misunderstandings when interfaces are implemented. For example is the contact for a
Service Provider the person who is managing the transaction or the customer that the
Service Provider is supporting? There have been examples where the same set of
fields have been used to convey both interpretations. This means that BT Wholesale
have difficulty knowing if the contact information provided is suitable for them to
use. Another inherent problem with XML is the apparent ease with which anyone can
produce it. This inevitably means consistency is threatened.

4.1 XML ‘Semantics’

There are a number of issues with representing and determining the semantics of
XML including:

Structure: The hierarchical design of XML means that the placement within the
structure can hold the key to the semantics of a particular data item. For example the
following are all semantically equivalent but syntactically different:

1. <ServiceProviderReference>123wqrh10</ServiceProvi
derReference>

2. <ServiceProvider>
 <Reference>123wqrh10</Reference>
</ServiceProvider>

3. <ServiceProvider Reference=”123wqrh10”/>

Meaning: The meaning of a field may change dependant upon who is looking at the
message. Examples of this are the typical ‘Our Reference’- ‘Your Reference’ fields.
The problem of using these ‘relative’ terms is that the semantics can only be

 Towards B2B Integration in Telecommunications with Semantic Web Services 721

interpreted if the context, i.e. who sent the message, is understood at the time of
interpretation.

Inter-field links: The traditional schema languages that are used to describe XML
have no mechanism to describe inter-field links. These are where a value in one field
indicates that a particular set of fields should exist or adopt certain values in a
different part of the message.

This means that it is possible to create ‘valid’ messages that parse successfully
through a schema validator, yet they will fail when applied to the receiving system.
This can force the XML designer to adopt extra layers of hierarchy to show these
links and this can mean obscuring the essence of the messages meaning.

In order to enable successful understanding of what the B2B Gateway interfaces
actually mean a great deal of documentation has been required. It is ironic that in
order to get computer systems to communicate successfully that you first need to
communicate successfully with fellow humans. This process usually gives rise to
ambiguities as to the meaning of fields. The actual process of producing
documentation and associated tools such as example generators and validators
actually means that the designer has to explain the meaning of each field. To help this
a technique of adding metadata to the underlying schemas has been used. This
metadata was defined by the ITU in a standard called tML (Telecommunications
Markup Language)6. Adding the metadata does help document the content but it
slows the process of designing interfaces down and can sometimes introduce incorrect
definitions as the XML designer is not usually the person who really understands the
underlying data and its associated meaning.

4.2 Achieving Successful Integration

To achieve a successful integration of two systems, they must both understand the
process and data related to the problem space. Increasing the understanding of
particular messages and data items through the use of XML syntax helps, but it does
not remove the need for humans to do the mapping from the internal systems to the
external interfaces.

This mapping involves the developers/designers in a semantic exercise that is often
underestimated in its complexity and the time it can take to code a solution. This time
and complexity is reduced significantly if the domain of the problem is understood by
both parties and the systems using the interface have been built with the interface in
mind or with at least an understanding of the domain involved. For example, if the
Order system being used to produce orders has the ability to capture the required data
in a manner that is similar to the requirements of the interface the chances of a
successful integration are increased.

4.3 How Could Having a Semantic Layer Help?

If you take two systems and imagine that they both have a clear semantic definition of
their capabilities, namely the processes and data they support, being able to access the

6 http://www.atis.org/

722 A. Duke et al.

ability of the systems to integrate should be fairly straight forward. To date the issue
has been that this Semantic layer has been in the form of document (usually Word and
Excel) and is aimed purely at a human readership. If these semantics could be
expressed in a computer readable form, it would be possible to do a gap analysis of
the data, but also it should be possible to automatically build the mediation layer
between the systems. This could mean that the interface between the systems is
actually bespoke to them rather than being published as a generic interface.

This semantic layer would have to encompass not only a one dimensional
understanding of the data at face value – i.e. this is a date, but also be able to
understand that this date is the ‘Customer Required by Date’. Above this it would
have to understand that this is the date when the product associated with the Order is
to be provided. To develop this level of semantics the Semantic Layer needs to be
able to express understanding not just about the messages themselves but also the
underlying concepts associated with them, such as products, services, bills, invoices,
etc.

With this deep understanding it becomes increasingly possible to change the way
in which B2B solution actually work. From transactional model it is possible to move
to a model where the exchange of relevant information and state when appropriate is
the norm. The computer systems would be able to derive which bits of information
they require from each other. This could mean that the systems ordering a product
could be asked for extra information which is not known at the start. The fact that
this new information is ‘understood’ by the Semantic layer would allow the system
being asked for this information to assess if it has it or if it needs to ask a human to
provide it.

Although the above utopian dream is goal worth expressing it is also worth looking
at what can be achieved today with the Semantic tools available. Assuming a given
process with a given set of data it should be possible to express a set of semantics that
describe this finite world. By expressing an ontology of these semantics it is possible
to map a given systems data into the ontology. This means that if the interface needs
were expressed in terms of the initial ontology then the mapping from the system to
the interface could be automatically generated.

4.4 Mapping to an Ontology

It is possible to map between XML and an ontological representation such as RDF
using XSLT. However, this is problematic since two unrelated transformations – one
from XML to the ontological layer and another in the opposite direction are required.
In addition, because of the graph structure of RDF, there is no canonical serialisation
that can ensure sequence information is maintained. A promising recent approach [6]
which overcomes these issues is perhaps the most appropriate in this scenario. A bi-
directional mapping is enabled through the naming of schema components which
preserves the scope of elements and attributes in XML. In additions, the DIP project
has considered the state-of-the-art in this area [7] and will build a WSMO mediation
component that can be applied to the B2B Gateway.

 Towards B2B Integration in Telecommunications with Semantic Web Services 723

5 Looking Ahead

As described in section 2, the common scenario for B2B integration in
Telecommunications involves long-standing partnerships and agreements. Technical
integration takes place following a legal and commercial process where service levels,
price and other agreements are reached. In this scenario the need for dynamic, run-
time discovery and composition is not obvious. Even at design-time, discovery is not
currently required since a relatively small number of interfaces are available and these
are well-known and documented – this explains the large focus on mediation
requirements in this paper which most definitely is required at design-time.

This scenario is expected to change dramatically in the near future. The long-
standing partnerships are unlikely to disappear overnight but shorter-term, ad-hoc
collaborations are expected to emerge. For both of these forms of relationship there
will be a greater reliance on dynamic integration. Organisations will expose more-
and-more of their business interfaces to both their long-term partners and their
customers but also to anyone else who wants to do business (of course with the
appropriate restrictions). This trend is due to both regulatory pressure (e.g. as seen in
the UK with ‘local-loop unbundling’) and the need to make supply chains more
efficient allowing cost reductions and greater agility in service delivery. In this more
open environment the level of integration, of course, increases; as do set-up and
management costs. There are severe doubts as to whether a static integration approach
is sustainable under these circumstances. Even if design-time integration is still
heavily relied upon, the ability to discover alternative functionality, perhaps for
resilience or where factors such as price and availability are changing quickly, will be
required.

How does the B2B Gateway fit into this changed environment? Many more
service, wholesale and content providers are expected to expose their interfaces for
integration. It is here that technologies such as WSMO have real value since the initial
effort required in creating ontologies, describing interfaces semantically and relating
the two together is now much less that the total integration effort. The ontology
created by BT Wholesale to describe their interfaces will perhaps be adopted by other
smaller suppliers since they realise that service providers who are already using it can
more easily integrate with them if they do so. Other ontologies are created by other
dominant players in other markets such as global content providers. Here mediation
between the ontologies is required for integration. Discovery in this environment
leads to a dramatic change in business relationships. Today, companies ask ‘Who are
my partners?’ then ‘How do I integrate with them?’. Tomorrow, companies may ask
‘What services can I discover?’ then ‘How do I partner with their owners?’.

6 Conclusion

This paper has presented an existing approach for integration within the
Telecommunication sector – the BT Wholesale B2B Gateway. Although providing
increased efficiency when compared to separate OSS systems the process to enable
BTW’s partners to use the Gateway is long and costly. It is proposed that Semantic
Web Services could ease this integration process. The Web Services Modelling

724 A. Duke et al.

Ontology is presented together with a description of how it could be applied to the
Gateway today and how it might provide further benefit in the future. Initial benefits
are expected in the mediation space with discovery and composition aspects
undergoing consideration following this. The paper describes initial work on a case
study within the DIP project. The application of WSMO and associated tools that
emerge to this case study will continue to be explored within the project.

References

1. Evans, D., Milham, D., O'Sullivan, E., Roberts, M.: Electronic Gateways—Forging the
Links in Communications Services Value Chains. The Journal of The Communications
Network Volume 1 Part 1 (2002)

2. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V. (2002)

3. Lara, R., Roman, D., Polleres, A., Fensel, D. A Conceptual Comparison of WSMO and
OWL-S. In Proceedings of the European Conference on Web Services (ECOWS 2004),
2004.

4. Duke, A. Davies, J., Richardson, M. Kings, N.: A Semantic Service Orientated Architecture
for the Telecommunications Industry. INTELLCOMM (2004) 236-245

5. TeleManagement Forum, Enhanced Telecom Operations Map (eTOM) data sheet. Available
on the web at: http://www.tmforum.org/

6. Battle, S.: Round-tripping between XML and RDF. ISWC04 Poster Presentation (2004)
7. Grimm, S. et al.: Service Mediation: State-of-the-art and Reqirements Analysis, DIP

Deliverable 5.1 (2004)

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, p. 725, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SWebB: Semantic Web Browsing

Fausto Giunchiglia

Dept. of Information and Communication Technology
University of Trento, 38050 Povo, Trento, Italy

fausto@dit.unitn.it

In this talk I will present a browser, called SWebB (Semantic Web Browser), which
explicitly uses, whenever available, the semantic information codified in Contextual
Ontologies. Contextual Ontologies are ontologies enriched with Context Links.
Ontologies define the conceptual model of a peer and describe its content. Context
mappings are sets of

 ()
 context mappings, similarly to standard Web

links, can be discovered, navigated, copied, and so on. Contexts mappings are discov-
ered by Semantic Matching. Contextual Ontologies are formalized using the C-OWL
Language. The talk will also provide an overview of the key aspects of C-OWL.

References

1. F. Giunchiglia, P. Shvaiko. Semantic Matching. In The Knowledge Engineering Review
Journal, 18(3) 2003.

2. L. Serafini, P. Bouquet, B. Magnini, S. Zanobini: Semantic Coordination: A new approach
and an application. In proceedings of ISWC’03 (2003)

3. P. Bouquet, F. Giunchiglia, F. Van Harmelen, L. Serafini, H. Stuckenschmidt . C-OWL:
contextualizing ontologies. "2nd international semantic web conference (ISWC 2003)",
edited by Dieter Fensel and Katia p. Sycara and John Mylopoulos, Sanibel Island (Fla.),
20-23 October 2003, pp. 164-179

4. F. Giunchiglia, P. Shvaiko, M. Yatskevich. S-Match: An algorithm and an implementation
of semantic matching. In Proceedings of ESWS’04, pages 61–75, 2004.

5. F. Giunchiglia, M. Yatskevich, E. Giunchiglia. Efficient Semantic Matching. In Proceed-
ings of ESWC’05, 2005.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, p. 726, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Semantic Grid: Past, Present and Future

David De Roure

Intelligence, Agents, Multimedia Group,
University of Southampton, Highfield,

Southampton, SO17 1BJ United Kingdom
dder@ecs.soton.ac.uk

Grid computing offers significant enhancements to our capabilities for
computation, information processing and collaboration, and has excit-
ing ambitions in many fields of endeavour. This talk will explain why
the full richness of the Grid vision, with its application in e-Science, e-
Research or e-Business, requires the combination of Semantic Web and
Grid - giving us the "Semantic Grid", an extension of the current Grid
in which information and services are given well-defined meaning, bet-
ter enabling computers and people to work in cooperation. The history
and state of the art in Semantic Grid will be presented, and future trends
discussed.

Author Index

Aitken, Stuart 694
Alani, Harith 664
Ali, Rana Kashif 333
Alper, Pinar 17
Angles, Renzo 346
Avrithis, Yannis 592

Baumgartner, Robert 515
Behrendt, Wernher 257
Benerecetti, M. 211
Bindrer, Walter 32
Bloehdorn, Stephan 592
Bojars, Uldis 500
Bontcheva, Kalina 531
Bouquet, P. 211
Breslin, John G. 500
Brunzel, Marko 608
Burek, Patryk 377

Carroll, Jeremy J. 108
Castells, Pablo 455
Castro, Rui 471
Cayzer, Steve 333
Celino, Irene 423
Chapman, Sam 649
Chirita, Paul Alexandru 439
Choi, Dae Woo 408
Ciravegna, Fabio 623, 649
Colucci, Simona 633
Constantinescu, Ion 32

Dalamagas, Theodore 123
Decker, Stefan 500
Della Valle, Emanuele 423
Denker, Grit 78
De Roure, David 726
Di Noia, Tommaso 633
Di Sciascio, Eugenio 633
Donini, Francesco M. 633
Duke, Alistair 710

Elenius, Daniel 78
Esposito, Floriana 138

Faltings, Boi 32
Fensel, Dieter 1
Fernández, Miriam 455

Gangemi, Aldo 257
Garwood, Kevin 578
Gavriloaie, Rita 439
Ghita, Stefania 439
Gibbins, Nicholas 664
Gilham, Fred 78
Giunchiglia, Enrico 272
Giunchiglia, Fausto 272, 303, 725
Glaser, Hugh 664
Goble, Carole 17, 578
Graboś, Rafa�l 377
Groot, Perry 318
Gutierrez, Claudio 93, 346

Haase, Peter 182, 486
Handschuh, Siegfried 592
Harris, Stephen 664
Harth, Andreas 500
Henze, Nicola 515
Herzog, Marcus 515
Heymans, Stijn 392
Horrocks, Ian 153
Hotho, Andreas 486
Hurtado, Carlos 93

Iannone, Luigi 138

Jimenez, Ivan 471

Kaoudi, Zoi 123
Keller, Uwe 1
Khouri, John 78
Kim, Wooju 408
Kompatsiaris, Yiannis 592
Kotis, Konstantinos 198

Lanfranchi, Vitaveska 623
Lara, Rubén 1
Lausen, Holger 1
Liebsch, Franziska 679
Lopez, Vanessa 546
Lord, Phillip 17, 578

728 Author Index

Maass, Wolfgang 257
Marcos, Gorka 471
Martin, David 78
Mauri, Marco 471
McGuinness, Deborah L. 303
Motta, Enrico 546
Müller, Roland M. 608

Nejdl, Wolfgang 290, 439
Nguyen, Duc Minh 679
Nixon, Lyndon J.B. 679
Norton, Barry 649

Olmedilla, Daniel 290

Paiu, Raluca 439
Palmisano, Ignazio 138
Pan, Jeff Z. 153
Park, Sangun 408
Parkinson, Helen 578
Pasin, Michele 546
Paslaru Bontas, Elena 679
Paton, Norman W. 578
Peer, Joachim 47
Petrelli, Daniela 623
Petridis, Kosmas 592
Phillips, Addison 108
Pianciamore, Massimiliano 471
Pinheiro da Silva, Paulo 303
Pinto, H. Sofia 241
Pistore, Marco 62
Polleres, Axel 1
Posada, Jorge 471
Potter, Stephen 694

Ragone, Azzurra 633
Redavid, Domenico 138
Reinberger, Marie-Laure 563
Richardson, Marc 710
Roberti, Pierluigi 62
Roberts, Martin 710

Saathoff, Carsten 592
Sadaati, Shahin 78
Schaal, Markus 608
Schlobach, Stefan 226

Schmidt-Thieme, Lars 486
Sellis, Timos 123
Selvini, Paolo 471
Semeraro, Giovanni 138
Senanayake, Rukman 78
Serafini, Luciano 361
Sevilmis, Neyir 471
Shadbolt, Nigel 664
Shvaiko, Pavel 303
Simou, Nikos 592
Smithers, Tim 471
Spiliopoulou, Myra 608
Spyns, Peter 563
Staab, Steffen 241, 592
Stojanovic, Ljiljana 182
Stork, André 471
Straccia, Umberto 167
Strintzis, Michael G. 592
Stuckenschmidt, Heiner 318
Sure, York 241, 486

Tamilin, Andrei 361
Tempich, Christoph 241
Thelen, Bruno 471
Tolksdorf, Robert 679
Traverso, Paolo 62
Tzouvaras, Vassilis 592

Vaisman, Alejandro 93
Vallet, David 455
Van Nieuwenborgh, Davy 392
Vermeir, Dirk 392
Vouros, George A. 198

Wache, Holger 318
Watkins, Sam 710
Westenthaler, Rupert 257
Winslett, Marianne 290
Wroe, Chris 17

Yatskevich, Mikalai 272

Zanobini, S. 211
Zecchino, Vincenzo 471
Zhang, Charles C. 290

	Frontmatter
	Semantic Web Services
	Automatic Location of Services
	Feta: A Light-Weight Architecture for User Oriented Semantic Service Discovery
	Optimally Distributing Interactions Between Composed Semantic Web Services
	A POP-Based Replanning Agent for Automatic Web Service Composition
	Process-Level Composition of Executable Web Services: ''On-the-fly'' Versus ''Once-for-all'' Composition
	The OWL-S Editor -- A Development Tool for Semantic Web Services

	Languages
	Temporal RDF
	Multilingual RDF and OWL
	RDFSculpt: Managing RDF Schemas Under Set-Like Semantics
	REDD: An Algorithm for Redundancy Detection in RDF Models
	OWL-Eu: Adding Customised Datatypes into OWL
	Towards a Fuzzy Description Logic for the Semantic Web (Preliminary Report)
	Consistent Evolution of OWL Ontologies

	Ontologies
	Extending HCONE-Merge by Approximating the Intended Meaning of Ontology Concepts Iteratively
	Soundness of Schema Matching Methods
	Debugging and Semantic Clarification by Pinpointing
	An Argumentation Ontology for DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT)
	Towards an Ontology-Based Distributed Architecture for Paid Content
	Efficient Semantic Matching
	Ontology-Based Policy Specification and Management
	Web Explanations for Semantic Heterogeneity Discovery

	Reasoning and Querying
	Approximating Description Logic Classification for Semantic Web Reasoning
	AIS and Semantic Query
	Querying RDF Data from a Graph Database Perspective
	DRAGO: Distributed Reasoning Architecture for the Semantic Web
	Dually Structured Concepts in the Semantic Web: Answer Set Programming Approach
	Nonmonotonic Ontological and Rule-Based Reasoning with Extended Conceptual Logic Programs

	Search and Information Retrieval
	Product Information Meta-search Framework for Electronic Commerce Through Ontology Mapping
	Multiple Vehicles for a Semantic Navigation Across Hyper-environments
	Activity Based Metadata for Semantic Desktop Search
	An Ontology-Based Information Retrieval Model
	Knowledge Sharing by Information Retrieval in the Semantic Web

	Users and Communities
	Collaborative and Usage-Driven Evolution of Personal Ontologies
	Towards Semantically-Interlinked Online Communities
	The Personal Publication Reader: Illustrating Web Data Extraction, Personalization and Reasoning for the Semantic Web

	Natural Language for the Semantic Web
	Generating Tailored Textual Summaries from Ontologies
	AquaLog: An Ontology-Portable Question Answering System for the Semantic Web
	Lexically Evaluating Ontology Triples Generated Automatically from Texts

	AnnotationTools
	Pedro Ontology Services: A Framework for Rapid Ontology Markup
	Semantic Annotation of Images and Videos for Multimedia Analysis
	RELFIN -- Topic Discovery for Ontology Enhancement and Annotation
	Semantic Web-Based Document: Editing and Browsing in AktiveDoc

	Semantic Web Applications
	Semantic-Based Automated Composition of Distributed Learning Objects for Personalized E-Learning
	Orchestration of Semantic Web Services for Large-Scale Document Annotation
	Monitoring Research Collaborations Using Semantic Web Technologies
	Enabling Real World Semantic Web Applications Through a Coordination Middleware
	A Semantic Service Environment: A Case Study in Bioinformatics
	Towards B2B Integration in Telecommunications with Semantic Web Services

	Invited Papers
	SWebB: Semantic Web Browsing
	The Semantic Grid: Past, Present and Future

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

